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Razpad lažnega vakuuma z več skalarnimi polji

Izvleček

Kot pri vrenju pregretih tekočin, je razpad lažnega vakuuma fazni prehod prvega
reda. Lokalno osnovno stanje preide v energetsko bolj ugoden nižji minimum en-
ergije, ki se zgodi zaradi termičnih in kvantnih fluktuacij polj.

V tem delu predstavimo učinkovito semi-analitično metodo, ki izračuna raz-
padni čas takšnega stanja za poljubno število skalarnih polj in prostorsko-časovnih
dimenzij. Osnovana je na naboru poljubnega števila linearnih segmentov, ki opišejo
potencial z več minimi. Eksaktne rešitve razvoja polja za vse segmente so združene v
popoln opis konfiguracije odbojnega polja, ki dá vodilni prispevek k razpadni širini.
S povečevanjem števila segmentov, dobimo odbojno akcijo do željene natančnosti.
Ujemane enačbe, ki se pri tem pojavijo, se reši analitično, posplošitev na več polj
pa je izračunana iterativno s pomočjo linearnih analitičnih perturbacij.

Na osnovi te konstrukcije smo ustvarili robusten in uporabniku prijazen Mathe-
matica paket, imenovan FindBounce, ki implementira našo metodo. Zaradi semi-
analitične strukture, računska zahtevnost raste linearno s številom polj in segmentov.
Predstavimo nekaj aplikacij in primerjav z drugimi orodji, pri katerih je izvajalni
čas v grobem manj kot 1 (2) sekundi za 10 (20) polj z 0.5% natančnostjo akcije.

Za konec opišemo postopek, ki izvrednoti prispevke višjega reda k razpadni širini
za poljuben gladek potencial, in ga posplošimo tako, da zaobjame tudi potenciale z
nezveznimi prvimi odvodi. Posledično dobimo točno razpadno širino na nivoju ene
zanke za realno in kompleksno skalarno polje v dvojnem kvartičnem potencialu z
dvema minima na drevesnem redu. Izračunamo produkt lastnih vrednosti, odstran-
imo translacijske ničelne načine in renormaliziramo divergence s formalizmom zeta
funkcije. Ostane nam zaključena oblika celotne razpadne širine.

Ključne besede:

Kvantno tuneliranje, instantoni, razpad lažnega vakuuma, stabilnost vakuuma, fazni
prehodi, kozmologija, bariogeneza, gravitacijski valovi.





False vacuum decay with multiple scalar fields

Abstract

As in boiling super-heated liquids, the decay of a false vacuum is a first-order
phase transition. A local ground state decays to an energetically more favorable
minimum of lower energy due to the thermal and quantum fluctuations of the fields.

In this work, we present an efficient semi-analytic method that computes the
decay rate of such a state for any number of scalar fields and space-time dimensions.
It is based on the collection of an arbitrary number of linear segments that describe
a potential with several minima. The exact evolution of the field for each segment to
provide the complete description of the bounce field configuration, which provides
the leading contribution of the decay rate. By increasing the number of segments,
one obtains the bounce action up to the desired precision. The resulting match-
ing equations are solved semi-analytically and the generalization to more fields is
computed iteratively via linear analytic perturbations.

Based on this construction, we provide a robust and user-friendly Mathematica
package that implements our method, named FindBounce. As it preserves the semi-
analytic structure of the method, its computational time grows linearly with the
number of fields and segments. We present several applications and comparisons
with other tools, where typical running time is roughly less than 1 (2) seconds for
10 (20) fields with 0.5% accuracy of the action.

Finally, we describe a procedure that computes subleading contributions of the
decay rate for any smooth potentials and extend it to include potentials with dis-
continuous first derivatives. As a consequence, we exhibit an exact decay rate at
one loop for a real and complex scalar field in a bi-quartic potential with two tree-
level minima. We compute the product of eigenvalues, remove the translational zero
modes and renormalize the divergences with the zeta function formalism. We end
up with a complete decay rate in a closed-form.

Keywords:

Quantum tunneling, Instantons, False vacuum decay, Vacuum stability, Phase tran-
sitions, Cosmology, Baryogenesis, Gravitational waves.





Contents

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

List of abbreviations and symbols . . . . . . . . . . . . . . . . . . . . . . 23

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 False vacuum decay: the bounce . . . . . . . . . . . . . . . . . . . . . 31
2.1 Tunneling in quantum mechanics . . . . . . . . . . . . . . . . . . . . 31
2.2 Single field bounce . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 The thin wall approximation . . . . . . . . . . . . . . . . . . . . . . . 36
2.4 Re-scaling properties and Derrick’s Theorem . . . . . . . . . . . . . . 38
2.5 Exact solutions of the bounce . . . . . . . . . . . . . . . . . . . . . . 38

2.5.1 The triangular potential . . . . . . . . . . . . . . . . . . . . . 39
2.5.2 The bi-quartic potential . . . . . . . . . . . . . . . . . . . . . 40

2.6 Evolution of the bubble in Minkowski space . . . . . . . . . . . . . . 41

3 Polygonal bounce: from single to multifield decay rate . . . . . . . 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Single field polygonal bounces . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Evaluating polygonal bounces . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.2 Examples, convergence and comparisons . . . . . . . . . . . . 50

3.4 Extending polygonal bounces . . . . . . . . . . . . . . . . . . . . . . 52
3.5 Multi-field polygonal bounces . . . . . . . . . . . . . . . . . . . . . . 55

3.5.1 Constructing multi-field polygonal bounces . . . . . . . . . . . 57
3.5.2 Examples and path convergence . . . . . . . . . . . . . . . . . 60

3.6 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 FindBounce: A package for multifield bounce action . . . . . . . . . 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Installation and running guide . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Download and installation . . . . . . . . . . . . . . . . . . . . 64
4.2.2 Running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.3 Contributing . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Using the FindBounce and its output . . . . . . . . . . . . . . . . . . 65
4.3.1 FindBounce options . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.2 Bounce function output and manipulation . . . . . . . . . . . 68

4.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

11



4.4.1 Single field benchmark . . . . . . . . . . . . . . . . . . . . . . 69
4.4.2 Bi-quartic potential . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.3 Intermediate minima and disappearing instantons . . . . . . . 73
4.4.4 Potentials unbounded from below . . . . . . . . . . . . . . . . 74
4.4.5 Two field benchmark . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.6 Thermal corrections and nucleation temperature . . . . . . . . 77
4.4.7 Beyond two fields . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 The decay rate at one loop: An exact solution . . . . . . . . . . . . 83
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Loop corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.1 The prefactor . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.2 Evaluation of the prefactor . . . . . . . . . . . . . . . . . . . . 86

5.3 Functional determinants . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.1 Radial mode separation and exact product of eigenvalues . . . 87
5.3.2 Removing the zero modes . . . . . . . . . . . . . . . . . . . . 89
5.3.3 Finite sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Zeta function regularization . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.1 Zeta function via contour integral . . . . . . . . . . . . . . . . 92
5.4.2 Renormalization of the functional determinant . . . . . . . . . 94

5.5 Summary of decay rates . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5.1 Real quartic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5.2 Complexified quartic . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

Appendix A Appendix to Chapter 2 . . . . . . . . . . . . . . . . . . . .119
A.1 On D = 2, 6, 8 dimensions . . . . . . . . . . . . . . . . . . . . . . . . 119
A.2 Multi-field N = 3 in D dimensions . . . . . . . . . . . . . . . . . . . 120
A.3 Real radii and root finding . . . . . . . . . . . . . . . . . . . . . . . . 120

Appendix B Appendix to Chapter 3 . . . . . . . . . . . . . . . . . . . .123
B.1 One-Loop effective potential . . . . . . . . . . . . . . . . . . . . . . . 123
B.2 Multi field potential parameters . . . . . . . . . . . . . . . . . . . . . 123

Appendix C Appendix to Chapter 4 . . . . . . . . . . . . . . . . . . . .127
C.1 A example of the Gel’fand Yaglom theorem in a D = 1 potential well 127
C.2 The prefactor for polygonal bounce . . . . . . . . . . . . . . . . . . . 128
C.3 Bessel, Saddle-point and Zeta function approximations . . . . . . . . 129
C.4 Derivation of the high-l expansion of fl . . . . . . . . . . . . . . . . . 130

Razširjeni povzetek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
7.1 Uvod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2 Poligonski odboj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.3 FindBounce: Paket za večpoljsko odbojno akcijo . . . . . . . . . . . . 138



7.4 Kvantne fluktuacije . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.5 Sklepne opombe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

List of publications related to this doctoral thesis . . . . . . . . . . . .145





List of figures

1.1 Left: A single field potential with two non-degenerate minima. Cen-
ter: A multi-field interpretation of the potential on the left. The red
path underlines the bounce trajectory in field space, while the black
path stands for the trajectory of the bounce if there were no inter-
actions among the fields. Right: Spontaneous creation of bubbles
transforming the false state into the true one. . . . . . . . . . . . . . 25

2.1 An example of a particle that tunnels from q+ to the materialization
point σ at the time τ = 0. Left: Potential with two non-degenerate
minima. Center: The potential on the left inverted after the analytic
continuation to Euclidean space. Right: The evolution of the particle
subjected to the potential on the left. . . . . . . . . . . . . . . . . . 32

2.2 Left: An example of a potential with two minima with unstable false
vacuum state at φ+ and a stable true one at φ−. Right: The potential
on the left after an analytic continuation into Euclidean space. The
field starts in a non-trivial value of the field φ0, such that it ends up
at the false vacuum at infinity. . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Left: An example of a potential with a small energy difference ∆V =
ϵ. Center: Bounce field configuration for the potential on the left.
The wall of the bubble is highlighted in pink. Right: The bounce
field in a region of space: inside (outside) the bubble the value of the
field is φ− (φ+), while on the thin wall it is φw. . . . . . . . . . . . . 36

2.4 Left: The piece-wise linear potential with two segments in blue, su-
perimposed on the potential in gray. Right: The bi-quartic potential. 39

2.5 Left: The triangular potential with an extra segment with slope a−1

at the true vacuum to include the downward movement of the classical
field. Right: The classical field configuration after the materialization
of the bubble corresponding to the potential on the left. . . . . . . . . 42

2.6 Left: The expansion of the bubble in Minkowski space-time for par-
ticular values of the classical solution φ. Right: The expansion of the
bubble for any space, time and field values. . . . . . . . . . . . . . . . 43

3.1 Left: Linearly off-set quartic potential in gray and the polygonal ap-
proximation with N = 7 in blue. Right: The bounce field configu-
ration corresponding to the potential on the left, computed with the
polygonal bounce approximation. . . . . . . . . . . . . . . . . . . . . 46

15



3.2 Schematic overview of finding the PB. The segment with the solution
(in this example s = 2 and Rin = R2) can be found by evaluating the
PB on the boundaries of Rmin

2 = 0 and Rmax
2 and checking that the

imaginary part of the final radius RN−1 becomes non-zero. Finally,
the solution of R2 is found such that the scaling parameter λ→ 1. . . 49

3.3 The initial radius R(N)
0 of case b) and D = 4 for the uniform seg-

mentation with N points, normalized to the minimal N = 3 setup.
Similar behavior appears for D = 3. Different lines correspond to
the range of ϵ, which controls the separation between the minima
in (3.18), see text for details. . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 The bounce action S(N)
0 normalized to the maximal N = 400 uniform

segmentation with D = 4. The solid lines show the PB method
for different ϵ that defines the input potential. The inset shows the
same, for a smaller number of segments. The dotted lines show the
comparison to other methods and tools, see text for details. . . . . . . 52

3.5 Left: The linearly off-set quartic potential in gray, the linear polyg-
onal approximation with N = 7 in dashed blue and the 2nd order
quadratic correction in solid blue. Right: The field solution in the
PB approximation in dashed and the 2nd order improved solution in
solid orange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 The bounce action of the improved bounce calculation including the
second order correction. The lower colored lines correspond to the
corrected action, while the upper gray ones show the leading PB for
comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7 An example of a multifield potential with two fields, trajectory of the
bounce in blue and its projection on the bottom. Red dashed line is
the path in the absence of the potential or interactions among fields,
while the solid red one is the path that minimizes the potential. . . . 56

3.8 The PB solution for two fields in D = 4 with N = 7 segment points.
Left: Path in field space with the initial straight line ansatz φ̄ with
empty circles and the first iteration of the PB solution in solid blue
and full circles; the result from shooting is shown in purple. Right:
Iterations of the evolution in Euclidean time for φ1(ρ). . . . . . . . . 58

3.9 Multi-field polygonal solution in D = 4 with N = 15 segmentation
points. The starting ansatz is the straight dashed line connecting the
two minima, shown as black dots, together with the saddle point. The
solid lines are subsequent iterations that converge to the final path
that solves the bounce equations. Insets show the action compared to
other approaches. Left: The case a) set-up with the initial endpoint,
which is free to move. Right: The case b) potential of the thin wall
type with fixed endpoints in the minima. . . . . . . . . . . . . . . . . 60

4.1 Left: The benchmark potential from Eq. (4.1) for different values of
α going from thick α = 0.6 to thin wall α = 0.99. Right: The bounce
action Ss for each potential configuration and a given number of field
points s, normalized to s = 400 and computed in D = 4. . . . . . . . 70



4.2 Left: Evaluation time with respect to the number of field points,
averaged over two intervals of α corresponding to thin and thick
wall regimes. Right: The bounce field configuration and action with
N = 31 (default) field points for different tolerance value of the action
controlled by "ActionTolerance". Reference values of the action for
"FieldPoints"-> 10 and 100 field points with "ActionTolerance"->
10−6 (default) are shown on the green background. . . . . . . . . . . 71

4.3 Left: The piecewise quartic potential for different values of the poten-
tial difference between the vacua, going from the thin wall ∆V = −0.1
to thick wall ∆V = −20 regime. Right: The bounce action Ss for
different number of field points, normalized to the exact result S0 of
the bi-quartic potential. . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Left: The minimal example of a potential with an intermediate min-
imum. The inset shows the bounce solution with the typical double
bubble wall shape in orange. Right: Decay rates for the direct (ABC)
and the two subsequent (AB, BC) transitions, together with the total
decay rate (4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Left: Potential unbounded from below. The pure quartic, polygonal-
quartic and input potentials are shown in red, solid blue and black,
respectively. The dashed blue line is the pure quartic potential that
is joined to the piece-wise polygonal potential. Right: The bounce
field configuration with its bounce action. The solid lines show the
field configuration with PB+quartic estimate, the dashed are the pure
polygonal solutions and the dotted black line is the numerical result
obtained with over-under-shooting. . . . . . . . . . . . . . . . . . . . 75

4.6 Left: Potential contours in solid gray lines, the final trajectory of
the bounce field in solid blue line and three different initial paths in
dashed. Black dot-dashed line is the default straight line ansatz, the
straight dashed blue line includes the intermediate point at {6,6},
while the red dashed line is a parabola, set by hand. Right: The
field configuration (h(ρ), s(ρ)) of the final iteration and the associated
bounce action in the caption. . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Left: The multi-field bounce action Ss average, normalized to the
one with N = 400 field points. Right: Multi-field time measure with
respect to number of fields for several field points. The solid lines were
obtained by FindBounce with "ActionTolerance" → 10−4. The
dashed lines with dots are the time measurements from other existing
tools, see text for details. . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 Deformation of the integration contour of eq. (5.36) from the positive
real axis to the negative one. The red dots represent the location of
the poles such that ψ(∞, γ) = 0. . . . . . . . . . . . . . . . . . . . . 93



5.2 The FV decay rate for the bi-quartic potential in (2.39). The black
solid line shows the total rate, while the dashed ones show the semi-
classical part S0 in red and the finite renormalized prefactor S1 in
dark yellow. The dotted lines correspond to the TW leading expan-
sion, where we set y = λ1/λ2 = 1 and expand up to (x − 1)−3 in
dark green, additional corrections up to (x − 1)0 in light green and
the flat potential limit x = v1/v2 ≫ 1 in blue. The shaded regions
show the variation of λ2 ∈ {0.1, 1} in purple and λ1/λ2 ∈ {0.5, 1} in
light brown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.1 Left: The final radius dependence on R0 for N = 50 and ε = 0.03,
showing the real and imaginary part, as well as the corresponding
value obtained from RN−1 in the matching condition in (3.15). Right:
The continuous version of Derrick’s theorem (2.27) with T computed
with the PB and V from the input potential in (3.18). The normalized
quantity acts as a test of convergence and goodness of approximation. 121

A.2 Left: The initial field value φ0 normalized to the position of the false
minimum in φ̃1. Right: The final radius RN−1, normalized to the
N = 3 approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . 122

C.1 The ratio of determinants Rl for a given multipole. Left: The ρ
dependence for shooting in solid and the PB solution with N = 3
(N = 50) in dotted (dashed) lines. Right: The ratio at ρ → ∞ with
solid (empty) squares denoting the N = 3 (N = 50) PB approxi-
mation, while the solid line connects the results from the shooting
procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.1 Levo: Primer potenciala z dvema minima z nestabilnim lažnim vaku-
umskim stanjem pri φ+ in stabilnim pravim pri φ−. Desno: Potencial
z leve po analitičnem nadaljevanju v evklidski prostor. Polje začne v
netrivialni vrednosti φ0, tako da v neskončnosti doseže pravi vakuum. 135

7.2 Levo: Linearno zamaknjen kvartični potencial v sivem, linearna poligon-
ska aproksimacija N = 7 v črtkano modrem in kvadratični popravki
drugega reda v polnem modrem. Desno: Rešitev polja v aproksi-
maciji PO v črtkanem oranžnem in izboljšana rešitev drugega reda v
polnem oranžnem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.3 Odbojna akcija izboljšanega izračuna odboja, ki vključuje popravke
drugega reda. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.4 Levo: Primer potenciala z dvema poljema, trajektorija odboja v mod-
rem in njena projekcija na dnu. Rdeča črtkana črta je pot, izračunana
brez interakcij med polji, polna rdeča črta pa je pot, ki minimizira po-
tencial. Polna modra črta predstavlja večpoljsko poligonsko rešitev v
D = 4 z N = 15 segmentacijskimi točkami. Desno: Nivojnice poten-
ciala na levi. Ravna črtkana črta je izhodiščni nastavek, ki povezuje
dva minima s sedlom. Oba minima in sedlo so označeni s črnimi
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Chapter 1

Introduction

It is well known among particle physicists that quantum field theory (QFT) is a
powerful tool that has led to one of the most fantastic agreements between the the-
oretical predictions and the experiment in the history of science. In this framework,
particles are treated as excited states of some more fundamental objects called quan-
tum fields. As in quantum mechanics, the state with the lowest possible energy is
the ground state or vacuum energy, which in QFT is identified as the minimum of
the potential.

In general, a model might have several non-degenerate minima as on the left
panel of fig. 1.1, where the lowest one is a stable state, known as the true vacuum
(TV) while the local ones are metastable. The latter ones are false vacuum (FV)
states as they will eventually decay into a more favorable lower state of energy by a
process of barrier penetration analogous to alpha decay in quantum mechanics. It
is caused by quantum and thermodynamic fluctuations of the fields, where the state
tunnels through or passes over the potential barrier respectively.

φ

V

wallwall

truetrue

falsefalse

Figure 1.1: Left: A single field potential with two non-degenerate minima. Center:
A multi-field interpretation of the potential on the left. The red path underlines
the bounce trajectory in field space, while the black path stands for the trajectory
of the bounce if there were no interactions among the fields. Right: Spontaneous
creation of bubbles transforming the false state into the true one.

This tunneling effect in QFT is a first-order phase transition due to the abrupt
changes of state, analogous to the boiling of a super-heated/cooled fluid or nucleation
process in statistical physics. We might have seen the qualitative features of this
phenomenon in a super-cooled bottle of pure liquid water that we have let chill
in the freezer. As the water is in an unstable state, after banging the bottle or a

25



Chapter 1. Introduction

nucleation event, a piece of ice crystal is formed and will seed the rest of the ice
crystal, the true ground state.

Similar pictures describe the decay of a false vacuum where, due to the fluctuation
of the fields, small bubbles of true vacuum are eventually created spontaneously
somewhere in the universe, as sketched on the right panel of fig. 1.1. This first step
in the formation of the new phase is called a nucleation event. Once they are formed,
they expand either to almost the speed of light in the vacuum or at a terminal speed
at high temperatures, transforming the entire space into the new phase of a true
vacuum. In chapter §4, we will show how to compute the nucleation temperature
of a particular model as the universe is cooling down and in section §2.6, we will
explain more about the subsequent evolution of the bubble.

In principle, we could be living in a metastable ground state as long as it is
sufficient long-lived with respect to the age of the universe. This is actually the case
if we assume that there is no physics beyond the Standard Model (SM), which is the
theory that has best described all the known fundamental particles in the universe.
The recent discovery of the Higgs boson in 2012 [1, 2], the only fundamental scalar,
has remarkably shown us that its ground state does not reside in the lowest minimum
of energy, but in a local one. This fact has been the motivation of a large number
of papers and had played an important role in the Higgs mass bounds [3, 4, 5].
Due to its fascinating and fundamental consequences, the instability of the Higgs
vacuum has deserved accurate calculations and dedicated studies. Recent works can
be found in [6, 7, 8] and references therein, providing a prediction of the lifetime of
our universe of ∼ 10139

+102
−51 years [9, 10].

It is well known that we must go beyond the SM and the above picture might
change dramatically. Although SM has shown huge successes in providing experi-
mental predictions, it leaves some phenomena unexplained and whose explanations
will unavoidably affect the predictions of the fate of our vacuum state [11]. To
mention a few of the fundamental problems, we have: the baryon asymmetry of
the universe [12, 13, 14, 15], the viable dark matter particles required by cosmo-
logical observations [16, 17, 18, 19, 20], the accelerating expansion of the universe
as possibly described by dark energy [21, 22], and the incorporation of gravity [23].
Besides, it also cannot generate neutrino masses, which is in direct contradiction
with experimental results on neutrino oscillations [24, 25]. Vacuum stability is thus
indispensable and a significant constraint to consider in the development of any
theory beyond SM.

This process can not be observed in laboratories, but it can produce exotic
cosmological consequences that may be detected in future experiments. In the early
universe, particles form a hot plasma, whose thermal effects can drive the phase
transition [26, 27, 28, 29]. Here, spontaneous bubbles of TV start emerging in
different regions of the universe, as sketched on the right panel of fig. 1.1. As they
expand, they eventually collide releasing an enormous amount of energy and thus,
provides a possible source of gravitational waves [30, 31, 32, 33, 34, 35, 36, 37] and
primordial magnetic fields [38, 39, 40, 41, 42]. Moreover, they can dynamically
generate the observed dominance of matter over anti-matter, e.g. in electroweak
baryogenesis [43, 44, 45, 46, 47, 48, 49], (see the review in [50]). The features of such
processes is a function of the bubble wall velocity relative to the plasma and other
quantities that can be determined from the model at the nucleation temperature,
which has been the subject of intense study [51, 52, 53, 54, 55, 56, 57, 58, 59].
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Gravitational waves were directly detected for the first time in 2015 [60] and
have brought a new era for astronomy and the intriguing possibility to probe high
energy physics. Current aLIGO [61] and aVIRGO [62] observatories are operating
at frequencies that are mostly insensitive to TeV scale first order phase transitions.
However, space-based gravitational wave detectors such as LISA [63], DECIGO [64]
and BBO [65, 66] are scheduled to launch in over a decade from now and look for
evidence of cosmological phase transitions, for a recent review on LISA capabilities
see [63].

The features of such decay processes have long been understood and studied by
the seminal works [67, 68, 69] for single scalar1 field theories at zero temperature.
From a similar approach, the probability of the phase transition of the vacuum
due to thermodynamic fluctuations of the field at high temperatures was developed
by [26, 27, 28]. They found that the probability of decay of a false vacuum per unit
volume is of the form

Γ

V
= Ae−S0/ℏ (1 +O(ℏ)) , (1.1)

where S0 is the Euclidean action and A is a dimensionful pre-factor. A more formal
and extended derivation has been provided recently [72], aside from alternative
approaches [73, 74, 75, 76, 77, 78]. The expression above is general, as it is valid for
any number of fields and space-time dimensions.

The aim is to obtain the so-called bounce solution, which is the dominant semi-
classical field configuration that extremize the Euclidean action in the exponential
factor. It provides the leading contribution of the decay rate and it is thus the fun-
damental topic of my entire work. Finding the bounce field configuration in a closed
form is in general impossible for an arbitrary potential and in most occasions, the
calculation of the bounce is thus performed numerically. For particular potentials,
analytic solutions can be found. We dedicate an entire section §2.5 to describe them
since it turns out that they constitute the pillars of this work.

The problem of vacuum decay complicates significantly when an arbitrary num-
ber of fields is considered, as on the center panel of fig. 1.1. As mentioned above,
most new physics beyond SM contain models with additional scalar fields and such
theories usually possess a nontrivial vacuum structure with several metastable and
potentially long-lived ground states. Finding the path in field space and computing
the bounce with non-analytic potentials are still challenging. When there are in-
teractions among the fields, the trajectory in field space of the bounce is in general
non-trivial, as shown by the red line in the fig. 1.1. Existing approaches to this
problem [79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91] address these challenges in
various ways. However, they have in common that they become either too imprecise
or impractical for potentials with a large number of fields, in particular when the
energy difference between minima is small. Besides, they provide purely numerical
outputs of the bounce field configuration, which makes it difficult to understand the
subsequent evolution of the bubble.

In this work, we overcome a number of shortcomings regarding the bounce field,
which are listed in detail in section §2.2 and provide an efficient approach to obtain

1As we want to preserve Lorentz invariance, the vacuum expectation value can only be provided
by a scalar field. Although it is also possible to form Lorentz invariant objects with fermionic and
gluon condensates, for instance [70, 71].
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the decay rate of any multi-scalar field potentials. The main contribution is that
we reformulate the problem from the single field bounce and avoid the use of the
usual shooting method. We do it by collecting a set of analytic solutions that
together describe any potential. We move on semi-analytically to multi-fields by
iterative perturbation around the single field bounce. As a result, we present a
Mathematica package called FindBounce that stands out in speed and efficiency
and provide the first semi-analytic bounce for a general potential, which allows for
further simplifications. This package is not only competitive and robust but it is
also user-friendly, with the native Mathematica look and feel, together with well
documented examples.

To complete the calculation of the decay rate, we must obtain the pre-exponential
factor A in eq. (1.1), which is associated with one-loop field theory calculations.
The evaluation of A and the renormalization of its ultraviolet divergence are well
understood [69, 92, 93], but they are notoriously more difficult to compute than the
bounce, since A is proportional to functional determinants that describe quantum
fluctuations around a non-trivial background.

As the pre-factor is exponentially suppressed by e−S0 , it does not have a dramatic
dependence on the parameters of the theory, so it can be estimated by dimensional
arguments on many occasions. However, a precise and consistent calculations of
the pre-factor are needed in several contexts of physics. This is the case of the
lifetime of the Higgs vacuum in the SM [9, 10], where the most likely energy scale
of decay ∼ 1017 GeV is way above the electroweak scale and loop corrections are
indispensable. Moreover, in the early universe the phase transition occurs due to
thermal fluctuations, which appear first at one loop. If A is not estimated properly,
the nucleation temperature may be erred by orders of magnitudes, as it has been
shown recently [94]. In general, the total decay rate Γ is a physical quantity, so it
must be independent of the renormalization scale µ that comes from the running of
the parameters of S0 at one-loop [95, 96], that is µ dΓ/dµ = 0. Thus, for a consistent
one-loop calculation of Γ, the pre-factor must be computed as it will provide explicit
µ terms that compensate the one-loop µ dependence from S0. In short, precise and
consistent evaluation of the vacuum instabilities demand a deeper understanding
of the pre-factor calculation, in particular for future measurements of the physics
beyond the SM.

A precise calculation of the prefactor can be obtained numerically for any renor-
malizable and smooth potential [69, 97, 98, 99, 100, 101]. Although closed-form
results of the prefactor exist, but only for very few special cases such as: in the thin
wall limit [102, 103] (see also [104]) and the unstable quartic potential [9, 105]. To
my knowledge, the first complete closed-form solution of the sub-leading one-loop
quantum fluctuations for a potential with two separate tree-level minima appear to
be missing. In this work, we fill this gap by obtaining the decay rate in a closed-
form at one loop for a particular model in chapter §5. In this way, we set a new
benchmark and the basics for future works related to the prefactor. It belongs to
an intermediate step in our aim of obtaining a general procedure that computes A
for general multi scalar field potentials.

This work is organized as follows. In the upcoming chapter §2, I provide an
overview of the false vacuum decay regarding the semi-classical approximation and
its bounce field configuration. I contribute with my interpretation of these well-
known results, where I introduce the notation and convention used throughout the

28



entire work. I end up with an analytic description of the evolution of the bubble after
it is materialized. In chapter §3 I present a new semi-classical method to compute
the bounce field configuration for any potential up to an arbitrary desired precision,
called Polygonal Bounce (PB). Then in section §3.5 we move on to multifields and
compute the bounce via analytic perturbation of the single field bounce solution. In
chapter §4 we provide a Mathematica package that implements PB with examples
that include benchmarks, performance, timing, and comparisons to other existing
tools. We will assume that the prefactor A in (1.1) can be well estimated on di-
mensional grounds until we compute it rigorously in chapter §5. There, I present a
general procedure to compute those quantum fluctuations and a closed-form solu-
tion of the decay rate at one loop for a potential with two tree-level minima. We
leave the concluding remarks and outlook for §6 and the technical details for the
appendix.
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Chapter 2

False vacuum decay: the bounce

The phase transition of a local ground state via barrier penetration in QFT has long
been studied since the seminal works by [28, 30, 67, 68, 69]. They found that the
decay probability per unit volume of space and time is given by

Γ

V
≈ Ae−S0 , (2.1)

in the limit when ℏ is small. Here, S0 is the action in Euclidean space evaluated
from the bounce field φ̄ and A is a dimensionfull quantity. The bounce field is a non-
trivial scalar field configuration that extremizes the Euclidean action and describes
the phase transition among vacua states. The S0 term, commonly called the bounce
action, usually dominates the decay rate due to its exponential dependence and
constitutes the main subject of my work. The coefficient A is related to one-loop
calculation and represents sub-leading contributions to the decay rate. Before we
compute it rigorously in chapter §5, we would assume it is approximately given by
A ≈ v4, where v is some characteristic mass scale of the theory under study.

In this chapter, we present a brief introduction of the bounce field configuration
and the evaluation of the bounce action. We start with a heuristic derivation of the
false vacuum decay from a well-known process of barrier penetration in quantum
mechanics in section §2.1. Then we discuss the exponential factor S0 in section §2.2
and a closed-form solution in the well-known thin wall approximation in section §2.3.
Throughout the entire work, we will make use of the rescaled properties of the
bounce action and some of its closed-form solutions, so we describe them in detail
in sections §2.4 and §2.5 respectively. In section §2.6, we complete our description
by presenting the evolution of the bubble in real time after it is materialized, by
the exclusive use of exact solutions. The introduction of these well-known results is
presented in my notation and interpretation of the subject.

2.1 Tunneling in quantum mechanics
As it is instructive to start with a brief quantum mechanics description [68], let
us consider the tunnel effect of a particle of unit mass and energy E = V (q+)
through a potential V (q) with two minima, sketched in the left panel of fig. 2.1. Its
materialization point is denoted by σ, such that V (σ) = V (q+), which corresponds
to the classical turning point. It is well known that the wave functions of the
Schrödinger equation can be well approximated by the WKB method [106, 107]
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Chapter 2. False vacuum decay: the bounce

when ℏ is small. In this semi-classical approximation, the wave function ψ falls off
exponentially between q+ and σ by an amount T ≡ ψ(σ)/ψ(q+), such that the decay
rate is given by

Γ ∼ |T |2 =⇒ Γ ≈ Ω e
−2

∫ σ
q+

dq
√

2(V−V (q+))
, (2.2)

where Ω is related to the classical frequency of oscillations of the particle around the
local minimum, while the exponefigactor describes how much of the wave-function
gets through the barrier.

q

V(q)

q- q+σ

q

-V(q)

q- q+σ

τ = 0 τ →±∞

τ ≈ τ0

τ

q(τ)

τ ≈ τ0σ

q+

Figure 2.1: An example of a particle that tunnels from q+ to the materialization
point σ at the time τ = 0. Left: Potential with two non-degenerate minima. Center:
The potential on the left inverted after the analytic continuation to Euclidean space.
Right: The evolution of the particle subjected to the potential on the left.

In order to get closer to field theory, let us recast the WKB factor more conve-
niently in terms of the minimal classical Euclidean action as,∫ σ

q+

dq
√

2 (V − V (q+)) = min
q(τ)

∫
dτ

(
1

2

(
dq
dτ

)2

+ V − V (q+)

)
. (2.3)

To see this, let us compute the function q̄(τ) that extremizes the action, which can
be obtained from the Euler-Lagrange equation,

δS
δq

= 0 =⇒ d2q

dτ 2
=

dV
dq

. (2.4)

This equation corresponds to the classical equation of motion of a particle moving
under the influence of a valley −V . After a change of variable U = dq/dτ and the
use of the chain rule we get

U̇ =
dU
dq
U =

∂V

∂q
, (2.5)

which can be integrated

1

2

(
dq
dτ

)2

= V − V (q+). (2.6)

Note that the constant of integration V (q+) has been chosen conveniently to achieve (2.3).
This implies that the classical equilibrium point q+ can only be reached asymptoti-
cally, as τq+ = ±∞; while by time translation invariance, the materialization of the
particle σ can be chosen to be τσ = 0.
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2.2. Single field bounce

From (2.5) and V (σ) = V (q+) we can extract the following boundary conditions

dq
dτ

⏐⏐⏐⏐
τ=0,±∞

= 0 . (2.7)

Thereby equations (2.5) and (2.7) describe the motion of a particle that starts rolling
from rest at q+ at τ = −∞, then stops in σ at τ = 0 and bounces back to q+ at
τ = +∞, as shown in the center and right panels of fig. 2.1. This motion is called
the bounce and is described by the solution q̄ (τ).

We conclude that the decay rate is

Γ ∼ e
−2

∫ σ
q+

dt
√

2(V−V (q+))
= e

−
∫∞
−∞ dτ

(
1
2(

dq̄
dτ )

2
+V (q̄)

)
= e−S0 , (2.8)

This is indeed the correct result at leading exponential order, according to a more
rigorous derivation [108]. This expression can be generalized to multiple dimensions
and derived from the path integral approach in the saddle point approximation or
semi-classical limit [109, 110].

2.2 Single field bounce

Let us move on to field theory and consider a scalar field potential V with two
non-degenerate minima, where the scalar field expectation value is assumed to be
at the local minimum in φ+, as shown on the left panel of fig. 2.2. Because of the

φ

V(φ)

φ- φ+

φ

-V(φ)

φ- φ+

φ(0)
φ(∞)

Figure 2.2: Left: An example of a potential with two minima with unstable false
vacuum state at φ+ and a stable true one at φ−. Right: The potential on the left
after an analytic continuation into Euclidean space. The field starts in a non-trivial
value of the field φ0, such that it ends up at the false vacuum at infinity.

quantum and thermal fluctuations, such state of false vacuum (FV) is metastable
and eventually decays into the true vacuum (TV), which corresponds to the lowest
and stable minimum of the potential at φ−. That is, to compute the decay rate
in (2.1) for any number of space-time dimensions D, we will concentrate on the
Euclidean action

S0 =

∫ ∞

−∞
dD−1x

∫ ∞

−∞
dτ
(
1

2
∂0φ

2 +
1

2
∇φ2 + V (φ)

)
, (2.9)
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where it is assumed that the potential is shifted as V (φ+) = VFV = 0, so the
action is finite. The integral is performed over the fields that satisfy the boundary
conditions,

φ(±∞,x) = φ(τ,±∞) = φ+ , (2.10)

As proven by [111, 112], the solution φ̄ is invariant under O(D) rotations for any
dimensions D > 2. This implies that one can recast and simplify eq. (2.9) by
using spherical coordinates in a D-dimensional Euclidean space. Thus, φ becomes
a function of the radial coordinate only,

φ (t,x) = φ (ρ) with ρ =

√
(τ − τ0)

2 + (x− x0)
2 , (2.11)

and the remaining D − 1 angles can be integrated out. Hence

S0 =
2π

D
2

Γ
(
D
2

) ∫ ∞

0

ρD−1dρ
(
1

2
φ̇2 + V

)
= TD + VD , (2.12)

where the dot stands for the derivate with respect to ρ and the last two terms repre-
sent the integrated kinetic and potential terms, respectively. The field configurations
that extremize the action must solve the classical equation

δS0

δφ
= 0 =⇒ φ̈+

D − 1

ρ
φ̇ =

∂V

∂φ
, (2.13)

where we must require the solution to satisfy (2.10) and to be an analytic function
at ρ = 0. Thus the corresponding boundary conditions are

φ(0) = φ0, φ (∞) = φ+, φ̇ (0) = φ̇ (∞) = 0 . (2.14)

Because of these conditions, the solution of this equation is called the bounce.
Other solutions are not O(D) invariant, but they contribute with higher values of
the action and are exponentially suppressed by ∼ e−S0 . Some of the corrections
will be included in the prefactor, as we will see in section §5. Nevertheless, we have
not just a single bounce solution but a continuum, characterized by the collective
coordinates τ0 and x0 in eq. (2.11). As we must integrate over these parameters it
yields the factor of V in (2.1).

As in quantum mechanics, equation (2.13) has the analog interpretation of a
particle moving along a hyper-surface −V , with position φi (ρ) at time ρ, and sub-
ject to a somewhat peculiar viscous damping force, whose coefficient is inversely
proportional to ρ.

The initial value of the field φ0 represents the field value at the center of the
bubble, located at (τ0,x0) as defined in (2.11). It admits a trivial solution φ0 = φ+,
where the value of the field remains constant. This solution is not of interest, unless
we are dealing with non-interacting multi-field potentials, as explained in §3.5. The
relevant initial condition for the decay process is when φ0 is somewhere near the
TV, below the local minimum of energy, as shown in the right panel of fig. 2.2.

As the particle starts at rest, if φ0 is released sufficiently far from the TV, the
particle will undershoot due to the damping term, i.e. it will not reach the FV
at ρ → ∞. Otherwise, if it is released too close to the TV, the damping term
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2.2. Single field bounce

becomes too small and the particle will overshoot the FV at some finite time. By
continuity [68], there must be an intermediate non-trivial φ0 such that satisfies
eqs. (2.13).

In principle, this intermediate initial value can be obtained numerically up to
any desired precision: by trying various φ0 until one finds the proper value such that
the particle will come to rest at infinity at φ+. This is called the shooting method.
However, this method presents several difficulties:

• The coefficient ∼ 1/ρ in (2.13) makes the value ρ = 0 singular. So when
numerically solving the equation, we have to start at some small value ρ0 > 0.
But this brings numerical instabilities if we consider φ (ρ0) = φ0 and φ̇ (ρ0) = 0
as boundary conditions. This can be overcome by expanding the potential
around φ0 in (2.13) as ∂V/∂φ ≈ V ′ (φ0) + (φ− φ0)V

′′ (φ0) and imposing the
conditions (2.14). That is, we get

φ (ρ0) = φ0 −
V ′

V ′′

(
1− Γ

(
D

2

)(√
V ′′ρ0

) 1−D
2
ID

2
−1

(√
V ′′ρ0

)) ⏐⏐⏐
φ=φ0

, (2.15)

φ̇ (ρ0) =
V ′

√
V ′′

Γ

(
D

2

)(√
V ′′ρ0

) 1−D
2
ID

2

(√
V ′′ρ0

)⏐⏐⏐
φ=φ0

, (2.16)

where Γ and I are the Euler gamma and modified Bessel functions respectively.
The solution computed in this way is less sensitive to the arbitrary choice of
ρ0.

• Another numerical difficulty arises when ρ → ∞. In numerical evaluations,
we have to consider infinity as an arbitrary large finite value ρf < ∞. To
get the boundary condition less sensitive to the arbitrary choice of ρf , we can
shoot backwards from a field value φf close to φ+. As before, expanding the
potential around φ+ in (2.13) as ∂V/∂φ ≈ (φ− φ+)V

′′
FV , the corresponding

boundary conditions are given by

φ (ρf ) = φf , and φ̇ (ρf ) = (φ+ − φf )

√
V ′′
FVK d

2

(√
V ′′
FV ρf

)
K d

2
−1

(√
V ′′
FV ρf

) . (2.17)

• The time consumption increases extremely fast with the number of fields since
φ0 must be found in a nφ-dimensional hyper-surface, with nφ as the number
of fields.

• It requires a large amount of precision when the minima are nearly degenerate.
This is the case when the field φ (ρ) must remain very close to φ− until an
arbitrary large ρ; so the damping term becomes almost negligible as it depends
inversely proportional to ρ and the particle has enough energy to reach φ+.
To appreciate the required accuracy of φ0, let us consider the evolution of
the field around the vicinity of the TV, which given by eq. (2.13) and V ≈
VTV + 1

2
V ′′
TV (φ− φ−)

2 as

φ (ρ)− φ− = (φ0 − φ−) Γ

(
D

2

)(
2
√
V ′′
TV ρ

)D
2
−1

ID
2
−1

(√
V ′′
TV ρ

)
. (2.18)

This implies that φ0 can be arranged to be as arbitrary close to φ− for any large
value of ρ but it requires an exponential fine-tuning, which in general presents
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severe difficulties for numerical methods. Fortunately, for such scenarios, there
exists a closed-form approximation, which is presented in the next section §2.3.
Nevertheless, as it has a very limited range of validity, a more robust method
is needed.

In chapter §3, we address each of these difficulties by providing a new approach that
computes the bounce action for any number of fields.

2.3 The thin wall approximation
At some limit, it is possible to compute the Euclidean action in a closed-form. This
is the case in which the energy of the FV is slightly below the energy of the TV and
the maximum of the potential is positive and not small, as shown in fig. 2.3.

Here, the field must spend a large moment of “time” very close to the TV, such
that the damping term becomes so small that the field can reach the FV and stay
there. Within the accuracy of our approximation, let us assume that the bounce
can be approximated into three regions:

φ (ρ) =

⎧⎪⎨⎪⎩
φ−, ρ≪ Rw ,

φw, ρ ≈ Rw ,

φ+, ρ≫ Rw .

(2.19)

Initially, the field resides exactly at φ0 = φ−, then evolves at some large value
ρ ≈ Rw and finally ends up in φ+, as sketched in fig. 2.3.

φ

-V(φ)

φ- φ+

ϵ

ρ

φ(ρ)

ρ ≈ Rw

φ+

φw

φ-
x1

x2

Rw

φ+φw

φ-

Figure 2.3: Left: An example of a potential with a small energy difference ∆V = ϵ.
Center: Bounce field configuration for the potential on the left. The wall of the
bubble is highlighted in pink. Right: The bounce field in a region of space: inside
(outside) the bubble the value of the field is φ− (φ+), while on the thin wall it is
φw.

Hence the associated action becomes1

S0 =
2π

D
2

Γ
(
D
2

) (∫ dρρD−1VTV +

∫
dρρD−1

(
1

2
φ̇2
w + V

)
−
∫

dρρD−1VFV

)
,

=
2π

D
2

Γ
(
D
2

) (− 1

D
RD
w ϵ+RD−1

w SD=1
0

)
, (2.20)

1Note the missing factor of two in the last term of eq. (4.15) of the original work [68], realized
in D = 4.
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2.3. The thin wall approximation

where SD=1
0 =

∫
dρ
(
1
2
φ̇2
w + V

)
and ϵ = VTV − VFV is assumed to be positive and

small. The first term represents the energy gained from going to a lower state of
energy, while the second one is the energy expended in creating the bubble. The
latter one can be considered as the energy from the surface tension of the bubble in
analogy with bubbles from super-heated fluids.

As the aim is to extremize the action, the radius of the bubble can be obtained
by a variation of the action in (2.22) as

dS0

dRw

= 0 =⇒ Rw =
D − 1

ϵ
SD=1
0 . (2.21)

The smaller the difference in energy, the larger is the radius of the bubble, which
justifies our approximation. That is why this limit is called “the thin wall approxi-
mation”, although I am personally in concordance with Weinberg [93], in the sense
that a better term could have been “the big bubble approximation”. The final value
of the action is given by

S0 =

(√
π SD=1

0

)D
Γ
(
1 + D

2

) (
D − 1

ϵ

)D−1

. (2.22)

As expected, the action increases for small ϵD−1, so the decay rate is strongly sup-
pressed.

In what follows, we proceed to obtain SD=1
0 and the value of the action for a

particular potential. As the damping term in eq. (2.13) is inversely proportional to
ρ, the evolution of the field (2.13) around Rw can be approximated to

φ̈w (ρ) ≈
∂V

∂φw
=⇒ 1

2
φ̇2
w = V − VFV , (2.23)

where VFV is the constant of integration, such that the last term of eq. (2.14) is
satisfied and the last term has been obtained as in (2.5)2. This implies that

dφ
dρ

=
√

2 (V − VFV ) =⇒ SD=1
0 =

∫ φ+

φ−

dφ
√

2 (V − VFV ), (2.24)

which can be computed before obtaining φw (ρ).
To move on and provide an explicit expression for φw, we have to define a spe-

cific form of the potential. For this purpose, let us consider for instance a general
renormalizable potential in D = 4, the linear off-set quartic:

V (φ) =
λ

8

(
φ2 − v2

)2
+ ϵ

(
φ− v

2v

)
, (2.25)

where λ and v are positive parameters of the model and VFV = 0. On the wall, the
small off-set can be neglected V (φw) ≈ V |ϵ=0. Thus, from (2.22), (2.24) and (2.25)
we get3

φw = v tanh

(
1

2
v
√
λ (ρ−Rw)

)
, SD=1

0 =
2v3

√
λ

3
, S0 =

8π2v12λ2

3ϵ3
, (2.26)

This concludes our thin wall example. Note that when the energy difference ϵ→ 0,
the action S0 → ∞, and the decay rate Γ → 0. This implies that there is no
tunneling when the minima are degenerate.

2In section 2.2 we saw that we can always redefine the potential such that VFV = 0 without
loss of generality.

3The author of the original work [68] also missed a factor of two in SD=1
0 , eq. (4.12).
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Chapter 2. False vacuum decay: the bounce

2.4 Re-scaling properties and Derrick’s Theorem
Since φ̄ (ρ) is the solution of the equation of motion that extremizes the action,
it must be stationary with respect to any perturbation. Then from the re-scaling
properties of the bounce action, we can obtain a non-trivial relation between the
integrated kinetic and potential parts in (2.12).

For this purpose, we use a similar argument that was used to prove Derrick’s
theorem [113] and consider the action (2.12) for a modified bounce field φ̄ (ρ) ≡
φλ (ρ/λ). After rescaling the variable of integration, we get

S(λ)
0 =

2π
D
2

Γ
(
D
2

) ∫ ∞

0

ρD−1dρ

(
λD−2

2

(
dφλ
dρ

)2

+ λDV

)
= λD−2T + λDV . (2.27)

The variation with respect to λ must vanish at the bounce solution, i.e. when λ = 1.
That is, for the action to remain minimal upon rescaling the argument of the solution
to φ(ρ/λ), the following identity has to hold

δS(λ)
0

δλ

⏐⏐⏐⏐⏐
λ=1

= 0 =⇒ T = − D

D − 2
V , (2.28)

from which follows that

S0 =
2T
D

> 0 . (2.29)

We will use these results in chapter §3 to obtain the bounce field using our new
method and test the goodness of our results.

Going a bit further, we can see that the second variation of the bounce action
with respect to λ is

δ2S(λ)
0

δλ2

⏐⏐⏐⏐⏐
λ=1

= 2 (2−D) T , (2.30)

which is negative4 for D > 2. This means that the bounce is not a minimum of the
action but rather a saddle point. We will come back to this result in more detail in
section §5 when we compute A explicitly.

2.5 Exact solutions of the bounce
The bounce field configuration (2.13) cannot be solved analytically in general, not
only because the potential is non-linear in general, but also because of the friction
term proportional to D−1. In fact, there are very few models that are simple enough
to be solved in a closed-form. This includes the Fubini-Lipatov instanton [114, 115],
its generalization [116], the pure quartic potential [117], the binomial and logarithmic
one [118, 119, 120].

There are also other types of closed-form solutions that can be obtained from the
merging of two or more exact solutions, describing a potential with two minima. For

4 This is the essence of Derrick’s theorem about the non-existence of stable localized stationary
solutions for a real scalar field in three and higher space-time dimensions.
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2.5. Exact solutions of the bounce

instance, one linear segment with a quartic potential or bi-quadratic potential [121],
bi-linear segments [122] or bi-quartic potential [123].

These last two simple models constitute the building blocks of my research and
are briefly described in detail below.

φ

-V(φ)

φ1 φ3

φ2

φ0

φ

-V(φ)

λ1

λ2

v2

φ=0

v1

Figure 2.4: Left: The piece-wise linear potential with two segments in blue, super-
imposed on the potential in gray. Right: The bi-quartic potential.

2.5.1 The triangular potential

One of the simplest exact bounce solutions that describes a potential with two
minima is the triangular potential. It consists on two linear potentials that join the
TV φ̃1, a middle point φ̃2 and the FV φ̃3. It is shown by the blue line on the left
panel of fig. 2.2. The solution of eq. (2.13) for each linear segment in D = 4, with
slope dVs/dφ = 8as is

φs(ρ) = vs + asρ
2 +

bs
ρ2
, 8as =

Ṽs+1 − Ṽs
φ̃s+1 − φ̃s

, (2.31)

Here, Ṽs = V (φ̃s), and b’s and v’s are the constant of integration. We now proceed
by rewriting the boundary conditions (2.14) and then solving the system of equations
to get the bounce field configuration.

Since the potential is not infinitesimally smooth in the vicinity of the TV, the
solution at the first segment either starts from φ0 at ρ = R0 = 0 or waits at φ̃N
until some initial radius ρ = R0 with φ̇1 (R0) = 0. That is,

case a): v1 = φ0, b1 = 0, (2.32)
case b): v1 = φ̃1 − 2a1R

2
0, b1 = a1R

4
0 . (2.33)

Then the field evolves and reaches the intersection point φ̃2 at some value ρ = R1,
where we require the field to be continuous and differentiable,

φ1 (R1) = φ2 (R1) = φ̃2, φ̇1 (R1) = φ̇2 (R1) . (2.34)

Finally, the field stops in φ̃3 at some final radius R3 such that φ2 (R3) = φ̃3 and
φ̇ (R3) = 0, which imply

v2 = φ̃3 − 2a1R
2
2, b2 = 2a2R

4
2 . (2.35)
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Chapter 2. False vacuum decay: the bounce

These sets of equations are simple and solvable in a closed-form. The three matching
conditions in (2.34) are used to solve the remaining unknowns:

case a): φ0 =
φ̃3 + c φ̃2

1 + c
, R2

1 =

(
φ̃2 − φ0

a1

)
, R2

2 = R2
1

(
a2 − a1
a2

) 1
2

, (2.36)

case b): R2
0 = R1 (R1 −∆2) , R2

2 = R1 (R1 +∆3) , R1 =
1

2

a1∆
2
2 + a2∆

2
3

a1∆2 + a2∆3

, (2.37)

with c = −2 +
(
1−

√
1− a1

a2

)
2a2
a1

and ∆2
s = (φ̃s − φ̃s−1) /|as−1|. Demanding that

all the radii must be positive and real, we end up with a simple unique solution such
that: if R0 > 0 we are in case b), otherwise it is case a).

The associated action can be obtained from (2.12) and (2.31) as

S0 = 2π2

2∑
s=1

[
5

3
a2sρ

6 − 2

3
asbsρ

2 − b2s
ρ2

+
ρ4

4

(
8as (vs − φ̃s) + Ṽs − ṼN

)]Rs

Rs−1

. (2.38)

These results can be used to estimate the decay rate of any potential. It was proved
that it reproduces the result of Coleman [68] in the thin wall limit [122]. However,
it might not be a good approximation in general as it was claimed by [124] for a
single field and [125] for multi-field potentials.

In the next chapter, we will show how to generalize this result to any type of
potential and space-time dimensions up to desired precision by using an analogous
derivation.

2.5.2 The bi-quartic potential

Let us consider two quartic potentials, joined at φ = 0 with the minima located at
−v1 and v2,

V =
1

4

(
λ2v

4
2 − λ1v

4
1 + λ1 (φ+ v1)

4)H(−φ) + λ2
4
(φ− v2)

4H(φ) , (2.39)

where H is the step function, λ1,2 > 0 and v2 > 0 is the FV with V (v2) = 0, as shown
on the right panel of fig. 2.2. For v1 > 0 to be the TV, we require λ1v41 > λ2v

4
2 such

that V (v1) < 0. The potential derivative and its bounce solution for each segment
is given by

V ′
s = λs (φs − (−1)svs)

3 , φs = (−1)svs +

√
8

λs

Rs

R2
s − ρ2

. (2.40)

Before solving the boundary conditions, let us define for convenience two dimen-
sionless quantities x and y from v1 = x v2 = x v, and λ1 = y λ2 = y λ, with its
associated constraints x > 0, y > 0 and x4y > 1.

Near the equality x4y ≃ 1, we approach the TW limit, where the minima are
degenerate and the rate vanishes. The bounce parameters R1,2,T are obtained by
matching the solution to φ = 0, and requiring φ to be continuous and differentiable
at ρ = RT . The resulting Euclidean radii are

R1,2,T =
2

v

√
2

λ

1 + x

x4y − 1

(
x2
√
y, 1,

√
x(1 + x3y)

1 + x

)
. (2.41)
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2.6. Evolution of the bubble in Minkowski space

Their size is set by the factorized 1/v, as expected on dimensional grounds since v
is the relevant mass scale. Moreover, the radii are positive and diverge in the TW
limit of x4y → 1+ as expected.

The bounce action is

S0 =

(
8π2

3λ

)
1 + y + x3y (4 + xy (−3 + 6x2 + (3 + 4x)x4y))

y(x4y − 1)3
, (2.42)

where the factor of 8π2/(3λ) is the well known single quartic result, which gets
multiplied by a function that diverges in the TW when x4y → 1.

In the next chapters, this bounce solution will be used as an additional test
of the polygonal method. This solution is also of fundamental importance for the
chapter §5.3, as we show that we can go even further analytically and compute one
loop corrections in a closed-form.

2.6 Evolution of the bubble in Minkowski space
Before we move on to more general bounce solutions, let us examine the real time
evolution of the classical field after the false vacuum decay has taken place. In other
words, we would like to obtain the behavior of the field after it materializes at φ0

and evolves according to the Minkowskian field equation,(
∇2 − ∂20

)
φ = V ′ (φ) . (2.43)

The initial boundary conditions are provided by the bounce field φ̄ at a given time
t0,

φ (t0,x) = φ̄ (|x|) , ∂0φ (t0,x) = 0 . (2.44)

Solving this set of equations might seem a difficult task. However, these specific
boundary conditions do not break Lorentz invariant. The O(4) invariance of the
bounce leads to a O(1, 3) Lorentz symmetry solution φ. Thus, similar to ρ in the
bounce equation, we can conveniently define the parameters τ 2± = ± (−t2 + x2).
Then the differential equation (2.43) splits into two possible situations: when x > t
space-like events and when t > x time-like events. In the former case we choose τ+,
where the equation of motions (2.43) become simply the analytic continuation of
the Euclidean bounce equation (2.13) with ρ→ τ+. That is,

d2φ

dτ 2+
+
D − 1

τ+

dφ

dτ+
=
dV

dφ
. (2.45)

Thereby, the solution is then the analytic continuation of the bounce field configu-
ration

φ̄
(
τ+ =

√
−t2 + x2

)
, (2.46)

where we assumed that τ+ > 0.
In the latter case τ+ is imaginary, so we consider τ−. The field equations (2.43)

are given by

d2φ

dτ 2−
+
D − 1

τ−

dφ
dτ−

= −dV
dφ

, (2.47)
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which correspond to the bounce equation with ρ→ iτ+.
Here, the sign of τ± does not affect the field equations. However, we defined

the sign conveniently such that we can drop the index and consider a single real
parameter τ . This definition of τ defines the light cone to be at the center of the
bubble φ̄ (τ = 0) = φ0.

In both cases, the classical field is subjected to a damping term as a conse-
quence of this intrinsic symmetry. This is not preserved in general for other types
of initial conditions or Euclidean solutions that are not rotationally invariant. They
correspond to sub-dominant contributions and are not subject to this section.
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Figure 2.5: Left: The triangular potential with an extra segment with slope a−1

at the true vacuum to include the downward movement of the classical field. Right:
The classical field configuration after the materialization of the bubble corresponding
to the potential on the left.

Each value of the field described by eq. (2.45) and (2.47) must look the same for
any Lorentz observer. Thereby, the growth of the bubble will trace out a hyperboloid
in space-time, as shown on the left panel of fig. 2.6. This implies that after the bubble
is created, it will expand quickly to almost the speed of light.

In short, after the materialization, the evolution of the field inside the light cone
is described by the bounce continued to Minkowski space, while outside the light
cone, it is given by the subsequent evolution of the field rolling down the hill and
oscillating around the true minimum.

Let us proceed with an explicit example by the use of the triangular closed-form
solution in D = 4, described in section §2.5 and assume that the field tunnels “far”
from the true minimum. The potential is shown in the left panel of fig. 2.5, where we
have included an extra segment, joined to the true vacuum to include the damped
oscillations of the classical field.

The bounce field configuration obtained in (2.13) describes the space-like con-
nected events τ > 0 of an observer at the center of the bubble in φ0. The other
part of the space-time τ < 0, is defined by the field rolling downwards to φ̃1 de-
scribed by (2.47) and with the initial conditions φ (τ = 0) = φ0 and φ̇0 = 0. As in
section §2.5, we can get the evolution of the field by simply connecting solutions of
a linear potential, as developed in [121]. The classical field reaches the true vacuum
φ̃1 repeatedly at φ (Ts) = φ̃1, given by

T0 = −
√
φ̃1 − φ0

a1
, Ts−1 = −

√
T 2
s −

˙̃φsTs
2as

, ˙̃φs−1 = − ˙̃φs
Ts
Ts−1

, (2.48)
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Figure 2.6: Left: The expansion of the bubble in Minkowski space-time for partic-
ular values of the classical solution φ. Right: The expansion of the bubble for any
space, time and field values.

with a−2s−1 = a1 > 0 and a−2s = a0 < 0, defined by 8as =
(
Ṽs+1 − Ṽs

)
/ (φ̃s+1 − φ̃s).

The other coefficients of the classical solution are obtained after solving the conti-
nuity and differentiability conditions at Ts,

bs−1 = asT
4
s − 1

2
˙̃φsT

3
s , vs−1 = φ̃1 − 2asT

2
s +

1

2
˙̃φsTs , (2.49)

where the even(odd) numbers of s stand for the bounce solution on the right(left)
side of the minimum. The complete evolution of the classical field is given in a
closed-form

φs (τ) =

⎧⎪⎨⎪⎩
vs + asτ

2 + bsτ
−2, Ts−1 ≤ τ < Ts ,

φ0 + a1τ
2, T0 ≤ τ < 0 ,

φ̄ (τ) , 0 ≤ τ <∞ .

(2.50)

as it is shown on the right panel of fig. 2.5. The left panel of fig. 2.6 shows the
evolution of particular values of the classical field in space-time, while the right
panel displays the complete evolution of the classical solution in space-time for any
value of the field. As expected, the oscillations around the true vacuum φ̄1 are
damped. If the initial conditions (2.44) were not O(1, 3) invariant, equation (2.43)
might allow harmonic oscillations. In this case, it could drive interesting phenomena
such as resonant tunneling [126, 127, 128, 129, 130].

In the next chapter, we will obtain a generalization of this triangular solution
to different space-time dimensions, multiple segments, and number of fields. There,
the ρ dependence is also given explicitly, which allows us to analytic continue the
solution to Minkowski space, as achieved in the previous example.
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Chapter 3

Polygonal bounce: from single to
multifield decay rate

3.1 Introduction

As pointed out in §2.2, the main difficulty with the usual shooting approach is
finding the fine-tuned initial field value φ0, which is even more challenging in the
multidimensional field space.

We solve these issues by developing a new semi-analytical approach for com-
puting tunneling rates in quantum or thermal field theory with multiple scalar
fields [131]. It is based on gluing an arbitrary number of linear segments into a
polygonal potential and solving the resulting system for any dimension and number
of fields. As we will see, by increasing the number of segments one can approximate
any potential that admits a bounce solution and obtain the bounce action with
arbitrary precision.

The method is first developed in §3.2 for the single field case in D space-time
dimensions. We discuss how this approach is implemented, show its validity on well
known examples and compare it with existing tools in §3.3. Then a systematic ex-
pansion of the potential beyond the linear order is considered, taking into account
higher-order corrections, which sets the basics for the multiple scalar fields devel-
oped in §3.5. We conclude with an outlook in §3.6 and leave details to appendices:
dimensions other than D = 3, 4 are covered in A.1, the two segments calculation is
expanded in A.2 and further details on root finding can be found in A.3.

3.2 Single field polygonal bounces

In this section we present the polygonal bounce (PB) with an arbitrary number of
segments and space-time dimensions by extending the triangular potential described
in §2.5.1.

To establish the notation, let us consider a generic potential with two minima
V (φ), to be approximated by piecewise linear potentials, as shown in fig. 3.1. The
segment index for the field values φ̃s, s = 1, . . . , N , are such that the FV is at φ̃1,
the TV at φ̃N and the values of the potential are Ṽs = V (φ̃s). The linear segments
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Figure 3.1: Left: Linearly off-set quartic potential in gray and the polygonal approx-
imation with N = 7 in blue. Right: The bounce field configuration corresponding
to the potential on the left, computed with the polygonal bounce approximation.

are simple

Vs(φ) =

(
Ṽs+1 − Ṽs
φ̃s+1 − φ̃s

)
  

8 as

(φ− φ̃s) + Ṽs, (3.1)

where each segment admits an exact solution in D > 2 space-time dimensions as,

φs(ρ) = vs +
4

D
asρ

2 +
2

D − 2

bs
ρD−2

. (3.2)

The case for two dimensions requires minor modifications and is derived in A.1.
As in §2.5.1 the polygonal potential is not smooth at the minima either, which

implies that the solution either starts from φ0 at ρ = 0 or or waits at φ̃1 until
ρ = R0

1. That is,

case a): v1 = φ0, b1 = 0, (3.3)

case b): v1 = φ̃1 −
4

D − 2
a1R

2
0, b1 =

4

D
a1R

D
0 . (3.4)

Regardless of the initial condition, the field stops in the second minimum φ̃N at
some final radius RN−1 such that

vN−1 = φ̃N − 4

D − 2
aN−1R

2
N−1, bN−1 =

4

D
aN−1R

D
N−1, (3.5)

where a0 = aN = 0, because the first derivatives are zero in the minima. Note
that there is no issue when ρ → 0: In case a) the singularity of the friction term is
regulated by b1 = 0, while in the case b) there is no singularity as R0 is non-zero.

Now we proceed to join the set of exact solutions and demonstrate that PB is a
single variable problem. Once the segmentation of {φ̃s} is set up, the as parameters
are fixed by (3.1), as described in the next section §3.3.1. The other bounce param-
eters vs, bs and the unknown radii Rs, s = 0, . . . , N − 1 are fixed by the matching

1We could have had a single case if the initial segment were quadratic or other function such
that V ′′(φ̃1) ̸= 0.
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conditions. Requiring the bounce to be a single smooth solution, as in fig. 3.1, we
get three conditions per segment: two for the field value to match onto the initial
segmentation at Rs and another one for its derivative:

φs(Rs) = φ̃s+1 = φs+1(Rs), φ̇s(Rs) = φ̇s+1(Rs). (3.6)

This set of conditions precisely determines the unknown vs, bs and Rs and they
are analogous to (2.34). Thereby, one can increase the number of sections at will
without introducing additional free parameters. Solving this system of equations
per segment we get,

vs+1 = vs −
4

D − 2
(as+1 − as)R

2
s, bs+1 = bs +

4

D
(as+1 − aσ)R

D
s , (3.7)

with the individual radii given by

asR
D
s − D

4
δsR

D−2
s +

D

2(D − 2)
bs = 0, (3.8)

with δs = φ̃s+1 − vs. Resulting Eq. (3.8) is a fewnomial with simple closed form
solutions

D = 3 : 2Rs =
1

√
as

(
δs
ξ
+ ξ

)
with ξ3 =

√
36asb2s − δ3s − 6

√
asbs , (3.9)

D = 4 : 2R2
s =

1

as

(
δs +

√
δ2s − 4asbs

)
. (3.10)

The radii corresponding to D = 2, 6, 8 can be found in Eqs (A.7)-(A.9) of A.1. These
equations guarantee that we are dealing with a single variable problem: once the
initial condition R0 or the final one RN radius is given, the whole solution is known.
As anticipated, so far we have solved analytically each constant of integration except
for one, which we conveniently choose it to be the initial radius R0. In section §3.3
we will show how to obtain this parameter numerically.

The associated Euclidean action of the bounce becomes a sum of linear parts

S0 = T + V , (3.11)

with the integrated kinetic and potential pieces

T =
2π

D
2

Γ
(
D
2

) N−1∑
s=0

[
ρ2
(

32a2sρ
D

D2(D + 2)
− 8

D
asbs −

2b2s
ρD(D − 2)

)]Rs

Rs−1

, (3.12)

V =
2π

D
2

Γ
(
D
2

) N−1∑
s=0

[
ρD

D

(
8as (vs − φ̃s) + Ṽs − ṼN

)
+ ρ2

(
32a2sρ

D

D(D + 2)
+

8asbs
D − 2

)]Rs

Rs−1

,

(3.13)

which is valid for D > 2 and both cases a) and b), with the understanding that
R−1 = 0 in case b) and R0 = 0 for case a). This concludes the analytic setup of the
PB construction.
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Chapter 3. Polygonal bounce: from single to multifield decay rate

Derrick’s theorem for piecewise actions. We will apply the same idea that
was used to prove Derrick’s theorem, described in §2.4, to find the PB solution and
to test the goodness of the approximation. For piecewise actions, such as the PB
under consideration, the above identity is modified because (3.11) becomes a sum of
finite integration intervals. Unlike the continuous limit (2.27), the rescaling ρ→ ρ/λ
affects the finite integration limits Rs → Rs/λ in (3.11), which introduces a manifest
λ dependence. As a result,

S(λ)
0,PB =

∑
s

(
λD−2T (λ)

s + λDV(λ)
s

)
, T (λ)

s ∝
∫ Rs

λ

Rs−1
λ

ρD−1dρ φ̇2
s, (3.14)

and similarly for V(λ)
s . Imposing the vanishing derivative of the polygonal S(λ)

0,PB over
λ, one obtains a complicated finite version of the identity in (2.27), modifying the re-
lation between T (λ)

s and V(λ)
s . However, with a sufficiently large number of segments,

the relation (2.27) with T →
∑

s T
(λ)
s and V →

∑
s V

(λ)
s is quickly recovered.

Inversely, one can use the continuous version of (2.27) with the input potential
V (φ) to verify the goodness of the polygonal solution. This is shown on the right
side of fig. A.1 in A.3, where about a permille level precision of the action is achieved
with N = 400 segments.

3.3 Evaluating polygonal bounces

3.3.1 Implementation

Overview. Let us turn to the implementation of the PB method. In the work
of [122], the bounce equations were cast into an algebraic system and solved in
a closed form. The approach followed here instead is to recursively compute the
bounce parameters and solve a single boundary condition equation.

The boundary equation is obtained by combining (3.5) with (3.7) and setting
s = N − 1, which leads to

N−1∑
σ=0

(aσ+1 − aσ)R
D
σ = 0, (3.15)

valid for all D. Because the Rs are already solved for, the final condition for vN−1

holds automatically. Alternatively, one can use the relation in (2.27) with the polyg-
onal potential, and look for the solution of

λ =

√
(2−D)T

DV
= 1. (3.16)

In order to solve the boundary equation, either (3.15) or (3.16), one has to find the
initial radius Rs from which the subsequent vs, bs, Rs are computed recursively until
the boundary condition is satisfied. This is the algebraic analog of the shooting
method used to solve (3.35) directly.

Adding more segmentation points improves the accuracy of the approximation,
but does not exponentially increase the computational burden, timing scales linearly
with N .

48



3.3. Evaluating polygonal bounces

Segmentation. To set up the polygonal potential approximation, one first chooses
a set of field values {φ̃s} that interpolate between the positions between which the
tunneling happens, as exemplified in fig. 3.1. Throughout this work we assume the
original potential V (φ) to be non-pathological in the sense that it admits at least
one bounce solution between these two values2.

To describe an arbitrary potential, enough segments should be taken to capture
all the non-linearities with desired precision. In addition, the action converges faster
if the segmentation is tailored to a specific potential, i.e. if the density of points
increases close to the extrema. This geometrical insight is a particular feature of
the polygonal approach and allows for intuitive understanding of the problem prior
to the actual calculation of the bounce.

R0 = 0 R1 = 0 R2
m ax R2 R2

m in = 0 R3 R4

…
RN -1

RN -1 Î R j0 Λ ® 1RN -1 Î C

Figure 3.2: Schematic overview of finding the PB. The segment with the solution
(in this example s = 2 and Rin = R2) can be found by evaluating the PB on the
boundaries of Rmin

2 = 0 and Rmax
2 and checking that the imaginary part of the final

radius RN−1 becomes non-zero. Finally, the solution of R2 is found such that the
scaling parameter λ→ 1.

For a sufficiently large N , the specific choice of coverage is not relevant. The
naïve uniform distribution reproduces any reasonable potential when N → ∞ and
converges smoothly to the final value. In this limit, the resolution of ∆φ̃s is small
enough such that φ0 always falls above φ̃1 and only case a) persists. This is to be
expected because such limit is equivalent to the original problem in (3.35) where
R0 → 0 and only φ0 matters.

Computing the initial bounce radius. With a given segmentation at hand, one
has to find the initial radius Rin that solves the boundary equation. Actually, the
task can be simplified by a priori isolating the field segment on which the solution
exists.

One can see from the right panel of fig. 3.1 that the list of Euclidean radii {Rs},
must be real, positive and growing (the true minimum is on the left by convention).
On the other hand, Eq. (3.15) contains a number of nested roots and becomes
progressively non-linear as N grows and generically admits complex solutions for
the radii.

Let us demonstrate that the final radius RN−1 becomes imaginary as Rin is varied
across the true solution. This can be understood by noticing that the discriminant
δ2N−1−4aN−1bN−1 in (3.10) vanishes due to the boundary conditions in (3.5), likewise
for D = 3. Thus, when one expands the discriminant around the true solution, only
the linear term remains, which will flip the sign of the discriminant and thereby the

2The polygonal approach can also be applied to unbounded potentials with a local minimum
at φ̃N . In such instance, case b) does not exist, since the field cannot wait at the true minimum.
Instead, the choice of the exit point, i.e. φ̃1 must be deep enough for the field, starting from φ0,
to roll down to the false minimum.
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Chapter 3. Polygonal bounce: from single to multifield decay rate

imaginary part of the final radius appears, as seen on the left panel of fig. A.1 and
shown schematically on fig. 3.2.

Furthermore, note that in both cases a) and b) one only needs to solve for Rin,
from which the initial field value φ0 can be determined. In case b) this is merely the
position of the minimum φ0 = φ̃1, while in case a), it is obtained from Rin and (3.6)

φ0 = φ̃in+1 −
4

D
ainR

2
in. (3.17)

From here one can infer the interval for Rin ∈ [0, Rmax
in ] by setting φ0 to the lower

and upper boundary of the segment in (3.17). The way to find the segment with
the solution a priori is therefore to evaluate the final radius from these two limiting
Rin and checking whether it becomes imaginary, as illustrated in fig. 3.2.

Once the segment containing the solution has been found, one can proceed to
solve the polygonal bounce by solving either (3.15) or (3.16). Another approach is
to take advantage of the fact that the bounce solution depends solely on Rin. This
is a dimensional parameter, which can therefore be rescaled by the optimal amount
computed from (3.16), which essentially aims to minimize the action. For example,
one may begin with Rmax

in , compute the corresponding λ from eq. (3.16), which in
general will be different from 1, and proceed by iteration from Rin = λRmax

in . This
procedure converges in a few iterations to a permille level. Alternatively, one can
solve (3.16) with standard root finding algorithms.

By increasing the number of segments, the initial radius (e.g. R0 in case b))
decreases until Rin = 0, when the domain of the solution disappears and one has to
switch to the next segment. This agrees with (3.35), as does the fact that the final
radius RN−1 grows steadily to infinity when N → ∞, see fig. A.2.

3.3.2 Examples, convergence and comparisons

Linearly displaced quadratic potential is the benchmark potential to test the
PB method. For this potential the bounce action was obtained in the thin wall
approximation in section §2.3. It is defined as in the work of Coleman [68]

V (φ) =
λ

8

(
φ2 − v2

)2
+ ϵ

(
φ− v

2v

)
, (3.18)

and shown on the left panel of fig. 3.1. For convenient numerical evaluation, we set
λ = 0.25, v = 1; other points in parameter space can be obtained by rescaling [132].
For such choice of parameters, varying ϵ from 0.01 to 0.08 covers all the regions of
interest, starting from thin wall regime of small ϵ, going to well separated minima
until the second minimum disappears.

We now apply the PB method to the potential in (3.18), employing the homoge-
neous segmentation for simplicity. The first results are the φ0 and R0 that attempt
to solve (3.15). The solution for R0 varies with N , therefore we show the behavior
of R(N)

0 /R
(3)
0 in fig. 3.3, where R(N)

0 is the initial radius corresponding to some fixed
N . For any choice of ϵ, the R0 decreases with N and eventually drops to zero, as
seen in fig. 3.3. At this point, one has to switch from b) to a)3.

3This is true in general when N is sufficiently large. The reverse transition from a) to b) is
also possible when N is small enough and a particular segmentation is chosen. This happens for
ϵ = 0.07 in D = 4, as shown on the right panel of fig. 3.3.
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Figure 3.3: The initial radius R(N)
0 of case b) andD = 4 for the uniform segmentation

with N points, normalized to the minimal N = 3 setup. Similar behavior appears
for D = 3. Different lines correspond to the range of ϵ, which controls the separation
between the minima in (3.18), see text for details.

The smaller ϵ is, the closer one goes towards the thin wall regime, where the
field needs to wait close to the minimum. This means R0 remains sizeable for higher
values of N and one needs to introduce many segments for R0 to reach zero, as clear
from fig. 3.3. On the other hand, the transition from b) to a) happens faster when ϵ
increases. Finally, when ϵ is large enough, the transition eventually disappears and
we are left with case a) right from the start at N = 3.

The number of dimensions also has an impact on the transition from b) to a),
as seen in fig. 3.3. Keeping ϵ fixed, the transition in D = 4 occurs for higher N
with respect to D = 3. This is expected because the damping term in (3.35) is
proportional to D and thus becomes more important in higher dimensions.

The final step after obtaining R0 or φ0 is to compute the main object of interest:
the Euclidean action S0 in (3.11) that sets the bubble nucleation rate. fig. 3.4 shows
the main point of this work: the convergence of S(N)

0 , the action for N segments
with D = 4 (the results are basically the same for D = 3). The S(N)

0 is normalized
to the large N = 400 value in order to ease the comparison between different ϵ.

In the limit of ϵ ≃ 0 one ends up in the thin wall regime, and therefore N = 3
has to produce the correct result of [122], in agreement with the inset of fig. 3.4.
With increasing ϵ, the potential in (3.18) will eventually lose the second minimum.
For any potential close to this threshold, the resolution of the homogeneous seg-
mentation has to be precise enough to describe the local maximum, otherwise the
solution cannot exist a priori. This is precisely what happens in fig. 3.4 for ϵ = 0.08,
the N = 4 segmentation is too rough to possess an intermediate maximum. In
general, the approximation worsens for 4 ≤ N < O(10), which is an artefact of
the assumed uniform segmentation. Conversely, for higher N , the action starts to
converge rapidly and the rate is faster in case b) for smaller ϵ, where the shooting
method instead becomes increasingly unstable.

The initial approximations with small Ns, shown in the inset, are already quite
close to the end result and are valid at about 10% level. It is clear that the N =
3 segmentation always underestimates the action and this simple approximation
becomes progressively better as ϵ decreases. On the other hand, as N increases,
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Figure 3.4: The bounce action S(N)
0 normalized to the maximal N = 400 uniform

segmentation with D = 4. The solid lines show the PB method for different ϵ that
defines the input potential. The inset shows the same, for a smaller number of
segments. The dotted lines show the comparison to other methods and tools, see
text for details.

the method starts to overestimate the bounce and converges to the final result from
above. Even for moderate N = 10 the accuracy of the estimation is below 10% and
goes below the permille level when N = 200. The convergence is slightly faster for
N = 3, moreover the rate of convergence can be improved by choosing an appropriate
segmentation.

To compare the PB method to existing methods, we show the results of other
approaches in fig. 3.4. The other three calculations are the usual shooting method
of Eq. (3.35) and the out-of-the-box results from CosmoTransitions [82] and
AnyBubble [86] packages. Note that in these examples all the methods agree
within a few permille level.

In the next chapter, we will provide the reader with more examples and com-
parisons after presenting our proper tool that implements PB, called FindBounce.
Before that, let us focus on the main concepts of this method and move on to an
analytic extension of PB, which will improve the convergence as we will go beyond
the linear segment of potential.

3.4 Extending polygonal bounces

Here we develop a general procedure of including non-linear corrections to the PB.
This is done by setting up a systematic procedure based on the Taylor expansion of
the potential and then building the new bounce solution perturbatively on the PB
ansatz.

Higher order corrections describe non-linear features that are not there in the
leading approximation, for example around the extrema of V where the linear part
of the potential vanishes. Although the PB solution is formally exact when N → ∞,
the nonlinear corrections may enhance the convergence of the action, depending on
the type of the potential and the order to which we correct.
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Figure 3.5: Left: The linearly off-set quartic potential in gray, the linear polygonal
approximation with N = 7 in dashed blue and the 2nd order quadratic correction
in solid blue. Right: The field solution in the PB approximation in dashed and the
2nd order improved solution in solid orange.

Generalities. Consider the complete bounce solution expanded around the PB:
φ = φPB + ξ, such that the correction to the potential is evaluated on the PB
background and the bounce equation becomes

φ̈+
D − 1

ρ
φ̇ = 8 (a+ α) + δdV (φPB(ρ)) , (3.19)

ξ̈ +
D − 1

ρ
ξ̇ = 8α + δdV (ρ), (3.20)

δdV = dV (φPB(ρ))− 8 (a+ α) , (3.21)

where α is an arbitrary linear part. The bounce correction ξ is then given by

ξ = ν +
2

D − 2

β

ρD−2
+

4

D
αρ2 + I(ρ), (3.22)

I(ρ) =
∫ ρ

ρ0

dy y1−D
∫ y

ρ1

dx xD−1δdV (x). (3.23)

Evaluating the above integral I for an arbitrary δdV and computing the unknown
parameters of ξ is involved and basically equivalent to the numerical integration
of (3.35). However, a systematic expansion of the potential and linearization simplify
this approach considerably.

Perturbation. On a given segment, the potential can be expanded in Taylor series
around φ̃s

Ṽs − ṼN + ∂Ṽs (φs − φ̃s) +
∂2Ṽs
2

(φs − φ̃s)
2 + . . . , (3.24)

where the constants ∂Vs, ∂2Vs, . . . are determined by matching the values and (higher)
derivatives of V . When N increases, the segmentation becomes arbitrarily dense and
thus the terms beyond the linear one in (3.24) become progressively negligible.

To illustrate this point, we expand V to second order

∂Ṽs = 8 (as + αs) , 8αs = 8as − dṼs+1, (3.25)

∂2Ṽs =
dṼs+1 − ∂Ṽs
φ̃s+1 − φ̃s

=
dṼs+1 − 8 (as + αs)

φ̃s+1 − φ̃s
, (3.26)
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Chapter 3. Polygonal bounce: from single to multifield decay rate

where dṼs stands for the derivative of the original potential evaluated at φ̃s. This
is the additional information required from the original potential in order to get to
the next-to-leading order. The αs coefficients are thereby fixed and the inclusion of
the quadratic correction improves the fit of the potential near the extrema, as seen
from fig. 3.5. Moreover, with a large N , one has αs ≪ as as clear from (3.25), which
is consistent with the assumption of perturbativity.

With this approximation of the potential, the non-homogeneous part of the cor-
rection is

Is =
∫ ρ

ρ0

dy y1−D
∫ y

ρ1

dx xD−1∂2Ṽs (φPBs − φ̃s) , (3.27)

which can be evaluated for D = 3, 4

ID=3
s = ∂2Ṽs

(
vs − φ̃s

6
ρ2 + bsρ+

as
15
ρ4
)
, (3.28)

ID=4
s = ∂2Ṽs

(
vs − φ̃s

8
ρ2 +

bs
2
ln ρ+

as
24
ρ4
)
, (3.29)

where the arbitrary integration constants ρ0, ρ1 were chosen to simplify the expres-
sion for Is without loss of generality because they can be absorbed in νs, βs. The
remaining task is to compute the unknown coefficients νs, βs and the new matching
radii by requiring the solution to be continuous and differentiable as in the PB case.

Given that φPB and its matching radii are already close to the actual solution,
the new radii have to be close to the previous ones

Rs → Rs (1 + rs) , rs ≪ 1. (3.30)

Following the same procedure as in the PB construction above, we set up the modi-
fied initial, final and matching conditions for the correction ξ. These conditions are
then perturbatively linearized in rs to get the recursion relations for the parameters

νs = ν1 −
s−1∑
σ=1

(
2

D − 2

βσ+1 − βσ
RD−2
σ

+
4

D
(ασ+1 − ασ)R

2
σ + Iσ+1 − Iσ

)
, (3.31)

βs = β1 +
s−1∑
σ=1

(
4

D
(ασ+1 − ασ)+ 4rσ (aσ+1 − aσ) +

İσ+1İσ
2Rσ

)
RD
σ , (3.32)

and similarly a linear equation for the radius correction at each segment is

rs =
βs +

D−2
2

(
νs + Is + 4

D
αsR

2
s

)
RD−2
s

(D − 2)
(
bs − 4

D
asRD

s

) . (3.33)

Following the same logic as in the PB case above, we compute the initial ra-
dius correction rin by solving the linear equation that satisfies the final matching
condition. Being a linear equation, this additional step does not require significant
computing time but improves the accuracy of the action and speeds up convergence.

Improved action. To understand the effect of second order corrections, we recon-
sider the usual displaced quartic potential and show the improved action in fig. 3.6.
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Figure 3.6: The bounce action of the improved bounce calculation including the
second order correction. The lower colored lines correspond to the corrected action,
while the upper gray ones show the leading PB for comparison.

The correction significantly improves the approximation of the action by nearly an
order of magnitude improvement for any given N and ϵ. In other words, to achieve
the same level of accuracy one needs to consider half as many segments.

Because the polygonal bounce perturbation requires only to solve a linear equa-
tion, the computational cost of computing the bounce solution with a given accuracy
is reduced significantly. Moreover, the final result of the bounce field configuration
is again given in the form of segmented analytical functions, which allows for further
manipulation.

3.5 Multi-field polygonal bounces
The probability of decay of a false ground state in a model with an arbitrary number
of real scalar fields φi is also proportional to the Euclidean action S0 and given
by (2.1). As shown recently [112], the bounce in the presence of more scalar fields
preserves the O(D) invariance, so the Euclidean action (2.12) is naturally extended
to more fields,

S0 =
2π

D
2

Γ
(
D
2

) ∫ ∞

0

ρD−1 dρ

(
1

2

nφ∑
i

φ̇2
i + V (φi)

)
, (3.34)

where nφ stands for the number of fields. The bounce fields obey the classical
equation and boundary conditions

φ̈i +
D − 1

ρ
φ̇i = ∂iV, φi(0) = φi0, φi(∞) = φ̃iN , φ̇i(0,∞) = 0, (3.35)

where ∂iV is the derivative of V with respect to φi. The analogy of these equations
to the motion of a particle in a hypersurface −V (φi) with a damping terms remains.
However, the bounce on multi-field potentials is significantly more challenging as we
have to integrate a system of coupled differential field equations.
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Chapter 3. Polygonal bounce: from single to multifield decay rate

In principle, once the trajectory in field space is known, the multifield problem
reduces to a single field problem. When there are no interactions among the fields,
the path in field space is simply a straight line that connects both minima. After
a global rotation of the fields, the set of differential equations decouple such that
nφ − 1 of them are trivially solved by a constant value, while the remaining one
becomes an effective single field bounce equation. On the other hand, when there
are interactions, the bounce traces a non-trivial curvature in field space and the
effective single field bounce becomes a non-trivial combination of the fields. As the
bounce extremizes simultaneously the potential and the kinetic terms, the path in
field space of the bounce is a trajectory between the straight line that connects both
minima and the minimum energy path of the potential, as shown in the fig. 3.7.

Figure 3.7: An example of a multifield potential with two fields, trajectory of the
bounce in blue and its projection on the bottom. Red dashed line is the path in the
absence of the potential or interactions among fields, while the solid red one is the
path that minimizes the potential.

Computing the false vacuum decay rate with multiple scalar fields faces a number
of technical difficulties. These are related to the fact that the Euclidean action is
not a minimum but a saddle point. Existing approaches to this problem include an
improved action method that converts the saddle point into a minimum [79, 90, 91],
numerical functional minimization [80], path deformation and shooting [81, 82], fric-
tionless dimensional continuation [83, 84], semi-analytical techniques [85], multiple
shooting [86], tunneling potential [87] and numerically solving coupled PDEs with
variable coefficients [88], as well as machine learning techniques [89]. Existing pub-
licly available tools in the literature are: CosmoTransitions [82], AnyBubble [86],
BubbleProfiler [88] and SimpleBounce [91]. They are all mostly based on numerical
methods.

In general, solutions where the shooting and path deformation are decoupled
exhibit oscillatory (and therefore slower) path convergence, multifield shooting faces
non-linear scaling with the number fields, and most approaches have difficulties with
thin wall regimes. They become either imprecise or impractical for a large number
of fields, and provide purely numerical output of the bounce field configuration, as
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3.5. Multi-field polygonal bounces

well as the Euclidean action.
The PB solution overcomes a number of these shortcomings and provides a frame-

work with the following features.

1. The multifield PB field solution remains as simple as in the single field case
in (3.2). It is therefore fast to evaluate numerically and is retained upon
iteration. The final result has a closed analytical form, which allows for further
manipulation.

2. The solution is built iteratively, where a single iteration takes into account
the curvature in field space by explicitly solving the ρ dependence and simul-
taneously deforms the path. This eliminates the oscillatory behavior and the
solution converges quickly, within O(1) iterations, see fig. 3.9.

3. The method works very well in the thin wall limit, which is usually problematic
due to severe fine-tuning. This feature is directly inherited from the single
field case and is due to the fact that we are solving for the Euclidean time ρ
variable and not in φ space. Of course, the method works equally well (see
again fig. 3.9) in the thick wall regime; moreover it is applicable to cuspy and
unstable potentials, as well as paths with multiple minima.

4. Finding the path in field space boils down to a coupled system of ordinary
linear equations that scales linearly with the number of fields and number of
segments. The procedure converges very close to the final path even with a
few - O(1) segments. One can switch to more segments in the final step only
to ensure sufficient precision in the longitudinal direction, depending on the
desired precision of the action.

5. It works for any space-time dimensions D > 2 (with D = 2 in the Ap-
pendix (A.1)), in particular it is simple to consider D = 3, 4, which are most
relevant for physical applications.

3.5.1 Constructing multi-field polygonal bounces

Let us describe the generalization of the PB approach to an arbitrary number of
scalar fields.

The ansatz. The starting point is an initial estimate of the solution,

φ̄is = v̄is +
2

D − 2

b̄is
ρD−2

+
4

D
āisρ

2, (3.36)

where i is the field index i = 1, . . . , nf and s = 1, . . . , N is the segment point. It is
obtained after choosing a path in multi-field space as set of points φ̃is, for instance
by segmenting a straight line connecting the two minima, as in the left panel of
fig. 3.8. Its corresponding longitudinal PB can be computed using sections §3.2
and §3.3 once as are given

8as =
Ṽs+1 − Ṽs

|φ̃is+1 − φ̃is|
, (3.37)
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Figure 3.8: The PB solution for two fields in D = 4 with N = 7 segment points.
Left: Path in field space with the initial straight line ansatz φ̄ with empty circles
and the first iteration of the PB solution in solid blue and full circles; the result
from shooting is shown in purple. Right: Iterations of the evolution in Euclidean
time for φ1(ρ).

Then it is projected back to the multifield space by eis = (φ̃is+1 − φ̃is)/|φ̃is+1 − φ̃is|
such that,

v̄is = φ̃is+1 + eis

(
vs −

s∑
σ=1

|φ̃iσ+1 − φ̃iσ|

)
, 8 āis = eisas, b̄is = eisbs. (3.38)

Perturbation of the solution. Next we consider an expansion around the initial
estimate, such that φis(ρ) = φ̄is + ζis. This produces a set of coupled bounce
equations for each field direction

¨̄φis +
D − 1

ρ
˙̄φis  

8āis

+ ζ̈is +
D − 1

ρ
ζ̇is  

8ais

=
dV

dφi
(φ̄+ ζ) .

(3.39)

The idea here is to look for a solution of the field expansion ζ, which is of the
polygonal type

ζis = vis +
2

D − 2

bis
ρD−2

+
4

D
aisρ

2, (3.40)

where ais corresponds to the leading constant expansion of the gradient of the po-
tential around some deformed path, defined by φ̃is+ ζ̃is. This is the main difference
in contrast to the single field case: the position in field space is not fixed a priori
and one has to allow for the segmentation to move in field space.

The gradient parameters ais can be linearized in terms of the displacement ζ̃js
with a symmetric average

8ais ≃
dV

dφi

(
φ̃is + ζ̃is

)
− 8āis, (3.41)

dV

dφi
≃
diṼs + diṼs+1 + d2ijṼsζ̃js + d2ijṼs+1ζ̃js+1

2
. (3.42)

It is crucial that the gradient in (3.42) is expanded beyond the constant leading
order up to O(ζ̃) that includes the second derivative of the potential. This is needed
to properly describe curved paths in field space.

58



3.5. Multi-field polygonal bounces

Solving the boundary conditions.

Matching. To fix the remaining parameters of the ζ solution in (3.40), the field has
to match onto the deformed path. We choose to match to ζ̃ at the fixed radii Rs,
computed from the initial longitudinal polygonal ansatz. This can be done for all
the Rs, except for the initial Ri0 and final ones RiN−1, which are free parameters for
each field direction i.

The field values of the ansatz φ̄is are continuous from one section to another,
while the derivatives may not be. The matching of derivatives at Rs then gives the
recursion relation for bis

bis = bi1 +
s−1∑
σ=1

4

D
(aiσ+1 − aiσ)R

D
σ +

1

2
( ˙̄φiσ+1 − ˙̄φiσ)R

D−1
σ , (3.43)

and field continuity, together with (3.43) provides the recursion relation for vis

vis = vi1 −
s−1∑
σ=1

4

D − 2
(aiσ+1 − aiσ)R

2
σ −

1

D − 2
( ˙̄φiσ+1 − ˙̄φiσ)Rσ. (3.44)

Initital/final conditions. In case a) the initial endpoint is free to move, however the
solution starts at ρ = Ri0 = 0 with a vanishing derivative, therefore

vi1 = ζ̃i1, bi1 = 0. (3.45)

In case b) the initial endpoint does not move and we have φi1 (Ri0) ≃ φ̄i1+ ˙̄φi1R0ri0+
ζi1 = φ̃i1 that implies ζi1(R0) = ζ̃i1 = 0 because ˙̄φi1(R0) = 0. Here we expanded the
initial and final radii Ri0 = R0 (1 + ri0) and RiN−1 = RN−1 (1 + riN−1) to leading
order in ri0,N−1, in order to maintain a linear system. As for the derivatives,

φ̇i1 (Ri0) ≃ ˙̄φi1 + ¨̄φi1R0ri0 + ζ̇i1 = 8āi1R0ri0 + ζ̇i1 = 0, (3.46)

where ˙̄φi1 = 0 and ¨̄φi1 = 8āi1 follows from (7.13). In summary we have the following
initial and final conditions:

ζi1(R0) = ζiN−1(RN−1) = 0, (3.47)

ζ̇i1(R0) = −8āi1R0ri0, (3.48)

ζ̇iN−1(RN−1) = −8āiN−1RN−1riN−1. (3.49)

Then the final task is to solve this linear system. The initial conditions are solved
in terms of vi1 and bi1 as

vi1 = − 4

D − 2
(ai1 + 2āi1ri0)R

2
0, bi1 =

4

D
(ai1 +Dāi1ri0)R

D
0 , (3.50)

which determines ζi1 that has to be fixed to ζ̃i2 at R1. The recursion relations (3.43)
and (3.44) then provide the polygonal ansatz for ζis, to be fixed onto ζ̃is+1

ζis(Rs) = ζ̃is+1. (3.51)

This continues until the final segment where the endpoint does not move ζ̃iN = 0, in
agreement with (3.47). The final equation to be solved is then the ζ̇iN−1 condition
in (3.49), which provides the value of riN−1. This set of expressions can be written
as a system of linear equations to get the new path, which can be solved efficiently
and fast.
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Figure 3.9: Multi-field polygonal solution in D = 4 with N = 15 segmentation
points. The starting ansatz is the straight dashed line connecting the two minima,
shown as black dots, together with the saddle point. The solid lines are subsequent
iterations that converge to the final path that solves the bounce equations. Insets
show the action compared to other approaches. Left: The case a) set-up with the
initial endpoint, which is free to move. Right: The case b) potential of the thin wall
type with fixed endpoints in the minima.

Iteration. We can perform these steps iteratively until the path in field space does
not change anymore, i.e. ζ̃is ≃ 0. This is simple to achieve by construction since we
kept (3.40) with the same polygonal form in ρ.

3.5.2 Examples and path convergence

Let us consider a simple two field potential

V (φi) =
2∑
i=1

(
−µ2

iφ
2
i + λ2iφ

4
i

)
+ λ12φ

2
1φ

2
2 + µ̃3φ2, (3.52)

that has multiple solutions for spontaneous symmetry breaking vevs ⟨φi⟩ = vi. The
metastable minima are in general of different depths with V (v1) ̸= V (v2), which
allows for the local false vacuum to decay into the global minimum by traversing
the field space along the bounce solution.

To illustrate the multi-field PB method, we choose two exemplary points in the
parameter space to cover both non-trivial cases: a) and b). Specifically, we take
µ2
1 = 80, µ2

2 = 100, λ1 = 0.1, λ2 = 0.3, λ12 = 2 and µ̃3 = 800 for case a), while µ̃ = 0
for case b). The solution in field space is shown on fig. 3.9, with the initial ansatz
taken to be a straight line with N = 15 that connects the two minima. Remarkably,
the PB solution converges to the correct value very quickly, with O(1) iterations, as
seen from fig. 3.9.

It is clear from the insets of fig. 3.9 that the PB action is quite precise even with
N = 15 and reaches roughly permille precision withN = 100. The main requirement
for improving the precision of the action is to increase the number of segments to
get an accurate description of the longitudinal ρ dependence. The shape of the path
in field space is less important and does not change much when N increases. All of
the results above are similar for D = 3.
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Again, the convergence of the action can be improved by taking into account
also the ρ dependence of the PB ansatz, similar to the single field extension defined
above. It is also possible to solve the multifield bounce equation by solving for
ζ dynamically and gluing the corresponding Bessel functions. This is a somewhat
tedious task that requires local field rotations and is beyond the scope of the current
work, but a similar semi-numerical approach was done in D = 3 by [85].

Finally, the path converges to the final one without oscillations, in contrast
to [82], where the ρ dependence of transverse field directions was dropped, effectively
neglecting the kinetic term. Since we use an explicit solution in (3.40), the dynamical
term of the curved path is taken into account. This happens also in [85], where the
field construction is slightly more involved, requiring local rotations and evaluation
of Bessel functions.

3.6 Conclusions and outlook
An efficient and fast approach for calculating the false vacuum tunneling rate is
developed for arbitrary potentials with any number of fields up to the desired pre-
cision. The method is based on the simple, well-known exact solution [122] that is
extended to any number of segments, space-time dimensions and number of scalar
fields.

Usually, the simple single field problem of finding the bounce is solved by shoot-
ing - numerically integrating the bounce equation and looking for the correct initial
condition. Here instead, the differential equations are solved exactly and are glued
into a single continuously differentiable field. The boundary conditions can be solved
exactly and the field solution is computed recursively. The remaining initial/final
conditions are highly non-linear but can be solved by iterative use of Derrick’s the-
orem or numerical root finding.

In contrast to numerical integration, the PB solution is given by segmented
polynomials. This allowed for simple analytical manipulation, such as including
corrections of higher orders in the potential expansion, quantum or thermal fluctu-
ations, expanding to more fields and it ultimately reduces the computational cost.
Because the one field solution depends on a single dimensional parameter, which is
the initial radius defined on some initial segment, the fine-tuning of initial conditions
is avoided. This is advantageous especially in the thin wall regime, where the usual
shooting procedure struggles.

The method was applied to the displaced quartic potential, where the result-
ing bounce action converges quickly with N ≳ O(10) and reaches a permille level
precision as seen in fig. 3.4. The polygonal potential can serve as an ansatz to be
perturbatively deformed in order to describe the remaining non-linearities. These
are generically important close to the extrema and their inclusion improves the con-
vergence of the bounce action, as seen from fig. 3.6, where the comparison with
existing tools is made.

The ability of perturbative expansion allows for the generalization to the multi-
field case. The main challenge with respect to the single field case is finding the
path in field space. The PB approach solves it by starting from an initial polygonal
ansatz that is iteratively deformed by solving the bounce equations at the leading
order. Path deformation is solved by a linear system and converges very quickly
without oscillations such that the action is recovered to arbitrary precision within a
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few iterations.
In summary, we find that the PB method is a robust, precise and reliable way of

computing the semi-classical tunneling rate for any given potential. This approach
describes the false vacuum decay in flat space time, however the solution can also be
used in curved space-time within a small gravitational field approximation [133, 134].
The PB solution and its extension can thus provide a tool with an analytical insight
in characterizing stable vacua of theories with multiples scalar fields [135, 136, 137,
138, 139, 140], describing bubble nucleation and the quality of potential first order
phase transitions as well as the related spectrum of gravitational waves.
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Chapter 4

FindBounce: A package for multifield
bounce action

4.1 Introduction

In this section we present a Mathematica package, called FindBounce that imple-
ments the polygonal bounce method discussed in chapter §3 [141]. It is a publicly
available and documented software that serves to compute the bounce action S0 for
models with an arbitrary number of scalar fields in flat spacetime dimensions D = 3
and D = 4. This is done by the main function FindBounce, which computes the
bounce action and returns the associated field solution. It is simple to use with
a native Mathematica look and feel, it is easy to install, and comes with detailed
documentation and physical examples, such as the calculation of the nucleation
temperature.

The package preserves the semi-analytic structure of the method and stores the
parameters of the field solution that can be used for further manipulation by a
dedicated data structure called BounceFunction. This allows for a fast and robust
evaluation of arbitrary potentials with specified precision, where the time cost grows
linearly with the number of fields and/or the number of segments. Typical running
time is roughly less than 1 (2) seconds for 10 (20) fields with 0.5% accuracy of the
action. The package was tested on Mac OS X and Windows but it should work on
any device where Mathematica 10 or above is installed.

The upcoming section starts with a quick tryout of the FindBounce package,
where the minimal short guide to installation is presented with the most basic ex-
amples. A more detailed description of the inner workings of the package, with a
description of the FindBounce function and available options is outlined in §4.3.
Examples with benchmarks, performance, timing, and comparisons can be found
in §4.4. We also provide timing benchmarks with comparisons to other existing
tools, where applicable. We leave the concluding remarks and an outlook for future
developments to §5.6.
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4.2 Installation and running guide

4.2.1 Download and installation

The FindBounce package is released in the .paclet file format, which contains
all the code, documentation and other necessary resources. The latest version
of .paclet file can be downloaded from the repository “releases” page (https:
//github.com/vguada/FindBounce/releases) and can be installed by evaluating
the following code in Mathematica.

In[1]:= PacletInstall["full/path/to/FindBounce-X.Y.Z.paclet"]

This will permanently install the FindBounce package to the
$UserBasePacletsDirectory. To update the documentation, it may be necessary
to restart Mathematica. Mathematica will always use the latest installed version.
All the previously installed versions of FindBounce can be enumerated by evaluat-
ing PacletFind["FindBounce"]. More detailed information about the FindBounce
package can be found with PacletInformation["FindBounce"]. All the versions
can be uninstalled with PacletUninstall["FindBounce"].

4.2.2 Running

Once the package is installed, load it with Needs.

In[1]:= Needs["FindBounce‘"]

To access the documentation, open the notebook interface help viewer and search
for FindBounce. Let us show how FindBounce can be used on a simple example

In[2]:= V[x_]:= 0.5 x^2 + 0.5 x^3 + 0.12 x^4;

In[3]:= extrema = x/.Sort@Solve[D[V[x],x]==0];

The bounce is obtained with the FindBounce function

In[4]:= bf = FindBounce[V[x],x,{extrema[[1]],extrema[[3]]}]

where the order of the minima is arbitrary.

Out[4]=

Here, all the options have their default values and the results can be extracted as
follows.

In[5]:= bf["Action"]

Out[5]= 73496.

In[6]:= bf["Dimension"]

Out[6]= 4
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4.3. Using the FindBounce and its output

Notice that the summary box outputs rounded values, e.g. for the action, while
directly accessing values from the BounceFunction object is done with default pre-
cision.

This concludes the simplest demonstration for single field use. More details
regarding the other available options and their use are available in §4.3.1. Before
moving on, let us briefly comment on FindBounce argument overloading. It is
possible to study arbitrary purely polylinear potentials by providing a set of points
and their potential values {φ̃, V (φ̃)}:

FindBounce[{{x1,V1},{x2,V2},...}]

An example of such use is given in §4.4.3. Finally, the FindBounce function is
overloaded for use with multi-field potentials, in which case the evaluation is done
by the following syntax:

FindBounce[V[x,y,...],{x,y,...},{m1,m2}]

where m1,2 are the two multi-field minima; see §4.4.5 for definite examples.

4.2.3 Contributing

Please use the issues (https://github.com/vguada/FindBounce/issues) page
on the GitHub repository to submit bugs or feature ideas. Pull requests are welcome,
however in case of major changes, please open an issue first to discuss what you would
like to change. For developers, the instructions on how to run the tests, build the
package .paclet file from the source code, and create the documentation, can be
found in the CONTRIBUTING.md file.

4.3 Using the FindBounce and its output

4.3.1 FindBounce options

In this section we list and describe the available options of the FindBounce function.
They are directly accessible within Mathematica using the FindBounce function
documentation, which includes detailed descriptions and examples. The options
and default values can be listed with the syntax

Options[FindBounce]

returning the options described below.

• "ActionTolerance" controls the relative variation of the bounce action |∆S|/S
between iterations of the initial radius Rin while solving the boundary condi-
tions in (3.7). FindBounce also supervises the change of the action after each
deformation of the path. The default tolerance value is 10−6. See for example
the right panel of fig. 4.2.

• "BottomlessPotential" is a Boolean variable used to specify whether the
combination of polygonal and quartic should be used. This option can be
used to deal with single field potentials unbounded from below, as discussed
in §4.4.4. The default value is False.
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• "Dimension" defines the number of space-time dimensions, given by the inte-
ger D. The default value is D = 4 for zero temperature tunneling via quantum
fluctuations. In thermal field theory, the D = 3 action is needed, which is ob-
tained by the following evaluation.

In[7]:= bf3 = FindBounce[V[x],x,{extrema[[1]],extrema[[3]]},
"Dimension"-> 3];

• "FieldPoints" controls the segmentation in field space. It is specified ei-
ther by the integer number of field values or by an explicit list of field values
{φ̃1, . . . , φ̃N} given by the user.

– "FieldPoints"-> 31 by default. When specified by a single integer N ,
the segmentation is homogeneously split into N equidistant field points.
For multiple scalar fields, the initial trajectory is taken to be a straight
line connecting the two minima, e.g. the black dot-dashed line in fig. 4.6.

– "FieldPoints"-> {φ̃}. Arbitrary segmentations can be given with an
explicit set of field coordinates as an input. The order of the minima is
not important, FindBounce recognizes the higher one as the false vacuum
state. For single field potentials field points remain fixed, while for multi-
fields they move when the path is being updated.

• "Gradient" controls the evaluation of the bounce beyond the poly-linear ap-
proximation of V (φ), as in (3.24). There are four available option values.

– "Gradient"-> Automatic by default. FindBounce computes the bounce
by taking into account the 2nd order approximation to V (φ) in (3.24).
The gradient function(s) of the potential needed in (3.41) are obtained
analytically by running Grad[V[x,y,...],{x,y,...}].

– "Gradient"-> "FiniteDifference". The set of gradient functions re-
quired in (3.41) are approximated by finite differences, where the small
variations of the fields ∆φ, are proportional to the total length of the path
as ∆φ ≡ 10−4Lpath. This option is suitable for non-analytic potentials, or
when the default derivative, given by Mathematica, may be complicated
and leads to delays in evaluation.

– "Gradient"-> {dV/dφi}. The set of gradient functions can also be pre-
computed, stored and given as an input with this option. This can be
used in multiple evaluations and scanning to save the computation time.
See for example §4.4.5.

– "Gradient"-> None. With this setting, the 2nd order extension is turned
off and the polygonal method is implemented in the poly-linear approxi-
mation. This may be necessary when the the derivative of the potential
is discontinuous, as in §4.4.2.

• "Hessian" option for multi-field bounce calculations regulates the evaluation
of the second derivatives d2V/dφidφj in (3.41).

– "Hessian"-> Automatic is the default behavior, where Mathematica
computes the Hessian matrix analytically by running
Grad[Grad[V[x,y,...],{x,y,...}],{x,y,...}].
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– "Hessian"-> "FiniteDifference" approximates the Hessian matrix re-
quired in (3.41) with numerical finite differences. Similarly to the
"Gradient" option, the variations of the fields are computed from the
path length and given by ∆φ ≡ 10−4Lpath.

– "Hessian"-> {d2V/dφidφj}. Similarly to the "Gradient" option above,
the Hessian matrix of functions can be provided externally by the user
to speed up the calculation.

• "MaxPathIterations" can be used to control the maximum number of times
the path can be iterated after starting from the initial ansatz; the default value
is 3. See for example §4.4.5.

• "MaxRadiusIterations" sets the maximum number of iterations to compute
the initial radius Rin that satisfies Eq. (2.27); the default value is 100. Gener-
ically, FindBounce takes about O(1) iterations to compute the action up to
the default tolerance value. However, this option may be overridden by the
ActionTolerance requirement, which prioritizes the precision of the action
and thus allows for a larger number of iterations.

• "MidFieldPoint" allows the user to control the segmentation by setting a
single arbitrary intermediate field point between the two minima, such as
saddle points.

– "MidFieldPoint"-> None by default: the segmentation is a homoge-
neously discretized straight line in field space connecting the two minima.

– "MidFieldPoint"-> Automatic. The straight line connecting the two
minima is divided by φ̃max into two homogeneous segmentations. The in-
termediate field point φ̃max is the local maximum of the V on the straight
line, and is computed with FindMaximum. This option is suitable for
nearly flat or very asymmetric potentials, where automatic segmentation
may not detect the maximum unless a large value for "FieldPoints" is
used.

– "MidFieldPoint"-> φ̃int The segmentation is divided by φ̃int into two
homogeneous segmentations. It consists of two straight lines that connect
the two minima with the intermediate field point φ̃int.

See §4.4.2 for single field and section §4.4.5 for a multi-field example.

• "PathTolerance", controls the search with multiple scalar fields, where the
path in field space changes with each iteration. Its value specifies the maximal
allowed deviation of the path from one iteration to another. It is defined as
the maximum length of deformation of any field point after each iteration,
normalized to the total length of the path: maxs

⏐⏐⏐ζ̃s⏐⏐⏐ /Lpath with default value
10−2.

The FindBounce stops if either "MaxPathIterations", "PathTolerance" or
"ActionTolerance" is satisfied.
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4.3.2 Bounce function output and manipulation

The results of the calculation are bundled in the BounceFunction container, which
stores various parameters and other properties of the solution. The BounceFunction
is rendered in Mathematica notebooks with a summary box that contains some
minimal amount of information: the shape of the field solution, Euclidean action
and the number of space-time dimensions. The list of all the available properties
can be accessed with the following syntax:

In[8]:= bf["Properties"]

Out[8]= {Action, BottomlessPotential, Bounce, Coefficients,
CoefficientsExtension, Dimension, Path, PathIterations,
Radii}

• "Action" gives the value of the Euclidean bounce action.

• "BottomlessPotential" returns the constant factor of the quartic potential
V0 of Eq. (4.3). See §4.4.4 for an example.

• "Bounce" returns the piece-wise smooth function that characterizes the bounce
solution φ(ρ). It can be evaluated as a continuous function, see section §4.4.5
for an example.

• "Coefficients" provides the constant factors {vis, ais, bis} in Eqs. (3.36) and
(3.40) that define the multi-field (polygonal) bounce solution in each segment.
See §4.4.4 for an example.

• "CoefficientsExtension" provides the constant factors {νis, αis, βis, ∂2Ṽs}
in eqs. (7.9) and (3.25) that define the extension of the multi-field (polygonal)
bounce solution ξ and I in each segment.

• "Dimension" returns the number of space-time dimensions in which the bounce
was computed, where finite (zero) temperature corresponds to D = 3 (D = 4).

• "PathIterations" reports the number of times the path in field space was
deformed from the initial ansatz. An upper limit on this parameters is set by
the "MaxPathIterations" option.

• "Path" gives a list of points φ̃s = φ(Rs) that defines the trajectory of the
bounce in field space. This output can be used as an initial path ansatz to save
time when finding the bounce solution for similar potentials, see section §4.4.5
for an example.

• "Radii" returns the list of radii Rs where the segments are joined from Rin

to RN−1.

In addition to the BounceFunction described above, a plotting function wrapper
BouncePlot is available, such that the field configuration(s) can be plotted with ease.
The BouncePlot behaves similarly to the native Plot, where the default options can
be changed as shown in the example below. Multi-field bounce solutions, given as a
list of functions, can also be plotted simultaneously.
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In[9]:= BouncePlot[{bf3,bf},
PlotLegends-> Placed[{"D=3","D=4"}, {Right,Center}]]

Out[9]=
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4.4 Examples
This section contains a number of examples, test cases and demonstrations of the
FindBounce method. Each subsection contains a simple self contained code that can
be easily reproduced in Mathematica. All of the examples given here (and more) are
available also in the Mathematica documentation of FindBounce after installation.

We start with the single field benchmark in §4.4.1 that showcases the use of some
available options and return values of FindBounce listed above in §4.3. One of the
main aspects is the performance in terms of the precision of the action and timing
in thick and thin wall regimes. In particular, timing scales linearly with the number
of field points.

We consider the exactly solvable bi-quartic case in §4.4.2 that shows how
FindBounce deals with such non-trivial cuspy potentials. In §4.4.3 we use the purely
polygonal example with N = 5 points to reproduce the curious case of the disappear-
ing instanton in the presence of additional local minima. We show how FindBounce
can estimate the escape point φ0 of unstable potentials in §4.4.4 by combining the
exact linear solution to an exact (unstable) quartic one.

For multi-field applications, we first perform the simplest study with two fields
in §4.4.5, where we demonstrate how to control the precision and speed of the
evaluation as well as the use of an arbitrary path ansatz. We also demonstrate the
use of FindBounce on effective and thermal potentials and give a demonstration on
computing the nucleation temperature. In the final sub-section §4.4.7, we address
the bounce calculation with an arbitrary number of fields and test the FindBounce
method with up to twenty fields. We compare the results with other existing methods
and demonstrate that the time demand of the FindBounce function scales linearly
with the number of fields.

4.4.1 Single field benchmark

Let us consider a generic renormalizable scalar potential with terms up to the quartic
power. Such potentials in general feature an unstable ground state, as seen on the
left panel of fig. 4.1. Using the re-scaling properties of both the field φ and the ρ
from (3.35), one can rewrite V as a function of a single parameter α, as [99]

V =
1

2
φ2 +

1

2
φ3 +

α

8
φ4. (4.1)
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Figure 4.1: Left: The benchmark potential from Eq. (4.1) for different values of
α going from thick α = 0.6 to thin wall α = 0.99. Right: The bounce action Ss
for each potential configuration and a given number of field points s, normalized to
s = 400 and computed in D = 4.

Here 0 ≤ α ≤ 1 covers all the possible scenarios going from thick to thin wall
respectively. The bounce configuration for a particular α and the number of field
points N in 3 space-time dimension can be obtained by FindBounce with:

In[1]:= V[x_,a_]:= 0.5 x^2 + 0.5 x^3 + 0.125 a x^4;

In[2]:= extrema[a_]:= x /. Sort@NSolve[(D[V[x,a], x]) == 0, x];

In[3]:= bf[a_,n_Integer]:= FindBounce[V[x,a], x, extrema[a][[{1,3}]],
"FieldPoints"-> n, "Dimension"-> 3];

In[4]:= bf[0.6,100]

Out[4]=

In[5]:= bf[0.6,100][{"Action","Dimension"}]

Out[5]= {44.5098, 3}

The resulting action for different values of α is plotted on the right panel of
fig. 4.1 and is normalized to N = 400 field points, which is already very precise.
The accuracy of the action improves with the number of field points and goes below
the percent level with N = 30 segmentation points in both, thin and thick wall.
As expected, the convergence is faster for thin walls since the minimal N = 3 case
already coincides with the thin wall solution. Note also that in this case, the 2nd

order correction of the potential is taken into account by default and the convergence
is faster than the pure polygonal calculation.

The construction of the bounce solution, in particular the vs, bs parameters,
already indicates that adding more segments does not require significant additional
computing cost: evaluation time of the sums in (3.7) grows linearly. Thus it is
to be expected that the total time should grow linearly with the number of field
points, which is indeed the case, as displayed in fig. 4.2. Note that the FindBounce
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Figure 4.2: Left: Evaluation time with respect to the number of field points, aver-
aged over two intervals of α corresponding to thin and thick wall regimes. Right: The
bounce field configuration and action with N = 31 (default) field points for different
tolerance value of the action controlled by "ActionTolerance". Reference values of
the action for "FieldPoints"-> 10 and 100 field points with "ActionTolerance"->
10−6 (default) are shown on the green background.

performance is similar for both thick and thin walls, with a ∼ 10% faster evaluation
in the thin wall regime.

This behavior should be contrasted with numerical approaches based on under-
over-shooting. There, the very thin wall limit requires an exponential amount of
precision in finding φ0

1. This may cause numerical approaches to fail or significantly
reduce the speed of computation. FindBounce instead relies on the Rin, which is
found by extremizing the action, similar to the original thin wall approach [68]. Such
change of variables thus provides a more stable universal behavior near the thin wall
limit.

Speed and accuracy can be controlled as explained in §4.3.1. The bounce field
configuration and the action can be computed with different requirements for
"ActionTolerance", as shown on the right panel of fig. 4.2. Even though the
boundary conditions are not exactly satisfied at the first segment around ρ ≃ 3,
the rest are joined analytically and the solution is smooth. Despite the disconti-
nuity, the bounce action is fairly precise and within the limits of required action
tolerance. For comparison, we also show the Euclidean action with different number
of "FieldPoints"-> 10, 100, computed with the default "ActionTolerance"->
10−6, which shows how the action converges with the number of field points.

As a final comment, one can use the "FieldPoints" option to specify a fixed
custom segmentation from which the bounce is obtained. This feature may be use-
ful when dealing with non-homogeneous potentials that contain flat pieces, followed
by local features. In such cases, rather than increasing the number of field points,
constructing a custom segmentation may be more beneficial. In the following sub-
section we give one such example, where a bi-homogeneous segmentation, set by the
"MidFieldPoint" option gives a more stable output.

1As in [68], when φ0 is very close to the true vacuum φ̃1, the solution is given by φ(ρ)− φ̃1 =
2 (φ0 − φ̃1) ID/2−2(mρ)/(mρ), where m2 ≡ V ′′(φ̃1). Thus in the thin wall limit Rin ≫ m−1 the
initial condition φ(Rin) ≡ φ0 is exponentially tuned.
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4.4.2 Bi-quartic potential
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Figure 4.3: Left: The piecewise quartic potential for different values of the potential
difference between the vacua, going from the thin wall ∆V = −0.1 to thick wall
∆V = −20 regime. Right: The bounce action Ss for different number of field
points, normalized to the exact result S0 of the bi-quartic potential.

Perhaps the cleanest way of testing the FindBounce package is to compare it to
one of the few non-trivial analytical closed-form solutions that are available [117,
122, 123, 133]. Here, we consider the bi-quartic potentials studied in section §2.5.2.

For the sake of illustration we choose a potential with fixed local extrema and
leave a single parameter ∆V , which controls the potential difference between the
false and true vacua. As shown on the left of fig. 4.3, we vary ∆V from -20 (thick
wall) to ∆V = −0.1 (thin wall). The corresponding action values are computed
with different number of field points and are shown on the right panel. They are
evaluated at D = 4 and normalized to the known exact value.

The FindBounce syntax used for this calculation is again simple.

In[1]:= DV = -20;
V[x_]:= Piecewise[ {{0.008 (x + 5)^4, x < 0},

{DV + (5 - DV)(x/10 - 1)^4, x >= 0}} ];

In[2]:= FindBounce[V[x], x, {-5, 10},
"Gradient"-> None, "MidFieldPoint"-> 0]

Notice that the first derivative of the potential, required in Eq. (3.25), is not well
defined at the origin φ = 0, therefore the default evaluation of the gradient, as
well as the automatic extension of the polygonal approach, was turned off with
"Gradient"-> None. If this were not the case, FindBounce would issue a warning
message and automatically return the solution computed without the gradient ex-
tension. Due to the absence of the second order correction, the convergence is a bit
slower compared to the previous example in §4.4.1. Nevertheless, FindBounce finds
the solution within 1% accuracy for 50 (100) field points in thin (thick) wall regime.

The other option used above is the "MidFieldPoint", which was used to set
the intermediate field point of the segmentation to φ = 0, see the left panel of
fig. 4.3. This feature is optional but stabilizes and improves the accuracy of the
bounce action, especially with a small number of field points.
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Figure 4.4: Left: The minimal example of a potential with an intermediate min-
imum. The inset shows the bounce solution with the typical double bubble wall
shape in orange. Right: Decay rates for the direct (ABC) and the two subsequent
(AB, BC) transitions, together with the total decay rate (4.2).

4.4.3 Intermediate minima and disappearing instantons

A number of physically motivated models may feature a non-trivial potential with
many local minima. Such situations appear in multiple axion and relaxion-type
potentials [142, 143, 144, 145, 146, 147, 148, 149, 150]. Here we demonstrate the
use of the polygonal approach to analyze the minimal polygonal potential with an
intermediate minimum, i.e. the two-triangle construction with N = 5 field points,
shown on the left of fig. 4.4.

The value of the potential at the mid-point Ṽ3 controls the depth of the interme-
diate minima and the resulting bounce solution. As this is lowered below the highest
extremum Ṽ3 < Ṽ5, two types of transitions are possible. The direct tunneling from
Ṽ5 to Ṽ1 (the ABC) instanton, or a two-step transition first from Ṽ5 to Ṽ3 (AB)
and then from Ṽ3 to Ṽ1, the BC instanton. The right panel of fig. 4.4 shows the
associated rates and the total decay rate, defined by

Γtotal ≈
ΓABΓBC

ΓAB + ΓBC
+ ΓAC . (4.2)

The point of emphasis is that the direct ABC transition exists only up to a
certain value of Ṽ3 and then suddenly disappears. This behavior of a disappearing
instanton was pointed out in [151] and explained in the thin wall approximation. In
order to construct the bounce of the direct solution, the field should traverse from
φ̃1 to φ̃3 with a radius associated to the BC transition and finally from φ̃3 to φ̃5

at the AB radius. Clearly, to have a meaningful solution RBC < RAB. However,
when we lower the intermediate minimum, Ṽ3 comes increasingly close to Ṽ1, thus
RAB grows larger, and thereby ΓAB decreases until direct tunneling via the ABC
instanton becomes impossible. This is seen on the right panel of fig. 4.4, where the
ΓABC in black suddenly disappears. Of course, the two-step decay still exists, i.e.
ΓAB and ΓBC are in fact non-zero.2

To study such particularly simple settings, FindBounce allows the user to man-
ually set individual values of the potential as a list of points in field space

2Strictly speaking, one should perform the two-step analysis more carefully, and allow the field
to develop in real time after tunneling from Ṽ5 in the vicinity of Ṽ3. This would lead to oscillations
with subsequent decay, see e.g. [126, 127, 128, 129, 130] and potential enhancement of the rate.
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{{
φ̃1, Ṽ1

}
, . . . ,

{
φN , ṼN

}}
. For example, the direct ABC instanton of fig. 4.4 is

obtained with the following syntax.

In[1]:= FindBounce[{{1,0},{2,2},{3,0.6},{4,2},{5,1}}]

Out[1]= 4

Note also that the order of points in the list is arbitrary and can be given from left
to right or vice versa.

4.4.4 Potentials unbounded from below

In this section, we demonstrate how FindBounce can be used to deal with unstable
potentials. Many BSM theories contain portions of parameter space with unstable
field directions, such that local ground states may tunnel into the unstable region.
This seems to be the case for the Standard Model as well, with the estimated lifetime
significantly longer than the age of the universe, see e.g. [7, 9, 10, 152, 153].

Note that the quartic-quadratic potentials do not admit the bounce solution
at tree level due to scale invariance [154], however the bounce may exists after
the inclusion of quantum corrections. In any case, one might expect the unstable
direction to be dominated by the negative quartic term at large field values.

The escape point can be found either by the usual numerical shooting method
or with the polygonal approach. However, due to the steepness of the unstable
direction, polygonal segments might need to be extended to large values, which
may require a large number of segments. In order to provide a good estimate for
large φ0, we demonstrate how the poly-linear potential with many segments can be
joined with an exact unstable quartic solution. This functionality is implemented
in FindBounce single field potentials in D = 4. It can be turned on with the
"BottomlessPotential"-> True, option, together with the field values φ̃N and φ̃2.
The latter is the point where the PB is connected to the unstable quartic.

To understand how the estimate works, consider the quartic potential Vq and the
associated solution

Vq(φ) = V0 − aq (φ− vq)
4 , φq(ρ) = vq +

bq
1 + 1

2
aqb2qρ

2
, (4.3)

where vq and bq are constants of integration and aq > 0 is a dimensionless parameter
of the potential. Assuming the unstable φ4 term dominates for large field values, aq
is fixed by equating it to the φ4 coefficient of the input potential V (φ).

Similar to the pure polygonal construction explained in section §3.2, the quartic
piece of the potential can be matched to the polygonal ones. In particular, the coef-
ficients bq, vq are then determined by the boundary conditions φq(R2) = φPB(R2) =
φ̃2 and φ̇q(R2) = φ̇PB(R2). What remains to be determined is the matching radius
R2, which can be found with FindRoot, similar to the polygonal case above. Finally,
we fix V0 by requiring the potential to be continuous.

We demonstrate the use of FindBounce in such unbounded transitions with the
following example, where we specify the minimum at φ = 0 and the connecting
point to the quartic at φ = 5.

74



4.4. Examples

0 1 2 3 4 5

-60

-40

-20

0

φ

V
(φ
)

0.0 0.5 1.0 1.5 2.0

-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6

φ0 = 87.2

-7.2×106V(φ0) = Action

S31
q

= 51.8

S31
PB = 153.9

S1000
q

= 52.6

S1000
PB = 52.7

SSh = 53.1

10-5 0.001 0.100 10 1000
10-4

0.01

1

100

104

ρ

φ
(ρ
)

Figure 4.5: Left: Potential unbounded from below. The pure quartic, polygonal-
quartic and input potentials are shown in red, solid blue and black, respectively.
The dashed blue line is the pure quartic potential that is joined to the piece-wise
polygonal potential. Right: The bounce field configuration with its bounce action.
The solid lines show the field configuration with PB+quartic estimate, the dashed
are the pure polygonal solutions and the dotted black line is the numerical result
obtained with over-under-shooting.

In[1]:= V[x_]:= 0.5 x^2 + 0.05 x^3 - 0.125 x^4;

In[2]:= bf = FindBounce[V[x], x,{0, 5},"BottomlessPotential"->True];

In[3]:= {vq, aq, bq} = bf["Coefficients"];
V0 = bf["BottomlessPotential"];

In[4]:= Plot[V0 - aq[[1]](x - vq[[1]])^4,
{x, bf["Path"][[1,1]],bf["Path"][[2,1]]}]

The potentials of interest are shown on the right side of fig. 4.5 where the red, solid
blue and black lines represent the pure quartic Vq, polygonal-quartic and the input
potential, respectively. The dashed blue line is the pure quartic potential (4.3) that
was joined to the polygonal potential. Its parameters are given by "Coefficients"
and BottomlessPotential as shown in the syntax below. The bounce solution given
by FindBounce is then shown on the right of fig. 4.5. Notice that the materialization
of the bounce happens at φ0 ∼ 90, much above the connecting point at φ = 5.

4.4.5 Two field benchmark

Many extensions of the SM feature additional scalar fields, see [155] for a review.
Extra scalars can couple to the SM Higgs and may alter the vacuum structure,
potentially triggering a first order phase transition. The number of additional fields
in generic SM extensions may be large. However, in many cases it may be sufficient
to consider the dynamics of two fields only.

As a simple multi-field example in FindBounce, let us consider such two field
potential with parameters chosen such that the field dynamics produces a large cur-
vature in field space. We start with the simplest tree-level potential at zero tempera-
ture, compute the bounce action and show some additional features of FindBounce.
In the upcoming §4.4.6 we show how to deal with finite temperature and thermal
corrections.
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Let us then consider the following example, where we call FindBounce on the
two minima and ask it to connect them with an intermediate point, set by
"MidFieldPoint". We also show how the pre-computed gradient function can be
specified.

In[1]:= V[h_,s_]:=-100 h^2 + 0.1 h^4 - 60 s^2 + 0.3 s^4 + 3 h^2 s^2;
minima = {{0.,10.},{22.4,0.}};

In[2]:= bf = FindBounce[V[h,s],{h,s}, minima,"MidFieldPoint"->{6,6},
"Gradient"-> {-200h+0.4h^3+6h*s^2,-120s+1.2s^3+6s*h^2}];

In[3]:= {Ri,Rf} = bf["Radii"][[{1,-1}]];
Show[

ContourPlot[V[h,s], {h,-1,25}, {s,-1,11},Contours->50],
ParametricPlot[ Through@bf["Bounce"][r], {r, Ri, Rf}]]

In[4]:= BouncePlot[bf,
PlotLabel->Row[{"Action = ",Round@bf["Action"]}],
PlotStyle->{Purple, Orange}]

The code above returns the bounce field configuration corresponding to the solid
blue line in field space, shown on the left of fig. 4.6. The Euclidean time profiles
(h(ρ), s(ρ)) can also be plotted easily and are shown on the right of fig. 4.6.

The dashed lines in fig. 4.6 represent the different choices of the initial path. By
default, FindBounce chooses a straight line from one minimum to the other, seen by
the black dashed line. In case there is a specific point that the segmentation should
follow, such as the saddle point, or an arbitrary point in the above example, it is
specified with the "MidFieldPoint" option. Finally, one can start with a completely
arbitrary initial path, set by the "FieldPoints" option. In the example above, the
dashed red line on the left of fig. 4.6 was obtained with a parabola connecting the
two minima. The latter option is particularly useful when we already have some
idea about the path in field space, e.g. when performing potential parameter scans.

Whatever the choice of the initial path is, FindBounce iterates the path defor-
mation procedure until it reaches at least one of the following three conditions.

1. The maximum number of iterations, controlled by "MaxPathIterations".
Here, zero means no perturbation of the initial path; i.e. all the dashed lines
in fig. 4.6 were obtained by setting "MaxPathIterations"-> 0.

2. Path deformation measure, controlled set up by "PathTolerance", as ex-
plained in §4.3.1.

3. "ActionTolerance" that directly measures the change of the Euclidean action
between iterations.

The resulting field configurations are shown in solid blue line on the left of fig. 4.6.
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Figure 4.6: Left: Potential contours in solid gray lines, the final trajectory of the
bounce field in solid blue line and three different initial paths in dashed. Black dot-
dashed line is the default straight line ansatz, the straight dashed blue line includes
the intermediate point at {6,6}, while the red dashed line is a parabola, set by hand.
Right: The field configuration (h(ρ), s(ρ)) of the final iteration and the associated
bounce action in the caption.

4.4.6 Thermal corrections and nucleation temperature

As a phenomenological application of FindBounce, let us compute the nucleation
temperature of a SM extension with a real scalar singlet, i.e. the temperature
where the phase transition takes place. This model can support a first order phase
transition that could successfully explain phenomena such as: baryogenesis [137,
156, 157, 158, 159], dark matter [160, 161, 162, 163] and act as a possible source of
gravitational waves [164, 165, 166, 167, 168].

We would like to consider the SM Higgs h together with the singlet scalar singlet
field s. For simplicity, we assume an additional Z2 symmetry and define the tree-level
renormalizable potential

Vtree(h, s) = −1

2
µ2
hh

2 +
1

2
µ2
ss

2 +
1

4
λhh

4 +
1

4
λss

4 +
1

4
λ s2h2. (4.4)

One-loop thermal corrections to the potential above can be computed using the
equations presented in the appendix §B.1. For excellent references, see [169, 170], a
review [171] or textbook [172]. The exact thermal one-loop functions JB/F in (B.3)
were implemented efficiently in C++ [173] and can be employed in Mathematica with
the provided interface. However, we remain in the high-T limit and use the closed
form given in Eqs. (B.4) and (B.5). These are valid up to O(T 4), while neglecting
the contributions of the quartic coupling of the potential for simplicity.

As shown in [174], the thermal one-loop corrections to the potential in (4.4) at
high-T are given by

V (h, s, T ) =
1

2

(
chh

2 + css
2
)
T 2, (4.5)

ch =
2M2

W +M2
Z +m2

h + 2m2
t

4v2
+
λ

4!
, cs =

2λ+ 3λs
12

. (4.6)
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Here we considered the W,Z gauge bosons and the top quark contributions to the
effective potential and neglected the other light fermions.

Following [88, 174], the tree level potential (4.4) can be redefined as a function of
the critical temperature and couplings of the singlet fields {TC , λs, λ} respectively.
Taking into account the constrains that lead to a first order phase transition and
requiring that the deeper minimum becomes our Higgs vacuum as T is lowered, the
effective quadratic couplings turn into:

µ2
h(T ) = λhv

2
h(T ), µ2

s(T ) = −λsv2s(T ), λh =
m2
h

2v2
. (4.7)

The corresponding vacuum expectation values (vevs) are then

v2h(T ) = v2
(
1− 2ch

m2
h

T 2

)
, v2s(T ) =

1

λs

((mh

2v
v2h(T )

√
2λs + csT

2
C

)
− csT

2
)
, (4.8)

where v is the SM vev at zero temperature and the minima of the potential are
{vh(T ), 0} and {0, vs(T )}.

With the thermal and quantum corrections in place, we can show how the nu-
cleation temperature TN can be computed with FindBounce. The TN is defined as
the temperature when the probability for a single bubble to be nucleated within
one horizon volume is ∼ 1 [175]. Assuming radiation domination and the SM de-
grees of freedom in the thermal plasma, the above requirement roughly translates
to B = S3/TN ≈ 140.

Let us consider the benchmark in [88, 89] and use FindBounce to determine the
variation of B with temperature.

In[1]:= V[h_, s_, T_] := -uh2[T]/2*h^2+us2[T]/2*s^2+lh/4 h^4+
ls/4*s^4+l/4*s^2 h^2;

ch = (2 mW^2 + mZ^2 + mh^2 + 2 mt^2)/(4v^2) + l/24;
cs = (2 l + 3 ls)/12;
uh2[T_] := mh^2/(2v^2) vh2[T];
us2[T_] := -ls*vs2[T];
vh2[T_] := v^2(1 - 2 ch/mh^2 T^2);
vs2[T_] := ((mh/(2 v)*vh2[TC]*Sqrt[2 ls]+cs*TC^2)-cs*T^2)/ls;

In[2]:= {mW, mZ, mh, v, mt}={80.4, 91.2, 125.1, 246.2, 173.2};(*GeV*)
{TC, l, ls, lh}={110(*GeV*), 1.5, 0.65, mh^2/(2 v^2)};

In[3]:= (*S3/T at finite temperature*)
BT[T_?NumericQ,fp_] := 1/T*FindBounce[

V[h, s, T], {h, s},{{Sqrt@vh2[T], 0},{0,Sqrt@vs2[T]}},
"Dimension" -> 3, "FieldPoints"-> fp ]["Action"];

In[4]:= LogPlot[{BT[T,10],BT[T,31], 140}, {T, 70, 100},
AxesLabel ->{"T(GeV)", "S3/T"},PerformanceGoal ->"Speed"]
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Out[4]=

75 80 85 90 95 100
T(GeV)
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S3/T

B10 B31 (default) S3/TN≃140

In[5]:= Round[T /.FindRoot[BT[T,10] == 140,{T,100}]]

Out[5]= 81

The nucleation temperature we get is approximately 81GeV, where B10(B31) is the
normalized action, obtained with with 10(31) field points.

Clearly, one can improve the precision by increasing the number of field points
"FieldPoints" and action tolerance with "ActionTolerance". However, it should
be kept in mind that one should also consistently consider quantum corrections,
daisy resummation terms, the pre-factor A and contributions from lighter fermions,
among others. Taking the above leading contributions only, FindBounce with only
a few field points (10) already gives a reasonably accurate estimate, while being
computationally inexpensive.

4.4.7 Beyond two fields

We devote this section to the estimates of the computational time of FindBounce
with an arbitrary number of fields. We start with a simple example and show the
Mathematica code to obtain the minima and compute the bounce configurations.
Our main result is that the time requirement increases linearly with respect to
the number of fields and that the calculation with 10 fields takes ∼ 1 second. We
compare the results to other available packages in the literature and test FindBounce
with up to 20 fields.

From [88], we consider the multi-field potential as a function of the number of
fields,

V (φ) =

(
nφ∑
i=1

ci (φi − 1)2 − cnφ+1

)
nφ∑
i=1

φ2
i , (4.9)

where ci take values between 0 to 1. The position of the minima is a point in field
space with components close to 0 and 1. Given the number of fields nφ = 6 and a
constant set of random parameters ci, the code to compute the bounce is:

In[1]:= nf = 6;
SeedRandom[1];
c = RandomReal[1, nf + 1];
phi = Table[Symbol["phi" <> ToString[i]], {i, nf}];

In[2]:= V[phi_] := (Sum[c[[i]](phi[[i]]-1)^2,{i,nf}]-c[[-1]])
Sum[phi[[i]]^2,{i,nf}];
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In[3]:= extrema = Table[FindRoot[D[V[phi] == 0, {phi}],
Transpose@{phi, ConstantArray[phi0, nf]}], {phi0,0,1}];

In[4]:= {minima, d2V}={phi/.extrema,D[V[phi],{phi},{phi}]/.extrema};
ei=Table[DeleteDuplicates@Sign[Eigenvalues@d2V[[i]]],{i,2}];
typeV=Table[If[Length@ei[[i]] > 1,

"Saddle",If[ei[[i, 1]] > 0,"Minimum","Maximum"]],{i,2}]

Out[4]= {Minimum,Minimum}

In[5]:= bf = FindBounce[V[phi], phi, minima]

Out[5]=

In[6]:= BouncePlot[ bf,
PlotLegends->LineLegend[Automatic,LegendLabel->"Fields"]]

Out[6]=
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Since ci were chosen at random, FindRoot might not find the minimum of the
potential but a saddle point instead. In such case FindBounce returns $Failed. For
more general potentials, the extrema can be computed with Vevacious [176], which
is a tool that finds all the tree-level extrema of a generic one-loop effective potential.

With the multi-field potential defined in (4.9), we are ready to compute the ac-
tion, estimate the computation time and compare to the existing tools. We vary the
number of fields from the single field case going up to twenty fields. The results are
collected in table 4.1 and on the left of fig. 4.7, together with results obtained by
other methods. The parameters for nφ ≤ 8 were taken from [88], while for nφ > 8
they were chosen randomly, as listed in the appendix §B.2. The comparison in-
cludes the FindBounce with 10, 30 and 100 field points, CosmoTransition(CT) [82],
AnyBubble(AB) [86], BubbleProfile(BP) [88] and SimpleBounce(SB) [177].

We find that the action computed with N ≲ 20 field points is accurate up
to roughly 1%, as shown on the left panel of fig. 4.7. Similarly, bounces with
"FieldPoints"-> 10, 30 in table 4.1 are accurate to 1% level or below. table 4.1
also shows how the accuracy of the action improves with the number of field points.
In particular, the N = 100 case reproduces the values of the action obtained by other
methods. Therefore, it is clear that one can use FindBounce with any type of po-
tential to get the arbitrarily precise bounce action by adjusting the "FieldPoints"
and "ActionTolerance" settings.

Note that the parameters ci that regulate the multi-field potential for nφ ≤ 8
were chosen in a way that the bounce solution belongs to the thick wall regime.
This is well suited for numerical shooting methods and typically gives the action of
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4.4. Examples

Action

nφ FB10 FB30 FB100 CT AB BP SB

1 52.1 52.6 52.4 52.6 52.4 54.1 52.4

2 20.8 20.8 20.8 21.1 20.8 20.8 20.8

3 20.8 20.7 20.7 22.0 22.0 22.0 22.0

4 57.9 56.2 55.8 55.9 56.4 55.9 55.8

5 16.3 16.3 16.3 16.3 16.3 16.3 16.4

6 24.6 24.5 24.5 24.5 24.5 24.4 24.5

7 36.9 36.7 36.7 36.7 36.6 36.7 36.7

8 46.4 46.1 46.0 46.1 46.0 46.0 46.0

Table 4.1: Comparison of the bounce action obtained by different methods in the
literature for various number of fields nφ. It includes FindBounce with 10, 30 and 100
field points and CosmoTransition, AnyBubble, BubbleProfile and SimpleBounce.
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Figure 4.7: Left: The multi-field bounce action Ss average, normalized to the one
with N = 400 field points. Right: Multi-field time measure with respect to number
of fields for several field points. The solid lines were obtained by FindBounce with
"ActionTolerance" → 10−4. The dashed lines with dots are the time measure-
ments from other existing tools, see text for details.

O(10), as seen in table 4.1. For larger number of fields nφ > 8, the parameters were
chosen at random, see table B.1 and the resulting action in table B.2 contains both
small and large values, in particular nφ = 15, 19 that belong to the thin wall regime.
Clearly, FindBounce can deal with both cases quite efficiently.

Let us turn to the timing performance of FindBounce. As explained in the PB
method chapter §3, we expect this increase to be linear. Indeed, as shown on the
right panel of fig. 4.7 in solid lines, the time consumption of FindBounce scales
linearly with the number of fields nφ. This behavior is independent of the number
of field points, i.e. for different colors of the solid lines in fig. 4.7 and covers both
thin and thick wall cases. Moreover, the time demand of FindBounce with respect
to the number of field points also scales linearly in the multi-field scenarios.

The running time clearly depends on the CPU capabilities and the optimization
efficiency of the implementation in a given computer language. In our setup, the
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computation time of FindBounce for 10(20) fields turns out to be less than 1(2) sec-
onds for the default value with 31 field points. This was computed on a desktop sys-
tem using the Mathematica native functions AboluteTiming and RepeatedTiming
running on a desktop iMac 10.12.6, equipped with an Intel Core i7, processor speed
3.4 GHz and 16 GB of DDR3 RAM clocked at 1.6 GHz.

For the other implementations, the timing reports were adopted from [88] and [177].
We find FindBounce to be comparable to these tools in terms of speed perfor-
mance, as shown on the right side of fig. 4.7. In particular, the time demand with
N = 10 field points is comparable to the values quoted by SimpleBounce and
CosmoTransition. It should be noted though that the above tools are implemented
in C++ and Python, while FindBounce was coded straightforwardly in Mathematica,
with no significant numerical optimization.

4.5 Conclusions and outlook
The FindBounce package presented in this work performs the task of calculating the
semi-classical contribution to the false vacuum decay rate, the so-called bounce field
configuration and the associated Euclidean action. We demonstrated the basic use
of the FindBounce function implemented in Mathematica, as well as the extended
options and manipulation of the output. The current version of the package can
deal efficiently with single and multi-field calculations, ranging up to 20 fields in a
matter of seconds.

There are a number of physically relevant directions one can pursue, that may
be implemented in the future versions of the FindBounce framework. An obvious
question relates to the growth of the bubble after nucleation, which is governed by
the bounce equations in Minkowski space-time [68]. An initial step in this direction
was done in [121] and may be generalized straightforwardly to more segments and
fields. Moreover, matching such solutions to subsequent tunneling may be needed
when potentials with multiple minima are considered.

The semi-analytical approach to computing the bounce field configuration and
the action at finite temperature is relevant for characterizing the strength of the
potential phase transitions. In particular, we saw how one can determine the nu-
cleation temperature TN , that happens below the critical temperature, using the
output from the FindBounce result. Similarly, one can get an analytical insight in
the gravitational wave spectra by computing the α and β parameters [63], which are
related to the strength and the position of the maximum in the frequency range. We
intend to return to these issues in future instalments of the FindBounce approach.
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Chapter 5

The decay rate at one loop: An exact
solution

5.1 Introduction

Up to now, we have focused our attention on the leading semi-classical approxima-
tion that dominates the decay rate of a false vacuum. To get the complete physical
picture and proper dimensions of the decay rate one must also get the pre-factor
A of the exponent in (2.1), as discussed in chapter §1. Its computation and the
renormalization of its ultraviolet divergences are well understood [69, 92, 93], but
are in general difficult to obtain as it is related to functional determinants. They
are related to the operator that describes quantum fluctuations around a non-trivial
background, the bounce.

Since A does not have a dramatic exponential dependence unlike the bounce
action e−S0 , it is often estimated on dimensional grounds. However, we should be
concerned about how this may affect our results and be able to obtain it rigorously.
In general, precise and consistent calculations of the pre-factor are needed in several
contexts of physics, from the SM [9, 10] to the nucleation temperature in the early
universe [94], i.e. when loop corrections are required. The prefactor was computed
numerically at zero [98, 99, 178] and finite temperatures [97, 103], where recent
progress was made in numerical calculations for gauge theories [179]. An analytic
estimate in the TW limit was found in [102] (see also [97, 103, 104, 180, 181]), while
the issues with gauge and scale invariance of the unstable quartic in the SM were
worked out recently [6, 9, 182, 183] and the Fubini-Lipatov was studied in [105].

In this chapter we briefly describe the general well-known formalism that deals
with those quantum fluctuations around the bounce and provide a method that
computes A for any continuous and smooth potential that admits a bounce solution.
Then we present our contribution [184], which consists of extending and re-deriving
the above procedure to include potentials that might have a discontinuous first
derivative. As a result, we provide a new exact false vacuum decay rate at one
loop for a real and complex scalar field in D = 4, which is scarce in the literature.
To my knowledge, we will present the first complete exact solution of the sub-
leading quantum fluctuations for a potential with two separate tree-level minima.
In particular, we find a simple formula for the prefactor of the bi-quartic potential
described in §2.5.2, which depends only on the ratios of vevs and quartic couplings
between the false and true vacuum.
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This setup can be considered as a benchmark for understanding the impact of
finite one loop corrections and serve for models that feature a large separation of
scales. In particular, one can easily derive the behavior in the thin and thick wall
limit and thus provide generic expectations for the class of potentials which are
approximately scale-invariant around the two minima.

The order of the upcoming sections is the following. We start with the well-
known formalism of the prefactor in chapter §5.2 and show how it can be evaluated
for any given smooth potential [100, 101]. Then we focus on the bi-quartic poten-
tial, where we derive the exact expressions for the product of eigenvalues, removal
of zeroes, and the finite sum in section §5.3. In section §5.4.1, we re-derive and
extend the method presented in §5.2 to take into account potentials whose second
derivative is discontinuous. There, we explain the use of the zeta function formal-
ism via the contour integral to get both, the finite and the renormalized prefactor.
The final exact result is summarized in §5.5, from where we derive simple expan-
sions in the thin and thick wall limits and determine their validity. The outlook for
further developments is discussed in §5.6 and technical details are left to the ap-
pendices §C.3 and §C.4. Appendix §C.1 contains a simple example to illustrate the
powerful Gel’fand Yanglom formalism, which computes the function determinants
without having to calculate the eigenvalues. Then, in appendix §C.2 I describe how
the previous PB method can be used to obtain the pre-factor semi-analytically for
any renormalizable potential.

5.2 Loop corrections

Before solving the bi-quartic potential, let us briefly present the complete expression
of the prefactor and show how to compute it.

5.2.1 The prefactor

The pre-factor corresponds to the sub-leading contributions of the decay rate, related
to one-loop field theory calculations. It was first derived in [69] (see also [185]) and
explained in more detail in Coleman’s lectures [30, 186] and classic textbooks [92, 93].
They start with the assumption that amplitude of transition of the FV state is
proportional to the Feynman’s path integral in Euclidean space-time,

⟨φFV
⏐⏐e−TH/ℏ⏐⏐φFV ⟩ ∼ ∫ Dφ e−S[φ]/ℏ (5.1)

where H is the full Hamiltonian and T is the amount of Euclidean time taken
by the transition. In chapter §2 we considered heuristic arguments from quantum
mechanics to justify this assumption. However, a more rigorous derivation via path
integration in Minkowski space has been provided recently in [72, 75], where they
carefully extract the imaginary contribution that leads to the same decay rate. Here
we accept this fact and continue with the evaluation of the path integral as it turns
out proportional to the decay rate.

The integral above can be approximated by the saddle point method in the limit
when ℏ is small. For this purpose, the Euclidean action S[φ] is functionally expanded
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5.2. Loop corrections

around the bounce φ = φ+ ψ up to second order,

S[φ] ≃ S[φ] + δS
δφ

[φ]ψ +
1

2
ψ
δ2S
δφ2

[φ]ψ + . . . , O ≡ δ2S
δφ2

[φ] , (5.2)

where the first term corresponds to the bounce action S0 = S[φ]. The first derivative
is zero because the bounce field configuration extremizes the action, i.e. δS/δφ[φ] =
0. The second derivative of the action, evaluated on the bounce, is defined as the
fluctuation operator O.

Expanding ψ in a set of eigenfunctions ψn of the fluctuation operator Oψn =
γnψn, we can perform the Gaussian integral in (5.7) and end up with the ratio
of functional determinants [69]. That is, with a convenient normalization of the
fluctuations, such that

⟨ψn|ψm⟩ =
∫

d4xψnψm = 2πδnm , (5.3)

we find ∫
Dψ e−S0− 1

2
ψOψ = e−S0

∏
n

∫ ∞

−∞
dcn e−

1
2
γn c2n2π = e−S0

∏
n

√
1

γn
, (5.4)

where we have defined the path integral measure as Dψ =
∏

n dcn. Thus the pref-
actor is proportional to an infinite product of eigenvalues A ∼

∏
n γ

−1/2
n of the

fluctuation operator δ2S[φ̄]/δφ2.
In section §2.4, we proved that δ2S[φ̄]/δφ2 < 0 in (2.30), which implies that the

resulting spectrum contains at least an odd number of negatives modes. In fact,
there is at most a single negative eigenvalue as demonstrated in [187], describes the
unstable direction of the expanding bubble. Any symmetry of the bounce, such as
translational, scale or internal global invariance, will be reflected in the number of
zero eigenvalues [188, 189]. For instance, the translation modes are proportional to
∂µφ̄, which implies

Oψ̄ ∼ S ′′[φ̄]∂µφ̄ = ∂µ (S ′[φ̄]) = 0, (5.5)

confirming that ∂µφ̄ are the four zero modes. This means that S0 has no explicit
position dependence, which justifies the space-time volume factor V on the left hand
side of (5.7), as also commented in section 2.2. The normalization of these modes
are obtained by comparing eq. (5.3) with:

⟨∂µφ̄|∂νφ̄⟩ =
1

2
δµν

∫
d4x

1

2
(∂σφ̄) (∂σφ̄) = δµνS0 , (5.6)

where we have used the identity (2.29) in the last step to get the action. The rescaled
zero modes are then

√
2π/S0 ∂µφ̄.

To obtain the final expression, we must remove the translational modes by inte-
grating over the collective coordinates [9, 190, 191, 192, 193], which provide a factor
of
√

S0/2π for each space-time dimension. We end up with the decay rate at one
loop written in the form

Γ

V
=

Im
∫
Dφ e−S[φ]∫

Dφ e−S[φFV]
=

(
S0

2π

)2

Im

√
detOFV

det’O
e−S0 (1 +O (ℏ)) . (5.7)
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The prime in det’ indicates that zero eigenmodes were removed, where each gives a
dimension of mass squared that together gives the correct dimension of the decay
rate. The numerator is the FV normalization, while the denominator is the integral
around the bounce field configuration, with an imaginary component from the square
root of the negative mode.

5.2.2 Evaluation of the prefactor

To compute the prefactor, we would like to find the product of eigenvalues γn,
associated with the operator O as

O = −□+ V ′′ (φ) , Oψn = γnψn , (5.8)

where □ is the Laplace operator in flat 4D Euclidean space-time, and V ′′(ρ) is the
second derivative of the potential evaluated at the bounce. Here, n is a collec-
tive index for the relevant quantum numbers that come about when the boundary
conditions ψn(0) = ψn(∞) = 0 are imposed.

As the V ′′(φ(ρ)) is 4D symmetric, we can separate the radial and orbital part
of ψn, where the latter is described by hyper-spherical harmonics. These are eigen-
functions of the total orbital momentum operator with orbital quantum numbers
l = 0, . . . ,∞, which are (l + 1)2-fold degenerate [110].

It turns out that it is simpler to rely on the Gel’fand-Yaglom [194] theorem,
which relates the ratio of determinants to the value of the ratio of eigenfunctions
evaluated at ρ→ ∞. That is, we have to find the zero eigenmodes of the fluctuation
operator

Olψl = −ψ̈l −
3

ρ
ψ̇l +

l(l + 2)

ρ2
ψl + V ′′ (φ)ψl = 0 , (5.9)

which provide the log of the ratio of determinants

ln

(
detO

detOFV

)
=

∞∑
l=0

(l + 1)2 lnRl (∞) , Rl ≡
ψl
ψFV
l

. (5.10)

The boundary conditions (above for ψ) can be recast as Rl(0) = 1 and R′
l(0) = 0.

To understand this concept more clearly, I have devoted appendix §C.1 to provide a
simple example of the use of this theorem via a potential well in D = 1 space-time
dimension.

The differential equation (5.9) is simple and can be easily integrated numerically
for any angular mode l. However, we clearly cannot compute all of them numerically
as they extend to infinity and we need them all to perform the renormalization of
the ultraviolet divergences. A feasible approach to solve this issue has been provided
by [99, 100], providing a simple semi-analytic method to compute the prefactor of
any differentiable potential.

Before extending their approach into more general potentials, let us first sum-
marize their results. The idea is that the calculation of the pre-factor splits into
two parts: the low l region up to an arbitrary l ≤ L ≃ O(10) and the high l region,
going to infinity.
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In the low l part the ratio of determinants Rl is computed by solving the dif-
ferential equation for Rl, eq. (5.9). The contribution to the decay rate is finite and
proportional to the sum of the log of all the ratios of determinants:

lnΣlo = −1

2

L∑
l=0

(l + 1)2 ln |Rl(∞)| . (5.11)

On the other hand, when l > L ≫ 1, one can solve for the Rl in a closed-form
via the WKB approximation [99, 100, 178], which is regularized with the proper
counter-terms. This high-l part of the rate is

lnΣhi =
(L+ 1)(L+ 2)

8

∫ ∞

0

dρ ρV̄ ′′ − lnL

16

∫ ∞

0

dρ ρ3
(
V̄ ′′2 − V ′′2

FV

)
+

1

16

∫ ∞

0

dρ ρ3
(
V̄ ′′2 − V ′′2

FV

) (
1 + ln

ρ

2

)
,

(5.12)

where V̄ ′′ = V ′′ − V ′′
FV . These integrals are straightforward to compute semi-

analytically and the total prefactor contribution is the sum of the low and high
l pieces.

In general, Rl cannot be computed in a closed-form, but only for particular V̄ ′′.
In appendix §C.2, we provide an explicit example, where we exploit the semi-analytic
properties of our PB method to compute the prefactor in a fast and efficient way
for any single field potential that admits bounce solution.

In the next chapters, we present a simple model that provides a closed-form of
Rl, the bi-quartic potential, described in §2.5.2. In order to complete the prefactor
calculation of this model, we must extend eq. (5.12) to include sharp potentials as
the bi-quartic potential, where V ′′ ⊃ δ (φ). This is realized in chapter §5.4.2 in a
self-contained way, whose results will converge to the equation (5.12) in the limit
when the potential is smooth.

5.3 Functional determinants

In this section, we compute the functional determinant of the bi-quartic potential,
which surprisingly admits a complete closed-form solution.

5.3.1 Radial mode separation and exact product of eigenval-
ues

The fluctuation potential follows from (2.40)

V ′′(φ) = 3
(
λ1 (φ+ v1)

2H(−φ) + λ2 (φ− v2)
2H(φ)

)
−
(
λ1v

3
1 + λ2v

3
2

)
δ(φ) , (5.13)

and contains a delta function due to the discontinuity of V ′ at the origin. Let us see
how the fluctuations behave. In the FV, we have V ′′

FV = 0 and the solution of (5.9)
is ψFV

l = ρl. We dropped the part that diverges at ρ = 0 and assigned the arbitrary
multiplication constant to 1. The general solution of (5.9), when the fluctuation
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potential is evaluated around the bounce, is instead given by

ψls = Als
ρlR4

s

(R2
s − ρ2)2

(
1− 2

(
l − 1

l + 2

)
ρ2

R2
s

+
l(l − 1)

(l + 2)(l + 3)

ρ4

R4
s

)
+Bls

Rl+4
s

(R2
s − ρ2)2

Rl+2
s

ρl+2

(
1− 2

(
l + 3

l

)
ρ2

R2
s

+
(l + 2)(l + 3)

l(l − 1)

ρ4

R4
s

)
.

(5.14)

where s = 1, 2 denotes the two segments of the bi-quartic potential.
On the first segment with s = 1, regularity of ψls at ρ = 0 requires Bl1 = 0,

and we choose the normalization Al1 = 1, such that we normalize to the FV at
ρ = 0. This part reduces to the unstable single potential in the SM [6, 9], where we
can easily read off the ratio Rl(∞) = limρ→∞ ψl1/ρ

l from the only term remaining
in (5.14) at high ρ

λφ4 : Rl(∞) =
ψl1 (∞)

ψFV
l (∞)

=
l(l − 1)

(l + 2)(l + 3)
. (5.15)

On general grounds [187], we expect the l = 0 mode to be negative, corresponding
to the expanding bubble. On the other hand, the four l = 1 eigenvalues should vanish
because of the translational invariance of the center of the bubble (or the bounce
solution, which depends only on ρ). The Rl(∞) in (5.15) indeed contains a zero
mode at l = 1, but also has an additional zero at l = 0, due to the classical scale
invariance [6, 9].

Let us move on to the second segment and glue the two solutions. Since the
fluctuation potential contains a delta, the first derivative of ψl changes discontinu-
ously1. Therefore, the appropriate boundary conditions to join ψl1,l2 at ρ = RT are
given by

ψl1 = ψl2 , ψ̇l1 = ψ̇l2 + µV ψl1 , µV =
λ1v

3
1 + λ2v

3
2

φ̇(RT )
. (5.16)

These fix the remaining parameters A2l, B2l that ultimately determine the behavior
of Rl as ρ→ ∞. We arrived to our main result for the fluctuation determinant

Rl(∞) = Al2
l(l − 1)

(l + 2)(l + 3)
=

(l − 1)(l3 + c2l
2 + c1l + c0)

(l + 1)(l + 2)2(l + 3)
, (5.17)

with the three coefficients ci that depend only on dimensionless ratios x and y:

c0 =
12(1 + x)2x4y(1 + x3y)2

(x4y − 1)3
, (5.18)

c1 =
2x (1 + (1 + 2x)x2y) (2 + 3x+ (3 + 4x)x3y)

(x4y − 1)2
, (5.19)

c2 =
1 + 4x+ (4 + 7x)x3y

x4y − 1
. (5.20)

All ci are real and positive because x4y > 1, which follows from the construction of
the potential. Similarly to the radii R1,2,T , the ci diverge in the TW limit.

1Integrating (5.9) around RT , we have
∫ RT+ϵ

RT−ϵ
dρOlψl = 0

ϵ→0−−−→ ψ̇l(RT + ϵ) − ψ̇l(RT − ϵ) =

−
(
λ1v

3
1 + λ2v

3
2

) ∫ RT+ϵ

RT−ϵ
dρδ (φ̄ (ρ))ψl.
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The zero eigenvalue of the scale invariant single quartic in (5.15) at l = 0 is now
gone, it got absorbed by the Al2 ∝ l in (5.17). This happens because the bi-quartic
contains mass scales v1,2 that break scale invariance and the l = 0 mode in (5.17)
becomes negative

R0(∞) = − c0
12

< 0 , (5.21)

as required from the instability of the bounce solution.
It follows from (5.17) that Rl(∞)

l≫1−−→ 1 and the sum over l in (5.10) diverges
quadratically in the UV – after all, we are computing a one loop quantity with a
tree level counterterm. In §5.4.2 we will regularize the sum by subtracting the terms
divergent in l and calculate the finite part. Before that, let us deal with the removal
of the translational zero eigenvalues of the l = 1 modes.

5.3.2 Removing the zero modes

As discussed in §5.2, the pre-factor involves the reduced determinant, where the
four translational zero eigenvalues are subtracted. The reduced contribution from
the l = 1 modes is defined as

Olψl = γnψl =⇒ R′
1(∞) =

∏∞
n=2 γn∏∞
n=1 γ

FV
n

. (5.22)

This is a straightforward procedure when γn are known for the principal quantum
numbers n. However, with the Gel’fand-Yaglom approach, the eigenvalues are re-
grouped in terms of orbital l modes. Thus the zero from translations has to be
removed carefully, because it multiplies all the other eigenvalues with l = 1.

This can be done perturbatively [9, 182, 183, 193] by off-setting the fluctuation
potential with a small dimensionful parameter µ2

ε and finding the corresponding
eigenfunctions of (

O1 + µ2
ε

)
ψε1 = 0 . (5.23)

Instead of approaching zero, the ratio of determinants is then given by

Rε
1(∞) =

ψε1(∞)

ψFV1(∞)
≃ (µ2

ε + γ1)
∏∞

n=2 γn∏∞
n=1 γ

FV
n

= µ2
εR′

1(∞) , (5.24)

because the µ2
ε shift does not affect γn>1 and γFV

n . In other words, we need to
compute

R′
1(∞) = lim

µ2ε→0

1

µ2
ε

Rε
1(∞) . (5.25)

The eigenfunctions ψε1 are infinitesimally close to ψ1 and we can perform a pertur-
bative expansion ψε1 ≃ ψ1 + µ2

ε δψ1, which enters in (5.23) such that(
O1 + µ2

ε

) (
ψ1 + µ2

εδψ1

)
≃ O1ψ1 + µ2

ε (ψ1 +O1δψ1) = 0 . (5.26)

The general solution ψls in (5.14) is singular for l = 1, so we re-derive it

ψ1s =
R4
sρ

(R2
s − ρ2)2

(
A1s +B1s

(
ρ4

R4
s

− 8
ρ2

R2
s

+ 24 log ρ+ 8
R2
s

ρ2
− R4

s

ρ4

))
. (5.27)
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Chapter 5. The decay rate at one loop: An exact solution

On the first segment with s = 1, the ψ11 needs to be regular at ρ = 0 and normalized
to the FV, therefore A11 = 1 and B11 = 0. Matching to the second segment
at RT gives A12 = x6y2 and B12 = 0. The value at infinity is then given by
ψ12(∞) ∝ B12 = 0, as it should be since we are looking at the zero eigenvalue and
R1(∞) ∝ ψ12(∞) = 0.

Now that we have the l = 1 fluctuation, let us move on to perturbations δψ1s,
given by the non-homogeneous equation Oδψ1 = −ψ1 that comes from (5.26) and
get

δψ1s =
3R6

sρ

4 (R2
s − ρ2)2

(
δA1s +

δB1s

18

(
ρ4

R4
s

− 8
ρ2

R2
s

+ 24 log ρ+ 8
R2
s

ρ2
− R4

s

ρ4

)
−

A1s

18

(
6
ρ2

R2
s

− 18− 24 log ρ− R2
s

ρ2
+
R4
s

ρ4

))
.

(5.28)

The boundary conditions δψ11(0) = ˙δψ11(0) = 0 fix δA11 = δB11 = −1 on the first
segment2 and the same matching conditions required for ψl in (5.16), apply to δψl.
These determine the remaining δA12 and δB12 = 3λ/(8π2)S0x

6y2.
In fact, it is δB12 that gives the reduced determinant after plugging the expansion

in (5.25)

R′
1(∞) = lim

µ2ε→0

1

µ2
ε

ψ1 + µ2
εδψ1

ψFV1

⏐⏐⏐
ρ=∞

=
δψ1

ψFV1

⏐⏐⏐
ρ=∞

=
R2

2

24
δB12 =

R2
2

24

(
3λ

8π2

)
S0x

6y2 ,

(5.29)
where we used the fact that ψ1(∞) = 0 and R2 was calculated in (2.41). Note that
the R′

1 is proportional to S0, which cancels with the prefactor in (5.7). The reduced
determinant has the correct dimension of mass−2, set by the dimensional R2, which
is proportional to 1/v, the energy scale of the model. The dimensionless δB12 serves
as the numerical pre-factor that diverges in the TW limit and gives an additional
suppression to the rate. With the l = 1 zero removed, we can proceed to the finite
part.

5.3.3 Finite sum

With Rl in (5.10) at hand, the finite part can be computed in some generality. Let
us consider a generic form of Rl, given by a ratio of polynomials of order n

Rl(∞) =
n∏
i=1

l + 1− ai
l + 1− bi

, (5.30)

which covers the results in (5.15) and (5.17). The number of roots and poles must
be the same, a consequence of the normalization to the FV in (5.10). To get the
finite part of (5.10), we first find the asymptotic behavior of Rl by expanding the
log of the determinant for large l. The degeneracy factor goes as l2, therefore the
lnRl has to be expanded up to 1/l3 to account for the quadratic, linear and log
divergencies.

2The single quartic case limρ→∞ δψ11/ρ = −R2/24 becomes consistent with the SM [6, 9] after
flipping the sign of V ′′, because we assumed λ > 0.
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5.4. Zeta function regularization

It turns out that the asymptotics of the zeta function, used for renormalization,
will be given in powers of ν = l + 1, therefore it is convenient to define Ra

l by
expanding (5.10) in 1/ν up to O (ν−3). This is subtracted from (5.10) and we get

Σf =
∞∑
ν=1

ν2 (lnRl(∞)− lnRa
l (∞)) , (5.31)

which is convergent and can be computed3 in a closed form

Σf =
n∑
i=1

(
a3i
3
γE − ai

12

(
1 + 3ai − 6a2i

)
− ζ ′R (−2, 3− ai)− 2aiζ

′
R (−1, 3− ai)

− a2i ζ
′
R (0, 3− ai)− (a→ b)

)
+ lnR0(∞) + 4 lnR′

1(∞) .

(5.32)

Here, ζ ′R (s, a) is the derivative over s of the generalized Riemann zeta function and
γE is the Euler’s constant. Finally, the three roots ai of the polynomial in (5.17) are

ai = 1−
(
c2 + χi

(
c22 − 3c1

)
/θ + χ∗

i θ
)
/3 , (5.33)

with θ3 = 9/2
(
c1c2 − 3c0 − 2/9c32 +

√
(27c20 + 4c31 − 18c0c1c2 − c21c

2
2 + 4c0c32)/3

)
and

χ = {−1, (1± i
√
3)/2}, while ci are given in (5.18)-(5.20). This completes the finite

part of the decay rate. Next, we are going to recover the asymptotic terms Ra
l that

were subtracted in (5.31) using the zeta function regularization.

5.4 Zeta function regularization

The decay rate in (5.7) is a physical quantity that depends on the parameters of
the potential V (φ) in S[φ]. These need to be renormalized to make connections
between measurements, such as decay rates and scattering cross-sections, observed
at the minimum of the potential. Most commonly, the renormalization is done per-
turbatively via Feynman diagrams and dimensional regularization. It introduces
an arbitrary renormalization scale µ to keep the mass dimensions for any D and
ascribes 1/(4 − D) poles to divergent parts of the momentum integrals. Within a
chosen subtraction scheme, such as MS, on-shell or other, the renormalized param-
eters (or counter-terms) will remove infinities in physical quantities.

The above holds for the FV decay rate in (5.7) as well [186]. One can compute
the UV part of the determinant with Feynman diagrams [9, 98, 99, 182, 183, 195]
for scalars, fermions and gauge bosons. The counter-terms used for other processes,
will also make the effective action and therefore the rate, finite. For the effective
action that describes the UV part of the FV decay rate to be consistent with the
finite sum over the eigenvalues, the asymptotic parts are computed by expanding in
terms of insertions of V ′′(ρ). In the SM this is equivalent to insertions of the quartic
and gauge couplings, which defines the power counting.

3Technically, we do the sum over Rl(∞) from ν = 3 up to a large finite regulator to skip the
l = 0, 1 modes, which are then added by hand. The sum over Ra

l (∞) starts from ν = 1 as in the
renormalization procedure. After the summation, the regulator disappears and can be taken to
infinity.
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Chapter 5. The decay rate at one loop: An exact solution

Alternatively, the UV part of the determinant can be defined by use of the zeta
function [196, 197], see [198] for a review4. The zeta function formalism was applied
to FV decay in the early works [102] and more recently in [100]. We will review its
introduction via the contour integral [199, 200, 202, 203] in the following section.
Similarly to dimensional regularization, the renormalization scale is introduced for
dimensional reasons to define the zeta function for any value of its argument. As
with Feynman diagrams, the UV part is computed perturbatively in powers of V ′′.
However, contrary to the diagrammatic approach, the UV part is an expansion
in powers of l and therefore serves as a convenient UV regulator. Finally, the
renormalization is performed by an analytic continuation of the zeta function and
follows from the analyticity of the Riemann zeta function. We will see that the final
result for the single quartic rate via Feynman diagrams agrees with the zeta function
approach.

5.4.1 Zeta function via contour integral

Let us begin by redefining the sum over the eigenvalues of O in terms of the zeta
function

ln detO =
∑
n

ln γn =− d
ds

∑
n

(
µ2

γn

)s ⏐⏐⏐⏐
s=0

= − d
ds
(
µ2s ζO(s)

) ⏐⏐⏐⏐
s=0

, (5.34)

where n stands for all the quantum numbers and µ is the renormalization scale,
which keeps the sum over eigenvalues dimensionless for all values of s. As found
in [100], it will correspond to the same scale arising from dimensional regularization
in the MS scheme [98]. The zeta function, associated to the ratio of determinants,
is then given by the difference

ζ = µ2s (ζO − ζOFV) and ln

(
detO

detOFV

)
= − d

ds
ζ(s)|s=0 . (5.35)

The sum over eigenvalues in (5.34) converges if Re(s) > D/2 [204]. However, to
analytically continue ζ to the region of interest s = 0, we have to regularize the
integral.

To obtain the analytical structure of ζ in the range Re(s) ≤ 2, we conveniently
recast the sum in (5.34) as a contour integral. For this purpose, let us consider
Oψ(ρ, γ) = γψ(ρ, γ), where γ is a continuous complex parameter. The ψ(γ) is a
generalization of ψn in the sense that when the boundary conditions in (5.8) are
imposed, γ becomes quantized and ψn is recovered with γ → γn. Now, the zeta
function can be defined as a contour integral

ζO =
∑
n

1

γsn
=

1

2πi

∮
dγ
γs

d
dγ

lnψ(∞, γ) . (5.36)

The sum over eigenvalues γ−sn is recovered because the simple poles are set by
d lnψ/dγ = ψ′/ψ and the boundary condition ψ(∞, γ)

γ→γn−−−→ 0. Thus, by the
residue theorem, the integral in (5.36) sums up all the eigenvalues, as long as the
integration contour runs counterclockwise and encloses the entire real axis, as the
solid red line in fig. 5.1.

4 For a pedagogical introduction with examples regarding the use of spectral functions/func-
tional determinants in physical settings, see [110, 199, 200, 201].
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5.4. Zeta function regularization

Re γ

Im γ

eiθ

eiπ

e-iπ ... γn

Figure 5.1: Deformation of the integration contour of eq. (5.36) from the positive
real axis to the negative one. The red dots represent the location of the poles such
that ψ(∞, γ) = 0.

Here, we have to deform the contour from the positive real axis, which encloses
all the eigenvalues, to the negative one. For this purpose, we split the contour in
two paths, parametrized in the complex plane by exp(±iθ)γ. As shown in fig. 5.1,
we start with a path that runs along the positive real axis,

ζO =
1

2πi

(∫ ∞

0

dγ
eiθs

γs
d
dγ

lnψ(∞, e−iθγ) +

∫ 0

∞
dγ
e−iθs

γs
d
dγ

lnψ(∞, eiθγ)

)
. (5.37)

Then we deform the path to the negative real axis by taking the limit θ → π and
get

ζO =
sin πs

π

∫ ∞

0

dγ
γs

d
dγ

lnψ(∞,−γ) , (5.38)

where we assume that ψ is continuous around the negative real axis, such that
ψ(ρ, e±iπγ) = ψ(ρ,−γ). Finally, since we are considering a hyper-spherically sym-
metric potential, we can separate the variables

Olψl(ρ, γ) = γ ψl(ρ, γ) , (5.39)

and take into account the degeneracy of the orbital modes. Using (5.35) and (5.38)
the zeta function for the ratio of determinants is

ζ =
sin πs

π
µ2s
∑
ν

ν2
∫ ∞

0

dγ
γs

d
dγ

ln

(
ψl(∞,−γ)
ψFV
l (∞,−γ)

)
. (5.40)

Alas, a closed form solution of ψl(ρ, γ) cannot be obtained in general, even for
the single quartic potential. Since we are only interested in the asymptotic behavior
ψl(∞, γ) near the FV, it is enough to consider the expansion around the FV, where
the solution of (5.39) is

ψFV
l (ρ,−γ) = Iν (

√
γρ) /ρ . (5.41)

The Kν part is discarded due to regularity at ρ = 0 and the normalization factor is
chosen to be one. When ρ→ ∞, the fluctuation potential approaches the FV5 and

5 In general, one should subtract V ′′
FV from the fluctuation potential V ′′ → V ′′ − V ′′

FV and shift
the eigenvalues γ → γ − V ′′

FV in (5.38) and (5.39), modifying the lower limit of integration. For
quartic potentials V ′′

FV = 0.
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Chapter 5. The decay rate at one loop: An exact solution

we can set up an approximate solution

ψl(ρ,−γ) ≃ fl (γ) ψ
FV
l (ρ,−γ) , (5.42)

where fl (γ) is a constant to be determined in the section below. The Kν term
was neglected, because it vanishes in the asymptotic limit. With this ansatz, (5.40)
becomes

ζ =
sin πs

π
µ2s
∑
ν

ν2
∫ ∞

0

dγ
γs

d
dγ

ln fl (γ) , (5.43)

which is valid for Re(s) > 2. In order to make it well defined around s = 0, we have
to find the asymptotic form of fl and renormalize it.

5.4.2 Renormalization of the functional determinant

To perform the analytical continuation of ζ to s = 0, we define its asymptotic limit
by expanding (5.43) in the large l limit

ζa =
sin πs

π
µ2s
∑
ν

ν2
∫ ∞

0

dγ
γs

d
dγ

ln fal (γ) , (5.44)

and compute fal perturbatively by expanding around the FV. Once we have ζa, we
subtract it from ζ, which removes the leading l divergence and produces the finite
result

ζf = ζ − ζa , (5.45)

similarly to what was done for the finite sum in §5.3.3. Finally, the divergent terms
in ζa will be renormalized using the analytic properties of the Riemann zeta function.

Asymptotic expansion of the zeta. As discussed above, we would like to com-
pute (5.44) by considering a double expansion. First, ρ→ ∞ in (5.40), which allows
us to construct an implicit iterative solution around the FV for a fixed angular mode
l. Then the high-l expansion can be performed and we end up with a closed form
expression for ζa.

False vacuum expansion. When approaching the FV, (5.39) can be solved by
starting from ψFV

l (ρ,−γ), given by (5.41), and writing down the general ansatz

ψl(ρ,−γ) = ψFV
l (ρ,−γ) +

∫ ρ

0

dρ1G(ρ, ρ1)V ′′(ρ1)ψl(ρ1,−γ) , (5.46)

G(ρ, ρ1) =
ρ21
ρ
(Iν(

√
γρ)Kν(

√
γρ1)− Iν(

√
γρ1)Kν(

√
γρ)) , (5.47)

where G is the Green function associated with Ol. This is a self-referential integral
equation, which can be solved iteratively by starting in the FV and expanding in
powers of V ′′. The iteration stops when the zeta function becomes well defined in
the asymptotic UV limit and describes all the high l modes.

Actually, we already know from the normalization in (5.10) and the discussion
regarding the finite sum in §5.3.3 that the asymptotic terms need to go up to ν−3.
In the doubly asymptotic limit when ρ, ν → ∞, the Green function is proportional
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5.4. Zeta function regularization

to 1/ν, which follows from the properties of Bessel functions in the appendix §C.3.
Thus, each insertion of V ′′ in (5.46) comes with a factor of 1/ν and it is enough to
expand the zeta up to O(V ′′3). Using (5.42) and (5.46) we have

ψl(∞,−γ)
ψFV
l (∞,−γ)

= fl(γ) = 1 +

∫ ∞

0

dρρ2Kν(
√
γρ)V ′′(ρ)ψl(ρ,−γ) , (5.48)

= 1 + f
(1)
l + f

(2)
l + f

(3)
l +O(V ′′4) , (5.49)

while expanding the log to the same order gives

ln fl (γ) ≃ f
(1)
l − 1

2

(
f
(1)2
l − 2f

(2)
l

)
+

1

3

(
f
(1)3
l − 3f

(1)
l f

(2)
l + 3f

(3)
l

)
. (5.50)

The integrals f (n)
l are obtained by iterating (5.46)

f
(1)
l =

∫ ∞

0

dρ1ρ1V ′′(ρ1)Kν(
√
γρ1)Iν(

√
γρ1) , (5.51)

f
(2)
l =

∫ ∞

0

dρ1ρ21V
′′(ρ1)Kν(

√
γρ1)

∫ ρ1

0

dρ2G12V
′′(ρ2)

Iν(
√
γρ2)

ρ2
, (5.52)

f
(3)
l =

∫ ∞

0

dρ1ρ21V
′′(ρ1)Kν(

√
γρ1)

∫ ρ1

0

dρ2G12V
′′(ρ2)

∫ ρ2

0

dρ3G23V
′′(ρ3)

Iν(
√
γρ3)

ρ3
,

(5.53)

where Gij = G(ρi, ρj). This concludes the FV expansion in V ′′ and we can focus on
isolating the high-l behavior.

High-l expansion. We would like to expand f (i)
l for high l up to O(ν−3) while

keeping ρ→ ∞. To this end, we evaluate the Bessel functions in (5.51)-(5.53) in the
limit when ν, ρ → ∞ with √

γρ/ν fixed, and use the saddle point approximation,
see (C.7)-(C.9) in the appendix §C.3 for technical details.

For continuous V ′′, the integrals in (5.51)-(5.52) were calculated by [99, 100]
and (5.53) was not needed. Here, we extend the analysis to take into account the
delta function

V ′′ (ρ) =
∑
s

V ′′
s (ρ)H ((−1)s(ρ−RT ))− µV δ(ρ−RT ) . (5.54)

Performing the integrals (5.51)-(5.53) requires some effort and we leave the details
to the appendix §C.4. The final result up to O

(√
γ/ν

)4 is fairly compact

ln fal =
∑
s

∫ ∞

0

dρρV ′′
s

(
t

2ν
+

t3

16ν3
(
1− 6t2 + 5t4 − 2ρ2V ′′

s

))
H ((−1)s (ρ−RT ))

− (µVRT )

((
t

2ν
+

t3

16ν3
(
1− 6t2 + 5t4

))
+ (µVRT )

t2

8ν2

+(µVRT )
2 t3

24ν3

(
1− 3

µ2
V

(V ′′
1 + V ′′

2 )

)) ⏐⏐⏐⏐
ρ=RT

,

(5.55)

where t = 1/
√

1 + γ (ρ/ν)2. The first line corresponds to the continuous part of V ′′

and reproduces the known results of [100] when V ′′
FV = 0. The terms proportional

to µV are new because of the presence of the delta at RT . This completes the
asymptotic description of zeta and (5.55) can be used to evaluate the finite sum and
carry out the renormalization.
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Chapter 5. The decay rate at one loop: An exact solution

Regularization of the finite zeta. The asymptotic form of the zeta function
allows us to regulate the large l infinities and compute the finite sum, similarly to
what we did in §5.3.3. From (5.44) and (5.45) we have

ζf =
sin πs

π

∑
ν

ν2µ2s

∫ ∞

0

dγ
γs

d
dγ

(ln fl(γ)− ln fal (γ)) , (5.56)

which is finite and analytic in the neighbourhood of s = 0. This means we can
take the derivative with respect to s and evaluate ζ ′f (0). In doing that, the terms
proportional to sin πs vanish, γ−s goes to one and the integral can be computed
trivially by evaluating the terms on the boundaries.

On the upper limit γ → ∞ and V ′′(ρ) in (5.39) vanishes, thus ψl(ρ, γ) goes to
the FV solution and fl(γ → ∞) → 1 for both log terms in (5.56), which go to zero.
This leaves us with the two terms on the lower boundary, when γ → 0 (and ρ→ ∞,
as usual). First, from the definition of fl(γ) in (5.42) and from (5.39), it becomes
clear that we end up with the same equation (5.9) that defined Rl(∞). In other
words, fl(0) = Rl(∞). Second, we need to evaluate the asymptotic part fal (0) by
setting γ = 0 in (5.55) which sets t = 1 and we can integrate over ρ for a specific
fluctuation potential. Now the finite sum can be performed and we reproduce Σf

in (5.31), such that

−ζ ′f (0) =
∑
ν

ν2 (lnRl(∞)− ln fal (0)) = Σf , (5.57)

for the single and the bi-quartic potential. As a very non-trivial cross-check of the
asymptotics, we find that fal computed from (5.55), which is defined directly in
terms of V ′′, is precisely equal to the one from Rl(∞) in (5.30), i.e. fal (0) = Ra

l (∞).
The procedure that gave (5.57) does not always reproduce the finite sum Σf . In

particular, when V ′′
FV ̸= 0, the lower limit of integration over γ is shifted from 0 to√

V ′′
FV, and we have to evaluate fal (

√
V ′′

FV). In this case, additional terms appear
in (5.55) when we expand t ̸= 1. However, this is an over-subtraction [100] – such
terms are suppressed by 1/ν4 or more and get cancelled by the renormalized parts
below.

Renormalization of the asymptotic zeta. The asymptotic part of the zeta
function can now be renormalized. The integrals in (5.55) are evaluated using the
following identity, valid for Re(s) < 1

sin πs

π
µ2s

∫ ∞

0

dγ
γs

d
dγ
tn = −

Γ
(
s+ n

2

)
(µρ)2s

Γ (s) Γ
(
n
2

) ν−2s . (5.58)

The resulting expressions are plugged into (5.44) and we perform the sum over ν.
Each term that goes as (t/ν)n gives a Riemann zeta ζR(2s + n − 2). The analytic
continuation properties of ζR are well known and provide a mathematical description
of divergencies. Finally, we take the derivative over s and send s to zero, ending up
with

ζ ′a(0) =
∑
s

1

8

∫ ∞

0

dρ ρ3V ′′2
s

(
ln
(µρ
2

)
+ γE + 1

)
H ((−1)s (ρ−RT ))

− (µVRT )
2

16
+

(µVRT )
3

24

(
1− 3

µ2
V

(V ′′
1 + V ′′

2 )
⏐⏐
RT

)(
ln

(
µRT

2

)
+ γE + 1

)
.

(5.59)
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It agrees with (5.12) for a continuous V ′′ with µV = 0 and V ′′
FV = 0 and also

reproduces the SM [9], when applied to the single quartic. This demonstrates that
the Feynman diagrammatic approach coincides with the zeta function formalism.
Another non-trivial check regards the cancellation of divergences, i.e. we verify that
terms proportional to γE in Σf given by (5.32) cancel the ones in ζ ′a(0) above.

Let us comment on the renormalization scale dependence. The FV decay is a
physical process and the rate should not depend µ. Specifically, the µ dependence
from the prefactor cancels the lnµ from running of parameters in the bounce action
S0. For the single quartic case this is easy to see. The first segment gives 1/2ζ ′a(0) ⊃
3 lnµ, while the running of the quartic βλ = dλ/d lnµ = 9λ2/(8π2) is solved for
λ(µ) and plugged into the bounce action −8π2/(3λ(µ)) to cancel the pre-factor µ
dependence. While running the bi-quartic potential couplings is beyond the scope
of this work, we confirm that the leading order running of λ1,2 with the above beta
functions cancels the µ dependence of the continuous part of (5.59) in the weakly
coupled limit when x and y are small.

5.5 Summary of decay rates
The final result for the renormalized log of the functional determinant is

ln

(
detO

detOFV

)
= −ζ ′(0) = −ζ ′f (0)− ζ ′a(0) , (5.60)

where −ζ ′f (0) = Σf can be found in (5.32) and ζ ′a(0) in (5.59). Therefore, the total
decay rate per 4D unit volume is

Γ

V
=

(
S0

2π

)2

e−S0+
1
2
ζ′(0) = v4e−S0−S1 , (5.61)

where the S0 comes from (2.42) and ζ ′(0) is the sum of (5.32) and (5.59). As we will
see, having a closed form result is particularly useful to study the behavior of the
rate in the TW limit as well as for the large scale separation x ≫ 1, corresponding
to a rather flat potential.

5.5.1 Real quartic

To complete the calculation for the real scalar part, we evaluate the integral in (5.59)
in a closed form with R1,2,T and µV given by (2.41) and (5.16), respectively. This is a
straightforward calculation, but we omit the entire expression for brevity and instead
show the negative log of the normalized rate − ln Γ/V /v4 in fig. 5.2. The total rate
is shown by the black solid line on fig. 5.2 for a fixed λ1 = λ2 = 1 as x = v1/v2
interpolates from the TW x ∼ 1 to the thick wall and a flat potential when x ≫ 1.
We assume that all the couplings are defined at v and set the renormalization scale to
µ = v. In this case, the rate is insensitive to v, apart from the overall normalization
factor v4, which is factorized in the plot.

The contribution from the semiclassical action S0 in the first term of (5.62)
coming from the bounce action is shown in dashed red and tends to dominate for
small x, as long as λ is small. The prefactor correction S1 is plotted in dashed yellow.
It is sub-dominant for small values of x and starts to dominate for x ∼ 4, the rate
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Figure 5.2: The FV decay rate for the bi-quartic potential in (2.39). The black
solid line shows the total rate, while the dashed ones show the semiclassical part
S0 in red and the finite renormalized prefactor S1 in dark yellow. The dotted lines
correspond to the TW leading expansion, where we set y = λ1/λ2 = 1 and expand
up to (x − 1)−3 in dark green, additional corrections up to (x − 1)0 in light green
and the flat potential limit x = v1/v2 ≫ 1 in blue. The shaded regions show the
variation of λ2 ∈ {0.1, 1} in purple and λ1/λ2 ∈ {0.5, 1} in light brown.

drops and then rises logarithmically. At this point, we should be worried about the
validity of our semiclassical approximation. After all, the small-ℏ approximation
breaks down when the size of the coupling is large6 [30]. In this limit, the one loop
perturbative running is not self-consistent and the µ term becomes large. We will
come back to this point in more details below, at the end of this section. In any case,
lowering λ2 results in a higher S0 which dominates the S1 for larger values of x, as
shown by the purple shaded region. The variation of y, on the other hand, results in
a shift of the entire curve to larger x, as shown by the brown shaded region, because
the thin wall pole in the rate happens when x4y ≃ 1.

The behavior of the rate simplifies considerably in these two limits. Near the
thin wall x4y ∼ 1 (TW: x ∼ 1 + ε, y = 1), the ai become large and negative, thus
the asymptotic expansion of ζ ′(s, 3− ai) in (C.10)-(C.12) can be used. Conversely,
the ai become nearly constant when x≫ 1 (flat) and we have

− ln
Γ

V

1

v4
≃

⎧⎨⎩
2π2

3λε3

(
1 + λ

8π2

(
8
3
+ 2

√
3π − ln 2− ln λv2

µ2

))
, TW ,

32π2

3yλx3

(
1 + yλx3

16π2

(
7
8
− 3ζ ′R (−1) + 1

2
ln 2

π
+ ln yλx3v2

µ2

))
, Flat .

(5.62)

The leading TW functional dependence goes as ε−3, which is the same as in the TW
approximation of the displaced quadratic potential [102], with different numerical
coefficients and an additional log term. The TW series can easily be extended to

6To see this point, note that in the Feynman’s path-integral (5.1), we can define φ′ =
√
λℏ such

that SE [φ]/ℏ = SE [φ
′]/λℏ. Thus the relevant expansion parameter is actually λℏ, which implies

that small-ℏ approximations are equivalent to weak-coupling approximations, small λ approxima-
tions.
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arbitrary order in ε; we plot the leading ε−3 and the expansion up to ε0 with the
dotted green lines in fig. 5.2. These two are fairly good proxies and cover a significant
portion of parameter space, as seen from fig. 5.2.

Finally, let us inspect when the small-ℏ approximation breaks down. For this
purpose we should impose the condition that the quantum corrections remain al-
ways smaller than the bounce action. Assuming that log terms are order one, from
eq (5.62) we get

λ <
24π2

5 + 6
√
3π − 3 ln 2

≈ 2π, (5.63)

λyx3 <
128π2

15− 24ζ ′(−1) + ln 16− 4 lnπ
≈ 24π. (5.64)

For fixed λ = y = 1 the constraint on x, associated to fig. 5.2 is x < 4.2. These
conditions are model dependent and define the validity of our saddle point approx-
imation.

5.5.2 Complexified quartic

Let us extend the analysis to the complexified version of the model and examine
the effect of transverse fluctuations, coming from the imaginary field component.
This is similar to the SM, where the would-be-Goldstones contribute as longitudinal
components of gauge bosons. Consider a complex scalar field Φ = (φ + i φ⊥)/

√
2

and the complexified version of the potential

V =
(
λ2v

4
2 − λ1v

4
1 + λ1 |Φ + v1|4

)
H
(
Φ̃− Φ

)
+ λ2 |Φ− v2|4H

(
Φ− Φ̃

)
, (5.65)

where Φ̃(Φ) describes the boundary between the two regions. It is chosen such
that V is continuous in the φ − φ⊥ plane and Φ̃ goes to zero on the φ⊥ = 0 axis,
reproducing (2.39). Parameters of the potential are still real and the bounce for the
real component φ stays the same, as does the determinant.

The perpendicular component φ⊥ carries no vev, because v1,2 ∈ R, and its bounce
is zero. The fluctuations ψ⊥

l are non-zero and obey

O⊥ψ
⊥
l = −ψ̈⊥

l − 3

ρ
ψ̇⊥
l +

l(l + 2)

ρ2
ψ⊥
l + V ′′

⊥ (φ)ψ⊥
l = 0 , V ′′

⊥ =
1

3
V ′′ . (5.66)

The FV normalization stays the same ψFV⊥
ls = ρl, while the transverse fluctuations

are simpler than the real scalar ones

ψ⊥
ls =

ρlR2
s

R2
s − ρ2

(
A⊥
ls

(
1−

(
l

l + 2

)
ρ2

R2
s

)
+B⊥

ls

R2l+2
s

ρ2l+2

(
1−

(
l + 2

l

)
ρ2

R2
s

))
. (5.67)

The boundary conditions fix A⊥
l1 = 1, B⊥

l1 = 0, such that dividing by ρl and taking
the limit ρ→ ∞, we recover the single quartic global Goldstone [9]

λ |Φ|4 : R⊥
l (∞) =

l

l + 2
, (5.68)
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where the zero eigenvalue at l = 0 appears due to the U(1) symmetry. Proceeding
to the second segment and taking into account the matching conditions, we end up
with

R⊥
l (∞) = A⊥

l2

l

l + 2
=
l3 + c⊥2 l

2 + c⊥1 l + c⊥0
(l + 1)(l + 2)2

. (5.69)

After adding the second segment, the U(1) symmetry gets broken and the zero
eigenvalue in (5.68) disappears. The coefficients are then given by c⊥0 = c0/9 and

c⊥1 =
2x ((2x+ 1)x2y + 1) ((4x+ 1)x3y + x− 2)

3 (x4y − 1)2
, c⊥2 =

(13x+ 4)x3y + 4x− 5

3(x4y − 1)
.

(5.70)

The R⊥
l (∞) goes to 1 as l ≫ 1 and the ratio of determinants diverges. To get the

total decay rate, we proceed as for the real quartic above. The solutions to the
cubic polynomial in (5.69) are given by the same expression in (5.33) with replacing
ci → c⊥i and the fluctuation potential V ′′

⊥ → V ′′/3. Again, the asymptotic behavior
is simple

S⊥
1 ≃

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
972ε3
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2

81
ln
λyx3v2

µ2
−

ζ ′R
(
−2, 7

3

)
2

−
2ζ ′R

(
−1, 7

3
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3

−
2ζ ′R

(
0, 7

3

)
9

, Flat ,
(5.71)

and the total rate is obtained by adding S⊥
1 to S1 in (5.61). It turns out that the

correction from the transverse fluctuations are rather small and subdominant with
respect to the real scalar ones, as seen from the orange dashed line on fig. 5.2.

5.6 Conclusions and outlook

We presented a closed-form solution for the total decay rate at one loop for a po-
tential with two tree level minima of a bi-quartic potential. Our approach is based
on the Gel’fand-Yaglom theorem that evades the need to obtain individual eigen-
values of the fluctuation operator. However, the treatment of the renormalization
procedure had to be generalized to include the delta functions in the fluctuation
potential. To this end, an appropriate expansion of the fluctuation functions to the
maximal 1/l3 term had to be performed to extract the UV behavior and regularize
the determinant.

This work makes a significant step forward in computing the dimensionful prefac-
tor and the impact of fluctuations for potentials/models with a large-ish separation
of scales. We noticed that the estimation of the quantum corrections from the tree-
level bounce action can be misleading, in particular when a large separation of scales
is involved. In this cases, the couplings need to run and we have to include all the
corrections of the same order consistently, both in S0 and in the prefactor. We
also provide the conditions where the saddle point approximation to compute the
vacuum decay of our model breaks down.
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It might be of interest to obtain the result with the Feynman diagrammatic
approach and also obtain the RGE running of parameters for this particular case.

The final expression for the FV decay rate in (5.61) consists of the semi-classical
action S0 and the finite and renormalized corrections S1. Both are calculated for a
complete range of parameters of the potential. The main results are summarized in
fig. 5.2, where the behavior of the rate for thin and thick walls becomes apparent,
as well as the range of validity of the simple approximations that were derived from
the exact result. We also included the effects of the imaginary component of the
complex field, which are found to be subdominant in general. Similarly to the SM
which corresponds to the single quartic, the effect of fermions and gauge bosons
could be taken into account. To this end, the known results [9, 182, 183], for spin
1/2 and 1 fluctuations should be extended to include the second quartic segment
while taking into account the presence of Dirac delta, in complete analogy to the
imaginary complex scalar.

The present calculation relies on an exact bounce solution that can be found in
D = 4. It may be of interest to extend its validity via dimensional continuation to
other dimension, D = 3 in particular. This may be possible to do perturbatively,
similarly to the bounce [83], near the thin wall, where the 1/ρ terms do not play
a significant role. Likewise, one may consider other examples of exactly solvable
bounce solutions such as the the log potential [118, 119], quadratic-quadratic [121],
binomial [120] and (extended) polygonal [131]. The latter is particularly interesting
because the fluctuation potential is smooth and avoids the delta function. At the
same time, it can serve as a universal estimator of the total rate and might be
extended to multi-fields [205], where only recently [179] progress was made.
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Chapter 6

Concluding remarks

The decay of a false vacuum has been motivated by different contexts of physics. For
instance, it can not only dynamically generate the observed dominance of matter
over anti-matter and trigger phase transitions in the early universe, but it is also
crucial for the calculation of the Higgs mass bound and the lifetime of our universe.
In general, it allows us to obtain information about the unavoidable physics beyond
the SM that takes place at energy scales well beyond the reach of any collider
experiment. Nowadays, the motivation has been enhanced after the recent discovery
of gravitational waves production and promising experiments such as LISA [63],
DECIGO [64] and BBO [65, 66] that are scheduled to launch in over a decade.

In this work, we expanded the understanding of the false vacuum decay in three
different aspects, both conceptual and practical. It includes a novel method to
compute bounces in multifield potential, an user-friendly Matematica package and
evaluations of sub-leading contributions in the prefactor with a closed-form result.

The method, called Polygonal bounce, provides an analytic insight into the multi-
field phase transitions of the vacuum. It is a robust approach that avoids the usual
purely numerical shooting method by the use of a collection of analytic solutions
that approximate any potential up to desired precision. This makes the computation
of the bounce stable, in particular in very thin-wall limit where purely numerical
methods fail. We observed that it converge linearly with the number of fields and
segments, which makes it fast and efficient to implement.

Then we released a Mathematica package called FindBounce that computes the
bounce action with speed and precision around 2 seconds for 20 fields potential
and within 1% accuracy. It is competitive with respect to other currently available
programs with the Mathematica feel and look and contains a collection of basic
examples, benchmarks, and timing. Its latest version can be downloaded from the
repository, “release” on the web page https://github.com/vguada/FindBounce/
releases. Its semi-analytic output can be exploited to obtain a semi-analytic pref-
actor and the subsequent evolution of the bubble. The package contains several
applications, including the calculation of the nucleation temperature of a SM exten-
sion with a real scalar singlet.

In the end, we focused on the first quantum corrections of the vacuum decay rate.
We learned that we must include these contributions to get a consistent and precise
calculation of the bubble nucleation. We presented the first analytic complete result
at one loop of the decay rate of a potential with two separate tree-level minima
by the use of the bi-quartic potential. There, we showed that the calculation of
the prefactor becomes non-perturbative for some range of parameters, in particular
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when a large separation of scales is involved.
The above results have been fundamental in my current progress toward a gen-

eral semi-analytic method to compute the pre-factor for any type of potential. The
crucial point is that we showed how PB can provide analytic insight in the evalua-
tion of the loop correction of the vacuum decay, as shown in appendix §C.2. Thus,
it seems interesting to understand how this quantum fluctuation affects the grav-
itational waves spectrum in detail, in particular when there is a large separation
of scales and loop correction are needed. Moreover, FindBounce, the Mathematica
package, can be extended to compute gravitational waves for a large range of models
beyond the SM as it is fast and practical to use. In particular, it could be interest-
ing to focus on models BSM that has a rich vacuum structure such as Type II See
Saw and compute the nucleation temperature and the gravitational waves signal.
In short, I have been working on finding novel approaches to understand the decay
of a false vacuum up to one-loop order, in heading towards gravitational waves and
BSM physics.
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Appendix A

Appendix to Chapter 2

A.1 On D = 2, 6, 8 dimensions

Here we complete the treatment of the polygonal bounce construction for dimensions
other than D = 3, 4, starting with the special instance of D = 2. The field solution
is

φs(ρ) = vs + 2asρ
2 − bs ln ρ

2. (A.1)

The b1 expression in (3.4) remains the same, while v1 is obtained from (3.4) by
replacing

4

D − 2
R2
s
D→2−−−→ 2R2

s

(
1− lnR2

s

)
. (A.2)

Likewise, the expression for the final condition of bN−1 in (3.5) remains the same,
and the same replacement of (A.2) should be used to obtain vN−1. The resulting
action is

SD=2
0 =πR2

0

(
Ṽ1 − ṼN

)
+ 2π

N−1∑
s=1

[
6a2sρ

4 + b2s ln(ρ
2)+

ρ2

2

(
8as(vs − φ̃s) + Ṽs − ṼN − 8asbs ln(ρ

2)
)]Rs

Rs−1

,

(A.3)

The matching conditions for D = 2 are slightly different

vs + 2asR
2
s − bs lnR

2
s = φ̃s+1, (A.4)

vs+1 + 2as+1R
2
s − bs+1 lnR

2
s = φ̃s+1, (A.5)

2 (as+1 − as)R
2
s + bs − bs+1 = 0, (A.6)

and the recursion relations in (3.7) are modified by applying the replacement of (A.2)
to vs. The radii in two dimensions are solved by

R2
s = − bs

2as
W

(
−2

as
bs

exp

(
vs − φ̃s+1

bs

))
, (A.7)

where W (z) is the product log function that returns the solution of w to the equation
z = w ew for a given z.
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The polygonal bounce setup for D = 6, 8 closely follows the procedure outlined
in section §3.2 above, apart from the solution of the radii fewnomial in (3.8). Indeed,
the two closed form solutions for D = 6, 8 are

D = 6 : 2R2
s =

δs
as

+

(
δs
as

)2
1

ζ
+ ζ,

ζ3 =
√
3

√
3

(
bs
as

)2

− 2

(
δs
as

)3
bs
as

+

(
δs
as

)3

− 3
bs
as
,

(A.8)

D = 8 : 2R2
s =

δs
as

− χ1 −

√
2

(
δs
as

)2

− 2δ3s
a3sχ1

−
3
√
2

3

4bs +
3
√
2asχ2

0

asχ0

,

χ2
1 =

(
δs
as

)2

+
4 3
√
2

3

bs
asχ0

+
3
√
4

3
χ0,

χ3
0 =

√
81

(
δs
as

)4(
bs
as

)2

− 32

(
bs
as

)3

+ 9

(
δs
as

)2
bs
as
.

(A.9)

A.2 Multi-field N = 3 in D dimensions
The minimal multi-field case with N = 3 can be carried out analytically up to a
single n2

f linear system. The initial conditions in (3.47) and (3.48) with recursion
relations (3.43) and (3.44) give

vi2 = − 4

D − 2

(
(ai1 + 2āi1ri0)R

2
0 + (ai2 − ai1)R

2
1

)
− 1

D − 2
( ˙̄φi2 − ˙̄φi1)R1, (A.10)

bi2 =
4

D

(
(ai1 +Dāi1ri0)R

D
0 + (ai2 − ai1)R

D
1

)
+

1

2
( ˙̄φi2 − ˙̄φi1)R

D−1
1 . (A.11)

This leaves us with three equations for ri0, ri2 and ζ̃i2

ri0 =

(
D − 2

8
RD−2

1 ζ̃i2 − ai1
(D − 2

2D
RD

1 − R2
0R

D−2
1

2
+DRD

0

))(RD
0 −R2

0R
D−2
1

)
āi1

,

(A.12)

vi2 +
2

D − 2

bi2

RD−2
2

+
4

D
ai2R

2
2 = 0, (A.13)

ri2 =
1

āi2

(
bi2
4RD

2

− ai2
D

)
, (A.14)

Inserting ri0 from (A.12) into (A.13) gives a linear system for ζ̃i2 that can be solved
using the explicit form of ai1,2(ζ̃i2) given in (3.41). Once ζ̃i2 is given, ri2 follows
from (A.14), which concludes the calculation of ζ.

Remarkably, this simple estimate already gives a rather good approximation for
the path in field space, the main inaccuracy in the bounce action is due to the poor
estimate of the ρ dependence.

A.3 Real radii and root finding
Real radii. The radii solutions in Eqs. (A.7)-(A.9), as well as those in (3.9),(3.10)
above, allow for a number of branches. The ones chosen above are such that the
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A.3. Real radii and root finding

resulting Rs are real and positive. Moreover, the slope of the potential as has to
be appropriately factorized in the expressions above in order to maintain the reality
of Rs during the transition through the maximum of V when as flips the sign.
This choice of signs also ensures that the radii of segments below the initial φ0

automatically remain 0, i.e. Rs = 0 for φ̃s < φ0.
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Figure A.1: Left: The final radius dependence on R0 for N = 50 and ε = 0.03,
showing the real and imaginary part, as well as the corresponding value obtained
from RN−1 in the matching condition in (3.15). Right: The continuous version
of Derrick’s theorem (2.27) with T computed with the PB and V from the input
potential in (3.18). The normalized quantity acts as a test of convergence and
goodness of approximation.

Root finding. The starting point for root finding is to determine the real domains
of the initial parameters φ0 and R0 for a) and b) cases, respectively. This defines
the region of parameter space where a consistent solution can be searched for. To
illustrate this point, we show the behavior of the final radius with respect to R0 and
φ0 in fig. A.1. It is curious that the solution to the matching equation in (3.15) lies
precisely on the edge of the real domain.

In order to implement the root searching numerically, one has to define a starting
estimate for R0 or φ0. It turns out that for case a) the more stable option is to choose
the initial estimate for φ0 close to the false vacuum φ0 ≃ φ̃1, while in the case b)
the N = 3 result gives a fairly reliable starting point. Moreover, the behavior of
case b) root finding convergence is in general more stable with respect to case a).

The behavior of φ0 that solves the polygonal bounce in case a), is shown on the
left of fig. A.2, where the field is normalized to the position of the false minimum
in φ̃1. Notice that as ε decreases, the solution gets closer to φ̃1 and eventually
crosses over to case b). The smaller N approximation typically underestimates the
final value and oscillates towards the limiting value, which is an artefact of the
segmentation.

Note also that for ε = 0.05(0.04), the solution for case a) does not exist until
N ≳ 10(70) when the segmentation becomes refined enough for the method to work
and which is precisely when R0 becomes non-zero in fig. 3.3. Another particularity
related to the segmentation happens with ε = 0.07 in D = 4 where we start in case
a) for N = 3, 4, switch to case b) and return back to a) at N = 8.

The right panel of fig. A.2 shows the extent of the non-trivial part of the bounce
field solution in the ρ dimension, i.e. the final radius RN−1, normalized to the
N = 3 approximation. Above this radius, the bounce solution remains constant as
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Figure A.2: Left: The initial field value φ0 normalized to the position of the false
minimum in φ̃1. Right: The final radius RN−1, normalized to the N = 3 approxi-
mation.

in fig. 3.1. As we expect to get back to (3.35) in the continuous limit, the RN−1

should go to infinity when N increases, which is evident from the right panel of
fig. A.2.

As discussed above, the RN−1 is a finite and numerically well defined quantity
that regulates the infinity of ρ. In particular, the extent to which the final radius
grows is surprisingly small. Even for a large number of points N ∼ 400 where the
bounce action is already quite precise, the final radius is merely about 50% larger
than the initial estimate from N = 3.
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Appendix to Chapter 3

B.1 One-Loop effective potential
The calculation of the effective potential was first computed by Coleman and Wein-
berg [206] at one-loop and at higher loops by Jackiw and Iliopoulus, et al. [207, 208]
at zero temperature. For finite temperatures excellent references are [169, 170], a
review [171] and the textbook [172] For recent works on the consistent use of po-
tentials, see [209]. The quantum and thermal results at one-loop order in the MS
scheme are:

Quantum: ∆V1(φ) =
∑
i

±nim
4
i (φ)

64π2

(
ln
m2
i (φ)

µ2
R

− Ci

)
, (B.1)

Thermal: ∆V1(φ, T ) =
∑
i

niT
4

2π2
JB/F

(
m2
i (φ)

T 2

)
, (B.2)

where µR is the renormalization scale and Ci = 3/2 (5/6) for scalars and fermions
(gauge bosons). The sum runs over all the species that couple to φ, where ni and
m2
i (φ) are the number of degrees of freedom and the field-dependent squared masses

of the species i. The upper and lower sign corresponds to bosons (B) and fermions
(F), respectively. The relevant thermal functions are given by

JB/F

(
y2
)
= ∓

∫ ∞

0

dx x2 ln
(
1± e−

√
x2+y2

)
, (B.3)

and can be expanded at high temperatures, (y2 ≪ 1) such that

JB(y
2) = − 7π

360
+
π2

24
y2 +

y4

32
ln
y2

a
+O

(
y6
)
, (B.4)

JF (y
2) = −π

6

45
+
π2

12
y2 − π

6

(
y2
) 3

2 − y4

32
ln

y2

16a
+O

(
y6
)
, (B.5)

with a = π2e
3
2
−2γE .

B.2 Multi field potential parameters
The multi-field potential for comparison with other packages, shown in table 4.1,
was taken from [80] and defined for each number of fields nφ as

V (φ) =
1

10

(
φ4 − 8φ3 + 10φ2 + 8

)
, (B.6)
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nφ ci

3 0.68, 0.18, 0.30, 0.28

4 0.53, 0.77, 0.84, 0.01, 0.26

5 0.47, 0.23, 0.57, 0.14, 0.52, 0.66

6 0.34, 0.47, 0.23, 0.57, 0.14, 0.52, 0.66

7 0.52, 0.34, 0.47, 0.23, 0.57, 0.14, 0.52, 0.66

8 0.24, 0.52, 0.34, 0.47, 0.23, 0.57, 0.14, 0.52, 0.66

9 0.21, 0.24, 0.52, 0.34, 0.47, 0.23, 0.57, 0.14, 0.52, 0.66

10 0.12, 0.21, 0.24, 0.52, 0.34, 0.47, 0.23, 0.57, 0.14, 0.52, 0.66

11 0.23, 0.21, 0.21, 0.24, 0.52, 0.34, 0.47, 0.23, 0.57, 0.14, 0.52, 0.66

12 0.12, 0.11, 0.12, 0.21, 0.24, 0.52, 0.34, 0.47, 0.23, 0.57, 0.14, 0.52, 0.66

13 0.54, 0.47, 0.53, 0.28, 0.35, 0.27, 0.42, 0.59, 0.33, 0.16, 0.38, 0.35, 0.17,
0.41

14 0.39, 0.23, 0.26, 0.40, 0.11, 0.42, 0.41, 0.27, 0.42, 0.54, 0.18, 0.59, 0.13,
0.29, 0.58

15 0.21, 0.22, 0.22, 0.23, 0.39, 0.55, 0.43, 0.12, 0.16, 0.58, 0.25, 0.50, 0.45,
0.35, 0.45, 0.12

16 0.42, 0.34, 0.43, 0.22, 0.59, 0.41, 0.58, 0.41, 0.26, 0.45, 0.16, 0.31, 0.39,
0.57, 0.43, 0.10, 0.46

17 0.24, 0.35, 0.39, 0.56, 0.37, 0.41, 0.52, 0.31, 0.52, 0.22, 0.58, 0.39, 0.39,
0.17, 0.46, 0.30, 0.37, 0.43

18 0.18, 0.17, 0.30, 0.22, 0.38, 0.48, 0.11, 0.49, 0.43, 0.47, 0.21, 0.29, 0.32,
0.36, 0.30, 0.56, 0.46, 0.42, 0.44

19 0.40, 0.14, 0.10, 0.43, 0.39, 0.27, 0.33, 0.59, 0.48, 0.36, 0.24, 0.28, 0.51,
0.59, 0.40, 0.39, 0.24, 0.35, 0.20, 0.14

20 0.42, 0.11, 0.47, 0.13, 0.16, 0.24, 0.58, 0.53, 0.38, 0.44, 0.18, 0.46, 0.47,
0.27, 0.53, 0.24, 0.33, 0.40, 0.32, 0.29, 0.44

Table B.1: Multi-field potential parameters ci that define the potential in (4.9).

for single field potentials and by Eq. (4.9) for multifields. The relevant parameters ci
for higher number of fields are given by the list in table B.1 with the corresponding
actions listed in table B.2. Note that the last component of the parameters cnφ+1

controls the degeneracy of the vacua. Tiny values of this parameter corresponds
to thin wall scenarios, which is the case for the potentials with 15 and 19 fields.
There, the action is notably larger. Nevertheless, as shown in fig. 4.7, the compu-
tational time of the bounce action is practically independent of whether the bounce
is computed in thin or thick wall regime.
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Action

nφ PB10 PB30 PB100 nφ PB10 PB30 PB100

1 52.1 52.6 52.4 11 78.3 78.3 78.2

2 20.8 20.8 20.8 12 80.2 80.0 79.0

3 20.8 20.7 20.7 13 274 271 271

4 57.9 56.2 55.8 14 154 155 155

5 16.3 16.3 16.3 15 2.90× 103 2.87× 103 2.87× 103

6 24.6 24.5 24.5 16 358 355 355

7 36.9 36.7 36.7 17 472 468 468

8 46.4 46.1 46.0 18 439 435 435

9 56.1 55.7 55.6 19 3.96× 103 3.93× 103 3.93× 103

10 63.8 63.4 63.3 20 565 560 560

Table B.2: The bounce action of the single and multi-field potential in Eq. (B.6)
and (4.9), respectively computed using FindBounce with 10, 30 and 100 number of
field points.
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Appendix C

Appendix to Chapter 4

C.1 A example of the Gel’fand Yaglom theorem in
a D = 1 potential well

In general, the computation of functional determinants represents a non-trivial prob-
lem, which requires the knowledge of all the eigenvalues of an operator. However,
there is an elegant method that allows us to calculate this object without having to
compute any of the eigenvalues. This is the well-known Gel’fand Yaglom theorem.

In this section, we would like to illustrate how this procedure works in a simple
one dimensional operator O under a potential well V ′′ = m2. First, let us consider
the usual eigenvalue problem with the Dirichlet boundary conditions defined on a
finite interval [0, L] given by

Oψn = −d
2ψn
dx2

+m2ψn = λnψn, OFVψFV
n = −d

2ψFV
n

dx2
= λFV

n ψFV
n . (C.1)

Here, all the eigenvalues are well known: λn = m2 +
(
nπ
L

)2 and λFV
n =

(
nπ
L

)2. Thus
the ratio of determinants can be computed directly as

detO
detOFV =

∞∏
n=1

λn
λFV
n

=
∞∏
n=1

(
1 +

(
mL

nπ

))2

=
sinh (mL)

mL
. (C.2)

Now, let us calculate the same functional determinants by means of the Gel’fand
Yaglom theorem. That is, we need to solve an initial value problem of the form

Oψ0 = 0, OψFV
0 = 0, ψ0(0) = ψFV

0 (0) = 0, ψ′
0(0) = ψ′FV

0 (0) = 1, (C.3)

whose solutions are

ψ0(x) =
sinh(mx)

mx
and ψFV

0 (x) = x. (C.4)

The functional determinant computed in this approach reads as

detO
detOFV =

ψ0(L)

ψFV
0 (L)

=
sinh (mL)

mL
. (C.5)

which gives the same result (C.2).
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This case is a somewhat trivial example since all the eigenvalues are simple
and well-known, but in general we would like to consider more complicated poten-
tials. The eigenvalue approach is rarely possible to perform, while the Gel’fand
Yaglom is a differential equation with simpler boundary conditions that can be
solved numerically. A rigorous mathematical derivation of this theorem can be
found in [110, 199, 200, 202]. For more examples see [201].

C.2 The prefactor for polygonal bounce
Let us apply the semi-analytic polygonal bounce solution presented in chapters §3
and §4 to obtain the loop contributions of the general renormalizable potential in
D = 4, given in (3.18). This potential can be recast in term of dimensionless
quantities [99] as in (4.1), whose second derivative is given by

V ′′(ρ) = 1− 3φ̄(ρ) +
3α

2
φ̄2(ρ), V ′′

FV = 1. (C.6)

The crucial component to compute Rl in (5.10) from (5.9) is of course the semi-
classical bounce solution φ̄ from (3.2). As the ρ dependance of the bounce is provided
explicitly, the integrals in eq. (5.12) are straightforward to compute analytically.

The total pre-factor contribution is then given by the sum of the low (5.11) and
high l (5.12) pieces. In fig. C.1 we show the resulting Rl using the precise numerical
shooting solutions and the PB approximation with the minimal N = 3 and the more
precise N = 50.
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Figure C.1: The ratio of determinants Rl for a given multipole. Left: The ρ de-
pendence for shooting in solid and the PB solution with N = 3 (N = 50) in dotted
(dashed) lines. Right: The ratio at ρ→ ∞ with solid (empty) squares denoting the
N = 3 (N = 50) PB approximation, while the solid line connects the results from
the shooting procedure.

The values at infinity Rl(∞) agree with the expectation of a single negative
eigenvalue for l = 0, four-fold degenerate zero for l = 1 and the rest of l ≥ 2 being
positive. This is true for the precise shooting procedure, however the N = 3 PB
bounce produces a number of negative eigenvalues, while for N = 50 the correct
spectrum is recovered. This happens because the semi-classical solution is not ap-
proximating the exact potential with sufficient precision, the proof for one negative
and multiple zero eigenvalues [187] (and the entire calculation of the fluctuations)
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α shooting N = 3 N = 10 N = 50 N = 100

0.8 0.36 0.30 0.31 0.31 0.30

0.9 0.30 0.24 0.27 0.27 0.28

0.95 0.24 0.20 0.22 0.23 0.23

0.97 0.22 0.18 0.20 0.21 0.21

Table C.1: The total prefactor contribution at one-loop, computed using the numer-
ical shooting procedure and compared with the polygonal method with N = 3, 10, 50
and 100 segmentation points. The rate is normalized to (1 − α)3 and agrees with
the analytical thin wall limit result that gives 9/32(1− 2π/(9

√
3)) ∼ 0.17.

relies on the fact that the semi-classical action is extremised. Nevertheless, blithely
summing the absolute values of Rl(∞) gives a rather precise (and very simple)
estimate of the decay rate prefactor, as seen in table C.2.

The crude N = 3 approximation fails when α ≪ 1, however it works well in the
thin wall limit when α → 1 and all of the approaches coincide, as shown on the right
panel of fig. C.1.

C.3 Bessel, Saddle-point and Zeta function approx-
imations

Bessel functions. To perform the high-l expansion in §5.4.2, we used the math-
ematical properties of the Bessel functions, which can be found on p. 378 of [210]
eqs. (9.7.7) and (9.7.8). Expanding for large ν and ρ, while keeping ρ/ν fixed, we
have up to O (ν−4)

Iν(
√
γρ)Kν(

√
γρ) =

t

2ν
+

t3

16ν3
(
1− 6t2 + 5t4

)
, (C.7)

and up to (1 +O (ν−1))

I2ν (
√
γρ) =

t

2πν
e2νη , K2

ν (
√
γρ) ∼ π t

2ν
e−2νη , (C.8)

with η = t−1 + ln
(√

γρ/ν/ (1 + t−1)
)
.

Saddle-point approximation can be found on p. 362 of [199, 200] eq. E.14.
It can be used to expand the integrals in §5.4.2 in powers of 1/ν when the leading
contribution is dominated by the exponential high-l terms from (C.8). Expanding
up to O (ν−2) ∫ ρ

0

dρ1f(ρ1)eνB(ρ1) = eνB(ρ)f(ρ)

ν

(
dB(ρ)

dρ

)−1

. (C.9)

Generalized Riemann Zeta function. A useful asymptotic expansion of the
derivatives of the generalized zeta function, is applicable in the TW limit a≫ 1 and
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can be found in eqs. (18) and (19) of [211]

ζ ′R(0, a) = ln Γ(a)− ln 2π

2
∼ −a+ a log a− log a

2
, (C.10)

ζ ′R(−1, a) ∼ −a
2

4
+
a2 log a

2
− a log a

2
+

log a

12
+

1

12
−

∞∑
k=1

B2k+2a
−2k

(2k + 2)(2k + 1)2k
,

(C.11)

ζ ′R(−2, a) ∼ −a
3

9
+
a3 log a

3
− a2 log a

2
+

a

12
+
a log a

6
+

∞∑
k=1

2B2k+2a
−(2k−1)

(2k + 2)(2k + 1)2k(2k − 1)
,

(C.12)

where Bk are the Bernoulli numbers.

C.4 Derivation of the high-l expansion of fl
This section is devoted to the derivation of ln fal in (5.55) from the high-l expansion
of ln fl in (5.50) up to O (ν−4), while keeping ρ → ∞. For this purpose, let us first
plug V ′′ from (5.54) into (5.50) and separate the integrals in three parts: the terms
proportional to the delta function, to the Heaviside and the cross terms.

Delta function terms come purely from the discontinuity of the first derivative
of the potential φ̄ (RT ) = 0. One can compute the integrals exactly and perform the
high-l expansion from (C.7). This gives the terms proportional to (µVRT ) in (5.55),
one for each insertion of V ′′. For instance, the last three terms of (5.50), which are
of third order in V ′′ are

ln fal ⊃ −1

3
(µVRT Iν(

√
γρ)Kν(

√
γρ))3 ∼ −1

3

(
t

2ν
µVRT

)3

, (C.13)

where we kept all the terms up to O (ν−4).
Heaviside terms belong to the continuous part of V ′′. They were first computed

by [99, 100] and contribute to the first term of (5.55). Let us proceed to compute
each term of (5.50) by neglecting the delta terms.

The leading order terms in V ′′ can be computed simply by using the Bessel
expansions in (C.7). The second order terms in V ′′ can first be simplified by∫ ∞

0

dρ1
∫ ∞

ρ1

dρ =
∫ ∞

0

dρ
∫ ρ

0

dρ1 , (C.14)

since V ′′ is continuous, as shown in the Appendix E of [199, 200]. At O (ν−4), this
leads to

ln fal ⊃
∑
s

∫ ∞

0

dρ ρ
∫ ρ

0

dρ1ρ1K2
ν (
√
γρ)V ′′

s (ρ)V ′′
s (ρ1) I

2
ν (
√
γρ1) (C.15)

∼ t3

8ν3

∑
s

∫ ∞

0

dρ ρ3V ′′2
s H ((−1)s (ρ−RT )) , (C.16)

where we used the exponential behavior of Iν and Kν in (C.8) and the saddle-point
approximation (C.9) in the last step. Finally, the third order terms go as O (ν−4)
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and do not contribute to fal since each pair of Bessel functions (C.8) as well as the
saddle-point approximation (C.7) come with a factor of 1/ν .

Cross terms require a careful treatment in the integration of the delta func-
tion since it brings a Heaviside that affects the limits of integration of the second
integration. Then we perform the asymptotic expansion of the Bessel functions and
the saddle-point approximation as in the previous calculations with (C.8) and (C.9).
These correspond to the last two terms of (5.55). For example, the last term of (5.55)
is given by

ln fal ⊃
∑
s

∫ ∞

0

dρρK2
ν (

√
γρ)V ′′

s (ρ)

∫ ρ

0

dρ1 ρ1µV δ (ρ−RT ) I
2
ν (

√
γρ1)

= µVRT I
2
ν (

√
γRT )

∑
s

∫ ∞

RT

dρρK2
ν (

√
γρ)V ′′

s (ρ)H(ρ−RT )

∼ 1

µ2
V

(
t

2ν
µVRT

)3

V ′′
2 (RT ) ,

(C.17)

where in the second line, the integration limits has changed due to the previous
integration of the delta function, which picks V ′′

2
1 . Then we used the saddle point

approximation that evaluates the potential at RT and provides the last line.
The next to last term of (5.55) can be computed completely analogously, while

the remaining terms in (5.50) cancel among themselves or go as O (1/ν4). After
collecting all the results, we are left with the final expression given in (5.55).

1This actually depends on our convention of the Heaviside. We have chosen that H(x) = 0
when x < 0 but equivalently, we could have used H(x) = 1/2 when x = 0 and, after adding up all
the cross terms in ln fal , we recover the same results.
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Razširjeni povzetek

7.1 Uvod

V kvantni teoriji polja imamo lahko potencial z več nedegeneriranimi minimi, kot
je prikazano na levem grafu na sliki 7.1, kjer je globalni minimum stabilno stanje,
znano kot pravi vakuum (PV), medtem ko so ostali, ki so le lokalni, metastabilni.
Slednji so lažna vakuumska (LV) stanja, saj bodo slej ko prej razpadli v bolj ugodno
stanje nižje energije s procesom tuneliranja skozi bariero, analognim alfa razpadu v
kvantni mehaniki.

Razpad povzročijo kvantne in termodinamske fluktuacije polj, pri katerih se sča-
soma nekje v vesolju tvorijo mehurčki pravega vakuuma. Ko enkrat nastanejo, se šir-
ijo skoraj s svetlobno hitrosjo v vakuumu, oziroma z neko končno hitrostjo pri visokih
temeperaturah, ob tem pa pretvorijo celoten prostor v novo fazo pravega vakuuma.
Ta proces je znan kot fazni prehod prvega reda, zaradi nenandnih sprememb stanja
ali spontanega nastajanja mehurčkov, kar je analogno vrenju pregrete/podhlajene
tekočine ali nukleacijskemu procesu v statistični fiziki.

Razpad vakuuma igra pomembno vlogo v omejevanju mase Higgsovega bozona [3,
4, 5], zaradi izjemnih in fundamentalnih posledic pa je že bil deležen natančnih
izračunov in posvečenih študij. Najnovejša dela so npr. v [6, 7, 8] in tamkajšnjih
referencah, nudijo pa oceno življenske dobe našega vesolja, ki znaša ∼ 10139

+102
−51 let [9,

10]. Vendar pa se lahko ta slika dramatično spremeni [11] s fiziko, ki jo pričakujemo
onkraj standardnega modela (SM) [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25].
Stabilnost vakuuma tako postavi nepogrešljive in morda fundamentalne omejitve,
ki jih gre upoštevati v izdelavi kakršnekoli nove teorije.

Tega procesa se ne da opazovati v laboratoriju, lahko pa vodi do eksotičnih koz-
moloških posledic, ki jih lahko zaznamo v prihodnjih eksperimentih. V zgodnjem
vesolju delci tvorijo vročo plazmo, katere termalni učinki lahko sprožijo fazni pre-
hod [26, 27, 28, 29]. Trk mehurčkov sprosti ogromno energije, zato predstavlja nar-
aven vir gravitacijskih valov [30, 31, 32, 33, 34, 35, 36, 37] in prvobitnih magnetnih
polj [38, 39, 40, 41, 42]. Poleg tega lahko dinamično proizvedejo opaženo prevlado
materije nad antimaterijo, npr. v elektrošibki bariogenezi [43, 44, 45, 46, 47, 48, 49]
(glej pregled v [50]).

Zaznava gravitacijskih valov leta 2015 [60] je prinesla novo obdobje astronomije
in zanimivih možnosti v fiziki visokih energij. Trenutni aLIGO [61] in aVIRGO [62]
observatoriji obratujejo pri frekvencah, ki povečini niso občutljive na fazne prehode
prvega reda pri TeV skalah. Načrtuje pa se, da bodo detektorji gravitacijskih valov,
kot so LISA [63], DECIGO [64] in BBO [65, 66], ki se bodo nahajali v vesolju,
izstreljeni čez dobro desetletje in da bodo iskali dokaze za kozmološke fazne prehode.
Nedaven pregled sposobnosti LISA najdemo v [63].
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Fazni prehod lokalnega osnovnega stanja v QFT s tunelinranjem se preučuje že
vse od pionirskih del [28, 30, 67, 68, 69]. V sklopu teh del so odkrili, da je razpadna
verjetnost na enoto volumna prostorčasa dana z

Γ

V
= Ae−S0/ℏ (1 +O(ℏ)) , (7.1)

v limiti, ko je ℏ majhna. Evklidska akcija S0 je tu akcija v evklidskem prostoru,
izvrednotena v odbojnem polju φ̄, A pa je neka dimenzionalna količina.

Odbojno polje je netrivialna distribucija skalarnega polja, ki ekstremizira evklid-
sko akcijo in opiše fazni prehod med vakuumskimi stanji. Člen S0, običajno imen-
ovan odbojna akcija, prevladuje v razpadni širini zaradi eksponentne odvisnosti
in predstavlja glavni predmet tega dela. Koeficient A je povezan z enozančnimi
izračuni in predstavlja prispevke višjega reda k razpadni širini. Ni močno odvisen
od parametrov teorije, zato ga lahko ocenimo na podlagi dimenzijskih argumentov.
Preden bi se spustili v podrobne račune, bi privzeli, da je približno podan z A ≈ v4,
kjer je v neka karakteristična masna skala preučevane teorije.

Kot je pokazano v [111, 112], je rešitev φ̄ invariantna na O(D) rotacije za vse
dimenzije D > 2. To pomeni, da lahko prepišemo in poenostavimo enačbo (2.9)
s sfernimi koordinatami v D-razsežnem evklidskem prostoru, pri čemer postane φ
funkcija samo radialne koordinate,

φ (t,x) = φ (ρ) with ρ =

√
(τ − τ0)

2 + (x− x0)
2 , (7.2)

po preostalih D − 1 kotih pa se da takoj integrirati. Zato je

S0 =
2π

D
2

Γ
(
D
2

) ∫ ∞

0

ρD−1dρ
(
1

2
φ̇2 + V

)
= TD + VD , (7.3)

kjer pika predstavlja odvod po ρ, zadnja dva člena pa predstavljata posebej inte-
grirana kinetični in potencialni del. Konfiguracije polja, ki ekstremizirajo akcijo,
morajo rešiti enačbo

δS0

δφ
= 0 =⇒ φ̈+

D − 1

ρ
φ̇ =

∂V

∂φ
, (7.4)

pri čemer mora rešitev zadoščati še (2.10) in biti analitična funkcija pri ρ = 0. Tako
so ustrezni robni pogoji

φ(0) = φ0, φ (∞) = φ+, φ̇ (0) = φ̇ (∞) = 0 . (7.5)

Zaradi teh pogojev se rešitev te enačbe imenuje odboj.
Začetna vrednost polja φ0 predstavlja vrednost skalarnega polja v središču mehurčka,

nahajajočega se pri (τ0,x0) kot definirano v (7.2). Sicer dopušča trivialno rešitev
φ0 = φ+, pri kateri vrednost polja ostaja konstantna, relevantna pa je tista, pri ka-
teri je φ0 nekje blizu PV, pod lokalnim minimom energije, kot je prikazano na levem
grafu na sliki 7.1. V principu je to vmesno začetno vrednost možno najti numerično
do poljubne natančnosti s strelsko metodo. Vendar pa ima ta numerični pristop
več pomanjkljivosti glede odbojnega polja, ki so natančno naštete v §2.2.

Vse te težave naslovimo z novim pristopom, imenovanim Poligonski odboj (PO),
ki se izogne strelski metodi in izračuna odbojno akcijo za poljubno število polj.
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φ

V(φ)

φ- φ+

φ

-V(φ)

φ- φ+

φ(0)
φ(∞)

Slika 7.1: Levo: Primer potenciala z dvema minima z nestabilnim lažnim vaku-
umskim stanjem pri φ+ in stabilnim pravim pri φ−. Desno: Potencial z leve po
analitičnem nadaljevanju v evklidski prostor. Polje začne v netrivialni vrednosti φ0,
tako da v neskončnosti doseže pravi vakuum.

7.2 Poligonski odboj

Ta pristop je semi-analitična metoda, ki izračuna razpadno širino lažnega vaku-
umskega stanja za poljubno število skalarnih polj in prostorskočasovnih dimenzij.
Osnovan je na naboru poljubnega števila linearnih segmentov, ki opiše potencial z več
minimi. Točni razvoji polja za vsak segment so združeni v popoln opis konfiguracije
odbojnega polja. Z večanjem števila segmentov lahko odbojno akcijo izvrednotimo
do željene natančnosti, pri čemer dobljene ujemalne enačbe rešimo kvazi-analitično.

Bolj eksplicitno, generičen potencial z dvema minima V (φ) aproksimiramo z
odsekoma linearnimi potenciali, kot je prikazano s črtkano črto na sliki 7.2. Indeksi
segmentov za vrednosti polja φ̃s, s = 1, . . . , N , so taki, da je PV pri φ̃1 in LV pri
φ̃N , vrednosti potenciala pa označimo z Ṽs = V (φ̃s).
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1
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
N ρ

φ(ρ)

φ1

φ2

φ1(ρ)

φN

R'0 R'1

R'N-1...

Slika 7.2: Levo: Linearno zamaknjen kvartični potencial v sivem, linearna poligon-
ska aproksimacija N = 7 v črtkano modrem in kvadratični popravki drugega reda
v polnem modrem. Desno: Rešitev polja v aproksimaciji PO v črtkanem oranžnem
in izboljšana rešitev drugega reda v polnem oranžnem.

Linearni segmenti in njihove rešitve enačbe (7.4) v D > 2 prostorskočasovnih
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dimenzijah so podane preprosto z

Vs(φ) =

(
Ṽs+1 − Ṽs
φ̃s+1 − φ̃s

)
  

8 as

(φ− φ̃s) + Ṽs, φs(ρ) = vs +
4

D
asρ

2 +
2

D − 2

bs
ρD−2

. (7.6)

Z zahtevo, da je odboj, tako kot črtkana črta na desnem grafu na sliki 7.2, v celoti
gladka rešitev, dobimo tri pogoje za vsak segment: dva za vrednost polja, ki se mora
ujemati z začetno segmentacijo pri Rs, in še enega za njen odvod:

φs(Rs) = φ̃s+1 = φs+1(Rs), φ̇s(Rs) = φ̇s+1(Rs). (7.7)

Ko je segmentacija {φ̃s} vzpostavljena, so parameteri as določeni s (7.6), medtem ko
so ostali odbojni parametri, vs, bs in radijiRs, s = 0, . . . , N−1, določeni z ujemalnimi
pogoji (7.7). V splošnem se dá vse parametre, razen radijev Rin, dobiti analitično,
neodvisno od števila segmentov. Nazadnje lahko poljubno večamo število segmentov
brez uvedbe dodatnih prostih parametrov in sistematično najdemo odbojno akcijo
z željeno natančnostjo.

Lahko gremo še korak dlje in razvijemo splošen postopek dodajanja nelinearnih
popravkov k PO, ki je predstavljen s polno črto na sliki 7.2. To storimo tako, da
vzpostavimo sistematičen postopek, osnovan na Taylorjevem razvoju potenciala, ki
zgradi celotno obojno rešitev, razvito okoli PO, kot φ = φPB + ξ. Tako je popravek
potenciala izvrednoten na PB ozadju in odbojna enačba postane

φ̈+
D − 1

ρ
φ̇ = 8 (a+ α) + δdV (ρ) , ξ̈ +

D − 1

ρ
ξ̇ = 8α + δdV (ρ), (7.8)

kjer je α poljuben linearen del, δdV (ρ) pa je majhna perturbacija potenciala. Po
linearizaciji potenciala okoli φ̃s je rešitev odbojne enačbe ξ dana kot

ξ = ν +
2

D − 2

β

ρD−2
+

4

D
αρ2 + ID. (7.9)

Tu se nehomogeni del popravka za D = 3, 4 izvrednoti kot

I3 = ∂2Ṽ

(
v − φ̃

6
ρ2 + bρ+

a

15
ρ4
)
, I4 = ∂2Ṽ

(
v − φ̃

8
ρ2 +

b

2
ln ρ+

a

24
ρ4
)
.

Koeficienti νs, βs in novi ujemalni radiji so izračunani s pomočjo zahteve, da je rešitev
zvezna in odvedljiva, tako kot v primeru PO v enačbi (7.7).

Rešitev PO je formalno točna, ko gre N → ∞, a nelinearni popravki izboljšajo
konvergenco akcije, odvisno od potenciala in reda, do katerega delamo. Odbojna
akcija za splošen renormalizabilen potencial v D = 4 prostorskočasovnih dimenz-
ijah je dana na sliki 7.3, kjer parameter ϵ teče od skoraj degeneriranega minima
pri ϵ = 0.01 do velike separacije skal pri ϵ = 0.08. Nižje obarvane črte ustrezajo
popravljeni akciji, višje sive pa kažejo vodilni red PO za primerjavo.
Verjetnost za razpad lažnega osnovnega stanja v modelu s poljubnim številom real-
nih skalarnih polj φi je prav tako sorazmerna evklidski akciji S0 in je dana z (7.1).
Kot so nedavno pokazali v [112], ohranja odboj v prisotnosti večih skalarnih polj
O(D) invarianco, zato se evklidska akcija (7.3) naravno posploši na več polj,

S0 =
2π

D
2

Γ
(
D
2

) ∫ ∞

0

ρD−1 dρ

(
1

2

nφ∑
i

φ̇2
i + V (φi)

)
, (7.10)
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Slika 7.3: Odbojna akcija izboljšanega izračuna odboja, ki vključuje popravke
drugega reda.

kjer nφ pomeni število polj. Odbojna polja rešijo Euler-Lagrangeovo enačbo in robne
pogoje

φ̈i +
D − 1

ρ
φ̇i = ∂iV, φi(0) = φi0, φi(∞) = φ̃iN , φ̇i(0,∞) = 0, (7.11)

kjer je ∂iV odvod V po φi. Obravnava odboja potencialov z večimi polji je mnogo
težja, saj moramo integrirati sklopljen sistem diferencialnih enačb polja. Izhodišče
je začetna ocena rešitve,

φ̄is = v̄is +
2

D − 2

b̄is
ρD−2

+
4

D
āisρ

2, (7.12)

kjer je i indeks polja, i = 1, . . . , nf , in s = 1, . . . , N segmentna točka. Potem si
ogledamo razvoj okoli začetne ocene, da je φis(ρ) = φ̄is + ζis. To vodi do nabora
sklopljenih odbojnih enačb za vsako smer polja

¨̄φis +
D − 1

ρ
˙̄φis  

8āis

+ ζ̈is +
D − 1

ρ
ζ̇is  

8ais

=
dV

dφi
(φ̄+ ζ) .

(7.13)

Ideja je, da poiščemo rešitev razvoja polja ζ, ki je poligonskega tipa

ζis = vis +
2

D − 2

bis
ρD−2

+
4

D
aisρ

2, (7.14)

kjer ais ustreza vodilni konstanti razvoja gradienta potenciala okoli neke deformirane
poti, definirane z φ̃is+ ζ̃is. To je glavna razlika od primera z enim poljan: položaj v
prostoru polj ni fiksiran a priori, zato moramo dopustiti, da se segmentacija premika
v prostoru polj.

Parametre gradienta ais lahko lineariziramo v premiku ζ̃js s simetričnim povpreč-
jem

8ais ≃
dV

dφi

(
φ̃is + ζ̃is

)
− 8āis,

dV

dφi
≃
diṼs + diṼs+1 + d2ijṼsζ̃js + d2ijṼs+1ζ̃js+1

2
,
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Slika 7.4: Levo: Primer potenciala z dvema poljema, trajektorija odboja v modrem
in njena projekcija na dnu. Rdeča črtkana črta je pot, izračunana brez interakcij med
polji, polna rdeča črta pa je pot, ki minimizira potencial. Polna modra črta pred-
stavlja večpoljsko poligonsko rešitev v D = 4 z N = 15 segmentacijskimi točkami.
Desno: Nivojnice potenciala na levi. Ravna črtkana črta je izhodiščni nastavek, ki
povezuje dva minima s sedlom. Oba minima in sedlo so označeni s črnimi pikami,
polne črte so kasnejše iteracije, ki konvergirajo h končni poti, ki reši odbojne enačbe.
Vstavljena tabela prikazuje akcijo v primerjavi z drugimi pristopi.

kjer je potencial razvit preko vodilnega reda do O(ζ̃), da vključuje tudi drugi odvod
potenciala, ki je potreben za pravilen opis ukrivljenih poti v prostoru polj. Robni
pogoji prinesejo nabor izrazov ζis(Rs) = ζ̃is+1, ki se lahko zapiše kot sistem linearnih
enačb za novo pot, tega pa se dá hitro in učinkovito rešiti. To pot lahko uporabimo
kot novo izboljšano oceno za deformacijo poti in postopek ponavljamo, dokler se
trajektorija v prostoru polj neha spreminjati, torej je ζ̃is ≃ 0. To je enostavno
doseči po konstrukciji, saj smo ohranili (7.14) v poligonski obliki v ρ.

Da ponazorimo večpoljsko metodo PO, smo si ogledali enostaven dvopoljski po-
tencial V (φi) =

∑2
i=1 (−µ2

iφ
2
i + λ2iφ

4
i )+λ12φ

2
1φ

2
2+ µ̃

3φ2, ki ima več rešitev za vaku-
umske pričakovane vrednosti ⟨φi⟩ = vi, ki zlomijo simetrijo. Metastabilni minimi
so različnih globin V (v1) ̸= V (v2), kar omogoča lokalnemu lažnemu vakuumu, da
razpade v globalni minimum s premikanjem vzdolž odbojne rešitve v prostoru polj.
Rešitev v prostoru polj je prikazana na sliki 7.4, kjer je začetni nastavek ravna črta
z N = 15, ki povezuje minima. Rešitev PO konvergira k pravi vrednosti izjemno
hitro, z O(1) iteracijami, kot je razvidno s slike 7.4.

Iz vložene tabele na sliki 7.4 je jasno, da je akcija PO kar točna tudi že za N = 15
in doseže promilsko natančnost z N = 100. Glavni pogoj za izboljševanje točnosti
akcije je večanje števila segmentov za natančnejši opis longitudinalne odvisnosti.
Oblika poti v prostoru polj je manj pomembna in se ne spreminja dosti z večanjem
N . Vsi gornji rezultati so podobni za D = 3.

7.3 FindBounce: Paket za večpoljsko odbojno ak-
cijo

Na osnovi konstrukcije PO smo ustvarili robusten in uporabniku prijazen Mathematica
paket, imenovan FindBounce, ki implementira našo metodo. Ker je zasnovan na pod-
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lagi semi-analitične strukture, njegova računska zahtevnost raste linearno s številom
polj in številom segmentov. Predstavili bomo nekaj aplikacij in primerjav z drugimi
orodji, pri katerih je izvajalni čas v grobem maj kot 1 (2) sekundi za 10 (20) polj z
0.5% natančnostjo akcije.

Paket FindBounce je izdan v datotečnem formatu .paclet, ki vsebuje vso kodo,
dokumentacijo in druge potebne vire. Najnovejša različica datoteke .paclet je na
voljo na zbirališčni “releases” strani (https://github.com/vguada/FindBounce/
releases), namesti pa se jo tako, da se koda požene z Mathematica.

In[1]:= PacletInstall["full/path/to/FindBounce-X.Y.Z.paclet"]

To bo namestilo paket FindBounce v $UserBasePacletsDirectory. Ko je enkrat
nameščen, ga naložimo z Needs.

In[2]:= Needs["FindBounce‘"]

Za dostop do dokumentacije lahko v vmesniku zvezka odpremo pomočniško okno in
poiščemo FindBounce. Kot enostaven primer si oglejmo naslednji potencial:

In[3]:= V[x_]:= 0.5 x^2 + 0.5 x^3 + 0.12 x^4;

In[4]:= extrema = x/.Sort@Solve[D[V[x],x]==0];

Odboj s funkcijo FindBounce doblimo kot

In[5]:= bf = FindBounce[V[x],x,{extrema[[1]],extrema[[3]]}]

kjer je vrstni red minimov poljuben.

Out[5]=

Vse opcije imajo privzete vrednosti, rezultate pa lahko izvlečemo takole:

In[6]:= bf["Action"]

Out[6]= 73496.

Preučujemo lahko tudi poljubne čisto polilinearne potenciale, tako da priskrbimo
množico točk in njihovih vredosti potenciala {φ̃, V (φ̃)}:

FindBounce[{{x1,V1},{x2,V2},...}]

Za večpoljske potenciale izvrednotenje izvršimo s sledečo sintakso:

FindBounce[V[x,y,...],{x,y,...},{m1,m2}]
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Slika 7.5: Levo: Povprečje večpoljske odbojne akcije Ss, normalizirano na povprečje
z N = 400 točkami polja. Desno: Meritve časa v večpoljskem primeru v odvis-
nosti od števila polj za več točk polja. Polne črte smo dobili s FindBounce z
"ActionTolerance" → 10−4. Črtkane črte s pikami so meritve časa za druga ob-
stoječa orodja, glej besedilo za podrobnosti.

kjer sta m1,2 večpoljska minima.

Da lahko bolj cenimo učinkovitost metode, smo izračunalni odbojno akcijo za
različna števila oz. segmentov, kot je predstavljeno na desnem grafu na sliki 7.5.
Odbojno akcijo smo izpovprečili za različne parametre potenciala in polj ter jo
normirali na tisto z N = 400 točkami polja. Ugotovimo, da je izračunana akcija
natančna do približno 1% za 31 točk polja, kar je standardna nastavitev. Vendar
pa je mogoče prilagoditi privzete nastavitve FindBounce, kot so "FieldPoints" in
"ActionTolerance", da dobimo odbojno akcijo poljubno natančno za katerikoli tip
potenciala, kot je prikazano na desnem grafu na sliki 7.5.

Nato smo število polj višali od enega do dvajset, da smo ocenili računski čas,
kot je prikazano na levem grafu na sliki 7.5. Za primerjavo tu vključujemo rezultate
drugih metod, na voljo v literaturi: CosmoTransition(CT) [82], AnyBubble(AB) [86],
BubbleProfile(BP) [88] in SimpleBounce(SB) [177]. Računski čas FindBounce
narašča linearno s številom polj nφ, kot je prikazano s polnimi črtami, katerih barve
pomenijo različna števila točk polja. Še več, časovna zahtevnost FindBounce glede
na število točk polja narašča linearno tudi s številom polj.

Časovna primerjava z drugimi orodji je odvisna od sposobnosti CPU in op-
timizacijske učinkovitosti implementacije v danem programskem jeziku. V naši
postavitvi se izkaže, da je računski čas FindBounce za 10(20) polj manj kot 1(2)
sekundi za privzeto vrednost z 31 točkami polja. Izračun je bil opravljen z uporabo
standardnih Mathematica funkcij AboluteTiming in RepeatedTiming na namiznem
sistemu iMac 10.12.6, opremljenim s procesorjem Intel Core i7 (procesorska hitrost
3.4 GHz) in 16 GB DDR3 RAM-a (obratujočega pri 1.6 GHz).

Za druge implementacije so bile infomacije o časovnih meritvah vzete iz [88]
in [177]. Ugotovili smo, da je FindBounce primerljiv s temi orodji, kar se hitrostne
izvedbe tiče, to pa je prikazano tudi na desnem grafu na sliki 7.5. Posebej je
časovna zahtevnost z N = 10 točkami polja primerljiva z vrednostmi, citiranimi
v SimpleBounce in CosmoTransition. Treba je opozoriti, da so gornja orodja im-
plementirana v C++ in Python, medtem ko je FindBounce napisan v Mathematica
brez bistvene numerične optimizacije.
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7.4 Kvantne fluktuacije
V tej disertaciji prav tako opišemo postopek, ki izračuna prispevke višjega reda k
razpadni širini za vse gladke potenciale. To metodo tudi razširimo, da zaobjame
potenciale z nezveznimi prvimi odvodi, in eksplicitno izvrednotimo točno razpadno
širino na nivoju ene zanke za realno in kompleksno skalarno polje v bikvartičnem
potencialu z dvema minima na drevesnem redu.

Glavni namen tega razdelka je, da na kratko opišemo, kako izpeljati te rezultate,
začenši z dobro znanim eksplicitnim izrazom za razpadno širino vakuuma na nivoju
ene zanke [30, 69, 92, 93, 185, 186]

Γ

V
=

(
S0

2π

)2

Im

√
detOLV

det’O
e−S0 (1 +O (ℏ)) , (7.15)

kjer črtica v det’ nakazuje, da so ničelni lastni načini izpuščeni, števec pa je v
normalizaciji LV. Odbojno akcijo S0 bikvartičnega potenciala je enostavno izraziti
v zaključeni obliki.

Izpeljava je podobna metodi PO, pri kateri združimo dve kopiji dobro znane čisto
kvartične rešitve, kot je to podrobno izvedeno v razdelku §2.5.2. Nato za izračun
determinante iščemo produkt lastnih vrednosti γn operatorja O:

O = −□+ V ′′ (φ) , Oψn = γnψn , (7.16)

Tu je □ Laplaceov operator v ravnem 4D Evklidskem prostorčasu, V ′′(ρ) drugi odvod
potenciala, izvrednoten pri odboju, n pa skupni indeks za relevantna kvantna števila,
ki se pojavijo ob zadostitvi robnih pogojev ψn(0) = ψn(∞) = 0.

Ker je V ′′(φ(ρ)) simetričen na 4D rotacije, lahko ločimo radialni in orbitalni del
ψn, pri čemer je slednji opisan s hipersferičnimi harmoniki. Ti so lastne funkcije
operatorja celotne orbitalne vrtilne količine s kvantnimi števili l = 0, . . . ,∞, ki so
(l + 1)2-krat degenerirana [110].

Izkaže se, da se je namesto iskanja lastnih vrednosti γn lažje opreti na Gel’fand-
Yaglomov teorem [194], ki poveže razmerje determinant z razmerjem lastnih funkcij,
izvrednotenih v limiti ρ → ∞. Najti moramo torej lastne načine fluktuacijskega
operatorja

Olψl = −ψ̈l −
3

ρ
ψ̇l +

l(l + 2)

ρ2
ψl + V ′′ (φ)ψl = 0 , (7.17)

ki dajo logaritem razmerja determinant

ln

(
detO
detOLV

)
=

∞∑
l=0

(l + 1)2 lnRl (∞) , Rl ≡
ψl
ψLV
l

, (7.18)

kjer lahko robne pogoje za ψ prepišemo kot Rl(0) = 1 in R′
l(0) = 0.

Diferencialna enačba (7.17) je preprosta in enostavno numerično integrabilna
za vsak kotni način l. A vseh ne moremo naivno izračunati numerično, saj se v l
raztezajo do neskončnosti in potrebujemo vse, da lahko izvedemo renormalizacijo
ultravijoličnih divergenc. V literaturi so numerične metode, ki razrešijo te težave za
katerikoli renormalizabilen in gladek potencial [69, 97, 98, 99, 100, 101]. Obstajajo
tudi zaključeni izrazi za predfaktor, a le za nekaj zelo posebnih primerov: limito
tankega zidu [102, 103] (glej tudi [104]) in potencial kvartičnega tipa [9, 105].
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Mi prispevamo k skromnemu naboru zaključenih rešitev z analitičnim izračunom
rešitve bikvartičnega potenciala in tako najdemo prvo analitično rešitev potenciala
z dvema ločenima minima na drevesnem redu. Ta rešitev dá enostaven rezultat za
fluktuacijsko determinanto

Rl(∞) =
(l − 1)(l3 + c2l

2 + c1l + c0)

(l + 1)(l + 2)2(l + 3)
, (7.19)

s tremi koeficienti ci, ki so odvisni le od brezdimenzijskih razmerij x in y: c0 =
12(1+x)2x4y(1+x3y)2

(x4y−1)3
, c1 =

2x(1+(1+2x)x2y)(2+3x+(3+4x)x3y)
(x4y−1)2

, c2 =
1+4x+(4+7x)x3y

x4y−1
.

Vsi ci so realni in pozitivni, saj je x4y > 1, kar sledi iz konstrukcije potenciala.
Kot smo že omenili pri enačbi (7.15), predfaktor vključuje reducirano determinanto
in moramo odstraniti štiri ničelne lastne vrednosti, ki ustrezajo translacijski invari-
anci. Reducirani prispevek načinov z l = 1 je definiran kot

Olψl = γnψl =⇒ R′
1(∞) =

∏∞
n=2 γn∏∞
n=1 γ

LV
n

. (7.20)

Ta postopek je enostavno izvesti, ko so γn znane za glavna kvantna števila n, a z
Gel’fand-Yaglomovim pristopom so lastne vrednosti razvrščene glede na orbitalne
l načine. Zaradi tega je treba ničlo, ki izhaja iz translacij, previdno odstraniti,
saj pomnoži vse druge lastne vrednosti pri l = 1. To se lahko izvede pertur-
bativno [9, 182, 183, 193], tako da zamaknemo fluktuacijski potencial z majhnim
dimenzionalnim parametrom µ2

ε in poiščemo pripadajoče lastne funkcije:(
O1 + µ2

ε

)
ψε1 = 0 . (7.21)

Potem je razmerje determinant namesto padanja proti 0 podano z

Rε
1(∞) =

ψε1(∞)

ψLV1(∞)
≃ (µ2

ε + γ1)
∏∞

n=2 γn∏∞
n=1 γ

LV
n

= µ2
εR′

1(∞) , (7.22)

saj zamik µ2
ε ne spremeni γn>1 in γLV

n . Reducirani prispevek je tako

R′
1(∞) = lim

µ2ε→0

1

µ2
ε

Rε
1(∞) =

R2
2

24

(
3λ

8π2

)
S0x

6y2 , (7.23)

kjer je R2 znan iz odbojnega polja, izračunanega v (2.41).
Zdaj, ko smo odstranili ničlo pri l = 1, lahko nadaljujemo in določimo končni del

Rl iz (7.18) ter renormaliziramo pričakovano ultravijolično obnašanje za velike l. V
ta namen obravnavajmo generično obliko Rl, dano z razmerjem polinomov reda n
kot

Rl(∞) =
n∏
i=1

l + 1− ai
l + 1− bi

, (7.24)

ki krije rezultate iz (7.19) dokaj splošno. Števili ničel in polov morata biti enaki
zaradi normalizacije LV v (7.18). Da določimo končni del (7.18), najprej poiščimo
asimptotsko obnašanje Rl z razvojem logaritma determinante za velike l. Faktor
degeneracije raste kot l2, zato moramo lnRl razviti do reda 1/l3, da upoštevamo
kvadratične, linearne in logaritemske divergence.
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7.4. Kvantne fluktuacije

Izkaže se, da bo asimptotika zeta funkcije, uporabljene za renormalizacijo, dana
v potencah ν = l + 1, zato je priročno definirati Ra

l z razvojem (7.18) v 1/ν do
O (ν−3). To odštejemo od (7.18) in dobimo

Σf =
∞∑
ν=1

ν2 (lnRl(∞)− lnRa
l (∞)) , (7.25)

kar je konvergentno in izrazljivo v zaključeni obliki

Σf =
n∑
i=1

(
a3i
3
γE − ai

12

(
1 + 3ai − 6a2i

)
− ζ ′R (−2, 3− ai)− 2aiζ

′
R (−1, 3− ai)

− a2i ζ
′
R (0, 3− ai)− (a→ b)

)
+ lnR0(∞) + 4 lnR′

1(∞) .

(7.26)

Tu je ζ ′R (s, a) odvod generalizirane Riemannove zeta funkcije po s, γE pa je Eulerjeva
konstanta.

Sedaj moramo najti asimptotske člene Ra
l , ki smo jih odšteli v (7.25). V ta

namen uporabimo regularizacijo z zeta funkcijo [110, 196, 197, 198, 199, 200, 201],
pri kateri je renormalizacija izvedena z analitičnim nadaljevanjem te funkcije, ki
izhaja iz njene analitičnosti. Ta postopek poveže logaritem funkcijske determinante
z odvodom zeta funkcije kot

ln

(
detO
detOLV

)
= −ζ ′(0) = −ζ ′f (0)− ζ ′a(0) . (7.27)

Končni člen bikvartičnega potenciala smo že izvrednotili v (7.26): −ζ ′f (0) = Σf ,
asimptotski renormalizirani člen ζ ′a(0) pa je dan z

ζ ′a(0) =
∑
s

1

8

∫ ∞

0

dρ ρ3V ′′2
s

(
ln
(µρ
2

)
+ γE + 1

)
H ((−1)s (ρ−RT ))

− (µVRT )
2

16
+

(µVRT )
3

24

(
1− 3

µ2
V

(V ′′
1 + V ′′

2 )
⏐⏐
RT

)(
ln

(
µRT

2

)
+ γE + 1

)
.

(7.28)

kjer je µ renormalizacijska skala. Odvod bikvartičnega potenciala tu sledi iz (2.40):

V ′′ = V ′′
s (ρ)H ((−1)s(ρ−RT ))− µV δ(ρ−RT ) , (7.29)

kjer je V ′′
s = 3(λs (φ− (−1)svs)

2), φs = (−1)svs +
√
8/λsRs/ (R

2
s − ρ2) in µV =

(λ1v
3
1 + λ2v

3
2) /φ̇(RT ). Delta funkcija tukaj pride iz nezveznosti V ′ v izhodišču. Ti

rezultati se strinjajo z (5.12) za zvezen V ′′ z µV = 0 in V ′′
LV = 0 ter tudi poustvarijo

SM [9] v primeru navadnega kvartičnega potenciala. To pokaže, da se pristop s
Feynmanovimi diagrami ujema s formalizmom zeta funkcije.

Netrivialen način za kontrolo pravilnosti rezultatov se tiče krajšanja divergenc,
zato preverimo, da se v Σf , podani s (7.26), členi, ki so sorazmerni γE, res odštejejo
s tistimi v ζ ′a(0) zgoraj.

Končni rezultat za celotno rapadno širino na enoto 4D volumna je

Γ

V
=

(
S0

2π

)2

e−S0+
1
2
ζ′(0) , (7.30)

kjer S0 pride iz (2.42), ζ ′(0) pa je vsota (7.26) in (7.28). Zaključena oblika tega
rezultata je posebej uporabna pri študiju obnašanja razpadne širine v limiti tanke
stene, pa tudi za separacijo x ≫ 1 pri velikih skalah, ki ustreza dokaj ploščatemu
potencialu.
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Razširjeni povzetek

7.5 Sklepne opombe
V tej disertaciji smo razširili razumevanje razpada lažnega vakuuma v treh vidikih,
tako konceptualnih kot praktičnih. Vsebuje novo metodo za izračun odbojev v
večpoljskih potencialih, uporabniku prijazen Matematica paket in izvrednotenje
prispevkov višjega reda k predfaktorju z rezultatom v zaključeni obliki.

Metoda poligonskih odbojev nudi analitičen vpogled v večpoljske fazne prehode
vakuuma in predfaktorja. Njen robusten pristop se izogne običajni popolnoma nu-
merični strelski metodi z uporabo nabora analitičnih rešitev, ki aproksimirajo po-
tencial do željene natančnosti, zato je izračun odboja bolj stabilen kot z drugimi
paketi, ki so na voljo v literaturi, še posebej v limiti tanke stene, kjer popolnoma
numerične metode odpovedo.

Izdali smo Mathematica paket, imenovan FindBounce, ki izračuna odbojno ak-
cijo pri natančnosti 1% v 3 sekundah za potencial z 20 polji. Konkurečen je drugim
programom, ki so na voljo, nudi pa izgled in občutek okolja Mathematica ter vse-
buje zbirko enostavnih primerov in primerjalnih ter časovnih merilnih orodij. Semi-
analitične izhodne podatke paketa FindBounce lahko izkoristimo, da tudi predfaktor
in poznejši razvoj mehurčka dobimo semi-analitično.

Na koncu smo se osredotočili na kvantne korekcije razpadne širine vakuuma.
Ugotovili smo, da je treba vključiti prispevke, da dobimo konsistenten in natančen
izračun mehurčka nukleacije. Predstavili smo prvi popoln analitičen rezultat do
nivoja ene zanke za razpadno širino v potencialu z dvema minima na drevesnem
redu z uporabo bikvartičnega potenciala. Pokazali smo, da izračun prefaktor za
nekatere razpone parametrov postane neperturbativen, ko imamo opravka z veliko
separacijo skal.

Zgornji rezultati so fundamentalni v mojem trenutnem napredovanju proti splošni
semi-analitični metodi izračuna predfaktorja za poljuben potencial in razširitvi paketa
FindBounce s funkcionalnostjo za izračun spektra gravitacijskih valov v širokem
naboru modelov onkraj SM.
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