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I. INTRODUCTION 
The geometry of RF accelerating cavities in spiral 

sector accelerators has raised serious problems. If 
the cavities are introduced along spirals, electric 
fields perpendicular to the equilibrium orbits are 
engendered and the resonance excitation of betatron 
oscillations by the accelerating voltage is greatly 
enhanced. On the other hand, radial straight sec­
tions for RF cavities destroy the scaling properties 
of the magnetic guide and focusing field. The straight 
sections appear at different phases relative to the 
field spirals at different energies and the numbers 
of betatron oscillations per revolution, νx and νy 
for radial and vertical motion, respectively, will 
vary periodically with particle energy so that reso­
nances may be crossed. 
The problem of calculating the changes of νx 

and νy with energy has been treated for special 
cases by several authors. Elfe and Kerst1) found, by 
matrix methods that the changes in νx and νy decreased 
markedly when the number of radial straight sec­
tions per spiral sector was increased from 2 to 3. 
Ohkawa2) confirmed this result with a smooth 
approximation estimate. The Harwell group found 3), 
with digital computation and approximate analytic 
treatments, disastrous changes of νx and νy with 
one radial straight section per spiral sector, but 
were able to reduce these changes greatly by putting 
five straight sections in four sectors. Of course, 
in this case the number of periods of the field per 
revolution is reduced by a factor 4, so that new 
stopbands are introduced, which must be avoided 
to preserve stable motion. 

These results stimulated us to explore the numer­
ology with as careful an analytic treatment as possible. 
We envisage a structure with Ν spiral sectors and Ρ 
radial straight sections per revolution. G, the greatest 
common divisor of Ν and P, is the number of periods 
of the combined magnetic field per revolution. 
Q = P/G is the number of radial straight sections 
and R = N/G is the number of spirals per period 
of the magnetic field. 
Our main result is the following : if we assume 

that the field with straight sections is generated 
from the spiral field without straight sections by 
multiplying it by a function of period 2π/Ρ in the 
azimuthal angle θ representing the straight sections 
and if we neglect all harmonics n of the original 
spiral field such that n ≥ ½Q then the linear betatron 
oscillation "frequencies" νx and νy are independent 
of energy. This result is independent of the form 
of the straight sections. 
We believe that our assumption that the field 

with straight sections is generated by multiplication 
of two periodic functions is accurate and physically 
reasonable. Such multiplication produces a periodic 
field whose harmonics have the form m N + nP, 
with m and n integers or zero, which is in accord 
with intuition. Further, this multiplication gives a 
field which "bulges" out into the straight sections 
farther at a maximum of the spiral field than at a 
minimum, which is again in accord with intuition. 
What is neglected is the effect of the finite size of 
the forward and backward current windings around 

(*) On leave from the State University of lowa, lowa City, lowa. 
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each spiral, which must join in the radial straight 
sections. We know from experience with the M U R A 
electron accelerators that these effects of winding 
size can be very much reduced by carrying the wind­
ings in the straight sections rapidly away from the 
median plane. 
In Section II, below, we outline an analytic treatment 

of the equilibrium orbit motion and linear betatron 
oscillations for general fields; in Section III we 
develop the form of the field with straight sections; 
in Section TV we prove the result stated above and 
in Section V we give digital computer evidence relating 
to our result. 

II. ANALYTIC ORBIT THEORY (*) 

We expand the median plane field, which has only 
a vertical component, in powers of the relative 
deviation ξ from a reference circle of radius r0 (ξ is 
defined by r = r0 (1 + ξ)) and in Fourier series 
in θ. That is, 

Bz = B 0 
∞ 

Zm,nξmeinθ . (2.1) Bz = B 0 Σ Σ Zm,nξmeinθ . (2.1) Bz = B 0 
m = 0 n 

Zm,nξmeinθ . (2.1) 

All sums whose limits are not given are to be taken 
to extend from — ∞ to ∞, as, for example, the 
sum over n in Eq. (2.1). 
The field of a scaling FFAG accelerator 

∫ 
Bz = B0(1 + ξ)k 

∞ 

(gn cos nΨ+fn sin nΨ) Bz = B0(1 + ξ)k Σ (gn cos nΨ+fn sin nΨ) Bz = B0(1 + ξ)k 
n = 0 

(gn cos nΨ+fn sin nΨ) 

Ψ = Κ ln(1 + ξ) - Νθ (2.2) 

can be written in the notation of Eq. (2.1) by taking 

Zm,nN = βn 
m-1 

(kn - r), (2.3) Zm,nN = βn Π (kn - r), (2.3) Zm,nN = βn 
r = 0 

(kn - r), (2.3) 

where 
{ 

βn = ½(gn + ifn), n > 0 
= go, n = 0, 
= ½(gn - ifn), n < 0, 
kn = k - inK. (2.4) 

The linearized equations of motion about the 
equilibrium orbit, which we wish to solve for νx 
and νy, are well known4). They are 

{ d2x + 1-n x = 0 ds2 + 
ρ2 

x = 0 

d2z + n z = 0, (2.5) ds2 + ρ2 z = 0, (2.5) 

where x is the normal deviation from the equilibrium 
orbit in the median plane, z is the deviation from 
the equilibrium orbit normal to the median plane, 
s is the arc-length along the equilibrium orbit, 

ρ= -
cp 

ρ= -eBz 
is the radius of curvature of the equilibrium orbit 
of a particle of kinetic momentum p, c is the velocity 
of light, e is the charge of a proton, and 

n = — ρ δBz n = — 
Βz δx 

Both ρ and n are to be evaluated on the equilib­
rium orbit. We rewrite Eq. (2.5) in a dimensionless 
form by measuring all lengths in units of R0, the 
length of the equilibrium orbit divided by 2π. We 
define ζ, η and φ by 

{ x = R0ζ 
z = R0η 
s = R 0 Φ , (2.6) 

and Eqs. (2.5) become 
{ d2ζ + λ[η1 + λη02]ζ = 0 dΦ2 + λ[η1 + λη0

2]ζ = 0 

d2η - λη1 η = 0, (2.7) dΦ2 - λη1 η = 0, (2.7) 

where 
{ η0 = Bz/B0 

η1 = 
δBz 

/B0 η1 = δζ /B0 

λ = eR0B0/cp. (2.8) 

(*) The treatment we outline here is not original; it is perhaps most accurately described as an extension of the work of G. Parzen. 
Significant contributions to the methods outlined here have also been made by D. L. Judd, L. J. Laslett and T. Ohkawa. Their 
work is recorded in various (unpublished) MURA reports. 
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λ is a dimensionless constant which for a given 
field and momentum is a measure of R0, and η0 
and η1 are to be evaluated on the equilibrium orbit. 
Therefore, we must find the equilibrium orbit in 
order to know η0 and η1 in terms of the given field 
coefficients Zm,n. 
The equilibrium orbit is the solution of the median 

plane equation of motion about the reference circle, 
(ξ'Ζ)' = (1 + ξ)Ζ - α(1 + ξ)Βz/Β0, (2.9) 

which has the period of Bz. In Eq. (2.9), primes 
denote derivatives with respect to the azimuthal 
angle θ and 

{ Z = [(1 + ξ)2+ξ'2]-½ 

α= - er0B0/cp. (2.10) 
α is a dimensionless constant which for a given 
field and momentum is a measure of r0. We expand 
Eq. (2.9) in powers of ξ by expanding the Lagrangian 
from which it is derivable (in order to preserve the 
Hamiltonian character of the motion). Correct 
through second order in ξ and ξ', Eq. (2.10) is 
ξ" = 1-ξξ" + ½ξ'2 - α Σ einθ{Ζ0,n + (Ζ1,n + Ζ0,n)ξ + ξ" = 1-ξξ" + ½ξ'2 - α 

n 
einθ{Ζ0,n + (Ζ1,n + Ζ0,n)ξ + 

+ (Ζ2,n + Ζ1,n)ξ2}. (2.11) 
The solution we seek has the form 

ξ = Σ ξneinθ. (2.12) ξ = 
n 
ξneinθ. (2.12) 

We substitute Eq. (2.12) in Eq. (2.11) and equate 
terms of the same frequency, obtaining an infinite 
set of algebraic equations : 

-n2ξn = δn00 - αΖ0,n - αΣ (Z1,m + Z0,m)ξn-m 

— α Σ (Ζ2,m + Ζ1,m)ξpξn-m-p — α 
m,p 

(Ζ2,m + Ζ1,m)ξpξn-m-p 

-½ Σ m(n + m)ξn-m, -½ 
m 
m(n + m)ξn-m, 

n = 0, ±1, ±2, ... (2.13) 

Eqs. (2.13) can be solved for the ξn by an approxima­
tion method, which assumes that the terms depending 
on the ξη on the right hand side are small compared 
to the terms independent of the ξn. This is equivalent 
to assuming that the change of field across the 
equilibrium orbit is small compared to the peak 
field on the equilibrium orbit. The p th approxima­

tion, ξn(p), is calculated by substituting ξn(p-n) on the 
right hand side of Eq. (2.13). There is a difficulty 
with ξ0, whose size depends on the reference radius 
chosen. We circumvent this difficulty by choosing 
α such that r0 is the average radius of the equilib­
rium orbit. Then ξ0 = 0 and the n = 0 equation 
of (2.13) gives a value for α. 
Our assumption is then 

and by substituting this on the right hand side of 
Eq. (2.13) 
ξ(1) = αΖ0,n ξ(1) = 

n2 

ξn(2) = α {Z0,n + α Σ (Z1,m + Z0,m)Z0,n - m + ξn(2) = 
n2 
{Z0,n + α Σ (n — m)2 + ξn(2) = 

n2 
{Z0,n + α 

m ≠ n (n — m)2 + 

+ α2 Σ (Z2,m + Z1,m)Z0,pZ0,n-m-p + + α2 Σ p2(n — m — p)2 + + α2 
m,p ≠ 0 
m+p ≠ n 

p2(n — m — p)2 + 

+ ½α Σ m + n 
Z0,mZ0,n-m}. (2.14) + ½α Σ m(m — n) Z0,mZ0,n-m}. (2.14) + ½α 

m ≠ 0,n m(m — n) 
Z0,mZ0,n-m}. (2.14) 

α satisfies Eq. (2.13) with n = 0 and ξn substituted 
from Eq. (2.14). Correct through terms quadratic 
in a, we then have 

1-Ζ0,0 α -[ Σ (Z1,m +
 3/2Z0,m)Z0,-m ]α2 = 0.(2.15) 1-Ζ0,0 α -[ Σ m2 ]α2 = 0.(2.15) 1-Ζ0,0 α -[ 

m ≠ 0 m2 ]α2 = 0.(2.15) 

In practice ξn(2) agrees with computer experiments 
to within a few per cent, while ξn(1) differs from ξn(2) 
by 10 - 20%. The method of solution seems a 
posteriori to be justified. 
Parenthetically, we may remark that the term of 

Eq. (2.15) linear in α is due to the bending of the 
equilibrium orbit by the average field, while the 
term quadratic in α describes the additional bending 
due to the fact that the oscillations of the equilibrium 
orbit carry a particle into regions of different field. 
η0 and η1 can now be expressed in terms of the 

Zm,n. In calculating η1, we must take note of the 
fact that the ξ (radial) and ζ (normal to the equilibrium 
orbit) directions are not parallel. A little partial 
differentiation and geometrical exercise give 

η1 = 
R0Z {(1+ξ) δBZ - ξ' δBz }, (2.16) η1 = r0B0 {(1+ξ) δξ - 1 + ξ δθ }, (2.16) 
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with all quantities to be evaluated on the equilibrium 
orbit. 
We must take note also of the fact that η0 and 

η1 are given as functions of θ. They can be converted 
to functions of Φ simultaneously with their Fourier 
analysis. Thus 

ηi = Σ ηi,m eimΦ (2.17) ηi = 
m 
ηi,m eimΦ (2.17) 

and 

ηi,m = 
1 

2π 

ηi(θ)e-imΦ dΦ ] dθ. ηi,m = 
1 ∫ ηi(θ)e-imΦ dΦ ] dθ. ηi,m = 2π 
∫ ηi(θ)e-imΦ dθ ] dθ. ηi,m = 2π 
0 

ηi(θ)e-imΦ dθ ] dθ. 

From the definition of Φ, 

dΦ 
= r0 Ζ - 1, dθ = R0 

Ζ - 1, 

which we can expand in powers of ξ and ξ' and 
integrate to give 

Φ = r0 {θ[1 + ½ Σ m2ξmξ-m + ... + (2.18) Φ = R0 
{θ[1 + ½ Σ m2ξmξ-m + ... + (2.18) Φ = R0 
{θ[1 + ½ 

m ≠ 0 
m2ξmξ-m + ... + (2.18) 

+ Σ e
inθ-1 

[ξn-½ Σ m(n-m)ξmξn-m + ... ]}. + Σ in [ξn-½ Σ m(n-m)ξmξn-m + ... ]}. + 
n ≠ 0 in 

[ξn-½ m ≠ 0,n 
m(n-m)ξmξn-m + ... ]}. 

In a conventional spiral sector accelerator, the 
periodic terms are of order N - 3 compared to unity 
and the coefficient of the term linear in θ differs 
from unity by terms of order N-2, both of which 
are negligible in cases of interest. Eq. (2.18) also 
gives R0 in terms of r0, since Φ and θ have the common 
values 0 and 2π. Thus 

R0 = r0[1 + ½ Σ m 2 ξ m ξ - m + ...]. (2.19) R0 = r0[1 + ½ 
m ≠ 0 

m 2 ξ m ξ - m + ...]. (2.19) 

Eqs. (2.18) and (2.19) can be expressed in terms 
of the Zm,n by substituting from Eq. (2.14). Approx­
imate expressions for the ηi,n are found to be 

η0,n = Z0,n + α Σ Z1,mZ0,n-m η0,n = Z0,n + α Σ (n — m) 2 η0,n = Z0,n + α 
m ≠ n (n — m) 2 

η1,n = Ζ1,n + 2α Σ 
[ (Z2,m + ½Z1,m)Z0,n-m + η1,n = Ζ1,n + 2α Σ 
[ 

(n - m ) 2 + η1,n = Ζ1,n + 2α 
m ≠ n 

[ 
(n - m ) 2 + 

+ m Z 0 , m Z 0 , n - m 1 (2.20) + 2(n — m) 1 (2.20) 

These expressions can be recognized as being 
essentially expansions in powers of α kFN-2 or 
αKFN-2, where F = [ Σ βnβ-n]½ 

n ≠ 0 
βnβ-n]½ is the flutter, 

quantities of order 0.2 in either radial or spiral sector 
accelerators, so that the neglected terms are only 
a few per cent of the leading terms. 
More generally, we have given the first terms of 

an expansion of ri,n in terms of the Zm,p. This 
expansion is a sum of products of the Zm,p. In each 
product, the sum of the second (θ) subscripts of the 
Zm,p must be n (The θ-indices in α always sum to 
zero). 
To calculate the betatron oscillation frequencies, 

we shall use a method developed by Walkinshaw 5). 
For a Hill equation 

{ d2u + [ω2 + n(Φ)]u = 0 dΦ2 + [ω
2 + n(Φ)]u = 0 

n(Φ) = Σ aneinΦ, (2.21) n(Φ) = 
n ≠ 0 

aneinΦ, (2.21) 

the solution can be given as a series 

{ 

u(Φ) = 
∞ 

Pm(Φ) u(Φ) = Σ Pm(Φ) u(Φ) = 
m = 0 

Pm(Φ) 

P m + 1(Φ) = 
1 Φ n(α)sin ω(α — Φ)Ρm(α)dα. P m + 1(Φ) = 
1 ∫ n(α)sin ω(α — Φ)Ρm(α)dα. P m + 1(Φ) = ω ∫ n(α)sin ω(α — Φ)Ρm(α)dα. P m + 1(Φ) = ω 

0 

n(α)sin ω(α — Φ)Ρm(α)dα. 

Ρ0(Φ) = A cos ωΦ + Β sin ωΦ. (2.22) 

The convergence of this series has been proved by 
Vogt-Nilsen6) under the assumption that |n(Φ)|  
is bounded. We can expect it to give accurate results 
for stability zones higher than the first. Through 
the second order (m = 2), this method gives for 
the phase change per revolution Σ = 2πν for the 
case ω ≠ 0 and 2ω different from any integer n  
for which an a-n ≠ 0, that is, when Σ is not at the 
edge of a stopband : 

cos Σ = cos 2πω — π sin 2πω Σ anα-n . (2.23) cos Σ = cos 2πω — ω Σ n2-(2ω)2 . (2.23) cos Σ = cos 2πω — ω n ≠ 0 n2-(2ω)2 
. (2.23) 

III. FORM OF THE FIELD 

As the energy of a particle changes, the phase 
of the straight sections relative to the spirals changes. 
Rather than examining the dependence of νx and νy 
on energy directly, we shall examine their dependence 
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on this relative phase τ of the straight sections and 
the spirals. We take a straight section function 
of the form 

s(θ) = Σ λmeimp(θ-), (3.1) s(θ) = 
m 
λmeimp(θ-), (3.1) 

with Ρ periods per revolution. The field without 
straight sections, a conventional scaling field, has 
the form, from Eqs. (2.3) and (2.4), 

Bz(0) = B0 Σ βn(1 + ξ)kneinNθ, (3.2) Bz(0) = B0 
n 

βn(1 + ξ)kneinNθ, (3.2) 

with N periods per revolution. We generate the 
field with straight sections by multiplying Eqs. (3.1) 
and (3.2). Then 

B z=B 0 Σ λmβn(1 + ξ)knei(mP + nN) e-imPτ, B z=B 0 
m,n 

λmβn(1 + ξ)knei(mP + nN) e-imPτ, 

which we can write as 

Bz = B 0 Σ einθ{ Σ λmβ(n-mP)/N(1 + ξ) k ( n - m P ) / Ne - i m P τ}, Bz = B 0 
n 
einθ{ 

m 
λmβ(n-mP)/N(1 + ξ) k ( n - m P ) / Ne - i m P τ}, 

(3.3) so that Zm,n has the form 

Z m , n = 
1 Σ λ rβ ( n - r P ) / N 

δm 

(1 + ξ)k(n-rP)/N]ξ=0e-irPτ 
Z m , n = m! Σ λ rβ ( n - r P ) / N δξm (1 + ξ)k(n-rP)/N]ξ=0e-irPτ 
Z m , n = m! r λ rβ ( n - r P ) / N δξm (1 + ξ)k(n-rP)/N]ξ=0e-irPτ 

= Σ e-irPτf(m,n,r). (3.4) = 
r 
e-irPτf(m,n,r). (3.4) 

IV. PROOF OF THE THEOREM 

We assert that if βn = 0 for |n|≥½Q, then 
νx and νy are independent of τ and thus of energy. 
To prove this, we show first that if βn = 0 for 
|n| ≥ ½ Q, and f(m, n, r) ≠ 0, then f(m, n, r') ≠ 0 
only if r' = r. 
If f(m, n, r) ≠ 0, then β(n-rΡ)/Ν ≠ 0. Then, since 

βm ≠ 0 only for integral m,n — rP must be an 
integral multiple of N, say n — rP = sN, with s  
a positive or negative integer or zero. Similarly, 
if f(m, n, r') ≠ 0, then n-r'P = s'N Then 

(r'-r)P = (s-s')N, 
or 
(r'-r) Ρ = (s-s') Ν ' (r'-r) G = (s-s') G ' 

(r'-r)Q = (s-s')R. (4.1) 
But G is by definition the greatest common divisor 
of Ρ and N, so that Q and R are relatively prime 
numbers. Since they are, the diophantine equation 
(4.1) has a solution only if s—s' is an integral 

multiple of Q, say (s — s') = tQ, with t a positive 
or negative integer or zero. But |s| < ½ Q and 
|s'| < ½ Q, since βn = 0 for |n| ≥ ½ Q. Therefore 
|s—s'| < Q and t must be zero. Then s = s' 
and r = r'. 
Thus only one term of the sum (3.4) is different 

from zero. Zm,n is different from zero only for 
η = tN+rP, with t and r positive or negative 
integers or zero. Then if βn = 0 for |n| ≥ ½ Q, 

Zm, tN + rP = e-irPtλrβt 
1 [ δ

m 
(1 + ξ)kt]ξ=0. (4.2) Zm, tN + rP = e-irPtλrβt m! [ δξ" (1 + ξ)kt]ξ=0. (4.2) 

cos Σx and cos Σ are given by Eq. (2.23) as sums of 
products over the ηi,m. In each product the sum of 
the Φ-indices of the ηi,m must be zero. But ηi,m is a 
sum of products of the Zp,n, with the θ-indices of 
each product summing to m. Then any product 
ηi,m ηj,-m must be a sum of products of the Zp,n 
with the θ-indices of each product summing to zero. 
The most general sum which can appear is 

Σ Σm1,n1 Zm2,n2 ... ZmT-1,nT-1 ZmT, -n1 -n2 - ... -n(T-1). 
m1, m2, ..., mT 
n1, n2 ..., n(T-1) 

(4.3) 
Since the Zm,n are different from zero only for 
n = tN + rP, this sum can be written 

Σ Zm1, r1P + t1N Zm2, r 2 P + t2N ... 
m1, m2, ···, mT 

r1,r2, ... r(T-1) 
t1,t2, ...,t(T-1) . . . Z m ( T - 1 ) , r ( T - 1 ) P + t ( T - 1 ) N ZmT, - M, (4.4) 

where 
M = (r1 + r2 + ... + rT-1 P)+(t1 + t2 + ... + tT-1)N. 
If we now substitute the form (4.2), valid when 

βn = 0 for |n| ≥ ½Q, it is clear that the form (4.4) 
is independent of τ and thus of energy. Since all 
terms of cos Σx and cos Σy have the form (4.4), Σx  
and Σy and therefore νx and νy are independent of 
τ and thus of energy. 
We can use this result to interpret more clearly 

the earlier work 1-3). In each case, the changes 
of νx and νy were reduced greatly when Q was increased, 
from 2 to 3 in the work of Elfe and Kerst and from 
1 to 5 in the work of the Harwell group. Since the 
field harmonics βn decrease with n at least as rapidly 
as n-1 in most accelerators, the first few harmonics 
are responsible for the major part of the change of 
νx and νy with energy. 
In closing this section, we remark that in the 

fields we have discussed here, the phases of the 
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spirals continue uninterrupted across the straight 
sections. We have proved the same theorem in the 
case where the spiral phases do not change at all 
across the straight sections, with the approximation 
that the straight section function (Eq. (3.1)) is a rec­
tangular wave 7). 

V. DIGITAL COMPUTER EVIDENCE 
Orbits were integrated numerically on the IBM-704 

through enough periods to find the equilibrium 
orbit and measure νx and νy, using the "Spirit" 
program developed for the purpose. This program 
multiplies the scaling field (Eq. (2.2)) by the straight 
section function (Eq. (3.1)) to find the field and 
integrates the exact equations of two-dimensional 
motion by the Runge - Kutta method. 
The straight section function was chosen from 

approximate magnetostatic calculations. It is not 
claimed that our choice of S(θ) is necessarily realistic 
in all cases; it suffices for our purposes that it can 
give rise to changes of νx and νy with energy. The 
field drops to about 80% of its full value in straight 
sections and the total length of straight sections is 
about 10% of the length of the spiral sector, thus 
giving a total straight section length per spiral sec­
tor of about 1m in a 10 GeV accelerator. Table I 
gives the Fourier coefficients of the straight section 
function. 

TABLE I 
Fourier coefficients of the straight section function 

η λn 
0 1 
±1 -0.03105 
±2 -0.02274 
±3 -0.01499 
±4 -0.00872 
±5 -0.00477 
±6 -0.00242 
±7 -0.00117 
±8 -0.00053 

The first scaling field we investigated had the 
parameters N = 30, k = 53, K = 280, g0 = 1, g1 = 1, 
and, when they were inserted, g2 = g3 = 0.2. In 
Table II, Q is the number of radial straight sections 
per period of the structure, R is the number of spirals 
per period, G is the number of periods of the structure 

per revolution, nmax is the maximum harmonic 
number of the scaling field, <νx> and <νy> are the 
mean values of νx and νy (averaged over τ or energy) 
and Δνx 

<νx> 
and Δν, 

<νy> 
are the maximum relative 

deviations of νx and νy in per cent. Each datum point 

( 
∆νx 
<νx> 

and ∆νy 
<νy> ) 

requires about 2 hours of run­

ning time on the computer. Points marked U were 
found to have unstable radial motion, due in all 
cases to the stopband near Σx = π introduced by 
lowering the periodicity from 30 to 15. When the 
radial motion is unstable, it is quite difficult (and 
not very interesting) to investigate vertical motion. 
From our experience we would judge that digital 

computation gives values of νx and νy with errors 
of about 1%. Values of ∆ν 

<ν> 
less than a few per 

cent may be regarded as negligible. 
Because of the stopbands, which occurred at some 

points of interest, we have also investigated the 
same effects in an accelerator with k = 30, Κ = 210 
and all other parameters unchanged from above. 
Table III gives the same quantities as Table II for 
these points. 

TABLE II 
Digital computation results on effects of radial straight sections 

Q R G n m a x <νx> <νy> 
∆νx (%) ∆νy (%) Q R G n m a x <νx> <νy> <νx> 

(%) <νy> 
(%) 

1 8.266 5.818 0 0 
0 1 30 2 8.261 6.379 0 0 

3 8.226 6.144 0 0 

1 1 30 1 8.060 5.788 24.50 38.02 1 1 30 2 8.060 6.283 29.89 33.20 

2 1 30 1 8.204 5.832 12.24 4.04 2 1 30 2 8.231 6.399 15.69 13.14 
1 8.220 5.821 3.19 0.83 

3 1 30 2 8.256 6.383 7.90 1.64 
3 8.192 6.144 9.87 13.38 
1 U 

3 2 15 2 U 
3 u 

4 1 30 1 8.223 5.820 0.58 0.13 4 1 30 2 8.258 6.380 2.66 0.33 
1 8.044 5.830 1.86 0.26 

5 2 15 2 U 
3 U 

5 3 10 1 8.069 5.617 0.43 4.45 5 3 10 2 8.027 6.294 0.94 4.45 
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TABLE III 
Digital computation results on effects of radial straight sections 

Q R G n m a x <νx> <νy> Δνx (%) Δνy (%) Q R G n m a x <νx> <νy> 
<νx> 

(%) 
<νy> 

(%) 
0 1 30 1 5.891 4.391 0 0 
1 1 30 1 5.703 4.338 27.02 42.46 
2 1 30 1 5.886 4.399 10.40 2.86 
3 2 15 1 5.916 4.397 0.92 1.06 

The digital computer results show phenomena 
which bear out the theorem proved in this paper. 
In some cases it appears that the largest decrease 
in ∆νy occurs when Q becomes greater than nmax, 
rather than when Q becomes greater than 2nmax, as 

the theorem would predict. This effect is presumably 
due to some detailed cancellation of terms of cos Σy, 
but we have not yet gained an understanding of it. 

Acknowledgments 

It is a pleasure to record our gratitude to 
Mrs. Ε. Ζ. Chapman, who wrote the "Spirit" program 
for the M U R A IBM-704, to M. R. Storm, Head of 
the M U R A Computer Section, and R. A. Dory, 
who aided us greatly during the computations, 
and to W. Walkinshaw, who kindly communicated 
his group's results to us. We have enjoyed and 
profited greatly from discussions with G. Parzen 
and K. R. Symon. 

LIST OF REFERENCES 

1. Elfe, T. Β. and Kerst, D. W. Investigation of the effect of position of straight sections with application to the Mark V spirally 
ridged accelerator. MURA (*) 68, May 15, 1955. 

2. Ohkawa, T. The effects of the straight sections in Mark V. MURA (*) 86. 1, November, 1955. 
3a. Taylor, R. and Walkinshaw, W. Effect of straight sections on particle dynamics in the proposed 6.5 GeV spiral-ridged syn­

chrotron. AERE (*) TP/R 2174. February 14, 1957. 
b. Mitchell, M. J. and Morgan, D. Theory of spiral-ridged synchrotrons with straight sections. AERE (*) TP/R 2175. May, 1957. 

c. Taylor, R. and Mitchell, M. J. An FFAG synchrotron with straight sections having acceptable betatron oscillations. AERE (*) 
T/R 2495. March, 1958. 
4. Blachman, N. M. and Courant, Ε. D. The dynamics of a synchrotron with straight sections. Rev. sci. Instrum., 20, p. 596-601, 
1949. 

5. Walkinshaw, W. (private communication). 
6. Vogt-Nilsen, N. Expansions of the characteristic exponents and the Floquet solutions for the linear homogeneous second order 
differential equation with periodic coefficients. MURA (*) 118, 19 May, 1956. 
7. This proof is recorded in : Morton, P. L. Effects of radial straight sections on the betatron oscillation frequencies in a spiral 
sector FFAG accelerator. MURA (*) 434. October 21, 1958. 

(*) see note on reports, p. 696. 


