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Introduction

La théorie de la Chromo-Dynamique Quantique (QCD) décrit l’interaction forte entre les quarks
et les gluons qui composent les nucléons et les hadrons. Elle distingue deux propriétés : pour de
faibles énergies, le principe de "confinement" qui implique que les quarks interagissent plus forte-
ment entre eux à mesure que nous les éloignons les uns des autres, pour des énergies élevées,
le principe de "liberté asymptotique" nous dit que l’interaction entre les quarks est faible à courtes
distances. La QCD est donc le cadre théorique propice à l’étude de la structure interne des nucléons.

Du point de vue expérimental, il est également possible de sonder la matière à son échelle élé-
mentaire. Les expériences de diffusions élastiques et inélastiques d’électrons sur nucléons perme-
ttent notamment de comprendre comment les partons sont organisés en position ou en impulsion
au sein du nucléon. Les expériences d’électroproduction de photons sur nucléons, par la réaction
de Diffusion Compton Profondément Virtuelle (DVCS), nous permettent d’accéder aux Distributions
Généralisées de Partons (GPDs) qui donnent la corrélation entre la position et l’impulsion des quarks
dans le nucléon.

Le sujet de cette thèse porte donc sur la mesure de la section efficace d’électroproduction de
photons sur le neutron. C’est une mesure difficile à réaliser puisque la probabilité que cette inter-
action ait lieu est faible et il n’existe pas de cibles constituées uniquement de neutrons libres. En
choisissant une cible de deutérium, il faudra alors tenir compte des contributions proton et deu-
ton présentes dans nos données pour la sélection et l’analyse des évènements neutron. De plus,
en réalisant cette mesure en double coïncidence, des contaminations devront être soustraites des
données pour procéder à l’analyse. Bien que cette mesure requière plus d’étapes que si elle était
réalisée sur le proton, elle permet avant tout d’extraire trois observables dépendantes des GPDs du
neutron, de saveurs de quarks différentes. Mais elle est surtout motivée par la règle de somme de
Ji [1] puisque la contribution de la GPD E est plus importante pour le neutron que pour le proton.
Cette contribution peut donc être déterminée plus précisément et conduire au moment angulaire
total Jq des quarks dans le neutron.

Les données que l’on va analyser au cours de cette thèse ont été acquises en 2010 au Jefferson
Lab situé en Virginie (USA). La prise de données de cette expérience d’une durée de trois mois est
la seconde réalisée dans le Hall A pour l’étude du processus d’électroproduction de photons et de
π0. La première s’est déroulée en 2004 et fait l’objet de plusieurs publications sur le sujet. Nous
mentionnerons certaines d’entre elles au cours de ce manuscrit.

La rédaction de ce travail de thèse se composera de cinq chapitres.
. Dans le chapitre 1, nous introduirons les notions principales nécessaires à la compréhension

théorique du sujet. Nous exprimerons la section efficace totale qu’on veut mesurer et les ob-
servables qu’on cherchera à extraire.

. Le chapitre 2 présentera le contexte expérimental de la thèse. Les caractéristiques de l’ac-
célérateur, des détecteurs et de la cible utilisés pour la prise de données y seront exposées.
Nous parlerons ensuite du système d’acquisition des données de l’expérience mis en place
dans le Hall A.

. Le chapitre 3 traitera du contrôle de la qualité des données enregistrées. Après une brève
présentation de quelques points d’analyses du spectromètre, les analyses en temps d’arrivée
et en énergies des signaux détectés dans le calorimètre seront décrites de façon approfondie.

. Dans le chapitre 4, nous donnerons les étapes de soustraction des différentes contributions
au bruit de fond et le principe de sélection des données neutron.
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. Dans le chapitre 5, nous expliquerons en détail la méthode d’extraction des observables et la
mesure de la section efficace totale. Une étude systématique réalisée à partir des résultats de
l’analyse figurera également dans ce dernier chapitre.

Nous achèverons ce manuscrit sur une conclusion pour récapituler les étapes réalisées au cours de
la thèse, puis sur une discussion à propos des possibilités envisagées par rapport aux résultats de
l’analyse.
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Chapitre 1

Contexte Théorique

1.1 Introduction Théorique

1.1.1 Diffusion d’électron pour sonder les nucléons

La volonté de comprendre la matière à son échelle la plus fondamentale a conduit les physiciens
à faire de nombreuses découvertes. C’est entre les années 1910 à 1940 que nos connaissances sur
la structure interne des atomes connaissent un essor avec les découvertes du noyau de l’atome et
de ses nucléons. Dans les années 1950, les recherches sur la nature des nucléons débutent. Des
particules possédant des similarités avec les nucléons sont étudiées : les Hadrons. Afin de mieux
comprendre leurs caractéristiques, des investigations sur la structure interne des Hadrons sont
menées à l’aide de la diffusion d’électrons. Dès le début des années 1960, ce processus donne ac-
cès à d’importants progrès scientifiques dans ce domaine. Tout d’abord, grâce à ses travaux sur la
diffusion d’électron qui lui vaux le Prix Nobel de 1961, R. Hofstadter révèle la nature non ponctuelle
mais étendue du noyau atomique. Dès 1964, le physicien M. Gell-Mann, à qui revient le Prix Nobel de
1969, introduit alors le concept de blocs constitutifs des hadrons qu’il nomme "quarks" [2]. En par-
allèle, l’observation expérimentale de la loi d’échelle de Bjorken pour les expériences de diffusions
inélastiques est interprétée par J. D. Bjorken et E. A. Paschos comme caractéristique de la nature
ponctuelle des constituants internes des nucléons [3]. A partir de cette explication théorique, R. P.
Feynman introduit alors le modèle des partons [4]. Finalement en 1991, le Prix Nobel est décerné aux
physiciens J. I. Friedman, H. W. Kendall et R. E. Taylor pour avoir mis en évidence expérimentalement
la présence des quarks au sein du proton [5].

Après toutes ces avancées scientifiques, la diffusion d’électrons a prouvé qu’elle est un outil
puissant pour sonder la structure interne des nucléons. Ceci du fait que l’électron est une partic-
ule ponctuelle et que son interaction avec la matière, principalement à travers l’interaction élec-
tromagnétique, est bien décrite par l’Electrodynamique Quantique (QED). Afin d’élargir le champ
de connaissances sur l’architecture interne du nucléon, nous utilisons la diffusion d’électrons pour
savoir comment les partons sont organisés en position et impulsion au sein du nucléon. Les résultats
expérimentaux vont bien sur de pair avec les prédictions théoriques menées en Chromo-Dynamique
Quantique (QCD).

La diffusion d’électrons sur des nucléons peut être de deux types, élastique si il y a conservation
de l’énergie cinétique au passage à l’état final et inélastique dans le cas contraire. Pour les deux,
l’électron interagit avec le nucléon en faisant intervenir un photon virtuel γ∗. Sa virtualité est don-
née par le transfert d’impulsion de l’électron au nucléon : Q2 = −(k − k′)2 > 0, où k et k′ sont les
quadrivecteurs énergie-impulsion des électrons incidents et diffusés. Elle représente la résolution
ou l’échelle à laquelle on sonde la structure interne du nucléon. À large transfert d’impulsion, on
sonde le nucléon à plus petite distance par la diffusion "profonde" d’électrons.

1.1.2 Régime perturbatif et "twist" dominant en QCD

En Théorie Quantique des Champs, un processus n’est jamais représenté par un unique dia-
gramme de Feynman, mais par l’ensemble d’un diagramme dominant et des diagrammes plus com-
plexes et plus rares permis par les règles du Modèle Standard régissant les particules élémentaires.
Les amplitudes de ces diagrammes peuvent être exprimées sous forme d’une série de termes de
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CHAPITRE 1. CONTEXTE THÉORIQUE

puissances croissantes d’un paramètre α < 1 : c’est la théorie des perturbations. Ce paramètre α
est la constante de couplage reliée à l’intensité des interactions fondamentales qui caractérisent
les processus. Lorsque celle-ci est suffisamment faible, les termes perturbatifs d’ordres élevés de
la série sont négligeables et la série converge rapidement. On peut alors extraire le diagramme
dominant du processus.

En QCD, la constante de couplage de l’interaction forte dépend de Q2. À large transfert d’im-
pulsion Q2, elle devient suffisamment faible pour qu’on puisse décrire le processus à l’ordre dom-
inant : c’est le régime perturbatif de la QCD. Au contraire, des processus"mous", gouvernés par le
régime non-perturbatif de la QCD, peuvent être paramétrisés par des fonctions telles que les Fac-
teurs de Forme élastiques (section 1.2.2), les Fonctions de Distributions de Partons inélastiques (sec-
tion 1.3.2) ou les Distributions Généralisées de Partons (section 1.4.2) parmi d’autres.

L’amplitude du processus de Diffusion Compton Profondément Virtuelle (DVCS), présenté dans la
section 1.4, est développée en une série de produits d’opérateurs en 1/Q. On utilise alors le twist,
défini par : dimension− spin de l’opérateur quantifiant le processus, pour classifier les termes de
la série selon leur puissance en 1/Q. Le twist dominant du DVCS est le twist-2 correspondant au
premier ordre de la série en 1/Q. Les termes de twists n supérieurs sont alors supprimés d’un facteur
1/Qn−2 par rapport au terme de twist-2.

1.2 Diffusion Elastique

1.2.1 Description du processus élastique

La diffusion élastique d’électrons est définie par le processus eN → e′N ′ , avec k(E,~k) et k′(E′ , ~k′)
les quadrivecteurs énergie-impulsion des électrons incident et diffusé formant l’angle θe et dont
on négligera la masse. Tandis que p est celui du nucléon N de masse M au repos dans la cible,
p′ est celui du nucléon N ′ de recul (figure 1.1). On note pγ∗ le quadrivecteur énergie-impulsion du

N N'

γ*

e e'

Figure 1.1 – Diagramme de la Diffusion Elastique.

photon virtuel γ∗ dans l’approximation d’un seul photon échangé entre l’électron et le nucléon. On
exclue ainsi les corrections radiatives d’ordres plus élevés tel que le processus Bremsstrahlung et
l’échange de deux photons parmi d’autres. Rappelons que l’on exprime la virtualité du photon comme
le transfert d’impulsion de l’électron au nucléon : Q2 = −p2

γ∗ = −(k − k′)2 = 4EE′ sin2(θe /2).

Au cours de la diffusion élastique et à haute virtualité Q2, le photon virtuel va interagir avec un
unique quark du nucléon, qui va rester au même point d’espace-temps dans l’état initial que final. Le
processus est alors dit "local". De plus, l’impulsion du nucléon entre l’état initial et final va changer
mais sa structure interne va rester intacte à l’état final. Le transfert d’impulsion du nucléon est
donné par t = ∆2 = (p′−p)2 et le processus est dit "non-diagonal" (ou "non-forward"). La conservation
de l’énergie-impulsion induit : (k − k′)2 = (p′ − p)2, caractérisant la diffusion élastique par l’égalité :
t = −Q2.
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1.3. DIFFUSION PROFONDÉMENT INÉLASTIQUE

1.2.2 Section efficace élastique et Facteurs de forme

La section efficace non polarisée de diffusion élastique sur une particule non-ponctuelle de
spin 0 dans le référentiel du laboratoire peut se présenter sous la forme suivante :

dσ
dΩ

(E,E′ ,θe) =
(
dσ
dΩ

)
Mott

∣∣∣F(~pγ∗)
∣∣∣2 . (1.1)

Elle se compose de la section efficace de diffusion de Mott d’un électron sur une particule ponctuelle
de spin 0 donnée par : (

dσ
dΩ

)
Mott

=
α2 cos2 θe

2

4E2 sin4 θe
2

, (1.2)

où la variable α ∼ 1/137 correspond à la constante de couplage de l’interaction électromagnétique
et dΩ = sinθedθedφ représente l’angle solide de diffusion de l’électron. Elle fait intervenir également
la transformée de Fourier F(~pγ∗) de la distribution de charge ρ(~r) telle que :

F(~pγ∗) =
∫
ρ(~r) ·ei~pγ∗~r d3~r . (1.3)

Cette fonction F(~pγ∗) appelée "Facteur de Forme" (FF) élastique permet de traduire la nature non-
ponctuelle de la particule ciblée.

Finalement, dans le cas d’un nucléon, M.N. Rosenbluth donnera l’expression de la section effi-
cace non polarisée de diffusion élastique électron-proton selon l’angle de diffusion θe et les facteurs
de formes électrique GE et magnétique GM de Sachs [6] :

dσ
dΩ

(E,E′ ,θe) =
(
dσ
dΩ

)
Mott

·
E′

E

[
G2
e + τG2

M

1 + τ
+ 2τG2

M tan2 θe
2

]
, avec τ =

−p2
γ∗

4M2 . (1.4)

Dans le repère de Breit où le transfert d’énergie du photon virtuel au nucléon est nul, les facteurs de
formeGE etGM dépendants alors deQ2 correspondent respectivement aux transformées de Fourier
à 3-dimensions des distributions spatiales de charge et de magnétisation du nucléon.

1.3 Diffusion Profondément Inélastique

1.3.1 Description du processus DIS

La diffusion profondément inélastique (DIS) est la réaction qui suit le processus eN → e′X, illustré
figure 1.2. Cette diffusion est inclusive puisqu’on ne détecte que l’électron diffusé à l’état final. A

e

e'

γ*

N

q X

Figure 1.2 – Diagramme de la Diffusion Profondément Inélastique (DIS). Le quark interagissant avec le photon
virtuel est noté q.

haute virtualité Q2, le photon virtuel interagit avec un unique quark q du nucléon. Le quark sondé
va s’échapper du nucléon emportant une fraction x de son impulsion et formant un autre hadron
dans l’état final. Lorsqu’il va quitter le nucléon, ce dernier va perdre sa structure interne initiale. On
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CHAPITRE 1. CONTEXTE THÉORIQUE

appelle alors X tous les états hadroniques possibles du système après le départ du quark. Seule la
masse invariante W de l’état final X est mesurée et elle s’exprime suivant les notations utilisées
dans la section 1.2 par :

W 2 = (p+ pγ∗)
2 =M2 + 2Mν −Q2 , (1.5)

où ν = E −E′ est la différence entre les énergies des électrons incident et diffusé dont on néglige la
masse.

Le processus "profondément inélastique" est défini par : (Q2 �M2) et (W 2 �M2). Pour ce pro-
cessus, la fraction x d’impulsion du nucléon portée par le quark sondé est égale à la variable de
Bjorken xB :

xB =
Q2

2Mν
. (1.6)

1.3.2 Section efficace inélastique et Fonctions de distributions de partons

La section efficace non polarisée de diffusion profondément inélastique peut s’exprimer comme :

d2σ
dΩdν

(θe) =
(
dσ
dΩ

)
Mott

·
[
W2 + 2W1 tan2 θe

2

]
, (1.7)

où l’on fait apparaître la section efficace de diffusion de Mott donnée à l’éq. (1.2). Les fonctions W1
et W2 sont les fonctions de structure du nucléon et dépendent de ν et Q2.

La mesure expérimentale de la section efficace du DIS a permis l’observation de la loi d’échelle
de Bjorken, interprétée comme l’interaction du photon virtuel avec une particule ponctuelle au sein
du nucléon [3, 4]. Ce phénomène est observé à Q2 > 1 GeV2, dans le régime de Bjorken définit par :
[Q2,ν]→ ∞ et xB fixe. Les fonctions de structure W1 et W2 ne dépendent alors plus que de xB [7]
telles que :

MW1(ν,Q2) = F1(xB) , νW2(ν,Q2) = F2(xB) . (1.8)

Dans un référentiel où l’impulsion du nucléon est infinie : |~p| �M, les fonctions de structure F1 et F2
s’écrivent :

F1(xB) =
∑
q

e2
q

2
q(xB) , F2(xB) =

∑
q

e2
q xB q(xB) , (1.9)

où q(xB) sont les "Fonctions de Distributions de Partons" (PDFs). Elles représentent les densités de
probabilité de trouver un parton de saveur q, de charge eq et portant la fraction xB d’impulsion lon-
gitudinale du nucléon.

1.4 Diffusion Compton Profondément Virtuelle

1.4.1 Description du processus DVCS

La diffusion Compton profondément virtuelle (DVCS) correspond au processus e(k) N (p1) →
e′(k′)N ′(p2) γ(q2) d’électroproduction de photons via un photon virtuel γ∗(q1). Ce processus est donc
exclusif puisque son état final est déterminé. A l’ordre dominant de la théorie des perturbations et à
twist dominant, la réaction DVCS est représentée par le diagramme du "sac à main" de la figure 1.3.
Les opérateurs décrivant le DVCS sont "non-locaux" et "non-diagonaux" (ou "non-forward") puisque
le quark qui interagit avec γ∗ ne possède pas les mêmes coordonnées d’espace-temps entre les
états initial et final et puisqu’il y a transfert d’impulsion ∆ au nucléon au cours du processus. L’im-
pulsion du nucléon de recul est donc donné par : p2 = p1 +∆. Le transfert d’impulsion au carré est
noté t = ∆2. De plus, la quantité x + ξ (x − ξ), où ici x , xB, correspond à la fraction d’impulsion
longitudinale initiale (finale) du nucléon portée par le quark. Comme −2ξ est la fraction purement
longitudinale du transfert d’impulsion ∆, on note ∆⊥ sa composante transverse.

Dans le référentiel du laboratoire, le processus eN → e′N ′γ s’établi sur deux plans, un plan
leptonique défini par les électrons incident et diffusé et un plan hadronique contenant le nucléon
de recul et le photon réel final (figure 1.4). Comme le plan hadronique contient le photon produit à
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1.4. DIFFUSION COMPTON PROFONDÉMENT VIRTUELLE

Figure 1.3 – Diagramme de twist-2 de la Diffusion Compton Profondément Virtuelle (DVCS) [8].

Figure 1.4 – Représentation du processus d’électroproduction de photon dans le référentiel du laboratoire.
Le nucléon de recul est représenté sur ce schéma par un proton p. Il forme avec le photon final γ le plan
hadronique, tandis que les électrons incident e et diffusé e′ forment le plan leptonique. L’angle entre ces deux
plans est noté φ.

l’issue de la réaction, il est nommé quelquefois : plan de production. Les deux plans se coupent selon
une droite qui est la direction du photon virtuel. On note alors φ l’angle entre les plans leptonique
et hadronique.

Dans le régime de Bjorken, on sépare l’amplitude DVCS en deux parties selon le théorème de fac-
torisation [9, 10, 11]. La première partie "dure" peut être décrite perturbativement par la QCD. Elle
correspond à l’interaction du photon virtuel, échangé entre l’électron et le nucléon, sur un unique
quark du nucléon, celui même qui va émettre un photon réel (processus Compton) dans l’état fi-
nal. La seconde partie "molle" du DVCS peut être paramétrée par les Distributions Généralisées de
Partons (GPDs).

1.4.2 Interprétation et propriétés des GPDs

A l’ordre dominant de la théorie des perturbations et à twist dominant, le processus DVCS ne
dépend que de quatre GPDs définies pour chaque saveur de quark q : Hq, H̃q,Eq, Ẽq. Elles corre-
spondent aux différentes configurations d’hélicités du système quark-nucléon (figure 1.5). Les GPDs
non-polariséesH et E sont indépendantes de l’hélicité du quark et sont définies comme la somme de
ses deux états d’hélicités. En revanche, les GPDs polarisées H̃ et Ẽ dépendantes de son hélicité sont
définies par leur différence. De plus, l’hélicité du quark ne change pas au cours de son interaction
avec le photon virtuel. Par conséquent, pour chaque configuration d’hélicité du quark, les GPDsH et
H̃ correspondent à la conservation de l’hélicité du nucléon entre l’état initial et final du système. Au
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Figure 1.5 – Configurations d’hélicités du nucléon et du quark et leurs GPDs associées [12].

contraire, les GPDs E et Ẽ sont reliées au changement d’hélicité du nucléon.
En négligeant la dépendance en Q2 associée aux équations d’évolution de la QCD, les GPDs

dépendent des trois variables : x, ξ et t. Elles sont définies dans les intervalles : x ∈ [−1,1] et ξ ∈ [0,1]
(figure 1.6). Lorsque x > ξ (x < −ξ), les GPDs représentent l’amplitude de probabilité d’émission et

ξ−x−ξ− x

x

−ξ ξ0 1−1

+ξxxξ− x+ξ x−ξ

Figure 1.6 – Schémas des trois régions de x par rapport à ξ définissant les GPDs [13].

réabsorption d’un quark (antiquark) dans le nucléon avec une fraction d’impulsion x + ξ (ξ − x) et
x−ξ (−ξ − x) respectivement. Tandis que dans la région −ξ < x < ξ, les propagateurs correspondant
à x + ξ et ξ − x représentent respectivement un quark q et un antiquark q̄ et les GPDs l’amplitude
de probabilité d’émission-réabsorption d’une paire qq̄ dans le nucléon. Précisons qu’en se plaçant
dans la limite de Bjorken, ξ(xB,Q2, t) ne dépend plus que de la variable xB introduite à l’éq. (1.6), on
obtient ainsi :

ξ =
xB

(
1 + ∆2

2Q2

)
2− xB + xB · ∆

2

Q2

Limite de Bjorken
−−−−−−−−−−−−−−−−→ xB

2− xB
. (1.10)

On peut donc voir les GPDs comme des fonctions indépendantes de Q2.
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1.4. DIFFUSION COMPTON PROFONDÉMENT VIRTUELLE

Dans la limite aux angles avant (ou "forward limit") où t = 0, le théorème optique lie la partie
imaginaire de l’amplitude DVCS à la section efficace du processus DIS (figure 1.7). Les GPDs H et

Figure 1.7 – Représentation du théorème optique liant la section efficace DIS à la partie imaginaire de l’am-
plitude DVCS dans la limite où t = 0 [12].

H̃ sont ainsi reliées respectivement aux PDFs non-polarisée q et polarisée ∆q par les expressions
suivantes :

Hq(x,0,0) = q(x) , H̃q(x,0,0) = ∆q(x) . (1.11)

On peut relier également le premier moment des GPDs aux FFs élastiques par les règles de sommes
suivantes [14] :∫ 1

−1
dxHq(x,ξ, t) = Fq1(t) ,

∫ 1

−1
dxEq(x,ξ, t) = Fq2(t) , ∀ξ ,∫ 1

−1
dxH̃q(x,ξ, t) = GqA(t) ,

∫ 1

−1
dxẼq(x,ξ, t) = GqP (t) , ∀ξ , (1.12)

avec pour chaque saveur de quark F
q
1 , F

q
2 les FFs de Dirac et Pauli, et G

q
A, G

q
P les FFs axial et pseu-

doscalaire respectivement. Les GPDs regroupent ainsi les informations sur la structure interne du
nucléon révélées par les FFs et les PDFs. Rappelons que les FFs nous renseignent sur la distribution
spatiale de la charge et du moment magnétique du nucléon dans le plan transverse, et que les PDFs
portent l’information sur la distribution d’impulsion longitudinale des quarks dans le nucléon. Ainsi,
les GPDs fournissent une information supplémentaire en donnant accès à la corrélation entre la
distribution spatiale transverse et la distribution d’impulsion longitudinale. Les GPDs permettent de
décrire la structure interne du nucléon en 3-dimensions.

Pour finir, la règle de somme de Ji [1] nous donne accès à la contribution du moment angulaire
Jq (Jg ) du quark q (du gluon g) au moment angulaire total du nucléon à partir du second moment des
GPDs H et E :

1
2

∫ 1

−1
dx x [Hq(x,ξ, t = 0) +Eq(x,ξ, t = 0)] = Jq , ∀ξ . (1.13)

Elle représente la perspective expérimentale, via les GPDs H et E, de résoudre le "puzzle" que con-
stitue le spin du nucléon décomposé selon [15, 16] :

1
2

=
1
2

∑
q

∆q+
∑
q

Lq + Jg . (1.14)

En effet, il a été mesuré que seule une fraction du spin du nucléon provient de la contribution de
spin des quarks ∆q [17]. La mesure expérimentale du moment angulaire des quarks dans le nucléon
défini par : Jq = 1/2 ∆q + Lq, permettrait donc de déterminer leur moment angulaire orbital Lq et de
trouver l’origine du spin du nucléon. Nous verrons dans la section suivante que l’électroproduction
de photons sur le neutron donne justement accès à la GPD E, conduisant à la mesure de Jq.

On peut retrouver ces différents résultats présentés par X.-D. Ji [18] ainsi que des études détail-
lées sur le formalisme des GPDs exposées dans les publications [12, 13, 19].
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CHAPITRE 1. CONTEXTE THÉORIQUE

1.4.3 Section efficace et paramétrisation du DVCS

La section efficace totale du processus eN → e′N ′γ présentée dans cette section sera celle de
la référence [20]. Elle peut être exprimée à l’aide des quatre variables cinématiques Q2,xB, t,φ, telle
que :

dσ

dxBdQ2dtdφ
=

α3

64π2xBE
2
bM

2

2π
√

1 + ε2
·
∣∣∣∣∣Te3

∣∣∣∣∣2 , (1.15)

où T correspond à l’amplitude du processus d’électroproduction de photon. Les variables α et e
sont respectivement la constante de couplage électromagnétique et la charge élémentaire et Eb
correspond à l’énergie du faisceau d’électrons dont on néglige la masse. Finalement, la variable ε
s’écrit :

ε = 2xB
M
Q
. (1.16)

L’amplitude T est la somme des amplitudes DVCS : TDVCS, et Bethe-Heitler (BH) : TBH . Le pro-
cessus BH est une diffusion élastique dont les deux diagrammes représentatifs sont donnés dans la
figure 1.8. Il est donc paramétrisé par les FFs élastiques mais en plus un photon réel est émis soit par

Figure 1.8 – Diagrammes représentant le processus Bethe-Heitler (BH). Il est défini comme une diffusion
élastique et la production d’un photon réel par un des électrons incident ou diffusé [8].

l’électron incident, soit par l’électron diffusé. L’amplitude totale issue de l’expression de la section
efficace (1.15) donne :

|T |2 = |TBH |2 + |TDVCS|2 + I , (1.17)

où I est le terme d’interférence entre les amplitudes DVCS et BH :

I = TBHT ∗DVCS + T ∗BHTDVCS , (1.18)

dépendant par conséquent des FFs et GPDs. Les amplitudes de ces trois contributions à la section
efficace totale sont les suivantes :

|TBH |2 =
e6

x2
By

2(1 + ε2)2∆2P1(φ)P2(φ)

cBH0 +
2∑
n=1

[
cBHn cos(nφ)

]
+λ sBH1 sin(φ)

 , (1.19)

|TDVCS|2 =
e6

y2Q2

cDVCS0 +
2∑
n=1

[
cDVCSn cos(nφ) +λ sDVCSn sin(nφ)

] , (1.20)

I =
e6

xBy3∆2P1(φ)P2(φ)

cI0 +
3∑
n=1

[
cIn cos(nφ) +λ sIn sin(nφ)

] . (1.21)

On comprend donc qu’on ne puisse pas mesurer directement l’amplitude du processus DVCS du fait
de son interférence avec le processus BH. Cette mesure doit être faite de manière indirecte. C’est
pourquoi le terme |TBH |2 que l’on connaît peut être d’abord soustrait de la section efficace totale,
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1.4. DIFFUSION COMPTON PROFONDÉMENT VIRTUELLE

puis les termes |TDVCS|2 et I dépendants des GPDs peuvent être extraits. Dans le cadre de cette
analyse, nous allons extraire uniquement le terme I dominant pour chaque énergie de faisceau.
Cela permettra lors d’une prochaine analyse d’en déduire le terme |TDVCS|2 par la méthode de sépa-
ration Rosenbluth. Elle consiste à mesurer deux sections efficaces à cinématique (Q2,xB) égale pour
deux énergies Eb du faisceau. Il sera ainsi possible de séparer en énergie les deux termes |TDVCS|2 et
I dépendants de la variable y (éqs. (1.20) et (1.21)) donnée par :

y =
Q2

2xBEbM
. (1.22)

Nous remarquons dans les expressions (1.19) à (1.21) des termes de la section efficace totale
qu’elle dépend de l’angle φ défini figure 1.4. Les harmoniques cn et sn associées respectivement aux
contributions en cos(nφ) et sin(nφ) de la section efficace s’expriment différemment selon l’état de
polarisation de la cible. De plus, avec les harmoniques sn intervient l’état d’hélicité λ de l’électron
incident. Pour un faisceau non polarisé, l’hélicité de chaque électron peut être +1 ou −1 avec la
même probabilité. Puisque le cadre d’étude de cette thèse consiste à mesurer la section efficace
non-polarisée, sur la totalité des données que nous analyserons il y aura autant d’électrons orientés
+1 que −1. Dans ce cas, les harmoniques sn et les dépendances en sin(nφ) de la section efficace vont
disparaître. Finalement, pour une cible et un faisceau non-polarisés, nous mesurons pour chaque
énergie du faisceau les harmoniques du terme d’interférence suivantes :

cI0,unp = −8(2− y) ·<
{[

(2− y)2K2

1− y

]
CIunp(F )

+
[
∆2

Q2 (1− y)(2− xB)
](
CIunp +∆CIunp

)
(F )

}
, (1.23)

cI1,unp = −8K(2− 2y + y2) ·<CIunp(F ) , (1.24)

cI2,unp =
−16K2(2− y)

2− xB
·<CIunp(F eff ) . (1.25)

Précisons que nous avons négligé ici la contribution des GPDs de transversité des gluons dans le
terme I . Notons également que le terme d’interférence I possède une dépendance en φ supplé-
mentaire apportée par les propagateurs BH de l’électron incident (après émission du photon final)
P1(φ) et P2(φ).

Dans les expressions (1.23) à (1.25), la variable K est un facteur cinématique qui disparaît à la
limite cinématique t = tmin ou y = ymax donnée par :

tmin =
−Q2

[
2(1− xB)

(
1−
√

1 + ε2
)

+ ε2
]

4xB(1− xB) + ε2 , ymax =
2
√

1 + ε2 − 2
ε2 . (1.26)

De plus, des fonctions dépendantes des GPDs et FFs apparaissent : CIunp(F ), ∆CIunp(F ), CIunp(F eff ). Ce
sont en fait des combinaisons linéaires des FFs F1 et F2 du BH et des Facteurs de Forme Compton
(CFFs) du DVCS de twist-2 que l’on note de manière simplifiée F =

{
H,E ,H̃, Ẽ

}
:

CIunp(F ) = F1H+
xB

2− xB
(F1 +F2) H̃ − ∆2

4M2F2 E , (1.27)

∆CIunp(F ) =
−xB

2− xB
(F1 +F2)

{
xB

2− xB
(H+ E) + H̃

}
, (1.28)

et de twist-3 notés F eff :

CIunp(F eff ) = F1Heff +
xB

2− xB
(F1 +F2) H̃eff − ∆2

4M2F2 Eeff . (1.29)

Les CFFs sont des convolutions de GPDs et de fonctions perturbatives, intégrées sur la fraction d’im-
pulsion x du quark dans le nucléon.
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CHAPITRE 1. CONTEXTE THÉORIQUE

Puisque dans l’éq. (1.27) le Facteur de forme F2 est supérieur à F1 pour le cas du neutron, la
contribution du CFF E (et de la GPD E) est plus importante pour le neutron que celle du CFF H (et
de la GPD H). Etant l’inverse pour le cas du proton, les processus d’électroproduction de photons
sur protons et neutrons sont tous les deux indispensables pour la mesure du moment angulaire des
quarks dans le nucléon (éq. (1.13)).

Nous remarquons de plus, dans les expressions (1.23) à (1.25), que pour chaque énergie du
faisceau seules les parties réelles des trois combinaisons de CFFs (éqs. (1.27) à (1.29)) peuvent être
extraites à partir de la mesure de la section efficace totale non-polarisée. Ce sont donc les trois
observables que l’on va mesurer dans le cadre de cette thèse. Elles font intervenir les parties réelles
des CFFs exprimées en fonction de leurs GPDs associées telles que [12] :

<H = P
∫ 1

0
dx

( 1
x − ξ

+
1

x+ ξ

)
[H(x,ξ, t)−H(−x,ξ, t)] , (1.30)

<H̃ = P
∫ 1

0
dx

( 1
x − ξ

− 1
x+ ξ

)
[H̃(x,ξ, t) + H̃(−x,ξ, t)] , (1.31)

de même pour E et Ẽ , et où P correspond à la valeur principale de l’intégrale.
Pour finir, nous avons résumé dans la table 1.1 les observables jusqu’à twist-3 de chaque terme

de la section efficace totale d’électroproduction de photons [20]. Elles correspondent à une cible
non-polarisée, un faisceau polarisé ou non-polarisé, et on donne pour chacune : leurs types, les
harmoniques cn et sn auxquelles elles appartiennent et leurs dépendances angulaires.

Terme
Observable Type Harmonique Dépendance en φ

Section Efficace

|TBH |2 FF élastique2

cBH0,unp [P (φ)]−1

cBH1,unp cos(φ) [P (φ)]−1

cBH2,unp cos(2φ) [P (φ)]−1

|TDVCS|2

CDVCSunp (F ,F ∗) twist-2 cDVCS0,unp constant

<[CDVCSunp (F eff ,F ∗)] twist-3 cDVCS1,unp cos(φ)

=[CDVCSunp (F eff ,F ∗)] twist-3 sDVCS1,unp λsin(φ)

<[CDVCST,unp(FT,F ∗)] twist-3 cDVCS2,unp cos(2φ)

I

<[CIunp(F )] twist-2 cI0,unp,c
I
1,unp [1 + cos(φ)] [P (φ)]−1

=[CIunp(F )] twist-2 sI1,unp λsin(φ) [P (φ)]−1

<[∆CIunp(F )] twist-2 cI0,unp [P (φ)]−1

<[CIunp(F eff )] twist-3 cI2,unp cos(2φ) [P (φ)]−1

=[CIunp(F eff )] twist-3 sI2,unp λsin(2φ) [P (φ)]−1

<[CIT,unp(FT)] twist-2 (gluon) cI3,unp cos(3φ) [P (φ)]−1

Table 1.1 – Observables jusqu’à twist-3 de la section efficace totale d’électroproduction de photon avec un
faisceau polarisé ou non-polarisé et une cible non polarisée. Par souci de clarté, la variable P (φ) est une
notation simplifiée correspondant au produit des propagateurs BH de l’électron incident : P (φ) = P1(φ)P2(φ).

Précisons que les approximations faites dans la référence [20] ont été progressivement levées,
d’abord pour une cible de spin 0 [21], puis pour le cas d’une cible de nucléons [22, 23]. De plus,
le calcul de la section efficace du DVCS a été effectué récemment jusqu’à la précision de twist-4
[24, 25].
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1.5. OBSERVATIONS EXPÉRIMENTALES DU DVCS

DVCS sur le deuton

Pour la prise des données que l’on va analyser au cours de cette thèse, une cible de deutérium
a été utilisée. Nous verrons alors que nous serons amenés à traiter pour cette analyse à la fois les
évènements de diffusions quasi-élastiques des électrons sur les neutrons de la cible que la contri-
bution élastique sur le deuton. Les propriétés nécessaires à l’analyse des données du deuton sont
les suivantes.

Pour le cas d’une particule de spin 1 comme le deuton, il existe 9 GPDs : Hi (i = 1, . . . ,5) et H̃j
(j = 1, . . . ,4) ayant la même évolution en Q2 que celle des GPDs pour des particules de spin 1/2 [26].
De la même façon que pour les nucléons (éq. (1.11) et (1.12)), la limite aux angles avant où t = 0
permet de relier les GPDs H1, H5 et H̃1 du deuton aux PDFs, et des règles de sommes de relier les
GPDs Hi (i = 1,2,3) et H̃j (j = 1,2) aux FFs élastiques.

La référence [27] nous indique que l’expression de la section efficace totale d’électroproduction
de photon sur un deuton est équivalente à celle du nucléon (éq. (1.15)). Les expressions de ses ter-
mes |TBH |2, |TDVCS|2 et I sont les mêmes que dans les éq. (1.19) à (1.21), ainsi que les expressions des
harmoniques cn et sn telles que celles des éq. (1.23) à (1.25), à l’exception près qu’il faut remplacer
la masse du nucléon M par la masse du deuton Md et la variable xB par :

xA =
M
Md

xB . (1.32)

En revanche, les combinaisons de CFFs telles que les éq. (1.27) à (1.29) pour le deuton sont dif-
férentes de celles du nucléon puisqu’elles dépendent des FFs et GPDs pour des particules de spin 1.

1.5 Observations Expérimentales du DVCS

De nombreuses expériences de leptoproduction de photons sont nécessaires afin de pouvoir ex-
traire le maximum de combinaisons de GPDs. Un nombre important de résultats expérimentaux per-
met en effet de mieux contraindre la théorie et les modèles appliqués aux GPDs, assurant ainsi
une connaissance plus précise de la structure interne du nucléon. Dans cette optique, ces expéri-
ences visent à diversifier les configurations et cinématiques avec lesquelles on étudie le proces-
sus DVCS. Ainsi, les expérimentateurs multiplient les mesures d’asymétries ou de sections efficaces
avec des faisceaux de particules de charges différentes, des polarisations du faisceau et de la cible
différentes ou encore des cibles de masses différentes. Les cinématiques variées enQ2,xB, t permet-
tent d’élargir le domaine d’étude du DVCS. Nous présentons dans la suite quelques uns des résultats
majeurs obtenus depuis une quinzaine d’années.

1.5.1 Mesures d’asymétries

Mesures d’asymétries d’hélicité du faisceau

Ces mesures sont réalisées avec un faisceau polarisé longitudinalement (L) et une cible non-
polarisée (U). L’asymétrie d’hélicité du faisceau dépendante de φ s’écrit :

ALU(φ) =
d4σ+(φ)− d4σ−(φ)
d4σ+(φ) + d4σ−(φ)

. (1.33)

Les termes d4σ+ et d4σ− représentent les sections efficaces mesurées avec des particules du fais-
ceau d’hélicité +1 et −1 respectivement. La différence des sections efficaces polarisées d4σ+−d4σ−

correspond à la section efficace dépendante de l’hélicité du faisceau. Leur somme d4σ++d4σ− définit
la section efficace non-polarisée ou indépendante de l’hélicité du faisceau. Se basant toujours sur
la référence [20] et sur la table 1.1, nous pouvons donner une approximation au twist-2 du terme
d’asymétrie en fonction des harmoniques issues de l’expression de la section efficace totale :

ALU(φ) ∼
sI1,unp sinφ(

cBH0,unp + cI0,unp + cDVCS0,unp

)
+
(
cBH1,unp + cI1,unp

)
cosφ+

(
cBH2,unp

)
cos2φ

. (1.34)
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CHAPITRE 1. CONTEXTE THÉORIQUE

Les collaborations HERMES à DESY [28] et CLAS à Jefferson Lab [29] (Hall B) ont réalisé en
2001 les premières mesures d’asymétries d’hélicité du faisceau. L’expérience HERMES [30] utilisait
un faisceau polarisé de positrons de 27.6 GeV et une cible non-polarisée de gaz d’hydrogène pour
une cinématique moyenne de : Q2 = 2.6 GeV2,xB = 0.11, t = −0.27 GeV2. En parallèle, les mesures
de CLAS [31] ont été effectuées avec un faisceau polarisé d’électrons de 4.25 GeV et une cible non-
polarisée de protons. Au cours de la prise de données, le spectromètre à large acceptance (CLAS) du
Hall B a permis les détections des électrons diffusés et des protons de recul. Les valeurs expérimen-
tales obtenues sont données dans la figure 1.9. Elles ont été intégrées sur l’intervalle cinématique

Figure 1.9 – Résultats de la collaboration CLAS obtenus par la réaction ep→ e′p′γ montrant la dépendance
angulaire des mesures d’asymétrie d’hélicité du faisceau [31]. Les points correspondent aux résultats ex-
périmentaux et la zone hachurée foncée donne leur ajustement par la fonction A(φ) = α sin(φ) + β sin(2φ)
incluant les erreurs statistiques sur α et β. Les barres d’erreurs représentent les erreurs statistiques des
points expérimentaux. La zone hachurée plus claire correspond aux erreurs systématiques dues à la méth-
ode d’ajustement utilisée. Les courbes sont différentes prédictions du modèle théorique VGG [32]. Les deux
courbes en pointillés sont des calculs évalués à twist-2 et la courbe continue est obtenue en incluant des
effets de twist-3.

défini par :Q2 ∈ [1.0,1.75] GeV2 et −t ∈ [0.1,0.3] GeV2, tandis que les prédictions théoriques données
pour comparaison ont été évaluées pour : Q2 = 1.25 GeV2, xB = 0.19 et −t = 0.19 GeV2.

En 2005, dans le cadre d’une nouvelle expérience DVCS, la collaboration CLAS s’est engagée
dans la construction d’un calorimètre pour la détection du photon final. Cette innovation aura per-
mis d’aboutir en 2008 à de nouvelles mesures d’asymétries réalisées en triple coïncidence [33]. La
polarisation moyenne du faisceau d’électrons de 5.77 GeV était d’environ 80% et la cible de protons
utilisée était de l’hydrogène liquide. La figure 1.10 montre l’évolution de l’asymétrie en fonction de
t pour 12 bins en (Q2,xB) et pour un angle φ = 90 °.

Mesures d’asymétries d’hélicité de la cible

Les mesures d’asymétries d’hélicité de la cible sont obtenues avec un faisceau non-polarisé
(U) et l’utilisation d’une cible polarisée soit longitudinalement (L), soit transversalement. Le terme
d’asymétrie pour une polarisation longitudinale est défini par l’expression suivante :

AUL(φ) =
[d4σ+⇑(φ) + d4σ−⇑(φ)]− [d4σ+⇓(φ) + d4σ−⇓(φ)]
[d4σ+⇑(φ) + d4σ−⇑(φ)] + [d4σ+⇓(φ) + d4σ−⇓(φ)]

. (1.35)

Le signe ⇑ (⇓) correspond à l’hélicité +1 (-1) des particules de la cible impliquées dans la réaction.
Pour chaque état d’hélicité de la cible, on intègre sur les hélicités des particules du faisceau. On
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Figure 1.10 – Dépendance en t des mesures d’asymétries d’hélicité du faisceau a = A(φ=90°) réalisées par la
collaboration CLAS pour 12 bins en (Q2,xB) [33]. La bande grise dans la figure du bas à gauche donne la taille
des bins en t et les incertitudes systématiques. Les barres d’erreurs représentent les erreurs statistiques sur
les points expérimentaux. Le point rouge correspond aux premiers résultats de CLAS de 2001 [31], les points
verts sont ceux du Hall A (JLab) issus de mesures de la section efficace totale [34]. Les courbes sont des
résultats théoriques de twist-2 (courbe continue) et de twist-3 (courbe pointillée) et sont expliquées plus en
détails dans la référence [33].

obtient pour l’exemple d’une hélicité +1 des particules de la cible : d4σ+⇑(φ)+d4σ−⇑(φ). A l’aide de la
référence [20], on peut donner une approximation au twist-2 du terme d’asymétrie en fonction des
harmoniques de la section efficace totale :

AUL(φ) ∼ sI1, LP sinφ , (1.36)

où l’indice LP signifie que la cible est polarisée longitudinalement. Le terme d’asymétrie fait donc
apparaître les parties imaginaires des CFFs :

AUL(φ) ∼
{
F1=H̃+

xB
2− xB

(F1 +F2)
[
=H+

xB
2
=E

]
− xB

2− xB

[
xB
2
F1 +

∆2

4M2F2

]
=Ẽ

}
sinφ , (1.37)

qui sont données en terme de GPDs, à l’ordre dominant de la théorie des perturbations, par [12] :

=H(ξ, t) = −iπ[H(ξ,ξ, t)−H(−ξ,ξ, t)] , (1.38)

=H̃(ξ, t) = −iπ[H̃(ξ,ξ, t) + H̃(−ξ,ξ, t)] , (1.39)

de même pour les CFFs E et Ẽ .
Très récemment, la collaboration CLAS a apporté de nouveaux résultats sur les mesures d’asy-

métries d’hélicité de la cible [35]. Ils ont été comparés aux précédents résultats de CLAS en 2006
[36] et d’HERMES en 2010 [37] et sont illustrés figure 1.11. La comparaison a été faite par un ajuste-
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Figure 1.11 – Mesures de la contribution en sinφ de l’asymétrie de spin de la cible α′UL obtenues par la
collaboration CLAS en fonction de t [35]. Les résultats sont comparés à des expériences antérieures réalisées
par CLAS [36] et HERMES [37]. Les barres d’erreurs sont statistiques.

ment des distributions en φ des asymétries. L’ajustement a d’abord été réalisé par une fonction du
type : α′UL sin(φ), pour chaque bin en t intégré sur Q2 et xB. Le même ajustement a été effectué sur
les données des trois expériences qui sont comparées. Les résultats de la figure 1.11 indiquent que
les nouvelles valeurs expérimentales restent en accord avec les expériences antérieures avec des
barres d’erreurs à petit |t| nettement plus faibles. La stabilité de ces mesures à petit |t| est alors con-
firmée dans la suite de l’analyse [35], par l’ajout du terme en sin(2φ) dans la fonction utilisée pour
ajuster les données telle que : α′UL sin(φ) +γUL sin(2φ).

Précisons que dans le cadre de cette analyse [35], de nouvelles mesures d’asymétries d’hélicité
du faisceau ont été extraites, et par polarisations longitudinales du faisceau et de la cible, elle a
aussi fourni des mesures de double asymétrie.

1.5.2 Mesures de section efficaces

La collaboration du Hall A à Jefferson Lab a mis en place en 2004 deux expériences E00-110 [34]
et E03-106 [38] dédiées à la mesure de la section efficace totale d’électroproduction de photons. Le
but était d’extraire à partir de la différence des sections efficaces polarisées, les parties imaginaires
des combinaisons de CFFs :=CIunp(F ) de twist-2 et=CIunp(F eff ) de twist-3. Puis par mesure de la
section efficace non-polarisée, de mesurer les parties réelles des combinaisons de CFFs de twist-2
exprimées éq. (1.27) et (1.28). Il s’agissait donc pour ces deux expériences de mesurer les contribu-
tions du DVCS à la section efficace totale dans le terme d’interférence I avec le BH. Pour cela, un
faisceau polarisé d’électrons de 5.75 GeV a été envoyé sur une cible fixe non-polarisée.

L’expérience E00-110 ayant pour but d’étudier la contribution du DVCS sur le proton, une cible
d’hydrogène a été utilisée pour trois cinématiques différentes à xB = 0.36 fixé et Q2 = 1.5, 1.9,
2.3 GeV2. La figure 1.12 donne la dépendance en Q2 et en t des différentes observables mesurées
grâce à cette expérience. Elle vérifie que ces observables sont bien de twist-2 et twist-3, c’est-à-dire
sans contamination de twists supérieurs, qui auquel cas apporteraient de nouvelles dépendances
en Q2 (autres que celles de twist-2 et twist-3 dont on a tenu compte lors de l’extraction des observ-
ables). C’est donc une preuve majeure de la dominance du twist-2 et du mécanisme du sac à main
(figure 1.3) pour la description du processus DVCS. De plus, même si l’évolution qualitative des don-
nées expérimentales en fonction de t suit celle des prédictions théoriques, le modèle ne reproduit
pas les valeurs expérimentales des observables.

L’expérience E03-106 consistait à extraire les contributions du DVCS sur le neutron prise pour la
même cinématique en xB = 0.36 etQ2 = 1.9 GeV2 que sur le proton mais avec une cible de deutérium.
Ainsi, en plus des diffusions non-cohérentes des électrons incidents sur les protons et neutrons
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Figure 1.12 – Dépendance enQ2 (à gauche) et en t (à droite) des observables extraites à partir de la mesure de
la section efficace totale du processus ep→ e′p′γ par la collaboration Hall A de JLab [34]. La correspondance
entre les points expérimentaux et les observables mesurées est donnée en légende. Les barres d’erreurs
sur les points expérimentaux sont statistiques. Les courbes détaillées dans la légende correspondent aux
prédictions du modèle VGG [32].

libres de la cible, la section efficace totale contient une contribution due à la diffusion cohérente sur
les deutons. Par conséquent, à partir de la différence des sections efficaces polarisées, que l’on peut
approximer à twist-2 en fonction des CFFs par :

d4σ+ − d4σ− ∝
{
F1=H+

xB
2− xB

(F1 +F2)=H̃− ∆2

4M2F2=E
}

sinφ , (1.40)

cette expérience a permis d’extraire les parties imaginaires des combinaisons de CFFs= CIunp(F )
du neutron et du deuton (figure 1.13). Dans le cas précédent du DVCS-proton (figure 1.12), cette ob-
servable est dominée par la partie imaginaire du CFFH puisque pour le proton : F1 >> F2. Rappelons
que dans le cas du DVCS-neutron, parce que le facteur de forme du neutron F2 est supérieur à F1,
nous sommes plus sensibles à la partie imaginaire du CFF E et donc à la GPD E.

La collaboration CLAS s’est investie également dans la mesure de section efficace non-polarisée
et différence des sections efficaces polarisées [41]. A partir d’une procédure d’ajustement local [42,
43, 44, 45], elle a permis l’extraction directe des parties imaginaire et réelle du CFF H du proton
(figure 1.14). Il s’agissait dans cette analyse d’ajuster simultanément les distributions en φ de ces
sections efficaces par les deux parties réelles des éq. (1.30) et (1.31) et les deux parties imaginaires
des éq. (1.38) et (1.39) des CFFs H et H̃, en négligeant donc les CFFs E et Ẽ . On remarque que le
modèle surestime la valeur de=H extraite pour le bin : Q2 = 1.11 GeV2, xB = 0.126.

Au final, qu’ils coïncident ou pas avec les prédictions théoriques, les différents résultats exposés
permettent ainsi de contraindre les modèles basés sur le formalisme des GPDs.

1.5.3 Perspectives de JLab à 12 GeV

Le passage à une énergie de 12 GeV du faisceau de haute intensité de JLab donne l’opportunité
d’élargir le champ de recherche [46] sur la structure interne du nucléon dans un domaine cinéma-
tique en (Q2,xB) encore jamais étudié par aucune collaboration auparavant (figure 1.15). Dans le
régime des quarks de valence xB > 0.3 unique à JLab, doubler l’énergie du faisceau ouvre l’accès à
des expériences à plus large Q2 [49]. Le passage au 12 GeV s’accompagne de la construction d’un
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Figure 1.13 – Extraction de l’observable=CI du terme d’interférence à partir de la différence des sections
efficaces polarisées du DVCS-deuton (en haut) et DVCS-neutron (en bas) [38]. Elle est représentée en fonc-
tion de t et sa dépendance est comparée aux modèles théoriques VGG [32] et AHLT [39] pour le neutron, et
Cano et Pire pour le cas du deuton [40]. Les trois calculs VGG correspondent aux prédictions sur la valeur de
l’observable pour trois séries de moments Ju et Jd des quarks u et d. Les barres d’erreurs correspondent aux
erreurs statistiques tandis que les erreurs systématiques sont données par les bandes hachurées.

nouveau hall expérimental, le Hall D, dédié aux études sur l’excitation des gluons [50]. Il donne part
également au projet de construction d’un nouveau collisionneur d’ions-électrons (EIC) [47].

Dans le Hall B, la collaboration CLAS propose deux nouvelles expériences DVCS : une sur le pro-
ton E12-06-119 et une sur le neutron E12-11-003 avec la construction d’un nouveau détecteur
neutron placé au centre du spectromètre CLAS12. Celui-ci est optimisé pour le faisceau de 12 GeV
avec l’ajout d’un nouvel aimant supraconducteur [51].

En parallèle, la collaboration Hall A propose une expérience DVCS sur le proton avec des cinéma-
tiques à Q2 > 2 GeV2 [52] représentées dans la figure 1.16. Ceci permet une estimation plus précise
de la dominance du twist-2 et une meilleure détermination des twists d’ordre supérieur. Les cinéma-
tiques sont choisies à xB variable pour étudier la dépendance en ξ des observables. Pour finir, des
mesures à haute statistique pour l’étude de la dépendance en t des observables est possible pour
chaque cinématique en (Q2,xB).
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Figure 1.14 – Observables<H (noté HRe, ligne du bas) et=H (noté HIm, ligne du haut) extraites par CLAS
en fonction de t pour trois bins en (Q2,xB) [41]. Les valeurs des bins sont données en légende. La courbe
bleue correspond aux prédictions du modèle VGG [32]. Les points expérimentaux correspondent aux résultats
de l’ajustement simultané des distributions en φ des sections efficaces polarisée et non-polarisée. Un second
ajustement (courbe pontillée) est réalisé sur ces résultats par une fonction du type : A1 expb1t dont les deux
paramètres A1 et b1 sont donnés pour chacun des bins.

Figure 1.15 – Comparaisons avec le passage au 12 GeV de JLab des domaines cinématiques [47] associés
aux expériences des collaborations H1, ZEUS et HERMES [28] à DESY, CLAS et Hall A à JLab [29] ainsi que
COMPASS [48] au CERN.
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traintes cinématiques.
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Chapitre 2

Configuration Expérimentale

2.1 Accélérateur CEBAF au Jefferson Laboratory (JLab)

2.1.1 Présentation de JLab

La construction du laboratoire "Thomas Jefferson Accelerator Facility" (JLab) a débuté dans la
fin des années 1980 lorsque les physiciens se sont mis d’accord sur la nécessité d’un nouvel ac-
célérateur d’électrons pour des expériences situées à l’interface entre physique nucléaire et physique
des particules [53]. Un tel projet a été financé par le "U.S.DOE" pour l’association "Southeastern Uni-
versities Research Association" (SURA). Finalement, le site du "Jefferson Laboratory" inclut des bu-
reaux, trois halls expérimentaux et le site de l’accélérateur "Continuous Electron Beam Accelerator
Facility" (CEBAF) où est établi le centre de contrôle "Machine Control Center" (MCC) pour l’établisse-
ment et le suivi du faisceau.

Les principales exigences qui ont motivé la construction d’un nouvel accélérateur pour la physique
hadronique sont les suivantes :

. fournir une énergie de faisceau de plusieurs GeV pour un large choix de cinématiques,

. atteindre une forte intensité de faisceau pour des mesures précises de petites sections effi-
caces,

. distribuer simultanément différentes énergies de faisceau à différents halls expérimentaux,

. garder la possibilité d’améliorations futures.
Durant sa construction, du fait de ces considérations, les exigences des physiciens et les progrès
technologiques, le projet original était mené à évoluer. Les plus importantes innovations étaient le
choix de cavités supraconductrices et l’utilisation de plusieurs voies de recirculation du faisceau.
Une autre importante nouveauté était de reconsidérer la source d’électrons pour qu’elle soit polar-
isée.

Plus récemment, grâce aux anticipations techniques prévues dans le design de l’accélérateur
pour de possibles améliorations, le projet d’évolution de JLab vers un faisceau de 12 GeV a été testé
et validé avec succès au Printemps 2014. Les premières expériences à 12 GeV ont alors débuté à
l’Automne 2014.

2.1.2 Description de CEBAF

La construction de l’accélérateur CEBAF a commencé en Février 1987 [53]. Selon sa concep-
tion d’origine, il a fourni pendant l’Automne 1997 un faisceau d’électrons de 4 GeV. Depuis 2000, le
faisceau d’onde continue de CEBAF est capable d’atteindre une énergie de 6 GeV et des courants
jusqu’à 200 µA d’intensité.

De façon générale, l’accélérateur CEBAF est composé de deux linacs antiparallèles à cavités
supraconductrices qui sont connectés entre eux par des arcs de recirculation du faisceau créant
une ligne de faisceau de plus de 4.5 km de longueur (figure 2.1). Au centre de la ligne de faisceau
est installé un site pour l’unité réfrigérante d’Hélium. Un injecteur crée les électrons et les délivre
sous forme de paquets. Ces paquets d’électrons sont accélérés en les recirculant jusqu’à 5 fois
avant d’être séparés et envoyés à chacun des trois halls expérimentaux. Ces halls sont nommés
A, B et C et contiennent tout l’équipement expérimental nécessaire à la prise de données. Au final,
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Figure 2.1 – Schéma de l’accélérateur CEBAF [53].

le faisceau se termine dans les halls au niveau de blindages où toute l’énergie des électrons est
dissipée.

Au niveau de l’injecteur, un canon à photocathode GaAs est illuminé par un faisceau laser Ti :Sap-
phire pulsé opérant à une longueur d’onde de 850 nm pour produire des paquets d’électrons d’hélic-
ités opposées [54, 55]. Les pulses de ∼ 50 ps sont émis à une fréquence de 499 MHz/Hall ou un taux
total de 1497 MHz et la polarisation actuelle du faisceau d’électrons peut atteindre plus de 80%.
Les paquets d’électrons sont alors accélérés par ondes électromagnétiques jusqu’à 45 MeV dans
les deux modules cryogéniques de l’injecteur vers l’entrée du premier linac (linac nord).

Chaque linac inclut 20 modules cryogéniques, chacun formés de huit cavités supraconductri-
ces (figure 2.2) accélérant les paquets d’électrons avec un gradient d’énergie de plus de 5 MeV/m.
L’énergie de chaque paquet d’électrons correspond donc au nombre de cycles qu’ils ont parcouru

Figure 2.2 – Photographie d’une cavité supraconductrice à 5 cellules elliptiques utilisée à CEBAF pour ac-
célérer les électrons du faisceau.

dans l’accélérateur. Au niveau des linacs, les paquets d’électrons sont accélérés tous ensembles
dans un même tuyau. Lorsque le faisceau sort d’un linac, un séparateur électromagnétique trie les
paquets d’électrons par énergie et les envoie dans des tuyaux différents (les arcs de recirculations).
Les électrons ayant circulé le plus grand nombre de fois, donc plus énergétiques, sont moins déviés
et traversent les tuyaux les plus bas dans le tunnel de l’accélérateur. Au contraire, ceux dont le nom-
bre de cycles est plus faible sont conduits vers les tuyaux situés plus haut. Une fois que les électrons
sont triés selon leur énergie, des aimants peuvent facilement les guider suivant la même trajectoire
dans les arcs. Afin d’être de nouveau accélérés dans le linac suivant, les paquets d’électrons sont
rassemblés par un recombineur électromagnétique à travers un seul tuyau.

Après cinq recirculations, les paquets d’électrons à la sortie du second linac (linac sud) sont
envoyés par l’extracteur sud (ou "Beam Switchyard") vers les halls expérimentaux. Un séparateur
haute-fréquence capable de séparer les paquets d’électrons du cinquième cycle arrivant à une
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fréquence de 1497 MHz les distribue entre les différents halls. L’envoi simultané du faisceau dans
plusieurs halls est donc possible après cinq recirculations. En revanche, si l’énergie des électrons de
un à quatre cycles atteint celle requise pour une expérience, tous les paquets d’électrons accélérés
à cette énergie sont envoyés par l’extracteur sud vers le hall demandeur du faisceau. Dans ce cas,
puisqu’il n’y a pas de séparateur, un autre hall ne peut pas recevoir à ce même moment un faisceau
de cette énergie.

2.2 Contrôle de la qualité du faisceau

2.2.1 La position du faisceau

Les mesures de position du faisceau dans CEBAF utilisent des dispositifs de contrôle appelés
"Beam Position Monitors" (BPMs) et peuvent être données avec une précision de 100 µm pour des
courants au-dessus de 1 µA d’intensité. Les BPMs sont constitués d’une série de quatre fins fils
conducteurs opérant à la fréquence fondamentale du faisceau de 1497 MHz [56]. La technique de
la différence sur la somme des courants des fils diamétralement opposés est alors utilisée pour
déterminer la position du faisceau. La position absolue du faisceau peut être déterminée par les
BPMs une fois calibrés par les SuperHarps adjacents.

2.2.2 Le courant du faisceau

Un système de suivi de l’intensité du courant du faisceau appelé "Beam Current Monitors" (BCMs)
consiste en un dispositif Unser et deux cavités radiofréquence, tous inclus dans une boîte pour as-
surer le blindage magnétique et la stabilité de la température en vue de réduire le bruit [57]. L’Unser
est un transformateur de courant dont le signal nominal de sortie est de 4 mV/µA. Il est calibré en
faisant passer un courant connu à travers un fil à l’intérieur même du tuyau de passage du fais-
ceau. De cette façon, l’Unser fournit une valeur absolue de référence pour calibrer les BCMs. Les
deux cavités BCMs sont des guides d’ondes cylindriques composés d’acier inoxydable qui opèrent à
la fréquence de l’accélérateur de 1497 MHz. Il en résulte des niveaux de tension à leurs sorties qui
sont proportionnels au courant du faisceau.

2.2.3 L’énergie du faisceau

La méthode Arc est utilisée pour des mesures absolues de l’énergie du faisceau avec une pré-
cision sur la valeur de 10−4. L’énergie est déterminée en mesurant la déviation du faisceau dans la
section d’arc qui précède l’entrée dans le Hall A. La méthode Arc consiste en deux mesures simul-
tanées :

. l’angle de courbure du faisceau θ dans la section d’arc amenant au Hall A,

. l’intégrale du champ magnétique
∫
~B · ~dl des huit dipôles de la section d’arc qui conduit au Hall

A. L’intégrale du champ dans l’arc est basée sur un dipôle de référence (9ème dipôle) connecté
en série avec les huit autres dipôles de l’arc et situé près de la salle de comptage du Hall A.

2.2.4 La polarisation du faisceau

Le principal avantage de l’accélérateur CEBAF pour de nombreuses expériences telles que la
mesure de la différence des section efficaces DVCS polarisées, est donc sa capacité à fournir un
faisceau d’électrons hautement polarisé (> 70%). La polarisation du faisceau y est de plus mesurée
avec une très haute précision absolue (de l’ordre de 1%) par des équipements complémentaires
[58] : une source polarisée d’électrons, un filtre Wien, un polarimètre Mott tous situés à l’injecteur
ainsi qu’un polarimètre Compton dans le Hall A, un autre dans le Hall C et trois polarimètres Møller
pour les trois halls A, B et C (figure 2.3).
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Figure 2.3 – Schéma de l’accélérateur CEBAF représentant les équipements dédiés à la mesure de la polari-
sation du faisceau [58].

De manière générale, il n’y a pas de courbure verticale nette de la ligne de faisceau entre l’in-
jecteur et l’entrée dans les halls. Par conséquent, la composante verticale du vecteur polarisation du
faisceau à la sortie de l’injecteur reste inchangée au niveau des polarimètres des halls expérimen-
taux. En revanche, dans le plan horizontal, la polarisation du faisceau subit une large précession
entre l’injecteur et les polarimètres. Elle est due à la courbure de la trajectoire et à l’énergie élevée
des électrons au niveau des arcs. En principe, le vecteur polarisation du faisceau au niveau des po-
larimètres possède donc une composante longitudinale parallèle à la direction du faisceau et une
composante transverse horizontale, plus importantes que sa composante transverse verticale.

1. La polarisation du faisceau à l’injecteur

La polarisation du faisceau au niveau de l’injecteur est assurée par trois dispositifs :
. Une source polarisée d’électrons obtenue par l’irradiation d’une photocathode par un fais-

ceau laser polarisé. Le faisceau laser incident est polarisé circulairement par une cellule
de Pockels. Le degré de polarisation du faisceau dépend du type de matériau composant la
cathode et de la longueur d’onde et du degré de polarisation du faisceau laser.

. Un filtre Wien localisé dans la zone de faisceau de 100 keV agit sur le faisceau comme un ro-
tateur de spin. Le filtre Wien est un dispositif électromagnétique dont les champs électriques
et magnétiques sont perpendiculaires à la direction d’impulsion de la particule (figure 2.4).

Figure 2.4 – Schéma d’un filtre Wien indiquant la rotation du vecteur polarisation du faisceau rela-
tivement à sa direction dans le plan du champ électrique. L’angle de rotation est appelé l’angle de
Wien ηWien [58].

L’utilité du filtre Wien provient du fait que la polarisation du faisceau passant dans le dis-
positif peut subir une rotation dans le plan du champ électrique sans affecter la trajectoire
centrale du faisceau.

. Un polarimètre Mott localisé sur une ligne de faisceau dédiée dans la région de l’injecteur
où l’énergie du faisceau est de 5 MeV à 12.5° de la ligne de faisceau incidente. Il est com-
posé d’un détecteur d’électrons à quatre bras : deux dans le plan horizontal et deux dans
le plan vertical et inclut des scintillateurs en coïncidence. Le polarimètre Mott mesure les
composantes transverses horizontale et verticale du vecteur polarisation du faisceau en
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utilisant comme cibles des feuilles de différentes épaisseurs et plusieurs numéros atom-
iques. Cette mesure est basée sur la diffusion asymétrique venant du couplage spin-orbite
de l’électron dans le potentiel Coulombien du noyau atomique de la cible.

2. Le polarimètre Compton dans le Hall A

Le polarimètre Compton installé à l’entrée du Hall A permet des mesures non-invasives de la
polarisation du faisceau, c’est-à-dire n’affectant pas la qualité de l’expérience en cours dans
le hall [59]. Il consiste en une bifurcation du faisceau incident grâce à une chicane le long de
laquelle est disposée une série de quatre dipôles déviant verticalement les électrons incidents
(figure 2.5).

Figure 2.5 – Schéma du polarimètre Compton à l’entrée du Hall A [58].

La source de photons nécessaire à la diffusion Compton est fournie par un faisceau laser de
250 mW de Nd :YaG opérant à 1064 nm. La polarisation circulaire du faisceau de photons est
assurée par une cellule de Pockels et peut être inversée en utilisant une lame quart d’onde. Le
faisceau de photons arrive dans une cavité optique de Fabry-Pérot [60, 61] centrée à l’intérieur
de la chicane (figure 2.6).

Figure 2.6 – Schéma de la cavité Fabry-Pérot située au centre du polarimètre Compton à l’entrée du
Hall A [60].

Elle amplifie la puissance du faisceau de photons jusqu’à 1200 W et permet de le maintenir à de
petits angles par rapport au faisceau d’électrons incident. Après interaction entre le faisceau
d’électrons polarisé longitudinalement et le faisceau cible de photons polarisé circulairement,
les photons diffusés sont détectés par un calorimètre composé de cristaux de PbWO4 [62]
et les électrons par un détecteur Silicium. La polarisation du faisceau d’électrons est ainsi
extraite à partir de l’asymétrie des taux de comptage obtenus pour des faisceaux polarisés
d’électrons d’hélicités opposées. Finalement, les électrons qui n’ont pas interagi sont redirigés
par deux dipôles en direction de la cible au centre du hall.

3. Le polarimètre Møller dans le Hall A

Le polarimètre Møller du Hall A implique des mesures invasives de la polarisation longitudinale
du faisceau en utilisant la diffusion Møller ~e+~e ′→ e+e′ d’électrons polarisés sur des électrons

27



CHAPITRE 2. CONFIGURATION EXPÉRIMENTALE

atomiques polarisés contenus dans une feuille cible magnétisée. La feuille cible ferromag-
nétique est polarisée dans un champ magnétique de 24 mT créé par une paire de bobines
Helmholtz. Après interaction, les paires d’électrons diffusés venant du faisceau incident et
ceux de recul venant de la cible passent à travers un spectromètre et sont guidés vers un dé-
tecteur. Le spectromètre se compose de trois quadrupôles et d’un dipôle, le détecteur est un
calorimètre constitué de cristaux d’oxyde de plomb P bO et divisé en deux bras dans le but de
détecter les électrons diffusés en coïncidence (figure 2.7).

Figure 2.7 – Schéma du polarimètre Møller dans le Hall A [58].

Finalement, à l’injecteur, le polarimètre Mott ne mesure que les polarisations transverses hori-
zontale et verticale du faisceau d’électrons. Tandis que les polarimètres du Hall A sont dédiés à la
mesure de sa polarisation longitudinale.

2.3 Equipement du Hall A

2.3.1 Caractéristiques de la cible

La cible du Hall A est constituée d’une chambre de diffusion, à l’intérieur de laquelle se trouvent
des cibles liquides et solides [63]. L’équipement relié à la cible comprend un système cryogénique
pour refroidir les cibles liquides, un système de gestion des gaz réfrigérants et le tout est régulé
par un système de contrôle de la température et de la pression. Pour finir, un système de mise en
mouvement des cibles à distance permet de changer de cibles au cours d’une expérience sans avoir
à pénétrer dans le hall.

Chambre de diffusion

Pour la prise de données des premières expériences DVCS E00-110 et E03-106 de 2004 dans
le Hall A, et réutilisée pour cette expérience en 2010, une nouvelle chambre de diffusion placée
sous vide à été réalisée pour limiter le taux de bruit de fond électromagnétique. Le design de la
chambre de diffusion était une sphère d’aluminium d’ 1.2 m de diamètre avec des parois de 10 mm
d’épaisseur. Le conduit d’entrée du faisceau de 1” existant pour la chambre standard a été gardé.
Cependant, un nouveau cylindre d’aluminium de 8 mm d’épaisseur et plus large avec un diamètre
de 6” a remplacé le tuyau standard de sortie du faisceau. Une ouverture de 6” au sommet de la
chambre avec une turbopompe était utilisée pour faire le vide. De fines fenêtres de Kapton pour
les électrons diffusés et les photons émis ont été placées sur la chambre pour réduire la diffusion
multiple.
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Cibles liquides

À partir du design standard de la cible du Hall A comportant trois cellules refroidies par cryo-
génie (figure 2.8), l’expérience DVCS n’a utilisé seulement que les deux cellules cibles d’hydrogène
liquide (LH2) et de deutérium liquide (LD2). Elles sont de forme cylindrique et composées d’aluminium

Figure 2.8 – Photographie des cellules refroidies de la cible du Hall A.

de 63.5 mm de diamètre et de 15 cm de long et sont montées à la verticale sur un support mobile
contrôlé à distance. Les parois des cellules étaient d’une épaisseur de 178 µm avec des fenêtres
d’entrées et sorties de 102 µm et 127 µm respectivement. Les températures et pressions opérantes
étaient de 19 K et 0.17 MPa pour la cible de LH2 et de 22 K et 0.15 MPa pour celle de LD2. Les den-
sités résultantes étaient respectivement de 0.0723 g/cm3 et 0.167 g/cm3. Les deux cibles liquides
étaient refroidies avec de l’Hélium à 15 K de puissance maximale de refroidissement de 1 kW.

Un faisceau de courant de 130 µA a déjà été utilisé auparavant et une luminosité de plus de
5 ·1038 cm−2s−1 déjà atteinte dans le Hall A, ce qui représente des conditions plus critiques pour la
cible que celles nécessaires à l’expérience DVCS : un courant maximal de 4 µA et une luminosité de
4 ·1037 cm−2s−1.

Cibles solides

Les cibles solides sont arrangées selon un empilement vertical et fixées sur le support mobile
en dessous des cibles liquides (figure 2.9). Les cibles solides généralement utilisées au cours des

Figure 2.9 – Photographie des cibles solides dans le Hall A.

expériences sont les suivantes :
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. cibles factices utilisées pour mesurer les contributions des fenêtres et comportant deux fins
échantillons d’aluminium séparés de 4 cm pour l’une des cibles et de 15 cm pour l’autre,

. cibles optiques utilisées pour la calibration optique des spectromètres avec sept feuilles de
Carbone d’1 mm d’épaisseur,

. cible de BeO utilisée pour rendre visible le faisceau à sa surface pour des calibrations approx-
imatives mais rapides de la position du faisceau,

. cible de Carbone 12C d’1 mm d’épaisseur,

. cible de Carbone avec un trou utilisée pour calibrer la position du faisceau,

. cibles vides utilisées pour les réglages du faisceau dans le but de réduire la radiation sur les
détecteurs.

2.3.2 Présentation des spectromètres de haute résolution

Caractéristiques générales des spectromètres

L’équipement principal du Hall A est une paire de Spectromètres de Haute Résolution (HRS) d’ac-
ceptance maximale en impulsion de 4 GeV/c (figure 2.10a). Elle est composée d’un spectromètre
droit (RHRS) et d’un spectromètre gauche (LHRS) utilisé dans l’expérience DVCS pour la détection
des électrons diffusés (figure 2.10b). La configuration magnétique des deux spectromètres consiste

(a) Disposition de la paire de spectromètres
par rapport à la ligne de faisceau.

(b) Spectromètre gauche utilisé pour l’ex-
périence DVCS.

Figure 2.10 – Schéma des Spectromètres de Haute Résolution (HRS) dans le Hall A.

en trois quadrupôles Q et un dipôle D de 6.6 m installés en une série QQDQ [63]. Cet agencement
fournit une courbure verticale de 45°, une résolution relative en impulsion de 1 ·10−4 et une résolu-
tion angulaire horizontale (verticale) de 0.6 mrad (2 mrad). Contrairement à ces hautes résolutions,
les acceptances en impulsion et les acceptances angulaires horizontales et verticales des spec-
tromètres sont petites avec des valeurs respectives de |δp/p| < 4.5%, ±30 mrad et ±60 mrad. La
variable δp/p correspond à la déviation d’impulsion de la trajectoire suivie par la particule dans le
spectromètre par rapport à l’impulsion de la trajectoire centrale.

Description des détecteurs

Les détecteurs des deux spectromètres fournissent [63] :
. un déclenchement (ou "trigger") pour activer l’électronique d’acquisition des données,
. une mesure de la position et direction des particules,
. une identification des particules diffusées.

Pour les deux spectromètres, le déclenchement est donné par des scintillateurs, et la trajectoire
des particules est reconstruite par des chambres à fils (VDCs). L’identification des particules est
obtenue à partir d’une variété de détecteurs Čerenkov gazeux ou à aérogel et des réjecteurs de
pions à cristaux dont l’arrangement diffère d’un spectromètre à l’autre. Les détecteurs et l’élec-
tronique d’acquisition des données sont entourés de blindages pour les protéger de la radiation
ambiante. Nous donnons ci-après une brève description des détecteurs du LHRS utilisés pour l’ex-
périence DVCS (figure 2.11).
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Figure 2.11 – Schéma de la disposition des détecteurs dans le spectromètre gauche (LHRS) du Hall A.

1. Les scintillateurs

Les scintillateurs appelés S1 et S2 sont composés de deux plans séparés d’une distance d’env-
iron 2 m et constitués respectivement de six et seize lattes se chevauchant. Ces lattes sont des
scintillateurs plastiques de 5 mm d’épaisseur pour minimiser l’absorption hadronique. Chaque
latte est vue par deux photomultiplicateurs (PMTs), un de chaque côté. La résolution en temps
par plan est approximativement de 0.3 ns. Un scintillateur additionnel appelé S0 de 10 mm
d’épaisseur peut être installé.

2. Les VDCs

Les chambres à fils sont organisées par paires au sein de chaque spectromètre. Chacune
d’elles est composée de deux plans de fils séparés de 26 mm et orientés à 90° l’un par rap-
port à l’autre. Chaque plan de fils contient 368 fils espacés de 4.24 mm. Les VDCs sont placées
dans le plan horizontal du laboratoire et sont remplies d’un composé gazeux d’argon (62%) et
d’éthane (38%) pour l’ionisation des particules incidentes. Un champ électrique de −4 kV est
appliqué sur les plans de fils pour collecter les signaux dûs à la migration des charges créées.

3. L’identification des particules dans le LHRS

L’identification des particules dans le LHRS est donnée par un détecteur gazeux Čerenkov et un
réjecteur de pions. Le détecteur Čerenkov est rempli de CO2 sous pression atmosphérique et
placé entre les deux scintillateurs S1 et S2. Il est composé de miroirs chacun vu par un PMT. Il
permet l’identification des électrons avec une efficacité de 99% et possède un seuil à 4.8 GeV/
c pour éviter la détection des pions. Le réjecteur de pion est composé de deux couches de 34
cristaux orientés perpendiculairement aux traces des particules et permettent la suppression
des π−.

Durant l’expérience DVCS, un collimateur a été placé pour certaines cinématiques à l’entrée du
LHRS afin de définir avec précision son acceptance. Le principal trigger utilisé pour l’expérience était
un évènement dans le spectromètre en coïncidence avec un photon dans le calorimètre DVCS. Dans
le LHRS, l’évènement était défini comme un signal dans le détecteur Čerenkov mesuré en coïnci-
dence avec l’arrivée d’un signal dans au moins une des 16 lattes du scintillateur S2 (section 2.5.2).

2.4 Configuration Expérimentale du DVCS

L’équipement de l’expérience DVCS se compose du LHRS pour la détection de l’électron diffusé et
la détermination du vertex de la réaction dans la cible, tandis qu’un calorimètre électromagnétique
permet la détection du photon final émis lors de la diffusion (figure 2.12). Parce que nous voulons
étudier les propriétés des hadrons (le neutron dans notre cas), nous avons besoin d’identifier le
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Figure 2.12 – Schéma montrant la disposition de l’équipement de l’expérience DVCS dans le Hall A, avec la
chambre de diffusion (cible), le spectromètre gauche et le calorimètre DVCS. Le tuyau de la ligne de faisceau
(en orange) pour les électrons non-diffusés est localisé entre le LHRS et le calorimètre.

nucléon de recul issu de la diffusion. Au lieu d’utiliser un détecteur, nous verrons plus tard que nous
nous servons de la mesure de la masse manquante au carré du processus de diffusion pour son
identification.

2.4.1 Les cinématiques de l’expérience DVCS

Pour l’installation de l’expérience DVCS dans le Hall A, le LHRS et le calorimètre ont été placés
à des positions stratégiques (distances et angles définis dans la figure 2.13) pour être capable de
détecter les électrons diffusés et les photons finaux émis lors de la diffusion.

d
calo

θ
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Spectromètre 
gauche

θ
LHRS

z

y

x

Electron diffusé

Photon final

Faisceau d'électrons polarisés
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LH2 - LD2

Calorimètre
Electro-

magnétique 
PbF2

Figure 2.13 – Schéma de la configuration de l’expérience DVCS dans le Hall A, avec les notations choisies
pour les distances et angles des détecteurs. Les notations ΘLHRS et Θcalo représentent les angles entre la
ligne de faisceau et respectivement le centre du LHRS et le centre du calorimètre. La distance de la cible à la
surface d’entrée du calorimètre est définie par dcalo.

Les choix des cinématiques en (Q2,xB) et les configurations expérimentales pour l’expérience
DVCS sont résumés dans la table 2.1 et expliqués dans les deux sections suivantes.

Seule la cinématique KIN II utilise les deux cibles de LH2 et LD2 d’intérêt pour l’expérience DVCS
sur le neutron. Aussi, durant la prise de données, les changements de cibles ont été réalisés en
gardant les mêmes cinématiques et la même énergie de faisceau dans le but d’acquérir des don-
nées LH2 et LD2 dans les mêmes conditions expérimentales. En effet, nous verrons dans la section
4.2 que par soustraction des données de chaque cible, obtenues avec les mêmes configurations
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Cinématiques
KIN I KIN II KIN III

Kin1Low Kin1High Kin2Low Kin2High Kin3Low Kin3High

Q2 (GeV2) 1.5 1.75 2.0

xB 0.36 0.36 0.36

Eb (GeV) 3.356 5.552 4.454 5.552 4.454 5.552

PLHRS (GeV) 1.136 3.332 1.864 2.962 1.494 2.591

ΘLHRS (deg) 36.56 16.37 26.55 18.78 31.82 21.49

dcalo (m) 1.1 1.1 1.1 1.1 1.1 1.1

Θcalo (deg) 14.78 19.39 14.78 16.79 14.78 14.78

Cibles LH2 LH2 LH2/LD2 LH2/LD2 LH2 LH2

Table 2.1 – Pour chaque cinématique en (Q2,xB) et selon la valeur d’énergie du faisceau Eb, la table donne
les configurations expérimentales du spectromètre LHRS et du calorimètre DVCS dans le Hall A. L’impulsion
centrale de l’électron diffusé dans le spectromètre est défini par PLHRS . Les cibles utilisées pour chaque ciné-
matique sont aussi spécifiées.

expérimentales, nous pouvons sélectionner les données DVCS sur le neutron.

Les exigences et contraintes scientifiques de l’expérience DVCS

En réalisant cette expérience, les intérêts scientifiques suivants ont voulus être atteints :
. étude de la dépendance en Q2 et en t des observables issues de la réaction DVCS,
. extraction du terme |TDVCS|2 avec des mesures à différentes énergies du faisceau Eb.

Pour mener à bien ce projet, ils conduisent aux exigences cinématiques et expérimentales suivantes :
. sélectionner le domaine cinématique du DVCS en excluant les résonances nucléaires,
. assurer l’exclusivité de la réaction DVCS en détectant les π0 du bruit de fond,
. prendre plusieurs cinématiques en Q2 à xB constant,
. assurer une large acceptance en t,
. définir deux énergies de faisceau Eb pour chaque cinématique en (Q2,xB).

Pour répondre à ces exigences, il faut bien sûr tenir compte des contraintes expérimentales im-
posées par le Hall A :

. énergie du faisceau maximale disponible dans le Hall A : Eb = 5.552 GeV maximale pour 5
cycles,

. énergies du faisceau fixées par le nombre de cycles d’accélération subis par les électrons :
Eb = 4.454 GeV pour 4 cycles et Eb = 3.356 GeV pour 3 cycles,

. position optimale (distance et angle) du calorimètre.

Les compromis expérimentaux et choix cinématiques établis pour l’expérience DVCS

Tout d’abord, l’emplacement du calorimètre par rapport à la cible exigeait un compromis entre :
. choisir cette distance dcalo suffisamment petite pour assurer une large acceptance en t,
. choisir cette distance dcalo suffisamment grande pour permettre la séparation des deux pho-

tons issus des π0 dans la réaction eN → e′N ′π0→ e′N ′γγ .
Finalement la distance entre la cible et le calorimètre des runs de production DVCS a été fixé à 1.1 m.
Précisons que l’acceptance angulaire du calorimètre, qui est donnée par l’angle maximal entre le
photon virtuel et le photon final détecté, représente l’acceptance en t de la réaction (figure 2.14). En
fixant la position du calorimètre, on a restreint l’acceptance en t à : |t| . 0.5 GeV2.

De plus, à cette distance optimale dcalo = 1.1 m, l’angle minimum entre le centre du calorimètre,
placé selon la direction du photon virtuel, et la ligne de faisceau est : Θcalo = 14.78°. Ainsi l’angle
expérimental du calorimètre correspond dans l’idéal à l’angle cinématique entre le photon virtuel et
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Figure 2.14 – Schéma de la configuration de l’expérience DVCS du point de vue cinématique. L’angle φ entre
les plans leptonique et hadronique dans le référentiel du laboratoire est représenté au niveau de la surface
du calorimètre. L’angle en pointillé vert entre le photon virtuel γ∗ au centre du calorimètre et le photon final
γ définit l’acceptance en t. L’angle θγ∗ en pointillé rouge correspond à l’angle cinématique entre le photon
virtuel et la ligne de faisceau. Voir qu’en réalité le calorimètre est perpendiculaire à la trajectoire du photon
virtuel (en rouge) et non à la ligne de faisceau.

le faisceau, que l’on note θγ∗ (figure 2.13 et 2.14). Cet angle peut s’exprimer en fonction des com-
binaisons de variables cinématiques (xB,Q2) et (xB,W 2). Pour cela, nous partons de la réaction lep-
tonique e(k)→ e′(k′)γ∗(q1), avec le quadrivecteur énergie-impulsion du photon virtuel noté q1(ν,~q1)
où :

ν =
Q2

2MxB
, et |~q1| =

√
ν2 +Q2 . (2.1)

A partir de la conservation de l’énergie-impulsion de cette réaction, on arrive à une expression re-
liant l’angle θγ∗ aux variables cinématiques (Q2,xB) à déterminer :

|k′ |2 = (k − q1)2 ,

Q2 = −2Eb(ν − |~q1|cosθγ∗) ,

cosθγ∗ =
ν +Q2 / 2Eb√

ν2 +Q2
,

cosθγ∗ =
1 +MxB / Eb√
1 + 4M2x2

B / Q
2
. (2.2)

Nous traçons alors les dépendances de l’angle θγ∗ en fonction de xB pour des valeurs fixées de Q2

(figure 2.15). De la même façon, on peut exprimer l’angle θγ∗ en fonction de xB et de la variable
W 2 = (p1 + q1)2 dans laquelle le quadrivecteur énergie-impulsion du nucléon est p1(M,0,0,0). Pour
cela, on introduit W 2 dans l’expression (2.2) en remplaçant la variable Q2 par :

Q2 =
(W 2 −M2) xB

1− xB
. (2.3)
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Figure 2.15 – Graphique représentant l’angle θγ∗ entre le photon virtuel et la ligne de faisceau en fonction de
xB. La zone laissée en blanc est celle autorisée par les contraintes expérimentales et cinématiques expliquées
dans le texte. Les courbes rouges calculées à l’aide de l’éq. (2.2) correspondent à des valeurs fixées en Q2,
tandis que les courbes bleues sont obtenues grâce à l’éq. (2.4) en fixant les valeurs deW 2. Toutes ces courbes
sont tracées pour une énergie du faisceau disponible dans le Hall A après 4 cycles d’accélération dans CEBAF
de Eb = 4.454 GeV. Les trois points notés de 1 à 3 représentent les trois cinématiques de KIN I à KIN III choisies
pour l’expérience DVCS en accord avec les contraintes.

Cela conduit à l’équation de l’angle suivante :

cosθγ∗ =
1 +MxB / Eb√

1 + 4M2x2
B (1− xB) / (W 2 −M2) xB

. (2.4)

De même, nous traçons les dépendances de l’angle θγ∗ en fonction de xB pour des valeurs fixées de
W 2 (figure 2.15). Nous faisons alors apparaître la limite expérimentale sur l’angle θγ∗ minimum cor-
respondant à l’angle minimal Θcalo = 14.78°. Nous représentons en plus la limite cinématique W 2 ≥
3.5 GeV2 qui nous est imposée si l’on veut exclure les résonances nucléaires. Nous voyons finale-
ment une zone "autorisée" par ces contraintes apparaître en blanc, dans laquelle les cinématiques
en (Q2,xB) ont été sélectionnées telles que :

. xB = 0.36 a été choisi pour être au centre de la zone autorisée,

. la cinématique à plus large Q2 (KIN III) est fixée par l’angle θγ∗ minimal : Q2 = 2 GeV2,

. la cinématique à plus faible Q2 (KIN I) est fixée par la limite cinématique W 2 ≥ 3.5 GeV2 : Q2 =
1.5 GeV2.

La dernière valeur deQ2 (KIN II) doit être choisie pour être comprise dans l’intervalle [1.5,2.0] GeV2,
elle a été ainsi fixée à la valeur moyenne de Q2 = 1.75 GeV2.

2.4.2 Propriétés du calorimètre DVCS

Pour détecter le photon final du processus DVCS, nous utilisons un calorimètre électromagné-
tique avec des cristaux de fluorure de plomb PbF2 déjà utilisé pour l’expérience de 2004. Dans le but
d’élargir notre acceptance en t et améliorer l’efficacité de la reconstruction des π0 (afin de sous-
traire proprement la contamination π0), le calorimètre est étendu à 16 lignes et 13 colonnes pour
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un total de 208 blocs (figure 2.16). Les cristaux de PbF2 mesurent 3× 3× 18.6 cm3 et possèdent les

(a) Face avant du calorimètre
avec des cristaux de PbF2.

(b) Face arrière du calorimètre
avec les bases des PMTs.

Figure 2.16 – Photographies des faces avant et arrière du calorimètre DVCS.

propriétés suivantes :
. un milieu Čerenkov,
. densité élevée de 7.77 g/cm3,
. longueur de radiation de X0 = 0.93 cm, ce qui correspond à 1/20 de la longueur des cristaux,
. rayon de Molière de 2.2 cm, ce qui permet aux gerbes électromagnétiques d’être contenues

dans approximativement 9 blocs adjacents, assurant une bonne résolution en position.
Grâce à la courte longueur de radiation, plus de 99.9% de l’énergie des photons est absorbée dans
les cristaux. De plus, le faible rayon de Molière nous permet de séparer des gerbes électromagné-
tiques proches issues des décroissances des π0, et de minimiser les fuites aux limites du calorimètre
puisque la majeure partie de l’énergie déposée par le photon est contenue dans un bloc.

En plus des cristaux, les blocs du calorimètre sont constitués de PMTs (Hamamatsu R7700)
joints à la base des cristaux par des supports en laiton. Ils sont enveloppés d’un matériau com-
posé de Tyvek© (enveloppe interne) et Tedlar© (enveloppe externe) afin d’éviter le transfert de lu-
mière Čerenkov d’un bloc à l’autre. Les circuits imprimés placés à la suite des PMTs contiennent des
ponts diviseurs qui distribuent la haute tension aux dynodes, de telle manière qu’ils augmentent
la valeur de tension appliquée à chacune d’elles à mesure qu’elles se situent plus proches de l’an-
ode (figure 2.17a). Ces cartes à la base des PMTs contiennent également des préamplificateurs de

(a) Bases des PMTs connectées
aux cartes PM-BUS.

(b) Cartes PM-BUS et câbles de
signal.

Figure 2.17 – Photographies de l’électronique située à l’arrière du calorimètre DVCS.
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courants des charges collectées par les anodes. En plus, ils permettent des mesures de courants
continus d’anodes, qui sont dûs à la collection de petites quantités de photoélectrons venant de
photons ou électrons de faibles énergies. Ces photons ou électrons sont détectés en continu par
le calorimètre et génèrent un bruit de fond continu de faibles courants aux anodes. Pour chaque
colonne du calorimètre, les bases des PMTs sont connectées à des cartes imprimées PM-BUS qui
transfèrent la haute tension aux PMTs et les alimentent par basse tension (figure 2.17b). A la sortie
des cartes PM-BUS, les signaux amplifiés sont amenés par câbles au sommet du LHRS où se présen-
tent les détecteurs et toute l’électronique logique, tandis que les courants d’anodes sont conduits
à des convertisseurs analogique-numérique (ADCs) installés sur des châssis du côté droit du spec-
tromètre droit RHRS avec l’alimentation haute tension des PMTs.

Pour prévenir les dommages causés aux PMTs dans le cas d’excès de lumière incidente, et réduire
le bruit dû à la lumière parasite (particules provenant de la cible, lumière du hall), des blindages
étaient utilisés durant la prise de données. D’abord, une boîte noire hermétique à la lumière ex-
térieure a été installée autour du calorimètre afin de protéger les PMTs de la lumière directe lorsqu’ils
sont sous tension. Aussi, deux blindages de tungstène ont été placés sur le tuyau de la ligne de fais-
ceau à la sortie de la cible où la radiation prédomine en raison des diffusions dans la chambre cible
(figure 2.18). Le premier, triangulaire, est utilisé pour empêcher la radiation d’endommager les blocs

Figure 2.18 – Schéma de la disposition des deux blindages de tungstène pour l’expérience DVCS. Ils sont
situés à la jonction entre la chambre cible de diffusion et le tuyau de la ligne de faisceau.

du calorimètre situés dans la colonne la plus proche de la ligne de faisceau. Sa forme triangulaire
permet de cacher la surface d’entrée de ces blocs des particules provenant de la cible. Le second
blindage, rectangulaire, protège le côté du calorimètre face à la ligne du faisceau. De la même façon,
pour minimiser le bruit de fond dû au courant continu d’anode, deux plaques de plastique à l’avant
du calorimètre et parallèles à la surface d’entrée ont été installées, une devant la boîte noire (à
l’extérieur) et une à l’intérieur de celle-ci placée devant les blocs (figure 2.19).

Le calorimètre est placé sur un support ainsi que les câbles disposés dans un réceptacle fait
d’une succession de lattes articulées (figure 2.19). De cette manière, il est facile de déplacer l’ensem-
ble lorsqu’on souhaite modifier la configuration des détecteurs pour changer de cinématique du-
rant la prise de données. Dans le but de tester les composants du calorimètre tels que les blocs
ou l’électronique, des runs cosmiques et des runs utilisant des Diodes ElectroLuminescentes (LEDs)
ont été pris. Les runs cosmiques utilisent deux lattes de scintillateurs, une située en dessous du
calorimètre et une placée au-dessus. Les runs LED utilisent un panneau avec un mode scan pour
clignoter une fois devant chacun des blocs de façon séquentielle, et pour lequel nous pouvons con-
trôler la fréquence.

2.5 Prise de Données de l’Expérience DVCS

Le système d’acquisition des données de l’expérience DVCS inclut l’électronique de déclenche-
ment du LHRS et du calorimètre DVCS en coïncidence. Il implique de plus la lecture et la gestion des
informations issues des différents modules électroniques et le stockage des données.
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Figure 2.19 – Schéma du calorimètre avec les plaques de plastique pour son blindage et son support pour sa
mobilité.

2.5.1 Acquisition des données DVCS

L’acquisition des données dans le Hall A utilise le système CODA (CEBAF On-line Data Acqui-
sition) développé par les chercheurs de JLab pour tous les halls. Le système CODA a été réalisé
pour contrôler, configurer et surveiller le flux de données transportées en réseau à travers des pro-
cesseurs opérant VxWorks et Unix. Les principales étapes d’acquisition des données par CODA sont
listées et détaillées ci-après, dans l’ordre dans lequel elles s’appliquent.

1. Le système de déclenchement

Pour la prise de données, chaque expérience a besoin de son propre système électronique de
déclenchement. Ces systèmes peuvent être construits sur 1 ou 2 niveaux logiques de sélection
des évènements. Comme ce sera expliqué dans les sections 2.5.2 et 2.5.3, l’expérience DVCS
requiert 2 niveaux logiques de déclenchement pour l’acquisition des données en coïncidence
dans le LHRS et le calorimètre. Pour être capable de gérer plusieurs niveaux de déclenche-
ment, une interface commune appelée "Trigger Superviseur" a été développée.

2. Le Trigger Superviseur (TS)

Le TS peut gérer plusieurs niveaux de déclenchement puisqu’il est capable de recevoir plusieurs
données d’entrées indépendantes et d’interagir entre elles. La plupart de ces entrées peu-
vent être préprogrammées et individuellement autorisées ou non à recevoir des informations
provenant des différents modules de déclenchement. En utilisant des horloges internes, le TS
peut aussi fournir le temps mort de l’électronique de déclenchement. Lorsqu’une donnée d’en-
trée est acceptée par tous les niveaux de déclenchement, elle est alors envoyée à tous les
châssis électroniques (ou "front-end crates") pour sa lecture et sa sauvegarde. Pour les don-
nées DVCS, un module logique de déclenchement du calorimètre a été choisi au lieu du TS en
raison de sa plus grande rapidité de traitement des données. Il envoyait ensuite une unique
information au TS.

3. Les Contrôleurs Read Out (ROCs)

Au niveau des châssis électroniques, l’évènement validé par l’électronique de déclenchement
est lu par un processeur appelé ROC. Un unique ROC gère seulement un châssis. Les princi-
pales fonctions des contrôleurs ROCs sont de communiquer avec le TS, de lire les données
d’entrée et de les envoyer en réseau sous forme de fragments d’évènements à un Construc-
teur d’évènement (Event Builder).

4. Le constructeur d’évènement ou "Event Builder"
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Le constructeur d’évènement est un processeur opérant sur un poste de travail Unix. Son rôle
est de rassembler les fragments de données de tous les ROCs afin de reconstruire les évène-
ments dans un format commun à CEBAF.

5. L’enregistreur d’évènement ou "Event Recorder"

Les évènements récupérés et traduits dans un langage commun peuvent être écrits et sauvés
sur disque ou bandes par l’enregistreur d’évènement.

2.5.2 Le système de déclenchement du LHRS

Le système de déclenchement du LHRS est utilisé pour informer de la détection d’un électron.
Pour l’expérience DVCS, la détection de l’électron diffusé est la première étape d’activation du sys-
tème d’acquisition des données puisqu’elle initialise le déclenchement du calorimètre. Cet évène-
ment électron dans le spectromètre ne sera validé par le module logique de déclenchement du
calorimètre DVCS que s’il y a détection d’un photon en coïncidence.

Comme mentionné dans la section 2.3.2 concernant les détecteurs des HRS, le déclenchement
(ou "trigger") du spectromètre gauche implique la mesure de signaux en coïncidence entre le scin-
tillateur S2 et le détecteur Čerenkov. La détection de cet évènement électron par S2 ET Čer est le
principal trigger utilisé par le LHRS. Toutefois, d’autres triggers ont été utilisés pendant la prise de
données DVCS [64] :

. S2 ET S1 : pour tester l’efficacité de déclenchement du détecteur Čerenkov,

. Trigger aléatoire : généré par une horloge pour fournir des évènements du bruit de fond. Ils
peuvent être utilisés dans une simulation Monte Carlo pour reproduire les résolutions expéri-
mentales des détecteurs,

. Pion trigger : (S2 SANS Čer) avec un prescaler afin de sélectionner uniquement les π− pour
suivre en continu la calibration du calorimètre.

2.5.3 Le système de déclenchement du calorimètre DVCS

Tous les signaux analogiques étaient amenés par des câbles au sommet du LHRS pour être
traités par l’électronique logique de déclenchement de l’expérience DVCS. Chaque signal provenant
de chacun des PMTs était lu par un trigger "Fast Analog to Digital Converter" (FADC), qui est un con-
vertisseur analogique-numérique très rapide d’exécution, et un numériseur "Analog Ring Sampler"
(ARS) de 1 GHz, qui est un échantillonneur-bloqueur. Deux modes étaient opérés [65] :

. Mode simple : l’ARS est activé par un prescaler pour numériser les signaux des 208 PMTs pour
les évènements DIS (e,e′),

. Mode en coïncidence : l’ARS est arrêté (le traitement de tout évènement additionnel est in-
hibé) et le FADC initié pour tout évènement dans le LHRS. Mais seulement un signal de val-
idation par un module logique déclenche la numérisation de l’ARS afin d’acquérir toutes les
données en coïncidence (e,e′γ)X.

Le mode simple (prise de données des électrons DIS) est utilisé pour calculer la section efficace con-
nue du DIS et la comparer aux mesures mondiales, ce qui fournit une normalisation et l’estimation
des incertitudes liées à l’expérience DVCS. Le mode en coïncidence entre électrons et photons du
DVCS est assuré par un module logique incorporé directement dans l’électronique de déclenche-
ment du calorimètre DVCS. A fortiori, en l’absence de ce module logique, l’acquisition des données
est opérée en mode simple.

Les fonctions réalisées par les FADCs et les ARS sont présentées ci-dessous pour décrire le sys-
tème de déclenchement du calorimètre DVCS dans le mode en coïncidence [64, 65] :

1. Numérisation et Groupement des signaux des FADCs

Après l’arrivée d’un électron activant le système de déclenchement du LHRS, les 208 canaux
FADC intègrent les signaux analogiques provenant des 208 PMTs du calorimètre dans une
fenêtre de 45 ns en coïncidence avec l’électron. Un fois intégrés, ils sont numérisés avec une
résolution de 12 bits et sommés par groupe de 2 × 2 canaux FADC. Si l’amplitude intégrée
d’un des groupes de signaux est supérieure à un seuil (fixé pour réduire le bruit de fond parmi
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les données qui vont être sauvées), cela confirme la détection en coïncidence d’au moins un
photon par le calorimètre. Dans ce cas, un signal logique de validation est envoyé aux ARS
pour approuver l’acquisition de l’évènement.

2. Echantillonnage des ARS

En parallèle, les signaux analogiques provenant des 208 PMTs du calorimètre sont lus en
continu par les 208 ARS, aussi longtemps qu’aucun évènement dans le LHRS ne déclenche
l’électronique d’acquisition. Chaque ARS possède 128 condensateurs qui à tour de rôle, à
une fréquence de 1 GHz, sont chargés proportionnellement à la valeur intégrée du signal
analogique (figure 2.20).

Figure 2.20 – Schéma du principe d’échantillonnage des ARS (à gauche) et illustration d’un signal
à deux impulsions de 128 ns reconstruit à partir des échantillons ARS (à droite) lorsqu’un signal de
validation a été reçu.

En d’autres termes, chaque ARS possède en permanence 128 échantillons de 1 ns, qui lors-
qu’un nouveau cycle d’échantillonnage commence, sont à tour de rôle écrasés par les nou-
veaux échantillons. Au contraire, lorsque le déclenchement du LHRS est activé par l’arrivée
d’un évènement, les 208 canaux ARS sont arrêtés. Pour chacun d’eux, les échantillons des
128 ns précédents, déjà stockés dans les condensateurs ne sont pas écrasés. Si un signal
logique de validation est reçu, les 128 échantillons de chaque ARS sont numérisés en série
par un ADC opérant à 1 MHz, et ceci pour les 208 canaux ARS en parallèle. Ainsi, le temps
total de numérisation sur 12 bits des 208 ADCs est de 128 µs. En l’absence d’un signal de val-
idation sur une durée de ∼ 550 ns, une remise à zéro rapide des FADCs et des canaux ARS est
activée et l’échantillonnage des ARS peut reprendre.
Le rôle d’échantillonnage des ARS nous donne une copie du signal (forme, amplitude, durée
des impulsions) sur une durée de 128 ns telle que pourrait le faire un oscilloscope. Ainsi, il
est possible à l’aide de ces échantillons d’entreprendre une analyse en forme des signaux
provenant du calorimètre (section 3.3.1). Nous pouvons alors identifier en temps et en ampli-
tude les impulsions de ces signaux et les séparer s’ils sont plusieurs.

Durant la prise de données DVCS, tandis que les fonctions de numérisation des FADCs et d’échan-
tillonage des ARS ont été très tôt opérationnelles, le rôle de validation de l’évènement dans le
calorimètre ( par groupement des signaux des FADCs et envoie d’un signal de validation par le mod-
ule logique) n’a été au point que les deux dernières semaines de l’expérience. Par conséquent, la
plupart des données DVCS ont été prises en mode simple avec des évènements dans le calorimètre
enregistrés à chaque électron détecté dans le LHRS.
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Chapitre 3

Contrôle des Données et Analyse des

Détecteurs

3.1 Qualité de la Prise de Données

Tous les runs de toutes les cinématiques sont vérifiés afin de contrôler les données prises du-
rant l’expérience. Nous regardons pour cela des variables normalisées par le nombre total d’évène-
ments de chacun des runs ou par la charge totale de chaque run en µC de faisceau délivré dans
la cible. Si des variations trop importantes de leurs valeurs, des irrégularités parmi les spectres,
ou d’autres anomalies sont rencontrées pour seulement quelques runs d’une cinématique, ils sont
traités comme étant problématiques et si besoin retirés des données. Au final, une liste est créée
avec l’ensemble des runs de qualité que l’on va analyser par la suite.

3.1.1 Information sur l’hélicité

Au niveau de l’injecteur, la source polarisée envoie des paquets d’électrons avec une certaine
hélicité. L’information sur l’hélicité des électrons arrivant sur la cible durant la prise de données est
une des variables à contrôler. L’hélicité des électrons peut être +1 ou −1, mais il arrive pendant l’ex-
périence qu’on ne puisse pas la déterminer. Dans ce cas, nous notons l’hélicité = 0. Précisons que
seulement des évènements avec des électrons d’hélicités connues peuvent être utilisés pour déter-
miner la différence des sections efficaces DVCS polarisées. Toutefois, on garde les runs contenant
des évènements dont l’hélicité des électrons est inconnue pour le calcul de la section efficace DVCS
non polarisée.

Après avoir vérifié pour chaque run sur l’ensemble de la prise de données la proportion d’évène-
ments avec une certaine hélicité soit positive, soit négative ou nulle (inconnue), on a noté que 17%
de ces runs contenaient plus de 10% de leurs évènements dont l’hélicité n’était pas déterminée.
Par exemple, nous avons remarqué que pour 100% des évènements d’un run de la cinématique
Kin1Low, les électrons étaient d’hélicité inconnue en raison d’un changement de la cellule Pockels
(figure 3.1a). Nous avons repéré aussi que plusieurs runs de la cinématique Kin2LowLH2 et Kin3Low
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Figure 3.1 – Proportions d’évènements avec une hélicité inconnue en fonction du numéro du run.

(figure 3.1b) présentaient des proportions supérieures à 10% d’évènements dont l’hélicité des élec-
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trons n’était pas non plus définie. Ce problème était dû à une mauvaise reconstruction de l’hélicité
par le code d’acquisition.

3.1.2 Triggers et calcul du temps mort

Afin d’assurer la qualité des données prises durant l’expérience, les taux de comptage essentiels
à l’expérience doivent être vérifiés. Ils sont donnés par les triggers suivants :

. T1 : trigger du scintillateur S2,

. T2 : trigger du scintillateur S0,

. T3 : trigger en coïncidence entre les scintillateurs S1 et S2 pour la mesure de l’efficacité du
trigger du détecteur Čerenkov,

. T4 : trigger en coïncidence entre deux détecteurs au choix parmi le détecteur Čerenkov et les
scintillateurs S0, S1 et S2,

. T5 : trigger en coïncidence entre le détecteur Čerenkov, le scintillateur S2 et le calorimètre,

. T6 : trigger en coïncidence entre le détecteur Čerenkov et le scintillateur S2,

. T7 : horloge réglée sur une fréquence d’acquisition des évènements de 11 Hz pour le calcul du
bruit de fond expérimental,

. T10, TSscalLive1 and TSscalLive2 : horloge et modes du Trigger Superviseur (TS) utilisés pour
le calcul du temps mort.

Nous avons noté que les problèmes concernant les triggers représentent principalement 2.3% de
la totalité des runs et sont reliés à l’horloge T7. Nous avons constaté qu’en réinitialisant les Con-
trôleurs Entrées/Sorties (IOCs) utiles pour le contrôle de l’équipement du Hall A, l’horloge T7 n’était
pas immédiatement restaurée à 11 Hz (figure 3.2). Une valeur élevée de la fréquence de cette hor-
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Figure 3.2 – Taux de comptage de l’horloge T7 (en Hz) en fonction du numéro du run pour la cinématique
Kin1Low.

loge conduit à acquérir une très grande quantité d’évènements. Cela augmente significativement
la durée du temps mort du système d’acquisition des données nous obligeant à rejeter les runs
affectés.

Il est essentiel dans notre analyse de prendre en compte le temps mort pour avoir une estimation
correcte du nombre réel d’évènements détectés par rapport au nombre d’évènements enregistrés
par le système d’acquisition. Nous le calculons à l’aide des deux méthodes suivantes afin de s’as-
surer de sa valeur :

. DT = 1− [T 6/ (T 7 + T 10)],

. DT = T SscalLive1/T SscalLive2.
Plus le temps mort est élevé, plus l’incertitude sur le taux réel de comptage est large ce qui rend
plus difficile l’estimation du nombre d’évènements arrivant réellement dans le détecteur. Puisque
l’erreur sur la mesure de la section efficace totale d’une réaction est directement liée à l’incertitude
sur son nombre d’évènements, nous préférons rejeter les runs pour lesquels le temps mort est trop
élevé (> 70%) comme pour l’exemple de la figure 3.3. Les runs affectés par ce problème représentent
0.8% de la totalité de la prise de données.
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Run number
9720 9740 9760 9780 9800 9820 9840 9860

D
ea

d
 T

im
e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

DT=1-[D.TSscalLive1/D.TSscalLive2]

Figure 3.3 – Fractions du temps mort calculé avec la seconde méthode DT = T SscalLive1/T SscalLive2 du
trigger superviseur en fonction du numéro du run pour la cinématique Kin2HighLD2. Le run 9770 en particulier
montre un temps mort trop élevé comparativement au reste de la cinématique.

3.1.3 Variables du spectromètre

Le spectromètre est composé de différents détecteurs dont nous devons étudier pour tous les
runs de chaque cinématique les variables suivantes :

. le nombre d’évènements par µC de faisceau délivré dans la cible, mesuré dans chacune des
16 lattes du scintillateur S2,

. le nombre d’évènements par µC de faisceau délivré dans la cible, mesuré dans chacun des 10
photomultiplicateurs du détecteur Čerenkov,

. le nombre moyen de fils déclenchés par le passage d’une particule détectée dans chacun des
4 plans des deux chambres à fils,

. le nombre moyen de groupement de fils (avec un χ2 < 10) situés sur le trajet d’une particule
dans chacun des 4 plans des deux chambres à fils,

. le nombre d’évènements à une trace par µC de faisceau délivré dans la cible, mesuré dans
chacun des 4 plans des deux chambres à fils,

. la proportion d’évènements multi-traces mesurée dans chacun des 4 plans des deux chambres
à fils,

. le nombre moyen de blocs déclenchés par la détection d’une particule dans chacune des 2
couches du réjecteur de pion.

Le principal problème concernant ces variables apparaît lorsque le temps mort du système d’acqui-
sition des données est trop élevé puisque l’acquisition est occupée à traiter les premières données
et ne sauve plus d’autres évènements durant cette période. On remarque alors une chute du nombre
de coups dans les détecteurs du spectromètre. Par exemple, nous avons constaté pour le run 9770,
déjà mentionné dans la figure 3.3 en raison de son temps mort élevé, que très peu d’évènements
déclenchent le scintillateur S2 (figure 3.4a) et le détecteur Čerenkov (figure 3.4b).
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(a) Nombres d’évènements normalisés par la charge
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Figure 3.4 – Variables du spectromètre pour la cinématique Kin2HighLD2. Les nombres d’évènements par
µC de faisceau délivré dans la cible, mesurés dans les détecteurs S2 et Čerenkov pendant le run 9770 sont
nettement plus faibles que pour les autres runs en raison du temps mort élevé (figure 3.3).
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3.1.4 Variables du calorimètre

Les spectres en énergie et en temps des impulsions mesurées dans chaque bloc du calorimètre
et pour chaque run de la prise de données doivent être vérifiés. Afin de contrôler plus rapidement
ces informations, nous comparons pour tous les runs d’une cinématique :

. le nombre d’évènements du spectre en énergie au-dessus d’un seuil (fixé pour l’étude de la
qualité des données), par µC de faisceau délivré dans la cible pour chaque bloc du calorimètre,

. le temps d’arrivée le plus probable du spectre en temps des impulsions mesurées dans chaque
bloc du calorimètre.

Nous montrons en exemple dans la figure 3.5a, les temps d’arrivée les plus probables des impul-
sions dans un bloc non-problématique du calorimètre pour tous les runs de la cinématique Kin3Low.
Dans la figure 3.5b, nous donnons le spectre en temps des impulsions mesurées dans ce même bloc
durant un des runs de cette cinématique. On comprend donc que le temps d’arrivée le plus prob-
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Figure 3.5 – Variables du calorimètre habituellement observées pour l’exemple du bloc 27 non-problématique
pour la cinématique Kin3Low.

able d’un run correspond à la position du pic d’amplitude maximale de son spectre en temps. Ces
deux figures sont celles habituellement observées lorsqu’aucun problème n’a été rencontré. Elles
sont données ici à titre de comparaison par rapport à celles qui ont été affectées par des problèmes
d’électronique. Parmi elles, nous avons justement remarqué que certains blocs du run de la cinéma-
tique Kin3Low choisi en exemple dans la figure 3.5b présentaient des spectres en temps irréguliers
et trop bruités (figure 3.6b). Dans ce cas, les temps les plus probables d’arrivée des impulsions dans
les blocs problématiques deviennent difficiles à déterminer puisqu’ils se confondent avec des pics
de bruit de fond (figure 3.6a).
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Figure 3.6 – Variables du calorimètre pour le bloc 28 présentant un problème d’électronique durant le run
7953 de la cinématique Kin3Low.
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De plus, si des problèmes de connexions des blocs, cartes ou alimentations interviennent durant
la prise de données, les spectres en énergie et en temps de certains blocs peuvent se retrouver vides.
Dans ce cas en effet, aucune impulsion ne peut être mesurée dans ces blocs. Cela s’est justement
produit pour plusieurs blocs du calorimètre durant un run de la cinématique Kin3Low (figure 3.7).
Ce problème est également survenu pour un seul bloc durant 21 runs de cette même cinématique.
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Figure 3.7 – Nombres d’évènements au-dessus d’un seuil en énergie normalisés par la charge totale de
chaque run en µC de faisceau délivré dans la cible, dans le bloc 84 en fonction du numéro du run de la
cinématique Kin3Low. Aucune impulsion n’a été enregistrée dans ce bloc pendant le run 7864.

Ces runs situés au début de la cinématique Kin3Low n’ont pas été pris en compte pour réaliser la
figure 3.7, mais ils seront évidemment retirés des données au même titre que le run problématique
précédemment repéré.

Enfin, des problèmes de calibrations ou du système d’acquisition des données peuvent occa-
sionner un décalage du temps le plus probable d’arrivée des impulsions dans un bloc par rapport à
ceux des autres blocs. On a relevé ce problème sur les spectres en temps d’un bloc correspondant à
trois runs de la cinématique Kin2LowLH2, pour lesquels la position du pic de plus grande amplitude,
habituellement située entre 40 ns-45 ns, s’est retrouvée décalée entre 20 ns-25 ns (figure 3.8). Au
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Figure 3.8 – Spectre en temps (en ns) des signaux du bloc 159 pour le run 8466 de la cinématique
Kin2LowLH2. Le temps d’arrivée le plus probable des impulsions de ce bloc se situe entre 20 ns-25 ns.

final, nous avons constaté qu’environ 3% de la totalité des runs de l’expérience était affectée par
des problèmes liés au calorimètre.

3.1.5 Conclusion sur la qualité de la prise de données

Les problèmes explicités précédemment ne représentent que 6% de la prise de données totale.
D’autres anomalies plus rares ou plus difficiles à comprendre ont été en plus relevées. On peut men-
tionner parmi elles des problèmes avec le système d’acquisition des données (CODA) ou les Con-
trôleurs Read-Out (ROCs), ainsi qu’au niveau de l’électronique des ARS ou du trigger superviseur,
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sans oublier bien sûr les problèmes liés à l’expérimentateur qui gère par exemple les alimentations
haute tension de tous les détecteurs.

A l’issue de cette étude, nous avons retiré environ 10% de la totalité des runs. Au cours de
ce contrôle des données, des runs présentant des problèmes mineurs ont pu être gardés dans la
mesure où ils n’affectent pas ou peu l’analyse des données. C’est le cas par exemple des runs com-
portant des évènements dont l’hélicité est indéterminée, puisqu’ils seront tout de même utilisés
pour le calcul de la section efficace DVCS non polarisée.

3.2 Analyse du Spectromètre

3.2.1 Reconstruction du trajet des particules

La reconstruction du trajet suivi par une particule dans le spectromètre est effectuée en utilisant
les données des deux chambres à fils. Rappelons que chacune d’elles est composée de deux plans
de fils orientés à 90° l’un par rapport à l’autre dans le plan horizontal du spectromètre noté (u0v). Le
plan dont les fils sont dirigés selon l’axe (0v) est schématisé en exemple dans la figure 3.9 et utilisé
par la suite pour la description de leur principe de fonctionnement [63].
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Figure 3.9 – Schéma de la reconstruction du trajet d’une particule dans un plan de fils dirigés suivant (0v)
d’une des deux chambres à fils du spectromètre. La reconstruction se fait par groupement des fils voisins
collectant les charges produites lors de l’ionisation du gaz par la particule. Le centre du groupement de fils
i (dans l’exemple de la figure i = 1, . . . ,4) ne fournit pas une très bonne résolution spatiale pour la détermi-
nation de la position de la particule sur le plan de fils, et les temps de dérives di pour chaque fil i sont alors
nécessaires afin de l’améliorer.

Tout d’abord, les plans de fils connectés à la masse sont chacun précédés et suivis de plans
cathodiques soumis à une tension de −4 kV induisant des différences de potentiel. Lorsqu’une par-
ticule traverse les chambres à fils, elle va ioniser les atomes de gaz contenus dans ces dernières.
Les électrons secondaires issus de l’ionisation vont dériver en direction des fils en raison de ces dif-
férences de potentiel entre fils et cathodes. A proximité des fils, le champ électrique s’intensifiant,
les électrons secondaires vont à leur tour ioniser le gaz environnant et créer une réaction en chaîne
appelée "avalanche". C’est par le mouvement de toutes ces charges dans ces "zones de dérive" que
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les signaux électriques sont générés. Ces signaux induits par le passage de particules sont ensuite
amplifiés et envoyés à des convertisseurs temps numériques (TDCs).

Une fois que ces signaux sont enregistrés, des groupements locaux de fils sont réalisés sur cha-
cun des plans. Tous les fils voisins les uns des autres qui ont collecté des charges sont alors re-
groupés. Finalement, les fils d’un même groupement local sont donc à l’origine du signal produit par
la traversée d’une seule et même particule.

Dans l’exemple de la figure 3.9, sachant que l’on connaît les coordonnées des fils sur l’axe (0u),
on peut reconstruire la position de la particule lorsqu’elle a croisé le plan de fils comme étant la po-
sition centrale du groupement sur cet axe. Mais la résolution spatiale fournit par cette méthode n’est
pas suffisante. La figure 3.9 le montre justement, puisque la trajectoire de la particule ne croise pas
le plan de fils au centre du groupement. On peut toutefois améliorer la résolution spatiale si on tient
compte des temps de dérive des charges vers chacun des fils qui sont fournis par les TDCs. A partir
de ces temps de dérive, on peut déduire les distances de dérive des charges et les coordonnées sur
le plan vertical du spectromètre (zdet0u) des positions de la trajectoire de la particule où elles ont
été créées. On définit par αu l’angle entre la trajectoire reconstruite puis projetée sur le plan (zdet0u)
et l’axe vertical (0zdet).

En faisant de même avec le second plan de fils orientés selon l’axe (0u) et dont on connaît leurs
coordonnées sur l’axe (0v), nous reconstruisons la projection cette fois sur le plan vertical (zdet0v)
de la trajectoire de la particule, qui décrit un angle αv avec l’axe (0zdet). En combinant les deux plans,
nous obtenons au final la trajectoire suivie par la particule dans le repère à 3-dimensions (u,v,zdet).

Le même principe est utilisé dans la seconde chambre à fils, et les informations combinées des
deux chambres fournissent une mesure de haute précision et sur une longue distance du trajet
de la particule dans le spectromètre. La combinaison des quatre plans de fils permet également
d’améliorer la séparation et la reconstruction des trajets de chaque particule dans des évènements
multi-traces [63].

3.2.2 Changements de référentiels pour la reconstruction du vertex

Après avoir défini les trajets des particules dans les chambres à fils, nous pouvons reconstruire
les vertex d’interaction dont elles sont issues. Pour cela, il est avantageux de changer de système
de coordonnées pour passer du repère de la trajectoire de la particule (u,v,zdet) à celui du détecteur
(xdet, ydet, zdet), dont l’axe vertical (0zdet) est commun aux deux repères. La coordonnée xdet suit la
direction dispersive du spectromètre et elle forme un angle β avec l’axe (0u) et un angle γ avec l’axe
(0v). Le changement de coordonnées s’écrit alors [63] :

xdet =
u sinγ − v sinβ

sin(γ − β)
(3.1)

ydet =
u cosγ − v cosβ

sin(γ − β)
. (3.2)

De même, un changement de système de coordonnées est réalisé pour leurs coordonnées angu-
laires correspondantes :

θdet =
sinγ tanαu − sinβ tanαv

sin(γ − β)
(3.3)

φdet =
cosγ tanαu − cosβ tanαv

sin(γ − β)
, (3.4)

avec αu et αv les angles du repère (u,v,zdet) définis dans la section précédente 3.2.1. Les angles
θdet et φdet correspondent aux tangentes des angles dans les directions dispersive d’axe (0xdet) et
perpendiculaire à la direction dispersive d’axe (0ydet) du spectromètre respectivement. De plus, nous
définissons l’impulsion centrale notée p0 comme l’impulsion idéale que doit avoir une particule pour
que sa trajectoire passe au centre du spectromètre. Pour toute autre trajectoire, la particule a une
impulsion p différente de l’impulsion centrale et dont la déviation relative est notée :

δdet =
p − p0

p0
. (3.5)
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Pour finir, dans le cas idéal où le centre du Hall est aligné sur la trajectoire centrale du spec-
tromètre, les coordonnées du détecteur (xdet,θdet, ydet,φdet,δdet) deviennent les coordonnées du plan
focal de la particule dans le spectromètre (xfp,θfp, yfp,φfp,δfp). C’est à partir de ce repère du plan
focal que l’on va reconstruire le vertex par passage dans le repère de la cible (xtg,θtg, ytg,φtg,δtg). Ce
changement de système de référence est assuré au premier ordre par la matrice optique d’unités :
mêtres, sans dimension et δ relatifs, appelée "Tenseur de Transport" [63] :
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δ
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. (3.6)

3.2.3 Implémentation de l’acceptance

L’acceptance du spectromètre est définie par l’espace de phase à 4-dimensions décrit par les
coordonnées du repère de la cible : (δ,ytg,θtg,φtg), xtg étant négligeable. Une particule qui se trouve
dans la région d’acceptance passe par le plan focal du spectromètre et est détectée. Au contraire,
toute particule en dehors de la zone d’acceptance ne sera pas détectée. L’acceptance du spec-
tromètre est implémentée selon le formalisme de la "R-fonction" pour faciliter sa prise en compte
lors de l’analyse des données [66].

Principe de la R-fonction

Le formalisme de la R-fonction est l’ensemble des fonctions décrivant les limites géométriques
d’objets par des équations. Ces fonctions combinées donnent une valeur résultante égale à 0 sur
les limites de l’objet, et une valeur négative ou positive respectivement en dehors ou à l’intérieur de
l’objet. De plus, sa valeur absolue est approximativement la distance aux limites de cet objet. Dans
notre cas, l’utilisation de la R-fonction permet de traduire l’acceptance du spectromètre selon une
valeur résultante appelée rval.

Application de la R-fonction sur les données

Lors de l’analyse des données, des coupures sur la région d’acceptance peuvent être appliquées.
Cela permet de gagner ou perdre en statistique par rapport à l’acceptance limite donnée par rval = 0.
Pour cela, nous faisons appel à une seule coupure sur la R-fonction pour traduire toutes les coupures
sur l’acceptance. Son principe est le suivant : couper sur une valeur positive (négative) de rval
va réduire (élargir) la zone d’acceptance de cette valeur. Par exemple, si l’on applique la coupure
rval > 0.005, on va réduire la région d’acceptance uniformément sur ses 4 dimensions. Cela réduit le
nombre de particules inclus dans l’analyse, mais assure en contrepartie qu’elles passent bien par le
plan focal du spectromètre et qu’elles soient bien reconstruites par le détecteur.

3.3 Analyse du Calorimètre

Au cours de l’expérience, les particules vont arriver dans le calorimètre à tout moment et à n’im-
porte quelle position. Par conséquent, une étude en temps et en position des signaux s’impose afin
de reconstruire l’énergie et la position d’impact de chaque particule dans le calorimètre. L’analyse
en forme des signaux ARS permet de séparer deux particules arrivant proches en temps, en détermi-
nant les temps d’arrivée et les amplitudes des impulsions produites par chacune d’elles. L’algorithme
de groupement des blocs permet de définir les zones du calorimètre où les particules ont déposé de
l’énergie afin de remonter à la position d’impact de chacune d’elles. Finalement, la calibration du
calorimètre permet de reconstruire l’énergie de chaque particule.
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3.3.1 Analyse en forme des signaux

Principe de l’analyse

Le but de l’analyse en forme des signaux ARS est de déterminer les amplitudes et temps d’arrivée
des impulsions dans chaque bloc du calorimètre [67]. Pour cela, les signaux ARS sont ajustés par
une impulsion de référence. Sachant que les signaux ARS peuvent contenir zéro, une ou deux im-
pulsions selon le nombre de particules détectées, jusqu’à trois ajustements sont quelquefois néces-
saires. Dans le cas de signaux à deux impulsions, l’analyse en forme permet de fournir l’amplitude
de chacune.

Ajustement de la ligne de base Un premier ajustement est effectué sur la ligne de base des
signaux ARS afin de prendre en compte le bruit de fond électronique. On définit par {x} un signal
sauvegardé par l’ARS et par xi l’échantillon numéro i compris dans la fenêtre d’analyse [imin, imax]
de ce signal. Tous les échantillons du signal sont ajustés par une constante b considérée comme le
décalage (en canaux) de la ligne de base par rapport à zéro. L’ajustement est réalisé en minimisant
le χ2 suivant :

χ2 =
1
ndof

imax∑
i=imin

(xi − b)2 . (3.7)

La variable ndof correspond au nombre de degrés de liberté. Dans ce cas, nous recherchons la valeur
d’un paramètre libre b pour l’ajustement des (imax − imin) échantillons du signal ARS. La valeur ndof
normalisant le χ2 est donc donnée par : (imax − imin)−1. Finalement, la valeur optimale de b donnant
le meilleur ajustement est donnée par la valeur moyenne des (imax − imin) échantillons du signal :

b =

∑imax
i=imin

xi

(imax − imin)
. (3.8)

Nous comparons alors la valeur minimale obtenue pour le χ2 à une valeur seuil χ2
0. Si le χ2 est plus

petit que le seuil, nous pouvons considérer que le signal ARS se compose seulement d’une ligne
de base. Dans le cas contraire, cela signifie que le signal contient au moins une impulsion et qu’un
second ajustement est nécessaire.

Ajustement de signaux à une impulsion Un second ajustement est effectué dans le cas d’un
signal ARS à une impulsion. Toujours en prenant en compte la ligne de base représentée par la
constante b, on définit en plus un signal de référence {h} comportant une impulsion. On note par
hi l’échantillon numéro i du signal de référence et par a1 l’amplitude de son impulsion arrivant à
t = 0. Parce que le temps d’arrivée t1 de l’impulsion dans le signal ARS est à déterminer, on décale le
signal de référence de t1 pour réaliser l’ajustement. Ainsi, l’échantillon i du signal de référence hi se
retrouve à i + t1 et devient hi+t1 . Son impulsion arrivant dorénavant à t = t1 a une amplitude a1(t1).
Quant à la constante b, elle est également à définir au temps d’arrivée t1 et notée b(t1). Finalement,
pour n’importe quel temps d’arrivée t1 dans une fenêtre [t1min, t1max], les deux paramètres libres
a1(t1) et b(t1) reproduisant le mieux le signal ARS sont ceux qui minimisent le χ2 suivant :

χ2(t1) =
1
ndof

imax∑
i=imin

(
xi − a1(t1)ht1+i − b(t1)

)2
, (3.9)

avec pour nombre de degrés de liberté ndof = (imax − imin) − 2. Au final, la valeur minimum obtenue
pour le χ2 est comparée à une valeur seuil χ2

1. Si le χ2 est plus petit que le seuil, le signal ARS
contient bien une impulsion, dans le cas contraire deux impulsions sont présentes et un troisième
ajustement s’impose.
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Ajustement de signaux à deux impulsions Un troisième ajustement est effectué dans le cas d’un
signal ARS à deux impulsions. On considère deux fois le signal de référence {h}, une fois au temps
d’arrivée t1 de la première impulsion dans le signal ARS, une seconde fois au temps d’arrivée t2 de
la seconde impulsion. Ainsi, pour n’importe quels temps d’arrivée t1 et t2, les amplitudes a1(t1, t2) et
a2(t1, t2) des impulsions et la constante b(t1, t2) de la ligne de base correspondant le plus à ceux du
signal ARS sont ceux qui minimisent le χ2 suivant :

χ2(t1, t2) =
1
ndof

imax∑
i=imin

(
xi − a1(t1, t2)ht1+i − a2(t1, t2)ht2+i − b(t1, t2)

)2
, (3.10)

avec ndof = (imax − imin)−3. Notons que dans le cas où t1 = t2, l’ajustement du signal devient singulier
puisqu’il y a une infinité de paires a1 et a2 pouvant minimiser le χ2. En effet, il est impossible de
distinguer deux impulsions simultanées induites par deux particules arrivant en même temps dans
le calorimètre. L’écart minimum entre les temps d’arrivée des particules en dessous duquel on ne
peut plus les séparer par analyse en forme est en fait la résolution ∆τ . Ainsi, si les temps d’arrivée
de deux impulsions vérifient |t1 − t2| < ∆τ = 4 ns, on considère qu’il est plus fiable d’effectuer un
ajustement à une impulsion du signal ARS.

Paramétrisation de l’analyse

Afin de réaliser l’analyse en forme des signaux ARS, les paramètres de l’algorithme ont été fixés
préalablement [68]. Dans un premier temps, afin de réduire la durée d’analyse des signaux, les
fenêtres dans lesquelles les signaux ARS sont ajustés et les amplitudes des impulsions déterminées,
doivent être optimisées. Parce que les impulsions dans les signaux ARS durent autour de 20 ns-30 ns,
la fenêtre d’acquisition qui contient les 128 échantillons de 1 ns du signal ARS peut être réduite à
une fenêtre d’analyse [imin, imax] de 80 ns. Cela est suffisant pour contenir deux impulsions. De plus,
l’ajustement du signal ARS par le signal de référence sera de meilleure qualité s’il est réalisé dans
une zone réduite centrée sur l’impulsion qui nous interesse.

Dans un deuxième temps, on fixe les fenêtres en temps [t1min, t1max] = [−20,25] ns et [t2min, t2max] =
[−40,40] ns, dans lesquelles les temps d’arrivée des impulsions t1 et t2 sont susceptibles de se trou-
ver. On les recherche par pas de 1 ns puisque la fenêtre d’analyse se compose d’échantillons ARS
de 1 ns. On les détermine en calculant le χ2 pour chaque valeur possible de t1 (pour une impulsion)
ou de paire t1, t2 (pour deux impulsions en assurant t1 , t2), et en trouvant la plus petite valeur des
χ2. A chacun de ces χ2 est associée l’amplitude a1(t1) (ou les amplitudes a1(t1, t2) et a2(t1, t2)) qui le
minimise. Ainsi, en déterminant le temps d’arrivée d’une impulsion dans le signal ARS, on retrouve
sa bonne amplitude associée au plus petit des χ2.

D’autres paramètres sont également à considérer qui sont les seuils χ2
0 et χ2

1 nous permettant de
discriminer si un signal ARS possède zéro, une ou deux impulsions. Ces seuils doivent être comparés
avec les valeurs de χ2 minimales obtenues en canaux ARS à chaque ajustement. Une conversion en
énergie est donc nécessaire pour la détermination de ces seuils. Pour cela, on les multiplie par les
coefficients de calibration de chaque bloc.

3.3.2 Algorithme de groupement des blocs

Lorsqu’une particule traverse le calorimètre, elle perd de l’énergie par production de paires
électron-positron et processus Bremsstrahlung et forme une cascade électromagnétique. Elles at-
teignent en général des groupes de neuf blocs ou plus, mais la majeure partie de l’énergie déposée
est contenue dans un seul bloc que l’on nomme "maximum local". Ainsi, le but de l’algorithme de
groupement des blocs est de définir chaque zone du calorimètre où chaque particule a déposé de
l’énergie afin d’en déduire la position d’impact de la particule sur sa surface d’entrée. L’algorithme
consiste en trois étapes : sélectionner les blocs contenant un dépôt d’énergie, déterminer parmi eux
les maxima locaux et former des groupes de blocs contenant chacun l’énergie totale perdue par
une seule et même particule dans le calorimètre. Une fois que cette procédure est terminée, nous
pouvons reconstruire la position exacte d’impact de chaque particule.

50



3.3. ANALYSE DU CALORIMÈTRE

Sélection des blocs contenant un dépôt d’énergie

Afin de retrouver parmi tous les blocs du calorimètre ceux qui contiennent une partie de l’énergie
déposée par les particules détectées, des combinaisons de quatre blocs adjacents sont créées. En-
suite, l’énergie totale de chaque combinaison est alors comparée à une énergie seuil. Les quatre
blocs de chaque combinaison dont l’énergie totale dépasse le seuil sont alors sélectionnés (figure
3.10a). Cette méthode est réalisée pour toutes les combinaisons possibles de quatre blocs dans

(a) Sélection des combinaisons de 4 blocs
(blocs colorés) dont l’énergie totale dé-
passe un seuil.

(b) Sélection des maxima locaux (en rouge)
parmi les blocs (en gris) atteints par l’én-
ergie déposée des particules détectées.

Figure 3.10 – Schéma de la première étape de l’algorithme de groupement des blocs.

le calorimètre. Ainsi, chaque bloc est testé quatre fois à part les blocs situés sur les bords qui ne
peuvent être combinés que deux fois et les blocs situés aux coins qu’une seule fois.

Détermination des maxima locaux

Parmi tous les blocs sélectionnés (contenant un dépôt d’énergie), ceux possédant une énergie
plus élevée que celles des blocs alentours sont des maxima locaux (figure 3.10b). Ils définissent le
nombre de groupements de blocs à déterminer. Lorsque deux maxima locaux sont suffisamment
éloignés l’un de l’autre, il est facile de délimiter les groupements de blocs associés à chacun d’eux.
Au contraire, pour deux maxima locaux très proches l’un de l’autre, les blocs sélectionnés peuvent
ne former qu’une seule zone qu’il est plus difficile de scinder en deux groupes (cas de la figure 3.10).
D’autant plus que les blocs à mi-distance des deux maxima, bien qu’ils ne seront attribués qu’à un
des deux groupes par l’algorithme, peuvent contenir chacun une part des énergies déposées par les
deux particules détectées.

Groupement des blocs contenant un dépôt d’énergie

Dans cette étape, l’algorithme de groupement des blocs doit faire des associations de blocs
parmi ceux atteints par les dépôts d’énergie des particules. L’énergie totale d’un groupement de
blocs doit correspondre à l’énergie perdue par une seule et même particule. Une sélection en temps
des impulsions dans le calorimètre est d’abord effectuée. Aussi, chaque bloc ne doit appartenir qu’à
un seul groupe et ainsi n’être associé qu’à un seul maximum local. Lorsqu’il y a ambiguïté sur un
bloc adjacent à deux groupes, l’algorithme doit être capable de choisir auquel de ces deux groupes
il va attribuer le bloc. Pour répondre à toutes ces attentes, l’algorithme mis en place pour l’analyse
du calorimètre se base sur une méthode nommée automate cellulaire [69]. Son principe est illustré
dans la figure 3.11 et les étapes de la procédure qu’elle suit sont les suivantes. Les maxima locaux
sont considérés comme des virus, les valeurs d’énergies comme potentiels de contamination et les
blocs contenant de l’énergie déposée par les particules comme les sujets à risques qui vont être
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(a) (b) (c)

Figure 3.11 – Schéma de la procédure suivie par l’automate cellulaire pour le groupement des blocs atteints
par l’énergie déposée par les particules dans le calorimètre.

affectés par ces virus. Toute la méthode repose sur la façon de déterminer par quel virus vont être
affectés ces sujets à risques.

Etapes (a) → (b) : Au début, une première épidémie va toucher les sujets à risques en contact
avec les virus. Autrement dit, les blocs adjacents aux maxima locaux vont être affectés et prendre
leurs valeurs d’énergies. Les blocs adjacents à deux maxima locaux vont se voir attribuer la valeur
d’énergie du maximum local la plus élevée des deux puisqu’il correspond au virus à plus haut poten-
tiel de contamination (plus contagieux). De la même façon qu’un virus plus contagieux va toucher
plus de sujets, une énergie déposée plus élevée va se propager plus loin et toucher plus de blocs
au sein du calorimètre. Les blocs qui sont alors affectés gardent définitivement la valeur d’énergie
transmise par les virus, leur permettant de cette manière de s’immuniser contre les autres virus et
devenant aussi contagieux (même potentiel de contamination) que leurs maxima associés. Ainsi, ils
peuvent à leur tour transmettre le virus qui les a atteints.

Etapes (b)→ (c) : Ensuite, une seconde vague d’épidémie va toucher les sujets à risque adjacents
aux blocs précédemment contaminés. On procède de la même façon que pour la première épidémie
en attribuant aux sujets à risque toujours l’énergie la plus élevée parmi ces blocs contaminés. En
continuant comme cela à se propager de proche en proche à chaque itération, les virus contaminent
finalement tous les sujets à risques. L’algorithme de groupement des blocs s’arrête donc lorsqu’il
n’y a plus un seul bloc sain parmi les blocs sélectionnés. Les groupes de blocs sont alors formés par
tous les sujets porteurs d’un même virus, c’est-à-dire contenant la même valeur d’énergie que leur
maximum local associé.

Reconstruction des positions d’impact des particules

Une fois que nous avons regroupé les blocs par dépôts d’énergie de chacune des particules dé-
tectées, nous pouvons reconstruire les positions exactes ~x de coordonnées (x,y) des points d’impact
des particules sur la surface d’entrée du calorimètre. Elles sont données par l’expression suivante :

~x =
∑
iwi ·~xi∑
iwi

, (3.11)

c’est-à-dire par le barycentre des positions centrales ~xi des blocs i d’un groupe pondérés par leur
poids wi . C’est ce poids qui nous permet de discriminer l’importance donnée aux blocs du groupe-
ment pour la reconstruction du point d’impact. En effet, il tient compte du fait que la fraction d’én-
ergie contenue dans les blocs diminue à mesure que l’on s’éloigne du maximum local. On note l’én-
ergie des blocs i par Ei et l’énergie totale du groupement de blocs par E. Ainsi, on pourrait es-
timer le poids comme wi = Ei/E. Mais puisque la perte transverse d’énergie de la particule dans
le calorimètre est exponentielle et que pratiquement la totalité de l’énergie est déposée dans le
maximum local, le point d’impact serait toujours reconstruit au centre du maximum local. Afin de
réduire l’importance du poids attribué au maximum local et de considérer d’avantage les autres
blocs du groupe, on associe une fonction logarithmique aux fractions d’énergies telle que le poids
serait défini cette fois par wi = ln(Ei/E). Mais les poids obtenus avec l’ajout de cette fonction sont
négatifs. Comme nous voulons que les poids soient positifs pour reconstruire le point d’impact de
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la particule, nous leur ajoutons une constante W0. Elle doit être ajustée pour que la reconstruction
soit pertinente. En effet, si sa valeur est trop élevée, la pondération des blocs devient trop uniforme,
au contraire en étant trop faible, elle ne suffit plus pour maintenir les poids à des valeurs positives.
Au final, lorsque les fractions d’énergie contenues dans les blocs loin du maximum local sont trop
faibles pour être compensées par W0, les poids normalement négatifs sont alors fixés à zéro :

wi = max
{
0,

[
W0 + ln

(Ei
E

)]}
. (3.12)

Les blocs pondérés par zéro ne contribuent pas à la détermination des positions exactes des points
d’impact des particules.

Pour résumer, avec cette méthode utilisant les équations (3.11) et (3.12), c’est-à-dire en consid-
érant tous les blocs d’un groupe, on devient plus précis que la taille du maximum local (9 cm2) pour
définir la position de la particule entrant dans le calorimètre. Autrement dit, on gagne en résolu-
tion sur la reconstruction des positions dans le calorimètre puisqu’on définit les points d’impact à
l’intérieur même des blocs. A cette position ~x mesurée sur la surface du calorimètre, doivent être
appliquées deux corrections liées à la position du vertex dans la cible, et à la position du barycentre
longitudinal de la gerbe électromagnétique créée par la particule dans le calorimètre.

Correction liée à la position du vertex Sachant que le calorimètre est placé à une distance L =
1.1 m de la cible, et que celle-ci mesure 15 cm de long, la position du vertex vz par rapport au centre
de la cible doit être prise en compte pour reconstruire la position ~x = (x,y) du point d’impact d’une
particule sur la surface d’entrée du calorimètre (figure 3.12). Jusqu’à maintenant, la position du

Vz

Vz

Lvz

L

Calorimètre
Cible

Direction z du 
faisceau

Faisceau incident

θCalo

xvz

Trajet de la particule détectée

0

0'

x xcor1

Figure 3.12 – Schéma de la correction xvz due à la position vz du vertex dans la cible à apporter sur la position
horizontale du point d’impact x d’une particule dans le calorimètre. La position corrigée du point d’impact est
notée xcor1. La longueur L correspond à la distance entre le centre de la cible et le centre O du calorimètre,
tandis que la longueur Lvz est la distance entre le vertex et la surface du calorimètre. L’angle θCalo est situé
entre l’axe z de la cible et l’axe perpendiculaire au calorimètre passant par son centre O.

point d’impact a été reconstruite par rapport à l’origine 0 de la surface du calorimètre correspondant
à la projection du centre de la cible. Mais ce que nous voulons en fait, c’est la position du point
d’impact de la particule par rapport à son vertex projeté sur la surface du calorimètre (l’origine
0′). Aussi, puisque le vertex est situé sur l’axe z de la cible défini par la direction du faisceau, le
décalage du point d’impact sur la surface d’entrée du calorimètre est horizontal et noté xvz. Ainsi,
la composante horizontale x de la position du point d’impact corrigée du décalage est donnée par :

xcor1 = x − xvz = x − vz sinθCalo . (3.13)
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Correction liée à la position du barycentre de la cascade électromagnétique Jusqu’ici on a
reconstruit la position du point d’impact ~x = (x,y) d’une particule comme la position du barycentre de
la cascade électromagnétique qu’elle génère dans le calorimètre (figure 3.13). On a considéré dans

Vz

Lvz

L

Calorimètre 
avant 

correction 
de xa

Cible

Direction z du 
faisceau

Faisceau incident

θCalo

xvz

Trajet de la particule détectée

0

0'

x

a

xcor2

xa

Centroïde de la cascade électromagnétique

xcor1

( Lvz 2 + xcor1 2  ) 1/2

φ

Figure 3.13 – Schéma de la correction xa due à la position du barycentre de la cascade électromagnétique
(marqué d’un point bleu) à apporter sur la position horizontale du point d’impact x d’une particule dans le
calorimètre. La position corrigée du point d’impact est notée xcor2. Elle est déjà corrigée du décalage xvz
liée à la position du vertex. Les longueurs L et Lvz et l’angle θCalo sont expliqués dans la figure 3.12. L’angle
ϕ est défini entre l’axe de projection du vertex sur la surface du calorimètre et la trajectoire de la partic-
ule. Le barycentre de la cascade électromagnétique est situé à une distance a par rapport à la surface du
calorimètre.

ce cas que le barycentre était situé sur la surface d’entrée du calorimètre. En réalité, le barycentre
est situé à une distance ~d de la surface du calorimètre, le long de la trajectoire de la particule. Aussi,
le décalage induit par cette distance sur le point d’impact est bidimensionnel. Puisque la figure 3.13
ne représente que le plan horizontal du calorimètre, la distance a correspond à la projection de la
distance ~d sur ce plan. La composante horizontale x de la position du point d’impact corrigée de ce
décalage horizontal xa est donnée par :

xcor2 = xcor1 − xa = xcor1

1− a√
L2
vz + x2

cor1

 , (3.14)

avec :
Lvz = L+ vz cosθCalo . (3.15)

Le décalage xa est obtenu en faisant intervenir un angle ϕ, représenté et défini en légende dans la
figure 3.13, et qui vérifie les égalités suivantes :

sinϕ =
xa
a

=
xcor1√

L2
vz + x2

cor1

. (3.16)

En projetant la distance ~d sur le plan vertical du calorimètre, on pourrait trouver de la même façon
le décalage vertical du point d’impact de la particule détectée.

3.3.3 Calibrations en énergie du calorimètre

Principe des calibrations

Le but de calibrer le calorimètre est de convertir en énergie les amplitudes Aij des impulsions
obtenues à partir de l’analyse en forme des signaux ARS. Pour cela, nous cherchons des coefficients
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de calibration nous permettant d’ajuster l’énergie que l’on mesure :

Emj =
207∑
i=0

Ci ·Aij , (3.17)

à une énergie que nous connaissons qui est notre valeur de référence notée Eref
j . Les coefficients

Ci de calibration sont déterminés pour chaque bloc i (i = 0,1, . . . ,207) du calorimètre et de façon à
minimiser le χ2 suivant :

χ2 =
N∑
j=1

(
E
ref
j −E

m
j

)2
. (3.18)

Le nombre total d’évènements j est donné par N . La procédure de minimisation se traduit par l’ex-
pression suivante :

∂χ2

∂Ck
= −2

N∑
j=1


Eref

j −
207∑
i=0

Ci ·Aij

Akj
 = 0 , ∀k = 0,1, . . . ,207 . (3.19)

Ce qui nous donne en inversant les sommes sur les blocs i et les évènements j :

207∑
i=0

 N∑
j=1

AijA
k
j

Ci =
N∑
j=1

E
ref
j Akj , ∀k = 0,1, . . . ,207 , (3.20)

qui peut être exprimé sous la forme d’une équation matricielle :

M.C =M ′ . (3.21)

Les matrices obtenues comportent les caractéristiques suivantes :
. M est une matrice symétrique de (208× 208) éléments : Mik =

∑N
j=1A

i
jA

k
j ,

. M ′ est une matrice colonne de 208 éléments : M ′k =
∑N
j=1E

ref
j Akj .

Ainsi C est une matrice colonne composée des 208 coefficients de calibration que nous obtenons
par inversion de la matrice M.

En pratique, nous utilisons deux méthodes de calibration différentes : la calibration élastique et
la calibration π0. Précisons que des calibrations régulières et fréquentes assurent un suivi continu,
au fil de la prise de données, de la qualité des blocs du calorimètre. Elles permettent justement
de prendre en compte le noircissement des cristaux avec l’exposition à la radiation au cours de
l’expérience. Ce phénomène d’usure est d’ailleurs important à JLab du fait de l’intensité élevée du
faisceau.

Calibration élastique

Cette méthode de calibration [68, 70] utilise le processus de diffusion élastique ep→ e′p′ sur la
cible LH2 et dont l’électron diffusé est détecté dans le calorimètre et le proton de recul dans le spec-
tromètre (figure 3.14). La configuration expérimentale du processus élastique est différente de celle
du DVCS pour laquelle l’électron est détecté dans le spectromètre. Pour cette raison, la polarité du
spectromètre pour les runs élastiques est inversée par rapport à ceux DVCS. La calibration élastique
requiert donc la prise de runs dédiés lorsque la prise de runs de production DVCS n’est pas en cours.

Trois sessions de prise de données élastiques ont été réalisées durant l’expérience, une au début,
une à la fin et une au milieu des trois mois d’expérience. Les deux premières sessions ont permis
la prise de runs élastiques à une énergie de faisceau de Eb = 4.454 GeV où le calorimètre était
placé à un angle Θcalo = 24.3° par rapport à la ligne de faisceau. La dernière session comportait un
faisceau d’énergie Eb = 5.552 GeV et l’angle du calorimètre était réglé à Θcalo = 22.6°. De plus, afin
d’assurer que tous les blocs collectent du signal et puissent être calibrés, trois réglages différents
de l’angle ΘLHRS du spectromètre ont été fixés pour chacune des cinématiques élastiques. Changer
l’angle du spectromètre a permis ainsi de couvrir de gauche à droite toute la surface du calorimètre.
Aussi, puisque le calorimètre ne pouvait pas être bougé verticalement, la solution pour garantir sa
couverture verticale a été de l’éloigner à dcalo = 5.5 m de la cible par rapport aux runs DVCS.
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Figure 3.14 – Schéma de la configuration élastique dans le Hall A, pour des runs dédiés à la calibration
du calorimètre. Les angles ΘLHRS et Θcalo représentent respectivement les angles du spectromètre et du
calorimètre par rapport à la ligne de faisceau. La distance entre la cible et le centre du calorimètre est définie
par dcalo.

Procédure suivie par la méthode élastique Pour un évènement j et considérant la cible au repos,
la loi de conservation de l’énergie de la réaction élastique nous permet d’exprimer l’énergie totale
de l’électron diffusé par :

E
j
e′ = Eb +Mp −E

j
p′ , (3.22)

avec Eb l’énergie du faisceau, Mp la masse connue du proton et E
j
p′ l’énergie totale du proton de

recul déterminée par le spectromètre avec une haute résolution. L’énergie de l’électron obtenue est
ainsi l’énergie de référence Eref

e′ avec laquelle nous ajustons l’énergie mesurée en canaux ARS dans
le calorimètre. Au final, nous obtenons trois séries, pour les trois prises de données élastiques, de
208 coefficients qui minimisent le χ2 et calibrent les 208 blocs du calorimètre.

Sélection des évènements La signature typique de la diffusion élastique est la corrélation entre
angle et impulsion des particules dans le spectromètre. Nous pouvons donc sélectionner les évène-
ments élastiques utiles à cette méthode de calibration en affichant les déviations en impulsions
des particules par rapport à l’impulsion centrale du spectromètre dp/p0 en fonction de leurs angles
de déviation dθ (figure 3.15). En appliquant une coupure 2-dimensions sur le graphique obtenu de
manière à délimiter cette corrélation angle-impulsion, on s’assure ainsi de sélectionner les évène-
ments issus du processus de diffusion élastique.

Calibration π0

Cette méthode [71] utilise la réaction ep → e′p′π0 → e′p′γγ où le π0 décroît en deux photons.
L’avantage de cette méthode est basé sur le fait que les évènements π0 sont sauvés en même temps
que les évènements DVCS pendant la prise de données. En effet, la configuration expérimentale π0

reste la même : un électron détecté dans le spectromètre plus un signal en coïncidence dans le
calorimètre. Par conséquent, des calibrations π0 peuvent être faites tout au long de l’expérience et
ainsi entre les calibrations élastiques, ce qui optimise la calibration du calorimètre durant ces péri-
odes. En revanche, les évènements π0 sont identifiés comme les évènements à deux groupements
de blocs dans le calorimètre, puisque contrairement aux évènements DVCS, deux photons vont être
détectés en coïncidence avec l’électron dans le spectromètre.

Procédure suivie par la méthode π0 La méthode π0 repose sur le calcul de la valeur de référence
de l’énergie du π0 avec laquelle on ajuste sa valeur mesurée afin de calibrer le calorimètre. La
valeur mesurée de l’énergie du pion est obtenue à partir de la détection des deux photons dans le
calorimètre. La procédure suivie pour le calcul de la valeur de référence est la suivante.
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Figure 3.15 – Figure illustrant la coupure 2-dimensions appliquée aux déviations en impulsion dp par rapport
à l’impulsion central p0 du spectromètre en fonction de leurs angles de déviation dθ [68].

Exprimons tout d’abord la masse manquante au carré de la réaction M2
X (ep→ e′ (X)γγ) :

M2
X =

(
qγ∗ + qp − q1 − q2

)2
, (3.23)

où qγ∗
(
Eγ∗, ~qγ∗

)
est le quadrivecteur énergie-impulsion du photon virtuel obtenu à l’aide de ceux des

électrons incident qe et diffusé qe′ tel que qγ∗ = qe − qe′ . De plus, qp est le quadrivecteur énergie-
impulsion du proton au repos, q1 (E1, ~q1) et q2 (E2, ~q2) sont ceux des photons 1 et 2 issus du π0 :
qπ0 (Eπ0 , ~qπ0). Nous exprimons ensuite la masse invariante comme :

Mγγ =
√

(q1 + q2)2 . (3.24)

Pour le calcul de l’énergie de référence du π0, nous fixerons ces variables aux valeurs connues de la
masse au carré du proton et de la masse du pion :

M2
X = (Mp)2 ' (0.938)2 GeV2, Mγγ =Mπ0 ' 0.135 GeV . (3.25)

Cela permet à l’énergie de référence d’être déterminée indépendamment des données expérimen-
tales du calorimètre que l’on veut calibrer.

Ensuite, nous faisons intervenir l’énergie du π0 dans l’expression (3.23) de la masse manquante
au carré, ce qui conduit à :

M2
X =

(
qγ∗ + qp

)2
+M2

γγ − 2
(
qγ∗ + qp

)
(q1 + q2) ,

M2
X =

(
qγ∗ + qp

)2
+M2

γγ − 2
(
Eγ∗ +Mp

)
Eπ0 + 2 ~qγ∗. ~qπ0 . (3.26)

Dans le but de déterminer la valeur de référence de l’énergie du π0, nous utilisons sa position définie
au niveau du calorimètre par son angle θ par rapport au photon virtuel. L’expression de l’angle θ
s’écrit :

cosθ =
~qγ∗ · ~qπ0∥∥∥ ~qγ∗∥∥∥ ·

∥∥∥ ~qπ0

∥∥∥ . (3.27)

On remarque qu’elle fait intervenir le vecteur impulsion du pion ~qπ0 obtenue à partir des quadri-
vecteurs énergie-impulsion q1 et q2 des photons détectés dans le calorimètre. Puisque leurs énergies
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mesurées dépendent des résultats de la calibration, le calcul de l’angle θ et de l’énergie de référence
du π0 va lui aussi dépendre de la calibration. Par conséquent, afin de fixer cette valeur de référence
Eπ0 et de stabiliser la calibration π0, nous devrons répéter plusieurs fois sa procédure. Après plus-
ieurs itérations, les coefficients π0 devraient en effet converger.

Pour finir, l’expression (3.26) de la masse manquante au carré peut être exprimée en fonction de
l’angle θ de la façon suivante :

M2
X =

(
qγ∗ + qp

)2
+M2

γγ − 2
(
Eγ∗ +Mp

)
Eπ0 + 2

∥∥∥ ~qγ∗∥∥∥√E2
π0 −M2

γγ cosθ . (3.28)

Nous obtenons alors une équation quadratique de la masse manquante au carré en fonction de
l’énergie du π0 :

aE2
π0 + bEπ0 + c = 0 , (3.29)

où a, b et c sont les facteurs suivants :

a = 4
(
Eγ∗ +Mp

)2
− 4

∥∥∥ ~qγ∗∥∥∥2
cos2θ ,

b = 4
(
Eγ∗ +Mp

)[
M2
X −

(
qγ∗ + qp

)2
−M2

γγ

]
,

c = 4M2
γγ

∥∥∥ ~qγ∗∥∥∥2
cos2θ +

[
M2
X −

(
qγ∗ + qp

)2
−M2

γγ

]2
. (3.30)

Dans le cas où b2−4ac > 0, on obtient deux valeurs d’énergie duπ0 qui sont toutes les deux physiques
mais dont seulement une correspond à l’évènement que l’on étudie. Pour sélectionner la valeur qui
nous intéresse, nous choisissons celle des deux qui est la plus proche de la valeur d’énergie du pion
Emπ0 que l’on mesure avec les données du calorimètre. La valeur Eπ0 finalement sélectionnée corre-

spond donc à l’énergie de référence Eref
π0 avec laquelle on va ajuster Emπ0 et déduire les coefficients

π0 calibrant chacun des blocs du calorimètre. Remarquons qu’elle est déterminée avec précision
puisqu’elle est calculée avec les données du photon virtuel obtenues par le spectromètre avec une
haute résolution et les masses connues du proton au carré et du pion (éq. (3.25)). Surtout, son cal-
cul ne fait intervenir que les données en position du pion obtenues par le calorimètre avec une très
bonne résolution (2− 3 mm).

Notons que nous gardons la masse du proton au carré pour la calibration de tous les runs, même
ceux pris avec la cible LD2 (pour les données neutrons). En effet lorsque l’électron incident va dif-
fuser sur la cible LD2, les contributions incohérentes p-DVCS et n-DVCS vont toutes deux participer
à la section efficace totale DVCS et une calibration du calorimètre pour les deux canaux de dif-
fusions seraient souhaitée. Mais puisqu’on ne peut pas expérimentalement attribuer chacun des
évènements à un de ces canaux de diffusion, et puisque la contribution du proton au processus
DVCS est plus élevée que celle du neutron, on considère la masse du neutron égale à celle du pro-
ton. Cela est valable puisque l’écart d’environ 1 MeV entre les masses du neutron et du proton est
négligeable par rapport aux énergies de l’expérience.

Création des groupes de calibration Selon l’équation (3.21), nous trouvons les coefficients de
calibration en inversant la matrice symétrique M. Son inversion n’est possible que si son détermi-
nant est non nul. Mais la matrice M est particulière puisqu’un seul bloc i vide

∑N
j=1A

i
j = 0 implique

que tous les éléments de matrice de la colonne i correspondant à ce bloc soient vides
∑N
j=1A

i
jA

k
j = 0.

Dans ce cas, le déterminant de M devient nul et la procédure de calibration impossible à réaliser. Par
conséquent, on doit s’assurer que tous les blocs du calorimètre contiennent au moins un minimum
de dépôt d’énergie. Ainsi, nous devons accumuler assez de statistique afin de réaliser la calibration.
Pour cela, nous devons rassembler assez de runs sur une période plus longue de prise de données,
nous créons alors des groupes de calibration. Bien que ces groupes doivent être assez gros en quan-
tité de données et longs en temps de prise de données, nous les voulons nombreux pour garder un
suivi aussi continu que possible de la calibration du calorimètre.

Pour la formation de ces groupes de calibration, en plus de ce compromis sur la quantité des
données, les changements de configurations de l’expérience durant la prise de données ont été pris
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Figure 3.16 – En fonction du numéro du run (suivant la chronologie de la prise de données) figurent les
groupes de runs définis pour la calibration π0. L’abscisse représente la prise de données établie sur 3 niveaux
et suivant l’ordre croissant des numéros des runs. L’axe vertical est arbitraire, c’est-à-dire qu’il nous sert
juste à repérer les groupes de calibration comme étant tous les runs compris dans les intervalles de même
ordonnées (situés sur une même ligne horizontale marquée d’un carré de la couleur de leur cinématique
correspondante). Les zones en gris et beige indiquent les changements de cibles. Les lignes verticales rouges
représentent les runs dédiés à la calibration élastique.

en compte (figure 3.16). En d’autres termes, nous avons regroupé les runs d’une même cinématique
entre eux, mais seulement dans le cas où un changement de cinématique ne s’est pas présenté
entre temps. Dans cette logique, nous avons séparé des runs même s’ils appartenaient à la même
cinématique lorsqu’un arrêt assez important de la prise de données DVCS s’est produit. Ceci inclut
les pauses intervenues durant la prise de données pour la prise de runs élastiques ou simplement
des runs pour des réglages (position du faisceau sur la cible par exemple) survenus pendant l’ex-
périence. Pour finir, tout comme les changements de cinématiques, on a considéré les changements
de cibles pour la séparation des groupes de runs utilisés pour la calibration. Au final, nous avons
créé 31 groupes de calibration contenant environ 1 à 2 jours de données chacun.

Sélection des évènements Afin de réaliser la calibration π0, nous devons sélectionner parmi les
données les évènements π0 à deux groupes de blocs ou deux photons dans le calorimètre. Pour cela,
nous fixons un seuil en énergie de 0.2 GeV pour l’énergie minimum déposée par chacun des photons
dans le calorimètre. Lorsque les signaux ARS comportent deux impulsions, on sélectionne celle qui
est la plus proche en temps de la détection de l’électron dans le spectromètre. Afin d’assurer que les
énergies des deux photons soient bien reconstruites, autrement dit que tous les blocs d’un même
groupe soient contenus dans le calorimètre, on sélectionne les évènements dont les centres des
deux groupes se situent à plus d’un bloc des bords du détecteur. On se limite donc à des groupes de
blocs situés dans la zone du calorimètre de dimensions : −21.5 cm < X < 12.2 cm et −21.4 cm < Y <
21.5 cm.

En plus de sélectionner les évènements π0 au niveau du calorimètre, on s’assure que ces évène-
ments sont bien reconstruits au niveau du vertex en ne gardant que les évènements pour lesquels
le vertex est situé dans la cible de 15 cm. De la même façon, les évènements π0 sont sélectionnés
si l’électron diffusé est bien reconstruit dans le spectromètre. On fixe pour cela l’acceptance mini-
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male du spectromètre à l’aide de la R-fonction (expliquée dans la section 3.2.3) par une valeur de
rval > 0.005.

Pour finir, afin de retirer les évènements correspondants au bruit de fond, nous appliquons une
coupure à ±3σ autour de la masse invariante que l’on considère à la valeur connue de la masse du
pion Mγγ = 0.135 GeV (figure 3.17). On obtient une coupure fixe pour la sélection des évènements

 (en GeV)γγM
0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

)2
M

x2
 (

en
 G

eV

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

20

40

60

80

100

120

140

Figure 3.17 – Figure montrant la corrélation entre M2
X (en ordonnée) et Mγγ (en abscisse). La coupure sur la

masse invariante (lignes noires) et la coupure 2-dimensions sur la masse manquante au carré (lignes rouges)
sont représentées.

compris dans l’intervalle : 0.105 GeV < Mγγ < 0.165 GeV. Toujours dans le but d’exclure les évène-
ments parasites à la calibration, une coupure 2-dimensions sur la masse manquante au carré a été
effectuée. Elle tient compte de la corrélation entre la masse manquante au carré et la masse in-
variante. Les expressions (3.23) et (3.24) montrent que si l’énergie-impulsion des photons q1 et q2
augmente, Mγγ tendra à augmenter mais M2

X deviendra plus faible et inversement. On sélectionne
pour cette coupure les évènements compris entre des valeurs fixes (équivalentes à environ ±1.3σ )
autour du pic obtenu après rotation de la masse manquante au carré : 3.014 <M2

X+17.5 ·Mγγ < 3.44.
Le facteur 17.5 correspond à la pente de la coupure.

Résultats de la calibration Lorsque la procédure de calibration est achevée, l’amplitude d’une
impulsion j dans un bloc i du calorimètre est convertie en unité d’énergie suivant l’expression :

Eij = Aij ·Ce′
i ·Cπ

0

i , (3.31)

où Ce′
i et Cπ

0

i sont respectivement les coefficients élastiques et π0. En considérant les coefficients
de n itérations, l’amplitude convertie s’exprime de manière générale :

Eij (n itération) = Aij .C
e′
i .C

π0

i (1) .Cπ
0

i (2) . . .Cπ
0

i (n) . (3.32)

Afin d’assurer qu’elle soit stable, nous avons réalisé la calibration sur 16 itérations. Nous avons
tenu compte pour toutes ces itérations des coefficients élastiques, auxquels nous avons multiplié
à chaque nouvelle itération le produit des coefficients π0 des itérations précédentes. Comme on
le voit sur l’exemple de la figure 3.18, les coefficients π0 sont par conséquent des corrections aux
coefficients élastiques et doivent avoir des valeurs autour de 1. Aussi, comme on s’attendrait à le
voir, les coefficients dévient de la valeur 1 à mesure que l’on s’éloigne des périodes de prises de
données des runs élastiques. Des valeurs Cπ

0

i > 1 signifient que la calibration élastique sous-estime

la conversion entre unités amplitude-énergie de canaux ARS à GeV. Au contraire, des valeursCπ
0

i < 1
signifient que les coefficients Ce′

i ont été surestimés.
Dans le but de vérifier si la calibration à été réalisée avec succès, nous comparons avant et

après calibration (après ses 16 itérations) la masse manquante au carré M2
X et la masse invariante

Mγγ pour chaque groupe de calibration. Nous les comparons aussi aux valeurs que nous leur avons
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Figure 3.18 – Exemple des coefficients de calibrations (produit des coefficients des 16 itérations) pour un bloc
au centre du calorimètre en fonction du numéro du run (suivant la chronologie de la prise de données). Les
lignes pointillées rouges correspondent aux trois sessions de prises de données de runs élastiques.

attribuées pour le calcul de l’énergie de référence de l’éq. (3.25). Précisons que les spectres enM2
X et

Mγγ obtenus pour l’ensemble des évènements d’un groupe de calibration possèdent chacun un pic
d’allure gaussienne. Afin de réaliser ces comparaisons, nous les ajustons donc par une distribution
gaussienne pour déterminer leurs positions et largeurs (figure 3.19).
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Figure 3.19 – Exemple d’ajustement par une gaussienne des pics de M2
X (à gauche) et Mγγ (à droite) sur les

spectres obtenus pour un groupe de calibration.

Les résultats obtenus montrent que les maximums après calibration dans les spectres en M2
X et

Mγγ sont décalés par rapport à ceux avant calibration (figure 3.20). Surtout, ces maximums après
calibration se sont nettement rapprochés des valeurs de masses attendues. On peut en conclure
que la procédure de calibration a fonctionné. De plus, on constate une légère amélioration sur la
largeur des pics deM2

X etMγγ après calibration. En effet, en ajustant les valeurs de tous les groupes
de calibration par une droite, représentant alors la largeur moyenne de tous les pics, on remarque
que celle-ci est plus étroite après calibration.

Pour finir, il est intéressant de comparer les positions des pics avant et après calibration, cela
pour chaque groupe de calibration, mais en fonction de la cinématique à laquelle ils appartiennent
et de la cible (figure 3.21). On remarque ainsi que les fluctuations des positions, que ce soit avant ou
après calibration pour les groupes des cinématiques Kin2Low et Kin2High, sont dues aux change-
ments des cibles lors de l’expérience. Nous pouvons aussi comparer l’efficacité de la calibration
entre les cinématiques. Par exemple au niveau de Mγγ , il semblerait que la calibration ait mieux
réussi sur les cinématiques Kin1High et KinII que sur les cinématiques Kin1Low et KinIII. Mais on
constate que toutes ont été améliorées si l’on considère la variable M2

X .

Comparaison des résultats Dans le but de vérifier la fiabilité de la calibration π0, les résultats
obtenus peuvent être comparés à ceux d’une analyse parallèle [72]. Naturellement, les mêmes con-
traintes doivent être appliquées sur les deux analyses. Ainsi, le nombre et la taille des groupes de
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Figure 3.20 – Comparaison avant calibration (en bleu) et après calibration (en rouge) des positions (colonne
de gauche) et largeurs (colonne de droite) des pics de M2

X (ligne du haut) et Mγγ (ligne du bas), en fonction
du numéro du run. Les lignes horizontales bleues (avant calibration) et rouges (après calibration) correspon-
dent chacune à l’ajustement par une droite des largeurs des pics (colonne de droite) de tous les groupes de
calibration. Les lignes horizontales vertes indiquent les valeurs attendues de M2

X et Mγγ après calibration.
Les lignes verticales rouges représentent les runs dédiés à la calibration élastique.

calibration, ainsi que le nombre d’itérations, ont été choisis aussi proches que possible d’une anal-
yse à l’autre. Les coefficients élastiques intégrés initialement à la calibration π0 sont les mêmes
dans les deux analyses. Et la sélection des évènements est identique entre les deux analyses, à la
seule différence que les coupures sur la masse invariante et la coupure 2-dimensions sur la masse
manquante au carré sont fixes dans notre cas, mais variables dans l’analyse parallèle. En effet, à
chaque nouvelle itération, de nouveaux spectres en masse sont créés et de nouveaux pics gaussiens
de positions et largeurs différentes sont formés. En appliquant une coupure à ±3σ autour des pics
de Mγγ et une coupure 2-dimensions sur les pics en : M2

X + 17.5 ·Mγγ , les valeurs des coupures de
l’analyse parallèle changent à chaque itération.

Les résultats de la comparaison révèlent que les deux calibrations améliorent les positions des
pics en M2

X et Mγγ plus proches des valeurs attendues (figure 3.22). On remarque toutefois qu’ils
diffèrent d’une analyse à l’autre de moins de 2% pour M2

X et de moins de 1% pour Mγγ . Nous pou-
vons noter également que les résultats de notre analyse sont plus proches de la valeur attendue
pour Mγγ , mais que les deux analyses semblent situées à égales distances de celle en M2

X . Nous
pouvons conclure qu’il est impossible d’admettre une des calibrations comme étant meilleure que
l’autre. Nous garderons par la suite les résultats de notre calibration pour l’analyse des données.
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Figure 3.21 – Comparaison avant calibration (carrés) et après calibration (étoiles) des positions des pics de
M2
X (haut) et Mγγ (bas), en fonction du numéro du run. La comparaison est faite en fonction des différentes

cinématiques et cibles repérées par un code couleur. Les lignes horizontales vertes indiquent les valeurs
attendues de M2

X et Mγγ après calibration. Les lignes verticales rouges représentent les runs dédiés à la
calibration élastique.
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Figure 3.22 – Comparaison des positions des pics deM2
X (en haut) etMγγ (en bas) obtenues après calibration

avec notre analyse (en rouge) et celles de la seconde analyse [72] (en bleu) en fonction du numéro du run.
Les lignes horizontales vertes indiquent les valeurs attendues de M2

X et Mγγ après calibration. Les lignes
verticales rouges représentent les runs dédiés à la calibration élastique.
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Chapitre 4

Sélection des Données d’Analyse de

l’Expérience

4.1 Sélection des Evènements DVCS

L’ensemble des données acquises durant l’expérience, et qui n’ont pas été rejetées après con-
trôle de leur qualité, représentent nos données brutes. Rappelons qu’elles correspondent à la dé-
tection d’un ou plusieurs photons dans le calorimètre en coïncidence avec l’entrée d’un électron
dans le spectromètre. Elles sont donc issues de la réaction eN → e′γX et comprennent aussi bien
des évènements du processus d’électroproduction de photons eN → e′N ′γ 1, que des contamina-
tions du type eN → e′N ′γX et eN → e′N ′γγ . Une autre contribution au bruit de fond du processus
DVCS est présente parmi les données brutes lorsque les photons des évènements acquis ne provien-
nent pas du même vertex de réaction que l’électron. Pour la sélection des évènements DVCS que l’on
veut analyser, il faudra donc soustraire des données brutes les différentes contributions au bruit de
fond du DVCS.

4.1.1 Soustraction des contaminations du DVCS

Les canaux associés au DVCS

Lors de l’expérience, les évènements des réactions eN → e′N ′γX sont confondus avec ceux du
DVCS eN → e′N ′γ puisqu’on détecte uniquement l’électron diffusé et le photon final. Ces évène-
ments qu’on qualifie alors d’évènements associés au DVCS, sont des contaminations du proces-
sus DVCS que l’on doit supprimer de nos données brutes. Parce qu’il y a conservation de l’énergie-
impulsion au cours de la réaction e(k)N (p1)→ e′(k′)γ(q2)X, on utilise la masse manquante au carré :
M2
X = (k + p1 − k′ − q2)2 pour reconstruire la masse au carré du produit de la réaction non détecté

X. Ainsi les évènements pour lesquels M2
X est autour de la masse au carré du nucléon correspon-

dent aux évènements DVCS. Ceux pour lesquels M2
X est supérieur à 1.15 GeV2 correspondent à des

évènements associés au DVCS. Ceux en particulier qui définissent cette valeur limite sont issus de
la réaction eN → e′N ′γπ0 → e′N ′γγγ qui est un canal de production de π0 et dont M2

X est donné
par :

M2
X = (MN +Mπ0)2 ∼ 1.15 GeV2 . (4.1)

Afin de supprimer le bruit de fond dû aux canaux de contamination du DVCS, nous appliquons sur
les données une coupure définie à cette valeur maximale de M2

X < 1.15 GeV2.

Les contaminations π0

Parmi les évènements eN → e′N ′γX acquis durant la prise de données, une contamination n’a
pas été supprimée par la coupure : M2

X < 1.15 GeV2. Il s’agit en effet de la réaction eN → e′N ′π0→
e′N ′γγ dontM2

X est équivalent à celui du DVCS. Ce sont en fait des évènements d’électroproduction
de π0, les mêmes que l’on a utilisé pour réaliser la méthode de calibration π0 du calorimètre.

1. On nommera les évènements issus du processus eN → e′N ′γ par abus de langage "évènements DVCS" de façon à
alléger le texte de ce chapitre.

65



CHAPITRE 4. SÉLECTION DES DONNÉES D’ANALYSE DE L’EXPÉRIENCE

On les différencie des évènements DVCS parce qu’ils décroissent en deux photons que l’on dé-
tecte dans le calorimètre. Il arrive cependant qu’ils contaminent le canal DVCS lorsqu’un des pho-
tons n’a pas pu être détecté. Ce cas se présente soit parce qu’il est émis avec un angle trop large
pour atteindre la surface du détecteur, soit parce que son énergie est trop faible pour dépasser un
seuil en énergie. La figure 4.1 permet de schématiser le problème. Du point de vue du centre de

Direction du boost de 
Lorentz

Pion

Centre de masse du 
pion

Référentiel du 
laboratoire

Direction de déplacement du 
pion

Décroissance 
symétrique

Décroissance 
asymétriqueθdec

Figure 4.1 – Boost de Lorentz appliqué sur la décroissance du π0 lors du changement de référentiel entre
celui du centre de masse du pion et celui du laboratoire. La décroissance du pion peut être symétrique (ligne
du haut) ou asymétrique (ligne du bas).

masse du pion où il apparaît immobile, sa décroissance est isotrope et les deux photons sont émis
à 180° l’un de l’autre. Au passage du centre de masse au référentiel du laboratoire où le π0 est en
mouvement, le Boost de Lorentz va projeter les photons dans la direction de son vecteur impulsion.
La décroissance qui en résulte peut être :

. symétrique si l’axe des photons émis dans le centre de masse est perpendiculaire à la direc-
tion du Boost. Ils portent alors chacun la moitié de l’énergie du pion et on les détecte dans le
calorimètre.

. asymétrique si l’axe des photons décrit un angle θdec avec la direction du Boost différent de
90° . Ils se partagent alors inégalement l’énergie du pion. Le photon portant la fraction d’én-
ergie la plus faible est émis à large angle par rapport à la direction du Boost et n’est pas
détecté. Plus l’angle θdec est faible, plus les chances de détecter les deux photons deviennent
faibles.

Dans tous les cas, que l’on détecte un seul ou les deux photons issus du π0, l’énergie de chacun
d’eux est inférieure à celle d’un photon DVCS. Le seuil minimum d’énergie qui était fixé à 1 GeV pour
des évènements à un dépôt d’énergie est alors diminué à 0.5 GeV pour assurer la sélection des
évènements π0.

La méthode utilisée pour soustraire des données brutes les contaminations π0 à un seul photon
détecté consiste à calculer cette contribution par une simulation Monte Carlo. La procédure suivie
dans la simulation est la suivante :

1. Elle consiste dans un premier temps à trier les évènements à un photon nγ de ceux à deux
photons nγγ issus des données brutes nγX.

2. A partir des évènements à deux photons nγγ , nos "π0 pères", nous générons pour chacun d’eux,
ndec décroissances aléatoires dans leurs centres de masse. Elles sont uniformément générées
dans le repère sphérique dont l’angle polaire θdec vérifie : cos(θdec) ∈ [−1,1], et dont l’angle
azimutal est défini par : ϕdec ∈ [0,2π].

3. Nous passons ensuite dans le référentiel du laboratoire en appliquant le Boost de Lorentz sur
l’ensemble des photons générés.
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4. Nous les projetons finalement sur la surface du calorimètre. Cette dernière étape prend en
compte la profondeur à laquelle se créent les gerbes électromagnétiques dans le calorimètre
(∼ 7 cm), ainsi que la distance du vertex de réaction par rapport au centre de la cible.

A l’issue de la simulation, nous obtenons sur les ndec décroissances, pour chacun des π0 pères, les
nombres d’évènements suivants :

. n0 : lorsqu’aucun photon n’a été détecté,

. n1 : lorsqu’un photon a été détecté,

. n2 : lorsque deux photons ont été détectés,
avec n0 +n1 +n2 = ndec.

Nous devons ensuite normaliser le nombre n1 de contaminations π0 à un photon détecté pour
les soustraire des nγ données brutes à un photon détecté. Nous devons d’abord tenir compte du fait
que nous avons généré ndec décroissances aléatoires à partir de chaque π0 pères en pondérant les
n1 contaminations d’un premier facteur :

f1 =
1
ndec

. (4.2)

Aussi, puisque les π0 pères à partir desquels on génère les décroissances aléatoires ne représen-
tent qu’une portion nγγ des données brutes nγX, on normalise les n1 contaminations d’un second
facteur :

f2 =
1

nγγ /nγX
=

1
n2/ndec

. (4.3)

Le poids total à appliquer au nombre n1 de contaminations π0 pour les normaliser et les soustraire
est finalement de 1/n2 :

W = f1 ·f2 =
1
ndec

·
ndec
n2

=
1
n2

. (4.4)

4.1.2 Soustraction des évènements fortuits

Pendant l’expérience, des photons atteignent en permanence le calorimètre, mais uniquement
ceux détectés en coïncidence avec l’électron nous intéressent puisque parmi eux sont présents les
photons du DVCS. Nous avons déjà vu comment supprimer les canaux associés aux DVCS et les
contaminations π0. A présent, parmi les photons restants qui se trouvent en coïncidence avec les
évènements DVCS, ceux qui ne proviennent pas du même vertex de réaction constituent la dernière
contribution au bruit de fond que l’on doit éliminer des données brutes. On les qualifie d’évènements
fortuits ou de coïncidences fortuites.

Sachant que des photons sont détectés en continu dans le calorimètre, la distribution en temps
d’arrivée des fortuites est uniforme sur toute la fenêtre d’acquisition des évènements du calorimètre.
La méthode utilisée pour supprimer les fortuites consiste alors à les sélectionner dans une fenêtre
de 6 ns hors-coïncidence où les évènements DVCS sont absents. A partir des impulsions sélection-
nées dans cette fenêtre, le groupement des blocs est réalisé et les temps moyens d’arrivée des
photons détectés sont reconstruits :

tm =
∑
i Ei · ti∑
i Ei

. (4.5)

Ils correspondent à la moyenne des temps d’arrivée de chaque impulsion dans chacun des blocs i
qui ont été regroupés par dépôts d’énergies, pondérés par leurs énergies associées Ei .

Notons que la taille de la fenêtre dans laquelle nous déterminons les temps moyens d’arrivée
des photons a été fixée à 6 ns pour sélectionner des impulsions à ±3σ de la résolution en temps du
calorimètre de ∼ 1 ns. La fenêtre dite "en coïncidence" est celle centrée, lors de l’analyse en forme
des signaux ARS, autour de t = 0 ns correspondant à l’arrivée de l’électron dans le spectromètre. Les
photons en coïncidence avec l’électron sont donc détectés dans le calorimètre dans un intervalle
de temps compris entre [−3,3] ns. De plus, on parlera de photons détectés "en temps" lorsque leurs
temps d’arrivée dans le calorimètre sont compris dans la même fenêtre de 6 ns.

Parmi nos données brutes, plusieurs types de fortuites sont présentes :
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. acc1 : les "fortuites du DVCS" à un dépôt d’énergie,

. acc2 : les "fortuites des π0" à deux dépôts d’énergies.
Les fortuites du DVCS sont directement soustraites des évènements à un photon nγ . En revanche,
nous avons utilisé trop d’évènements à deux photons nγγ pour la soustraction des contaminations
π0. Ces π0 pères comptaient en effet des fortuites à deux dépôts d’énergies que l’on doit rajouter en
évaluant leur contribution à un photon détecté.

Afin d’illustrer les différents cas de fortuites acc2, il est possible de représenter le temps moyen
d’arrivée d’un photon dans le calorimètre en fonction du temps moyen d’arrivée du second (figure
4.2). On remarque que la zone centrale en coïncidence avec les électrons déclencheurs de l’ac-

Figure 4.2 – Temps moyen d’arrivée (en ns) d’un photon dans le calorimètre en fonction de celui du second
photon pour des évènements à deux dépôts d’énergies [73].

quisition des évènements concentre la plus grande partie de ces données. Cette zone contient les
évènements π0 pères ainsi que les fortuites que l’on retrouve hors-coïncidences dans les trois ban-
des de statistiques plus élevées et dispersées de part et d’autre de la figure 4.2. Elles correspondent
aux trois cas suivants :

. π0acc : les deux photons sont détectés en temps l’un par rapport à l’autre et hors-coïncidence
avec l’électron de l’évènement acquis (bande oblique),

. dvcsacc : les deux photons sont détectés hors-temps l’un par rapport à l’autre, mais l’un d’eux
est en coïncidence avec l’électron de l’évènement acquis (bandes horizontale et verticale),

. accacc : les deux photons sont détectés hors-temps l’un par rapport à l’autre et hors-coïncidence
par rapport à l’électron de l’évènement acquis (évènements dispersés).

En ajoutant les contributions π0acc et dvcsacc aux évènements nγ à un photon détecté, les évène-
ments fortuits qui se trouvent dispersés dans la figure 4.2 sont comptés deux fois. La contribution
accacc est donc soustraite des deux autres afin de prendre en compte ce double comptage.

Nous donnons dans la table 4.1 les valeurs des critères de sélection des fortuites, à savoir le
nombre de photons, la fenêtre en temps et le seuil en énergie. On notera que pour améliorer l’esti-
mation du nombre de fortuites acc1 à un dépôt d’énergie, nous avons sélectionné plus d’évènements
en choisissant non pas une mais deux fenêtres en temps, que l’on a soustrait après les avoir moyen-
nés par un facteur 1/2.

4.1.3 Correction des évènements à un dépôt d’énergie

Pour cette analyse, puisque nous voulons sélectionner les évènements DVCS pour lesquels un
seul photon est détecté, nous avons centré notre intérêt sur les évènements à un dépôt d’énergie. Il
arrive cependant que l’algorithme de groupement des blocs du calorimètre les interprète comme des
évènements à deux dépôts d’énergies. Ce cas se présente lorsqu’un photon fortuit est détecté dans
la fenêtre de coïncidence avec le photon DVCS. On perd alors ces évènements qui n’apparaissent
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Contribution Nombre Fenêtre en Seuil en

accidentelle de photon(s) temps (en ns) énergie (en GeV)

acc1 1 ([−11,−5] + [5,11]) /2 1.0

π0acc 2 [−11,−5]∪ [−11,−5] 0.5

dvcsacc 2 [−3,3]∪ [5,11] 0.5

accacc 2 [−11,−5]∪ [5,11] 0.5

Table 4.1 – Table récapitulative des valeurs des paramètres utilisés pour la sélection des fortuites qui par-
ticipent au bruit de fond des données DVCS et π0. Les paramètres correspondent aux nombres de dépôts
d’énergies, à la fenêtre en temps d’arrivée des impulsions et au seuil minimal d’énergie déposée dans le
calorimètre.

plus dans nos données nγ ou nacc1 à un seul dépôt d’énergie. Afin de prendre en compte ce défaut
d’efficacité de l’algorithme, et de ne pas fausser la proportion d’évènements DVCS obtenue après
soustraction du bruit de fond, nous leur appliquons une correction.

La valeur cor de la correction est calculée selon :

cor =
N1 +N2

N1
, (4.6)

oùN1 etN2 sont les nombres d’évènements à un et deux photons détectés parmi les données brutes
d’une cinématique. Ils sont obtenus à partir des contributions à un et deux photons tels que :

N1 = nγ −nacc1 , (4.7)

N2 =
(nγγ −nπ0acc) + (ndvcsacc −naccacc)

2
. (4.8)

Le nombre d’évènements N2 correspond au nombre moyen d’évènements à deux photons dont un
est détecté en coïncidence avec l’électron et dont on a soustrait les fortuites. Une moyenne est
réalisée puisque deux contributions sont possibles pour ce type d’évènements :

. nγγ où les deux photons sont détectés en temps l’un par rapport à l’autre, ils sont soustraits
de leurs fortuites nπ0acc,

. ndvcsacc où les deux photons sont détectés hors-temps l’un par rapport à l’autre, ils sont sous-
traits de leurs fortuites naccacc.

On donne dans la table 4.2 les résultats obtenus pour les valeurs des corrections de chaque ciné-
matique et pour chacune des cibles.

Cinématique Cible Correction

Kin2Low
LH2 1.02287

LD2 1.04536

Kin2High
LH2 1.01469

LD2 1.02515

Table 4.2 – Valeurs des corrections à un dépôt d’énergie à appliquer sur les évènements bruts et les fortuites
à un photon détecté.

Les nombres d’évènements de chaque contribution ont été obtenus en appliquant un seuil d’én-
ergie minimum déposé pour le groupement des blocs du calorimètre de 1 GeV. Nous avons assuré
l’exclusion des canaux associés au DVCS par la coupure M2

X < 1.15 GeV2. Nous avons sélectionné
parmi les évènements à deux photons détectésN2, uniquement ceux dont un seul des deux photons
vérifiait cette coupure en M2

X .
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4.1.4 Coupures sur les données

En vue de soustraire les données du bruit de fond au DVCS, nous appliquons des coupures sur les
variables liées aux détecteurs et au vertex pour sélectionner des évènements utiles à l’analyse. Dans
un premier temps, nous devons assurer que les énergies des photons détectés dans le calorimètre
soient bien reconstruites. De même que pour réaliser la calibration π0, nous voulons que toute l’én-
ergie du photon détecté soit contenue dans les blocs. Nous appliquons donc une coupure fiducielle
sur les bords du calorimètre, afin de ne considérer que les évènements dont les points d’impact des
photons sont situés dans une zone délimitée par les dimensions suivantes : −21.5 cm < X < 12.2 cm
et −21.4 cm < Y < 21.5 cm. De la même façon, on restreint la sélection des électrons détectés dans
une zone d’acceptance du spectromètre plus étroite pour laquelle on assure leurs reconstructions,
ceci en imposant une valeur minimale à la R-fonction de rval > 0.005.

De plus, afin d’assurer l’unicité de l’évènement dans la fenêtre d’acquisition du spectromètre, on
sélectionne les évènements à une seule trace, c’est-à-dire à un seul électron détecté. Cela permet
de n’étudier qu’un évènement à la fois, relié à l’électron déclencheur de l’acquisition.

Aussi, nous voulons être sûrs que le vertex de la réaction soit bien défini dans la cible, ou autre-
ment dit que l’électron incident a bien diffusé sur un nucléon de la cible et non pas sur ses parois.
Nous ne gardons alors que les évènements dont la position du vertex n’est pas aux bords de la cible
mais comprise dans une zone plus restreinte autour de son centre de dimension : −5.5 cm < vz <
6 cm.

4.1.5 Résultats de la soustraction du bruit de fond au DVCS

Nous donnons dans les figures 4.3 et 4.4 nos résultats de la soustraction du bruit de fond au
DVCS sur le spectre en M2

X pour les cinématiques Kin2Low et Kin2High respectivement et pour cha-
cune des cibles. Nous indiquons en plus les proportions de chaque contribution au bruit de fond
par rapport aux données brutes, avec la proportion finale d’évènements DVCS obtenue après leurs
soustractions.

4.2 Sélection des Données DVCS sur Neutron

Après soustraction du bruit de fond des données brutes de chaque cible, nous pouvons sélec-
tionner parmi les données DVCS restantes celles correspondantes aux données sur neutron. Nous
procédons pour cela à la soustraction des données issues de la cible LD2 par celles des données de
la cible LH2. En procédant ainsi, nous pouvons soustraire les évènements DVCS proton ep→ e′p′γ
de la cible LD2 :

D(e,e′γ)X −H(e,e′γ)X =
[
p(e,e′γ)X +n(e,e′γ)X + d(e,e′γ)X

]
−
[
p(e,e′γ)X

]
, (4.9)

et ne conserver que les données sur neutron. Les données de chaque cible doivent être préalable-
ment normalisées avant de procéder à la soustraction (voir section 4.2.1). A l’issu de la soustraction,
les contributions DVCS sur deuton provenant de la cible LD2 restent présentes avec les données
neutrons. Nous devrons donc analyser les données de ces deux contributions en même temps.

4.2.1 Calcul de la luminosité de chaque cinématique

La luminosité intégrée de chaque cinématique nous permet de normaliser les données de cha-
cune afin de les soustraire. Nous la calculons sur la durée de tous les runs de la cinématique selon :

L =Q
ρ · l
A
NA
e
, (4.10)

où NA est le nombre d’Avogadro donné par : NA = 6.022 ·1023 mol−1 et e correspond à la charge
élémentaire : e = 1.602 ·10−19 C. La variable Q est la charge intégrée du faisceau passant à travers
une des cibles sur la durée de tous les runs de chaque cinématique. La charge intégrée, et par con-
séquent la luminosité intégrée, sont corrigées du temps mort du système d’acquisition des données.

70



4.2. SÉLECTION DES DONNÉES DVCS SUR NEUTRON

)2Mx2 (en GeV
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

1000

2000

3000

4000

5000

6000 Données brutes
Données DVCS = 55.19

2Mx2 = 1.15 GeV
acc1 = 24.93

 = 23.100π
acc = 1.810π

dvcsacc = 1.83
accacc = 0.42

Soustraction du bruit de fond au DVCS - Cinématique Kin2Low - Cible LH2

)2Mx2 (en GeV
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

2000

4000

6000

8000

10000

12000 Données brutes
Données DVCS = 44.74

2Mx2 = 1.15 GeV
acc1 = 41.79

 = 19.160π
acc = 3.710π

dvcsacc = 3.52
accacc = 1.53

Soustraction du bruit de fond au DVCS - Cinématique Kin2Low - Cible LD2

Figure 4.3 – Résultats sur le spectre en M2
X de la soustraction du bruit de fond au DVCS pour la cinématique

Kin2Low et pour chacune des cibles LH2 (haut) et LD2 (bas). Les différentes distributions en M2
X sont don-

nées en légende avec leurs proportions respectives d’évènements (en pourcentage) qu’elles représentent par
rapport aux données brutes (courbe noire) dans l’intervalle M2

X ∈ [0,1.15] GeV2. La droite en pointillé rouge
représente la coupure M2

X = 1.15 GeV2 appliquée aux données pour exclure les canaux associés au DVCS.

Ses valeurs sont données dans la table 4.3 avec les variables A et ρ reliées à la cible. Ces dernières
correspondent respectivement à la masse atomique de la cible et la densité de la cible. Pour finir,
la longueur de la cible est définie indépendamment de la coupure sur la position vz du vertex, à la
valeur de : l = 15 cm.

En pratique, on normalise les données en appliquant un facteur de normalisation Norm seule-
ment sur les données DVCS de la cible LH2 tel que :

D(e,e′γ)X −Norm ·H(e,e′γ)X , avec Norm =
LLD2

LLH2
. (4.11)

4.2.2 Ajout du moment de Fermi aux données DVCS sur cible LH2

Afin de soustraire les données protons p(e,e′γ)X de la cible LD2 par celles de la cible LH2, on
doit prendre en compte le fait que les protons sont au repos dans l’hydrogène mais sont animés d’un
mouvement initial au sein du deutérium. Il s’agit du moment de Fermi, que l’on doit donc rajouter aux
données protons de la cible LH2 avant soustraction. Pour cette cible, le proton initial normalement
au repos p1 = (M,~0) devient p1 = (Ef , ~pf ) par ajout de l’impulsion de Fermi ~pf . L’énergie totale du
proton initial devient E2

f =M2 + |~pf |2. La conséquence du mouvement de Fermi sur le proton de recul
peut se retrouver dans l’expression de la masse manquante au carré :

M2
X = (p1 + q1 − q2)2 ,

M2
X = p2

1 + (q1 − q2)2 + 2p1(q1 − q2) ,

M2
X =M2 + t + 2Ef (ν − |~q2|)− 2~pf (~q1 − ~q2) . (4.12)
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Figure 4.4 – Résultats sur le spectre en M2
X de la soustraction du bruit de fond au DVCS pour la cinématique

Kin2High et pour chacune des cibles LH2 (haut) et LD2 (bas). Les différentes distributions en M2
X sont don-

nées en légende avec leurs proportions respectives d’évènements (en pourcentage) qu’elles représentent par
rapport aux données brutes (courbe noire) dans l’intervalle M2

X ∈ [0,1.15] GeV2. La droite en pointillé rouge
représente la coupure M2

X = 1.15 GeV2 appliquée aux données pour exclure les canaux associés au DVCS.

La procédure consiste pour chaque évènement à tirer aléatoirement sous la distribution du mo-
ment de Fermi l’impulsion |~pf | à appliquer au proton initial [74]. La figure 4.5 montre un exemple de
tirages aléatoires des impulsions |~pf | du moment de Fermi.

4.2.3 Soustraction des évènements DVCS des cibles LD2-LH2

Nous donnons dans la figure 4.6 les résultats des soustractions des données DVCS de la cible
LD2 par celles de la cible LH2 pour chacune des cinématiques Kin2Low et Kin2High. Nous représen-
tons les données DVCS des deux cibles selon leurs distributions en M2

X . Nous avons différencié de
plus les distributions des données de la cible LH2 avant et après normalisation, mais pour les deux
le moment de Fermi a été ajouté. Les facteurs de normalisations obtenus à partir des valeurs de la
table 4.3 pour chacune des cinématiques et appliqués aux données LH2 sont les suivants :

NormKin2Low = 1.18773 , NormKin2High = 0.875691 . (4.13)

4.3 Comparaison des Résultats

Une étude de comparaison de nos résultats avec une analyse parallèle a été réalisée afin de véri-
fier la fiabilité de notre procédure de sélection des données DVCS sur neutron. L’analyse parallèle est
la même que celle dont on a comparé nos résultats sur la méthode de calibration π0 du calorimètre.
Dans cette seconde analyse, les mêmes étapes de soustraction du bruit de fond au DVCS et des don-
nées des cibles LD2-LH2 ont été suivies. Aussi, ces soustractions ont été faites à partir des mêmes
données brutes et les mêmes coupures ont été appliquées aux données des deux analyses. Enfin,
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Cible Cinématique A (g/mol) ρ (g/cm3) Q (C) L (fb−1)

LH2
Kin2Low

1.0079 0.07229
1.09134 4413.21

Kin2High 0.824225 3333.04

LD2
Kin2Low

2.0140 0.1670
1.1212 5241.72

Kin2High 0.624310 2918.71

Table 4.3 – Table quantitative des variables liées au faisceau et à la cible utilisées pour les calculs des lumi-
nosités intégréesL. Les résultats sont donnés pour chaque cinématique et chaque cible pour la normalisation
des données. Les différentes variables sont expliquées dans le texte.

Impulsions pf (en GeV/c)
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Figure 4.5 – Distribution des impulsions |~pf | du moment de Fermi à appliquer au proton initial des évènements
de la cible LH2.

pour la soustraction des évènements π0, le même nombre de décroissances aléatoires de chaque
π0 père a été généré dans les simulations Monte Carlo des deux analyses.

Nous présentons par la suite les résultats des comparaisons obtenus après soustraction du bruit
de fond au DVCS, puis dans un second temps après soustraction des données des cibles LD2-LH2.

4.3.1 Comparaison de la soustraction du bruit de fond au DVCS

Au cours de la soustraction du bruit de fond au DVCS, nous avons comparé aux résultats de
l’analyse parallèle les différentes contributions que nous avions à soustraire des données brutes.
Nous donnons dans la figure 4.7 les comparaisons réalisées sur les contributions à un photon des
données brutes nγ et des fortuites acc1 pour l’exemple de la cinématique Kin2Low et de la cible LD2.
Afin de comprendre les différences observées entre les résultats des deux analyses nous avons
cherché à les minimiser en modifiant les paramètres suivants :

. la méthode de calibration π0 du calorimètre (section 3.3.3),

. la correction des évènements à un dépôt d’énergie (section 4.1.3).
En appliquant sur nos données la même calibration utilisée dans l’analyse parallèle et en supprimant
pour les deux analyses la correction des évènements à un dépôt d’énergie, nous avons amélioré
les résultats. Leurs différences relatives devenant respectivement égales à 0.21% et 0.07% pour
les données brutes et les fortuites acc1 seraient dues à des différences d’arrondis sur certaines
coupures.

Nous avons réalisé ensuite cette étude comparative sur les contaminations π0. Nous donnons
dans la figure 4.8, la comparaison réalisée sur les contributions à un photon des π0 corrigées des
fortuites à deux dépôts d’énergies, toujours pour l’exemple de la cinématique Kin2Low et cible LD2.
De même que pour l’étude précédente, nous avons voulu connaître les raisons des différences ob-
servées entre les résultats des deux analyses. Nous avons pour cela modifié les paramètres suiv-
ants :
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Figure 4.6 – Résultats sur le spectre enM2
X de la soustraction des données DVCS de la cible LD2 par celles de

la cible LH2 pour les cinématiques Kin2Low (haut) et Kin2High (bas). Les différentes distributions en M2
X sont

données en légende avec le nombre d’évènements qu’elles représentent dans l’intervalleM2
X ∈ [0,1.15] GeV2.

La distribution LH2.norm correspond aux données LH2 après normalisation. La droite en pointillé rouge
représente la coupure M2

X = 1.15 GeV2 appliquée aux données pour exclure les canaux associés au DVCS.

. le générateur aléatoire des décroissances desπ0 pères dans la simulation Monte Carlo utilisée
pour l’estimation de la contribution π0 à un photon détecté,

. l’implémentation de la géométrie du calorimètre lors de la projection sur sa surface des pho-
tons issus de ces décroissances.

A partir des mêmes évènements π0 pères dans les deux analyses, nous avons comparé sur un run
de la cinématique Kin2LowLD2 les résultats que l’on obtenait pour ces paramètres lorsqu’ils étaient
différents et lorsqu’on a appliqué à nos données ceux de l’analyse parallèle. Avec des paramètres de
simulation communs aux deux analyses, nous améliorons la différence relative entre les résultats
obtenus sur ce run, qui passe de 1.32% à 0.44%. Ce qui représente en fait un écart de 2 évènements
sur un total de 453 dû à des différences d’arrondis sur les valeurs des coupures sur l’impulsion de
l’électron dans le spectromètre.

Concernant l’ensemble des cinématiques et cibles, ainsi que pour les différentes contributions
au bruit de fond du DVCS et pour les données DVCS elles-mêmes, nous regroupons dans la table
4.4 les différences relatives entre les résultats des deux analyses. Ces résultats ont été obtenus
en appliquant aux données de chaque analyse les paramètres d’étude propres à chacune d’elles,
à savoir la méthode de calibration π0 du calorimètre, la correction des évènements à un dépôt
d’énergie et les paramètres de la simulation pour la soustraction des π0. Finalement, après toutes
les étapes de soustraction du bruit de fond au DVCS, nous arrivons à une différence relative de
l’ordre de seulement 2% entre les nombres d’évènements DVCS des deux analyses.

4.3.2 Comparaison de la soustraction des cibles LD2-LH2

Suite à la comparaison des contributions au bruit de fond puis des données DVCS de notre anal-
yse avec celles d’une analyse parallèle, nous donnons dans la figure 4.9 la comparaison des résul-
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Figure 4.7 – Comparaison des distributions en M2
X des données brutes (haut) et des fortuites acc1 (bas) à un

photon détecté entre notre analyse (courbe magenta) et l’analyse parallèle (courbe noire) pour la cinématique
Kin2Low et la cible LD2. Les nombres d’évènements de chaque distribution en M2

X obtenus dans l’intervalle
M2
X ∈ [0,1.15] GeV2 sont donnés en légende avec leurs différences relatives (en pourcentage) obtenues entre

les deux analyses. La droite en pointillé rouge représente la coupure M2
X = 1.15 GeV2 appliquée aux données

pour exclure les canaux associés au DVCS.

tats DVCS-neutron obtenus après soustraction des données de la cible LD2 par celles de la cible
LH2. Les différences relatives entre les distributions en M2

X des deux analyses pour les données
DVCS-neutron de chaque cinématique sont indiquées en plus de cette figure dans la table 4.4.

Nous remarquons alors que nous passons de différences relatives autour de 2% avant soustrac-
tion des données des cibles à des différences relatives d’environ 8% et 10% après soustraction.
Cette variation s’explique par la taille de l’échantillon d’évènements que l’on compare. En effet,
puisque les nombres d’évènements DVCS de chaque cible sont importants, les nombres d’évène-
ments DVCS-neutron que l’on a obtenus après leurs soustractions sont petits (figure 4.6). Ainsi,
pour le même nombre d’évènements d’écart entre les deux analyses, la différence relative sera plus
faible en comparant les nombres d’évènements DVCS que ceux DVCS-neutron. Il est important de
noter que cette différence sera en partie compensée lors de la mesure de la section efficace totale.
Chaque analyse va en effet considérer sa propre distribution expérimentale en M2

X pour adapter
(par une dégradation de la résolution en énergie des détecteurs) celle d’une simulation Monte Carlo
utilisée pour la normalisation des données.
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Figure 4.8 – Comparaison des distributions en M2
X des contributions à un photon des π0 corrigées de celles

des fortuites à deux dépôts d’énergies entre notre analyse (courbe magenta) et l’analyse parallèle (courbe
noire) pour la cinématique Kin2Low et cible LD2. Les nombres d’évènements des distributions en M2

X de
chaque analyse obtenus dans l’intervalle M2

X ∈ [0,1.15] GeV2 sont donnés en légende avec leur différence
relative (en pourcentage). La droite en pointillé rouge représente la coupure M2

X = 1.15 GeV2 appliquée aux
données pour exclure les canaux associés au DVCS.

Cinématique Cible
Différence relative (en %) sur :

nγ nacc1 nπ0 nDVCS nLD2−LH2
DVCS

Kin2Low
LH2 1.11 1.02 2.16 2.29

9.58
LD2 0.38 0.90 0.65 1.90

Kin2High
LH2 0.89 0.11 6.51 2.02

7.54
LD2 1.95 1.21 5.39 0.57

Table 4.4 – Différences relatives entre les nombres d’évènements des distributions en M2
X des deux analyses

dans l’intervalle M2
X ∈ [0,1.15] GeV2 pour chaque cinématique et chaque cible. Elles sont données pour cha-

cune des contributions au bruit de fond du DVCS ainsi que pour les données DVCS obtenues après leurs sous-
tractions. La dernière colonne correspond à la différence relative obtenue pour les données DVCS-neutron de
chaque cinématique après soustraction des données des cibles LD2-LH2.
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Figure 4.9 – Comparaison des distributions en M2
X des données DVCS sur neutron pour la cinématique

Kin2Low (haut) et Kin2High (bas) entre notre analyse (courbe magenta) et l’analyse parallèle (courbe noire).
Les nombres d’évènements de chaque distribution en M2

X obtenus dans l’intervalle M2
X ∈ [0,1.15] GeV2 sont

donnés en légende avec leurs différences relatives (en pourcentage) obtenues entre les deux analyses. La
droite en pointillé rouge représente la coupure M2

X = 1.15 GeV2 appliquée aux données pour exclure les
canaux associés au DVCS.
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Chapitre 5

Extraction des Observables

5.1 Principe de Base d’Analyse des Données

Le sujet d’analyse de cette thèse est basé sur la mesure de la section efficace totale d’électro-
production de photons, dont on rappelle l’expression donnée dans le chapitre 1 :

d4σ

dxBdQ2dtdφ
=

α3

64π2xBE
2
bM

2

2π

(
√

1 + ε2) e6
·
[
|TBH |2 + |TDVCS|2 + I

]
. (5.1)

Cette mesure est réalisée indépendamment de l’hélicité du faisceau, en vue de l’extraction d’observ-
ables dépendantes des GPDs et issues des termes I et |TDVCS|2 :

|TDVCS|2 =
e6

y2Q2

cDVCS0 +
2∑
n=1

[
cDVCSn cos(nφ)

] , (5.2)

I =
e6

xBy3∆2P1(φ)P2(φ)

cI0 +
3∑
n=1

[
cIn cos(nφ)

] . (5.3)

Puisque les observables contenues dans les harmoniques cIn et cDVCSn sont associées (par combi-
naisons linéaires) à des contributions en cos(nφ) à la section efficace totale non-polarisée, leur ex-
traction est réalisée en reproduisant leurs dépendances angulaires. Celles-ci sont ensuite ajustées
à celles d’une simulation GEANT4 prenant en compte l’acceptance des détecteurs utilisés pour l’ex-
périence. La méthode d’ajustement de ces contributions angulaires à la section efficace totale sera
expliquée en détail dans le principe d’extraction des observables section 5.2.

La démarche suivie pour cette analyse est la suivante. Dans un premier temps, on procédera à
l’extraction des observables du terme I de façon indépendante pour chacune des énergies du fais-
ceau. Dans ce cas, les observables ne dépendent pas uniquement des GPDs mais d’un produit de
GPDs et FFs issus du processus BH. Cette première étape réalisée permettra, dans le cadre d’une
seconde analyse, d’effectuer l’extraction des observables du terme |TDVCS|2 par un ajustement com-
biné des contributions angulaires des termes I et |TDVCS|2 aux deux énergies du faisceau. Dans ce
second cas, les observables dépendent de produits de deux GPDs. Nous expliquons par la suite les
procédures d’extraction de l’ensemble de ces observables.

5.1.1 Détermination des observables à extraire

Un argument décisif dans la détermination des observables que l’on va pouvoir extraire à partir
des données expérimentales est la valeur de l’amplitude de chacune, à savoir leurs contributions à
l’amplitude totale d’électroproduction de photons |T |2. Tout d’abord, le terme d’amplitude au carré
du processus DVCS |TDVCS|2 est plus faible par rapport à celui du processus BH |TBH |2 ou au terme I
d’interférence avec le BH. Par conséquent, avec les paramètres de l’expérience : l’intensité du fais-
ceau, la nature de la cible et l’acceptance des détecteurs, nous sommes sensibles principalement
à ces termes |TBH |2 et I dominants. Pour une seule énergie du faisceau, nous négligerons donc le
terme |TDVCS|2 dans l’expression de la section efficace totale. En revanche, pour deux mesures si-
multanées de deux sections efficaces totales à deux énergies de faisceau Eb1 et Eb2, la méthode
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de séparation Rosenbluth nous permet de déduire la contribution du terme d’amplitude |TDVCS|2 à
l’amplitude totale, même si celle-ci est faible. En effet, après soustraction de la contribution connue
du BH et pour deux mesures de sections efficaces à cinématique égale (Q2,xB fixés), on obtient le
système de deux équations suivant :

σ1 ∝ Γ (Eb1) |TDVCS|2 + Γ ′(Eb1) I ,
σ2 ∝ Γ (Eb2) |TDVCS|2 + Γ ′(Eb2) I , (5.4)

où les facteurs cinématiques Γ , Γ ′ dépendent de l’énergie du faisceau. Les observables des termes I
et |TDVCS|2 sont au contraire fixées par la cinématique et ne dépendent pas de l’énergie du faisceau.

De plus, pour chacun de ces termes, les contributions des observables de twist-3 à l’amplitude
totale sont plus faibles que celles de twist-2. Par conséquent, on négligera les observables de twist-
3 dans le terme |TDVCS|2 déjà non-dominant dans l’expression de la section efficace totale. Et pour
aucun des termes on ne tiendra compte des observables de transversité du gluon dépendantes des
CFFs FT de twist-2.

Un argument supplémentaire, également déterminant pour le choix des observables qu’on va
être amené à extraire, est le suivant. Parce qu’on utilise la dépendance en φ de la section efficace
totale afin d’extraire les observables, leur choix va dépendre principalement de leurs contributions
angulaires associées. En effet, on ne pourra pas dissocier les valeurs des observables ayant la même
contribution en φ, on ne pourra extraire dans ce cas que la valeur totale (la somme) donnée par leur
combinaison. Par conséquent, les observables que l’on va pouvoir extraire doivent posséder des
dépendances en φ différentes. Aussi, il ne faut pas négliger les dépendances angulaires supplé-
mentaires apportées par les propagateurs BH de l’électron incident P1(φ) et P2(φ).

Finalement, on résume dans la table 5.1 du même type que la table 1.1, les observables du
terme I que l’on va extraire à l’issue de l’analyse des données expérimentales de cette thèse, ainsi
que celle du terme |TDVCS|2 qui pourra être extraite dans une analyse complémentaire. Insistons sur

Terme
Observable Type Harmonique Dépendance en φ

Section Efficace

|TDVCS|2 CDVCSunp (F ,F ∗) twist-2 cDVCS0,unp constant

I
<[CIunp(F )] twist-2 cI0,unp,c

I
1,unp [1 + cos(φ)] [P (φ)]−1

<[∆CIunp(F )] twist-2 cI0,unp [P (φ)]−1

<[CIunp(F eff )] twist-3 cI2,unp cos(2φ) [P (φ)]−1

Table 5.1 – Observables des termes I (et |TDVCS|2) que l’on va extraire lors de cette analyse (et lors d’une anal-
yse complémentaire) par mesure de la section efficace totale non-polarisée d’électroproduction de photons.
Par souci de clarté, la variable P (φ) est une notation simplifiée correspondant au produit des propagateurs
BH de l’électron incident : P (φ) = P1(φ)P2(φ).

le fait qu’au cours de ce chapitre, et principalement sur les sections où l’on expose les résultats de
cette analyse, le symbole< de la partie réelle des observables du terme I que l’on va extraire sera
quelque fois omis pour simplifier les notations. On gardera donc à l’esprit qu’il ne s’agira pas des
parties réelles plus imaginaires des combinaisons de CFFs mais bien uniquement de leurs parties
réelles.

5.1.2 Paramétrisation effective de la section efficace totale

Pour éviter tout abus de langage, il est important de préciser que les observables issues du terme
I que l’on va extraire ne correspondent pas exactement à celles décrites par la référence [20]. Elles
ne sont en réalité que des approximations de ces observables, puisqu’afin de les extraire le terme
|TDVCS|2 et certaines contributions angulaires du terme I ont dû être négligés. On parle ainsi de
paramétrisation effective de la section efficace totale et d’observables effectives.
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Ainsi, une mesure de section efficace nous permettant d’extraire plus d’observables rend plus
aisé leur comparaison par rapport à celles prédites par les modèles théoriques. En effet, moins
on néglige de contributions à la section efficace totale, plus les observables que l’on extrait sont
proches de celles des modèles théoriques. Autrement dit, la paramétrisation effective que l’on choisit
pour exprimer la section efficace totale a un impact direct sur la qualité des observables que l’on
extrait. Ceci explique d’autant plus l’intérêt d’utiliser la séparation Rosenbluth pour extraire une
observable supplémentaire du terme |TDVCS|2.

Au final, la paramétrisation effective de la section efficace totale non-polarisée que l’on va utiliser
dans cette analyse pour l’extraction des observables est donnée par :

d4σp

dxBdQ2dtdφ
= Γ BH + Γ I1 <[CIunp(F )] + Γ I2 <[∆CIunp(F )] + Γ I3 <[CIunp(F eff )] . (5.5)

Elle est exprimée ici pour la diffusion d’un électron sur une particule p via un photon virtuel. Or avec
une cible de deutérium LD2, les électrons vont interagir de façon non-cohérente avec les protons et
neutrons de la cible, mais aussi de façon cohérente avec les deutons. Après soustraction des don-
nées des cibles LD2-LH2, nous conservons les évènements sur neutrons et deutons. Nous réalisons
alors l’extraction combinée des observables du neutron n et du deuton d à l’aide de la paramétrisa-
tion suivante :

d4σ

dxBdQ2dtdφ
=

∑
p=n,d

Γ BHp + Γ Ip,1<[CIunp(F )]p + Γ Ip,2<[∆CIunp(F )]p + Γ Ip,3<[CIunp(F eff )]p . (5.6)

5.2 Méthode d’Extraction des Observables

5.2.1 Nombre d’évènements de la simulation

La méthode d’extraction des observables est basée sur la mesure de la section efficace totale
de diffusion d’électrons sur des nucléons cibles. De façon générale, la section efficace différentielle
moyenne de diffusion est reliée au nombre d’évènements N mesuré par les détecteurs lors de l’ex-
périence, normalisé par la luminosité intégréeL du faisceau incident sur la nature de la cible utilisée
pour la prise de données et par l’angle solide (ou acceptance) ∆Ω des détecteurs telle que :〈

dσ
dΩ

〉
=

N
L∆Ω

. (5.7)

Afin de tenir compte de l’acceptance des détecteurs, nous ajustons par le nombre de coups NExp

obtenus expérimentalement, le nombre de coupsNMC issus d’une simulation GEANT4 implémentant
les géométries, les configurations dans le hall et la résolution des détecteurs. Dans cette simulation
basée sur un Monte Carlo, on définit par :

xv =
{
t,φ,Eb,xB,Q

2,M2
X

}
v
, (5.8)

les variables cinématiques générées au vertex de la réaction, et par :

xe =
{
t,φ,Eb,xB,Q

2,M2
X

}
e
, (5.9)

ces mêmes variables cinématiques mais reconstruites par les détecteurs. Ces variables xe représen-
tent donc les variables expérimentales. Exceptée la masse manquante au carréM2

X dont on parlera
dans le choix des variables (section 5.2.4), les autres variables sont les variables cinématiques dont
dépend la section efficace différentielle dσ/dΩ exprimée dans l’équation (5.1). Ce sont donc les
variables définissant l’angle solide dΩ des détecteurs et sur lesquelles on va binner et intégrer la
section efficace différentielle :

N (bin) = L
〈
dσ
dΩ

〉
bin
∆Ωbin = L

∫
bin

dσ
dΩ

dΩ , (5.10)
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afin d’obtenir le nombre d’évènements de la simulation que l’on va ajuster aux données. L’indice bin
correspond soit aux bins formés par les variables au vertex :

jv =
{
jt , jφ, jEb , jxB , jQ2 , jM2

X

}
v
, (5.11)

soit à ceux déterminés par les variables reconstruites au niveau des détecteurs :

ie =
{
it , iφ, iEb , ixB , iQ2 , iM2

X

}
e
. (5.12)

Comme nous l’avons entrevu dans les équations (5.4) et (5.5), nous faisons apparaître des fac-
teurs cinématiques Γ qui contiennent l’ensemble des variables cinématiques de la section efficace
totale, y compris ses contributions angulaires en cos(nφ) associées aux observables que nous voulons
extraire. Ces facteurs cinématiques sont définis par les variables au vertex xv . En plus de l’accep-
tance des détecteurs, l’ajustement des nombres d’évènements issus de la simulation permet de
prendre en compte les deux phénomènes suivants :

. la variation de ces facteurs cinématiques à l’intérieur d’un même bin au vertex,

. la migration des évènements entre les bins définis au vertex et ceux reconstruits aux dé-
tecteurs.

La migration des évènements entre les bins est en fait le résultat de la résolution imparfaite des
détecteurs qui fausse la reconstruction des variables cinématiques définies au vertex. Afin de pren-
dre en compte tous ces facteurs expérimentaux, nous définissons une fonction de "mapping" notée
K(xe | xv) qui donne la probabilité qu’un évènement avec une cinématique définie par les variables
au vertex xv soit reconstruit à la cinématique donnée par les variables xe aux détecteurs. Intégrer
K(xe | xv) sur les nombres d’évènements des cinématiques définies par xv et xe donne la probabil-
ité totale, pondérée par les facteurs cinématiques ΓΛ(xv), que les évènements soient inclus dans
l’espace de phase à 2-dimensions (ie, jv) :

KΛie ,jv =
∫
xe∈(ie)

∫
xv∈(jv)

K(xe | xv) ΓΛ(xv) · fact
Ngen

dxv dxe . (5.13)

Aussi, pour normaliser KΛie ,jv nous considérons les conditions initiales fixées pour la réalisation de la
simulation : le nombre total d’évènements générés Ngen et les intervalles limites de valeurs à l’in-
térieur desquels les variables cinématiques ont été choisies pour générer ces évènements (représen-
tés par un facteur fact). Toujours dans l’expression (5.13), L’indice Λ représente le numéro des ob-
servables que nous voulons extraire à partir de la méthode d’ajustement. Ces observables sont
notées par la suite CΛjv , et sont définies aux bins au vertex jv .

À partir de ces notations et de l’expression (5.10), nous pouvons déterminer le nombre d’évène-
ments par bin au vertex comme :

NMC(jv) = L
∫
xv∈(jv)

∑
Λ

ΓΛ(xv) CΛjv · fact

Ngen

dxv , (5.14)

où l’on remarque la somme de la section efficace différentielle sur tous les évènements de cinéma-
tiques définies par xv compris dans le bin au vertex jv . Le nombre d’évènements par bin expérimental
est alors donné par la somme des évènements au vertex sur tous les bins jv , pondérés par la prob-
abilité que ces évènements NMC(jv) soit reconstruits au bin ie. On fait donc intervenir la fonction de
mapping K(xe | xv) et le tout est par définition sommé sur l’ensemble des évènements de cinéma-
tiques xe comprises dans le bin ie :

NMC(ie) =
∫
xe∈(ie)

∑
jv

NMC(jv) K(xe | xv)

dxe . (5.15)
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En remplaçant NMC(jv) par son expression (5.14), on obtient :

NMC(ie) =
∫
xe∈(ie)

∑
jv

L∫
xv∈(jv)

∑
Λ

ΓΛ(xv) CΛjv · fact

Ngen
dxv

K(xe | xv)

 dxe ,
NMC(ie) = L

∑
jv

∑
Λ

CΛjv

(∫
xe∈(ie)

∫
xv∈(jv)

K(xe | xv) ΓΛ(xv) · fact
Ngen

dxv dxe

)
. (5.16)

Nous retrouvons, entre parenthèse dans cette dernière expression (5.16), l’élément de matrice KΛie ,jv
donné dans l’éq. (5.13). Finalement, nous exprimons le nombre d’évènements issus de la simulation
Monte Carlo par le nombre d’évènements par bin expérimental tel que :

NMC(ie) = L
∑
jv ,Λ

KΛie ,jvC
Λ
jv
. (5.17)

Notons bien que c’est par l’ajustement de ce nombre d’évènements Monte Carlo par celui des don-
nées expérimentales que l’on va extraire les paramètres inconnus CΛjv qui sont nos observables ef-
fectives. Les détails de la procédure d’ajustement sont exposés dans la section suivante.

5.2.2 Procédure d’ajustement des données de la simulation

L’ajustement du nombre d’évènements simulésNMC(ie) par le nombre d’évènements expérimen-
taux NExp(ie) consiste à minimiser le χ2 suivant :

χ2 =
∑
ie

[
NExp(ie)−NMC(ie)

]2[
σExp(ie)

]2 , (5.18)

avec σExp(ie) l’erreur statistique sur le nombre d’évènementsNN′γ du bin expérimental ie correspon-
dant aux évènements d’électroproduction de photons eN → e′N ′γ . Elle est obtenue à partir des in-
certitudes sur les nombre d’évènements de chaque contribution au bruit de fond de cette réaction :

. incertitude ∆Nπ0 sur le nombre Nπ0 de contaminations π0,

. incertitude ∆Nacc1 sur le nombre de fortuites Nacc1 à un seul dépôt d’énergie,

. incertitude ∆Nacc2 sur le nombre de fortuites Nacc2 à deux dépôts d’énergies,
ainsi que de l’incertitude ∆Ntot sur le nombre d’évènements brutsNtot acquis pour toute réaction du
type eN → e′γX. Puisque ces nombres d’évènements sont considérés indépendants, l’erreur σExp(ie)
est équivalente à la somme quadratique de leurs incertitudes :

NN′γ =Ntot −Nacc1 −Nπ0 +Nacc2 ,

σExp(ie) =
√
∆N2

tot +∆N2
acc1 +∆N2

π0 +∆N2
acc2 . (5.19)

De plus, pour ne considérer que les évènements sur neutron et deuton de la cible de deutérium,
il faut prendre en compte la soustraction de ces données entre les deux cibles LD2-LH2. Comme
les évènements des deux cibles sont indépendants, chacune des incertitudes est obtenue par la
somme quadratique de celles des cibles. On obtient pour l’exemple de l’incertitude sur le nombre de
données brutes :

Ntot =NLD2
tot −L ·NLH2

tot ,

∆Ntot =

√(
∆NLD2

tot

)2
+L2 ·

(
∆NLH2

tot

)2
, (5.20)

avec L = LLD2/LLH2 le rapport des luminosités intégrées de chaque cible pour la normalisation et la
soustraction de leurs données.
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On note par CΛjv les valeurs des observables CΛjv qui minimisent le χ2 :

∂χ2

∂CΛjv

∣∣∣∣∣∣∣
CΛjv

= 0 . (5.21)

En développant la dérivée partielle et en l’inversant avec la somme discrète
∑

ie sur les bins ie dans
l’expression (5.18) du χ2, on arrive à :

∑
ie


2
[
NExp(ie)−NMC(ie)

]
[
σExp(ie)

]2 ·
∂
(
NExp(ie)−NMC(ie)

)
∂
(
CΛjv

)
 = 0 . (5.22)

Ce qui donne en remplaçant NMC par son expression (5.17) :

∑
ie


2
[
NExp(ie)−

(
L
∑

jv ,ΛK
Λ
ie ,jv
CΛjv

)]
[
σExp(ie)

]2 ·
∂
(
L
∑

jv ,ΛK
Λ
ie ,jv
CΛjv

)
∂
(
CΛjv

)
 = 0 ,

∑
ie

[
L
∑

j′v ,Λ′ K
Λ′

ie ,j′v
CΛ

′

j′v −N
Exp(ie)

]
[
σExp(ie)

]2 ·L KΛie ,jv = 0 . (5.23)

On fait alors apparaître deux matrices α et β :∑
j′v ,Λ′

αΛ,Λ
′

jv ,j′v
CΛ

′

j′v − β
Λ
jv

= 0 , ∀ jv ,Λ . (5.24)

qui sont définies par :

αΛ,Λ
′

jv ,j′v
=

∑
ie

L2 ·
KΛie ,jvK

Λ′

ie ,j′v[
σExp(ie)

]2 , (5.25)

βΛjv =
∑
ie

L ·
NExp(ie)KΛie ,jv[
σExp(ie)

]2 . (5.26)

La matrice α est carrée de dimension (Λ · jv) et β est une matrice colonne de même dimension (Λ · jv).
Nous arrivons finalement à extraire les observables, qui sont les paramètres libres de l’ajustement,
telles que :

CΛjv =
∑
j′v ,Λ′

[
αΛ,Λ

′

jv ,j′v

]−1
βΛ

′

j′v
. (5.27)

Il faut comprendre que cette procédure d’ajustement des nombres d’évènements issus de la sim-
ulationNMC(ie) par ceux de l’expérienceNExp(ie) est réalisée sur tous les bins expérimentaux ie con-
sidérés pour cette analyse. C’est donc un ajustement dit "global" nous permettant d’assurer sa réus-
site puisque nous prenons la statistique totale de la simulation et de l’expérience pour le réaliser.
En revanche, les résultats de cet ajustement, qui sont nos valeurs d’observables, sont représentés
par bin afin d’étudier leurs dépendances en fonction des variables choisies pour le binning. C’est à
cette étape que le choix des variables sur lesquelles nous binnons et étudions les observables est
important. Il est expliqué en détail dans la section 5.2.4.

À partir des résultats de l’ajustement combiné, à savoir les valeurs extraites des observables CΛjv
du neutron et du deuton, nous pouvons reconstruire leurs sections efficaces totales respectives en
fonction des variables au vertex xv :

d4σ (xv) =
∑
Λ

ΓΛ(xv) CΛjv . (5.28)
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Elles sont indépendantes de la paramétrisation choisie pour réaliser l’ajustement des nombres d’évè-
nements. Ceci est vrai du moment que la procédure d’ajustement a réussi et que les valeurs d’ob-
servables obtenues redonnent bien les mêmes nombres d’évènements une fois réinjectés dans la
paramétrisation utilisée pour les extraire.

5.2.3 Calcul d’incertitude sur les valeurs des observables et la mesure de la section

efficace totale

Nous notons par V la matrice inverse de α définie comme la matrice carrée et symétrique de

variances-covariances des observables CΛjv :

VΛ,Λ
′

jv ,j′v
=

[
αΛ,Λ

′

jv ,j′v

] −1
=



Var
(
CΛ1
jv

)
Cov

(
CΛ1
jv ,C

Λ′2
j′v

)
· · · Cov

(
CΛ1
jv ,C

Λ′6
j′v

)
Cov

(
CΛ2
jv ,C

Λ′1
j′v

)
Var

(
CΛ2
jv

)
· · · Cov

(
CΛ2
jv ,C

Λ′6
j′v

)
...

...
. . .

...

Cov
(
CΛ6
jv ,C

Λ′1
j′v

)
Cov

(
CΛ6
jv ,C

Λ′2
j′v

)
· · · Var

(
CΛ6
jv

)


, (5.29)

où les indices {Λ1,Λ2,Λ3} correspondent aux numéros que l’on a attribués aux trois observables
du neutron et {Λ4,Λ5,Λ6} à ceux du deuton. Les terme diagonaux de cette matrice déterminent les
incertitudes au carré sur les valeurs des observables pour un bin au vertex jv :

VΛ=Λ′
jv=j′v

= Var
(
CΛjv

)
=

(
∆CΛjv

)2
. (5.30)

Les termes non diagonaux donnent les corrélations entre deux des observables pour un bin au vertex
jv :

VΛ,Λ
′

jv=j′v
= Cov

(
CΛjv ,C

Λ′,Λ
j′v=jv

)
. (5.31)

À partir des valeurs des observables, nous reconstruisons la section efficace totale selon son
expression (5.28). Pour l’exemple du neutron, nous obtenons l’expression de la section efficace totale
suivante (sans le terme BH) :

d4σ (xv) = ΓΛ1(xv) CΛ1
jv + ΓΛ2(xv) CΛ2

jv + ΓΛ3(xv) CΛ3
jv , (5.32)

de même pour le deuton avec ses observables associées. Puisque la section efficace totale est une
combinaison linéaire d’observables, son incertitude au carré peut être obtenue par analogie avec la
propriété suivante de la variance d’une combinaison aX + bY :

Var(aX + bY ) = a2 Var(X) + b2 Var(Y ) + 2ab Cov(X,Y ) , (5.33)

où les deux variables X et Y sont corrélées. Cela conduit à l’incertitude sur la mesure de la section
efficace totale suivante :

Var(σ ) = (∆σ )2 =
(
ΓΛ1 ·∆CΛ1

jv

)2
+
(
ΓΛ2 ·∆CΛ2

jv

)2
+
(
ΓΛ3 ·∆CΛ3

jv

)2
+ 2 ΓΛ1ΓΛ2 ·Cov

(
CΛ1
jv ,C

Λ′2
j′v=jv

)
+ 2 ΓΛ1ΓΛ3 ·Cov

(
CΛ1
jv ,C

Λ′3
j′v=jv

)
+ 2 ΓΛ2ΓΛ3 ·Cov

(
CΛ2
jv ,C

Λ′3
j′v=jv

)
. (5.34)

5.2.4 Choix des variables pour l’extraction des observables

Nous avons vu dans la section 5.2.1 qu’afin d’extraire les observables la procédure d’ajustement
de la simulation aux données fait intervenir deux séries de variables issues de la simulation xv et
xe. Afin de garder la procédure d’ajustement cohérente, ces deux séries doivent être composées des
mêmes variables dont doit dépendre la section efficace totale, à savoir les variables cinématiques :
Q2,xB, t,φ.
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Le choix du binning appliqué à ces variables est important pour la réussite de la procédure d’a-
justement. Puisque les observables CΛjv définies au vertex, sont des parties réelles de combinaisons
de CFFs ne dépendant que des variables t et xB, et sachant que l’on veut étudier leur dépendance
en t à xB fixé, il est logique de ne binner qu’en t pour les variables au vertex. Aussi, puisque nos
nombres d’évènements Monte Carlo dépendent des variables expérimentales et varient en fonction
de la variable t, nous appliquerons le même binning sur la variable t expérimentale que sur celle au
vertex.

De plus, puisqu’on ajuste dans l’éq. (5.18) le nombre d’évènements Monte Carlo exprimé dans
l’éq. (5.17) sur l’ensemble des bins expérimentaux ie afin d’en extraire les observables CΛjv , il est
nécessaire pour que l’ajustement soit possible que le nombre de bins ie soit supérieur aux nom-
bres Λ d’observables de tous les bins au vertex jv à extraire, soit Λ · jv paramètres libres. De cette
façon, le système de ie équations linéaires à Λ · jv inconnues à ajuster n’est pas singulier et les ré-
sultats de l’ajustement, à savoir les valeurs des paramètres libres sont définis. Il faut donc trouver
une variable expérimentale xe supplémentaire à t sur laquelle binner et dont les observables soient
indépendantes. Il s’agira donc de binner sur la variable φ pour séparer les différentes contributions
angulaires des observables à la section efficace totale.

Pour finir, puisqu’on ne peut pas séparer nos données neutrons de celles deutons prises avec la
cible LD2, nous recherchons à extraire leurs observables respectives par un ajustement combiné de
leurs contributions issues de deux simulations différentes. L’ajustement doit alors permettre d’ex-
traire en même temps les 3 observables du neutron et du deuton alors qu’elles ont les mêmes dépen-
dances angulaires, amenant à une solution singulière. Par conséquent, suivant le raisonnement
précédant pour le binning en φ, nous binnerons en plus sur la variable M2

X expérimentale selon
laquelle les proportions d’évènements neutron et deuton à ajuster varient mais dont les observ-
ables ne dépendent pas. En effet, les valeurs de M2

X de chaque contribution neutron et deuton aux
évènements d’électroproduction de photons diffèrent par un déplacement t/2. On peut retrouver ce
facteur en considérant la diffusion e(k)d(p1)→ e′(k′)d′(p2)γ(q2) d’un électron sur un deuton au repos
dans la cible via un photon virtuel γ∗(q1). Puisque la diffusion est cohérente, le deuton reste intact
et sa masse inchangée à l’état final. Nous reconstruisons ainsi la masseMd du deuton par M2

X telle
que :

M2
X = (p1 + q1 − q2)2 ,

M2
X = p2

1 + (q1 − q2)2 + 2p1(q1 − q2) ,

M2
X =M2

d + t + 2Md(ν − |~q2|) =M2
d . (5.35)

Ce qui conduit à une expression de t en fonction de Md :

−t
Md

= 2(ν − |~q2|) . (5.36)

En intégrant cette dernière équation dans l’expression de la masse manquante au carré calculée
pour le neutron, cela donne :

M2
X =M2

n + t + 2Mn(ν − |~q2|) ,

M2
X =M2

n + t
(
1− Mn

Md

)
,

M2
X 'M

2
n +

t
2
. (5.37)

Puisque les valeurs de t sont négatives, les données deuton doivent donc se situer autour d’une
valeur en M2

X inférieure à celle des données neutron.
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5.3 Application de la Méthode d’Analyse des Données

5.3.1 Elargissement de la distribution enM2
X des données de la simulation

Principe

Les données issues de la simulation Monte Carlo sont trop parfaites comparées aux données
expérimentales, ou autrement dit pas assez réalistes. En effet, les variables expérimentales xe de
la simulation, bien que tenant compte des effets de résolutions des détecteurs, sont encore trop
idéales par rapport à celles reconstruites à partir des données de l’expérience. C’est d’autant plus
le cas avec les variables reliées au calorimètre, de moins bonne résolution en énergie que le spec-
tromètre. Puisque nous devons ajuster les données simulées par celles de l’expérience pour extraire
les observables, et puisque nous utilisons la variable cinématiqueM2

X pour séparer les contributions
neutron et deuton, nous élargissons la distribution en M2

X des données Monte Carlo pour la rendre
plus réaliste et assurer la réalisation à terme de l’ajustement.

Le principe utilisé pour élargir la distribution des données de la simulation consiste à dégrader
la résolution en énergie du photon final détecté par le calorimètre. On applique pour cela un facteur
aléatoire αGauss obtenu selon une distribution gaussienne à chaque évènement proton : e(k) p(p1)→
e′(k′) p′(p2) γ(q2). On utilise donc les données de la simulation et de l’expérience des cinématiques
sur cible LH2 pour lesquelles les électrons diffusent uniquement sur des protons. En effet, puisqu’on
ne peut pas différencier les données expérimentales du neutron de celles du deuton, on ne peut
pas utiliser leurs distributions individuelles comme référence pour élargir celles des simulations. On
applique donc le facteur aléatoire sur le quadri-vecteur énergie-impulsion du photon final tel que la
masse manquante au carré devient :

M2
X = [q1 + p1 − (q2 ·αGauss)]

2 . (5.38)

De plus, puisque la résolution en énergie du calorimètre n’est pas uniforme, nous réalisons dif-
férents élargissements pour différentes zones du calorimètre. Ainsi, on applique à chaque photon
final détecté dans le calorimètre, un facteur aléatoire issu de la distribution gaussienne corre-
spondante à la région du détecteur où se situe son point d’impact. Ces distributions gaussiennes
Gauss(κ,σ ) sont définies par les moyennes κ et largeurs σ de leurs pics. On doit donc les déter-
miner pour chacune des zones du calorimètre, de façon à élargir la distribution en M2

X des photons
de la simulation pour qu’elle se rapproche au plus de celle de l’expérience. Il nous faut pour cela
suffisamment de statistique dans chacune des zones que l’on doit délimiter. En étudiant les distri-
butions en M2

X des données expérimentales, nous sommes arrivés à former 23 zones sur la surface
du calorimètre qui vont correspondre à 23 distributions gaussiennes différentes.

De manière à trouver les moyennes et largeurs optimales des pics gaussiens nous donnant le
meilleur élargissement possible, nous utilisons un outil implémenté dans ROOT 1, nommé "TMinuit".
Il va essayer toutes les combinaisons possibles de (κ,σ ) afin de minimiser un χ2 qu’on lui passe en
argument, et de proche en proche ou par un algorithme de récurrence, il va aboutir à la combinaison
optimale donnant le χ2 le plus petit. En pratique, TMinuit se charge de trouver les combinaisons
les plus cohérentes selon les résultats des χ2 des itérations précédentes. En revanche, à chaque
itération et à partir de la combinaison de nouvelles valeurs qu’il renvoie, nous nous chargeons du
calcul du χ2 qu’on lui retourne pour un nouvel essai. L’expression du χ2 à minimiser est donnée par :

χ2 =
∑
n

[
NExp(n)−NSimu(n)

]2[
σExp(n)

]2 , (5.39)

avec n un des 34 bins en M2
X dans un intervalle de [0.5,1.0] GeV2 sur lequel nous réalisons l’élar-

gissement. La variableNExp correspond au nombre d’évènements proton expérimentaux après sous-
traction du bruit de fond et NSimu au nombre d’évènements proton simulés après élargissement.

1. ROOT est un logiciel de programmation orientée objet et une bibliothèque logicielle utilisant le language C++. Il a
été développé par le CERN et conçu pour l’analyse des données en physique des particules.
Site internet : https ://root.cern.ch/drupal/
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L’incertitude sur le nombre d’évènements proton expérimentaux σExp =
√
NExp est obtenue à partir

des données proton avant soustraction du bruit de fond. Puisque les quantités de données de la sim-
ulation et de l’expérience ne sont pas égales, le nombre d’évènements proton issu de l’expérience
dans chacun des bins n a été normalisé selon :

NExp(n) =N ini
Exp(n) ·

∑
n NSimu(n)∑
n N

ini
Exp(n)

, (5.40)

où N ini
Exp(n) est le nombre d’évènements de proton expérimentaux pour le bin n avant la normalisa-

tion.

Résultats

Les valeurs optimales des moyennes κ et largeurs σ des pics des distributions gaussiennes pour
lesquelles les distributions en M2

X des données simulées sont les plus proches de celles de l’expéri-
ence sont reportées sur la figure 5.1 pour chaque région du calorimètre et chaque cinématique.
Nous pourrions nous attendre à observer sur ces deux cinématiques une corrélation entre les ré-
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Figure 5.1 – Valeurs optimales des moyennes κ et largeurs σ des pics des distributions gaussiennes utilisées
pour les élargissements des distributions enM2

X des données de la simulation pour les cinématiques Kin2Low
(haut) et Kin2High (bas). Elles sont indiquées selon une échelle de couleur et précisées numériquement sur la
région correspondante du calorimètre. Est représentée ici la surface (X,Y) arrière du calorimètre par rapport
à laquelle le faisceau est positionné sur sa droite.

gions du calorimètre et les valeurs associées des moyennes et largeurs des gaussiennes. En effet,
les zones plus proches du faisceau contenant des évènements du bruit de fond dus aux radiations,
se verraient attribuer des élargissements plus importants deM2

X pour correspondre au mieux à l’ex-
périence. Ce que nous constatons finalement est une répartition aléatoire des moyennes et largeurs
des gaussiennes sur la surface du calorimètre. Nous remarquons de plus que ces valeurs ne sont
pas homogènes sur la globalité des régions du calorimètre, passant de κ = 1.03 à κ = 1.08 pour les
moyennes et de σ = 0.035 à σ = 0.07− 0.08 pour les largeurs des gaussiennes. Aussi, nous pouvons
voir qu’elles diffèrent beaucoup d’une région à l’autre du détecteur. Ce dernier point pouvant être
dû à la qualité des blocs du détecteur. En effet, les blocs ont été disposés de façon à ce que des
blocs d’efficacités similaires se retrouvent dispersés de part et d’autre du détecteur. Ceci afin de ne
pas favoriser (ou défavoriser) une région du calorimètre plutôt qu’une autre pour la détection des
photons finaux.
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Figure 5.2 – Résultat de l’élargissement de la distribution en M2
X des données proton de la simulation pour

une région du calorimètre et pour la cinématique Kin2Low. Les différentes distributions sont expliquées en
légende. Les valeurs optimales (κ,σ ) de la gaussienne obtenues pour un χ2 minimal sont indiquées en plus
dans la légende. La valeur du χ2 minimal est donnée en entête. L’intervalle en M2

X dans lequel est réalisée la
procédure d’élargissement est également représenté.

Nous donnons dans la figure 5.2, pour l’exemple d’une zone centrale du calorimètre et de la ciné-
matique Kin2Low, l’élargissement de la distribution enM2

X obtenu sur les données simulées. Nous la
comparons à la distribution en M2

X des données expérimentales reconstruite dans la même région
du détecteur. Nous remarquons avec cet exemple que la procédure d’élargissement a été efficace
puisqu’à son terme nous voyons qu’il y a un bon accord entre les distributions expérimentales et
simulées.

5.3.2 Résultats de l’ajustement des données de la simulation

Pour la réalisation de l’ajustement du nombre d’évènements de la simulation par celui de l’-
expérience, nous avons effectué 24 bins équidistants en φ dans l’intervalle φ ∈ [0,360]°, 20 bins
équidistants en M2

X dans l’intervalle M2
X ∈ [0.5,1.0] GeV2 et 5 bins en t. Pour assurer la faisabilité

de l’ajustement et la fiabilité des valeurs d’observables que l’on va extraire, nous voulons que tous
les bins en t sur lesquels nous intégrons les nombres d’évènements simulation-expérience aient
suffisamment de statistique. De cette façon, il n’y aura pas de bins en t avec peu de statistiques
risquant d’affecter la qualité de l’ajustement et des résultats de ceux avec plus d’évènements. Nous
nous arrangeons donc pour avoir la répartition des évènements expérimentaux la plus équivalente
possible sur les 5 bins en t, cela en ajustant leurs tailles pour chacune des cinématiques. La figure
5.3 donne la comparaison du nombre d’évènements de chacun des 5 bins en t dans l’intervalle t ∈
[−0.40,−0.15] GeV2, lorsque ceux-ci sont équidistants et lorsqu’ils sont choisis à statistiques équiv-
alentes. Les valeurs limites ainsi que les valeurs des milieux des bins en t obtenues sont données
dans la table 5.2 pour les deux cinématiques. Précisons que les bins en tA pour le deuton (variable t
calculée avec la masse du deuton) sont inclus dans l’intervalle tA ∈ [−0.4,−0.1] GeV2.

Nous donnons dans la figure 5.4, pour l’exemple de la cinématique Kin2Low, les nombres d’évène-
ments expérimentaux du DVCS et des contributions au bruit de fond en fonction de φ obtenus sur le
bin t ∈ [−0.23,−0.19] GeV2 pour 2 bins en M2

X . Le premier bin d’intervalle M2
X ∈ [0.500,0.525] GeV2 a

été choisi comme exemple pour illustrer le cas de bins en M2
X de faibles statistiques. Au contraire,

le second bin d’intervalle M2
X ∈ [0.875,0.900] GeV2 contient la statistique la plus élevée puisqu’il se

situe au niveau du pic de la distribution en M2
X des données expérimentales.

Pour ces deux bins en M2
X , le nombre d’évènements total des simulations neutron et deuton

reconstruit selon l’expression (5.17) à partir des valeurs d’observables extraites ont été représen-
tés dans la figure 5.5 en fonction de φ. Les valeurs de χ2 obtenues lors de la procédure d’ajuste-
ment sont précisées en entête de la figure 5.5. Elles correspondent aux valeurs du χ2 obtenues pour
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Figure 5.3 – Comparaison statistique des 5 bins en t définis dans l’intervalle t = [−0.4,−0.15] GeV2 pour les
cinématiques Kin2Low (haut) et Kin2High (bas). La comparaison est basée sur la taille des bins, à savoir entre
des bins équidistants (bleus) et des bins de tailles différentes mais de statistiques équivalentes (rouges). La
statistique de chaque bin est représentée qualitativement grâce à la hauteur des barres et quantitativement
par les nombres d’évènements affichés à leurs sommets. Les valeurs en t des limites de chaque bin sont
précisées en légende.

chaque bin en M2
X . Notons qu’on pourrait tout aussi bien calculer une seule valeur de χ2 reliée à

l’ajustement global des nombres d’évènements intégrés sur tous les bins de toutes les variables
cinématiques. Nous avons préféré le calcul de plusieurs χ2 afin de connaître la qualité de l’ajuste-
ment sur chacun des bins en M2

X . Finalement, la procédure d’ajustement a été réalisée avec succès
puisque les valeurs des χ2 de tous les bins enM2

X sont de l’ordre de l’unité. Ce constat est donc val-
able aussi bien pour des bins de faibles statistiques que pour des bins avec beaucoup d’évènements.

En réinjectant les valeurs des observables que l’on a extraites pour le neutron et pour le deuton
dans l’expression (5.5) de leurs paramétrisations effectives associées, nous obtenons les sections
efficaces totales d’électroproduction de photons de chacune. Nous les avons représentées dans les
figures 5.6 et 5.7 pour les cinématiques respectives Kin2Low et Kin2High. Les sections efficaces
totales et chacune de leurs contributions angulaires y sont tracées en fonction de φ pour chaque
bin en t et tA.

Comme attendu pour ces résultats, nous retrouvons les dépendances angulaires en cos(φ) et
cos(2φ) des sections efficaces introduites par les facteurs cinématiques. Nous remarquons que la
largeur de l’erreur statistique sur la section efficace totale dépend de façon cohérente avec l’angle
φ que l’on peut voir comme l’angle de rotation autour du centre du calorimètre (figure 2.14). En effet,
l’angle φ = 0° (ou φ = 360°) correspond à des mesures réalisées à partir de données avec plus de
bruit de fond que pour les angles φ = 135° et φ = 225° pour lesquels le bruit de fond dû au faisceau
est le plus faible. L’erreur statistique suit donc cette évolution, à savoir elle est plus importante
lorsqu’il y a plus de bruit de fond.

Nous observons de plus que la section efficace totale du neutron paraît être plus élevée pour
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Bins
Kin2Low Kin2High

−tmin −tmax −t −tmin −tmax −t

Bin 1 0.1500 0.1900 0.1700 0.1500 0.1950 0.1725

Bin 2 0.1900 0.2300 0.2100 0.1950 0.2325 0.2138

Bin 3 0.2300 0.2725 0.2513 0.2325 0.2775 0.2550

Bin 4 0.2725 0.3225 0.2975 0.2775 0.3300 0.3038

Bin 5 0.3225 0.4000 0.3613 0.3300 0.4000 0.3650

Table 5.2 – Valeurs limites {−tmin,−tmax} et valeurs −t des milieux des bins en t de chaque cinématique utilisés
pour la procédure d’ajustement.
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Figure 5.4 – Nombre d’évènements expérimentaux du DVCS-neutron en fonction de φ sur le bin t ∈
[−0.23,−0.19] GeV2 et pour 2 bins en M2

X d’intervalles de valeurs M2
X ∈ [0.500,0.525] GeV2 et M2

X ∈
[0.875,0.900] GeV2 de la cinématique Kin2Low. Les barres d’erreurs représentent leurs incertitudes statis-
tiques. Ces nombres d’évènements DVCS-neutron de l’expérience sont obtenus à partir du nombre total
d’évènements bruts sur neutron soustraits de leurs contaminations π0 et fortuites acc1 à un dépôt d’énergie
et ajoutés des fortuites acc2 à deux dépôts d’énergies.

une valeur de |t| plus faible et semble décroître à mesure que |t| augmente. Elle est aussi plus élevée
que la contribution due au BH pour des angles autour de φ ∼ 180°, surtout à petit |t| où la déviation
varie selon φ d’environ 1σ à 2σ .

Finalement, nous constatons sur l’ensemble de ces bins que la section efficace totale du deuton
qu’on a mesurée, avec le respect des incertitudes statistiques, est très faible voire compatible avec
zéro. Elle est de plus compatible avec la contribution due au BH, qui elle aussi se trouve être très
proche de zéro pour le cas du deuton. Ceci signifie que dans le domaine cinématique de l’expéri-
ence, les électrons incidents diffuseraient pratiquement seulement de façon quasi-élastique sur les
nucléons de la cible et que les deutons leurs seraient "invisibles".

5.3.3 Etude systématique des résultats sur le neutron

Les résultats sur les mesures de sections efficaces du neutron et du deuton montrés précédem-
ment dans la section 5.3.2 doivent être indépendants des réglages des paramètres de l’analyse.
Ceux-ci comprennent le choix du nombre de bins sur les variables cinématiques utilisées pour la
procédure d’ajustement, l’extraction des observables et la représentation des résultats. Ils incluent
de plus le choix des intervalles de valeurs des variables cinématiques sur lesquels nous sélection-
nons les données utilisées pour la mesure de la section efficace totale, dans la mesure où ces inter-
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Figure 5.5 – Nombre total d’évènements de la simulation neutron, deuton et le nombre total d’évènements
des deux simulations comparés au nombre total d’évènements expérimentaux donnés en fonction de φ pour
les deux mêmes bins enM2

X montrés dans la figure 5.4. Les valeurs des χ2 de chaque bin enM2
X sont données

en entête.

valles sont identiques entre la simulation et l’expérience. Nous avons donc choisi d’étudier l’impact
du nombre de bins en t, en gardant le même intervalle de valeurs et en ne changeant que la taille des
bins, sur les valeurs extraites des observables du neutron. De plus, nous avons voulu étudier l’évo-
lution de la mesure de la section efficace totale du neutron en fonction du choix des intervalles de
valeurs enM2

X sur lesquels nous garderons le même nombre de bins. Ces deux études sont réalisées
en conservant les caractéristiques suivantes :

. des bins en t de tailles différentes mais de statistiques équivalentes,

. des bins en M2
X équidistants.

Etude en t des observables

La figure 5.8 compare pour les cinématiques Kin2Low et Kin2High, les valeurs des observables
du neutron obtenues pour deux analyses différentes. La première analyse est celle présentée dans
la section 5.3.2, avec 5 bins en t détaillés dans la table 5.2. La seconde analyse comporte deux
bins en t dont les valeurs limites sont : [−0.400,−0.245] et [−0.245,−0.150] GeV2 pour Kin2Low, et
[−0.4000,−0.2525] et [−0.2525,−0.1500] GeV2 pour Kin2High. Nous observons à l’issue de la com-
paraison que les valeurs des observables avec deux bins en t sont compatibles avec celles obtenues
pour 5 bins en t en prenant en compte les incertitudes statistiques. Nous remarquons d’ailleurs,
en toute logique, que les barres d’erreurs statistiques deviennent plus faibles lorsque les valeurs
d’observables sont obtenues avec 2 bins en t, plus larges et donc contenant plus de statistiques.

Etude enM2
X de la section efficace totale

Nous avons voulu étudier l’évolution en fonction de t de la section efficace pour trois intervalles
en M2

X : [0.5,0.9] GeV2, [0.5,1.0] GeV2 et [0.5,1.15] GeV2. Après avoir réeffectué la procédure d’a-
justement pour chacun de ces intervalles, nous avons représenté les sections efficaces obtenues
pour chaque bin en t dans les figures 5.9 et 5.10 pour les cinématiques respectives Kin2Low et
Kin2High. Nous observons une déviation entre les mesures de la section efficace à différents inter-
valles en M2

X . Cette déviation dépend de φ mais ne semble pas varier selon le bin en t. Elles sont
plus importantes à φ = 0° (ou φ = 360°) où les incertitudes statistiques sont les plus importantes.
Mais nous constatons aussi que ces déviations dues à l’incertitude systématique sur ces mesures
restent du même ordre de grandeur que les erreurs statistiques.
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Figure 5.6 – Dépendances en φ des sections efficaces totales du neutron et du deuton et de chacune de
leurs contributions angulaires pour la cinématique Kin2Low dans le domaine M2

X ∈ [0.5,1.0] GeV2. Elles sont
représentées pour les 5 bins en t du neutron détaillés dans la table 5.2 et pour les 5 bins en tA du deuton dans
l’intervalle tA ∈ [−0.4,−0.1] GeV2. Les valeurs numériques données en légende correspondent aux valeurs des
observables extraites à partir de la procédure d’ajustement et leurs incertitudes statistiques. La zone colorée
délimite le domaine d’incertitude statistique sur la mesure de la section efficace totale.
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Figure 5.7 – Dépendances en φ des sections efficaces totales du neutron et du deuton et de chacune de
leurs contributions angulaires pour la cinématique Kin2High dans le domaine M2

X ∈ [0.5,1.0] GeV2. Elles sont
représentées pour les 5 bins en t du neutron détaillés dans la table 5.2 et pour les 5 bins en tA du deuton dans
l’intervalle tA ∈ [−0.4,−0.1] GeV2. Les valeurs numériques données en légende correspondent aux valeurs des
observables extraites à partir de la procédure d’ajustement et leurs incertitudes statistiques. La zone colorée
délimite le domaine d’incertitude statistique sur la mesure de la section efficace totale.
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Figure 5.8 – Comparaison des valeurs des observables obtenues pour une analyse à 5 bins en t (bleue) et une
seconde analyse à 2 bins en t(rouge), toutes d’intervalle t ∈ [−0.4,−0.15] GeV2 et pour chaque cinématique
Kin2Low (haut) et Kin2High (bas) dans le domaineM2

X ∈ [0.5,1.0] GeV2. Les domaines d’incertitudes et barres
d’erreurs sont statistiques.

Etude enM2
X des observables

Nous avons cherché à comprendre quelle observable effective pouvait participer au manque de
stabilité de la section efficace totale du neutron en fonction de l’intervalle d’étude en M2

X . Nous
avons choisi de reproduire l’étude précédente (mêmes intervalles en M2

X et mêmes bins en t de la
table 5.2) sur les valeurs d’observables de la cinématique Kin2High qui présente la variation de la
section efficace la plus élevée. Nous les avons donc représentées pour chaque intervalle en M2

X
en fonction de la valeur moyenne des bins en t (figure 5.11). Nous constatons que l’observable
<[CIunp(F eff )] de twist-3 varie plus faiblement que les observables<[∆CIunp(F )] et<[CIunp(F )] de
twist-2, surtout à petit |t|. Les valeurs de l’observable de twist-3 sont mêmes stables dans les limites
des incertitudes statistiques.

Bien sûr, il nous faudrait poursuivre cette étude afin de donner à ces résultats une interprétation
fiable pour expliquer la variation de la section efficace totale sur le neutron. Par exemple, il serait in-
téressant de comparer ces observables pour le neutron à celles du deuton, de même que de réaliser
cette comparaison en les pondérant par leurs facteurs cinématiques. Nous discuterons en conclu-
sion de cette thèse des possibilités que l’on peut envisager par la suite pour stabiliser la mesure de
la section efficace totale et les valeurs des observables que l’on a extraites.

97



CHAPITRE 5. EXTRACTION DES OBSERVABLES

Figure 5.9 – Comparaison en t entre trois analyses des dépendances en φ des sections efficaces totales du
neutron pour la cinématique Kin2Low. Chaque analyse comporte un intervalle différent en M2

X explicité en
légende. Les sections efficaces ont été représentées pour chaque bin en t de la table 5.2 avec leurs incerti-
tudes statistiques. La courbe noire correspond à la contribution Bethe-Heitler pour l’intervalle d’étude M2

X ∈
[0.5,1.0] GeV2.
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Figure 5.10 – Comparaison en t entre trois analyses des dépendances en φ des sections efficaces totales sur
neutron pour la cinématique Kin2High. Chaque analyse comporte un intervalle différent en M2

X explicité en
légende. Les sections efficaces ont été représentées pour chaque bin en t de la table 5.2 avec leurs incerti-
tudes statistiques. La courbe noire correspond à la contribution Bethe-Heitler pour l’intervalle d’étude M2

X ∈
[0.5,1.0] GeV2.
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Figure 5.11 – Comparaison entre trois analyses des valeurs des observables du neutron en fonction de t pour
la cinématique Kin2High. Chaque analyse comporte un intervalle différent en M2

X explicité dans le texte. Les
barres d’erreurs sont statistiques.
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Conclusion et Discussion

Le travail de cette thèse consistait à mesurer la section efficace totale du processus d’électro-
production de photons sur le neutron. Ce processus fait intervenir deux mécanismes réactionnels,
le Bethe-Heitler qui nous renseigne sur les Facteurs de Forme du neutron, et le DVCS qui nous donne
accès aux Distributions Généralisées de Partons du neutron. Mais c’est en fait à l’interférence I en-
tre ces deux réactions que notre mesure expérimentale est la plus sensible dans notre domaine ciné-
matique. L’intérêt de cette mesure portait donc sur l’extraction des trois observables<[CIunp(F )],
<[∆CIunp(F )] et<[CIunp(F eff )] dépendantes des FFs et des GPDs et participant à l’amplitude d’inter-
férence entre le BH et le DVCS. De plus, cette mesure a été réalisée dans le même domaine cinéma-
tique pour deux énergies du faisceau d’électrons. A partir de ces deux mesures de la section efficace
totale menées dans le cadre de cette thèse, une dernière observable CDVCSunp (F ,F ∗) issue de l’ampli-
tude |TDVCS|2 et dépendante de produits de deux GPDs pourra être extraite par la suite. L’étude de
ces observables contribue donc à une des approches possibles pour la détermination des GPDs. Elle
participe avec d’autres expériences à contraindre les modèles théoriques basés sur ce formalisme.

Cette mesure a été effectuée en utilisant un faisceau d’électrons envoyé sur une cible d’hy-
drogène et une cible de deutérium. L’acquisition des données a été assurée par un système élec-
tronique de déclenchement basé sur une détection en double coïncidence des électrons diffusés
dans le spectromètre et des photons dans le calorimètre. Après une analyse en forme des signaux
enregistrés dans le calorimètre, trois calibrations élastiques ont été réalisées. Nous avons alors
entrepris lors de cette thèse une autre méthode de calibration en énergie du calorimètre. Cette
méthode utilisant le canal de production des π0 a permis l’optimisation de la calibration et fourni
une calibration en continu tout au long de la prise de données. Nous avons pu vérifier l’efficacité de
la méthode et sa fiabilité en la comparant à une calibration parallèle réalisée à partir des mêmes
données.

Parmi les évènements acquis durant l’expérience, des contaminations et des coïncidences fortu-
ites étaient à soustraire des données brutes pour la sélection des évènements d’électroproduction
de photons. Une simulation Monte Carlo a été implémentée pour estimer la contribution à un photon
détecté des contaminations π0. Les évènements fortuits des π0 supprimés lors de la soustraction
de ces contaminations ont été ajoutés aux données brutes. Une correction sur la perte des évène-
ments à un dépôt d’énergie dans le calorimètre considérés comme données à deux photons détectés
a été appliquée. Après soustraction du bruit de fond, nous avons procédé à la sélection des données
d’électroproduction de photons sur le neutron. La soustraction des données proton de la cible de
deutérium par ceux de la cible d’hydrogène, tenant compte du mouvement initial du proton dans
la cible de deutérium, a permis d’isoler ces évènements neutron. N’étant pas la seule contribution
présente dans les évènements restants, mais accompagnés des évènements de diffusion cohérente
des électrons sur les deutons de la cible, nous avons dû traiter les deux contributions simultanément
lors de l’analyse des données expérimentales.

Finalement, à partir de ces évènements neutron et deuton, notre mesure de la section efficace
d’électroproduction de photons sur le neutron a pu être réalisée. Nos données expérimentales ont
du être normalisées par la luminosité de chacune des deux cinématiques Kin2Low et Kin2High (de
même domaine cinématique en Q2,xB mais d’énergie Eb du faisceau différente), et par l’acceptance
des détecteurs utilisés pour cette mesure. Afin de tenir compte de ce dernier paramètre, nous avons
fait appel à une simulation Monte Carlo implémentée sous GEANT4. La procédure mise en oeuvre
pour la mesure de la section efficace totale neutron consistait à ajuster les nombres d’évènements
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issus des simulations neutron et deuton par ceux de l’expérience. Ces nombres d’évènements nor-
malisés ont été obtenus à partir des distributions en t et φ, les variables cinématiques dont dépend
la section efficace, et en M2

X pour la séparation en masse des contributions neutron et deuton. Une
paramétrisation effective a été utilisée représentant ces nombres d’évènements, et la section effi-
cace des contributions combinées du neutron et du deuton, sous forme d’une combinaison linéaire
de Λ facteurs cinématiques ΓΛ et d’observables CΛ de valeurs inconnues. Par ajustement des nom-
bres d’évènements, les observables étant indépendantes de φ et M2

X ont pu être extraites. Nous
avons alors pu reconstruire par somme des contributions respectives du neutron et par somme de
celles du deuton la section efficace totale de chacune. Elles sont indépendantes de l’expression
utilisée pour paramétrer les nombres d’évènements, et elles ne doivent pas non plus dépendre du
nombre de bins ou de la largeur des intervalles de valeurs des variables cinématiques utilisés pour
leur détermination.

Suite à une étude systématique sur les valeurs des observables, nous avons vu qu’elles restaient
stables dans le domaine d’incertitude statistique pour deux analyses avec différents nombres de
bins en t. En revanche, elles varient sur différents intervalles de valeurs enM2

X . De même, la section
efficace totale d’électroproduction de photons sur le neutron fluctue en fonction de l’intervalle en
M2
X . Toutefois, la déviation systématique des mesures des sections efficaces reste du même ordre

de grandeur que les incertitudes statistiques. D’autres études systématiques plus poussées peu-
vent être entreprises et nous aider à expliquer cette variation. Nous pourrions être amenés dans
un premier temps à réfléchir sur l’implication des évènements deuton dans notre procédure d’a-
justement. A savoir, l’incertitude systématique obtenue sur la section efficace totale du neutron ne
proviendrait-elle pas de l’erreur sur la mesure combinée de celle du deuton. Nous pourrions donc
observer l’évolution de la section efficace totale neutron plus deuton lors d’études systématiques
similaires. Nous pourrions également essayer de reproduire cette étude en minimisant la contribu-
tion deuton en choisissant un intervalle enM2

X plus restreint autour du pic des évènements neutron
et à plus grand |t| où les évènements deuton sont les plus décalés par rapport à ceux du neutron.

De plus, des possibilités d’améliorations de la procédure de mesure de la section efficace to-
tale peuvent être envisagées par la suite. Nous pourrions améliorer par exemple la dégradation de
la résolution en énergie du calorimètre dans la simulation. Cela permettrait de mieux rapprocher
les distributions en M2

X des données Monte Carlo et expérimentales. Ceci pourrait être réalisé en
augmentant le nombre de régions considérées dans le calorimètre. De plus, au lieu de déterminer
les distributions gaussiennes pour l’élargissement de M2

X à partir des données proton, nous pour-
rions utiliser directement la somme des données des simulations neutron plus deuton. Si aucune
amélioration n’est observée, des contaminations non-exclusives au processus d’électroproduction
de photons sur neutron sont présentes parmi nos données expérimentales. Nous pourrions alors les
soustraire par un modèle ou un ajustement du spectre en M2

X .
N’oublions pas non plus que la mesure de la section efficace totale d’électroproduction de pho-

tons sur le neutron est un réel défi expérimental. En effet, pour ce processus rare la section efficace
est faible (∼ 10 pbarn/GeV4) et donc plus difficile à déterminer. Ceci est vrai d’autant plus pour le
cas du neutron, puisque sa section efficace est environ 5 fois plus faible que celle du proton [68]. De
plus, sa mesure implique une bonne estimation des contaminations et une bonne normalisation des
données pour estimer le nombre d’évènements du processus de façon indépendante des conditions
expérimentales : flux de particules dans le faisceau, caractéristiques de la cible et résolutions des
détecteurs. Cette mesure réalisée pour le cas du neutron demande plus d’étapes que pour celle du
proton ce qui induit des incertitudes systématiques plus grandes. Tout d’abord, parce qu’il n’existe
pas de cible constituée uniquement de neutrons libres. Aussi, avec une cible de deutérium, la con-
tribution du proton doit être soustraite, puis celle du deuton doit être considérée en même temps
que celle du neutron lors de la mesure de la section efficace totale. Finalement, malgré la difficulté
technique de cette mesure de la section efficace totale, nous avons montré qu’elle était réalisable,
et ceci pour deux énergies du faisceau. Nous avons réussi l’extraction de trois observables pour cha-
cune des deux particules neutron et deuton. Par le travail de cette thèse, nous laissons surtout la
perspective ouverte de la séparation en énergie du terme |TDVCS|2 et de l’extraction d’une observable
supplémentaire.
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