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Abstract

For any linear accelerator, a thorough understanding of
the Longitudinal Phase Space (LPS) of the beam is a great
advantage. At the synchrotron light source MAX IV the two
storage rings are injected with electrons using a 3 GeV linear
accelerator, which also serves to provide beam for a short
pulse facility (SPF). A newly commissioned Transverse De-
flecting Cavity (TDC) is used to reconstruct the full LPS in a
separate branch in the SPF after the second bunch compres-
sor. This diagnostics performs a destructive measurement
to extract the LPS and can not be used simultaneously with
the beamline in the other branch of the SPF. In this paper
we present a new virtual diagnostics which utilizes machine
learning methods to extract the LPS information from other,
non-destructive signals in the MAX IV linac. This involves
simulations of the linac including the TDC response, as well
as the collection of real data from the new TDC, for use in
training artificial neural networks to predict the full LPS.

INTRODUCTION

The 3 GeV linear accelerator at MAX IV serves multiple
purposes. It is used for initial injection and recurring top-
ups for two storage rings, and it also serves a Short Pulse
Facility (SPF) at the end of the linac. Since being brought
into operation, the linac has remained with minimal lon-
gitudinal diagnostics for the beam. For the benefit of the
ongoing scientific work at the SPF, and for the general oper-
ation of the linac, a Transverse Deflecting Cavity (TDC) has
recently been installed in the SPF on a separate line from
the beamline used for experiments. This device allows for
imaging of the beam’s Longitudinal Phase Space (LPS), i.e.
its distribution in time and energy [1]. Figure 1 shows a
simplified overview of the MAX IV linac and the SPF area
with proposed components and beamlines.

Measuring the LPS with a TDC has the drawback of being
a destructive measurement as it relies on the beam impinging
on a screen. Furthermore, the TDC is housed in a separate
beamline from the one used for delivery and the two being
used simultaneously is currently not possible. This intro-
duces an application for a Virtual Diagnostic. This system
consists of an Artificial Neural Network (ANN) combining
different machine learning methods to extract the LPS infor-
mation from other, non-destructive signals throughout the
linac. This paper reports on the current progress towards
setting up a virtual diagnostics for LPS predictions using
both simulated and measured data.

DATA COLLECTION

Large amounts of varied data is required for setting up
a virtual diagnostics as the ANN requires training to map
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non-destructive measurements to the LPS information of
interest. Each dataset must consist of two parts, an input of
non-destructive signals and the corresponding output of LPS
information. Such datasets have been collected in two dif-
ferent forms for the results presented in this paper: through
elegant simulations of the MAX IV linac and through mea-
surements of the TDC output during the early commissioning
of the new device.

LPS Measurement with TDC

The TDC measurement of the LPS consists of a two-step
process. The first one is the transverse deflection: this is
performed by a six meter long RF accelerating structure,
wherein the fields accelerate the beam transversely. These
fields are phased such that the head and tail of the electron
beam receive opposite kicks, turning the beam to project
the longitudinal distribution onto a transverse dimension,
in this case horizontally [1]. In the second step, the beam
moves through a dipole and the resulting dispersion projects
the energy distribution onto the other transverse dimension.
The beam then impinges on a screen allowing for imaging
of the resulting LPS.

A dataset for training a virtual diagnostics should include
varied situations in the linac for a mapping of distinct beam
conditions to specific TDC outputs [3, 4]. To construct
such varied situations, phases of the RF in the accelerating
structures of the main linac were scanned within a set range.
For each setpoint in phase, a TDC image was collected along
with non-destructive measurements throughout the linac.
After data collection was completed, post processing of the
images was done, including background subtraction and
slicing of the images into a 200x500 pixel image to isolate
the beam.

The main linac phase was scanned in a +5 degree range
about the nominal setpoint. These phase values were saved
along with the positional readings of 36 different BPMs
and the readings from two different charge transformers.
A total of 120 setpoints were used with resulting datasets
saved, with the last 14 removed as the beam began to end
up outside the TDC screen. This left 106 images along with
their corresponding inputs to be used for training and testing
machine learning models.

Simulations of LPS

As the TDC is still in commissioning (at the time of writ-
ing), there are limited possibilities for collecting training
datasets and the quality of collected data is limited by the
current state of the TDC. In order to further develop the vir-
tual diagnostics to eventually be used on a fully functioning
TDC, elegant simulations [5] have been done, tracking the
beam through the whole linac and the TDC at full capacity.
In order to construct a large training dataset of different im-
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Figure 1: Detailed layout of the MAX IV linac with the currently proposed components of a second TDC and a laser heater,
as well as a third beamline for the proposed Soft X-ray FEL [2].

ages and scenarios, parameters have been varied randomly
within these simulations.

The RF parameters of two accelerating sections were var-
ied as to construct the dataset of different beam conditions.
These sections were an early accelerating structure and the
main linac, which is set using a single phase and voltage.
Both sections were varied within +1° and +5% of their nom-
inal phase and voltage. Setpoints outside this range resulted
in unrealistic TDC outputs as the elegant simulation began
to break down. Within this range 2500 randomly selected
setpoints were simulated, and along with the setpoints the
particle distributions resulting after the TDC process were
recorded and later binned into 100x100 pixel images.

Figures-of-Merit

In both the simulated and the measured cases, figures-
of-merit (FOM) were also extracted from the stored im-
ages. These included the slice energy spread, the full energy
spread, the bunch length and the energy chirp. The full
energy spread was taken as one ¢ of a Gaussian fit of the
energy profile and the bunch length was taken in the same
way for the temporal profile. The slice energy spread was
taken as one o of the Gaussian fit of the energy distribution
within a 20 fs window of the simulated distributions and a
60 fs window in the measured data. The energy chirp was
taken as the linear tilt of the beam in the images.

VIRTUAL DIAGNOSTICS

The machine learning methods used are commonly known
as Multi-Layer Perceptrons (MLPs) and Convolutional Neu-
ral Networks (CNNs) [6]. These types of networks have
been used to perform two separate predictions in both the
simulated and measured case: full image predictions for the
output of the TDC on the final screen and predictions of the
figures-of-merit.

Image Predictions

The structure of the networks used for the measured and
for the simulated cases were in principle very similar. Both
were constructed of two densely connected MLP layers of
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200 nodes each, followed by a much larger layer with a num-
ber of nodes corresponding to the size of the final image,
10000 for the simulated case and 100000 for the measured
case. These long vectors were then reshaped into many
smaller matrices to be used with the following CNN lay-
ers. CNNs consist of matrices of trainable weights that step
through the input images to produce the final result. In total,
four of these layers were used in the case with measured
data and three in the case with simulated data. In both cases,
simple mean absolute error was used as the loss function
and the ADAM optimizer was used to train the networks [7].

The final performance of the image predictions was scored
using R? as
X -9)?

> -7
wherein y are the true pixel values in the saved image, y are
the predicted pixel values and y are the mean value of each
pixel for the full dataset.

R’ =1

Figures-of-Merit Predictions

The networks used for predicting the four figures-of-merit
extracted from each image were much simpler than the larger
full image networks. For both measured and simulated data,
solely MLP layers were used, in each case two layers of a
100 nodes each, followed by an output layer of four nodes,
each corresponding to a figure-of-merit. Here also mean
absolute error was used as the loss function and the ADAM
optimizer was used to train the networks [7].

RESULTS

In the following subsections the results of four separate
networks are shown: both image and figure-of-merit predic-
tions on both measured and simulated data.

Image Predictions

Figure 2 shows three 100x100 images. The center image
displays the direct result of the elegant simulation after the
TDC process, while the image to the left displays the predic-
tion by the neural network. The rightmost image displays
the absolute difference between the other two. These images
are taken from a test set of 250 images, separated from the
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main dataset before training. On this test dataset, the virtual
diagnostic reached a total score of R?=89.1%.

Abs. Diff.

Simulated

Prediction

AE/E [%]
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Figure 2: Image prediction of 100x100 pixel simulated TDC
image. Leftmost image displays the prediction of the virtual
diagnostic, the center image shows the simulated image and
the rightmost image shows the absolute difference between
the other two.

Figure 3 shows the results on the measured data in a simi-
lar structure to Fig. 2. Here also the sum profile is included
on each axis of the measured and predicted 200x500 pixel
images. Predictions of the measured images reach an R?
score of 88.1%, but the test dataset consists of only five
images. The similarity in performance is promising, though
the network can probably handle far less variety in setpoints
than the model trained on simulated data as the variety in
the training data is much smaller.
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Figure 3: Image prediction of 200x500 pixel measured TDC
image. Leftmost image displays the prediction of the virtual
diagnostic, the center image shows the measured image and
the rightmost image shows the absolute difference between
the other two.

Figures-of-Merit Predictions

Figure 4 shows the results of the figure-of-merit predic-
tions using simulated data. From top left to bottom right we
see the test data performance on slice energy spread, full
energy spread, bunch length and energy chirp. Each plot has
the virtual diagnostic’s predictions along the vertical axis
and the simulated value along the horizontal axis, resulting
in the dashed line representing the theoretical perfect pre-
dictions. The deviation from this line then shows the errors
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in the predictions, which are for the most part small. We do
see some larger errors in the chirp predictions as the chirp
becomes more extreme in some datapoints.
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Figure 4: FOM predictions for simulated TDC output. The
dashed lines represent ideal predictions.

Figure 5 shows figure-of-merit prediction results on the
measured data in a similar structure to Fig. 4. As with the
image predictions, here we also have far less data than in the
simulated case, being 25 data points isolated for testing.
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Figure 5: FOM predictions for real TDC output. The dashed
lines represent ideal predictions.

OUTLOOK

Virtual diagnostics have been trained and tested on both
simulated and measured data from the MAX IV TDC. Pre-
dictions using machine learning have been performed of
both the full image outputs of the detector, as well as of
the figures-of-merit contained within those images. The re-
sults on measured data presented here are some of the very
first results from the TDC, and future work should focus on
larger range scans of linac parameters to create larger and
more varied datasets for training and testing future virtual
diagnostics.
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