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Abstract. Analyses of LHC (and other!) experiments require robust and statistically
accurate determinations of the structure of the proton, encoded in the parton distribution
functions (PDFs). The standard description of hadronic processes relies on factorization
theorems, which allow a separation of process-dependent short-distance physics from the
universal long-distance structure of the proton. Traditionally the PDFs are obtained from
fits to experimental data. However, understanding the long-distance properties of hadrons
is a nonperturbative problem, and lattice QCD can play a role in providing useful results
from first principles. In this talk we compare the different approaches used to determine
PDFs, and try to assess the impact of existing, and future, lattice calculations.

1 Introduction

The description of physical processes involving nucleons is based on factorization, i.e. on the sepa-
ration of scales between short-distance (hard) partonic interactions, described in perturbation theory,
and the large-distance nonperturbative effects that are responsible for the internal structure of the nu-
cleon, see e.g. Ref. [1]. The nucleon structure is encoded in Parton Distribution Functions (PDFs),
which are universal, i.e. they describe properties of the nucleon that do not depend on the physical
process under study, e.g. the same PDFs describe the parton content of the nucleon both in Deep
Inelastic Scattering (DIS), and in experiments at hadronic colliders like the LHC. A brief introduction
to PDFs is presented in Sect. 2.

The lack of evidence for new particles at the LHC experiments suggests that signs of new physics
beyond the Standard Model will only show up as small deviations from the Standard Model predic-
tions, which can only be established by precision studies. Increased precision in the experimental
results calls for more precise theoretical computations, which severely challenge the techniques cur-
rently in use. PDFs are a crucial input in any analysis of collider experiments involving hadrons, and
therefore the precision in their determination needs to match the overall precision required in searches
for new physics.

PDFs can be extracted from global fits to experimental data. The ever-increasing number of ex-
periments that are included in these fits has led to better fits, with robust methodologies that allow the
propagation of the experimental error from data to the fitted functions. Two main concerns arise as we
enter the era of precision measurements at hadron colliders. In the kinematical regions that are con-
strained by data, the reduction in the statistical errors requires a careful assessment of the systematic
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errors in global fits. At the same time there are also kinematical regions that are not particularly con-
strained by data, but are relevant e.g. for searches of new physics, or precision Higgs measurements.
In Sect. 3 we summarise the recent results of global fits, trying to assess the statistical and systematic
errors, and the target precision that is necessary for lattice calculations to have an impact.

Numerical simulations of QCD allow the computation of PDFs directly from first principles. Re-
cent theoretical developments have paved the way to significant contributions from lattice QCD, which
can have an impact on the overall precision of the PDFs determination. We present a review of lattice
results in Sect. 4, summarising the current status of each methodology. While we do not aim to present
an exhaustive review of results, we hope to address the main theoretical questions that arise in these
lattice calculations, and refer to the bibliography for a more exhaustive list of references.

2 Parton Distribution Functions

As mentioned above, a generic hadronic observable involves both long- and short-distance contribu-
tions, and cannot be obtained simply by a perturbative computation. Factorization theorems allow a
separation of the long-distance and short-distance contributions. The latter are obtained by comput-
ing matrix elements at the partonic level in perturbation theory, while the distribution of partons in
the hadron is encoded in the PDFs. The factorization theorems guarantee that different observables
(structure functions, cross sections, ...) can be expressed as functions of the PDFs; inverting these
relations allows the PDFs to be determined from experimental data. Moreover PDFs are universal,
i.e. the same parton distributions enter in all processes involving a given hadron. In this work we will
only consider the parton distributions inside the proton, and we will illustrate the relation between
PDFs and data in the familiar environment provided by DIS experiments.

2.1 Deep Inelastic Scattering

Deep Inelastic Scattering is the scattering of a lepton, with momentum k, off a nucleon, more precisely
a proton in our case, with momentum P:

�(k) + N(p) −→ �(k′) + X (1)

where k′ is the momentum of the outgoing lepton, and X denotes a generic hadronic final state. We
will consider here the simplest case, namely the case where a photon is exchanged between the lepton
and the proton, in order to illustrate the main ideas without unnecessary complications. The reaction
is depicted in Fig. 1. The computation of the amplitude for this process involves the evaluation of
the matrix element of the electromagnetic current between the initial and final hadronic states, which
encodes the effects of QCD nonperturbative dynamics. The differential cross section is given by

dσ =
d3k′

|k′|
1

2s(Q2 − M2
N)

Lµν(k, k′)Wµν(p, q) , (2)

where MN denotes the mass of the proton, Q2 = −q2 = −(k − k′)2, and s = (p + k)2. The leptonic
tensor Lµν is readily computed in perturbation theory, while the hadronic tensor

Wµν(p, q) =
1

4π

∑
X

〈p| jµ(0)†|X〉〈X| jν(0)|p〉(2π)4δ (pX − p − q) (3)

=
1

4π

∫
d4y eiq·y 〈p| jµ(y)† jν(0)|p〉 (4)

2

EPJ Web of Conferences 175, 01006 (2018)	 https://doi.org/10.1051/epjconf/201817501006
Lattice 2017



errors in global fits. At the same time there are also kinematical regions that are not particularly con-
strained by data, but are relevant e.g. for searches of new physics, or precision Higgs measurements.
In Sect. 3 we summarise the recent results of global fits, trying to assess the statistical and systematic
errors, and the target precision that is necessary for lattice calculations to have an impact.

Numerical simulations of QCD allow the computation of PDFs directly from first principles. Re-
cent theoretical developments have paved the way to significant contributions from lattice QCD, which
can have an impact on the overall precision of the PDFs determination. We present a review of lattice
results in Sect. 4, summarising the current status of each methodology. While we do not aim to present
an exhaustive review of results, we hope to address the main theoretical questions that arise in these
lattice calculations, and refer to the bibliography for a more exhaustive list of references.

2 Parton Distribution Functions

As mentioned above, a generic hadronic observable involves both long- and short-distance contribu-
tions, and cannot be obtained simply by a perturbative computation. Factorization theorems allow a
separation of the long-distance and short-distance contributions. The latter are obtained by comput-
ing matrix elements at the partonic level in perturbation theory, while the distribution of partons in
the hadron is encoded in the PDFs. The factorization theorems guarantee that different observables
(structure functions, cross sections, ...) can be expressed as functions of the PDFs; inverting these
relations allows the PDFs to be determined from experimental data. Moreover PDFs are universal,
i.e. the same parton distributions enter in all processes involving a given hadron. In this work we will
only consider the parton distributions inside the proton, and we will illustrate the relation between
PDFs and data in the familiar environment provided by DIS experiments.

2.1 Deep Inelastic Scattering

Deep Inelastic Scattering is the scattering of a lepton, with momentum k, off a nucleon, more precisely
a proton in our case, with momentum P:

�(k) + N(p) −→ �(k′) + X (1)

where k′ is the momentum of the outgoing lepton, and X denotes a generic hadronic final state. We
will consider here the simplest case, namely the case where a photon is exchanged between the lepton
and the proton, in order to illustrate the main ideas without unnecessary complications. The reaction
is depicted in Fig. 1. The computation of the amplitude for this process involves the evaluation of
the matrix element of the electromagnetic current between the initial and final hadronic states, which
encodes the effects of QCD nonperturbative dynamics. The differential cross section is given by

dσ =
d3k′

|k′|
1

2s(Q2 − M2
N)

Lµν(k, k′)Wµν(p, q) , (2)

where MN denotes the mass of the proton, Q2 = −q2 = −(k − k′)2, and s = (p + k)2. The leptonic
tensor Lµν is readily computed in perturbation theory, while the hadronic tensor

Wµν(p, q) =
1

4π

∑
X

〈p| jµ(0)†|X〉〈X| jν(0)|p〉(2π)4δ (pX − p − q) (3)

=
1

4π

∫
d4y eiq·y 〈p| jµ(y)† jν(0)|p〉 (4)

Figure 1. Kinematics of DIS: a lepton with momentum k scatters off a nucleon with momentum P. The final
state contains the lepton with momentum k′ and some hadronic state X.

involves the nonperturbative matrix elements. Using the transformation properties of Wµν under
Lorentz transformations and parity, and current conservation, the hadronic tensor can be expressed
as a function of two independent scalar functions. Introducing the kinematical variables ν = p · q, and
x = Q2/(2ν), yields

Wµν(p, q) =
(
−gµν +

qµqν
q2

)
F1(x,Q2)+ (5)

+

(
pµ − qµ

ν

q2

) (
pν − qν

ν

q2

)
F2(x,Q2)
ν

, (6)

where F1 and F2 are dimensionless structure functions, which depend on x and Q2. The reaction is
deeply inelastic when (p+q)2 � M2

N . Eqs. 3, and 5 allow to rewrite the cross section in Eq. 2 in terms
of F1 and F2, so that a measurement of the cross section yields the structure functions; therefore the
structure functions can be considered as physical observables, in particular they are independent of
the renormalization scheme, or the renormalization scale.

Parton distributions appear in the factorization theorems for the structure functions. Introducing
the convolution

f (x) ⊗ g(x) =
∫ 1

x

dz
z

f
( x

z

)
g(z) , (7)

the factorization theorem yields

F1(x,Q2) = x
∑

a

C1a

(
x,

Q
µ
, αs(µ)

)
⊗ fa
(
x, µ2
)
, (8)

1
x

F2(x,Q2) = x
∑

a

[
1
x

C2a

(
x,

Q
µ
, αs(µ)

)]
⊗ fa
(
x, µ2
)
. (9)

The sum in both equations is over all partons, labelled by a, where a runs over all quarks, antiquarks,
and the gluon; 1 for each parton a there is a PDF fa(x, µ2), and the observable structure functions are
obtained by taking the convolution of the PDFs with the coefficient functions C1a and C2a.

1When taking electromagnetic effects into account the photon counts as a parton, with its associated PDF. We will not dwell
on this point here; see Ref. [2] and references therein for recent develpments.
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2.2 General properties of PDFs

A discussion of the quantities that enter these two equations provides an effective summary of the
important properties of PDFs. First of all it is important to realise that Eqs. 8, and 9 are derived up
to terms of order O

(
Q−2
)
, i.e. factorization works up to corrections that are suppressed by powers

of Q2. It is conventional to call this term the leading twist contribution to the structure functions.
The coefficient functions C1a and C2a describe the perturbative, hard, partonic scattering. They are
computed at some given order in perturbation theory, in a given renormalization scheme, and for a
given value of the factorization scale µ. Two important observations are in order. The same PDF
appears in the expressions for the two distinct observables. This is the universality of PDFs that
was already mentioned above. The structure of the nucleon does not depend on the process that we
consider, while the hard scattering does. The second observation is also related to a point we already
made above, namely that the structure functions are physical quantities and therefore independent of
the details of the renormalization procedure. This means that the PDFs themselves have to be scheme
and scale dependent in order to cancel the dependence in the coefficient functions. This is an important
point to keep in mind: PDFs are defined in a given renormalization scheme and at some given value
of the factorization scale. The dependence of the PDFs on the factorization scale can be computed in
perturbation theory, and is encoded in the DGLAP equations:

µ2 d
dµ2 fa(x, µ2) =

∑
b

Pab(x, αs(µ)) ⊗ fb(x, µ2) . (10)

The splitting functions Pab are known in perturbation theory up to NNLO [3, 4]. The solution of
the DGLAP equations yields the evolution of the PDFs with the factorization scale; a consistent
treatment requires the evolution kernel to be computed at the same perturbative order, and in the same
renormalization scheme, as the coefficient functions. The PDFs at a generic scale µ2 are obtained by
convoluting the PDFs at a reference scale µ2

0 with a perturbative kernel:

fa(x, µ2) =
∑

b

Γab (x, αs(µ), αs(µ0)) ⊗ fb(x, µ2
0) . (11)

DGLAP evolution has been implemented in numerous codes that are publicly available, see e.g. [5–7].
The PDFs and the coefficient functions satisfy analogous evolution equations, so that the physical

structure functions are scale-independent. Clearly when the coefficient functions, and the splitting
functions are computed to order αN

s , we expect a residual scale dependence of the physical observ-
ables, of order αN+1

s .
Finally, note that Eqs. 8, and 9 can be rewritten in terms of the Mellin moments of the structure

functions,

F̃1

(
n,Q2

)
=

∫ 1

0

dx
x

xnF1

(
x,Q2

)
, (12)

F̃2

(
n,Q2

)
=

∫ 1

0

dx
x

xn−1F2

(
x,Q2

)
, (13)

and the Mellin moments of the PDFs and the coefficient functions, which are defined analogously.
The factorization theorems in Mellin space take the simple form

F̃i

(
n,Q2

)
=
∑

a

f̃a
(
n,Q2

)
C̃ia

(
n,

Q
µ
, αs(µ)

)
, i = 1, 2 . (14)
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2.3 Operator definition

The PDF for a quark of flavor a can be defined as the matrix element of a non-local operator

f (ξ) =
1

4π

∫
dx− e−iξP+x− 〈P|ψ̄(0, x−, 0⊥)γ+G(x−, 0)ψ(0)|P〉 , (15)

where |P〉 is the hadron state with momentum P = (P+,m2/(2P+), 0⊥) in light-cone coordinates,
γ+ = (γ0 + γ3)/2, and

G (x−, 0) = P exp
−ig

∫ x−

0
dy− A+(0, y−, 0⊥)

 . (16)

A full discussion of this definition can be found in Refs. [1, 8–10].
The operator defined in Eq. 15 requires to be renormalized. Explicit calculations, e.g. in the

MS scheme, show that the renormalization procedure introduces a dependence on the scale µ. This
dependence is described by the DGLAP equations discussed above. We shall come back to discussing
the properties of such operators below.

It is interesting to remark that this definition is not unique [11]. A valid definition of a parton
distribution is obtained by convoluting fa with any kernel Dab (x,Q/µ) that is perturbatively defined:

ga(x,Q2) = Dab (x,Q/µ) ⊗ fb(x, µ2) . (17)

A change in the definition of the PDFs entails a change in the coefficient functions, so that the physical
observables can still be expressed via a factorization theorem, and remain unchanged. Care must be
exercised when comparing PDFs to ensure that the same quantity is actually being computed and
compared, especially when matching lattice quantities to quantities that are defined in Minkowski
space.

3 Global fits from experimental data

Parton Distribution Functions are currently extracted from global fits to available experimental data,
using factorization theorems to relate the PDFs to the physical observables. Before discussing the
characteristics of these global fits, it is useful to summarise the basic ideas in a simple case, namely
the non-singlet structure function for DIS, see e.g. [12].

3.1 The non-singlet PDF

The observable in this simple example is

FNS
2 (x,Q2) = Fp

2(x,Q2) − Fd
2(x,Q2) (18)

= CNS(x,Q2) ⊗ fNS

(
x,Q2

)
, (19)

where F p
2 and Fd

2 are the structure functions for the proton and deuteron respectively. As shown
explicitly in Eq. 19, the factorization theorem allows the non-singlet structure function to be expressed
as the convolution of the non-singlet PDF

fNS(x,Q2) =
[(

u(x,Q2) + ū(x,Q2)
)
−
(
d(x,Q2) + d̄(x,Q2)

)]
, (20)
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with the coefficient function CNS, which is known in perturbation theory [13]. Using DGLAP evo-
lution, the structure function at any value of Q2 can be written as a function of the PDFs at a single
reference scale Q2

0:

FNS
2 (x,Q2) =

∫ 1

x

dy
y

KNS

(
y, αs

(
Q2
)
, αs

(
Q2

0

))
fNS

(
x
y
,Q2

0

)
. (21)

Eq. 21 summarises the challenges that global fits are trying to address. Experimental data, which
are correlated and have statistical and systematic errors, appear on the left-hand side of the equation,
and are used to determine the PDF at the reference scale on the right-hand side. The problem is ill-
defined in the sense that the continuous real functions fa(x,Q2

0) cannot be determined from a discrete
set of data, no matter how copious this set is. In order to overcome this difficulty, a parametrization for
fa(x,Q2

0) needs to be chosen; experimental data are then used in order to constrain the parameters that
define the functional form. The parametrizations used for these fits need to be sufficiently flexible, so
that they do not introduce a bias in the result of the fit. Moreover the error on the data needs to be
propagated into an error on the fitted functions fa(x,Q2

0).
It is also clear from Eq. 21 that data for FNS

2 can only constraint the non-singlet PDF, and do not
provide information on individual flavors distributions. In order to constrain all PDFs a large variety
of processes needs to be included in the analysis.

3.2 Global datasets

Factorization theorems allow most observables to be written as a convolution of hard partonic cross
sections, and PDFs. For example the cross sections for processes at hadron colliders can be written as

σ(H1H2 → X) =
∑
a,b

∫
dx1dx2 fa(x1, µ

2) fb(x2, µ
2)×

× σ̂ab→X(x1x2s, µ2, µ2
R) , (22)

where H1 and H2 are the hadrons involved in the collisions, and fa and fb are the parton distributions
in these hadrons. Using DGLAP evolution again, it is clear that Eq. 22 yields an expression for ob-
servables as functions of the PDFs at the reference scale. The universality of PDFs allows to combine
data from different experiments to constrain the same PDFs. Different experiments will constrain
different combinations of PDFs, and different kinematical regions in x. Being able to combine all the
available data, including the rapidly increasing amount of data from the LHC, is crucial to get the best
determination of PDFs.

As an example, the result of the latest global fit by the NNPDF Collaboration is shown in Fig. 2.
Here we review briefly the new data included in these global fits in going from [14] to [15], trying to
identify their impact on the determination of PDFs. The reason for focussing on this specific example
is twofold: understanding the current level of precision in global fits, and highlighting the impact of
recent LHC data.

Deep-inelastic scattering data are summarised in Tab. 1. The final HERA combination [16]
provides stringent bounds on quark distributions at medium values of x. The bottom [17, 18] and
charm [19] structure functions have been considered in order to constrain respectively the determi-
nation of the bottom mass, and the charm content of the proton. Tevatron data, reported in Tab. 2,
include fixed target Drell-Yan from the E605 [20] and E866 [21–23] experiments, weak boson pro-
duction from CDF [24] and D0 [25] Z rapidity distributions, and inclusive jet production [26]. The
very precise W lepton asymmetries in the electron [27] and muon [28], provide important information
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Figure 2. Results of the latest global fit by the NNPDF Collaboration. PDFs are shown at factorization scales of
10 GeV2 (left) and 104 GeV2 (right). PDFs at diferent factorization scales are related by DGLAP evolution. Note
the size of the statistical errors for the different partons in different kinematical regions.

on the quark flavor separation at large-x, as demonstrated in [29]. Nowadays an increasing number
of LHC results has already been included in global fits. The recent NNPDF3.1 set of PDFs includes
data for the Z boson double-differential distribution [30, 31]; the inclusive W+, W−, and Z rapidity
distribution [32, 33]; the top-quark pair production normalized yt distribution [34, 35]; the tt̄ total
cross section [36–38]; the inclusive jet cross section [39, 40]; the low-mass Drell-Yan [41]; and the
inclusive W, Z production [42, 43].

This long list of experimental data should give a feeling for the variety of data used in these fits,
and for the LHC contribution to the determination of PDFs, with most PDFs being affected at 1σ to
2σ level. The impact of these data is discussed in detail e.g. in Ref. [15]. A quantitative estimate of
the error reduction due to new data is shown in Fig. 3, where the statistical error for the gluon and the
d̄ quark PDFs are shown. An overall reduction of the error is seen for all values of x, sometimes by a
factor of 2, bringing the relative uncertainty at the level of 2%. More detail can be found in the actual
publications, but it is useful to keep in mind this order of magnitude as being typical of the uncertainty
from global fits, in the regions that are reasonably constrained by the data. Clearly the error blows up
at very small values of x.

The uncertainty on the PDFs is rapidly becoming one the limiting factors in searches for new
physics. An example of the impact of the PDF error can be found in Ref. [44], where the relative size
of the NLL corrections for gluino pair production was computed. As shown in Fig. 4, the error in the
relative size of the NLL corrections grows very quickly as the gluino mass is increased, mostly as a
consequence of the large PDF errors at large values of x.

There are several collaborations that are currently producing global fits, using basically the same
datasets, but different methodologies, see Refs. [15, 69–72] for recent updates. Here we would like to
summarise what we believe are the important issues to keep in mind when engaging in lattice studies
of PDFs. It is interesting to remark that global fits yield consistent results within errors, despite a wide

7

EPJ Web of Conferences 175, 01006 (2018)	 https://doi.org/10.1051/epjconf/201817501006
Lattice 2017



       x
4−10 3−10 2−10 1−10

) [
re

f] 
) 

2
) /

 ( 
g 

( x
, Q

2
 g

 ( 
x,

 Q
δ

0

0.02

0.04

0.06

0.08

0.1

0.12

NNPDF3.1

NNPDF3.0

NNLO, Q = 100 GeV

       x
4−10 3−10 2−10 1−10

) [
re

f] 
)

2
 ( 

x,
 Q

d
) /

 ( 
2

 ( 
x,

 Q
d

δ

0

0.02

0.04

0.06

0.08

0.1

0.12

NNPDF3.1

NNPDF3.0

NNLO, Q = 100 GeV

Figure 3. Error reduction in the gluon (left) and the d̄ (right) PDFs due to the inclusion of recent LHC data in
the NNPDF global fit. The relative error is shown as a function of x. The NNPDF31 global fit includes the extra
data as discussed in the text above.

Figure 4. Impact of the PDF errors on the NLL corrections to gluino pair production at the LHC. The ratio
σNLO+NLL/σNLO is shown as a function of the gluino mass. The error band is obtained from the propagation of
the PDF error in the numerator. Plot courtesy of J. Rojo.

variety of methodologies, which underscores the robustness of current studies. Based on the current
global fits, the uncertainty in the central value of the PDFs is at the % level in the central x region at
Q = 100 GeV. LHC data have already had a significant impact in reducing the error bars, and will
continue to do so as Run-2 data are added to the existing fits. The determinations of PDFs in the small
x and large x region have larger uncertainties, mostly due to the fact that reaching these kinematic
regions is difficult in experiments. At the current level of precision the systematic errors in global fits
will start to play a significant role, and will need to be assessed carefully. Reliable uncertainties are
crucial both for precision Higgs physics, and for potential discoveries. First-principle calculations of
PDFs can be performed using lattice QCD, which could thereby yield a significant contribution to the
determination of PDFs.

4 Lattice computations

Recent work in lattice QCQ has led to significant progresses in the computation of PDFs from first
principles. In this report, we will focus on recent developments in the extraction of light-cone PDFs
from the so-called quasi-PDFs.
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Figure 4. Impact of the PDF errors on the NLL corrections to gluino pair production at the LHC. The ratio
σNLO+NLL/σNLO is shown as a function of the gluino mass. The error band is obtained from the propagation of
the PDF error in the numerator. Plot courtesy of J. Rojo.

variety of methodologies, which underscores the robustness of current studies. Based on the current
global fits, the uncertainty in the central value of the PDFs is at the % level in the central x region at
Q = 100 GeV. LHC data have already had a significant impact in reducing the error bars, and will
continue to do so as Run-2 data are added to the existing fits. The determinations of PDFs in the small
x and large x region have larger uncertainties, mostly due to the fact that reaching these kinematic
regions is difficult in experiments. At the current level of precision the systematic errors in global fits
will start to play a significant role, and will need to be assessed carefully. Reliable uncertainties are
crucial both for precision Higgs physics, and for potential discoveries. First-principle calculations of
PDFs can be performed using lattice QCD, which could thereby yield a significant contribution to the
determination of PDFs.

4 Lattice computations

Recent work in lattice QCQ has led to significant progresses in the computation of PDFs from first
principles. In this report, we will focus on recent developments in the extraction of light-cone PDFs
from the so-called quasi-PDFs.

Experiment Obs. Ref. Ndat x range Q range (GeV) Theory

NMC
Fd

2/F
p
2 [45] 260 (121/121) 0.012 ≤ x ≤ 0.68 2.1 ≤ Q ≤ 10

APFEL
σNC,p [46] 292 (204/204) 0.012 ≤ x ≤ 0.50 1.8 ≤ Q ≤ 7.9

SLAC
F p

2 [47] 211 (33/33) 0.14 ≤ x ≤ 0.55 1.9 ≤ Q ≤ 4.4
APFEL

Fd
2 [47] 211 (34/34) 0.14 ≤ x ≤ 0.55 1.9 ≤ Q ≤ 4.4

BCDMS
F p

2 [48] 351 (333/333) 0.07 ≤ x ≤ 0.75 2.7 ≤ Q ≤ 15.1
APFEL

Fd
2 [49] 254 (248/248) 0.07 ≤ x ≤ 0.75 3.0 ≤ Q ≤ 15.1

CHORUS
σCC,ν [50] 607 (416/416) 0.045 ≤ x ≤ 0.65 1.9 ≤ Q ≤ 9.8

APFEL
σCC,ν̄ [50] 607 (416/416) 0.045 ≤ x ≤ 0.65 1.9 ≤ Q ≤ 9.8

NuTeV
σcc
ν [51, 52] 45 (39/39) 0.02 ≤ x ≤ 0.33 2.0 ≤ Q ≤ 10.8

APFEL
σcc
ν̄ [51, 52] 45 (37/37) 0.02 ≤ x ≤ 0.21 1.9 ≤ Q ≤ 8.3

HERA

σ
p
NC,CC (*) [16] 1306 (1145/1145) 4 · 10−5 ≤ x ≤ 0.65 1.87 ≤ Q ≤ 223

APFELσc
NC [53] 52 (47/37) 7 · 10−5 ≤ x ≤ 0.05 2.2 ≤ Q ≤ 45

Fb
2 (*) [17, 18] 29 (29/29) 2 · 10−4 ≤ x ≤ 0.5 2.2 ≤ Q ≤ 45

EMC [ Fc
2 ] (*) [19] 21 (16/16) 0.014 ≤ x ≤ 0.44 2.1 ≤ Q ≤ 8.8 APFEL

Table 1. Deep-inelastic scattering data included in NNPDF3.1. The EMC Fc
2 data are in brackets because they

are only included in a dedicated set but not in the default dataset. New datasets, not included in NNPDF3.0, are
denoted (*). The kinematic range covered in each variable is given after cuts are applied. The total number of
DIS data points after cuts is 3102/3092 for the NLO/NNLO PDF determinations (not including the EMC Fc

2
data).

Exp. Obs. Ref. Ndat Kin1 Kin2 (GeV) Theory

E866
σd

DY/σ
p
DY [23] 15 (15/15) 0.07 ≤ yll ≤ 1.53 4.6 ≤ Mll ≤ 12.9 APFEL+Vrap

σ
p
DY [21, 22] 184 (89/89) 0 ≤ yll ≤ 1.36 4.5 ≤ Mll ≤ 8.5 APFEL+Vrap

E605 σ
p
DY [20] 119 (85/85) −0.2 ≤ yll ≤ 0.4 7.1 ≤ Mll ≤ 10.9 APFEL+Vrap

CDF
dσZ/dyZ [24] 29 (29/29) 0 ≤ yll ≤ 2.9 66 ≤ Mll ≤ 116 Sherpa+Vrap

kt incl jets [54] 76 (76/76) 0 ≤ yjet ≤ 1.9 58 ≤ pjet
T ≤ 613 NLOjet++

D0

dσZ/dyZ [25] 28 (28/28) 0 ≤ yll ≤ 2.8 66 ≤ Mll ≤ 116 Sherpa+Vrap

W electron asy (*) [27] 13 (13/8) 0 ≤ ye ≤ 2.9 Q = MW MCFM+FEWZ

W muon asy (*) [28] 10 (10/9) 0 ≤ yµ ≤ 1.9 Q = MW MCFM+FEWZ

Table 2. Same as Table 1 for the Tevatron fixed-target Drell-Yan and W, Z and jet collider data. The total
number of Tevatron data points after cuts is 345/339 for NLO/NNLO fits.

4.1 Quasi-PDFs

In order to discuss the quasi-PDFs, it is useful to review briefly the field-theoretical definition using
bi-local operators

Oi(ζ) = ψ̄(ζ)Γi P exp
(
−ig
∫ ζ

0
dη A(η)

)
ψ(0) , (23)

where Γi is a matrix in spin space, and Aµ is the gauge potential. The path-ordered exponential in
Eq. 23 ensures that these operators are gauge invariant. We focus here on the operator F+ obtained by
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Exp. Obs. Ref. Ndat Kin1 Kin2 (GeV) Theory

ATLAS

W, Z 2010 [55] 30 (30/30) 0 ≤ |ηl | ≤ 3.2 Q = MW ,MZ MCFM+FEWZ

W, Z 2011 (*) [32] 34 (34/34) 0 ≤ |ηl | ≤ 2.3 Q = MW ,MZ MCFM+FEWZ

high-mass DY 2011 [56] 11 (5/5) 0 ≤ |ηl | ≤ 2.1 116 ≤ Mll ≤ 1500 MCFM+FEWZ

low-mass DY 2011 (*) [41] 6 (4/6) 0 ≤ |ηl | ≤ 2.1 14 ≤ Mll ≤ 56 MCFM+FEWZ

[Z pT 7 TeV
(
pZ

T , yZ

)
] (*) [57] 64 (39/39) 0 ≤ |yZ | ≤ 2.5 30 ≤ pZ

T ≤ 300 MCFM+NNLO

Z pT 8 TeV
(
pZ

T ,Mll

)
(*) [30] 64 (44/44) 12 ≤ Mll ≤ 150 GeV 30 ≤ pZ

T ≤ 900 MCFM+NNLO

Z pT 8 TeV
(
pZ

T , yZ

)
(*) [30] 120 (48/48) 0.0 ≤ |yZ | ≤ 2.4 30 ≤ pZ

T ≤ 150 MCFM+NNLO

7 TeV jets 2010 [58] 90 (90/90) 0 ≤ |yjet | ≤ 4.4 25 ≤ pjet
T ≤ 1350 NLOjet++

2.76 TeV jets [59] 59 (59/59) 0 ≤ |yjet | ≤ 4.4 20 ≤ pjet
T ≤ 200 NLOjet++

7 TeV jets 2011 (*) [39] 140 (31/31) 0 ≤ |yjet | ≤ 0.5 108 ≤ pjet
T ≤ 1760 NLOjet++

σtot(tt̄) [36, 37] 3 (3/3) - Q = mt top++

(1/σtt̄)dσ(tt̄)/yt (*) [34] 10 (10/10) 0 < |yt | < 2.5 Q = mt Sherpa+NNLO

CMS

W electron asy [60] 11 (11/11) 0 ≤ |ηe | ≤ 2.4 Q = MW MCFM+FEWZ

W muon asy [61] 11 (11/11) 0 ≤ |ηµ | ≤ 2.4 Q = MW MCFM+FEWZ

W + c total [62] 5 (5/0) 0 ≤ |ηl | ≤ 2.1 Q = MW MCFM

W + c ratio [62] 5 (5/0) 0 ≤ |ηl | ≤ 2.1 Q = MW MCFM

2D DY 2011 7 TeV [63] 124 (88/110) 0 ≤ |ηll | ≤ 2.2 20 ≤ Mll ≤ 200 MCFM+FEWZ

[2D DY 2012 8 TeV] [64] 124 (108/108) 0 ≤ |ηll | ≤ 2.4 20 ≤ Mll ≤ 1200 MCFM+FEWZ

W± rap 8 TeV (*) [33] 22 (22/22) 0 ≤ |ηl | ≤ 2.3 Q = MW MCFM+FEWZ

Z pT 8 TeV (*) [31] 50 (28/28) 0.0 ≤ |yZ | ≤ 1.6 30 ≤ pZ
T ≤ 170 MCFM+NNLO

7 TeV jets 2011 [65] 133 (133/133) 0 ≤ |yjet | ≤ 2.5 114 ≤ pjet
T ≤ 2116 NLOjet++

2.76 TeV jets (*) [40] 81 (81/81) 0 ≤ |yjet | ≤ 2.8 80 ≤ pjet
T ≤ 570 NLOjet++

σtot(tt̄) [38, 66] 3 (3/3) - Q = mt top++

(1/σtt̄)dσ(tt̄)/ytt̄ (*) [35] 10 (10/10) −2.1 < ytt̄ < 2.1 Q = mt Sherpa+NNLO

LHCb

Z rapidity 940 pb [67] 9 (9/9) 2.0 ≤ ηl ≤ 4.5 Q = MZ MCFM+FEWZ

Z → ee rapidity 2 fb [68] 17 (17/17) 2.0 ≤ ηl ≤ 4.5 Q = MZ MCFM+FEWZ

W, Z → µ 7 TeV (*) [42] 33 (33/29) 2.0 ≤ ηl ≤ 4.5 Q = MW ,MZ MCFM+FEWZ

W, Z → µ 8 TeV (*) [43] 34 (34/30) 2.0 ≤ ηl ≤ 4.5 Q = MW ,MZ MCFM+FEWZ

Table 3. Same as Table 1, for ATLAS, CMS and LHCb data from the LHC Run I at
√

s = 2.76 TeV,√
s = 7 TeV and

√
s = 8 TeV. The ATLAS 7 TeV Z pT and CMS 2D DY 2012 are in brackets because they are

only included in a dedicated study but not in the default PDF set. The total number of LHC data points after cuts
is 848/854 for NLO/NNLO fits (not including ATLAS 7 TeV Z pT and CMS 2D DY 2012).

choosing Γi = γ
+, and integrating over a light-cone direction, ζ = (0, y−, �0⊥),

F+(k+) =
∫

dy−

4π
e−ik+y− Oi(ζ) . (24)

F+ needs to be properly renormalized, e.g.

F+,R(k+, µ) =
∫ ∞

1

dξ
ξ

K (ξ, gR(µ)) F+(ξk+) , (25)

where we have indicated explicitly the dependence on the renormalization scale µ - for a detailed
discussion see e.g. Ref. [8].

The PDFs are obtained from the matrix element of FR between hadronic states with momentum
P:

f (x, µ) = 〈P|F+,R(xP+, µ)|P〉 , (26)
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Exp. Obs. Ref. Ndat Kin1 Kin2 (GeV) Theory

ATLAS

W, Z 2010 [55] 30 (30/30) 0 ≤ |ηl | ≤ 3.2 Q = MW ,MZ MCFM+FEWZ

W, Z 2011 (*) [32] 34 (34/34) 0 ≤ |ηl | ≤ 2.3 Q = MW ,MZ MCFM+FEWZ

high-mass DY 2011 [56] 11 (5/5) 0 ≤ |ηl | ≤ 2.1 116 ≤ Mll ≤ 1500 MCFM+FEWZ

low-mass DY 2011 (*) [41] 6 (4/6) 0 ≤ |ηl | ≤ 2.1 14 ≤ Mll ≤ 56 MCFM+FEWZ

[Z pT 7 TeV
(
pZ

T , yZ

)
] (*) [57] 64 (39/39) 0 ≤ |yZ | ≤ 2.5 30 ≤ pZ

T ≤ 300 MCFM+NNLO

Z pT 8 TeV
(
pZ

T ,Mll

)
(*) [30] 64 (44/44) 12 ≤ Mll ≤ 150 GeV 30 ≤ pZ

T ≤ 900 MCFM+NNLO

Z pT 8 TeV
(
pZ

T , yZ

)
(*) [30] 120 (48/48) 0.0 ≤ |yZ | ≤ 2.4 30 ≤ pZ

T ≤ 150 MCFM+NNLO

7 TeV jets 2010 [58] 90 (90/90) 0 ≤ |yjet | ≤ 4.4 25 ≤ pjet
T ≤ 1350 NLOjet++

2.76 TeV jets [59] 59 (59/59) 0 ≤ |yjet | ≤ 4.4 20 ≤ pjet
T ≤ 200 NLOjet++

7 TeV jets 2011 (*) [39] 140 (31/31) 0 ≤ |yjet | ≤ 0.5 108 ≤ pjet
T ≤ 1760 NLOjet++

σtot(tt̄) [36, 37] 3 (3/3) - Q = mt top++

(1/σtt̄)dσ(tt̄)/yt (*) [34] 10 (10/10) 0 < |yt | < 2.5 Q = mt Sherpa+NNLO

CMS

W electron asy [60] 11 (11/11) 0 ≤ |ηe | ≤ 2.4 Q = MW MCFM+FEWZ

W muon asy [61] 11 (11/11) 0 ≤ |ηµ | ≤ 2.4 Q = MW MCFM+FEWZ

W + c total [62] 5 (5/0) 0 ≤ |ηl | ≤ 2.1 Q = MW MCFM

W + c ratio [62] 5 (5/0) 0 ≤ |ηl | ≤ 2.1 Q = MW MCFM

2D DY 2011 7 TeV [63] 124 (88/110) 0 ≤ |ηll | ≤ 2.2 20 ≤ Mll ≤ 200 MCFM+FEWZ

[2D DY 2012 8 TeV] [64] 124 (108/108) 0 ≤ |ηll | ≤ 2.4 20 ≤ Mll ≤ 1200 MCFM+FEWZ

W± rap 8 TeV (*) [33] 22 (22/22) 0 ≤ |ηl | ≤ 2.3 Q = MW MCFM+FEWZ

Z pT 8 TeV (*) [31] 50 (28/28) 0.0 ≤ |yZ | ≤ 1.6 30 ≤ pZ
T ≤ 170 MCFM+NNLO

7 TeV jets 2011 [65] 133 (133/133) 0 ≤ |yjet | ≤ 2.5 114 ≤ pjet
T ≤ 2116 NLOjet++

2.76 TeV jets (*) [40] 81 (81/81) 0 ≤ |yjet | ≤ 2.8 80 ≤ pjet
T ≤ 570 NLOjet++

σtot(tt̄) [38, 66] 3 (3/3) - Q = mt top++

(1/σtt̄)dσ(tt̄)/ytt̄ (*) [35] 10 (10/10) −2.1 < ytt̄ < 2.1 Q = mt Sherpa+NNLO

LHCb

Z rapidity 940 pb [67] 9 (9/9) 2.0 ≤ ηl ≤ 4.5 Q = MZ MCFM+FEWZ

Z → ee rapidity 2 fb [68] 17 (17/17) 2.0 ≤ ηl ≤ 4.5 Q = MZ MCFM+FEWZ

W, Z → µ 7 TeV (*) [42] 33 (33/29) 2.0 ≤ ηl ≤ 4.5 Q = MW ,MZ MCFM+FEWZ

W, Z → µ 8 TeV (*) [43] 34 (34/30) 2.0 ≤ ηl ≤ 4.5 Q = MW ,MZ MCFM+FEWZ

Table 3. Same as Table 1, for ATLAS, CMS and LHCb data from the LHC Run I at
√

s = 2.76 TeV,√
s = 7 TeV and

√
s = 8 TeV. The ATLAS 7 TeV Z pT and CMS 2D DY 2012 are in brackets because they are

only included in a dedicated study but not in the default PDF set. The total number of LHC data points after cuts
is 848/854 for NLO/NNLO fits (not including ATLAS 7 TeV Z pT and CMS 2D DY 2012).

choosing Γi = γ
+, and integrating over a light-cone direction, ζ = (0, y−, �0⊥),

F+(k+) =
∫

dy−

4π
e−ik+y− Oi(ζ) . (24)

F+ needs to be properly renormalized, e.g.

F+,R(k+, µ) =
∫ ∞

1

dξ
ξ

K (ξ, gR(µ)) F+(ξk+) , (25)

where we have indicated explicitly the dependence on the renormalization scale µ - for a detailed
discussion see e.g. Ref. [8].

The PDFs are obtained from the matrix element of FR between hadronic states with momentum
P:

f (x, µ) = 〈P|F+,R(xP+, µ)|P〉 , (26)

where the scale dependence in the PDFs arises from the scale dependence of the renormalized bi-local
operator in the right-hand side of Eq. 26.

Clearly the integral along the light-cone direction cannot be performed in Euclidean space. An
interesting proposal to overcome this problem was put forward recently in Refs. [73, 74], where so-
called quasi-PDFs are introduced by shifting the integration contour in a purely spatial direction, e.g.
the z-direction:

q(x, a,MN , Pz) = 〈Pz|
∫

dz
4π

e−ixPzz ψ̄(z)γ3 P exp
(
−ig
∫ z

0
dη A(η)

)
ψ(0)|Pz〉 . (27)

Equation 27 defines a bare matrix element in the regularized theory, which can be evaluated by Monte
Carlo simulations in Euclidean space. The dependence on the cutoff a has been made explicit in the
expression above as a reminder of the fact that these quantities need to be properly renormalized.

In order to extract PDFs from the quasi-PDFs, the following step are needed: the renormalization
of the lattice operators, including potential power divergencies, the relation between the Euclidean and
the Minkowski space results, and a ’factorization theorem’ relating the lattice renormalized quantity
to the desired distributions. We shall now discuss these issues in turn.

Renormalization

The renormalization of operators Oi(ζ) in Eq. 23 has been studied both in perturbation theory and
nonperturbatively.

A one-loop calculation has been presented in Ref. [75, 76]. Although ultimately the operators
will need to be renormalized nonpertubatively, a perturbative calculation is helpful in clarifying the
renormalization pattern.

The operators considered in Ref. [75, 76] are of the form

Oi(z) = ψ̄(x)ΓiP exp
[
ig
∫ z

0
dζA(ζ)

]
ψ(x + zµ) , (28)

with µ set to one , and Γi spanning the entire Clifford algebra. These operators can be separated into
8 subgroups:

S = O1 ,

P = Oγ5 ,

V1 = Oγ1 ,

Vν = Oγν , ν = 2, 3, 4
A1 = Oγ5γ1 ,

Aν = Oγ5γν , ν = 2, 3, 4
T1ν = Oσ1ν , ν = 2, 3, 4
Tνρ = Oσνρ , ν, ρ = 2, 3, 4 .

(29)

The perturbative calculation highlighted the existence of finite mixings between pairs of the operators
above under renormalization, and therefore the pattern of renormalization is

(
O1R

O2R

)
=

(
Z11 Z12
Z21 Z22

)−1 (O1
O2

)
, (30)
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where the dependence of the renormalization constants on the regulator X, and the renormalization
scheme Y has been omitted to avoid cluttering the equation . We shall reintroduce this dependence
below when we discuss conversion factors. The regularizations that we will consider here are dimen-
sional regularization (DR) and the lattice formulation of gauge theories (LR). The renormalization
schemes are MS and variants of the RI-MOM scheme, which we denote RI for simplicity. The ele-
ments of the renormalization matrix have been computed at one-loop in perturbation theory:

Zi j = δi j + g
2zi j + O(g4) . (31)

The pairs involved in the mixing are: {S ,V1}, {A2, T34}, {A3, T42}, {A4, T23}. The details of the one-loop
calculation can be found in Ref. [75]. Besides showing explicitly the mixing pattern, the one-loop
calculation provides the conversion factors to relate a nonperturbative scheme like RI-MOM to the
MS scheme used in perturbative QCD, and in the global fits discussed in the section above. These
conversion factors are independent of the regularization used, and can be written as

CMS,RI =

(
ZLR,MS

)−1
·
(
ZLR,RI

)
=

(
ZDR,MS

)−1
·
(
ZDR,RI

)
. (32)

The nonperturbative renormalization of the operators Oi(z) proceeds along the usual lines. Having
identified the renormalization pattern in Eq. 30, the matrix elements are computed by imposing a set
of renormalization conditions on amputated correlators Λ(z, p):

Z−1
q

1
12

Tr
[
Λi,R(p, z)

(
Λtree

j (p, z)
)−1
]∣∣∣∣∣

p2=µ2
= δi j , (33)

Zq is the fermion field renormalization, and the amputated correlators are defined as usual:

Λi(p, z) = S (p)−1 〈Oi(z)ψ(−p)ψ̄(p)
〉

S (p)−1 . (34)

Note that any divergence coming from the Wilson line is automatically taken into account in this
framework.

Nonperturbative renormalization has been implemented recently by two groups, and first results
have appeared in Refs. [77–79], where the interested reader can find a detailed discussion, and results.

An alternative approach to the renormalization of these nonlocal operators has been proposed in
Ref. [80]. Having different renormalization methodologies, and different lattice discretizations, should
ultimately lead to cross-checks and robust results for the continuum extrapolation of the quasi-PDFs.

Power divergences

It has been suggested in Ref. [81] that the operator defined along a spatial direction in Euclidean space
could have power divergencies that do not appear in Minkowski space, where the integral is performed
along a light-cone direction. This issue needs to be investigated in more detail, as it could potentially
invalidate the lattice approach.

Euclidean/Minkowski definition

The matrix elements of interest, Eq. 27 are extracted in Monte Carlo simulations from correlators
computed in Euclidean time. The latter can be written as a sum of decaying exponentials, where the
decay rate is given by the discrete energy levels in the spectrum, and the coefficients of each term in
the spectral decomposition yield the finite-volume matrix elements of operators. In the case of the
quasi-PDFs it is clear from Eq. 27 that operators of interest only involve fields at time t = 0, and
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where the dependence of the renormalization constants on the regulator X, and the renormalization
scheme Y has been omitted to avoid cluttering the equation . We shall reintroduce this dependence
below when we discuss conversion factors. The regularizations that we will consider here are dimen-
sional regularization (DR) and the lattice formulation of gauge theories (LR). The renormalization
schemes are MS and variants of the RI-MOM scheme, which we denote RI for simplicity. The ele-
ments of the renormalization matrix have been computed at one-loop in perturbation theory:

Zi j = δi j + g
2zi j + O(g4) . (31)

The pairs involved in the mixing are: {S ,V1}, {A2, T34}, {A3, T42}, {A4, T23}. The details of the one-loop
calculation can be found in Ref. [75]. Besides showing explicitly the mixing pattern, the one-loop
calculation provides the conversion factors to relate a nonperturbative scheme like RI-MOM to the
MS scheme used in perturbative QCD, and in the global fits discussed in the section above. These
conversion factors are independent of the regularization used, and can be written as

CMS,RI =

(
ZLR,MS

)−1
·
(
ZLR,RI

)
=

(
ZDR,MS

)−1
·
(
ZDR,RI

)
. (32)

The nonperturbative renormalization of the operators Oi(z) proceeds along the usual lines. Having
identified the renormalization pattern in Eq. 30, the matrix elements are computed by imposing a set
of renormalization conditions on amputated correlators Λ(z, p):

Z−1
q

1
12

Tr
[
Λi,R(p, z)

(
Λtree

j (p, z)
)−1
]∣∣∣∣∣

p2=µ2
= δi j , (33)

Zq is the fermion field renormalization, and the amputated correlators are defined as usual:

Λi(p, z) = S (p)−1 〈Oi(z)ψ(−p)ψ̄(p)
〉

S (p)−1 . (34)

Note that any divergence coming from the Wilson line is automatically taken into account in this
framework.

Nonperturbative renormalization has been implemented recently by two groups, and first results
have appeared in Refs. [77–79], where the interested reader can find a detailed discussion, and results.

An alternative approach to the renormalization of these nonlocal operators has been proposed in
Ref. [80]. Having different renormalization methodologies, and different lattice discretizations, should
ultimately lead to cross-checks and robust results for the continuum extrapolation of the quasi-PDFs.

Power divergences

It has been suggested in Ref. [81] that the operator defined along a spatial direction in Euclidean space
could have power divergencies that do not appear in Minkowski space, where the integral is performed
along a light-cone direction. This issue needs to be investigated in more detail, as it could potentially
invalidate the lattice approach.

Euclidean/Minkowski definition

The matrix elements of interest, Eq. 27 are extracted in Monte Carlo simulations from correlators
computed in Euclidean time. The latter can be written as a sum of decaying exponentials, where the
decay rate is given by the discrete energy levels in the spectrum, and the coefficients of each term in
the spectral decomposition yield the finite-volume matrix elements of operators. In the case of the
quasi-PDFs it is clear from Eq. 27 that operators of interest only involve fields at time t = 0, and

should be completely agnostic about the space-time signature. Both the operators, and the eigenstates
of the Hamiltonian, are independent of the choice of metric. However the procedure for extracting the
matrix elements does depends on it.

For the case of quasi-PDFs the dependence of the matrix elements on the metric has been discussed
in Refs. [82, 83]. Here we briefly summarise the argument in Ref. [83] form where we borrow the
notation. In Euclidean space the matrix element is extracted from the coefficient of terms that decay
exponentially in time. For a three-point function we obtain:

〈N(τ′,P′)OiN(τ,P)〉 = 〈0|N(0,P′)|P′〉〈P′|Oi|P〉〈P|N(0,P)|0〉e−EP′ τ
′
e−EPτ + . . . , (35)

where N(τ, P) is an interpolating operator with the quantum numbers of the proton, and spatial mo-
mentum P, Oi is the operator of interest, EP =

√
P2 + m2, and the ellipses denote terms that decay

faster for large values of the Euclidean time τ. In Minkowski space the same matrix elements is ex-
tracted from the residue of a T-ordered product of the same fields at the pole corresponding to the two
protons going on-shell.

A one-loop calculation in a scalar field theory toy model is discussed in full detail in Ref. [83],
showing how the two procedures described above yield the same result for the matrix element.

Factorization/matching

Having performed a proper renormalization of the lattice operator, quasi-PDFs can be defined in the
continuum limit:

q(x, µ,MN , Pz) = 〈Pz|
∫

dz
4π

e−i(xPz)z Oz,R(z, µ, Pz)|Pz〉 (36)

= lim
a→0
〈Pz|
∫

dz
4π

e−i(xPz)z Z(z, µa)Oz(z, Pz, a)|Pz〉 . (37)

These can be considered like bona fide observables, that are finite when the lattice spacing vanishes,
and are independent of the lattice discretization used in their definition. We have emphasized in
Eq. 36 the dependence on the renormalization scale µ and the momentum of the nucleon state Pz.
Any extrapolation/interpolation to the physical values of the quark masses should also be performed
at this stage. The continuum limit of the quasi-PDF obtained using different discretization could, and
should be compared. This would yield an idea of the systematics of the lattice calculation before
trying to relate the quasi-PDFs to the light-cone ones. It may be desirable at this stage to convert the
renormalized quasi-PDF to the MS scheme, in order to avoid any references to the details of the lattice
formulation after this stage.

Having determined the continuum limit of the quasi-PDFs, and having a robust control of the
systematics, the final step in the process of computing the light-cone PDFs from first principles is the
matching of the quasi-PDFs to the light-cone ones [84–87]. We expect to be able to write this last
step in the form of a factorization theorem, relating a physical observable - in this case the continuum
limit quasi-PDFs - to the light cone PDFs. The role of the physical scale of the observable is played
by the momentum Pz, and therefore

q(x, µ,MN , Pz) = Cq

(
x,

Pz

µ

)
⊗ f (x, µ) + O


Λ2

QCD

P2
z
,

M2
N

P2
z

 , (38)

where Cq is a coefficient function to be computed in perturbation theory, and are the analogues of the
coefficient functions that we discussed earlier for the structure functions. Note that the corrections to
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the factorization are given by powers of Λ2
QCD/P

2
z , and M2

N/P
2
z ; therefore the matching is expected to

hold for large values of Pz. More specifically the procedure is robust if there is a window such that

ΛQCD,MN � Pz, µ � a−1 . (39)

The left-hand side of the inequality guarantees that the power corrections to the matching in Eq. 38 are
indeed small. The right-hand side of the inequality is needed in order to have small lattice artefacts
when extrapolating to the continuum limit, and in the RI-MOM renormalization procedure. The
perturbative order used in the computation of the coefficient functions Cq determines the perturbative
order at which the PDFs are defined. Therefore a one-loop calculation would yields light-cone PDFs
that could be compared with LO PDFs extracted from global fits.

Some preliminary results obtained in Refs. [77, 78] are shown in Fig. 5. While it is premature to
try to compare these results with the results obtained from global fits, it is interesting to note that a
signal with sensible error bars can be extracted.

Figure 5. Light-cone PDFs reconstructed from quasi-PDF. First results presented in Ref. [78] (left), and [77]
(right).

4.2 Gradient flow

Another interesting approach to the computation of PDFs has been put forward in Ref. [88], where
the moments of the quasi-PDFs are defined at some finite flow time τ along the gradient flow [89, 90].
The gradient flow acts as a regulator, yielding field correlators that are finite as the lattice spacing
a → 0, as long as the flow time τ > 0. As it is customary with the gradient flow, the divergences
reappear when the flow time vanishes.

Denoting q(s)(ξ,
√
τPz,

√
τΛQCD,

√
τMN) the smeared quasi-PDF, we can define the moments

b(s)
n

(√
τPz,

√
τΛQCD,

√
τMN

)
=

∫
dξ ξn−1q(s)(ξ,

√
τPz,

√
τΛQCD,

√
τMN) . (40)

As mentioned above, note that these are finite and are extrapolated to the continuum limit. A small-τ
expansion allows the smeared moments to be related to the Mellin moments of the light-cone PDFs:

b(s)
n

(√
τPz,

√
τΛQCD,

√
τMN

)
= C(0)

n

(√
τµ,
√
τPz

)
a(n)(µ) + O


√
τΛQCD,

Λ2
QCD

P2
z
,

M2
N

P2
z

 , (41)

where a(n)(µ) are the matrix elements of renormalized twist-two operator. The corrections to this
relation come from target mass corrections, and higher-twist effects; details about these effects can be
found in the original publication.
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4.2 Gradient flow

Another interesting approach to the computation of PDFs has been put forward in Ref. [88], where
the moments of the quasi-PDFs are defined at some finite flow time τ along the gradient flow [89, 90].
The gradient flow acts as a regulator, yielding field correlators that are finite as the lattice spacing
a → 0, as long as the flow time τ > 0. As it is customary with the gradient flow, the divergences
reappear when the flow time vanishes.

Denoting q(s)(ξ,
√
τPz,

√
τΛQCD,

√
τMN) the smeared quasi-PDF, we can define the moments

b(s)
n

(√
τPz,

√
τΛQCD,

√
τMN

)
=

∫
dξ ξn−1q(s)(ξ,

√
τPz,

√
τΛQCD,

√
τMN) . (40)

As mentioned above, note that these are finite and are extrapolated to the continuum limit. A small-τ
expansion allows the smeared moments to be related to the Mellin moments of the light-cone PDFs:

b(s)
n

(√
τPz,

√
τΛQCD,

√
τMN

)
= C(0)

n

(√
τµ,
√
τPz

)
a(n)(µ) + O


√
τΛQCD,

Λ2
QCD

P2
z
,

M2
N

P2
z

 , (41)

where a(n)(µ) are the matrix elements of renormalized twist-two operator. The corrections to this
relation come from target mass corrections, and higher-twist effects; details about these effects can be
found in the original publication.

Introducing the kernel

[
C(0)

n

(√
τµ,
√
τPz

)]−1
=

∫
dx xn−1Z(x,

√
τµ,
√
τPz) , (42)

Eq. 41 can be trivially inverted in Mellin space, and transformed back to x-space, yielding

f (x, µ) =
∫

dξ
ξ

Z
(

x
ξ
,
√
τµ,
√
τPz

)
q(s)(ξ,

√
τPz,

√
τΛQCD,

√
τMN) , (43)

where we assumed
ΛQCD,MN � Pz � 1/

√
τ , (44)

so that the corrections to this formula are negligible. The kernel function can be computed in pertur-
bation theory, the order of the computation defining the order of the PDF. The DGLAP evolution of
f (x, µ) is obtained from the µ dependence of the kernel Z. It is worthwhile to emphasise that a large
momentum Pz is required to suppress higher-twist contributions. As long as those are negligible, data
for different values of Pz can be combined to extract PDFs.

5 Conclusions

There has been a lot of recent progress in the determination of PDFs on the lattice, and it is impossible
to give an extensive review of all the results here. Interesting results that we were not able to cover
include the momentum smearing technique [91–93], the usage of the Feynman-Hellmann relation
to compute the Compton amplitude [94], or the direct computation of the hadronic tensor of the
nucleon [95].

While there are theoretical questions that still need to be settled, recent results suggest that lattice
determinations of PDFs will become a reality in the near future. While it is theoretically comforting to
be able to compute these quantities from first principles, it would be desirable for the lattice to provide
some useful input in the study of physical processes at hadron colliders. For this purpose lattice com-
putations need to match, and eventually improve, the accuracy of the determinations obtained from
global fits. The latest global fits yield very precise predictions, at the % level. There are however fla-
vor combinations and/or kinematical regions that are poorly constrained by the data. A benchmarking
exercise is currently being carried out, which will compare the different determinations, and assess
the scope for progress. It will provide an excellent platform for determining future directions in this
field. [96]

The LHC is guiding us into an era of precision physics at hadronic colliders. Perturbative and
nonperturbative QCD effects need to be known with great accuracy. As the statistical errors decrease,
control over systematics becomes mandatory. The challenge for the theory community is set.
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