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[. INTRODUCTION

The geometry of RF accelerating cavities in spiral
sector accelerators has raised serious problems. If
the cavities are introduced along spirals, electric
fields perpendicular to the equilibrium orbits are
engendered and the resonance excitation of betatron
oscillations by the accelerating voltage is greatly
enhanced. On the other hand, radial straight sec-
tions for RF cavities destroy the scaling properties
of the magnetic guide and focusing field. The straight
sections appear at different phases relative to the
field spirals at different energies and the numbers
of betatron oscillations per revolution, v, and v,
for radial and vertical motion, respectively, will
vary periodically with particle energy so that reso-
nances may be crossed.

The problem of calculating the changes of v,
and v, with energy has been treated for special
cases by several authors. Elfe and Kerst!’ found, by
matrix methods that the changes in v, and v, decreased
markedly when the number of radial straight sec-
tions per spiral sector was increased from 2 to 3.
Ohkawa » confirmed this result with a smooth
approximation estimate. The Harwell group found ),
with digital computation and approximate analytic
treatments, disastrous changes of v, and v, with
one radial straight section per spiral sector, but
were able to reduce these changes greatly by putting
five straight sections in four sectors. Of course,
in this case the number of periods of the field per
revolution is reduced by a factor 4, so that new
stopbands are introduced, which must be avoided
to preserve stable motion.

(*) On leave from the State University of lowa, lowa City, lowa.
(%) Supported by the United States Atomic Energy Commission.

These results stimulated us to explore the numer-
ology with as careful an analytic treatment as possible.
We envisage a structure with N spiral sectors and P
radial straight sections per revolution. G, the greatest
common divisor of N and P, is the number of periods
of the combined magnetic field per revolution.
Q = P/G is the number of radial straight sections
and R = N/G is the number of spirals per period
of the magnetic field.

Our main result is the following: if we assume
that the field with straight sections is generated
from the spiral field without straight sections by
multiplying it by a function of period 2z/P in the
azimuthal angle 0 representing the straight sections
and if we neglect all harmonics » of the original
spiral field such that n > 4 Q, then the linear betatron
oscillation “frequencies ” v, and v, are independent
of energy. This result is independent of the form
of the straight sections.

We believe that our assumption that the field
with straight sections is generated by multiplication
of two periodic functions is accurate and physically
reasonable. Such multiplication produces a periodic
field whose harmonics have the form mN 4+ nP,
with m and n integers or zero, which is in accord
with intuition. Further, this multiplication gives a
field which “ bulges ” out into the straight sections
farther at a maximum of the spiral field than at a
minimum, which is again in accord with intuition.
What is neglected is the effect of the finite size of
the forward and backward current windings around
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each spiral, which must join in the radial straight
sections. We know from experience with the MURA
electron accelerators that these effects of winding
size can be very much reduced by carrying the wind-
ings in the straight sections rapidly away from the
median plane.

In Section 11, below, we outline an analytic treatment
of the equilibrium orbit motion and linear betatron
oscillations for general fields; in Section III we
develop the form of the field with straight sections;
in Section TV we prove the result stated above and
in Section V we give digital computer evidence relating
to our result.

Il. ANALYTIC ORBIT THEORY ®

We expand the median plane field, which has only
a vertical component, in powers of the relative
deviation ¢ from a reference circle of radius ro (¢ is
defined by r=r,(l + &) and in Fourier scries
in 6. That is,

B,=B,Y Y Z, "™ .1
m=0n

All sums whose limits are not given are to be taken
to extend from — oo to oo, as, for example, the
sum over # in Eq. (2.1).

The field of a scaling FFAG accelerator

B, = B,(1+&*Y (g, cos n¥ +f, sin n¥)
n=0

¥ = KIn(1+&-N6 2.2)

can be written in the notation of Eq. (2.1) by taking

Zyw = B 11 (=1 23)
where ’
Bu= g, +if)., n>0,
, = 20> n=0,
l = Wg.—if), n<0,
k,=k—inkK. 2.9

The linearized equations of motion about the
equilibrium orbit, which we wish to solve for v,
and v,, are well known®. They are

d2x+1—n 0
—_— —_X =
dsZ p2

d*z n
W+ —Z= 0, (2.5)

P

where x is the normal deviation from the equilibrium
orbit in the median plane, z is the deviation from
the equilibrium orbit normal to the median plane,
s is the arc-length along the equilibrium orbit,

cp
eB,

p=-

is the radius of curvature of the equilibrium orbit
of a particle of kinetic momentum p, c is the velocity
of light, e is the charge of a proton, and

Both p and n are to be evaluated on the equilib-
rium orbit. We rewrite Eq. (2.5) in a dimensionless
form by measuring all lengths in units of R,, the
length of the equilibrium orbit divided by 2n. We
define {, # and ¢ by

X =Rol
z = Ron
s = Roo , (2.6)

and Eqgs. (2.5) become

d2
L i+ il =0

d¢2
d*y .
dTJZ—MI" =0, (2.7)
where
"n = Bz/BO
aBZ/B
m= o 0
= eRoBo/cp . (2.8)

(*) The treatment we outline here is not original; it is perhaps most accurately described as an extension of the work of G. Parzen.
Significant contributions to the methods outlined here have also been made by D. L. Judd, L. J. Laslett and T. Ohkawa. Their

work is recorded in various (unpublished) MURA reports.
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4 is a dimensionless constant which for a given
field and momentum is a measure of Ry, and 7,
and n, are to be evaluated on the equilibrium orbit.
Therefore, -we must find the equilibrium orbit in
order to know 7, and 5, in terms of the given field
coefficients Z,, .

The equilibrium orbit is the solution of the median
plane equation of motion about the reference circle,

(€'2) =(1+)Z—-«(1+¢)B,/B, , (29

which has the period of B,. In Eq. (2.9), primes
denote derivatives with respect to the azimuthal
angle 6 and

{z: [A+82+&7]72

o= —erygBy/cp. (2.10)

o is a dimensionless constant which for a given
field and momentum is a measure of r,. We expand
Eq. (2.9) in powers of ¢ by expanding the Lagrangian
from which it is derivable (in order to preserve the
Hamiltonian character of the motion). Correct
through second order in ¢ and &, Eq. (2.10) is

& =148 +48% —aY ™ {Zo u H(Z1 a+ Zo ) E +

+(Zy,+ 2, )E%} (2.11)
The solution we seek has the form
=3¢, (2.12)

We substitute Eq. (2.12) in Eq. (2.11) and equate
terms of the same frequency, obtaining an infinite
set of algebraic equations :

—nzfn = 5no—°‘zo.n—°‘z (Zl,m+ZO,m)én—m

- Z (Zz,m+zl,m)ép§n—m—p

m,p

- '}Z m(n + m)&mén —m >

n=0,+1, +2, ... (2.13)

Eqgs. (2.13) can be solved for the &, by an approxima-
tion method, which assumes that the terms depending
on the &, on the right hand side are small compared
to the terms independent of the &,. This is equivalent
to assuming that the change of field across the
equilibrium orbit is small compared to the peak
field on the equilibrium orbit. The p th approxima-

tion, &P, is calculated by substituting &7 on the

right hand side of Eq. (2.13). There is a difficulty
with &,;, whose size depends on the reference radius
chosen. We circumvent this difficulty by choosing
a such that r, is the average radius of the equilib-
rium orbit. Then &; =0 and the » = 0 equation
of (2.13) gives a value for «.

Our assumption is then
EO 9
n

and by substituting this on the right hand side of
Eq. (2.13)

g0 *Zo,n
n nz
o Zim+Zo o,
(2)=__ Z +o 1,m o,m/“0,n—m
én nz{ O,n mén (n_m)Z
+“2 (ZZ,m+Zl,m)ZO,pZO,n—m—p
mp==0 p*(n—m—p)?
m+p==n
m+n
+3a —— ZomZon-mt . (2.14
% quzo," m(m—n) 0, 0,n } ( )

o satisfies Eq. (2.13) with n = 0 and &, substituted
from Eq. (2.14). Correct through terms quadratic
in o, we then have

V4 312320 o, -
1_20’001_[ ) (Zy,m+ /220,m) 0,-m

m=0 m

:|a2=0.(2.15)

In practice &) agrees with computer experiments
to within a few per cent, while &V differs from &2
by 10-209%. The method of solution seems a
posteriori to be justified.

Parenthetically, we may remark that the term of
Eq. (2.15) linear in o« is due to the bending of the
equilibrium orbit by the average field, while the
term quadratic in o describes the additional bending
due to the fact that the oscillations of the equilibrium
orbit carry a particle into regions of different field.

no and 7, can now be expressed in terms of the
Z,n. In calculating n,, we must take note of the
fact that the ¢ (radial) and ¢ (normal to the equilibrium
orbit) directions are not parallel. A little partial
differentiation and geometrical exercise give

RoZ 0B, & @B,
T roBo{( % 1100

}, (2.16)
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with all quantities to be evaluated on the equilibrium
orbit.

We must take note also of the fact that n, and
n, are given as functions of §. They can be converted
to functions of ¢ simultaneously with their Fourier
analysis. Thus

”i = Z ﬂi,meim¢

2n
1 d¢
= — (Be ™—1do.
”l,m 275_[ [771( )e d@:l
0

From the definition of ¢,

dd’_ rOZ—l

do R,

(2.17)

and

b

which we can expand in powers of ¢ and & and
integrate to give

¢ =E{9[l+% Y m2E .+ ]+ (2.18)
RO m=0
einﬂ_l
+ 2 — [fn—% Y. mn—m) b+t ]} X
n$0 1N m==0,n

In a conventional spiral sector accelerator, the
periodic terms are of order N~ compared to unity
and the coefficient of the term linear in @ differs
from unity by terms of order N~2, both of which
are negligible in cases of interest. Eq. (2.18) also
gives R, in terms of ry, since ¢ and 6 have the common
values 0 and 2z. Thus

R, = r0[1+% Y mP .+ ]
m==0

(2.19)

Eqgs. (2.18) and (2.19) can be expressed in terms
of the Z, , by substituting from Eq. (2.14). Approx-
imate expressions for the #,, are found to be

Zl mZO n—m
" — Z +a » »!
’70, O,n mzz;:" (n _ m)z

’7|.n=zl,n+2‘Z Z
m==n

I:(ZZ,m + %Zl,m)Zo,n—m
(n—m)

(2.20)

These expressions can be recognized as being
essentially expansions in powers of a« kFN~ % or

«KFN™2, where F = [ #Zoﬁnﬁ—n ]% is the flutter,
quantities of order 0.2 in either radial or spiral sector

accelerators, so that the neglected terms are only
a few per cent of the leading terms.

More generally, we have given the first terms of
an expansion of #;, in terms of the Z,, This
expansion is a sum of products of the Z, ,. In each
product, the sum of the second (6) subscripts of the
Z,, must be n (The f-indices in a always sum to
ZEr0).

To calculate the betatron oscillation frequencies,
we shall use a method developed by Walkinshaw *’.
For a Hill equation

d*u 2
' W+[w +n(@)Ju=0

I n)= Y ae", 2.21)
n==0

the solution can be given as a series

u$) = ¥ Puid)
m=0 R
Pri(®) = f (@) sin o(o— $)Po(o)da

0

| Po(¢) = A cos wp+ B sin w¢ .

(2.22)

The convergence of this series has been proved by
Vogt-Nilsen © under the assumption that |n(¢) |
is bounded. We can expect it to give accurate results
for stability zones higher than the first. Through
the second order (m = 2), this method gives for
the phase change per revolution X = 2av for the
case w + 0 and 2w different from any integer n
for which a,a_, # 0, that is, when X is not at the
edge of a stopband :

7 sin 2nw a,a_,

cos X = cos 2nw—

. 2.23
w nE0 n?— (2a>)2 ( )

{ll. FORM OF THE FIELD

As the energy of a particle changes, the phase
of the straight sections relative to the spirals changes.
Rather than examining the dependence of v, and v,
on energy directly, we shall examine their dependence
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on this relative phase 7 of the straight sections and
the spirals. We take a straight section function
of the form

SO) =Y Ane™re?, 3.D

with P periods per revolution. The field without
straight sections, a conventional scaling field, has
the form, from Egs. (2.3) and (2.4),

B = BoY, Bi(1+&)"e™, (3.2)

with N periods per revolution. We generate the
field with straight sections by multiplying Eqgs. (3.1)
and (3.2). Then

B, = B, Y A1+ e g inre
my,n
which we can write as

B, =By ) eino{zlmﬂ(n—mr)/zv(l +C°)k‘"""”’/"”e’i'"”'} ,

so that Z,, , has the form (3.3)

n

! a Kn-~ ! —irPr
Zm,n = mzr: l’ﬁ("—r}’)/N[@(l"’é) (n "P)/N] e P

§=0

=Y e "f(m,n,r). (3.4

IV. PROOF OF THE THEOREM

We assert that if ,=0 for |n|=4Q, then
v, and v, are independent of 7 and thus of energy.
To prove this, we show first that if g, =0 for
|n]|=4%0Q, and fim,n,r) # 0, then fim,n,r)# 0
only if r'=r.

If fim,n,r) # 0, then B,_,pyx # 0. Then, since
B. # 0 only for integral m,n—rP must be an
integral multiple of N, say n—rP = sN, with s

a positive or negative integer or zero. Similarly,
if fim,n,r') # 0, then n—r'P = s'N. Then
(r'—=r)P=(s—s)N,
or
s P ~N
(F=rz= (=5,
or
(F—-rQ=(-5)R. 4.1)

But G is by definition the greatest common divisor
of P and N, so that Q and R are relatively prime
numbers. Since they are, the diophantine equation
(4.1) has a solution only if s—s" is an integral

multiple of Q, say (s—s') = tQ, with ¢ a positive
or negative integer or zero. But |s|] < } Q and
Is'| <3 0Q, since B, =0 for [n| =+ Q. Therefore
|s—s'| < @ and ¢ must be zero. Then s=ys'
and r = r',

Thus only one term of the sum (3.4) is different
from zero. Z,, is different from zero only for
n = tN+rP, with t and r positive or negative
integers or zero. Then if B, =0 for |n| =} Q,

—~irPt 1 am t 3
Zm, IN+rp = € P Arﬁ:ﬁ[@(l + c)k ]€=0 . (42)

cosX, and cosX, are given by Eq. (2.23) as sums of
products over the 7;,. In each product the sum of
the ¢ -indices of the #, , must be zero. But 7,,, is a
sum of products of the Z,,, with the 6-indices of
each product summine to m. Then any product
Nim Nj,-m Must be a sum of products of the Z,,
with the f-indices of each product summing to zero.
The most general sum which can appear is

Z Zml,m Zmz, nyeer ZmT— 1, np=1 ZmT, Tk PRl TP S
my, mz, ...,Mp .
ni, n2, (4.3)

o M7 2 1)

Since the Z,, are different from zero only for

n = tN -+ rP, this sum can be written

Z Zm;,r1P+11NZmz,r1P+tzN'“
mg, ma, ..., Mp
rL P2 e Mo y)
11,12, e K7 - )

where
M= (ri+r,+...+rp_y P)+-(t+1t2+. . .+tr_y) N.

If we now substitute the form (4.2), valid when
B, =0 for [n] = 40, it is clear that the form (4.4)
is independent of 7 and thus of energy. Since all
terms of cos Z, and cos X, have the form (4.4), X,
and X, and therefore v, and v, are independent of
7 and thus of energy.

Zm(,._ 1) T(r-1)PHi(p. N ZmT,—M > (44)

We can use this result to interpret more clearly
the earlier work !~®. In each case, the changes
of v, and v, were reduced greatly when Q was increased,
from 2 to 3 in the work of Elfe and Kerst and from
1 to 5 in the work of the Harwell group. Since the
field harmonics f, decrease with n at least as rapidly
as n~! in most accelerators, the first few harmonics
are responsible for the major part of the change of
v, and v, with energy.

In closing this section, we remark that in the
fields we have discussed here, the phases of the
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spirals continue uninterrupted across the straight
sections. We have proved the same theorem in the
case where the spiral phases do not change at all
across the straight sections, with the approximation
that the straight section function (Eq. (3.1)) is a rec-

tangular wave 7.

V. DIGITAL COMPUTER EVIDENCE.

Orbits were integrated numerically on the IBM-704
through enough periods to find the equilibrium
orbit and measure v, and v,, using the “ Spirit”
program developed for the purpose. This program
multiplies the scaling field (Eq. (2.2)) by the straight
section function (Eq. (3.1)) to find the field and
integrates the exact equations of two-dimensional
motion by the Runge - Kutta method.

The straight section function was chosen from
approximate magnetostatic calculations. It is not
claimed that our choice of S(8) is necessarily realistic
in all cases; it suffices for our purposes that it can
give rise to changes of v, and v, with energy. The
field drops to about 809 of its full value in straight
sections and the total length of straight sections is
about 109 of the length of the spiral sector, thus
giving a total straight section length per spiral sec-
tor of about 1m in a 10GeV accelerator. Table I
gives the Fourier coefficients of the straight section
function.

TABLE |

Fourier coefficients of the straight section function

N An

0 1
+1 —0.03105
+2 —0.02274
+3 —0.01499
+4 —0.00872
+5 —0.00477
+6 —0.00242
+7 —0.00117
+-8 —0.00053

The first scaling field we investigated had the
parameters N=30, k =153, K=280, go=1, g, =1,
and, when they were inserted, g, = g; = 0.2. In
Table II, Q is the number of radial straight sections
per period of the structure, R is the number of spirals
per period, G is the number of periods of the structure

per revolution, n_,. is the maximum harmonic
number of the scaling field, {v,> and (v,> are the
mean values of v, and v, (averaged over 7 or energy)

A
and = and 4v,

vy vy

deviations of v, and v, in per cent. Each datum point

are the maximum relative

Av, 4y ]
( _and 4 > requires about 2 hours of run-
G

ning time on the computer. Points marked U were
found to have unstable radial motion, due in all
cases to the stopband near X, = = introduced by
lowering the periodicity from 30 to 15. When the
radial motion is unstable, it is quite difficult (and
not very interesting) to investigate vertical motion.

From our experience we would judge that digital
computation gives values of v, and v, with errors

a4
of about 19. Values of Z% less than a few per
v

cent may be regarded as negligible.

Because of the stopbands, which occurred at some
points of interest, we have also investigated the
same effects in an accelerator with £ = 30, K = 210
and all other parameters unchanged from above.
Table III gives the same quantities as Table II for
these points.

TABLE 1l
Digital computation results on effects of radial straight sections
Av Av
[0) R G nmax <’V > v /_x_(%) 2(%)
NIRRT
1 8.266 5.818 0 0
0 1 30 2 8.261 6.379 0 0
3 8.226 6.144 0 0
1 1 30 1 8.060 5.788 24.50 38.02
2 8.060 6.283 29.89 33.20
2 1 30 1 8.204 5.832 12.24 4.04
2 8.231 6.399 15.69 13.14
1 8.220 5.821 3.19 0.83
3 1 30 2 8.256 6.383 7.90 1.64
3 8.192 6.144 9.87 13.38
1 U
3 2 15 2 U
3 U
4 1 30 1 8.223 5.820 0.58 0.13
2 8.258 6.380 2.66 0.33
1 8.044 5.830 1.86 0.26
5 2 15 2 U
3 U
5 3 10 1 8.069 5.617 0.43 4.45
2 8.027 6.294 0.94 4.45
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TABLE Il

Digital computation resuits on effects of radial straight sections

Av Av
@ R G n < yy %) —2(%)
A Y Loy T vy
0 1 30 1 5.891 4.39 0 0
1 1 30 1 5.703 4.338 27.02 42,46
2 1 30 1 5.886 4,399 10.40 2.86
3 2 15 1 5.916 4.397 0.92 1.06

The digital computer results show phenomena
which bear out the theorem proved in this paper.
In some cases it appears that the largest decrease
in Av, occurs when Q becomes greater than n,,,
rather than when Q becomes greater than 2n_,,, as

the theorem would predict. This effect is presumably
due to some detailed cancellation of terms of cos X,
but we have not yet gained an understanding of it.
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