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Глава 1

Введение

1.1 Эффективные модели КХД

Свойства основной модели, описывающей сильные взаимодействия –
квантовой хромодинимики (КХД) при конечной температуре и плотно-
сти представляют большой интерес и активно изучались последние 25-30
лет. Как известно, КХД обладает асимптотической свободой, т.е. кон-
станта связи в модели увеличивается с уменьшением энергии (αQCD ∼

1
ln(p/ΛQCD) , где ΛQCD ≃ 200 MeV), поэтому при низких энергиях рассмотре-
ние данной модели в рамках теории возмущений становится невозмож-
ным, и для изучения свойств сильного взаимодействия в этом случае
требуются неперертурбативные методы или моделирование поведения
спиноров на решетке, что связано с трудностями при изучении кварко-
вой среды с ненулевой плотностью. Упомянутая величина ΛQCD являет-
ся естественным масштабом энергии в теории сильного взаимодействия,
разделяющим два режима, в котором может находиться кварковая сре-
да: при температурах, значительно превосходящих этот масштаб, она
состоит из отдельных частиц - кварков и глюонов (кварк-глюонная плаз-
ма), при температурах, значительно меньше него, - связи между квар-
ками становятся настолько сильными, что они конденсируются, образуя
мезоны и барионы (преимущественно пионы).

Интерес к изучению фаз кварковой материи является не только теоре-
тическим, но также подогревается ожиданием новых экспериментальных



Введение 5

данных, в частности, ожидаемыми экспериментами по столкновению тя-
желых ионов, где барионная материя несимметрична по изоспину, т.е.
плотность протонов и нейтронов в среде различна, а также изучением
строения компактных звезд, где плотная кварковая среда также может
обладать изоспиновой асимметрией. Подробнее о последствиях изоспи-
новой асимметрии в этих приложениях можно прочесть, например, в [1].

Лагранжиан КХД имеет вид:

LQCD = ψ̄
α(iγµDαβ

µ − mδαβ)ψα − 1
4

Fa
µνF

a µν, (1.1)

где

Dµ = ∂µ + igQCDAa
µT

a,

Fa
µν = ∂µAa

ν − ∂νAa
µ + igQCD f abcAb

µAc
ν. (1.2)

Здесь α = 1, 3 – цветовые индексы кварков a = 1, 8 – цветовые индексы
глюонов, T a – генераторы группы S U(3). Константа связи gQCD не имеет
размерности, и появление в модели параметра ΛQCD, имеющего размер-
ность массы и возникающего при рассмотрении перенормировки в КХД,
носит название размерной трансмутации.

В пределе, когда массами кварков можно пренебречь, лагранжиан
КХД обладает киральной симметрией, т.е. симметрией относительно груп-
пы S U(2)R ⊗ S U(2)L (преобразование спиноров имеет вид ψR → ωRψR,
ψL → ωLψL, где ωR, ωL принадлежат алгебрам соответствующих групп).
Предполагается, что эта симметрия может динамически нарушаться до
диагональной подгруппы S U(2)V , и при этом голдстоуновские бозоны,
возникающие при этом нарушении (их число равно разнице количества
генераторов исходной и остаточной групп симметрии, в данном случае –
3), отождествляются с наблюдаемыми пионами.

Эффективные модели, описывающие свойства кварковой среды, долж-
ны, очевидно, учитывать свойства асимптотической свободы и возмож-
ность динамического нарушения киральной симметрии для того, чтобы
в каком-то пределе иметь те же свойства, что и исходная модель – КХД.
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Исторически одной из первых таких моделей была модель Тирринга
( [3]), описывающая дираковские фермионы в (1+1)-мерном простран-
стве, которые могут взаимодействовать посредством четырехфермион-
ного вектор-векторного взаимодействия:

Lint =
g
2

jµ jµ, jµ = ψ̄γµψ. (1.3)

Четырехфермионное взаимодействие кварков означает, что между квар-
ками действуют силы притяжения, и основная идея введения такого типа
взаимодействия заключается в том, что эти силы могут дестабилизиро-
вать вакуум и привести к нарушению киральной симметрии. Данная
модель привлекательна тем, что здесь действительно происходит дина-
мическое нарушение киральной симметрии, а также тем, что в случае
нулевой массы и только одного поколения (аромата) спиноров она раз-
решима, но при введении массы или ароматов это свойство теряется.

Еще одной из пионерских работ в этой области была работа Швинге-
ра ( [4]), в которой была введена модель, представляющая собой (1+1)-
мерную электродинамику с безмассовыми фермионами (что сохраняет
киральную симметрию в исходной модели). Данная модель также яв-
ляется разрешимой, кроме того, она описывает конфайнмент кварков.
Швингер получил спектр калибровочного поля в данной модели, и оказа-
лось, что калибровочное поле динамически приобретает массу m = e/

√
π.

Данная модель эквивалентна модели с массивным скалярным полем,
масса которого совпадает с массой калибровочного поля, образующей-
ся динамически. Возможность представить модель в виде эквивалент-
ной модели, описывающей динамику бозонных полей вместо исходных
полей теории известна как бозонизация. Модель Тирринга, упомянутая
выше, также может быть сведена к эквивалентной модели при помощи
бозонизации - это будет модель синус-Гордона с лагранжианом вида

L =
1
2
∂µϕ∂

µϕ +
µ2

β2 cos βϕ, (1.4)

где β и ϕ - параметры, зависящие от массы и константы связи модели.
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В дальнейшем в данной работе тема бозонизации будет раскрыта бо-
лее полно, но для еще более полного обзора по теме бозонизации для
моделей Тирринга и Швингера можно порекомендовать, например, об-
зор [5].

Следующим шагом в разработке моделей, описывающих кварковую
среду, была работа Т’Хоофта ( [6]), где впервые было введено понятие
1/Nc-разложения. В своей работе Т’Хоофт, исследуя лагранжиан КХД с
цветовой группой симметрии S U(Nc), показал, что в пределе большого
числа цветов и малой константы связи

Nc → ∞, g→ 0, Ncg2 = g2
0 = const, (1.5)

лидирующий вклад в амплитуду процесса рассеяния дают планарные
диаграммы, не имеющие внутренних фермионных петель и нетривиаль-
ную топологию (т.е. не имеющие ручек). Неабелевы модели сильного
взаимодействия, аналогичные КХД, но с симметрией S U(Nc) являются
достаточно сложными для исследования даже в пределе Nc → ∞. Одна-
ко есть более простые для исследования модели, которые, как и модель
Тирринга, являются моделями четырехфермионного точечного взаимо-
действия: модель Гросса–Невё ( [7]) и модель Намбу–Йона-Лазинио ( [8]),
которые в данный момент являются одними из наиболее популярных для
исследования приближенными моделями КХД и исследованию которых
посвящена данная работа. В общем виде лагранжианы этих двух моде-
лей можно записать в следующем виде:

LGN,NJL = ψ̄(iγµ∂µ − m0)ψ +
G
Nc

[(ψ̄ψ)2 + λ(ψ̄iγ5ψ)2], (1.6)

где при m0 = 0, λ = 0 лагранжиан сводится к лагранжиану в модели
Гросса–Невё, при m0 = 0, λ = 1 – к модели Намбу–Йона-Лазинио.

Модель Намбу–Йона-Лазинио (НЙЛ) была предложена еще до созда-
ния квантовой хромодинамики. В своей статье авторы модели рассматри-
вали возможность возникновения массы у нуклонов за счет динамическо-
го нарушения киральной симметрии, и образования пионов как связан-
ных состояний двух нуклонов. Хотя во времена создания данной модели
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еще не было известно о существовании кварков и глюонов, авторы от-
мечали, что по их мнению, пионы не являются наиболее фундаменталь-
ными частицами, участвующими в процессах сильного взаимодействия,
а представляют собой что-то наподобие коллективных возбуждений ато-
мов кристаллической решетки – фононов. С сегодняшней точки зрения,
учитывая современные знания о природе сильного взаимодействия, мож-
но сказать, что они были близки к истине. Схема рассуждений авторов
модели восходит к работам по природе сверхпроводимости Бардина, Ку-
пера и Шриффера (модель БКШ, [9]), а также Боголюбова ( [10]), где
между возбужденными состояниями и основным состоянием сверхпро-
водника образуется массовая щель за счет притяжения между электро-
нами и образования составных частиц, подчиняющихся статистике Бозе–
Эйнштейна, – так называемых куперовских пар – коррелированных пар
электронов с противоположно направленными спинами.

Сегодня модель НЙЛ рассматривается как низкоэнергетическое при-
ближение квантовой хромодинамики, описывающей возникновение мас-
сы кварков за счет образования кварк-антикваркового конденсата

⟨
ψ̄ψ

⟩
и, как следствие, нарушения киральной симметрии. Также широко рас-
сматриваются в настоящее время расширения данной модели, в которых
изучается возможность образования дикваркового конденсата ⟨ψψ⟩ при
низкой температуре и высокой плотности за счет одноглюонного обмена
между кварками, что аналогично образованию куперовских пар в сверх-
проводнике (см., например, работы [11–15,17,18], а также обзор [19]). Раз-
ница заключается в том, что данный конденсат несет не только электри-
ческий, но и цветовой заряд, и благодаря аналогии с моделью БКШ обра-
зование такого конденсата носит название цветовой сверхпроводимости.
Еще одно отличие цветовой сверхпроводимости от сверхпроводимости
за счет образования куперовских пар электронов заключается в харак-
терных масштабах температур, при которых температурные флуктуа-
ции разрушают корреляцию фермион-антифермионных пар: для модели
БКШ эта температура составляет порядка 0.5MeV, тогда как для цвето-
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вой сверхпроводимости она порядка ΛQCD ≃ 100− 200 MeV, и плотности
(величины химических потенциалов), при которых может возникать цве-
товая сверхпроводимость по последним оценкам составляют ∼ 400− 500
MeV( [19]). Такие условия могут быть реализованы в будущих экспери-
ментах по столкновению тяжелых ионов, а также в центре нейтронных
звезд.

Применение данной модели в настоящее время достаточно обширно:
модель НЙЛ используется для изучения свойств материи компактных
звезд, в частности, нейтронных звезд ( [2]), для описания свойств адро-
нов (см., например, обзоры [20,21]), фазовых переходов в плотной квар-
ковой материи ( [22–24]), многочастичных связанных состояний ( [25]),
некоторых свойств мезонов ( [26–28]).

Особый интерес представляет влияние внешних магнитного и хромо-
магнитного полей на свойства частиц ( [14–16,29,30]). Одним из интерес-
ных свойств модели НЙЛ в таких внешних полях является магнитный
(и, соответственно, хромомагнитный) катализ – влияние внешнего поля
на динамическое нарушение киральной симметрии в теории, приводя-
щее к тому, что симметрия может нарушаться при сколь угодно малой
константе связи четырехфермионного взаимодействия ( [31]), что явля-
ется следствием эффективного сокращения размерности в присутствие
сильного внешнего поля ( [15,32]).

Поскольку модели НЙЛ и ГН претендуют на описание сильных взаи-
модействий в низкоэнергетическом пределе, важным вопросом является
сводимость этих моделей к более фундаментальным теориям. Одним из
подходов, описывающих такой переход, является описание системы квар-
ков с двумя ароматами, где наличие инстантонов индуцирует эффектив-
ное четырехфермионное взаимодействие ( [33,34]). Также модели такого
типа могут реализовываться в струнных теориях на D-бранах, являясь
низкоэнергетическими приближениями теории ( [35,36]).
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1.2 Методы численных расчетов

В работе используются численные расчеты некоторых величин и по-
строения графиков. Для построения графиков использовались системы
Matlab (все графики, кроме фазовых диаграмм при ненулевой темпера-
туре, T , 0 в главе 4), Mathematica. Для существенных численных рас-
четов (глава 4) использовались собственные программы, написанные на
языке C++. Для вычисления интегралов использовался алгоритм Ром-
берга и двухточечная схема вычисления интеграла. Для нахождения ми-
нимумов функций многих аргументов использовался метод градиентного
спуска и метод сопряженных градиентов. Поскольку для данных методов
может быть существенен выбор начальной точки спуска, использовался
набор начальных точек, в случае нахождения близких по глубине ми-
нимумов, значения исследуемых функций в данных точках минимумов
проверялись отдельно с большей точностью. Подробнее о данных мето-
дах компьютерных вычислений см. [37].
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Глава 2

Трёхмерная модель Гросса–Невё с
нарушеннием лоренц-инвариантности

2.1 Возможность нарушения лоренц-инвариантности и ее про-
явления

Лоренц-инвариантность и СРТ-симметрия являются одними из самых
проверенных законов природы. Однако, в последние годы стала широ-
ко обсуждаться возможность нарушения этих основных законов физи-
ки, были высказаны предположения, что эти симметрии являются лишь
приблизительными. Действительно, современная квантовая теория до-
пускает нарушение лоренц-инвариантности (и как следствие, СРТ - сим-
метрии) как механизм спонтанного нарушения симметрии. То есть, хотя
основные законы могут быть и инвариантны относительно этих симмет-
рий, могут существовать вакуумные решения, спонтанно нарушающие
их.

Нарушение лоренц-инвариантности может возникать в таких теори-
ях, как теория струн [38, 39]; петлевая квантовая гравитация [40, 41],
где рассмотрение одно и двух - петлевых поправок с учетом наруше-
ния лоренц-инвариантности может дать конечный вклад из расходящих-
ся интегралов; некоммутативная теория поля, где координаты являются
функциями дифференциальных соотношений некоммутативной алгебры
([xµ, xν] = i

Λ2
NC
θµν, ΛNC - характерный для проявления некоммутативно-
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сти масштаб энергии) , и эта некоммутативность является источником
нарушения лоренц-симметрии [42–44]; суперсимметричные теории [45];
это нарушение может возникать также из-за варьирования связей [46].

В большинстве теорий, исследующих нарушение лоренц-инвариантности,
возникают выделенные системы отсчета, в которых уравнения движения
принимают наиболее простой вид, однако наряду с этим существуют тео-
рии, где выделенных систем отсчета не существует, однако существуют
измененные переходы от одной системы отсчета к другой за счет изме-
нения алгебры Пуанкаре (эта теория получила название doubly special
relativity, DSR, обзор - [47]).

Существуют кинематические и динамические модели нарушения лоренц-
инвариантности, и хотя понятно, что законченная теория должна вклю-
чать в себя динамику, кинематические модели сейчас также исследуют-
ся, к тому же, существует ряд моделей, где динамика еще не до конца
ясна (например, упомянутая уже DSR-модель), и таким образом, про-
верка в таких моделях возможна только на кинематическом уровне.

Примером одной из простейших кинематических моделей нарушения
лоренц-инвариантности может служить нарушение стандартных диспер-
сионных соотношений такого вида:

E2 = m2 + p2 + F(1)
i pi + F(2)

i j pi p j + F(3)
i jk pi p j pk + ... (2.1)

где коэффициенты F(1)
i ,F(2)

i j ,F(3)
i jk и т.д. являются размерными константа-

ми, удовлетворяющими условию, что поправка к дисперсионным соотно-
шениям является малой.

Еще одной известной кинематической моделью нарушения лоренц-
инвариантности является модель Робертсона–Мансури–Сексла (RMS).
В этой модели существует выделенная система отсчета, в которой рас-
пространение света изотропно и преобразования Лоренца при переходе
в другие системы отсчета выглядят в обобщенном виде так:

x′0 = a−1(x0 − ϵ⃗ · x⃗)
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x⃗ = d−1 x⃗ − (d−1 − b−1)
v⃗(⃗v · x⃗)

v2 + a−1v⃗x0 (2.2)

Здесь a, b, d - функции от значения относительной скорости систем от-
счета, а вектор ϵ⃗ зависит от типа синхронизации часов. При a = b−1 =√

1 − v2 и d = 1 эти преобразования становятся обычными преобразова-
ниями Лоренца. Метрику в этой модели (при движении систем отсчета
вдоль оси x) можно записать как ds2 = g2

0dx2
0 − g2

1dx2 − g2
2(dy2 + dz2). При

малой относительной скорости функции gi(v) обычно параметризуют при
помощи параметров Мансури-Сексла:

g0(v) = 1 +
(
1
2
− α

)
v2 + ...

g0

g1
= 1 + (α − β)v2 + ... (2.3)

g2

g1
= 1 + (δ − β)v2 + ...

При значениях параметров α = 1
2 , β =

1
2 , δ = 0 выполняется лоренц-

инвариантность.
Современные опыты, аналогичные опытам Майкельсона–Морли и Кеннеди–

Торндайка по измерению скорости света, дают следующие ограничения
на параметры Мансури–Сексла:

|α + β − 1| < 6.9 × 10−7

|δ − β + 1
2
| < 4.5 × 10−9 (2.4)

Параметр g0 и связанный с ним параметр α может быть также оценен
благодаря эффекту Допплера, поскольку он влияет на дисперсионное со-
отношение для частицы и входит в выражение для энергии частицы как
E = mc2

g0
√

1−v2
. Благодаря экспериментам с измерением возможного иска-

жения эффекта Допплера, сейчас самые строгие оценки для параметра
α таковы:

|α − 1
2
| < 8 × 10−7 (2.5)



Трёхмерная модель Гросса–Невё с нарушеннием
лоренц-инвариантности 15

Динамические модели, описывающие нарушение лоренц-инвариантности,
также весьма разнообразны. К примеру, в работе [48] исследуется много-
мерная теория, в которой искривленная геометрия в объеме (bulk) пред-
полагает анизотропию, приводящую к нарушению лоренц-инвариантности.
В этой модели постоянный вектор Bµ, имеющий ненулевое вакуумное
среднее и реализующий эту анизотропию, предполагается напрямую свя-
занным с гравитационным полем, т.е. с тензором Ричи в пятимерном
пространстве анти-де Ситтера.

L =
1

k2
(5)

R − 2Λ + λBµBνRµν −
1
4

BµνBµν − V(BµBµ ± b2) (2.6)

где Bµν = ∇µBν − ∇νBµ, k2
(5) = M3

Pl(5), MPl(5) - пятимерная планковская
масса, Λ = Λ(5) + Λ(4), λ - безразмерная константа связи, V - потенциал,
благодаря которому происходит нарушение лоренц-инвариантности, т.к.
он имеет минимум при BµBµ ± b2 = 0, т.е. таким образом поле имеет
ненулевое вакуумное среднее.

Предполагается, что нарушение лоренц-инвариантности может прояв-
ляться существенно при энергиях, близких по масштабу к планковской
(Ep = 1.2 × 1019 GeV). Конечно, ввиду того, что максимальные энергии
частиц, доступных для наблюдения (транс-GZK лучи порядка 1011 GeV,
не говоря уже об ускорителях порядка TeV) намного меньше планков-
ской энергии, наблюдение эффектов нарушения лоренц-инвариантности
на планковских масштабах невозможно. Однако, если нарушение лоренц-
инвариантности происходит при высоких энергиях, то отголоски этого
нарушения можно наблюдать и при низких энергиях. Поэтому большин-
ство попыток проверки нарушения лоренц-инвариантности предприни-
мается в феноменологических аспектах физики элементарных частиц.

Достаточно много в оценке нарушения лоренц-инвариантности мо-
гут предоставить эксперименты по обнаружению возможного наруше-
ния СРТ-симметрии (и как следствие, разные по абсолютной величине
масса, заряд, магнитный момент частиц и античастиц). Поскольку СРТ-
теорема требует лоренц-инвариантности, то нарушение последней приве-
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дет к нарушению СРТ-инвариантности, обратное в общем случае невер-
но, однако для локальных полевых теорий нарушение СРТ-инвариантности
приводит к нарушению лоренц-инвариантности, как показано в [49]. По-
этому проверка следствий СРТ-теоремы может служить проверкой воз-
можности нарушения и лоренц-инвариантности.

Одни из наиболее точных из полученных результатов в этой области
были получены при помощи ловушки Пеннинга (в которой заряженная
частица удерживается статическими электрическим и магнитным поля-
ми). Вводя в ловушку слабое осциллирующее магнитное поле, можно
измерить соотношения аномальной частоты электрона ωa (возникающей
за счет аномального магнитного момента) и циклотронной частоты ωc

и оценить разницу в аномальных магнитных моментах для электрона и
позитрона. Согласно оценкам [50] эта величина составляет

|ω+a − ω−a | < 2.4 × 10−21me (2.7)

Еще одна оценка нарушения СРТ-симметрии может быть получена
из анализа каонных систем. Для нейтральных каонов (K0 = ds) , было
получено (см. [38])

|
mK − mK

mK
| < 5 × 10−18 (2.8)

Стандартная Модель не располагает механизмами нарушения лоренц-
инвариантности, однако это нарушение может быть следствием нару-
шения в более фундаментальных теориях (таких, как упомянутые вы-
ше теория струн, некоммутативные теории). Стандартная Модель с до-
бавлением механизмов, нарушаюших лоренц-инвариантность, называет-
ся расширенной Стандартной Моделью (SME). Сушествует достаточно
много возможных добавочных членов в лагранжиан. В спинорном секто-
ре Стандартной Модели наиболее полный лагранжиан со всеми возмож-
ными поправками, нарушающими лоренц-инвариантность, представлен
в [51]:

L =
i
2
Ψ̄Γµ∂

µΨ − Ψ̄MΨ (2.9)
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где
Γµ = γµ + cµνγν + dµνγ5γν + eµ + i f µγ5 +

1
2

gλνµσλν

M = m + aµγµ + bµγ5γ
µ +

1
2

Hµνσµν

Все дополнительные параметры, появившиеся в теории по сравнению с
обычным лагранжианом для дираковких фермионов, определяются из
средних по вакууму значений нарушающих лоренц-инвариантность тен-
зоров в более фундаментальных теориях. Все введенные параметры на-
рушают лоренц-инвариантность, и, кроме того, параметры aµ , bµ , eµ ,
fµ , gλµν нарушают СРТ-симметрию.

Поскольку лагранжиан (2.9) является достаточно общим, обычно рас-
сматривают теории, включающие только некоторые из добавочных чле-
нов, в большинстве работ рассматривается влияние членов aµ и bµ. В
качестве примера таких работ можно привести работы [52, 53]. Можно
провести оценку этих добавок исходя из уже упоминавшихся опытов с
ловушкой Пеннинга и анализа каонных систем.

Действительно, возможная разница масс каонов может быть связана
с добавкой aµ для s и d кварков. Обозначая △aµ = rdad

µa − rsas
µa, где

rd, rs- коэффициенты, возникающие из-за связанных состояний кварков,
можно получить выражение

|
mK − mK

mK
| ≈ |

βµ△aµ
mK
| (2.10)

где βµ - 4-скорость каона в системе отсчета наблюдателя. Отсюда можно
получить ограничения на aµ:

|△ax|, |△ay| < 10−12eV

|△a0|, |△az| < 10−11eV (2.11)

В экспериментах с ловушками Пеннинга можно получить ограниче-
ния на добавку bµ. Измеряемую аномальную частоту можно с учетом
добавок записать так:

ωe±
a = ω

e0

a ∓ 2be
Z + 2de

Z0me + 2He
XY (2.12)
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Здесь Z - ось прецессии. Тогда, исползуя упомянутые результаты по из-
мерению частот для электрона и позитрона (2.7), можно оценить bZ:

bZ ≤ 10−21me (2.13)

В обзорной статье [54] можно также найти современные ограничения
на добавку bµ, полученные, в частности, при исследовании атомных си-
стем:

|b0| < 10−2eV, |⃗b| < 10−18 ∼ 10−20eV (2.14)

Как видно из этих оценок, ограничения на временную часть bµ сей-
час являются наиболее слабыми, поэтому многие авторы уделяют особое
внимание рассмотрению именно этого члена (например [55]). Тем не ме-
нее, данные оценки показывают, что предполагаемые параметры нару-
шения лоренц-инвариантности малы, так что экспериментальное обнару-
жение их сталкивается с проблемой отделения обнаружения нарушения
лоренци-инвариантности и сходных по проявлениям эффектов, которые
могут возникать как следствие нелинейности эффективного действия
электродинамики в сильных внешних магнитных и гравитационных по-
лях ( [57,58]).

В заключение этого раздела можно также сказать несколько слов о
введении поправок, нарушающих лоренц-инвариантность, в лагранжиан
КЭД: в результате введения поправок, аналогичных уже написанным вы-
ше (2.9) в стандартный лагранжиан КЭД: LQED = −1

4 FµνFµν+
i
2Ψ̄γ

µDµΨ−
Ψ̄mΨ , в фотонном секторе теории появляются два члена, нарушающие
лоренц-инвариантность:

Lem = −
1
4

(kF)βλµνFβλFµν +
1
2

(kAF)βεβλµνAλFµν (2.15)

Здесь первый член является СРТ-четным, а второй нарушает СРТ–
инвариантность. Второй член называется членом Черна-Саймонса и су-
ществует ряд работ, посвященных генерации этого члена в расширенной
стандартной модели (например, [56, 59, 60]). Однако, в разных работах
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существуют разные результаты относительно возникновения этого чле-
на. Так, например, в [56] делается вывод о том, что этот член в тео-
рии при введении нарушения лоренц-симметрии добавлением bµ имеет
конечное выражение, а в [59] при введении такой же добавки bµ член
Черна-Саймонса не образуется. Это говорит о том, что многие аспекты
расширенной стандартной модели (SME) изучены еще не до конца, и ее
развитие еще не завершено.

2.2 Исследуемая модель

В данной работе рассматривается (2+1)- мерная модель Гросса–Невё,
лагранжиан которой в пространстве Евклида выглядит так:

S [Ψ̄,Ψ] =
∫

d3x
[
Ψ̄γµ∂µΨ + Ψ̄γ3∂3Ψ −

G
2N

(
Ψ̄Ψ

)2
]
. (2.16)

µ = 1, 2

Здесь 1-е измерение - пространственное, 2-е - временное, 3-е - дополни-
тельное пространственное. Это модель изначально обладает Z(2)-симметрией
с инверсией третьего измерения, т.е.

ΨL(x1, x2, x3)′ = ±ΨL(x1, x2,−x3), Ψ̄L(x1, x2, x3)′ = ±Ψ̄L(x1, x2,−x3)

ΨR(x1, x2, x3)′ = ∓ΨR(x1, x2,−x3), Ψ̄R(x1, x2, x3)′ = ∓Ψ̄R(x1, x2,−x3)
(2.17)

В нашей модели γ - матрицы мы выбрали так:

γ2 = σ1 =

0 1
1 0

 ; γ1 = σ2 =

0 −i

i 0

 ; γ3 = γ5 = σ3 =

1 0
0 −1

 (2.18)

Вводя нарушение лоренц-инвариантности путем введения в лагранжиан
члена, включающего bµ и массу m, мы получаем:

S [Ψ̄,Ψ] =
∫

d3x
[
Ψ̄γ j(∂ j − ib j)Ψ + Ψ̄mΨ − G

2N

(
Ψ̄Ψ

)2
]

(2.19)
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где b = (b1; b2; b3) и j = 1, 2, 3
Введем поле Φ(x) и воспользуемся следующим соотношением (соотно-

шение Хаббарда-Стратоновича):

∫
dΦ exp

{∫
−d3x

[
Ψ̄ΦΨ − N

2G
Φ2

]}
=

=

∫
dΦ exp

{∫
d3x

N
2G

([
Φ − G

N
Ψ̄Ψ

]2

−
(G
N

)2 (
Ψ̄Ψ

)2
)}
=

= const · exp
{∫
−d3x

G
2N

(
Ψ̄Ψ

)2
}

(2.20)

При больших N мы можем положить, как это делается в статье [68], по-
ле Φ(x) равным не зависящей от координат константе Φ. Тогда, вводя
зависящее от Ψ̄,Ψ,Φ действие и используя соотношение Стратоновича-
Хаббарда, получим:

S [Ψ̄,Ψ,Φ] = S [Ψ̄,Ψ] +
∫

d3x
[
−Ψ̄ΦΨ + N

2G
Φ2 − N · m · BΛ · Φ

]
(2.21)

где

BΛ =
4

(2π)3 ·
Λ∫

0

dE · d2 p
E2 + p2 =

2
(2π)3 ·

Λ∫
0

d3k
k2 =

Λ

π2 =
1

Gc

Последнее слагаемое под интегралом в (2.21) возникло в результате пе-
ренормировки действия в однопетлевом приближении, аналогичная пе-
ренормировка была проделана в [63].

Переходя в импульсное пространство и интегрируя по всему объему
независящие от координат части подынтегрального выражения в (2.21),
мы получаем выражение для S [Ψ̄,Ψ,Φ] в виде:

S [Ψ̄,Ψ,Φ] =
1

(2π)3

∫
d3k

[
Ψ̄(−k)

(
iγ j(k j − b j) − Φ̃

)
Ψ(k)

]
+

+
N

2G
VΦ2 − NV · Φ m

Gc

(2.22)
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здесь V - это объем трехмерного пространства

Производящий функционал записывается в следующем виде:

Z =
∫

dΨ̄dΨ exp
{
−S [Ψ̄,Ψ]

}
=

∫
dΨ̄dΨdΦ exp

{
−S [Ψ̄,Ψ,Φ]

}
(2.23)

Чтобы найти конденсат дираковских полей ⟨Ψ̄Ψ⟩ надо рассмотреть сле-
дующее выражение:

⟨Ψ̄Ψ⟩ = −⟨ΨΨ̄⟩ = −
∫

dΨ̄dΨ(Ψ̄Ψ)e−S∫
dΨ̄dΨe−S

=
δ ln Z
δΦ
+

N
G
⟨Φ − m⟩ (2.24)

Видно, что при δ ln Z
δΦ

(Φ = Φ0) = 0 мы получаем:

⟨Ψ̄Ψ⟩ = −⟨ΨΨ̄⟩ = N
G

(Φ0 − m) (2.25)

То есть при Φ0 , m возникает ненулевое вакуумное среднее: ⟨Ψ̄Ψ⟩ , 0 и
киральная симметрия нарушается.

Подставив в (2.23) выражение (2.22) и взяв континуальный интеграл
по Ψ̄,Ψ, для чего мы используем известное соотношение

∫
dΨ̄dΨ exp {Ψ̄MΨ} =

det M, мы получаем окончательное выражение для производящего функ-
ционала:

Z =
∫

dΦ exp
{
−NV

2G
Φ2 +

NV · m
Gc

Φ

}
det

(
γ j(k j − b j) − Φ̃

)
(2.26)

где Φ̃ = Φ − m

Поскольку Z =
∫

dΦ exp {−NV · Veff} , мы логарифмируем полученное
выражение для Z и далее, воспользовавшись тем, что

ln Det(γi(ki − bi) − Φ̃) = Tr ln(γi(ki − bi) − Φ̃) =
1
2

Tr ln((ki − bi)2 + Φ̃2)

мы получаем выражение для Veff:

Veff =
Φ2

2G
− mΦ

Gc
− 1

(2π)3

∫
d3k · ln

((⃗
k − b⃗

)2
+ Φ̃2

)
(2.27)

Конденсат дираковских полей будет отсутствовать, и как следствие
киральная симметрия не будет нарушена, если эффективный потенциал
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Рис. 2.1: Эффективный потенциал в теории без массы и нарушения лоренц-
инвариантности: а) (пунктирная линия) G = 1, Gc = 2 > G – 1 минимум б) (сплошная
линия) G = 2, Gc = 0.8 < G – 2 минимума

будет имет единственный минимум в точке Φ0 = m, в противном случае
киральная симметрия будет нарушаться.

Случай, когда m = 0 и нарушения лоренц-инвариантности нет, рас-
смотрен в [68], где получено следующее выражение для эффективного
потенциала:

Veff =
1

6π
|Φ|3 − Φ

2

2

(
1

Gc
− 1

G

)
(2.28)

В этом случае уравнение щели ∂Veff/∂Φ = 0 принимает следующий
вид:

|Φ0| = 2π
(

1
Gc
− 1

G

)
(2.29)

То есть, при G < Gc симметрия не будет нарушена, а при G > Gc она
нарушается (рис. 2.1).

2.3 Эффективный потенциал модели Veff

Вектор b⃗ у нас может задаваться комплексным, действительным или
смешанным (некоторые компоненты комлексны, некоторые - действи-
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тельны). Вычислим значение эффективного потенциала в двух случаях
- при действительном и комплексном b⃗ в простанстве Евклида .

2.3.1 Вычисление Veff в случае действительного b⃗

В сферических координатах d3k = 2πk2 sinΘ · dk · dΘ , поэтому выра-
жение (2.27) для Veff принимает вид:

Veff =
Φ2

2G
−mΦ

Gc
− 1

(2π)2

Λ∫
0

π∫
0

k2 · ln
(
k2 − b2 − 2kb · cosΘ + Φ̃2

)
sinΘ · dΘ · dk =

=
Φ2

2G
− Φ m

Gc
+

2
(2π)2

Λ∫
0

k2dk − 1
8π2b

Λ∫
0

k
{[

(k + b)2 + Φ̃2
]

ln
(
(k + b)2 + Φ̃2

)
−

−
[
(k − b)2 + Φ̃2

]
ln

(
(k − b)2 + Φ̃2

)}
dk

(2.30)

Здесь b =
√

b2
1 + b2

2 + b2
3 - модуль вектора b⃗

Обозначим:

I1 =
1

2b

Λ∫
0

k
{[

(k + b)2 + Φ̃2
]

ln
(
(k + b)2 + Φ̃2

)
−

−
[
(k − b)2 + Φ̃2

]
ln

(
(k − b)2 + Φ̃2

)}
dk

(2.31)

Вычисляя этот интеграл, получаем:

I1 =
1

2b
ln

(
(Λ + b)2 + Φ2

) [1
4

(Φ4 + Λ4) − 1
12

b4 +
1
2
Λ2Φ2 +

1
2
Λ2b2 − 1

2
b2Φ2 +

2
3

bΛ3
]
−

− 1
2b

ln
(
(Λ − b)2 + Φ2

) [1
4

(Φ4 + Λ4) − 1
12

b4 +
1
2
Λ2Φ2 +

1
2
Λ2b2 − 1

2
b2Φ2 − 2

3
bΛ3

]
−

−2
3
Φ3 ·

[
arctan

(
Λ + b
Φ

)
+ arctan

(
Λ − b
Φ

)]
+

+
5
6
ΛΦ2 − 5

18
Λ3 +

1
3
Λb2 (2.32)
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Подставляя это выражение, окончательно для Veff мы получаем:

Veff =
Φ2

2G
− mΦ

Gc
+

1
(2π)2 ·

2
3
Φ3 ·

[
arctan

(
Λ + b
Φ

)
+ arctan

(
Λ − b
Φ

)]
−

− 1
8π2b

ln
(
(Λ + b)2 + Φ2

) [1
4

(Φ4 + Λ4) − 1
12

b4 +
1
2
Λ2Φ2 +

1
2
Λ2b2 − 1

2
b2Φ2 +

2
3

bΛ3
]
+

+
1

8π2b
ln

(
(Λ − b)2 + Φ2

) [1
4

(Φ4 + Λ4) − 1
12

b4 +
1
2
Λ2Φ2 +

1
2
Λ2b2 − 1

2
b2Φ2 − 2

3
bΛ3

]
−

− 1
(2π)2 ·

(
5
6
ΛΦ2 +

17
18
Λ3 +

2
3
Λb2

)
(2.33)

Прямая проверка показывает, что полученное выражение при bi → 0 и
m → 0 переходит в соответствующее значение для Veff без нарушения
лоренц-инвариантности (2.28).

При Λ ≫ Φ;b в нашем случае из (2.33) мы имеем

Veff =
Φ2

2G
− (Φ − m)2

2Gc
+
|Φ − m|3

6π
− b2

6Gc
− mΦ

Gc
(2.34)

Заметим, что при m → 0 полученное выражение для эффективного по-
тенциала будет совпадать с (2.28) с точностью до аддитивной поправки
b2

6Gc
, которая не влияет на расположение минимумов и максимумов Veff и

поэтому не вносит вклад в вакуумное среднее поля Φ.

2.3.2 Вычисление Veff в случае мнимого b⃗

Второй случай - это чисто мнимый (в Евклиде)вектор b⃗. В этом случае
мы можем записать выражение (2.27) в таком виде:

Veff =
Φ2

2G
− mΦ

Gc
− 1

(2π)3

∫
d3k · ln

((⃗
k − i⃗b̃

)2
+ Φ̃2

)
(2.35)

где ⃗̃b - уже действительный вектор с компонентами (b̃1, b̃2, b̃3).
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В сферических координатах d3k = 2πk2 sinΘ · dk · dΘ , поэтому выра-
жение для Veff принимает вид:

Veff =
Φ2

2G
−mΦ

Gc
− 1

(2π)2

Λ∫
0

π∫
0

k2 · ln
(
k2 − b̃2 − 2ikb̃ · cosΘ + Φ̃2

)
sinΘ · dΘ · dk =

=
Φ2

2G
− mΦ

Gc
+

2
(2π)2

Λ∫
0

k2 · dk−

− 1
8iπ2b̃

Λ∫
0

k
{[

(k + ib̃)2 + Φ̃2
]

ln
(
(k + ib̃)2 + Φ̃2

)
−

−
[
(k − ib̃)2 + Φ̃2

]
ln

(
(k − ib̃)2 + Φ̃2

)}
dk

(2.36)

Здесь b̃ - модуль вектора ˜⃗b.
Обозначим:

I2 =

Λ∫
0

k
{[

(k + ib̃)2 + Φ̃2
]

ln
(
(k + ib̃)2 + Φ̃2

)
−

−
[
(k − ib̃)2 + Φ̃2

]
ln

(
(k − ib̃)2 + Φ̃2

)}
dk

(2.37)

Для того, чтобы вычислить этот интеграл, разделим его на действи-
тельную и мнимую части. В результате такого разделения (см. приложе-
ние A) этот интеграл сводится к следующему виду:

I2 = 4ib̃ ·
Λ∫

0

k2 ln


√(

k2 + b̃2 + Φ̃2
)2 − 4b̃2Φ̃2

 · dk+

+2i ·
Λ∫

0

k ·
(
k2 + Φ̃2 − b̃2

)
arctan

(
2kb̃

k2 + Φ̃2 − b̃2

)
· dk (2.38)

Заметим, что действительные части этого интеграла сократились, т.е.
I2 - чисто мнимый, что и должно быть, т.к. выражение для Veff долж-
но быть действительным. Взяв этот интеграл, мы получаем следующее
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выражение:

I2 =
2ib̃
3
Λ3 ln

((
Λ2 + b̃2 + Φ̃2

)2 − 4b̃2Φ̃2
)
− i

5
9
Λ3b̃ − iΛb̃

(
1
3

b̃2 − 5
3
Φ̃2

)
+

+i
(
1
2
Λ4 + Λ2

(
Φ̃2 − b̃2

))
arctan

(
2Λb̃

Λ2 + Φ̃2 − b̃2

)
+ (2.39)

+
i
2

[
(Φ̃ − b̃)3

(
1
3

b̃ + Φ̃
)

arctan
Λ

Φ̃ − b̃
+ (Φ̃ + b̃)3

(
1
3

b̃ − Φ̃
)

arctan
Λ

Φ̃ + b̃

]

Окончательно для Veff мы получаем:

Veff =
Φ2

2G
− mΦ

Gc
− 1

(2π)2

[
−17

18
Λ3 +

5
6
ΛΦ̃2 − 1

6
Λb̃2

]
−

−1
3

1
(2π)2Λ

3 ln
(
(Λ2 + Φ̃2 + b̃2)2 − 4b̃2Φ̃2

)
− (2.40)

− 1
16π2b̃

[(
Λ4 + 2Λ2(Φ̃2 − b̃2)

)
arctan

(
2Λb̃

Λ2 + Φ̃2 − b̃2

)]
−

− 1
16π2b̃

[
(Φ̃ − b̃)3(

1
3

b̃ + Φ̃) arctan
(
Λ

Φ̃ − b̃

)
+ (Φ̃ + b̃)3(

1
3

b̃ − Φ̃) arctan
(
Λ

Φ̃ + b̃

)]

Прямая проверка показывает, что как и в случае действительного век-
тора b⃗, полученное выражение при bi → 0 и m → 0 переходит в со-
ответствующее значение для Veff без нарушения лоренц-инвариантности
(2.28).

Исследуем полученное выражение:

При Λ ≫ Φ;b мы имеем

1) Если |Φ − m| > b̃, то

Veff =
Φ2

2G
− (Φ − m)2

2G
+
|Φ − m|3

6π
− mΦ

Gc
(2.41)
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2) Если |Φ − m| < b̃ , то

Veff =
Φ2

2G
− (Φ − m)2

2Gc
− mΦ

Gc
−

− 1
32πb̃

[
2
3

b̃4 − 4b̃2(Φ − m)2 − 2(Φ − m)4
] (2.42)

2.4 Уравнение щели в трехмерной модели

Уравнение щели можно сразу найти в приближении Λ ≫ Φ;b , исходя
из полученного выражения для эффективного потенциала, однако в дан-
ной работе оно было получено сначала из выражения (2.27), что служит
дополнительной проверкой правильности вычисления Veff.

2.4.1 Уравнение щели в случае действительного b⃗

В этом случае мы, дифференцируя выражение (2.27) по Φ и прирав-
няв его нулю, получаем:

Φ

G
− m

Gc
= − Φ̃

4π2b

Λ∫
0

k · ln
[
(k − b)2 + Φ̃2

(k + b)2 + Φ̃2

]
· dk =

= − Φ̃
4π2b

Λ∫
0

k ·
[
ln

(
(k − b)2 + Φ̃2

)
− ln

(
(k + b)2 + Φ̃2

)]
· dk (2.43)

Вычисляя этот интеграл, мы получаем:

Φ

G
− m

Gc
= − Φ̃

4π2b
·
{

1
2

(Λ2 + Φ̃2)
[
ln

(
(Λ − b)2 + Φ̃2

)
− ln

(
(Λ + b)2 + Φ̃2

)]
−

− 2Λb + 2bΦ̃
(
arctan

(
Λ − b
Φ̃

)
+ arctan

(
Λ + b
Φ̃

))}
(2.44)
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Прямая проверка показывает, что это выражение при bi → 0 и m → 0
переходит в соответствующее выражение для уравнения щели без нару-
шения лоренц-инвариантности (2.29).
При Λ ≫ Φ;b мы имеем:

(Φ − m) · |Φ − m|
2π

+ Φ

(
1
G
− 1

Gc

)
= 0 (2.45)

Можно привести это выражение к виду:

(Φ − m) (|Φ − m| − M)
2π

− mM
2π
= 0 (2.46)

где M = 2π
(

1
Gc
− 1

G

)
. Это с точностью до коэффциента 2 совпадает с ре-

зультатами статьи [63].
Заметим, что полученный нами результат (2.45) также получается на-
прямую из полученного выше вида эффективного потенциала при дей-
ствительном b⃗ (2.34), что подтверждает правильность выполненных рас-
четов.
Исследуем нули (2.46):
Анализ показывает, что при M > 0, т.е. G > Gc, экстремумы эффектив-
ного потенциала могут быть в точках

Φ1 = m +
1
2

M +

√
1
4

M2 + Mm;

Φ2 = m − 1
2

M +

√
1
4

M2 − Mm;

Φ3 = m − 1
2

M −
√

1
4

M2 − Mm

(2.47)

Причем, в первом случае в Veff реализуется минимум при любых M >

0,m > 0; во втором - максимум и в третьем - минимум при M > 4m.
При M < 0, т.е. G < Gc эффективный потенциал имеет минимум в точке

Φ4 = m +
1
2
|M| −

√
1
4

M2 + m|M| (2.48)

Таким образом, при M < 0 Veff имеет один минимум в точке Φ4 (рис.
2.2(а)), при 0 < M < 4m - также только один минимум в точке Φ1 (рис.
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Рис. 2.2: Эффективный потенциал при действительном b: а) G = 0.8, Gc = 1, m = 4.5,
график имеет 1 минимум при Φ4 = 2.51, б) G = 2, Gc = 1, m = 3, график имеет 1
минимум при Φ1 = 8.02

2.2(б)), а при M > 4m он будет иметь минимумы в точках Φ1, Φ3 и макси-
мум в точке Φ2 (рис. 2.2). Симметрия будет восстановлена, только если
эффективный потенциал имеет единственный минимум в точке Φ0 = m.
Здесь этот случай не реализуется при любых параметрах M,m, b (за ис-
ключением, конечно, случая m = 0, когда эффективный потенциал в точ-
ности соответствует Veff случаю без нарушения лоренц-инвариантности
(2.28) с лишь аддитивной добавкой − b2

6Gc
). Поэтому в случае действитель-

ного b⃗ киральная симметрия нарушенна при любой величине введенной
поправки b⃗, которая проявляется только в общем сдвиге эффективного
потенциала.

2.4.2 Уравнение щели в случае мнимого b⃗

Взяв производную выражения (2.27) по Φ и приравняв ее нулю, мы
получаем:

Φ

G
− m

Gc
=

iΦ̃
4π2b̃

Λ∫
0

k · ln
[
(k − ib̃)2 + Φ̃2

(k + ib̃)2 + Φ̃2

]
· dk =
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Рис. 2.3: Эффективный потенциал при действительном b: G = 4, Gc = 0.7, m = 0.8,
график имеет 2 минимума при Φ1 = 8.93, Φ3 = −5.69 и максимум при Φ2 = −0.11

=
iΦ̃

4π2b̃

Λ∫
0

k ·
[
ln

(
(k − ib̃)2 + Φ̃2

)
− ln

(
(k + ib̃)2 + Φ̃2

)]
· dk (2.49)

Обозначим:

J =

Λ∫
0

k ·
[
ln

(
(k − ib̃)2 + Φ̃2

)
− ln

(
(k + ib̃)2 + Φ̃2

)]
· dk (2.50)

Для вычисления этого интеграла мы, как и в случае с вычислением Veff

при мнимом b⃗, разложим его на действительную и мнимую части. В
результате (подробнее см. приложение A) мы получаем следующее вы-
ражение для J:

J = −2i

Λ∫
0

k · arctan
(

2kb̃
k2 + Φ̃2 − b̃2

)
· dk (2.51)

Как мы видим, действительная часть интеграла J равна нулю, остается
только мнимая часть.
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Вычисляя этот интеграл, мы приходим к следующему выражению:

J = −iΛ2 arctan
(

2Λb̃
Λ2 + Φ̃2 − b̃2

)
− 2iΛb̃+

+i ·
[
(Φ̃ + b̃)2 arctan

(
Λ

Φ̃ + b̃

)
− (Φ̃ − b̃)2 arctan

(
Λ

Φ̃ − b̃

)]
(2.52)

Отсюда мы получаем окончательное выражение для уравнения щели в
трехмерии:

Φ

G
− m

Gc
=
Φ̃

4π2b̃

[
Λ2 arctan

(
2Λb̃

Λ2 + Φ̃2b̃2

)
+ 2Λb̃ +

+ (Φ̃ − b̃)2 arctan
(
Λ

Φ̃ − b̃

)
− (Φ̃ + b̃)2 arctan

(
Λ

Φ̃ + b̃

)] (2.53)

Прямая проверка показывает, что это выражение, так же как и (2.44)
при bi → 0 и m → 0 переходит в соответствующее выражение для урав-
нения щели без нарушения лоренц-инвариантности (2.29). Кроме того,
из полученного выражения для эффективного потенциала (2.40) также
получается это выражение. Исследуем полученное нами выражение.

При Λ ≫ Φ;b мы имеем (обозначая как и прежде M = 2π
(

1
Gc
− 1

G

)
):

1) Если |Φ − m| > b̃, то

(Φ − m) (|Φ − m| − M)
2π

− mM
2π
= 0 (2.54)

то есть в этом случае решения будут совпадать с решениями уравнения
щели при действительном векторе b⃗

2)Если |Φ − m| < b̃, то

(Φ − m)3

4πb̃
+

(Φ − m)b̃
4π

+ Φ

(
1
G
− 1

Gc

)
= 0

То есть

Φ3 − 3Φm + Φ
(
3m2 + b̃2 − 2Mb̃

)
− b̃2m − m3 = 0 (2.55)
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Рассмотрим сначала для простоты случай, когда m = 0.

В области |Φ − m| < b̃ уравнение щели примет вид:

Φ3 + Φ(b̃2 − 2Mb̃) = 0 (2.56)

Поэтому при M < 0, т.е. G < Gc, в этой области будет единственный
минимум в нуле. При M > 0, т.е. G > Gc, и b̃ < 2M экстремумы бу-
дут в точках (с учетом, конечно, что эти экстремумы укладываются в
исходную область, т.е. b̃ > M)

Φ = 0;

Φ = ±
√

2Mb̃ − b̃2
(2.57)

Причем в нуле в этом случае будет максимум.
При M > 0 и b̃ > 2M в этой области будет только минимум в нуле.

При |Φ − m| > b̃ уравнение щели перейдет в (2.29), и минимумы эф-
фективного потенциала в этой области будут при Φ0 = 0, если G < Gc и
Φ0 = ±M, если G > Gc (при условии, что эти минимумы укладываются
в исходную область, т.е. b̃ < M).

В итоге мы получаем следующую картину:
1) при G < Gc реализуется, как и в теории без добавки b̃, глобальный
минимум при Φ0 = 0, т.е. теория кирально симметрична (рис. 2.4(а))
2) при G > Gc, b̃ < M Veff имеет 2 минимума при Φ0 = ±M, т.е. поле Φ
имеет ненулевое вакуумное среднее и киральная симметрия нарушается
(рис. 2.4(б))
3) при G > Gc, M < b̃ < 2M киральная симметрия также нарушена и
вакуумное среднее равно Φ0 = ±

√
2Mb̃ − b̃2 (рис. 2.5(а))

4) и наконец при G > Gc и b̃ > 2M, т.е. при достаточно больших b̃, ки-
ральная симметрия восстанавливается, и снова вакуумное cреднее равно
нулю. (рис. 2.5(б)) В общем случае при ненулевой массе m анализ уравне-
ния щели затрудняется тем, что нам необходимо найти нули кубического
уравнения (2.55), что можно сделать в общем виде, но приводит к гро-
моздким результатам. Детальнее эта ситуация разобрана в приложении
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Рис. 2.4: Эффективный потенциал при мнимом b: а) m = 0, G = 1, Gc = 4, b̃ = 2,
график имеет единственный минимум в нуле, б) m = 0, G = 2, Gc = 0.8, M = 4.71,
b̃ = 1.5 < M график имеет минимум при Φ0 = ±M

−8 −6 −4 −2 0 2 4 6 8
−4

−3

−2

−1

0

1

2

3

4

Φ

V
ef

f

m=0, G=4, Gc=1, M=4.71, b=7, Φ
0
=4,12 

−10 −8 −6 −4 −2 0 2 4 6 8 10
−15

−10

−5

0

5

10

15

20

Φ

V
ef

f

m=0, G=4, Gc=1, M=4.71, b=12

Рис. 2.5: Эффективный потенциал при мнимом b: а) m = 0, G = 4, Gc = 1, M = 4.71,
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√
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G = 4, Gc = 1, M = 4.71, b̃ = 12 > 2M, график имеет единственный минимум в нуле
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A. В результате анализа уравнения щели в этом случае получаются сле-
дующие условия, при которых киральная симметрия восстанавливается:
а) 

M < 0

b̃ >
√

1
4 M2 + m|M| − 1

2 |M|

b̃(b̃ − 2M)3 ≥ −m2M2

Φ4 = Φ0 = m

(2.58)

б) 

M > 0

b̃ >
√

1
4 M2 + mM + 1

2 M

b̃(b̃ − 2M)3 ≥ −m2M2

Φ4 = Φ0 = m

(2.59)

где

Φ4 = m + sign(M)
[
A +

1
3
· b̃(2M − b̃)

A

]

и A =
(
b̃m|M| +

√
b̃2M2m2 − b̃3

27(2M − b̃)3

) 1
3

Из выражений (2.58),(2.59) видно, что при зафиксированных парамет-
рах M,m восстановление киральной симметрии происходит при Φ4 = m,
т.е. при некоторых дискретных значениях b̃. Поэтому можно сказать, что
восстановление симметрии не носит системного характера, в отличие от
безмассового случая, где симметрия восстанавливается при всех b̃ > 2M.

2.5 Заключение

В данной работе рассмотрена трехмерная модель Гросса–Невё с вве-
дением массы, а также нарушающего лоренц-инвариантность члена и
исследовано влияние этой добавки на киральную симметрию теории.
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Показано, что появление действительного b⃗ в лагранжиане теории
дает лишь аддитивную поправку в эффективный потенциал, не влияю-
щую на то, где находится минимум потенциала. Поэтому в присутствии
массы киральная симметрия нарушается при любом b⃗. Если положить
массу равной нулю, то в этом случае условия для нарушения киральной
симметрии будут такими же, как и в статье [68], т.е. симметрия будет
нарушена при G > Gc.

В случае введения комплексного b⃗ (b⃗ = i⃗b̃) эффективный потенциал
будет иметь существенно другие свойства. Так, при нулевой массе m, эф-
фективный потенциал будет иметь единственный минимум при G < Gc,
как и в теории без нарушения лоренц-инвариантности. При G > Gc и
0 < b̃ < 2M он будет иметь два минимума, что соответствует наруше-
нию киральной симметрии и наблюдается также в модели без нарушения
лоренц-инвариантности. И при G > Gc и b̃ > 2M, эффективный потен-
циал снова имеет один минимум при Φ = 0, т.е. при достаточно больших
значениях b̃ киральная симметрия восстанавливается.

В случае, если масса ненулевая, то условия восстановления симметрии
оказываются сложнее, они получены и имеют вид (2.58),(2.59). Однако,
в этом случае, восстановление симметрии происходит только при каких-
то определенных значениях параметров m, M, b̃ и не носит системного
характера.



Глава 3

Размерная редукция модели Гросса–Невё

3.1 Двумерная модель Гросса–Невё

Свойства трехмерной модели Гросса–Невё подробно обсуждались в
предыдущей главе. В двумерии, однако, условия нарушения киральной
симметрии отличаются от описанного выше случая, они будут кратко
описаны далее в этой главе, для более детального их описания см. [67].
Запишем двумерное евклидово действие модели с учетом члена, нару-
шающего лоренц-инвариантность, в следующем виде (здесь спиноры и
константа связи обозначаются маленькими буквами, чтобы отличать эту
модель от трехмерной):

S [ψ̄, ψ] =
∫

d2x[ψ̄(γµ∂µ − γµbµγ3)ψ − g
2N

(ψ̄ψ)2], (3.1)

где µ = 1, 2, и bµ – постоянный вектор, а γ-матрицы представлены в виде:

γ2 = σ1 =

0 1
1 0

 ; γ1 = σ2 =

0 −i

i 0

 ; γ3 = γ5 = σ3 =

1 0
0 −1

 , (3.2)

где σi – матрицы Паули.
В данном случае модель в отсутствие членов, нарушающих лоренц-

инвариантность, обладает глобальной цветовой симметрией U(N), а так-
же симметрией относительно группы Z(2), т.е. относительно преобразо-
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ваний вида:

ψ′L(x) = ±ψL(x), ψ̄′L(x) = ∓ψ̄L(x),

ψ′R(x) = ∓ψR(x), ψ̄′R(x) = ±ψ̄R(x), (3.3)

где

ψR,L(x) =
1 ± γ3

2
ψ(x), ψ̄R,L(x) = ψ̄(x)

1 ∓ γ3

2
. (3.4)

3.1.1 Лоренц-инвариантная модель

Рассмотрим сначала свойства двумерной модели ГН в отсутствие чле-
нов, содержащих bµ, в лагранжиане. Проводя бозонизацию модели, ис-
пользуя преобразование Хаббарда–Стратоновича, аналогично преобра-
заванию, использовавшемуся в главе 1, можно получить линеаризован-
ное действие для данной модели:

S [ψ̄, ψ,Φ] =
∫

d2x
[
ψ̄γµ∂µψ − ψ̄ψΦ +

N
2g
Φ2

]
, (3.5)

причем ваккумное ожидание
⟨
ψ̄ψ

⟩
предполагается ненулевым и незави-

сящим от координат:

< ψ̄ψ >=
δlnZ
δΦ
+

N
g
< Φ >=

N
g
Φ0. (3.6)

Производящий функционал для данной модели определен, как и раньше,
соотношением (2.23) с соответствующей заменой Ψ→ ψ. Вспоминая, что
Z = exp (−NVVeff(Φ)), можно, полагая поле Φ независящей от координат
константой в приближении N → ∞, окончательно найти эффективный
потенциал модели в следующем виде:

Veff(Φ) = − 1
(2π)2

∫
d2k ln(k2 + Φ2) +

1
2g
Φ2. (3.7)

Как видно, интеграл в (3.7) логарифмически расходится. Для устране-
ния этой расходимости вводится обрезание Λ2 в двумерном пространстве
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импульсов. После введения обрезания мы можем получить уравнение на
минимум эффективного потенциала ∂Veff

∂Φ
= 0 в следующем виде:

1
(2π)2

∫
k2≤Λ2

d2k
2

k2 + Φ2
0

=
1
g
. (3.8)

В ультрафиолетовом пределе Λ2 ≫ Φ0 это уравнение может быть сведено
к виду:

Φ0 = m = Λ2 exp (− π

g(Λ2)
). (3.9)

Данное решение уравнения щели показывает, что в (1+1)-мерной моде-
ли ГН нарушение киральной симметрии происходит при любых услови-
ях (что отличает ее от (2+1)-мерной модели, рассмотренной в прошлой
главе, где киральная симметрия нарушалась только при константе свя-
зи больше некоторого критического значения). Кроме того, такой вид
Φ0 указывает на асимптотическую свободу данной модели: для фикси-
рованного значения Φ0: g(Λ2)→ 0 при Λ2 → ∞.

После подстановки константы связи, заданной в (3.8), в формулу для
эффективного потенциала (3.7), можно получить его в следующем виде:

Veff(Φ) =
Φ2

4π

ln Φ2

Φ2
0

− 1
 . (3.10)

Как видно, данное выражение не зависит от безразмерной константы
связи g, изначально присутствовавшей в модели, однако теперь в модели
появился параметр Φ0, имеющий размерность массы и равный массе,
которую динамически приобретают фермионы. Таким образом, данная
модель демонстрирует явление размерной трансмутации. Вид данного
эффективного потенциала показан на рисунке 3.1.

3.1.2 Модель с нарушением лоренц-инвариантности

Рассмотрим данную модель в случае ненулевого значения bmu. Исхо-
дя из определения лагранжиана (3.1) и проводя бозонизацию так же,
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Рис. 3.1: График эффективного потенциала двумерной модели Гросса–Невё в случае
ненарушенной лоренц-симметрии

как и в случае без нарушения лоренц-инвариантности, можно получить
следующее выражение для производящего функционала модели:

Z =
∫

dΦDet(iγµkµ − Φ − γµbµγ3)e−
NV
2g Φ

2
. (3.11)

Снова используя соотношение Z = exp (−NVVeff(Φ)) и переходя в про-
странство Минковского (т.е. применяя замену k1 = k1, k2 = ik0, b1 =

−ib1, b2 = b0), выражение для эффективного потенциала модели можно
записать в следующем виде:

Veff = −
i

(2π)2

+∞∫
−∞

dk0

+∞∫
−∞

dk1 ln(Φ2 + (k1 + b0)2 − (k0 + b1)2) +
Φ2

2g
=

=
1

4π

∫
dk1

(∣∣∣∣b1 −
√
Φ2 + (k1 + b0)2

∣∣∣∣ + ∣∣∣∣b1 +
√
Φ2 + (k1 + b0)2

∣∣∣∣) + Φ2

2g
.(3.12)

Как и в случае лоренц-инвариантной модели, данный интеграл являет-
ся логарифмически расходящимся. Для проведения регуляризации мы
снова вводим параметр обрезания Λ2. Продифференцировав выражение
(3.12) по Φ, можно получить условие на минимум Veff:

1
4π

Λ2/2∫
−Λ2/2

dk1√
Φ2 + (k1 + b0)2

 √
Φ2 + (k1 + b0)2 − |b1|

||b1| −
√
Φ2 + (k1 + b0)2|

+ 1

 + 1
g
= 0. (3.13)
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Анализируя подынтегральное выражение в (3.13), можно видеть, что
область интегрирования разбивается на части в зависимости от значения
bµ:

1) Если b1 >
√
Φ2 + (k1 + b0)2 вклад в интеграл (3.13) равен нулю;

2) Если b1 <
√
Φ2 + (k1 + b0)2, то в пределе Λ2 ≫ b0, b1 уравнение щели

примет вид:

ln
|b1| −

√
(b1)2 − Φ2√

(Λ2/2)2 + Φ2 − Λ2/2
− π

g
= 0. (3.14)

С учетом этого после вычислений эффективный потенциал принимает
следующий вид:

Veff =
Φ2

2g
− 1

2π

|b1|
√

(b1)2 − Φ2 +
Λ2

2

4
+

+
Φ2

2
+ (b0)2 + Φ2 ln (|b1|

√
(b1)2 − Φ2) − Φ2 ln

Φ2

Λ2

)
, (3.15)

Решение для уравнения щели (3.13) было найдено в следующем виде:

Φ̄2 = 2|b1|Λ2 exp
(
−π

g

)
− Λ2

2 exp
(
−2π

g

)
= 2b1Φ0 − Φ2

0, (3.16)

где Φ0 – решение уравнения щели в лоренц-инвариантном случае (3.9).
Изучение свойств функции эффективного потенциала приводит к следу-
ющим выводам:

1) При любом b1 уравнение на экстремум ∂Veff
∂Φ
= 0 имеет тривиальное

решение Φ̄ = 0. Однако, этот экстремум может быть как максиму-
мом, так и минимумом.

2) Из уравнения (3.16) можно получить условие:√
(b1)2 − Φ̄2 = Φ0 − b1, (3.17)

которое определяет граничное значение для величины компоненты
b1 вектора, нарушающего лоренц-инвариантность:

|b1| = Φ0. (3.18)
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Рис. 3.2: График эффективного потенциала двумерной модели Гросса–Невё с нару-
шением лоренц-симметрии для значения параметра нарушения b1 > Φ0, при котором
наблюдается восстановление киральной симметрии

При величинах |b1| < Φ0 наблюдается нарушение киральной симмет-
рии (см. рис. 3.2), при величинах |b1| > Φ0 – киральная симметрия
восстанавливается.

Таким образом, свойства двумерной модели ГН с нарушением лоренц-
инвариантности оказываются сходными со свойствами аналогичной трех-
мерной модели: существует критическая величина масштаба нарушения
лоренц-симметрии, при котором происходит восстановление киральной
симметрии. Естественным образом возникает задача о проведении раз-
мерной редукции из трех измерений в два.

3.2 Размерная редукция

Для проведения операции сокращения размерности, мы будем исхо-
дить из безмассовой трехмерной модели Гросса–Невё, свойства которой
обсуждались в главе 2, и переходить к двумерной модели, обсужденной
вкратце выше. Все обозначения для трехмерной модели взяты из главы
2 для единообразия.
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3.2.1 Размерная редукция лоренц-инвариантной модели

Для проведения компактификации третьего измерения необходимо
наложить условие, ограничивающее размер пространства вдоль него:
x3 ∈ [0, β], что приводит к тому, что компонента импульса вдоль тре-
тьего измерения вместо непрерывной становится дискретной:

k3 =
2πn
β
, (3.19)

где n ∈ Z.
Уравнение щели для трехмерной модели ГН при m = 0 и без членов

в лагранжиане, нарушающих лоренц-инвариантность, получаемое диф-
ференцированием эффективного потенциала (2.27), можно записать в
виде:

1
G
=

2
(2π)3

∫
dk1dk2dk3

k2
1 + k2

2 + k2
3 + Φ

2
. (3.20)

После ограничения третьей координаты и дискретизации импульса по-
лучим:

1
G
=

2
(2π)2β

∞∑
n=−∞

∫
dk1dk2

k2
1 + k2

2 + (2πn
β

)2 + Φ2
. (3.21)

При вычислении этого выражения могут быть использованы два подхо-
да: суммирование до взятия интеграла, как в работе [68], или в обратной
последовательности. В данном случае используется первый способ. Для
вычисления данной суммы можно использовать формулу суммирования
Пуассона, результат вычисления записывается в виде (подробное вычис-
ление ряда дано в приложении B):

∞∑
n=−∞

1
k2

1 + k2
2 + (2πn

β
)2 + Φ2

=

β coth
(
β
2

√
k2

1 + k2
2 + Φ

2
)

2
√

k2
1 + k2

2 + Φ
2

. (3.22)

Используя это соотношение, получим:

1
G
=

1
4π

∫
d(k2)

coth
(
β
2

√
k2 + Φ2

)
√

k2 + Φ2
,
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где k =
√

k2
1 + k2

2 берется из интервала k ∈ [0,Λ2], где Λ2 – параметр об-
резания в двумерном импульсном пространстве, фигурировавший ранее.
Результат интегрирования записывается в виде:

1
G
=

1
πβ

ln


sinh β

2

√
Λ2

2 + Φ
2

sinh β|Φ|
2

. (3.23)

Полагая, что все параметры модели значительно меньше масштаба об-
резания – Λ2 ≫ Φ, можно получить следующее приближение для урав-
нения щели:

sinh
β|Φ|

2
=

1
2

exp
[
πβ

(
Λ2

2π
− 1

G

)]
. (3.24)

Последнее выражение в случае β→ ∞ дает соответствие между Λ2 и 1
Gc

:

Λ2

2π
=
Λ3

π2 =
1

Gc
. (3.25)

При условии βΦ ≪ 1, выражение (3.24) приобретает вид:

|Φ| = 1
β

exp
[
πβ

(
1

Gc
− 1

G

)]
. (3.26)

При отождествлении 1
β

с импульсом обрезания Λ2 это выражение соот-
ветствует решению уравнения щели в двумерии (3.9), где константа связи
g принимает вид:

g =
[
β

(
1
G
− 1

Gc

)]−1

(3.27)

3.2.2 Размерная редукция модели с нарушением лоренц-инвариантности

Рассмотрим уравнение щели трехмерной модели, полагая m = 0 и
b3 = 0:

1
G
=

2
(2π)3

∫
d3k

(k1 − b1)2 + (k2 − b2)2 + k2
3 + Φ

2
. (3.28)
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Для установления соответствия с двумерным случаем необходимо поло-
жить:

b(3d)
1 = −b(2d)

2 = −b0;

b(3d)
2 = b(2d)

1 = −ib1, (3.29)

здесь b0; b1 ∈ Re.
Проводя компактификацию по третьему измерению так же, как это

было сделано для случая без нарушения лоренц-инвариантности, полу-
чим:

1
G
=

2
(2π)2β

∑
n

Kn, (3.30)

где

Kn =

∫
dk1dk2

(k1 + b0)2 + (k2 + ib1)2 + (2πn
β

)2 + Φ2
. (3.31)

Для взятия интеграла по k2 мы замыкаем сверху путь интегрирования в
комплексной плоскости переменной k2, в результате мы получаем:
1) Если β|b1| <

√
f 2 + H2

n

Kn = π

Λ
2 +b0∫

−Λ2 +b0

dk̃1√
Φ2 + k̃2

1 +
2πn
β

. (3.32)

2) Если β|b1| >
√

f 2 + H2
n

Kn = π


√

(b1)2−Φ2−( Hn
β

)2∫
−Λ2 +b0

dk̃1√
Φ2 + k̃2

1 + (Hn
β

)2
−

Λ
2 +b0∫

−
√

(b1)2−Φ2−( Hn
β

)2

dk̃1√
Φ2 + k̃2

1 + (Hn
β

)2

 .
(3.33)

Здесь f = βΦ, Hn = 2πn, k̃1 = k1 + b0 и Λ – обрезание по импульсам,
которое, в общем случае, не равно Λ2.



Размерная редукция модели Гросса–Невё 45

После вычислений уравнение щели принимает вид:
1) При |b1| < |Φ|

1
G
=

1
2πβ

∑
n

An, (3.34)

2) При |b1| > |Φ|

1
G
=

1
2πβ

 ∑
|n|≤nmax

Bn +
∑
|n|>nmax

An

 . (3.35)

Здесь

An = − ln
(

f 2 + H2
n

)
+ ln

β(
Λ

2
− b0) +

√
β2(
Λ

2
− b0)2 + (Hn)2 + f 2

 +
ln

β(
Λ

2
+ b0) +

√
β2(
Λ

2
+ b0)2 + (Hn)2 + f 2

, (3.36)

Bn = ln
(
β(Λ2 − b0) +

√
β2(Λ2 − b0)2 + (Hn)2 + f 2

)
+ (3.37)

+ ln
(
β(Λ2 + b0) +

√
β2(Λ2 + b0)2 + (Hn)2 + f 2

)
− 2 ln

(
β|b1| +

√
(βb1)2 − f 2 − H2

n

)
и nmax возникает из условия |b1| <

√
Φ2 + (2πn

β
)2, то есть n ≤ nmax.

Существующие строгие экспериментальные ограничения на величины
компонент bµ, приводят к естественному соотношению: β|b1| ≪ 2π, так
что условие, приведенное выше, нарушается уже при n = 1, следователь-
но, nmax = 0.

Отметим, что для установления соответствия с лоренц-инвариантной
моделью в выражениях (3.34), (3.35), необходимо выбрать подходящие
конечные пределы суммирования. Это связано с тем, что при нахожде-
нии уравнения щели для b = 0 мы полагали, что оба импульса ограни-
чены параметром обрезания Λ2 (k =

√
k2

1 + k2
2 ∈ [0,Λ2]), в то время как

при b , 0 интеграл по k2 брался замыканием контура интегрирования в
комплексной плоскости, т.е. пределы интегрирования брались бесконеч-
ными.
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Кроме того, для того, чтобы упростить дальнейшие вычисления, за-
метим, что в выражениях для An и Bn параметр b0 всегда встречается
рядом с параметром обрезания Λ, который значительно больше. Таким
образом, можно ожидать, что b0 даст исчезающе малый вклад в конеч-
ное выражение для уравнения щели. Действительно, разложим оба ло-
гарифма в выражениях (3.36) и (3.37), которые содержат b0, по малому
параметру b0

Λ
:

ln

β(
Λ

2
− b0) +

√
β2(
Λ

2
− b0)2 + H2

n + f 2

 +
+ ln

β(
Λ

2
+ b0) +

√
β2(
Λ

2
+ b0)2 + H2

n + f 2

 =
= 2 ln

βΛ2 +
√
β2Λ2

4
+ f 2 + H2

n

 + Qn + o
(
(
b0

Λ
)4
)
, (3.38)

где

Qn = −
(b0)2Λβ3

2
√

β2Λ2

4 + f 2 + H2
n

1 + βΛ√
β2Λ2

4 + f 2 + H2
n


3 + βΛ√

β2Λ2

4 + f 2 + H2
n

 =
= o

(
(
b0

Λ
)2
)
. (3.39)

При суммировании в конечных пределах вкладами Q и членов более
высокого порядка по b0

Λ
можно пренебречь, таким образом в результиру-

ющее выражение для уравнения щели величина b0 входить не будет.
Аналогичным образом, логарифмы в тех же выражениях (3.36) и

(3.37) можно разложить по малой величине Φ
Λ
, поскольку | f | ≪ βΛ. Про-

водя это разложение, получим:

ln

β(
Λ

2
− b0) +

√
β2(
Λ

2
− b0)2 + (Hn)2 + f 2

 +
+ ln

β(
Λ

2
+ b0) +

√
β2(
Λ

2
+ b0)2 + (Hn)2 + f 2

 =
= 2 ln

βΛ2 +
√
β2Λ2

4
+ H2

n

 + o
(
(
b0

Λ
)2
)
+ o

(
(
Φ

Λ
)2
)
. (3.40)
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Теперь рассмотрим первый член в выражении для An (3.36). Поскольку
величина bµ мала, разумно предположить следующее приближение для
величины f : f = βΦ ≪ 1. Поэтому можно разложить (3.36) по малой
величине f , что даст (при n , 0):

ln
(

f 2 + H2
n

)
= ln H2

n +
f 2

H2
n
+

f 4

H4
n
+ ... (3.41)

Выражение вида
∑
n,0

1
H2k

n
– конечно даже при бесконечных пределах сум-

мирования и тем более конечно, если эти пределы ораничены.
В итоге уравнения щели в описанном приближении: b0 ≪ Λ, f = βΦ ≪

1, | f | ≪ βΛ, имеют вид:

1) Если |b1| < |Φ|
1
G
=

1
πβ

(
Y − 1

2
ln f 2

)
, (3.42)

2) Если |b1| > |Φ|
1
G
=

1
πβ

(
Y − ln (β|b1| +

√
(βb1)2 − f 2)

)
, (3.43)

где

Y =
|n|≤N∑

n

ln

βΛ2 +
√
β2Λ2

4
+ H2

n

 − 1
2

|n|≤N∑
n,0

ln H2
n + o

(
(
b0

Λ
)2
)
+ o

(
(
Φ

Λ
)2
)
+ o

(
f 2

)
.

(3.44)

При подходящем выборе предела суммирования данное уравнение долж-
но перейти в уравнение щели, полученное для лоренц-инвариантного слу-
чая (2.29) при b1 = 0. Для этого параметры N и Λ должны быть выбраны
так, чтобы выполнялось условие:

Y =
βΛ2

2
, (3.45)

где Λ2 соответствует параметру обрезания в двумерной модели Гросса–
Невё. В приложении B показаны вычисления для более удобного выбора
этих параметров.
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Для решения уравнения щели получим (как и прежде мы используем
соотношения Λ2

2π =
Λ3
π2 =

1
Gc

, и для константы связи используем выражение
(3.27)):
1) Если |b1| < |Φ|

1
G
=

1
πβ

(
βΛ2

2
− 1

2
ln f 2

)
,

откуда следует:

|Φ| = 1
β

exp
[
πβ

(
1

Gc
− 1

G

)]
=

1
β

exp
(
−π

g

)
. (3.46)

2) Если |b1| > |Φ|
1
G
=

1
πβ

(
βΛ2

2
− ln (β|b1| +

√
(βb1)2 − f 2)

)
,

откуда следует:

|Φ|2 = 2|b1|
β

exp
(
−π

g

)
− 1
β2 exp

(
−2π

g

)
(3.47)

Видно, что (3.46), (3.47) совпадают с решением двумерного уравнения
щели модели с нарушенной лоренц-инвариантностью (3.16), где 1

β
– иг-

рает роль обрезания по имульсам, так же как и в лоренц-инвариантном
случае.

3.3 Заключение

В данной главе были обсуждены основные свойства двумерной модели
Гросса–Невё в присутствие членов, нарушающих лоренц-инвариантость,
а также без них. Показаны основные сходства и различия этой модели
и трехмерной модели. Одним из сходств является наличие критическо-
го масштаба нарушения лоренц-инвариантности, при котором кираль-
ная симметрия модели восстанавливается. Путем компактификации по
третьему измерению, установлено соответствие между результатами, по-
лученными для разного числа измерений, найдены требуемые для этого
соотношения между параметрами моделей.



Глава 4

Волны киральной и пионной плотности в
плотной кварковой среде

4.1 Исследуемая модель

В данной главе исследуется (1+1)-мерная модель Намбу–Йона-Лазинио
с двумя ароматами кварков (u и d - кварки, которые считаются безмас-
совыми) с лагранжианом вида:

L = q̄
[
γρi∂ρ + µγ0 +

µI

2
τ3γ

0
]
q +

G
Nc

[
(q̄q)2 + (q̄iγ5τ⃗q)2

]
. (4.1)

Здесь γ-матрицы являются матрицами 2 × 2 и выбраны следующим об-
разом: γ0 = σ2, γ

1 = iσ1, γ
5 = γ0γ1 = σ3, а спинор q является дублетом

по аромату и Nc-плетом по цветам (q = qi,α, где i = 1, 2 или i = u, d, и
α = 1, ...,Nc). Матрицы Паули τk (k = 1, 2, 3) действуют в пространстве
ароматов. В (4.1) подразумевается сумма по индексам цвета и аромата, а
также по спинорным индексам. Присутствие в лагранжиане химическо-
го потенциала µ отвечает за ненулевую барионную плотность кварковой
материи, а введение изотопического химического потенциала µI позво-
ляет исследовать кварковую материю с различной плотностью u и d -
кварков (т.е. материю с изотопической асимметрией). В дальнейшем рас-
смотрении мы будем для удобства использовать величину ν = µI

2 вместо
исходного изотопического химпотенциала.

Данную модель можно рассматривать как обобщение (1+1)-мерной
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модели Гросса–Невё [7] c наличием дополнительного типа взаимодей-
ствия вида (q̄iγ5τ⃗q)2, химических потенциалов и с двумя ароматами квар-
ков. Лагранжиан (4.1) обладает симметрией отновительно преобразова-
ний четности, и благодаря этим добавкам по сравнению с обычной мо-
делью ГН данная модель (4.1) обладает более сложной группой кираль-
ной симметрии – ее лагранжиан симметричен относительно глобальной
группы S U(Nc), а также при µI = 0 он обладает симметрией относитель-
но киральной группы S UL(2) × S UR(2), но при µI , 0 она сокращается
до UI3L(1) × UI3R(1), где I3 = τ3/2, а символы R, L означают действие
только на левые и правые спиноры соответственно. Данная симметрия
эквивалентна симметрии относительно группы UI3(1)×UAI3(1), где UI3(1),
UAI3(1) означают изоспиновую и аксиально изоспиновую группы соответ-
ственно. Под действием этих групп спиноры преобразуются следующим
образом:

UI3(1) : q→ exp(iατ3)q; UAI3(1) : q→ exp(iαγ5τ3)q. (4.2)

Также отметим, что при разложении в ряд Тейлора данных экспонент
легко получить:

exp(iατ3) = cosα + iτ3 sinα; exp(iαγ5τ3) = cosα + iγ5τ3 sinα. (4.3)

Бозонизация данной модели может быть сделана таким же образом, как
это было сделано для случая трехмерной модели ГН (см. формулу (2.20)
в главе 2). Отличие заключается в том, что в данном случае потребу-
ется введение нескольких бозонных полей, которые можно определить
следующим образом:

σ(x) = −2
G
Nc

(q̄q); πa(x) = −2
G
Nc

(q̄iγ5τaq). (4.4)

С введением этих полей лагранжиан модели (4.1) запишется в виде:

L̃ = q̄
[
γρi∂ρ + µγ0 + ντ3γ

0 − σ − iγ5πaτa

]
q − Nc

4G

[
σ2 + π2

a

]
. (4.5)

Из (4.4) и (4.3) можно получить, что преобразование введенных бозон-
ных полей относительно группы симметрий UI3L(1)×UI3R(1) запишется в
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виде:

UI3(1) : σ→ σ; π3 → π3;

π1 → cos(2α)π1 + sin(2α)π2; π2 → cos(2α)π2 − sin(2α)π1,

UAI3(1) : σ→ cos(2α)σ + sin(2α)π3; π3 → cos(2α)π3 − sin(2α)σ;

π1 → π1; π2 → π2. (4.6)

Из лагранжиана в форме (4.5) можно получить эффективное действие
модели Seff(σ, πa) в приближении одной фермионной петли (что соответ-
ствует приближению больших Nc, см. [6] и обсуждение в главе 1).

exp(iSeff(σ, πa)) = N′
∫

[dq̄][dq] exp
(
i
∫

L̃ d2x
)
, (4.7)

где N′ – нормировочная константа.
В данном выражении можно отделить вклад в эффективное действие

от кварков и от введенных бозонных полей:

Seff(σ, πa) = −Nc

∫
d2x

[
σ2 + π2

a

4G

]
+ S̃eff, (4.8)

где S̃eff – вклад кварков, остальная часть – вклад только бозонных полей,
и упомянутая величина S̃eff задается выражением:

exp(iS̃eff) = N′
∫

[dq̄][dq] exp
(
i
∫ {

q̄
[
γρi∂ρ+µγ0+ντ3γ

0−σ− iγ5πaτa
]
q
}
d2x

)
.

(4.9)
Как и ранее в главах 2 и 3, средние по вакууму величины σ(x) и πa(x)
определяются исходя из условий экстремума эффективного действия:

δSeff

δσ(x)
= 0,

δSeff

δπa(x)
= 0, (4.10)

где a = 1, 2, 3. В случае, если описывается среда с нулевой плотностью
частиц, вакуумные средние σ(x) и πa(x) не должны зависеть от коорди-
нат, однако в присутствие химических потенциалов µ и µI, т.е. в моделях,
описывающих плотную кварковую среду – такая зависимость может про-
явиться.
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4.2 Волны киральной плотности

4.2.1 Термодинамический потенциал модели

В данном разделе будет исследован один из типов зависимости кон-
денсатов от координат – анзац для кварк-кварковых конденсатов будет
выбран в виде, который допускает возникновение киральных волн плот-
ности (КВП):

σ(x) = M cos(2bx), π3(x) = M sin(2bx), π1(x) = ∆, π2(x) = 0, (4.11)

где M, b и ∆ – постоянные величины. Они являются точками глобального
минимума функции термодинамического потенциала Ω(M, b,∆) (ТДП),
который является аналогом эффективного потенциала Veff в моделях,
описывающих среду с нулевой плотностью кварков. Как и Veff, ТДП
определяется следующим образом:∫

d2xΩ(M, b,∆) = − 1
Nc

Seff{σ(x), πa(x)}
∣∣∣
σ(x)=σ(x),πa(x)=πa(x). (4.12)

Подставляя сюда выражение для эффективного действия (4.8), получим:

i
∫

d2xΩ(M, b,∆) = i
∫

d2x
M2 + ∆2

4G
− 1

Nc
ln

(∫
[dq̄][dq] exp

(
i
∫

d2xq̄Dq
))
,

(4.13)
где

D = γρi∂ρ + µγ0 + ντ3γ
0 − M exp(2iγ5τ3bx) − iγ5τ1∆. (4.14)

Как видно, в выражении для D присутствуют члены, зависящие от коор-
динат, что усложняет вычисления. Эти сложности можно обойти, сделав
поворот спиноров (так называемое преобразование Вайнберга):

qw = exp(iγ5τ3bx)q; q̄w = q̄ exp(iγ5τ3bx). (4.15)

После введения определенных таким образом новых спинорных полей,
мы получим:

q̄Dq = q̄w

[
γρi∂ρ + µγ0 + (b + ν)τ3γ

0 − M − iγ5τ1∆
]

qw ≡ q̄wDqw, (4.16)
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где D – новый оператор, не зависящий от координат:

D = γρi∂ρ + µγ0 + (b + ν)τ3γ
0 − M − iγ5τ1∆. (4.17)

Данное преобразование требует небольшого комментария: в работе Фуд-
жикавы [69] показано, что при наличии калибровочного поля, взаимодей-
ствующего со спинорами, преобразования такого рода могут изменить
меру в континуальном интеграле, однако, если калибровочное поле рав-
но 0, т.е. отсутствует (как в исследуемой модели), такого изменения не
происходит. Поэтому выражение (4.13) можно привести к следующему
виду:

Ω(M, b,∆) =
M2 + ∆2

4G
+ i

Trs f x ln D

Nc

∫
d2x
= (4.18)

=
M2 + ∆2

4G
+ iTrs f

∫
d2 p

(2π)2 ln
(
̸ p + µγ0 + (b + ν)τ3γ

0 − M − iγ5∆τ1

)
,

где оператор Trs f x подразумевает взятие следа по спинорным индексам,
индексам ароматов и взятие интеграла в пространстве координат x, а
оператор Trs f – взятие следа только по спинорным индексам и индек-
сам ароматов. Ход дальнейших вычислений достаточно стандартен, его
можно найти, например в [70–72]. Спектр энергий кварков находится из
условия detD = 0:

E±∆ =
√

(E±)2 + ∆2, E± = E ± (b + ν), E =
√

p2
1 + M2. (4.19)

Используя этот результат можно прийти к следующему выражению для
ТДП:

Ω(M, b,∆) =
M2 + ∆2

4G
+ (4.20)

+ i
∫

d2 p
(2π)2 ln

{ (
(p0 + µ)2 − (E+∆)2

) (
(p0 + µ)2 − (E−∆)2

) }
,

В выражении (4.21) можно без ограничений общности положить µ ≥ 0,
(b+ν) ≥ 0, т.к. оно симметрично относительно замены µ→ −µ и (b+ν)→
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−(b + ν). Вычисляя интеграл по p0 в выражении (4.21), мы получаем
выражение для термодинамического потенциала в виде:и

Ω(M, b,∆) =
M2 + ∆2

4G
−

∫ ∞

0

dp1

π

{
E+∆ + E−∆

+ (µ − E+∆)θ(µ − E+∆) + (µ − E−∆)θ(µ − E−∆)
}
, (4.21)

здесь θ(x) – функция Хевисайда.

4.2.2 Однородный киральный конденсат, b = 0

Рассмотрим сначала модель в отсутствие химических потенциалов
(вакуумный случай). При µ = 0, µI = 0 четность в КХД не нарушена,
и такое же требование должно быть наложено на все модели, описы-
вающие процессы с участием сильного взаимодействия, в том числе и
исследуемая модель. Поэтому мы можем также положить ∆ = 0. Нало-
жим также дополнительное условие однородности для кирального кон-
денсата (b = 0), что также является естественным предположением для
вакуумного случая. В таких приближениях исследуемая модель совпа-
дает с исходной моделью НЙЛ в (1+1)-мерии, а эффективный потенциал
для нее может быть получен из (4.21), полагая ∆ = 0, b = 0 µ = 0, µI = 0:

V0(M) =
M2

4G
− 2
π

∫ ∞

0
dp1

√
p2

1 + M2. (4.22)

Интеграл в 4.22 является расходящимся в ультрафиолетовой области и
нуждается в перенормировке. Для того, чтобы перенормировать V0(M),
сначала надо провести его регуляризацию, т.е. выделить явно расходи-
мость данного выражения. Мы делаем это как и прежде при помощи
обрезания области интегрирования по импульсам: p1 < Λ. Далее, мы
полагаем, что голая константа связи G в выражении (4.22) зависит от
парамера обрезания Λ (G ≡ G(Λ)) таким образом, что при устремле-
нии Λ к бесконечности выражение 4.22 становится конечным. Для то-
го, чтобы найти вид зависимости G(Λ), предположим, что уравнение
∂V0(M)/∂M = 0 имеет нетривиальное решение M0 (то есть что V0(M)
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имеет экстремум в точке M0), тогда исходя из этого условия получим:

1
2G(Λ)

=
2
π

∫ Λ

0
dp1

1√
M2

0 + p2
1

=
2
π

ln


Λ +

√
M2

0 + Λ
2

M0

 . (4.23)

Подставляя полученное выражение для G(Λ) в (4.22), добавляя туда кон-
станту Λ2/π, которая не вносит зависимости от M в выражение для эф-
фективного потенциала, а потому не меняет его физического смысла, а
также используя предел Λ→ ∞, получим:

V0(M) = lim
Λ→∞

{
M2

4G(Λ)
− 2
π

∫ Λ

0
dp1

√
p2

1 + M2 +
Λ2

π

}
=

=
M2

2π

ln M2

M2
0

 − 1
 . (4.24)

Поскольку M0 можно рассматривать как свободный параметр теории,
то из конечного вида для эффективного потенциала (4.24) можно за-
ключить, что перенормировка данной модели сопровождается размерной
трансмутацией, так же как было в двумерной модели Гросса–Невё (см.
главу 3). Таким образом после перенормировки данная модель характе-
ризуется не безразмерной константой связи G, которая была свободным
параметром изначально, но массивным параметром M0. Из вида эффек-
тивного потенциала (4.24) следует, что величина M = M0 реализует ми-
нимум V0(M), и, таким образом, киральная симметрия S UL(2) × S UR(2)
всегда нарушена, а M0 является динамической массой кварков.

Если рассмотреть другой частный случай модели – µ , 0, µI = 0
– то есть плотная кварковая среда с изоспиновой симметрией, то при
µ > M0/

√
2 будет наблюдаться кирально-симметричная фаза с ненулевой

плотностью кварковой материи, при µ < M0/
√

2 киральная симметрия
нарушается, и кварки приобретают массу, при этом барионная плотность
становится равной 0. Данные результаты получены в работах [73–77].

Для изучения фазового портрета модели в общем случае – при µ ,

0, µI , 0 – рассмотрим ТДП, найденный для общего случая (4.21), и
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положим в нем b = 0. Кроме того, заметим, что при µI , 0 возмож-
но образование заряженного пионного конденсата, поэтому мы должны
рассмотреть случай ∆ , 0. В выражении (4.21) введем также обрезание
по импульсам Λ, т.к. интеграл, содержащийся в нем расходится в уль-
трафиолетовой области. С учетом сказанного выше, ТДП запишется в
виде:

Ωreg(M, b = 0,∆) =
M2 + ∆2

4G
−
Λ∫

0

dp1

π

{
E+∆ + E

−
∆

}
−

−
∞∫

0

dp1

π

{
(µ − E+∆)θ(µ − E+∆) + (µ − E−∆)θ(µ − E−∆)

}
, (4.25)

где

E±∆ = E±∆|b=0. (4.26)

Благодаря наличию θ-функций второй интеграл в (4.25) имеет конечную
область интегрирования, поэтому он конечен и не нуждается в регуляри-
зации. Аналогично вакуумному случаю, для проведения перенормировки
в данном случае требуется ввести зависимость константы связи от мас-
штаба обрезания: G → G(Λ), данное выражение дано в (4.23). Проводя
такую замену и устремляя Λ к бесконечности, получим:

Ω(M,∆) = lim
Λ→∞

{
Ωreg(M, b = 0,∆)

∣∣∣∣
G→G(Λ)

+
Λ2

π

}
. (4.27)

Данное выражение можно переписать, используя определение для эф-
фективного потенциала в вакууме (4.24):

Ω(M,∆) = V0(
√

M2 + ∆2) −
∫ ∞

0

dp1

π

{
E+∆ + E

−
∆ − 2

√
p2

1 + M2 + ∆2
}

−
∫ ∞

0

dp1

π

{
(µ − E+∆)θ(µ − E+∆) + (µ − E−∆)θ(µ − E−∆)

}
, (4.28)

где функция V0(x) определена по формуле (4.24)). Оба интеграла в вы-
ражении (4.28)) являются сходящимися. Сходимость второго интеграла
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Рис. 4.1: Фазовый портрет (1+1)-мерной модели НЙЛ в координатах (µ, ν) при T = 0 и
ν > 0. Конденсаты предполагаются однородными. Здесь ν = µI

2 и M0 – динамическая
масса кварков в вакууме. Фаза 1 – кирально симметричная фаза, масса кварков
равна 0; Фаза 2 – фаза нормальной кварковой материи с массивными кварками; PC
– фаза заряженной однородной пионной конденсации. Точка α – низшая точка фазы
2 (µα ≈ 0.68M0, να ≈ 0.6M0)

обсуждалась сразу после формулы (4.25)), а первый интеграл также схо-
дится и по определению равен:∫ ∞

0
dp1

[
E+∆ + E

−
∆ − 2

√
p2

1 + M2 + ∆2
]
=

= lim
Λ→∞

{∫ Λ

0
dp1

[
E+∆ + E

−
∆ − 2

√
p2

1 + M2 + ∆2
]}
. (4.29)

Фазовая структура модели с заданными таким образом термодинамиче-
скими потенциалами исследовалась в статье [78], где был получен фазо-
вый портрет модели, отображенный на рисунке 4.1.

4.2.3 Неоднородный киральный конденсат, b , 0

Начнем рассмотрение данного более общего случая с анализа наиболее
общего выражения для ТДП (4.21). Как и ранее, проведем регуляриза-
цию данного выражения с помощью обрезания области интегрирования
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по импульсам:

Ωreg(M, b,∆) =
M2 + ∆2

4G
−

∫ Λ

0

dp1

π

{
E+∆ + E−∆

}
(4.30)

−
∫ ∞

0

dp1

π

{
(µ − E+∆)θ(µ − E+∆) + (µ − E−∆)θ(µ − E−∆)

}
,

где E±
∆

определены по формуле (4.19). Выражение для перенормирован-
ного термодинамического потенциала определяется следующим образом:

Ω(M, b,∆) = lim
Λ→∞

{
Ωreg(M, b,∆)

∣∣∣∣
G→G(Λ)

+
Λ2

π

}
, (4.31)

где G(Λ) представлено в (4.23). Таким образом, для ТДП получим:

Ω(M, b,∆) = V0(
√

M2 + ∆2) − lim
Λ→∞


Λ∫

0

dp1

π

[
E+∆ + E−∆ − 2

√
p2

1 + M2 + ∆2
]

−
∞∫

0

dp1

π

{
(µ − E+∆)θ(µ − E+∆) + (µ − E−∆)θ(µ − E−∆)

}
, (4.32)

где V0(x), как и раньше, определено по формуле (4.24). Однако, хотя
интегралы в выражении (4.32) являются сходящимися, данное выраже-
ние нельзя рассматривать как физически значимый термодинамический
потенциал модели. Это связано с двумя особенностями данного выраже-
ния:
1) ТДП (4.32) не ограничен снизу по переменной b. Поскольку значение
неоднородности b кирального конденсата M определяется динамически,
т.е. исходя из условия минимума ТДП, такая зависимость от b указывает
на нефизичность данного выражения. Формально можно предположить,
что динамически генерируемая величина b определяется из условия экс-
тремума, независимо от того, максимум это, минимум или седловая точ-
ка, однако это не удовлетворяет физической интуиции, подсказывающей,
что для реализации устойчивой конфигурации полей, термодинамиче-
ский потенциал должен минимизироваться.
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2) При M = 0 выражение (4.32) может быть записвно в виде:

Ω(M = 0, b,∆) = V0(∆) − (b + ν)2

π
+

θ(µ − ∆)
π

∆2 ln

µ + √
µ2 − ∆2

∆

 − µ√
µ2 − ∆2

 , (4.33)

эта формула демонстрирует зависимость от переменной b, что непра-
вильно. Действительно, b входит в фазу волны киральной плотности,
тогда как M – её амплитуда, и при нулевой амплитуде волны физически
значимые величины не должны зависеть от фазы.

Для получения физического ТДП модели, следует вычестьи из (4.33)часть,
вносящую нефизичную зависимость от b и ответственную за неограни-
ченность ТДП снизу по переменной b – т.е. член − (b+ν)2

π
.

Ωphys(M, b,∆) = Ω(M, b,∆) +
(b + ν)2

π
. (4.34)

Общий вид этой функции показан на рисунке 4.2, где взят достаточно
большой масштаб переменной b, чтобы показать, что ТДП, определен-
ный по выражению (4.34) действительно ограничен снизу по переменной
b.

Отметим, что данная схема получения физически обоснованной ве-
личины для ТДП является только эффективным приближением и не
показывает более глубоких причин возникновения таких особенностей
ТДП для данной модели. Настоящие же причины заключаются в том,
что при выводе выражения (4.31) для термодинамического потенциала
было использовано обрезание, симметричное по импульсам. То есть для
каждой квазичастицы с энергиями E±

∆
интегрирование по импульсу p1 в

(4.31) производилось в одинаковых пределах 0 < p1 < Λ. Поэтому при
таком выборе схемы регуляризации возникает асимметрия в значении
энергий квазичастиц E±

∆
, вносящих вклад в ТДП Ωreg(M, b,∆), посколь-

ку если p1 < Λ, то E±
∆
<

√(√
Λ2 + M2 ± (b + ν)

)2
+ ∆2, т.е. для разных

квазичастиц доступны разные области энергий. Однако, как показано
в [79,80], более правильной схемой регуляризации для модели НЙЛ будет
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Рис. 4.2: График зависимости физического ТДП модели от переменных b, M (пере-
менная ∆, а также параметры µ, ν – фиксированы). График показывает, что ТДП
ограничен снизу по переменной b, а также что при M = 0 отсутствует нефизическая
зависимость ТДП от величины b.

выбор обрезания, симметричного по энергиям, когда обрезание выбира-
ется таким образом, чтобы для каждого типа квазичастиц ограничения
по энергии были одинаковы.

Отметим также, что подобная схема регуляризации была использова-
на в недавней статье [81], где изучалась (3+1)-мерная модель НЙЛ, а
также в статье [82], где изучалась (1+1)-мерная модель НЙЛ при одном
аромате кварков. Более подробно проведение симметричной по энерги-
ям регуляризации для изучаемой модели можно найти в опубликованной
статье [83].

К сожалению, в аналитическом виде найти условия минимума ТДП
(4.34) не представляется возможным, поэтому дальнейшее исследование
условий возникновения кирального и пионного конденсатов велись чис-
ленно. Были получены графики поведения конденсатов, а также фазо-
вый портрет данной модели с учетом возможности образования кираль-
ных волн плотности. Эти результаты и их обсуждение представлены в
статье [83], в данной главе мы не будем акцентировать на них внимание.
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4.2.4 Киральные волны плотности при ненулевой температуре

Исследование влияния температуры на свойства модели НЙЛ инте-
ресно, прежде всего, тем, что это позволяет оценить физическую значи-
мость данной модели. Поскольку модель претендует на описание свойств
сильного взаимодействия, поведение кварковых конденсатов, образую-
щихся в ней, должно быть соответствовать реально наблюдаемым фи-
зическим явлениям – т.е. при высоких энергиях (температурах) обра-
зование скоррелированных состояний кварков должно быть подавлено
засчет высоких энергий взаимодействия кварков между собой, и вме-
сто связанных состояний должны преобладать свободные кварки. Так-
же представляет интерес изучение свойств фазовых переходов между
фазами на температурной фазовой диаграмме.

В случае пространственно однородных конденсатов влияние ненуле-
вой температуры T , 0 на фазовую структуру (1+1)-мерной модели
НЙЛ, обладающей группой симметрий S UL(2) × S UR(2), с двумя хими-
ческими потенциалами µ и ν ≡ µI/2 было исследовано в [78]. Для нахож-
дения ТДП модели с учетом температуры и возможности образования
неоднородного кирального конденсата в виде волны киральной плотно-
сти (4.11) рассмотрим ΩT(M, b,∆) рассмотрим выражение для ТДП без
учета температуры (4.21).

Техника введения температуры в квантовой теории поля хорошо из-
вестна и заключается в замене интегрирования по энергии p0 на беско-
нечную сумму по матсубаровским частотам ωn:

∞∫
−∞

dp0

2π
( · · · )→ iT

∞∑
n=−∞

( · · · ),
p0 → p0n ≡ iωn ≡ iπT (2n + 1), n = 0,±1,±2, ... (4.35)

По сути, эта техника очень схожа с техникой компактификации про-
странственных измерений, которая была представлена в главе 3, с той
разницей, что в данном случае происходит компактификация времен-
ного измерения, и обратная длина компактифицированного временного
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измерения играет роль температуры: 1
β
= T .

Проводя суммирование по частотам ωn мы получаем выражение для
ТДП с учетом температуры (аналогичные вычисления можно найти, на-
пример, в статьях [84]):

ΩT(M, b,∆)=
M2 + ∆2

4G
−

∫ ∞

−∞

dp1

2π

{
E+∆ + E−∆ + T ln

[
1 + e−β(E+

∆
−µ)] +

+T ln
[
1 + e−β(E+

∆
+µ)] + T ln

[
1 + e−β(E−

∆
−µ)] + T ln

[
1 + e−β(E−

∆
+µ)]}, (4.36)

где E±
∆

– энергии квазичастиц, данные в (4.19). Первые два члена, содер-
жащие E±

∆
, являются расходящимися в ультрафиолетовом пределе инте-

гралами, так же как и в случае T = 0. Проводя процедуру регуляризации
и перенормировки так же, как это было сделано в (??), и заменяя кон-
станту связи G → G(Λ) по формуле (4.23), мы в пределе Λ→ ∞ получаем
конечное физически значимое выражение для ТДП с учетом температу-
ры Ωphys

T (M, b,∆). Оно является обобщением ТДП Ωphys(M, b,∆), опреде-
ленного в (4.34) на случай T , 0. Численные расчеты показывают, что все
возможные минимумы полученного ТДП Ωphys

T (M, b,∆) лежат в плоско-
сти M = 0 или ∆ = 0 (т.е. таким образом, нейтральный киральный и заря-
женный пионный конденсаты не смешиваются). Функцию Ωphys

T (M, b,∆),
ограниченную этими двумя случаями, можно записать в виде:

Ω
phys
T (M = 0, b,∆)= V0(∆) −

2T
π

∞∫
0

dp1 ln
{ [

1 + e−β(E−µ)
] [

1 + e−β(E+µ)
] }
, (4.37)

Ω
phys
T (M, b,∆ = 0)= V0(M) − (ν + b)2

π
−

−T
π

∫ ∞

0
dp1 ln

{ [
1 + e−β(E+ν+b−µ)

] [
1 + e−β(E+ν+b+µ)

] }
−

−T
π

∫ ∞

0
dp1 ln

{ [
1 + e−β(E−ν−b−µ)

] [
1 + e−β(E−ν−b+µ)

] }
, (4.38)

где V0(x) – эффективный потенциал для вакуумного случая, определен-
ный в (4.24), E =

√
p2

1 + M2, а E =
√

p2
1 + ∆

2. Сравнивая глобальные
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Рис. 4.3: Фазовые портреты модели НЙЛ с химическими потенциалами в (1+1)-мерии
в координатах (µ, T ). а) (слева) Фазовый портрет при 0 ≤ µI < 2να. б) (справа) Фазо-
вый портрет при 2να < µI. Здесь να ≈ 0.6M0, µc = µα ≈ 0.68M0. При ν = 0 фаза H озна-
чает фазу однородной киральной конденсации: M = M0, b = 0,∆ = 0; при 0 < ν < να H
означает фазу однородной пионной конденсации: M = 0, b = 0,∆ = M0. В симметрич-
ной фазе конденсаты отсутствуют: M = 0, b = 0,∆ = 0. Фазы CDW1 и CDW2 – фазы
кирального конденсата в виде волн киральной плотности M , 0, b , 0,∆ = 0, причем
в CDW1: b > 0, в CDW2: b < 0.

минимумы фукнций (4.38) и (4.38), можно найти общий глобальный ми-
нимум термодинамического потенциала Ωphys

T (M, b,∆). Значения M,∆, b в
точках минимума в зависимости от параметров T, µ, ν определяют фазо-
вую структуру модели при ненулевой температуре.

Проводя численные исследования полученных выражений (4.38) и
(4.38) для ТДП, можно получить два типа фазовых портретов модели
в плоскости (µ,T ) – один тип получен при 0 ≤ µI < 2να, второй – при
2να < µI (где να ≈ 0.6M0 – значение ν в точке α на фазовом портрете 4.1).
Данные портреты изображены на рисунках 4.3(а) и 4.3(б) соответствен-
но. Заметим, что, как показывают численные расчеты, между фазами
CDW1 (киральной волной плотности с положительным коэффициентом
b в фазе) и фазой однородной пионной конденсации PC – фазовый пере-
ход первого рода. Остальные фазовые переходы на фазовых портретах
4.3(а) и 4.3(б) – являются фазовыми переходами второго рода.

Рассмотрим также предел µI = 0 (фазовый портрет модели в этом
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случае отображен на рисунке 4.3(а)) и сравним термодинамические свой-
ства (1+1)-мерной модели НЙЛ со свойствами (3+1)-модели, обладаю-
щей симметрией S UL(2) × S UR(2) и рассмотренной в [80], в этом слу-
чае. В случае размерности пространства-времени (3+1), в отличие от
(1+1)-мерного случая, наблюдается фазовый переход второго рода меж-
ду фазами однородного кирального конденсата и фазой волны кираль-
ной плотности. Кроме того, в зависимости от величины динамически
генерируемой массы кварков, в (3+1)-мерном случае фаза неоднород-
ного кирального конденсата может занимать как ограниченную область
на плоскости (µ,T ), так и неограниченную область, в то время как в
рассматриваемой в этой главе (1+1)-мерной модели эта область всегда
неограничена (см. расположение фазы CDW1 на фазовой диаграмме 4.3(а)).

4.3 Волны пионной плотности

4.3.1 Термодинамический потенциал модели

Еще одна возможность для существования неоднородных кварковых
конденсатов, близкая к тому, что было рассмотрено в предыдущем раз-
деле – это конденсация кварков в виде так называемой пионной вол-
ны плотности (ПВП). В отличие от рассмотренного выше случая, здесь
заряженный пионный конденсат может образовывать пространственно
неоднородные структуры в виде волны, тогда как киральный конденсат
однороден. Анзац для данного вида конденсации кварков может быть
записан в виде (сравни с 4.11):

σ(x) = M, π3(x) = 0, (4.39)

π+ = π1(x) + iπ2(x) = ∆ e2i⃗bx⃗,

π− = π1(x) − iπ2(x) = ∆ e−2i⃗bx⃗,
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В пределе больших Nc можно определить ТДП данной модели аналогич-
но тому, как он определялся ранее:∫

d2xΩ(M, b,∆) = − 1
Nc

Seff
(
σ(x), πa(x)

)∣∣∣∣
σ(x)=σ(x),πa(x)=πa(x)

, (4.40)

что, учитывая принятый анзац (4.39) приводит нас к следующему выра-
жению для ТДП:∫

d2xΩ(M, b,∆) =
∫

d2x
M2 + ∆2

4G
+

i
Nc

ln
(∫

[dq̄][dq] exp
(
i
∫

d2xq̄Dq
))
,

(4.41)
где

q̄Dq = q̄
(
γρi∂ρ+µγ0+ντ3γ

0−M
)
q−∆(q̄uiγ5qd

)
e−2ibx−∆(q̄diγ5qu

)
e2ibx. (4.42)

В данном случае выражение для D пространственно неоднородно, так
же как и выражение (4.14) для анзаца, учитывающего киральные волны
плотности (4.11), и здесь также требуется поворот спиноров (преобразо-
вание Вайнберга) для того, чтобы избавиться от координатной зависи-
мости, однако в данном случае вид этого преобразования будет другой:

ψ = exp(iτ3bx)q; ψ̄ = q̄ exp(−iτ3bx)q. (4.43)

В результате этого преобразования (которое, как и преобразование (4.15),
не меняет меры в континуальном интеграле) мы придем к следующему
выражению для ТДП:∫

d2xΩ(M, b,∆) =
∫

d2x
M2 + ∆2

4G
+

+
i

Nc
ln

(∫
[dψ̄][dψ] exp

(
i
∫

d2xψ̄Dψ
))
, (4.44)

где D – оператор Дирака, уже не зависящий от координат:

D = γνi∂ν − M + µγ0 + τ3γ
1b + ντ3γ

0 − i∆τ1γ
5. (4.45)

После взятия континуального интеграла в выражении (4.44) мы прихо-
дим к следующему выражению для ТДП:

Ω(M, b,∆) ≡ Ωun(M, b,∆) =
M2 + ∆2

4G
+ i

∫
d2 p

(2π)2 ln det D(p), (4.46)
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где индекс “un“ подчеркивает то, что данное выражение для ТДП явля-
ется неперенормированным, и

det D(p) = ∆4 + 2∆2(M2 + p2
1 + ν

2 − b2 − η2)

+
(
M2 + (p1 − b)2 − (η + ν)2)(M2 + (p1 + b)2 − (η − ν)2)(4.47)

и η = p0 + µ. (Выражение (4.47) симметрично относительно замен: ∆ →
−∆, M → −M, b → −b, µ → −µ, ν → −ν, поэтому можно положить все
эти величины большими нуля без ограничений общности.)

Выражение для обратного пропагатора (4.47) можно переписать в сле-
дующем виде:

det D(p) ≡ η4 + Aη2 + Bη +C, (4.48)

где под A, B,C понимаются величины:

A = −2(M2 + b2 + p2
1 + ν

2 + ∆2), (4.49)

B = −8p1bν,

C = (M2 + b2 + p2
1 + ν

2 + ∆2)2 − 4(p2
1ν

2 + b2ν2 + ∆2b2 + M2ν2 + p2
1b2).

Решения уравнения det D(p) = 0 дают спектр энергий квазичастиц в
данной модели. Уравнение четвертой степени, которое при этом надо ре-
шить, является разрешимым аналитически, его решения представлены в
приложении C. Мы обозначим эти решения ηαk , где α = +,−, k = 1, 2, и со-
ответствие для решений задается следующим образом: η+1 = η1, η+2 = η2,
η−1 = η3, η−2 = η4. Вычисления по формулам из приложения C могут
дать результат с ненулевой мнимой частью, в то время как энергия ча-
стиц не может быть мнимой, поэтому необходима проверка, имеют ли
эти решения физический смысл. При численном расчете эта проверка
проводилась, и было показано, что мнимые части η±1,2 много меньше дей-
ствительных частей для всех значений использовавшихся в расчетах па-
раметров. К сожалению, эти решения являются слишком громоздкими
для того, чтобы писать их каждый раз, когда они используются, и слиш-
ком сложными для аналитических вычислений.
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Используя данные решения, можно записать ТДП в виде:

Ωun(M, b,∆) =
M2 + ∆2

4G
+ i

∫
d2 p

(2π)2 ln
[
(η − η+1 )(η − η−1 )(η − η+2 )(η − η−2 )

]
,

(4.50)

и далее, используя соотношение∫ ∞

−∞
dp0 ln

(
p0 − a) = iπ|a|, (4.51)

можно прийти к следующей форме записи термодинамического потен-
циала модели:

Ωun(M, b,∆) =
M2 + ∆2

4G
−
∞∫
−∞

dp1

4π
[|µ − η+1 | + |µ − η−1 | + |µ − η+2 | + |µ − η−2 |] .

(4.52)

Для проведения процедуры перенормировки ТДП, введем следующее со-
отношение:

Ωun(M, b,∆) = Ωun(M, b,∆) −Ωun(M, b,∆)
∣∣∣
b=0,µ=0,ν=0 + Ω

un(M, b,∆)
∣∣∣
b=0,µ=0,ν=0.(4.53)

Поскольку при b = 0, µ = 0, ν = 0 величины ηαk подчиняются соотноше-

нию |η±1,2| =
√

p2
1 + M2 + ∆2, можно записать:

Ωun(M, b,∆)
∣∣∣
b=0,µ=0,ν=0 =

M2 + ∆2

4G
−

∫ ∞

−∞

dp1

π

√
p2

1 + M2 + ∆2, (4.54)

тогда

Ωun(M, b,∆) −Ωun(M, b,∆)
∣∣∣
b=0,µ=0,ν=0

=

∞∫
−∞

dp1

4π

[
4
√

p2
1 + M2 + ∆2 − |µ − η+1 | − |µ − η−1 | − |µ − η+2 | − |µ − η−2 |

]

= lim
Λ→∞

Λ∫
−Λ

dp1

4π

[
4
√

p2
1 + M2 + ∆2 − |µ − η+1 | − |µ − η−1 | − |µ − η+2 | − |µ − η−2 |

]
.

(4.55)
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Поскольку интеграл в (4.55) сходится, в выражении (4.53) вся ультра-
фиолетовая расходимость заключена в последнем слагаемом, т.е. в непе-
ренормированном ТДП (4.54). Таким образом, для перенормировки все-
го термодинамического потенциала Ωun(M, b,∆) достаточно перенорми-
ровать только его вакуумный вклад (4.54). Сделаем это, как и прежде,
проводя в выражении (4.54) замену G ≡ G(Λ) (величина G(Λ) определена
в (4.23)). В результате мы получим:

Ωun(M, b,∆)
∣∣∣
b=0,µ=0,ν=0 −→ Ω

ren(M, b,∆)
∣∣∣
b=0,µ=0,ν=0 = V0(M,∆), (4.56)

где V0(M,∆) = V0(
√

M2 + ∆2) и функция V0(x) определена в (4.24).
Таким образом происходит регуляризация термодинамического потен-

циала:

Ωun(M, b,∆) −→ Ωren(M, b,∆) = V0(M,∆) − (4.57)

−
∫ ∞

−∞

dp1

4π

[
|µ − η+1 | + |µ − η−1 | + |µ − η+2 | + |µ − η−2 | − 4

√
p2

1 + M2 + ∆2
]
.

Однако, как и в случае с рассмотрением киральных волн плотности,
данное выражение не может считаться физически значимым выраже-
нием для ТДП (о причинах этого см. предыдущий раздел о киральных
волнах плотности). Для того, чтобы получить физический термодина-
мический потенциал, нужно избавиться от нефизичной зависимости от
величины неоднородности b в выражении (4.58), проведя регуляризацию
по правильной схеме – с симметричным обрезанием по энергиям – или,
что эквивалентно, провести нужное вычитание. Такое вычитание, приво-
дящее к физически обоснованному результату, может быть представлено
в виде (данный вид вычитания использовался также в статьях [85,86]):

Ωphys(M, b,∆) = Ωren(M, b,∆) −Ωren(M, b,∆ = 0) + Ωren(M, b = 0,∆ = 0),

(4.58)

Именно данное выражение является физическим значением ТДП и ис-
пользуется в дальнейшем для исследования фазовых свойств модели.
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4.3.2 Фазовая структура модели

К сожалению, выражение (4.58) слишком сложно (во многом благо-
даря наличию в нем решений уравнения четвертой степени) для анали-
тического исследования, поэтому фазовый портрет модели и поведение
в ней конденсатов могут быть исследованы только численно.

Зависимость конденсатов от химических потенциалов модели показа-
на на рисунке 4.4, фазовая диаграмма модели показана на рисунке 4.5.
Из представленных графиков видно, что почти всю область, которую
при рассмотрении образования однородных конденсатов занимала фаза
нормальной кварковой материи или конденсаты отсутствовали (фазы 1,
2 на рис. 4.1), теперь занимает фаза пионной волны плотности. Кроме
того, видно, что если в первом случае верхняя граница фазы однородной
пионной конденсации (PC) по переменной µ была µc =

1√
2
M0 ≈ 0.71M0,

то при рассмотрении конденсатов в виде пионной волны плотности она
изменилась: µc ≈ 0.69M0. Это говорит о том, что рядом с границей фазы
однородной пионной конденсации (PC) есть область µ ∈ [0.69, 0.71]M0,
где фаза пионной волны плотности более предпочтительна, чем отсут-
ствие конденсации кварков, однородный пионный конденсат и фаза нор-
мальной кварковой материи.

Ширина полосы фазы нормальной кварковой материи, разделяющей
фазу пионной волны плотности на две части, составляет ∼ 0.03M0, при-
чем знак в фазе волны (т.е. знак b), как видно из рис. 4.4, одинаков для
обеих частей, что отличается от случая киральной волны плотности, где
знак менялся (см. рисунок 4.3 и подписи к нему).

Интересным вопросом является сравнение предпочтительности обра-
зования кваркового конденсата в виде киральной или пионной волны
плотности. К сожалению, исследовать анзац, описывающий образование
обоих типов конденсатов, одновременно, не удается из-за сложности вы-
числений и невозможности подобрать правильный поворот в простран-
стве спиноров, который бы избавлял от координатной зависимости в опе-
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раторе Дирака (см. соотношения 4.15, 4.43 для соответствующих пре-
образований в случае киральных и пионных волн плотности). Однако
можно сравнить глубины абсолютных минимумов термодинамических
потенциалов данной модели, полученных с использованием этих двух
анзацев. Кроме того, учитывая, что полученные данные указывают на
то, что не существует смешанных пионных и барионных конденсатов,
логично предположить, что при рассмотрении анзаца, объединяющего
два типа волн плотности, это правило также будет действовать. В этом
случае сравнение глубин минимумов ТДП в двух исследуемых случа-
ях будет достаточно для определения, какой тип конденсации является
предпочтительным также и для общего случая.

В результате численного сравнения глубин минимумов ТДП получено,
что ни один из двух данных типов конденсатов не имеет преимущества
перед другим, т.е. глубины минимумов ТДП в точках глобального ми-
нимума равны. Это нетривиальный факт, который не был ожидаем до
прямых вычислений. Следует отметить, что это было проверено с боль-
шой точностью для разных точек на плоскости (µ, ν), а также что этот
результат является тем более нетривиальным, что для разных анзацев
итоговые способы вычислений ТДП и его минимумов были разными – в
частности, для получения термодинамического потенциала для анзаца в
виде пионной волны плотности требуются решения уравнений четвертой
степени, которые на требуются в случае киральной волны плотности.

Таким образом можно, говорить о скрытой симметрии образования
киральной и пионной волн плотности, которая не видна напрямую из
лагранжиана модели. Как следствие этой симметрии, в плотной квар-
ковой среде возможно образование пространственно разделенных обла-
стей, в которых будет образовываться конденсат кварков в виде либо
пионной, либо киральной волны плотности (либо в виде однородного
пионного конденсата, если величина химического потенциала меньше
µc ≈ 0.69M0).
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Рис. 4.4: Зависимость конденсатов в (1+1)-мерной модели НЙЛ с учетом возможно-
сти образования пионных волн плотности от химических потенциалов µ, ν. а)(слева)
Зависимость конденсатов M,∆, b от химического потенциала µ при фиксированном
изотопическом химическом потенциале ν = 1.2M0. б)(справа) Зависимость конденса-
тов M,∆, b от изотопического химического потенциала ν при фиксированном хими-
ческом потенциале µ = M0.
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Рис. 4.5: Фазовая структура модели в плоскости µ, ν. PDW – фаза волны пионной
плотности. PC – фаза однородного пионного конденсата. Фаза нормальной кварковой
материи (∆ = 0, M , 0) представлена тонкой полосой, разделяющей фазу PDW на
две части.
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4.4 Заключение

В данной главе исследована (1+1)-мерная модель Намбу–Йона-Лазинио
с введением химического потенциала µ и с явным нарушением изото-
пической симметрии за счет введения изотопического химического по-
тенциала µI. Была рассмотрена возможность образования неоднородных
кварковых конденсатов в виде волны киральной плотности или пионной
плотности.

Для обоих случаев численно было показано, что пионный и кираль-
ный конденсаты образуются отдельно друг от друга и не смешиваются.

Для случая киральной волны плотности были построены фазовые
диаграммы на плоскости (T, µ), показывающие, что фаза неоднородного
кирального конденсата занимает неограниченную область на диаграмме,
что отличается от (3+1)-мерного случая той же модели. Кроме того, в
отличие от (3+1)-мерной модели, между фазой киральной волны плот-
ности и фазой однородной пионной конденсации существует фазовый
переход первого рода.

Для случай пионной волны плотности показано, что фаза пионной
волны плотности более предпочтительна, чем фаза вакуума (отсутствия
конденсатов) и фаза однородного кирального конденсата.

Проведено сравнение предпочтительности образования киральной и
пионной волны плотности, в результате которой выяснилось, что термо-
динамический потенциал имеет одинаковую глубину для обеих фаз, т.е.
ни одна из них не является более предпочтительной, чем другая. Это го-
ворит о том, что существует скрытая симметрия между этими двумя фа-
зами. Поскольку кварки могут конденсироваться в каждую из фаз рав-
новероятно, и, как было выяснено, что пионный и кварковый конденсат
не смешиваются, то делается вывод, что могут существовать отдельные
области пространства, в которых существуют отдельно конденсат в виде
пионной или кварковой волны плотности в случае если µ > µc ≈ 0.69M0

или в виде однородного пионного конденсата в противном случае.



Глава 5

Заключение

В представленной работе исследованы модели четырехфермионного
взаимодействия Гросса–Невё (ГН) и Намбу–Йона-Лазинио (НЙЛ) с до-
полнительными условиями, такими как введение в лагранжиан модели
члена, нарушающего лоренц-инвариантность, а также введение химиче-
ского и изотопического химического потенциалов. Получены следующие
основные результаты:

1. При исследовании модели ГН с членом bµ, нарушающим лоренц-
инвариантность модели, показано, что наличие достаточно большой
величины bµ приводит к восстановлению киральной инвариантности
модели в том числе в режимах, в которых без нарушения лоренц-
инвариантности киральная симметрия нарушается.

2. Проведена размерная редукция из трёх измерений в два при помо-
щи явной компактификации одного из пространственных измерений
в модели ГН с нарушением лоренц-инвариантности. Получены со-
отношения между параметрами трёхмерной и двумерной моделей,
путем размерной редукции получено уравнение на экстремумы эф-
фективного потенциала в двумерной модели (уравнение щели).

3. Исследована (1+1)-мерная модель НЙЛ, описывающая плотную квар-
ковую среду с введением изоспиновой асимметрии. Построен тер-
модинамический потенциал (ТДП) для данной модели в предполо-
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жении, что возможно образование фазы киральных волн плотно-
сти. Исследовано влияние ненулевой температуры на образование
конденсатов. Получены фазовые диаграммы модели в координатах
(T, µ). Показано, что фаза волн киральной плотности более предпо-
чтительна, чем однородный киральный конденсат.

4. Построена процедура обрезания, симметричного по энергиям, при-
водящая к физически правильному результату для термодинамиче-
ского потенциала.

5. Исследована возможность образования пионных волн плотности в
(1+1)-мерной модели НЙЛ. Построен термодинамический потенци-
ал модели с учетом возможности образования пионных волн плот-
ности. Показано, что пионные волны плотности более предпочти-
тельны, чем однородный киральный конденсат. Построен фазовый
портрет модели в координатах (µ, µI), исследовано поведение кон-
денсатов в зависимости от величин химических потенциалов.

6. Показано отсутствие фаз смешения пионного и кирального конден-
сатов.

7. Численно показано наличие скрытой симметрии образования неод-
нородных кирального и пионного конденсатов. Это выражено в том,
что фазы киральной волны плотности и пионной волны плотности
одинаково предпочтительно, и могут существовать отдельные обла-
сти пространства, заполненные одним из этих типов конденсатов.
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Приложение A

Дополнение к главе 2

A.1 Разделение интеграла I2 на мнимую и действительную
части

I2 =

Λ∫
0

k
{[

(k + ib̃)2 + Φ̃2
]

ln
(
(k + ib̃)2 + Φ̃2

)
−

−
[
(k − ib̃)2 + Φ̃2

]
ln

(
(k − ib̃)2 + Φ̃2

)}
dk = A1 − A2

Введем величину φ = arg
(
(k + ib̃)2 + Φ̃2

)
= arctan

(
2kb̃

k2+Φ̃2−b̃2

)
, тогда

A1 =

Λ∫
0

k ·
[
(k + ib̃)2 + Φ̃2

]
ln

(
(k + ib̃)2 + Φ̃2

)
· dk =

=

Λ∫
0

k · (k2 + Φ̃2 − b̃2 − 2ikb̃) ·
[
ln |(k + ib̃)2 + Φ̃2| + iφ

]
· dk =

=

Λ∫
0

k · (k2 + Φ̃2 − b̃2) ln |(k + ib̃)2 + Φ̃2| · dk − 2b̃

Λ∫
0

k2 · φ · dk+

+i

Λ∫
0

k · (k2 + Φ̃2 − b̃2)φ · dk + 2ib̃

Λ∫
0

k2 · ln |(k + ib̃)2 + Φ̃2| · dk

A2 = (аналогично I1 с заменой b̃ на −b̃ и φ на −φ) =
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=

Λ∫
0

k · (k2 + Φ̃2 − b̃2) ln |(k − ib̃)2 + Φ̃2| · dk − 2b̃

Λ∫
0

k2 · φ · dk−

−i

Λ∫
0

k · (k2 + Φ̃2 − b̃2)φ · dk − 2ib̃

Λ∫
0

k2 · ln |(k − ib̃)2 + Φ̃2| · dk

Поскольку ln |(k − ib̃)2 + Φ̃2| = ln |(k + ib̃)2 + Φ̃2| = ln
(√(

k2 + Φ̃2 − b̃2
)2
+ 4k2b̃2

)
=

ln
(√(

k2 + b̃2 + Φ̃2
)2 − 4b̃2Φ̃2

)
, то

I2 = 4ib̃ ·
Λ∫

0

k2 ln


√(

k2 + b̃2 + Φ̃2
)2 − 4b̃2Φ̃2

 · dk+

+2i ·
Λ∫

0

k ·
(
k2 + Φ̃2 − b̃2

)
arctan

(
2kb̃

k2 + Φ̃2 − b̃2

)
· dk

A.2 Разделение интеграла J на мнимую и действительную
части

J =

Λ∫
0

k ·
[
ln

(
(k − ib̃)2 + Φ̃2

)
− ln

(
(k + ib̃)2 + Φ̃2

)]
· dk = J1 − J2

Введем как и в случае с I2 величину φ = arg
(
(k + ib̃)2 + Φ̃2

)
= arctan

(
2kb̃

k2+Φ̃2−b̃2

)
, тогда

J1 =

Λ∫
0

k · ln
(
(k − ib̃)2 + Φ̃2

)
· dk =

Λ∫
0

k ·
[
ln |(k − ib̃)2 + Φ̃2| − iφ

]
· dk =

=

Λ∫
0

k · ln |(k − ib̃)2 + Φ̃2| · dk − i

Λ∫
0

k · φ · dk
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J2 = (аналогично J1 с заменой b̃ на −b̃ и φ на −φ) =

=

Λ∫
0

k · ln |(k + ib̃)2 + Φ̃2| · dk + i

Λ∫
0

k · φ · dk

Поскольку ln |(k − ib̃)2 + Φ̃2| = ln |(k + ib̃)2 + Φ̃2|, то

J = J1 − J2 = −2i

Λ∫
0

k · arctan
(

2kb̃
k2 + Φ̃2 − b̃2

)
· dk

A.3 Анализ уравнения щели при мнимом b⃗ и m , 0

Сложность нахождения минимумов и максиумов Veff при мнимом b⃗,
как уже говорилось, связана с тем, что для этого необходимо решить ку-
бическое уравнение (2.55). При этом решения получаются громоздкими
и плохо поддающимися анализу. Поэтому вместо того, чтобы полностью
вычислять точки минимумов и условия, при которых они возникают,
ограничимся введением условий, при которых в эффективном потенци-
але может возникнуть единственный минимум при Φ0 = m.

Рассмотрим кубическое уравнение

x3 + ax2 + bx + c = 0 (A.1)

В нашем случае a = −3m, b = 3m2 + b̃2 − 2b̃M, c = −m3 − b̃2m. Для
нахождения его решений сначала вычисляются параметры Q и R:

Q =
a2 − 3b

9
; R =

2a3 − 9ab + 27c
54

(A.2)

В нашем случае

Q =
1
3

b̃(2M − b̃); R = −b̃mM (A.3)

Далее, при R2 < Q3 или иначе говоря, b̃(b̃ − 2M)3 < −m2M2, наше урав-
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нение имеет 3 действительных корня:

Φ1 = m − 2
√

Q cos t

Φ2 = m − 2
√

Q cos
(
t +

2π
3

)
Φ3 = m − 2

√
Q cos

(
t − 2π

3

) (A.4)

где t = 1
3 arccos

(
R√
Q3

)
Как видно, эти выражения весьма сложны для анализа. Но из того, как
меняются знаки первой производной Veff можно сказать, что при наи-
большем и наименьшем из этих значений Φ будет минимум, при среднем
- минимум (пока не будем учитывать, что уравнение щели в виде (2.55)
верно только при |Φ − m| < b̃).

В случае, если R2 ≥ Q3, т.е. b̃(b̃ − 2M)3 ≥ −m2M2, то действительных
корней будет 1 или 2 (при b̃(b̃−2M)3 = −m2M2). Определяться эти корни
будут так:

Φ4 = m + sign(M)
[
A +

1
3
· b̃(2M − b̃)

A

]
Φ5 = m + (b̃mM)

1
3

(A.5)

где A =
(
b̃m|M| +

√
b̃2M2m2 − b̃3

27(2M − b̃)3

) 1
3

В первом из этих корней Veff имеет минимум, а второй корень, возника-
ющий только при b̃(b̃ − 2M)3 = −m2M2 - седловая точка.

Для существования единственного минимума в пределах |Φ − m| < b̃

при Φ0 = m может быть несколько возможностей: например, может ре-
ализовываться случай, когда R2 > Q3 и корень равен Φ4 = Φ0 = m или
может быть противоположный случай и только один из корней (наиболь-
ший или наименьший) лежит в заданных пределах. Но при этом в любом
из этих случаев вне этих пределов не должно быть дополнительных ми-
нимумов.

Теперь рассмотрим (2.54) - уравнение щели при |Φ−m| > b̃. При M < 0
это уравнение (как показывалось при рассмотрении уравнения щели при
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действительном b⃗) имеет один корень, при M > 0 может иметь один
или три корня (2 из которых обеспечивают минимум Veff). Но при этом
ни один из этих корней не равен Φ0 = m при любых M. Поэтому для
того, чтобы существовал единственный минимум при Φ0 = m, эти корни
должны оказаться за границами рассматриваемой области. Для этого
мы должны потребовать:
При M < 0:

b̃ >

√
1
4

M2 + m|M| − 1
2
|M| (A.6)

При M > 0:

b̃ >

√
1
4

M2 + mM +
1
2

M (A.7)

(при этом заметим следующее: если в пределах |Φ − m| > b̃ нет мини-
мума, то это сразу означает, что внутри интервала |Φ − m| < b̃ может
быть либо максимум и 2 минимума, либо только 1 максимум, поэтому
для существования единственного минимума внутри этого интервала при
наличии трех вещественных корней (2.55) мы должны потребовать, что-
бы только 1 из этих корней, максимальный или минимальный, вышел за
пределы интервала, а выход среднего корня, отвечающего за максимум
Veff, за эти пределы будет уже обеспечен условиями, гарантирующими от-
сутствие вне этого интервала минимумов функции, т.е. условиями (A.6)
и (A.7))

Итак, обобщим полученное: единственный минимум эффективного
потенциала при Φ0 = m может существовать при следующих условиях:

1) Если M < 0 и b̃ >
√

1
4 M2 + m|M| − 1

2 |M|

а)

b̃(b̃ − 2M)3 ≥ −m2M2

Φ4 = Φ0 = m
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б)


b̃(b̃ − 2M)3 < −m2M2

max(Φ1,Φ2,Φ3) > b̃

min(Φ1,Φ2,Φ3) = Φ0 = m

в)


b̃(b̃ − 2M)3 < −m2M2

min(Φ1,Φ2,Φ3) < −b̃

max(Φ1,Φ2,Φ3) = Φ0 = m

2) Если M > 0 и b̃ >
√

1
4 M2 + mM + 1

2 M -абсолютно такие же условия

а)

b̃(b̃ − 2M)3 ≥ −m2M2

Φ4 = Φ0 = m

б)


b̃(b̃ − 2M)3 < −m2M2

max(Φ1,Φ2,Φ3) > b̃

min(Φ1,Φ2,Φ3) = Φ0 = m

в)


b̃(b̃ − 2M)3 < −m2M2

min(Φ1,Φ2,Φ3) < −b̃

max(Φ1,Φ2,Φ3) = Φ0 = m
Рассмотрим случай, если кубическое уравнение (2.55) имеет 3 корня

и экстремум в точке Φ0 = m, реализуется, например, при Φ = Φ1, тогда
из 5.4 следует, что cos (t) = 0, (т.к. если Q = 0, то R2 > Q3, т.е. не выпол-
нено условие существования трех экстремумов). Тогда cos (t ± 2π

3 ) = ±1
2 .

Но тогда мы получаем, что Φ3 < Φ1 < Φ2, что означает, что в точке
Φ = Φ1 находится минимум. Аналогичные рассуждения можно сделать
относительно точек Φ1 и Φ2. Это означает, что в случае, если кубическое
уравнение (2.55) имеет 3 действительных корня, то ни один из этих кор-
ней не может обеспечивать минимум эффективного потенциала в точке
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Φ0 = m. Поэтому из написанных выше шести условий для возможности
восстановления киральной симметрии остаются всего 2:

а)



M < 0

b̃ >
√

1
4 M2 + m|M| − 1

2 |M|

b̃(b̃ − 2M)3 ≥ −m2M2

Φ4 = Φ0 = m

б)



M > 0

b̃ >
√

1
4 M2 + mM + 1

2 M

b̃(b̃ − 2M)3 ≥ −m2M2

Φ4 = Φ0 = m
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Дополнение к главе 3

B.1 Вычисление ряда вида
∞∑

n=−∞
1

α2+n2

Рассмотрим ряд
∞∑

n=−∞
1

α2+n2 . Ряд является абсолютно сходящимся. Для

его вычисления можно воспользоваться правилом суммирования Пуас-
сона:

∞∑
n=−∞

f (αn) =
1
α

∞∑
m=−∞

F(
2πm
α

), (B.1)

где f (t) – интегрируемая функция, F(ω) – ее Фурье-образ, и преобразва-
ния Фурье заданы как:

f (t) =
1

2π

∞∫
−∞

F(ω)e−iωtdω,

F(ω) =

∞∫
−∞

f (t)eiωtdt. (B.2)

В данном случае нам надо вычислить Фурье-образ функции f (t) = 1
α2+t2 :

F(ω) =

∞∫
−∞

eiωt

α2 + t2 dt. (B.3)

Для вычисления интеграла (B.3) замкнем контур интегрирования в ком-
плексном пространстве в зависимости от знака t (при ω > 0 контур замы-
кается сверху, при ω < 0 – снизу) и вычислим его по теореме о вычетах.
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Интеграл по дуге замыкания равен 0, поэтому:

F(ω) =
∮
C

eiωt

α2 + t2 dt = 2πi Res(t = iα sign(ω)) =
π

α
e−|ω|α. (B.4)

Используя формулу (B.1) получим:
∞∑

n=−∞

1
α2 + n2 =

π

α

∞∑
m=−∞

e−2π|m|α =
π

α

 ∞∑
m=0

e−2πmα +

∞∑
m=1

e−2πmα

 =
=
π

α

(
1

1 − e−2πα −
1

1 − e2πα

)
=
π

α

(
e2πα − e−2πα

e2πα + e−2πα

)
=
π

α
coth (2πα). (B.5)

Применяя эту формулу для выражения, использовавшегося в главе 3,
получим искомое:

∞∑
n=−∞

1
k2

1 + k2
2 + (2πn

β
)2 + Φ2

=

β coth
(
β
2

√
k2

1 + k2
2 + Φ

2
)

2
√

k2
1 + k2

2 + Φ
2

. (B.6)

B.2 Удобное представление величины Y

Поскольку формула для величины Y (3.44) является суммой логариф-
мов, основной вклад которых будет дан при больших n, можно заменить
эту сумму на соответствующий интеграл для упрощения вычислений:

Y =
|n|≤N∑

n

ln

βΛ2 +
√
β2Λ2

4
+ H2

n

 − 1
2

|n|≤N∑
n,0

ln H2
n + o

(
(
b0

Λ
)2
)
+ o

(
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(B.7)
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Вычисляя это выражение, мы получаем (используя обозначения M = βΛ
2 ,

L = HN = 2πN):

Y = ln βΛ + 2 ln 2π − 2 ln
(
M +

√
M2 + (2π)2

)
+

+2
π

{
L ln M2

L2 + (M + L) ln
(

L
M +

√
( L

M )2 + 1
)
− M ln

(
2π
M +

√
(2π

M )2 + 1
)}
+(B.8)

+o
(
(b0

Λ
)2
)
+ o

(
(Φ
Λ

)2
)
+ o

(
f 2

)
.

Данное выражение более удобно для рассмотрения из-за отсутствия сум-
мирования.



Приложение C

Дополнение к главе 4

C.1 Решение уравнения четвертой степени

В главе 4 требуется решить уравнение четвертой степени вида:

η4 + Aη2 + Bη +C = 0 (C.1)

где η = p0 + µ.
Данное уравнение можно решить аналитически. Для более простой

записи решений введем обозначения:

F = A2 + 12C,

R = 2A3 + 27B2 − 72AC +
√
−4F3 + (2A3 + 27B2 − 72AC)2,

Q =
−2A

3
+

2
1
3 F

3R
1
3

+
R

1
3

3 · 2 1
3

 . (C.2)

Тогда решения уравнения будут:

η1 =
1
2

Q
1
2 − 1

2

−4A
3
− 2

1
3 F

3R
1
3

− R
1
3

3 · 2 1
3

− 2B

Q
1
2

 1
2

,

η2 =
1
2

Q
1
2 +

1
2

−4A
3
− 2

1
3 F

3R
1
3

− R
1
3

3 · 2 1
3

− 2B

Q
1
2

 1
2

,

η3 = −
1
2

Q
1
2 − 1

2
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3
− 2

1
3 F

3R
1
3
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Q
1
2

 1
2
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Q
1
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1
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− 2

1
3 F

3R
1
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1
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3 · 2 1
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+
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Q
1
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. (C.3)
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