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Abstract

This paper establishes a mathematical proof of the blue-shift instability at the sub-
extremal Kerr Cauchy horizon for the linearised vacuum Einstein equations. More
precisely, we exhibit conditions on the s = +2 Teukolsky field, consisting of suitable
integrated upper and lower bounds on the decay along the event horizon, that ensure
that the Teukolsky field, with respect to a frame that is regular at the Cauchy horizon,
becomes singular. The conditions are in particular satisfied by solutions of the Teukol-
sky equation arising from generic and compactly supported initial data by the recent
work [51] of Ma and Zhang for slowly rotating Kerr.

Keywords General relativity - Strong cosmic censorship - Kerr black hole -
Teukolsky equation

1 Introduction

The sub-extremal Kerr solution of the vacuum Einstein equations
Ric(g) =0

models a stationary and rotating black hole, devoid of any gravitational radiation.
While we expect that the exterior is stable if small gravitational radiation is taken into
account,! heuristics going back to Penrose [55] indicate that the interior is subject to
a blue-shift instability: gravitational radiation entering the black hole builds up at the
Cauchy horizon CH™ and leads to the formation of a singularity.

Although the full resolution of this conjecture is still open, a large body of research
concerning simplified models has since lent support to the validity of this scenario.

1 See [16, 40, 41] for recent results on the black hole stability problem.
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Fig.1 The blue-shift effect. For
observer A an infinite time
passes, while observer B reaches
the Cauchy horizon in finite
time; signals sent by A are
received by B shifted to the blue

The first class of simplified models we would like to mention here concerns non-
linear spherically symmetric perturbations of the sub-extremal Reissner-Nordstrom
black hole, which also possesses a Cauchy horizon in its interior that is subject to a
blue-shift instability. The works by Hiscock [34], Poisson-Israel [57, 58], and Ori [54]
investigate and prove this blue-shift instability for the spherically symmetric Einstein-
Maxwell-null dust system and the works of Dafermos [12, 13] and of Luk-Oh [46,
4717 do so for the spherically symmetric Einstein-Maxwell-scalar field system. The
second class of simplified models are linear models on a Kerr background — and in
particular the linear scalar wave equation which serves as a “poor man’s linearisatio”
of the vacuum Einstein equations. The study was initiated by McNamara [52], who
indeed also considers gravitational perturbations. Results of a similar nature for the
scalar wave equation were proven by Dafermos-Shlapentokh—Rothman [20] and in
[60]. These results all have in common that they only ensure the abstract existence
of solutions that become singular at the Cauchy horizon, but they do not provide
explicit criteria that ensure that a particular solution becomes singular. This gap was
filled for the scalar wave equation in collaboration with Luk in [49], which shows that
under the assumption of suitable upper and lower bounds on the decay along the event
horizon, the energy of the scalar field becomes unbounded at the Cauchy horizon.
(The wave itself remains bounded [24, 31].) It was later shown by Hintz [32] and
Angelopoulos-Aretakis-Gajic [2] that the assumed bounds on the event horizon are
generically satisfied.

The present work makes the step from the scalar wave equation to linearised grav-
itational perturbations in the form of the Teukolsky field [67]. Analogously to [49]
we exhibit conditions on the Teukolsky field along the event horizon, consisting of
integrated upper and lower bounds on the decay, which ensure the blow-up of the
Teukolsky field at the Cauchy horizon. More precisely, we show

Theorem 1.1 Assume  satisfies the Teukolsky equation with s = +2 and, along the
event horizon H™,

o assume that there exists p € N s.t. fH+ﬂ{v+>1} vipwp voledvy = oo. Let pg be
the smallest such integer and assume py = 2,
2
° fH+m{U+>1} VW s(mol) |2 dvy = o0 for some mo € Z, Iy > max{2, [mol},
where Yrsuiy denotes the projection of r on the (m, [) spin 2-weighted spherical
harmonic,

2po 2
° fH+m{u+>1}U+ [0y, ¥|° volgedvy < oo,

2 See also [45] for the linearised case.
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Fig.2 The statement of
Theorem 1.1
» CHT

i+

HT

° fH+m{u+>1} vi’lasz volgedvy < oo for some 2 < g < 2pg with q, € R and
forallk =0,1,...,73

It then follows that
/ vy 2 volgadvy = oo, (1.2)
SN >1)

where X is a hypersurface transversal to CH™ as in Figure 2.

Here, v, =t 4 r* and 9, is the Killing vector field which is a time-translation
at spatial infinity, see also Section2.1. We also refer the reader to Theorem 3.9 in
Section 3 for the precise statement of Theorem 1.1.

We would like to bring to the reader’s attention that the coordinate v is not regular
at the Cauchy horizon. There, V, = —¢*~"+ is a regular boundary defining function
with {V,* = 0} being the Cauchy horizon. The constant k_ < 0 is the surface gravity

of CH*. Moreover, the regular Teukolsky field ¥ at CH™, i.e., the linearisation of
the Teukolsky s = 42 curvature component with respect to a regular frame at CH™,

is given by e 2¢-V+y = ﬁd/, modulo a regular factor which remains bounded

away from zero (and infinity) at CH'. We thus obtain that the conclusion (1.2) of
Theorem 1.1 with respect to regular quantities at CH ' reads

2 A
f [1og(—V,H ] (= V1)’ |41 volged VT = o0, (1.3)
EN{e =1}

which makes manifest the blow-up of the Teukolsky field with respect to a regular
frame at the Cauchy horizon.

Moreover, we note that in the slowly rotating case the assumptions made in Theo-
rem 1.1 were recently shown to be satisfied generically ([51] and [15, 50]) for solutions
arising from compactly supported initial data on a global Cauchy hypersurface X as
in Figure 1 with po = 7, lyp = 2 and mg € {—2, —1, 1, 2}. The parameter g, can be
chosen to be anything strictly less than 13. See also Remark 3.11 for further discussion.

Let us also remark that we expect Theorem 1.1 to be an important ingredient in
the analysis of the blue-shift instability at the Cauchy horizon for the full non-linear
vacuum Einstein equations.

3 See assumption (3.4) on page 29 for the precise statement.

@ Springer



7 Page4of133 J. Sbierski

Fig.3 The statement of CH*

Theorem 1.4

singular?

—

i+

1.1 The Case of the Full Non-linear Einstein Equations

Standard energy estimates entail that solutions of /inear equations arising from regular
initial Cauchy data can at most become singular at the (null) boundary of the black
hole interior, i.e., at the Cauchy horizon of Kerr — but not earlier inside the black
hole. For the vacuum Einstein equations, however, which are non-linear, it is a priori
conceivable that the non-linearities amplify the blow-up and lead to the formation of
a singularity in the black hole interior which is everywhere spacelike. Whether this
happens or not has been contentious for a long time.

For the spherically symmetric Einstein-Maxwell-scalar field system numerical evi-
dence was presented in [5] which indicated that the non-linearities do not amplify the
blow-up in the sense that one always has a piece of a null singularity emanating from
timelike infinity in the Penrose diagram.* This scenario in spherical symmetry was
later rigorously confirmed in the works [12, 13, 46, 47]. Indeed, if one only considers
sufficiently small perturbations of two-ended sub-extremal Reissner-Nordstrom initial
data, then the singularity only occurs along the bifurcate Cauchy horizon, i.e., there is
no piece of the singularity which is spacelike, see [14].

Concerning the vacuum Einstein equations Dafermos and Luk established the fol-
lowing seminal result:

Theorem 1.4 (Dafermos-Luk, [17]) Consider a suitable spacelike hypersurface %
in the interior of a sub-extremal Kerr black hole, see Figure3, and consider small
perturbations of the induced initial data which decay towards i with a rate that
is in particular compatible with what is expected to arise dynamically from small
perturbations of exact sub-extremal Kerr initial data on a global Cauchy hypersurface
Yo as in Figure 1. Then the maximal globally hyperbolic development of the perturbed
initial data contains a region which is C°-close to, and the Penrose diagram of which
is given by, the darker shaded region of the unperturbed sub-extremal Kerr spacetime
as in Figure 3.

This result in particular entails that also for the vacuum Einstein equations, and under
the assumptions of their theorem, the non-linearities do not amplify the blow-up to
create a spacelike singularity emanating from timelike infinity in the Penrose diagram
(cf. in Figure4). The result is only compatible with a null singularity emanating from
timelike infinity (i.e. the Cauchy horizon becoming singular) as in the spherically
symmetric case. But whether the Cauchy horizon is indeed generically singular is not
established in [17]. The result obtained in this paper is a first step in this direction.

4 Which can later on collapse to a spacelike singularity, see also [54] and the recent [69].
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Fig.4 Spacelike singularity
emanating from i T is ruled out.
Picture cannot occur

. spacelike singularity

Note that Theorem 1.4 also shows that the metric remains continuous up to and
including the Cauchy horizon. Thus, if a singularity forms, it is not at the level of the
metric itself, as is the case for example for the Schwarzschild singularity (see [61, 62]),
but we expect that it is the connection which will generically become singular. This
expectation is mainly based on the spherically symmetric models discussed earlier for
which one also obtains that the metric extends continuously to the Cauchy horizon but
the connection becomes unbounded [12, 13, 46, 47, 63]. Such singularities have been
termed ‘weak null singularities’. The construction of weak null singularities in vacuum
spacetimes without any symmetry was achieved in [43], where it was also shown that
they propagate (for some finite time). We expect that such weak null singularities as
given in [43] do generically form at the Cauchy horizon of perturbed Kerr.

1.2 Relation to the Strong Cosmic Censorship Conjecture

Going back to the result of this paper in the form of (1.3), and if one trusts the naive
expectation that there is a linearised Christoffel symbol which is better than i by

a power of Vrf, i.e., of order Vﬁ:xﬂ, then (1.3) shows that this linearised Christoffel

symbol is not in L]ZOC at the Cauchy horizon with respect to the differentiable structure

of the background. This makes contact with the modern formulation of the strong
cosmic censorship conjecture:
Strong cosmic censorship conjecture The maximal globally hyperbolic development
arising from generic asymptotically flat initial data for the vacuum Einstein equations
is inextendible as a Lorentzian manifold with a continuous metric and locally square
integrable Christoffel symbols.

The strong cosmic censorship conjecture was originally conceived by Penrose [56],
the formulation given here in terms of the initial value problem and the conjectured
breakdown of the regularity goes back to Christodoulou [10] and Chrusciel [11]. The
inextendibility as a Lorentzian manifold with g € C®and dg € leoc in particular rules
out the extension of the maximal globally hyperbolic development as a weak solution.’
We note that for exact sub-extremal Kerr initial data the maximal globally hyperbolic
development is given in Figure 1 and is in fact extendible in various ways across
the Cauchy horizon even as a smooth solution: determinism is violated. However,
as we discussed earlier, for generic small perturbations of exact sub-extremal Kerr
initial data we expect the blue-shift instability to turn the Cauchy horizon into a weak
null singularity and in this way preventing non-unique extensions as weak solutions.
Determinism would thus be restored generically.

5 See for example [30] or the introduction of [63].
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The result obtained in this paper can be thought of as a first step towards establishing
the generic divergence of curvature at the Cauchy horizon of non-linearly perturbed
sub-extremal Kerr — and thus the generic inextendibility as a Lorentzian manifold with
g € C?. And with the earlier naive expectation that there is a (linearised) Christoffel
symbol of order V,“:I/A/ it is also a first step towards showing that the metric cannot
be extended with g € CY and dg € leoc in a particular natural-looking coordinate
system. However, the result does not contribute to developing methods which show
that no matter what coordinate system is chosen for the extension, the metric cannot
be extended in g € C? and dg € leoc' This is an open problem. For recent progress
in this direction we refer the reader to [63].

1.3 Related Results and Directions Concerning the Interior of Black Holes

The studies mentioned earlier on perturbations of sub-extremal Reissner Nordstrom
under the spherically symmetric Einstein-Maxwell-scalar field system were extended
in [68] to the spherically symmetric Einstein-Maxwell-massive and charged scalar
field system. This matter model in particular allows for asymptotically flat one-ended
spherically symmetric black hole solutions which possess a Cauchy horizon and is thus
a good model to understand the contraction and breakdown of weak null singularities
in the interior of black holes [69].

For the behaviour of linear waves and of axisymmetric and polarized perturbations
in the interior of non-rotating (Schwarzschild) black holes see [1, 23].

Another interesting direction of research concerns the interior of extremal black
holes where the blue-shift instability at the Cauchy horizon is much weaker than in the
sub-extremal case. For results concerning linear waves see [25, 26] and for non-linear
results in spherical symmetry see [27].

Finally, for the investigation of the blue-shift instability in the presence of a cos-
mological constant A we refer the reader to [6, 14, 21, 22, 33] for A > 0 and to [35,
36] for A < 0 as well as to the references given in those papers.

1.4 Outline of Proof

A good, simple, and instructive model problem for gravitational perturbations in the
interior of a subextremal rotating Kerr black hole is the spherically symmetric scalar
wave equation in the interior of a subextremal charged Reissner-Nordstrom black
hole. The blue-shift instability in this scenario is well-established and various results
along with various methods of proof have been developed: the methods in [20, 52] are
based on the scattering map from characteristic initial data on the right even horizon
H;" (past null infinity Z~) to the trace of the wave on the left Cauchy horizon CH1+,
making crucial use of the time-translation invariance of this map. See Figure 5 below
for the notation. The C'-instability results in [8, 37] are also obtained via scattering
theory together with meromorphic continuation. One can also use the geometric optics
(Gaussian beam) approximation together with an application of the closed graph the-
orem, see [60] and the introduction of [49], to capture a formulation of the blue-shift
instability. In [45] a neat argument by contradiction is given, using that one can solve
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the linear wave equation in spherical symmetry sideways. A proof in physical space
using energy estimates and at the heart of which is the conservation law associated to
the spacelike Killing vector field 0; is presented in [49]. And finally, in [48], Luk, Oh,
and Shlapentokh—Rothman give another scattering theoretic proof of the blue-shift
instability at the Cauchy horizon. It is this last method of proof which is being taken
up in this paper and being implemented for the Teukolsky equation on Kerr. In the
following we shall first outline the argument from [48] in spherical symmetry and then
discuss the main differences to the proof in this paper.

1.4.1 Spherically Symmetric Scalar Waves on Reissner-Nordstrom

The interior of a charged subextremal Reissner-Nordstrom black hole is the Lorentzian
manifold® (M, g), where M := R x (r_,ry) X S? with standard (t,r,0,9)-
coordinates and 7+ := M 4 «/M? — 2, where 0 < |e| < M are real parameters
modelling the charge and the mass of the black hole, respectively. The Lorentzian
metric g is given by

r2

A
g = ——di* + —dr’ +r* (0> +sin* 0 dg®),

r A
with A := r2 —2Mr +¢%. The spherically symmetric scalar wave equation Ugp =0,
where ¢ : M — C is only a function of ¢ and r, takes in the above coordinates the

form
}’2 2 1
0=0,¢ = —Xa, ¢+ r—28r(A3r¢). (1.5)

. . 2 . .
Let r*(r) be a function with % = rK and then introduce the null coordinates v :=

r* +tand u 1= r* — . We define k1 := == and use those to introduce the
+

Kruskal-like null coordinates’ V, L =Y and U,, := “+" in which the Lorentzian
manifold (M, g) extends analytically to r = ry (r as a function of V,._, U,,) and
similarly V,_ := —e“~Y and U,_ := —e“~" in which the Lorentzian manifold extends
analytically to » = r_. The boundary null hypersurface {V,, = 0} =: Hl+, at which
we have r = r4, is called the left event horizon, the boundary null hypersurface
(U, =0} = H;’r, at which we also have r = ry, the right event horizon, and the
boundary sphere {V,, = U,, =0} =: Si is the bottom bifurcation sphere. Moreover,
we call the boundary null hypersurface {U,_ = 0} =: CH1+ the left Cauchy horizon,
the boundary null hypersurface {V, = 0} =: CH," the right Cauchy horizon, and
the boundary sphere {V,_ = U,_ = 0} =: Stz the top bifurcation sphere. A Penrose
diagram of (M, g) with the boundaries attached is given in Figure 5 below.
In [48] the following theorem is shown

6 The definitions of symbols made here are only valid in this section. In the rest of the paper we will use
M, g, rq, r—, etc. to refer to objects and quantities on Kerr.

7 See also [30] for a more detailed discussion of the Reissner-Nordstrom spacetime.
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Fig.5 The Interior of
Subextremal
Reissner-Nordstrom

+oc

Theorem 1.6 (Corollary 4.2 in [48]) Consider the region (M UH;”) N{v = vo}N{u <
uy} for some vy, uy = 1 and let ¢ be a smooth solution of the spherically symmetric
wave equation (1.5) in this region, which, moreover, satisfies

oo
lim ¢l+(v) =0  and /v2|8U¢|H+|2dv <00 (1.7)
v—>00 r r

vo

and there exists N 5 po > 2 such that
o0
2po 2 g
v 0y Plagr | dv =00 (1.8)

vo

holds. We further assume that py is the smallest such integer with this property. And
finally we assume

oo

/va"|83¢|Hr+|2dv < oo. (1.9

v
Then for any uy < uj we have

oo

/U2P0|av¢|2(u2, V) dv = 0. (1.10)

vo

This is the local statement that is the analogue of Theorem 3.7 (or 1.1) for Teukolsky. It
is inferred from the following global statement, which is the analogue of Theorem 3.9
for Teukolsky, by an extension procedure of the solution.

Theorem 1.11 (Theorem 4.1 in [48]) Let ¢ be a smooth solution of the spherically
symmetric wave equation (1.5) on M UH;} U HIJF. Suppose that in addition to (1.7),
(1.8), (1.9)(for some vy > 1)we also have that there exists v, € Rsuch that(/>|H:r (v) =
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0 for v < v, and there exists u, € R such that ¢|Hz+ (u) =0 foru > u,.% Then (1.10)
holds for any us € R (and any vy € R).

Before we discuss the structure of the proof, let us recall the formal separation of the
spherically symmetric wave equation (1.5). By taking the Fourier transform

(r; w) == \/%_nﬂ%[q&(t,r)eiw’ dt (1.12)

of ¢ in t one obtains that formally ¢ satisfies (1.5) if, and only if, $(r; w) satisfies’

rw? VAN 2y
=—¢(r ®) + — =0, p(r: @) +0,4(r; ). (1.13)

This ODE has two regular singular points at r = r4 and r = r_; for all @ # 0 we can
find a fundamental system of solutions with asymptotics!'®

Ay (riw) ~ e and Aggr (r; @) ~ o (1.14)
for r — r4 and another fundamental system of solutions with asymptotics
By (r; ) ~ e and  Beyr(riw) ~ €' (1.15)

for r — r_, where r*(r) is as defined earlier. Since any three solutions have to be
linearly dependent, we can write

A (5 0) = Ty (@) Beggr (5 @) + Ry (0) Bey+ (' )
and
AH]+ (r;w) = QHT (w) BCH:r (r; w) + me (w) BCHl* (r; w), (1.16)

where SH? (w), %H:r (w) and THT (w), %Hf (w) are the transmission and reflection
coefficients of the right event horizon and left event horizon, respectively. A priori they
are only defined for w € R \ {0}, but it can be shown that they extend analytically to
all of R. A key ingredient needed for the proof of Theorem 1.11 is that ‘IH+ 0) #0,
which can be shown using the d;-conservation law (see for example [37, 48]) or by
direct computation using special functions (see for example [29, 37]).

8 The important properties here are that ¢ vanishes at the bottom bifurcation sphere Si and decays suffi-
ciently fast along Hl+. The first one is not strictly necessary, but simplifies the proof.

9 Equation (1.13) should be compared with (6.32). For the Kerr case we will do the separation in the analogue
of (v, r)-coordinates on Reissner-Nordstrom, which gives the radial ODE (5.28) which has solutions with
slightly different asymptotics. But this is not essential.

10 We introduce the following notation: for f, g : R © I — C the notation f ~ gfor/ >5x — xg € R

stands for limy_; x, é(( )) = 1. When obvious which limit point is considered, we may just write f ~ g.
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For o # 0 we can thus expand any solution of (1.13) as $(r;a)) =
Ayt (a))AH:r (r; w) + aygr (a))AHT (r; w) with pges dggr R\{0} — C and thus, at
least formally,

b, r) = () Aggr (73 ) + g (0) Ay (1 w))e " do (1.17)

e

is a solution of (1.5).

We now discuss the reduction of Theorem 1.6 to Theorem 1.11. Let ¢ : (M U
HH N{v = v} N{u < u} - Cbe as in Theorem 1.6. One extends the induced
initial data on H," N {v > vo} smoothly to all of H," in such a way that ¢|;+(v) = 0
for v < vg — 1. Using that we are in spherical symmetry, we can now solve 'the wave
equation sideways to extend ¢ to the region (M U Hf U Hl+) N{u < ur}. Again we
extend the induced initial data on H1+ N{u < u}toall of H1+ such that ¢|Hl+ (u) =0
for u > u; + 1 and solve the wave equation forwards to get a global solution in
MUHU H[+ which satisfies the assumptions in Theorem 1.11. This is the reduction
of Theorem 1.6 to Theorem 1.11 by extension of ¢.

We now turn towards the sketch of a proof of Theorem 1.11. One first shows that
the solution ¢ is indeed (i.e., not just formally) given by (1.17) with

1 .
apr (@) = —[¢|Hj(v)e_’wv dv  and
N2 2
1 .
aHf(w) = E/¢|Hf(”)elwu du (1.18)
R

being the (inverse) Fourier transforms of the characteristic initial data. This can be
established in (at least) two ways: one way is to start from the expression (1.17) with
the coefficients Ayt Ay given by (1.18) and to show by direct computation that it
solves the wave equation (1.5) and attains the prescribed initial data when r — 7
and u or v, respectively, are fixed. By the uniqueness of the characteristic initial value
problem we thus obtain that (1.17) with (1.18) is indeed the wanted solution. Another
possibility, which will be implemented in this paper for Teukolsky on Kerr, is to first
prove via energy estimates decay of ¢ (¢, r) in ¢ for all r € (r—, r4) which one uses to
justify that the Fourier transform (1.12) is well-defined for all » € (r_, r) and that it
satisfies (1.13). One then infers that ¢ must be given by (1.17) with some ayges gy
which one then determines by passing the expression (1.17) to the limit r — r4 for
either fixed u or fixed v. Since, as will become clear below, we only use the frequency
regime around w = 0O of the wave to prove the blow-up, this second approach, in
contrast to the first one, allows us to completely ignore the behaviour of the other
frequency regimes in the separated picture. Let us also remark that since ¢ vanishes
at the bifurcation sphere, we do have exponential decay of ¢ in v, u along H,', H;r,
respectively, when approaching the bifurcation sphere and thus Ay and aygr are in

particular in L2 (R). If ¢ did not vanish at the bifurcation sphere, the coefficients Ayt
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Ayt would have additional poles at zero frequency which encode the constant at the
bifurcation sphere.

We now investigate the regularity of the coefficient functions (1.18) around @ = 0.
First note that by (1.7) and a Hardy inequality'' we have M € L?(R). Furthermore
(1.8) and (1.9) imply

00 (wplyr) € LZR)  forallN3 p < po (1.19)
0P (L) ¢ LE(R) (1.20)
agO(wl’M) €L2(R) . (1.21)

It follows from (1.19) and (1.21) that - 32° (a)ﬂﬁ/:r) € Li(R). Together with (1.20)

this now implies 8/° (a)qﬁ\h;) ¢ LZ)((—s, 8)) for any ¢ > 0. By (1.18) we thus obtain
forany ¢ > 0

850(a)aH+) ¢ LZ)((—S, s)) and 3£(a)aH+) € Li((—l, 1)) forallN > p < po.
(1.22)

Furthermore we straightforwardly obtain
0f (way) € LZ((-1,1)) forallN> p < po. (1.23)

We now move on to the analysis of the wave near the Cauchy horizon at r =

r—. Using for example energy estimates one shows that the wave ¢ extends (even

continuously) to the Cauchy horizon CHZH2 and satisfies

f X W) lepr | () dv < o0, (124)
R

where x (v) : R — (0, 00) is a positive function with x (v) >~ |v|2”0 forl3 v > —c0
and x (v) = |v|2P0=D for v — +o0. In particular one can take the Fourier transform
of 9,¢| cHy in L2. Using the language of the transmission and reflection coefficients

introduced earlier we can rewrite (1.17) as

1
o, r) = — / ([‘IHj (@)agg+ (@) + Ry (@)ag+ (@) Boyg+ (r; )
Van R l l l (1.25)

+ [Spp @y ©) + Ry @y @) Beygs (@) )™ doo.

1 Recall that ¢\H+ has exponential decay towards the bifurcation sphere.
r

12 1t also extends continuously to CH;.

13 For v — —o0 one can replace [v|2P0 by |v|? for any g € N. For the definition of the notation >~ we
refer the reader to the very beginning of Section?2.
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Noticing that the Killing vector field 9, equals 9, on CH;' and using the asymptotics
(1.15) of BCH,* (r; w) and BCH:r (r; w), we can pass (1.25) to the limit » — r_ for
fixed v to obtain

1 .
Wleyr = N / (=D)[Ty (@) - (way+ (@) + Ryt (@) - (waHIJr @)] e do,
R

=@ulerr)

i.e., a Fourier representation of 8U¢CH,+ in terms of the Fourier representations of the

characteristic initial data and the transmission and reflection coefficients.!* We can
now investigate the decay of 9,¢| cHf in v by considering the regularity of (9,¢| CH]’)

atw =0:
Po 20
15 uloygt) = Tt (@) - 05" (wapgs @) + ) (p )85%; (@) - 35" 7 (wa+ (@)
, =l (1.26)
+y (’Z’) 3Ry (@) - 05" (waHl+ (@)).

p=0

The last two terms (the two sums) on the right hand side are in Li((—l, 1)) by the
analyticity of the transmission and reflection coefficients TH:f (w), %H:f (w) and by
(1.23) and the second property in (1.22). It now follows from the first property in
(1.22) together with ‘ZH,* (0) # O (cf. remark below (1.16)), applied to the first term
on the right hand side of (1.26) that 3£O(3v¢|c7»{,+) ¢ L2((—¢,¢)) for any & > 0.
Plancherel now implies

/uzl’oyav¢|m+(u)\2dv = 0.
R

This, however, does not tell us yet whether the slow decay of av¢|CHf in v is for
v — +o0 or for v — —oo. However, with (1.24) we can finally infer

oo

/U2P0|8v¢|CH1+(U)|2dU = 0.
1

The statement (1.10) of Theorem 1.11 then follows by propagating the singularity
backwards along CH;, using energy estimates. This is a standard propagation of
regularity result. We have now concluded the sketch of a proof of Theorem 1.11 and
will discuss next how this method of proof changes for the Teukolsky field on Kerr.

14 1 et us remark that a fully fledged scattering theory for the wave equation in the interior of a Reissner-
Nordstrom black hole has been presented in [37].
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1.4.2 Comparison to Teukolsky on Kerr

We will mainly use the (v4, 7, 8, ¢4 )-coordinate system on Kerr, which can be thought
of as the analogue of the (v, r, 6, ¢)-coordinate system on Reissner-Nordstrom. How-
ever, v4 is not a null coordinate any more, but its level sets are timelike. The Teukolsky
equation takes the form'?

0= Tig¥ :=a’sin> 0 0; Y + 2a dy, By, ¥ + 20> + a*) 0y, 0,V +2a 3y, 0, Y
+ AR+ 2<r(1 —25) —isa cose) O, W 420 — MY(1 =)0 (1.27)

+ Apgy — 25,

where the Teukolsky field i is with respect to an algebraically special frame which is
regular at the right event horizon H:r, cf. Sections 2.2 and 2.3. For s = +2, the case
we are concerned with, the frame component entering the Teukolsky field degenerates
near H;r and thus a regular Teukolsky field i vanishes on the left event horizon
including at the bifurcation sphere.

Let us begin by discussing the differences between the energy estimates for Teukol-
sky and the linear wave equation. As is well-known, the spacetime geometry near the
event horizons is such that localised energy of linear waves decays exponentially. This
is usually referred to as the ‘red-shift effect’; it helps the analyst to close energy esti-
mates. The name of course derives from a shift in frequency, which is also present at
the event horizons. The shift in frequency and the decay of energy are not one and the
same thing — indeed, they decouple for the Teukolsky equation. We give a detailed dis-
cussion in Remark 4.20. For the energy estimates it is of course the decay of localised
energy which is most relevant — let us refer to this effect as the ‘red-shift effect for
energy’ in order to keep in touch with standard terminology. For the Teukolsky field
Y (and for s = 42) we now have an effective blue-shift for the energy at the right
event horizon Hj. This can be seen from the dashed term in (1.27). It is effective in
the sense that it turns into a red-shift for the energy after two commutations with d,.. It
is thus at this level that we close the energy estimate for the Teukolsky field near ;.
The Teukolsky equation for x@ := A~%, which is the Teukolsky field with respect
to a frame that is regular at the left event horizon!® Hl+, does still have a red-shift for

energy near Hf; so there, the energy estimates can be closed at the level of 1} as for
the wave equation.

On the other hand, the blue-shift for energy for the wave equation near the Cauchy
horizon turns into an effective red-shift for energy for the Teukolsky field i near the
left Cauchy horizon CHIJF. This makes the energy estimates for (1.27) near r = r_
in a sense even easier than for the wave equation (disregarding the more technical
nature of implementing the energy estimates for Teukolsky). It is again ‘effective’ in
the sense that after two commutations with 9, we have again a blue-shift for energy.

15 We refer the reader to Section 2 for the Kerr-related terminology. Here A = r2 —2Mr + a® and &[5 ]
is the spin s-weighted spherical Laplacian, see Section2.3.4.

16 Recall that Y degenerates (vanishes) at 'HZ+.
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We now discuss the formal separation. Denoting with Yn[fl] @,p;,0) = S,[;l]
(cos 0; w)e'™? the spin s-weighted spheroidal harmonics (see Section5.1; we have
N > ] > max{|s|, |m|}, m € Z), the Teukolsky transform of i is given by

T3 ) = [ @i 600 V6 g ) dvvolge

(1.28)

=),
21 JR
Formally, v satisfies the Teukolsky equation (1.27) if, and only if, Jml (r; ) satisfies!’

A dz ~ . 2 2 2N ¢ . M 1 d v .
ml/fmz(r,w)Jr (—(r +aio+iam+ (r — M)( _S))awml(r’w)

+ (/\};}(a)) — (aw)* + 2oma — 2iwr (1 — 2s) — 2s)¢ml(r; ) =0.
(1.29)

Like (1.13), the radial ODE (1.29) has two regular singular points at r = r_ and
r=ry. Letwy = ﬁ and fix s = +2. For @ # wym we can find a fundamental
system of solutions with asymptotics

4iM
ry—r )2+,jr_:f (@=awym)

Agpr i (r; ) ~ 1 and AHf,ml(’"? w) ~ (r —
+ r—

for r — r4 and for w # w_m another fundamental system of solutions with asymp-

totics

4iMr_

. . r—r— 27;‘+7r_
BCH;’,ml(r’ w) ~ 1 and BCH:r’ml(r, w) ~ g

(w—w—_m)

forr — r_.The fact that A3+ ,,, and BCH[Jr’m ; do not have oscillating phases as for the
wave equation in (1.14) and (1.15) is due to our choice of (v, r, 8, ¢ )-coordinates. If
we had used Boyer-Lindquist coordinates (¢, 7, 8, ¢) for the separation, both branches
would be oscillatory. Note, however, the difference in the r-weights between the two
branches, which is related to ¥ being regular at ;" and degenerate at Hl+ ,and similarly
for the Cauchy horizons. Another important difference is that while the branches
AH,*,ml and Beyit i extend analytically to o = wym and ® = w_m, respectively,
the branches A+ ,; and BCHf,ml become singular at o = wim and @ = w_m,
respectively. This should be contrasted with both branches AH:r and AH,* in (1.14)
for the wave equation having a regular (and indeed identical) limit @ — O (similarly
for the other two branches in (1.15)). This difference impacts a priori on relating the
coefficients in the separated picture to the Teukolsky transform of the characteristic
initial data (more about this later) and also on the regularity of the transmission and

17 Here, A’[;](w) denotes the eigenvalue associated to the eigenfunction Y,E‘fl] (+; w) of the spin 2-weighted
spheroidal Laplacian, see Section5.1.
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reflection coefficients: as before we can write

At (r;a))zz“" (@) -BY, o)+ R, (@) BY, (o)

H+ ml CH; ml Hml CH;,
[s] _ [s] . plsl .
AH+ (o) =%, (0 BCH+ (o) + Ry (@) By (5 ),

where the transmission and reflection coefficients are a priori only defined and analytic
on R\ {wym, w_m}. Recall that the structure of the blow-up argument only requires
information on the frequency regime near @ = 0. So for m # 0 we know that the
transmission and reflection coefficients are analytic in a neighbourhood of w = 0.
Moreover, for non-vanishing m we show by direct computation that %+ ,,,(0) # 0,
where we use that for « = 0 the radial ODE (1.29) turns into a hy}gergeometric
equation. For m = 0, however, the potentially problematic frequency at w = 0 cannot
be avoided. We show that SHT,O 1 Rk ors g+ 04 all extend analytically to w = 0,
but for the reflection coefficient of the right event horizon we only show that w- 9+ o

extends analytically to w = 0.8

It can also be shown by direct computation for m = 0 that T+ (,(0) # 0. However,
this is more complicated than in the case m # 0, because it cannot be inferred alone
from the w — 0 limit of (1.29), which is a hypergeometric equation, but we also need
to get information on the w-derivatives of solutions to (1.29) at w = 0. We take this
as an opportunity to implement and demonstrate a second approach to showing the
non-vanishing of the transmission coefficients at @ = 0, namely by making use of the
Teukolsky-Starobinsky conservation law, which can be thought of as the equivalent
to using the conservation law associated to the Killing vector field 9; in the case of
spherically symmetric waves on Reissner-Nordstrom mentioned in Section 1.4.1. It is
for this implementation where we need that a)iﬁH+ o1 €xtends continuously to @ = 0.
Let us mention that we also show how the Teukolsky Starobinsky conservation law
can be used to obtain 3H+’ m1(0) # 0 for m # 0, but in this case, which gives the
leading blow-up at the Caﬁchy horizon, the direct computation is much easier.

Finally, we also mention at this point that for a reason to be explained below we
also need in the case m = 0 the vanishing of mer,Ol (0) in order to implement the
blow-up argument. Again, this is shown by direct computation.

For w # wi+m we can expand any solution of (1.29) as

Uit (13 @) = gt g (0) Aggt g (73 @) + Gy (@) Ayt (5 )

with ayg+ . Ayt i R\{wym} — C and thus, at least formally, we obtain that

¢(U+s y,@ §0+) - \/—‘/ Z a’}-{Jr [(CU)A’HJr l(va)

18 The analyticity of T at @ = 0 is of no relevance to this paper and has not been explicitly stated,

H00
1 ’
but is also proven as a side-result in the proof of Proposition 6.27. And while we do not show that D‘%HJr ol

s
has indeed a pole at @ = 0, this is what we would expect — and it can be decided by a longer and direct
computation. However, this is of no relevance to this paper.
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+aH/+,ml(“’)AH,+,mz(y; w)]YrE;l] ©®, pi; w)efiwv_,_ do
(1.30)

is a solution to (1.27).

In a similar way to how the local Theorem 1.6 for the spherically symmetric wave
equation on Reissner-Nordstrom is reduced to the global Theorem 1.11, we also reduce
the local Theorem 1.1 (or Theorem 3.7) for the Teukolsky field of Kerr to a global
theorem, see Theorem 3.9. In spherical symmetry we extended the local solution to a
global one by first solving sideways and in this way ensuring that the extended solution
vanishes at the bottom bifurcation sphere. For the Teukolsky equation we can no longer
solve sideways, but, by solving two initial value problems, we can still extend the local
solution to a global one which is compactly supported on Hl+ U S,%. This is done in
Theorem 8.6 in Section 8.2, see also Figure 9. However, we can no longer ensure that
the regular Teukolsky field vanishes at the bottom bifurcation sphere, which entails
that we have to deal with what is the analogue of the poles in the Fourier expansion
coefficients Ayr and Ay in the spherically symmetric case, cf. discussion above
(1.19).1°

We now discuss the implementation of the proof of the global Theorem 1.11 to
Teukolsky on Kerr (i.e., the proof of Theorem 3.7 in Section 3). In Sections 4.1 and 4.2
we prove the energy estimates needed to establish the representation (1.30). The coeffi-
cients Art i and Ayt i AT being determined in Section 7. Keeping the v coordinate
fixed one can pass to the limit» — r, in an analogous manner as for the wave equation
to establish that

Gyt (@) = Vs, (@),

where E'/)ml is the Teukolsky transform (1.28). Note that because of the exponential
decay in vy of ¥ |H:r towards SZ we have that le;r is in particular in L%+L2(Sz), SO
no poles are present. Because ¥ vanishes on H;r, we first go over to the quantity afw,
which is regular at H1+ due to the blow-up of 9, near H1+ (see also Footnote 19). We

19" To be slightly more precise here, recall that ¢ vanishes automatically at the bottom bifurcation sphere
because of the degeneration of the frame chosen. The Teukolsky analogue of the vanishing of the scalar
field at S%, which avoids poles in the Fourier expansion coefficients, is the vanishing of a}w, which is

non-degenerate at Si due to the blow-up of 9, in (v4, r, 8, ¢4 )-coordinates at Sﬁ.

Being confronted with a non-trivial field at the bottom bifurcation sphere one might still entertain the
following approach, which can easily be implemented for the wave equation: by decomposing the initial
data, we write the solution v obtained by the above extension procedure as a superposition of a solution
Y1, the initial data of which is supported on H;r u 7-[;r only in a compact neighbourhood of S?, and another

solution v, that vanishes on Hl+ including at Sﬁ (and agrees with ¢ on H;" for late affine times). One can
now run the desired argument for v, to obtain the singularity at the Cauchy horizon and then use standard
energy estimates for V| to see that yr| is much more regular at the Cauchy horizon — and can essentially
be neglected. However, one runs into difficulty when trying to implement this strategy for Teukolsky due
to the effective blue-shift effect on H;L mentioned earlier. The reader can see directly from (1.27) that the
transversal derivative 9,1 of the solution v, whose trace on Hﬁ vanishes for late affine times, will in
general grow exponentially along H}L — thus prohibiting the stability estimates. (For the wave equation,
due to the red-shift effect, the transversal derivative decays exponentially.) For this reason our proof of the
blow-up of the Teukolsky field at the Cauchy horizon is more global in nature than for the wave equation.
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thus take two r-derivatives of (1.30) and then pass to the limit » — r with fixed v_ 20
However, it is clear from the preceding discussion that one cannot hope to establish an
L2-limit, since 32 does not vanish at Si. We take a limit in the sense of distributions
to recover that a3t mi is related to the Teukolsky transform of 33¢|Hl+ (modulo a

delta distribution). The support of the Teukolsky field at Si implies that a1t mi has
a pole at o = wym. For m # 0 we can ignore this pole, since it is disjoint from a
neighbourhood of @ = 0 which is important for the argument. But for m = 0 the
pole potentially interferes with our argument which is based on exploiting the limited
regularity of the Fourier coefficients at w = 0. It is for this reason that ,‘RH?’OZ ) =0
is needed later, which cancels the pole.

Recall how we inferred for the spherically symmetric wave the limited regularity
(1.22) of ay+ at w = 0 from the decay assumptions of v along H,!. In spherical
symmetry we only had one mode — the spherically symmetric one — for Teukolsky we
want to work with the mlp-mode for which we assume slow decay in Theorem 1.1 (or
Theorem 3.7). Note, however, that in the assumptions the molp-mode is with respect to
spin 2-weighted spherical harmonics and not spin 2-weighted spheroidal harmonics.

So we would like to obtain for any & > 0

00 a3t oty # Lo((=2,©))  and  8fap+ 0 € La(—1,1) forall N> p < po.
(1.31)

Note that the derivation of (1.22) used at its heart that v-weights translate in the
Fourier picture as w-derivatives. Since the spin weighted spheroidal harmonics in the
Teukolsky transform (1.28) depend on w, this correspondence does not hold true any
more for Kerr.2! Exploiting, however, that for @ = 0 the spin weighted spheroidal
harmonics agree with the spin weighted spherical harmonics, we can still obtain (1.31),
see Proposition 7.5.

In an analogous way as for the spherically symmetric wave equation (see (1.25))
we can now express (1.30) in terms of the fundamental solutions BCHf,ml’ Byt mi
normalised at the Cauchy horizons and the transmission and reflection coefficients
and prove energy estimates which allow us to pass to the limit » — r_ with fixed v
to obtain that

¢|CH]+(U+a 0, +)

1 y
= E_/H;Z[%Hf,ml(w)aH?’,ml(w)+TH:’,ml(w)aH;*',ml(w):| YN0, gis @)e T da.
m,l

=Wley) @

As before, and using me,Ol(O) = 0 in the case mp = 0, we deduce that

8£°(¢|CHI+)ml(a)) ¢ L2((—e, ¢)) for any & > 0. When converting this into the state-

20 See Section 2.1 for the definition of v_. It can be thought of as the analogue of « in Reissner-Nordstrom.

21 This is not an issue arising from considering Teukolsky versus the wave equation, but already appears
when considering the wave equation on Kerr.
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ment
Aéz |v£°¢|CH1+(U+, 0, p4)|* voloadvy = oo (1.32)

we again have to address the complication that v-weights do not exactly correspond
to w-derivatives. This is done by proving bounds on 85) YrE‘fl] 0, ¢+; w), see Proposi-
tions 5.6 and 5.22. As for the spherically symmetric model we prove energy estimates
in Section 4.3 to show that the infinitude of the integral in (1.32) is due to the behaviour
of ¢ for large positive vy and also that we can propagate the singularity backwards.

This concludes the outline of the proof.

1.5 Outline of Paper

In Section2 we begin by introducing the interior of the Kerr black hole, then recall
briefly the derivation of the Teukolsky equation, and we define spin weighted functions
on the sphere as well as on spacetime. Moreover, we show that the Teukolsky field has
the regularity of such a spin weighted function on spacetime and we record the form
of the Teukolsky equation in various coordinate systems for later reference. Section 3
formulates the main theorems of this paper and their assumptions. The proof of the
main theorems begins in Section4 where we establish the energy estimates required
and record some corollaries which are needed later for the limits r — r4, the separation
of the solution, the extension to the Cauchy horizon, and the backwards propagation of
the singularity. In Section 5 we recall the spin weighted spheroidal harmonics, establish
a couple of results which are needed for the translation of v -weights to w-derivatives,
and then use the energy estimates to give the separation of the Teukolsky field. We
continue in Section 6 with the analysis of the radial Teukolsky ODE, introduce the
fundamental systems of solutions we work with, and prove the required properties of
the transmission and reflection coefficients. Section7 is concerned with the passing
to the limit » — r and the determination of the Fourier coefficients in terms of the
characteristic initial data. And finally in Section 8 we conclude the proofs of the main
theorems. Appendix A records the form of the Teukolsky equation in coordinates
which are regular near the bottom bifurcation sphere and discusses the initial value
problem for Teukolsky, which is needed for the extension procedure which reduces
the local Theorem 3.7 to the global Theorem 3.9. The Appendices B, C, and D collect
commutator expressions required for the energy estimates in Section 4.

2 The Interior of Sub-extremal Kerr and Gravitational Perturbations

This section presents the set-up of this paper. We first introduce the geometry of
the interior of a sub-extremal Kerr black hole and then recall the derivation of the
Teukolsky equation along with the notion of spin weighted functions. We also show
that the geometrically arising Teukolsky field is indeed such a spin weighted function.

We also introduce the following notation: for a function f and a non-negative
function g the notation f < g means that there exists a constant C > 0 such that
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| f(x)| < C-g(x) holds for all points x for which both functions are defined. If we say
‘f < gon A’, where A is a subset of the domains of definition of f and g, then this
means that there exists a constant C > 0 such that | f| < C - g holds on A. Similarly,
‘f < g forx — xo” means that there exists a neighbourhood A of xg such that f < g
on A. Here, xo may also be co. The notations ‘f < gasx — xo” and ‘f = O(g)
as x — xo have the same meaning.?? Finally, if both f and g are non-negative, then
the notation f >~ g stands for ‘f < gand g < f~, i.e., there exists a constant C > 0
such that é f < g < C-g. Again, we may specify a region or a limit in which f ~ g
is supposed to hold.

2.1 The Manifold and Metric of the Interior of Sub-extremal Kerr

We consider the standard (z, r, 6, ¢) coordinates on the smooth manifold M = R x
(r—,ry)xS?, wherer_ = M —v/M? —a2,ry = M+~/M? —a2,and0 < |a| < M
are constants which later represent the angular momentum per unit mass and the mass
of the black hole, respectively. A Lorentzian metric g on M is defined by

2
g =gud® + g, (dt @ dp + de ® di) + % dr? + p2 d0* + gpp dg?, (2.1)

where
p% =r?+a?cos? 0, g,t=—1+2%’ ,
2 2 2Mrasin® 6
A=r—2Mr+a*, g,¢=—+§m,
22 .
Qpp = [r?+a* + m’“p%e] sin® 6.
Note that r_ < ry are the roots of A. We also compute detg = —p*sin®6 for

later convenience. We fix a time orientation on the Lorentzian manifold (M, g) by
stipulating that — 9, is future directed. The time oriented Lorentzian manifold (M, g) is
called the interior of a sub-extremal Kerr black hole and the coordinates (¢, r, 6, ¢) are
called Boyer—Lindquist coordinates. Moreover, let us fix an orientation by stipulating
that the Lorentzian volume form vol = p”sinfdt A dr A d A dg is positive. A
longer computation yields that (M, g) is a solution to the vacuum Einstein equations
Ric(g) = 0.

22 The reason we use both notations is that we find it convenient to use the @ notation within equations: an
equation of the form f =¢-O(g) +hhastobereadas ‘ f = r-u +h withu = O(g)’. The limit associated
with the O notation is often understood from the context and not mentioned explicitly.
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1

For later reference we note that the inverse metric g~ in the Boyer—Lindquist

coordinates (t, ¢, r, 0) is given by

__8vp 8ty
Asin?6  Asin?6 00
8tg __8u 00
— in2 in2
g 1 _ Asin? 0 Asin® 6 N 2.2)

0 0 i 0

0 0 04

P

In the following we will attach boundaries to M. Let r*(r) be a functionon (r_, r)
e x 2,2 _ . e dF
satisfying % =1L X“ and 7(r) a function on (r_, r4) satisfying Z—; = %. We now

define the following functions on M:

vy =t+r* , @y :=¢+7 mod2r,

v_i=r"—t , @_:=¢—7 mod2m.

It is easy to check that (vy, ¢4, 7, 6) and (v_, ¢_, r, 6) are coordinate systems for
M. The metric g in these coordinates takes the following form:

¢ = g dv2 + g1p (dvy ® doy + dpt @ dvy) + gpe dp? + (dvy @ dr + dr @ du)
—asin?6 (dr ® dos +doy Q@dr) + 0% do?

= gt dv2 — grp (dv— @ dp_ + do— @ dv_) + gpp de> + (dv_ @ dr + dr ® dv_)
+asin?6 (dr®dy_ +do_Q@dr) + o2 do?.

A simple computation shows that those expressions define non-degenerate (and ana-
Iytic) Lorentzian metrics for all positive values of . We now set

r+ —rg

Ky = ———— 1 —
T 202 v ad)

and define the Kruskal-like coordinate functions

oo KU+
V.. =e

— . KyVU_
V, =et
® at
ry =@ — .
* r_%_—i—a2

The Kruskal-like coordinates (Vrj[, V,:, 0, ®,, ) map M onto (0, 00) x (0, 00) x S2.
It can be shown (see [53], Chapter 3.5) that the Kerr metric (2.1) extends, under this
mapping, regularly to the manifold [0, 00) x [0, 00) x S?. We call the null hypersurface
{0} x [0, c0) % S* =: HZ the (left) event horizon and the null hypersurface [0, co) x
{0} xS? =: ;" the (right) event horizon. The sphere {0} x {0} x S* = M, NH =: S},
is called the (bottom) bifurcation sphere.
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Fig.6 The interior of
sub-extremal Kerr

Fig.7 The coordinate functions
t,r,v—, and vy

In order to extend M to r = r_, we define another set of Kruskal-like coordinate
functions by

V= et
Vo= et
at
cbr7 =Q — 2—2 .
rZ+a

The Kruskal-like coordinates (V,", V., 0, ®,_) map M onto (—o0, 0) x (—00, 0) x
S? and in the same way it can be shown that the Kerr metric (2.1) extends in these
coordinates regularly to (—oo, 0] x (—o0, 0] x S?>. We call the null hypersurface
{0} x (—00, 0] x S§? =: CH; the (right) Cauchy horizon and the null hypersurface
(=00, 0] x {0} x S? =: CH;' the (left) Cauchy horizon. The sphere {0} x {0} x S* =
CH,} N CHZ+ =: S is called the (top) bifurcation sphere.

Using the two Kruskal-like coordinate systems we define the manifold with corners
M := MU Hl+ UM U CH,+ UCH,, which is depicted in a Penrose-style diagram??
in Figure 6. Figure7 shows the behaviour and range of the functions 7, r, v_, and
v4+. We also define the manifolds with corners M := M U H1+ U H;" and M =
MUCH; UCH; .

We also note that the coordinates {v4, ¢4, r, 8} cover MU (H:“\Si) u (CHf\S?).
For later reference we express the Boyer-Lindquist coordinate vector fields (on the

23 To be more precise, depicted is a slice of constant 0 < 6 < 7 and each point represents an st
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left) in terms of the {v4, ¢4, r, 8} coordinate vector fields (on the right):

0 r? 4+ a2 a 0

arle A TR % ar Ut 2.3)
0 _y 9 _g .
dp o a0

We also note that the volume form in {v, ¢4, r, 8}-coordinates is given by vol =
p2sin@dvy Adr AdO Adg,.

Similarly we express the Boyer-Lindquist coordinate vector fields (on the left) in
terms of the {v_, ¢_, r, 8} coordinate vector fields (on the right):

ad _ rz—i-aza aa p d _ 5
arle A A " r
5 3 2.4)
— =0y — = 0y.
ap 00

We also note that the volume form in {v_, ¢_, r, 8}-coordinates is given by vol =
p2sin@dv_ Adr AdO Adg_.

Note that < dvy,dvy >=< dv_,dv_ >= M, thus showing that for a > 0
the level sets of vy and v_ are timelike hypersurfaces away from the axis.

We now define the functions f+ := v, —r+ryand f~ :=v_ —r +r_. Aneasy
computation gives

2 qin2 2.2
o A 2
<dftdft s=<dfdf" >= T4 S - (r—+2“) 2.5)
o o o
which shows that the level sets of £+ and f~ are spacelike hypersurfaces, cf. Figure 7.
Moreover, it is immediate that the level sets of r are spacelike hypersurfaces.

2.1.1 Relation of @, and @ on ‘H;" - and Similarly for D, ,@_on ’H,‘"

We define w := —%— and set
ri+a

a

. -
-
r: +a?

O+(r) = wer* —7 = —T.

This defines smooth functions for » € (r_, r). Moreover, ¢4 extends smoothly to 7
and ¢_ extends smoothly to r_: for ¢ this follows from

d¢ ") a dr* dr a r’+ad*> a a(r2+a2 )
_— ryr—m—— —_— —_—— = — —_— — .
dr * r_%_ +a? dr dr r_%_ +a?2 A A A r_%_ + a?

where the right hand side clearly extends smoothly to » = ry. We denote
lim, ., ¢, (r) =: ¢4(ry). Similarly for ¢_ and we denote lim,_,,_ ¢_(r) =:

¢ (r-).

@ Springer



Instability of the Kerr Cauchy Horizon... Page 23 of 133 7

We will also need to relate the angular functions ®,, and ¢ (¢_) on the right (left)
event horizon, where they are both defined. For r € (r_, r4.) we have

b — at
=9 r_%_—}—az
S+ G4 ()
= — v r
P+ ri—i—az + +
=¢p_+———v_ — r).

On H," we thus have

Q=@ — vy + 04 (r4),

while on H?‘ we have
Qr, =@ + v — P (ry).

2.1.2 Estimates for r* nearr = r4

. * 24,2 r2+a2 . .
We write ddLr = (r_:+;"(f_r_) = (r_r++)(r+_r_) + fi(r) with a function fy :

(r—, r+) — R that extends regularly to . Integration gives

1
rr(r) = mlog(u—'”)"‘FJr(V) (2.6)

with a function Fy : (r—,r;) — R that extends regularly to ry. Recalling r* =
%(v+ + v_) we obtain

VIV =W tv) — (py )2 B0 = Oy — 1), 2.7

r4 " r4

Similarly, we obtain
1
ri(r) = o log(r —r—) + F_(r) (2.3)
K_
with a function F_ : (r_, r4y) — R that extends regularly to r_.

2.2 The Principal Null Frame

For convenience we introduce the abbreviations 8§ = sin @ and € = cos 6. Moreover,
using the Boyer-Lindquist coordinates, we define

V=0?+a®d + ady and W =20, + as?y,.
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7 Page240f133 J. Sbierski

A principal null frame is then given by

! 0, e A ) \%
ey := —0dp, e3:=—od ——V,
pr " p?
v : (3 +a8%d,) ] 5 — Ly
= —_— = — a s ey 1= — — —V.
2 W pS (0] t 4 r A
The vector fields e3 and é4 are null and future directed and satisfy (e3, é4) = —2. Let

us denote the distribution spanned by é3 and é4 by IT and the distribution orthogonal
to IT by IT1. The vector fields e; and e; are not defined on the axis, but where defined
they form an orthonormal basis for IT+.

Note that in (v_, r, 8, ¢_)-coordinates we have?*

Aa) 2 8‘
€3 ,

_ 2% 2y and 4=-2
02 or 2 an ¢4 or

while in (v, r, 8, ¢4 )-coordinates we have

A0
S
p=or I+ orl+ A

Hence, the null vectors é3 and é4 are regular at the left event horizon H;’ and at the

right Cauchy horizon CH;, but not at the right event horizon H; and at the left Cauchy
horizon CH,+. There, the vector fields

e3 .= ——e3 and e4 = —Aeéey
are regular.

2.3 The Teukolsky Equation and Spin-Weighted Functions
2.3.1 Gravitational Perturbations in the Newman-Penrose Formalism

In the following we recall the basic steps in the derivation of the Teukolsky equation for
gravitational perturbations of Kerr, see [67]. We start by clarifying that our convention
for the Riemann curvature tensor is
RE = dx"(R(3, 9)d,) = dx* (vap Vi, 0y — Vi, Vi, av)
=9,I'h — Bgl"ffp +THTE —TE T

Kkp~ vo ko * vp

where x* denotes a local coordinate system.

24 1n the following ‘ + indicates a partial derivative in the (v, r, 0, ¢4 ) coordinate system.
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We now make contact with and follow [67] by setting

A 1, 1 0
l=—e4, n=-——-es, mg = ——"-

_ j - . (29
2 V2 r+iacos€<el+l e2)- (29

With respect to this complex principal null frame we have®

\IJO = R(lama7lvma) = 0
= R(l’ ns l? mll) = 0
M

U2 = R ma, Mg, n) = — e

(2.10)

=R({,n,mg,n) =0
Yy = R(n,mg, n,my) =0.

Let now g(s), s € [0, &), be a smooth family of Lorentzian metrics defined on M U
Hl+ U Hf satisfying the vacuum Einstein equations Ric (g (s)) = 0 and such that g(0)
is the metric (2.1) of sub-extremal Kerr. Moreover, let I(s), n(s), m,(s), m,(s) be a
complex frame field (not necessarily null) such that for s = 0 they agree with (2.9)
and define W; (s) in analogy with (2.10) for all s. It now follows from (2.10) that

. d
U0 = | (R(e@)(16). ma(5). 1(5). ma ) )

ds
;<d | R(3)) (10), ma(0), 10), 1y (0)),

i.e., Uo(0) is in fact independent of the continuation of the complex principal null
frame (2.9) for s > 0. Moreover, because W is a vanishing scalar, lilo(O) is also
gauge invariant. The same observations hold for W, (0). In [67], Teukolsky derived the
following equation, now called the Teukolsky equation,

AMar a? 1

(’"2+a2)2 2 .2 9 A 9 A

_ [—A —a®sin? 0|7 — =00, [Z_ sinQG]awlps
—s stlq 2 1 . A a(r— M) icos0 n
+ AT (A arws>+.—ae<smeaews)+2s[ + = o

sin ¢ A sin” 0

M(r? — a?) . A 5% cos? 6 A
+2s[——r—tacos@]anps—[f—s]%:0’
sin” 6

@2.11)

which is sat@sﬁed for s = +2 by 1}2 = Wy(0) and for s = —2 by 1/}_2 = (r —
iacos @)t - Wy (0).

25 See [67] or [7], taking into account that they consider Lorentzian metrics of signature (4, —, —, —), i.e.,
R(_g)/wpa = —R(g)/wpa .
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2.3.2 The Teukolsky Equation for a Regular Field Near ;"

We recall that | = —&4 blows up at the right event horizon H;" and that Al = ey is
regular at Hf. Hence, the curvature component @ = R(esq, mg, €4, my) = A2y is
regular at Hf (and vanishes at H;r) and for its linearisation & we obtain & = AZWy.
This motivates to set s := A® @s. It now follows that if 1@5 satisfies (2.11), then ¥
satisfies

) (r? + a?)? ) 5 4Mar a? 1 5
Tis¥s == —[T —a“” sin 9]8, Yy — Ta,awx//s — [K — m]awws

AT B (A0, + —— By (sin B30, )+2S[L — M icose]a "

r rV¥s Sin@eA 0Vs A sin26’ o Vs

Mr? —a?) . s2cos? 6
+25[7—r—la6089]3[¢5—[ — +s]
sin” 6
X Yy —4s(r — M)o, ¥y =0,
(2.12)

where we have used
AS AT (AT = AT, (AT B, 0) — ds(r — M3, Wy — 25

In particular, the quantity we are most interested in, & = VY, satisfies (2.12) for
s =+2.
Using the definition of the wave operator

1
Dgw = —a/L(glw\/ —det g 0,r),

J/—detg
we can rewrite (2.12) as
1 2s 2s ra(r — M) _cosf
_27Es]1/fs=|:|g1/fs__z(r_M)arlﬂs‘f——z( +i— )8(/,1/[Y
0 0 P A sin” 6
) 2 2 (2.13)
+2S<M(V —a’) . 9)81// 1( n 5 COS 9)1/[
—|(——— —r —iacos ——(+s =
p? A 2 in26""°

2.3.3 Spin s-weighted Functions on S?

In the following we will exhibit the appropriate function space on which the Teukolsky
equation (2.12) is defined —and in particular which function spaces & and ‘iJo (0) belong
to (it is immediate from their definition that they are not regular at & = 0, 7). We begin
by discussing spin s-weighted functions on the 2-sphere which arise by expressing
tensors on S? with respect to a (necessarily) non-global frame field. We consider the
standard (0, ¢) coordinate system on S? in which the round metric takes the form
g2 = d6? + sin® 6 dg? and choose as an orthonormal frame field E; = 9y and
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E, = ﬁaga, which are defined away from the north pole at {# = 0} and the south

pole at {§# = m}. We combine this frame field into a single complex vector

1 i
" ﬁ(9+sin9 2

Consider now the space FOO(SZT*S2) of all smooth symmetric 2-covariant tensor
fields on S” and define a map

b TR(S2T*S?) — CX(S*\ {§ =0, 7}) N LX(S?) (2.14)

by tm () = a(m, m).

Definition 2.15 The space of smooth spin 2-weighted functions on S? is defined as
I%)(S%) = 1w (DX (S*T*S?)) € C®(S*\ {0 = 0, 7)) N L®(S?)

Remark 2.16 For o € S?T*S? we compute

(. m) = ~ (o0 + ——agy + — ) = = )
a(m,m) = —(« —aq, — 0y — ——« = —(agg — o
2 00 sin 0 o0 sin O vo sin2g ¢ 2 00 sin2g ¥
i
+sin0a0¢

where we have used the symmetry of «. It follows that ge2 (m, m) = 0 and thus the
kernel of ¢, contains gq - C oo(Sz). We now show that the kernel of ¢, equals gq2 -
C%°(S%). We note that T®(S’T*S%)/g ,.c(s?) ~ T (SAT*S?), where [ (S3T*S?)
denotes the space of all smooth symmetric and trace-free 2-covariant tensor fields on
S*. Fora € FOO(SthT*Sz) we have agg + @“W = 0 and thus
(m, m) T
a(m,m) =« — g,
T Sing7?

which shows that «(m, m) characterises « uniquely. This shows that ¢, \Foo (s2
I

FOO(SthT*Sz) — Jff] (S?) is an isomorphism.26

T*s?) -

We also remark that the space of smooth spin —2-weighted functions is defined as
the image of [ (S27*S?) under 4 in COO(SZ\{Q =0, }), where m is the complex
conjugate of m. Although not needed in this paper, we also briefly remark that smooth
spin (£1)-weighted functions are defined as the images (under ¢, and ¢;;) of all smooth
one-forms on S?. We also remark that it follows directly from the definition that the
spaces of smooth spin weighted functions are invariant under multiplication by smooth
functions on S2.

26 Indeed, one could have defined the space J‘[Dzo] (SZ) as the image of FOO(SthT*Sz) under ¢,,. However,

for the proof of Proposition 2.47 we will need that oo(m, m) € I][of] (SZ) even if « is not trace-free.
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We now give an intrinsic characterisation of the spin s-weighted functions on S2.
We define

5 o 4+ o1 cos@a
= —sin cos —is —
! v ¢ sin 0 sing ¢

1 cos 0 ) (2.17)
8‘/’

Z) = — oS dg — sin —is —_—
2 ¢ o g0< sinf  sin6

Tpese:~ first oNrder differential operators satisfy [Z 1, Zz] = 23, [Zg, 23] =7 1, and
[Z3, Z1] = Z>.

Proposition 218 f € C(S* \ {6 = 0,x}) lies in I34(S?) if, and only if,
e”‘_"(ZL)k' (Z%)k2(23~)k‘f extends continuously to the north pole 6 = 0 and
e BY(ZDM(Z2)2(Z3)R3 f extends continuously to the south pole 6 = w for all
0< ki +ky+ks < o0 ki € Np.

Before we give the proof we recall that the vector fields

7z 08 cos 6
= —sin — cosS
! oo ¢ sing *
cosf
Zy = —cos@dg + singp—— 0y (2.19)
sin O

Z3 =0,

are smooth on Sz, span TS? at each point of Sz, and satisty [Z1, Z2] = Z3,[Z», Z3] =
Zy,and [Z3, Z1] = Z».

Proof We observe that

. sin cos
V2eim = (cosgo 0y — — (p8¢> 4+ (singo 0 + — ‘paw)
S i

in 6 sin @
= (-Zz+

is continuous at the north pole 8 = 0 and, similarly,

sin ¢ . /COS @ .
né 8(/)) i (sin9 % —51n(p89>

si

sin ¢

€O rcosh — 1123)

[cosf — l]Z3> ti (—zl - =

i
sin 6

V2e T m = (cosgp 9 +

sin ¢ .
= (~22+ —leost + 1123 +z(zl+

cos ¢
Si

6+1]Z
nG[COS + 1] 3)

S
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is continuous at the south pole & = 7. Moreover, we compute

cos

Lzm=i— (p-m
sin @
sin ¢

Lz,m = —i

% in 6

Lz.m =0

For s = 42 and o € '™ (S2T*S?) we now compute

(Lz,@)(m,m) = Lz, (a(m,m)) = 2a(Lzm,m) = Zi(a(m,m)).  (2.20)
Iteratively, we obtain

(L2 (L) (Lz5) ) (m,m) = (Z)" (Z2)!2(Z3)5 (a(m.m))  (221)

for O < ki + ky + k3 < o0.
Givennow f = a(m,m) € Jffl (Sz), it follows from (2.21) together with the above
observations that

e (ZDN(Z) 2 (Z3)B f = (L2 (L2,) 2 (L2 a) (m, m)
= (L2 (L) (Lzy) ) (€ ?m, 9m)

extends continuously to the north pole. The analogous computation shows the claim
for the south pole.

Vice versa, let f € C % (s? \ {# = 0, m}) satisfy the continuity properties stated
in the proposition. By Remark 2.16 a(m, m) := f defines a smooth symmetric and
trace-free two-covariant tensor field (over R) on S? \ {6 = 0, }). It now follows as
before from (2.21) that this tensor field extends smoothly to the north and south pole.

The statement of the proposition for s = —2 (as well as for s = =+1) follows
analogously. O

Now we introduce spin weighted Sobolev spaces. Some properties of those will
later be needed for the energy estimates and Sobolev embeddings of spin weighted
functions.

Definition 2.22 The spin s-weighted Sobolev space H[’;'] (S?) is defined by

H{\(S) = (f € L*(§) | (Z)"(Z2)(Z3)" f € L*(S?) for all
0 < ki +ky+ k3 <m, ki € No}.

We denote with S%r the (closed) northern hemisphere of S? and with S? the (closed)
southern hemisphere.

Lemma223 If f € H[ﬂ](sz), then ¢ f € HI(S%) and e™*? f € HI(S2) for
j=1,2
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Proof We compute

i@ f) = (2 f +is 2 (1F cos) f)
o

Zo(eH1 f) = Fi0% (Zy f — isziif;z (15 cos ) f) (2.24)
=bs

Z3(eF5 f) = e55Y(Za f £isf).

Let us now restrict to the upper sign and to the northern hemisphere. It then follows that
a_(0,¢) = iscosp - O@B) e C*(S%), and similarly b_ € C*!(S%). Thus all the
terms in (2.24) are in L2(S%). Moreover, it now follows easily that Z; (Z;(e*¢ f)) €
L?(S%) forall i, j € {1,2,3}. For example we have

Zo(Z1(e9 ) = Zo(e"Y Z1 ) + Za(a— - "7 f)
= eisw(Zz(Zlf) —i—a_Zlf) Y (Zaa) - €5 F +a_Zo(e? f).

Similarly for the lower sign and the southern hemisphere. O

g 2 2
Proposition 2.25 We have J7(S%) = (o< oo Hy ()

Proof The inclusion “C” follows directly from Proposition 2.18. For the reverse
inclusion let f € ﬂ0<m<oo H[’;’] (S?) and note that for 0 < k; + k» + k3 we have

(Z)*1(Z)*2(Z3)% f € HE (S?). Tt now follows from Lemma 2.23 together with the

standard Sobolev embeddjng theit elsy (~Z Dk (22)"2 (23)"3 f is continuous at the north
pole 6 = 0 while e v (Z)k (Zy)k (Z3)k3f is continuous at the south pole 6 = .
The conclusion now follows again from Proposition 2.18. O

Let us denote the standard volume form on S? by volge = sinfd6 A dg. We now
derive an integration by parts formula for spin weighted functions.

Proposition 2.26 For f,h € J73(S%) and i € {1,2, 3} we have

/2 Zif <ol = —/2f - Zihvolg.
S S

Proof We give the proof for s = 42, but the other cases are analogous. We begin by
noticing that

mm=E Q@E1+EQ®E,—i(E1®E— E;®E) =g —ie, (2.27)

where ¢ = Volg’2 € I'®(A2T*S?) is the raised volume form. Note that m ® 77 is a

smooth tensor on S2. In particular, since the vector fields Z; are Killing vector fields,
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we obtain
Lz, (m @m) = 0. (2.28)

Let now a, B € I'®(S2T*S?) with a(m, m) = f and B(m,m) = h. Using (2.20),
(2.28), and the smoothness of m ® m we compute

/ Z,-f -Evolgz :/ Z,-(a(m,m))ﬁ(m,m) volg
s? s?
= /2(£z[o;)(m, m) - B(m, m) volg
S
=— /2 a(m,m) - (Lz,B)(m, m) volg
S

= —[2 fﬂvolsz.
S
O

Remark 2.29 Note that the smoothness of m ® m implies that if f,h € JE}O] (s?),
then fh € C % (S?). The above ~can now also be derived from observing Z;(fh) =
(Zi YR+ fZilh = (Zi /)h + fZih.

2.3.4 The Spin s-weighted Laplacian

. . . o [s] . .
The spin s-weighted Laplacian A " on S? is defined for f € S[OSO](SZ) in standard
(6, ) coordinates by27

o 1 1 cosf cos? 6
Ay f = —80(sin0 dg f) + —5—02f + 25i ——, f — (s° —s)f.
51/ sin 6 9( ef) sinZ 0 (pf sin? 6 of ( sin 6 )f
(2.30)
We note that
(R —s —sDf = ((Z)*+(Z)* + (Z)Y) 1. (2.31)

such that it follows easily from Proposition 2.18 that (2.30) is a smooth operator on

USTEDY

27 This differs from the spin s-weighted Laplacian in [15] by an overall minus sign.
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It follows directly from Proposition 2.26 and (2.31) that for f € I (S?) we have
. 3
—fSZA[S]f-fvolsz = _/sz (Zz?f+(s+s2)f) - f volg
i=1

3 (2.32)
= /SZ Z |Zif|2 volg — /;Z(S +52)|f|2 volga.
i=1

Note that for s = 0 the right hand side of (2.32) is equal to sz (|8(9f|2 +
ﬁww f1?) volg, which gives non-degenerate control of the 9, derivative towards
the north and south pole of S?. For s # 0, however, ﬁaq, f has in general a pole in
6 at 6 = 0, w and thus, in particular, is not square integrable on S2. The next lemma
gives the appropriate generalisation, which is needed in Sects.4.2 and 4.3.

Lemma 2.33 For f € J75(S%) we have

do f € L(S?)

1 ) (2.34)
——(iscost + dy) f € L*(S7)
sin 6
and the following holds:
. 1
SNZifPP =100 f 1+ ——liscosO - f + 9, f1* + s*| fI*. (2.35)
= sin” 6
Proof In order to prove (2.34) we note that by Proposition 2.18 we have
—sing-Z1f —cos@-Zof =dgf € L¥(S?)
~ ~ 1
sing-Zyf —cose-Z|f = o (is +cos-9,) f € L®(S?) . (2.36)
i

Multiplying (2.36) by cos 6 and adding ﬁ sin? 6 - dy f, which is clearly also bounded
on S?, we obtain the second claim in (2.34). The proof of (2.35) is a direct computation:

1
sin® @
1
sin” @

3
Y NZifP =1 1> + lisf +cos6 -, f* + 10, f1?
i=1

=9 > + liscosf - f + cos® 3, f | + lisf + cosb - 3, f|?

2

.2 5 COsTO 5
+ sin“ 6 - 0, + sinf - 9
sin29| o/l sin26?I ol

= 80 fI* +

——liscos® - f + 3, fI”
sin” 6
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((iscos@ - f +cos®6 - 3, f)(sin> 6 - 3, f))
+lisf +cosb - d, f|* + cos® 0|3, f1?
r .
=100 fI* + ——liscost - f + 8, f "+ %I f 1"

Lemma 2.37 For f € fJ (Sz) we have

3 3
Kiafhiaf = Z ZZif 12 =26+ 5D Y NZif 1P+ s + DS

i=1

where = denotes equality after integration over the sphere.
a..

Proof Using Proposition 2.26 we compute

3 3
Kfdif = (X225 +6+507) (X227 + 6 +527)
i=l1

j=1

a..

3
Z ZFZ2f + s +sHfP - 2(s+s2>Z|z f2.

i=1

Moreover, using the commutation relations [Z,-, 4 il =¢ijk Z(, we further compute

3
> zizfijz_f;_ — Y ZifZiZif

i,j=1 i,j=l1

i,j=1 Jj.k=1
3 3 3
= \Z;Zi f1* + Z eijkZ;Zi f Zif Z eijkZifZkZj f
i,j=1 i,j.k=1 jk=1
3 o 3 N _ _
= \Z;Zi fI* - eijk(Zi f(Z;Zf + ZkZi f)) .
i,j=1 i,j.k=1

=0

O
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2.3.5 The Teukolsky Equation in Boyer-Lindquist Coordinates

Using (2.30) and A58, (A1, 1) = 2(r — M) (s +1)8, 9 + Ad> s we can rewrite
the Teukolsky equation (2.12) as

(r? —i—az)2 . 4Mar a?
T o= —| T —asin® 0|0y — — 00,05 — TO7vs
+ APy + 20— MY(L = )3, + 25 atr - s, (2.38)
M — 0
+ ZSI:M —r —iacos e]atdﬁ + A[s]ws — 2sws =0.

2.3.6 The Teukolsky Equation in {v,, @, r, 8} Coordinates

Using (2.3) we rewrite (2.38) in terms of {vy, ¢4, r, 6} coordinates, which are regular
at the right event horizon H;”, to obtain

Ti s o= a®sin® 0 0; Yy + 2a 9y, 3y, Y5 + 20 + a®) By, 0,
+2ad,, 005 + A 02U + 2(r(1 — 25) — isacos 9) By, s (239)
+20r — M)Y(1 — 5) 3,05 + Rpsyirs — 25 = 0.

2.3.7 The Teukolsky Equation in {v_, @_, r, 8} Coordinates

We express the Teukolsky equation (2.11) for 1&5 (which is regular at H[+) in terms of
{v—, ¢_, r, 8} coordinates (which are also regular at H;r), using (2.4), to obtain

Tis Vs 1= a®sin® 0 9% Yy — 2a 8,_0,_1rs + 2(r> + @) 8y_ 0,V
—2ad, 395 + A 02 + 2(r(1 + 25) + isa cos 9) 3, U (2.40)
+20r = MY(1L+ ) 0 + g = 0.
2.3.8 Spin Weighted Functions on Spacetime

We consider M and observe that the vector field m = f (Op+ = 8(p) given in Boyer

sin 6

Lindquist coordinates, extends smoothly to M \ {6 = 0, } by virtue of dp = O,
0o, . We consider the space FOO(SZ(T*E)) of all smooth and symmetric sections

of T* M ® T* M and the map t,, which acts on an element @ of I (S2(T*M)) by
tma = a(m, m).

Definition 2.41 The space 3[2] (M) of smooth spin 2-weighted functions on M is
defined as the image of ['™°(S2(T*M)) under t,,, i.e.

I M) = 1 (TS (T7M)) ) € C¥QN\ (0 = 0,7}, ©).
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Remark 2.42 1. As before, the space of smooth spin —2-weighted functions is defined
as the image of '™ (S%(T*M)) under ¢ and the spin &1-weighted functions are
defined as the images of the space of smooth one-forms on M.

2. It follows from the definition of the spin weighted spaces that they are invariant
under multiplication by elements in C*° (M, C). To see this we note that multipli-
cation by i of a smooth spin 1-weighted function corresponds to a concatenation
of the one-covector field by a rotation of % (with respect to the oriented frame
field {0y, ﬁaw}) while for smooth spin 2-weighted functions it corresponds to a
concatenation of the symmetric two covector field with a rotation of 7.

Letus define the distribution D C T M whichis annihilated by (d V", dV,, dV,*,dV,"}

(where defined). Its integral manifolds in the interior of M are exactly the Boyer-
Lindquist spheres of constant t and ». We note that m lies in the complexification of
D. Moreover, we denote the dual bundle of D by D*.

Remark 2.43 1. Given a subset A C M with the property that the integral manifolds
of D restricted to A are complete spheres, we define the spin weighted spaces
J‘[”S‘i(A) analogously. For example we will choose A = M later.

2. We define an auxiliary round metric g on the integral manifolds of D by the
symmetric part of m ® m, cf. (2.27). The kernel of the map ¢, : Fw(Sz(T*M)) —
COO(M\ {6 =0, r}, C) is the span of all those symmetric two-tensor fields that,
when restricted to D, vanish or are proportional to g». Thus, the space Uffl (M) of
smooth spin 2-weighted functions on M is isomorphic to the space '™ (SZ(D* —
M)), the space of all smooth, symmetric, and trace-free (with respect to gSz)
sections of D* @ D* — M.

3. Given the above, a convenient realisation of the space UFZ"](M) is as all those
elements in I (S2(T*M)) that

e vanish if 8Vr+ is inserted in one of the slots

e vanish if 9;,- is inserted in one of the slots
I+

e are trace-free with respect to go.

We will call such an element a symmetric and trace-free S* 2-covariant tensor
field. On this subset of T (S%(T* M)), t,, is an isomorphism.

As before we can characterise the spin weighted functions on M among the
elements of C*°(M \ {# = 0,x},C). We do this in regions on which we have
global coordinate charts. For example on M we introduce the first order differen-
tial operators Z; ., i = 1, 2, 3, which are defined as in (2.17) but with respect to the
{V,t, Vrjr, 0, ®,, } coordinate system, i.e., we replace ¢ in (2.17) by @, . We obtain

Proposition 244 f € C*(M\ {6 = 0, }), C) lies in I3(M) if, and only if,

P 0y ) By )21 ) (22 )2 (23 )0 f
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extends continuously to M\ {6 = w} and
e PP 0y ) By )21 ) (220 (Zar VS f

extends continuously to M\ {6 = 0}) forallly, >, ki, k2, k3 € Ny.

Proof This is the same as the proof of Proposition 2.18, noticing that we have 9, =

8<1>,Jr Lav m =0, ﬁa m = 0, and also the last point in Remark 2.43. O
r+ Vg

Similarly we choose {Vr‘f, V.=, 0, ®,_} coordinates on M and define the operators
Zi 1 = 1,2,3, by replacing ¢ in (2.17) by ®,_. We obtain an analogous char-
acterisation of elements in J[S](/\/l). Taken together, this gives a characterisation of
elements in JF;J](M) among those of C*®°(M\{0 = 0, }), C).

We will also need to define the operators Z,-,Jr, i = 1, 2,3, with respect to the
{v+, ¢4, r, 8} coordinate system, i.e., wereplace ¢ in (2.17) by . Similarly we define
the operators Z,',,, i = 1,2, 3, with respect to the {v_, ¢_, r, 8} coordinate system.
We obtain analogous characterisations to Proposition 2.44 in the regions covered by
each of these coordinate systems.

It now follows from (2.31) (which obviously holds for any of the sets of Z defined),
the second part of Remark 2.42, and Proposition 2.44 that the Teukolsky operator
Tjs), defined in (2.39), is a smooth operator on J5; (/\/l U (H,7\S}) U (CH\SD)).

Similalry, the Teukolsky operator ’TS ]» defined in (2.40), is a smooth operator on
I(M UGS U CHASD).

2.3.9 The Spin Weighted Carter Operator

Definition 2.45 We define the spin s-weighted Carter operator Q[] by

Ofs] := a’sin’ 0 8& —2isacos® 9y, + 40&[s]
= a’sin® 6 837 + 2isacos6 9,_ + 40&[51

Note that it follows directly from (2.39) and (2.40) that the spin s-weighted Carter
operator commutes with the Teukolsky operator, i.e. we have [7s, O] = 0 =

(7051, Qps1]-
2.3.10 The Regularity of a as Defined in Section 2.3.1and 2.3.2

Our following global theorem will concern spin 2-weighted functions, satisfying the
Teukolsky equation, that satisfy the following smoothness properties.

Assumption 246 o Y € fJ°° M).
7 )zl/f € .'Jff](/\/l) Note thatth1s implies, using (2.7), thatw = A2w € 3[2](./\/1

(H; \S ).
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e 1 satisfies 71 = 0in M U (H:F\SI%). Note that this implies that ¥ satisfies
T = 0in MU (HN\SD).

We have dropped here the subscript 2 from ¥ to shorten notation. No confusion
can arise, since the remainder of the paper is only concerned with spin 2-weighted
functions.

We investigate what the above regularity assumptions imply for 9,1 and E)rzw,
where the partial derivative is with respect to the (v, r, 8, ¢4+ ) coordinate system. By
(A.1) and (2.7) we have 9, = ﬁfl (r)BVrjr + fg(r)8q>r+, where f1(r) and f,(r) are

functions which extend smoothly to r = r. It now follows from Assumption 2.46
that ¢ decays at least like (V,7) for V' — 0, 9, at least like V,*, and 97 does in
general not decay but is a regular smooth spin 2-weighted function on M.

We now show that ¢, as defined in Sections2.3.1 and 2.3.2, satisfies the above
smoothness assumptions 2.46.28

Proposition 2.47 The quantity ¥ = «& from Section2.3.2 satisfies the Assump-
tions 2.46.

Proof Recall that e4 is a smooth vector field on M, vanishing at Hf. Also recall that
& = R(e4(0), mq(0), €4(0), my (0)) =: B(mq(0), ma(0)),

where we have defined 8, a smooth and symmetric tensor field on M. By (2.9) we
have

B(ma(0) ) 1 5 n ia sin@8 n ia sin08

m , m =— B\m+ —0o,m+ —

“ ¢ (r +iacosf)? 2 N

By the second point in Remark 2.42 it suffices to show that S(m + "“jgea,, m +

iasi

Tgeﬁt) € U[°2°] (M). By definition of the spin weighted spaces we have g(m, m) €

T[’fl (M) and thus it remains to establish that sin6 - S(m, 9;) € J‘[’ZO] (M) and sin? 6 €
J‘é’] (M). Let us define the smooth one-form y := sin6d6 on M. Then y ® y is a

symmetric two-covector field with (y ® y)(m, m) = % sin? 0, which lies in J‘[’zo] M).
Similarly, defining the symmetric two-covector field y ® B(-, 9;) + B(-, 9;) ® y shows
that sin@ - B(m, 9;) € J‘[}O] (M). This shows the first point. The second point follows
analogously recalling from Section A that VlJr e4 is a smooth vector field on M. The

4

last two points were established in the previous sections. O

3 Assumptions on the Event Horizon and the Main Theorem

In addition to the smoothness assumptions in Assumption 2.46 we make the following
assumptions on ¥ along the event horizons:

28 Recall that my differs from m by a term proportional to d; — thus the claim that & is spin 2-weighted is
not trivial.
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Along the right event horizon H,": Assume that there exists a p € N such that
fH*ﬂ{v+>1} vip|1/f|2 volge dvy = +o00. Let pg € N be the smallest integer such that
this holds, i.e., we have

f V2|2 volg dvy. = +o0. 3.1)
HN{vy 21)

Assume that pp > 2. Moreover, we assume that there is mg € Z and N > [y >
max{2, |mg|} such that

2
| 1 st P dvy = oo, (3:2)
U+21

2
where (Y13 )5 (v1) = fg 1//|Hr+(v+,9,<p+)y,£j 16, 43 0) volz denotes the

projection of vr|,+ onto the spin 2-weighted spherical harmonic Y,E:la] @, ¢o1;0),
cf. Section5.1. We also assume that

/ V30, Y% volg dvy < +00 (3.3)
HiN{v>1)
holds and that for some 2 < g, < 2po, g» € R, we have?’
> f X oI Z 7R 78 8] fIPvolgdvy < 400 (3.4)
0<it+iat+izt+j<1 Y v 21

with £ € {8 85 SV, 8y, 89, 32 3y, Q512 35 35y, 1,0 < a+b <2,c=0,1,2.

vy Y1 Or vy %0 Or vy Y1 Or
Along the left event horizon Hl+: Assume that

Y is compactly supported on Hl+ U Sp, (3.5)

i.e., there exists a vy € R such that 1/} vanishes in H1+ N {v_ > vo}. However, all our
results remain true if we replace (3.5) by the much weaker

/ v‘i’|Z’]172'2272337857f|2V01S2 dv_ < 400 (3.6)
T HNfu_>1} ’ ' ’
0<iy+ip+iz+j<1 7

with f € (3¢ 92 ¢y, 8,_0% 85 9, Quudg 95 9¢}.0 <a+b+c<2a.b.ce
NoandR 3 ¢; > 2po.>0 To see that (3.5) implies (3.6) for f = 8,1&, we notice that the

29 We have made no attempt in this paper to keep the number of derivatives required as low as possible,
one can certainly improve on it. It is also likely that one can improve on the requirement 2 < ¢, and thus
also on the lower bound on 2 < pg. The bound 2 < g, is used in Theorem 5.26 (via Corollary 4.46 — for
which we also use all the derivatives assumed) to derive the radial ODE (5.28).

30 The asymmetry between the number of derivatives assumed on the left and right event horizons can
be traced back to the necessity to close the energy estimate near 'H,TL at the level of (9, |+)21// while near
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Teukolsky equation (2.40) reduces in the region H;’ N{v_ > vo}, where 1& vanishes, to
(22 +a*)d,_—2ad, )d, % +2(r — M)(1+5)d, ¥ = 0. This shows that 3,y decays
exponentially along Hl+ —amanifestation of the red-shift effect. Further commutations
with 9, even improve the red-shift.

For the statements of the intermediate results in the main body of the paper we will
often use the phrase ‘under the assumptions of Section 3’. Let us make explicit that
by this we mean the Assumption 2.46 together with (3.1), (3.2), (3.3), (3.4), and (3.6).
However, usually not all of these assumptions are required for the specific partial result
proven.

With the exception of Section6.2.4, where we briefly consider the case s = —2,
this paper is only concerned with the case s = 4-2. However, we will not replace the
s in the Teukolsky equation by 2 so that the reader can follow the importance of the
value of s for the validity of our estimates. With the exception of Section6.2.4 the
convention in this paper is that s = +2.

Theorem 3.7 Let  satisfy the Assumptions 2.46, (3.1), (3.2), (3.3), (3.4), and (3.6).
Let vo € R and consider the spacelike hypersurface ¥ = {f~ = vy} which is
transversal to CH;". We then have

vy 2 volgaduy = oo. (3.8)

TN >1)

The above theorem is global in nature, it concerns solutions of the Teukolsky equa-
tion defined in all of the interior of asymptotically flat two-ended Kerr black holes.
As stated, it is not a useful ingredient for treating realistic one-ended rotating black
holes. In the following we give a version of Theorem 3.7 localised to a neighbourhood
of timelike infinity.

Theorem 3.9 Consider a patch of M given by M N{f_ < v} N{fy = vo} for some
vy, V2 € R, see also Figure 9 on page 88. Let € J‘[’zo](Mﬂ {f—- <uviIn{fy > v}
satisfy the Teukolsky equation T = 0 and’! (3.1), (3.2), (3.3), and (3.4). Let

vy < vy and consider the spacelike hypersurface ¥ .= { f~ = v2} which s transversal
1o CH,\". We then have

vy 2 volgaduvy = oo. (3.10)
ZNfvy =1}

Remark 3.11 1. The proof of Theorems 3.7 and 3.9 contains a crucial Fourier-theoretic
component. To obtain the instability at the Cauchy horizon we use that there is a
smallest pg € Nand mg € Z and N 5 Iy > max{2, [mg]|} such that

0L (WTpt Ity (@) ¢ L (—e. &) forany & > 0. (3.12)

H?’ we close it at the level of 1/} The higher number of derivatives assumed on H;" allows us to ease the
presentation of the proof of Proposition 4.11 in Step 6. However, one can certainly improve on that.

31 with the integration ;" N {v4 > 1} replaced by H;™ N {vL > v}
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Here (M)molo results from |4+ by taking the Fourier transform in v4 and
subsequent' projection on the my, er spin 2-weighted spheroidal harmonic, cf.
Section5.2. The physical space assumptions (3.1), (3.2), (3.3) are only used to
guarantee (3.12), see Proposition 7.5. In particular the above Theorems remain
true if (3.1), (3.2), (3.3) are replaced by (3.12). Note that the assumption (3.4)
implies that 2 pg must be greater than g, .

2. Having dropped the subscript s from 1, we introduce the notation

\[’m(U—h r, 97 (P—i-) = /l ¢(v+, r, 9, (pf,’_) . e_im(p;» d@i‘_ . eim(er
S

for the projection on the m-th azimuthal mode, m € Z, and also V.o := ¥ — .
Note that if ¢ solves the Teukolsky equation then so does v,,. We can thus apply
the above theorems also to the projections 1, individually to obtain statements
which, through the ensuing m-dependent parameter pg, depend on m.

3. It was shown recently in [51] (see also [15, 50] and also [3]) that for slowly rotat-
ing®? sub-extremal Kerr and for compactly supported initial data for the Teukolsky
equation, posed on a spacelike hypersurface connecting the event horizon with
spacelike infinity, one has

i +2 —7—j —T—j—
0] Ymzolyr — Y Oma¥ 50, 04 00077 <o
m==£1,£2

where ¢ > 0 and Q,,.2 € C is generically non-vanishing, and

j +2 —8—j —8—j—
0] Wolyr — Qo2¥i3 0. o 0wy | Swit T

where again Q¢ 2 € C is generically non-vanishing. For v, large enough we thus
obtain for m = =1, 2 generically |(¢|Hr+)5(m2)| > cv;7 with ¢ > 0 and for

m = 0 generically |(¥|3+)s02)| > cv;® with ¢ > 0. Hence for mo = 1, 2
the assumptions made in this section are generically satisfied with /p = 2 and
po = 7 and for mg = 0 with [j = 2 and pg = 8. If we do not decompose into
azimuthal modes the assumptions are generically satisfied with pp = 7,y = 2 and
mo € {—2, —1, 1, 2}. The parameter g, can be chosen to be anything strictly less
than 13.

If we do not assume the initial data to be compactly supported, but still to be
smooth with respect to the conformal compactification at future null infinity, we
expect the generic decay rates to be slower by a power of vjrl, see also [2]. There
is evidence that the assumption of smoothness at future null infinity is not satisfied
in many physically interesting situations (see [9, 38]) and that this impacts the late
time tails [39]. There is also evidence that tails arising on dynamical black hole
exteriors differ from those on stationary exteriors [44].

32 One expects that these results remain true in the full sub-extremal range, see [51].
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4. We rewrite (3.10) in terms of quantities that are regular at CH,': we first recall
that 1/} = ﬁlﬂ is the linearisation of the curvature component with respect to
the algebraically special frame that is regular at CH," and that we have A% ~
2= (WHv-) ~ p2€-V+ glong X for vy — 00, where we have used (2.8). Moreover,

we have V' = —e*~U+ and thus log(—V,") = x_v; and dvy = p :/J, avr.

We thus find vip°|1p|2 ~ [log(—V,‘f)]zpo(—V,‘f)4|1/Af|2 along ¥ for v, — oo and
hence (3.10) is equivalent to

/ [log(=V, O (=V;H) 2 volged V,F = oc. (3.13)
ZN{vy 21}
5. As a side result we also prove

v [y 2 volgaduy < oo,

ENfvy>1)

see (4.76). Hence, the integral in (3.13) with 2pg replaced by g, is finite. Recall
that we said that in particular for compactly supported initial data g, can be chosen
to be anything strictly less that 2pg — 1.

4 Energy Estimates for the Teukolsky Equation: Upper Bounds
In this section we prove stability estimates which are being used to justify Teukolsky’s

separation of variables, to pass to the limits » — r4, and to propagate the singularity
backwards along CH;'.

4.1 Estimates Near the Event Horizons

We begin with the semi-global estimates near the left event horizon, since they are the
simplest and thus the structure is easier to understand here.

Proposition 4.1 Under the assumptions of Section3 there exists an req € (r—, ry)
and a C > 0 such that

sup > VINARIZY ZE 78 8] 8F £ volg du_
T €lrreds 1 0Liy 4ipis+j+k< 1 S
< Sr=rn->1)
“4.2)
+ > / v Z_Z8 75 9] of f1*volg dv_dr < C

OSA 2+ G+ FRS g <r <rinfo->1)
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holds for f € (99 0b_9¢, 8,_09_9b_dcy, Qppd® 92 9P} 0 < a+b+c <2,
a,b,ce N0.33

Here, and in the following propositions and corollaries throughout Section4, the
constant C depends in particular on the initial data of the Teukolsky field on Hf’ and
H;’“, on g; and g,, on the black hole parameters, and, in general, on the region in which
the estimate holds. The exact dependency and the optimal value of the constant is,
however, of no interest to this paper. We only need the qualitative statement that the
quantity in question is finite.

Proof Step 1: The multiplier. In the following we restrict to v— > 1. We start from
the following multiplier identity, where A, n, © > 0 are constants to be chosen:

0= me(Ame& f (= (14 20)0, + (1 + AA)aL)@

4o 0T e [P — o e [P — 208 pe Re(Go, ) 4

=0

Here, for A > 0 suitably, the vector field —(1+AA)9d, + (1 +AA)d,_ is a choice of the
redshift vector field of Dafermos and Rodnianski, [18, 19], and the underbraced term is
added in order to control the zeroth order terms, as will become clear in the following.
After integration over the spheres, and using the form (2.40) of the Teukolsky equation,
the right hand side of (4.3) is the sum of

1. the sum of all the terms on the right hand sides of B.1 and B.2
2. the real part of the terms

2(r(1 +2s) + isacos 6‘)8U_1/A/vql( — (1 +2rA)0 + (1 + )LA)E)U_)E

— 0?1+ 28)200 — MY(1 + )99 + 07 (1 4+ 2A)20- — MY(1 + 5)0, Y dy_Vr

3. the underbraced term in (4.3).

As will become clear later, we can derive a boundedness statement if the bulk terms
(those terms which are not total derivatives) are negative. Recall that 9, A(ry) =
2(r — M) > 0.

Step 2: Estimating all bulk terms that are quadratic in derivatives.

The two dashed terms, which are the most important terms, combine to give a
negative contribution for » close enough (depending on A) to r. Indeed, for s = 0
this is the familiar red-shift for the wave equation and we see that for s = 42 we even
get an improved red-shift for the energy.>*

33 Note that away from r4 we have span{dy |+, 9y, dp, } = span{d,|—, dy_, dp_} = span{9y, d;, dp}.
Since we carry out the different energy estimates in different coordinates, it is convenient to always consider
this combination of derivatives.

34 Note that the structure for s = 42 is the following: for v strong red-shift for the energy at Hl+’ strong
blue-shift at CH;"; for ¢ blue-shift at Hﬁ, red-shift at CHI‘". This is the reason why the estimate for ¢ at
H;" is slightly more complicated.
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We now investigate all the terms with a wavy underline, which are all those that are

leading order in A. The first of those terms in B.1 is negative. The second of those terms
in B.1, which indeed appears again from the fourth equation in B.2, can be controlled
as follows:

12av? 3.(8, A)Re (D1 dy_1)] < vV A0, A)( ~alZs Y +a'2d%18,. 1/f|2)
(4.4)

Note that |a| < M < ry so that there exists 0 < o < 1 close to 1 such that
r_%_ +a” > 2a7'a?. Hence, (4.4) can be estimated uniformly in A by the last wavily
underlined term in B.1 and the one in B.2. In summary, all the wavily underlined terms
and the dashed terms are estimated from above by

=" . DO 1 Zi P+ 1000 1) + 10,9 1), (4.5)

where f(r4, A) > O1is independent of A. All the other bulk terms which are quadratic
in derivatives of w can now be controlled in absolute value by — >< (4.5) by choosing
first A > 0 big enough and then restricting to r € [rred, r+], v— > vo with rreq < 14
close enough to 7 and v > 1 large enough.?

Step 3: Estimating boundary terms.

We gather all the total derivatives appearing on the right hand side of (4.3). They
are 0,_ (A(v, r, w 8¢)) and 0, (B(v,, r, w Bw)) with

Ao, r, 0, 09) = —a?sin® 0v? (1 + 2 A)Re(d,_ 9, 9)
+ 200 (1 + A8)Re(@y_110,9) — v% (1 +AA) (2 + a9,

1 . 1 .
+ EvZ’(l + AA)a?sin? 619, ¥ |> — 5vZ’(l + AA) A9

+ %v‘i’(l +AA)) (s + sHIP

1 ~ A
q ) 2
= 30" 48 31,1
1

35 We need to choose vo large enough to control the second term on the right hand side of the third multiplier
expression computed in B.1. This one is quadratic in 9,1, has a positive sign, but a sub-leading v_-weight.
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and

~ o 1 N
B(v_,r,, 0%) = §a2 sin? 0v¥ (1 4+ AA)[0,_vr|?

AT 1 ~
—2av? (1 + 1 A)Re @y, Vdy V) — zu‘i’(l + AA)A|9, 9|
1 . 1 .
— v+ 2A)Gs +sHIVP+ vl a +AA)IZ \Zi

+ o2 (1 4+ 222 +a®)|8, |2
+ ol (1 4+ AA)ARe(3, 99, V) + v e 1.
4.6)

We begin by establishing coercivity of B for r close enough to r. The second term
in (4.6) can be absorbed by the fifth and sixth term as follows

qi N N q1 l 7 712 2 —1 712
20alv= (1 + M), Yoy ¥| < v (1 +A8)(GalZs Y| +2a%a ™ |d,_Y17)

where 0 < o < | and we argue as in (4.4). The seventh term in (4.6) is estimated by
the third and sixth term by

q1 7 7 qi 1 712 1 —1 712
vZ(1+A28) A0, 90y Y| < vI(1 +AA)|A|(5(¥|8MPI + 7 10y_¥1°),

for 0 < o < 1, where we note that the additional |A| allows us to absorb the |9,_ 1} 2
term. Finally we choose 1 > 0 as a function of n > 0 (to be determined later) such
that p()e”+ = 2(s + s2). It thus follows that for req < r4+ close enough to r we
have

B, r, ¥, 09) Z v (AN + 100 g+ Y 1Zi G P+ 10D @7

for r € [rred, r+]. o o
Next we establish the coercivity of B(v_,r, ¥, 0¥) — A(v—, r, ¥, 0y). We first
compute
B(u_,r, ¥, 0%) — A(v—, r, ¥, 39)
= —2av? (1 + AA)Re (D, Yy V) — T (1 +1A)(s + D) [P
+ o (L4 28) Y 1Zi 1P + 0" (1 4+ 28) (% 4+ aD)[0, v

1
+ 0" (1 4+ AA)ARe(0, 0y V) + v e |y |
+ a2 sin2 0v7 (1 + A A)Re(@y_10,9) — 2av™ (1 + AA)Re(@y_ 10,1
+ 0" (1 4+ AA) % + a?) 0,9 )2.
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In particular completing the square for the underlined term gives

B(o—,r, W, %) — A(v—, r, ¥, 3%)
= —2av? (1 + AA)Re(dy_ P (By_ + 8,)0) — v (1 + 2A)(s + 52|92
+ 0P (L4 A8) Y 1Z; 1 + 0T (14 2.8) ARe (3, Y 00_1))

i

(4.8)

— nr 111 1
+v ¥ pe |1p| —|— (1+AA)(r +a® —|—2a sin’ 0)[(0y_ +ar)¢|
1
+ Ev(i'(l +A0)(r? + i(a +a* cos® 0))|(y_ — )12,
The first term is estimated in the same way as before now by the third and sixth term.

Note that the fourth term vanishes at » = r.. Thus, with our choice of n from above
we obtain

B_,r, ¥, 09) — AQw_,r, ¥, 09) 2 v (10,9 1> + 100 1> + Y1 Zi > + 1917

for r € [rred, r+] with req close enough to .
Step 4: Estimating the remaining bulk terms:
The last two terms in (4.3) are estimated by

o e 1| — 20 e Re (8,9

1 n
<—§v e 112 + 2087 e 18,9 |2 (4.9)

We can now choose 1 > 0 sufficiently large such that the last term can be controlled
by —711 X (4.5) and such that the first term controls the zeroth order terms arising in
the bulk from (B.1) and (B.2) (those have an overall ‘bad’ positive sign and need to
be controlled).

Step 5: Putting it all together:

We thus obtain after integration over the spheres

9 (A(v—,r, ¥, 09)) + 8, (Bw_, r, ¥, 99))

>v‘”(|a VI + 19, W+Z| PP+ 1P

for v > vp and rreq < r < ry. Let /' € [rreq, r+). We integrate over the region
{2vo < f~ < v}N{r’ <r < ri) withrespectto dv_ Adr AVolg = 2Vol and use
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that on a level set of f~ we have dr = dv_ to obtain

/B volgedv_ + /(B — A) volgedv_

{r=r'} {f~=v}
N2vo < f™ <ot} N{r'<r<ry )
q 202 212 5. 72 202
+c[v_(|arw| + 10 VP + D 1Zi P + WI7) volgedv_dr
200 f~ <o) i
Nr'Sr<re}

< /Bvolgzdv, + /(B — A) volgedv_,

MNEw< fo<w) U=

where ¢ > 0. Using now the lowerpounds (4.7) and (4.8), the trivial upper bounds on
A and B, the assumption (3.6) on ¥ as well as the regularity Assumption 2.46 for the

boundary term on { f~ = 2vp}, and letting v; — oo we obtain
sup / v (1A + 100 1P + )1 Zi > + [9]7) volgadv
r'€lrred.r+] - i
{r=r"}0{f~>2v0}

+ f v (10,92 + 100 V1> + Y 1Zi 9 + [1?) volgadv_dr < C,
i

(2v0 < fTIN{rea <7<y}

for some C > 0, where, in a second step we have also taken the limit ' — req
to obtain the bulk term. Together with the regularity Assumption 2.46 used for the
remaining compact spacetime region this shows (4.2) with f = V.

Step 6: Estimating higher derivatives:

Recall that 9,_, d,_, and Qfy) commute with ’?[S]. By our assumptions on the left
event horizon (3.6) we can thus repeat the above argument now with 1,@ replaced by

od 8¢ 82 v to obtain (4.2) for f = Q89 8% . for0 <a+b<2,d=0,1.

We now commute the Teukolsky equation with 9,
0=08,7Y = a®sin® 002 8,9 — 2ad, d, 8,V +2(r> 4+ a)d, 9*¥
—2ad, 9?0 + A +2(r(3 +25) + isacos6)d, 3,V
+2(r — M) 4 5)0%y

(4.10)

+ K100 +2(1 +29)8,_ 0 +2(1 + )3,

Of course, the principal part is unchanged. Also note that the dashed red-shift term
is even improved. Thus, the same vector field multiplier (with 1/Af replaced by arlﬂ)
can be used to control all bulk terms quadratic in derivatives of 8,1}. Also the same
modification, i.e., the underbraced term in (4.3) with 1& replaced by 0, 1}, can be used
to generate an arbitrarily large bulk term quadratic in 9, Vr of the ¢ good’ negative sign.
The boundary terms are exactly of the same form with 1/} replaced by 8r1/}. So the only
qualitatively new term we need to estimate is the underlined term, which is neither
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9, nor derivatives of it. This term can be estimated either by a modification similarly
to the one we used above, now with 1/} replaced by 9,,_ 1@, or, more straightforwardly,
we can use directly the bulk term in (4.2). Thus, we obtain, after possibly choosing
Tred closer to r

sup f o (A0 1 + 100 0,912 + Y 1Zi — 1% + 10,971%) volgadv—
' €[rred.r+] . i
{r=r"IN{f~>2vo}

+ / o (102017 + 100_0r i P + Y 1 Zi —0r > + [8,91%) volgedv_dr < C,
i

{2v0 < fT} N {rrea <7 <7y}

for some C > 0, which is (4.2) with f = 8r1/A/. Again, we can in addition commute
with the Killing vector fields d,_, d,_, as well as with Q).
Differentiating (4.10) once more in r we obtain

0= 02Tj% = a®sin® 002 829y — 2ad,_0,_ 02V +2(r> 4 a®)d,_ 3>y
—2ady,_ 3V + AdY +2(r(5+25) +isacos0)d, 929 +2(r — MY(3+ 53

+ A8 4+ 8(1 + )8y 8,9 + 23 + 25)92.

The dashed red-shift term is even further improved and no qualitatively new terms
compared to (4.10) (with ¢ replaced by d,y) have appeared. This completes the
proof. O

We now continue with the red shift estimate near the right event horizon.

Proposition 4.11 Under the assumptions of Section 3 there exists an req € (r—, ry)
and a C > 0 such that

o) oIIAMZ, 72 75 0] oF £12 vola dus
1 €lrred 1 0y ig izt j k<,
= ’ SHr=r'}nfvy 21}
(4.12)
+ X [ L E e P el dvar <€

O+t HHAS g <r<rinfos > 1)

holds for f € {82 85 Sy, 3, 8% 85 3y, Qps)% 85 Sy, }, withO < a+b+c < 2.

U "9+ Vi TQ T Vi T T

The symmetry between left and right event horizon for the wave equation is broken
for the Teukolsky equation because of a choice of frame field. Indeed, near the right
event horizon H," we do have a blue-shift for the energy of the Teukolsky field .
This is the reason why in the following proof we need to commute twice with 9, in
order to get a red-shift near 7' .

Proof Many elements of the proof are the same as those of the proof of Proposition 4.1.
For this reason we will be more concise here and highlight the essential differences.
We begin by observing that the crucial seventh term of (2.39) has a ‘bad’ sign for
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s = 2. Multiplying by —v¥ (1 + 2A)3,¥ as we did before would give a bulk term in
|8, |% of positive sign — but we recall that for stability we needed the good negative
sign. We differentiate (2.39) in r to obtain
0= 8, T = a*sin® 007, 9,9 + 2ady, By, 9V + 20% + a*)dy, 079 + 2ady, 979
+ AP + K10 ¥ +2(r(3 — 25) — isacos0)dy, ¥
+20r = M)Q2 — )32 +2(1 — 25)3, 9 + 2(1 — 25)dy, .

Differentiating once more we obtain

0= 07T[1 = a®sin> 097 97 +2ady, 8y, 07V + 20 + a3y, 07 ¥ + 2ady, 07y
+ A} + R 020 + 2(r(5 — 25) — isacos6)dy, 2% (4.13)
F20r = M) — )39 + 6(1 — $)82Y + 8(1 — 5)By, .

Step 1: The multiplier: We restrict in the following to v > 1. We consider the
following multiplier identity, where A, n, © > 0 are constants to be chosen:

0= %e(&%?'[s]w T (= (1289 + (1 +AA)dy, )2y

+ 0, Y e 102 1%) — v une™ 197912 — 207 e Re@F vl y)
=0
+ 0 (08 e [0y, B9 |2) — 07 e [y, 1% — 208 e Re(@y, o, 920
=0

(4.14)

After integration over the spheres, the right hand side of (4.14) is the sum of

1. the sum of all the terms on the right hand sides of C.1 and C.2 with x (vy) = vi’
and i replaced by arzl/f
2. the real part of the terms

2(r(5 — 25) — isacos 0)dy, 929 - v1 (= (14 2A)3, + (1 + 1Ay, )02y
ol (14 24) - 200 = MYB = IR YI? + 0L (1 +AA)20- — M3 — )07y, 029

+[6(1 = )02 +8(1 = $)3u, ¥ ] - ¥ (= (1 +24)0, + (1 +1A)dy, )02v

3. the underbraced terms in (4.14).

The second underbraced term in (4.14) has been added to control the double underlined
term above. As before, we can derive a boundedness statement if the bulk terms are
negative. We proceed as before:

Step 2: Estimating all bulk terms that are quadratic in derivatives of Brzw.

As before the two dashed terms combine to give a negative definite contribution in
|8r3w|2 for r close enough to . Next, we look at the wavily underlined terms which
are all those that are leading order in A. Again, the first of those terms in C.1 has a
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good negative sign, the second can be controlled by the third one in C.1 and by the
one in C.2 (as in (4.4)) for r close enough to r so that the wavily underlined terms
and the dashed terms combined can be estimated from above by

— v f(r,2) A(Dzl LRV 100, 079 D) + 10 ), (4.15)

where f(r;,2) > 0 is independent of A. Choosing now A > 0 and vy > 1 large
enough and reg < 74 close enough to 7, all other bulk terms that are quadratic in
derivatives of 831/; can be controlled in absolute value by —% X (4.15) in the region
{rred <7 < r+} N {v+ = vp).

Step 3: Estimating boundary terms.

We gather all the total derivatives d,, (A(v+, r, 831#, 8831&)) and 0, (B(v+, r,
v, 0, arzt/f, aa}w)) appearing on the right hand side of (4.14), where we find

A(vy,r, 329, 002%) = ¥ (1 + AA)( — a?sin® 0Re(d,, 9>y 33Y)
— 2aRe(d,, 2W V) — (2 + a*)|93y|?
1 1
+ Eaz sin® 03y, 829> — 5A|a,31p|2

1 1 ~
+ 56 +sHIoRy =5 Y1 Zioty )
i
and

B(vy, 7, 8y, 8%, 32, 902) _v+(1+m)( a’sin 03, 9%y |*
+ 2aRe (D, 039y, 2V ,w>— —A|a 7k
1
— S+ Z |Zi 079
1

+ (2 + a?)[8y, 7Y
+ ARe(3} 90, ,W)
+of e 7Y P+ vl e |3y, 3|

The coercivity of B and B — A for r close enough to r is established in the same way as
in the proof of Proposition 4.1, Step 3, by choosing j¢(17) such that j()e™+ = 2(s+s2)
to obtain

B(uy.r, 0y, 0r, 079, 0079) 2 vl (AN Y + 100, 07w 1> + Y 1 Zi 407y 1
HOPY 1 + [0, 801 (4.16)
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and

(B — Ay 7. 8y, 00, 079, 0079) 2 T (1039 1P + 100,070 1> + Y 1Zi 07w
i

H129 12 + 190, 8,1 (4.17)

for r € [rred, r4] with rreq close enough to r.

Step 4: Estimating the remaining bulk terms.

The last two terms of each underbraced term in (4.14) are estimated as in (4.9) of
Step 4 of the proof of Proposition 4.1, where we again choose n > 0 so large that the
resulting terms quadratic in derivatives of 32y are absorbed by %x (4.15) and such
that the terms — % vi" nuem” (|8,2 AEENEN L Or Y |2) control all the remaining bulk terms.

Step 5: Putting it all together.

We obtain from (4.14) after integration over the spheres

Ou, (A(vy, r, 079, 0079)) + 0, (B(vy, r, 0y, 0,9, 070, 007Y))
2ol (10391 + 100, 0791 + D1 Zi 07w P + 1079 + 180, 0,0 )
i

a.i.

for vy > voand reqg < 7 < ro. Letnow 1’ € [req, r+). We integrate over the region
Ruo < fF<mn{r <r< 71} with respect to dvy Adr Avolg = p—lzvol and use

that on a level set of fT we have dr = dv. to obtain

/Bvolgzdu + /(B — A) volgedvy

{r=r"} (fF=v1}
N2vo </ <or) N’ <r<rs )
q 3.2 2712
+c/v+’(|a,w| + 18, 929
o< /<o)
mv((;’grgr:l) (4.18)

+ Y N Zi 0} P+ 1079 P + |00, 0,9 1) volgedvy dr

1

< /Bvolgzdm_ + /(B — A) volgedvy,

TNn{2v < fH < (/7 =2v0}
Hr { Vo X f S ”1} ﬂ{r’grgom)

where ¢ > 0. Using the lower bounds (4.16) and (4.17), the trivial upper bounds on
A and B, the Assumptions 2.46 and (3.4) on ¥ to control the boundary terms on the
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right hand side, we obtain from this

sup / vl (AN Y 1> + 19, 7y

el 520

+ Y NZi s Y+ 107y + 00, 0,9 |7) volgedvy,
i
+ /' VI (10791 + 19y, 079 |
{rred <r<r+}m{f+>zv0}

+ Z 1 Zi 02012 + 19291 + 18, 3, ¥1%) volgdvidr < C

1

(4.19)

for some C > 0. Together with Assumption 2.46 this in particular gives (4.12) with
=0

Step 6: Estimating higher, lower, and other derivatives.

We can again just commute (4.13) with 9,_, 9, , and Qj,) to obtain (4.12) also for
fe{og 9b opy, 9,04, 05 97, Q102 9) 07y} for 0 < a + b < 2.%° The lower
order terms are now estimated by integrating in r using the fundamental theorem of
calculus together with Minkowski’s inequality?’ and using the assumptions (3.4) on

the right event horizon to obtain

sup / o (107 1P + 100, 0 f17 + Y 1Zi 10, f 1P + 10, f 1) volgadvs < €
i

r'€[rred,r
e Al 21)

for some C > 0 and f € {0y 05 9.y, 8,08 05 0,9, Qudg, 95, 0,9} for 0 <
a+b < 2. Integrating once more in this way concludes the proof of Proposition 4.11.

m}

The following remark about the altered red-shift effect for the Teukolsky equation
and Gaussian beams is not needed for the result of the paper but the reader might still
find it instructive.

36 This gives control over some higher derivatives which are not stated in Proposition 4.11 and which are
not needed. We are wasteful here with derivatives in order to streamline the presentation. Being a bit more
careful one can safe a couple of derivatives here.

37 Concretely, we use

=

1
( [ hzvolszdv+> 2 < ( / hzvolSzvar)
{r=r}N{vy>1} {r=r4infv+ 21}

r4 1
2 2
n /r , ( / (0rh) volSsz+> dr

{r=F)Nfvs>1)

forh € {Z§{+Z’2%+Zg%+al{+af(a§+ fslagﬁgﬁ,zp)},o <it+in+iz+j+k<l,and0<a+b<2,
0<d+e<l.
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Remark 4.20 The red-shift effect along the event horizon for the scalar wave equation
is by now a classic effect which has been used in various guises. To understand how
it changes for the Teukolsky equation it is helpful to differentiate between the fol-
lowing three manifestations of the red-shift effect (one could easily consider more).
We consider a family of observers with timelike velocity vector fields N which are
Lie-transported along the Hawking Killing vector field Tp/+ = 9, + &ﬁaw . along

the event horizon.

1. The frequency, as measured by the family of observers, of a (Gaussian) beam
propagating along the event horizon is shifted exponentially to the red. This could
be seen as the original red-shift effect.

2. The energy of a (Gaussian) beam propagating along the event horizon decays
exponentially, see [59, 60]. Note that this is a priori independent of the change of
colour of the light, but it is the most relevant manifestation of the so-called red-shift
effect on energy estimates.

3. Consider compactly supported initial data along the event horizon. Then the
transversal derivative decays exponentially along the event horizon, see (2.39).

For the Teukolsky equation, as we will see, it no longer makes sense to refer to those
three effects collectively as the ‘red-shift effect’. Dividing (2.39) by p? we obtain that
the Teukolsky equationin (v, 7, 8, ¢4 ) coordinates is of the form L,y + X+ ffr =
0 with

2s(r — M) 2si cosf

1 . —_—
X — _F@sr + 2isacos6)d,, — Py " o2 sinZg ¢

2s 1 cos 6
f=——2——2(5'2 —S>.

sin? 6

Note that in the construction of Gaussian beams for wave equations with lower
order terms, the lower order terms only impinge on the amplitude, but not on the
phase function, see Appendix 3.D of [59]. Thus the frequency/colour is still shifted to
the red for all values of s.

We now consider the behaviour of the energy of Gaussian beams for which we
refer the reader to Appendix 3.D of [59]. It follows from Vr, | T+ = x4 Ty+ that
e *+U+ Ty .+ is a null geodesic velocity vector field along the event horizon. The N-
energy of a Gaussian beam for the wave equation localised along one of the integral
curves thus behaves like e 7“+"+. Let us now choose either the integral curve at 0 = 0
or = 7 sothat g(X, e *+v+ THi) = —e “+U+2 sk With the terminology from [59]

we hence obtain the modulating factor |mx (v4)|? = €2%+"+ of the amplitude of the
Gaussian beam for the Teukolsky equation compared to that for the wave equation.
Hence, the N-energy of such a Gaussian beam for the Teukolsky equation behaves
like eZs=Desve

In Appendix 3.E of [59] it was obtained that an integrated local energy decay
statement for the Teukolsky equation cannot hold in the exterior of a Kerr black
hole without the ‘loss of a derivative’ by considering Gaussian beams localised along
trapped null geodesics away from the horizon. By considering a Gaussian beam along
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the event horizon as above it follows that not even a uniform energy boundedness
statement for the Teukolsky equation for s = 41, 42 can hold without the ‘loss of a
derivative’.

Finally, for compactly supported initial data along the right event horizon it directly
follows from (2.39) that for s = +1 the transversal derivative remains constant for
large v4 while for s = +2 it grows in general exponentially (i.e., if it does not vanish).
This shows very nicely how these three different effects decouple for the Teukolsky
equation.

4.1.1 Corollaries

Let x : R — (0, 00) be a fixed positive smooth function with x (v4) = vjl_’ forvy > 1
and x (v4) = |v4|? for vy < —1. The next corollary will be our starting point for
the estimates in the next section which are needed for the separation of the Teukolsky
field. It combines the results of Proposition 4.1 and 4.11, but we can afford to discard
uniformity up to the event horizons.

Corollary 4.21 Under the assumptions of Section 3 there exists an ryeq € (r—, r4) such
that for any r1 € (rred, r+) there exists a C > 0 such that

— e ) L
o Z / / X(U+)|lel,+zlzz,+zgs,+31{+(3r|+) flzvolSz dvy < C

r€lried "1 0y igtis+j+k<t T =)
4.22)

holds for f € (82,88 (8,1:)W. 8y, 8%, 88, (8,10, Q192,92 (3 11)°Y}, 0 < a+
b+c<2.

Here we have employed the notation 9, |1 to emphasise that this is a partial derivative
in r with respect to the (v4, r, 8, ¢4 )-coordinate system.

Proof It follows from (2.3) and (2.4) that we have 9, |y = 2,2Xaz dy_ — 2% 0p_ +0y|—.

Recalling moreover that Y = Aztﬁ, we obtain
O l4 ¥ = 2007 +a®dy ¥ —2aAd, ¥ + A28, +2(3, M)AV (4.23)
and

2 A~ A
(3:1+)" ¥ = 40> +aH?32 ¥ — 8(r* + ahady_d,_ v
+4A0? +a?)dy 0| + 40 + a3, 0)0, Y
+4a*97 v — 4aAdy_ 3| — 4a(3 A)dy_Vr + 20, (AG* + a*))d,_r

—2a(3, A)dy 1 + A2 (31-)*F + 4A@, A)d, | + 20, (8, 0) M)
(4.24)
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and (9,]4+)3y is a linear combination of 95 337 (8r|_)"x@ withO <a+b+c <3
a, b, c, € Nyg. Moreover, using ¢4 = ¢_ + 27 we directly compute

Z14 = cos(2F) - Zi._ 4 sin(2F) - Zo,_
Zs.4 = cos(2F) - Zy._ —sin(2F) - Z;.— (4.25)
243’4, = 23’7.

We also observe 0,, = —d,_. Moreover, it follows from vy = —v_ + 2r* that
for ' € [rred, 1) we have |vy| < C(r")|v_| for v < —C(r') with the constant
C(r") blowing up for r’ — ry. Now (4.22) follows directly from the Propositions 4.1
and 4.11 and the regularity Assumption 2.46. O

Remark 4.26 The constant on the right hand side of (4.22) will in general blow up
for r; — r4, because of the conversion of the v_-weights from Proposition 4.1 into
v4-weights. However, for f = 1, 9,%, we do have exponential decay in vy for
vy — —oo approaching H1+ by the regularity Assumption 2.46, which compensates
for the blow up of the constant in the conversion and (4.22) can actually be shown to
hold uniformly up to 7. Since f = (8, |1 ) is in general regular and non-vanishing
near the bottom bifurcation sphere Si we do no longer have decay for v — —oo
approaching ’H?‘ and so the constant blows up for r; — r4.

The next corollary is needed in Section7 for passing to the limit r — r4 in the
separated picture, in particular for Proposition 7.4 and Proposition 7.17.

Corollary 4.27 Under the assumptions in Section3 we have for ry > r — ry

V(e 7, 0,00) > Y (s, 74, 0,0)  inLy L3 (4.28)

and

Lug,00) (V=) - B[4 Y (v—, 7,0, 9-)
= Lwg,00) (V=) - B[ Y (v 7, 0,9-)  inLy L, (429)

for any vg € R.
Proof We begin with proving (4.28). The fundamental theorem of calculus gives

|I//(v+ar507 ¢+) - w(v+sr+791 (p-‘r)' < j’[r,r_*_] |8r‘¢,(v+1r/a03 (p+)|dr/' CaUChy
Schwarz yields

|W(U+,r, 07 §0+) - w(v-i-vr-'r? 9, (p+)|2 < / |8r1//(v+s r/’ev ¢+)|2dr/ . |r - r+|

[r.r]

which thus gives
V7,6, 94) = ¥ (04, 74, 0, 91) Pvolgaduy.
RxS?
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< / / |3r¢(v+,r/,9,¢+)|2dr/vo182dv+. Ir—ryl.
[r,r4] JRxS?

It follows from (4.23) together with (4.2), from the bulk term in (4.12), as well as from
the regularity Assumption 2.46 that the spacetime integral is uniformly bounded. This
shows (4.28).

To prove (4.29) we compute in an analogous manner as before

2
/ , 1<vo,oo>(v7>\(ar|+)2w(v7, r0.9-) — Bl W (vo,ry. 6, w,)} volgadv_
RxS (4.30)
</[” ]/]MzItwo,oo)(vf)\(apxar|+)21/f(v7,r’,e,wqﬁdr’volszdu-|r—r+|.
T+

Differentiating (4.24) once in (d,|—) we obtain that (9,|—) (9 |)2 is a linear com-
bination (with uniformly bounded coefficients) of the terms 9 8};_ (0,]-)¢ 1/} with
0 < a+b+c < 3.Forvy > 1 all those terms are controlled by the bulk term in (4.2)
—and for vp < 1 we complement this bulk term by the regularity Assumption 2.46.
Hence, the spacetime integral in (4.30) is uniformly bounded. This shows (4.29). O

4.2 Estimates Away from the Event and Cauchy Horizons

Proposition 4.31 Under the assumptions of Section3, and with rwq as in Corol-
lary 4.21, we have that for any ro € (r—, rreq] there exists a constant C > 0 (depending
on ry) such that

S + /— ’ x4l lll 122,+Zl33,+81{+85. |2V ISZ U4 < C
r/E[VOJ’red]Ogl'l intiztj kgl {r=r'} + 4 f (0] d

holds for f € {05, 8y, 95, Q510 )} for ¢ =0, 1, 2.

Proof We use Boyer-Lindquist coordinates for the proof. Since the region under con-
sideration in (4.32) is bounded away from r_ and r, we have that 9, |+ is a bounded
linear combination of 9;, 0, 9, |gL. Thus, itis straightforward to see that (4.32) follows
from

; Z / X(t)| ilzézz?atjaffﬁ V01§2 dt < C
' €[ro,Tred] O<i1 intiz+j k<1 {r_r/}

for £ € {3950, 1BL) W, 3,0{ 9 (3, IBL) ¥, Qps1;05 (3 [BL) ¥}, With O < a + b +
¢ < 2. In the following we will prove (4.33).

Step 1: The multiplier. We start out from the following multiplier identity, where
XA, , n > 0 are constants to be chosen and y is as above:

0 = Re(T5 ¥ (—x (e 3,9))
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+ 3, (x (e 1Y 1?) — x (Oune™ 1y 1> — 2x () e Re(Yd, ¥r) . (4.34)
=0

After integration over the spheres, and using the form (2.38) of the Teukolsky equation,
the right hand side of (4.34) equals the sum of

1. the sum of all the terms on the right hand side of D.1

2. the terms
— X0 2(r — MY(1 — )|, ¥ |* — x(r)e“zs@me(aw/fW>
2 2
_ X(t)e“Zs[w —r—iacos e]me(a,¢W) + () 25Re(Y o, 1)

3. the underbraced terms in (4.34).

As before, it will turn out that we can derive a boundedness statement if all the bulk
terms are negative.

Step 2: Estimating all bulk terms that are quadratic in derivatives of 1. We col-
lect the leading order terms in A from D.1, which are the wavily underlined terms:

(}’2 + a2)2
A

AMar J—
Re(dp Y0, )

%X(t)ew[( A

. sm29)|a,w|2 +

2
+ 510w P+ Ay = Y I Ziv P (4.35)

It turns out that in order to control the non-definite second term it is actually not
sufficient just to use the |8¢1/I|2 control of the last term. Instead, we need to use the
strengthened control provided by Lemma 2.33 together with the a> sin” # contribution
of the first term in (4.35). Thus, using Lemma 2.33, we rewrite (4.35) as

1 A (r2 + a2)2
pxne A[( A

4Mar . _— a® . 2
+ Tf)‘ie([zs cost -y + dp )0 Yr) + ths cos6 - Y + dp |

1
sin? 6

—a®sin® 0) oy

(4.36)

+ A0y — 00 = —liscos6 -y + oyl — 2y l?]

1 ae. [4Mar . —  a? 2 2 2 a? . —
— S x(e A[Tme(lscose.wa,w)JrXs cos2 0[y| +2Z9%e(lscos9.waw¢)]

The underbraced terms will be treated as error terms. We show now that for r €
[r0, rrea] With rg > r_ the remaining terms (modulo zeroth order terms) are uniformly
bounded from above by

1 ~
- Ex(t)e”k (1B 1* + 1By * + Z 1Ziy ) (4.37)
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for some ¢ > 0 depending on r— < ry < rreg < r4. For this it is clearly sufficient to

show that the non-underbraced terms in (4.36) are uniformly negative definite in 9,y
1

and & 5 (iscosO - Y + 9,7 ). A straightforward computation gives
(r*+a®)? 26in20 2Mar Ginp 1
det( A _—4sm A SIME ) (2 a2 cos?0)’ > 0, (4.38)
( 2A{%Sine %sinzé’—l A( )

which shows the claim.

We can now choose A > 0 large enough such that all bulk terms that are quadratic in
derivatives of ¥ can be controlled in absolute value by —%‘ x(4.37). The underbraced
bulk terms in (4.36) of the form ERe(I//W), which are also leading order in A, can
be estimated by |9{e(1pW)| < %8|81ﬂ|2 + %£_1|1ﬂ|2, where we choose ¢ > 0 so
small that the arising first term can be bounded by —;11 % (4.37). It thus only remains
to estimate the zeroth order bulk terms, which will be done in Step 4.

Step 3: Estimating boundary terms. We collect all the total derivatives appearing
on the right hand side of (4.34). They are of the form 9;(A) and 9, (B), where

2 242
_ Ar (r"i‘—a) 22 _— 2Mar I
A= x()e [( n % sin e)me(a,warw) + = me(awl/faﬂ/f)]
and
2 252 2
B = %X(t)e)”r[ — <7(r —|—Aa " _ a? sin? 9)|8;l//|2 - L‘Zm Re(dp0r ) — aK|3rp1/f|2
N (4.39)
= Ay P = G+ DI P + DI Z ] + xoue v 2.
The coercivity of B,
B Z x(10y P+ 10,917+ Y1 Zivl* + [y ), (4.40)

in the region ro < r < rreq is established using the same computation as in Step 2:
First, we use Lemma 2.33 and moreover replace every 9,V in (4.39) by sié g (iscosO -
Y + dy), thus obtaining again error terms. The lower bound of B in x (t)(|8,1// 12 +
19, %|% + Y |Z~¢|2) then follows again from (4.38) at the expense of a large zeroth
order error term. We now choose u as a function of 7 such that the last term in (4.39),
x (1) e | |?, is large enough in the region rg < r < rreq to dominate this error term.
This yields (4.40).
Next we establish the coercivity of B & Z;AA/IrA’

A ~
Bt A x O + 1002+ Y 1 Ziy > + Y1), (4.41)
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in the region ry < r < rpeq. It follows again from Lemma 2.33 that we have

A W[ Le@?+a®? 5 2
B gyA= x5 (g —asint o)y

2Mar

1 .
sin G%e(m(z‘x cos 0 - ¥ + )0 V)

L 0| L tiscost g+ a0 - LayE - Lo stipi
— — — Sl LS S . - = /e — — (5 s
2 A sin6 ¢ 2 2
1 1
5 (P + o liscost -y +a,u 4 2P|+ xOne 1w
0 ((r2+a2)2 Aazsin29)% VTS (4.42)
xe [ 2Mr 2Mr @y ary)
1
+asin6%Re( = (iscos - + aw)a,a//)}
oM 14 2 _
- X(l)e”[ - A‘" Re(is cos - YaP) — E%szcoszﬁlw\z - aX sin 0Re(is cos 6 - x//aww)]

F x (e aRe(is cos6 - Yo, ¥),

where the underbraced terms are considered as error terms. Again, we consider the
part of the above expression that is quadratic in {d;, ﬁ(is cost -y + 3yY), 0.V}
as a quadratic form. Its associated matrix is

10 4d®? 22 _ Mar 1(0*4+a®»?  Ad?sin?6
2( A a”sin”6 A Sind 5 oy IMr
A Mar _: 1(a® ;.2 1 :
My = oA s1n92 . —3(% sin?6 — 1) +3asin®
i%((’%) - Aazns;rrl 6) i%asin@ _%A’

which we claim is positive definite in the region ro < r < req: Obviously, the first
main minor is positive, the second main minor was computed in (4.38) to be positive,
and a computation gives

—A
det My = —(r2 + a? cos? 9)2(r2 +a?cos? 6 + 2Mr) > 0 forrg <r < reed,
32M2r2

from which the claim follows. Now, if necessary, choosing () even larger, we can
control all the error terms in (4.42) to obtain (4.41).

Step 4: Estimating the remaining bulk terms. As familiar from the proof of
Propositions 4.1 and 4.11 we estimate the last two of the underbraced terms in (4.34)
by

_ 1
—x (Opne” [P F = 2x (Hpe™ Re(Yd ) < —5x<r>une"’|w|2 +2x (O e |3,y |2

We now choose n > 0 sufficiently large so that the last term can be controlled by
—;11 X (4.37) and such that the first term controls all the zeroth order terms in the bulk
(including those generated at the end of Step 2).
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Step 5: Putting it all together. After integration over the spheres we thus obtain
from (4.34)

(A +0.(B) Z xO(19:-Y 1>+ 10,91+ Y_I1Ziy> + [vI?)  (443)

forrg < r < rred. Let 1’ € [ro, rreq). Integrating (4.43) over {r' <r < rea} N{f~ <
10} N {fT < 1o} with respect to p—lzvol = dt Adr A volg, where fo > 1, and using

that on the level sets of £~ as well as on those of £+ we have |‘;—; = %, we obtain

[A| [A]
/Bvolgzdt + / (B + MA) volgdt + / (B — MA) volgadt

r=r'in{f <o} {f~ =t} (f*=t0)
Nt <) N{r' <r<rred} N <r<rrea)

+c/ X001 + 1092+ Y 1Ziy > + [¥17) volgadt dr

(' <r<red)N(f~ <10}
N <o)

< f B VolSzdt,

{r=rrea}0{/ ™ <t0}
IVARSTY

{

where ¢ > 0 is a constant depending on ry. Using (4.41) to infer the positivity of the
second and third term, (4.40), and letting 7y — oo, we obtain

/x(r>(|ar1/f|2+|atw|2+Z|Z-w|2+|1/f|2)volszdr

{r=r'}

+ [ 1O + 80P + 30 Zw P 4+ 19 P) volgdr dr

(' <r<rrea)

< C/B(w)volgzdt, (4.44)

{r=rrea}

where C > 0 is a constant depending on r¢. This, together with the trivial upper
bounds on B and Corollary 4.21 (note that 9, |gL. is a bounded linear combination of
Ov,» 0p, Or|4), gives (4.33) for f = .

Step 6: Estimating higher derivatives. Because 9;, d,, Q[s) commute with 7[y),
it follows directly that (4.44) also holds with ¥ replaced by 9/ 85 Y, 0,07 331&, and
Q[519%3Py with 0 < a + b < 2. The conclusion of Corollary 4.21 implies that the
boundary term at {r = r.q} is bounded, thus giving (4.33) with ¢ = 0.
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Moreover, we observe that
l” = 8r,T[s]w - ,T[s]arw

= a5y -0 (- (5 v + 0.8
a(r — M)

A

M(r? — a?)

+231 —s)a,w+a,(2s n

) + a5

Thus, all the additional bulk terms in the energy estimate

0 = Re(T510, ¥ (— x (1)e* 929)) + Re ([0, Tis) 1 (—x (1) 324))
+ 8 (X (Ope™ 3,12 — x (Opne™ 18, 1> — 2x (e Re(@, 929,
=0

after Cauchy Schwarz, have either already been controlled by the integrated (4.33)
with ¢ = 0 (or the bulk term in (4.44) with ¢ replaced by 9/ 8(’; Yr) or are at the level
of energy for 9, (i.e., the dotted term in (4.45)). We thus also obtain (4.44) with ¢
replaced by 0,1. Since 9, gL is a bounded linear combination of 9, , 9y, , |+, the
boundary term at {r = rrq} is bounded by Corollary 4.21. We can again commute
with 9;, 9y, Qyy] to obtain (4.33) for c = 1.

Finally, commuting (2.38) once more with 9, we find that [8,2, 7i511is abounded lin-
ear combination of the terms 9,97, 07/, 80,0/, 8,0, %, 0,0V, d5%, 2%, 974,

0y, 0:, 0,0, . We can repeat the same energy estimate, but now for 831#. The dot-
ted term is again at the level of the energy for 8,210 and all the other terms have already
been controlled. Commutation with 9; and Q[ then concludes the proof. O

4.2.1 Corollaries

The following corollary is needed for Teukolsky’s separation of variables in Theo-
rem 5.26.

Corollary 4.46 Under the assumptions of Section3 and for r— < ro < ry < r4 there
exists a constant C > 0 (depending on ro, r1) such that for f € {i, 0, Y, Brzw}

sup > / XWOIZY 23, 73], P volg dvy < C
r'elrg,r1] 0+ +His+j <22,
(4.47)
holds and
C
If(v+7r9 9’ (p“r)' < (448)
Vxws)
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holds for r € (ro, r1) and all (8, ) € S?\{6 =0, 7).

Proof We begin by proving the bound (4.47); first for f = . Then all the terms
with 0 < i1 +ip + i3 + j < 1 are controlled by (4.32) and (4.22) with f = .
Using f = 0,, v in (4.32) and (4.22) extends control to all terms except those with
i1+ix+iz = 2. Wenowuse f = Q¥ in(4.32) and (4.22) and use just the L2-control.
By the Definition 2.45 of the Carter operator and by the fact that we have already
controlled d,, ¥ and 85+¢ in L2, this gives us L?-control of Z&[s]lﬁ- Lemma 2.37,
together with the L2-control of the first angular derivatives already obtained, now
controls the remaining terms with i1 + iy +i3 = 2. The cases of f = 9, ¢, 8,21p can be
treated analogously using that (4.32) and (4.22) hold for f € {3¥y, 8,, 3%y, O35/}
fork =0, 1, 2.
To prove (4.48) we observe that for 1 < vy < oo (4.47) implies

0o . , C
sup > \Z) Z2 25 o), fwy.r 0. volg dvy < ——.
v S2 s v%
r'€lro, r']0<11+12+13+/<2 0 0

By Lemma 2.23 we thus have

C
sup / , |Z Z'2 Z’33+81{+ 5% Fuy,r', 0, <p+)\2volgz dvy < —
r'elro, 71]0<l]+12+l3+j<2 v IS Yo

and similarly for the southern hemisphere S* . A standard Sobolev inequality>® applied
to 5%+ f thus gives

C
sup sup |f (o, 7", 0, p4)| <
r'elro.r1] (0,9, )eS?\ {0=0, 7} N

for vgp > 1. We proceed similarly for v9p < —1 and for vy € [—1, 1], 7 € [rg, r1] the
field is uniformly bounded since it is regular. This shows (4.48). O

Note that the reason for why the constant C > 0 in Corollary 4.46 blows up when
we let ] go to r4 is because of the conversion of the v_-weights to v, -weights, which
becomes worse and worse when r; — r, cf. the proof of Corollary 4.21. If we restrict
to the region v4 > 1 then the constant can be chosen uniformly up to r = ry:

Corollary 4.49 Under the assumptions of Section3 and for given r— < ry < ry there
exists C > 0 such that for f € {, 0, Y, 8,21/f}

C

|f (g7, 0, 0)] < (4.50)

+ NS

v

holds forallr € [ro, r+], v+ 2 1,(0,¢9) € Sz\{Q =0,m}.

38 See for example 8.8 Theorem in [42]. By choosing suitable coordinates for Sz_ the domain (vg, 00) X Si
can be viewed as an open subset of R3 which satisfies a cone property that is uniform in vy.
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Indeed, the statement is only needed for f = a}w (for Proposition 7.17).

Proof In the same way as in the proof of (4.47) in Corollary 4.46 one obtains

sup > / oI Z, ZR 78 8] [P volgdvy < C

, 4T3+ vy
r'elro,r+] 0+ +i3+] L2 A, > 1)

from Proposition 4.11 (and Proposition 4.31) for f € {i, 9, , 8,21#}, but now with a
constant which is uniform up to r = r4. As before one now proves (4.50) by Sobolev
embedding. O

4.3 Estimates Near the Cauchy Horizons

Recall that for the method of proof of Theorem 3.7 it is convenient to first establish the
blow-up result (3.8) along the left Cauchy horizon and then to propagate it backwards.
The estimates established in this section are used to show that 1) we can indeed extend
Y to the left Cauchy horizon (along with a convergence result); 2) the x-weighted
L?-bound propagates all the way to the left Cauchy horizon; 3) the singularity can be
propagated backwards from the left Cauchy horizon. All this is used in Section 8.

Proposition 4.51 Under the assumptions of Section 3 there exists an rered € (F—, I'red)
and a constant C > 0 such that the following holds

/X(U+)(|3rl/f|2 + 100, Y2+ Y1 Zir ¥ P+ 1Y) voldvydr < C
{r <r < rered} i

(4.52)

sup f x @D (18109 2+ (00, 0P + Y2 1 Zitr P+ 1) volgadvs < C

'€l rered,r—)

tr=r'} :

(4.53)

where the function x is as in Corollary 4.21.

Proof We use that for s = +2 there is an effective red-shift for the energy operating
close to the left Cauchy horizon. The red-shift is effective in the sense that while it
persists after one commutation of 7y = 0 with 9, after two commutations with
o, it turns into a blue-shift for the energy, which becomes stronger with subsequent
commutations. We use x, (v4)(1 +AA) (=0, + 0y, + &“ﬁaw as a multiplier. Note

that, compared to the multiplier used in the proof of Proposition 4.11, the additional
contribution in d,, makes the vector field timelike near the Cauchy horizons.
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Step 1: The multiplier. We start out from the following multiplier identity, where
A < 0and n, u > 0 are constants to be chosen:

0= im( - K00 A+, aww)
(454
0, G e Y P) — xo v pne 1917 — 2Xn(v+)lwnr9%(1/f3rl//)( )
=0

Here, the function x, : R — (0, co) results from locally smoothing out the corners
of the function

log % f0fU+ —(n)"/
Vy > n — Y < vy <n'lr

1
v forv+ > n'ar,

Given § > 0 it is easy to see that one can choose n > 1 large enough such that
| %) (v4)] < 8xn(vy) holds for all vy € R. The parameter n will be fixed in the next
step.

After integration over the spheres, the right hand side of (4.54) consists of the sum
of the following terms

1. the sum of all the terms on the right hand sides of C.1, C.2, and C.3 with x (vy) =

Xn (U+)
2. the real parts of the terms

2(r(1 = 25) — isacos0)dy, ¥ - xu(vs) (1 + AA) (=9, + oy + i I )V

—Xn () (14 AA)2(r — M)(1 — )]0,

+ xn () (1 + A8)2(r — M)(1 = $)8, 9 (Bu, ¥ + i By, V)

— 259 - () (1 4+ AA) (=0, +8U++ i dp )W

3. the underbraced terms in (4.54).

Again, our desired boundedness statement requires all the bulk terms to yield a negative
definite contribution. We also recall here that (9, A)(r_) =2(r— — M) < 0.

Step 2: Estimating all bulk terms that are quadratic in derivatives of 1.

We first consider all those terms that are quadratic in 9, 1. The leading order terms
are the dashed term from 2. in Step 1 and the dashed term from C.1. Their sum at
r = r_ equals

1
Xn (V4)2(r— — M)(z — (1 =93y,
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which is negative for s = 4-2. The other two bulk terms quadratic in 9% from C.1
and C.2 sum to

1
X ) +AA) G +a® + EA)|a,1p|2. (4.55)

We can now choose n >> 1 large enough and r— < rereg close enough to r— (Fered
depending in particular on A at this point) such that (4.55) is controlled by —% times
the sum of the dashed terms in r— < 7 < Fered-

We next consider all those terms quadratic in 91 that are leading order in A; these
are all the wavily underlined terms from C.1, C.2, and C.3. They sum to

(0220 = M| (3% sin 0 + (2 + ) o,y P
a(r* +a?)
+(2a + rzT)SR (3, Yy, V)
2
+5 Dz, P+ sl v

_—Xn(u+)x2(r—M)[( asin20 + (2 + a®)) [0, ¥ |

a(r* +a?), . 1 —
+(2a + W) smeme(,—(zs cos 0 - Y + 3y, Y0y, V)
(|39¢|2 5 lis cos o Y+ 3, I+ 5% Y
2
a .2 . 2
+msm 9|Sin9(1scose-w+8¢+¢)| ]
a(r® +a?)
+x,,(v+)k2(r—M)[(2a W)D‘ie(zscos@ Yy, V)
2 —
+ E (s> cos® 1> + 29e(is cos b - waww))], (4.56)

where we have used again Lemma 2.33 and we consider the underbraced terms
again as error terms. Considering the non-underbraced terms as a quadratic form in
CR # (is cos 0 -y + 0y, V), the corresponding matrix is — x, (v-4)A2(r — M) Q;
with
1.2 2 2, 2 *+aH)y
ya*sin? 0 + (r* +a%) (a + ;(rz a ))sm9

01 = a(r2+a?
re+a®)\ o
(a+ 5,75am) sind i+ 2% 2sm 0

(4.57)

The determinant of Q1 evaluated at r = r_ is easily computed to be det Q1(r—) =
(r2 4+ a2 cos?0)? > 0, and hence Q is positive definite at » = r_. Recalling

2(r2 +a2)
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that A < 0 and 2(r— — M) < 0 it now follows that for rereqg > 7— close enough to r_
there exist constants ¢ > 0, C > 0 such that the following holds in 7_ < r < Fered

(4.56) < —cxa I (100, 1P+ Y 1 Zi g ¥ *) + xa ) CIAL - [ .

i

Together with our earlier estimates for 9, this shows that the dashed terms, the other
terms quadratic in 9,1, and the wavily underlined terms are bounded from above by

—exn @102 + 11100, W P+ Y 1Zisv )|+ 10 @) - 2

in the region r— < r <

X

Fered- We can now choose A < 0 large enough in absolute
value such that the sum of all the non-underbraced terms on the right hand side of
(4.54) that are not total derivatives are estimated from above by

— et 09 P+ 100, ¥ 2+ Y2 | Ziay 2]+ xa o) ClY 2 (458)

in aregion r— < r < rered, Where ¢ > 0, C > 0 are (new) constants

Step 3: Estimating boundary terms. We now gather all the total derivatives
appearing on the right hand side of (4.54). They are 9, (B) and 9, (A) with

a3 sin? 6
—xn(v+)(1+m)[ a® sin® 01y, Y1+

me(alM_ ‘(/fa(p+ W)

L. 2
- 2Sin29’1sc0s9 Y+ B, V|
2

2
+— |3¢+1/f| — a”sin” ORe(d,, Y9, ¢)+(M

— 2a)Re(B, Yy, V)
2 2 2 2 2
— (" +a +§A)|3r¢l —Elaelﬂl +§S|1ﬁ|]

and

2
_Xn(v+)(1+AA)[( a*sin®0+r>+a )\av+¢|2+(2a+airzijr%))me(awwamw)

+ xn (v pe™ |y 2,

where we have used Lemma 2.33. We begin by establishing the coercivity of B. We
first only consider the dotted terms and in a procedure already familiar by now we
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complete all individual 9, v terms into si1119 (iscos® - ¥ + 0y, ¥) at the expense
of adding error terms. We treat the arising expression (without the error terms) as a
quadratic form in (d,, ¥, ﬁ(is cos6 - Y + g, V), /—Ad,¥) (note the weight in
front of the 9, derivative) the corresponding matrix of which is easily seen to be

(La?sin26 + 2 +a?) (a +M)sin9 S

202+ 2
a(r’>+a®)y o a®sin’ @ _lav—-A
(a+—2(2 ))sm@ Lyt S 35 sinf
lav/—A 1
—5v—A 2“2+2s1n9 5

The positive definiteness of this matrix in a region r— < r < rereq follows easily
from noting that the left-upper 2-2 matrix has already been shown (below (4.57)) to be
positive definite in such a region while the other off-diagonal terms vanish at r = r_.
Choosing now w(n) such that p(n)e™ is large enough we can control all the error
terms to obtain

B Z xa ) (|AL 100 P+ 100, Y+ Y 1 Ziny P+ 1) (459

i

inaregion r— < r < Tered-
We next establish the coercivity of B — A. We find

B — A= )1 +28)[ 2 +ad) oy, v
a(r? + a®cos? 0)

+(2a+
r2 4 a2

)Re@y, ¥y, )

lis cos6 -y + 9y, Y| + (A + a® sin® 0)Re (D, Y3, 1)

2Mar _
+ (2a — m)me(a,wa¢+w)

sin“ 0

+ 2+ N0+ 1009 = s1 P ]+ v oe 1.

Again, completing the 9, ¥ terms to

i 0 (iscos@ - + 9y, ) terms by introducing
error terms and considering those terms that are quadratic in (3y, ¥, 5 n@ (iscos@ -
Y + 3y, ¥), 0,Y) as a quadratic form (note that this time we do not include a weight
in the 9, derivative), we need to establish the positive definiteness of the matrix

2 2 a(r?+a%cos?0) \ o 1 22
2r —zi—az (a+—2(r+2) )sm@ 7(A + a“ sin” )
0, = (a + %) sin 0 1 (a — ,Zi:z) sin 0
%(A + a? sin® 6) (a - ré”f;z) sin @ r? +ad?
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The first main minor is clearly positive, the second main minor at » = r_ is found to
be

(r2 + a*cos? 0)>(r> +a*cos? 6 + 6Mr_) 0
>
4(r2 + a?)?

’

and we compute

4Mr_ (rz + a2 cos? 0)2(;’3 +a?cos? 6 + 2Mr_)
4(r2 +a?) '

det Q>(r-) =

Again, choosing w(n)e™ large enough we control all the error terms and conclude
that

B—AZ xa) (100 + 100, Y+ Y 1 Zi v+ ) (4.60)

L

holds for r— < r < rereq fOI Fereq close enough to r_.
Finally, we need to establish the coercivity of B + %A for r close enough
to r—. We compute

A 1 2 o2 2 2 2
TR A S w00+ A8)| (5a7sin’ 6+ 1 4 a” + O1AD) Iy,
a(r2—|—a2) J—
+ (2a + Taa + O(IAD)Re(Dy, Y0y, ¥)
a 1 a(r2+a2)

N A( - 2a))me(a,wW)

r24a®  r2+2Mr+a®’ ?ta?
1

sin? 6

1
+ (5 +0a8D) —5iscosd -y + 3, y[*

2
a 2
+ (s +008D) 10, ¥

+A(1+ a?sin? 6
r2 4+ 2Mr + a?
2

2
My il
+ (l + o<|A|))|am//|2 (st O<IAI>)I¢IZ]
2 2

+ xn (v pe™ |2,

)Re (39 3y, )

Again, we complete all isolated d,, Y terms into shll 7 (is cos 0+0,, ¥) by adding error

terms and treat the part of the expression that is quadratic in {0, ¥, ﬁ (iscosf -y +
0y, V), AO, v} as a quadratic form (note the weight in front of the 9, derivative). Its
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corresponding matrix at » = r_, modulo the factor x,(v4), is easily seen to be

. . 2 in2
%a2 sin? 6 + r2 + a2 %a sin @ %—}— asin” 0

40r2+a?)
3 1, a%sin®6 3a .
03 = sasin® 5+ ey oo siné | |
1 a?sin? 6 3a p 1
ol 4(r2 +a2) 4(r2 +a2) sin ¢ 2(r2 +a?)

where we have used 2Mr_ = r2 + a?. The left upper 2 x 2 matrix is already known
to be positive definite. Moreover, we compute

2r2 4+ a? + a% cos? 0)(r2 + a2 cos? 9)?
det 03 = ¢ a ; ) " o
16(r2 + a?)3

Hence, Q3 is positive definite and after choosing . (n)e™ large enough we obtain

|A| 2 2 2
Bt s o v a2 2 xn () (A8, 9| + 180, ¥

+Y N Ziy P+ 1y P) (4.61)

inr_ <r < rered fOr rereq close enough to r_.
Step 4: Estimating the remaining bulk terms. The last two terms in (4.54) are
estimated by

—xn V) e 1Y 1? = 2xn (i) e Re (Yo, vr)

1 _
< =m0 2+ 2 ) e 199 2.
Choosing now 1 > 0 large enough and recalling (4.58) we finally obtain from (4.54)

0y, (A) + 0, (B) Z xa ) (10,91 + 100, WP + Y1 Zi s 9P + 1Y) (4.62)

a.l. i

in the region r— < r < Fered-

Step 5: Putting it all together. Let v’ € (r_, rereq). We integrate (4.62) over the
region {r' < r < reed} N{f~ < o} N{fT < 1o}, with fp > 1, with respect
to dvy Adr Avolg = %vol. Moreover, using that on a level set of fT we have
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— - — A ;
dr = dvy and on a level set of f~ we have dr = r2+2Mr+a2dv+, we obtain

[A]
B voleedvy + f(B + —————A) voleedvy + [ (B — A) vole2dv
/ S r24+2Mr + a2 S ChR
{r=r"I0(f+ <10} 1~ =to) {fF=to}
N~ <o) N K K rerea) N < rerea)

e [ (B0 + 10,9 + 3 1Zis P+ P volgadusdr o)
: .

{r' <r <rered)N{f~ <10}
N <o)

< f B volgdv,,
{r=rerea}N{f* <10}
N <o)
where ¢ > 0. Using (4.59), (4.60), and (4.61), the trivial upper bounds on B for the

right hand side together with Proposition 4.31, letting 7y — oo and r’ — r_, we
conclude the proof of the proposition. O

4.3.1 Extension of yto the Cauchy Horizon C’H,‘"

Proposition 4.64 Under the assumptions of Section 3 the limit
Jim (g, 0, 915 0) =Y (04,6, 9457-)
exists in L2(R x S?) and satisfies
[ 1@l s 6. 015 volizdvs < oo, (465)
RxS?

where the function x (v4) is as in Proposition 4.51.

Proof For ri,r, > r_ and for 6 # 0, w by the fundamental theorem of calculus we
have

Vs 0piir) = W bpiim| < [ 80040 puin]
[r1.r2]
Squaring and Cauchy-Schwarz gives

|W(U+,97¢+§rl)—I/f(v+»9afﬂ+§”2)|2
<iri—ral- / 19 (04 0, 043 1) dr.

[r1,72]
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Fig.8 The L2-estimate

Integrating with respect to x (v4)volgadvy gives

/ W (0 0. 91 1) — (0 0. 9 1) P (v volgaduy

2
s (4.66)

<|rp—r- / f [0, Y (v, 0, @4 r)|2 x (v4)drvolgdv..
RxS? [r1.r2]

Let Li ws) (R x S?) denote the L2 space with respect to the measure x (v4)volgdv,.

By (4.53) we have ¢ (vy, 0, ¢4;7) € Li(v+)(R x §?) for r close enough to r_ and
by (4.52) we have that the right hand side of (4.66) is bounded by |r; — 2| - C. This

shows that ¥ (v4, 8, ¢4; r) is Cauchy in Li(v”(R x §?) for r — r_, from which

both claims in the proposition follow. O

4.3.2 Backwards Propagation of the Singularity

Proposition 4.67 Under the assumptions of Section 3, and considering the hypersur-
face T = {f~ = vo} transversal to CH,\ for some vy € R, there exists a constant
C > 0 such that we have for all v' > 1 large enough

‘ / ¥ (3 )l volgadvy — / l¥|? volgduvy | < C - eV

CH;f N{vg v’} =N{vy v}

where (- ; r_) is the L*-limit from Proposition 4.64.%°

Proof Step 1: We recall that f~ (vy,r) = —vy +2r*—r+ry. Thus,on X = {f~ =
vo} we have

vy =2r" —r+ry —o

1 (4.68)
= —log(r —r_)+2F_(r) —r +ry — v,
K_

39 Also recall that k— < 0.
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where we have used (2.8) (recall that F_ (r) extends regularly to r_). The right hand
side of (4.68) is clearly a strictly decreasing function in r and thus the inverse function
exists which we denote by rx so to obtain rx (v4) = r on X. It is also immediate that
we have ry (vy) — r— for vy — oo.

Taking the exponential, we obtain from (4.68)

eVt =0 —-r_) G@)
on X with lim,_,._ G(r) > 0. Thus, for v4 > 1 large enough we have
re(vy) —r— > e+, (4.69)

Step 2: Let now r’ > r_ be close to r_.
We now estimate, in a manner similar to the proof of Proposition 4.64, as follows
(see also Figure 8):

rz(vy)
Ve 0.0) = Y (s rs @) 00l < [ e 0] dr
r/
Squaring and Cauchy-Schwarz gives

1Y (vi, 7, 0, 04) — Y (vp, rs(v4), 0, 91> < rs(vg) — 7|

re(vy) )
X.‘/. |ar1ﬂ(v+7r,9,‘ﬂ+)| dr°
I

Let vy—nx = 2r*(r') — r’ + r4 — vo be the value of vy on ¥ where r = r’. For
V' < vj=)ny We integrate to obtain

U(r:r/)ﬁZ
/ ./SZ [ vy, 1,0, 04) — Y (v, r(vy), 0, ) volgadvy
v/

Vpror)ns rs(vy) 5
< |rs @) = 7| / /2/ [0, (vy, 7,0, p)|” drvolqedv,
/ S r/

v

which gives

Vir=r'}ns , 2 1/2
‘(/ /;2 |¢(U+a r, o, (P+)| VOlSZdU-i-)
v/

Vir=r}NS ’ 12
— ( / /S W@ 2 (04),0, 1) volszdv+)
v/

< / 712 Vir=r}Ns re(v4) . "
<rs@) —r[7"- . 10,% (v4, 1, 0, 9)|” drvoledvy ) .
v’ ¥

(4.70)
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We now let 7’ — r_ and note that this implies v(,—,jnx — 00. Moreover, we have

[V (vg, 0, @43 7) - L v,y (V) = (0, 0, @457 ) - Ly 00) (V)]
< U g1 W) - [ (04, 0, 045 7) = U (04, 6, 945 7] (4.71)
+ |1ﬁ(v+, 0, 0p3r-)- []l[v’,v(r=r/)02](v+) - ]l[v',oo)(v+)]

’

where 1 4 denotes the characteristic function of the set A. The first summand on the
right hand side of (4.71) goes to zero in L?>(R x $?) by Proposition 4.64 while the
second goes to zero in LZ(R x s?) by dominated convergence. We thus obtain from
(4.70) after r’ — r_ and for v’ > 1 large enough

0 12
( V(. 0. 042 )P volpd,
v’ s?

=:1
oo 5 12
- ( [V (vg, re(v4), 0, o)l volSzdv+)
v/ §?
=11

. 00 rg(v4) 5 12
<|rs) — "2 (/ /SZ / [0, (v, 7, 0, 1) drvolgzvar)
v r—

4.72)

where we have used (4.69) and (4.52) in the last step. Since [ is finite by Proposi-
tion 4.64, I1 is also finite. Multiplying (4.72) by I 4+ 11 < C concludes the proof.
O

Lemma4.73 Let f, g : [1, 00) — [0, 00) be positive, integrable functions that satisfy
for v’ sufficiently large

oo o ,
[ rwav- [T ewar] s
v v
with k > 0. For p > 0 we then have

o (0.¢]
/ vP - f(v) dv < o0 if, and only if, / vPg(v) dv < oo.
1 1
Proof Let us assume floo vP - f(v) dv < oo. By assumption we have

‘ /2,,00 (f(v) = gw) dv‘ < Ce

for all n € N. It follows that

2)l+l

‘ / - (f —gw) dv‘ <C(e*? e, (4.74)
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We then compute, using (4.74),

on+l

00 oo
f vP - g(v) dv<2/ @ hHPg(w) dv
1 =0 2n
on+l

<Y @ e 4 e )+ ) /2 @D fw) dv
n=0 n=0

n

<cary [T @nrse
2n

o0
<C+2P/ vP . f(v) dv.
1

O

Applying the lemma with f(vy) = sz [ vy, 6, @i ro)|? volg2 and g(vy) =
Jo (g, re(vy), 0, ¢4+)|? volg gives the following

Corollary 4.75 In the setting of Proposition 4.67 we have

/ vl (s ro))? volgedvy < oo if, and only if,
CH N{vy 1)
vl |y |? voladvy < oo,

TN >1)

where p > 0. It follows in particular from Proposition 4.64 that

x )|y |? volgadv, < oo. (4.76)

=N >1)

5 Teukolsky’s Separation of Variables

In this section we use the upper bounds derived on the Teukosky field in Corollary 4.46
to establish the separation of variables. We begin by a discussion of the spin 2-weighted
spheroidal harmonics, then introduce the Teukolsky transform, and prove a non-trivial
result regarding the relation of physical space v4-weights and frequency domain w-
derivatives. We then derive the radial Teukolsky equation belonging to (2.39).
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5.1 Spin 2-Weighted Spheroidal Harmonics

Forw e Rand f € JEYO] (S?) we define*”

K@) f = Ry f + (@w)?cos? 0 - f — 2sawcosf - f. 5.1

o

Clearly, Afs)(w) maps I (S?) into I (S?).

Proposition 5.2 The operator As)() : L*(S?) 2 95(S?) — 9%5(S?) € L2(S?) has

a complete and orthonormal (with respect to LZ(SZ) ) set of eigenfunctions YrEfl] (w) €
UFS"](SZ) indexed by m € 7, N > | > max(|m|, |s|) and eigenvalues )\Eﬂ(a)) e R
satisfying

A@)Y ) =@y ). (5.3)

ml

The eigenfunctions are known as spin 2-weighted spheroidal harmonics and are of the
form

Y10, ¢; w) = U (cos 6; w)e™?,

where the Sr[,f l] (cos 0; w) form a complete and orthonormal (with respect to L*([—1, 1],
d cos 0)) set of eigenfunctions of the operator

LIV () = 3 (sin 635 S) m o e
w = —_— _ S —2sm—-
mn sing 0 0 sin% @ sin 6

2

0

_ (Szc?szg - s> S+ (aw)?cos? 6 - S — 2sawcosh - S
sin

with eigenvalues Xﬁ}(w)‘“
L[S] S[S] — )\‘[S] S[S] 54
m (@)S, (@) =4, (0)S,/(®). (5.4)
The eigenvalues )»% (w) depend analytically on w and the eigenfunctions Sr[r:l] (cos0; w)

are analytic in w and in x = cos 0 away from x = £1. Near x = =1 we have the the
following asymptotic expansions for all k € N: Near x = —1 we have

ak S[‘Y](x; ) = (1 _,_x)%'m—”ak(x; w),

w~ml

where ar(x; w) is analytic in both arguments near x = —1; and near x = +1

ok shl s @) = (0 = DA (xs )

wml

40 This differs from the analogous operator defined in Section 6.2.1 in [15] by an overall minus sign.
41 This is the same equation as (4.10) in [67] with A = —A,;; 5] (w).
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is valid with by (x; w) being analytic in both arguments near x = +1.
Moreover, we have )»,[;} (w) —s = )»En_ls](a)) + s and for w = 0 the eigenvalues are

given by J10) = —(l =) + 5+ 1) = (L + 1) + (s + 1).

Proof The result is standard, see for example [67] or [15], although we do not know
a reference that includes a proof. We will thus give an outline of the proof here.
Making the separation of variables ansatz Y, (6, ¢) = S,,(6)e'™? we obtain

A (@)Y (0. ¢) = (LE/(@)$4(0)) - ™.

We will now find an orthonormal basis of eigenfunctions for L,[ﬁ] (w) using Sturm-
Liouville theory. The substitution x = cos 6 yields

2
w&n + (s + (aa))2 2 2saa)x)Sm.

(5.5)

d d
L, = —(a —xz)ESm) -

We now go over to LLi] — X for A € C. The points x = =£1 are regular singular points
of the second order differential operator and, moreover, it depends analytically on @
and A, even for complex w. The Frobenius method, see for example [66], shows that
there is a fundamental system of solutions of (L Li] —MA)S;; = 0,normalised at x = —1,
of the form

I .
w1 (6 2, @) = (142" hy (x4, @)
ur(x; A, w) = (1 —i—x)*%‘mﬂ"hz(x; A, @) + clog(l + x)up (x; 1, w),

where /1 and h, are analytic in [—1, 1) x R x R and the constant ¢ might be zero
unless m = s. Similarly, there is a fundamental system of solutions normalised at
x =+1:

i h @) = (x — DI lgy (x: 4L w)

va(x; A, @) = (x — 1)_%""+S‘gz(x; A, @) + clog(x — D (x; A, w),

where g; and g, are analytic in (—1, 1] x R x R and the constant ¢ might be zero
unless m = —s. Note that u; is regular at x = —1 while vy is regular at x = +1.
For A = Ap > 0 large enough one can show that 1 and v; are linearly independent.
Using this pair of solutions one constructs the Green’s function in the same way as
for a regular Sturm-Liouville problem, c.f. [66]. The above asymptotics imply that
the Green’s function is in L2([—1, 1] x [—1, 1]), and thus the solution operator K,
is a symmetric and compact operator on L>([—1, 1]). It is easy to show that the
kernel vanishes and thus, by the spectral theorem, there is an orthonormal basis of
eigenfunctions Sr[;l] (x) of K;, with real eigenvalues /,L’[;} Using the asymptotics of

u1 and vp in the Green’s function one shows that S,[rf,] are continuous at x = =£1.
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Moreover, they satisfy (L — Ao)(M[S]S,Efl]) = S;Efl] and thus

ml

1

[s] gls] [s] _
LEISh — G+ —)shl =0,
ml
— ——
=l

ml

It follows that Sr[’f l] ~ u1 ~ v1 —and thus in particular that the eigenvalues are simple.

To show the analytic dependence of the eigenvalues on w we notice that they are
exactly the zeros of the modified Wronskian W (uy, vi)(A, w) = ui(x; X, w)(1 —
xz)vi (x; A, 0) — (1 — xz)u’1 (x; A, @)v1(x; A, ). One now shows that the zeros of
the Wronskian in A are simple, i.e., 9y W (u1, vl)(A%, w) # 0. The analytic implicit
function theorem then yields that the eigenvalues A1) (w) depend analytically on w. It

follows that u (x; Al (w), ) depends analytically on w. Normalising it in L2([-1,1))

ml
then gives S,Efl] (x; ), which shows in particular the regularity claimed in the proposi-
tion.

It is straightforward to show that Yl[:ql (w) is an orthonormal basis of L2(S?). To
show Y, l[nsl] (w) € f]f’f] (82), we can use the asymptotics of Sr[;il] (w) given by the Frobenius
solutions above and tediously verify the conditions in Proposition 2.18. Alternatively,

and more elegantly, we can multiply (5.3) by Y}Efl] (w), integrate over the sphere and
check that the asymptotics of § ,[,fl] (w) allow us to do one integration by parts to conclude
that Y,Ef l] (w) € H[ls] (S?). We now go over the corresponding trace-free and symmetric
2-covariant tensor field o, (w) on S* which is smooth except possibly at the poles
of the sphere. Using (2.21) we now rewrite (5.3) as a standard elliptic equation for
omi(w). It now follows from standard elliptic regularity theory that «;,,; (@) is smooth
on all of the sphere — showing the claim.

The relation A%(a)) -5 = AEH_IS]((;)) + s follows from the substitution x — —x
in (5.5). Finally, we refer the reader to [28] for the evaluation of the eigenvalues at
w=0. O

The following quantitative result on the w-dependence of the eigenfunctions Y,Efl] (w)
is needed for the proof of Proposition 5.22.

Proposition 5.6 By Proposition 5.2 we know that ok S[S](a)) e L([-1,1]D for all

w~ml
k € N. We can thus expand in L*([—1, 1])
B @ = 3 Dy (@S,
' Zzmax(|ml,|s|)
with DY), (@) € R.

There exists € > 0 such that for |w| < & we have

Yo D@ < C) < o0, (5.7)

LU Zmax(|ml,|s])
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where the constant is independent of m and |w| < &

Let us remark that (5.7) is equivalent to

Y kSt )12, < Clh) < oo (5.8)

[Zmax(jm|,|s|)
Proof Differentiating (5.4) in w gives

L[‘Y](a))a S[S](a)) + 2a(awx? — sx)S,[;l] (w)
= 3,0 @) - S8 (@) + 28} (@) - 9,55 (). (5.9)

ml

Note that since [|SU}(@)]|;2 = 1 for all w, we have (SY)(@), 8,55/ (@) 2 =
Multiplying (5.9) by S,[; 1] (w) and integrating gives

(LB (@), S5 (@), SN (@) 12 + 2aawx? — sx) S8 (@), SEH @) 2 = 3,48 ().

* “ml

We now integrate by parts in the first term*? to obtain

(LB ()8, SE (), SE ()12 = (8,55 (@), LE (@) SE () ;2
= (3,55 (@), A2 (@)U (@) 12 = 0.

This finally leaves us with

ml

0,101 (@) = 2alawx® — sx)SEN(w), SEH(@)) 211 (5.10)

Multiplying (5.9) by Sr[;l]/ (w), 1 # ', and integrating over [—1, 1] in x gives, after the
integration by parts as before,

(3 S5 (@), ) (@) SE) (@) 12 + 2atawx® — sx)88) (@), SV (@) 12
= Ml (@) (0, S (@), Sb) (@) 12
We thus obtain for [ # [’
DY), (@) = (9,8 (@), SB) (@) 12
(a(awx® — sx)S[S] (w), S,[;l],(w))Lz (5.11)
ml (@) - AEI'(‘U) .

42 Note that the arising boundary terms are
d 1
[ =) aushl@) - shi@)] | —[oshi@-a - S“%w)} :
dx -1 1

which vanishes given the asymptotics of S(If) S’[;]] (w) from Proposition 5.2.
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For I = I’ we have D[Sll (@) = 0. To derive an expression for Dm”/ « We
first note that by the regularity of 9! S ml (w) from Proposition 5.2 we have that
mi

y " (w)) 12 1s smooth in w. We now compute

k—1 k—1
a3 )D,Ej},,ﬂ(w):a( 3088 (@), SE1)

= Z( ) (00" 8 (@), 82 S8 (@) 12

= (058 @), I 0 + Z( ) (05" S8 @), 35U (@) 12

(5.12)

= anl]z’ (@) + Z ( )

n=1

Z szz n @Sl (@), Z Dm[/j n(w)S[sj]- (@) 2

k_

_ plsl k—1 [s] [s]

= D@ + 3 ( " ) Y Puliken(@ Dy @)
n=1

iZzmax(|m|,|s])

We also need to estimate the eigenvalues for small |w|: for |w| < 1 it follows directly
from (5.10) that

10,18 (@)] < 2a(a + [s]).

We now choose 1 > & > 0 such that for || < & we have

W) — ko) < (5.13)

1
4
uniformly in m and /.

We now prove (5.7) by induction in k. We start with k = 1 and estimate (5.11).
We have | (2a(awx® — 5x)S"*] (w) S (@) 121 < 2a(ae + |s]). We now estimate the
denominator using (5.13) and )“mz(o) I+ 1) +s@s+1):

Z 1

5 Is] 2
1" >max(jml,s]) [l @) = i ()]
1Al

1
<
Z (I =1+ D+ + D] - 3)?

LI"Zmax(|m|,|s|)
1£l

1
= E E 7 withl’ =1+ k
(Jk(k +142D)] — 5)2

[Zmax(Im|,|s]) keZ\{0}
k>—I4+max(|m|,|s|)
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1
< X ) D YR e

[Zmax(|m|,|s]) keZ\{0}
kz—l+max(jm|,|s|)

1
S Z Z k212
[Zmax(Im|,|s]) keZ\{0}
k> —Il+max(|ml,|s|)

1 1
<3 X @
leN keZ\{0}

4

(5.14)

This proves the claim for k = 1.
We now assume that (5.7) holds up to and including £ — 1. We first show that for
1 <j<k—1and|w| < ¢ wehave

10,251 w)| < C(j) < oo, (5.15)

where the constant is independent of m, [. Let f1!(x; w) := 2a(awx* — sx). Thus
Bwk%(w) = (f[s](w)S,[,fl] (@), S5} (@)),2 and thus

* “ml

- J=1Y\,. ol s gl

oAl @l =1 Y (l. l. l.)(azgf[Ww)ags,E:}(w),azss,[,:}<w)>Lz|.
I<iiHa i< j—1 S 183

(5.16)

Clearly, 82;} f [s](a)) is bounded in L{°([—1, 1]) by a constant only depending on s for
|lw| < e, and a;s}j} (w) is bounded in LJZC([—I, 1]) by a constant independent of m, [

by the induction hypothesis and (5.8). This shows (5.15).

We now use (5.12) to show that Dr[rfl]l,; « (@) is bounded in 22(1,1"). The induction
hypothesis shows directly that the £2-norm in /, I’ of the underbraced terms in (5.12)
is bounded. It thus remains to show that the £2-norm of the left hand side of (5.12)

is bounded. Note that for [ = I’ it vanishes identically. For [ # I’ we compute using
(5.11)

_ k—1 . . .
04Dk, (@) = > ( o ) (0 F1) @92 Si (@), 953 S8 (@) 12
| iy Hip g is <h—1 1,12,13,14
()
@) — (@)

The underbraced terms are bounded uniformly in m, [, 1’ and |w| < & as in (5.16).
Using (5.15), we can bound

o8 ()1 < <
w N . ~ . . ’
@) — 28 () A5 @) = A8 (@)
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where the constant is independent of m, 1, I’. Tt now follows from (5.14) that the 21,1
norm of the left hand side of (5.12) is bounded. This concludes the proof. m]

5.2 Teukolsky’s Expansion

For f(vy, 0, ¢4) € L,ljJrLé2 we define the Fourier transform f of f by

- 1 )
fO, 91 0) = ER/ fog, 0, 94)e' " duy. (5.17)

It can be easily checked that this is a map () : LL+L§2 — CgLéz. It gives rise in the

standard way to an isometry (-) Ly, Léz — LiLé2 which we denote again in the
same way.
Forg € L2 L%, we define the map () : L2132, — L2¢? by

w—g2 w—g2 w~m,l
gmi(w) 1= /sz g0, 91 w)Y,Efl](G, @y; o) volg, (5.18)

which is also an isometry since for each w € R the YrEfz] (w) form an orthonormal basis
of L2(S?). The summation in Z%I ;isoverm € Z and N 3 [ > max(|m]|, |s]).

For f € LLLéz N L%+ L2, the composite map (/)m, = (I © E-/), which we call
the Teukolsky transform, is given by

Fui(@) = fﬂuﬁwuwMﬁmammwum@.(ﬂ%
R

7= b

Note that by
f /82 [ f(vy, 0, 00)]- IY,LS,](B, @+ w)|volgdvy
R

1
<f (/ |f(”+’9»‘p+)|2V0182)2dv+ < o0
R\ Js?

the order of integration in (5.19) does not matter.
The inverse map of (5.18) is given by

20, 91:0) =Y gm(@)Y) (0, 91 0)

m,l
and the inverse map of (/) : L%+ Léz — Lz)Lé2 is given by

1 < .
vy, 0, 04) = —/ 0, p4; w)e '’ dw,
fvs, 0, 04 T Rf o+
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where this can be taken literally for f € L}UL§2 N quLéz and serves as notation
for f € LL%)Lé2 in the standard way, which is then defined via approximation by
functions in Li)Léz N Lz)Léz. In particular for f,,; € L({)Ei,z N Lz)ﬁi’l we have

f el (LLéz N L?UL;2 and thus we have literally

1 -~ .
f(v-i-a 0$ §0+) = \/T_j'[/Rmel(a))Y’El](Q’ (/N Q))eilwv-%— dw
m,l

12 2 p2 2 g2
asamap L€,  NLLE | — LU+Ls2‘

For f € L%+Lé2 we have the Plancherel relation

2 _ 2
/ngz|f<v+,e,¢+>| volgadve = I1£1E; 2
_ 112
= 12 2, (5.20)
= 1ol =/RZ|fmz|2dw.
" m,l

We also have®

O, f = —iwrf inLALY, if £, 0, fe L] LY, s
Vi f = —idof inLyLZ, if foupf el LY

and

Oy Nt = —iwfp L2, i f.0,, f € L2 L2
Note, however, that in general (v\+/f Iml # —i0y fml, since the orthonormal basis
functions Y,Efl] of L%(S?) in (5.18) are w-dependent.
In the following we address this point and show that under suitable assumptions we
can still infer limited decay of f (v, 6, ) for |vy| — oo from limited regularity of
fml in w.

5.2.1 Slow Decay in v4 of f in Terms of Limited Regularity of?m,

Proposition 5.22 Let ¢ > 0 be as in Proposition 5.6, let f € L%_M)Lé2 and let
q0 € No. Then 8 f € L? Léz, ie.,

(—¢,8)

/ /gz 199 f(@, 0, p1) > volgdw < oo (5.23)
(—&.,8)

43 Proof as in [42] 7.9 Theorem.
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forall 0 < g < qo, g € Ny if, and only if, a2 (fml) € L( . S)Eml, ie.,

/ Zlaq(fmz)(w)l dw < 00 (5.24)
(=e.0)

forall 0 < q < qo, q € N. Here, all derivatives are weak derivatives.**

Proof Assume first that f has g weak w-derivatives in L2 (—e €)LSZ We then have for

0<g<qo
3 Fomt = /S 08F 0. 913 0) - Yl (6. 913 ) volgp
= /S 38(f (0, 01 @Y, 6. 911 ) ol

q - @
-2 (Z) /S LTI 0, 01 0) - 30 Y0, o1 0) vol
q'=1

- e o (5.25)
=04 frur(@) — Y (q,) /Sz IS0, p4; )

q'=1

D Dl (@Y} (0, 91 @) volg
l/

q

= 08 fu (@) = ) (Z) Y Dol @ @F (@),
l/

q'=1

where, in the second equality we have used the smoothness of the Y,Ef l] in @ and the
product rule

q
dha-b)y =3 (Z,)agq’a - 37'p
q'=0

which of course also holds for weak derivatives if b is smooth, in the third equality
we have used that we can pull out weak derivatives from under the integral*> and the

44 For this paper only the ‘only if” direction, i.e., * = ’, is needed.
% Let g6, g1 ), 0080, p1: w) € LZ)L]SZ and let h(w) = [q g6, ¢+: w) vola. Then the weak
derivative of /4 is given by fS2 00,80, pr; w) volSzz for x (w) € Cgo (R) we compute
7/ h(w)dy x (w)dw = 7‘/ / g0, p4+; w) volSz O X (W) dw
R R J§?
—/ / 80, 9+ )y x (@) Volga dw
R JS?

=/R/82 008(0, 9+; w) x (w)volgrdw.
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representation of 9 s from Proposition (5.6), and in the fourth equation we just

used that the limit in 7’ is an L2(S?) limit, so we can pull it out of the integral
Now by (5.23) and Plancherel we have

& &
o= [ 18870 g volpdo = [ 3100 @) do
—& —Sml

Thus (5.24) follows if we show

[ i,
—&

m,d I

@8 P (@) deo < o0

for 0 < ¢’ < ¢. By Cauchy-Schwarz, Proposition 5.6, Plancherel, and (5.23) we
compute

[ leme 087 P @) do < ﬁ > (X i0kh., @P)

m,l 4

(D(aq " P @) deo
/ Zaq) D(aq  Pour @) deo

—c@) [ [ 1087 7. psi 0P vl
—&

< Q.

To prove the reverse direction, we now assume that fml has go weak w-derivatives
satisfying (5.24). Let 0 < g < go and x € C(‘)X’((—s &) xS ) Then

//Szf(w.é,w+)33)x(w.6.<p+)volszdw=/( )(f(w),agx(w)>Lz(Sz)dw
—g,€

(—¢.€)

7

> I @ (S @), 0 x @) 22, de
(—¢,8) I,m

. 112 112
\—”—|<( Yot \fmz(w)\2> (ng,/ \aixm/l/(w»z)

-

a ,
/ (@) Y (=1 (‘j)az" Y@, @) 262y doo
I,m(_g,s) j=0

eCs((—e.0))

q .
=Z<—1>‘1(’;)Z / 08~ Jut (@) - (L]
j=0

ml (w)v X (w)>L2(S2) dw
l,m(_s,g)
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q

q —jx J—

= [, 2)(/)123 Jf””(”’,zDmua,ww)Yij}/w’¢+:w>‘x<w’0’w+>volgzdw~
(—&.8) J= S '

=0, [(.0.04)

where we introduced (-, -) L2(S?) for the standard Hermitian product on L%(S?) for
brevity, used Plancherel in the second line, dominated convergence in the third line as
well as the combinatorial formula

q
(Y, 98x) =Y (=1 (‘j.)az‘f (@Y. x)

j=0

which can be proved easily via induction; we used that ﬁnl admits gg weak w-
derivatives in L%_& 0 in the fourth line and finally Proposition 5.6, (5.24), and
dominated convergence again in the last line. Proposition 5.6 and (5.24) together
now also show (5.23). O

5.3 Application of Teukolsky’s Separation to the Teukolsky Field y

Theorem 5.26 Under the assumptions of Section3 and for every r € (r—,ry) the
Teukolsky transform

Vi (r: ©) = /S RACHYN 9+ YN0, 1 ) dvyvolg (5.27)

7 .

of the Teukolsky field Y (v4, r, 6, @) is well-defined and we have Jml (r;-) e L3202

o m,l*
Moreover, for every r € (r—,ry), m € Z, and N > | > max{|m]|, |s|} we have

Ymi (5 ) € CY(R). 5

For fixed w, m, | the Teukolsky transform v, (r; ) is twice continuously differen-
tiable inr € (r—, ry) and we also have a?irlzml(r; ), %Jml (r;-) € Cg(]R) for every
r € (r—,ry) and m,1.* Moreover, the Teukolsky transform satisfies

Ad—ZV«) 2( - ? +adio+i MY = ) LG )
drzwml r;w)+ (—(r +a%)io+iam+ (r — M) —s)drl/fml(r,a)
+<A£§} (@) — (aw)? + 2wma — 2ior(l — 2s) — 2s> Imi(ri@) =0 (5.28)

2

forallw e R, m € Z, N 51 > max{|m|, |s|}. Since we have Jml(r; ) € Li@m,

representation

; the

1 - .
Yy, r,0,040) = \/T_nfRZl/fmz(r; w)Y,EfI](Q, Y w)e " de  (5.29)
m,l

46 we only need Jml(r; s %f/}ml(r; )€ Cg(R) (for Lemma 6.13).
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is valid for every r € (r—, ry) in particular in L%+ Léz.

Proof Corollary 4.46 in particular states that for each r € (r_,r;) we have
Y(vg,r,6,¢04) 18 in L%Jr Léz. It now follows from Section5.2 that the Teukolsky
transform is well-defined with @ml(r; ) € Lz)ﬁi’ ; and also that (5.29) holds.

By (4.48) for f = v, and since ¢, > 2, we obtain that ¥ (vy, 7,6, ¢y) € L'(R x
s?). Together with the boundedness of Y[S] (0, ¢; w) and its continuity in @ we obtain
from (5.27) that 1/?,,11 (r;-) e Cg(R) for fixed r,m, [. By (4.48) for f = 0,y, 9 24
we also obtain that we can continuously differentiate in » twice under the integral in
(5.27) for fixed w, m, [ and also the continuous dependence of the derivatives on w as
before.

In order to derive (5.28) we recall the coordinate expression (2.39) of 7y = 0 to
see that

()=A;/Sz [azsngaiw+2aav+a¢+w+2(r2+a2)3v+3r1/f+2(18¢+8,1//

F ARy + 2(r(1 — 25) — isacos 9) By,

+20 = M)(1 = ) 0,9 + by — 259 [ $hl(cos 6: @)e % dv,volg

Y @.0110)
= f /2 —(wa)?sin® 0 Y + 2amw ¥ — 2iw(r? + a%) .9 + 2imad P
RJS
+ Ay — 2ia)(r(l — 25) — isa cos e)w

F20r — MY(1 — )30 + Kpy ¥ — 2s1/f] v B9, o, : w)dv, volg

holds forallr € (r_, ry)andallw € R, where we have used (4.47), which in particular
implies*’ 89 _dg! 87>y (r) € LY L2 for0 < a+bi +by <2,a,b1,by € N which

we use to do the integration by parts in vy. We assemble A[S](a)) from (5.1) to find
0= / / [Aa,zw + 2( — (P + o+ iam + (r — M)(1 — s)>a,w
R Js?

+ ( — (@) + 2wma — 2iwr(l — 2s) — 2s)¢ T Zsm(w)w] vyl (9, 0, w)dvyvolga.

We now use that ¢ and Y,Efl] are smooth spin 2-weighted functions so that by Proposi-
tion 2.26 and (2.31) we can do the integration by parts to bring 4&[5] (w) over to obtain

47 We use

1 1 1
/R</S2 |8,‘J’+8£+1//(r’)|2volgz)2dv+ < (/R IO 2 // x@plad, ok, v (r)lzvolgzdv+>2.
[ —

<00
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a term of the form y - ¢/’ A1 (@) Y16, 04 ; ) = - e+ 2N @) Y6, 04 ),
where we used that the eigenvalues A[S ;(w) are real. Finally, by (4.48) for f =

oy, B,ZW and the boundedness of Y, M(G ¢; w) dominated convergence allows us
to pull the r-derivatives out of the integral to obtain (5.28). O

6 Analysis of the Heun Equation and Transmission and Reflection
coefficients for® = 0

This section analyses the radial Teukolsky equation (5.28). We show that it is of the
Heun-form and that the limit @ = 0 is a hypergeometric equation. We introduce
specific fundamental systems of solutions along with the corresponding transmission
and reflection coefficients and investigate their regularity and their behaviour for v —
0.

6.1 The Heun Equation

Setting x := —— in (5.28) so that we have x = O forr = r_andx = 1 forr =ry

the equation (5.28) transforms to the Heun equation

2

(1 —x)xd 5

v(x) + (ozx2 + Bx + y)%v(x) + (Sx + 8)v(x) =0, 6.1)

where we have just written 1/?,,11 (r(x); w) = v(x) for brevity and generality and where

o=2iw(ry —r_) 8§ =2iw(1 —2s)(ry —r-)
B =dir_w+2(s—1) = W) + (@w)? = 20ma + 25 + 2iw(1 — 25)r—
4iMr_
y = (w—w_m)+1—s5
ry —7r—
(6.2)
and w4 : 2Mri

Setting y :=1—x = r"’—sothatwehavey =0forr =ryandy = 1 for

r = r_ the equation (6.1) transforms to the Heun equation

d? - d .
(1— y)yﬁv@) + (@y* + By + ?)Ev(y) + @y +&)v() =0, (63

where
a=—-a="12iwlry —r_)
B=pB+2a=4diory +2(s —1)
41Mr+
y=—B+ry+a)= " (w—wym)+1—s
+ - -
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§=—8=—=2iw(l =2s)(ry —r_)
E=8+¢e= —)»Efl}(a)) + (aw)* = 2wma + 2s + 2iw(1 — 2s)ry .

6.1.1 The Hypergeometric Equation Arising as the Limit @ = 0 of the Heun Equation

We compute the values of the Greek parameters «, ..., ¢ for o = 0, where we also
use )\Eﬂ (0) = —=I( + 1)+ s(s + 1) from Proposition 5.2:

alp=0 =0 8lw=0=0
Blo=0 =2(s — 1) Elo=o=U—s)I+s5s+1)+2s 6.4)
2iam
V0w=0 = — +1—s.
r4 —r—

A straightforward computation then shows that for @ = 0 the Heun equation (6.1)
turns into the hypergeometric equation

2
(1 —x)x%v(x)+(g—@+lz+l)x)%v(x)—@-v(x):0 (6.5)

with

2i
a=1l+1-s b=—s—1 C=Ylp=0=— ram

+1—s5. (6.6

r4 —r—
Setting again y = 1 — x, (6.5) transforms into

d? d
(1— y)yﬁv(y) +(c—(@+b+ l)y)Ev(y) —ab-v(y) =0 (6.7)

with

Y
i=atbtl-c= "

+1—s.
r4 —r—

6.2 Fundamental Systems of Solutions and Reflection and Transmission
Coefficients

We now recall the Frobenius method to determine the possible asymptotics of solutions
of the radial ODE (5.28) at the regular singular points » = r4 and r = r_ and to
construct fundamental systems of solutions with these prescribed asymptotics. We
only provide a sketch of the derivation, full details of this textbook material are found
for example in Chapter 4 of [66].

We begin with the discussion of the regular singular point x = 0 in (6.1), which
corresponds to the Cauchy horizon r = r_. The asymptotics at the event horizon,
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which is y = 0 for (6.3), then follow directly from this discussion by replacing the
Greek parameters o, . . ., € by their tilded versions.

We make the ansatz x¢ Z?‘;o di(w, m, D)x/ for a solution of (6.1). Entering this
ansatz into (6.1) and comparing powers of x yields

dip1@+j+ Do +j+y)=di(c+ ) +j—1-p) —¢)
+di—1(—alc+j—1)—9). (6.8)

For j = —1 we obtain the indicial equation o (0 — 1 + y) = 0 which has the two
solutionso =0ando =1 — y.

Consider first 0 = 1 — y and set dyp = 1. It then follows from (6.8) witho = 1 —y
that the coefficients are recursively determined by

1
djp1 = —— a1 -y + v +i-p—e
=G a4 )
t+dj1(—al - y) = 9)] 69)
Note that fors = 2wehavey = —1+i ;wirri (w — w—_m) and thus the denominator in

(6.9) is non-vanishing for all j € N and for all w € R. It can be shown that this power
series converges absolutely for x € [0, 1). Also note that since the coefficients «, . . . , €
depend analytically on w, so do all the d;(w, m, I). The radius of convergence of the
power series of d j (w, m, I) in w is uniformly lower bounded in j (itessentially depends

AMr— ) Since the

on the radius of convergence of the power series in w of AEZ} (w) and on
4

Fy—r—
convergence is uniform, we obtain that the arising power series*® is also analytic in w
. . [s] i o=y yoo gls] j

forall € R. We label this solution by BCH:,’ml(x, W) =X ZFO dj (w,m, Dx/.

To construct a second linearly independent solution we make the other choice
o =0, i.e., we are looking for a solution of the form Ziio cj(w, m,l)x/, which we
normalise by cp = 1. From (6.8) with the d’s replaced by ¢’s we obtain the recursive
relation

1
¢; 1=%[C< iG—1—p)—¢)+ci —a('—l)—8]. (6.10)
GG+ 10 J+em(=aU )
Since y = ;Mf:: (o — w_m) + 1 — s, the denominator vanishes for j = 1 and

w = w_m, but for all other w one can show as before that the power series converges
absolutely for x € [0, 1) and is analytic in ® € R \ {w_m}. We label this solution by
&

[s] . . \oo sl j — _£
BCH;,’ml(x,a)) = ijo c; (w, m, )x’. From (6.10) we compute ¢ (w, m, ) = >

and ¢ (w, m, ) = 2(1;4—;/)[5(’8 +é&)— 6] for later.

The Frobenius solutions of (6.3) normalised at y = 0 are obtained in the analogous
way by replacing «, ..., e by @, . .., &. We summarise this discussion in the following

48 Note that the multiplying factor 177 is not analyticat x = 0if w # w_m.
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Proposition 6.11 . Forw 75 w_m equation (6.1) has a fundamental system of solu-
tions {BCHJr (x; w), BCHJr (x; w)} which are of the form

o0
[s] . _ [s] j
BCH;’,ml(x’ w) = ch (w, m, l)x

J=0

[o,0]
ngﬁ o) = XY Zdj[.s](a), m, )x’
j=0

and are normalised by c ](a) m,l) =1 and d[s](a) m,l) = 1. The power series

ijo djs](a), m, Dx/ is analytic in [0, 1) x R (and thus B([;l{+ (x; w) is in par-

ticular also a solution for ® = w_m) while the solution Bé;t (x; w) is only
1>

analytic and defined on [0, 1) x (R \ {w—_m}). The coefficients are determined

_£

” and 02](a) m,l) =

recurstvely and we find in particular CIS] (w,m,l) =

49
sy B o~ 5]
2. Forw # wim equation (6.3) has a fundamental system of solutions {Agfl]Jr . (y; w),

[s] . :
AH,*,ml (y; w)} which are of the form

oo
Al i)=Y a @, m Dy
j=0

o0

[s] . . B [s] J
AHf,ml(y’ W)=y ij (w,m, )y

and are normallsed by a; ](a) m,l) =1 and b0 (w,m,l) = 1. The power series

ijo bj (w,m, 1)y/ is analytic in [0, 1) x R (and thus Ag_sﬁ ml(y, w) is in par-
l k)

ticular also a solution for v = wym) while the solution Ag_v[]Jr ml(y; w) is only

analytic and defined on [0, 1) x (R \ {wym}). The coefficients are determined

recursively and we find in particular ags](a), m,l) = —% and aé‘g](a), m,l) =

2(1+y)[ B+ - 8] »

Our reason for labelling the solutions with H;" , Hl+, C’Hf, CH;" will become appar-
entin Sects. 7 and 8. It follows that we can write for @ # @, m the Teukolsky transform

49 Note that y(w) - 1 —s = —1 for o — w_m. This shows that B[;}ﬁ (x; w) is in general not regular
forw — w_m.
50 Note that y(w) - 1 —s = —1 for @ — wym. This shows that A[ ] l(y; ) is in general not regular

forw — wim.
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Jml from Theorem 5.26, with the r-coordinate replaced by the y-coordinate, as
Ui (v; ) = apgt i (@) Aggt (V3 @) + agpr ) (@) Aggr (03 @), (6.12)

.\Vhere aH;rm[ ,
in Section 7.

Ayt i - R\{wym} — C are functions which will be determined later

Lemma 6.13 Under the assumptions of Section3 we have a1t mis Wi mi - €
COR\{w1m}, ©).

Proof Differentiating (6.12) in y we obtain for w # wim

wmz (v; w) Apr V3 @) Agg 1 (730) \ faggs (@)
T30 | T\ de Ayt 03 @) 4 Ay a5 @) ) \ g (@) |
(6.14)

Fix y € (0, 1). Since {AH:r,ml(y; ), AHf,ml(y; w)} are linearly independent, the
matrix has an inverse which is also analytic in w for w # wim. We can thus solve
for Ayt i (w), a1t mi (w) and thus they inherit the regularity of the left hand side of
(6.14), which is continuous by Theorem 5.26. O

6.2.1 Alternative Representation of Second Frobenius Solution

Let us also recall a different way of constructing the second Frobenius solution

([js}]ﬁ ol (x; w) which will be useful later on in Section6.2.4. This is the variation
] E)

of constant ansatz, see for example Chapter 4 of [66] for full details.
To obtain a second linearly independent solution we make the variation of constants
ansatz

v(x) =e(x) - BY (x; w).

CH+ ml

Entering this into equation (6.1) gives

x(1—x)[e //()C)BCH+ (x; ) +2¢' (x)— CH+ es )]

+(ax + Bx +y)e(x) - B (x; w) =0. (6.15)

CH+ ml

Here, the prime stands for <& 7¢- This is a first order equation for e '(x). Again, making
a power series ansatz one can show that (6.15) has a unique solution of the form

¢ (x) = xV 2 Zejxf (6.16)

Jj=0
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which we normalise by e) = y — 1 and where the coefficients are determined recur-
sively by an algebraic expression which involves o, 8, v, ¢, d;. In particular, each
ej(w,m, 1) is an analytic function of w for all w € R.

As before let us now assume that w # w_m, so the parameter y has an imaginary
part. In particular ¢’(x) does not have a term proportional to % An integral of ¢’ (x) is
thus given by

e(x)—xVIZ 1+] ) 6.17)

The underbraced power series converges absolutely on x € [0, 1) and is analytic in @
for w # w_m. Since we have chosen ¢y9 = y — 1 we see that the coefficient in the
power series in front of xYis 1. Thus,

BY (x w) :=e(x) - BC,HJr (x; w) (6.18)

CH*

is a solution of (6.5) of the form

o
[s] . _ . J
BCH,*,ml(x’ w) = Zc] (w,m, D)x
j=0

with co(w, m, ) = 1. The coefficients c;(w, m, ) can of course be computed from

those of e(x) and those of B!

CH (x; w) = x1-v Z?O:O di(w,m, l)xj, for example

we have

(]
co=1 c1=—+d c) =
0 1 ” 1 2 |

On the other hand it follows from the asymptotics that the solution (6.18) we have

[s] . . -
CHF mi (x; w) from Proposition 6.11, for which we

have already obtained the explicit values of ¢y and ¢;. We thus find

constructed here must agree with B

€2
+1

0 = B+e )—a} +‘;/—‘d1+d2.

2(1+V)[

Multiplying by (1 4+ y) and setting w = w_m we obtain

er(w=w_m) = 1[ (B+e) —8](w=w_m). (6.19)
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Similarly, we find an alternative expression of Agilr Vs @) as

o] ~

where
B 1 e](a) m, l)
ey =y"" Z T+
with
- 1.8 ~ . -
ér(w = wyim) = 5[5(’3 +8) = §](w = wym). (6.20)

The underbraced power series converges absolutely on y € [0, 1) and is analytic in @
for w # wim.

6.2.2 Reflection and Transmission Coefficients

: [s] [s]
Since {B Crrm , B CH

each of the two solutions A 5:{]‘* Ag_sl as a linear combination thereof, i.e., we can
r 1

} forms a fundamental system of solutions, we can express

sm

write for each w € R\{w_m, a)+m}

Ay (1= xi0) =ThL () Bw (o) + R @) By (o)

[s] N  pls] )  pls] )
A =X 0) = H,*,mz(‘“) B (x,w)+fﬁH1+’ml(w) BCHf’m,(x,w)

Himl CH;t ml
(6.21)
[s] [s] [s] .
with T?# IZ,SRHJr ml’rsH?',ml’ERH?',ml : R\{w_m, wym} — C, where we call
[;{L il (w), ‘I[” the transmission coefficients of the right and left even horizon,

[s]

[S]
respectively, and 9‘{ %Hf,m .

the reflection coefficients of the right and left event

horizon, respectlvely.

6.2.3 TheCasem # 0

Proposition 6.22 Let m # 0. Then the transmission and reflection coefficients

[;{L (@) 9%[7;]+ (@) ‘Im ( ), ERM l(a)) are (defined and) analytic for w €

(—lw+], |w+|) and we have (Z;-St:r,ml(o) ;é O.

@ Springer



Instability of the Kerr Cauchy Horizon... Page 93 of 133 7

Proof Note that 0 < |w4| < |w—|. Hence for m # 0 the fundamental solutions
in (6.21) are defined for w € (—|w+|, |w+|) and thus so are the transmission and
reflection coefficients.

Combining the first line of (6.21) with its differentiated version in x we obtain the
vector equation

[s] . [s] .
( Ay (1= x5 ) )_ Bins w05 @) Bl (65 ) (s[;th,m,w))

LAl o) T8 o) £80 o) )
(6.23)

Fix x € (0, 1). Note that the matrix on the right hand side is invertible (since

Bg}, (x; w) and Bg?]{*' (x; w) are linearly independent) and analytic in w for
w € (—|a)+| lw]). The left hand side is analytic for o € (—|w4]|, |w4+]) as well.
We can thus solve for ‘I (a)) and 9‘{ (a)) and obtain that they are analytic in

w € (—|wi], lo+]). Slmllarly one obtalns that the transmission and reflection coeffi-
cients of the left event horizon are analytic in (—|w4|, |w4]).
To show 5[5] (0 # 0 we begin by noticing that A;’{]J, (v;0)and A®L  (y:0)
Foml Hl ,ml
[A] . [s]
solve (6.7) and BCHJr (x; 0) and BCH*
equation there are convenient closed expressions for the Frobenius solutions, which
we recall in the following, see for example Chapter 8 of [4], but they can also be
verified directly.

(x; 0) solve (6.5). For the hypergeometric

Fora € Candn € Ny we define (@), := a(@a+1)(@+2)---(@+n—1) = FF%”),
where I" is the Gamma function. Then, for —c ¢ Ny B
o0
b
Faboen =) DD (6.24)
(©)nn!
n=0
is a solution of (6.5) with F(a, b, c; 0) = 1. And forc — 2 ¢ Ny
X'TCF@+1-cb+1-c2—cix) (6.25)

is also a solution of (6.5). Clearly, for c # 1 these two solutions are linearly indepen-
dent. Recall from Section6.1.1 that B CH+ (x 0) and BY CH+ (x; 0) are solutions of

the hypergeometric equation (6.5) with ¢ = y(w = 0) = ri"f’r”i .Form # 0 we
thus obtain, by comparison of the asymptotics, that we must have

CH+ (-x 0) F(gv 12’ [ .X) and

CH+ Nes 0)=x""CFl@a+1—-cb+1—c2—cx)

@ Springer



7 Page 94 0f 133 J. Sbierski

with a, b and ¢ as in Section 6.1.1. Similarly we obtain

H+ml(y,0) F(a.b.c;y)  and
ASL 0 =y EF@H 1 =& b+ 1-E2-5Y)

with ¢ as in Section6.1.1.

Now note that (6.24) is a polynomial in x if, and only if, a or b are negative integers.
Since we haveb = —s—[=-2—landN >5[ > max(|m]|, |s]), b is a negative integer
and thus B! CH* (x; 0) and Agi];*m 1(1 — x; 0) are polynomials in x. Moreover, since ¢

and ¢ have non-vanishing imaginary parts it is straightforward to see that BY! (x; 0)

CH;Fm
and A;fl]Jr i (x; 0) are not polynomials in x. Entering with this information into (6.21)
[

gives directly that %gft]jm 1(0) has to vanish and thus (ngt]jr,m 1(0) # 0. O

Remark 6.26 Indeed, all the transmission and reflection coefficients at @ = 0 for

m # 0 can be computed explicitly using the classical theory of linear relations of

solutions of the hypergeometric ODE, see for instance Chapter 8 of [4]. For example
. [(a+b+1-0)T(1— .

one obtains zg-st];hml 0) = %. Setting £(0) := 2"”” — and plugging

in the exact values of the parameters for s = 2 from (6.6) we obtam

<l () = P(—1-£0)r2-:©0)

M ml T(l+1-£0)0(—1-£(0)
(- EO) - (—1+T1—E©O)-...-(1—£(0))
(- 50) - (1-1-£0)-...- (-1 - £(0)

from which it also follows that |375f{]+ O =1

6.2.4 The Case m = 0 via the Teukolsky-Starobinsky Conservation Law

Proposition 6.27 The transmission coefficient gls] of the right event horizon and

H;F,0
the reflection coefficient 9%7# ol of the left event horizon, as well as w - m[;{L ol (all of
which are a priori not deﬁned at w = 0) extend analytically to € R. Moreover, we
have %Sf} 0,0 =0.

Proof We construct a set of fundamental solutions which is regular for all v € R.
Recall from Proposition 6.11 that BCH+ (x; w)isdefined forallw € R.Forw # 0 we

now use the alternative representation of the second Frobenius solution B([j;[ o (x; w)
1
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from Section6.2.1 and define

e (,0,1)
Uerr,01(x5 @) 1= Beygr o1 (3 @) — ﬁBCH,*,Ol()“ w)
o
— e'(wsov l) j 62(0)’ Oa l)
=xV 1(2 ﬁx1>BCHj—,OI(}C; C()) — ﬁBC'H;",OZ(X; a))
j=0
o0
i(w,0,1) .
= .Xy71 ( Z :;](_C()—H_J)XJ>BCH1>,OI(X’ Cl)) + ez(a), O, l)
j=0
22
xV -1
ﬁ .BCH;L,OI(X; C())

—y +DkF— 1 dog )k
—Lik=1 k!

We thus see that UCH+,01 (x; w) extends analytically as a solution’! of 6.)tow =0
for which we have

o

Uepet o1 (x: 0) = x_2< >
j=0

J#2

+e2(0,0,)(log x) - BCH,*,OZ (x;0). (6.28)

€;j(0,0,1)

\B ;0
24 X ) cur,oz(x )

Hence, {BCH:r’Ol (x; @), Ugp+ o1 (x; w)} is a fundamental system of solutions of (6.1)
for m = 0 which is defined and analytic for all w € R. (The linear independence of
the solutions is shown below.)

Similarly we set

e (w,0,1)
Upr 00 (v @) = Apr 0y (s ) — —————Aq+ 0, (s @)

r y + 1 1
to obtain a fundamental system {AH?’0 (s ), Up+ o 1(y; @)} of solutions of (6.3)

for m = 0 which is defined and analytic for all ® € R. Moreover, Uy+ o;(y; 0) is of
the form

_ ¢i(0,0,1)
Upr 1(y;0) = y 2(2 J —y )AH+,OI(Y’ 0)
o -2+ !
j#2

51 Note that the above construction corresponds to choosing as an integral of (6.16) not (6.17) but

00 1
e; ; xrtl
xVﬁl( J x])-i-e
jX;)y—l-‘rj 2 y+1

which differs from (6.17) by an w-dependent constant and makes it analytic for all ® € R.
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+€2(0,0,)(logy) - Aggr o (y3 0). (6.29)

Let us also note that it follows from (6.19), (6.20) and Section 6.1 that

- 1
€2(0.0.0) = &(0.0.0) = =5 ([ =2 +3) +4][t = +3) +6]) #0

for / > 2 and thus the solutions (6.28) and (6.29) do indeed have log terms and are
linearly independent from BCH:r’O ;(x; 0) and AH,*,O ;(v; 0), respectively.
We can now expand for all w € R

UH+‘01(1 — X, CL)) = XH+’01(a))UCH+,Ol(x; CL)) =+ YH+’01(a))BCH'+’OZ(x, CL))
At o1 (1 = x5 @) = Xope (@) By (%3 @) + Yo o (@) Uyt g (x5 @)
(6.30)

where X+ o5 Yot o1 Xogror Yagr o are complex valued functions. It follows as in
(6.23) that they are analytic on all of R.

We now show that we have YH;’,OI (0) = 0. Recall that for m = 0 and w = O the
coefficients of the hypergeometric equations which {Bgy+ o;(x; 0), Ugp+ o7 (x5 0)}
and {Up+ (35 0), AH;’,OI()’; 0)} are satisfying are c = ¢ = —1,a =1 — 1, and
b = —2 —[. It thus follows that (6.25) still defines a solution to the hypergeometric
equation which is clearly linearly independent to Ugy+ o (x; 0) (Up+ o (v 0)), since
the latter contains a non-vanishing log-term. By comparison of the leading order
coefficients we thus obtain

BCH?,OI(X;O):xl_gF(Q‘H—Q»Q%-l—g,Z—g;x) and
A g (30) = Y EF@+ 1 =& b+ 182 =& ).

Notethat b+ 1 —c = b+ 1 —¢ = —l € —N and thus, as we observed in the
proof of Proposition 6.22, BCH;r’Ol (x;0) and AH;’,OI (y; 0) are polynomials. Since
Ucypy+ 1 (x; 0) is clearly not a polynomial because of the log-term, it directly follows
from (6.30) that we must have YH},OZ(O) =0.

Expanding (6.30) in terms of our original systems of fundamental solutions gives

e (w,0,1)

Ay (1 = x5 0) = (XH,*,OI(‘U) — Yo 01(@)

:Tﬂf,m (@)
+ Yyt 01(@) Beygt o1(x; @),

———
:mer,Ol (@)
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which directly shows that me,Ol (w) is analytic on R and vanishes at @ = 0, and

& (w,0,1)
y+1
= Xp+ o1 (@ Upp+ o (x; @) + YH*.OI(“))BCH,*,OI (x; )
& (w,0,1)
y+1

Agr (1 — x5 0) = Uyt (1 — x; 0) + AH,*,()I(I —X; )

(XH,*,Ol (@) Beyg 0 (x5 @) + Yyt oy (@) Ugypt g (x5 “’)>

& (w,0,1)

= (Xp (@) + S Yy 01(@) ) B 0153 @) (6.31)

=Lt 0@

&2(@,0,1) e2(@,0,1) 2@,0,1)
+ (V@) + 222 X (@) = e O

71 71 YH?’,OI(“))])BCH,“.’,()I(X;C")-

=Ryt @)

Since we have shown that YH{’,OZ(O) = 0 it follows that ‘ZH;OI (w) is analytic

on all of R. Moreover, we have %Hj,Ol(a’) = Yp+ /(@) + 52;“:_(1)’1) XH,*,OI(“’) —

%smﬂoz(w)’ from which it follows that @ - Ry+ (;(w) extends analytically to

w=0. O

Note that (6.31) directly shows that our previous approach for m # 0 of showing
that T+ ,,,(0) # 0, namely by computing the transmission coefficient for the simpler
hypergéometric equation, does not directly transfer to m = 0, since here we actually
need to know the value of 9, YHf,O ;(0), which is a statement that goes beyond the
hypergeometric equation. The omega derivative can be computed — however, it seems
easier to use the Teukolsky-Starobinsky conservation law instead which has been made
use of recently and developed in much detail in [64, 6512,

The Teukolsky-Starobinsky Conservation Law

What is needed of the Teukolsky-Starobinsky conservation law for this paper can be
developed quite quickly, which keeps the paper self-contained. To make contact with
[64, 65] we begin by noting that wr[,flj (r; w) satisfies (5.28) if, and only if, Rr[zlj (r; w) ==

imr ,—iwr* 1 YIs]
¢ ¢ _wml

*iF (r; w) satisfies

d dRY]
A_SZ( s+l —d;"l) + ([(r2 + a®)’w? — 4aMrom + a*m?

+2ia(r — Myms — 2iM(r* — a*)ws] - (6.32)

> —

+ 2irws + )\%(w) — aza)z) Rr['fl] =0.

Note that (6.32) is the radial Teukolsky equation in its most common form as it also

appears for example in (150) of [15] where, however, their AL‘J differs from ours here

52 The Teukolsky-Starobinsky conservation law also provides an alternative approach to showing that
(LH'*' ml (0) # 0 for m # 0, cf. Remark 6.49
S
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by a minus sign. A direct computation see also [15], gives furthermore that R, [s] 1 (s w)
satisfies (6.32) if, and only if, u (r w) = A2 + az)l/szl (r; w) satisfies

2

(dr*)zuﬁ}(r;wwr (s (s @) = 0 (6.33)
with
VI ) = A <((r2 +atw —am)’ = 2is(r — M)((* + a¥)w — am)
(r2 +a?)? A
+ diswr + AE} (w) — s — a’w’ + Zama))
sz(r — M)2 n A ( 2 M) A 3r2A )
(2 + a2)? 12 + a2)3 )
Note that one has Vn[fl] (r;w) = Vn[JS](r; w), for which we recall [Y](a)) —5 =
)»[_ls](a)) + s from Proposition 5.2. It follows that if uEn_lzl is a solution of (6.33)
with s = —2, then uL:lzl is a solution of (6.33) with s = +2. Unwinding the

above relations we find that if 1;,51_,2] satisfies (5.28) (or (6.1)) with s = —2 then
(r2 + a?)zeimmeior* A2 satisfies (6.33) with s = +2 and thus

AZe—Zim7€2iwr* Jn[;lz] (6.34)

satisfies (5.28) (or (6.1)) with s = +2.
Moreover, we observe that since (6.33) does not have any first order terms, the
Wronskian

[s] d sl sl 4 )
Wr*(uml’ ml) _(d *uml)wml_uml(d* ml)

is conserved in r for any two solutions u% (r*; w) and wm (r*; w) of (6.33). Hence,

if vy, ml] (x; w) and vgtf} (x; w) are two solutions of (6.1) with s = +2 then

[ PR o
const = W, ((r* +a?)? Ze’mre"“” v1+nfl], r* + a2)2 el eier vijl])
1 oimr —2iwr* +21  [+2]
— (F2 +a2)—e imr ,—2ior Wr*(vl .\ U2 l)
| A2 | ; s ; (6.35)
2imr  —2iwr* [+2] [+2] [+2] [+2]
~e T g etor P ( 2 Vot " V2ml = Vil V2 ml )

. [+2] | [+2]
:‘WX(UI ml> U2 ml)

A 1 d

where we have used 7= dr* = il dx
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The Teukolsky-Starobinsky identities allow us to produce a solution for the s = —2
equation from one of the s = +2 equation—and vice versa. Here, only the firstdirection
is needed which is straightforward to establish for the radial Teukolsky equation in the
form (6.1). We claim that if v!™2 is a solution to (6.1) with s = +2, then % vt isa
solution to (6.1) with s = —2. To prove this we first note that (6.2) gives the following
relation of the parameters of the Heun equation for s + 2

al™2 = ol+2 s1=21 — 5l+21 4 gyl+2]
‘3[—2] — ﬂ[+2] -8 gl=21 — gl+2] +4[3[+2] —12

p2 21 4 g

where we have used again )\% (w)—s = A%S](a)) + 5. Taking % of (6.1) now gives

a*-i a?
_ _ 4 2
Z ( )[dxl ) dx*7 dx2’

d’ d*=7 d
[+2] [+2] [+2] 421
+— + + e —
dxJ C x24Tty )dx4 Tdx’
d’ da*-i
[+2] [+2] [+2]
+dxj (6 xre )dx4 J ]

d° @ 1) d*
= (1 —x)xﬁv +4(—2x+1)ﬁv +6(_2)mv

dS
[+2],2 [+2] [+2] 2
He T+ BT+ y )d 3
2 2 d4 2 2 d3 2
+4(2(¥[+ ]x 4 ,3[+ ])dx4v[+ ] +6- 205[+ ]dx3 U[+ ]

d* a3
+(5[+2]x + £[+2])_v[+2] + 45[+2]_v[+2]
dx* dx3

d* a* d d*
- [+2] 4 (o2 [-2] (2] 421
= (1= x)x_ - + (22 4 g 4y )d v
d4
+(817x 4 el 7)ol

dx*

where we have used 12121 4 48+21 = 0.
We now apply this to the Frobenius solutions for w # wim, w_m. Recalling

d _ _d
o = "ix we have

A i) = Zo +4G +3G DG + Dalt @, m. 1y

dy ]0

d* )
) —Z(J + (430 + 20 + D @, m,
j=0
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d* [+2] [+2] [+2] . [+2]
T Ber w)—ZXH%—V NG =G — 1=y
j=0
(j—2—y!

. 2
20t @, m, x I

(6.36)
With the notation from Section2.1.1 and 2.1.2 we find near r = r4

I, PP N
e 21mr621wr —

2ir* (w—wym) 2im¢Jr (r)

= (ry — r),(+ (0—wym) Q21 F () (@—wym) 2im. ()
4iMry . . 4iMry
= (ry — r_)ﬁ(w w+m)eZzF+(r)‘(a)fa)+m) 2ime (r) Cy T (w—wym)

=Dy (r;m,w)

=y_(1+17[+2])
and nearr = r_

2imF iwr* —4iMr_
67 lmre Lwr — (r+ _ r_) ry—r—

—4iMr_
X T (w—w—_m)

(@ w—m)e2iF_(r)~(w7w_m)e2im¢ )

=D_(r;m,w)

—

:x,(]ﬂ/H—ZJ)
Note that Dy is regular at r = r4 and that we have |D1| = 1. We also recall that
A=(rg—r)?(x—Dx=(rp —ro)?(y — Dy.
By (6.34)
A2 —2imr 21a)r* d* [+2]
dx4 CHI ,ml

= (ry —r)* = DEAED_(r(x); m, @)x 1D Z]_[(] +k)e

2@, m, hx
j=0k=1
is a solution of (6.1) with s = 42. Comparing asymptotics we find
A2p—2imr 21wr* d* [+2] 4D . 41
28 Berr =(ry —r-) _(r_,m,a)) !
A w,m, 1) - Bcjfj (i) (6.37)
Similarly we have

A2 —2imr 21a)r* A[+2

dy*” HEml = (ry — F_)4D+ (r+; m, a))4!

M@mDAm(ww

(6.38)
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Again by (6.34)
L d® 5
A2p2imT 2ior® d_ éi{j]’ml
=(ry —r_)*x — 1)2x?D_ (r(x) m, a)) —(+y12h

1

oo
2 TG +k=y2)d @, m, 1xi=3=r
j=0k==-2

is a solution of (6.1) with s = +2. Noting that y[+2I = —y[*2] _ 2 and comparing
asymptotics we find

A2 —2imr 21wr* d [+2]
dx4 C'H:r,ml
1

=(rp —r)*D_(im, o) [] k- y[+2])Bé;:é]’m[(x; w).  (6.39)
k=-2

[+2]

We now apply (6.35) to Ag;’]ml (x; @) and A2e=2imr g2iewr? d AH*

(6.36) and (6.38) we obtain

. Using again

- - 1 « d*
2imr _—2iwr [+2] 2, =2im¥ ,2iwr [+2]
¢ ry —r_ Wi (AH+ mp 7€ dy4 AH+ ml)
_ 1 1
s —r P =Dy

[+2 +2] [+2]
@, m DWe(AZ ARD )

const = —e

Dirim, @)y 0y — YDy (s m, )4

— —(ry —r_)4!-a +2](a) m, (1 — 121, (6.40)

for y — 0, where we have used

pl+2l [+2] [+2]
— VY

yr WAy AH,*,mz)

gt d 421420 [+2] d ,1+2]
4 — . — —
=Y (dyAH,'.",ml AH?’,ml AH;*',ml dyAHf',ml )
————
-0 ~ (1= =72

_(1 +2])

for y — 0. We now evaluate (6.40) for x — 0. Note that it follows from differentiating

2 2 2 2 2]
At =0 =T @B (o) + R @B ()

@ Springer



7 Page1020f133 J. Sbierski

and from (6.37), (6.39) that
2 —oim7 piert 40 142) 2] |
A“e e dx4Aer,ml H* ml(a))(m_ —r_ ) D_(r_;m, w)4!

i @.m BRI ()

+2](w)(r+—r YA D_(r_; m, w)
H k= yHBL 05 w).
k=-2

Hence, the constant from (6.40) is also given by

1 5 = 5 1
const = — gZimr ,=2iwr —Wx< +2] ( )B [+2] [+2 ( )B [+2]

ry —r_ CH;fm CH;m

(ro —r_ )4D (r—;m, w)[$[+2] (w)4! - Cll+2](w’ m, I)B([;-tz*] ml

+2](a)) l_[ (k = V[+2])B[+2 1])
k=—2
[ — [+2] [+2]
— ———D_(r;m,0)D_(r_; m, a))x (BCH+ BCH+ ml) (6.41)

- 1
(4 P om TP @R =TTk -y sk o) ?)

k=-2
2 +2 [+2 2
= (=) (1 =y (41 P, m D12 (@)
1
+2 2
- T &=yl Z?),
k==-2 !
for x — 0, where we have used
(B By xyHZJ( d g+ g2 _pi+a 4 g )
CH;tsml” “CHEml) dx CHfml “CHY.ml  TCHfml gy CHY.ml
———
—0 ~(1—p 2=y

- —(1-— J/[+2])
as x — 0. From (6.40) and (6.41) we now obtain the conservation law

— 4t af P o.m (1 =) = =y (40 P m i @)

1
~[Tw—yonl? @P) 642

k=-2
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which is valid for @ # wim, w_m. From now on again we will drop the superscript

s = +2.
4iMr_

We evaluate the coefficients next. We set £ = ”T(a) — w_m) and é =
- fjrﬂgf (w — wym). Let us agree that £(0) and & (0) refer to &(w = 0) = — ri’f’r"i =

—E(w=0).Theny = —1 + & and y = —1 + £. We observe that

1
[[k-n=ET=-5HEHT-5H2-§

k=-2
=EQ -8 +E2=—EQ+E)1+&% (6.43)

The recursion relation (6.10) gives

— € 8
= 2(1—4-)/)[;('3 +¢) — ]
3 = 3(2—_+_y)[c2(2(1 —B)—e) +ei(—a— 5)] (6.44)
4 = M[CS(?’(Z —-B)— 8) + c2(—2a — 5)],

and similarly for the @;, where all parameters are replaced by their tilded analogues.
We now proceed by setting m = 0. However, see Remark 6.49 for m # 0. For
m = 0 (6.42) is valid for @ # 0. We will show that if we multiply by @ then both
sides extend analytically to w = 0.
From (6.44) and (6.4) we obtain successively

1
lim (14 y)e2 = =5 [£(0)(2 4 2(0))]

—_—

Jim (1 + y)c3 = [£0)(2 + £(0))°]

6
1
lim (14 y)es = =2 (£0) "2+ £0),
where €(0) = (I —2)(I + 3) +4 > 0. Thus

—r—

lim wey(@,0,1) = lim (@, 0.0
w—>

w—0 4iMr_
. ry —r—
— lim —
w—0 4iMr_
. r4 —r—
— lim —
o—0 4iMr_
_org—r_ 1
© 4iMr_ 48

§ca(w,0,0)

(I +p)ca(w,0,1)

(£)’(2 + @)’ (6.45)
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and similarly

$a4(w 0,0

- r4
li ,0,0) = lim —
wlino was (e ) wlino 4iMr ry

ry —r— 1 2 2
~aiir E(8(0)) (2+&(0)". (6.46)

Multiplying (6.42) by @ and using (6.43) we get

— 4 wag(@, 0,1 —7) = (1 —y) - (4! - wea(@, 0. 1) Ty oy (@)

4iMr_
- Q+8)[l+& lwRggt o (@) )

(6.47)

By Proposition 6.27 EH+ o1 (@) and a)D‘{H+ o1 (@) extend analytically to @ = 0. By the
above, w - c4(w, 0,1) and o - as(w, 0,1) do as well. We may thus take the limit w — 0
in (6.47) to obtain

B (0) 2+ e0) = T (60)7 2+ 00 1Ty 0O

AMr, AMr_
16Mr_
_ li 2
o i % )

where we used (6.45) and (6.46). Brining the last term over to the left hand side this
in particular implies the following

Proposition 6.48 We have i[‘+ 0@ #0.

We conclude this section with the following

Remark 6.49 For m # 0 the conservation law (6.42) may be evaluated directly at ® =

. . . T T EOPR+e0)? 1
0. A direct computation using (6.44) gives c4(0, m,[) = o TP oE

0 o — [EOPR+eO) 1 . .
and aq(0,m,l) = o TTERGDE Plugging those values into (6.42),

together with (6.43), gives

OP[2 + e(0)p —F "= 2am o )P + £ PR 02
[e(O)]7[2 + €(0)] 2am-|1+$(0)|2+r+—r—| + 5O+ EO) Ryt 1 (0)]

ry —r—
s ST ()1

= [e(0)]*[2 + £(0 2—
[e(0)]°[2 + £(0)] TTHEO)]

This would have been another way of showing that {IH;f,ml ) # 0 form # 0.
However, the approach taken in Section6.2.3 is more direct. Note that if we use the
additional information that SRHJr ;(0) = 0, which was shown in Section6.2.3, then
we recover that |‘ZH+ (O] = 1 Wthh is of course compatible with Remark 6.26.
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7 Determination of the Coefficients a, + ., (®) anda,+ (@) in
I b r o
Terms of the Initial Data on H;" and ;'

We will replace in this section the r-coordinate by the y-coordinate for convenience.
Recall that y = ~=="-. Also recall from Theorem 5.26 and (6.12) the representation

r
ry—r-"

V(4. 5.0, 04)

1 . . [s] . —iwv
= \/ZiﬂmeXl:[aHj,ml(w)AH:rml(y,w)+aH1+,ml(w)AH[+Jnl(y,w)]le 0, ¢t; w)e " do.

=1 (i)
(7.1)

Note that while we know that for example A+ ,,;(y; ) has a pole at = wm, we
know that the terms in the linear combinationrconspire so that the total underbraced
term is more regular, in particular continuous in w for y € (0, 1). In this section we
will relate the coefficients Ayt mi (w) and a1t mi (w) to the initial data on H:“ and Hf
(at least in a neighbourhood of w = 0).

7.1 Passing to the Limitr — r in (v, r, 8, @) Coordinates
We begin with the following
Lemma 7.2 Under the assumptions from Section 3 we have (¥ |Hr+ )ml (w) € co R, C).

Proof Recall that

Wly), (@) = /R Ulyr W4, 0, 91 )e' VSl (cos 0 w)e ™"+ dvvolga.

(7.3)

7=l

It follows from the exponential decay of Uyt in v4 for vy — —oo (by Assump-
tion 2.46) together with (3.4) and g, being in particular bigger than 1 that

2 /2
//|1ﬁ|HV+(v+,9,(p+)|V01Szdv+ gzﬁ/([|w|HV+(v+,9,¢+)| Volsz) dvy
SZ

R & R

1 12
< 24/ —d
”(f(1+|v+|>qr )
R

x ~(ff(1+|v+|>"r

R g2

1/2
1ﬂ|H:r(v+, 0, <p+)|2volszdv+) < 00.

Together with the boundedness of S,[,fl] (cos 0; w) and its continuous dependence on w
the result now follows from dominated convergence. O
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Proposition 7.4 Let  satisfy the assumptions from Section 3. We then have Art i (w) =

( )mi(w) for all w wym. In particular a,+ ,, extends as a C° function to
H + p HF ml
r T
W = wy4m.

Proof By (4.28)of Corollary 4.27 wehave [ 2 [¥ (vy, v, 0, 91) =¥ (v4,0,0, o)?
volgedvy — 0 for y — 0. By Plancherel (5.20) this gives

| Z 10 550) = g dm(@ P do > 0 fory = .
m,l

Fix m and /. It now follows that there is a sequence y, — 0 with Jml (Vs @) —
(W|H:r)ml(w) for almost every w € R. For w # wym we have

{[;ml(Yn; w) = aH:r,ml(w)AH;r,ml(yn; ) + aH[Jr,ml(w)A’H;r,ml(yn; w) —> a'Hj,ml(w)

as y, — 0 by the normalisation of the Frobenius solutions — and thus we have
Ayt i (w) = (WH:r)ml (w) for a.e. € R\{w4+m}. Since both functions are continu-
ous on R\{w,m} by Lemmas 6.13 and 7.2 they agree everywhere. O

Proposition 7.5 The assumptions (3.1), (3. 2) and (3.3) from Section 3, together with
the regularity Assumption 2.46, imply that 8w(¢|7—{+)molo e L2(] o([—2,2]) for any 0 <

q < po, q € No and 8£°(w|H:r)m010 (w) ¢ Lg)( —e,¢) forany ¢ > 0.

Proof We drop the lper from V3 here to ease the notation. We only consider ¥
restricted to the event horizon. It follows from the regularity Assumption 2.46, which
ensures exponential decay of i for v, — —oo, that (3.1), (3.2), (3.3) imply

/ |v11//|2volszdv+ < o0
/ / |vp03v+w|2V01S2dU+ < 00 (7.6)
pPo 2 d —
. [V WSty |~ dvy = 00
forall 0 < g < po, g € Np. Recall from Section 3 that

Vsmiy (@) = /&2 F(@,0,0)Y2) 0, 0y 0) volg

denotes the projection of the Fourier transform v € L2 L22 of € L? L22 (see

(5.17)) onto the spin 2-weighted spherical harmonic Y, é](9 ¢+; 0). The map (-) sgni)
is clearly an isometry LZ)Lé2 — Lz)ﬁﬁd. By Plancherel (7.6) is thus equivalent to

A;{Z 109 Y5y |” deov < 00 (1.7)
m,l
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/RZ |3£°(w1ZS(mz))|2dw < o0 (7.8)
m,l
3L (Wrsmotn)) & L*(R) (7.9)

forall 0 < g < po, g € Np. It follows from

AP (@Ws(miy) = 82" (Wsmt) + @ Vsnt)) = PodL0 ™ Usomty + 0L Vs im)

and (7.7) and (7.8) that

/ > @38 sy | dew < o0. (7.10)
R m,l

Together with (7.9) this gives in particular
320 (Wsamot)) & Li_s.p) forany e > 0. (7.11)

We relate the projection onto the spin 2-weighted spheroidal harmonics to that onto
the spin 2-weighted spherical harmonics in the next step.
We expand in L?([—1, 1], d cos0)

ml’

S8 (cos 0; w) = /

SEl(cos 0; ) SE] (cos 05 0) d cos 6 - S (cos 6; 0),
[~1.1]

=EN) (@)

ml

where E,[r‘:l]l,(a)) : Klz, — le is a change of orthonormal basis map for every w € R and

it is also smooth in w. We have

2
S g EN @) =" ‘f 94 %) (cos 0; )P (cos 6; 0) d cos
/ / [-1.1]
[ [

= 1108Sm @12y 1y < Cl@, m, 1) (7.12)

where, for fixed m, [, the constant can be chosen uniform on compact subsets of
o by the smoothness of Sr[;l] (w) in w, see Proposition 5.2. We have v, (w) =
> Usimony (@) - EX) (@) in L2, (R) and weak differentiation gives

molo

Po
~ 0 / K Y
0L Ymglg (@) =Y (’; />ag ER (@) 00 s (@), (7.13)

I ¢'=0
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Consider first all the terms ), 3¢, E,[;(]) o1 (@)- 3™ s mon (@) forq’ > 1. We estimate

those on the compact subset [—2, 2] € R using (7.7) and (7.12) as follows:
q' plsl po—4q' 2
) Z 9 Emolol (@) - 9, wS(mol)(w)‘ dw
221 !

S / (Z |33/Er[;(]>101(“’)|2) (Z ’350_’1,1/73(m01)(w)}2) do < C.

-221 _t !

< C(mo,lp)

Note in particular that if we replace pg in (7.13) by 0 < g < po then all terms can
be estimated in this way. This proves the first claim in the proposition. We go back to
(7.13) with pg and consider next those terms with ¢’ = 0 and [ # Iy. We note that for
I # Iy we have EI'), (0) = 0 and thus El) (@) = [i 3, EL), (o) do'. Using this
we estimate

- 2 1 @
|3 £ @) - 800 stn @) e < f (212 /0 0L, (o) do )

[—2,2] [#ho [—2.2] l#bo

( Z |00 5oty () |2) dw. (7.14)
I£1

We continue estimating the first factor on the right hand side for w € [—2, 2] using
(7.12)

Y|

w
51 () de'|? < — 51 N2
205 ), B Ep) (@) do| gmz / 0w ELy () do
0

l;élo[o’w]

1
ol f > 10 ER ) de’ < C.
[0,w] 1#ly

< C(mo,lo)

Using this in (7.14) together with (7.10) gives

- 2
| > EbL @) - 80 s @) do < C.
[=2,2] I#ly

It remains the term with ¢’ = 0 and [ = Iy in (7.13), whichis EI'), | (@) - 05" ¥simoto)-
Note that we have Er[ns(])lolo (0) = 1 and thus we can find ¢’ > 0 such that Er[ns(])lolo (w) > %
for |w| < €. It thus follows from (7.11) that this term is not in Li(—e, ¢) for any

& > 0. Entering all this information into (7.13) concludes the proof. O

oty € LE([—2.2])
(w) ¢ L2(—e, &) forany e > 0.

Corollary 7.15 Under the assumption from Section 3 we have aj’)aH;

forany 0 < q < po, g € Ng and agZ"aHr,mO,O
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Proof This follows directly from Propositions 7.4 and 7.5. O

7.2 Passing to the Limitr — ry in (v_, r, 8, @_) Coordinates

The determination of a1t mi (w) is more complicated. Note that ¥ vanishes on H1+, SO
in order to take a non-vanishing limit we consider (9, |+)21p = ﬁ( y |+)21ﬂ =:

m—r)za%p instead of ¢. Here, and throughout this section, we have made the

convention that ayzw is always with respect to the (v, y, 6, ¢4 )-coordinate sys-
tem, even if we otherwise use (v_, y, 6, ¢_)-coordinates. This is simply to ease the
amount of notation. There are now two main differences to the limiting procedure of
Section7.1. The first one is that 8}2, Y does not vanish at the bottom bifurcation sphere,
so one cannot hope to take an L2 limit y — 0in (v—, y, 8, ¢_)-coordinates. We will
instead take a limit in the sense of distributions. The second difference is that the
branch AH:f,ml (y; ) in (7.1) in general also gives a non-vanishing contribution under
this limit (see Footnote 54) — by choosing the support of the test functions suitably
though and, in the case of my = 0, also using that the reflection coefficient of the left
event horizon vanishes at @ = 0 (see Corollary 7.29 and Section 8), we can circumvent
this second difficulty. We begin with introducing our test functions.

Lemma7.16 Let& € C°(R) and set
Temi (0, 0) = L/ £(w)S5 ) (cos 0; w)e' ™ dw.
B V2r Jr ml '

Then ||v-/8{fr§’m1|| < C(j, k) < ooforall j,k € No, where C(j, k)

L& (Rx(-mm))
also depends on m,l and &.

Proof Differentiating under the integral we compute
. 1 ..
(iv) (=) e = —/ £(@)SE) (cos 6; w)* e do

1)7 8/ ("€ (@) SV (cos 0; ) e’ de.

- 7=

Since S,[;l] (cos0; w) and all its w-derivatives are continuous on [—1, 1] x R and since
& (w) is smooth and of compact support, the L° norm in 6 of the integrand is absolutely
integrable. O

Proposition 7.17 Let & € C{°(R) and consider the assumptions in Section 3. Then as
y—0

/ /.2 (ay|+)21”(v—, )’7 01 (p—)fé,ml(v—» 9) ° eil’Vl(p_ VO]SZdU_
B8 (7.18)

- / f @MY=, 0,6, )7 i (v, 6) - €9~ volgadv-_.
RJS
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Proof Let ¢ > 0 be given. Then, using Lemma 7.16 and for a vy < 0 to be chosen
later, we estimate

[ @200 3,6,00) = @102 0-.0.6. 00| [0 ) 7% volsad-

i 2 2 2 2
<([ [l@tro-y.0.00 - @-.0.0.00 volpav-)
) SZ

oo

(//|tg,ml(v_,0)}2 volSzdv_)l/2

V0 SZ

Slitemill 2 gys2y

v
+ / /C-|tg,ml(v_,9)|volgzdv_,

—00 §2

where we have used Corollary 4.49 and the regularity assumption 2.46 to infer that
83,1# is uniformly bounded in {ro < r < ry}N{v_ < vo} forsome r_ < rg < ry. By
Lemma 7.16 ¢ ,,; is integrable, so we can choose vg < —1 such that the last term is
less than 5. By (4.29) we have that for all y close enough to O the first summand on
the right hand side is less than 5. O

We now compute both sides of (7.18). We start with the right hand side and recall
the convention dy = dy|4. We use (Vrz, 0, ®,,) coordinates on H?‘ and write

05Vl (Vi 0, r) = 85913 0,60, @r,) - L—o0,0) (v-)

Vi 9 _ _
+/0 D20 (Vi 0, B ) VT + 0.0 (02 - 020 (0,0, @,,) . (7.19)

v,

=RV .0.9,,)

We first consider the contribution of €2 to the right hand side of (7.18). Note that we
have Q(v—_, 0, ¢p_) = 3§W|H,+(U—’ 0, ¢-) forv_ > 0 and also [Q2(V, .6, D, )| <

C -V, for0 < V. < 1 Since we have V' = €“*"~ this gives us exponential
decay in v_ towards the bottom bifurcation sphere, i.e., |2(v_, 0, ¢_)| < C - e+'~
for v— < 0. By assumption (3.6) and (4.24) we can thus use Fubini (or Plancherel) to
obtain

/1.@ /S2 Q_,0, 9 )Temi(v_,0) - ei™¢- voladv_

1 _ , .
= / Qv_.0, o) —— / E(@) St (cos 6; w)e V-7~ dwvoladv_
R,_ fs2 Var Jr, "
1 . . _
=/ f/ /2 Q" (v, 0, p_)e' "= St (cos 6; w)e M- dv_vols - E(w) dw
R, V21 Jr, Js

= /R Q)i (@)E(@) do,
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where we introduced Q27 (v—, 0, p_) := Q(—v_, 0, ¢p_) to account for the different
sign in the phase of the Fourier transform compared to our convention (5.19).

By assumption (3.6) and (4.24) we have [ [ (14+[v_|9)|Q7 (v_, 6, ¢_) 2 volgodv_ <
00 - and thus
fR sz 102 (w, 0, (p_)|2V01S2dw < ooforall0 < g < %,q € Np. Proposition 5.22

now gives
f ZW(Q Ymi|? dw < 00
(—e.8)

forall0 < g < % q € Np, where ¢ > 0 is as in Proposition 5.22. 53
We now come to the contribution of the first term in (7.19) to (7.18). We compute

1
f f&ﬁler(0,0.<I>r+)~1l(,oo,o)(v,) ﬁ/ E(w)S,[;,(cos(J w)e V=TI~ o sin 0dOde_dv_

R, §?

=t i (v_,6) ¢~

ml

0
1 . ) ) .
= / /S-Z 3}21//|H,+ 0,0, q)“r)i\/g /R E(w)SlAJ(COSQ; w)e—uuu,e—mz(l)“r IMO+V— o =ime(ry) g0, oin 0d9d¢r+d1)7

— ¢ imd+(r4) | Lleoc —_— /mé(w) ‘/-~/321//|’HJr (0,0, ¢r+)S[AI (cos 6; a))e—rrn¢,+ vol - LeTiOv— gimorv— g g
L

=Wl (@)

0
=T imPele) Llew— / E(@) Wi (@) / e gy _de

=m0 fim —— / E@) W (@) ————[1 = e H™ M do
L~>:>c wim

(7.20)

Let us note that W,,,; (w) is clearly smooth in . We now divide the domain of integration
into | — wym| < § and its complement for some § > 0. We first compute

lim E(@) Wi (0) ———[1 — eiL@0m) g
L—00 J|w—wm| <8 w— wim
= lim E(rm) Wy (@4 m) ———[1 — L@+ 4y
L—=>00 J|p—wm| <8 w— wim
+ lim / EWVim) (@) = (Vi) (wym) [1 = ¢il@=eim)] 44,
L=00 J|wp—wim| <5 w—wim
—o()
=0()
= lim ?(mm)\l/mz(mm)é[l — cos(L) — i sin(L&)]did + O(8) With & = © — wym
—00 Ji31<8
sm(La))

= lim 2/ E(wpm) W (wim) dé + O(8)

sm(w)

= 2é(w+m)\llm;(w+m)/ do+ 0@) withd = Lo

53 We only need this statement for the single mode m !, for which we do not need to appeal to Proposi-
tion 5.22.
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= 7E(@rm) W (01m) + OG).

For the domain |w — w4m| > § we compute using Riemann-Lebesgue

lim E(@0) Wy () ———[1 — i L@=oem g4,
L—00 Jiw—wim|>8 W — wim

= f (@) U (0) ——— do
lw—wym|>8 w—wim

= / E@ Wt (@m)——— do
lo—wym|>8 w

— w+m

(7.21)

— ¥ -y
+/ E(w)i mi (@) mi (@411) do.
|o—wim|>6 w—wym
::\i’ml(w)

Clearly W, (w) is smooth in w. Combining everything and letting § go to zero we
obtain

/ / angf 0,96, q)’+) ' ]1(*00,0)(117) : TE,ml(Uf, 0) - eimy- VOlszdv,
Ry_ §2?

_ —impy(ry) T

=e + 0y ( 5§(w+m)\llm1(a)+m)
/ — iV, (wym) Jo

+L[nm

Voo §(w)

w— wym
lw—wim|>8

+ [ E@ib(o o]
R
We now claim that we have

&
/ Z 180 W, * dow < 00 (7.22)
€ m,l

for all ¢ € Ny for some ¢ > 0. To see this, we first recall that W,,(0) =
sz 8y2w|Hl+ 0,0,,)S Ls] (cos 0; w)e MPry volg2 and thus, using the notation from

ml

Proposition 5.6,
2 [s] . —im®,
83‘1""’(‘”):[82 05V I3+ (0.0, @;,)3% 5,1 (cos 6: w)e ™" P+ volgy
2 [s] [s] . im®,
= /sz 05 ¥l (0, 6, CI>r+)IZDm”,;q(a))Sml,(COSQ,a))e”" + volg

=Y Dbl @ (@),
l/
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Hence, we obtain
q [s] 2\ "2 2\ "2
08w (@) < (Y105, @) (X 19 @)?) (7.23)
l/ l/

The claim (7.22) with the sum restricted to m # 0 then follows directly: if necessary
we choose ¢ > 0 from Proposition 5.6 even smaller than |w | and then differentiate
\ilml (w) = W in the region (—¢, ¢), which is disjoint from v = wim,
and apply (7.23) and Proposition 5.6.

To see that the contribution from m = 0 to the sum in (7.22) is also finite we observe

that \ilo;(a)) = w = fol 0, VYo (tw) dt with @ = Tw and thus

1
33)@01(0)):/‘ 3Z+1‘~I/01(1:w)r’1 dr.
0

Using (7.23) we continue to estimate

I
109 Yo ()] < /0 (Z |D53/;q+1(”")'2)w<2 |‘I’01/(ta))|2)|/2 dr

4 U

1 1
S (/0 Z|D([)Sl}’;q+1(”")|2df>l/z</o (X:l‘l’ow(fa))lzdr)l/2
l/

l/

and for w € (—¢, ¢)

1 1
Y 1o @) < /0 Y DGy TP dT - fo > 1o (rw) | dr
! Ll 4

(7.24)

1
<C(q+1>~/0 ||/Sl 20y (0,0, @, ) d, |12, dr

50 (—70.7)

Note that the underbraced term is independent of tw. Thus the integration in 7 is
trivial and we can also trivially integrate (7.24) in w over (—¢, ¢). This finally proves
the claim (7.22).

We summarise what we have shown in the following
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Proposition 7.25 Under the assumptions from Section 3 and for every & € Cj°(R, C)
we have

/R/SZ a§w|Hl+(v,, 0, 0_)Te mi (v, 0) - €M~ volrdv_

— 1}
iV (wym) do

:effmm(u)(\/im)q; [(wim) + L[lim [ §(w)
) + m + m §—0 w— wim

|o—wq4m|>6

+ [ Bt ) do])
R

+ /R (S )i (@)E@) do,

where Q™ (v—,0,¢9_) = Q(—v_,0,¢_) and Q is defined in (7.19), VY, is
defined in (7.20), W, is defined in (7.21), and there exists an ¢ > 0 such that
Q)i (@), W (w) € L%fg’g)ﬁlzm forall0 < g < %4, g € Ny, with q; as in
Section 3.

Let us remark that we only need the statement of this proposition for test functions &
which are supported away from w = w;m. This would slightly shorten the proof —
the delta distribution term would be absent. Moreover, we only need the statement for
the mode mgly. We next evaluate the left hand side of (7.18).

Proposition 7.26 Under the assumptions of Section3 and for & € C°(R\{w;m}, C)
we have

lim / / 8y21/f(v_, ¥, 0, 9 )Te mi(v—, 0) - €M%= voladv_
y—0 R SZ

i w—wym

—2K4 Fi(ry)

e m - - [

= A@ arr @ (———) " 7 = Dy R @) do,
+_ -

where Fy and ¢ are as in Sects.2.1.1 and 2.1.2.

It is important for the validity of the proposition as stated that one chooses the
support of & away from w,.m.>*

54 One can evaluate the limit also for & which are supported on w4 m; one then picks up a delta distribution

term at w4 m. With additional work it can be shown that it exactly agrees with the delta distribution term

appearing in Proposition 7.25, i.e., ay+ i (@) does not contain a delta distribution, but only poles. This,
i

however, is not needed for the method of proof of the main theorem chosen in this paper.
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Proof Recall that we have p_ = ¢ —2randv_ = 2r* —vy andr = wyr* — ¢4 (r).
We thus obtain

/I.Q/S2 831&(1)_, y,0,90-) T i (v—, 0) - eimy— VolSzdv_

E@)5E] (cos g:w)e 0V = e~ Im0— g

I
:\/Eij
2 1
= . = 8),1/f(v+,y,9,<p+)\/T7
vt

£ ols] NSOV =i —2ir* (w—mwy) ,~2im$ ()
e E()Syy] (cos O w)e! Ve~ Mg (@mmer) g =2md+ (1) gepyol s du g (7.27)

= / O3 i (v ) (@)1 @=rm) ,=2imds (1) g
| @

= [ s e 2 e 2imbe0) g,
2

_ ” . ” R o, 2irf (w—wym) ,—2impy (r)
-/ @AY 50+ e @AT (5 )@ e do,

where we have used the same kind of reasoning as in the proof of Theorem 5.26,
denotes div, and we consider * and r as functions of y. Recall from Lemma 6.13
that arce mi> G mi € CO(R\{w,m}, C). Since we have chosen the support of & to
be disjoint from wm it is immediate that we can evaluate the integrals of the two
summands separately. We begin with the first one.

We have A;iﬁ,ml (y; ) = Z?O:O Jj(j—Daj(w,m, Dyl =2 = 2ay(w, m, 1) +O(y).
Note that the O(ry) is uniform in @ on the support of £ ; and as (w, m, [) is also uniformly
bounded on supp(§). Moreover we have r*(y) — —oo for y — 0. We thus obtain
from Riemann-Lebesgue and direct estimation

lim [yt (@AY (v @)E(@)e ™27 @m0 em2imde ) gy
)7—)0 R ro F oMM

= lim | ayt u(@)[2a2(0, m, 1) + O) |E(@)e 2" (@=@+m) g =2imd+ () g,
R

y—0

=0.

In order to evaluate the second summand in (7.27) we first note that for s = 2

o
;i{f,m[(y; w) = Z(J +1-p)(J —Pbj(w,m, l)y./'—l—y

j=0
M (o m) o i — 7 i
=y DG+ 1=7G = Pbjlw.m. 1)yl
- =0 "
_fezem =bi
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Also recall that y = :’:ri and, from Section2.1.2, ry — r = e+ ¢~ 2+ F+() Thjs
gives
Co—toam 2k, F fo—wim
Yo = (ﬂ)’ G 2irtw—omm)
I"+ — r_
Thus

lim R“Hf,mz(w)A;’ﬁ,m,(y; w)E(w)e 2T (@0 o =2mp+ () g

y—0
e*2K+F+(r) jo—wgm 00

. ! K. ~ P T~ —2i
:yhﬁbju;gaﬂﬁml(“’)(ﬁ) ' ;)bﬂw,m,z)yf-g(w)e 90 ey

—2K+F+(r+) L O—wym
e Kt

— [ g (Y

bo(w, m, 1) e M9+ DE(w) do.
=(1-Y)(=y)
O

Itnow follows from Propositions 7.17,7.25,and 7.26 thatfor§ € C°(R\{w;m}, C)
we have

L wo—wym

RTINS G petimenen

g i (©) (7 = Dye sw)dw
1> -

R re r—

= i 1 iV (wgm) . N
_ — im$y(ry)
= fR (@ mi(@) +e [ a o i Um(@])E@I do

Note that (S\Z/—)ml (w) is continuous in w (this follows as in the proof of Lemma 7.2).
Thus, all terms multiplying & (w) on each side are (at least) continuous in w away from
w4m. We thus conclude that for w # wim

Ayt (@) = (rg — r_)i%62"F*(“r)(w_‘“*m)62"’"‘24(”)—~ ~1
1 Yy -1 (7.28)
. ((ﬁ/_)ml(a)) + e—im¢+(r+)[LM + l\ijml(a))])
27 o —wim

Corollary 7.29 Under the assumptions from Section 3 there exists ey > 0 such that
1. form # 0 we have BgaHr,ml € L%_SO’SO)KZmJ forall0 < g < %, q € Np.
m#0
2. for m = 0 we have that o - yet o extends continuously to = 0 and, moreover,
we have Bg(a)aHﬁm) eL? lefor all0 < g <%, g €No.

(—¢0.€0)

Proof This is immediate from (7.28) and Proposition 7.25. O
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8 Proof of the Main Theorems
8.1 Proof of Theorem 3.7

We are now in a position to prove the main theorem.

Proof of Theorem 3.7 Recall from Proposition 4.64 that the L*(R x S?)-limit of
Y (v, r,0,04) for r — r_ exists and that we labelled it suggestively by
Y vy, r—, 6, ¢1). Taking the Teukolsky transform we have

1 -~ .
Yy, r—,0,04) = E/RZV[W(F*; w)YrEle](Q’ 01 w)e % do,
m,l

where Jml(r_; w) is continuous in w by (4.65), cf. the proof of Lemma 7.2.55 By
Proposition 4.64 and Plancherel we have for r — r_

0« ||1p(v+,r,0,<p+) —1//(v+, r—, 97 ¢+)”i2(RxSZ)

=/lelpmz(r;w)—sz(r_;w)lzdw-
R m,l

Fix m and /. Then there exists a sequence r, — r_ such that 1/vfm1 (rp; w) — 1/7,"1 (r—; w)
for almost all w € R.
It now follows from (6.12) and (6.21) that for w # wim, w_m

Vit (03 0) = [Rygt g (@)t 1y (@) + Tyt g @)t g (@)] By g (63 @)

+ [Tnf,mz (@)aggr (@) + Rygr (@)aygt i (@) Bepgt i (x: @)

The asymptotics of the Frobenius solutions from Proposition 6.11 imply
lim,, 00 Yo (x (rp); ) = mH?,ml(w)aH?’,ml(w) + sH;",ml(O))aH;*-)ml(w) for v #
w4m, w_m and thus we obtain

Ut (r—; ©) = Ry @)tz (@) + Dot @)ty (@) @®.1)

for almost every w € R\{wim, w_m}. We claim that there is an ¢ > 0 such that
the right hand side is continuous for w € (—¢, ¢). For m # 0 this follows directly
from Lemma 6.13 and Proposition 6.22. For m = 0 Propositions 7.4 and 6.27 imply
that T+ o (@)ay+ (@) is continuous and, moreover, Proposition 6.27 implies that
mH,*,Ol (w) is of the form 9%7_[;’01(0)) = w- ml (w) with @l (w) analytic
for all @ € R. Hence, Corollary 7.29 implies that also me,O l(a’)aHf,O (@) =

9@}’\0[ (w)(w- aH,*,Ol(a))) is continuous in w. We thus obtain (8.1) forall w € (—¢, ).

55 Note that l/v/ml(r_; ) is a priori not related in any way to l/v/ml(r; w) for r € (r—, ry). The choice of
terminology is justified by hindsight. However, it should not confuse the reader into believing that there is
nothing to show in the following.
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We consider the casem # O first and compute
08 Umolo (r—3 @) = 05 (Rt ity @)yt iy (@) F Ty oty (@)t gy ()

Po
Po _
= Z < > ( 8L({)%Hl+,m()lo (w) ,a£() qa'Hf,m()lo (a))

s N (8.2)
lI<C
+ 86(11)S’H:r,m010 (6!)) '8507anj,m()lo ((,()))

[ISC

The derivatives of the transmission and reflection coefficients are uniformly bounded
on (—¢, &) by Proposition 6.22. It thus follows from Corollary 7.29 and Corollary 7.15
that all terms on the right hand side of (8.2), with the exception of ‘IH,*,molo (w) -
850"H;f,m010 (w),arein Li((—so, so)) for some g > 0. On the other hand THj,molo (w)
is strictly bounded away from 0 in a small neighbourhood of @ = 0 by Proposition 6.22.
It thus follows from Corollary 7.15 that IH,*.,mOIo (w) - B(f)’(’aHimolO (w) ¢ Li((—e, 5))
for any ¢ > 0. Hence we obtain that a{j“&mozo (ro;mw) ¢ Lz)((—s, 8)) for any ¢ > 0.
We proceed with the casemy = 0 and compute

L0 Yor (r—; ) = OL° (mH,*,OI (@|o- o1 (@)] + Tyt g (@)agg+ g (@)

Po
= Z (ZO> ( IRyt o (@) -0,071 [ Ayt or ()]

= — (8.3)

+ 90T (@) 050 T ag+ gy ().
——
[-<C

It follows again from Corollary 7.29 and Corollary 7.15 that all terms on the right hand
side of (8.3), with the exception of Ty.+ ¢y, () - 3£0aH,+,010 (), are in L2 (( — &0, £0))
for some g9 > 0. On the other hand T4+ o) (@) is strictly bounded away from 0 in
a small neighbourhood of @ = 0 this time by Proposition 6.27. It thus follows from
Corollary 7.15 that TH;’,OIO (w) - 85%7110]0 (w) ¢ Li((—s, 8)) for any ¢ > 0. Hence

we obtain that 85° Yoy, (r_; w) ¢ L2 ((—&, ¢)) forany & > 0.
Taking the two cases together we have shown that

3{")’01}"1010(;"_; ) ¢ Lz)((—s, 8)) for any ¢ > 0. (8.4)

We claim that this implies
Aéﬁ@ﬂwmﬂwM%%ﬂu:m. (8.5)

If (8.5) was finite then together with [p [c [ (v, r—, 0, ¢) > volgdvy < oo from
(4.65) we would have [ [e 103 (w, r_, 6, 9) > volgdw < oo forall 0 < g < po.
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Fig.9 Extending the Teukolsky

CH}
field globally

{f*=v}n{f” <wv}

Proposition 5.22 then gives f(fs,e) Zm’l |83,1;m1(r,; a))|2dw <ooforal 0 < g <
po, where ¢ > 0 is as in Proposition 5.22. This clearly contradicts (8.4) and we thus
infer (8.5).

On the other hand by (4.65) we know that

1
/ /2 |Ui01/f(v+,r7, 9,(ﬂ+)|2 volgedvy < 00
S

—00

since ‘12—’ > po and thus we must have

o0
//sz [y (v, 7, 0, 1) volgadv, = oo.
1

The theorem now follows from Corollary 4.75. O

8.2 Extension Theorem and Proof of Theorem 3.9

Theorem 8.6 Let vy, v € R and let € I (M N (T > vl N {f~ < v} be
a solution of the Teukolsky equation Ty = 0in M N{fT > vo} N{f~ < vy}
satisfying the assumptions (3.1), (3.2), (3.3), (3.4) along the right event horizon.>°
Then there exists a x € Jff] (M) which extends V (i.e. x| pn(f+>voin(f-<v) = V)
which moreover satisfies the Assumptions 2.46 and condition (3.5).

Proof The idea of the proof is outlined in Figure9. Also recall that the level sets of
the functions f~ and £ are spacelike hypersurfaces.

We consider the Teukolsky equation (A.5) which is regular in M. Recall that x
satisfies (A.5) if, and only if, x = (Vri)2 X satisfies (2.39). We now consider the

induced initial data of ¢ := ﬁw on {fT = vo} N {f~ < vy} and, moreover,
r+
extend the induced initial data on {f~ = vi} N {f T > wg} smoothly to {f~ =

v} N {fT < wp}. Since ¥ is a solution of (A.5) in {f+ > vo} N {f~ < v1}, it
is clear that this choice of initial data satisfies the appropriate corner condition. In
the appendix A.2 it is shown that the initial value problem for (A.5) is well-posed.

56 With H;™ N {v4 > 1} replaced by HT N {v4 > vy} when appropriate.
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We can thus solve backwards to obtain a smooth solution x of (A.5) in the region
{f~ < v} N{fT < v} that attains the prescribed initial data.

In the second step we consider the initial value problem for (A.5) with compactly
supported initial data on H1+ N{f~ = v1}, which is a smooth extension of the induced
initial data of x on Hf N{f~ < v}, and, moreover, with the induced initial data of
x on { f~ = v1}. Again, the corner condition is satisfied and we obtain a solution in
the region { f~ > v;}. Patching these three solutions together proves the extension
theorem. O

Proof of Theorem 3.9 This is immediate from Theorem 8.6 and Theorem 3.7. O
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A Kruskal-Like Coordinate Transformations

We express the {v, ¢4, r, 8} coordinate vector fields in terms of the { Vri‘ , Vrz 0, P}
coordinate vector fields.

B, = VD — K Vi 0y - &"W o,
dpy = a<1>r+
3 = 2K+Mv B a ﬂacp (All)
A A r2 2 +a 27+
3 = dp.

Note that the vector field 3,, does not vanish at the bottom bifurcation sphere S3.
Using (A.1) we thus compute

2 2
2 ro—ry
eq = 2(r +a )K+V 8V+ +a ) Tia 28q>,+ (A.2)
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It now follows from (2.7) that #64 is a regular and non-degenerate vector field at
T+

H,E UHI'|r USZ. Note, however, that compared to>’ &4 = —%64 = ( V, +O(1))ea,

which blows up at Sb, 7 e4 grows exponentially in v_ for v_ — —|—oo

A.1 The Regular Teukolsky Equation in M

The above suggests that if i satisfies 7;% = 0, then the quantity ¥, := (v+)x%
I+

should satisfy a regular equation in M, thus in particular near the bottom bifurcation
sphere. In order to show this claim, we start by rewriting (2.39) in (vy,r, 0, ¢4)
coordinates as

251 cosf
_27[s]‘/fs =Ug¥s — 2(r = M)d, s + 298<P+w5
5 (A.3)
2s . 1 ,cos” 6
- ?(Zr +iacos6)dy, ¥s — ?(s 5t Yy =0

A straightforward computation shows that ¥, € JE’;’] (M) satisfies (A.3) if, and only
if, &s satisfies

]% = Dgl/fé 2(K+Cl sin?0 — 2r —ia cosé?)awrl/fA

+ %(KJF(V +a*) = (r — M))d, s

2s cos 6 Sk . 3
+ ?(K‘f‘a +l 9)8¢+w3 2 (SK'+(12 sm29 +2r)1/fA (A4)

252 K+

(2r +iacos 9)%

1 cos@
— s s? >1/f3—0

Rewriting (A.4) in terms of { V,t, Vi 0, ®,, } coordinates (in the following we will

drop the ry, i.e., we will only write {V*, V™~ 0, ®}) gives

2sz cos 6 ~ 1 ( 200529

/ﬁs]ws = Dg‘/fs 29342' s ? § m _S)&s (A5)

+XV+8V+&S+XS aV_‘(/fS_‘_X?a@l;Sdl_f;&Sa

57 Here O(1) is with respect to r — r4 and ¢ > 0.
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where

~ 2s
XSV+ = —2(K+a2 sin?6 — 2r —ia cos@)/q_V+
P

~ 2 2 2 2
X;/ :%/@r\/*(—/@azsinz@+2r+iacos€+%(/q(rz—i-az)—(r—M)))
22 NN O AR
22 = 2 (- L eaasin o - 2r i 0+ LT 07 b ad) = r— W)
.= —| — —5——=(ya"sin“0 — 2r —iacos — |k (r +a”)—(r —
’ p? r_%_—i—az * Ar_%_+a2 S O S e
+K+a>
~ SKy . P 2
fs = —2<s(—4r —2iacosf + kia”sin”0) + 2r — —)
4 K+

Note that the dashed terms are O(r —r). To see this werecall thatry —r_ = 2(ryp — M)
and compute

K+(r2~|—a2) —(r—M)= ﬁ(ﬂ—lﬁlz) —(r—=M)
+

(= M)

= W(r2+a2)—(r—M)=(9(r+—r).

Hence, we have XV, XV™, X2, f; € C®(M).

A.2 The Initial Value Problem for the Teukolsky Equation (A.5)

In this section we show that the initial value problem for the Teukolsky equation (A.5)
is well-posed by reducing it to an initial value problem for a tensorial wave equation. In
the following we restrict to s = +2 and drop the subscript s from &S. For 1/~f € 3[0201 (M)
there exists, by Remark 2.43, a unique o € FOO(SZT*M) with a(m, m) = ¥ that
is trace-free with respect to gqo = d6?* + sin? 0 dg? and that is an S? tensor,’%. We
rewrite (A.5) as

0 = Tig)(ce(m, m))
2si cos b

= g"" Ly, Lo, (c(m, m)) + (gx") Ly, (a(m, m)) + o2 sl

Lo (a (m, m))
(A.6)

2
1, ,cos?@ = ) (oo, m) + Xfﬁaw (c(m, m)) + )N(Sviﬁav, (ac(m, m))

B F(s sin% 6
+ f(f’ﬁad,(oe(m, m)) + fx(a(m, m)).

58 Le. we have a(dy+-) = a(dy—,-) =0.
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The differentials of the Kruskal-like coordinate system are

2 2 2 2
AVT = i, VH(dr + %dr) av- = v (g )
do = do dd = dp — 1,
ry +a?

which, together with (2.2), easily yields that the components of the inverse metric in
Kruskal-like coordinates satisfy

1
geez_z and g/ =0forpu #0
0
1 .
g% = 5—5= +gem With gop € C¥(M)
p*sin” 6

g¢V+, g®V e C®(M) (i.e., they do not have poles in ).

(A7)

Moreover, we note that [,® = 0 and (0,0 = pg‘ﬁ: 5 away from the axis 6 = 0, 7.
Also using (2.30) we obtain from (A.6)

0 =T (atm,m) = Y g""Ly L, (alm,m))
()¢
{(6.0),(®,®)}
1 o
+ D O Ly, (m, m)) + — Ky (oo, m) (A8)

§6.0 P
+ rem Loy Lo ((m, m) + X" Lo, (em,m)) + X)” La,_ (em, m)
+ )?;DE% (a(m, m)) + f;(a(m, m)).

Using now (2.31), (2.20), £3V+m = Ly,_m = Ly,m = 0, and again Remark 2.43
yields that 1} = «a(m, m) satisfies (A.8) if, and only if, « satisfies

0= > g"LyLoa+ Y (Ox")Lya
(n,m)¢ u#0,P
{(6,0),(®, @)}
Lo 2 2 2 (A9)
+ ;([:Zl,u, + £Zz,r+ + £Z3J+ + S + S )C(

~ + ~ —_ ~ ~
+ gfe’fiﬁad)ﬁad)a + XSV £3V+a + Xy £3V_ot + X;I’£3®a + fia.

Here, the vector fields Z; ,, are the vector fields from (2.19) with ¢ replaced by @, .
Note that firstly the equation (A.9) extends regularly to the axis 6 € {0, '} and secondly
it also extends regularly to all of M by virtue of XV, XV~ X%, f; € C®(M) and
(A.7).
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It is now easy to see that (A.9) is a tensorial wave equation with principal symbol
g~ ! and thus the initial value problem is well-posed>?. Taking the trace of (A.9) with
respect to g« shows that if o € [°(S2T* M) satisfies (A.9), then the trace of «
satisfies a homogeneous wave equation. Similarly, inserting dy+ or dy - into one of
the components of (A.9) (and using that the Lie-bracket of coordinate vector fields
vanishes) shows that «(dy+, -) and «(dy -, -) satisfy homogeneous wave equations.
The same holds for the antisymmetric part of «. Thus, symmetric and trace-free S°
initial data (cf. Remark 2.43) for (A.9) gives rise to a symmetric and trace-free S?
solution. Finally, we recall that by Remark 2.43 initial data for & for equation (A.5)
uniquely determines geometric symmetric and trace-free S? initial data for « for (A.9).
This establishes well-posedness for the Teukolsky equation (A.5) in M.

B Commutator Computations for (2.40)

The second order terms of ’?fs] are
22502 7 0 2, 2 0 0 20 &4
a”sin“09; ¥ —2ady, 9y ¥ +2(r°+a”) 0y 0,y —2ady 0¥ + AV + Ay

We use v’ (— (14+AA)0+(14+AA)0,_ )E as a multiplier and compute the commutator
expressions in the following individually for the 9, component and the 9,_ component

of the multiplier, term by term. We will use the notation = to denote equality after
a..

integration over the spheres with respect to volga.

B.1 The Multiplier —v? (1 + AA)EI

— % (1 + AA)a? sin® 0 Re(d2 /0,7

=3, (a2 sin? 0v? (1 + m)me(av_mzarz/?))

+qvi ' a%sin? 0(1 + AA)Re(@y_Y/9,9)

59 For example one can reduce it to the initial value problem for a scalar wave equation as follows: Choose
a frame field (f1, f2, f3, f4) for T M that is smooth away from 6 = 0 and another one, (f] , f'z, f3, f4),
that is smooth away from 6 = 7. Equation (A.9) yields now induced scalar equations for the components
of o with respect to the frame (f1, f2, f3, f4), which, by putting the principal symbol back together, are
manifestly wave equations with principal symbol ¢ lon M\ {6 = 0}-and analogously for the components
of o with respect to the hatted frame field. Given geometric initial data for (A.9) one can now solve for the
components of o with respect to (f1, f2, f3, f4), and also with respect to the hatted frame field, in their
corresponding domains of dependence (recall that & = 0, & = 7 is removed from M, respectively). By
virtue of (A.9) being a geometric equation, each set of solutions transforms to solutions of the other set
under the change of frame — whenever they are both defined. By uniqueness of the initial value problem,
the untransformed and the transformed sets have to agree and we can now patch the two sets of solutions
together to obtain a local solution « of (A.9). We then iterate this procedure. Hence, the main point of
this part of the appendix was to show that the Teukolsky equation (A.5) is the scalarisation of a regular
geometric equation — which is not surprising at all given its derivation...
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7

1 R 1 .
+ 8,(5112 sin? v (1 + AA)|3,,71//|2) — 5’ sin” 007 20, Al3,

v (14 AA)2aRe(dy 0y Vo)
= 3y (au‘i(l + 1 A)Re (8, 1/}3,1/})) — agv?™ (1 + A 8)Re(D,_V0,11)

— 3, (avZa + AA)Re(d,_ V3, 1&)) + av? A (8, A)Re(dy_Td,_1)

— v (1 + 220202 + a®)Re(By_ 0,V 0, 9)
= =0, (v1 (1 +28) 02 + @00 P) + qul 7 0P + a1 +28)19,

v (14 AA)2a%Re (3,9, Y d,9) = 0
— (14 2.8) ARe(3290,9)

| R | R
- —8,(511",(1 + AA)A|8r1p|2) + 3010, AU +208) 13,

— L (1 + AA)Re(As1 09, )

1 N 1 o
= =0, (VL1 +28) (s +DIP) + S48, Al + 5D
a.r.

+ a,(%u‘i(l +an)y |Z,J/7I2) —~ %v",ABrA Y NZi Y
i i

B.2 The Multiplier v? (1 + 14)8,_y

e 1 ~
v! (1 + 2A)a? sin2 0 Re(d2 Ydy_11) = dy_ (Eui(l 1 AA)a? sin? 6 |au_1/;|2)
1, R
- 5avt Y4 4 28)a2sin2 6 10y_v 2
—vL (1 + 1A)2a%Re(@y_dp_Pdy_P) = O
a.l.

V(1 4+ 20)20°2 + a®)Re(@y_ 0y Y80_ 1) = 3y (v”’, (1+AA)(r? +a®)]8y_ 1/7|2)

— 0L (% + aP)dy A+ 2r (1 + AA))[3y_ |2

—0% (1 + 1 8)2aRe(d, g F00_ 1) = dy_ (avd (1 +2A)Re(@y_ 0,9 )
— aqv?™ (1 4+ 2 8)Re (BP0, 1)
— o (av (1 + 28)Re(@p_ D0 1))
+ av? A3 A)Re(@y_Pdy_1)
oL (14 28) AR F0u_1) = 0y (vL.(1 +28) ARe(d, Y0 1))
— 0?8, AL+ 20.8)Re (D, dy_ 1)

— By (%v‘i(l + AA)Aw,\/}F)
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n %qvfl(l + D) A
v+ m)sm(i%&ﬂ) = O (%Uq—(l TAA)s +Sz)w}lz)

_ %qvq_*la F2A)Gs + DY

. (%v‘i(l +/\A)Z \Z-,J/Aflz)

L a1 5 a0
+5avl (1+AA)Z|Z,-,,«//|
1

C Commutator Computations for (2.39)

The second order terms of 7, in {v, 7, 8, ¢4} coordinates are
22,02 2 2 2 2
a”sin“ 6 3v+¢ +2ady, 0y, W +2(0r" +a”) 8y, 0, +2a 0y, 0, + AW + Ay

We use X(v+)( — (1 4+ AA)o, + (1 + AA)8U+)$ as a multiplier and compute the
commutator expressions in the following individually for the 9, component and the
0y, component of the multiplier, term by term. Note that due to formal similarity all
these expressions can be easily inferred from the computations in Appendix B (or vice
versa). They are listed here nevertheless for the convenience of the reader. Again we

use the notation = to denote equality after integration over the spheres with respect
a..
to volg.

We also use x (v4)(1 4+ AA) (=3, + dy, + #am% as a multiplier. The 9, ¥

component is also computed here separately.

C.1 The Multiplier — x(v;)(1 + AA)8,y

—x () (1 4+ 1A)a” sin® 0 Re(d] Yo, ) = —dy, <a2 sin? 6 (v4) (1 + 2A)Re(d,, wW))
+ %' (v)a® sin® O(1 4+ 1A)Re(Dy, Y, 1)

1
+ 0, (30 sin® O (v) (1 + 28 [0, ¥?)
- %cﬂ sin® 0 x (v) 18, Aldy, ¥|*

—X W) (1 +28)2aRe(u, 85, Y3) = =0, (ax (1) (1 +28)Re(@y, Y5,7) )
+ax () (1 +AA)Re(By, Y3, %)

+ 0, (X (V) (1 + 2 8)Re@y, Y1) )
~ X @A, 2Ry Y0, )

XA+ 28202 + A)Re(@o, 0,00 9) = =0, (1) (1 +28) 0% + D)oy [?)
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+ %' W) +a®) (1 + 1A)9, 9|
—xW3) (1 + A8)2aRe (3, By, Y 3,9) = 0

J— 1
—X (1 + 18 AR@YTT) = =, (321 +28)Aloy1?)

1
+ 5 X @A +208) [0y

o — 1
—x 1+ 28R yd) = =0, (32D +28) +5D) Y 2)

1 2 2
+ Ex(v+)k6rA(s + sl

+ 3’<%x(v+)(1 +18) Y017 v )

1 ~
— X WA A Z \Zi vy
C.2 The Multiplier y(v..)(1 4+ 14)8,, ¥

X W)L+ AA)a? sin® 0 Re(d2, Y3, ) = d, (%x(m(l + 1A)a’ sin® 0 |3v+1//|2)
- %x/(v+)(1 + AA)a? sin” 0 |3, Y|
X () (14 1A)2aRe(Dy, Dy, Y v, V) = 0
XD +AAR02 + A Re(@u, 99T, ) = 0, (X D1 +28) 0% + @) o, ¥ )

X @O+ A)2aRe(, 0y, ¥, 9) = —d, (ax @)1+ 2A)Re(y, Y37
+ax' () (1 + 1A)Re(dy, ¥, 9)
0, (ax (V) (1 + 2 8)Re(@y, Y1) )
~ ax @O ARe@y, ¥ 3y, ¥)

X1+ A AR@Y T, ) = 0, (X )1+ 2A) ARe(, ¥, 1))

— X3, A+ 208)Re (0, Dy, )

1 2
=, (32 +28) 415, )
1
+ 35X @)+ 28) A9y
. N 1
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C.3 The Multiplier y(vy)(1 + ,lA)r2 6¢+ v

X1 +28)— T ———a’ sin> 0Re(d;, Yo, V)

3 . 2
= B, (X )1+ 28) ZS; Re(y, Y3y, V)

a3 sin? 0

=X (W) (I + D) —5—— 2 %e(avwaw)
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a2
=0y, (X () (1 +2A) 5—— 21 I3¢+1/f| )

a2
~ X @D+ A8) =1, YT

X1 +28)— a22(r +a2)me(av+a,¢a¢+w)

a(r + 2)

= O (XA +28)— Re (B, 9y, V)

2
X+ m)%%(a Vo)

a(r + 2)

d (x ({1 +)»A) Re(dy, Yo, ¥))

— x (0 )A (9, A)a(r—Jr)iﬁ ¢(dp, Y, V)

—xw)A +2A)5—— 2 9%(3 oy U, V)

X+ 28) 5 20Re(ly, 393y, )
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2
(XA +28)5—— eV %)

2
= XWIA(0,A) 55— 21 |8 o V1

X)) (A +21A) 55— e Ai)‘ie(a Yy V)
= (X(v+) 2 (1 + AA) ARe(3, ¥y, )
— X)) 55— ) + A3, 8) ARe (3,9 3y, )
X)) 55— ) + 5 (14 2A) (3, 0)Re (B, Y8y, V)

X +28) = Re(isg Dy, 9)

=0

a..

D Commutator Computations for (2.38)

The second order terms of 7[5 in Boyer-Lindquist coordinates are

AMar

_ [ (r? + a?)?

9,9 w—£82¢+A82w+Z& v
A t0¢p A e r [s]1¥-

—a? sinze]a,zw -

We use — x (¢)e* 9,V as a multiplier and compute the commutator expressions again
term by term.

D.1 The Multiplier — y(t)e’" 8,y

(1’2 + a2)2

x (e |

— % sin? e]me(a}wW)
2 2N\2
=9 (X (t)e”[%

2 2\2
e[S

_ %ar (X (t)e”[% — a?sin? 9]|atlﬁ|2)

— a®sin? 9]9‘{2(3;¢W)>

— a2 sin? e]me(a,wW)
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