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Abstract
This paper establishes a mathematical proof of the blue-shift instability at the sub-
extremal Kerr Cauchy horizon for the linearised vacuum Einstein equations. More
precisely, we exhibit conditions on the s = +2 Teukolsky field, consisting of suitable
integrated upper and lower bounds on the decay along the event horizon, that ensure
that the Teukolsky field, with respect to a frame that is regular at the Cauchy horizon,
becomes singular. The conditions are in particular satisfied by solutions of the Teukol-
sky equation arising from generic and compactly supported initial data by the recent
work [51] of Ma and Zhang for slowly rotating Kerr.

Keywords General relativity · Strong cosmic censorship · Kerr black hole ·
Teukolsky equation

1 Introduction

The sub-extremal Kerr solution of the vacuum Einstein equations

Ric(g) = 0

models a stationary and rotating black hole, devoid of any gravitational radiation.
While we expect that the exterior is stable if small gravitational radiation is taken into
account,1 heuristics going back to Penrose [55] indicate that the interior is subject to
a blue-shift instability: gravitational radiation entering the black hole builds up at the
Cauchy horizon CH+ and leads to the formation of a singularity.

Although the full resolution of this conjecture is still open, a large body of research
concerning simplified models has since lent support to the validity of this scenario.

1 See [16, 40, 41] for recent results on the black hole stability problem.
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Fig. 1 The blue-shift effect. For
observer A an infinite time
passes, while observer B reaches
the Cauchy horizon in finite
time; signals sent by A are
received by B shifted to the blue

The first class of simplified models we would like to mention here concerns non-
linear spherically symmetric perturbations of the sub-extremal Reissner-Nordström
black hole, which also possesses a Cauchy horizon in its interior that is subject to a
blue-shift instability. The works by Hiscock [34], Poisson-Israel [57, 58], and Ori [54]
investigate and prove this blue-shift instability for the spherically symmetric Einstein-
Maxwell-null dust system and the works of Dafermos [12, 13] and of Luk-Oh [46,
47]2 do so for the spherically symmetric Einstein-Maxwell-scalar field system. The
second class of simplified models are linear models on a Kerr background – and in
particular the linear scalar wave equation which serves as a “poor man’s linearisatio”
of the vacuum Einstein equations. The study was initiated by McNamara [52], who
indeed also considers gravitational perturbations. Results of a similar nature for the
scalar wave equation were proven by Dafermos-Shlapentokh–Rothman [20] and in
[60]. These results all have in common that they only ensure the abstract existence
of solutions that become singular at the Cauchy horizon, but they do not provide
explicit criteria that ensure that a particular solution becomes singular. This gap was
filled for the scalar wave equation in collaboration with Luk in [49], which shows that
under the assumption of suitable upper and lower bounds on the decay along the event
horizon, the energy of the scalar field becomes unbounded at the Cauchy horizon.
(The wave itself remains bounded [24, 31].) It was later shown by Hintz [32] and
Angelopoulos-Aretakis-Gajic [2] that the assumed bounds on the event horizon are
generically satisfied.

The present work makes the step from the scalar wave equation to linearised grav-
itational perturbations in the form of the Teukolsky field [67]. Analogously to [49]
we exhibit conditions on the Teukolsky field along the event horizon, consisting of
integrated upper and lower bounds on the decay, which ensure the blow-up of the
Teukolsky field at the Cauchy horizon. More precisely, we show

Theorem 1.1 Assume ψ satisfies the Teukolsky equation with s = +2 and, along the
event horizonH+,

• assume that there exists p ∈ N s.t.
∫
H+∩{v+�1} v

2p
+ |ψ |2 volS2dv+ = ∞. Let p0 be

the smallest such integer and assume p0 � 2,
• ∫H+∩{v+�1} v

2p0+ |ψS(m0l0)|2 dv+ = ∞ for some m0 ∈ Z, l0 � max{2, |m0|},
where ψS(ml) denotes the projection of ψ on the (m, l) spin 2-weighted spherical
harmonic,

• ∫H+∩{v+�1} v
2p0+ |∂v+ψ |2 volS2dv+ <∞,

2 See also [45] for the linearised case.
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Fig. 2 The statement of
Theorem 1.1

• ∫H+∩{v+�1} v
qr+ |∂kψ |2 volS2dv+ < ∞ for some 2 < qr < 2p0 with qr ∈ R and

for all k = 0, 1, . . . , 7.3

It then follows that

∫

�∩{v+�1}
v
2p0+ |ψ |2 vol

S
2dv+ = ∞, (1.2)

where � is a hypersurface transversal to CH+ as in Figure2.

Here, v+ = t + r∗ and ∂v+ is the Killing vector field which is a time-translation
at spatial infinity, see also Section2.1. We also refer the reader to Theorem 3.9 in
Section3 for the precise statement of Theorem 1.1.

We would like to bring to the reader’s attention that the coordinate v+ is not regular
at the Cauchy horizon. There, V+r− = −eκ−v+ is a regular boundary defining function
with {V+r− = 0} being the Cauchy horizon. The constant κ− < 0 is the surface gravity

of CH+. Moreover, the regular Teukolsky field ψ̂ at CH+, i.e., the linearisation of
the Teukolsky s = +2 curvature component with respect to a regular frame at CH+,
is given by e−2κ−v+ψ = 1

(V+r− )2
ψ , modulo a regular factor which remains bounded

away from zero (and infinity) at CH+. We thus obtain that the conclusion (1.2) of
Theorem 1.1 with respect to regular quantities at CH+ reads

∫

�∩{v+�1}
[
log(−V+r−)

]2p0(−V+r−)3|ψ̂ |2 volS2dV+r− = ∞, (1.3)

which makes manifest the blow-up of the Teukolsky field with respect to a regular
frame at the Cauchy horizon.

Moreover, we note that in the slowly rotating case the assumptions made in Theo-
rem 1.1were recently shown to be satisfied generically ([51] and [15, 50]) for solutions
arising from compactly supported initial data on a global Cauchy hypersurface �0 as
in Figure1 with p0 = 7, l0 = 2 and m0 ∈ {−2,−1, 1, 2}. The parameter qr can be
chosen to be anything strictly less than 13. See also Remark 3.11 for further discussion.

Let us also remark that we expect Theorem 1.1 to be an important ingredient in
the analysis of the blue-shift instability at the Cauchy horizon for the full non-linear
vacuum Einstein equations.

3 See assumption (3.4) on page 29 for the precise statement.
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Fig. 3 The statement of
Theorem 1.4

1.1 The Case of the Full Non-linear Einstein Equations

Standard energy estimates entail that solutions of linear equations arising from regular
initial Cauchy data can at most become singular at the (null) boundary of the black
hole interior, i.e., at the Cauchy horizon of Kerr – but not earlier inside the black
hole. For the vacuum Einstein equations, however, which are non-linear, it is a priori
conceivable that the non-linearities amplify the blow-up and lead to the formation of
a singularity in the black hole interior which is everywhere spacelike. Whether this
happens or not has been contentious for a long time.

For the spherically symmetric Einstein-Maxwell-scalar field system numerical evi-
dence was presented in [5] which indicated that the non-linearities do not amplify the
blow-up in the sense that one always has a piece of a null singularity emanating from
timelike infinity in the Penrose diagram.4 This scenario in spherical symmetry was
later rigorously confirmed in the works [12, 13, 46, 47]. Indeed, if one only considers
sufficiently small perturbations of two-ended sub-extremal Reissner-Nordström initial
data, then the singularity only occurs along the bifurcate Cauchy horizon, i.e., there is
no piece of the singularity which is spacelike, see [14].

Concerning the vacuum Einstein equations Dafermos and Luk established the fol-
lowing seminal result:

Theorem 1.4 (Dafermos-Luk, [17]) Consider a suitable spacelike hypersurface �

in the interior of a sub-extremal Kerr black hole, see Figure3, and consider small
perturbations of the induced initial data which decay towards i+ with a rate that
is in particular compatible with what is expected to arise dynamically from small
perturbations of exact sub-extremal Kerr initial data on a global Cauchy hypersurface
�0 as in Figure1. Then the maximal globally hyperbolic development of the perturbed
initial data contains a region which is C0-close to, and the Penrose diagram of which
is given by, the darker shaded region of the unperturbed sub-extremal Kerr spacetime
as in Figure3.

This result in particular entails that also for the vacuum Einstein equations, and under
the assumptions of their theorem, the non-linearities do not amplify the blow-up to
create a spacelike singularity emanating from timelike infinity in the Penrose diagram
(cf. in Figure4). The result is only compatible with a null singularity emanating from
timelike infinity (i.e. the Cauchy horizon becoming singular) as in the spherically
symmetric case. But whether the Cauchy horizon is indeed generically singular is not
established in [17]. The result obtained in this paper is a first step in this direction.

4 Which can later on collapse to a spacelike singularity, see also [54] and the recent [69].
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Fig. 4 Spacelike singularity
emanating from i+ is ruled out.
Picture cannot occur

Note that Theorem 1.4 also shows that the metric remains continuous up to and
including the Cauchy horizon. Thus, if a singularity forms, it is not at the level of the
metric itself, as is the case for example for the Schwarzschild singularity (see [61, 62]),
but we expect that it is the connection which will generically become singular. This
expectation is mainly based on the spherically symmetric models discussed earlier for
which one also obtains that the metric extends continuously to the Cauchy horizon but
the connection becomes unbounded [12, 13, 46, 47, 63]. Such singularities have been
termed ‘weak null singularities’. The construction ofweak null singularities in vacuum
spacetimes without any symmetry was achieved in [43], where it was also shown that
they propagate (for some finite time). We expect that such weak null singularities as
given in [43] do generically form at the Cauchy horizon of perturbed Kerr.

1.2 Relation to the Strong Cosmic Censorship Conjecture

Going back to the result of this paper in the form of (1.3), and if one trusts the naive
expectation that there is a linearised Christoffel symbol which is better than ψ̂ by
a power of V+r− , i.e., of order V

+
r−ψ̂ , then (1.3) shows that this linearised Christoffel

symbol is not in L2
loc at the Cauchy horizon with respect to the differentiable structure

of the background. This makes contact with the modern formulation of the strong
cosmic censorship conjecture:
Strong cosmic censorship conjecture The maximal globally hyperbolic development
arising from generic asymptotically flat initial data for the vacuum Einstein equations
is inextendible as a Lorentzian manifold with a continuous metric and locally square
integrable Christoffel symbols.

The strong cosmic censorship conjecture was originally conceived by Penrose [56],
the formulation given here in terms of the initial value problem and the conjectured
breakdown of the regularity goes back to Christodoulou [10] and Chrusciel [11]. The
inextendibility as a Lorentzian manifold with g ∈ C0 and ∂g ∈ L2

loc in particular rules
out the extension of themaximal globally hyperbolic development as aweak solution.5

We note that for exact sub-extremal Kerr initial data the maximal globally hyperbolic
development is given in Figure1 and is in fact extendible in various ways across
the Cauchy horizon even as a smooth solution: determinism is violated. However,
as we discussed earlier, for generic small perturbations of exact sub-extremal Kerr
initial data we expect the blue-shift instability to turn the Cauchy horizon into a weak
null singularity and in this way preventing non-unique extensions as weak solutions.
Determinism would thus be restored generically.

5 See for example [30] or the introduction of [63].
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The result obtained in this paper can be thought of as a first step towards establishing
the generic divergence of curvature at the Cauchy horizon of non-linearly perturbed
sub-extremal Kerr – and thus the generic inextendibility as a Lorentzian manifold with
g ∈ C2. And with the earlier naive expectation that there is a (linearised) Christoffel
symbol of order V+r−ψ̂ it is also a first step towards showing that the metric cannot

be extended with g ∈ C0 and ∂g ∈ L2
loc in a particular natural-looking coordinate

system. However, the result does not contribute to developing methods which show
that no matter what coordinate system is chosen for the extension, the metric cannot
be extended in g ∈ C0 and ∂g ∈ L2

loc. This is an open problem. For recent progress
in this direction we refer the reader to [63].

1.3 Related Results and Directions Concerning the Interior of Black Holes

The studies mentioned earlier on perturbations of sub-extremal Reissner Nordström
under the spherically symmetric Einstein-Maxwell-scalar field system were extended
in [68] to the spherically symmetric Einstein-Maxwell-massive and charged scalar
field system. This matter model in particular allows for asymptotically flat one-ended
spherically symmetric black hole solutionswhich possess a Cauchy horizon and is thus
a good model to understand the contraction and breakdown of weak null singularities
in the interior of black holes [69].

For the behaviour of linear waves and of axisymmetric and polarized perturbations
in the interior of non-rotating (Schwarzschild) black holes see [1, 23].

Another interesting direction of research concerns the interior of extremal black
holes where the blue-shift instability at the Cauchy horizon is much weaker than in the
sub-extremal case. For results concerning linear waves see [25, 26] and for non-linear
results in spherical symmetry see [27].

Finally, for the investigation of the blue-shift instability in the presence of a cos-
mological constant � we refer the reader to [6, 14, 21, 22, 33] for � > 0 and to [35,
36] for � < 0 as well as to the references given in those papers.

1.4 Outline of Proof

A good, simple, and instructive model problem for gravitational perturbations in the
interior of a subextremal rotating Kerr black hole is the spherically symmetric scalar
wave equation in the interior of a subextremal charged Reissner-Nordström black
hole. The blue-shift instability in this scenario is well-established and various results
along with various methods of proof have been developed: the methods in [20, 52] are
based on the scattering map from characteristic initial data on the right even horizon
H+r (past null infinity I−) to the trace of the wave on the left Cauchy horizon CH+l ,
making crucial use of the time-translation invariance of this map. See Figure5 below
for the notation. The C1-instability results in [8, 37] are also obtained via scattering
theory together with meromorphic continuation. One can also use the geometric optics
(Gaussian beam) approximation together with an application of the closed graph the-
orem, see [60] and the introduction of [49], to capture a formulation of the blue-shift
instability. In [45] a neat argument by contradiction is given, using that one can solve

123



Instability of the Kerr Cauchy Horizon… Page 7 of 133     7 

the linear wave equation in spherical symmetry sideways. A proof in physical space
using energy estimates and at the heart of which is the conservation law associated to
the spacelike Killing vector field ∂t is presented in [49]. And finally, in [48], Luk, Oh,
and Shlapentokh–Rothman give another scattering theoretic proof of the blue-shift
instability at the Cauchy horizon. It is this last method of proof which is being taken
up in this paper and being implemented for the Teukolsky equation on Kerr. In the
following we shall first outline the argument from [48] in spherical symmetry and then
discuss the main differences to the proof in this paper.

1.4.1 Spherically Symmetric Scalar Waves on Reissner-Nordström

The interior of a charged subextremal Reissner-Nordström black hole is the Lorentzian
manifold6 (M, g), where M := R × (r−, r+) × S

2 with standard (t, r , θ, ϕ)-
coordinates and r± := M ± √M2 − e2, where 0 < |e| < M are real parameters
modelling the charge and the mass of the black hole, respectively. The Lorentzian
metric g is given by

g := −	

r2
dt2 + r2

	
dr2 + r2 (dθ2 + sin2 θ dϕ2),

with	 := r2−2Mr+e2. The spherically symmetric scalar wave equation�gφ = 0,
where φ : M → C is only a function of t and r , takes in the above coordinates the
form

0 = �gφ = −r2

	
∂2t φ +

1

r2
∂r (	∂rφ). (1.5)

Let r∗(r) be a function with dr∗
dr = r2

	
and then introduce the null coordinates v :=

r∗ + t and u := r∗ − t . We define κ± := r±−r∓
2r2±

and use those to introduce the

Kruskal-like null coordinates7 Vr+ := eκ+v and Ur+ := eκ+u in which the Lorentzian
manifold (M, g) extends analytically to r = r+ (r as a function of Vr+ ,Ur+ ) and
similarly Vr− := −eκ−v andUr− := −eκ−u in which the Lorentzian manifold extends
analytically to r = r−. The boundary null hypersurface {Vr+ = 0} =: H+l , at which
we have r = r+, is called the left event horizon, the boundary null hypersurface
{Ur+ = 0} =: H+r , at which we also have r = r+, the right event horizon, and the
boundary sphere {Vr+ = Ur+ = 0} =: S2

b is the bottom bifurcation sphere. Moreover,
we call the boundary null hypersurface {Ur− = 0} =: CH+l the left Cauchy horizon,
the boundary null hypersurface {Vr− = 0} =: CH+r the right Cauchy horizon, and
the boundary sphere {Vr− = Ur− = 0} =: S

2
t the top bifurcation sphere. A Penrose

diagram of (M, g) with the boundaries attached is given in Figure5 below.
In [48] the following theorem is shown

6 The definitions of symbols made here are only valid in this section. In the rest of the paper we will use
M, g, r+, r−, etc. to refer to objects and quantities on Kerr.
7 See also [30] for a more detailed discussion of the Reissner-Nordström spacetime.
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Fig. 5 The Interior of
Subextremal
Reissner-Nordström

Theorem 1.6 (Corollary 4.2 in [48]) Consider the region
(
M∪H+r

)∩{v � v0}∩{u �
u1} for some v0, u1 � 1 and let φ be a smooth solution of the spherically symmetric
wave equation (1.5) in this region, which, moreover, satisfies

lim
v→∞φ|H+r (v) = 0 and

∞∫

v0

v2|∂vφ|H+r |2 dv <∞ (1.7)

and there exists N 
 p0 � 2 such that

∞∫

v0

v2p0 |∂vφ|H+r |2 dv = ∞ (1.8)

holds. We further assume that p0 is the smallest such integer with this property. And
finally we assume

∞∫

v0

v2p0 |∂2v φ|H+r |2 dv <∞. (1.9)

Then for any u2 � u1 we have

∞∫

v0

v2p0
∣
∣∂vφ

∣
∣2(u2, v) dv = ∞. (1.10)

This is the local statement that is the analogue of Theorem 3.7 (or 1.1) for Teukolsky. It
is inferred from the following global statement, which is the analogue of Theorem 3.9
for Teukolsky, by an extension procedure of the solution.

Theorem 1.11 (Theorem 4.1 in [48]) Let φ be a smooth solution of the spherically
symmetric wave equation (1.5) onM ∪H+r ∪H+l . Suppose that in addition to (1.7),
(1.8), (1.9) (for somev0 � 1)wealso have that there existsv∗ ∈ R such thatφ|H+r (v) =
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0 for v � v∗ and there exists u∗ ∈ R such that φ|H+l (u) = 0 for u � u∗.8 Then (1.10)
holds for any u2 ∈ R (and any v0 ∈ R).

Before we discuss the structure of the proof, let us recall the formal separation of the
spherically symmetric wave equation (1.5). By taking the Fourier transform

qφ(r;ω) := 1√
2π

∫

R

φ(t, r)eiωt dt (1.12)

of φ in t one obtains that formally φ satisfies (1.5) if, and only if, qφ(r;ω) satisfies9

0 = r4ω2

	2
qφ(r;ω)+ ∂r	

	
∂r qφ(r;ω)+ ∂2r

qφ(r;ω). (1.13)

This ODE has two regular singular points at r = r+ and r = r−; for all ω �= 0 we can
find a fundamental system of solutions with asymptotics10

AH+r (r;ω) ∼ e−iωr∗ and AH+l
(r;ω) ∼ eiωr

∗
(1.14)

for r → r+ and another fundamental system of solutions with asymptotics

BCH+l
(r;ω) ∼ e−iωr∗ and BCH+r (r;ω) ∼ eiωr

∗
(1.15)

for r → r−, where r∗(r) is as defined earlier. Since any three solutions have to be
linearly dependent, we can write

AH+r (r;ω) = TH+r (ω)BCH+l
(r;ω)+RH+r (ω)BCH+r (r;ω)

and

AH+l
(r;ω) = TH+l

(ω)BCH+r (r;ω)+RH+l
(ω)BCH+l

(r;ω), (1.16)

where TH+r (ω), RH+r (ω) and TH+l
(ω), RH+l

(ω) are the transmission and reflection
coefficients of the right event horizon and left event horizon, respectively. A priori they
are only defined for ω ∈ R \ {0}, but it can be shown that they extend analytically to
all of R. A key ingredient needed for the proof of Theorem 1.11 is that TH+r (0) �= 0,
which can be shown using the ∂t -conservation law (see for example [37, 48]) or by
direct computation using special functions (see for example [29, 37]).

8 The important properties here are that φ vanishes at the bottom bifurcation sphere S
2
b and decays suffi-

ciently fast alongH+l . The first one is not strictly necessary, but simplifies the proof.
9 Equation (1.13) should be comparedwith (6.32). For theKerr casewewill do the separation in the analogue
of (v, r)-coordinates on Reissner-Nordström, which gives the radial ODE (5.28) which has solutions with
slightly different asymptotics. But this is not essential.
10 We introduce the following notation: for f , g : R ⊇ I → C the notation f ∼ g for I 
 x → x0 ∈ R

stands for limx→x0
f (x)
g(x) = 1. When obvious which limit point is considered, we may just write f ∼ g.
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For ω �= 0 we can thus expand any solution of (1.13) as qφ(r;ω) =
aH+r (ω)AH+r (r;ω) + aH+l

(ω)AH+l
(r;ω) with aH+r , aH+l

: R\{0} → C and thus, at
least formally,

φ(t, r) = 1√
2π

∫

R

(
aH+r (ω)AH+r (r;ω)+ aH+l

(ω)AH+l
(r;ω)

)
e−iωt dω (1.17)

is a solution of (1.5).
We now discuss the reduction of Theorem 1.6 to Theorem 1.11. Let φ : (M ∪

H+r ) ∩ {v � v0} ∩ {u � u1} → C be as in Theorem 1.6. One extends the induced
initial data onH+r ∩ {v � v0} smoothly to all ofH+r in such a way that φ|H+r (v) = 0
for v � v0 − 1. Using that we are in spherical symmetry, we can now solve the wave
equation sideways to extend φ to the region (M ∪H+r ∪H+l ) ∩ {u � u1}. Again we
extend the induced initial data onH+l ∩ {u � u1} to all ofH+l such that φ|H+l (u) = 0
for u � u1 + 1 and solve the wave equation forwards to get a global solution in
M∪H+r ∪H+l which satisfies the assumptions in Theorem 1.11. This is the reduction
of Theorem 1.6 to Theorem 1.11 by extension of φ.

We now turn towards the sketch of a proof of Theorem 1.11. One first shows that
the solution φ is indeed (i.e., not just formally) given by (1.17) with

aH+r (ω) = 1√
2π

∫

R

φ|H+r (v)e−iωv dv and

aH+l
(ω) = 1√

2π

∫

R

φ|H+l (u)e
iωu du (1.18)

being the (inverse) Fourier transforms of the characteristic initial data. This can be
established in (at least) two ways: one way is to start from the expression (1.17) with
the coefficients aH+r , aH+l

given by (1.18) and to show by direct computation that it
solves the wave equation (1.5) and attains the prescribed initial data when r → r+
and u or v, respectively, are fixed. By the uniqueness of the characteristic initial value
problem we thus obtain that (1.17) with (1.18) is indeed the wanted solution. Another
possibility, which will be implemented in this paper for Teukolsky on Kerr, is to first
prove via energy estimates decay of φ(t, r) in t for all r ∈ (r−, r+) which one uses to
justify that the Fourier transform (1.12) is well-defined for all r ∈ (r−, r+) and that it
satisfies (1.13). One then infers that φ must be given by (1.17) with some aH+r , aH+l

,
which one then determines by passing the expression (1.17) to the limit r → r+ for
either fixed u or fixed v. Since, as will become clear below, we only use the frequency
regime around ω = 0 of the wave to prove the blow-up, this second approach, in
contrast to the first one, allows us to completely ignore the behaviour of the other
frequency regimes in the separated picture. Let us also remark that since φ vanishes
at the bifurcation sphere, we do have exponential decay of φ in v, u along H+r ,H+l ,
respectively, when approaching the bifurcation sphere and thus aH+r and aH+l

are in

particular in L2
ω(R). If φ did not vanish at the bifurcation sphere, the coefficients aH+r ,
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aH+l
would have additional poles at zero frequency which encode the constant at the

bifurcation sphere.
We now investigate the regularity of the coefficient functions (1.18) around ω = 0.

First note that by (1.7) and a Hardy inequality11 we have ~φ|H+r ∈ L2(R). Furthermore
(1.8) and (1.9) imply

∂ p
ω(ω

~φ|H+r ) ∈ L2
ω(R) for all N 
 p < p0 (1.19)

∂ p0
ω (ω~φ|H+r ) /∈ L2

ω(R) (1.20)

∂ p0
ω (ω2

~φ|H+r ) ∈ L2
ω(R) . (1.21)

It follows from (1.19) and (1.21) that ω · ∂ p0
ω (ω~φ|H+r ) ∈ L2

ω(R). Together with (1.20)

this now implies ∂ p0
ω (ω~φ|H+r ) /∈ L2

ω

(
(−ε, ε)

)
for any ε > 0. By (1.18) we thus obtain

for any ε > 0

∂
p0
ω (ωaH+r ) /∈ L2ω

(
(−ε, ε)

)
and ∂

p
ω(ωaH+r ) ∈ L2ω

(
(−1, 1)) for all N 
 p < p0.

(1.22)

Furthermore we straightforwardly obtain

∂ p
ω(ωaH+l

) ∈ L2
ω

(
(−1, 1)) for all N 
 p � p0. (1.23)

We now move on to the analysis of the wave near the Cauchy horizon at r =
r−. Using for example energy estimates one shows that the wave φ extends (even
continuously) to the Cauchy horizon CH+l 12 and satisfies

∫

R

χ(v)
∣
∣∂vφ|CH+l

∣
∣2(v) dv <∞, (1.24)

where χ(v) : R → (0,∞) is a positive function with χ(v) � |v|2p0 for13 v → −∞
and χ(v) � |v|2(p0−1) for v →+∞. In particular one can take the Fourier transform
of ∂vφ|CH+l in L2. Using the language of the transmission and reflection coefficients
introduced earlier we can rewrite (1.17) as

φ(t, r) = 1√
2π

∫

R

([
TH+r (ω)aH+r (ω)+RH+l

(ω)aH+l
(ω)
]
BCH+l

(r;ω)

+ [TH+l
(ω)aH+l

(ω)+RH+r (ω)aH+r (ω)
]
BCH+r (r;ω)

)
e−iωt dω.

(1.25)

11 Recall that φ|H+r has exponential decay towards the bifurcation sphere.

12 It also extends continuously to CH+r .
13 For v → −∞ one can replace |v|2p0 by |v|q for any q ∈ N. For the definition of the notation � we
refer the reader to the very beginning of Section2.
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Noticing that the Killing vector field ∂t equals ∂v on CH+l and using the asymptotics
(1.15) of BCH+l

(r;ω) and BCH+r (r;ω), we can pass (1.25) to the limit r → r− for
fixed v to obtain

∂vφ|CH+l =
1√
2π

∫

R

(−i)[TH+r (ω) · (ωaH+r (ω)
)+RH+l

(ω) · (ωaH+l (ω)
)]

︸ ︷︷ ︸
= ­(∂vφ|CH+l )

e−iωv dω,

i.e., a Fourier representation of ∂vφCH+l
in terms of the Fourier representations of the

characteristic initial data and the transmission and reflection coefficients.14 We can
now investigate the decay of ∂vφ|CH+l in v by considering the regularity of ­(∂vφ|CH+l )
at ω = 0:

i∂ p0ω ( ­∂vφ|CH+l ) = TH+r (ω) · ∂ p0ω

(
ωaH+r (ω)

)+
p0∑

p=1

(
p0
p

)

∂
p
ωTH+r (ω) · ∂ p0−p

ω

(
ωaH+r (ω)

)

+
p0∑

p=0

(
p0
p

)

∂
p
ωRH+r (ω) · ∂ p0−p

ω

(
ωaH+l

(ω)
)
.

(1.26)

The last two terms (the two sums) on the right hand side are in L2
ω

(
(−1, 1)) by the

analyticity of the transmission and reflection coefficients TH+r (ω),RH+r (ω) and by
(1.23) and the second property in (1.22). It now follows from the first property in
(1.22) together with TH+r (0) �= 0 (cf. remark below (1.16)), applied to the first term

on the right hand side of (1.26) that ∂ p0
ω ( ­∂vφ|CH+l ) /∈ L2

ω

(
(−ε, ε)

)
for any ε > 0.

Plancherel now implies

∫

R

v2p0
∣
∣∂vφ|CH+l (v)

∣
∣2 dv = ∞.

This, however, does not tell us yet whether the slow decay of ∂vφ|CH+l in v is for
v →+∞ or for v →−∞. However, with (1.24) we can finally infer

∞∫

1

v2p0
∣
∣∂vφ|CH+l (v)

∣
∣2 dv = ∞.

The statement (1.10) of Theorem 1.11 then follows by propagating the singularity
backwards along CH+r , using energy estimates. This is a standard propagation of
regularity result. We have now concluded the sketch of a proof of Theorem 1.11 and
will discuss next how this method of proof changes for the Teukolsky field on Kerr.

14 Let us remark that a fully fledged scattering theory for the wave equation in the interior of a Reissner-
Nordström black hole has been presented in [37].
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1.4.2 Comparison to Teukolsky on Kerr

Wewillmainly use the (v+, r , θ, ϕ+)-coordinate systemonKerr, which can be thought
of as the analogue of the (v, r , θ, ϕ)-coordinate system on Reissner-Nordström. How-
ever, v+ is not a null coordinate anymore, but its level sets are timelike. The Teukolsky
equation takes the form15

0 = T[s]ψ := a2 sin2 θ ∂2v+ψ + 2a ∂v+∂ϕ+ψ + 2(r2 + a2) ∂v+∂rψ + 2a ∂ϕ+∂rψ

+	∂2r ψ + 2
(
r(1− 2s)− isa cos θ

)
∂v+ψ + 2(r − M)(1− s) ∂rψ

+ /̊	[s]ψ − 2sψ,

(1.27)

where the Teukolsky field ψ is with respect to an algebraically special frame which is
regular at the right event horizon H+r , cf. Sections2.2 and 2.3. For s = +2, the case
we are concerned with, the frame component entering the Teukolsky field degenerates
near H+l and thus a regular Teukolsky field ψ vanishes on the left event horizon
including at the bifurcation sphere.

Let us begin by discussing the differences between the energy estimates for Teukol-
sky and the linear wave equation. As is well-known, the spacetime geometry near the
event horizons is such that localised energy of linear waves decays exponentially. This
is usually referred to as the ‘red-shift effect’; it helps the analyst to close energy esti-
mates. The name of course derives from a shift in frequency, which is also present at
the event horizons. The shift in frequency and the decay of energy are not one and the
same thing – indeed, they decouple for the Teukolsky equation. We give a detailed dis-
cussion in Remark 4.20. For the energy estimates it is of course the decay of localised
energy which is most relevant – let us refer to this effect as the ‘red-shift effect for
energy’ in order to keep in touch with standard terminology. For the Teukolsky field
ψ (and for s = +2) we now have an effective blue-shift for the energy at the right
event horizon H+r . This can be seen from the dashed term in (1.27). It is effective in
the sense that it turns into a red-shift for the energy after two commutations with ∂r . It
is thus at this level that we close the energy estimate for the Teukolsky field nearH+r .
The Teukolsky equation for ψ̂ := 	−sψ , which is the Teukolsky field with respect
to a frame that is regular at the left event horizon16 H+l , does still have a red-shift for
energy near H+l ; so there, the energy estimates can be closed at the level of ψ̂ as for
the wave equation.

On the other hand, the blue-shift for energy for the wave equation near the Cauchy
horizon turns into an effective red-shift for energy for the Teukolsky field ψ near the
left Cauchy horizon CH+l . This makes the energy estimates for (1.27) near r = r−
in a sense even easier than for the wave equation (disregarding the more technical
nature of implementing the energy estimates for Teukolsky). It is again ‘effective’ in
the sense that after two commutations with ∂r we have again a blue-shift for energy.

15 We refer the reader to Section2 for the Kerr-related terminology. Here 	 = r2 − 2Mr + a2 and /̊	[s]
is the spin s-weighted spherical Laplacian, see Section2.3.4.
16 Recall that ψ degenerates (vanishes) at H+l .
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We now discuss the formal separation. Denoting with Y [s]ml (θ, ϕ;ω) = S[s]ml
(cos θ;ω)eimϕ the spin s-weighted spheroidal harmonics (see Section5.1; we have
N 
 l � max{|s|, |m|}, m ∈ Z), the Teukolsky transform of ψ is given by

qψml(r;ω) = 1√
2π

∫

R

∫

S
2
ψ(v+, r , θ, ϕ+)eiωv+Y [s]ml (θ, ϕ+;ω) dv+volS2 .

(1.28)

Formally,ψ satisfies theTeukolsky equation (1.27) if, and only if, qψml(r;ω) satisfies17

	
d2

dr2
qψml(r;ω)+ 2

(
− (r2 + a2)iω + iam + (r − M)(1− s)

) d

dr
qψml(r;ω)

+
(
λ
[s]
ml(ω)− (aω)2 + 2ωma − 2iωr(1− 2s)− 2s

)
qψml(r;ω) = 0.

(1.29)

Like (1.13), the radial ODE (1.29) has two regular singular points at r = r− and
r = r+. Let ω± = a

2Mr± and fix s = +2. For ω �= ω+m we can find a fundamental
system of solutions with asymptotics

AH+r ,ml(r;ω) ∼ 1 and AH+l ,ml(r;ω) ∼
( r+ − r

r+ − r−

)2+ 4iMr+
r+−r− (ω−ω+m)

for r → r+ and for ω �= ω−m another fundamental system of solutions with asymp-
totics

BCH+l ,ml(r;ω) ∼ 1 and BCH+r ,ml(r;ω) ∼
( r − r−
r+ − r−

)2− 4iMr−
r+−r− (ω−ω−m)

for r → r−. The fact that AH+r ,ml and BCH+l ,ml do not have oscillating phases as for the
wave equation in (1.14) and (1.15) is due to our choice of (v+, r , θ, ϕ+)-coordinates. If
we had used Boyer-Lindquist coordinates (t, r , θ, ϕ) for the separation, both branches
would be oscillatory. Note, however, the difference in the r -weights between the two
branches,which is related toψ being regular atH+r anddegenerate atH+l , and similarly
for the Cauchy horizons. Another important difference is that while the branches
AH+l ,ml and BCH+r ,ml extend analytically to ω = ω+m and ω = ω−m, respectively,
the branches AH+r ,ml and BCH+l ,ml become singular at ω = ω+m and ω = ω−m,
respectively. This should be contrasted with both branches AH+r and AH+l

in (1.14)
for the wave equation having a regular (and indeed identical) limit ω → 0 (similarly
for the other two branches in (1.15)). This difference impacts a priori on relating the
coefficients in the separated picture to the Teukolsky transform of the characteristic
initial data (more about this later) and also on the regularity of the transmission and

17 Here, λ[s]ml (ω) denotes the eigenvalue associated to the eigenfunction Y [s]ml (·;ω) of the spin 2-weighted
spheroidal Laplacian, see Section5.1.
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reflection coefficients: as before we can write

A[s]H+r ,ml
(r;ω) = T

[s]
H+r ,ml

(ω) · B[s]CH+l ,ml
(r;ω)+R

[s]
H+r ,ml

(ω) · B[s]CH+r ,ml
(r;ω)

A[s]H+l ,ml
(r;ω) = T

[s]
H+l ,ml

(ω) · B[s]CH+r ,ml
(r;ω)+R

[s]
H+l ,ml

(ω) · B[s]CH+l ,ml
(r;ω),

where the transmission and reflection coefficients are a priori only defined and analytic
on R \ {ω+m, ω−m}. Recall that the structure of the blow-up argument only requires
information on the frequency regime near ω = 0. So for m �= 0 we know that the
transmission and reflection coefficients are analytic in a neighbourhood of ω = 0.
Moreover, for non-vanishing m we show by direct computation that TH+r ,ml(0) �= 0,
where we use that for ω = 0 the radial ODE (1.29) turns into a hypergeometric
equation. For m = 0, however, the potentially problematic frequency at ω = 0 cannot
be avoided. We show that TH+l ,0 l ,RH+l ,0 l ,TH+r ,0 l all extend analytically to ω = 0,
but for the reflection coefficient of the right event horizon we only show thatω ·RH+r ,0l

extends analytically to ω = 0.18

It can also be shown by direct computation form = 0 thatTH+r ,0l(0) �= 0. However,
this is more complicated than in the case m �= 0, because it cannot be inferred alone
from the ω→ 0 limit of (1.29), which is a hypergeometric equation, but we also need
to get information on the ω-derivatives of solutions to (1.29) at ω = 0. We take this
as an opportunity to implement and demonstrate a second approach to showing the
non-vanishing of the transmission coefficients at ω = 0, namely by making use of the
Teukolsky-Starobinsky conservation law, which can be thought of as the equivalent
to using the conservation law associated to the Killing vector field ∂t in the case of
spherically symmetric waves on Reissner-Nordström mentioned in Section1.4.1. It is
for this implementation where we need that ωRH+r ,0l extends continuously to ω = 0.
Let us mention that we also show how the Teukolsky-Starobinsky conservation law
can be used to obtain TH+r ,ml(0) �= 0 for m �= 0, but in this case, which gives the
leading blow-up at the Cauchy horizon, the direct computation is much easier.

Finally, we also mention at this point that for a reason to be explained below we
also need in the case m = 0 the vanishing of RH+l ,0l(0) in order to implement the
blow-up argument. Again, this is shown by direct computation.

For ω �= ω+m we can expand any solution of (1.29) as

qψml(r;ω) = aH+r ,ml(ω)AH+r ,ml(r;ω)+ aH+l ,ml(ω)AH+l ,ml(r;ω)

with aH+r ,ml , aH+l ,ml : R\{ω+m} → C and thus, at least formally, we obtain that

ψ(v+, y, θ, ϕ+) = 1√
2π

∫

R

∑

m,l

[
aH+r ,ml(ω)AH+r ,ml(y;ω)

18 The analyticity of TH+l ,0l at ω = 0 is of no relevance to this paper and has not been explicitly stated,

but is also proven as a side-result in the proof of Proposition 6.27. And while we do not show thatRH+r ,0l
has indeed a pole at ω = 0, this is what we would expect – and it can be decided by a longer and direct
computation. However, this is of no relevance to this paper.
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+aH+l ,ml(ω)AH+l ,ml(y;ω)
]
Y [s]ml (θ, ϕ+;ω)e−iωv+ dω

(1.30)

is a solution to (1.27).
In a similar way to how the local Theorem 1.6 for the spherically symmetric wave

equation onReissner-Nordström is reduced to the global Theorem1.11,we also reduce
the local Theorem 1.1 (or Theorem 3.7) for the Teukolsky field of Kerr to a global
theorem, see Theorem 3.9. In spherical symmetry we extended the local solution to a
global one by first solving sideways and in this way ensuring that the extended solution
vanishes at the bottombifurcation sphere. For the Teukolsky equationwe can no longer
solve sideways, but, by solving two initial value problems, we can still extend the local
solution to a global one which is compactly supported on H+l ∪ S

2
b. This is done in

Theorem 8.6 in Section8.2, see also Figure9. However, we can no longer ensure that
the regular Teukolsky field vanishes at the bottom bifurcation sphere, which entails
that we have to deal with what is the analogue of the poles in the Fourier expansion
coefficients aH+r and aH+l

in the spherically symmetric case, cf. discussion above

(1.19).19

We now discuss the implementation of the proof of the global Theorem 1.11 to
Teukolsky on Kerr (i.e., the proof of Theorem 3.7 in Section3). In Sections4.1 and 4.2
we prove the energy estimates needed to establish the representation (1.30). The coeffi-
cients aH+r ,ml and aH+l ,ml are being determined in Section7.Keeping the v+ coordinate
fixed one can pass to the limit r → r+ in an analogousmanner as for the wave equation
to establish that

aH+l ,ml(ω) = ~ψ |H+r ml
(ω),

where |(·)ml is the Teukolsky transform (1.28). Note that because of the exponential
decay in v+ of ψ |H+r towards S

2
b we have that ψ |H+r is in particular in L2

v+L
2(S2), so

no poles are present. Because ψ vanishes onH+l , we first go over to the quantity ∂2r ψ ,
which is regular at H+l due to the blow-up of ∂r near H+l (see also Footnote 19). We

19 To be slightly more precise here, recall that ψ vanishes automatically at the bottom bifurcation sphere
because of the degeneration of the frame chosen. The Teukolsky analogue of the vanishing of the scalar
field at S

2
b , which avoids poles in the Fourier expansion coefficients, is the vanishing of ∂2r ψ , which is

non-degenerate at S
2
b due to the blow-up of ∂r in (v+, r , θ, ϕ+)-coordinates at S

2
b .

Being confronted with a non-trivial field at the bottom bifurcation sphere one might still entertain the
following approach, which can easily be implemented for the wave equation: by decomposing the initial
data, we write the solution ψ obtained by the above extension procedure as a superposition of a solution
ψ1, the initial data of which is supported onH+l ∪H+r only in a compact neighbourhood of S

2
b , and another

solution ψ2 that vanishes onH+l including at S
2
b (and agrees with ψ onH+r for late affine times). One can

now run the desired argument for ψ2 to obtain the singularity at the Cauchy horizon and then use standard
energy estimates for ψ1 to see that ψ1 is much more regular at the Cauchy horizon – and can essentially
be neglected. However, one runs into difficulty when trying to implement this strategy for Teukolsky due
to the effective blue-shift effect on H+r mentioned earlier. The reader can see directly from (1.27) that the
transversal derivative ∂rψ1 of the solution ψ1, whose trace on H+r vanishes for late affine times, will in
general grow exponentially along H+r – thus prohibiting the stability estimates. (For the wave equation,
due to the red-shift effect, the transversal derivative decays exponentially.) For this reason our proof of the
blow-up of the Teukolsky field at the Cauchy horizon is more global in nature than for the wave equation.
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thus take two r -derivatives of (1.30) and then pass to the limit r → r+ with fixed v−.20
However, it is clear from the preceding discussion that one cannot hope to establish an
L2-limit, since ∂2r ψ does not vanish at S2

b. We take a limit in the sense of distributions
to recover that aH+l ,ml is related to the Teukolsky transform of ∂2r ψ |H+l (modulo a

delta distribution). The support of the Teukolsky field at S
2
b implies that aH+l ,ml has

a pole at ω = ω+m. For m �= 0 we can ignore this pole, since it is disjoint from a
neighbourhood of ω = 0 which is important for the argument. But for m = 0 the
pole potentially interferes with our argument which is based on exploiting the limited
regularity of the Fourier coefficients at ω = 0. It is for this reason thatRH+l ,0l(0) = 0
is needed later, which cancels the pole.

Recall how we inferred for the spherically symmetric wave the limited regularity
(1.22) of aH+r at ω = 0 from the decay assumptions of ψ along H+r . In spherical
symmetry we only had one mode – the spherically symmetric one – for Teukolsky we
want to work with them0l0-mode for which we assume slow decay in Theorem 1.1 (or
Theorem 3.7). Note, however, that in the assumptions them0l0-mode is with respect to
spin 2-weighted spherical harmonics and not spin 2-weighted spheroidal harmonics.

So we would like to obtain for any ε > 0

∂
p0
ω aH+r ,m0l0

/∈ L2ω
(
(−ε, ε)

)
and ∂

p
ωaH+r ,m0l0

∈ L2ω
(− 1, 1

)
for all N 
 p < p0.

(1.31)

Note that the derivation of (1.22) used at its heart that v-weights translate in the
Fourier picture as ω-derivatives. Since the spin weighted spheroidal harmonics in the
Teukolsky transform (1.28) depend on ω, this correspondence does not hold true any
more for Kerr.21 Exploiting, however, that for ω = 0 the spin weighted spheroidal
harmonics agreewith the spinweighted spherical harmonics,we can still obtain (1.31),
see Proposition 7.5.

In an analogous way as for the spherically symmetric wave equation (see (1.25))
we can now express (1.30) in terms of the fundamental solutions BCH+l ,ml , BCH+r ,ml

normalised at the Cauchy horizons and the transmission and reflection coefficients
and prove energy estimates which allow us to pass to the limit r → r− with fixed v+
to obtain that

ψ |CH+l (v+, θ, ϕ+)

= 1√
2π

∫

R

∑

m,l

[
RH+l ,ml(ω)aH+l ,ml(ω)+ TH+r ,ml (ω)aH+r ,ml (ω)

]

︸ ︷︷ ︸
= ­(ψ |CH+l )

ml
(ω)

Y [s]ml (θ, ϕ+;ω)e−iωv+ dω.

As before, and using RH+l ,0l(0) = 0 in the case m0 = 0, we deduce that

∂
p0
ω

­(ψ |CH+l )ml
(ω) /∈ L2

ω

(
(−ε, ε)

)
for any ε > 0. When converting this into the state-

20 See Section2.1 for the definition of v−. It can be thought of as the analogue of u in Reissner-Nordström.
21 This is not an issue arising from considering Teukolsky versus the wave equation, but already appears
when considering the wave equation on Kerr.
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ment
∫

R

∫

S
2
|v p0+ ψ |CH+l (v+, θ, ϕ+)|

2 vol
S
2dv+ = ∞ (1.32)

we again have to address the complication that v-weights do not exactly correspond
to ω-derivatives. This is done by proving bounds on ∂kωY

[s]
ml (θ, ϕ+;ω), see Proposi-

tions 5.6 and 5.22. As for the spherically symmetric model we prove energy estimates
in Section4.3 to show that the infinitude of the integral in (1.32) is due to the behaviour
of ψ for large positive v+ and also that we can propagate the singularity backwards.
This concludes the outline of the proof.

1.5 Outline of Paper

In Section2 we begin by introducing the interior of the Kerr black hole, then recall
briefly the derivation of the Teukolsky equation, andwe define spinweighted functions
on the sphere as well as on spacetime. Moreover, we show that the Teukolsky field has
the regularity of such a spin weighted function on spacetime and we record the form
of the Teukolsky equation in various coordinate systems for later reference. Section3
formulates the main theorems of this paper and their assumptions. The proof of the
main theorems begins in Section4 where we establish the energy estimates required
and record somecorollarieswhich are needed later for the limits r → r±, the separation
of the solution, the extension to the Cauchy horizon, and the backwards propagation of
the singularity. In Section5we recall the spinweighted spheroidal harmonics, establish
a couple of results which are needed for the translation of v+-weights toω-derivatives,
and then use the energy estimates to give the separation of the Teukolsky field. We
continue in Section6 with the analysis of the radial Teukolsky ODE, introduce the
fundamental systems of solutions we work with, and prove the required properties of
the transmission and reflection coefficients. Section7 is concerned with the passing
to the limit r → r+ and the determination of the Fourier coefficients in terms of the
characteristic initial data. And finally in Section8 we conclude the proofs of the main
theorems. Appendix A records the form of the Teukolsky equation in coordinates
which are regular near the bottom bifurcation sphere and discusses the initial value
problem for Teukolsky, which is needed for the extension procedure which reduces
the local Theorem 3.7 to the global Theorem 3.9. The Appendices B, C, and D collect
commutator expressions required for the energy estimates in Section4.

2 The Interior of Sub-extremal Kerr and Gravitational Perturbations

This section presents the set-up of this paper. We first introduce the geometry of
the interior of a sub-extremal Kerr black hole and then recall the derivation of the
Teukolsky equation along with the notion of spin weighted functions. We also show
that the geometrically arising Teukolsky field is indeed such a spin weighted function.

We also introduce the following notation: for a function f and a non-negative
function g the notation f � g means that there exists a constant C > 0 such that

123



Instability of the Kerr Cauchy Horizon… Page 19 of 133     7 

| f (x)| � C ·g(x) holds for all points x for which both functions are defined. If we say
‘ f � g on A’, where A is a subset of the domains of definition of f and g, then this
means that there exists a constant C > 0 such that | f | � C · g holds on A. Similarly,
‘ f � g for x → x0’ means that there exists a neighbourhood A of x0 such that f � g
on A. Here, x0 may also be∞. The notations ‘ f � g as x → x0’ and ‘ f = O(g)
as x → x0’ have the same meaning.22 Finally, if both f and g are non-negative, then
the notation f � g stands for ‘ f � g and g � f ’, i.e., there exists a constant C > 0
such that 1

C f � g � C · g. Again, we may specify a region or a limit in which f � g
is supposed to hold.

2.1 TheManifold andMetric of the Interior of Sub-extremal Kerr

We consider the standard (t, r , θ, ϕ) coordinates on the smooth manifold M = R×
(r−, r+)×S

2, where r− = M−√M2 − a2, r+ = M+√M2 − a2, and 0 < |a| < M
are constants which later represent the angular momentum per unit mass and the mass
of the black hole, respectively. A Lorentzian metric g on M is defined by

g = gtt dt
2 + gtϕ (dt ⊗ dϕ + dϕ ⊗ dt)+ ρ2

	
dr2 + ρ2 dθ2 + gϕϕ dϕ

2, (2.1)

where

ρ2 = r2 + a2 cos2 θ, gtt = −1+ 2Mr
ρ2 ,

	 = r2 − 2Mr + a2, gtϕ = − 2Mra sin2 θ
ρ2 ,

gϕϕ =
[
r2 + a2 + 2Mra2 sin2 θ

ρ2

]
sin2 θ.

Note that r− < r+ are the roots of 	. We also compute det g = −ρ4 sin2 θ for
later convenience. We fix a time orientation on the Lorentzian manifold (M, g) by
stipulating that−∂r is future directed. The timeorientedLorentzianmanifold (M, g) is
called the interior of a sub-extremal Kerr black hole and the coordinates (t, r , θ, ϕ) are
called Boyer–Lindquist coordinates. Moreover, let us fix an orientation by stipulating
that the Lorentzian volume form vol = ρ2 sin θ dt ∧ dr ∧ dθ ∧ dϕ is positive. A
longer computation yields that (M, g) is a solution to the vacuum Einstein equations
Ric(g) = 0.

22 The reason we use both notations is that we find it convenient to use theO notation within equations: an
equation of the form f = t ·O(g)+h has to be read as ‘ f = t ·u+h with u = O(g)’. The limit associated
with the O notation is often understood from the context and not mentioned explicitly.
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For later reference we note that the inverse metric g−1 in the Boyer–Lindquist
coordinates (t, ϕ, r , θ) is given by

g−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

− gϕϕ
	 sin2 θ

gtϕ
	 sin2 θ

0 0
gtϕ

	 sin2 θ
− gtt

	 sin2 θ
0 0

0 0 	
ρ2 0

0 0 0 1
ρ2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (2.2)

In the followingwewill attach boundaries toM. Let r∗(r) be a function on (r−, r+)
satisfying dr∗

dr = r2+a2
	

and r(r) a function on (r−, r+) satisfying dr
dr = a

	
. We now

define the following functions on M:

v+ := t + r∗ , ϕ+ := ϕ + r mod 2π ,

v− := r∗ − t , ϕ− := ϕ − r mod 2π .

It is easy to check that (v+, ϕ+, r , θ) and (v−, ϕ−, r , θ) are coordinate systems for
M. The metric g in these coordinates takes the following form:

g = gtt dv
2+ + gtϕ

(
dv+ ⊗ dϕ+ + dϕ+ ⊗ dv+

)+ gϕϕ dϕ2+ +
(
dv+ ⊗ dr + dr ⊗ dv+

)

− a sin2 θ
(
dr ⊗ dϕ+ + dϕ+ ⊗ dr

)+ ρ2 dθ2

= gtt dv
2− − gtϕ

(
dv− ⊗ dϕ− + dϕ− ⊗ dv−

)+ gϕϕ dϕ2− +
(
dv− ⊗ dr + dr ⊗ dv−

)

+ a sin2 θ
(
dr ⊗ dϕ− + dϕ− ⊗ dr

)+ ρ2 dθ2.

A simple computation shows that those expressions define non-degenerate (and ana-
lytic) Lorentzian metrics for all positive values of r . We now set

κ± = r± − r∓
2(r2± + a2)

and define the Kruskal-like coordinate functions

V+r+ := eκ+v+

V−r+ := eκ+v−

�r+ := ϕ − at

r2+ + a2
.

The Kruskal-like coordinates (V+r+ , V
−
r+ , θ,�r+)mapM onto (0,∞)× (0,∞)× S

2.
It can be shown (see [53], Chapter 3.5) that the Kerr metric (2.1) extends, under this
mapping, regularly to themanifold [0,∞)×[0,∞)×S

2.We call the null hypersurface
{0} × [0,∞)× S

2 =: H+� the (left) event horizon and the null hypersurface [0,∞)×
{0}×S

2 =: H+r the (right) event horizon. The sphere {0}×{0}×S
2 = H+r ∩H+� =: S2

b
is called the (bottom) bifurcation sphere.
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Fig. 6 The interior of
sub-extremal Kerr

Fig. 7 The coordinate functions
t, r , v−, and v+

In order to extend M to r = r−, we define another set of Kruskal-like coordinate
functions by

V+r− := −eκ−v+
V−r− := −eκ−v−

�r− := ϕ − at

r2− + a2
.

The Kruskal-like coordinates (V+r− , V
−
r− , θ,�r−)mapM onto (−∞, 0)× (−∞, 0)×

S
2 and in the same way it can be shown that the Kerr metric (2.1) extends in these

coordinates regularly to (−∞, 0] × (−∞, 0] × S
2. We call the null hypersurface

{0} × (−∞, 0] × S
2 =: CH+r the (right) Cauchy horizon and the null hypersurface

(−∞, 0] × {0} × S
2 =: CH+l the (left) Cauchy horizon. The sphere {0} × {0} × S

2 =
CH+r ∩ CH+l =: St is called the (top) bifurcation sphere.

Using the two Kruskal-like coordinate systems we define the manifold with corners
M :=M∪H+l ∪H+r ∪CH+l ∪CH+r , which is depicted in a Penrose-style diagram23

in Figure6. Figure7 shows the behaviour and range of the functions t, r , v−, and
v+. We also define the manifolds with corners M := M ∪ H+l ∪ H+r and M :=
M ∪ CH+l ∪ CH+r .

We also note that the coordinates {v+, ϕ+, r , θ} coverM∪ (H+r \S2
b)∪ (CH+l \S2

t ).
For later reference we express the Boyer-Lindquist coordinate vector fields (on the

23 To be more precise, depicted is a slice of constant 0 < θ < π and each point represents an S
1.
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left) in terms of the {v+, ϕ+, r , θ} coordinate vector fields (on the right):

∂

∂r

∣
∣
∣
t
= r2 + a2

	
∂v+ +

a

	
∂ϕ+ + ∂r

∂

∂t
= ∂v+

∂

∂ϕ
= ∂ϕ+

∂

∂θ
= ∂θ .

(2.3)

We also note that the volume form in {v+, ϕ+, r , θ}-coordinates is given by vol =
ρ2 sin θ dv+ ∧ dr ∧ dθ ∧ dϕ+.

Similarly we express the Boyer-Lindquist coordinate vector fields (on the left) in
terms of the {v−, ϕ−, r , θ} coordinate vector fields (on the right):

∂

∂r

∣
∣
∣
t
= r2 + a2

	
∂v− −

a

	
∂ϕ− + ∂r

∂

∂t
= −∂v−

∂

∂ϕ
= ∂ϕ−

∂

∂θ
= ∂θ .

(2.4)

We also note that the volume form in {v−, ϕ−, r , θ}-coordinates is given by vol =
ρ2 sin θ dv− ∧ dr ∧ dθ ∧ dϕ−.

Note that < dv+, dv+ >=< dv−, dv− >= a2 sin2 θ
ρ2 , thus showing that for a > 0

the level sets of v+ and v− are timelike hypersurfaces away from the axis.
We now define the functions f + := v+ − r + r+ and f − := v− − r + r−. An easy

computation gives

< d f +, d f + >=< d f −, d f − >= a2 sin2 θ

ρ2 + 	

ρ2 −
2(r2 + a2)

ρ2 (2.5)

which shows that the level sets of f + and f − are spacelike hypersurfaces, cf. Figure7.
Moreover, it is immediate that the level sets of r are spacelike hypersurfaces.

2.1.1 Relation of8r+ and'+ onH+
r – and Similarly for8r+,'− onH+

l

We define ω± := a
r2±+a2

and set

φ±(r) := ω±r∗ − r = a

r2± + a2
r∗ − r .

This defines smooth functions for r ∈ (r−, r+). Moreover, φ+ extends smoothly to r+
and φ− extends smoothly to r−: for φ+ this follows from

d

dr
φ+(r) = a

r2+ + a2
dr∗

dr
− dr

dr
= a

r2+ + a2
r2 + a2

	
− a

	
= a

	

( r2 + a2

r2+ + a2
− 1
)
,

where the right hand side clearly extends smoothly to r = r+. We denote
limr→r+ φ+(r) =: φ+(r+). Similarly for φ− and we denote limr→r− φ−(r) =:
φ−(r−).
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Wewill also need to relate the angular functions�r+ and ϕ+ (ϕ−) on the right (left)
event horizon, where they are both defined. For r ∈ (r−, r+) we have

�r+ = ϕ − at

r2+ + a2

= ϕ+ − a

r2+ + a2
v+ + φ+(r)

= ϕ− + a

r2+ + a2
v− − φ+(r).

OnH+r we thus have

�r+ = ϕ+ − ω+v+ + φ+(r+),

while on H+l we have

�r+ = ϕ− + ω+v− − φ+(r+).

2.1.2 Estimates for r∗ near r = r±

We write dr∗
dr = r2+a2

(r−r+)(r−r−) = r2++a2
(r−r+)(r+−r−) + f+(r) with a function f+ :

(r−, r+)→ R that extends regularly to r+. Integration gives

r∗(r) = 1

2κ+
log(r+ − r)+ F+(r) (2.6)

with a function F+ : (r−, r+) → R that extends regularly to r+. Recalling r∗ =
1
2 (v+ + v−) we obtain

V+r+V
−
r+ = eκ+(v++v−) = (r+ − r)e2κ+F+(r) = O(r+ − r). (2.7)

Similarly, we obtain

r∗(r) = 1

2κ−
log(r − r−)+ F−(r) (2.8)

with a function F− : (r−, r+)→ R that extends regularly to r−.

2.2 The Principal Null Frame

For convenience we introduce the abbreviations S = sin θ and C = cos θ . Moreover,
using the Boyer–Lindquist coordinates, we define

V = (r2 + a2)∂t + a∂ϕ and W = ∂ϕ + aS2∂t .
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A principal null frame is then given by

e1 := 1

ρ
∂θ , ê3 := 	

ρ2 ∂r −
1

ρ2 V ,

e2 := W

|W | =
1

ρS
(∂ϕ + aS2∂t ), ê4 := −∂r − 1

	
V .

The vector fields ê3 and ê4 are null and future directed and satisfy 〈ê3, ê4〉 = −2. Let
us denote the distribution spanned by ê3 and ê4 by � and the distribution orthogonal
to� by�⊥. The vector fields e1 and e2 are not defined on the axis, but where defined
they form an orthonormal basis for �⊥.

Note that in (v−, r , θ, ϕ−)-coordinates we have24

ê3 = 	

ρ2

∂

∂r

∣
∣
∣− −

2

ρ2 V and ê4 = − ∂

∂r

∣
∣
∣−,

while in (v+, r , θ, ϕ+)-coordinates we have

ê3 = 	

ρ2

∂

∂r

∣
∣
∣+ and ê4 = − ∂

∂r

∣
∣
∣+ −

2

	
V .

Hence, the null vectors ê3 and ê4 are regular at the left event horizon H+l and at the
right Cauchy horizon CH+r , but not at the right event horizonH+r and at the left Cauchy
horizon CH+l . There, the vector fields

e3 := − 1

	
ê3 and e4 := −	 ê4

are regular.

2.3 The Teukolsky Equation and Spin-Weighted Functions

2.3.1 Gravitational Perturbations in the Newman-Penrose Formalism

In the followingwe recall the basic steps in the derivation of the Teukolsky equation for
gravitational perturbations of Kerr, see [67]. We start by clarifying that our convention
for the Riemann curvature tensor is

Rμ
νρσ = dxμ

(
R(∂ρ, ∂σ )∂ν

) = dxμ
(
∇∂ρ∇∂σ ∂ν −∇∂σ∇∂ρ ∂ν

)

= ∂ρ�
μ
νσ − ∂σ�

μ
νρ + �μ

κρ�
κ
νσ − �μ

κσ�
κ
νρ

where xμ denotes a local coordinate system.

24 In the following
∣
∣± indicates a partial derivative in the (v±, r , θ, ϕ±) coordinate system.
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We now make contact with and follow [67] by setting

l = −ê4 , n = −1

2
ê3 , ma = 1√

2
· ρ

r + ia cos θ
(e1 + i · e2). (2.9)

With respect to this complex principal null frame we have25

�0 = R(l,ma, l,ma) = 0

�1 = R(l, n, l,ma) = 0

�2 = R(l,ma,ma, n) = − M

(r − ia cos θ)3

�3 = R(l, n,ma, n) = 0

�4 = R(n,ma, n,ma) = 0.

(2.10)

Let now g(s), s ∈ [0, ε), be a smooth family of Lorentzian metrics defined on M ∪
H+l ∪H+r satisfying the vacuum Einstein equations Ric

(
g(s)

) = 0 and such that g(0)
is the metric (2.1) of sub-extremal Kerr. Moreover, let l(s), n(s), ma(s), ma(s) be a
complex frame field (not necessarily null) such that for s = 0 they agree with (2.9)
and define �i (s) in analogy with (2.10) for all s. It now follows from (2.10) that

�̇0(0) = d

ds

∣
∣
∣
s=0

(
R
(
g(s)

)(
l(s),ma(s), l(s),ma(s)

))

!=
( d

ds

∣
∣
∣
s=0R

(
g(s)

))(
l(0),ma(0), l(0),ma(0)

)
,

i.e., �̇0(0) is in fact independent of the continuation of the complex principal null
frame (2.9) for s > 0. Moreover, because �0 is a vanishing scalar, �̇0(0) is also
gauge invariant. The same observations hold for �̇4(0). In [67], Teukolsky derived the
following equation, now called the Teukolsky equation,

−
[ (r2 + a2)2

	
− a2 sin2 θ

]
∂2t ψ̂s − 4Mar

	
∂t∂ϕψ̂s −

[a2

	
− 1

sin2 θ

]
∂2ϕψ̂s

+	−s∂r (	s+1∂r ψ̂s)+ 1

sin θ
∂θ (sin θ∂θ ψ̂s)+ 2s

[a(r − M)

	
+ i cos θ

sin2 θ

]
∂ϕψ̂s

+ 2s
[M(r2 − a2)

	
− r − ia cos θ

]
∂t ψ̂s −

[ s2 cos2 θ

sin2 θ
− s
]
ψ̂s = 0,

(2.11)

which is satisfied for s = +2 by ψ̂2 = �̇0(0) and for s = −2 by ψ̂−2 = (r −
ia cos θ)4 · �̇4(0).

25 See [67] or [7], taking into account that they consider Lorentzian metrics of signature (+,−,−,−), i.e.,
R(−g)μνρσ = −R(g)μνρσ .
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2.3.2 The Teukolsky Equation for a Regular Field NearH+
r

We recall that l = −ê4 blows up at the right event horizon H+r and that 	l = e4 is
regular at H+r . Hence, the curvature component α = R(e4,ma, e4,ma) = 	2�0 is
regular at H+r (and vanishes at H+l ) and for its linearisation α̇ we obtain α̇ = 	2�̇0.
This motivates to set ψs := 	sψ̂s . It now follows that if ψ̂s satisfies (2.11), then ψs

satisfies

T[s]ψs := −
[ (r2 + a2)2

	
− a2 sin2 θ

]
∂2t ψs − 4Mar

	
∂t∂ϕψs −

[a2

	
− 1

sin2 θ

]
∂2ϕψs

+	−s∂r (	s+1∂rψs)+ 1

sin θ
∂θ (sin θ∂θψs)+ 2s

[a(r − M)

	
+ i cos θ

sin2 θ

]
∂ϕψs

+ 2s
[M(r2 − a2)

	
− r − ia cos θ

]
∂tψs −

[ s2 cos2 θ

sin2 θ
+ s
]

× ψs − 4s(r − M)∂rψs = 0,

(2.12)

where we have used

	s ·	−s∂r (	s+1∂r ψ̂s) = 	−s∂r (	s+1∂rψs)− 4s(r − M)∂rψs − 2sψs .

In particular, the quantity we are most interested in, α̇ = ψ2, satisfies (2.12) for
s = +2.

Using the definition of the wave operator

�gψ = 1√− det g
∂μ(g

μν
√− det g ∂νψ),

we can rewrite (2.12) as

1

ρ2 T[s]ψs = �gψs − 2s

ρ2 (r − M)∂rψs + 2s

ρ2

(a(r − M)

	
+ i

cos θ

sin2 θ

)
∂ϕψs

+ 2s

ρ2

(M(r2 − a2)

	
− r − ia cos θ

)
∂tψs − 1

ρ2 (s + s2
cos2 θ

sin2 θ
)ψs = 0.

(2.13)

2.3.3 Spin s-weighted Functions on S
2

In the followingwewill exhibit the appropriate function space onwhich the Teukolsky
equation (2.12) is defined – and in particularwhich function spaces α̇ and �̇0(0) belong
to (it is immediate from their definition that they are not regular at θ = 0, π ). We begin
by discussing spin s-weighted functions on the 2-sphere which arise by expressing
tensors on S

2 with respect to a (necessarily) non-global frame field. We consider the
standard (θ, ϕ) coordinate system on S

2 in which the round metric takes the form
g

S
2 = dθ2 + sin2 θ dϕ2 and choose as an orthonormal frame field E1 = ∂θ and
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E2 = 1
sin θ

∂ϕ , which are defined away from the north pole at {θ = 0} and the south
pole at {θ = π}. We combine this frame field into a single complex vector

m = 1√
2
(∂θ + i

sin θ
∂ϕ).

Consider now the space �∞(S2T ∗S2) of all smooth symmetric 2-covariant tensor
fields on S

2 and define a map

ιm : �∞(S2T ∗S2)→ C∞(S2 \ {θ = 0, π}) ∩ L∞(S2) (2.14)

by ιm(α) = α(m,m).

Definition 2.15 The space of smooth spin 2-weighted functions on S
2 is defined as

I∞[2](S2) := ιm
(
�∞(S2T ∗S2)

) ⊆ C∞(S2 \ {θ = 0, π}) ∩ L∞(S2)

Remark 2.16 For α ∈ S2T ∗S2 we compute

α(m,m) = 1

2

(
αθθ + i

sin θ
αθϕ + i

sin θ
αϕθ − 1

sin2 θ
αϕϕ

) = 1

2

(
αθθ − 1

sin2 θ
αϕϕ

)

+ i

sin θ
αθϕ

where we have used the symmetry of α. It follows that g
S
2(m,m) = 0 and thus the

kernel of ιm contains g
S
2 · C∞(S2). We now show that the kernel of ιm equals g

S
2 ·

C∞(S2). We note that �∞(S2T ∗S2)/g
S2 ·C∞(S2) � �∞(S2tfT

∗
S
2), where �∞(S2tfT

∗
S
2)

denotes the space of all smooth symmetric and trace-free 2-covariant tensor fields on
S
2. For α ∈ �∞(S2tfT

∗
S
2) we have αθθ + 1

sin2 θ
αϕϕ = 0 and thus

α(m,m) = αθθ + i

sin θ
αθϕ,

which shows that α(m,m) characterises α uniquely. This shows that ιm
∣
∣
�∞(S2tfT

∗S2) :
�∞(S2tfT

∗
S
2)→ I∞[2](S

2) is an isomorphism.26

We also remark that the space of smooth spin −2-weighted functions is defined as
the image of �∞(S2T ∗S2) under ιm in C∞(S2\{θ = 0, π}), where m is the complex
conjugate ofm. Although not needed in this paper, we also briefly remark that smooth
spin (±1)-weighted functions are defined as the images (under ιm and ιm) of all smooth
one-forms on S

2. We also remark that it follows directly from the definition that the
spaces of smooth spinweighted functions are invariant undermultiplication by smooth
functions on S

2.

26 Indeed, one could have defined the space I∞[2](S2) as the image of �∞(S2tfT
∗
S
2) under ιm . However,

for the proof of Proposition 2.47 we will need that α(m,m) ∈ I∞[2](S2) even if α is not trace-free.
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We now give an intrinsic characterisation of the spin s-weighted functions on S
2.

We define

Z̃1 = − sin ϕ ∂θ + cosϕ

(

−is 1

sin θ
− cos θ

sin θ
∂ϕ

)

Z̃2 = − cosϕ ∂θ − sin ϕ

(

−is 1

sin θ
− cos θ

sin θ
∂ϕ

)

Z̃3 = ∂ϕ.

(2.17)

These first order differential operators satisfy [Z̃1, Z̃2] = Z̃3, [Z̃2, Z̃3] = Z̃1, and
[Z̃3, Z̃1] = Z̃2.

Proposition 2.18 f ∈ C∞(S2 \ {θ = 0, π}) lies in I∞[s](S
2) if, and only if,

eisϕ(Z̃1)
k1(Z̃2)

k2(Z̃3)
k3 f extends continuously to the north pole θ = 0 and

e−isϕ(Z̃1)
k1(Z̃2)

k2(Z̃3)
k3 f extends continuously to the south pole θ = π for all

0 � k1 + k2 + k3 <∞, ki ∈ N0.

Before we give the proof we recall that the vector fields

Z1 = − sin ϕ ∂θ − cosϕ
cos θ

sin θ
∂ϕ

Z2 = − cosϕ ∂θ + sin ϕ
cos θ

sin θ
∂ϕ

Z3 = ∂ϕ

(2.19)

are smooth on S
2, span TS

2 at each point of S
2, and satisfy [Z1, Z2] = Z3, [Z2, Z3] =

Z1, and [Z3, Z1] = Z2.

Proof We observe that

√
2eiϕm =

(

cosϕ ∂θ − sin ϕ

sin θ
∂ϕ

)

+ i
(
sin ϕ ∂θ + cosϕ

sin θ
∂ϕ

)

=
(

−Z2 + sin ϕ

sin θ
[cos θ − 1]Z3

)

+ i
(
−Z1 − cosϕ

sin θ
[cos θ − 1]Z3

)

is continuous at the north pole θ = 0 and, similarly,

√
2e−iϕm =

(

cosϕ ∂θ + sin ϕ

sin θ
∂ϕ

)

+ i
(cosϕ

sin θ
∂ϕ − sin ϕ ∂θ

)

=
(

−Z2 + sin ϕ

sin θ
[cos θ + 1]Z3

)

+ i
(
Z1 + cosϕ

sin θ
[cos θ + 1]Z3

)
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is continuous at the south pole θ = π . Moreover, we compute

LZ1m = i
cosϕ

sin θ
· m

LZ2m = −i
sin ϕ

sin θ
· m

LZ3m = 0.

For s = +2 and α ∈ �∞(S2T ∗S2) we now compute

(LZiα)(m,m) = LZi

(
α(m,m)

)− 2α(LZi m,m) = Z̃i
(
α(m,m)

)
. (2.20)

Iteratively, we obtain

(
(LZ1)

k1(LZ2)
k2(LZ3)

k3α
)
(m,m) = (Z̃1)

k1(Z̃2)
k2(Z̃3)

k3
(
α(m,m)

)
(2.21)

for 0 � k1 + k2 + k3 <∞.
Given now f = α(m,m) ∈ I∞[s](S

2), it follows from (2.21) together with the above
observations that

ei2ϕ(Z̃1)
k1(Z̃2)

k2(Z̃3)
k3 f = e2iϕ

(
(LZ1)

k1(LZ2)
k2(LZ3)

k3α
)
(m,m)

= ((LZ1)
k1(LZ2)

k2(LZ3)
k3α
)
(eiϕm, eiϕm)

extends continuously to the north pole. The analogous computation shows the claim
for the south pole.

Vice versa, let f ∈ C∞(S2 \ {θ = 0, π}) satisfy the continuity properties stated
in the proposition. By Remark 2.16 α(m,m) := f defines a smooth symmetric and
trace-free two-covariant tensor field (over R) on S

2 \ {θ = 0, π}). It now follows as
before from (2.21) that this tensor field extends smoothly to the north and south pole.

The statement of the proposition for s = −2 (as well as for s = ±1) follows
analogously. ��

Now we introduce spin weighted Sobolev spaces. Some properties of those will
later be needed for the energy estimates and Sobolev embeddings of spin weighted
functions.

Definition 2.22 The spin s-weighted Sobolev space Hm[s](S
2) is defined by

Hm[s](S2) := { f ∈ L2(S2) | (Z̃1)
k1(Z̃2)

k2(Z̃3)
k3 f ∈ L2(S2) for all

0 � k1 + k2 + k3 � m, ki ∈ N0}.

We denote with S
2+ the (closed) northern hemisphere of S

2 and with S
2− the (closed)

southern hemisphere.

Lemma 2.23 If f ∈ H j
[s](S

2), then eisϕ f ∈ H j (S2+) and e−isϕ f ∈ H j (S2−) for
j = 1, 2.
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Proof We compute

Z1(e
±isϕ f ) = e±isϕ

(
Z̃1 f + is

cosϕ

sin θ
(1∓ cos θ)

︸ ︷︷ ︸
=:a∓

f
)

Z2(e
±isϕ f ) = e±isϕ

(
Z̃2 f − is

sin ϕ

sin θ
(1∓ cos θ)

︸ ︷︷ ︸
=:b∓

f
)

Z3(e
±isϕ f ) = e±isϕ

(
Z̃3 f ± is f

)
.

(2.24)

Let us now restrict to the upper sign and to the northern hemisphere. It then follows that
a−(θ, ϕ) = is cosϕ · O(θ) ∈ C0,1(S2+), and similarly b− ∈ C0,1(S2+). Thus all the
terms in (2.24) are in L2(S2+). Moreover, it now follows easily that Zi

(
Z j (eisϕ f )

) ∈
L2(S2+) for all i, j ∈ {1, 2, 3}. For example we have

Z2
(
Z1(e

isϕ f )
) = Z2(e

isϕ Z̃1 f )+ Z2(a− · eisϕ f )

= eisϕ
(
Z̃2(Z̃1 f )+ a− Z̃1 f

)
+ (Z2a−) · eisϕ f + a−Z2(e

isϕ f ).

Similarly for the lower sign and the southern hemisphere. ��
Proposition 2.25 We have I∞[s](S

2) =⋂0�m<∞ Hm[s](S
2)

Proof The inclusion “⊆” follows directly from Proposition 2.18. For the reverse
inclusion let f ∈ ⋂0�m<∞ Hm[s](S

2) and note that for 0 � k1 + k2 + k3 we have

(Z̃1)
k1(Z̃2)

k2(Z̃3)
k3 f ∈ H2[s](S

2). It now follows from Lemma 2.23 together with the

standard Sobolev embedding that eisϕ(Z̃1)
k1(Z̃2)

k2(Z̃3)
k3 f is continuous at the north

pole θ = 0 while e−isϕ(Z̃1)
k1(Z̃2)

k2(Z̃3)
k3 f is continuous at the south pole θ = π .

The conclusion now follows again from Proposition 2.18. ��
Let us denote the standard volume form on S

2 by vol
S
2 = sin θdθ ∧ dϕ. We now

derive an integration by parts formula for spin weighted functions.

Proposition 2.26 For f , h ∈ I∞[s](S
2) and i ∈ {1, 2, 3} we have

∫

S
2
Z̃i f · h volS2 = −

∫

S
2
f · Z̃i h volS2 .

Proof We give the proof for s = +2, but the other cases are analogous. We begin by
noticing that

m ⊗ m = E1 ⊗ E1 + E2 ⊗ E2 − i(E1 ⊗ E2 − E2 ⊗ E1) = g
S
2 − iε, (2.27)

where ε = vol�
S
2 ∈ �∞(�2T ∗S2) is the raised volume form. Note that m ⊗ m is a

smooth tensor on S
2. In particular, since the vector fields Zi are Killing vector fields,
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we obtain

LZi (m ⊗ m) = 0. (2.28)

Let now α, β ∈ �∞(S2T ∗S2) with α(m,m) = f and β(m,m) = h. Using (2.20),
(2.28), and the smoothness of m ⊗ m we compute

∫

S
2
Z̃i f · h volS2 =

∫

S
2
Z̃i
(
α(m,m)

)
β(m,m) vol

S
2

=
∫

S
2
(LZiα)(m,m) · β(m,m) vol

S
2

= −
∫

S
2
α(m,m) · (LZiβ)(m,m) vol

S
2

= −
∫

S
2
f Z̃i h volS2 .

��

Remark 2.29 Note that the smoothness of m ⊗ m implies that if f , h ∈ I∞[s](S
2),

then f h ∈ C∞(S2). The above can now also be derived from observing Zi ( f h) =
(Zi f )h + f Zi h = (Z̃i f )h + f Z̃i h.

2.3.4 The Spin s-weighted Laplacian

The spin s-weighted Laplacian /̊	
[s]

on S
2 is defined for f ∈ I∞[s](S

2) in standard

(θ, ϕ) coordinates by27

/̊	[s] f = 1

sin θ
∂θ
(
sin θ ∂θ f

)+ 1

sin2 θ
∂2ϕ f + 2si

cos θ

sin2 θ
∂ϕ f − (s2 cos

2 θ

sin2 θ
− s
)
f .

(2.30)

We note that

( /̊	[s] − s − s2) f = ((Z̃1)
2 + (Z̃2)

2 + (Z̃3)
2) f , (2.31)

such that it follows easily from Proposition 2.18 that (2.30) is a smooth operator on
I∞[s](S

2).

27 This differs from the spin s-weighted Laplacian in [15] by an overall minus sign.
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It follows directly from Proposition 2.26 and (2.31) that for f ∈ I∞[s](S
2) we have

−
∫

S
2
/̊	[s] f · f vol

S
2 = −

∫

S
2

( 3∑

i=1
Z̃2
i f + (s + s2) f

)
· f vol

S
2

=
∫

S
2

3∑

i=1
|Z̃i f |2 volS2 −

∫

S
2
(s + s2)| f |2 vol

S
2 .

(2.32)

Note that for s = 0 the right hand side of (2.32) is equal to
∫

S
2

(|∂θ f |2 +
1

sin2 θ
|∂ϕ f |2) vol

S
2 , which gives non-degenerate control of the ∂ϕ derivative towards

the north and south pole of S
2. For s �= 0, however, 1

sin θ
∂ϕ f has in general a pole in

θ at θ = 0, π and thus, in particular, is not square integrable on S
2. The next lemma

gives the appropriate generalisation, which is needed in Sects. 4.2 and 4.3.

Lemma 2.33 For f ∈ I∞[s](S
2) we have

∂θ f ∈ L∞(S2)

1

sin θ
(is cos θ + ∂ϕ) f ∈ L∞(S2)

(2.34)

and the following holds:

3∑

i=1
|Z̃i f |2 = |∂θ f |2 + 1

sin2 θ
|is cos θ · f + ∂ϕ f |2 + s2| f |2. (2.35)

Proof In order to prove (2.34) we note that by Proposition 2.18 we have

− sin ϕ · Z̃1 f − cosϕ · Z̃2 f = ∂θ f ∈ L∞(S2)

sin ϕ · Z̃2 f − cosϕ · Z̃1 f = 1

sin θ
(is + cos θ · ∂ϕ) f ∈ L∞(S2) . (2.36)

Multiplying (2.36) by cos θ and adding 1
sin θ

sin2 θ ·∂ϕ f , which is clearly also bounded
onS

2, we obtain the second claim in (2.34). The proof of (2.35) is a direct computation:

3∑

i=1
|Z̃i f |2 = |∂θ f |2 + 1

sin2 θ
|is f + cos θ · ∂ϕ f |2 + |∂ϕ f |2

= |∂θ f |2 + 1

sin2 θ
|is cos θ · f + cos2 ∂ϕ f |2 + |is f + cos θ · ∂ϕ f |2

+ 1

sin2 θ
| sin2 θ · ∂ϕ f |2 + cos2 θ

sin2 θ
| sin θ · ∂ϕ f |2

= |∂θ f |2 + 1

sin2 θ
|is cos θ · f + ∂ϕ f |2
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− 1

sin2 θ
2Re

(
(is cos θ · f + cos2 θ · ∂ϕ f )(sin2 θ · ∂ϕ f )

)

+|is f + cos θ · ∂ϕ f |2 + cos2 θ |∂ϕ f |2

= |∂θ f |2 + 1

sin2 θ
|is cos θ · f + ∂ϕ f |2 + s2| f |2.

��
Lemma 2.37 For f ∈ I∞[s](S

2) we have

/̊	[s] f /̊	[s] f =
a.i .

3∑

i, j=1
|Z̃ j Z̃i f |2 − 2(s + s2)

3∑

i=1
|Z̃i f |2 + (s + s2)2| f |2,

where =
a.i .

denotes equality after integration over the sphere.

Proof Using Proposition 2.26 we compute

/̊	[s] f /̊	[s] f =
( 3∑

i=1
Z̃2
i f + (s + s2) f

)( 3∑

j=1
Z̃2
j f + (s + s2) f

)

=
a.i .

3∑

i, j=1
Z̃2
i f Z̃

2
j f + (s + s2)2| f |2 − 2(s + s2)

3∑

i=1
|Z̃i f |2.

Moreover, using the commutation relations [Z̃i , Z̃ j ] = εi jk Z̃k , we further compute

3∑

i, j=1
Z̃2
i f Z̃

2
j f =a.i . −

3∑

i, j=1
Z̃i f Z̃i Z̃2

j f

= −
3∑

i, j=1
Z̃i f Z̃ j Z̃i Z̃ j f −

3∑

i, j,k=1
εi jk Z̃i f Z̃k Z̃ j f

=
a.i .

3∑

i, j=1
Z̃ j Z̃i f Z̃i Z̃ j f −

3∑

i, j,k=1
εi jk Z̃i f Z̃k Z̃ j f

=
3∑

i, j=1
|Z̃ j Z̃i f |2 +

3∑

i, j,k=1
εi jk Z̃ j Z̃i f Z̃k f −

3∑

i, j,k=1
εi jk Z̃i f Z̃k Z̃ j f

=
a.i .

3∑

i, j=1
|Z̃ j Z̃i f |2 −

3∑

i, j,k=1
εi jk
(
Z̃i f (Z̃ j Z̃k f + Z̃k Z̃ j f )

)

︸ ︷︷ ︸
=0

.

��
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2.3.5 The Teukolsky Equation in Boyer-Lindquist Coordinates

Using (2.30) and	−s∂r (	s+1∂rψs) = 2(r−M)(s+1)∂rψs+	∂2r ψs we can rewrite
the Teukolsky equation (2.12) as

T[s]ψs := −
[ (r2 + a2)2

	
− a2 sin2 θ

]
∂2t ψs − 4Mar

	
∂t∂ϕψs − a2

	
∂2ϕψs

+	∂2r ψs + 2(r − M)(1− s)∂rψs + 2s
a(r − M)

	
∂ϕψs

+ 2s
[M(r2 − a2)

	
− r − ia cos θ

]
∂tψs + /̊	[s]ψs − 2sψs = 0.

(2.38)

2.3.6 The Teukolsky Equation in {v+,'+, r,�} Coordinates

Using (2.3) we rewrite (2.38) in terms of {v+, ϕ+, r , θ} coordinates, which are regular
at the right event horizon H+r , to obtain

T[s]ψs := a2 sin2 θ ∂2v+ψs + 2a ∂v+∂ϕ+ψs + 2(r2 + a2) ∂v+∂rψs

+ 2a ∂ϕ+∂rψs +	∂2r ψs + 2
(
r(1− 2s)− isa cos θ

)
∂v+ψs

+ 2(r − M)(1− s) ∂rψs + /̊	[s]ψs − 2sψs = 0.

(2.39)

2.3.7 The Teukolsky Equation in {v−,'−, r,�} Coordinates

We express the Teukolsky equation (2.11) for ψ̂s (which is regular atH+l ) in terms of
{v−, ϕ−, r , θ} coordinates (which are also regular at H+l ), using (2.4), to obtain

T̂[s]ψ̂s := a2 sin2 θ ∂2v−ψ̂s − 2a ∂v−∂ϕ−ψ̂s + 2(r2 + a2) ∂v−∂r ψ̂s

− 2a ∂ϕ−∂r ψ̂s +	∂2r ψ̂s + 2
(
r(1+ 2s)+ isa cos θ

)
∂v−ψ̂s

+ 2(r − M)(1+ s) ∂r ψ̂s + /̊	[s]ψ̂s = 0.

(2.40)

2.3.8 Spin Weighted Functions on Spacetime

We considerM and observe that the vector fieldm = 1√
2
(∂θ+ i

sin θ
∂ϕ), given in Boyer

Lindquist coordinates, extends smoothly toM\ {θ = 0, π} by virtue of ∂ϕ = ∂�r+ =
∂�r− . We consider the space �∞(S2(T ∗M)) of all smooth and symmetric sections

of T ∗M⊗ T ∗M and the map ιm which acts on an element α of �∞(S2(T ∗M)) by
ιmα = α(m,m).

Definition 2.41 The space I∞[2](M) of smooth spin 2-weighted functions on M is

defined as the image of �∞(S2(T ∗M)) under ιm , i.e.

I∞[2](M) := ιm

(
�∞(S2(T ∗M))

)
⊆ C∞(M \ {θ = 0, π},C).
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Remark 2.42 1. As before, the space of smooth spin−2-weighted functions is defined
as the image of �∞(S2(T ∗M)) under ιm and the spin ±1-weighted functions are
defined as the images of the space of smooth one-forms on M.

2. It follows from the definition of the spin weighted spaces that they are invariant
under multiplication by elements in C∞(M,C). To see this we note that multipli-
cation by i of a smooth spin 1-weighted function corresponds to a concatenation
of the one-covector field by a rotation of π

2 (with respect to the oriented frame
field {∂θ , 1

sin θ
∂ϕ}) while for smooth spin 2-weighted functions it corresponds to a

concatenation of the symmetric two covector field with a rotation of π
4 .

Let us define thedistributionD ⊂ TMwhich is annihilatedby {dV+r+ , dV−r+ , dV+r− , dV−r−}
(where defined). Its integral manifolds in the interior of M are exactly the Boyer-
Lindquist spheres of constant t and r . We note that m lies in the complexification of
D. Moreover, we denote the dual bundle of D by D∗.

Remark 2.43 1. Given a subset A ⊆M with the property that the integral manifolds
of D restricted to A are complete spheres, we define the spin weighted spaces
I∞[s](A) analogously. For example we will choose A =M later.

2. We define an auxiliary round metric /gS
2 on the integral manifolds of D by the

symmetric part ofm⊗m, cf. (2.27). The kernel of the map ιm : �∞(S2(T ∗M))→
C∞(M \ {θ = 0, π},C) is the span of all those symmetric two-tensor fields that,
when restricted to D, vanish or are proportional to /gS

2 . Thus, the space I∞[2](M) of

smooth spin 2-weighted functions onM is isomorphic to the space �∞
(
S2(D∗ →

M)
)
, the space of all smooth, symmetric, and trace-free (with respect to /gS

2 )
sections of D∗ ⊗ D∗ →M.

3. Given the above, a convenient realisation of the space I∞[2](M) is as all those

elements in �∞(S2(T ∗M)) that

• vanish if ∂V+r+
is inserted in one of the slots

• vanish if ∂V−r+
is inserted in one of the slots

• are trace-free with respect to /gS
2 .

We will call such an element a symmetric and trace-free S
2 2-covariant tensor

field. On this subset of �∞(S2(T ∗M)), ιm is an isomorphism.

As before we can characterise the spin weighted functions on M among the
elements of C∞(M \ {θ = 0, π},C). We do this in regions on which we have
global coordinate charts. For example on M we introduce the first order differen-
tial operators Z̃i,r+ , i = 1, 2, 3, which are defined as in (2.17) but with respect to the
{V+r+ , V−r+ , θ,�r+} coordinate system, i.e., we replace ϕ in (2.17) by �r+ . We obtain

Proposition 2.44 f ∈ C∞(M \ {θ = 0, π}),C) lies in I∞[s](M) if, and only if,

eis�r+ (∂V+r+
)l1(∂V−r+

)l2(Z̃1,r+)
k1(Z̃2,r+)

k2(Z̃3,r+)
k3 f
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extends continuously toM \ {θ = π} and

e−is�r+ (∂V+r+
)l1(∂V−r+

)l2(Z̃1,r+)
k1(Z̃2,r+)

k2(Z̃3,r+)
k3 f

extends continuously toM \ {θ = 0}) for all l1, l2, k1, k2, k3 ∈ N0.

Proof This is the same as the proof of Proposition 2.18, noticing that we have ∂ϕ =
∂�r+ , L∂

V+r+
m = 0, L∂

V−r+
m = 0, and also the last point in Remark 2.43. ��

Similarly we choose {V+r− , V−r− , θ,�r−} coordinates onM and define the operators

Z̃i,r− , i = 1, 2, 3, by replacing ϕ in (2.17) by �r− . We obtain an analogous char-
acterisation of elements in I∞[s](M). Taken together, this gives a characterisation of

elements in I∞[s](M) among those of C∞(M\{θ = 0, π}),C).

We will also need to define the operators Z̃i,+, i = 1, 2, 3, with respect to the
{v+, ϕ+, r , θ} coordinate system, i.e.,we replaceϕ in (2.17) byϕ+. Similarlywedefine
the operators Z̃i,−, i = 1, 2, 3, with respect to the {v−, ϕ−, r , θ} coordinate system.
We obtain analogous characterisations to Proposition 2.44 in the regions covered by
each of these coordinate systems.

It now follows from (2.31) (which obviously holds for any of the sets of Z̃ defined),
the second part of Remark 2.42, and Proposition 2.44 that the Teukolsky operator
T[s], defined in (2.39), is a smooth operator on I∞[s]

(
M ∪ (H+r \S2

b) ∪ (CH+l \S2
t )
)
.

Similalry, the Teukolsky operator T̂[s], defined in (2.40), is a smooth operator on
I∞[s]
(
M ∪ (H+l \S2

b) ∪ (CH+r \S2
t )
)
.

2.3.9 The Spin Weighted Carter Operator

Definition 2.45 We define the spin s-weighted Carter operator Q[s] by

Q[s] := a2 sin2 θ ∂2v+ − 2isa cos θ ∂v+ + /̊	[s]
= a2 sin2 θ ∂2v− + 2isa cos θ ∂v− + /̊	[s]

Note that it follows directly from (2.39) and (2.40) that the spin s-weighted Carter
operator commutes with the Teukolsky operator, i.e. we have [T[s],Q[s]] = 0 =
[T̂[s],Q[s]].

2.3.10 The Regularity of ˙̨ as Defined in Section 2.3.1 and 2.3.2

Our following global theorem will concern spin 2-weighted functions, satisfying the
Teukolsky equation, that satisfy the following smoothness properties.

Assumption 2.46 • ψ ∈ I∞[2](M).

• 1
(V+r+ )2

ψ ∈ I∞[2](M). Note that this implies, using (2.7), that ψ̂ := 1
	2ψ ∈ I∞[2]

(
M∪

(H+l \S2
b)
)
.
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• ψ satisfies T[2]ψ = 0 in M ∪ (H+r \S2
b). Note that this implies that ψ̂ satisfies

T̂[2]ψ̂ = 0 inM ∪ (H+l \S2
b).

We have dropped here the subscript 2 from ψ to shorten notation. No confusion
can arise, since the remainder of the paper is only concerned with spin 2-weighted
functions.

We investigate what the above regularity assumptions imply for ∂rψ and ∂2r ψ ,
where the partial derivative is with respect to the (v+, r , θ, ϕ+) coordinate system. By
(A.1) and (2.7) we have ∂r = 1

V+r+
f1(r)∂V−r+

+ f2(r)∂�r+ , where f1(r) and f2(r) are

functions which extend smoothly to r = r+. It now follows from Assumption 2.46
that ψ decays at least like (V+r+)

2 for V+r+ → 0, ∂rψ at least like V+r+ , and ∂2r ψ does in
general not decay but is a regular smooth spin 2-weighted function on M.

We now show that α̇, as defined in Sections2.3.1 and 2.3.2, satisfies the above
smoothness assumptions 2.46.28

Proposition 2.47 The quantity ψ := α̇ from Section2.3.2 satisfies the Assump-
tions 2.46.

Proof Recall that e4 is a smooth vector field onM, vanishing atH+l . Also recall that

α̇ = Ṙ(e4(0),ma(0), e4(0),ma(0)) =: β(ma(0),ma(0)),

where we have defined β, a smooth and symmetric tensor field on M. By (2.9) we
have

β(ma(0),ma(0)) = 1

(r + ia cos θ)2
β

(

m + ia sin θ√
2

∂t ,m + ia sin θ√
2

∂t

)

.

By the second point in Remark 2.42 it suffices to show that β(m + ia sin θ√
2

∂t ,m +
ia sin θ√

2
∂t ) ∈ I∞[2](M). By definition of the spin weighted spaces we have β(m,m) ∈

I∞[2](M) and thus it remains to establish that sin θ · β(m, ∂t ) ∈ I∞[2](M) and sin2 θ ∈
I∞[2](M). Let us define the smooth one-form γ := sin θ dθ on M. Then γ ⊗ γ is a

symmetric two-covector field with (γ ⊗ γ )(m,m) = 1
2 sin

2 θ , which lies in I∞[2](M).
Similarly, defining the symmetric two-covector field γ ⊗β(·, ∂t )+β(·, ∂t )⊗γ shows
that sin θ · β(m, ∂t ) ∈ I∞[2](M). This shows the first point. The second point follows

analogously recalling from SectionA that 1
V+r+

e4 is a smooth vector field on M. The

last two points were established in the previous sections. ��

3 Assumptions on the Event Horizon and theMain Theorem

In addition to the smoothness assumptions in Assumption 2.46 we make the following
assumptions on ψ along the event horizons:

28 Recall that ma differs from m by a term proportional to ∂t – thus the claim that α̇ is spin 2-weighted is
not trivial.
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Along the right event horizon H+r : Assume that there exists a p ∈ N such that
∫
H+r ∩{v+�1} v

2p
+ |ψ |2 volS2 dv+ = +∞. Let p0 ∈ N be the smallest integer such that

this holds, i.e., we have
∫

H+r ∩{v+�1}
v
2p0+ |ψ |2 vol

S
2 dv+ = +∞. (3.1)

Assume that p0 � 2. Moreover, we assume that there is m0 ∈ Z and N 
 l0 �
max{2, |m0|} such that

∫

v+�1
v
2p0+ |(ψ |H+r )S(m0l0)|2 dv+ = +∞, (3.2)

where (ψ |H+r )S(ml)(v+) =
∫

S
2 ψ |H+r (v+, θ, ϕ+)Y

[+2]
ml (θ, ϕ+; 0) volS2 denotes the

projection of ψ |H+r onto the spin 2-weighted spherical harmonic Y [+2]ml (θ, ϕ+; 0),
cf. Section5.1. We also assume that

∫

H+r ∩{v+�1}
v
2p0+ |∂v+ψ |2 volS2 dv+ < +∞ (3.3)

holds and that for some 2 < qr < 2p0, qr ∈ R, we have29

∑

0�i1+i2+i3+ j�1

∫

H+r ∩{v+�1}
v
qr+ |Z̃ i1

1,+ Z̃
i2
2,+ Z̃

i3
3,+∂

j
v+ f |2 vol

S
2 dv+ < +∞ (3.4)

with f ∈ {∂av+∂bϕ+∂cr ψ, ∂v+∂
a
v+∂

b
ϕ+∂

c
rψ,Q[s]∂av+∂

b
ϕ+∂

c
rψ, }, 0 � a+b � 2, c = 0, 1, 2.

Along the left event horizon H+l : Assume that

ψ̂ is compactly supported onH+l ∪ Sb, (3.5)

i.e., there exists a v0 ∈ R such that ψ̂ vanishes in H+l ∩ {v− � v0}. However, all our
results remain true if we replace (3.5) by the much weaker

∑

0�i1+i2+i3+ j�1

∫

H+l ∩{v−�1}
v
ql−|Z̃ i1

1,− Z̃
i2
2,− Z̃

i3
3,−∂

j
v− f |2 vol

S
2 dv− < +∞ (3.6)

with f ∈ {∂av−∂bϕ−∂cr ψ̂, ∂v−∂
a
v−∂

b
ϕ−∂

c
r ψ̂,Q[s]∂av−∂

b
ϕ−∂

c
r ψ̂}, 0 � a+b+c � 2, a, b, c ∈

N0 andR 
 ql � 2p0.30 To see that (3.5) implies (3.6) for f = ∂r ψ̂ , we notice that the

29 We have made no attempt in this paper to keep the number of derivatives required as low as possible,
one can certainly improve on it. It is also likely that one can improve on the requirement 2 < qr and thus
also on the lower bound on 2 � p0. The bound 2 < qr is used in Theorem 5.26 (via Corollary 4.46 – for
which we also use all the derivatives assumed) to derive the radial ODE (5.28).
30 The asymmetry between the number of derivatives assumed on the left and right event horizons can
be traced back to the necessity to close the energy estimate near H+r at the level of (∂r |+)2ψ while near
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Teukolsky equation (2.40) reduces in the regionH+l ∩{v− � v0}, where ψ̂ vanishes, to
(
2(r2+a2)∂v− −2a∂ϕ−

)
∂r ψ̂+2(r−M)(1+ s)∂r ψ̂ = 0. This shows that ∂r ψ̂ decays

exponentially alongH+l – amanifestation of the red-shift effect. Further commutations
with ∂r even improve the red-shift.

For the statements of the intermediate results in the main body of the paper we will
often use the phrase ‘under the assumptions of Section 3’. Let us make explicit that
by this we mean the Assumption 2.46 together with (3.1), (3.2), (3.3), (3.4), and (3.6).
However, usually not all of these assumptions are required for the specific partial result
proven.

With the exception of Section6.2.4, where we briefly consider the case s = −2,
this paper is only concerned with the case s = +2. However, we will not replace the
s in the Teukolsky equation by 2 so that the reader can follow the importance of the
value of s for the validity of our estimates. With the exception of Section6.2.4 the
convention in this paper is that s = +2.
Theorem 3.7 Let ψ satisfy the Assumptions 2.46, (3.1), (3.2), (3.3), (3.4), and (3.6).
Let v2 ∈ R and consider the spacelike hypersurface � := { f − = v2} which is
transversal to CH+r . We then have

∫

�∩{v+�1}
v
2p0+ |ψ |2 vol

S
2dv+ = ∞. (3.8)

The above theorem is global in nature, it concerns solutions of the Teukolsky equa-
tion defined in all of the interior of asymptotically flat two-ended Kerr black holes.
As stated, it is not a useful ingredient for treating realistic one-ended rotating black
holes. In the following we give a version of Theorem 3.7 localised to a neighbourhood
of timelike infinity.

Theorem 3.9 Consider a patch ofM given byM∩ { f− � v1} ∩ { f+ � v0} for some
v1, v2 ∈ R, see also Figure9 on page 88. Let ψ ∈ I∞[2](M ∩ { f− � v1} ∩ { f+ � v0})
satisfy the Teukolsky equation T[2]ψ = 0 and31 (3.1), (3.2), (3.3), and (3.4). Let
v2 � v1 and consider the spacelike hypersurface� := { f − = v2}which is transversal
to CH+r . We then have

∫

�∩{v+�1}
v
2p0+ |ψ |2 vol

S
2dv+ = ∞. (3.10)

Remark 3.11 1. The proof of Theorems 3.7 and 3.9 contains a crucial Fourier-theoretic
component. To obtain the instability at the Cauchy horizon we use that there is a
smallest p0 ∈ N and m0 ∈ Z and N 
 l0 � max{2, |m0|} such that

∂ p0
ω ( ~ψ |H+r )m0l0(ω) /∈ L2

ω(−ε, ε) for any ε > 0. (3.12)

H+l we close it at the level of ψ̂ . The higher number of derivatives assumed on H+r allows us to ease the
presentation of the proof of Proposition 4.11 in Step 6. However, one can certainly improve on that.
31 with the integration H+r ∩ {v+ � 1} replaced by H+r ∩ {v+ � v0}
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Here ( ~ψ |H+r )m0l0 results from ψ |H+r by taking the Fourier transform in v+ and
subsequent projection on the m0, l0 spin 2-weighted spheroidal harmonic, cf.
Section5.2. The physical space assumptions (3.1), (3.2), (3.3) are only used to
guarantee (3.12), see Proposition 7.5. In particular the above Theorems remain
true if (3.1), (3.2), (3.3) are replaced by (3.12). Note that the assumption (3.4)
implies that 2p0 must be greater than qr .

2. Having dropped the subscript s from ψ , we introduce the notation

ψm(v+, r , θ, ϕ+) :=
∫

S
1
ψ(v+, r , θ, ϕ′+) · e−imϕ′+ dϕ′+ · eimϕ+

for the projection on the m-th azimuthal mode, m ∈ Z, and also ψ�=0 := ψ − ψ0.
Note that if ψ solves the Teukolsky equation then so does ψm . We can thus apply
the above theorems also to the projections ψm individually to obtain statements
which, through the ensuing m-dependent parameter p0, depend on m.

3. It was shown recently in [51] (see also [15, 50] and also [3]) that for slowly rotat-
ing32 sub-extremal Kerr and for compactly supported initial data for the Teukolsky
equation, posed on a spacelike hypersurface connecting the event horizon with
spacelike infinity, one has

∣
∣∂ j

v+ψm �=0|H+r −
∑

m=±1,±2
Qm,2Y

[+2]
m2 (θ, ϕ+; 0)v−7− j

+
∣
∣ � v

−7− j−ε
+ ,

where ε > 0 and Qm,2 ∈ C is generically non-vanishing, and

∣
∣∂ j

v+ψ0|H+r − Q0,2Y
[+2]
02 (θ, ϕ+; 0)v−8− j

+
∣
∣ � v

−8− j−ε
+ ,

where again Q0,2 ∈ C is generically non-vanishing. For v+ large enough we thus
obtain for m = ±1,±2 generically |(ψ |H+r )S(m2)| � cv−7+ with c > 0 and for

m = 0 generically |(ψ |H+r )S(02)| � cv−8+ with c > 0. Hence for m0 = ±1,±2
the assumptions made in this section are generically satisfied with l0 = 2 and
p0 = 7 and for m0 = 0 with l0 = 2 and p0 = 8. If we do not decompose into
azimuthal modes the assumptions are generically satisfied with p0 = 7, l0 = 2 and
m0 ∈ {−2,−1, 1, 2}. The parameter qr can be chosen to be anything strictly less
than 13.

If we do not assume the initial data to be compactly supported, but still to be
smooth with respect to the conformal compactification at future null infinity, we
expect the generic decay rates to be slower by a power of v−1+ , see also [2]. There
is evidence that the assumption of smoothness at future null infinity is not satisfied
in many physically interesting situations (see [9, 38]) and that this impacts the late
time tails [39]. There is also evidence that tails arising on dynamical black hole
exteriors differ from those on stationary exteriors [44].

32 One expects that these results remain true in the full sub-extremal range, see [51].
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4. We rewrite (3.10) in terms of quantities that are regular at CH+r : we first recall
that ψ̂ = 1

	2ψ is the linearisation of the curvature component with respect to

the algebraically special frame that is regular at CH+r and that we have 	2 �
e2κ−(v++v−) � e2κ−v+ along� for v+ →∞, where we have used (2.8). Moreover,
we have V+r− = −eκ−v+ and thus log(−V+r−) = κ−v+ and dv+ = 1

κ−V+r−
dV+r− .

We thus find v
2p0+ |ψ |2 � [ log(−V+r−)

]2p0(−V+r−)4|ψ̂ |2 along � for v+ →∞ and
hence (3.10) is equivalent to

∫

�∩{v+�1}
[
log(−V+r−)

]2p0(−V+r−)3|ψ̂ |2 volS2dV+r− = ∞. (3.13)

5. As a side result we also prove

∫

�∩{v+�1}
v
qr+ |ψ |2 volS2dv+ <∞,

see (4.76). Hence, the integral in (3.13) with 2p0 replaced by qr is finite. Recall
that we said that in particular for compactly supported initial data qr can be chosen
to be anything strictly less that 2p0 − 1.

4 Energy Estimates for the Teukolsky Equation: Upper Bounds

In this section we prove stability estimates which are being used to justify Teukolsky’s
separation of variables, to pass to the limits r → r±, and to propagate the singularity
backwards along CH+r .

4.1 Estimates Near the Event Horizons

We begin with the semi-global estimates near the left event horizon, since they are the
simplest and thus the structure is easier to understand here.

Proposition 4.1 Under the assumptions of Section3 there exists an rred ∈ (r−, r+)
and a C > 0 such that

sup
r ′∈[rred,r+]

∑

0�i1+i2+i3+ j+k�1

∫

{r=r ′}∩{v−�1}
v
ql− |	|k |Z̃ i1

1,− Z̃
i2
2,− Z̃

i3
3,−∂

j
v−∂

k
r f |2 vol

S
2 dv−

+
∑

0�i1+i2+i3+ j+k�1

∫

{rred�r�r+}∩{v−�1}
v
ql− |Z̃ i1

1,− Z̃
i2
2,− Z̃

i3
3,−∂

j
v−∂

k
r f |2 vol

S
2 dv−dr � C

(4.2)
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holds for f ∈ {∂av−∂bϕ−∂cr ψ̂, ∂v−∂
a
v−∂

b
ϕ−∂

c
r ψ̂,Q[s]∂av−∂

b
ϕ−∂

c
r ψ̂}, 0 � a + b + c � 2,

a, b, c ∈ N0.33

Here, and in the following propositions and corollaries throughout Section4, the
constant C depends in particular on the initial data of the Teukolsky field on H+l and
H+r , on ql and qr , on the black hole parameters, and, in general, on the region in which
the estimate holds. The exact dependency and the optimal value of the constant is,
however, of no interest to this paper. We only need the qualitative statement that the
quantity in question is finite.

Proof Step 1: The multiplier. In the following we restrict to v− � 1. We start from
the following multiplier identity, where λ, η, μ > 0 are constants to be chosen:

0 = Re
(
T̂[s]ψ̂ · vql−

(− (1+ λ	)∂r + (1+ λ	)∂v−
)
ψ̂
)

+ ∂r (v
ql−μeηr |ψ̂ |2)− v

ql−μηeηr |ψ̂ |2 − 2vql−μeηrRe(ψ̂∂r ψ̂)
︸ ︷︷ ︸

=0

(4.3)

Here, for λ > 0 suitably, the vector field−(1+λ	)∂r+(1+λ	)∂v− is a choice of the
redshift vector field of Dafermos andRodnianski, [18, 19], and the underbraced term is
added in order to control the zeroth order terms, as will become clear in the following.
After integration over the spheres, and using the form (2.40) of the Teukolsky equation,
the right hand side of (4.3) is the sum of

1. the sum of all the terms on the right hand sides of B.1 and B.2
2. the real part of the terms

2(r(1+ 2s)+ isa cos θ)∂v− ψ̂v
ql−
(− (1+ λ	)∂r + (1+ λ	)∂v−

)
ψ̂

− v
ql− (1+ λ	)2(r − M)(1+ s)|∂r ψ̂ |2 + v

ql− (1+ λ	)2(r − M)(1+ s)∂r ψ̂∂v− ψ̂

3. the underbraced term in (4.3).

As will become clear later, we can derive a boundedness statement if the bulk terms
(those terms which are not total derivatives) are negative. Recall that ∂r	(r+) =
2(r+ − M) > 0.

Step 2: Estimating all bulk terms that are quadratic in derivatives.
The two dashed terms, which are the most important terms, combine to give a

negative contribution for r close enough (depending on λ) to r+. Indeed, for s = 0
this is the familiar red-shift for the wave equation and we see that for s = +2 we even
get an improved red-shift for the energy.34

33 Note that away from r± we have span{∂r |+, ∂v+ , ∂ϕ+} = span{∂r |−, ∂v− , ∂ϕ−} = span{∂r , ∂t , ∂ϕ}.
Since we carry out the different energy estimates in different coordinates, it is convenient to always consider
this combination of derivatives.
34 Note that the structure for s = +2 is the following: for ψ̂ strong red-shift for the energy at H+l , strong

blue-shift at CH+r ; for ψ blue-shift at H+r , red-shift at CH+l . This is the reason why the estimate for ψ at

H+r is slightly more complicated.
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We now investigate all the terms
����

with a wavy underline, which are all those that are

leading order in λ. The first of those terms in B.1 is negative. The second of those terms
in B.1, which indeed appears again from the fourth equation in B.2, can be controlled
as follows:

|2avql−λ(∂r	)Re(∂ϕ−ψ̂∂v−ψ̂)| � v
ql−λ(∂r	)

(1

2
α|Z̃3,−ψ̂ |2 + α−12a2|∂v−ψ̂ |2

)

(4.4)

Note that |a| < M < r+ so that there exists 0 < α < 1 close to 1 such that
r2+ + a2 > 2α−1a2. Hence, (4.4) can be estimated uniformly in λ by the last wavily
underlined term in B.1 and the one in B.2. In summary, all the wavily underlined terms
and the dashed terms are estimated from above by

− v
ql− f (r , λ)

(
λ(
∑

i

|Z̃i,−ψ̂ |2 + |∂v−ψ̂ |2)+ |∂r ψ̂ |2
)
, (4.5)

where f (r+, λ) > 0 is independent of λ. All the other bulk terms which are quadratic
in derivatives of ψ̂ can now be controlled in absolute value by− 1

2× (4.5) by choosing
first λ > 0 big enough and then restricting to r ∈ [rred, r+], v− � v0 with rred < r+
close enough to r+ and v0 > 1 large enough.35

Step 3: Estimating boundary terms.
We gather all the total derivatives appearing on the right hand side of (4.3). They

are ∂v−
(
A(v−, r , ψ̂, ∂ψ̂)

)
and ∂r

(
B(v−, r , ψ̂, ∂ψ̂)

)
with

A(v−, r , ψ̂, ∂ψ̂) = −a2 sin2 θvql− (1+ λ	)Re(∂v−ψ̂∂r ψ̂)

+ 2avql− (1+ λ	)Re(∂ϕ−ψ̂∂r ψ̂)− v
ql− (1+ λ	)(r2 + a2)|∂r ψ̂ |2

+ 1

2
v
ql− (1+ λ	)a2 sin2 θ |∂v−ψ̂ |2 −

1

2
v
ql− (1+ λ	)	|∂r ψ̂ |2

+ 1

2
v
ql− (1+ λ	))(s + s2)|ψ̂ |2

− 1

2
v
ql− (1+ λ	)

∑

i

|Z̃i,−ψ̂ |2

35 We need to choose v0 large enough to control the second term on the right hand side of the thirdmultiplier
expression computed in B.1. This one is quadratic in ∂r ψ̂ , has a positive sign, but a sub-leading v−-weight.
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and

B(v−, r , ψ̂, ∂ψ̂) = 1

2
a2 sin2 θvql− (1+ λ	)|∂v−ψ̂ |2

− 2avql− (1+ λ	)Re(∂ϕ−ψ̂∂v−ψ̂)− 1

2
v
ql− (1+ λ	)	|∂r ψ̂ |2

− 1

2
v
ql− (1+ λ	)(s + s2)|ψ̂ |2 + 1

2
v
ql− (1+ λ	)

∑

i

|Z̃i,−ψ̂ |2

+ v
ql− (1+ λ	)(r2 + a2)|∂v−ψ̂ |2

+ v
ql− (1+ λ	)	Re(∂r ψ̂∂v−ψ̂)+ v

ql−μeηr |ψ̂ |2.
(4.6)

We begin by establishing coercivity of B for r close enough to r+. The second term
in (4.6) can be absorbed by the fifth and sixth term as follows

2|a|vql− (1+ λ	)|∂ϕ−ψ̂∂v−ψ̂ | � v
ql− (1+ λ	)(

1

2
α|Z̃3,−ψ̂ |2 + 2a2α−1|∂v−ψ̂ |2)

where 0 < α < 1 and we argue as in (4.4). The seventh term in (4.6) is estimated by
the third and sixth term by

v
ql− (1+ λ	)|	||∂r ψ̂∂v−ψ̂ | � v

ql− (1+ λ	)|	|(1
2
α|∂r ψ̂ |2 + 1

2
α−1|∂v−ψ̂ |2),

for 0 < α < 1, where we note that the additional |	| allows us to absorb the |∂v−ψ̂ |2
term. Finally we choose μ > 0 as a function of η > 0 (to be determined later) such
that μ(η)eηr+ = 2(s + s2). It thus follows that for rred < r+ close enough to r+ we
have

B(v−, r , ψ̂, ∂ψ̂) � v
ql− (|	||∂r ψ̂ |2 + |∂v−ψ̂ |2 +

∑

i

|Z̃i,−ψ̂ |2 + |ψ̂ |2) (4.7)

for r ∈ [rred, r+].
Next we establish the coercivity of B(v−, r , ψ̂, ∂ψ̂) − A(v−, r , ψ̂, ∂ψ̂). We first

compute

B(v−, r , ψ̂, ∂ψ̂)− A(v−, r , ψ̂, ∂ψ̂)

= −2avql− (1+ λ	)Re(∂ϕ−ψ̂∂v−ψ̂)− v
ql− (1+ λ	)(s + s2)|ψ̂ |2

+ v
ql− (1+ λ	)

∑

i

|Z̃i,−ψ̂ |2 + v
ql− (1+ λ	)(r2 + a2)|∂v−ψ̂ |2

+ v
ql− (1+ λ	)	Re(∂r ψ̂∂v−ψ̂)+ v−qlμeηr |ψ̂ |2

+ a2 sin2 θvql− (1+ λ	)Re(∂v−ψ̂∂r ψ̂)− 2avql− (1+ λ	)Re(∂ϕ−ψ̂∂r ψ̂)

+ v
ql− (1+ λ	)(r2 + a2)|∂r ψ̂ |2.
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In particular completing the square for the underlined term gives

B(v−, r , ψ̂, ∂ψ̂)− A(v−, r , ψ̂, ∂ψ̂)

= −2avql− (1+ λ	)Re(∂ϕ− ψ̂(∂v− + ∂r )ψ̂)− v
ql− (1+ λ	)(s + s2)|ψ̂ |2

+ v
ql− (1+ λ	)

∑

i

|Z̃i,−ψ̂ |2 + v
ql− (1+ λ	)	Re(∂r ψ̂∂v− ψ̂)

+ v−qlμeηr |ψ̂ |2 + 1

2
v
ql− (1+ λ	)(r2 + a2 + 1

2
a2 sin2 θ)|(∂v− + ∂r )ψ̂ |2

+ 1

2
v
ql− (1+ λ	)(r2 + 1

2
(a2 + a2 cos2 θ))|(∂v− − ∂r )ψ̂ |2.

(4.8)

The first term is estimated in the same way as before now by the third and sixth term.
Note that the fourth term vanishes at r = r+. Thus, with our choice of η from above
we obtain

B(v−, r , ψ̂, ∂ψ̂)− A(v−, r , ψ̂, ∂ψ̂) � v
ql− (|∂r ψ̂ |2 + |∂v−ψ̂ |2 +

∑

i

|Z̃i,−ψ̂ |2 + |ψ̂ |2)

for r ∈ [rred, r+] with rred close enough to r+.
Step 4: Estimating the remaining bulk terms:
The last two terms in (4.3) are estimated by

−v
ql−ημeηr |ψ̂ | − 2vql−μeηrRe(ψ̂∂r ψ̂)

� −1

2
v
ql−ημeηr |ψ̂ |2 + 2vql−η−1μeηr |∂r ψ̂ |2. (4.9)

We can now choose η > 0 sufficiently large such that the last term can be controlled
by − 1

4× (4.5) and such that the first term controls the zeroth order terms arising in
the bulk from (B.1) and (B.2) (those have an overall ‘bad’ positive sign and need to
be controlled).

Step 5: Putting it all together:
We thus obtain after integration over the spheres

∂v−
(
A(v−, r , ψ̂, ∂ψ̂)

)+ ∂r
(
B(v−, r , ψ̂, ∂ψ̂)

)

�
a.i.

v
ql−
(|∂r ψ̂ |2 + |∂v−ψ̂ |2 +

∑

i

|Z̃i,−ψ̂ |2 + |ψ̂ |2
)

for v− � v0 and rred � r � r+. Let r ′ ∈ [rred, r+). We integrate over the region
{2v0 � f − � v1} ∩ {r ′ � r � r+} with respect to dv− ∧ dr ∧ vol

S
2 = 1

ρ2 vol and use
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that on a level set of f − we have dr = dv− to obtain

∫

{r=r ′}
∩{2v0� f −�v1}

B vol
S
2dv− +

∫

{ f −=v1}
∩{r ′�r�r+}

(B − A) vol
S
2dv−

+ c
∫

{2v0� f −�v1}
∩{r ′�r�r+}

v
ql−
(|∂r ψ̂ |2 + |∂v−ψ̂ |2 +

∑

i

|Z̃i,−ψ̂ |2 + |ψ̂ |2
)
vol

S
2dv−dr

�
∫

H+l ∩ {2v0 � f − � v1}
B vol

S
2dv− +

∫

{ f −=2v0}
∩{r ′�r�r+}

(B − A) vol
S
2dv−,

where c > 0. Using now the lower bounds (4.7) and (4.8), the trivial upper bounds on
A and B, the assumption (3.6) on ψ̂ as well as the regularity Assumption 2.46 for the
boundary term on { f − = 2v0}, and letting v1 →∞ we obtain

sup
r ′∈[rred,r+]

∫

{r=r ′}∩{ f −�2v0}
v
ql−
(|	||∂r ψ̂ |2 + |∂v− ψ̂ |2 +

∑

i

|Z̃i,−ψ̂ |2 + |ψ̂ |2
)
vol

S
2dv−

+
∫

{2v0 � f −} ∩ {rred � r � r+}
v
ql−
(|∂r ψ̂ |2 + |∂v− ψ̂ |2 +

∑

i

|Z̃i,−ψ̂ |2 + |ψ̂ |2
)
vol

S
2dv−dr � C,

for some C > 0, where, in a second step we have also taken the limit r ′ → rred
to obtain the bulk term. Together with the regularity Assumption 2.46 used for the
remaining compact spacetime region this shows (4.2) with f = ψ̂ .

Step 6: Estimating higher derivatives:

Recall that ∂v− , ∂ϕ− , and Q[s] commute with T̂[s]. By our assumptions on the left
event horizon (3.6) we can thus repeat the above argument now with ψ̂ replaced by
Qd[s]∂av−∂

b
ϕ−ψ̂ to obtain (4.2) for f = Qd[s]∂av−∂

b
ϕ−ψ̂ , for 0 � a + b � 2, d = 0, 1.

We now commute the Teukolsky equation with ∂r :

0 = ∂r T̂[s]ψ̂ = a2 sin2 θ∂2v−∂r ψ̂ − 2a∂v−∂ϕ−∂r ψ̂ + 2(r2 + a2)∂v−∂
2
r ψ̂

− 2a∂ϕ−∂
2
r ψ̂ +	∂3r ψ̂ + 2

(
r(3+ 2s)+ isa cos θ

)
∂v−∂r ψ̂

+ 2(r − M)(2+ s)∂2r ψ̂

+ /̊	[s]∂r ψ̂ + 2(1+ 2s)∂v− ψ̂ + 2(1+ s)∂r ψ̂.

(4.10)

Of course, the principal part is unchanged. Also note that the dashed red-shift term
is even improved. Thus, the same vector field multiplier (with ψ̂ replaced by ∂r ψ̂)
can be used to control all bulk terms quadratic in derivatives of ∂r ψ̂ . Also the same
modification, i.e., the underbraced term in (4.3) with ψ̂ replaced by ∂r ψ̂ , can be used
to generate an arbitrarily large bulk term quadratic in ∂r ψ̂ of the ‘good’ negative sign.
The boundary terms are exactly of the same form with ψ̂ replaced by ∂r ψ̂ . So the only
qualitatively new term we need to estimate is the underlined term, which is neither
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∂r ψ̂ nor derivatives of it. This term can be estimated either by a modification similarly
to the one we used above, now with ψ̂ replaced by ∂v−ψ̂ , or, more straightforwardly,
we can use directly the bulk term in (4.2). Thus, we obtain, after possibly choosing
rred closer to r+

sup
r ′∈[rred,r+]

∫

{r=r ′}∩{ f −�2v0}
v
ql−
(|	||∂2r ψ̂ |2 + |∂v−∂r ψ̂ |2 +

∑

i

|Z̃i,−∂r ψ̂ |2 + |∂r ψ̂ |2
)
vol

S
2dv−

+
∫

{2v0 � f −} ∩ {rred � r � r+}
v
ql−
(|∂2r ψ̂ |2 + |∂v−∂r ψ̂ |2 +

∑

i

|Z̃i,−∂r ψ̂ |2 + |∂r ψ̂ |2
)
vol

S
2dv−dr � C,

for some C > 0, which is (4.2) with f = ∂r ψ̂ . Again, we can in addition commute
with the Killing vector fields ∂v− , ∂ϕ− , as well as with Q[s].

Differentiating (4.10) once more in r we obtain

0 = ∂2r T̂[s]ψ̂ = a2 sin2 θ∂2v−∂
2
r ψ̂ − 2a∂v−∂ϕ−∂

2
r ψ̂ + 2(r2 + a2)∂v−∂

3
r ψ̂

− 2a∂ϕ−∂
3
r ψ̂ +	∂4r ψ̂ + 2

(
r(5+ 2s)+ isa cos θ

)
∂v−∂

2
r ψ̂ + 2(r − M)(3+ s)∂3r ψ̂

+ /̊	[s]∂2r ψ̂ + 8(1+ s)∂v−∂r ψ̂ + 2(3+ 2s)∂2r ψ̂.

The dashed red-shift term is even further improved and no qualitatively new terms
compared to (4.10) (with ψ̂ replaced by ∂r ψ̂) have appeared. This completes the
proof. ��

We now continue with the red shift estimate near the right event horizon.

Proposition 4.11 Under the assumptions of Section3 there exists an rred ∈ (r−, r+)
and a C > 0 such that

sup
r ′∈[rred,r+]

∑

0�i1+i2+i3+ j+k�1

∫

{r=r ′}∩{v+�1}
v
qr+ |	|k |Z̃ i1

1,+ Z̃
i2
2,+ Z̃

i3
3,+∂

j
v+∂

k
r f |2 vol

S
2 dv+

+
∑

0�i1+i2+i3+ j+k�1

∫

{rred�r�r+}∩{v+�1}
v
qr+ |Z̃ i1

1,+ Z̃
i2
2,+ Z̃

i3
3,+∂

j
v+∂

k
r f |2 vol

S
2 dv+dr � C

(4.12)

holds for f ∈ {∂av+∂bϕ+∂crψ, ∂v+∂
a
v+∂

b
ϕ+∂

c
rψ,Q[s]∂av+∂

b
ϕ+∂

c
rψ, }, with 0 � a+b+c � 2.

The symmetry between left and right event horizon for the wave equation is broken
for the Teukolsky equation because of a choice of frame field. Indeed, near the right
event horizon H+r we do have a blue-shift for the energy of the Teukolsky field ψ .
This is the reason why in the following proof we need to commute twice with ∂r in
order to get a red-shift near H+r .

Proof Many elements of the proof are the same as those of the proof of Proposition 4.1.
For this reason we will be more concise here and highlight the essential differences.
We begin by observing that the crucial seventh term of (2.39) has a ‘bad’ sign for
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s = 2. Multiplying by −v
qr+ (1+ λ	)∂rψ as we did before would give a bulk term in

|∂rψ |2 of positive sign – but we recall that for stability we needed the good negative
sign. We differentiate (2.39) in r to obtain

0 = ∂rT[s]ψ = a2 sin2 θ∂2v+∂rψ + 2a∂v+∂ϕ+∂rψ + 2(r2 + a2)∂v+∂
2
r ψ + 2a∂ϕ+∂

2
r ψ

+	∂3r ψ + /̊	[s]∂rψ + 2
(
r(3− 2s)− isa cos θ

)
∂v+∂rψ

+ 2(r − M)(2− s)∂2r ψ + 2(1− 2s)∂rψ + 2(1− 2s)∂v+ψ.

Differentiating once more we obtain

0 = ∂2r T[s]ψ = a2 sin2 θ∂2v+∂
2
r ψ + 2a∂v+∂ϕ+∂

2
r ψ + 2(r2 + a2)∂v+∂

3
r ψ + 2a∂ϕ+∂

3
r ψ

+	∂4r ψ + /̊	[s]∂2r ψ + 2
(
r(5− 2s)− isa cos θ

)
∂v+∂

2
r ψ

+ 2(r − M)(3− s)∂3r ψ + 6(1− s)∂2r ψ + 8(1− s)∂v+∂rψ.

(4.13)

Step 1: The multiplier: We restrict in the following to v+ � 1. We consider the
following multiplier identity, where λ, η, μ > 0 are constants to be chosen:

0 = Re
(
∂2r T[s]ψ · vqr+

(− (1+ λ	)∂r + (1+ λ	)∂v+
)
∂2r ψ

)

+ ∂r (v
qr+ μeηr |∂2r ψ |2)− v

qr+ μηeηr |∂2r ψ |2 − 2vqr+ μeηrRe(∂2r ψ∂3r ψ)
︸ ︷︷ ︸

=0
+ ∂r (v

qr+ μeηr |∂v+∂rψ |2)− v
qr+ μηeηr |∂v+∂rψ |2 − 2vqr+ μeηrRe(∂v+∂rψ∂v+∂

2
r ψ)

︸ ︷︷ ︸
=0

(4.14)

After integration over the spheres, the right hand side of (4.14) is the sum of

1. the sum of all the terms on the right hand sides of C.1 and C.2 with χ(v+) = v
qr+

and ψ replaced by ∂2r ψ

2. the real part of the terms

2
(
r(5− 2s)− isa cos θ

)
∂v+∂

2
r ψ · vqr+

(− (1+ λ	)∂r + (1+ λ	)∂v+
)
∂2r ψ

−v
qr+ (1+ λ	) · 2(r − M)(3− s)|∂3r ψ |2 + v

qr+ (1+ λ	)2(r − M)(3− s)∂3r ψ∂v+∂
2
r ψ

+ [6(1− s)∂2r ψ + 8(1− s)∂v+∂rψ
] · vqr+

(− (1+ λ	)∂r + (1+ λ	)∂v+
)
∂2r ψ

3. the underbraced terms in (4.14).

The second underbraced term in (4.14) has been added to control the double underlined
term above. As before, we can derive a boundedness statement if the bulk terms are
negative. We proceed as before:

Step 2: Estimating all bulk terms that are quadratic in derivatives of ∂2r ψ.

As before the two dashed terms combine to give a negative definite contribution in
|∂3r ψ |2 for r close enough to r+. Next, we look at the wavily underlined terms which
are all those that are leading order in λ. Again, the first of those terms in C.1 has a
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good negative sign, the second can be controlled by the third one in C.1 and by the
one in C.2 (as in (4.4)) for r close enough to r+ so that the wavily underlined terms
and the dashed terms combined can be estimated from above by

− v
qr+ f (r , λ)

(
λ(
∑

i

|Z̃i,+∂2r ψ |2 + |∂v+∂2r ψ |2)+ |∂3r ψ |2
)
, (4.15)

where f (r+, λ) > 0 is independent of λ. Choosing now λ > 0 and v0 � 1 large
enough and rred < r+ close enough to r+, all other bulk terms that are quadratic in
derivatives of ∂2r ψ can be controlled in absolute value by − 1

2×(4.15) in the region
{rred � r � r+} ∩ {v+ � v0}.

Step 3: Estimating boundary terms.
We gather all the total derivatives ∂v+

(
A(v+, r , ∂2r ψ, ∂∂2r ψ)

)
and ∂r

(
B(v+, r ,

∂v+∂rψ, ∂2r ψ, ∂∂2r ψ)
)
appearing on the right hand side of (4.14), where we find

A(v+, r , ∂2r ψ, ∂∂2r ψ) = v
qr+ (1+ λ	)

(
− a2 sin2 θRe(∂v+∂

2
r ψ∂3r ψ)

− 2aRe(∂ϕ+∂
2
r ψ∂3r ψ)− (r2 + a2)|∂3r ψ |2

+ 1

2
a2 sin2 θ |∂v+∂2r ψ |2 −

1

2
	|∂3r ψ |2

+ 1

2
(s + s2)|∂2r ψ |2 −

1

2

∑

i

|Z̃i,+∂2r ψ |2
)

and

B(v+, r , ∂v+∂rψ, ∂2r ψ, ∂∂2r ψ) = v
qr+ (1+ λ	)

(1

2
a2 sin2 θ |∂v+∂2r ψ |2

+ 2aRe(∂ϕ+∂
2
r ψ∂v+∂2r ψ)− 1

2
	|∂3r ψ |2

− 1

2
(s + s2)|∂2r ψ |2 +

1

2

∑

i

|Z̃i,+∂2r ψ |2

+ (r2 + a2)|∂v+∂2r ψ |2

+	Re(∂3r ψ∂v+∂2r ψ)
)

+ v
qr+ μeηr |∂2r ψ |2 + v

qr+ μeηr |∂v+∂rψ |2.

The coercivity of B and B−A for r close enough to r+ is established in the sameway as
in the proof of Proposition 4.1, Step 3, by choosingμ(η) such thatμ(η)eηr+ = 2(s+s2)
to obtain

B(v+, r , ∂v+∂rψ, ∂2r ψ, ∂∂2r ψ) � v
qr+ (|	||∂3r ψ |2 + |∂v+∂2r ψ |2 +

∑

i

|Z̃i,+∂2r ψ |2

+|∂2r ψ |2 + |∂v+∂rψ |2) (4.16)
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and

(B − A)(v+, r , ∂v+∂rψ, ∂2r ψ, ∂∂2r ψ) � v
qr+ (|∂3r ψ |2 + |∂v+∂2r ψ |2 +

∑

i

|Z̃i,+∂2r ψ |2

+|∂2r ψ |2 + |∂v+∂rψ |2) (4.17)

for r ∈ [rred, r+] with rred close enough to r+.
Step 4: Estimating the remaining bulk terms.
The last two terms of each underbraced term in (4.14) are estimated as in (4.9) of

Step 4 of the proof of Proposition 4.1, where we again choose η > 0 so large that the
resulting terms quadratic in derivatives of ∂2r ψ are absorbed by 1

4× (4.15) and such
that the terms− 1

2v
qr+ ημeηr (|∂2r ψ |2+|∂v+∂rψ |2) control all the remaining bulk terms.

Step 5: Putting it all together.
We obtain from (4.14) after integration over the spheres

∂v+
(
A(v+, r , ∂2r ψ, ∂∂2r ψ)

)+ ∂r
(
B(v+, r , ∂v+∂rψ, ∂2r ψ, ∂∂2r ψ)

)

�
a.i.

v
qr+
(|∂3r ψ |2 + |∂v+∂2r ψ |2 +

∑

i

|Z̃i,+∂2r ψ |2 + |∂2r ψ |2 + |∂v+∂rψ |2
)

for v+ � v0 and rred � r � r+. Let now r ′ ∈ [rred, r+). We integrate over the region
{2v0 � f + � v1} ∩ {r ′ � r � r+} with respect to dv+ ∧ dr ∧ vol

S
2 = 1

ρ2 vol and use

that on a level set of f + we have dr = dv+ to obtain

∫

{r=r ′}
∩{2v0� f +�v1}

B vol
S
2dv+ +

∫

{ f +=v1}
∩{r ′�r�r+}

(B − A) vol
S
2dv+

+ c
∫

{2v0� f +�v1}
∩{r ′�r�r+}

v
qr+
(|∂3r ψ |2 + |∂v+∂2r ψ |2

+
∑

i

|Z̃i,+∂2r ψ |2 + |∂2r ψ |2 + |∂v+∂rψ |2
)
vol

S
2dv+dr

�
∫

H+r ∩ {2v0 � f + � v1}
B vol

S
2dv+ +

∫

{ f +=2v0}
∩{r ′�r�r+}

(B − A) vol
S
2dv+,

(4.18)

where c > 0. Using the lower bounds (4.16) and (4.17), the trivial upper bounds on
A and B, the Assumptions 2.46 and (3.4) on ψ to control the boundary terms on the
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right hand side, we obtain from this

sup
r ′∈[rred,r+]

∫

{r=r ′}∩{ f +�2v0}
v
qr+
(|	||∂3r ψ |2 + |∂v+∂2r ψ |2

+
∑

i

|Z̃i,+∂2r ψ |2 + |∂2r ψ |2 + |∂v+∂rψ |2
)
vol

S
2dv+

+
∫

{rred�r�r+}∩{ f+�2v0}
v
qr+
(|∂3r ψ |2 + |∂v+∂2r ψ |2

+
∑

i

|Z̃i,+∂2r ψ |2 + |∂2r ψ |2 + |∂v+∂rψ |2
)
vol

S
2dv+dr � C

(4.19)

for some C > 0. Together with Assumption 2.46 this in particular gives (4.12) with
f = ∂2r ψ .
Step 6: Estimating higher, lower, and other derivatives.
We can again just commute (4.13) with ∂v+ , ∂ϕ+ , andQ[s] to obtain (4.12) also for

f ∈ {∂av+∂bϕ+∂2r ψ, ∂v+∂
a
v+∂

b
ϕ+∂

2
r ψ,Q[s]∂av+∂

b
ϕ+∂

2
r ψ} for 0 � a + b � 2.36 The lower

order terms are now estimated by integrating in r using the fundamental theorem of
calculus together with Minkowski’s inequality37 and using the assumptions (3.4) on
the right event horizon to obtain

sup
r ′∈[rred,r+]

∫

{r=r ′}∩{v+�1}
v
qr+
(|∂2r f |2 + |∂v+∂r f |2 +

∑

i

|Z̃i,+∂r f |2 + |∂r f |2
)
vol

S
2dv+ � C

for some C > 0 and f ∈ {∂av+∂bϕ+∂rψ, ∂v+∂
a
v+∂

b
ϕ+∂rψ,Q[s]∂av+∂

b
ϕ+∂rψ} for 0 �

a+ b � 2. Integrating once more in this way concludes the proof of Proposition 4.11.
��

The following remark about the altered red-shift effect for the Teukolsky equation
and Gaussian beams is not needed for the result of the paper but the reader might still
find it instructive.

36 This gives control over some higher derivatives which are not stated in Proposition 4.11 and which are
not needed. We are wasteful here with derivatives in order to streamline the presentation. Being a bit more
careful one can safe a couple of derivatives here.
37 Concretely, we use

( ∫

{r=r ′}∩{v+�1}
h2vol

S2
dv+

) 1
2 �

( ∫

{r=r+}∩{v+�1}
h2vol

S2
dv+

) 1
2

+
∫ r+

r ′

( ∫

{r=r̃}∩{v+�1}
(∂r h)

2vol
S2
dv+

) 1
2 dr

for h ∈ {Z̃ i11,+ Z̃
i2
2,+ Z̃

i3
3,+∂

j
v+∂kr (∂

d
v+Q

e[s]∂av+∂bϕ+∂rψ)}, 0 � i1 + i2 + i3 + j + k � 1, and 0 � a+ b � 2,
0 � d + e � 1.
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Remark 4.20 The red-shift effect along the event horizon for the scalar wave equation
is by now a classic effect which has been used in various guises. To understand how
it changes for the Teukolsky equation it is helpful to differentiate between the fol-
lowing three manifestations of the red-shift effect (one could easily consider more).
We consider a family of observers with timelike velocity vector fields N which are
Lie-transported along the Hawking Killing vector field TH+ = ∂v+ + a

r2++a2
∂ϕ+ along

the event horizon.

1. The frequency, as measured by the family of observers, of a (Gaussian) beam
propagating along the event horizon is shifted exponentially to the red. This could
be seen as the original red-shift effect.

2. The energy of a (Gaussian) beam propagating along the event horizon decays
exponentially, see [59, 60]. Note that this is a priori independent of the change of
colour of the light, but it is the most relevant manifestation of the so-called red-shift
effect on energy estimates.

3. Consider compactly supported initial data along the event horizon. Then the
transversal derivative decays exponentially along the event horizon, see (2.39).

For the Teukolsky equation, as we will see, it no longer makes sense to refer to those
three effects collectively as the ‘red-shift effect’. Dividing (2.39) by ρ2 we obtain that
the Teukolsky equation in (v+, r , θ, ϕ+) coordinates is of the form�gψ+Xψ+ fψ =
0 with

X = − 1

ρ2 (4sr + 2isa cos θ)∂v+ −
2s(r − M)

ρ2 ∂r + 2si

ρ2

cos θ

sin2 θ
∂ϕ+ ,

f = − 2s

ρ2 −
1

ρ2

(

s2
cos2 θ

sin2 θ
− s

)

.

Note that in the construction of Gaussian beams for wave equations with lower
order terms, the lower order terms only impinge on the amplitude, but not on the
phase function, see Appendix 3.D of [59]. Thus the frequency/colour is still shifted to
the red for all values of s.

We now consider the behaviour of the energy of Gaussian beams for which we
refer the reader to Appendix 3.D of [59]. It follows from ∇TH+ TH+ = κ+TH+ that
e−κ+v+TH+ is a null geodesic velocity vector field along the event horizon. The N -
energy of a Gaussian beam for the wave equation localised along one of the integral
curves thus behaves like e−κ+v+ . Let us now choose either the integral curve at θ = 0
or θ = π so that g(X , e−κ+v+TH++) = −e−κ+v+2 sκ+. With the terminology from [59]

we hence obtain the modulating factor |mX (v+)|2 = e2sκ+v+ of the amplitude of the
Gaussian beam for the Teukolsky equation compared to that for the wave equation.
Hence, the N -energy of such a Gaussian beam for the Teukolsky equation behaves
like e(2s−1)κ+v+ .

In Appendix 3.E of [59] it was obtained that an integrated local energy decay
statement for the Teukolsky equation cannot hold in the exterior of a Kerr black
hole without the ‘loss of a derivative’ by considering Gaussian beams localised along
trapped null geodesics away from the horizon. By considering a Gaussian beam along
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the event horizon as above it follows that not even a uniform energy boundedness
statement for the Teukolsky equation for s = +1,+2 can hold without the ‘loss of a
derivative’.

Finally, for compactly supported initial data along the right event horizon it directly
follows from (2.39) that for s = +1 the transversal derivative remains constant for
large v+ while for s = +2 it grows in general exponentially (i.e., if it does not vanish).
This shows very nicely how these three different effects decouple for the Teukolsky
equation.

4.1.1 Corollaries

Let χ : R → (0,∞) be a fixed positive smooth function with χ(v+) = v
qr+ for v+ � 1

and χ(v+) = |v+|ql for v+ � −1. The next corollary will be our starting point for
the estimates in the next section which are needed for the separation of the Teukolsky
field. It combines the results of Proposition 4.1 and 4.11, but we can afford to discard
uniformity up to the event horizons.

Corollary 4.21 Under the assumptions of Section3 there exists an rred ∈ (r−, r+) such
that for any r1 ∈ (rred, r+) there exists a C > 0 such that

sup
r ′∈[rred,r1]

∑

0�i1+i2+i3+ j+k�1

∫

{r=r ′}
χ(v+)|Z̃ i1

1,+ Z̃
i2
2,+ Z̃

i3
3,+∂

j
v+
(
∂r |+

)k
f |2 vol

S
2 dv+ � C

(4.22)

holds for f ∈ {∂av+∂bϕ+(∂r |+)cψ, ∂v+∂
a
v+∂

b
ϕ+(∂r |+)cψ,Q[s]∂av+∂

b
ϕ+(∂r |+)cψ}, 0 � a+

b + c � 2.

Here we have employed the notation ∂r |+ to emphasise that this is a partial derivative
in r with respect to the (v+, r , θ, ϕ+)-coordinate system.

Proof It follows from (2.3) and (2.4) that we have ∂r |+ = 2 r2+a2
	

∂v− −2 a
	
∂ϕ− +∂r |−.

Recalling moreover that ψ = 	2ψ̂ , we obtain

∂r |+ψ = 2	(r2 + a2)∂v−ψ̂ − 2a	∂ϕ−ψ̂ +	2∂r |−ψ̂ + 2(∂r	)	ψ̂ (4.23)

and

(
∂r |+

)2
ψ = 4(r2 + a2)2∂2v−ψ̂ − 8(r2 + a2)a∂v−∂ϕ−ψ̂

+ 4	(r2 + a2)∂v−∂r |−ψ̂ + 4(r2 + a2)(∂r	)∂v−ψ̂

+ 4a2∂2ϕ−ψ̂ − 4a	∂ϕ−∂r |−ψ̂ − 4a(∂r	)∂ϕ−ψ̂ + 2∂r (	(r2 + a2))∂v−ψ̂

− 2a(∂r	)∂ϕ−ψ̂ +	2(∂r |−
)2
ψ̂ + 4	(∂r	)∂r |−ψ̂ + 2∂r ((∂r	)	)ψ̂

(4.24)
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and (∂r |+)3ψ is a linear combination of ∂av−∂
b
ϕ−(∂r |−)cψ̂ with 0 � a + b + c � 3,

a, b, c,∈ N0. Moreover, using ϕ+ = ϕ− + 2r we directly compute

Z̃1,+ = cos(2r) · Z̃1,− + sin(2r) · Z̃2,−
Z̃2,+ = cos(2r) · Z̃2,− − sin(2r) · Z̃1,−
Z̃3,+ = Z̃3,−.

(4.25)

We also observe ∂v+ = −∂v− . Moreover, it follows from v+ = −v− + 2r∗ that
for r ′ ∈ [rred, r+) we have |v+| � C(r ′)|v−| for v+ � −C(r ′) with the constant
C(r ′) blowing up for r ′ → r+. Now (4.22) follows directly from the Propositions 4.1
and 4.11 and the regularity Assumption 2.46. ��
Remark 4.26 The constant on the right hand side of (4.22) will in general blow up
for r1 → r+, because of the conversion of the v−-weights from Proposition 4.1 into
v+-weights. However, for f = ψ, ∂rψ , we do have exponential decay in v+ for
v+ → −∞ approaching H+l by the regularity Assumption 2.46, which compensates
for the blow up of the constant in the conversion and (4.22) can actually be shown to
hold uniformly up to r+. Since f = (∂r |+)2ψ is in general regular and non-vanishing
near the bottom bifurcation sphere S

2
b we do no longer have decay for v+ → −∞

approaching H+l and so the constant blows up for r1 → r+.

The next corollary is needed in Section7 for passing to the limit r → r+ in the
separated picture, in particular for Proposition 7.4 and Proposition 7.17.

Corollary 4.27 Under the assumptions in Section3 we have for r+ > r → r+

ψ(v+, r , θ, ϕ+)→ ψ(v+, r+, θ, ϕ+) in L2
v+L

2
S
2 (4.28)

and

1(v0,∞)(v−) · (∂r |+)2ψ(v−, r , θ, ϕ−)
→ 1(v0,∞)(v−) · (∂r |+)2ψ(v−, r+, θ, ϕ−) in L2

v−L
2
S
2 (4.29)

for any v0 ∈ R.

Proof We begin with proving (4.28). The fundamental theorem of calculus gives
|ψ(v+, r , θ, ϕ+) − ψ(v+, r+, θ, ϕ+)| �

∫
[r ,r+] |∂rψ(v+, r ′, θ, ϕ+)| dr ′. Cauchy

Schwarz yields

|ψ(v+, r , θ, ϕ+)− ψ(v+, r+, θ, ϕ+)|2 �
∫

[r ,r+]
|∂rψ(v+, r ′, θ, ϕ+)|2 dr ′ · |r − r+|

which thus gives

∫

R×S
2
|ψ(v+, r , θ, ϕ+)− ψ(v+, r+, θ, ϕ+)|2volS2dv+
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�
∫

[r ,r+]

∫

R×S
2
|∂rψ(v+, r ′, θ, ϕ+)|2 dr ′volS2dv+ · |r − r+|.

It follows from (4.23) together with (4.2), from the bulk term in (4.12), as well as from
the regularity Assumption 2.46 that the spacetime integral is uniformly bounded. This
shows (4.28).

To prove (4.29) we compute in an analogous manner as before
∫

R×S
2
1(v0,∞)(v−)

∣
∣
∣(∂r |+)2ψ(v−, r , θ, ϕ−)− (∂r |+)2ψ(v−, r+, θ, ϕ−)

∣
∣
∣
2
vol

S
2dv−

�
∫

[r ,r+]

∫

R×S
2
1(v0,∞)(v−)

∣
∣
∣(∂|−)(∂r |+)2ψ(v−, r ′, θ, ϕ−)|2 dr ′vol

S
2dv− · |r − r+|.

(4.30)

Differentiating (4.24) once in (∂r |−) we obtain that (∂r |−)(∂r |+)2ψ is a linear com-
bination (with uniformly bounded coefficients) of the terms ∂av−∂

b
ϕ−(∂r |−)cψ̂ with

0 � a+ b+ c � 3. For v0 � 1 all those terms are controlled by the bulk term in (4.2)
– and for v0 � 1 we complement this bulk term by the regularity Assumption 2.46.
Hence, the spacetime integral in (4.30) is uniformly bounded. This shows (4.29). ��

4.2 Estimates Away from the Event and Cauchy Horizons

Proposition 4.31 Under the assumptions of Section3, and with rred as in Corol-
lary 4.21, we have that for any r0 ∈ (r−, rred] there exists a constant C > 0 (depending
on r0) such that

sup
r ′∈[r0,rred]

∑

0�i1+i2+i3+ j+k�1

∫

{r=r ′}
χ(v+)|Z̃ i1

1,+ Z̃
i2
2,+ Z̃

i3
3,+∂

j
v+∂

k
r f |2 vol

S
2 dv+ � C

(4.32)

holds for f ∈ {∂crψ, ∂v+∂
c
rψ,Q[s]∂cr ψ} for c = 0, 1, 2.

Proof We use Boyer-Lindquist coordinates for the proof. Since the region under con-
sideration in (4.32) is bounded away from r− and r+, we have that ∂r |+ is a bounded
linear combination of ∂t , ∂ϕ, ∂r |BL. Thus, it is straightforward to see that (4.32) follows
from

sup
r ′∈[r0,rred]

∑

0�i1+i2+i3+ j+k�1

∫

{r=r ′}
χ(t)|Z̃ i1

1 Z̃ i2
2 Z̃ i3

3 ∂
j
t ∂

k
r f |2 vol

S
2 dt � C

(4.33)

for f ∈ {∂at ∂bϕ(∂r |BL)cψ, ∂t∂
a
t ∂

b
ϕ(∂r |BL)cψ,Q[s]∂at ∂bϕ(∂r |BL)cψ}, with 0 � a + b +

c � 2. In the following we will prove (4.33).
Step 1: The multiplier.We start out from the following multiplier identity, where

λ,μ, η > 0 are constants to be chosen and χ is as above:

0 = Re(T[s]ψ(−χ(t)eλr∂rψ))
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+ ∂r (χ(t)μeηr |ψ |2)− χ(t)μηeηr |ψ |2 − 2χ(t)μeηrRe(ψ∂rψ)
︸ ︷︷ ︸

=0
. (4.34)

After integration over the spheres, and using the form (2.38) of the Teukolsky equation,
the right hand side of (4.34) equals the sum of

1. the sum of all the terms on the right hand side of D.1
2. the terms

− χ(t)eλr2(r − M)(1− s)|∂rψ |2 − χ(t)eλr2s
a(r − M)

	
Re(∂ϕψ∂rψ)

− χ(t)eλr2s
[M(r2 − a2)

	
− r − ia cos θ

]
Re(∂tψ∂rψ)+ χ(t)eλr2sRe(ψ∂rψ)

3. the underbraced terms in (4.34).

As before, it will turn out that we can derive a boundedness statement if all the bulk
terms are negative.

Step 2: Estimating all bulk terms that are quadratic in derivatives of ψ.Wecol-
lect the leading order terms in λ from D.1, which are the wavily underlined terms:

1

2
χ(t)eλrλ

[( (r2 + a2)2

	
− a2 sin2 θ

)
|∂tψ |2 + 4Mar

	
Re(∂ϕψ∂tψ)

+a2

	
|∂ϕψ |2 +	|∂rψ |2 −

∑

i

|Z̃iψ |2
]

(4.35)

It turns out that in order to control the non-definite second term it is actually not
sufficient just to use the |∂ϕψ |2 control of the last term. Instead, we need to use the
strengthened control provided by Lemma 2.33 together with the a2 sin2 θ contribution
of the first term in (4.35). Thus, using Lemma 2.33, we rewrite (4.35) as

1

2
χ(t)eλrλ

[( (r2 + a2)2

	
− a2 sin2 θ

)
|∂tψ |2

+ 4Mar

	
Re([is cos θ · ψ + ∂ϕψ]∂tψ)+ a2

	
|is cos θ · ψ + ∂ϕψ |2

+	|∂rψ |2 − |∂θψ |2 − 1

sin2 θ
|is cos θ · ψ + ∂ϕψ |2 − s2|ψ |2

]

− 1

2
χ(t)eλrλ

[4Mar

	
Re(is cos θ · ψ∂tψ)+ a2

	
s2 cos2 θ |ψ |2 + 2

a2

	
Re(is cos θ · ψ∂ϕψ)

]

︸ ︷︷ ︸

(4.36)

The underbraced terms will be treated as error terms. We show now that for r ∈
[r0, rred]with r0 > r− the remaining terms (modulo zeroth order terms) are uniformly
bounded from above by

− 1

2
χ(t)eλrλ · c(|∂tψ |2 + |∂rψ |2 +

∑

i

|Z̃iψ |2
)

(4.37)
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for some c > 0 depending on r− < r0 < rred < r+. For this it is clearly sufficient to
show that the non-underbraced terms in (4.36) are uniformly negative definite in ∂tψ

and 1
sin θ

(is cos θ · ψ + ∂ϕψ). A straightforward computation gives

det

(
(r2+a2)2

	
− a2 sin2 θ 2Mar

	
sin θ

2Mar
	

sin θ a2
	
sin2 θ − 1

)

= − 1

	

(
r2 + a2 cos2 θ

)2
> 0, (4.38)

which shows the claim.
We can now choose λ > 0 large enough such that all bulk terms that are quadratic in

derivatives of ψ can be controlled in absolute value by − 1
4×(4.37). The underbraced

bulk terms in (4.36) of the form Re(ψ∂ψ), which are also leading order in λ, can
be estimated by |Re(ψ∂ψ)| � 1

2ε|∂ψ |2 + 1
2ε
−1|ψ |2, where we choose ε > 0 so

small that the arising first term can be bounded by − 1
4×(4.37). It thus only remains

to estimate the zeroth order bulk terms, which will be done in Step 4.
Step 3: Estimating boundary terms.We collect all the total derivatives appearing

on the right hand side of (4.34). They are of the form ∂t (A) and ∂r (B), where

A = χ(t)eλr
[( (r2 + a2)2

	
− a2 sin2 θ

)
Re(∂tψ∂rψ)+ 2Mar

	
Re(∂ϕψ∂rψ)

]

and

B = 1

2
χ(t)eλr

[
−
( (r2 + a2)2

	
− a2 sin2 θ

)
|∂tψ |2 − 4Mar

	
Re(∂ϕψ∂tψ)− a2

	
|∂ϕψ |2

−	|∂rψ |2 − (s + s2)|ψ |2 +
∑

i

|Z̃iψ |2
]
+ χ(t)μeηr |ψ |2.

(4.39)

The coercivity of B,

B � χ(t)
(|∂rψ |2 + |∂tψ |2 +

∑

i

|Z̃iψ |2 + |ψ |2
)
, (4.40)

in the region r0 � r � rred is established using the same computation as in Step 2:
First, we use Lemma 2.33 and moreover replace every ∂ϕψ in (4.39) by 1

sin θ
(is cos θ ·

ψ + ∂ϕψ), thus obtaining again error terms. The lower bound of B in χ(t)
(|∂rψ |2 +

|∂tψ |2 +∑i |Z̃iψ |2
)
then follows again from (4.38) at the expense of a large zeroth

order error term. We now choose μ as a function of η such that the last term in (4.39),
χ(t)μeηr |ψ |2, is large enough in the region r0 � r � rred to dominate this error term.
This yields (4.40).

Next we establish the coercivity of B ± 	
2Mr A,

B ± 	

2Mr
A � χ(t)

(|∂rψ |2 + |∂tψ |2 +
∑

i

|Z̃iψ |2 + |ψ |2
)
, (4.41)
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in the region r0 � r � rred. It follows again from Lemma 2.33 that we have

B ± 	

2Mr
A = χ(t)eλr

[
− 1

2

( (r2 + a2)2

	
− a2 sin2 θ

)
|∂tψ |2

− 2Mar

	
sin θRe

( 1

sin θ
(is cos θ · ψ + ∂ϕψ)∂tψ

)

− 1

2

a2

	
sin2 θ

∣
∣
∣

1

sin θ
(is cos θ · ψ + ∂ϕψ)

∣
∣
∣
2 − 1

2
	|∂rψ |2 − 1

2
(s + s2)|ψ |2

+ 1

2

(|∂θψ |2 + 1

sin2 θ
|is cos θ · ψ + ∂ϕψ |2 + s2|ψ |2)

]
+ χ(t)μeηr |ψ |2

± χ(t)eλr
[( (r2 + a2)2

2Mr
− 	a2 sin2 θ

2Mr

)
Re(∂tψ∂rψ)

+ a sin θRe
( 1

sin θ
(is cos θ · ψ + ∂ϕψ)∂rψ

)]

− χ(t)eλr
[
− 2Mar

	
Re(is cos θ · ψ∂tψ)− 1

2

a2

	
s2 cos2 θ |ψ |2 − a2

	
sin θRe(is cos θ · ψ∂ϕψ)

]

︸ ︷︷ ︸

∓χ(t)eλr aRe(is cos θ · ψ∂rψ)
︸ ︷︷ ︸

,

(4.42)

where the underbraced terms are considered as error terms. Again, we consider the
part of the above expression that is quadratic in {∂tψ, 1

sin θ
(is cos θ ·ψ + ∂ϕψ), ∂rψ}

as a quadratic form. Its associated matrix is

M± :=

⎛

⎜
⎜
⎝

− 1
2

(
(r2+a2)2

	
− a2 sin2 θ

)
−Mar

	
sin θ ± 1

2

(
(r2+a2)2
2Mr − 	a2 sin2 θ

2Mr

)

−Mar
	

sin θ − 1
2

( a2
	
sin2 θ − 1

) ± 1
2a sin θ

± 1
2

(
(r2+a2)2
2Mr − 	a2 sin2 θ

2Mr

)
± 1

2a sin θ − 1
2	,

⎞

⎟
⎟
⎠

which we claim is positive definite in the region r0 � r � rred: Obviously, the first
main minor is positive, the second main minor was computed in (4.38) to be positive,
and a computation gives

det M± = −	

32M2r2
(r2 + a2 cos2 θ)2(r2 + a2 cos2 θ + 2Mr) > 0 for r0 � r � rred,

from which the claim follows. Now, if necessary, choosing μ(η) even larger, we can
control all the error terms in (4.42) to obtain (4.41).

Step 4: Estimating the remaining bulk terms. As familiar from the proof of
Propositions 4.1 and 4.11 we estimate the last two of the underbraced terms in (4.34)
by

−χ(t)μηeηr |ψ |2 − 2χ(t)μeηrRe(ψ∂rψ) � −1

2
χ(t)μηeηr |ψ |2 + 2χ(t)η−1μeηr |∂rψ |2.

We now choose η > 0 sufficiently large so that the last term can be controlled by
− 1

4× (4.37) and such that the first term controls all the zeroth order terms in the bulk
(including those generated at the end of Step 2).
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Step 5: Putting it all together. After integration over the spheres we thus obtain
from (4.34)

∂t (A)+ ∂r (B) �
a.i.

χ(t)
(|∂rψ |2 + |∂tψ |2 +

∑

i

|Z̃iψ |2 + |ψ |2
)

(4.43)

for r0 � r � rred. Let r ′ ∈ [r0, rred). Integrating (4.43) over {r ′ � r � rred} ∩ { f − �
t0} ∩ { f + � t0} with respect to 1

ρ2 vol = dt ∧ dr ∧ vol
S
2 , where t0 � 1, and using

that on the level sets of f − as well as on those of f + we have
∣
∣ dr
dt

∣
∣ = |	|

2Mr , we obtain

∫

{r=r ′}∩{ f −�t0}
∩{ f +�t0}

B vol
S
2dt +

∫

{ f −=t0}
∩{r ′�r�rred}

(
B + |	|

2Mr
A
)
vol

S
2dt +

∫

{ f +=t0}
∩{r ′�r�rred}

(
B − |	|

2Mr
A
)
vol

S
2dt

+ c
∫

{r ′�r�rred}∩{ f −�t0}
∩{ f +�t0}

χ(t)
(|∂rψ |2 + |∂tψ |2 +

∑

i

|Z̃iψ |2 + |ψ |2
)
vol

S
2dt dr

�
∫

{r=rred}∩{ f −�t0}
∩{ f +�t0}

B vol
S
2dt,

where c > 0 is a constant depending on r0. Using (4.41) to infer the positivity of the
second and third term, (4.40), and letting t0 →∞, we obtain

∫

{r=r ′}

χ(t)
(|∂rψ |2 + |∂tψ |2 +

∑

i

|Z̃iψ |2 + |ψ |2
)
vol

S
2dt

+
∫

{r ′�r�rred}

χ(t)
(|∂rψ |2 + |∂tψ |2 +

∑

i

|Z̃iψ |2 + |ψ |2
)
vol

S
2dt dr

� C
∫

{r=rred}

B(ψ) vol
S
2dt, (4.44)

where C > 0 is a constant depending on r0. This, together with the trivial upper
bounds on B and Corollary 4.21 (note that ∂r |BL is a bounded linear combination of
∂v+ , ∂ϕ+ , ∂r |+), gives (4.33) for f = ψ .

Step 6: Estimating higher derivatives. Because ∂t , ∂ϕ , Q[s] commute with T[s],
it follows directly that (4.44) also holds with ψ replaced by ∂at ∂

b
ϕψ , ∂t∂at ∂

b
ϕψ , and

Q[s]∂at ∂bt ψ with 0 � a + b � 2. The conclusion of Corollary 4.21 implies that the
boundary term at {r = rred} is bounded, thus giving (4.33) with c = 0.
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Moreover, we observe that

ψ = ∂rT[s]ψ − T[s]∂rψ

= −∂r

( (r2 + a2)2

	

)
∂2t ψ − ∂r

(4Mar

	

)
∂t∂ϕψ − ∂r

(a2

	

)
∂2ϕψ + (∂r	)∂2r ψ. . . . . . . . . . .

+ 2(1− s)∂rψ + ∂r

(
2s

a(r − M)

	

)
∂ϕψ + ∂r (2s

(M(r2 − a2)

	
− r
)
)∂tψ.

(4.45)

Thus, all the additional bulk terms in the energy estimate

0 = Re(T[s]∂rψ(−χ(t)eλr∂2r ψ))+Re([∂r , T[s]]ψ(−χ(t)eλr∂2r ψ))

+ ∂r (χ(t)μeηr |∂rψ |2)− χ(t)μηeηr |∂rψ |2 − 2χ(t)μeηrRe(∂rψ∂2r ψ)
︸ ︷︷ ︸

=0
,

after Cauchy Schwarz, have either already been controlled by the integrated (4.33)
with c = 0 (or the bulk term in (4.44) with ψ replaced by ∂at ∂

b
ϕψ) or are at the level

of energy for ∂rψ (i.e., the dotted term in (4.45)). We thus also obtain (4.44) with ψ

replaced by ∂rψ . Since ∂r |BL is a bounded linear combination of ∂v+ , ∂ϕ+ , ∂r |+, the
boundary term at {r = rred} is bounded by Corollary 4.21. We can again commute
with ∂t , ∂ϕ,Q[s] to obtain (4.33) for c = 1.

Finally, commuting (2.38) oncemorewith ∂r we find that [∂2r , T[s]] is a bounded lin-
ear combination of the terms ∂r∂

2
t ψ, ∂2t ψ, ∂r∂t∂ϕψ, ∂t∂ϕψ, ∂r∂

2
ϕψ, ∂2ϕψ, ∂3r ψ. . . . , ∂

2
r ψ,

∂ϕψ, ∂tψ, ∂r∂tψ . We can repeat the same energy estimate, but now for ∂2r ψ . The dot-
ted term is again at the level of the energy for ∂2r ψ and all the other terms have already
been controlled. Commutation with ∂t and Q[s] then concludes the proof. ��

4.2.1 Corollaries

The following corollary is needed for Teukolsky’s separation of variables in Theo-
rem 5.26.

Corollary 4.46 Under the assumptions of Section3 and for r− < r0 < r1 < r+ there
exists a constant C > 0 (depending on r0, r1) such that for f ∈ {ψ, ∂rψ, ∂2r ψ}

sup
r ′∈[r0,r1]

∑

0�i1+i2+i3+ j�2

∫

{r=r ′}
χ(v+)|Z̃ i1

1,+ Z̃
i2
2,+ Z̃

i3
3,+∂

j
v+ f |2 vol

S
2 dv+ � C

(4.47)

holds and

| f (v+, r , θ, ϕ+)| � C
√
χ(v+)

(4.48)
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holds for r ∈ (r0, r1) and all (θ, ϕ+) ∈ S
2\{θ = 0, π}.

Proof We begin by proving the bound (4.47); first for f = ψ . Then all the terms
with 0 � i1 + i2 + i3 + j � 1 are controlled by (4.32) and (4.22) with f = ψ .
Using f = ∂v+ψ in (4.32) and (4.22) extends control to all terms except those with
i1+i2+i3 = 2.Wenowuse f = Q[s]ψ in (4.32) and (4.22) and use just the L2-control.
By the Definition 2.45 of the Carter operator and by the fact that we have already
controlled ∂v+ψ and ∂2v+ψ in L2, this gives us L2-control of /̊	[s]ψ . Lemma 2.37,

together with the L2-control of the first angular derivatives already obtained, now
controls the remaining terms with i1+ i2+ i3 = 2. The cases of f = ∂rψ, ∂2r ψ can be
treated analogously using that (4.32) and (4.22) hold for f ∈ {∂kr ψ, ∂v+∂

k
r ψ,Q[s]∂kr ψ}

for k = 0, 1, 2.
To prove (4.48) we observe that for 1 � v0 <∞ (4.47) implies

sup
r ′∈[r0,r1]

∑

0�i1+i2+i3+ j�2

∫ ∞
v0

∫

S
2
|Z̃ i1

1,+ Z̃
i2
2,+ Z̃ i3

3,+∂
j
v+ f (v+, r ′, θ, ϕ+)|2 vol

S
2 dv+ � C

v
qr
0

.

By Lemma 2.23 we thus have

sup
r ′∈[r0,r1]

∑

0�i1+i2+i3+ j�2

∫ ∞

v0

∫

S
2+
|Zi1

1,+Z
i2
2,+Z

i3
3,+∂

j
v+e

isϕ+ f (v+, r ′, θ, ϕ+)|2 volS2 dv+ � C

v
qr
0

and similarly for the southern hemisphere S
2−. A standard Sobolev inequality38 applied

to e±isϕ+ f thus gives

sup
r ′∈[r0,r1]

sup
(θ,ϕ+)∈S

2\{θ=0,π}
| f (v0, r ′, θ, ϕ+)| � C

√
v
qr
0

for v0 � 1. We proceed similarly for v0 � −1 and for v+ ∈ [−1, 1], r ∈ [r0, r1] the
field is uniformly bounded since it is regular. This shows (4.48). ��

Note that the reason for why the constant C > 0 in Corollary 4.46 blows up when
we let r1 go to r+ is because of the conversion of the v−-weights to v+-weights, which
becomes worse and worse when r1 → r+, cf. the proof of Corollary 4.21. If we restrict
to the region v+ � 1 then the constant can be chosen uniformly up to r = r+:

Corollary 4.49 Under the assumptions of Section3 and for given r− < r0 < r+ there
exists C > 0 such that for f ∈ {ψ, ∂rψ, ∂2r ψ}

| f (v+, r , θ, ϕ+)| � C

v
qr
2+

(4.50)

holds for all r ∈ [r0, r+], v+ � 1, (θ, ϕ) ∈ S
2\{θ = 0, π}.

38 See for example 8.8 Theorem in [42]. By choosing suitable coordinates for S
2+ the domain (v0,∞)×S

2+
can be viewed as an open subset of R

3 which satisfies a cone property that is uniform in v0.
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Indeed, the statement is only needed for f = ∂2r ψ (for Proposition 7.17).

Proof In the same way as in the proof of (4.47) in Corollary 4.46 one obtains

sup
r ′∈[r0,r+]

∑

0�i1+i2+i3+ j�2

∫

{r=r ′}∩{v+�1}
v
qr+ |Z̃ i1

1,+ Z̃
i2
2,+ Z̃

i3
3,+∂

j
v+ f |2 vol

S
2 dv+ � C

from Proposition 4.11 (and Proposition 4.31) for f ∈ {ψ, ∂rψ, ∂2r ψ}, but now with a
constant which is uniform up to r = r+. As before one now proves (4.50) by Sobolev
embedding. ��

4.3 Estimates Near the Cauchy Horizons

Recall that for the method of proof of Theorem 3.7 it is convenient to first establish the
blow-up result (3.8) along the left Cauchy horizon and then to propagate it backwards.
The estimates established in this section are used to show that 1) we can indeed extend
ψ to the left Cauchy horizon (along with a convergence result); 2) the χ -weighted
L2-bound propagates all the way to the left Cauchy horizon; 3) the singularity can be
propagated backwards from the left Cauchy horizon. All this is used in Section8.

Proposition 4.51 Under the assumptions of Section3 there exists an rered ∈ (r−, rred)
and a constant C > 0 such that the following holds

∫

{r− < r � rered}
χ(v+)

(
|∂rψ |2 + |∂v+ψ |2 +

∑

i

|Z̃i,+ψ |2 + |ψ |2
)
vol

S
2dv+dr � C

(4.52)

sup
r ′∈[rered,r−)

∫

{r=r ′}
χ(v+)

(
|	||∂rψ |2 + |∂v+ψ |2 +

∑

i

|Z̃i,+ψ |2 + |ψ |2
)
vol

S
2dv+ � C ,

(4.53)

where the function χ is as in Corollary 4.21.

Proof We use that for s = +2 there is an effective red-shift for the energy operating
close to the left Cauchy horizon. The red-shift is effective in the sense that while it
persists after one commutation of T[s]ψ = 0 with ∂r , after two commutations with
∂r it turns into a blue-shift for the energy, which becomes stronger with subsequent
commutations. We use χn(v+)(1+λ	)(−∂r + ∂v+ + a

r2−+a2
∂ϕ+) as a multiplier. Note

that, compared to the multiplier used in the proof of Proposition 4.11, the additional
contribution in ∂ϕ+ makes the vector field timelike near the Cauchy horizons.
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Step 1: The multiplier.We start out from the following multiplier identity, where
λ < 0 and η,μ > 0 are constants to be chosen:

0 = Re
(
T[s]ψ · χn(v+)(1+ λ	)(−∂r + ∂v+ +

a

r2− + a2
∂ϕ+)ψ

)

+ ∂r (χn(v+)μeηr |ψ |2)− χn(v+)μηeηr |ψ |2 − 2χn(v+)μeηrRe(ψ∂rψ)
︸ ︷︷ ︸

=0
.
(4.54)

Here, the function χn : R → (0,∞) results from locally smoothing out the corners
of the function

v+ �→

⎧
⎪⎨

⎪⎩

|v+|ql for v+ � −(n)1/ql

n for − (n)1/ql � v+ � n1/qr

v
qr+ for v+ � n1/qr .

Given δ > 0 it is easy to see that one can choose n � 1 large enough such that
|χ ′n(v+)| � δχn(v+) holds for all v+ ∈ R. The parameter n will be fixed in the next
step.

After integration over the spheres, the right hand side of (4.54) consists of the sum
of the following terms

1. the sum of all the terms on the right hand sides of C.1, C.2, and C.3 with χ(v+) =
χn(v+)

2. the real parts of the terms

2
(
r(1− 2s)− isa cos θ

)
∂v+ψ · χn(v+)(1+ λ	)(−∂r + ∂v+ +

a

r2− + a2
∂ϕ+)ψ

−χn(v+)(1+ λ	)2(r − M)(1− s)|∂rψ |2

+ χn(v+)(1+ λ	)2(r − M)(1− s)∂rψ(∂v+ψ +
a

r2− + a2
∂ϕ+ψ)

− 2sψ · χn(v+)(1+ λ	)(−∂r + ∂v+ +
a

r2− + a2
∂ϕ+)ψ

3. the underbraced terms in (4.54).

Again, our desired boundedness statement requires all the bulk terms to yield a negative
definite contribution. We also recall here that (∂r	)(r−) = 2(r− − M) < 0.

Step 2: Estimating all bulk terms that are quadratic in derivatives of ψ.

We first consider all those terms that are quadratic in ∂rψ . The leading order terms
are the dashed term from 2. in Step 1 and the dashed term from C.1. Their sum at
r = r− equals

χn(v+)2(r− − M)
(1

2
− (1− s)

)|∂rψ |2,
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which is negative for s = +2. The other two bulk terms quadratic in ∂rψ from C.1
and C.2 sum to

χ ′n(v+)(1+ λ	)(r2 + a2 + 1

2
	)|∂rψ |2. (4.55)

We can now choose n � 1 large enough and r− < rered close enough to r− (rered
depending in particular on λ at this point) such that (4.55) is controlled by − 1

2 times
the sum of the dashed terms in r− < r � rered.

We next consider all those terms quadratic in ∂ψ that are leading order in λ; these
are all the wavily underlined terms from C.1, C.2, and C.3. They sum to

−χn(v+)λ2(r − M)
[(1

2
a2 sin2 θ + (r2 + a2)

)|∂v+ψ |2

+(2a + a(r2 + a2)

r2− + a2
)
Re(∂ϕ+ψ∂v+ψ)

+1

2

∑

i

|Z̃i,+ψ |2 + a2

r2− + a2
|∂ϕ+ψ |2

]

= −χn(v+)λ2(r − M)
[(1

2
a2 sin2 θ + (r2 + a2)

)|∂v+ψ |2

+(2a + a(r2 + a2)

r2− + a2
)
sin θRe

( 1

sin θ
(is cos θ · ψ + ∂ϕ+ψ)∂v+ψ

)

+1

2

(|∂θψ |2 + 1

sin2 θ
|is cos θ · ψ + ∂ϕ+ψ |2 + s2|ψ |2

︸ ︷︷ ︸

)

+ a2

r2− + a2
sin2 θ

∣
∣ 1

sin θ
(is cos θ · ψ + ∂ϕ+ψ)

∣
∣2
]

+χn(v+)λ2(r − M)
[(
2a + a(r2 + a2)

r2− + a2
)
Re(is cos θ · ψ∂v+ψ)

︸ ︷︷ ︸

+ a2

r2− + a2
(
s2 cos2 θ |ψ |2 + 2Re(is cos θ · ψ∂ϕ+ψ)

)]

︸ ︷︷ ︸

, (4.56)

where we have used again Lemma 2.33 and we consider the underbraced terms
again as error terms. Considering the non-underbraced terms as a quadratic form in(
∂v+ψ, 1

sin θ
(is cos θ ·ψ+∂ϕ+ψ)

)
, the correspondingmatrix is−χn(v+)λ2(r−M)Q1

with

Q1 =
⎛

⎝
1
2a

2 sin2 θ + (r2 + a2)
(
a + a(r2+a2)

2(r2−+a2)
)
sin θ

(
a + a(r2+a2)

2(r2−+a2)
)
sin θ 1

2 + a2

r2−+a2
sin2 θ

⎞

⎠ . (4.57)

The determinant of Q1 evaluated at r = r− is easily computed to be det Q1(r−) =
1

2(r2−+a2)
(r2− + a2 cos2 θ)2 > 0, and hence Q1 is positive definite at r = r−. Recalling
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that λ < 0 and 2(r− − M) < 0 it now follows that for rered > r− close enough to r−
there exist constants c > 0,C > 0 such that the following holds in r− < r � rered:

(4.56) � −cχn(v+)|λ|
(|∂v+ψ |2 +

∑

i

|Z̃i,+ψ |2
)+ χn(v+)C |λ| · |ψ |2.

Together with our earlier estimates for ∂rψ this shows that the dashed terms, the other
terms quadratic in ∂rψ , and the wavily underlined terms are bounded from above by

−cχn(v+)
[
|∂rψ |2 + |λ|

(|∂v+ψ |2 +
∑

i

|Z̃i,+ψ |2
)]+ χn(v+)C |λ| · |ψ |2

in the region r− < r � rered. We can now choose λ < 0 large enough in absolute
value such that the sum of all the non-underbraced terms on the right hand side of
(4.54) that are not total derivatives are estimated from above by

− cχn(v+)
[
|∂rψ |2 + |∂v+ψ |2 +

∑

i

|Z̃i,+ψ |2
]
+ χn(v+)C |ψ |2 (4.58)

in a region r− < r � rered, where c > 0, C > 0 are (new) constants.
Step 3: Estimating boundary terms. We now gather all the total derivatives

appearing on the right hand side of (4.54). They are ∂r (B) and ∂v+(A) with

A = χn(v+)(1+ λ	)
[1

2
a2 sin2 θ |∂v+ψ |2 +

a3 sin2 θ

r2− + a2
Re(∂v+ψ∂ϕ+ψ)

− 1

2 sin2 θ

∣
∣is cos θ · ψ + ∂ϕ+ψ

∣
∣2

+ a2

r2− + a2
|∂ϕ+ψ |2 − a2 sin2 θRe(∂v+ψ∂rψ)+ (a(r

2 + a2)

r2− + a2
− 2a

)
Re(∂rψ∂ϕ+ψ)

− (r2 + a2 + 1

2
	)|∂rψ |2 − 1

2
|∂θψ |2 + 1

2
s|ψ |2

]

and

B = χn(v+)(1+ λ	)
[(1

2
a2 sin2 θ + r2 + a2

)|∂v+ψ |2 +
(
2a + a(r2 + a2)

r2− + a2
)
Re(∂ϕ+ψ∂v+ψ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ a

r2− + a2
	Re(∂rψ∂ϕ+ψ)+ 1

2 sin2 θ

∣
∣is cos θ · ψ + ∂ϕ+ψ

∣
∣2 + a2

r2− + a2
|∂ϕ+ψ |2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+	Re(∂rψ∂v+ψ)− 1

2
	|∂rψ |2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+ 1

2
|∂θψ |2 − 1

2
s|ψ |2

]

+ χn(v+)μeηr |ψ |2,

where we have used Lemma 2.33. We begin by establishing the coercivity of B. We
first only consider the dotted terms and in a procedure already familiar by now we
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complete all individual ∂ϕ+ψ terms into 1
sin θ

(is cos θ · ψ + ∂ϕ+ψ) at the expense
of adding error terms. We treat the arising expression (without the error terms) as a
quadratic form in (∂v+ψ, 1

sin θ
(is cos θ · ψ + ∂ϕ+ψ),

√−	∂rψ) (note the weight in
front of the ∂r derivative) the corresponding matrix of which is easily seen to be

⎛

⎜
⎜
⎜
⎝

( 1
2a

2 sin2 θ + r2 + a2
) (

a + a(r2+a2)
2(r2−+a2)

)
sin θ − 1

2

√−	
(
a + a(r2+a2)

2(r2−+a2)
)
sin θ 1

2 + a2 sin2 θ
r2−+a2

− 1
2
a
√−	

r2−+a2
sin θ

− 1
2

√−	 − 1
2
a
√−	

r2−+a2
sin θ 1

2

⎞

⎟
⎟
⎟
⎠

.

The positive definiteness of this matrix in a region r− < r � rered follows easily
from noting that the left-upper 2-2 matrix has already been shown (below (4.57)) to be
positive definite in such a region while the other off-diagonal terms vanish at r = r−.
Choosing now μ(η) such that μ(η)eηr is large enough we can control all the error
terms to obtain

B � χn(v+)
(|	| · |∂rψ |2 + |∂v+ψ |2 +

∑

i

|Z̃i,+ψ |2 + |ψ |2
)

(4.59)

in a region r− < r � rered.
We next establish the coercivity of B − A. We find

B − A = χn(v+)(1+ λ	)
[
(r2 + a2)|∂v+ψ |2

+
(
2a + a(r2 + a2 cos2 θ)

r2− + a2

)
Re(∂v+ψ∂ϕ+ψ)

+ 1

sin2 θ

∣
∣is cos θ · ψ + ∂ϕ+ψ

∣
∣2 + (	+ a2 sin2 θ)Re(∂v+ψ∂rψ)

+ (2a − 2Mar

r2− + a2
)
Re(∂rψ∂ϕ+ψ)

+ (r2 + a2)|∂rψ |2 + |∂θψ |2 − s|ψ |2
]
+ χn(v+)μeηr |ψ |2.

Again, completing the ∂ϕ+ψ terms to 1
sin θ

(is cos θ ·ψ + ∂ϕ+ψ) terms by introducing
error terms and considering those terms that are quadratic in (∂v+ψ, 1

sin θ
(is cos θ ·

ψ + ∂ϕ+ψ), ∂rψ) as a quadratic form (note that this time we do not include a weight
in the ∂r derivative), we need to establish the positive definiteness of the matrix

Q2 =

⎛

⎜
⎜
⎜
⎝

r2 + a2
(
a + a(r2+a2 cos2 θ)

2(r2−+a2)
)
sin θ 1

2 (	+ a2 sin2 θ)
(
a + a(r2+a2 cos2 θ)

2(r2−+a2)
)
sin θ 1

(
a − Mar

r2−+a2
)
sin θ

1
2 (	+ a2 sin2 θ)

(
a − Mar

r2−+a2
)
sin θ r2 + a2

⎞

⎟
⎟
⎟
⎠

.
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The first main minor is clearly positive, the second main minor at r = r− is found to
be

(r2− + a2 cos2 θ)2(r2− + a2 cos2 θ + 6Mr−)
4(r2− + a2)2

> 0,

and we compute

det Q2(r−) = 4Mr−(r2− + a2 cos2 θ)2(r2− + a2 cos2 θ + 2Mr−)
4(r2− + a2)

.

Again, choosing μ(η)eηr large enough we control all the error terms and conclude
that

B − A � χn(v+)
(|∂rψ |2 + |∂v+ψ |2 +

∑

i

|Z̃i,+ψ |2 + |ψ |2
)

(4.60)

holds for r− < r � rered for rered close enough to r−.
Finally, we need to establish the coercivity of B + |	|

r2+2Mr+a2 A for r close enough
to r−. We compute

B − 	

r2 + 2Mr + a2
A = χn(v+)(1+ λ	)

[(1

2
a2 sin2 θ + r2 + a2 +O(|	|))|∂v+ψ |2

+ (2a + a(r2 + a2)

r2− + a2
+O(|	|))Re(∂ϕ+ψ∂v+ψ)

+	
( a

r2− + a2
− 1

r2 + 2Mr + a2
(a(r2 + a2)

r2− + a2
− 2a

))
Re(∂rψ∂ϕ+ψ)

+
(1

2
+O(|	|)

) 1

sin2 θ

∣
∣is cos θ · ψ + ∂ϕ+ψ

∣
∣2

+
( a2

r2− + a2
+O(|	|)

)
|∂ϕ+ψ |2

+	
(
1+ a2 sin2 θ

r2 + 2Mr + a2
)
Re(∂rψ∂v+ψ)

+ 	2

r2 + 2Mr + a2
|∂rψ |2

+
(1

2
+O(|	|)

)
|∂θψ |2 −

(1

2
s +O(|	|))|ψ |2

]

+ χn(v+)μeηr |ψ |2,

Again, we complete all isolated ∂ϕ+ψ terms into 1
sin θ

(is cos θ+∂ϕ+ψ) by adding error
terms and treat the part of the expression that is quadratic in {∂v+ψ, 1

sin θ
(is cos θ ·ψ+

∂ϕ+ψ),	∂rψ} as a quadratic form (note the weight in front of the ∂r derivative). Its

123



    7 Page 68 of 133 J. Sbierski

corresponding matrix at r = r−, modulo the factor χn(v+), is easily seen to be

Q3 =

⎛

⎜
⎜
⎜
⎝

1
2a

2 sin2 θ + r2− + a2 3
2a sin θ 1

2 + a2 sin2 θ
4(r2−+a2)

3
2a sin θ 1

2 + a2 sin2 θ
r2−+a2

3a
4(r2−+a2)

sin θ

1
2 + a2 sin2 θ

4(r2−+a2)
3a

4(r2−+a2)
sin θ 1

2(r2−+a2)

⎞

⎟
⎟
⎟
⎠

,

where we have used 2Mr− = r2− + a2. The left upper 2× 2 matrix is already known
to be positive definite. Moreover, we compute

det Q3 = (2r2− + a2 + a2 cos2 θ)(r2− + a2 cos2 θ)2

16(r2− + a2)3
> 0.

Hence, Q3 is positive definite and after choosing μ(η)eηr large enough we obtain

B + |	|
r2 + 2Mr + a2

A � χn(v+)
(
	2|∂rψ |2 + |∂v+ψ |2

+
∑

i

|Z̃i,+ψ |2 + |ψ |2
)

(4.61)

in r− < r � rered for rered close enough to r−.
Step 4: Estimating the remaining bulk terms. The last two terms in (4.54) are

estimated by

−χn(v+)μηeηr |ψ |2 − 2χn(v+)μeηrRe(ψ∂rψ)

� −1

2
χn(v+)μηeηr |ψ |2 + 2χn(v+)η−1μeηr |∂rψ |2.

Choosing now η > 0 large enough and recalling (4.58) we finally obtain from (4.54)

∂v+(A)+ ∂r (B) �
a.i.

χn(v+)
(|∂rψ |2 + |∂v+ψ |2 +

∑

i

|Z̃i,+ψ |2 + |ψ |2
)

(4.62)

in the region r− < r � rered.
Step 5: Putting it all together. Let r ′ ∈ (r−, rered). We integrate (4.62) over the

region {r ′ � r � rered} ∩ { f − � t0} ∩ { f + � t0}, with t0 � 1, with respect
to dv+ ∧ dr ∧ vol

S
2 = 1

ρ2 vol. Moreover, using that on a level set of f + we have
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dr = dv+ and on a level set of f − we have dr = 	
r2+2Mr+a2 dv+, we obtain

∫

{r=r ′}∩{ f +�t0}
∩{ f −�t0}

B vol
S
2dv+ +

∫

{ f −=t0}
∩{r ′�r�rered}

(B + |	|
r2 + 2Mr + a2

A) vol
S
2dv+ +

∫

{ f +=t0}
∩{r ′�r�rered}

(B − A) vol
S
2dv+

+ c
∫

{r ′�r�rered}∩{ f −�t0}
∩{ f +�t0}

χn(v+)
(|∂rψ |2 + |∂v+ψ |2 +

∑

i

|Z̃i,+ψ |2 + |ψ |2
)
vol

S
2dv+dr

�
∫

{r=rered}∩{ f +�t0}
∩{ f −�t0}

B vol
S
2dv+,

(4.63)

where c > 0. Using (4.59), (4.60), and (4.61), the trivial upper bounds on B for the
right hand side together with Proposition 4.31, letting t0 → ∞ and r ′ → r−, we
conclude the proof of the proposition. ��

4.3.1 Extension ofÃ to the Cauchy Horizon CH+
l

Proposition 4.64 Under the assumptions of Section3 the limit

lim
r→r−

ψ(v+, θ, ϕ+; r) =: ψ(v+, θ, ϕ+; r−)

exists in L2(R× S
2) and satisfies

∫

R×S
2

χ(v+)|ψ(v+, θ, ϕ+; r−)|2 volS2dv+ <∞, (4.65)

where the function χ(v+) is as in Proposition 4.51.

Proof For r1, r2 > r− and for θ �= 0, π by the fundamental theorem of calculus we
have

|ψ(v+, θ, ϕ+; r1)− ψ(v+, θ, ϕ+; r2)| �
∫

[r1,r2]
|∂rψ(v+, θ, ϕ+; r)| dr .

Squaring and Cauchy-Schwarz gives

|ψ(v+, θ, ϕ+; r1)− ψ(v+, θ, ϕ+; r2)|2

� |r1 − r2| ·
∫

[r1,r2]
|∂rψ(v+, θ, ϕ+; r)|2 dr .
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Fig. 8 The L2-estimate

Integrating with respect to χ(v+)volS2dv+ gives

∫

R×S
2

|ψ(v+, θ, ϕ+; r1)− ψ(v+, θ, ϕ+; r2)|2χ(v+)volS2dv+

� |r1 − r2| ·
∫

R×S
2

∫

[r1,r2]
|∂rψ(v+, θ, ϕ+; r)|2 χ(v+)drvolS2dv+.

(4.66)

Let L2
χ(v+)(R×S

2) denote the L2 space with respect to the measure χ(v+)volS2dv+.
By (4.53) we have ψ(v+, θ, ϕ+; r) ∈ L2

χ(v+)(R × S
2) for r close enough to r− and

by (4.52) we have that the right hand side of (4.66) is bounded by |r1 − r2| · C . This
shows that ψ(v+, θ, ϕ+; r) is Cauchy in L2

χ(v+)(R × S
2) for r → r−, from which

both claims in the proposition follow. ��

4.3.2 Backwards Propagation of the Singularity

Proposition 4.67 Under the assumptions of Section3, and considering the hypersur-
face � := { f − = v0} transversal to CH+r for some v0 ∈ R, there exists a constant
C > 0 such that we have for all v′ � 1 large enough

∣
∣
∣

∫

CH+l ∩{v+�v′}
|ψ(· ; r−)|2 volS2dv+ −

∫

�∩{v+�v′}
|ψ |2 vol

S
2dv+

∣
∣
∣ � C · e 1

2 κ−v′ ,

where ψ(· ; r−) is the L2-limit from Proposition 4.64.39

Proof Step 1:We recall that f −(v+, r) = −v++2r∗−r+r+. Thus, on� = { f − =
v0} we have

v+ = 2r∗ − r + r+ − v0

= 1

κ−
log(r − r−)+ 2F−(r)− r + r+ − v0,

(4.68)

39 Also recall that κ− < 0.
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where we have used (2.8) (recall that F−(r) extends regularly to r−). The right hand
side of (4.68) is clearly a strictly decreasing function in r and thus the inverse function
exists which we denote by r� so to obtain r�(v+) = r on �. It is also immediate that
we have r�(v+)→ r− for v+ →∞.

Taking the exponential, we obtain from (4.68)

eκ−v+ = (r − r−) · G(r)

on � with limr→r− G(r) > 0. Thus, for v+ � 1 large enough we have

r�(v+)− r− � eκ−v+ . (4.69)

Step 2: Let now r ′ > r− be close to r−.
We now estimate, in a manner similar to the proof of Proposition 4.64, as follows

(see also Figure8):

|ψ(v+, r ′, θ, ϕ+)− ψ(v+, r�(v+), θ, ϕ+)| �
∫ r�(v+)

r ′
|∂rψ(v+, r , θ, ϕ+)| dr .

Squaring and Cauchy-Schwarz gives

|ψ(v+, r ′, θ, ϕ+)− ψ(v+, r�(v+), θ, ϕ+)|2 � |r�(v+)− r ′|
× ·
∫ r�(v+)

r ′
|∂rψ(v+, r , θ, ϕ+)|2 dr .

Let v{r=r ′}∩� = 2r∗(r ′) − r ′ + r+ − v0 be the value of v+ on � where r = r ′. For
v′ < v{r=r ′}∩� we integrate to obtain

∫ v{r=r ′}∩�

v′

∫

S
2
|ψ(v+, r ′, θ, ϕ+)− ψ(v+, r�(v+), θ, ϕ+)|2 volS2dv+

� |r�(v′)− r ′| ·
∫ v{r=r ′}∩�

v′

∫

S
2

∫ r�(v+)

r ′
|∂rψ(v+, r , θ, ϕ+)|2 drvolS2dv+,

which gives

∣
∣
∣
( ∫ v{r=r ′}∩�

v′

∫

S
2
|ψ(v+, r ′, θ, ϕ+)|2 volS2dv+

)1/2

−
( ∫ v{r=r ′}∩�

v′

∫

S
2
|ψ(v+, r�(v+), θ, ϕ+)|2 volS2dv+

)1/2∣∣
∣

� |r�(v′)− r ′|1/2 ·
( ∫ v{r=r ′}∩�

v′

∫

S
2

∫ r�(v+)

r ′
|∂rψ(v+, r , θ, ϕ+)|2 drvolS2dv+

)1/2
.

(4.70)
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We now let r ′ → r− and note that this implies v{r=r ′}∩� →∞. Moreover, we have

∣
∣ψ(v+, θ, ϕ+; r ′) · 1[v′,v{r=r ′}∩� ](v+)− ψ(v+, θ, ϕ+; r−) · 1[v′,∞)(v+)

∣
∣

�
∣
∣1[v′,v{r=r ′}∩� ](v+) ·

[
ψ(v+, θ, ϕ+; r ′)− ψ(v+, θ, ϕ+; r−

]∣∣

+ ∣∣ψ(v+, θ, ϕ+; r−) ·
[
1[v′,v{r=r ′}∩� ](v+)− 1[v′,∞)(v+)

]∣
∣,

(4.71)

where 1A denotes the characteristic function of the set A. The first summand on the
right hand side of (4.71) goes to zero in L2(R × S

2) by Proposition 4.64 while the
second goes to zero in L2(R × S

2) by dominated convergence. We thus obtain from
(4.70) after r ′ → r− and for v′ � 1 large enough

∣
∣
∣
( ∫ ∞

v′

∫

S
2
|ψ(v+, θ, ϕ+; r−)|2 volS2dv+

)1/2

︸ ︷︷ ︸
=:I

−
( ∫ ∞

v′

∫

S
2
|ψ(v+, r�(v+), θ, ϕ+)|2 volS2dv+

)1/2

︸ ︷︷ ︸
=:I I

∣
∣
∣

� |r�(v′)− r ′|1/2 ·
( ∫ ∞

v′

∫

S
2

∫ r�(v+)

r−
|∂rψ(v+, r , θ, ϕ+)|2 drvolS2dv+

)1/2

� C · e 1
2 κ−v′ ,

(4.72)

where we have used (4.69) and (4.52) in the last step. Since I is finite by Proposi-
tion 4.64, I I is also finite. Multiplying (4.72) by I + I I � C concludes the proof.
��
Lemma 4.73 Let f , g : [1,∞)→ [0,∞) be positive, integrable functions that satisfy
for v′ sufficiently large

∣
∣
∣

∫ ∞

v′
f (v) dv −

∫ ∞

v′
g(v) dv

∣
∣
∣ � e−κv′ ,

with κ > 0. For p > 0 we then have

∫ ∞

1
v p · f (v) dv <∞ if, and only if,

∫ ∞

1
v pg(v) dv <∞.

Proof Let us assume
∫∞
1 v p · f (v) dv <∞. By assumption we have

∣
∣
∣

∫ ∞

2n

(
f (v)− g(v)

)
dv
∣
∣
∣ � Ce−κ·2n

for all n ∈ N. It follows that

∣
∣
∣

∫ 2n+1

2n

(
f (v)− g(v)

)
dv
∣
∣
∣ � C

(
e−κ·2n + e−κ·2n+1). (4.74)

123



Instability of the Kerr Cauchy Horizon… Page 73 of 133     7 

We then compute, using (4.74),

∫ ∞

1
v p · g(v) dv �

∞∑

n=0

∫ 2n+1

2n
(2n+1)pg(v) dv

�
∞∑

n=0
(2n+1)p · C(e−κ·2n + e−κ·2n+1)

︸ ︷︷ ︸
<∞

+
∞∑

n=0

∫ 2n+1

2n
(2n+1)p f (v) dv

� C + 2p
∞∑

n=0

∫ 2n+1

2n
(2n)p f (v) dv

� C + 2p
∫ ∞

1
v p · f (v) dv.

��

Applying the lemma with f (v+) =
∫

S
2 |ψ(v+, θ, ϕ+; r−)|2 vol

S
2 and g(v+) =∫

S
2 |ψ(v+, r�(v+), θ, ϕ+)|2 volS2 gives the following

Corollary 4.75 In the setting of Proposition 4.67 we have

∫

CH+l ∩{v+�1}
v
p
+|ψ(· ; r−)|2 volS2dv+ <∞ if, and only if,

∫

�∩{v+�1}
v
p
+|ψ |2 volS2dv+ <∞,

where p > 0. It follows in particular from Proposition 4.64 that

∫

�∩{v+�1}
χ(v+)|ψ |2 volS2dv+ <∞. (4.76)

5 Teukolsky’s Separation of Variables

In this section we use the upper bounds derived on the Teukosky field in Corollary 4.46
to establish the separation of variables.We begin by a discussion of the spin 2-weighted
spheroidal harmonics, then introduce the Teukolsky transform, and prove a non-trivial
result regarding the relation of physical space v+-weights and frequency domain ω-
derivatives. We then derive the radial Teukolsky equation belonging to (2.39).
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5.1 Spin 2-Weighted Spheroidal Harmonics

For ω ∈ R and f ∈ I∞[s](S
2) we define40

/̊	[s](ω) f := /̊	[s] f + (aω)2 cos2 θ · f − 2saω cos θ · f . (5.1)

Clearly, /̊	[s](ω) maps I∞[s](S
2) into I∞[s](S

2).

Proposition 5.2 The operator /̊	[s](ω) : L2(S2) ⊇ I∞[s](S
2)→ I∞[s](S

2) ⊆ L2(S2) has

a complete and orthonormal (with respect to L2(S2)) set of eigenfunctions Y [s]ml (ω) ∈
I∞[s](S

2) indexed by m ∈ Z, N 
 l � max(|m|, |s|) and eigenvalues λ
[s]
ml(ω) ∈ R

satisfying

/̊	[s](ω)Y [s]ml (ω) = λ
[s]
ml(ω)Y [s]ml (ω). (5.3)

The eigenfunctions are known as spin 2-weighted spheroidal harmonics and are of the
form

Y [s]ml (θ, ϕ;ω) = S[s]ml (cos θ;ω)eimϕ,

where the S[s]ml (cos θ;ω) forma complete and orthonormal (with respect to L2([−1, 1],
d cos θ)) set of eigenfunctions of the operator

L [s]m (ω)S := 1

sin θ
∂θ (sin θ∂θ S)− m2

sin2 θ
S − 2sm

cos θ

sin2 θ
S

−
(

s2
cos2 θ

sin2 θ
− s

)

S + (aω)2 cos2 θ · S − 2saω cos θ · S

with eigenvalues λ[s]ml(ω)41

L [s]m (ω)S[s]ml (ω) = λ
[s]
ml(ω)S[s]ml (ω). (5.4)

The eigenvaluesλ[s]ml(ω) depend analytically onω and the eigenfunctions S[s]ml (cos θ;ω)

are analytic in ω and in x = cos θ away from x = ±1. Near x = ±1 we have the the
following asymptotic expansions for all k ∈ N: Near x = −1 we have

∂kωS
[s]
ml (x;ω) = (1+ x)

1
2 |m−s|ak(x;ω),

where ak(x;ω) is analytic in both arguments near x = −1; and near x = +1

∂kωS
[s]
ml (x;ω) = (x − 1)

1
2 |m+s|bk(x;ω)

40 This differs from the analogous operator defined in Section 6.2.1 in [15] by an overall minus sign.
41 This is the same equation as (4.10) in [67] with A = −λml :[s] (ω).
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is valid with bk(x;ω) being analytic in both arguments near x = +1.
Moreover, we have λ

[s]
ml(ω)− s = λ

[−s]
ml (ω)+ s and for ω = 0 the eigenvalues are

given by λ
[s]
ml(0) = −(l − s)(l + s + 1) = −l(l + 1)+ s(s + 1).

Proof The result is standard, see for example [67] or [15], although we do not know
a reference that includes a proof. We will thus give an outline of the proof here.

Making the separation of variables ansatz Ym(θ, ϕ) = Sm(θ)eimϕ we obtain

/̊	[s](ω)Ym(θ, ϕ) = (L [s]m (ω)Sm(θ)
) · eimϕ.

We will now find an orthonormal basis of eigenfunctions for L [s]m (ω) using Sturm-
Liouville theory. The substitution x = cos θ yields

L [s]m Sm = d

dx

(
(1− x2)

d

dx
Sm
)− (m + sx)2

1− x2
Sm +

(
s + (aω)2x2 − 2saωx

)
Sm .

(5.5)

We now go over to L [s]m − λ for λ ∈ C. The points x = ±1 are regular singular points
of the second order differential operator and, moreover, it depends analytically on ω

and λ, even for complex ω. The Frobenius method, see for example [66], shows that
there is a fundamental system of solutions of (L [s]m −λ)Sm = 0, normalised at x = −1,
of the form

u1(x; λ, ω) = (1+ x)
1
2 |m−s|h1(x; λ, ω)

u2(x; λ, ω) = (1+ x)−
1
2 |m−s|h2(x; λ, ω)+ c log(1+ x)u1(x; λ, ω),

where h1 and h2 are analytic in [−1, 1) × R × R and the constant c might be zero
unless m = s. Similarly, there is a fundamental system of solutions normalised at
x = +1:

v1(x; λ, ω) = (x − 1)
1
2 |m+s|g1(x; λ, ω)

v2(x; λ, ω) = (x − 1)−
1
2 |m+s|g2(x; λ, ω)+ c log(x − 1)v1(x; λ, ω),

where g1 and g2 are analytic in (−1, 1] × R × R and the constant c might be zero
unless m = −s. Note that u1 is regular at x = −1 while v1 is regular at x = +1.
For λ = λ0 > 0 large enough one can show that u1 and v1 are linearly independent.
Using this pair of solutions one constructs the Green’s function in the same way as
for a regular Sturm-Liouville problem, c.f. [66]. The above asymptotics imply that
the Green’s function is in L2([−1, 1] × [−1, 1]), and thus the solution operator Kλ0

is a symmetric and compact operator on L2([−1, 1]). It is easy to show that the
kernel vanishes and thus, by the spectral theorem, there is an orthonormal basis of
eigenfunctions S[s]ml (x) of Kλ0 with real eigenvalues μ

[s]
ml . Using the asymptotics of

u1 and v1 in the Green’s function one shows that S[s]ml are continuous at x = ±1.
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Moreover, they satisfy (L [s]m − λ0)(μ
[s]
ml S

[s]
ml ) = S[s]ml and thus

L [s]m S[s]ml − (λ0 + 1

μ
[s]
ml︸ ︷︷ ︸

=:λ[s]ml

)S[s]ml = 0.

It follows that S[s]ml ∼ u1 ∼ v1 – and thus in particular that the eigenvalues are simple.
To show the analytic dependence of the eigenvalues on ω we notice that they are

exactly the zeros of the modified Wronskian W (u1, v1)(λ, ω) := u1(x; λ, ω)(1 −
x2)v′1(x; λ, ω) − (1 − x2)u′1(x; λ, ω)v1(x; λ, ω). One now shows that the zeros of

the Wronskian in λ are simple, i.e., ∂λW (u1, v1)(λ
[s]
ml , ω) �= 0. The analytic implicit

function theorem then yields that the eigenvalues λ[s](ω) depend analytically on ω. It
follows that u1(x; λ[s]ml(ω), ω) depends analytically onω. Normalising it in L2([−1, 1])
then gives S[s]ml (x;ω), which shows in particular the regularity claimed in the proposi-
tion.

It is straightforward to show that Y [s]lm (ω) is an orthonormal basis of L2(S2). To

show Y [s]lm (ω) ∈ I∞[s](S
2), we can use the asymptotics of S[s]ml (ω) given by the Frobenius

solutions above and tediously verify the conditions in Proposition 2.18. Alternatively,

and more elegantly, we can multiply (5.3) by Y [s]ml (ω), integrate over the sphere and

check that the asymptotics of S[s]ml (ω) allowus to do one integration by parts to conclude

that Y [s]ml (ω) ∈ H1[s](S
2). We now go over the corresponding trace-free and symmetric

2-covariant tensor field αml(ω) on S
2 which is smooth except possibly at the poles

of the sphere. Using (2.21) we now rewrite (5.3) as a standard elliptic equation for
αml(ω). It now follows from standard elliptic regularity theory that αml(ω) is smooth
on all of the sphere – showing the claim.

The relation λ
[s]
ml(ω) − s = λ

[−s]
ml (ω) + s follows from the substitution x → −x

in (5.5). Finally, we refer the reader to [28] for the evaluation of the eigenvalues at
ω = 0. ��

The following quantitative result on theω-dependence of the eigenfunctionsY [s]ml (ω)

is needed for the proof of Proposition 5.22.

Proposition 5.6 By Proposition 5.2 we know that ∂kωS
[s]
ml (ω) ∈ L2([−1, 1]) for all

k ∈ N. We can thus expand in L2([−1, 1])

∂kωS
[s]
ml (ω) =

∑

l ′�max(|m|,|s|)
D[s]mll ′;k(ω)S[s]ml ′(ω)

with D[s]mll ′;k(ω) ∈ R.
There exists ε > 0 such that for |ω| � ε we have

∑

l,l ′�max(|m|,|s|)
|D[s]mll ′;k(ω)|2 � C(k) <∞, (5.7)
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where the constant is independent of m and |ω| � ε.

Let us remark that (5.7) is equivalent to

∑

l�max(|m|,|s|)
||∂kωS[s]ml (ω)||2L2 � C(k) <∞. (5.8)

Proof Differentiating (5.4) in ω gives

L [s]m (ω)∂ωS
[s]
ml (ω)+ 2a(aωx2 − sx)S[s]ml (ω)

= ∂ωλ
[s]
ml(ω) · S[s]ml (ω)+ λ

[s]
ml(ω) · ∂ωS[s]ml (ω). (5.9)

Note that since ||S[s]ml (ω)||L2 = 1 for all ω, we have 〈S[s]ml (ω), ∂ωS
[s]
ml (ω)〉L2 = 0.

Multiplying (5.9) by S[s]ml (ω) and integrating gives

〈L [s]m (ω)∂ωS
[s]
ml (ω), S[s]ml (ω)〉L2 + 〈2a(aωx2 − sx)S[s]ml (ω), S[s]ml (ω)〉L2 = ∂ωλ

[s]
ml(ω).

We now integrate by parts in the first term42 to obtain

〈L [s]m (ω)∂ωS
[s]
ml (ω), S[s]ml (ω)〉L2 = 〈∂ωS[s]ml (ω), L [s]m (ω)S[s]ml (ω)〉L2

= 〈∂ωS[s]ml (ω), λ
[s]
ml(ω)S[s]ml (ω)〉L2 = 0.

This finally leaves us with

∂ωλ
[s]
ml(ω) = 〈2a(aωx2 − sx)S[s]ml (ω), S[s]ml (ω)〉L2([−1,1]). (5.10)

Multiplying (5.9) by S[s]ml ′(ω), l �= l ′, and integrating over [−1, 1] in x gives, after the
integration by parts as before,

〈∂ωS[s]ml (ω), λ
[s]
ml ′(ω)S[s]ml ′(ω)〉L2 + 〈2a(aωx2 − sx)S[s]ml (ω), S[s]ml ′(ω)〉L2

= λ
[s]
ml(ω)〈∂ωS[s]ml (ω), S[s]ml ′(ω)〉L2 .

We thus obtain for l �= l ′

D[s]mll ′;1(ω) = 〈∂ωS[s]ml (ω), S[s]ml ′(ω)〉L2

= 〈2a(aωx2 − sx)S[s]ml (ω), S[s]ml ′(ω)〉L2

λ
[s]
ml(ω)− λ

[s]
ml ′(ω)

.
(5.11)

42 Note that the arising boundary terms are

[
(1− x2)

d

dx
∂ωS

[s]
ml (ω) · S[s]ml (ω)

]1

−1 −
[
∂ωS

[s]
ml (ω) · (1− x2)

d

dx
S[s]ml (ω)

]1

−1,

which vanishes given the asymptotics of ∂kωS
[s]
ml (ω) from Proposition 5.2.
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For l = l ′ we have D[s]mll;1(ω) = 0. To derive an expression for D[s]mll ′;k we

first note that by the regularity of ∂ iωS
[s]
ml (ω) from Proposition 5.2 we have that

〈∂ωS[s]ml (ω), S[s]ml ′(ω)〉L2 is smooth in ω. We now compute

∂
(k−1)
ω D[s]mll ′;1(ω) = ∂

(k−1)
ω 〈∂ωS[s]ml (ω), S[s]ml ′ 〉L2

=
k−1∑

n=0

(
k − 1

n

)

〈∂(k−n)ω S[s]ml (ω), ∂nωS
[s]
ml ′(ω)〉L2

= 〈∂kωS[s]ml (ω), S[s]ml ′ 〉L2 +
k−1∑

n=1

(
k − 1

n

)

〈∂(k−n)ω S[s]ml (ω), ∂nωS
[s]
ml ′(ω)〉L2

= D[s]mll ′;k(ω)+
k−1∑

n=1

(
k − 1

n

)

〈
∑

i

D[s]mli;k−n(ω)S[s]mi (ω),
∑

j

D[s]ml ′ j;n(ω)S[s]mj (ω)〉L2

= D[s]mll ′;k(ω)+
k−1∑

n=1

(
k − 1

n

) ∑

i�max(|m|,|s|)
D[s]mli;k−n(ω) · D[s]ml ′i;n(ω)

︸ ︷︷ ︸

.

(5.12)

We also need to estimate the eigenvalues for small |ω|: for |ω| � 1 it follows directly
from (5.10) that

|∂ωλ[s]ml(ω)| � 2a(a + |s|).

We now choose 1 > ε > 0 such that for |ω| � ε we have

|λ[s]ml(ω)− λ
[s]
ml(0)| �

1

4
(5.13)

uniformly in m and l.
We now prove (5.7) by induction in k. We start with k = 1 and estimate (5.11).

We have |〈2a(aωx2 − sx)S[s]ml (ω), S[s]ml ′(ω)〉L2 | � 2a(aε + |s|). We now estimate the

denominator using (5.13) and λ
[s]
ml(0) = −l(l + 1)+ s(s + 1):

∑

l,l ′�max(|m|,|s|)
l �=l ′

1

|λ[s]ml(ω)− λ
[s]
ml ′(ω)|2

�
∑

l,l ′�max(|m|,|s|)
l �=l ′

1

(| − l(l + 1)+ l ′(l ′ + 1)| − 1
2 )

2

=
∑

l�max(|m|,|s|)

∑

k∈Z\{0}
k�−l+max(|m|,|s|)

1

(|k(k + 1+ 2l)| − 1
2 )

2
with l ′ = l + k
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�
∑

l�max(|m|,|s|)

∑

k∈Z\{0}
k�−l+max(|m|,|s|)

1

|k|2|k + 2l|2

�
∑

l�max(|m|,|s|)

∑

k∈Z\{0}
k�−l+max(|m|,|s|)

1

k2l2

�
∑

l∈N

1

l2
∑

k∈Z\{0}

1

k2

= π4

18
. (5.14)

This proves the claim for k = 1.
We now assume that (5.7) holds up to and including k − 1. We first show that for

1 � j � k − 1 and |ω| � ε we have

|∂ j
ωλ
[s]
ml(ω)| � C( j) <∞, (5.15)

where the constant is independent of m, l. Let f [s](x;ω) := 2a(aωx2 − sx). Thus
∂ωλ

[s]
ml(ω) = 〈 f [s](ω)S[s]ml (ω), S[s]ml (ω)〉L2 and thus

|∂ j
ωλ
[s]
ml(ω)| = |

∑

1�i1+i2+i3� j−1

(
j − 1

i1, i2, i3

)

〈∂ i1ω f [s](ω)∂ i2ω S[s]ml (ω), ∂ i3ω S[s]ml (ω)〉L2 |.

(5.16)

Clearly, ∂ i1ω f [s](ω) is bounded in L∞x ([−1, 1]) by a constant only depending on s for
|ω| � ε, and ∂ iωS

[s]
ml (ω) is bounded in L2

x ([−1, 1]) by a constant independent of m, l
by the induction hypothesis and (5.8). This shows (5.15).

We now use (5.12) to show that D[s]mll ′;k(ω) is bounded in �2(l, l ′). The induction
hypothesis shows directly that the �2-norm in l, l ′ of the underbraced terms in (5.12)
is bounded. It thus remains to show that the �2-norm of the left hand side of (5.12)
is bounded. Note that for l = l ′ it vanishes identically. For l �= l ′ we compute using
(5.11)

|∂(k−1)
ω D[s]mll ′;1(ω)| = |

∑

1�i1+i2+i3+i4�k−1

(
k − 1

i1, i2, i3, i4

)

〈∂ i1ω f [s](ω)∂ i2ω S[s]ml (ω), ∂ i3ω S[s]ml ′ (ω)〉L2
︸ ︷︷ ︸

· ∂ i4ω
( 1

λ
[s]
ml (ω)− λ

[s]
ml ′ (ω)

)
|.

The underbraced terms are bounded uniformly in m, l, l ′ and |ω| � ε as in (5.16).
Using (5.15), we can bound

|∂ i4ω
( 1

λ
[s]
ml(ω)− λ

[s]
ml ′(ω)

)
| � C

|λ[s]ml(ω)− λ
[s]
ml ′(ω)| ,
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where the constant is independent ofm, l, l ′. It now follows from (5.14) that the �2(l, l ′)
norm of the left hand side of (5.12) is bounded. This concludes the proof. ��

5.2 Teukolsky’s Expansion

For f (v+, θ, ϕ+) ∈ L1
v+L

2
S
2 we define the Fourier transform qf of f by

qf (θ, ϕ+;ω) := 1√
2π

∫

R

f (v+, θ, ϕ+)eiωv+ dv+. (5.17)

It can be easily checked that this is a map |(·) : L1
v+L

2
S
2 → C0

ωL
2
S
2 . It gives rise in the

standard way to an isometry |(·) : L2
v+L

2
S
2 → L2

ωL
2
S
2 which we denote again in the

same way.
For g ∈ L2

ωL
2
S
2 we define the map (·)ml : L2

ωL
2
S
2 → L2

ω�
2
m,l by

gml(ω) :=
∫

S
2
g(θ, ϕ+;ω)Y [s]ml (θ, ϕ+;ω) vol

S
2 , (5.18)

which is also an isometry since for each ω ∈ R the Y [s]ml (ω) form an orthonormal basis
of L2(S2). The summation in �2m,l is over m ∈ Z and N 
 l � max(|m|, |s|).

For f ∈ L1
v+L

2
S
2 ∩ L2

v+L
2
S
2 the composite map |(·)ml := (·)ml ◦|(·), which we call

the Teukolsky transform, is given by

qfml(ω) = 1√
2π

∫

S
2

∫

R

f (v+, θ, ϕ+)eiωv+Y [s]ml (θ, ϕ+;ω)dv+volS2 . (5.19)

Note that by

∫

R

∫

S
2
| f (v+, θ, ϕ+)| · |Y [s]ml (θ, ϕ+;ω)|vol

S
2dv+

�
∫

R

( ∫

S
2
| f (v+, θ, ϕ+)|2 volS2

) 1
2
dv+ <∞

the order of integration in (5.19) does not matter.
The inverse map of (5.18) is given by

g(θ, ϕ+;ω) =
∑

m,l

gml(ω)Y [s]ml (θ, ϕ+;ω)

and the inverse map of |(·) : L2
v+L

2
S
2 → L2

ωL
2
S
2 is given by

f (v+, θ, ϕ+) = 1√
2π

∫

R

qf (θ, ϕ+;ω)e−iωv+ dω,
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where this can be taken literally for qf ∈ L1
ωL

2
S
2 ∩ L2

ωL
2
S
2 and serves as notation

for qf ∈ L2
ωL

2
S
2 in the standard way, which is then defined via approximation by

functions in L1
ωL

2
S
2 ∩ L2

ωL
2
S
2 . In particular for qfml ∈ L1

ω�
2
m,l ∩ L2

ω�
2
m,l we have

qf ∈ L1
ωL

2
S
2 ∩ L2

ωL
2
S
2 and thus we have literally

f (v+, θ, ϕ+) = 1√
2π

∫

R

∑

m,l

qfml(ω)Y [s]ml (θ, ϕ+;ω)e−iωv+ dω

as a map L1
ω�

2
m,l ∩ L2

ω�
2
m,l → L2

v+L
2
S
2 .

For f ∈ L2
v+L

2
S
2 we have the Plancherel relation

∫

R

∫

S
2
| f (v+, θ, ϕ+)|2 volS2dv+ = || f ||2L2

v+ L2
S2

= || qf ||2
L2
ωL

2
S2

= || qfml ||2L2
ω�

2
ml
=
∫

R

∑

m,l

| qfml |2 dω.

(5.20)

We also have43

~∂v+ f = −iω qf in L2
ωL

2
S
2 if f , ∂v+ f ∈ L2

v+L
2
S
2

}v+ f = −i∂ω qf in L2
ωL

2
S
2 if f , v+ f ∈ L2

v+L
2
S
2

(5.21)

and

(~∂v+ f )ml = −iω qfml in L2
ω�

2
m,l if f , ∂v+ f ∈ L2

v+L
2
S
2 .

Note, however, that in general ( }v+ f )ml �= −i∂ω qfml , since the orthonormal basis
functions Y [s]ml of L

2(S2) in (5.18) are ω-dependent.
In the following we address this point and show that under suitable assumptions we

can still infer limited decay of f (v+, θ, ϕ+) for |v+| → ∞ from limited regularity of
qfml in ω.

5.2.1 Slow Decay in v+ of f in Terms of Limited Regularity ofqfml

Proposition 5.22 Let ε > 0 be as in Proposition 5.6, let qf ∈ L2
(−ε,ε)L

2
S
2 and let

q0 ∈ N0. Then ∂
q
ω

qf ∈ L2
(−ε,ε)L

2
S
2 , i.e.,

∫

(−ε,ε)

∫

S
2
|∂qω qf (ω, θ, ϕ+)|2 volS2dω <∞ (5.23)

43 Proof as in [42] 7.9 Theorem.
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for all 0 � q � q0, q ∈ N0 if, and only if, ∂qω( qfml) ∈ L2
(−ε,ε)�

2
ml , i.e.,

∫

(−ε,ε)

∑

m,l

|∂qω( qfml)(ω)|2 dω <∞ (5.24)

for all 0 � q � q0, q ∈ N. Here, all derivatives are weak derivatives.44

Proof Assume first that qf has q0 weak ω-derivatives in L2
(−ε,ε)L

2
S
2 . We then have for

0 � q � q0

(∂qω
qf )ml =

∫

S
2
∂qω

qf (θ, ϕ+;ω) · Y [s]ml (θ, ϕ+;ω) vol
S
2

=
∫

S
2
∂qω
(

qf (θ, ϕ+;ω)Y [s]ml (θ, ϕ+;ω)
)
vol

S
2

−
q∑

q ′=1

(
q

q ′

)∫

S
2
∂q−q ′ω

qf (θ, ϕ+;ω) · ∂q ′ω Y [s]ml (θ, ϕ+;ω) vol
S
2

= ∂qω
qfml(ω)−

q∑

q ′=1

(
q

q ′

)∫

S
2
∂q−q ′ω

qf (θ, ϕ+;ω)

·
∑

l ′
D[s]mll ′;q ′(ω)Y [s]ml ′(θ, ϕ+;ω) vol

S
2

= ∂qω
qfml(ω)−

q∑

q ′=1

(
q

q ′

)∑

l ′
D[s]mll ′;q ′(ω)(∂q−q ′ω

qf )ml ′(ω),

(5.25)

where, in the second equality we have used the smoothness of the Y [s]ml in ω and the
product rule

∂qω(a · b) =
q∑

q ′=0

(
q

q ′

)

∂q−q ′ω a · ∂q ′ω b

which of course also holds for weak derivatives if b is smooth, in the third equality
we have used that we can pull out weak derivatives from under the integral45 and the

44 For this paper only the ‘only if’ direction, i.e., ‘  ⇒ ’, is needed.
45 Let g(θ, ϕ+;ω), ∂ωg(θ, ϕ+;ω) ∈ L2ωL

1
S2

and let h(ω) := ∫
S2

g(θ, ϕ+;ω) vol
S2
. Then the weak

derivative of h is given by
∫
S2

∂ωg(θ, ϕ+;ω) vol
S2
: for χ(ω) ∈ C∞0 (R) we compute

−
∫

R

h(ω)∂ωχ(ω) dω = −
∫

R

∫

S2
g(θ, ϕ+;ω) vol

S2
∂ωχ(ω) dω

= −
∫

R

∫

S2
g(θ, ϕ+;ω)∂ωχ(ω) vol

S2
dω

=
∫

R

∫

S2
∂ωg(θ, ϕ+;ω)χ(ω)vol

S2
dω.
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representation of ∂q
′

ω Y [s]ml from Proposition (5.6), and in the fourth equation we just
used that the limit in l ′ is an L2(S2) limit, so we can pull it out of the integral.

Now by (5.23) and Plancherel we have

∞ >

∫ ε

−ε

|∂qω qf (θ, ϕ+;ω)|2 vol
S
2dω =

∫ ε

−ε

∑

m,l

|(∂qω qf )ml(ω)|2 dω.

Thus (5.24) follows if we show

∫ ε

−ε

∑

m,l

|
∑

l ′
D[s]mll ′;q ′(∂

q−q ′
ω

qf )ml ′(ω)|2 dω <∞

for 0 � q ′ � q. By Cauchy-Schwarz, Proposition 5.6, Plancherel, and (5.23) we
compute

∫ ε

−ε

∑

m,l

|
∑

l ′
D[s]mll ′;q ′(∂

q−q ′
ω

qf )ml ′(ω)|2 dω �
∫ ε

−ε

∑

m,l

(∑

l ′
|D[s]mll ′;q ′(ω)|2

)

·
(∑

l ′
|(∂q−q ′ω

qf )ml ′(ω)|2
)
dω

�
∫ ε

−ε

∑

m
C(q ′)

(∑

l ′
|(∂q−q ′ω

qf )ml ′(ω)|2
)
dω

= C(q ′)
∫ ε

−ε

∫

S
2
|∂q−q ′ω

qf (θ, ϕ+;ω)|2 vol
S
2dω

<∞.

To prove the reverse direction, we now assume that qfml has q0 weak ω-derivatives
satisfying (5.24). Let 0 � q � q0 and χ ∈ C∞0

(
(−ε, ε)× S

2). Then

∫

(−ε,ε)

∫

S2
qf (ω, θ, ϕ+)∂

q
ωχ(ω, θ, ϕ+) vol

S2
dω =

∫

(−ε,ε)
〈 qf (ω), ∂

q
ωχ(ω)〉L2(S2) dω

7 =
∫

(−ε,ε)

∑

l,m

qfml (ω)〈Y [s]ml (ω), ∂
q
ωχ(ω)〉L2(S2)

︸ ︷︷ ︸

|−′′−|�
(∑

m,l | qfml (ω)|2
)1/2(∑

m′,l′ |∂qωχm′l′ (ω)|2
)1/2

dω

=
∑

l,m

∫

(−ε,ε)

qfml (ω)

q∑

j=0
(−1) j

(
q

j

)

∂
q− j
ω 〈∂ j

ωY
[s]
ml (ω), χ(ω)〉L2(S2)

︸ ︷︷ ︸

∈C∞0
(
(−ε,ε)

)

dω

=
q∑

j=0
(−1)q

(
q

j

)∑

l,m

∫

(−ε,ε)

∂
q− j
ω

qfml (ω) · 〈∂ j
ωY

[s]
ml (ω), χ(ω)〉L2(S2) dω
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= (−1)q
∫

(−ε,ε)

∫

S2

q∑

j=0

(
q

j

)∑

l,m

∂
q− j
ω

qflm (ω)
∑

l′
Dmll′; j (ω)Y [s]ml′ (θ, ϕ+;ω)

︸ ︷︷ ︸
=∂

q
ω

qf (ω,θ,ϕ+)

·χ(ω, θ, ϕ+) vol
S2
dω,

where we introduced 〈·, ·〉L2(S2) for the standard Hermitian product on L2(S2) for
brevity, used Plancherel in the second line, dominated convergence in the third line as
well as the combinatorial formula

〈Y , ∂qωχ〉 =
q∑

j=0
(−1) j

(
q

j

)

∂q− j
ω 〈∂ j

ωY , χ〉

which can be proved easily via induction; we used that qfml admits q0 weak ω-
derivatives in L2

(−ε,ε) in the fourth line and finally Proposition 5.6, (5.24), and
dominated convergence again in the last line. Proposition 5.6 and (5.24) together
now also show (5.23). ��

5.3 Application of Teukolsky’s Separation to the Teukolsky FieldÃ

Theorem 5.26 Under the assumptions of Section3 and for every r ∈ (r−, r+) the
Teukolsky transform

qψml(r;ω) = 1√
2π

∫

R

∫

S
2
ψ(v+, r , θ, ϕ+)eiωv+Y [s]ml (θ, ϕ+;ω) dv+volS2 (5.27)

of the Teukolsky fieldψ(v+, r , θ, ϕ+) is well-defined and we have qψml(r; ·) ∈ L2
ω�

2
m,l .

Moreover, for every r ∈ (r−, r+), m ∈ Z, and N 
 l � max{|m|, |s|} we have
qψml(r; ·) ∈ C0

ω(R).
For fixed ω,m, l the Teukolsky transform qψml(r;ω) is twice continuously differen-

tiable in r ∈ (r−, r+) and we also have d
dr

qψml(r; ·), d2

dr2
qψml(r; ·) ∈ C0

ω(R) for every

r ∈ (r−, r+) and m, l.46 Moreover, the Teukolsky transform satisfies

	
d2

dr2
qψml(r;ω)+ 2

(
− (r2 + a2)iω + iam + (r − M)(1− s)

) d

dr
qψml(r;ω)

+
(
λ
[s]
ml(ω)− (aω)2 + 2ωma − 2iωr(1− 2s)− 2s

)
qψml(r;ω) = 0 (5.28)

for all ω ∈ R, m ∈ Z, N 
 l � max{|m|, |s|}. Since we have qψml(r; ·) ∈ L2
ω�

2
m,l the

representation

ψ(v+, r , θ, ϕ+) = 1√
2π

∫

R

∑

m,l

qψml(r;ω)Y [s]ml (θ, ϕ+;ω)e−iωv+ dω (5.29)

46 We only need qψml (r; ·), d
dr

qψml (r; ·) ∈ C0
ω(R) (for Lemma 6.13).
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is valid for every r ∈ (r−, r+) in particular in L2
v+L

2
S
2 .

Proof Corollary 4.46 in particular states that for each r ∈ (r−, r+) we have
ψ(v+, r , θ, ϕ+) is in L2

v+L
2
S
2 . It now follows from Section5.2 that the Teukolsky

transform is well-defined with qψml(r; ·) ∈ L2
ω�

2
m,l and also that (5.29) holds.

By (4.48) for f = ψ , and since qr > 2, we obtain that ψ(v+, r , θ, ϕ+) ∈ L1(R×
S
2). Together with the boundedness of Y [s]ml (θ, ϕ;ω) and its continuity in ω we obtain

from (5.27) that qψml(r; ·) ∈ C0
ω(R) for fixed r ,m, l. By (4.48) for f = ∂rψ, ∂2r ψ

we also obtain that we can continuously differentiate in r twice under the integral in
(5.27) for fixed ω,m, l and also the continuous dependence of the derivatives on ω as
before.

In order to derive (5.28) we recall the coordinate expression (2.39) of T[s]ψ = 0 to
see that

0 =
∫

R

∫

S
2

[
a2 sin2 θ ∂2v+ψ + 2a ∂v+∂ϕ+ψ + 2(r2 + a2) ∂v+∂rψ + 2a ∂ϕ+∂rψ

+	∂2r ψ + 2
(
r(1− 2s)− isa cos θ

)
∂v+ψ

+ 2(r − M)(1− s) ∂rψ + /̊	[s]ψ − 2sψ
]
eiωv+ S[s]ml (cos θ;ω)e−imϕ+

︸ ︷︷ ︸

=Y [s]ml (θ,ϕ+;ω)

dv+volS2

=
∫

R

∫

S
2
−(ωa)2 sin2 θ ψ + 2amωψ − 2iω(r2 + a2) ∂rψ + 2ima∂rψ

+	∂2r ψ − 2iω
(
r(1− 2s)− isa cos θ

)
ψ

+ 2(r − M)(1− s)∂rψ + /̊	[s]ψ − 2sψ
]
eiωv+Y [s]ml (θ, ϕ+;ω)dv+volS2

holds for all r ∈ (r−, r+) and allω ∈ R, wherewe have used (4.47), which in particular
implies47 ∂av+∂

b1
ϕ+∂

b2
r ψ(r) ∈ L1

v+L
2
S
2 for 0 � a + b1 + b2 � 2, a, b1, b2 ∈ N which

we use to do the integration by parts in v+. We assemble /̊	[s](ω) from (5.1) to find

0 =
∫

R

∫

S
2

[
	∂2r ψ + 2

(
− (r2 + a2)iω + iam + (r − M)(1− s)

)
∂rψ

+
(
− (aω)2 + 2ωma − 2iωr(1− 2s)− 2s

)
ψ + /̊	[s](ω)ψ

]
eiωv+Y [s]ml (θ, ϕ+;ω)dv+volS2 .

We now use that ψ and Y [s]ml are smooth spin 2-weighted functions so that by Proposi-

tion 2.26 and (2.31) we can do the integration by parts to bring /̊	[s](ω) over to obtain

47 We use

∫

R

( ∫

S2
|∂av+∂bϕ+ψ(r ′)|2vol

S2

) 1
2 dv+ �

( ∫

R

1

χ(v+)
dv+

) 1
2

︸ ︷︷ ︸
<∞

( ∫

R

∫

S2
χ(v+)|∂av+∂bϕ+ψ(r ′)|2vol

S2
dv+

) 1
2
.
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a term of the form ψ · eiωv+ /̊	[s](ω)Y [s]ml (θ, ϕ+;ω) = ψ · eiωv+λ[s]ml(ω)Y [s]ml (θ, ϕ+;ω),

where we used that the eigenvalues λ
[s]
ml(ω) are real. Finally, by (4.48) for f =

∂rψ, ∂2r ψ and the boundedness of Y [s]ml (θ, ϕ;ω) dominated convergence allows us
to pull the r -derivatives out of the integral to obtain (5.28). ��

6 Analysis of the Heun Equation and Transmission and Reflection
coefficients for ! = 0

This section analyses the radial Teukolsky equation (5.28). We show that it is of the
Heun-form and that the limit ω = 0 is a hypergeometric equation. We introduce
specific fundamental systems of solutions along with the corresponding transmission
and reflection coefficients and investigate their regularity and their behaviour for ω→
0.

6.1 The Heun Equation

Setting x := r−r−
r+−r− in (5.28) so that we have x = 0 for r = r− and x = 1 for r = r+

the equation (5.28) transforms to the Heun equation

(1− x)x
d2

dx2
v(x)+ (αx2 + βx + γ

) d

dx
v(x)+ (δx + ε

)
v(x) = 0, (6.1)

where we have just written qψml(r(x);ω) = v(x) for brevity and generality and where

α = 2iω(r+ − r−) δ = 2iω(1− 2s)(r+ − r−)

β = 4ir−ω + 2(s − 1) ε = −λ
[s]
ml (ω)+ (aω)2 − 2ωma + 2s + 2iω(1− 2s)r−

γ = 4iMr−
r+ − r−

(ω − ω−m)+ 1− s

(6.2)

and ω± := a
2Mr± .

Setting y := 1 − x = r+−r
r+−r− so that we have y = 0 for r = r+ and y = 1 for

r = r− the equation (6.1) transforms to the Heun equation

(1− y)y
d2

dy2
v(y)+ (α̃y2 + β̃ y + γ̃

) d

dy
v(y)+ (δ̃y + ε̃

)
v(y) = 0, (6.3)

where

α̃ = −α = −2iω(r+ − r−)
β̃ = β + 2α = 4iωr+ + 2(s − 1)

γ̃ = −(β + γ + α) = − 4iMr+
r+ − r−

(ω − ω+m)+ 1− s
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δ̃ = −δ = −2iω(1− 2s)(r+ − r−)
ε̃ = δ + ε = −λ

[s]
ml(ω)+ (aω)2 − 2ωma + 2s + 2iω(1− 2s)r+ .

6.1.1 The Hypergeometric Equation Arising as the Limit! = 0 of the Heun Equation

We compute the values of the Greek parameters α, . . . , ε for ω = 0, where we also
use λ

[s]
ml(0) = −l(l + 1)+ s(s + 1) from Proposition 5.2:

α|ω=0 = 0 δ|ω=0 = 0

β|ω=0 = 2(s − 1) ε|ω=0 = (l − s)(l + s + 1)+ 2s

γ |ω=0 = − 2iam

r+ − r−
+ 1− s.

(6.4)

A straightforward computation then shows that for ω = 0 the Heun equation (6.1)
turns into the hypergeometric equation

(1− x)x
d2

dx2
v(x)+ (c − (a + b + 1)x

) d

dx
v(x)− ab · v(x) = 0 (6.5)

with

a = l + 1− s b = −s − l c = γ |ω=0 = − 2iam

r+ − r−
+ 1− s. (6.6)

Setting again y = 1− x , (6.5) transforms into

(1− y)y
d2

dy2
v(y)+ (c̃ − (a + b + 1)y

) d

dy
v(y)− ab · v(y) = 0 (6.7)

with

c̃ = a + b + 1− c = 2iam

r+ − r−
+ 1− s.

6.2 Fundamental Systems of Solutions and Reflection and Transmission
Coefficients

Wenow recall the Frobeniusmethod to determine the possible asymptotics of solutions
of the radial ODE (5.28) at the regular singular points r = r+ and r = r− and to
construct fundamental systems of solutions with these prescribed asymptotics. We
only provide a sketch of the derivation, full details of this textbook material are found
for example in Chapter 4 of [66].

We begin with the discussion of the regular singular point x = 0 in (6.1), which
corresponds to the Cauchy horizon r = r−. The asymptotics at the event horizon,
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which is y = 0 for (6.3), then follow directly from this discussion by replacing the
Greek parameters α, . . . , ε by their tilded versions.

We make the ansatz xσ
∑∞

j=0 d j (ω,m, l)x j for a solution of (6.1). Entering this
ansatz into (6.1) and comparing powers of x yields

d j+1(σ + j + 1)(σ + j + γ ) = d j
(
(σ + j)(σ + j − 1− β)− ε

)

+d j−1
(− α(σ + j − 1)− δ

)
. (6.8)

For j = −1 we obtain the indicial equation σ(σ − 1 + γ ) = 0 which has the two
solutions σ = 0 and σ = 1− γ .

Consider first σ = 1−γ and set d0 = 1. It then follows from (6.8) with σ = 1−γ

that the coefficients are recursively determined by

d j+1 = 1

(2+ j − γ )(1+ j)

[
d j
(
(1− γ + j)(−γ + j − β)− ε

)

+d j−1
(− α( j − γ )− δ

)]
(6.9)

Note that for s = 2 we have γ = −1+ i 4Mr−
r+−r− (ω−ω−m) and thus the denominator in

(6.9) is non-vanishing for all j ∈ N and for all ω ∈ R. It can be shown that this power
series converges absolutely for x ∈ [0, 1). Also note that since the coefficientsα, . . . , ε
depend analytically on ω, so do all the d j (ω,m, l). The radius of convergence of the
power series of d j (ω,m, l) inω is uniformly lower bounded in j (it essentially depends

on the radius of convergence of the power series inω ofλ[s]ml (ω) andon 4Mr−
r+−r− ). Since the

convergence is uniform, we obtain that the arising power series48 is also analytic in ω

for allω ∈ R.We label this solution by B[s]CH+r ,ml
(x;ω) := x1−γ

∑∞
j=0 d

[s]
j (ω,m, l)x j .

To construct a second linearly independent solution we make the other choice
σ = 0, i.e., we are looking for a solution of the form

∑∞
j=0 c j (ω,m, l)x j , which we

normalise by c0 = 1. From (6.8) with the d ′s replaced by c′s we obtain the recursive
relation

c j+1 = 1

( j + 1)( j + γ )

[
c j
(
j( j − 1− β)− ε

)+ c j−1
(− α( j − 1)− δ

)]
. (6.10)

Since γ = 4iMr−
r+−r− (ω − ω−m) + 1 − s, the denominator vanishes for j = 1 and

ω = ω−m, but for all other ω one can show as before that the power series converges
absolutely for x ∈ [0, 1) and is analytic in ω ∈ R \ {ω−m}. We label this solution by
B[s]CH+l ,ml

(x;ω) :=∑∞
j=0 c

[s]
j (ω,m, l)x j . From (6.10) we compute c1(ω,m, l) = − ε

γ

and c2(ω,m, l) = 1
2(1+γ )

[
ε
γ
(β + ε)− δ

]
for later.

The Frobenius solutions of (6.3) normalised at y = 0 are obtained in the analogous
way by replacing α, . . . , ε by α̃, . . . , ε̃. We summarise this discussion in the following

48 Note that the multiplying factor x1−γ is not analytic at x = 0 if ω �= ω−m.
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Proposition 6.11 1. For ω �= ω−m equation (6.1) has a fundamental system of solu-
tions {B[s]CH+l ,ml

(x;ω), B[s]CH+r ,ml
(x;ω)} which are of the form

B[s]CH+l ,ml
(x;ω) =

∞∑

j=0
c[s]j (ω,m, l)x j

B[s]CH+r ,ml
(x;ω) = x1−γ

∞∑

j=0
d[s]j (ω,m, l)x j

and are normalised by c[s]0 (ω,m, l) = 1 and d[s]0 (ω,m, l) = 1. The power series
∑∞

j=0 d
[s]
j (ω,m, l)x j is analytic in [0, 1)× R (and thus B[s]CH+r ,ml

(x;ω) is in par-

ticular also a solution for ω = ω−m) while the solution B[s]CH+l ,ml
(x;ω) is only

analytic and defined on [0, 1) × (R \ {ω−m}). The coefficients are determined
recursively and we find in particular c[s]1 (ω,m, l) = − ε

γ
and c[s]2 (ω,m, l) =

1
2(1+γ )

[
ε
γ
(β + ε)− δ

]
.49

2. Forω �= ω+m equation (6.3) has a fundamental systemof solutions {A[s]H+r ,ml
(y;ω),

A[s]H+l ,ml
(y;ω)} which are of the form

A[s]H+r ,ml
(y;ω) =

∞∑

j=0
a[s]j (ω,m, l)y j

A[s]H+l ,ml
(y;ω) = y1−γ̃

∞∑

j=0
b[s]j (ω,m, l)y j

and are normalised by a[s]0 (ω,m, l) = 1 and b[s]0 (ω,m, l) = 1. The power series
∑∞

j=0 b
[s]
j (ω,m, l)y j is analytic in [0, 1) × R (and thus A[s]H+l ,ml

(y;ω) is in par-

ticular also a solution for ω = ω+m) while the solution A[s]H+r ,ml
(y;ω) is only

analytic and defined on [0, 1) × (R \ {ω+m}). The coefficients are determined
recursively and we find in particular a[s]1 (ω,m, l) = − ε̃

γ̃
and a[s]2 (ω,m, l) =

1
2(1+γ̃ )

[
ε̃
γ̃
(β̃ + ε̃)− δ̃

]
.50

Our reason for labelling the solutionswithH+r ,H+l , CH+l , CH+r will become appar-
ent in Sects. 7 and 8. It follows that we canwrite forω �= ω+m the Teukolsky transform

49 Note that γ (ω)→ 1− s = −1 for ω→ ω−m. This shows that B[s]
CH+l ,ml

(x;ω) is in general not regular

for ω→ ω−m.
50 Note that γ̃ (ω)→ 1− s = −1 for ω→ ω+m. This shows that A[s]

H+r ,ml
(y;ω) is in general not regular

for ω→ ω+m.
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qψml from Theorem 5.26, with the r -coordinate replaced by the y-coordinate, as

qψml(y;ω) =: aH+r ,ml(ω)AH+r ,ml(y;ω)+ aH+l ,ml(ω)AH+l ,ml(y;ω), (6.12)

where aH+r ,ml , aH+l ,ml : R\{ω+m} → C are functions which will be determined later
in Section 7.

Lemma 6.13 Under the assumptions of Section3 we have aH+r ,ml , aH+l ,ml ∈
C0(R\{ω+m},C).

Proof Differentiating (6.12) in y we obtain for ω �= ω+m
(

qψml(y;ω)
d
dy

qψml(y;ω)

)

=
(

AH+r ,ml(y;ω) AH+l ,ml(y;ω)
d
dy AH+r ,ml(y;ω) d

dy AH+l ,ml(y;ω)

)(
aH+r ,ml(ω)

aH+l ,ml(ω)

)

.

(6.14)

Fix y ∈ (0, 1). Since {AH+r ,ml(y;ω), AH+l ,ml(y;ω)} are linearly independent, the
matrix has an inverse which is also analytic in ω for ω �= ω+m. We can thus solve
for aH+r ,ml(ω), aH+l ,ml(ω) and thus they inherit the regularity of the left hand side of
(6.14), which is continuous by Theorem 5.26. ��

6.2.1 Alternative Representation of Second Frobenius Solution

Let us also recall a different way of constructing the second Frobenius solution
B[s]CH+l ,ml

(x;ω) which will be useful later on in Section6.2.4. This is the variation

of constant ansatz, see for example Chapter 4 of [66] for full details.
To obtain a second linearly independent solution wemake the variation of constants

ansatz

v(x) = e(x) · B[s]CH+r ,ml
(x;ω).

Entering this into equation (6.1) gives

x(1− x)
[
e′′(x)B[s]CH+r ,ml

(x;ω)+ 2e′(x) d

dx
B[s]CH+r ,ml

(x;ω)
]

+(αx2 + βx + γ )e′(x) · B[s]CH+r ,ml
(x;ω) = 0. (6.15)

Here, the prime stands for d
dx . This is a first order equation for e′(x). Again, making

a power series ansatz one can show that (6.15) has a unique solution of the form

e′(x) = xγ−2
∞∑

j=0
e j x

j (6.16)
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which we normalise by e0 = γ − 1 and where the coefficients are determined recur-
sively by an algebraic expression which involves α, β, γ, e j , d j . In particular, each
e j (ω,m, l) is an analytic function of ω for all ω ∈ R.

As before let us now assume that ω �= ω−m, so the parameter γ has an imaginary
part. In particular e′(x) does not have a term proportional to 1

x . An integral of e
′(x) is

thus given by

e(x) = xγ−1
∞∑

j=0

e j
γ − 1+ j

x j

︸ ︷︷ ︸

. (6.17)

The underbraced power series converges absolutely on x ∈ [0, 1) and is analytic in ω

for ω �= ω−m. Since we have chosen e0 = γ − 1 we see that the coefficient in the
power series in front of x0 is 1. Thus,

B[s]CH+l ,ml
(x;ω) := e(x) · B[s]CH+r ,ml

(x;ω) (6.18)

is a solution of (6.5) of the form

B[s]CH+l ,ml
(x;ω) =

∞∑

j=0
c j (ω,m, l)x j

with c0(ω,m, l) = 1. The coefficients c j (ω,m, l) can of course be computed from

those of e(x) and those of B[s]CH+r ,ml
(x;ω) = x1−γ

∑∞
j=0 d j (ω,m, l)x j , for example

we have

c0 = 1 c1 = e1
γ
+ d1 c2 = e2

γ + 1
+ e1

γ
d1 + d2.

On the other hand it follows from the asymptotics that the solution (6.18) we have
constructed here must agree with B[s]CH+l ,ml

(x;ω) from Proposition 6.11, for which we

have already obtained the explicit values of c1 and c2. We thus find

c2 = 1

2(1+ γ )

[
ε

γ
(β + ε)− δ

]

= e2
γ + 1

+ e1
γ
d1 + d2.

Multiplying by (1+ γ ) and setting ω = ω−m we obtain

e2(ω = ω−m) = 1

2

[ ε

γ
(β + ε)− δ

]
(ω = ω−m). (6.19)

123



    7 Page 92 of 133 J. Sbierski

Similarly, we find an alternative expression of A[s]H+r ,ml
(y;ω) as

A[s]H+r ,ml
(y;ω) = ẽ(y) · A[s]H+l ,ml

(y;ω) =
( ∞∑

j=0

ẽ j
γ̃ − 1+ j

y j
)
·
( ∞∑

k=0
bk y

k
)
,

where

ẽ(y) = yγ̃−1
∞∑

j=0

ẽ j (ω,m, l)

γ̃ − 1+ j
y j

︸ ︷︷ ︸

with

ẽ2(ω = ω+m) = 1

2

[ ε̃

γ̃
(β̃ + ε̃)− δ̃

]
(ω = ω+m). (6.20)

The underbraced power series converges absolutely on y ∈ [0, 1) and is analytic in ω

for ω �= ω+m.

6.2.2 Reflection and Transmission Coefficients

Since {B[s]CH+l ,ml
, B[s]CH+r ,ml

} forms a fundamental system of solutions, we can express

each of the two solutions A[s]H+r ,ml
, A[s]H+l ,ml

as a linear combination thereof, i.e., we can

write for each ω ∈ R\{ω−m, ω+m}

A[s]H+r ,ml
(1− x;ω) = T

[s]
H+r ,ml

(ω) · B[s]CH+l ,ml
(x;ω)+R

[s]
H+r ,ml

(ω) · B[s]CH+r ,ml
(x;ω)

A[s]H+l ,ml
(1− x;ω) = T

[s]
H+l ,ml

(ω) · B[s]CH+r ,ml
(x;ω)+R

[s]
H+l ,ml

(ω) · B[s]CH+l ,ml
(x;ω)

(6.21)

with T
[s]
H+r ,ml

,R
[s]
H+r ,ml

,T
[s]
H+l ,ml

,R
[s]
H+l ,ml

: R\{ω−m, ω+m} → C, where we call

T
[s]
H+r ,ml

(ω),T
[s]
H+l ,ml

the transmission coefficients of the right and left even horizon,

respectively, andR[s]H+r ,ml
,R

[s]
H+l ,ml

the reflection coefficients of the right and left event

horizon, respectively.

6.2.3 The Casem �= 0

Proposition 6.22 Let m �= 0. Then the transmission and reflection coefficients
T
[s]
H+r ,ml

(ω),R
[s]
H+r ,ml

(ω), T[s]H+l ,ml
(ω),R

[s]
H+l ,ml

(ω) are (defined and) analytic for ω ∈
(−|ω+|, |ω+|) and we have T[s]H+r ,ml

(0) �= 0.
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Proof Note that 0 < |ω+| < |ω−|. Hence for m �= 0 the fundamental solutions
in (6.21) are defined for ω ∈ (−|ω+|, |ω+|) and thus so are the transmission and
reflection coefficients.

Combining the first line of (6.21) with its differentiated version in x we obtain the
vector equation

(
A[s]H+r ,ml

(1− x;ω)

d
dx A

[s]
H+r ,ml

(1− x;ω)

)

=
⎛

⎝
B[s]CH+l ,ml

(x;ω) B[s]CH+r ,ml
(x;ω)

d
dx B

[s]
CH+l ,ml

(x;ω) d
dx B

[s]
CH+r ,ml

(x;ω)

⎞

⎠

(
T
[s]
H+r ,ml

(ω)

R
[s]
H+r ,ml

(ω)

)

.

(6.23)

Fix x ∈ (0, 1). Note that the matrix on the right hand side is invertible (since
B[s]CH+l ,ml

(x;ω) and B[s]CH+r ,ml
(x;ω) are linearly independent) and analytic in ω for

ω ∈ (−|ω+|, |ω+|). The left hand side is analytic for ω ∈ (−|ω+|, |ω+|) as well.
We can thus solve for T[s]H+r ,ml

(ω) and R
[s]
H+r ,ml

(ω) and obtain that they are analytic in

ω ∈ (−|ω+|, |ω+|). Similarly one obtains that the transmission and reflection coeffi-
cients of the left event horizon are analytic in (−|ω+|, |ω+|).

To show T
[s]
H+r ,ml

(0) �= 0 we begin by noticing that A[s]H+r ,ml
(y; 0) and A[s]H+l ,ml

(y; 0)
solve (6.7) and B[s]CH+l ,ml

(x; 0) and B[s]CH+r ,ml
(x; 0) solve (6.5). For the hypergeometric

equation there are convenient closed expressions for the Frobenius solutions, which
we recall in the following, see for example Chapter 8 of [4], but they can also be
verified directly.

For a ∈ C and n ∈ N0 we define (a)n := a(a+1)(a+2) · · · (a+n−1) = �(a+n)
�(a) ,

where � is the Gamma function. Then, for −c /∈ N0

F(a, b, c; x) :=
∞∑

n=0

(a)n(b)n
(c)nn! xn (6.24)

is a solution of (6.5) with F(a, b, c; 0) = 1. And for c − 2 /∈ N0

x1−cF(a + 1− c, b + 1− c, 2− c; x) (6.25)

is also a solution of (6.5). Clearly, for c �= 1 these two solutions are linearly indepen-
dent. Recall from Section6.1.1 that B[s]CH+l ,ml

(x; 0) and B[s]CH+r ,ml
(x; 0) are solutions of

the hypergeometric equation (6.5) with c = γ (ω = 0) = −1− 2iam
r+−r− . For m �= 0 we

thus obtain, by comparison of the asymptotics, that we must have

B[s]CH+l ,ml
(x; 0) = F(a, b, c; x) and

B[s]CH+r ,ml
(x; 0) = x1−cF(a + 1− c, b + 1− c, 2− c; x)
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with a, b and c as in Section6.1.1. Similarly we obtain

A[s]H+r ,ml
(y; 0) = F(a, b, c̃; y) and

A[s]H+l ,ml
(y; 0) = y1−c̃ F(a + 1− c̃, b + 1− c̃, 2− c̃; y)

with c̃ as in Section6.1.1.
Now note that (6.24) is a polynomial in x if, and only if, a or b are negative integers.

Since we have b = −s− l = −2− l andN 
 l � max(|m|, |s|), b is a negative integer
and thus B[s]CH+l ,ml

(x; 0) and A[s]H+r ,ml
(1− x; 0) are polynomials in x . Moreover, since c

and c̃ have non-vanishing imaginary parts it is straightforward to see that B[s]CH+r ,ml
(x; 0)

and A[s]H+l ,ml
(x; 0) are not polynomials in x . Entering with this information into (6.21)

gives directly that R[s]H+r ,ml
(0) has to vanish and thus T[s]H+r ,ml

(0) �= 0. ��

Remark 6.26 Indeed, all the transmission and reflection coefficients at ω = 0 for
m �= 0 can be computed explicitly using the classical theory of linear relations of
solutions of the hypergeometric ODE, see for instance Chapter 8 of [4]. For example
one obtains T[s]H+r ,ml

(0) = �(a+b+1−c)�(1−c)
�(a+1−c)�(b+1−c) . Setting ξ(0) := − 2iam

r+−r− and plugging

in the exact values of the parameters for s = 2 from (6.6) we obtain

T
[s]
H+r ,ml

(0) = �
(− 1− ξ(0)

)
�
(
2− ξ(0)

)

�
(
l + 1− ξ(0)

)
�
(− l − ξ(0)

)

=
(− l − ξ(0)

) · (− l + 1− ξ(0)
) · . . . · (1− ξ(0)

)

(
l − ξ(0)

) · (l − 1− ξ(0)
) · . . . · (−1− ξ(0)

)

from which it also follows that |T[s]H+r ,ml
(0)| = 1.

6.2.4 The Casem = 0 via the Teukolsky-Starobinsky Conservation Law

Proposition 6.27 The transmission coefficient T[s]H+r ,0l
of the right event horizon and

the reflection coefficientR[s]H+l ,0l
of the left event horizon, as well as ω ·R[s]H+r ,0l

(all of

which are a priori not defined at ω = 0) extend analytically to ω ∈ R. Moreover, we
have R[s]H+l ,0 l

(0) = 0.

Proof We construct a set of fundamental solutions which is regular for all ω ∈ R.
Recall fromProposition 6.11 that B[s]CH+r ,ml

(x;ω) is defined for allω ∈ R. Forω �= 0we

now use the alternative representation of the second Frobenius solution B[s]CH+l ,0l
(x;ω)
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from Section6.2.1 and define

UCH+,0l(x;ω) := BCH+l ,0l(x;ω)− e2(ω, 0, l)

γ + 1
BCH+r ,0l(x;ω)

= xγ−1
( ∞∑

j=0

e j (ω, 0, l)

γ − 1+ j
x j
)
BCH+r ,0l(x;ω)− e2(ω, 0, l)

γ + 1
BCH+r ,0l(x;ω)

= xγ−1
( ∞∑

j=0
j �=2

e j (ω, 0, l)

γ − 1+ j
x j
)
BCH+r ,0l(x;ω)+ e2(ω, 0, l)

· xγ+1 − 1

γ + 1
︸ ︷︷ ︸

=∑∞
k=1

(γ+1)k−1(log x)k
k!

·BCH+r ,0l(x;ω).

We thus see that UCH+,0l(x;ω) extends analytically as a solution51 of (6.1) to ω = 0
for which we have

UCH+,0l(x; 0) = x−2
( ∞∑

j=0
j �=2

e j (0, 0, l)

−2+ j
x j
)
BCH+r ,0l(x; 0)

+e2(0, 0, l)(log x) · BCH+r ,0l(x; 0). (6.28)

Hence, {BCH+r ,0l(x;ω),UCH+,0l(x;ω)} is a fundamental system of solutions of (6.1)
for m = 0 which is defined and analytic for all ω ∈ R. (The linear independence of
the solutions is shown below.)

Similarly we set

UH+,0l(y;ω) := AH+r ,0l(y;ω)− ẽ2(ω, 0, l)

γ̃ + 1
AH+l ,0l(y;ω)

to obtain a fundamental system {AH+l ,0 l(y;ω),UH+,0 l(y;ω)} of solutions of (6.3)
for m = 0 which is defined and analytic for all ω ∈ R. Moreover, UH+,0l(y; 0) is of
the form

UH+,0l(y; 0) = y−2
( ∞∑

j=0
j �=2

ẽ j (0, 0, l)

−2+ j
y j
)
AH+l ,0l(y; 0)

51 Note that the above construction corresponds to choosing as an integral of (6.16) not (6.17) but

xγ−1
( ∞∑

j=0
j �=2

e j
γ − 1+ j

x j
)
+ e2

xγ+1 − 1

γ + 1
,

which differs from (6.17) by an ω-dependent constant and makes it analytic for all ω ∈ R.
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+ẽ2(0, 0, l)(log y) · AH+l ,0l(y; 0). (6.29)

Let us also note that it follows from (6.19), (6.20) and Section6.1 that

e2(0, 0, l) = ẽ2(0, 0, l) = −1

2

([
(l − 2)(l + 3)+ 4

][
(l − 2)(l + 3)+ 6

]) �= 0

for l � 2 and thus the solutions (6.28) and (6.29) do indeed have log terms and are
linearly independent from BCH+r ,0 l(x; 0) and AH+l ,0 l(y; 0), respectively.

We can now expand for all ω ∈ R

UH+,0l(1− x;ω) = XH+,0l(ω)UCH+,0l(x;ω)+ YH+,0l(ω)BCH+r ,0l(x;ω)

AH+l ,0l(1− x;ω) = XH+l ,0l(ω)BCH+r ,0l(x;ω)+ YH+l ,0l(ω)UCH+,0l(x;ω)

(6.30)

where XH+,0l ,YH+,0l , XH+l ,0l ,YH+l ,0l are complex valued functions. It follows as in
(6.23) that they are analytic on all of R.

We now show that we have YH+l ,0l(0) = 0. Recall that for m = 0 and ω = 0 the
coefficients of the hypergeometric equations which {BCH+r ,0l(x; 0),UCH+,0l(x; 0)}
and {UH+,0l(y; 0), AH+l ,0l(y; 0)} are satisfying are c = c̃ = −1, a = l − 1, and
b = −2 − l. It thus follows that (6.25) still defines a solution to the hypergeometric
equation which is clearly linearly independent to UCH+,0l(x; 0) (UH+,0l(y; 0)), since
the latter contains a non-vanishing log-term. By comparison of the leading order
coefficients we thus obtain

BCH+r ,0l(x; 0) = x1−cF(a + 1− c, b + 1− c, 2− c; x) and

AH+l ,0l(y; 0) = y1−c̃ F(a + 1− c̃, b + 1− c̃, 2− c̃; y).

Note that b + 1 − c = b + 1 − c̃ = −l ∈ −N and thus, as we observed in the
proof of Proposition 6.22, BCH+r ,0l(x; 0) and AH+l ,0l(y; 0) are polynomials. Since
UCH+,0l(x; 0) is clearly not a polynomial because of the log-term, it directly follows
from (6.30) that we must have YH+l ,0 l(0) = 0.

Expanding (6.30) in terms of our original systems of fundamental solutions gives

AH+l ,0l(1− x;ω) =
(
XH+l ,0l(ω)− YH+l ,0l(ω)

e2(ω, 0, l)

γ + 1

)

︸ ︷︷ ︸
=TH+l ,0l

(ω)

BCH+r ,0l(x;ω)

+ YH+l ,0l(ω)
︸ ︷︷ ︸
=RH+l ,0l

(ω)

BCH+l ,0l(x;ω),
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which directly shows that RH+l ,0l(ω) is analytic on R and vanishes at ω = 0, and

AH+r ,0l (1− x;ω) = UH+,0l (1− x;ω)+ ẽ2(ω, 0, l)

γ̃ + 1
AH+l ,0l (1− x;ω)

= XH+,0l (ω)UCH+,0l (x;ω)+ YH+,0l (ω)BCH+r ,0l (x;ω)

+ ẽ2(ω, 0, l)

γ̃ + 1

(
XH+l ,0l (ω)BCH+r ,0l (x;ω)+ YH+l ,0l (ω)UCH+,0l (x;ω)

)

=
(
XH+,0l (ω)+ ẽ2(ω, 0, l)

γ̃ + 1
YH+l ,0l (ω)

︸ ︷︷ ︸
=TH+r ,0l

(ω)

)
BCH+l ,0l (x;ω)

+
(
YH+,0l (ω)+ ẽ2(ω, 0, l)

γ̃ + 1
XH+l ,0l (ω)− e2(ω, 0, l)

γ + 1

[
XH+,0l (ω)+ ẽ2(ω, 0, l)

γ̃ + 1
YH+l ,0l (ω)

]

︸ ︷︷ ︸
=RH+r ,0l

(ω)

)
BCH+r ,0l (x;ω).

(6.31)

Since we have shown that YH+l ,0l(0) = 0 it follows that TH+r ,0l(ω) is analytic

on all of R. Moreover, we have RH+r ,0 l(ω) = YH+,0 l(ω) + ẽ2(ω,0,l)
γ̃+1 XH+l ,0 l(ω) −

e2(ω,0,l)
γ+1 TH+r ,0 l(ω), from which it follows that ω ·RH+r ,0l(ω) extends analytically to

ω = 0. ��
Note that (6.31) directly shows that our previous approach for m �= 0 of showing

thatTH+r ,ml(0) �= 0, namely by computing the transmission coefficient for the simpler
hypergeometric equation, does not directly transfer to m = 0, since here we actually
need to know the value of ∂ωYH+l ,0 l(0), which is a statement that goes beyond the
hypergeometric equation. The omega derivative can be computed – however, it seems
easier to use the Teukolsky-Starobinsky conservation law insteadwhich has beenmade
use of recently and developed in much detail in [64, 65]52.

The Teukolsky-Starobinsky Conservation Law

What is needed of the Teukolsky-Starobinsky conservation law for this paper can be
developed quite quickly, which keeps the paper self-contained. To make contact with
[64, 65] we begin by noting that qψ

[s]
ml (r;ω) satisfies (5.28) if, and only if, R[s]ml (r;ω) :=

eimr e−iωr∗ 1
	s

qψ
[s]
ml (r;ω) satisfies

	−s d

dr

(
	s+1 dR

[s]
ml

dr

)+
([

(r2 + a2)2ω2 − 4aMrωm + a2m2

+ 2ia(r − M)ms − 2iM(r2 − a2)ωs
] · 1

	

+ 2irωs + λ
[s]
ml(ω)− a2ω2

)
R[s]ml = 0.

(6.32)

Note that (6.32) is the radial Teukolsky equation in its most common form as it also
appears for example in (150) of [15] where, however, their λ[s]ml differs from ours here

52 The Teukolsky-Starobinsky conservation law also provides an alternative approach to showing that
TH+r ,ml (0) �= 0 for m �= 0, cf. Remark 6.49
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by a minus sign. A direct computation, see also [15], gives furthermore that R[s]ml (r;ω)

satisfies (6.32) if, and only if, u[s]ml(r;ω) := 	
s/2(r2 + a2)1/2R[s]ml (r;ω) satisfies

d2

(dr∗)2
u[s]ml(r;ω)+ V [s]ml (r;ω)u[s]ml(r;ω) = 0 (6.33)

with

V [s]ml (r;ω) = 	

(r2 + a2)2

(((r2 + a2)ω − am
)2 − 2is(r − M)

(
(r2 + a2)ω − am

)

	

+ 4isωr + λ
[s]
ml(ω)− s − a2ω2 + 2amω

)

− s2(r − M)2

(r2 + a2)2
+ 	

(r2 + a2)3

(
− 2(r − M)r −	+ 3r2	

r2 + a2

)
.

Note that one has V [s]ml (r;ω) = V [−s]ml (r;ω), for which we recall λ
[s]
ml(ω) − s =

λ
[−s]
ml (ω) + s from Proposition 5.2. It follows that if u[−2]ml is a solution of (6.33)

with s = −2, then u[−2]ml is a solution of (6.33) with s = +2. Unwinding the

above relations we find that if qψ
[−2]
ml satisfies (5.28) (or (6.1)) with s = −2 then

(r2 + a2)
1
2 eimr e−iωr∗	qψ

[−2]
ml satisfies (6.33) with s = +2 and thus

	2e−2imr e2iωr
∗

qψ
[−2]
ml (6.34)

satisfies (5.28) (or (6.1)) with s = +2.
Moreover, we observe that since (6.33) does not have any first order terms, the

Wronskian

Wr∗(u
[s]
ml , w

[s]
ml ) :=

( d

dr∗
u[s]ml

)
w
[s]
ml − u[s]ml

( d

dr∗
w
[s]
ml

)

is conserved in r for any two solutions u[s]ml(r
∗;ω) and w

[s]
ml (r

∗;ω) of (6.33). Hence,

if v[+2]1,ml (x;ω) and v
[+2]
2,ml (x;ω) are two solutions of (6.1) with s = +2 then

const = Wr∗
(
(r2 + a2)

1
2
1

	
eimr e−iωr∗v[+2]1,ml , (r

2 + a2)
1
2
1

	
eimr e−iωr∗v[+2]2,ml

)

= (r2 + a2)
1

	2 e
2imr e−2iωr∗Wr∗(v

+2]
1,ml , v

[+2]
2,ml )

= 1

	
e2imr e−2iωr∗ 1

r+ − r−

( d

dx
v
[+2]
1,ml · v[+2]2,ml − v

[+2]
1,ml

d

dx
v
[+2]
2,ml

︸ ︷︷ ︸
=:Wx (v

[+2]
1,ml ,v

[+2]
2,ml )

)
,

(6.35)

where we have used d
dr∗ = 	

r2+a2
1

r+−r−
d
dx .
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The Teukolsky-Starobinsky identities allow us to produce a solution for the s = −2
equation fromoneof the s = +2 equation – andvice versa.Here, only thefirst direction
is needed which is straightforward to establish for the radial Teukolsky equation in the
form (6.1). We claim that if v[+2] is a solution to (6.1) with s = +2, then d4

dx4
v[+2] is a

solution to (6.1) with s = −2. To prove this we first note that (6.2) gives the following
relation of the parameters of the Heun equation for s ± 2

α[−2] = α[+2] δ[−2] = δ[+2] + 8α[+2]

β[−2] = β[+2] − 8 ε[−2] = ε[+2] + 4β[+2] − 12

γ [−2] = γ [+2] + 4

where we have used again λ
[s]
ml(ω)− s = λ

[−s]
ml (ω)+ s. Taking d4

dx4
of (6.1) now gives

0 =
4∑

j=0

(
4

j

)[ d j

dx j

(
(1− x)x

) d4− j

dx4− j

d2

dx2
v[+2]

+ d j

dx j

(
α[+2]x2 + β[+2]x + γ [+2]

) d4− j

dx4− j

d

dx
v[+2]

+ d j

dx j

(
δ[+2]x + ε[+2]

) d4− j

dx4− j
v[+2]

]

= (1− x)x
d6

dx6
v[+2] + 4(−2x + 1)

d5

dx5
v[+2] + 6(−2) d4

dx4
v[+2]

+(α[+2]x2 + β[+2]x + γ [+2]) d5

dx5
v[+2]

+4(2α[+2]x + β[+2]) d4

dx4
v[+2] + 6 · 2α[+2] d

3

dx3
v[+2]

+(δ[+2]x + ε[+2]) d4

dx4
v[+2] + 4δ[+2] d

3

dx3
v[+2]

= (1− x)x
d2

dx2
d4

dx4
v[+2] + (α[−2]x2 + β[−2]x + γ [−2]

) d

dx

d4

dx4
v[+2]

+(δ[−2]x + ε[−2]
) d4

dx4
v[+2],

where we have used 12α[+2] + 4δ[+2] = 0.
We now apply this to the Frobenius solutions for ω �= ω+m, ω−m. Recalling

d
dy = − d

dx we have

d4

dy4
A[+2]H+r ,ml

(y;ω) =
∞∑

j=0
( j + 4)( j + 3)( j + 2)( j + 1)a[+2]j+4 (ω,m, l)y j

d4

dx4
B[+2]CH+l ,ml

(x;ω) =
∞∑

j=0
( j + 4)( j + 3)( j + 2)( j + 1)c[+2]j+4 (ω,m, l)x j
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d4

dx4
B[+2]CH+r ,ml

(x;ω) =
∞∑

j=0
( j + 1− γ [+2])( j − γ [+2])( j − 1− γ [+2])

( j − 2− γ [+2])d[+2]j (ω,m, l)x j−3−γ [+2] . (6.36)

With the notation from Section2.1.1 and 2.1.2 we find near r = r+

e−2imr e2iωr
∗ = e2ir

∗(ω−ω+m)e2imφ+(r)

= (r+ − r)
i

κ+ (ω−ω+m)
e2i F+(r)·(ω−ω+m)e2imφ+(r)

= (r+ − r−)
4iMr+
r+−r− (ω−ω+m)

e2i F+(r)·(ω−ω+m)e2imφ+(r)
︸ ︷︷ ︸

=:D+(r;m,ω)

· y
4iMr+
r+−r− (ω−ω+m)

︸ ︷︷ ︸
=y−(1+γ̃ [+2])

and near r = r−

e−2imr e2iωr
∗ = (r+ − r−)

−4iMr−
r+−r− (ω−ω−m)

e2i F−(r)·(ω−ω−m)e2imφ−(r)
︸ ︷︷ ︸

=:D−(r;m,ω)

· x
−4iMr−
r+−r− (ω−ω−m)

︸ ︷︷ ︸
=x−(1+γ [+2])

.

Note that D± is regular at r = r± and that we have |D±| = 1. We also recall that
	 = (r+ − r−)2(x − 1)x = (r+ − r−)2(y − 1)y.

By (6.34)

	2e−2imr e2iωr
∗ d4

dx4
B[+2]CH+l ,ml

= (r+ − r−)4(x − 1)2x2D−
(
r(x);m, ω

)
x−(1+γ [+2]) ·

∞∑

j=0

4∏

k=1
( j + k)c[+2]j+4 (ω,m, l)x j

is a solution of (6.1) with s = +2. Comparing asymptotics we find

	2e−2imr e2iωr
∗ d4

dx4
B[+2]CH+l ,ml

= (r+ − r−)4D−
(
r−;m, ω

)
4!

·c[+2]4 (ω,m, l) · B[+2]CH+r ,ml
(x;ω). (6.37)

Similarly we have

	2e−2imr e2iωr
∗ d4

dy4
A[+2]H+r ,ml

= (r+ − r−)4D+
(
r+;m, ω

)
4!

·a[+2]4 (ω,m, l) · A[+2]H+l ,ml
(y;ω). (6.38)
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Again by (6.34)

	2e−2imr e2iωr
∗ d4

dx4
B[+2]CH+r ,ml

= (r+ − r−)4(x − 1)2x2D−
(
r(x);m, ω

)
x−(1+γ [+2])

·
∞∑

j=0

1∏

k=−2
( j + k − γ [+2]))d[+2]j (ω,m, l)x j−3−γ [+2]

is a solution of (6.1) with s = +2. Noting that γ [+2] = −γ [+2] − 2 and comparing
asymptotics we find

	2e−2imr e2iωr
∗ d4

dx4
B[+2]CH+r ,ml

= (r+ − r−)4D−(r−;m, ω)

1∏

k=−2
(k − γ [+2])B[+2]CH+l ,ml

(x;ω). (6.39)

We now apply (6.35) to A[+2]H+r ,ml
(x;ω) and 	2e−2imr e2iωr

∗ d4

dy4
A[+2]H+r ,ml

. Using again

(6.36) and (6.38) we obtain

const = 1

	
e2imr e−2iωr∗ 1

r+ − r−
Wx
(
A[+2]H+r ,ml

,	2e−2imr e2iωr
∗ d4

dy4
A[+2]H+r ,ml

)

= 1

(r+ − r−)3
1

(y − 1)y
D+(r;m, ω)y(γ̃

[+2]+1)(r+ − r−)4D+(r+;m, ω)4!

·a[+2]4 (ω,m, l)Wx (A
[+2]
H+r ,ml

, A[+2]H+l ,ml
)

→−(r+ − r−)4! · a[+2]4 (ω,m, l)(1− γ̃ [+2]), (6.40)

for y → 0, where we have used

− yγ̃
[+2]

Wx (A
[+2]
H+r ,ml

, A[+2]H+l ,ml
)

= yγ̃
[+2]( d

dy
A[+2]H+r ,ml

· A[+2]H+l ,ml
︸ ︷︷ ︸

→0

−A[+2]H+r ,ml

d

dy
A[+2]H+l ,ml

︸ ︷︷ ︸

∼(1−γ̃ [+2])y−γ̃ [+2]

)

→−(1− γ̃ [+2])

for y → 0.We now evaluate (6.40) for x → 0.Note that it follows fromdifferentiating

A[+2]H+r ,ml
(1− x;ω) = T

[+2]
H+r ,ml

(ω)B[+2]CH+l ,ml
(x;ω)+R

[+2]
H+r

(ω)B[+2]CH+r ,ml
(x;ω)
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and from (6.37), (6.39) that

	2e−2imr e2iωr
∗ d4

dx4
A[+2]H+r ,ml

= T
[+2]
H+r ,ml

(ω)(r+ − r−)4D−(r−;m, ω)4!

· c[+2]4 (ω,m, l)B[+2]CH+r ,ml
(x;ω)

+R
[+2]
H+r

(ω)(r+ − r−)4D−(r−;m, ω)

1∏

k=−2
(k − γ [+2])B[+2]CH+l ,ml

(x;ω).

Hence, the constant from (6.40) is also given by

const = 1

	
e2imr e−2iωr∗ 1

r+ − r−
Wx

(
T
[+2]
H+r ,ml

(ω)B[+2]CH+l ,ml
+R

[+2]
H+r

(ω)B[+2]CH+r ,ml
,

(r+ − r−)4D−(r−;m, ω)
[
T
[+2]
H+r ,ml

(ω)4! · c[+2]4 (ω,m, l)B[+2]CH+r ,ml

+R
[+2]
H+r

(ω)

1∏

k=−2
(k − γ [+2])B[+2]CH+l ,ml

])

= r+ − r−
x − 1

D−(r;m, ω)D−(r−;m, ω)xγ
[+2]

Wx
(
B[+2]CH+l ,ml

, B[+2]CH+r ,ml

)

·
(
4! · c[+2]4 (ω,m, l)|T[+2]H+r ,ml

(ω)|2 −
1∏

k=−2
(k − γ [+2])|R[+2]H+r

(ω)|2
)

→ (r+ − r−)(1− γ [+2])
(
4! · c[+2]4 (ω,m, l)|T[+2]H+r ,ml

(ω)|2

−
1∏

k=−2
(k − γ [+2])|R[+2]H+r

(ω)|2
)
,

(6.41)

for x → 0, where we have used

xγ
[+2]

Wx
(
B[+2]CH+l ,ml

, B[+2]CH+r ,ml

) = xγ
[+2]( d

dx
B[+2]CH+l ,ml

· B[+2]CH+r ,ml
︸ ︷︷ ︸

→0

−B[+2]CH+l ,ml
· d

dx
B[+2]CH+r ,ml

︸ ︷︷ ︸
∼(1−γ [+2])x−γ [+2]

)

→ −(1− γ [+2])

as x → 0. From (6.40) and (6.41) we now obtain the conservation law

− 4! · a[+2]4 (ω,m, l)(1− γ̃ [+2]) = (1− γ [+2]) ·
(
4! · c[+2]4 (ω,m, l)|T[+2]H+r ,ml

(ω)|2

−
1∏

k=−2
(k − γ [+2])|R[+2]H+r ,ml

(ω)|2
)

(6.42)
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which is valid for ω �= ω+m, ω−m. From now on again we will drop the superscript
s = +2.

We evaluate the coefficients next. We set ξ := 4iMr−
r+−r− (ω − ω−m) and ξ̃ :=

− 4iMr+
r+−r− (ω − ω+m). Let us agree that ξ(0) and ξ̃ (0) refer to ξ(ω = 0) = − 2iam

r+−r− =
−ξ̃ (ω = 0). Then γ̃ = −1+ ξ̃ and γ = −1+ ξ . We observe that

1∏

k=−2
(k − γ ) = (−1− ξ)(−ξ)(1− ξ)(2− ξ)

= ξ(2− ξ)|1+ ξ |2 = −ξ(2+ ξ)|1+ ξ |2. (6.43)

The recursion relation (6.10) gives

c2 = 1

2(1+ γ )

[ ε

γ
(β + ε)− δ

]

c3 = 1

3(2+ γ )

[
c2
(
2(1− β)− ε

)+ c1(−α − δ)
]

c4 = 1

4(3+ γ )

[
c3
(
3(2− β)− ε

)+ c2(−2α − δ)
]
,

(6.44)

and similarly for the ai , where all parameters are replaced by their tilded analogues.
We now proceed by setting m = 0. However, see Remark 6.49 for m �= 0. For

m = 0 (6.42) is valid for ω �= 0. We will show that if we multiply by ω then both
sides extend analytically to ω = 0.

From (6.44) and (6.4) we obtain successively

lim
ω→0

(1+ γ )c2 = −1

2

[
ε(0)

(
2+ ε(0)

)]

lim
ω→0

(1+ γ )c3 = 1

6

[
ε(0)

(
2+ ε(0)

)2]

lim
ω→0

(1+ γ )c4 = − 1

48

(
ε(0)

)2(2+ ε(0)
)2
,

where ε(0) = (l − 2)(l + 3)+ 4 > 0. Thus

lim
ω→0

ωc4(ω, 0, l) = lim
ω→0

r+ − r−
4iMr−

ξc4(ω, 0, l)

= − lim
ω→0

r+ − r−
4iMr−

ξc4(ω, 0, l)

= − lim
ω→0

r+ − r−
4iMr−

(1+ γ )c4(ω, 0, l)

= r+ − r−
4iMr−

1

48

(
ε(0)

)2(2+ ε(0)
)2 (6.45)

123



    7 Page 104 of 133 J. Sbierski

and similarly

lim
ω→0

ωa4(ω, 0, l) = lim
ω→0

−r+ − r−
4iMr+

ξ̃a4(ω, 0, l)

= −r+ − r−
4iMr+

1

48

(
ε(0)

)2(2+ ε(0)
)2
. (6.46)

Multiplying (6.42) by ω and using (6.43) we get

− 4! · ωa4(ω, 0, l)(1− γ̃ ) = (1− γ ) ·
(
4! · ωc4(ω, 0, l)|TH+r ,0l(ω)|2

+ 4iMr−
r+ − r−

(2+ ξ)|1+ ξ |2|ωRH+r ,0l(ω)|2
)
.

(6.47)

By Proposition 6.27 TH+r ,0l(ω) and ωRH+r ,0l(ω) extend analytically to ω = 0. By the
above, ω · c4(ω, 0, l) and ω · a4(ω, 0, l) do as well. We may thus take the limit ω→ 0
in (6.47) to obtain

r+ − r−
4Mr+

(
ε(0)

)2(2+ ε(0)
)2 = r+ − r−

4Mr−
(
ε(0)

)2(2+ ε(0)
)2|TH+r ,0l(0)|2

− 16Mr−
r+ − r−

| lim
ω→0

ωRH+r ,0l(ω)|2

where we used (6.45) and (6.46). Brining the last term over to the left hand side this
in particular implies the following

Proposition 6.48 We have T[s]H+r ,0l
(0) �= 0.

We conclude this section with the following

Remark 6.49 Form �= 0 the conservation law (6.42) may be evaluated directly at ω =
0. A direct computation using (6.44) gives c4(0,m, l) = [ε(0)]2[2+ε(0)]2

24
1

|1+ξ |2(2−ξ)ξ

and a4(0,m, l) = [ε(0)]2[2+ε(0)]2
24

1
|1+ξ̃ |2(2−ξ̃ )ξ̃

. Plugging those values into (6.42),

together with (6.43), gives

[ε(0)]2[2+ ε(0)]2 r+ − r−
2am · |1+ ξ̃ (0)|2 +

2am

r+ − r−
|2+ ξ(0)|2|1+ ξ(0)|2|RH+r ,ml(0)|2

= [ε(0)]2[2+ ε(0)]2 r+ − r−
2am · |1+ ξ(0)|2 |TH+r ,ml(0)|2.

This would have been another way of showing that TH+r ,ml(0) �= 0 for m �= 0.
However, the approach taken in Section6.2.3 is more direct. Note that if we use the
additional information that RH+r ,ml(0) = 0, which was shown in Section6.2.3, then
we recover that |TH+r ,ml(0)| = 1, which is of course compatible with Remark 6.26.
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7 Determination of the Coefficients aH+
l ,ml(!) and aH+

r ,ml(!) in

Terms of the Initial Data onH+
l andH+

r

We will replace in this section the r -coordinate by the y-coordinate for convenience.
Recall that y = r+−r

r+−r− . Also recall from Theorem 5.26 and (6.12) the representation

ψ(v+, y, θ, ϕ+)

= 1√
2π

∫

R

∑

m,l

[
aH+r ,ml (ω)AH+r ,ml (y;ω)+ aH+l ,ml (ω)AH+l ,ml (y;ω)

︸ ︷︷ ︸
=qψml (y;ω)

]
Y [s]ml (θ, ϕ+;ω)e−iωv+ dω.

(7.1)

Note that while we know that for example AH+r ,ml(y;ω) has a pole at ω = ω+m, we
know that the terms in the linear combination conspire so that the total underbraced
term is more regular, in particular continuous in ω for y ∈ (0, 1). In this section we
will relate the coefficients aH+r ,ml(ω) and aH+l ,ml(ω) to the initial data onH+r andH+l
(at least in a neighbourhood of ω = 0).

7.1 Passing to the Limit r → r+ in (v+, r,�,'+) Coordinates

We begin with the following

Lemma 7.2 Under the assumptions from Section3we have ­(ψ |H+r )ml
(ω) ∈ C0(R,C).

Proof Recall that

­(ψ |H+r )ml
(ω) = 1√

2π

∫

S
2

∫

R

ψ |H+r (v+, θ, ϕ+)eiωv+ S[s]ml (cos θ;ω)e−imϕ+ dv+volS2 .

(7.3)

It follows from the exponential decay of ψ |H+r in v+ for v+ → −∞ (by Assump-
tion 2.46) together with (3.4) and qr being in particular bigger than 1 that

∫

R

∫

S
2

∣
∣ψ |H+r (v+, θ, ϕ+)

∣
∣ vol

S
2dv+ � 2

√
π

∫

R

( ∫

S
2

∣
∣ψ |H+r (v+, θ, ϕ+)

∣
∣2 vol

S
2

)1/2
dv+

� 2
√
π
( ∫

R

1

(1+ |v+|)qr dv+
)1/2

× ·
( ∫

R

∫

S
2

(1+ |v+|)qr
∣
∣ψ |H+r (v+, θ, ϕ+)

∣
∣2 vol

S
2dv+

)1/2
<∞.

Together with the boundedness of S[s]ml (cos θ;ω) and its continuous dependence on ω

the result now follows from dominated convergence. ��
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Proposition 7.4 Letψ satisfy the assumptions fromSection3.We thenhaveaH+r ,ml(ω) =
( ~ψ |H+r )ml(ω) for all ω �= ω+m. In particular aH+r ,ml extends as a C0 function to
ω = ω+m.

Proof By (4.28) ofCorollary 4.27wehave
∫

R×S
2 |ψ(v+, y, θ, ϕ+)−ψ(v+, 0, θ, ϕ+)|2

vol
S
2dv+ → 0 for y → 0. By Plancherel (5.20) this gives

∫

R

∑

m,l

|(qψ)ml(y;ω)− ( ~ψ |H+r )ml(ω)|2 dω→ 0 for y → 0.

Fix m and l. It now follows that there is a sequence yn → 0 with qψml(yn;ω) →
( ~ψ |H+r )ml(ω) for almost every ω ∈ R. For ω �= ω+m we have

qψml(yn;ω) = aH+r ,ml(ω)AH+r ,ml(yn;ω)+ aH+l ,ml(ω)AH+l ,ml(yn;ω)→ aH+r ,ml(ω)

as yn → 0 by the normalisation of the Frobenius solutions – and thus we have
aH+r ,ml(ω) = ( ~ψ |H+r )ml(ω) for a.e. ω ∈ R\{ω+m}. Since both functions are continu-
ous on R\{ω+m} by Lemmas 6.13 and 7.2 they agree everywhere. ��
Proposition 7.5 The assumptions (3.1), (3.2), and (3.3) from Section3, together with
the regularity Assumption 2.46, imply that ∂qω( ~ψ |H+r )m0l0 ∈ L2

ω([−2, 2]) for any 0 �
q < p0, q ∈ N0 and ∂

p0
ω ( ~ψ |H+r )m0l0(ω) /∈ L2

ω(−ε, ε) for any ε > 0.

Proof We drop the |H+r from ψ |H+r here to ease the notation. We only consider ψ

restricted to the event horizon. It follows from the regularity Assumption 2.46, which
ensures exponential decay of ψ for v+ → −∞, that (3.1), (3.2), (3.3) imply

∫

R

∫

S
2

∣
∣vq+ψ

∣
∣2 vol

S
2dv+ <∞

∫

R

∫

S
2

∣
∣v p0+ ∂v+ψ

∣
∣2 vol

S
2dv+ <∞

∫

R

∣
∣v p0+ ψS(m0l0)

∣
∣2 dv+ = ∞

(7.6)

for all 0 � q < p0, q ∈ N0. Recall from Section3 that

qψS(ml)(ω) :=
∫

S
2

qψ(ω, θ, ϕ+)Y [s]ml (θ, ϕ+; 0) volS2

denotes the projection of the Fourier transform qψ ∈ L2
ωL

2
S
2 of ψ ∈ L2

v+L
2
S
2 (see

(5.17)) onto the spin 2-weighted spherical harmonic Y [s]ml (θ, ϕ+; 0). The map (·)S(ml)

is clearly an isometry L2
ωL

2
S
2 → L2

ω�
2
ml . By Plancherel (7.6) is thus equivalent to

∫

R

∑

m,l

∣
∣∂qω qψS(ml)

∣
∣2 dω <∞ (7.7)
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∫

R

∑

m,l

∣
∣∂ p0

ω (ω qψS(ml))
∣
∣2 dω <∞ (7.8)

∂ p0
ω (qψS(m0l0)) /∈ L2(R) (7.9)

for all 0 � q < p0, q ∈ N0. It follows from

∂ p0
ω (ω qψS(ml)) = ∂ p0−1

ω (qψS(ml) + ω∂ω qψS(ml)) = p0∂
p0−1
ω

qψS(ml) + ω∂ p0
ω

qψS(ml)

and (7.7) and (7.8) that

∫

R

∑

m,l

∣
∣ω∂ p0

ω
qψS(ml)

∣
∣2 dω <∞. (7.10)

Together with (7.9) this gives in particular

∂ p0
ω (qψS(m0l0)) /∈ L2

(−ε,ε) for any ε > 0. (7.11)

We relate the projection onto the spin 2-weighted spheroidal harmonics to that onto
the spin 2-weighted spherical harmonics in the next step.

We expand in L2([−1, 1], d cos θ)

S[s]ml (cos θ;ω) =
∫

[−1,1]
S[s]ml (cos θ;ω)S[s]ml ′(cos θ; 0) d cos θ

︸ ︷︷ ︸
=:E [s]

mll′ (ω)

· S[s]ml ′(cos θ; 0),

where E [s]mll ′(ω) : �2l ′ → �2l is a change of orthonormal basis map for every ω ∈ R and
it is also smooth in ω. We have

∑

l ′
|∂qωE [s]mll ′(ω)|2 =

∑

l ′

∣
∣
∣

∫

[−1,1]
∂qωS

[s]
ml (cos θ;ω)S[s]ml ′(cos θ; 0) d cos θ

∣
∣
∣
2

= ||∂qωS[s]ml (ω)||2L2([−1,1]) � C(ω,m, l) (7.12)

where, for fixed m, l, the constant can be chosen uniform on compact subsets of
ω by the smoothness of S[s]ml (ω) in ω, see Proposition 5.2. We have qψm0l0(ω) =
∑

l
qψS(m0l)(ω) · E [s]m0l0l

(ω) in L2
ω(R) and weak differentiation gives

∂ p0
ω

qψm0l0(ω) =
∑

l

p0∑

q ′=0

(
p0
q ′

)

∂q
′

ω E [s]m0l0l
(ω) · ∂ p0−q ′

ω
qψS(m0l)(ω). (7.13)
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Consider first all the terms
∑

l ∂
q ′
ω E [s]m0l0l

(ω)·∂ p0−q ′
ω

qψS(m0l)(ω) for q ′ � 1.We estimate
those on the compact subset [−2, 2] ⊆ R using (7.7) and (7.12) as follows:

∫

[−2,2]

∣
∣
∣
∑

l

∂q
′

ω E [s]m0l0l
(ω) · ∂ p0−q ′

ω
qψS(m0l)(ω)

∣
∣
∣
2
dω

�
∫

[−2,2]

(∑

l

∣
∣∂q

′
ω E [s]m0l0l

(ω)
∣
∣2
)

︸ ︷︷ ︸
�C(m0,l0)

(∑

l

∣
∣∂ p0−q ′

ω
qψS(m0l)(ω)

∣
∣2
)
dω � C .

Note in particular that if we replace p0 in (7.13) by 0 � q < p0 then all terms can
be estimated in this way. This proves the first claim in the proposition. We go back to
(7.13) with p0 and consider next those terms with q ′ = 0 and l �= l0. We note that for
l �= l0 we have E [s]m0l0l

(0) = 0 and thus E [s]m0l0l
(ω) = ∫ ω

0 ∂ωE
[s]
m0l0l

(ω′) dω′. Using this
we estimate
∫

[−2,2]

∣
∣
∣
∑

l �=l0
E [s]m0l0l

(ω) · ∂ p0
ω

qψS(m0l)(ω)

∣
∣
∣
2
dω �

∫

[−2,2]

(∑

l �=l0

∣
∣ 1

ω

∫ ω

0
∂ωE

[s]
m0l0l

(ω′) dω′
∣
∣2
)

·
(∑

l �=l0

∣
∣ω∂ p0

ω
qψS(m0l)(ω)

∣
∣2
)
dω. (7.14)

We continue estimating the first factor on the right hand side for ω ∈ [−2, 2] using
(7.12)

∑

l �=l0

∣
∣ 1

ω

∫ ω

0
∂ωE

[s]
m0l0l

(ω′) dω′
∣
∣2 � 1

|ω|
∑

l �=l0

∫

[0,ω]
|∂ωE [s]m0l0l

(w′)|2 dω′

= 1

|ω|
∫

[0,ω]

∑

l �=l0
|∂ωE [s]m0l0l

(w′)|2
︸ ︷︷ ︸

�C(m0,l0)

dω′ � C .

Using this in (7.14) together with (7.10) gives

∫

[−2,2]

∣
∣
∣
∑

l �=l0
E [s]m0l0l

(ω) · ∂ p0
ω

qψS(m0l)(ω)

∣
∣
∣
2
dω � C .

It remains the term with q ′ = 0 and l = l0 in (7.13), which is E
[s]
m0l0l0

(ω) ·∂ p0
ω

qψS(m0l0).

Note that we have E [s]m0l0l0
(0) = 1 and thuswe can find ε′ > 0 such that E [s]m0l0l0

(ω) � 1
2

for |ω| � ε′. It thus follows from (7.11) that this term is not in L2
ω(−ε, ε) for any

ε > 0. Entering all this information into (7.13) concludes the proof. ��
Corollary 7.15 Under theassumption fromSection3wehave ∂qωaH+r ,m0l0 ∈ L2

ω([−2, 2])
for any 0 � q < p0, q ∈ N0 and ∂

p0
ω aH+r ,m0l0(ω) /∈ L2

ω(−ε, ε) for any ε > 0.
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Proof This follows directly from Propositions 7.4 and 7.5. ��

7.2 Passing to the Limit r → r+ in (v−, r,�,'−) Coordinates

The determination of aH+l ,ml(ω) is more complicated. Note thatψ vanishes onH+l , so
in order to take a non-vanishing limit we consider (∂r |+)2ψ = 1

(r+−r−)2 (∂y |+)2ψ =:
1

(r+−r−)2 ∂
2
yψ instead of ψ . Here, and throughout this section, we have made the

convention that ∂2yψ is always with respect to the (v+, y, θ, ϕ+)-coordinate sys-
tem, even if we otherwise use (v−, y, θ, ϕ−)-coordinates. This is simply to ease the
amount of notation. There are now two main differences to the limiting procedure of
Section7.1. The first one is that ∂2yψ does not vanish at the bottom bifurcation sphere,
so one cannot hope to take an L2-limit y → 0 in (v−, y, θ, ϕ−)-coordinates. We will
instead take a limit in the sense of distributions. The second difference is that the
branch AH+r ,ml(y;ω) in (7.1) in general also gives a non-vanishing contribution under
this limit (see Footnote 54) – by choosing the support of the test functions suitably
though and, in the case of m0 = 0, also using that the reflection coefficient of the left
event horizon vanishes atω = 0 (see Corollary 7.29 and Section8), we can circumvent
this second difficulty. We begin with introducing our test functions.

Lemma 7.16 Let ξ ∈ C∞0 (R) and set

τξ,ml(v, θ) := 1√
2π

∫

R

ξ(ω)S[s]ml (cos θ;ω)eiωv dω.

Then ||v j∂kv τξ,ml ||L∞(R×(−π,π)
) � C( j, k) < ∞ for all j, k ∈ N0, where C( j, k)

also depends on m, l and ξ .

Proof Differentiating under the integral we compute

(iv) j (−i∂v)kτξ,ml = 1√
2π

∫

R

ξ(ω)S[s]ml (cos θ;ω)ωk∂ j
ωe

iωv dω

= 1√
2π

∫

R

(−1) j∂ j
ω

(
ωkξ(ω)S[s]ml (cos θ;ω)

)
eiωv dω.

Since S[s]ml (cos θ;ω) and all its ω-derivatives are continuous on [−1, 1] ×R and since
ξ(ω) is smooth and of compact support, the L∞ norm in θ of the integrand is absolutely
integrable. ��
Proposition 7.17 Let ξ ∈ C∞0 (R) and consider the assumptions in Section3. Then as
y → 0

∫

R

∫

S
2
(∂y |+)2ψ(v−, y, θ, ϕ−)τξ,ml(v−, θ) · eimϕ− vol

S
2dv−

→
∫

R

∫

S
2
(∂y |+)2ψ(v−, 0, θ, ϕ−)τξ,ml(v−, θ) · eimϕ− vol

S
2dv−.

(7.18)
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Proof Let ε > 0 be given. Then, using Lemma 7.16 and for a v0 � 0 to be chosen
later, we estimate
∫

R

∫

S
2

∣
∣
∣(∂y |+)2ψ(v−, y, θ, ϕ−)− (∂y |+)2ψ(v−, 0, θ, ϕ−)

∣
∣
∣ · ∣∣τξ,ml (v−, θ) · eimϕ− ∣∣ vol

S
2dv−

�
( ∞∫

v0

∫

S
2

∣
∣
∣(∂y |+)2ψ(v−, y, θ, ϕ−)− (∂y |+)2ψ(v−, 0, θ, ϕ−)

∣
∣
∣
2
vol

S
2dv−

)1/2

( ∞∫

v0

∫

S
2

∣
∣τξ,ml (v−, θ)

∣
∣2 vol

S
2dv−

)1/2

︸ ︷︷ ︸
�||τξ,ml ||L2(R×S2)

+
v0∫

−∞

∫

S
2

C · |τξ,ml (v−, θ)| volS2dv−,

where we have used Corollary 4.49 and the regularity assumption 2.46 to infer that
∂2yψ is uniformly bounded in {r0 � r � r+} ∩ {v− � v0} for some r− < r0 < r+. By
Lemma 7.16 τξ,ml is integrable, so we can choose v0 # −1 such that the last term is
less than ε

2 . By (4.29) we have that for all y close enough to 0 the first summand on
the right hand side is less than ε

2 . ��
We now compute both sides of (7.18). We start with the right hand side and recall

the convention ∂y = ∂y |+. We use (V−r+ , θ,�r+) coordinates on H+l and write

∂2yψ |H+l (V
−
r+ , θ,�r+ ) = ∂2yψ |H+l (0, θ,�r+ ) · 1(−∞,0)(v−)

+
∫ V−r+

0

∂

∂V−r+
∂2yψ |H+l (V

−
r+ , θ,�r+ ) dV

−
r+ + 1[0,∞)(v−) · ∂2yψ |H+l (0, θ,�r+ )

︸ ︷︷ ︸
=:!(V−r+ ,θ,�r+ )

. (7.19)

We first consider the contribution of! to the right hand side of (7.18). Note that we
have !(v−, θ, ϕ−) = ∂2yψ |H+l (v−, θ, ϕ−) for v− � 0 and also |!(V−r+ , θ,�r+)| �
C · V−r+ for 0 � V−r+ � 1. Since we have V−r+ = eκ+v− this gives us exponential
decay in v− towards the bottom bifurcation sphere, i.e., |!(v−, θ, ϕ−)| � C · eκ+v−
for v− � 0. By assumption (3.6) and (4.24) we can thus use Fubini (or Plancherel) to
obtain

∫

Rv−

∫

S
2
!(v−, θ, ϕ−)τξ,ml (v−, θ) · eimϕ− vol

S
2dv−

=
∫

Rv−

∫

S
2
!(v−, θ, ϕ−)

1√
2π

∫

Rω

ξ(ω)S[s]ml (cos θ;ω)e−iωv−e−imϕ− dωvol
S
2dv−

=
∫

Rω

1√
2π

∫

Rv−

∫

S
2
!−(v−, θ, ϕ−)eiωv− S[s]ml (cos θ;ω)e−imϕ− dv−volS2 · ξ(ω) dω

=
∫

R

( |!−)ml (ω)ξ(ω) dω,
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where we introduced !−(v−, θ, ϕ−) := !(−v−, θ, ϕ−) to account for the different
sign in the phase of the Fourier transform compared to our convention (5.19).

Byassumption (3.6) and (4.24)wehave
∫

R

∫
S
2(1+|v−|ql )|!−(v−, θ, ϕ−)|2 volS2dv− <

∞ and thus∫
R

∫
S
2 |∂qω |!−(ω, θ, ϕ−)|2 volS2dω <∞ for all 0 � q � ql

2 , q ∈ N0. Proposition 5.22
now gives

∫

(−ε,ε)

∑

m,l

|∂qω( |!−)ml |2 dω <∞

for all 0 � q � ql
2 , q ∈ N0, where ε > 0 is as in Proposition 5.22. 53

We now come to the contribution of the first term in (7.19) to (7.18). We compute
∫

Rv−

∫

S
2

∂2yψ |H+l (0, θ,�r+ ) · 1(−∞,0)(v−)
1√
2π

∫

Rω

ξ(ω)S[s]ml (cos θ;ω)e−iωv− e−imϕ− dω

︸ ︷︷ ︸

=τξ,ml (v−,θ)·eimϕ−

sin θdθdϕ−dv−

=
0∫

−∞

∫

S
2
∂2yψ |H+l (0, θ,�r+ )

1√
2π

∫

Rω

ξ(ω)S[s]ml (cos θ;ω)e−iωv− e−im�r+ eimω+v− e−imφ+(r+) dω sin θdθd�r+dv−

= e−imφ+(r+) · lim
L→∞

1√
2π

∫

Rω

ξ(ω)

0∫

−L

∫

S
2

∂2yψ |H+l (0, θ,�r+ )S
[s]
ml (cos θ;ω)e−im�r+ vol

S
2

︸ ︷︷ ︸
=:�ml (ω)

·e−iωv− eimω+v− dv−dω

= e−imφ+(r+) · lim
L→∞

1√
2π

∫

Rω

ξ(ω)�ml (ω)

0∫

−L

e−iv−(ω−ω+m) dv−dω

= e−imφ+(r+) · lim
L→∞

1√
2π

∫

Rω

ξ(ω)�ml (ω)
i

ω − ω+m
[1− ei L(ω−ω+m)] dω

(7.20)

Let us note that�ml(ω) is clearly smooth inω.Wenowdivide the domain of integration
into |ω − ω+m| � δ and its complement for some δ > 0. We first compute

lim
L→∞

∫

|ω−ω+m|�δ

ξ(ω)�ml (ω)
i

ω − ω+m
[1− ei L(ω−ω+m)] dω

= lim
L→∞

∫

|ω−ω+m|�δ

ξ(ω+m)�ml (ω+m)
i

ω − ω+m
[1− ei L(ω−ω+m)] dω

+ lim
L→∞

∫

|ω−ω+m|�δ

(ξ�ml )(ω)− (ξ�ml )(ω+m)

ω − ω+m
︸ ︷︷ ︸

=O(1)

[1− ei L(ω−ω+m)] dω

︸ ︷︷ ︸
=O(δ)

= lim
L→∞

∫

|ω̃|�δ

ξ(ω+m)�ml (ω+m)
i

ω̃
[1− cos(Lω̃)− i sin(Lω̃)] dω̃ +O(δ) with ω̃ = ω − ω+m

= lim
L→∞ 2

∫ δ

0
ξ(ω+m)�ml (ω+m)

sin(Lω̃)

ω̃
dω̃ +O(δ)

= 2ξ(ω+m)�ml (ω+m)

∫ ∞

0

sin(ω̂)

ω̂
dω̂ +O(δ) with ω̂ = Lω̃

53 We only need this statement for the single mode m0l0, for which we do not need to appeal to Proposi-
tion 5.22.
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= πξ(ω+m)�ml (ω+m)+O(δ).

For the domain |ω − ω+m| > δ we compute using Riemann-Lebesgue

lim
L→∞

∫

|ω−ω+m|>δ

ξ(ω)�ml(ω)
i

ω − ω+m
[1− ei L(ω−ω+m)] dω

=
∫

|ω−ω+m|>δ

ξ(ω)�ml(ω)
i

ω − ω+m
dω

=
∫

|ω−ω+m|>δ

ξ(ω)�ml(ω+m)
i

ω − ω+m
dω

+
∫

|ω−ω+m|>δ

ξ(ω)i
�ml(ω)−�ml(ω+m)

ω − ω+m︸ ︷︷ ︸
=:�̊ml (ω)

dω.

(7.21)

Clearly �̊ml(ω) is smooth in ω. Combining everything and letting δ go to zero we
obtain

∫

Rv−

∫

S
2

∂2yψ |H+l (0, θ,�r+) · 1(−∞,0)(v−) · τξ,ml(v−, θ) · eimϕ− vol
S
2dv−

= e−imφ+(r+)
(√π

2
ξ(ω+m)�ml(ω+m)

+ 1√
2π

[
lim
δ→0

∫

|ω−ω+m|>δ

ξ(ω)
i�ml(ω+m)

ω − ω+m
dω

+
∫

R

ξ(ω)i�̊ml(ω) dω
])

We now claim that we have
∫ ε

−ε

∑

m,l

|∂qω�̊ml |2 dω <∞ (7.22)

for all q ∈ N0 for some ε > 0. To see this, we first recall that �ml(ω) =∫
S
2 ∂2yψ |H+l (0, θ,�r+)S

[s]
ml (cos θ;ω)e−im�r+ vol

S
2 and thus, using the notation from

Proposition 5.6,

∂qω�ml(ω) =
∫

S
2
∂2yψ |H+l (0, θ,�r+)∂

q
ωS
[s]
ml (cos θ;ω)e−im�r+ vol

S
2

=
∫

S
2
∂2yψ |H+l (0, θ,�r+)

∑

l ′
D[s]mll ′;q(ω)S[s]ml ′(cos θ;ω)eim�r+ vol

S
2

=
∑

l ′
D[s]mll ′;q(ω)�ml ′(ω).
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Hence, we obtain

|∂qω�ml(ω)| �
(∑

l ′
|D[s]mll ′;q(ω)|2

)1/2(∑

l ′
|�ml ′(ω)|2

)1/2
. (7.23)

The claim (7.22) with the sum restricted to m �= 0 then follows directly: if necessary
we choose ε > 0 from Proposition 5.6 even smaller than |ω+| and then differentiate
�̊ml(ω) = �ml (ω)−�ml (ω+m)

ω−ω+m in the region (−ε, ε), which is disjoint from ω = ω+m,
and apply (7.23) and Proposition 5.6.

To see that the contribution fromm = 0 to the sum in (7.22) is also finite we observe

that �̊0 l(ω) =
∫ ω
0 ∂ω�0 l (ω

′) dω′
ω

= ∫ 10 ∂ω�0 l(τω) dτ with ω′ = τω and thus

∂qω�̊0l(ω) =
∫ 1

0
∂q+1ω �0l(τω)τ q dτ.

Using (7.23) we continue to estimate

|∂qω�̊0l(ω)| �
∫ 1

0

(∑

l ′
|D[s]0ll ′;q+1(τω)|2

)1/2(∑

l ′
|�0l ′(τω)|2

)1/2
dτ

�
( ∫ 1

0

∑

l ′
|D[s]0ll ′;q+1(τω)|2 dτ

)1/2( ∫ 1

0

(∑

l ′
|�0l ′(τω)|2 dτ

)1/2

and for ω ∈ (−ε, ε)

∑

l

|∂qω�̊0l(ω)|2 �
∫ 1

0

∑

l,l ′
|D[s]0ll ′;q+1(τω)|2 dτ ·

∫ 1

0

∑

l ′
|�0l ′(τω)|2 dτ

� C(q + 1) ·
∫ 1

0
||
∫

S
1
∂2yψ |H+l (0, θ,�r+) d�r+||2L2

cos θ (−π,π)

︸ ︷︷ ︸
dτ

(7.24)

Note that the underbraced term is independent of τω. Thus the integration in τ is
trivial and we can also trivially integrate (7.24) in ω over (−ε, ε). This finally proves
the claim (7.22).

We summarise what we have shown in the following
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Proposition 7.25 Under the assumptions from Section3 and for every ξ ∈ C∞0 (R,C)

we have

∫

R

∫

S
2
∂2yψ |H+l (v−, θ, ϕ−)τξ,ml (v−, θ) · eimϕ− vol

S
2dv−

= e−imφ+(r+)
(√π

2
ξ(ω+m)�ml (ω+m)+ 1√

2π

[
lim
δ→0

∫

|ω−ω+m|>δ

ξ(ω)
i�ml (ω+m)

ω − ω+m
dω

+
∫

R

ξ(ω)i�̊ml (ω) dω
])

+
∫

R

( |!−)ml(ω)ξ(ω) dω,

where !−(v−, θ, ϕ−) = !(−v−, θ, ϕ−) and ! is defined in (7.19), �ml is
defined in (7.20), �̊ml is defined in (7.21), and there exists an ε > 0 such that
∂
q
ω(

|!−)ml(ω), ∂
q
ω�̊ml(ω) ∈ L2

(−ε,ε)�
2
lm for all 0 � q � ql

2 , q ∈ N0, with ql as in
Section3.

Let us remark that we only need the statement of this proposition for test functions ξ
which are supported away from ω = ω+m. This would slightly shorten the proof –
the delta distribution term would be absent. Moreover, we only need the statement for
the mode m0l0. We next evaluate the left hand side of (7.18).

Proposition 7.26 Under the assumptions of Section3 and for ξ ∈ C∞0 (R\{ω+m},C)

we have

lim
y→0

∫

R

∫

S
2
∂2yψ(v−, y, θ, ϕ−)τξ,ml(v−, θ) · eimϕ− vol

S
2dv−

=
∫

R

aH+l ,ml(ω)
(e−2κ+F+(r+)

r+ − r−

)i ω−ω+m
κ+

(γ̃ − 1)γ̃ e−2imφ+(r+)ξ(ω) dω,

where F+ and φ+ are as in Sects.2.1.1 and 2.1.2.

It is important for the validity of the proposition as stated that one chooses the
support of ξ away from ω+m.54

54 One can evaluate the limit also for ξ which are supported on ω+m; one then picks up a delta distribution
term at ω+m. With additional work it can be shown that it exactly agrees with the delta distribution term
appearing in Proposition 7.25, i.e., aH+l ,ml (ω) does not contain a delta distribution, but only poles. This,

however, is not needed for the method of proof of the main theorem chosen in this paper.
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Proof Recall that we have ϕ− = ϕ+−2r and v− = 2r∗ −v+ and r = ω+r∗ −φ+(r).
We thus obtain

∫

R

∫

S2
∂2yψ(v−, y, θ, ϕ−) τξ,ml (v−, θ) · eimϕ−

︸ ︷︷ ︸

= 1√
2π

∫
Rω

ξ(ω)S[s]ml (cos θ;ω)e−iωv− e−imϕ− dω

vol
S2
dv−

=
∫

Rv+

∫

S2
∂2yψ(v+, y, θ, ϕ+)

1√
2π

∫

Rω

ξ(ω)S[s]ml (cos θ;ω)eiωv+e−imϕ+e−2ir∗(ω−mω+)e−2imφ+(r) dωvol
S2
dv+

=
∫

R

(
}

∂2yψ)ml (y;ω)ξ(ω)e−2ir∗(ω−ω+m)e−2imφ+(r) dω

=
∫

R

∂2y
qψml (y;ω)ξ(ω)e−2ir∗(ω−ω+m)e−2imφ+(r) dω

=
∫

R

[aH+r ,ml (ω)A′′H+r ,ml
(y;ω)+ aH+l ,ml (ω)A′′H+l ,ml

(y;ω)]ξ(ω)e−2ir∗(ω−ω+m)e−2imφ+(r) dω,

(7.27)

where we have used the same kind of reasoning as in the proof of Theorem 5.26, ′
denotes d

dy , and we consider r∗ and r as functions of y. Recall from Lemma 6.13

that aH+r ,ml , aH+l ,ml ∈ C0(R\{ω+m},C). Since we have chosen the support of ξ to
be disjoint from ω+m it is immediate that we can evaluate the integrals of the two
summands separately. We begin with the first one.

We have A′′H+r ,ml
(y;ω) =∑∞

j=0 j( j−1)a j (ω,m, l)y j−2 = 2a2(ω,m, l)+O(y).

Note that theO(y) is uniform inω on the support of ξ ; and a2(ω,m, l) is also uniformly
bounded on supp(ξ). Moreover we have r∗(y) → −∞ for y → 0. We thus obtain
from Riemann-Lebesgue and direct estimation

lim
y→0

∫

R

aH+r ,ml(ω)A′′H+r ,ml(y;ω)ξ(ω)e−2ir∗(ω−ω+m)e−2imφ+(r) dω

= lim
y→0

∫

R

aH+r ,ml(ω)
[
2a2(ω,m, l)+O(y)

]
ξ(ω)e−2ir∗(ω−ω+m)e−2imφ+(r) dω

= 0.

In order to evaluate the second summand in (7.27) we first note that for s = 2

A′′H+l ,ml
(y;ω) =

∞∑

j=0
( j + 1− γ̃ )( j − γ̃ )b j (ω,m, l)y j−1−γ̃

= y
4iMr+
r+−r− (ω−ω+m)

︸ ︷︷ ︸

=y
i(ω−ω+m)

κ+

∞∑

j=0
( j + 1− γ̃ )( j − γ̃ )b j (ω,m, l)
︸ ︷︷ ︸

=:b̃ j (ω,m,l)

y j .
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Also recall that y = r+−r
r+−r− and, from Section2.1.2, r+ − r = e2κ+r

∗
e−2κ+F+(r). This

gives

y
i
ω−ω+m

κ+ =
(e−2κ+F+(r)

r+ − r−

)i ω−ω+m
κ+ · e2ir∗(ω−ω+m).

Thus

lim
y→0

∫

R

aH+l ,ml(ω)A′′H+l ,ml
(y;ω)ξ(ω)e−2ir∗(ω−ω+m)e−2imφ+(r) dω

= lim
y→0

∫

R

aH+l ,ml(ω)
(e−2κ+F+(r)

r+ − r−

)i ω−ω+m
κ+

∞∑

j=0
b̃ j (ω,m, l)y j · ξ(ω)e−2imφ+(r) dω

=
∫

R

aH+l ,ml(ω)
(e−2κ+F+(r+)

r+ − r−

)i ω−ω+m
κ+ b̃0(ω,m, l)

︸ ︷︷ ︸
=(1−γ̃ )(−γ̃ )

e−2imφ+(r+)ξ(ω) dω.

��
It now follows fromPropositions 7.17, 7.25, and7.26 that for ξ ∈ C∞0 (R\{ω+m},C)

we have

∫

R

aH+l ,ml(ω)
(e−2κ+F+(r+)

r+ − r−

)i ω−ω+m
κ+

(γ̃ − 1)γ̃ e−2imφ+(r+)ξ(ω) dω

=
∫

R

(
( |!−)ml(ω)+ e−imφ+(r+)[ 1√

2π

i�ml(ω+m)

ω − ω+m
+ i�̊ml(ω)

])
ξ(ω) dω.

Note that ( |!−)ml(ω) is continuous in ω (this follows as in the proof of Lemma 7.2).
Thus, all terms multiplying ξ(ω) on each side are (at least) continuous in ω away from
ω+m. We thus conclude that for ω �= ω+m

aH+l ,ml(ω) = (r+ − r−)
i
ω−ω+m

κ+ e2i F+(r+)(ω−ω+m)e2imφ+(r+) 1

γ̃ (γ̃ − 1)

·
(
( |!−)ml(ω)+ e−imφ+(r+)[ 1√

2π

i�ml(ω+m)

ω − ω+m
+ i�̊ml(ω)

])
.

(7.28)

Corollary 7.29 Under the assumptions from Section3 there exists ε0 > 0 such that

1. for m �= 0 we have ∂
q
ωaH+l ,ml ∈ L2

(−ε0,ε0)
�2m,l
m �=0

for all 0 � q � ql
2 , q ∈ N0.

2. for m = 0 we have that ω · aH+l ,0l extends continuously to ω = 0 and, moreover,

we have ∂
q
ω(ωaH+l ,0 l) ∈ L2

(−ε0,ε0)
�2l for all 0 � q � ql

2 , q ∈ N0.

Proof This is immediate from (7.28) and Proposition 7.25. ��
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8 Proof of theMain Theorems

8.1 Proof of Theorem 3.7

We are now in a position to prove the main theorem.

Proof of Theorem 3.7 Recall from Proposition 4.64 that the L2(R × S
2)-limit of

ψ(v+, r , θ, ϕ+) for r → r− exists and that we labelled it suggestively by
ψ(v+, r−, θ, ϕ+). Taking the Teukolsky transform we have

ψ(v+, r−, θ, ϕ+) = 1√
2π

∫

R

∑

m,l

qψml(r−;ω)Y [s]ml (θ, ϕ+;ω)e−iωv+ dω,

where qψml(r−;ω) is continuous in ω by (4.65), cf. the proof of Lemma 7.2.55 By
Proposition 4.64 and Plancherel we have for r → r−

0← ||ψ(v+, r , θ, ϕ+) −ψ(v+, r−, θ, ϕ+)||2L2(R×S
2)

=
∫

R

∑

m,l

||qψml(r;ω)− qψml(r−;ω)|2 dω.

Fixm and l. Then there exists a sequence rn → r− such that qψml(rn;ω)→ qψml(r−;ω)

for almost all ω ∈ R.
It now follows from (6.12) and (6.21) that for ω �= ω+m, ω−m

qψml(x;ω) = [RH+l ,ml(ω)aH+l ,ml(ω)+ TH+r ,ml(ω)aH+r ,ml(ω)
]
BCH+l ,ml(x;ω)

+ [TH+l ,ml(ω)aH+l ,ml(ω)+RH+r ,ml(ω)aH+r ,ml(ω)
]
BCH+r ,ml(x;ω).

The asymptotics of the Frobenius solutions from Proposition 6.11 imply
limn→∞ qψml(x(rn);ω) = RH+l ,ml(ω)aH+l ,ml(ω) + TH+r ,ml(ω)aH+r ,ml(ω) for ω �=
ω+m, ω−m and thus we obtain

qψml(r−;ω) = RH+l ,ml(ω)aH+l ,ml(ω)+ TH+r ,ml(ω)aH+r ,ml(ω) (8.1)

for almost every ω ∈ R\{ω+m, ω−m}. We claim that there is an ε > 0 such that
the right hand side is continuous for ω ∈ (−ε, ε). For m �= 0 this follows directly
from Lemma 6.13 and Proposition 6.22. For m = 0 Propositions 7.4 and 6.27 imply
that TH+r ,0l(ω)aH+r ,0l(ω) is continuous and, moreover, Proposition 6.27 implies that

RH+l ,0l(ω) is of the form RH+l ,0 l(ω) =: ω · R̂H+l ,0 l(ω) with R̂H+l ,0l(ω) analytic
for all ω ∈ R. Hence, Corollary 7.29 implies that also RH+l ,0 l(ω)aH+l ,0 l(ω) =
R̂H+l ,0 l(ω)(ω ·aH+l ,0 l(ω)) is continuous inω. We thus obtain (8.1) for allω ∈ (−ε, ε).

55 Note that qψml (r−;ω) is a priori not related in any way to qψml (r;ω) for r ∈ (r−, r+). The choice of
terminology is justified by hindsight. However, it should not confuse the reader into believing that there is
nothing to show in the following.
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We consider the casem0 �= 0 first and compute

∂ p0
ω

qψm0l0(r−;ω) = ∂ p0
ω

(
RH+l ,m0l0

(ω)aH+l ,m0l0
(ω)+ TH+r ,m0l0(ω)aH+r ,m0l0(ω)

)

=
p0∑

q=0

(
p0
q

)
(
∂qωRH+l ,m0l0

(ω)
︸ ︷︷ ︸

|·|�C

·∂ p0−q
ω aH+l ,m0l0

(ω)

+ ∂qωTH+r ,m0l0(ω)
︸ ︷︷ ︸

|·|�C

·∂ p0−q
ω aH+r ,m0l0(ω)

)
.

(8.2)

The derivatives of the transmission and reflection coefficients are uniformly bounded
on (−ε, ε) by Proposition 6.22. It thus follows fromCorollary 7.29 and Corollary 7.15
that all terms on the right hand side of (8.2), with the exception of TH+r ,m0l0(ω) ·
∂
p0
ω aH+r ,m0l0(ω), are in L2

ω(
(−ε0, ε0)

)
for some ε0 > 0.On the other handTH+r ,m0l0(ω)

is strictly bounded away from0 in a small neighbourhoodofω = 0 byProposition 6.22.
It thus follows from Corollary 7.15 that TH+r ,m0l0(ω) · ∂ p0

ω aH+r ,m0l0(ω) /∈ L2
ω

(
(−ε, ε)

)

for any ε > 0. Hence we obtain that ∂ p0
ω

qψm0l0(r−;ω) /∈ L2
ω

(
(−ε, ε)

)
for any ε > 0.

We proceed with the casem0 = 0 and compute

∂ p0
ω

qψ0l(r−;ω) = ∂ p0
ω

(
R̂H+l ,0l(ω)

[
ω · aH+l ,0l(ω)

]+ TH+r ,0l(ω)aH+r ,0l(ω)
)

=
p0∑

q=0

(
p0
q

)
(
∂qωR̂H+l ,0l(ω)
︸ ︷︷ ︸

|·|�C

·∂ p0−q
ω

[
ω · aH+l ,0l(ω)

]

+ ∂qωTH+r ,0l(ω)
︸ ︷︷ ︸

|·|�C

·∂ p0−q
ω aH+r ,0l(ω)

)
.

(8.3)

It follows again fromCorollary 7.29 and Corollary 7.15 that all terms on the right hand
side of (8.3), with the exception of TH+r ,0l0(ω) · ∂ p0

ω aH+r ,0l0(ω), are in L2
ω(
(− ε0, ε0)

)

for some ε0 > 0. On the other hand TH+r ,0l0(ω) is strictly bounded away from 0 in
a small neighbourhood of ω = 0 this time by Proposition 6.27. It thus follows from
Corollary 7.15 that TH+r ,0l0(ω) · ∂ p0

ω aH+r ,0l0(ω) /∈ L2
ω

(
(−ε, ε)

)
for any ε > 0. Hence

we obtain that ∂ p0
ω

qψ0l0(r−;ω) /∈ L2
ω

(
(−ε, ε)

)
for any ε > 0.

Taking the two cases together we have shown that

∂ p0
ω

qψm0l0(r−;ω) /∈ L2
ω

(
(−ε, ε)

)
for any ε > 0. (8.4)

We claim that this implies

∫

R

∫

S
2
|v p0+ ψ(v+, r−, θ, ϕ+)|2 volS2dv+ = ∞. (8.5)

If (8.5) was finite then together with
∫

R

∫
S
2 |ψ(v+, r−, θ, ϕ+)|2 volS2dv+ <∞ from

(4.65) we would have
∫

R

∫
S
2 |∂qω qψ(ω, r−, θ, ϕ+)|2 volS2dω <∞ for all 0 � q � p0.
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Fig. 9 Extending the Teukolsky
field globally

Proposition 5.22 then gives
∫
(−ε,ε)

∑
m,l |∂qω qψml(r−;ω)|2 dω < ∞ for all 0 � q �

p0, where ε > 0 is as in Proposition 5.22. This clearly contradicts (8.4) and we thus
infer (8.5).

On the other hand by (4.65) we know that

1∫

−∞

∫

S
2
|v p0+ ψ(v+, r−, θ, ϕ+)|2 volS2dv+ <∞

since ql
2 � p0 and thus we must have

∞∫

1

∫

S
2
|v p0+ ψ(v+, r−, θ, ϕ+)|2 volS2dv+ = ∞.

The theorem now follows from Corollary 4.75. ��

8.2 Extension Theorem and Proof of Theorem 3.9

Theorem 8.6 Let v0, v1 ∈ R and let ψ ∈ I∞[2](M ∩ { f + � v0} ∩ { f − � v1}) be
a solution of the Teukolsky equation T[2]ψ = 0 in M ∩ { f + � v0} ∩ { f − � v1}
satisfying the assumptions (3.1), (3.2), (3.3), (3.4) along the right event horizon.56

Then there exists a χ ∈ I∞[2](M) which extends ψ (i.e. χ |M∩{ f +�v0}∩{ f −�v1} = ψ)
which moreover satisfies the Assumptions 2.46 and condition (3.5).

Proof The idea of the proof is outlined in Figure9. Also recall that the level sets of
the functions f − and f + are spacelike hypersurfaces.

We consider the Teukolsky equation (A.5) which is regular in M. Recall that χ̃
satisfies (A.5) if, and only if, χ = (V+r+)

2χ̃ satisfies (2.39). We now consider the

induced initial data of ψ̃ := 1
(V+r+ )2

ψ on { f + = v0} ∩ { f − � v1} and, moreover,

extend the induced initial data on { f − = v1} ∩ { f + � v0} smoothly to { f − =
v1} ∩ { f + � v0}. Since ψ̃ is a solution of (A.5) in { f + � v0} ∩ { f − � v1}, it
is clear that this choice of initial data satisfies the appropriate corner condition. In
the appendix A.2 it is shown that the initial value problem for (A.5) is well-posed.

56 WithH+r ∩ {v+ � 1} replaced by H+ ∩ {v+ � v0} when appropriate.
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We can thus solve backwards to obtain a smooth solution χ̃ of (A.5) in the region
{ f − � v1} ∩ { f + � v0} that attains the prescribed initial data.

In the second step we consider the initial value problem for (A.5) with compactly
supported initial data onH+l ∩{ f − � v1}, which is a smooth extension of the induced
initial data of χ̃ on H+l ∩ { f − � v1}, and, moreover, with the induced initial data of
χ̃ on { f − = v1}. Again, the corner condition is satisfied and we obtain a solution in
the region { f − � v1}. Patching these three solutions together proves the extension
theorem. ��

Proof of Theorem 3.9 This is immediate from Theorem 8.6 and Theorem 3.7. ��
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A Kruskal-Like Coordinate Transformations

Weexpress the {v+, ϕ+, r , θ} coordinate vectorfields in termsof the {V+r+ , V−r+ , θ,�r+}
coordinate vector fields.

∂v+ = κ+V+r+∂V+r+ − κ+V−r+∂V−r+ −
a

r2+ + a2
∂�r+

∂ϕ+ = ∂�r+

∂r = 2κ+
r2 + a2

	
V−r+∂V−r+ +

a

	

r2 − r2+
r2+ + a2

∂�r+

∂θ = ∂θ .

(A.1)

Note that the vector field ∂v+ does not vanish at the bottom bifurcation sphere S
2
b.

Using (A.1) we thus compute

e4 = 2(r2 + a2)κ+V+r+∂V+r+ + a
r2 − r2+
r2+ + a2

∂�r+ . (A.2)
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It now follows from (2.7) that 1
V+r+

e4 is a regular and non-degenerate vector field at

H+r ∪H+l ∪S
2
b. Note, however, that compared to57 ê4 = − 1

	
e4 = ( c

V+r+V
−
r+
+O(1))e4,

which blows up at S
2
b,

1
V+r+

e4 grows exponentially in v− for v− → +∞.

A.1 The Regular Teukolsky Equation inM

The above suggests that if ψ satisfies Tsψ = 0, then the quantity ψ̃s := 1
(V+r+ )s

ψs

should satisfy a regular equation inM, thus in particular near the bottom bifurcation
sphere. In order to show this claim, we start by rewriting (2.39) in (v+, r , θ, ϕ+)
coordinates as

1

ρ2 T[s]ψs = �gψs − 2s

ρ2 (r − M)∂rψs + 2si

ρ2

cos θ

sin2 θ
∂ϕ+ψs

− 2s

ρ2 (2r + ia cos θ)∂v+ψs − 1

ρ2

(
s + s2

cos2 θ

sin2 θ

)
ψs = 0.

(A.3)

A straightforward computation shows that ψs ∈ I∞[s](M) satisfies (A.3) if, and only

if, ψ̃s satisfies

T̃[s]ψ̃s := �gψ̃s + 2s

ρ2 (κ+a
2 sin2 θ − 2r − ia cos θ)∂v+ψ̃s

+ 2s

ρ2

(
κ+(r2 + a2)− (r − M)

)
∂r ψ̃s

+ 2s

ρ2

(
κ+a + i

cos θ

sin2 θ

)
∂ϕ+ψ̃s + sκ+

ρ2 (sκ+a2 sin2 θ + 2r)ψ̃s

− 2s2κ+
ρ2 (2r + ia cos θ)ψ̃s

− 1

ρ2 (s + s2
cos2 θ

sin2 θ
)ψ̃s = 0.

(A.4)

Rewriting (A.4) in terms of {V+r+ , V−r+ , θ,�r+} coordinates (in the following we will
drop the r+, i.e., we will only write {V+, V−, θ,�}) gives

0 = T̃[s]ψ̃s = �gψ̃s + 2si

ρ2

cos θ

sin2 θ
∂�ψ̃s − 1

ρ2

(
s2

cos2 θ

sin2 θ
− s
)
ψ̃s

+ X̃ V+
s ∂V+ψ̃s + X̃ V−

s ∂V−ψ̃s + X̃�
s ∂�ψ̃s + f̃sψ̃s,

(A.5)

57 Here O(1) is with respect to r → r+ and c > 0.
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where

X̃ V+
s = 2s

ρ2 (κ+a
2 sin2 θ − 2r − ia cos θ)κ+V+

X̃ V−
s = 2s

ρ2 κ+V
−(− κ+a2 sin2 θ + 2r + ia cos θ + 2(r2 + a2)

	

(
κ+(r2 + a2)− (r − M)

))

X̃�
s =

2s

ρ2

(
− a

r2+ + a2
(κ+a2 sin2 θ − 2r − ia cos θ)+ a

	

r2 − r2+
r2+ + a2

[
κ+(r2 + a2)− (r − M)

]

+ κ+a
)

f̃s = sκ+
ρ2

(
s(−4r − 2ia cos θ + κ+a2 sin2 θ)+ 2r − 2

κ+

)
.

Note that the dashed terms areO(r+−r). To see thiswe recall that r+−r− = 2(r+−M)

and compute

κ+(r2 + a2)− (r − M) = r+ − r−
2(r2+ + a2)

(r2 + a2)− (r − M)

= (r+ − M)

r2+ + a2
(r2 + a2)− (r − M) = O(r+ − r).

Hence, we have X̃ V+
s , X̃ V−

s , X̃�
s , f̃s ∈ C∞(M).

A.2 The Initial Value Problem for the Teukolsky Equation (A.5)

In this section we show that the initial value problem for the Teukolsky equation (A.5)
is well-posed by reducing it to an initial value problem for a tensorial wave equation. In
the followingwe restrict to s = +2 and drop the subscript s from ψ̃s . For ψ̃ ∈ I∞[2](M)

there exists, by Remark 2.43, a unique α ∈ �∞
(
S2T ∗M

)
with α(m,m) = ψ̃ that

is trace-free with respect to /gS
2 = dθ2 + sin2 θ dϕ2 and that is an S

2 tensor,58. We
rewrite (A.5) as

0 = T̃[s]
(
α(m,m))

= gμνL∂μL∂ν

(
α(m,m)

)+ (�gx
μ)L∂μ

(
α(m,m)

)+ 2si

ρ2

cos θ

sin2 θ
L∂�

(
α(m,m)

)

− 1

ρ2

(
s2

cos2 θ

sin2 θ
− s
)(
α(m,m)

)+ X̃ V+
s L∂V+

(
α(m,m)

)+ X̃ V−
s L∂V−

(
α(m,m)

)

+ X̃�
s L∂�

(
α(m,m)

)+ f̃s
(
α(m,m)

)
.

(A.6)

58 I.e. we have α(∂V+·) = α(∂V− , ·) = 0.
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The differentials of the Kruskal-like coordinate system are

dV+ = κ+V+(dt + r2 + a2

	
dr) dV− = κ+V−(

r2 + a2

	
dr − dt)

dθ = dθ d� = dϕ − a

r2+ + a2
dt,

which, together with (2.2), easily yields that the components of the inverse metric in
Kruskal-like coordinates satisfy

gθθ = 1

ρ2 and gθμ = 0 for μ �= θ

g�� = 1

ρ2 sin2 θ
+ g��

rem with g��
rem ∈ C∞(M)

g�V+ , g�V− ∈ C∞(M) ( i.e., they do not have poles in θ).

(A.7)

Moreover, we note that �g� = 0 and �gθ = cos θ
ρ2 sin θ

away from the axis θ = 0, π .
Also using (2.30) we obtain from (A.6)

0 = T̃[s]
(
α(m,m)) =

∑

(μ,η)/∈
{(θ,θ),(�,�)}

gμνL∂μL∂ν

(
α(m,m)

)

+
∑

μ�=θ,�

(�gx
μ)L∂μ

(
α(m,m)

)+ 1

ρ2
/̊	[s]
(
α(m,m)

)

+ g��
remL∂�L∂�

(
α(m,m)

)+ X̃ V+
s L∂V+

(
α(m,m)

)+ X̃ V−
s L∂V−

(
α(m,m)

)

+ X̃�
s L∂�

(
α(m,m)

)+ f̃s
(
α(m,m)

)
.

(A.8)

Using now (2.31), (2.20), L∂V+m = L∂V−m = L∂�m = 0, and again Remark 2.43

yields that ψ̃ = α(m,m) satisfies (A.8) if, and only if, α satisfies

0 =
∑

(μ,η)/∈
{(θ,θ),(�,�)}

gμνL∂μL∂ν α +
∑

μ�=θ,�

(�gx
μ)L∂μα

+ 1

ρ2 (L
2
Z1,r+ + L2

Z2,r+ + L2
Z3,r+ + s + s2)α

+ g��
remL∂�L∂�α + X̃ V+

s L∂V+α + X̃ V−
s L∂V−α + X̃�

s L∂�α + f̃sα.

(A.9)

Here, the vector fields Zi,r+ are the vector fields from (2.19) with ϕ replaced by �r+ .
Note that firstly the equation (A.9) extends regularly to the axis θ ∈ {0, π} and secondly
it also extends regularly to all of M by virtue of X̃ V+

s , X̃ V−
s , X̃�

s , f̃s ∈ C∞(M) and
(A.7).
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It is now easy to see that (A.9) is a tensorial wave equation with principal symbol
g−1 and thus the initial value problem is well-posed59. Taking the trace of (A.9) with
respect to /gS

2 shows that if α ∈ �∞(S2T ∗M) satisfies (A.9), then the trace of α

satisfies a homogeneous wave equation. Similarly, inserting ∂V+ or ∂V− into one of
the components of (A.9) (and using that the Lie-bracket of coordinate vector fields
vanishes) shows that α(∂V+ , ·) and α(∂V− , ·) satisfy homogeneous wave equations.
The same holds for the antisymmetric part of α. Thus, symmetric and trace-free S

2

initial data (cf. Remark 2.43) for (A.9) gives rise to a symmetric and trace-free S
2

solution. Finally, we recall that by Remark 2.43 initial data for ψ̃ for equation (A.5)
uniquely determines geometric symmetric and trace-free S

2 initial data for α for (A.9).
This establishes well-posedness for the Teukolsky equation (A.5) inM.

B Commutator Computations for (2.40)

The second order terms of T̂[s] are

a2 sin2 θ ∂2v−ψ̂ − 2a ∂v−∂ϕ−ψ̂ + 2(r2 + a2) ∂v−∂r ψ̂ − 2a ∂ϕ−∂r ψ̂ +	∂2r ψ̂ + /̊	[s]ψ̂.

Weuse vq−
(−(1+λ	)∂r+(1+λ	)∂v−

)
ψ̂ as amultiplier and compute the commutator

expressions in the following individually for the ∂r component and the ∂v− component
of the multiplier, term by term. We will use the notation =

a.i .
to denote equality after

integration over the spheres with respect to vol
S
2 .

B.1 TheMultiplier−vq−(1 + �1)@rÃ̂

− v
q
−(1+ λ	)a2 sin2 θ Re(∂2v− ψ̂∂r ψ̂)

= −∂v−
(
a2 sin2 θvq−(1+ λ	)Re(∂v− ψ̂∂r ψ̂)

)

+ qvq−1− a2 sin2 θ(1+ λ	)Re(∂v− ψ̂∂r ψ̂)

59 For example one can reduce it to the initial value problem for a scalar wave equation as follows: Choose
a frame field ( f1, f2, f3, f4) for TM that is smooth away from θ = 0 and another one, ( f̂1, f̂2, f̂3, f̂4),
that is smooth away from θ = π . Equation (A.9) yields now induced scalar equations for the components
of α with respect to the frame ( f1, f2, f3, f4), which, by putting the principal symbol back together, are
manifestlywave equationswith principal symbol g−1 onM\{θ = 0} – and analogously for the components
of α with respect to the hatted frame field. Given geometric initial data for (A.9) one can now solve for the
components of α with respect to ( f1, f2, f3, f4), and also with respect to the hatted frame field, in their
corresponding domains of dependence (recall that θ = 0, θ = π is removed from M, respectively). By
virtue of (A.9) being a geometric equation, each set of solutions transforms to solutions of the other set
under the change of frame – whenever they are both defined. By uniqueness of the initial value problem,
the untransformed and the transformed sets have to agree and we can now patch the two sets of solutions
together to obtain a local solution α of (A.9). We then iterate this procedure. Hence, the main point of
this part of the appendix was to show that the Teukolsky equation (A.5) is the scalarisation of a regular
geometric equation – which is not surprising at all given its derivation...
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+ ∂r

(1

2
a2 sin2 θvq−(1+ λ	)|∂v− ψ̂ |2

)
− 1

2
a2 sin2 θvq−λ∂r	|∂v− ψ̂ |2

������������������

v
q
−(1+ λ	)2aRe(∂v−∂ϕ− ψ̂∂r ψ̂)

=
a.i .

∂v−
(
avq−(1+ λ	)Re(∂ϕ− ψ̂∂r ψ̂)

)
− aqvq−1− (1+ λ	)Re(∂ϕ− ψ̂∂r ψ̂)

− ∂r

(
avq−(1+ λ	)Re(∂ϕ− ψ̂∂v− ψ̂)

)
+ avq−λ(∂r	)Re(∂ϕ− ψ̂∂v− ψ̂)

������������������

− v
q
−(1+ λ	)2(r2 + a2)Re(∂v−∂r ψ̂∂r ψ̂)

= −∂v−
(
v
q
−(1+ λ	)(r2 + a2)|∂r ψ̂ |2

)
+ qvq−1− (r2 + a2)(1+ λ	)|∂r ψ̂ |2

v
q
−(1+ λ	)2aRe(∂r∂ϕ− ψ̂∂r ψ̂) =

a.i .
0

− v
q
−(1+ λ	)	Re(∂2r ψ̂∂r ψ̂)

= −∂r

(1

2
v
q
−(1+ λ	)	|∂r ψ̂ |2

)
+ 1

2
v
q
−∂r	(1+ 2λ	)|∂r ψ̂ |2

− v
q
−(1+ λ	)Re( /̊	[s]ψ̂∂r ψ̂)

=
a.i .
−∂r

(1

2
v
q
−(1+ λ	)(s + s2)|ψ̂ |2

)
+ 1

2
v
q
−λ∂r	(s + s2)|ψ̂ |2

. . . . . . . . . . . . . . . . . . . . . . . . .

+ ∂r

(1

2
v
q
−(1+ λ	)

∑

i

|Z̃i,−ψ̂ |2
)
− 1

2
v
q
−λ∂r	

∑

i

|Z̃i,−ψ̂ |2
����������������

B.2 TheMultiplier vq−(1 + �1)@v−Ã̂

v
q
−(1+ λ	)a2 sin2 θ Re(∂2v− ψ̂∂v− ψ̂) = ∂v−

( 1

2
v
q
−(1+ λ	)a2 sin2 θ |∂v− ψ̂ |2

)

− 1

2
qvq−1− (1+ λ	)a2 sin2 θ |∂v− ψ̂ |2

−v
q
−(1+ λ	)2aRe(∂v−∂ϕ− ψ̂∂v− ψ̂) =

a.i .
0

v
q
−(1+ λ	)2(r2 + a2)Re(∂v−∂r ψ̂∂v− ψ̂) = ∂r

(
v
q
−(1+ λ	)(r2 + a2)|∂v− ψ̂ |2

)

− v
q
−
(
(r2 + a2)λ∂r	+ 2r(1+ λ	)

)|∂v− ψ̂ |2
����������������������������

−v
q
−(1+ λ	)2aRe(∂r ∂ϕ− ψ̂∂v− ψ̂) =

a.i .
∂v−
(
avq−(1+ λ	)Re(∂ϕ− ψ̂∂r ψ̂)

)

− aqvq−1− (1+ λ	)Re(∂ϕ− ψ̂∂r ψ̂)

− ∂r

(
avq−(1+ λ	)Re(∂ϕ− ψ̂∂v− ψ̂)

)

+ avq−λ(∂r	)Re(∂ϕ− ψ̂∂v− ψ̂)
������������������

v
q
−(1+ λ	)	Re(∂2r ψ̂∂v− ψ̂) = ∂r

(
v
q
−(1+ λ	)	Re(∂r ψ̂∂v− ψ̂)

)

− v
q
−∂r	(1+ 2λ	)Re(∂r ψ̂∂v− ψ̂)

− ∂v−
( 1

2
v
q
−(1+ λ	)	|∂r ψ̂ |2

)
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+ 1

2
qvq−1− (1+ λ	)	|∂r ψ̂ |2

v
q
−(1+ λ	)Re( /̊	[s]ψ̂∂v− ψ̂) =

a.i .
∂v−
( 1

2
v
q
−(1+ λ	)(s + s2)|ψ̂ |2

)

− 1

2
qvq−1− (1+ λ	)(s + s2)|ψ̂ |2

− ∂v−
( 1

2
v
q
−(1+ λ	)

∑

i

|Z̃i,−ψ̂ |2
)

+ 1

2
qvq−1− (1+ λ	)

∑

i

|Z̃i,−ψ̂ |2

C Commutator Computations for (2.39)

The second order terms of T[s] in {v+, r , θ, ϕ+} coordinates are

a2 sin2 θ ∂2v+ψ + 2a ∂v+∂ϕ+ψ + 2(r2 + a2) ∂v+∂rψ + 2a ∂ϕ+∂rψ +	∂2r ψ + /̊	[s]ψ.

We use χ(v+)
( − (1 + λ	)∂r + (1 + λ	)∂v+

)
ψ as a multiplier and compute the

commutator expressions in the following individually for the ∂r component and the
∂v+ component of the multiplier, term by term. Note that due to formal similarity all
these expressions can be easily inferred from the computations in Appendix B (or vice
versa). They are listed here nevertheless for the convenience of the reader. Again we
use the notation =

a.i .
to denote equality after integration over the spheres with respect

to vol
S
2 .

We also use χ(v+)(1+ λ	)(−∂r + ∂v+ + a
r2−+a2

∂ϕ+)ψ as a multiplier. The ∂ϕ+ψ

component is also computed here separately.

C.1 TheMultiplier−�(v+)(1 + �1)@rÃ

−χ(v+)(1+ λ	)a2 sin2 θ Re(∂2v+ψ∂rψ) = −∂v+
(
a2 sin2 θχ(v+)(1+ λ	)Re(∂v+ψ∂rψ)

)

+ χ ′(v+)a2 sin2 θ(1+ λ	)Re(∂v+ψ∂rψ)

+ ∂r

(1

2
a2 sin2 θχ(v+)(1+ λ	)|∂v+ψ |2

)

− 1

2
a2 sin2 θχ(v+)λ∂r	|∂v+ψ |2

���������������������

−χ(v+)(1+ λ	)2aRe(∂v+∂ϕ+ψ∂rψ) =
a.i .
−∂v+

(
aχ(v+)(1+ λ	)Re(∂ϕ+ψ∂rψ)

)

+ aχ ′(v+)(1+ λ	)Re(∂ϕ+ψ∂rψ)

+ ∂r

(
aχ(v+)(1+ λ	)Re(∂ϕ+ψ∂v+ψ)

)

− aχ(v+)λ(∂r	)Re(∂ϕ+ψ∂v+ψ)
����������������������

−χ(v+)(1+ λ	)2(r2 + a2)Re(∂v+∂rψ∂rψ) = −∂v+
(
χ(v+)(1+ λ	)(r2 + a2)|∂rψ |2

)
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+ χ ′(v+)(r2 + a2)(1+ λ	)|∂rψ |2
−χ(v+)(1+ λ	)2aRe(∂r∂ϕ+ψ∂rψ) =

a.i .
0

−χ(v+)(1+ λ	)	Re(∂2r ψ∂rψ) = −∂r

(1

2
χ(v+)(1+ λ	)	|∂rψ |2

)

+ 1

2
χ(v+)∂r	(1+ 2λ	)|∂rψ |2

−χ(v+)(1+ λ	)Re( /̊	[s]ψ∂rψ) =
a.i .
−∂r

(1

2
χ(v+)(1+ λ	)(s + s2)|ψ |2

)

+ 1

2
χ(v+)λ∂r	(s + s2)|ψ |2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ ∂r

(1

2
χ(v+)(1+ λ	)

∑

i

|Z̃i,+ψ |2
)

− 1

2
χ(v+)λ∂r	

∑

i

|Z̃i,+ψ |2
�������������������

C.2 TheMultiplier �(v+)(1 + �1)@v+Ã

χ(v+)(1+ λ	)a2 sin2 θ Re(∂2v+ψ∂v+ψ) = ∂v+
(1

2
χ(v+)(1+ λ	)a2 sin2 θ |∂v+ψ |2

)

− 1

2
χ ′(v+)(1+ λ	)a2 sin2 θ |∂v+ψ |2

χ(v+)(1+ λ	)2aRe(∂v+∂ϕ+ψ∂v+ψ) =
a.i .

0

χ(v+)(1+ λ	)2(r2 + a2)Re(∂v+∂rψ∂v+ψ) = ∂r

(
χ(v+)(1+ λ	)(r2 + a2)|∂v+ψ |2

)

− χ(v+)
(
(r2 + a2)λ∂r	+ 2r(1+ λ	)

)|∂v+ψ |2
��������������������������������

χ(v+)(1+ λ	)2aRe(∂r∂ϕ+ψ∂v+ψ) =
a.i .
−∂v+

(
aχ(v+)(1+ λ	)Re(∂ϕ+ψ∂rψ)

)

+ aχ ′(v+)(1+ λ	)Re(∂ϕ+ψ∂rψ)

+ ∂r

(
aχ(v+)(1+ λ	)Re(∂ϕ+ψ∂v+ψ)

)

− aχ(v+)λ(∂r	)Re(∂ϕ+ψ∂v+ψ)
����������������������

χ(v+)(1+ λ	)	Re(∂2r ψ∂v+ψ) = ∂r

(
χ(v+)(1+ λ	)	Re(∂rψ∂v+ψ)

)

− χ(v+)∂r	(1+ 2λ	)Re(∂rψ∂v+ψ)

− ∂v+
(1

2
χ(v+)(1+ λ	)	|∂rψ |2

)

+ 1

2
χ ′(v+)(1+ λ	)	|∂rψ |2

χ(v+)(1+ λ	)Re( /̊	[s]ψ∂v+ψ) =
a.i .

∂v+
(1

2
χ(v+)(1+ λ	)(s + s2)|ψ |2

)

− 1

2
χ ′(v+)(1+ λ	)(s + s2)|ψ |2
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− ∂v+
(1

2
χ(v+)(1+ λ	)

∑

i

|Z̃i,+ψ |2
)

+ 1

2
χ ′(v+)(1+ λ	)

∑

i

|Z̃i,+ψ |2

C.3 TheMultiplier �(v+)(1 + �1) a
r2−+a2

@'+Ã

χ(v+)(1+ λ	)
a

r2− + a2
a2 sin2 θRe(∂2v+ψ∂ϕ+ψ)

=
a.i .

∂v+
(
χ(v+)(1+ λ	)

a3 sin2 θ

r2− + a2
Re(∂v+ψ∂ϕ+ψ)

− χ ′(v+)(1+ λ	)
a3 sin2 θ

r2− + a2
Re(∂v+ψ∂ϕ+ψ)

χ(v+)(1+ λ	)
a

r2− + a2
2aRe(∂v+∂ϕ+ψ∂ϕ+ψ)

= ∂v+
(
χ(v+)(1+ λ	)

a2

r2− + a2
|∂ϕ+ψ |2

)

− χ ′(v+)(1+ λ	)
a2

r2− + a2
|∂ϕ+ψ |2

χ(v+)(1+ λ	)
a

r2− + a2
2(r2 + a2)Re(∂v+∂rψ∂ϕ+ψ)

=
a.i .

∂v+
(
χ(v+)(1+ λ	)

a(r2 + a2)

r2− + a2
Re(∂rψ∂ϕ+ψ)

)

− χ ′(v+)(1+ λ	)
a(r2 + a2)

r2− + a2
Re(∂rψ∂ϕ+ψ)

+ ∂r
(
χ(v+)(1+ λ	)

a(r2 + a2)

r2− + a2
Re(∂ϕ+ψ∂v+ψ)

)

− χ(v+)λ(∂r	)
a(r2 + a2)

r2− + a2
Re(∂ϕ+ψ∂v+ψ)

���������������������������������

− χ(v+)(1+ λ	)
2ar

r2− + a2
Re(∂ϕ+ψ∂v+ψ)

χ(v+)(1+ λ	)
a

r2− + a2
2aRe(∂ϕ+∂rψ∂ϕ+ψ)
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= ∂r
(
χ(v+)(1+ λ	)

a2

r2− + a2
|∂ϕ+ψ |2

)

− χ(v+)λ(∂r	)
a2

r2− + a2
|∂ϕ+ψ |2

������������������������

χ(v+)(1+ λ	)
a

r2− + a2
	Re(∂2r ψ∂ϕ+ψ)

=
a.i .

∂r
(
χ(v+)

a

r2− + a2
(1+ λ	)	Re(∂rψ∂ϕ+ψ)

)

− χ(v+)
a

r2− + a2
λ(∂r	)	Re(∂rψ∂ϕ+ψ)

− χ(v+)
a

r2− + a2
(1+ λ	)(∂r	)Re(∂rψ∂ϕ+ψ)

χ(v+)(1+ λ	)
a

r2− + a2
Re( /̊	[s]ψ∂ϕ+ψ)

=
a.i .

0

D Commutator Computations for (2.38)

The second order terms of T[s] in Boyer-Lindquist coordinates are

−
[ (r2 + a2)2

	
− a2 sin2 θ

]
∂2t ψ −

4Mar

	
∂t∂ϕψ − a2

	
∂2ϕψ +	∂2r ψ + /̊	[s]ψ.

We use −χ(t)eλr∂rψ as a multiplier and compute the commutator expressions again
term by term.

D.1 TheMultiplier−�(t)e�r@rÃ

χ(t)eλr
[ (r2 + a2)2

	
− a2 sin2 θ

]
Re(∂2t ψ∂rψ)

= ∂t

(
χ(t)eλr

[ (r2 + a2)2

	
− a2 sin2 θ

]
Re(∂tψ∂rψ)

)

− χ ′(t)eλr
[ (r2 + a2)2

	
− a2 sin2 θ

]
Re(∂tψ∂rψ)

− 1

2
∂r

(
χ(t)eλr

[ (r2 + a2)2

	
− a2 sin2 θ

]
|∂tψ |2

)

+ 1

2
χ(t)eλr

[
λ
( (r2 + a2)2

	
− a2 sin2 θ

)

������������������������������

+ ∂r

( (r2 + a2)2

	

)]
|∂tψ |2
�����

123



    7 Page 130 of 133 J. Sbierski

χ(t)eλr
4Mar

	
Re(∂t∂ϕψ∂rψ)

=
a.i .

1

2
∂t
(
χ(t)eλr

4Mar

	
Re(∂ϕψ∂rψ)

)

− 1

2
χ ′(t)eλr 4Mar

	
Re(∂ϕψ∂rψ)

− 1

2
∂r
(
χ(t)eλr

4Mar

	
Re(∂ϕψ∂tψ)

)

+ 1

2
χ(t)eλr

(
λ
4Mar

	
���������������

+ ∂r

(4Mar

	

))
Re(∂ϕψ∂tψ)
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