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Numerical simulation of the low-energy dynamics of quarks and gluons is now feasible based on
the fundamental theory of strong interaction, i.e. quantum chromodynamics (QCD). With QCD
formulated on a 4D hypercubic lattice (called lattice QCD or LQCD), one can simulate the QCD
vacuum and hadronic excitations on the vacuum using teraflop-scale supercomputers, which
have become available in the last decade. A great deal of work has been done on this subject by
many groups around the world; in this article we summarize the work done by the JLQCD and
TWQCD collaborations since 2006. These collaborations employ Neuberger’s overlap fermion
formulation, which preserves the exact chiral and flavor symmetries on the lattice, unlike other
lattice fermion formulations. Because of this beautiful property, numerical simulation of the
formulation can address fundamental questions on the QCD vacuum, such as the microscopic
structure of the quark–antiquark condensate in the chirally broken phase of QCD and its relation
to SU(3) gauge field topology. Tests of the chiral effective theory, which is based on the assump-
tion that the chiral symmetry is spontaneously broken in the QCD vacuum, can be performed,
including the pion-loop effect test. For many other phenomenological applications, we adopt the
all-to-all quark propagator technique, which allows us to compute various correlation functions
without substantial extra cost. The benefit of this is not only that the statistical signal is improved
but that disconnected quark-loop diagrams can be calculated. Using this method combined with
the overlap fermion formulation, we study a wide range of physical quantities that are of both
theoretical and phenomenological interest.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Introduction

Since the 1970s, quantum chromodynamics (QCD) has been understood as the fundamental theory
of strong interaction, not just because it contains the necessary three internal degrees of freedom
of quarks (called color) but because its scaling property at high energies (a few GeV or higher)
precisely agrees with the experimental data, i.e. the asymptotic freedom. Since then, experimental
data supporting QCD, including its quantum effects at high-loop orders, have been generated. These

© The Author(s) 2012. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received April 6, 2012; Accepted June 7, 2012; Published September 15, 2012

 at C
E

R
N

 L
IB

R
A

R
Y

 on Septem
ber 27, 2013

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 
 at C

E
R

N
 L

IB
R

A
R

Y
 on Septem

ber 27, 2013
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

 at C
E

R
N

 L
IB

R
A

R
Y

 on Septem
ber 27, 2013

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 
 at C

E
R

N
 L

IB
R

A
R

Y
 on Septem

ber 27, 2013
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

 at C
E

R
N

 L
IB

R
A

R
Y

 on Septem
ber 27, 2013

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 
 at C

E
R

N
 L

IB
R

A
R

Y
 on Septem

ber 27, 2013
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

 at C
E

R
N

 L
IB

R
A

R
Y

 on Septem
ber 27, 2013

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 
 at C

E
R

N
 L

IB
R

A
R

Y
 on Septem

ber 27, 2013
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

 at C
E

R
N

 L
IB

R
A

R
Y

 on Septem
ber 27, 2013

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 
 at C

E
R

N
 L

IB
R

A
R

Y
 on Septem

ber 27, 2013
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

 at C
E

R
N

 L
IB

R
A

R
Y

 on Septem
ber 27, 2013

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 
 at C

E
R

N
 L

IB
R

A
R

Y
 on Septem

ber 27, 2013
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

 at C
E

R
N

 L
IB

R
A

R
Y

 on Septem
ber 27, 2013

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 
 at C

E
R

N
 L

IB
R

A
R

Y
 on Septem

ber 27, 2013
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

 at C
E

R
N

 L
IB

R
A

R
Y

 on Septem
ber 27, 2013

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 
 at C

E
R

N
 L

IB
R

A
R

Y
 on Septem

ber 27, 2013
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

 at C
E

R
N

 L
IB

R
A

R
Y

 on Septem
ber 27, 2013

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 
 at C

E
R

N
 L

IB
R

A
R

Y
 on Septem

ber 27, 2013
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

 at C
E

R
N

 L
IB

R
A

R
Y

 on Septem
ber 27, 2013

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 
 at C

E
R

N
 L

IB
R

A
R

Y
 on Septem

ber 27, 2013
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

 at C
E

R
N

 L
IB

R
A

R
Y

 on Septem
ber 27, 2013

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 
 at C

E
R

N
 L

IB
R

A
R

Y
 on Septem

ber 27, 2013
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

 at C
E

R
N

 L
IB

R
A

R
Y

 on Septem
ber 27, 2013

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 
 at C

E
R

N
 L

IB
R

A
R

Y
 on Septem

ber 27, 2013
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

 at C
E

R
N

 L
IB

R
A

R
Y

 on Septem
ber 27, 2013

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 
 at C

E
R

N
 L

IB
R

A
R

Y
 on Septem

ber 27, 2013
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

 at C
E

R
N

 L
IB

R
A

R
Y

 on Septem
ber 27, 2013

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 
 at C

E
R

N
 L

IB
R

A
R

Y
 on Septem

ber 27, 2013
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

 at C
E

R
N

 L
IB

R
A

R
Y

 on Septem
ber 27, 2013

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 
 at C

E
R

N
 L

IB
R

A
R

Y
 on Septem

ber 27, 2013
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

 at C
E

R
N

 L
IB

R
A

R
Y

 on Septem
ber 27, 2013

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 
 at C

E
R

N
 L

IB
R

A
R

Y
 on Septem

ber 27, 2013
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

 at C
E

R
N

 L
IB

R
A

R
Y

 on Septem
ber 27, 2013

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 

http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/


PTEP 2012, 01A106 S. Aoki et al.

experiments are essentially probing the perturbative aspects of QCD at high energy, while the non-
perturbative dynamics at low energy (less than a GeV) still remains a theoretically difficult problem,
and quantitative tests against experimental data are quite limited. The key properties of QCD at low
energy are the confinement of quarks inside the hadrons and spontaneous chiral symmetry breaking in
the QCD vacuum; the dynamics of hadrons reflects these fundamental properties. A solution for QCD
must therefore reproduce these aspects if QCD is truly the fundamental theory of strong interaction
at low energy scales too.

Solving QCD is difficult mainly because its vacuum is so complicated. There is no single dominant
gauge field configuration (like the flat, perturbative vacuum in QED); it is not completely random
either. There have been a lot of theoretical ideas for solving the QCD vacuum, including those based
on the instanton, which is a classical solution of non-Abelian gauge theory, but without full success.

Lattice QCD is one of the methods for regularizing ultraviolet divergences and thus mathematically
defining QCD [1]. One introduces a 4D hypercubic lattice and puts the physical degrees of freedom
(the quark and gluon fields) on the lattice sites or on the links connecting two neighboring sites.
The SU(3) gauge symmetry is preserved on the lattice, while the rotational and Lorentz invariances
are manifestly violated. An important property of lattice QCD is that, unlike the commonly used
dimensional regularization, whose definition involves perturbation theory, lattice regularization is
well-defined in both the ultraviolet and infrared regimes. Since the regulated theory is mathematically
well-defined, direct numerical calculation of the path integral through which the theory is quantized
is possible, in principle. Thus, lattice QCD provides a theoretically valid method to perform a first-
principles calculation of QCD, including its non-perturbative dynamics, at low energy.

The lattice QCD calculation requires huge computational resources, especially to incorporate the
quark-loop effects in the path integral. Since the 1980s, lattice QCD has used the high-end super-
computers available at the time. It is remarkable that researchers of lattice QCD have even developed
machines that lead the entire field of supercomputing. CP-PACS, developed by the University of
Tsukuba, is one such example [2,3]. It won first place in the TOP500 supercomputer list in 1996.

The state of the art of lattice QCD simulations may be summarized as follows: “Realistic sim-

ulation of QCD to study the static properties of hadrons is now feasible”. This means that the
inclusion of up, down, and strange sea quarks has become a standard at small enough lattice spacing
(a � 0.1 fm) on large enough volume (L � 2.5 fm) to hold a single hadron. The low-energy hadron
spectrum, for instance, has been well reproduced by several lattice groups (for a recent review, see,
for instance, [4]).

Although the recent progress in lattice QCD is impressive, it still has many limitations. One of these
is the multi-scale problem. The scales that may enter in QCD phenomena span wide ranges: up and
down quark masses (∼5 MeV), the strange quark mass (∼100 MeV), the QCD scale (∼300 MeV),
the charm quark mass (∼1.5 GeV), and the bottom quark mass (∼4.5 GeV). If one injects momenta
into the system by electromagnetic probes, for instance, there are additional scales associated with
them. Treating light quarks requires more computational cost that grows as 1/m2−3

q with mq the light
quark mass; reducing the lattice spacing to treat heavy quarks needs more resources that typically
scale as 1/a7 with a the lattice spacing. Therefore, a reasonable strategy for practical applications
is to use “effective theories” such as the chiral perturbation theory (χPT) for light quarks and the
heavy quark effective theory (HQET) for heavy quarks. The light and heavy quark masses for which
these effective theories are valid have to be carefully investigated using lattice QCD calculations.

The main focus of this article is the spontaneously broken chiral symmetry in the QCD vacuum.
In massless three-flavor QCD, there are SU (3)L ⊗ SU (3)R ⊗ U (1)V flavor symmetries (U (1)A is
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violated by the axial anomaly), among which SU (3)L ⊗ SU (3)R is broken spontaneously down to
SU (3)V . Associated with this, pions, kaons, and η mesons become massless as Nambu–Goldstone
(NG) bosons. (To be more precise, η is a mixture of an NG particle η8 and a flavor-singlet pseu-
doscalar meson η1 due to a finite non-negligible strange quark mass. The flavor-singlet meson stays
massive after spontaneous chiral symmetry breaking.) The dynamics of these NG bosons is well
described by the chiral effective theory [5], in which the energy scale of the massless NG modes is
separated from other dynamical scales of QCD solely relying on the symmetry breaking pattern. The
small perturbation from this low-energy limit can be systematically included in the effective theory,
i.e. χPT [6], albeit with a large number of unknown parameters (low energy constants (LECs)). Using
lattice QCD, it should be possible to reproduce these well-known (but not explained from QCD)
phenomena and to determine the unknown parameters in χPT starting from the QCD Lagrangian.

Obviously, chiral symmetry plays a key role in describing the dynamics of spontaneous chiral
symmetry breaking. On the other hand, there is a well-known problem in realizing chiral symmetry
on the lattice. Namely, there is a mathematical theorem which states the non-existence of lattice
fermion formulations that preserve both chiral and flavor symmetry at once (the Nielsen–Ninomiya
theorem [7? ,8]), so that one has to choose a formulation which breaks either chiral (Wilson fermion)
or flavor (staggered fermion) symmetry. Since such a key symmetry is violated on the lattice, the
study of the phenomena relating to chiral symmetry breaking is rather obscured.

This unpleasant situation was drastically changed, at least in principle, by a new class of lattice
fermions that preserve exact chiral symmetry without spoiling flavor symmetries, i.e. the domain-
wall [9–11] and overlap [12,13] fermions. The key observation is that they satisfy a modified chiral
symmetry, which is different from the continuum one by an amount that vanishes in the continuum
limit [14]. In this way, the Nielsen–Ninomiya theorem can be avoided, and one can investigate sponta-
neous chiral symmetry breaking on the lattice starting with the manifestly chirally symmetric lattice
action.

The JLQCD and TWQCD collaborations employed the overlap fermion to simulate dynamical
quarks in 2- and 2 + 1-flavor QCD. (Here, 2-flavor QCD stands for the system with up and down
quarks in the sea; 2 + 1-flavor QCD contains relatively heavy strange quarks in addition.) Although
the numerical cost required to simulate QCD with the overlap fermion is much higher compared to
other traditional fermion formulations (Wilson or staggered), simulations on reasonably large lattices
can be made possible by applying recent theoretical and algorithmic improvements.

In this article we review the work done using this setup. In Sect. 2, the overlap fermion formulation
is described in some detail. In particular, the relation to the topological charge of the SU(3) gauge
field is emphasized. In order to make the overlap fermion simulation practically feasible, we intro-
duce a scheme to fix the global topological charge of the lattice. The relevance and irrelevance of this
simulation scheme is also explained. Sect. 3 describes the implementation of the overlap fermion in
numerical simulations. The all-to-all quark propagator technique is also introduced. In Sect. 4 we
discuss chiral symmetry breaking. Here, the Banks–Casher relation [15] plays a crucial role in quan-
tifying the existence and strength of symmetry breaking. More detailed analysis on its finite volume
and finite quark mass scaling can be done with the help of chiral effective theory applied on a finite
volume. In Sect. 5 we summarize various physics outputs from the projects, including the analysis of
pion and kaon masses and decay constants, pion and kaon form factors, neutral kaon mixing, extrac-
tion of physical quantities from V V − AA vacuum polarization, π0 → γ γ decay amplitude, and the
nucleon sigma term and strange quark content. The simulation has also been used to determine the
strong coupling constant through the perturbative expansion of the vacuum polarization function at
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high energies as discussed in Sect. 6. An extension to the study of finite temperature is discussed in
Sect. 7. Finally, a summary and future prospects are given in Sect. 8.

2. Lattice fermion formulation with exact chiral symmetry

In this section we describe the lattice fermion formulation that preserves chiral symmetry and discuss
its relation to the topology of the gauge field configuration.

2.1. Overlap fermion formulation

The massless overlap-Dirac operator Dov(0) [12,13] is defined by

Dov(0) = m0[1 + γ5sgn(HW (−m0))] (2.1)

with the hermitian Wilson–Dirac operator HW (−m0) = γ5 DW (−m0) and a matrix sign function sgn.
Using the definition of the conventional Wilson–Dirac operator DW (−m0)with a large negative mass
term −m0 of the cutoff order 1/a, one can show that Dov(0) in (2.1) approaches the continuum Dirac
operator /D in the limit of small lattice spacing a.

The overlap-Dirac operator Dov(0) satisfies the Ginsparg–Wilson relation [16]

Dov(0)γ5 + γ5 Dov(0) = 1

m0
Dov(0)γ5 Dov(0), (2.2)

with which one can show that the fermionic lattice action S f = ∑
x ψ̄x Dov(0)ψx has a symmetry

under the transformation [14] ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
δψ = γ5

(
1 − 1

2m0
Dov(0)

)
ψ,

δψ̄ = ψ̄

(
1 − 1

2m0
Dov(0)

)
γ5.

(2.3)

This transformation coincides with the normal chiral transformation δψ = γ5ψ , δψ̄ = ψ̄γ5 in the
limit of vanishing lattice spacing. The Ward–Takahashi identities derived from this transformation
have the same form as the continuum ones after taking account of an appropriate modification of the
γ5 matrix. It may thus be considered as the desired chiral symmetry in practical applications.

Once the quark mass mq is introduced, the overlap-Dirac operator is modified as

Dov(mq) =
(

1 − mq

2m0

)
Dov(0)+ mq . (2.4)

This form guarantees that the discretization effect of O(a) vanishes after a “field rotation” of the
fermionic field in the observable. The leading discretization effect is thus of order a2.

2.2. Exact chiral symmetry and topological charge

Because of the Ginsparg–Wilson relation (2.2) and the γ5-hermiticity property D†
ov(0) = γ5 Dovγ5,

an eigenvalue λov of Dov(0) satisfies λov + λ∗
ov = λovλ

∗
ov/m0. Namely, the eigenvalues lie on a

circle defined by |1 − λov/m0|2 = 1 on the complex plane. Furthermore, the eigenvalues always
appear together with their complex conjugates except for the exact zero modes λov = 0 and the real
modes λov = 2m0. These zero modes are chiral, i.e. either right-handed γ5ψ0 = +ψ0 or left-handed
γ5ψ0 = −ψ0.

In continuum QCD, zero modes of the Dirac operator /D({A}) reflect the topological structure of the
background gauge field {A} on which /D({A}) is defined. In fact, the Atiyah–Singer index theorem
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tells us that the numbers of right-handed and left-handed zero modes, nR and nL respectively, are
related to the topological charge Q of the background gauge field as nL − nR = Q.

On the lattice, the definition of the topological charge Q is not unique, but by defining the topologi-
cal charge density q as q = 1

2 tr[γ5 Dov(0)] on the lattice using the overlap-Dirac operator Dov(0), one
can write the index theorem nL − nR = Q with a natural definition on the global topological charge
Q = ∑

x qx . As anticipated, the left-hand side, nL − nR, appears from the Jacobian under the chiral
transformation (2.3), while the right-hand side, q, can be shown to correspond to the topological
charge density

q = 1

32π2 εμνρσ tr[FμνFρσ ] (2.5)

in the continuum limit. Namely, for a sufficiently smooth gauge configuration, the topological charge
density defined through tr[γ5 Dov(0)] reproduces the form εμνρσ tr[FμνFρσ ] up to order a2 discretiza-
tion effects [17]. The overlap-Dirac operator thus provides a proper definition of the topological
charge on the lattice.

2.3. Physics at fixed topological charge

The ground state of QCD must be the θ vacuum, which is a superposition of “vacua” carrying dif-
ferent global topological charges, in order to ensure the cluster decomposition property of physical
observables. This means that the lattice QCD simulation must efficiently sample different topological
sectors to reproduce the QCD vacuum.

This requirement is, however, not always easy to meet. Most of the present unquenched lattice QCD
simulations use the hybrid Monte Carlo algorithm [18] which is based on a continuous change of the
gauge configuration according to a molecular-dynamics-type evolution equation. Since the topologi-
cal charge only has integer values, transition from one topological charge sector to another necessarily
encounters a discontinuity along the evolution, which is not easy to trace with the finite step size
introduced to approximate the molecular-dynamics evolution. With the lattice fermion formulations
that explicitly violate chiral symmetry, this problem manifests itself only near the continuum limit,
where the discontinuity on the border of the topological sectors gradually emerges, which is indeed
observed in numerical simulations [19,20]. With the overlap-Dirac operator, the problem of a hardly
changing topological charge already exists at finite lattice spacings, and a method to treat it has been
developed (called the reflection/refraction trick) [21,22], but was found to be extremely costly to
apply to large-scale simulations.

In view of this situation, one promising approach, for lattice QCD in general and for dynamical
overlap fermions in particular, is to fix the global topological charge Q during the hybrid Monte Carlo
simulation and try to extract physics from there. This is not ridiculous, because it is known that the
fixed Q effect is a finite volume effect which vanishes in the infinite volume limit. A theoretical basis
for estimating the finite volume effect when one extracts the physics in the θ vacuum from that at fixed
topology is proposed in [23], extending the work by Brower et al. [24]. In the following, we briefly
review the formalism. Interestingly, using this method, we can extract the topological susceptibility,
which measures the strength of the topological excitations, from a fixed topology simulation, as
discussed in Sect. 4.3.

Consider the partition function in the θ vacuum defined by

Z(θ) ≡ 〈θ |θ〉 = exp[−V E(θ)], (2.6)
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with E(θ) the vacuum energy density. The partition function at a fixed topological charge Q is a
Fourier transformation of Z(θ)

Z Q = 1

2π

∫ π

−π
dθ Z(θ) exp(iθQ) = 1

2π

∫ π

−π
dθ exp(−V F(θ)), (2.7)

where F(θ) ≡ E(θ)− iθQ/V .
For a large enough volume, we can evaluate the θ integral in (2.7) by saddle point expansion. The

key is the fact that θ = 0 is the global minimum of the function E(θ), which follows from the exact
inequality Z(0) > Z(θ) by Vafa and Witten [25]. Assuming analyticity of E(θ) near θ = 0, we can
expand E(θ) as E(θ) = χt

2 θ
2 + O(θ4), where the topological susceptibility χt at θ = 0 is defined by

χt = 〈0|Q2|0〉
V

= d2 E(θ)

dθ2

∣∣∣∣
θ=0

. (2.8)

The saddle point θc is given by θc = i(Q/χt V )(1 + O(δ2)) with δ ≡ Q/(χt V ). Neglecting expo-
nentially suppressed terms and expanding in powers of 1/V , we obtain

Z Q = 1√
2πχt V

exp

[
− Q2

2χt V

] [
1 − c4

8Vχ2
t

+ O

(
1

V 2 , δ
2
)]
. (2.9)

This shows that, as long as δ 
 1 (equivalently, Q 
 χt V ), the distribution of Q becomes Gaussian.
This analysis implies that, for small values of Q or δ, the saddle point is close to θ = 0, which

guarantees that the physics at fixed topology with small values of Q is almost the same as that in the
θ = 0 vacuum up to higher order corrections in 1/V . Thus any physical quantity at fixed topology
can always be expressed in terms of physical quantities in the θ = 0 vacuum plus 1/V correction
terms, which are also physical quantities in the θ = 0 vacuum. By expressing physical quantities at
θ = 0 in terms of those at fixed topology with a systematic 1/V expansion, we can derive a general
formula to extract physics at the θ vacuum from fixed topology simulations.

Similarly, consider an arbitrary correlation function in the θ vacuum G(θ) = 〈θ |O1O2 · · · On|θ〉.
The corresponding correlation function at a fixed topological charge Q is given, for instance if G is
C P-even, by

Geven
Q = G(0)+ G(2)(0)

1

2χt V

[
1 − Q2

χt V
− c4

2χ2
t V

]
+ O(V −2), (2.10)

where G(2)(0) stands for the second derivative of G(θ) with respect to θ .
The formula (2.10) provides an estimate of the finite size effect due to the fixed topological charge.

The leading correction is of order O(1/V ). For a more quantitative estimate, one needs to evaluate
G(n)(0), which is not possible in general. An exception is the pionic quantities for which χPT may
be used. In χPT, one can see that the θ angle appears as a complex phase of the quark mass. The θ
dependence of the pion mass should then be m2

π(θ) = m2
π(0) cos(θ/N f ) at the leading order. Beyond

the leading order, an estimate is possible along the same lines, though some LECs are involved [26].
Even when such theoretical knowledge is not available, one can still fit the lattice data obtained at

different Q to finally extract G(0), in principle. For some physical quantities we are going to discuss
in this article, we calculate them at two different Q in order to investigate their Q dependence.
Except for pionic quantities, we expect that the fixed Q effect is sub-leading in general, since the θ
dependence of any physical quantity can enter only through the quark mass mqeiθ/N f . The counting
of O(1/V ) applies only for this quark mass dependence. In fact, in our calculations we found no
significant Q dependence except for the pion mass and decay constant at the smallest quark masses.
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An interesting application of the formula (2.10) is the one for a correlation function of flavor-
singlet pseudoscalar densities. At a fixed topology, a constant piece remains at long distances, which
can be used to extract topological susceptibility as discussed in Sect. 4.3.

3. Simulation strategy

This section is largely devoted to the technical aspects of the numerical simulations. Those read-
ers who are not interested in these techniques might want to jump to Sect. 4, where physics
discussions start.

More detailed descriptions may be found in [27–29].

3.1. Implementation of the overlap fermion

The overlap-Dirac operator Dov(0) defined in (2.1) involves a matrix sign function sgn applied on
the kernel operator HW (−m0). In order to calculate the sign function exactly one has to calculate all
eigenvalues and eigenvectors of HW (−m0), which requires a numerical cost of O(V 3) for a lattice
of volume V and thus is clearly impractical. Instead, we use a combination of direct calculation of
the eigenmodes and rational approximation, which is a standard choice for the implementation of the
overlap-Dirac operator at present (see, for instance, [30]). Namely, we decompose the sign function as

sgn(HW (−m0)) =
Nev∑
i=1

sgn(ωi )ui u
†
i + ε(HW (−m0))Phigh, (3.1)

where Nev is the number of the eigenvalues ωi of HW (−m0) below some threshold (|ωi | < ωth) and
ui denotes the corresponding eigenvector. The function ε(x) is a rational approximation to sgn(x)
written as

ε(x) = x

⎛
⎝p0 +

Npole∑
l=1

pl

x2 + ql

⎞
⎠ , (3.2)

which is applied after projecting out the low-lying modes by a projection operator Phigh = 1 − Plow

with Plow = ∑Nev
i=1 ui u

†
i . The numerical coefficients pl and ql in (3.2) can be determined to achieve

the best approximation for a given interval |x | ∈ [xmin, xmax] according to the min–max criterion
(the Zolotarev approximation). The lower limit xmin of the approximation is fixed to the threshold
ωth and the upper limit is set slightly above the highest eigenvalue of HW (−m0), which is rather stable
over Monte Carlo history. The approximation of the sign function can be made exponentially better
by increasing the number of the poles Npole in (3.2). We control the precision of the sign function
approximation to be better than 10−7 at every step of the simulation. The number of poles Npole thus
required is around 8 or 10.

The rational approximation (3.2) applied for HW (−m0) requires Npole inversions of the matrices
HW (−m0)

2 + ql . These inversions can be calculated at once using the multi-shift conjugate gradient
(CG) algorithm, with which the numerical cost for obtaining Npole is essentially the same as the single
inversion with the smallest shift ql . Overall, the computational cost of multiplying the overlap-Dirac
operator is typically 100–1,000 times higher than that for the standard Wilson–Dirac operator. This
is the cost for realizing the exact (or very precise, at the level of 10−7) chiral symmetry on the lattice.

A further speed-up is possible by introducing the so-called 5D solver. This introduces a block
matrix of 4D matrices in each entry, some of which include the kernel operator HW (−m0). The
5D matrix is designed such that its inversion produces an inverse of 4D Dov(mq) [31–34]. In our
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experience, this method is faster than the direct method for applying (3.2), which requires nested CG
loops for an inversion of Dov(mq), by a factor of 5–8.

3.2. Low-mode spectrum of HW and topology fixing

The rational approximation (3.2) of the sign function becomes more difficult as the range of the
approximation [xmin, xmax] is made wider, i.e. one needs larger Npole to achieve the same precision.
The setting of the threshold ωth = xmin therefore has a direct impact on the numerical cost. We wish
to raise ωth as much as possible, but the cost for calculating and subtracting the low-lying modes of
HW (−m0) below ωth becomes more significant then, if there are a number of such low-lying modes.
The density of the low-lying modes is thus related to the numerical cost of simulating the overlap
fermion.

The low-lying modes of HW (−m0) could also be an obstacle for the definition of the overlap-Dirac
operator. In the absence of such low modes, the locality of the overlap-Dirac operator is mathemati-
cally established [35], even though the sign function potentially produces a non-local contribution. In
the typical gauge configurations corresponding to a lattice spacing around 0.1 fm, however, there is
non-zero density of low modes observed. Then, the locality of the overlap-Dirac operator, which is a
necessary fundamental property for any lattice Dirac operator, is a delicate and dynamical problem,
i.e. one has to require that the low-lying eigenmodes are themselves localized [36–38]. We therefore
want to avoid the low modes of HW (−m0) as much as possible, though the locality is satisfied in our
simulation setup [39].

In our work we introduce unphysical fermionic degrees of freedom that produce a factor

det[HW (−m0)
2]

det[HW (−m0)2 + μ2]
(3.3)

in the path integral measure [40]. The numerator corresponds to two copies of Wilson fermions with
a mass of cutoff order −m0; the denominator represents bosonic degrees of freedom with a twisted
mass term μ. The overall effect of (3.3) is to suppress the near-zero modes of HW (−m0) while
high modes above μ are essentially unaffected. In particular, the exact zero modes of HW (−m0) are
strictly prohibited. With this unphysical term the low modes are highly suppressed and the simulation
of the overlap fermion is made numerically feasible.

An important side effect of (3.3) is that it freezes the global topological charge in the Monte Carlo
history, since the topology change necessarily associates a change of sign of a near-zero mode of
HW (−m0), according to the usual argument of the spectral flow. We therefore have to take account
of the effect of fixed topological charge on physical quantities. This is already described in Sect. 2.3.

3.3. Simulation setup

Numerical simulations by the JLQCD and TWQCD collaborations are performed for both 2- and
2 + 1-flavor QCD.

Two-flavor runs are carried out on 163 × 32 lattices at a lattice spacing a � 0.12 fm. Two quark
flavors corresponding to up and down quarks are degenerate in mass and cover the range of ms/6–ms

(ms is the physical strange quark mass) with six independent runs. Simulations are mainly done in the
trivial topological sector Q = 0, and Q dependence is tested at one of the sea quark masses (∼ ms/2)
with Q = −2 and −4.

More realistic 2 + 1-flavor runs are carried out on 163 × 48 and 243 × 48 lattices at a lattice spac-
ing a � 0.11 fm. Degenerate up and down quarks are taken in the range ms/5–ms for five independent
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runs; the strange quark mass is fixed at two values sandwiching the physical strange quark mass.
Again, the main runs are in the Q = 0 sector except for a run with the lightest up and down quark
mass for which we also took Q = 1. The larger volume simulations on the 243 × 48 lattice are car-
ried out at the two lightest up and down quark masses, where the finite volume effect would be most
significant.

In addition to these main runs, which are suitable for calculations of most physical quantities at
zero temperature, we generated lattices in an unusual setup, i.e. in the ε-regime. The ε-regime is
defined as a parameter region where the quark mass is taken at a very small value on a finite volume
lattice, so that the Compton wavelength of the pion is made longer than the extent of the box. Pion
dynamics in this setup can be analyzed using chiral perturbation theory, and a comparison with the
lattice data may provide a new opportunity to determine some LECs. In such studies, the exact chiral
symmetry realized by the overlap fermion plays a crucial role in greatly simplifying the theoretical
analysis.

We carried out dedicated runs to generate lattices in this ε-regime. For both 2- and 2 + 1-flavors
we set the up and down quark mass around 3 MeV, which is even lower than their physical values,
on a lattice of size 163 × 32 and 163 × 48, respectively. We refer to these lattices as ε-regime runs
in the following.

3.4. Measurement techniques

As already mentioned, the overlap-Dirac operator has a property that its eigenvalues lie on a circle
on the complex plane (1 − λov/m0)(1 − λ∗

ov/m0) = 1. In the limit of vanishing lattice spacing or
for the low-lying modes |λov| 
 1/a, the eigenvalues become pure imaginary as in the continuum
theory. Another continuum-like property of the overlap-Dirac operator is that the eigenvectors of
the complex-paired eigenvalues are simply related by γ5 as uλ∗ = γ5uλ. As a result, the eigenvalue
problem of the overlap-Dirac operator Dov(0) can be reduced to that of the half-size matrix (1 ±
γ5)Dov(0) or that of the hermitian operator γ5 Dov(0).

On each gauge configuration to be used in the calculations of physical quantities, we solve this
eigenvalue problem numerically to obtain the low-lying eigenvalues λ(k)ov and eigenvectors u(k)

roughly up to ms and to store them on disks. The number of eigenmodes stored are 100 or 160
for 163 × 32 and 243 × 48 lattices, respectively.

The use of these eigenmodes is two-fold. First, they can be used for the preconditioning of
the Dirac operator in its inversion. By subtracting the low-lying mode contribution Dov(0)Plow =∑Ne

k=1 λ
(k)
ov u(k)(x)u(k)†(y) from the Dirac operator Dov(0)x,y , the minimum eigenvalue of the matrix

to invert, Dov(mq)
† Dov(mq), is raised from m2

q to roughly m2
s , and thus the inversion is significantly

accelerated and is made mq -independent. This benefits all physics calculations to be done on these
gauge configurations.

The second use of these eigenmodes is for an improvement of the statistical signal of hadronic
correlation functions. The hadronic correlation functions are constructed from the quark propagators
Dov(mq)

−1. Since the low-mode contribution to this quark propagator can be written as

(Dov(mq)
−1)low(x, y) =

Ne∑
k=1

u(k)(x)u(k)†(y)

mq +
(

1 − mq

2m0

)
λ
(k)
ov

, (3.4)

its calculation at different source points y does not require extra computational cost, provided that
the low modes are stored on the disks. We may therefore average the low-mode contribution to the
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Fig. 1. Statistical fluctuation with (filled circles) and without (open triangles) the average over the source
points. This is an example for a pion three-point function relevant to the pion electromagnetic form factor.
Reproduced from [42].

hadronic correlation function over different source points with minimal additional cost. With this
procedure one can substantially improve the statistical signal of the hadron correlation functions. It
does not introduce any bias as far as the system has translational invariance.

The average over the source points can be extended beyond the low-lying modes by using a
stochastic method. This is called the all-to-all propagator technique. In particular, we use its vari-
ant proposed in [41]. For a given gauge configuration, we prepare complex Z2 or Z4 noise vectors
η(d)(x) with d = 1, 2, . . . Nd = 3 × 4 × Nt/2, each of which has non-zero elements only for a sin-
gle combination of color and spinor indices and at two consecutive time-slices. (This choice is made
somewhat arbitrarily by taking account of its benefit and the computational cost.) The high-mode
contribution is estimated as

(Dov(mq)
−1)high(x, y) =

Nd∑
d=1

x (d)(x)η(d)†(y) (3.5)

with the solution vector x (d) calculated by solving

∑
y

(Dov(mq))(x, y)x (d)(y) =
∑

y

(δxy − Plow(x, y))η(d)(y), (3.6)

and stored on the disks. The computational cost is therefore proportional to Nd . Each inver-
sion is accelerated by projecting out the low-mode contribution Plow as already mentioned. The
estimate for the propagator Dov(mq)

−1 is then given by adding the low-mode and high-mode con-
tributions, (Dov(mq)

−1)(x, y) = (Dov(mq)
−1)low(x, y)+ (Dov(mq)

−1)high(x, y) for any sink and
source points x and y, respectively.

With this all-to-all propagator, we may calculate, for instance, three-point functions for arbi-
trary choices of initial and final momenta without extra cost. The statistical signal is substantially
improved, especially for pion correlation functions, as shown in Fig. 1. Calculation of the discon-
nected diagrams is another interesting application of this method, as discussed in the calculation of
the strange quark content of the nucleon in Sect. 5.5.
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4. Chiral symmetry breaking

In the following sections of this article we describe the physics results obtained from the dynamical
overlap fermion simulations of QCD.

4.1. Chiral symmetry and lattice QCD

One of the fundamental properties of the QCD vacuum is the spontaneous breaking of chiral symme-
try. Even before QCD, many important properties of low-energy hadrons, such as the GMOR relation
and other soft pion theorems, were discovered based on the PCAC relation and current algebra. In the
modern perspective, they are derived from the chiral effective theory, which is constructed assuming
spontaneous chiral symmetry breaking. For theoretical understanding of the low-energy hadronic
phenomena and the role played by strong interaction, therefore, a crucial step is to establish a link
between QCD and chiral effective theory.

Chiral symmetry of course plays a key role in the understanding of chiral symmetry breaking. In
the flavor non-singlet sector of chiral symmetry, pions arise as the Nambu–Goldstone (NG) boson
associated with spontaneous symmetry breaking, while in the flavor-singlet sector the chiral symme-
try is violated by the axial anomaly and is related to the topology of non-Abelian gauge theory. There
are near-zero modes of quarks; their accumulation in the vacuum leads to symmetry breaking in the
flavor non-singlet sector as indicated by the Banks–Casher relation [15]. These near-zero modes
may also have a close relation to the topological excitations in QCD, because their cousins, exact
zero modes, appear associated with topological excitations in QCD. In this way, the axial-anomaly in
the flavor-singlet sector may be responsible for, or at least closely related to, the spontaneous chiral
symmetry breaking in the flavor non-singlet sector. In order to study this complicated phenomenon
on the lattice, it is important to preserve the chiral structure of the continuum fermion using the
overlap fermion formulation.

The spontaneous chiral symmetry breaking is probed by the chiral condensate 〈q̄q〉. Its lattice
calculation requires special care because the scalar density operator q̄q has a power divergence of
the form mq/a2 as the cutoff 1/a goes to infinity. The massless limit has to be taken to remove this
large unphysical contribution and to obtain the physical result. (When the chiral symmetry is violated
from the outset, as in Wilson-type fermions, the divergence is even stronger, ∼ 1/a3.) On the other
hand, the chiral condensate must vanish in the massless limit, when the space-time volume is kept
finite. Therefore, the proper order of the limits is to take the infinite volume limit first and then the
massless limit, which is called the thermodynamical limit.

4.2. Spectral density and chiral condensate

The problem of the ultraviolet divergence can be avoided by focusing on the low-lying eigenmode
spectrum of the Dirac operator. As indicated by the Banks–Casher relation [15], chiral symmetry
breaking is induced by an accumulation of low-lying eigenmodes of the Dirac operator:

lim
m→0

lim
V →∞

ρ(λ = 0) = �

π
, (4.1)

where ρ(λ) denotes the eigenvalue density of the Dirac operator defined by ρ(λ) ≡ (1/V )
∑

k〈δ(λ−
λk)〉. The expectation value 〈· · · 〉 represents an ensemble average and k labels the eigenvalues of the
Dirac operator on a given gauge field background. On the right-hand side of (4.1), � is the chiral
condensate,� = −〈q̄q〉, evaluated in the massless quark limit. In the free theory, we expect a scaling
ρ(λ) ∼ λ3 for dimensional reasons and thus ρ(0) = 0. The relation (4.1) implies that spontaneous
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Fig. 2. Spectral density of the Dirac operator on the lattice (histogram) compared with the leading order (blue
dots) and next-to-leading order χPT calculation (red curve) [43]. Top: the pion mass is around 300 MeV and
the system is in the p-regime. Bottom: as above, for a small pion mass (∼100 MeV). The system is in the
ε-regime.

chiral symmetry breaking characterized by non-zero � is related to the number of near-zero modes
in a given volume.

In practical work, taking the infinite volume and massless limit required in (4.1) is quite demanding.
Instead, we use theoretical knowledge through χPT on the volume (V ) and quark mass (mq ) scaling
of ρ(λ). Once we can check the scaling behavior with the lattice data taken at different values of V
and mq , we can safely extract the parameter� in the infinite volume limit. The most recent theoretical
work [43] provides the V and mq dependence of ρ(λ) calculated to the one-loop level of χPT. This
analytical calculation is valid in both the conventional p-regime and the nearly massless ε-regime.

Some of the results from [44–46] are shown in Fig. 2, which is obtained on the 2 + 1-flavor lattice
configurations at lattice spacing ∼0.11 fm and four-volume being ∼ (1.8 fm)3 × (5.4 fm). For the
upper plot, the pion mass is around 300 MeV and the system is in the p-regime. (An earlier analysis
in two-flavor QCD is found in [47,48].) The plot compares the result with the χPT calculation at the
leading order (LO, blue dots) and the next-to-leading order (NLO, red curve) [43]. The leading order
curve is the same as that obtained with the chiral random matrix theory, which depends only on a
combination m�V with the chiral condensate �, lattice volume V , and light quark mass m. In the
oscillating curves each peak corresponds to a distribution of the first, second, third eigenvalue, and
so on. The next-to-leading order formula involves the pion decay constant F and strange quark mass
ms as extra parameters.
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Fig. 3. Chiral extrapolation of the chiral condensate. Because of the data point in the ε-regime, the
determination of the chiral limit is quite stable. Reproduced from [46].

We find that the shape of the spectrum is nicely reproduced by adding the next-to-leading order
contribution, which reduces the height significantly from the second peak. The chiral condensate at
a given quark mass is obtained by fitting this lattice data.

In the ε-regime, one expects that the lowest eigenvalues are suppressed by the fermion determinant∏
k(λ

2
k + m2)2, as m gets smaller than the lowest eigenvalue. This behavior is indeed realized on the

ε-regime lattice as shown in Fig. 2 (bottom).
An extrapolation of the chiral condensate �(mud ,ms) to the chiral limit of up and down quarks

is shown in Fig. 3. The lattice data show a curvature, which is the pion-loop effect as predicted by
χPT [6]:

�(mud ,ms) = �(0,ms)

[
1 − 3M2

π

32π2 F2 ln
M2
π

μ2 + 32L6 M2
π

F2

]
. (4.2)

The data point close to the chiral limit, which is the ε-regime data, is helpful in identifying this
curvature and for a stable chiral extrapolation. The result in the chiral limit of up and down quarks is

�MS(0,ms; 2 GeV) = [242(04)(+19
−18)MeV]3. (4.3)

Conversion to the MS scheme is performed with a non-perturbatively calculated renormalization
constant through the RI/MOM scheme as an intermediate scheme [49].

Besides the spectral density, there are other ways to extract information on the QCD vacuum, for
instance by calculating the meson correlation functions. In the p-regime this is standard practice, but
by entering the ε-regime it makes it possible to determine the LECs avoiding the problems of chiral
extrapolation. An attempt is made in [50], and the work is extended to the χPT analysis covering
both p- and ε-regimes in a unified manner [51,52].

4.3. Topological susceptibility

The topological susceptibility χt = 〈Q2〉/V measures the amount of topological excitations per unit
volume. This quantity has an interesting relation to chiral symmetry breaking as suggested by the
leading-order formula in χPT:

χt = m�

N f
, (4.4)

where m is the quark mass of N f degenerate flavors [53]. Namely, there will be more topological
excitations when there are more low-lying modes of Dirac operators accumulated in the vacuum.
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lattice at a fixed topological charge Q = 0. Contributions from connected (lower triangles) and disconnected
(upper triangles) diagrams are shown together with the total (blue circles). Reproduced from [54].

This non-trivial relation between topological excitation and chiral symmetry breaking is intriguing,
since the index theorem relates the global topological charge to the number of exact zero modes,
supporting the relation (4.4) at least qualitatively. One has to be careful though, because this mathe-
matical theorem does not tell us anything about near-zero modes nor local topological excitations.
For further dynamical questions, including the confirmation of (4.4), one has to use lattice QCD
calculations.

In this subsection we describe the calculation of χt in our dynamical overlap fermion simulations.
One might think that χt cannot be correctly calculated from the simulations with fixed topology,
but it is indeed possible because χt is a measure of local topological excitations. At a fixed global

topological charge, χt can be extracted from a long-range correlation of topological charge density
operators using the formula (2.10) [23].

To be more explicit, we use the following formula, which is obtained by applying (2.10) to a
correlation function of the flavor-singlet pseudoscalar densities P(x),

lim
|x |→large

〈m P(x)m P(0)〉Q = 1

V

(
Q2

V
− χt − c4

2χt V

)
+ O(e−mη′ |x |). (4.5)

At a fixed topological charge Q, a constant piece remains after the physical excitation of
the η′ meson decays exponentially. From this constant term, we can extract the topological
susceptibility χt .

A numerical example for two-flavor QCD is shown in Fig. 4, where the correlation function calcu-
lated on a Q = 0 sector is plotted. Since the flavor-singlet operators are involved, disconnected quark
loop diagrams have to be evaluated in addition to the connected diagram, which is equivalent to the
pion correlation function. The plot shows that, by subtracting the connected contribution from the
disconnected one, the constant (negative) correlation can be identified. It is natural to have a negative
correlation because the global topological charge Q is fixed to zero; when there is a positive (local)
topological charge fluctuation found at a given lattice point, there will be more chance of finding a
negative fluctuation apart from that location.

Near the chiral limit, χt is expected to behave as (4.4). For non-degenerate quark masses, m should
be replaced by its inverse average, (m−1

u + m−1
d + m−1

s )−1 for the case of N f = 3. Our lattice results
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Fig. 5. Topological susceptibility χt as a function of sea quark mass. Lattice data are from [54,55].

[54–56] are shown in Fig. 5. The results from two-flavor and 2 + 1-flavor QCD are well described by
χPT. The chiral condensate� extracted from the slope of this plot is consistent with the one obtained
from analysis of the spectral function. This means that topological excitations are indeed active in
the QCD vacuum and their amount is just as expected from the chiral effective theory.

Through these studies, the spontaneous breaking of chiral symmetry is well established using
the first-principles calculation of lattice QCD. The exact chiral symmetry provided by the over-
lap fermion plays a crucial role there. The χPT is confirmed to be valid near the chiral limit for
fundamental quantities such as the chiral condensate and topological susceptibility.

One of the remaining questions is how much the region of χPT is extended towards wider
applications and larger values of pion masses/momenta.

4.4. Convergence of chiral expansion

At Lattice 2002, the annual conference on lattice field theory, there was a panel discussion on the
issue of chiral extrapolation of lattice data [57]. The problem at that time was that the curvature
expected due to the chiral logarithm of the form m2

π ln m2
π was not visible in lattice data even for pio-

nic quantities, such as pion mass and decay constant. This was mainly because the quark mass in the
dynamical fermion simulations at that time was too large (the pion mass was above 500 MeV), which
is presumably out of the range of χPT. This led to a large systematic error in the chiral extrapolation.

Since then, by the development of algorithms and machines, the pion mass in the lattice simulations
has been reduced to 200–300 MeV, and even physical point simulations are emerging. Note also that
we even achieved a simulation in the ε-regime, where the quark mass is smaller than that of physical
up and down quarks. It is therefore interesting to investigate the convergence property of the chiral
expansion, using these available data.

The χPT provides a systematic expansion in terms of small m2
π and p2, but the region of conver-

gence of this chiral expansion is not known a priori. With the available one- and two-loop calculations
of χPT we study the pion mass region, where the chiral expansion describes the lattice data well.
With exact chiral symmetry, the test is conceptually clean, since no additional terms to describe the
violation of chiral symmetry have to be introduced. (With other fermion formulations, this is not the
case. For instance, staggered χPT is often used to analyze the lattice data obtained with the staggered
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fermion. In many other cases where Wilson-type fermions are used, the correction terms are often
simply ignored.)

For the pion mass mπ and decay constant fπ the chiral expansion is given as

m2
π

mq
= 2B

[
1 + 1

2
x ln x + c3x + O(x2)

]
, (4.6)

fπ = f [1 − x ln x + c4x + O(x2)], (4.7)

where mπ and fπ denote the quantities after the finite quark mass corrections while m and f are those
at the leading order (the massless limit). The expansion parameter x in (4.6) and (4.7) could either be
x ≡ 2m2/(4π f )2, x̂ ≡ 2m2

π/(4π f )2, or ξ ≡ 2m2
π/(4π fπ)2 (we use the notation of fπ = 131 MeV).

They all give an equivalent description at this order, i.e. next-to-leading order (NLO), while the
convergence behavior at higher orders may depend on the expansion parameter. The constants c3

and c4 are linear combinations of the LECs.
It is important to notice that the coefficients of the x ln x terms in (4.6) and (4.7) are determined

only from the symmetry (flavor SU(2) in this case) and do not involve any free parameters. This
prediction can be tested by analyzing the curvature in the x-dependence of m2

π/mq or fπ .
Figure 6 demonstrates the x dependence. It also shows a comparison of different expansion param-

eters, which are all equivalent at this order. The lattice data (black dots) are those in two-flavor QCD
[58]. The lattice data in the region of small m2

π show a trend of the positive and negative curvature
for m2

π/mq and fπ respectively, as expected from (4.6) and (4.7).
The curves in Fig. 6 are obtained by fitting the three lightest data points with the three expansion

parameters, which provide equally precise descriptions of the data in the region of the fit. If we look
at the heavier quark mass region, however, it is clear that only the ξ -expansion gives a reasonable
function and others largely miss the data points. This clearly demonstrates that, at least for these
quantities, the convergence of the chiral expansion is much better with the ξ -parameter than with the
other conventional choices. This is understood as an effect of resummation of the chiral expansion
by the use of the “renormalized” quantities m2

π and fπ . In fact, only with the ξ -expansion could we
fit the data including the kaon mass region with the next-to-next-to-leading order (NNLO) formulae
[58]. The results for 2 + 1-flavor QCD are being analyzed [59–61].

With NLO formulae (like those in (4.6) or (4.7)), the convergence of the chiral expansion is
marginal in the kaon mass regime. In fact, some groups decided not to use the SU(3) χPT for the
kaon sector but use the SU(2) formula with the strange quark treated as a heavy particle. This cor-
responds to an expansion in terms of mud/ms and is a theoretically consistent treatment, though the
predictive power of χPT is lost to some extent.

5. Light hadron phenomenology

In this section we describe the physics results obtained for other phenomenologically interesting
quantities. In many of these, the exact chiral symmetry of the overlap fermion formulation plays a
unique role.

5.1. Pion form factor

The pion electromagnetic form factor FV (q2) is defined by

〈π(p′)|Vμ|π(p)〉 = (p + p′)μFV (q
2), (5.1)
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Fig. 6. Comparison of chiral expansion in terms of x , x̂ , and ξ . The plots represent m2
π/mq (top) and fπ

(bottom). Fits of the three lightest data points with the NLO ChPT formulae (4.6) and (4.7) are shown with
three choices of the expansion parameters x , x̂ , and ξ . (See the text for details.) The results are from [58].

for a momentum transfer qμ = (p − p′)μ. Vμ represents a vector current made of quark fields.
The electromagnetic charge radius of the pion is defined through this form factor as 〈r2〉V =
6(∂FV (q2)/∂q2)q2=0. Calculation of this form factor provides a good testing ground for the lattice
calculations of more complicated form factors, as there exist precise experimental data. Calculations
to two-loop precision are also available in the χPT framework, and can be compared with the lattice
calculation.

The form factor can be obtained through a three-point function of the form 〈PVμP†〉, with P(†)

an appropriate interpolating operator to efficiently produce or annihilate a pion state with a spe-
cific momentum. Using the all-to-all propagator technique discussed in Sect. 3.4, we can calculate
the pion form factor with various initial and final state momenta without substantial extra computa-
tional cost. Figure 7 shows the lattice data at the lowest available pion mass (∼300 MeV) [42]. The

17/33



PTEP 2012, 01A106 S. Aoki et al.

-1.5 -1.0 -0.5 0.0

q2 [GeV2]

0.2

0.4

0.6

0.8

1.0

F V
( q

2 )

fit
VMD

m = 0.015

Fig. 7. Pion electromagnetic form factor calculated on the lattice at a pion mass around 300 MeV. The dashed
line represents the vector meson dominance (VMD) ansatz, while the solid curve with an error band is our fit
that includes correction terms by a polynomial expansion. Reproduced from [42].

data are fitted with various functional forms including the vector meson dominance (VMD) ansatz
FV (q2) = 1/(1 − q2/M2

pole) and its modifications, including the effects of higher resonances as
shown in the plot.

The pion charge radius, which is extracted from the fit of the form factor, provides an interesting
opportunity to test χPT, since it predicts a characteristic logarithmic divergence in the massless pion
limit. Namely, at the next-to-leading order (NLO), the formula is given as

〈r2〉 = − 1

(4πF)2
(1 + 6Nlr

6)− 1

(4πF)2
ln

m2
π

μ2 . (5.2)

Here F is the pion decay constant in the chiral limit and lr
6 is one of the LECs. Note that the coefficient

of the log term is fixed and the pion mass dependence is entirely determined by the effective theory
at this order.

A fit of our lattice data is shown in Fig. 8 (top). In the lattice data, we find the expected pion mass
dependence going upward towards the chiral limit, but the value obtained after extrapolation to the
physical pion mass is still significantly lower than the experimental data. We extend the analysis to
include the next-to-next-to-leading order (NNLO) terms in χPT, for which the result is plotted in
Fig. 8 (bottom). Curvature towards the chiral limit is more enhanced and the result is consistent with
the experimental data.

For a more detailed description of the analysis we refer the reader to [42], but an important lesson
from this analysis is that the NNLO contribution in χPT could already be substantial at the pion
mass around 300–500 MeV. To really confirm the expected pion mass dependence in the NNLO fit,
we need lattice data in the pion mass region of 200–250 MeV.

A similar analysis for the scalar form factor of the pion is also presented in [42]. For this quantity,
the expected chiral logarithm is even stronger, and the comparison with χPT is very interesting.
We calculated the scalar form factor using the all-to-all quark propagator technique, including the
disconnected quark-loop diagram contributions. For details, see [42].

5.2. Kaon semileptonic form factor

Whether the strange quark can be treated within the SU(3) χPT is an important issue, since the
main sources of phenomenological information for kaon physics rely on χPT. For instance, the
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same data are fitted with the NNLO formula. Individual contributions of NLO and NNLO are drawn with
dashed and dash–dotted curves. Plots from [42].

determination of a Cabibbo–Kobayashi–Maskawa (CKM) matrix element |Vus | uses the semilep-
tonic decays K → π�ν. The determination of |Vus | is very precise because the relevant form factor
f+(q2) is normalized to 1 at q2 = 0 in the degenerate quark mass limit; deviation from this was esti-
mated using the SU(3) χPT and some phenomenological models [62,63], which would eventually
be replaced by lattice calculations. The lattice calculations still require information from χPT on the
pion mass dependence in order to reliably perform chiral extrapolation, as in the case of the pion
form factor.

The kaon semileptonic decay form factors f±(q2) are defined through

〈π(p′)|Vμ|K (p)〉 = (p + p′)μ f+(q2)+ (p − p′)μ f−(q2), (5.3)

with qμ = (p − p′)μ. Here, Vμ is a �S = 1 vector current. One also defines a scalar form factor
f0(q2) = f+(q2)+ f−(q2)× q2/(m2

K − m2
π). In the limit of vanishing q2, f+(0) = f0(0). Unlike

the pion form factor, f+(0) is not exactly normalized to be unity, but its small difference from one,
which is of order (ms − m)2, is of major interest in the determination of |Vus |.

Lattice calculation of f±(q2) can be done in a similar manner to the pion form factor, except
that one has to disentangle f+(q2) and f−(q2) using different polarizations of Vμ. The results at
mπ � 540 MeV are shown in Fig. 9. Both f+(q2) and f0(q2) are nearly normalized to 1 at q2 = 0
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Fig. 9. Kaon semileptonic form factors f+(q2) (top) and f0(q2) (bottom) from a calculation on the 2 + 1-flavor
lattice configurations. The pion mass in this plot is relatively heavy (mπ ∼ 540 MeV).

and the slope in q2 is precisely determined. Compared to the plot for the pion decay constant (Fig. 7),
the q2 range is very close to q2 = 0. This is possible because we are using the twisted boundary
condition technique [64], which enables us to assign momenta that are not multiples of 2π/L . We
use it on top of the all-to-all propagator method.

For the form factor f+(q2) we may define the radius parameter 〈r2〉Kπ
V , which is an analog of the

pion charge radius. Chiral extrapolation of 〈r2〉Kπ
V is shown in Fig. 10 (top). According to χPT, the

divergence in the chiral limit is not as strong as that for the pion form factor, and our extrapolation
using an NLO formula is consistent with the experimental value. The shape of the other form factor
f−(q2) (or f0(q2)) can be parameterized by ξ(q2) ≡ f−(q2)/ f+(q2), which is roughly a constant
in q2. A chiral extrapolation of ξ(0) is shown in Fig. 10 (bottom) as a function of m2

K − m2
π . (Note

that ξ(q2) vanishes in the limit of degenerate mK and mπ .) Again, the result is consistent with the
experimental value. This preliminary analysis [65] will be further refined and presented elsewhere,
including the result for the most important quantity, i.e. f+(0).

5.3. Neutral kaon mixing

The kaon bag parameter BK , defined by

BK (μ) = 〈K̄ 0|d̄γμ(1 − γ5)s d̄γμ(1 − γ5)s|K 0〉
8
3 f 2

K m2
K

, (5.4)
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affects the strength of the indirect CP violation in neutral kaon mixing, from which one can put a
constraint on the Cabibbo–Kobayashi–Maskawa (CKM) matrix elements, and its precise calculation
is of direct relevance to the physics of quark flavor mixings. Lattice calculation of BK reaps the
benefit of the exact chiral symmetry of the overlap fermion, because the relevant four-quark operator

OL L = d̄γμ(1 − γ5)s d̄γμ(1 − γ5)s (5.5)

may mix with operators of other chiral structures when the chiral symmetry is explicitly violated on
the lattice. With the overlap fermion, there is no such problem and the renormalization factor that
relates the lattice operator to its continuum counterpart is simply multiplicative. Its calculation can be
done non-perturbatively using the RI/MOM scheme as an intermediate renormalization scheme [66].

Besides this operator mixing problem, the calculation method for BK is now rather standard. One
takes a ratio of the relevant three-point function 〈Ps̄u OL L Pūs〉 to a product of two-point functions
corresponding to the denominator of (5.4), 〈Ps̄u A0〉〈A0 Pūs〉, where P are interpolating operators of
the kaon (or antikaon) and A0 is the axial-vector current of a flavor structure s̄u or ūs. From the
ratio, one finds a plateau corresponding to the ground state contribution and extracts BK from its
amplitude. Our result in two-flavor QCD [67] is BK (2 GeV) = 0.537(4)(40) after extrapolating the
lattice data to physical down and (valence) strange quark masses. The chiral extrapolation for BK is
very stable because the result turned out to depend only on md + ms .
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Fig. 11. Difference of the vacuum polarization function q2�
(1)
V −A(q

2) calculated on the lattice at four different
quark masses. Reproduced from [70].

We have also performed a calculation on our 2 + 1-flavor gauge configurations and the result for
BK is essentially unchanged. According to a recent summary of various lattice results, an average
BK (2 GeV) = 0.536(17) has been obtained [68].

5.4. V V − AA correlator

The vacuum polarization function (�J )μν(q2) = (q2δμν − qμqν)�
(1)
J (q

2) is a rich source of infor-
mation on QCD dynamics. In particular, the difference between the vector and axial-vector current
vacuum polarizations, �(1)V −A(q

2) = �
(1)
V (q2)−�

(1)
A (q

2), is sensitive to the spontaneously broken

chiral symmetry in the QCD vacuum. When the vacuum is chirally symmetric,�(1)V −A(q
2)must van-

ish in the massless limit, while it may develop a pion-pole − f 2
π/q

2 near q2 = 0, when spontaneous
chiral symmetry breaking occurs. A slope of q2�

(1)
V −A(q

2) at q2 = 0 corresponds to L10, one of the
LECs at one-loop χPT. Even more interesting is its relation to the mass difference between neutral
and charged pions. Namely, in the massless limit of up and down quarks, there is a relation obtained
using current algebra techniques [69]:

m2
π± = − 3α

4π

∫ ∞

0
dq2 q2�

(1)
V −A(q

2)

f 2 , (5.6)

where α represents the fine structure constant and f is the pion decay constant in the massless limit.
In order to calculate the difference �(1)V −A(q

2) on the lattice with any useful precision, the exact

chiral symmetry realized by the overlap fermion plays a crucial role. We notice that each of�(1)J (q
2)

(J = V or A) is logarithmically divergent while their difference must vanish in the absence of chi-
ral symmetry breaking. This means that the cancellation in the difference �(1)V (q2)−�

(1)
A (q

2) is
uncontrollable unless keeping chiral symmetry very precisely on the lattice.

On our two-flavor gauge configurations we calculate the vacuum polarization functions �(1)J (q
2)

and in particular their difference �
(1)
V −A(q

2) [70]. Figure 11 shows the results in the form

q2�
(1)
V −A(q

2) obtained at four different quark masses (shown by different symbols: triangle, dia-
mond, square, and circle from heavier to lighter). As anticipated, this quantity becomes smaller (in
magnitude) as the quark mass is decreased, but there is a left-over even in the chiral limit (thick red
curve). (A dashed curve shows another chiral extrapolation attempt, including chiral logarithms.) Its
residue at q2 = 0 corresponds to f 2 and its integral over the entire q2 range gives m2

π± − m2
π0 . Our

result is m2
π± = 993(12)(+0

−135)(149)MeV2 in the chiral limit.
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Fig. 12. Disconnected three-point function appearing in the calculation of 〈N |s̄s|N 〉. Lines show quark prop-
agators dressed by virtual gluons and sea quarks. The three connected lines represent the nucleon propagation
and the disconnected loop arises from the strange scalar operator s̄s shown by a cross symbol.

In the context of composite Higgs boson models, where a QCD-like theory is assumed to form
bound states, the relevant LEC, i.e. L10, corresponds to Peskin–Takeuchi’s S-parameter [71] and m2

π±
corresponds to the mass of the pseudo-Nambu–Goldstone boson. Therefore, also in this direction,
our work opens up a new possibility for the calculation of interesting physical quantities.

5.5. Nucleon sigma term and strange quark content

Using lattice QCD, one can address questions on nucleon structure. One interesting question is what
the nucleon mass m N is made of. Nucleon may have a mass m0 even in the massless limit of up and
down quarks; the extra amount due to finite quark masses is called the nucleon sigma term σπN , so
that m N = m0 + σπN . The sigma term can be written in terms of a matrix element as

σπN = mud〈N |ūu + d̄d|N 〉, (5.7)

where mud denotes the (degenerate) up and down quark mass. In the definition of 〈N |ūu + d̄d|N 〉,
a subtraction of the vacuum contribution V 〈0|ūu + d̄d|0〉 is understood. Furthermore, there might
be a contribution from the strange quark in the sea, ms〈N |s̄s|N 〉, which is called the strange quark
content of the nucleon. A common parameterization is the y parameter:

y ≡ 2〈N |s̄s|N 〉
〈N |ūu + d̄d|N 〉 . (5.8)

Phenomenological estimates of y have been quite limited in the past and its lattice calculation is of
great help. Recently, there has been renewed interest in this quantity, as it may greatly influence the
cross section of some dark matter candidates to hit ordinary matter (see, for instance, [72]).

Lattice calculation of these quantities may be performed through two different strategies. One pos-
sibility is to directly calculate the matrix elements 〈N |ūu + d̄d|N 〉 and 〈N |s̄s|N 〉 from the relevant
three-point functions. The other method is to calculate a derivative of m N in terms of mud and ms ;
using the Feynman–Hellman theorem these are related to the matrix elements in (5.7) and (5.8).

Let us start the discussion with the second method. On the lattice there is freedom to take the
valence quark mass different from sea quark mass. We may calculate the nucleon mass at various
values of sea and valence quarks. Then, by a global fit using the formula motivated by the chiral
effective theory, the derivatives in terms of mud and ms are obtained. In this way we obtain σπN =
52(2)(+20

−7 )(
+5
−0)MeV and y = 0.030(16)(+6

−8)(
+1
−2) in two-flavor QCD [73]. The former is in the same

ball-park as phenomenological analysis, while the result for y is an order of magnitude smaller than
the values from previous lattice calculations such as [74].

The small value of y is confirmed by an independent calculation using the first method, i.e. a direct
calculation of the matrix elements. The direct lattice calculation of the strange quark content is non-
trivial because it requires a calculation of a disconnected quark-loop diagram depicted in Fig. 12.
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Fig. 13. Three-point function relevant to 〈N |s̄s|N 〉 divided by a two-point nucleon correlation function. Open
symbols show the data with the low-mode contribution only for the disconnected quark-loop; filled symbols
include high modes. Reproduced from [75].

One must sum over the location of the strange scalar operator s̄s, which is too costly without using a
dedicated method such as the all-to-all quark propagator technique. We use this method as discussed
in Sect. 3.4.

An example of the lattice data [75] is shown in Fig. 13. Here we plot the disconnected three-point
function, from which we extract 〈N |s̄s|N 〉, divided by a two-point nucleon correlation function. Open
symbols show the data for which only the low-mode contribution is included in the disconnected
quark-loop; filled symbols include the rest of the fermion modes using the all-to-all quark propagator
technique. A non-zero signal is obtained for the open symbols. The filled symbols including high
modes are much noisier, but after performing a constant fit we obtain a statistically non-zero signal
in the plateau region because the high-mode contribution is statistically independent among different
points of�ts , the location of the s̄s operator. After chiral extrapolation we obtain y = 0.050(12)(34)
in two-flavor QCD, which supports the calculation through the Feynman–Hellman theorem and favors
the small y parameter.

An extension of these calculations to 2 + 1-flavor QCD is ongoing and preliminary results are
already presented in [76,77].

5.6. π0 → γ γ decay

The anomaly sector of quantum gauge theory is most dramatically reflected in the π0 → γ γ pro-
cess. Without the axial-anomaly (or the Adler–Bell–Jackiw (ABJ) anomaly [78]), its amplitude is
highly suppressed compared to the experimental data. Once we take account of the axial-anomaly,
the amplitude can be calculated very precisely since the one-loop calculation is known to give the
result valid to all orders in the limit of vanishing pion mass [79]. Corrections due to finite quark
mass are a non-perturbative problem, which we address in this subsection. If the calculation is pre-
cise enough, we may test the anomaly sector of quantum gauge theory beyond the leading order
against the experimental data.

The π0 → γ γ transition form factor fπ0γ γ (p1, p2) is defined through a matrix element of two
electromagnetic currents Vμ∫

d4xeip2x 〈π0(q)|Vν(x)Vμ(0)|0〉 = εμναβ pα1 pβ2 fπ0γ γ (p1, p2), (5.9)
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where p1 and p2 are photon momenta and qμ = −(p1 + p2)μ is the pion four-momentum. The ABJ
anomaly implies fπ0γ γ (0, 0) = 1/(4π2 f ) in the massless pion limit with f the pion decay constant
in the massless limit. (In this section we use a normalization of f � 90 MeV.) To perform the lattice
calculation of fπ0γ γ (p1, p2) we replace the pion state in (5.9) in favor of the axial vector current
or pseudoscalar density, and calculate a three-point function of the form 〈0|P(x)Vν(y)Vμ(0)|0〉. By
a Fourier transformation for both x and y in four dimensions, we obtain the three-point function in
momentum space, which should have a momentum dependence as∫

d4xd4y e−i(qx+p1 y)〈0|2m P(x)Vν(y)Vμ(0)|0〉

= − fπm2
π

−q2 + m2
π

εμναβ pα1 pβ2 fπ0γ γ (p1, p2)+ · · · , (5.10)

where the dominant pion-pole contribution is explicitly written while other contributions are repre-
sented by ellipses. Since the lattice is defined in the Euclidean space-time, the momentum available
in this way is always space-like, i.e. q2, p2

i < 0. Then, as far as we can neglect the higher resonance
contributions, the calculation of fπ0γ γ (p1, p2) in the space-like region is straightforward.

Such a calculation is carried out in [80,81]. A fit of the lattice data for

F lat(P1, P2) = − fπm2
π

Q2 + m2
π

fπ0γ ∗γ ∗(P1, P2) (5.11)

is demonstrated in Fig. 14. (Here, Q2 = −q2 and P2
i = −p2

i .) The fit assumes the vector meson
dominance (VMD) model

FVMD(P1, P2) = − m2
π

Q2 + m2
π

XaGV (P1,mV )GV (P2,mV ), (5.12)

where GV (P,mV ) is a vector meson propagator GV (P,mV ) = m2
V /(P

2 + m2
V ). The parameter Xa

is an overall constant that must be 1/(4π2) = 0.02533 if the ABJ anomaly is realized in the massless
limit. Our result, obtained by fitting the lowest momentum points (the leftmost symbols in the plot),
is 0.0260(6) and is consistent with the expectation. At higher momenta we find a deviation from the
VMD model, especially for larger quark masses. We therefore attempt to extend the model to include
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higher resonance contributions. An attempt to fit the data using the χPT predictions at one-loop is
presented in [81].

More recently, we applied a method to extract the lowest-lying π0 state while inserting nearly
arbitrary four-momenta for final photons [82–84], combined with the all-to-all quark propagator
technique [85] (for a similar attempt, but without all-to-all, see [86]). On 2 + 1-flavor configurations
we calculate the π0 → γ γ form factor and confirm that the result agrees with the analysis of the
Euclidean momenta as shown in Fig. 15. The plot also shows a significant deviation from the ABJ
anomaly, F(m2

π , 0, 0) = 1/(4π2 f ) in the chiral limit. This is likely due to the finite volume effect,
for which further studies are ongoing, including a calculation of a large-volume lattice.

Another motivation for this study is to use the form factor for off-shell photons in order to estimate
the hadronic light-by-light scattering (γ ∗γ ∗ → γ ∗γ ∗) amplitude, which is necessary in the precise
calculation of the muon anomalous magnetic moment g − 2. Because the pion is light, the virtual
process γ ∗γ ∗ → π0 → γ ∗γ ∗ would give the dominant contribution. The lattice calculation may
provide an input for such analysis.

6. Physics applications at higher energy scales

The overlap fermion formulation is most powerful when studying the low-energy dynamics of QCD
where chiral symmetry plays a special role. However, in this section we focus on an observable for
which the dynamics at higher energy scales is important. Namely, we analyze the vacuum polarization
function �J (Q2) at high Q2 to determine the strong coupling constant αs and other quantities.

6.1. Strong coupling constant

Since the strong coupling constant “runs” under the change of the scale of interest, lattice determi-
nation of the strong coupling constant is equivalent to a setting of the lattice scale 1/a at a given
bare coupling constant αlat

s . Once we establish the relation αlat
s (a

−1), we may also convert the rela-
tion to more familiar definitions, such as the one in the MS scheme, using perturbation theory as
αMS

s (μ) = Z(μa)αlat
s (a

−1). Therefore, precise determination of αs requires good control of system-
atic errors in the perturbative matching factor Z(μa). This is the reason that the previous lattice
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calculation by the HPQCD collaboration [87,88] employed an automated perturbation method to
calculate very complicated two-loop contributions on the lattice.

In our work, we develop a method to use the vacuum polarization function �V (Q2) at short
distances. In particular, we consider the Adler function [89]:

D(Q2) ≡ −Q2 d�V (Q2)

d Q2 , (6.1)

which is a physical quantity related to the e+e− annihilation cross section. Since this quantity does
not have an ultraviolet divergence, the perturbative calculation in the continuum theory obtained with
dimensional regularization can be directly applied for the lattice data. This means that one may fit
the lattice data using the known continuum perturbative formula to three-loop order (or even four-
loop for the leading term) supplemented by an operator product expansion (OPE) in 1/Q2. The fit
parameters are then αMS

s (μ) as well as a few coefficients of OPE. In this way we may bypass the
complicated lattice perturbation theory and take advantage of using the well developed continuum
perturbation theory.

To be more explicit, we write down the OPE formula for �V +A(Q2) = �V (Q2)+�A(Q2):

�V +A(Q
2) = c + C0(Q

2, μ2, αs)+ Cm(Q
2, μ2, αs)

m2(Q2)

Q2

+
∑

q=u,d,s

Cq̄q(Q
2, αs)

〈mqq̄q〉
Q4 + CGG(Q

2, αs)
〈(αs/π)GG〉

Q4 + O(1/Q6). (6.2)

The first term c is a scheme-dependent constant, which is divergent. In physical quantities, such as
the Adler function, this term does not contribute. The coefficients in the second term, which is the
leading contribution, are perturbatively calculated to four-loop order in the MS scheme [92], and
other perturbative functions are also known to high enough orders. At the order of 1/Q4 of OPE,
vacuum expectation values of operators mqq̄q and (αs/π)G2

μν are involved. In our work, the chiral
condensate 〈q̄q〉 is calculated from other methods and here it is just an input parameter. The other
parameter 〈(α/π)G2

μν〉 is sometimes called the gluon condensate. Lattice calculation of this quantity
is not feasible because the operator G2

μν mixes with the identity operator. Subtraction of the identity
operator requires an extremely precise determination of the mixing coefficient since it is strongly
divergent (∼ 1/a4). In this work we simply treat 〈(α/π)G2

μν〉 as a fit parameter and determine it
from the Q2 dependence of �V +A(Q2). (We do not quote the numerical result for 〈(α/π)G2

μν〉,
because the relation to the “gluon condensate” in some phenomenological papers is not known.)

Using this method, we extract αs for two-flavor [90] and 2 + 1-flavor QCD [91]. The vacuum
polarization function�V +A(Q2) is calculated at values of space-like Q2 below (aQ)2 < 1. The dis-
cretization effect is not substantial in this range of (aQ)2, which is confirmed by looking at different
momentum definitions equivalent up to O(a2) effects and by carrying out a perturbative calculation
for the overlap fermion to estimate the size of deviation from the continuum theory. An example of
the fits of (6.2) to the lattice data in 2 + 1-flavor QCD is shown in Fig. 16. Data at four different
quark masses in the range 0.4 < (aQ)2 < 1.0 are well fitted by (6.2) with only three free parame-
ters, i.e. αMS

s (μ), 〈(αs/π)GG〉, and c. The stability of the fitted value against the fit range is carefully
checked. Indeed, the 1/Q6 corrections are visible below (aQ)2 < 0.4.

Our result in 2 + 1-flavor QCD, α(5)s (MZ ) = 0.1181(3)(+14
−12) [91], is consistent with the previ-

ous best lattice calculation [87,88], which gave α(5)s (MZ ) = 0.1183(8). The size of the error is also
comparable.
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Fig. 16. Fit of the vacuum polarization function on the lattice with continuum perturbative calculation. Four
panels show the data at different quark masses; all the data are fitted simultaneously. Plots from [91].

A closely related method has been developed by the HPQCD collaboration, which used the charmo-
nium two-point function. By taking an appropriate moment in the coordinate space, the ultraviolet
divergence is removed and the lattice data can be directly fitted with a corresponding continuum
calculation, as in our work using the vacuum polarization function with light quarks. The result is
αs(MZ ) = 0.1174(12) [93]. With this method, one can also determine the charm quark mass at the
same time.

7. Finite-temperature QCD

The finite-temperature phase transition of QCD, which is expected to occur in the early universe and
in heavy-ion collision experiments, is considered to be a chiral phase transition—the order parameter
is 〈q̄q〉. Therefore, its lattice simulation is desired to be performed using the formulation preserving
chiral symmetry. This is the reason that the staggered fermion has been used in most of the pre-
vious finite-temperature lattice QCD simulations. Besides the famous problem of “rooting” [94],
the staggered fermion has a delicate problem of flavor (or taste in recent terminology) violation. At
finite lattice spacing, the Nambu–Goldstone (NG) pion of the exact chiral symmetry of the staggered
fermion is only one of 15 pions. Other non-NG pions are typically 300–500 MeV heavier than the
NG pion. There is a potential problem that the physics of the phase transition occurring at the tran-
sition temperature around 180 MeV may be distorted by such a mismatch of the particle content.
A simulation using the overlap fermion formulation provides a theoretically clean approach to this
problem. Given the numerical cost required for the overlap fermion, it will be important work to be
performed on next-generation supercomputers.

In this section, we describe an early such attempt that focuses on the restoration of the axial U (1)
symmetry.

7.1. Restoration of the axial U (1) symmetry

The role of the axial anomaly of QCD in the finite-temperature transition is a slightly confusing
problem. There is literature [95] that argues that the axial U (1) symmetry is restored, together with
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Fig. 17. Spectral density ρ(λ) of the overlap-Dirac operator at finite temperature. Near the transition tempera-
ture (∼180 MeV), we observe a decrease of ρ(0) as the quark mass is decreased. At quark masses lower than,
say, 30 MeV, the spectral density shows a gap at zero. Reproduced from [97].

the flavor non-singlet SU (2) chiral symmetry, at the phase transition point, but this sounds peculiar,
because the axial U (1) symmetry is violated by a quantum effect even at short distances.

There is a possibility that axial U (1) is effectively restored in the particle spectrum above the phase
transition. Namely, all the particles that form a multiplet under U (2)× U (2) become degenerate. In
the (pseudo)scalar sector, they are π , η, σ , and δ (or a0). Indeed, if there is no near-zero mode
accumulation of the Dirac operator, this could happen as discussed in [95].

We carried out a series of dynamical overlap fermion simulations at finite temperature on a 163 × 8
lattice [96,97]. Two degenerate quark flavors are included with mass in a range ms/5–ms . The global
topological charge is fixed to zero as in our work at zero temperature. This may induce finite volume
effects, but we numerically confirm in the quenched theory at finite temperature that we are able to
reproduce topological susceptibility on these lattices using the method outlined in Sect. 4.3.

Figure 17 shows the spectral density ρ(λ) of the overlap-Dirac operator at temperatures in the range
170–210 MeV, which presumably sandwiches the transition temperature. We observe that ρ(0) stays
finite even above the phase transition when the quark mass is heavy (∼100 MeV). As the quark mass
is decreased, the spectral function vanishes above the phase transition (∼180 MeV). Indeed, we find
a spectral gap at zero in the high-temperature phase.

On these lattices we calculated the (pseudo)scalar meson correlators and found that the correlators
coincide among π , η, σ , and δ [97]. This means that the contribution from the disconnected quark-
loop diagram vanishes. This is observed when there is a gap in the spectral function. Our result
indicates that the axial U (1) symmetry is effectively restored in the high-temperature phase of QCD.
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Fig. 18. A snapshot of the QCD vacuum calculated on a dynamical overlap configuration. The lattice size is
243 × 48 and the light quark mass is at the lightest available value (am = 0.015), which corresponds to a pion
mass around 290 MeV. Red and blue regions distinguish positive and negative chirality (ū1(x)γ5u1(x)) of the
lowest-lying (but non-zero) eigenmode u1(x).

8. Summary and perspective

Lattice simulation of QCD has matured to the level that one can reproduce the experimental results
for the simplest physical quantities, such as low-lying hadron masses. This is a result of a number of
theoretical and technical ideas accumulated over the last 30 years, as well as of the exponential growth
of computational power. It is only in the last few years that the major lattice QCD groups have been
able to simulate QCD including up, down, and strange quarks with their masses reasonably close to
their physical values.

One important goal of lattice QCD is, of course, to give precise calculations that can be used to
test the Standard Model of elementary particles. Another motivation for performing its simulation
is to push the understanding of the dynamics of QCD into a deeper level. The work performed by
the JLQCD and TWQCD collaborations is in this direction. Since spontaneous breaking of chiral
symmetry plays a central role in forming the QCD vacuum, we employed the overlap fermion for-
mulation that preserves exact chiral symmetry even at finite lattice spacings. This beautiful property
allows us to study the profile of the QCD vacuum through the spectral density of the Dirac oper-
ator, for instance. Through this quantity we find the accumulation of low-lying fermion modes, as
anticipated by the Banks–Casher relation.

We could gain further insight into the property of the QCD vacuum. Figure 18 demonstrates a
spatial distribution of the lowest-lying Dirac eigenmode. Different colors represent left-handed and
right-handed chirality components. We observe that the low modes are spatially localized and chi-
rally polarized, which supports a picture that drove researchers to instanton-based models (see, for
instance, [98]), although more precise quantitative tests are needed to further confirm or refute those
particular models.

There are many other physics applications of our simulations, as discussed in this article. For many
of them, the exact chiral symmetry is beneficial to simplifying theoretical analysis or even crucial to
extract meaningful signals. The all-to-all quark propagator technique that we extensively applied has
also proven to be very useful. Through this work, we have greatly extended the horizons of lattice
QCD calculations.

On the other hand, it is obvious that realizing chiral symmetry on the lattice requires a substantial
extra computational cost compared to other standard lattice fermion formulations, such as Wilson
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or staggered fermions. This sets a severe limitation on the lattice spacing and lattice volume we can
reach with the overlap fermion. In order to achieve more precise calculations at small lattice spacings,
the development of a new theoretical formulation and/or simulation scheme, in which the numerical
simulation is substantially faster but where good chiral symmetry is maintained, is necessary. Work
is in progress in this direction.
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