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Abstract We extend the contents of the standard model
(SM) by introducing TeV-scale scalar leptoquarks to gen-
erate neutrino masses and explain some current observed
deviations from the SM predictions, including the anomalous
magnetic moments of charged leptons (electron and muon)
and B-physics anomalies (R and R ). The model con-
sists of SU(2);, singlet leptoquark S; ~ (3,1, 1/3), dou-
blet leptoquark R, ~ (3,2,1/6) and triplet leptoquark
S3 ~ (3, 3, 1/3). We combine the constraints arising from
the low-energy lepton flavor violation, meson decay and mix-
ing observables. We perform a detailed phenomenological
analysis and identify the minimized texture of leptoquark
Yukawa matrices to accommodate a unified explanation of
the anomalies and neutrino oscillation data.

1 Introduction

The neutrino oscillation experiments have firmly estab-
lished that neutrinos are massive and have non-trivial mixing
between different generations [1-4]. The experiments also
indicate that the neutrino masses are much smaller than that
of charged fermions, which suggests that neutrinos may have
specific sources of mass generation. In the recent decades,
a plethora of models have been proposed to explain the
neutrino mass and the natural way is the so called seesaw
mechanism [5]. Type-I seasaw model [6-10] provides neu-
trino masses at the tree-level by extending the particle con-
tent of the SM with three SU(2) -singlet right-handed neu-
trino fields, while type-II [10-12] and type-III [13] models
introduce SU(2) -triplet scalar and SU(2) -triplet fermions,
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respectively. Beyond tree level, the tiny neutrino masses
could radiatively originate from loop levels [14—18].
Extending the SM to include the source of the origin of
neutrino mass and mixing brings new physics, especially to
the flavor sector. The intensity frontier precision measure-
ments may pin down the possible connections between neu-
trino physics and flavor physics. Such as the anomalous mag-
netic moments of electron and muon, there are long-standing
discrepancies between the theoretical predictions and mea-
sured values [19—41]. The anomalies also include the ratios
Rk and R in B-decays, pointing towards the lepton fla-
vor universality violation, measured by BaBar [42,43], Belle
[44-46] and LHCDb [47-51] collaborations. In this work, we
propose a model with scalar leptoquarks to provide a com-
mon explanation of neutrino mass and these flavor anomalies.
Leptoquarks (LQs) have been introduced in many new
physics models beyond the SM and are very popular to
explain B-physics anomalies with one or more leptoquark
states [52-54]. The unified solution to both Ry and R e
anomalies seems rule out single scalar leptoquark models
[55]. Among the scalar leptoquarks, triplet S3 ~ (3, 3, 1/3)
can accommodate the Ry anomalies, while the Rpe
anomalies can be resolved by introducing either a singlet
Sy ~ (3,1, 1/3) or a doublet Ry ~ (3,2, 7/6) leptoquark.
The double leptoquarks models were proposed to explain
both Ry and Rp anomalies, involving S7 and S3 combi-
nation [56-61] or R, and S3 combination [62-64]. Extend-
ing with leptoquarks will give contribution to the anomalous
magnetic moment of charged lepton at one-loop level and the
no-chiral scalar leptoquarks S or R, which have both left-
chiral and right-chiral couplings, can provide good expla-
nations to the a,, and a, deviations [65,66] simultaneously.
The mixing between different type leptoquarks can also gen-
erate non-trivial Majorana neutrino mass terms at one-loop
level. The minimal model to generate neutrino mass by the
scalar leptoquark mixing requires a pair of leptoquarks and
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the possible combinations are S} — §2(3, 2,1/6), S3 —
and S3 — R, [67-71]. Motivated by the leptoquark abundant
phenomenologies, we attempt to extend the SM contents by
scalar leptoquarks to generate neutrino mass and explain the
flavor anomalies mentioned above.

This paper is organized as follow: In Sect. 2, we briefly
introduce the model set-up and the neutrino mass generation
mechanism. In Sect. 3, we show how to explain the flavor
anomalies in the model, including Rgw, Rpw, a, and ae.
We discuss the observables constraints on the leptoquark cou-
plings in Sect. 4 and then we perform a detailed analysis of
model parameter space and identify two benchmark points
in Sect. 5 and we conclude in the final section.

2 The model and neutrino mass generation
2.1 The model

In addition to the SM fields, we introduce three scalar lep-
toquarks, including an SU(2) singlet S§1 ~ (3, 1,1/3), a
doublet 152 ~ (3,2,1/6) and a triplet S3 ~ (3,3, 1/3). The
scalar leptoquarks are denoted as

1/’%

$13,1,1/3) =5, R3,2,1/6) = (R}, R

1/3 4/3
- o S0 V2,
53(3.3,1/3) =1'S; = (fS_2/3 1/3 )

)",

D

where i (i = 1,2, 3) are the Pauli matrices and we define
S3P = (S —is)/v2, $7HP = (8! + i82)/4/2 and
A 173 Sg”. The corresponding Yukawa terms that describe
the 1nteraétions between leptoquarks and fermions are given
by

Ly =— leu’RCe;eSl — y Q’LClr Lj S1

y2L d, WRY TP L]

—y3L QL it S3LJL +h.c., (2)
where Q and L denote the SU(2) 1, doublet left-handed quarks
and leptons, u g, dg and e denote the SU(2), singlet right-
handed up-type quarks, down-type quarks and charged lep-
tons, respectively. All fields in Eq. (2) are represented in the
flavor basis. For phenomenological analysis, it is more con-
venient that we re-parametrize the couplings in the fermion
mass basis. The Yukawa coupling terms are then rewritten in
the mass basis of fermions as the following form,

L — _le lRCeﬁesl/3 + (VTy]L)i‘/diCVj S]1/3

1iCol 1/3

1/3 j
_ylL L eLS/ +y£/L dly VL

52/3 i o1/3
— 5 deeb B + (VT y3p) dlLCu£S3/
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where V is the CKM matrix. Since in our analysis of (g —
2)e,, and B-physics anomalies, the choice of neutrino mass
or flavor basis has negligible effect, the neutrino states in the
above equation are kept in flavor basis.

The renormalizable and gauge invariant scalar potential

involving H, S, Rz and S3 is described by
. o1 )
V> miyy H'H +mi S|Si +m3 R} Ry + Sm3 Tr(S1S53)
¥ 2 4 2
o (HUH) 40 (]81)
S~ 2 " 2
0 (RIR2) + 23 [Tr(s]53)]
+ A Tr(SYSDTr(S383) + g1 HTHS| S,
S
+ g HHR]R, + RE HHTi(S]$3)

+ (M3 HISTHS) + i RyHST
+ 12 RYSTH 4 hee)), )

where H is the SM Higgs doublet. More general inter-
actions of leptoquarks and SM Higgs can be found in
Ref. [72]. After the spontaneous electroweak symmetry
breaking, the Higgs field H acquires a vacuum expecting
value (VEV) with (H) = v/+/2, v = 246 GeV. The physi-
cal scalar particles include one electric neutral Higgs boson
h, three 1/3-charged leptoquarks, two 2/3-charged lepto-
quarks, and one 4/3-charged leptoquark. In the basis of
1/3 — (S1/3 1/3 1/3)T and p2/3 — (R2/3 2/3)T the
mass matrices for the two groups of charged scalar particles
are given by

m3 + %kfnvz %Mv —%)»131)2
M35 = S my v —suov |
1 2 1 2,1 2
_E)\.lgv —TEMQU m3 + §AH3U
(©)
’ m% + %AH202 Hov
M3 = 2,1 2 (6)
M2V m3 + 3AH3V

After diagonalization of the above mass matrices, we obtain
the physical scalar fields: charge- 1/3 leptoquarks (¢1, ¢2, ¢3)
and charge-2/3 leptoquarks (w;, w2), which satisfy

1/3 1/3
¢i =R p)°, (7)
wi = R” p;. ®)
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where R!'/3 and R?/3 are the corresponding rotation matrices.
The rotation matrix R%/3 can be parametrized as

R — < cosa sma)’ ©)

—sino cos o
where the mixing angle is given by

22V

tan 2a = 5 5 -
ms — mjy + (Ag2 — Ag3)ve/2

(10
The rotation matrix R!/3 need three rotation angles to be
parametrized,

R'? = R(O12)R(013)R(623). (1D

In the limit where off-diagonal elements are much smaller
than the diagonal elements, the mixing angle in the rotation
matrix R'/3 can be approximatively calculated by

2
(M1/3)ij

2 2 '
(M1/3)ii B (M1/3>jj

sy

0;j ~ (12)

The charge-4/3 component has no mixing with other
scalar fields and we denote the mass by mg,. In our analy-
sis of the low energy processes, we assume the leptoquark
multiplets to be quasi-degenerate and set the LQ masses as
Mg, = My, MR, = Mg, X My, and mg, = Mgy X My, .

2.2 Neutrino masses

In our model, the neutrino masses are induced at one-loop
level through the Feynman diagrams as shown in Fig. 1, in
which the loop is mediated by the down-type quarks and 1/3-
charged leptoquarks. The neutrino mass matrix is given by
[67]

3
Moap = 1—5 D miBo(0, mf, mg,)
i=1,2,3
k=d,s,b

1/3 ,1/3 k
< ARPRIZ [V l] + v vk ]

1/3 ,1/3 k
+R//’R!! [(VTysL)'“"ysz+(VTy3L)kﬂy§“]},
(13)

where B (0, m%, méi ) is the Passarino—Veltman function and
its finite part is given by

mj log(my) — mg log(my.)

2_ 2 :
mk m(m

Bo(0,mj, m,) = (14)

The first term in the bracket of Eq. (13) is associated with
the S| — R combination, while the second term is associated
with the §3 — R, combination. To simplify the analysis, we
consider one term dominates the other. For example, when

Y
A

Y
A

v d d°¢ L
Fig. 1 Feynman diagram of Majorana neutrino masses generation at

one-loop level

S| — I?z contribution is dominant (41 >> 2, A13v), the neu-
trino mass matrix can be written as

M)ap = (31 Ayar + yZTLATﬁlL)aﬂ, (15)

where we define $17 = (V7 y;1) and

Ag 0 O
A= 0 Ay O],
0 0 Ap
2
3 2 m
with Ag ~ my V2 log [ =2 ). (16)
327.[2 mz _m2 mz
é1 () ()

Using the method of master parametrization [73,74], we
parametrize the coupling matrices y1; and yy7, as

1 .
S -1/2 /277t
$i1L = —=S " 12waD 2yt (17)
NG
1, SO
_ ~12y+ g HL2 g
yo = —3 " \2w*BD'2UT, (18)
V2

where U is the 3 x 3 unitary neutrino mixing matrix, which
brings the neutrino mass matrix to diagonal form by

UT M, U = diag(my, ma, m3). (19)

The forms of matrix X, W, A, B and D depend on the
ranks of neutrino mass matrix M, and matrix A. Neutrino
oscillation data requires that M, should contain two or three
non-vanishing eigenvalues. In our numerical analysis of neu-
trino masses, for simplicity, we neglect the d —quark contri-
bution in neutrino mass loop (A; = 0) and consider the
normal ordering neutrino mass hierarchy with m; = 0. In
this scenario, the ranks of matrices M, and A are both 2
and the neutrino mass matrix M, only depends on the sec-
ond and third columns of couplings y;; and yr. In this
case, ¥ takes form as diag(Ag, Ap) and D takes the form
as diag(x, mo, m3), where k can be arbitrary value, since it
can always be absorbed by rescaling relevant elements in
matrices A and B. Equations (17) and (18) give the elements
of second and third columns of couplings y;; and y,r. The
matrix W is a 2 x 2 unitary complex matrix that contains 4
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Table 1 The corresponding Wilson coefficients (in units of v? /4 miQ) in Egs. (21, 22, 23) induced by the leptoquarks at tree level. The matching

scale is set at the leptoquark mass scale

M Ry S3
ul = uleme gl = =) o) ghh = —(y)™ (5"
&R = - iR
gL = (yp) ™ (yy)"
S8R = (i)™ (i)™
gl = =1 01" i
R = — L) ™ (i)
d'—diemer ghl = )™ ()" gvly = =2V ys)m(Viys )"
ul — wlpmyn hLL = 2()’3L)im(y§l)j"
d'— alvmy" heﬁ, ==y vy ht = =)™ (3" BEL, = (VT ysp)m vy, )in

d — ul g™ = VTy)™y )"
LL = —(vTy1 )™ (i)™

cft = 3(VIn)" ()"

eyt == (VT y)™ ()"

real degrees of freedom. The matrices A and B are defined
as A =TCjand B = (TT)"1(C1C, + KC»), where T is
an upper-triangular 2 x 2 complex matrix with positive real
values in the diagonal and contains 4 degrees of freedom,
K is a2 x 2 anti-symmetric complex matrix that contains 2
degrees of freedom. The matrices C and C» are given by

{2100 _
Cl_(ZzOO)’ ¢ =

where 71 and z, are two complex numbers that contains 2
degrees of freedom with the condition z% + Z% = 0. The
possible values of the second and third columns of matrices
yiL and yp7, can be obtained by scanning these 12 real free
parameters.

~100
010], (20)
001

2.3 Effective Lagrangians

The tree-level contributions of leptoquarks to the related phe-
nomenologies can be described by the following effective
Lagrangians,

Lagie = 4GzF [(gv(;)ij’n @ y"a) @ yut})
+(g§ ) (GRy CIR)(ELVMEZ)
+(g ) @ y"a)) Ty ty)
+(g ) (‘IRV CIR)(ERVMW;Q)
+(s55)"™" @had @nen)
(59 @by
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+(e85) ™ @o e owth] @D
Ligin = %[ (m2)""" @rra) @)

+ (h'v?fq)ij’mn <q'§ey“q1’§)(‘72'mvz)], (22)
Liaiy _%[( \L/L) o (MLVMd])(eLVMVL)

" o d] ) B | + e (23)

The Wilson coefficients at the leptoquark mass scale are
determined by the combinations of Yukawa couplings and
summarized in Table 1. To analyze the low-energy processes,
these Wilson coefficients are needed to RGE run down to the
appropriate scale. We take the low-energy scale at the bottom-
quark mass (mp, = 4.18 GeV) and the Wilson coefficients at
the leading logarithm approximation can be calculated by the
following form [75-78],

s (mp) T [ g(amyy 1A
as(nh)} [as(mLQ)}
Cyj(u =mLQ), (24)

(ny)

Ci(np=mp) = [

with the QCD running coefficient 8, = (2ny — 33)/6,
where ny is the relevant number of quark flavors at the
hadronic scale. The coefficients ylj are the anomalous dimen-
sion and given by ¥ = 0, = 2and y/ = —2/3.In
our numerical analysis, we use the package Wilson [79] to
calculate the running of Wilson coefficients and obtain the
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following Wilson coefficient correlations between the two
scales,

cbt(mp) = 1.01 b (mig),

cghmp)\ 1.64 —0.275\ [k (mig)
cklmp)) — \=3.87x 1073 0.867 | \ckE(miq)
(25)

where we have taken the leptoquark masses scale as my g =
1 TeV. In the following discussion of the various physi-
cal processes, we utilize the Flavio package [80] to get the
favored region of Wilson coefficients at the leptoquark mass
scale.

3 The flavor anomalies

In this section, we present the observed flavor anomalies
between current experimental observations and the SM pre-
dictions, and explore how to alleviate these tensions by intro-
ducing scalar leptoquarks in our framework.

3.1 Rk and R+

The first observed anomalies we consider are the lepton flavor
universality violation ratios Rx and Rk, which are defined
as

_ Br(BT > Ktutu™)

K= BrB+ = Ktete)
B B() K*O +,,—
Rys — r(B” — [y ). 26)
Br(BY — K*0ete™)
The SM predictions [81,82] for these two ratios are
RM =1.0003 +0.0001, R =1.00+0.01. 27)

The new measurements of Rx and Rg+ at low q2 region
[1.1, 6.0] GeV? by LHCD are given by [49,51]

LHCb _ £0.04240.013
R ™" =0.846 39 012

REHCP — 0.68510005 +0.047, (28)

which both give deviation larger than 2.5¢ from the SM
prediction values. These two processes are determined by
the neutral current, b — s£7¢~. The effective Hamiltonian
relevant to our model can be described by [83],

4G .
Heit = ——FVme[ o+ cff,oﬁf,)] +hec.,

V2 X=9,10
(29)

where the Cff and Cff, denote the Wilson coefficients and
(’)ﬁf and (’)gf, are the corresponding effective operators, which

take form as
7 e? 7
_ Sy
' = G 7" PLO A0,

2
e _ -
ot = W(W“hb)(ﬁm%@),

2
e _ -
Off = ——— (5" Prb)(Ly,.0),

= n)y
2 —
oL, = JT)z(Ey“Pbeemse). (30)

According to the definition of Rx and Rg+, the anomalies
of Ry« indicate new physics contribution to C;S), C 1680)’
Cyiy and C};,. The solution of R+ is favored by new
physics coupling to muon instead of electron, with the con-
sideration from other observables fit [84—86]. Therefore, we
set the new physics contribution related to electron is negli-
gible (i.e., C5 = C{f ~ 0), and the new physics contribu-
tions to Rx and Rg+ come from the Cg # and C{LO“ in our
framework. We show the fit to Rg () using C9(,>,10(/) at the
scale u = 1 TeV in Fig. 2. The upper left panel gives favored
regions for Cg * versus C ﬁ)“ as real parameters. We also con-
sider the recent measurements for the ratio R K9 and R+
[87]. Note that we combine the constraint from By, — uu
in the fit. The branching ratio of By — pu is measured to
be Br(B; — )P = (2.93 4 0.35) x 1077 [88], which is
the combined result based on measurements from ATLAS,
CMS and LHCb [89-92], while the SM prediction value is
Br(B; — )™M = (3.63 +0.13) x 1077 [93]. Taking the
relation C, g bF=—C {LO” given by our model, the best fit point
of Ry is found at Cg“ = —C{‘OM = —0.39, while the best fit
point for R o and R+ is found at Cg“ = —Cﬁ)“ = —0.74.
Combining these four experimental ratios and the branching
ratio of By — jupu, the best fit point of C§* = —CJ" is
—0.45. The upper right panel shows the favored region for
the complex case with the assumption C§* = —C{{". The
bottom panels present the fit to Rg and Rg+ using Cé‘,f‘lo,
and we find no common solution. Our results are comparable
with the global analysis performed in Ref. [94], where some
related differential branching ratios and angular observables
are included. Relevant analyses are also found in Refs. [95—
97].

Leptoquark S; doesn’t contribute to b — s£7 £ at tree-
level but provides contribution by box-diagrams. However,
Rk and Rk anomalies cannot be fully accommodated with
leptoquark S; only [55,98]. In our model, we expect that the
contributions to solve Rx and Rg+ anomalies come domi-
nantly from leptoquark S3. The corresponding Wilson coef-
ficients are given by

mv? (VIys)3(viys)?

Vib V;; Cem mé

c§t = —cif (31)

@ Springer
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gt
Clg
—_

fpt
Ciy

-10 -

cp

Fig. 2 Contour plot of the fit to Rx and Rk« in the plane of Wilson
coefficients at the scale u = 1 TeV. Upper left panel corresponds to Cg "
versus C {‘ 0“ as real. The dashed orange and dotted blue contours repre-
sent the 1o allowed regions that explain Rx and Rk respectively. The
dark green (yellow) region corresponds to the 1o allowed region that
explains Rx and Rg+ (R K9 and Rg++) simultaneously, while lighter
region corresponds to 20 allowed region. Upper right: The plot corre-

Leptoquark R, can also generate contribution to the process
b — s€te~ at tree-level by Co and Cyo terms. The cor-
responding Wilson coefficients of R, contribution are given
by

20 %3¢
S CTREY)

- (32)
2Vip V;; Oem m%ez

oo _ o _
C9/ —_— _Clo/ —

It is noted that the parameter space to explain Rk is incom-
patible with Rg+ if one only use Cy and Cy(y, as shown in
the bottom panel of Fig. 2.

3.2 Rp and Rp+=
The next lepton flavor universality violation observables we

consider are Rp and Rp+, which are induced by charged
current transitions b — cfv, and defined as

@ Springer

6 -4 2 0 2 4 6 8 10

4
Ry
Ry~
< 2
S
E
10
§m
S
E -2
—4 . . ;
-3 -2 -1 0
Re (Cy")=—Re (C1g)
10
81 Ry
Ry
= 9 B
C e
E 2
40
S
E
76_
_8_
-10 " " " ‘ " i T " "
-10 -8 6 4 2 0 2 4 6 8 10
Re (Cy'")=—Re (Cyg)
sponds to the complex plane of C éf ’f - With C g r=_c {i 0“ assumed. The

orange and blue regions represent the 1o allowed regions that explain
Rk and R+, respectively. Bottom: Left panel shows the fit to Ry
using C'* and C{y as real parameters, while right one corresponds to
the fit using complex parameters with the assumption Cé‘,” =-C ﬁ;f
No overlap region indicates that C¢," and C}/ can not accommodate
combined explanation for Rx and Ry

_ Br(B — Dr)
" Br(B — D¢b)’

Br(B — D*t)

= (33)
Br(B — D*{v)

D D*
where ¢ denotes electron e or muon p. The predicted values

of these two observed quantities in the SM are [99-102]

R3M =0.299 +£0.003, R = 0.258 + 0.003. (34)

These two observables have been measured independently
by several collaborations, including Babar [42,43], Belle
[44,45]and LHCb [48,103,104]. The average values by com-
bining these measurements are given by [105]

R’ = 0.340 +0.027 £ 0.013,

RSP = 0.295 +0.011 £ 0.008,

o _ (35)

which exceed the SM predictions by 1.40 and 2.5¢
respectively. To confront the leptoquarks contributions with
the above experimental data, we consider the following effec-
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1.0

gs;

1.5
Rp

1.01 Rp-

0.5

Im (4g7)

o
=)

Im (gs, )
|
(]
W

—1.01

—-1. - '
5*2 -1 0 1

Re(gs,)=—Re (4 g7)

Fig. 3 Upper left: Contour plot of the fit for Rp and Rp+ in the plane
of gg, versus g7 at the scale 1 = 1 TeV. The dashed orange and dotted
blue contours represent the lo allowed regions that explain Rp and
R p+, respectively. The dark (light) green region corresponds to the 1o
(20) allowed region that explains both simultaneously. Upper right: The
%2 values to fit both Rp and Rp+ when using gy, and g5, = —4gr

tive Hamiltonian,

4G _ _
Hett = —= Ve [gVL (CLyubr)(TLy*vr)

/2

+gs, (CRbL)(TRVL)

+87(@r0ybL)(FRI vL) | +hec. (36)

In the Fig. 3, we show the fit of ggs,, gr and gy, favored
region to explain Rp and Rp+ anomalies at the scale of
1 TeV. The upper left panel presents the fit using real param-
eters g5, and gr. With the relation of g5, = —4gr, which
is in our model, the best fit point is g5, = —4gr = 0.12
and the allowed 1 o range is g5, = —4gr € [0.08, 0.16].
If we solely consider the Wilson coefficient gy, , the best fit
point is gy, = 0.08(—2.07) and the allowed 1o range is
gv, €10.07,0.10] U [-2.10, —2.05]. We show the X2 val-
ues to fit both Rp and Rp+ in the upper right panel. We also
present the fit result when the coefficients are taken as com-
plex numbers. Comprehensive analyses including the ratio

Page 7of 18 959
>
- 9v
— gs,= —4gr
10° -
-3 -2 -1 0 1
9i
2
Rp
RD*
1 4
S
S 0
£
_1 1
72 | T T
-3 -2 -1 0 1
Re (gv,)

respectively. Bottom: Two plots correspond to the complex planes of
gs, = —4gr and gy, , respectively. The orange and blue regions rep-
resent the 1o allowed region of Rp and Rp+, respectively. The deeper
blue region corresponds to the overlap scenario where accommodates
combined explanation for Rp and R p+

Ry, the longitudinal polarization of the P;(D*) and F LD :
can be found in Refs. [106—-108]. The best fit values in this
work agree with theirs in the 1 o allowed range.

In the model, both S; and S3 give contributions to b —
ctv at tree-level, while 152 does not. After Fierz transfor-
mation to relevant effective Lagrangian, g5, and gr have
relation g5, = —4gr. The corresponding Wilson coefficient
of S contributions are given by

‘ v2 (VTy)3y
8y, = 4V 3 ; (37)
ch mSl
R G A4 1Ak 3173 38)
8s, = 481 = AV, mé .
The contribution from leptoquark S3 gives
‘ v2 (VTy3p)3y53
Svp =~ 2 : (39)
L 4V my,
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However the contributions of gf,L from both leptoquarks S
and S3 can notexplain the anomalies of R ¢ sinceits favored
parameters space is incompatible with B meson decay pro-
cess B — Kvv. To explain the anomalies of Rpw, it is
required that y%ij L ylzz"g 1 ~ 0.1, but the products of cou-
plings are strongly constrained by the process B — Kvv
with | y132,3 I ylzz3 .| < 0.03. Therefore we focus on the Wil-
son coefficients géL and g§ contribution from the Leptoquark
S to explain the anomalies of Rpe).

3.3 The anomalous magnetic moments of charged leptons

The last observable anomalies we consider are the anomalous
magnetic moments of charged leptons, including electron and
muon, which both exist long-standing discrepancy between
the SM predictions and experimental measurements. The
recent combined result of Fermilab [41] and BNL [109]
increases the tension of muon (g — 2), which gives a 4.2 ¢
level deviation from the SM prediction. The precise discrep-
ancy between the SM predictions and experimental values
reads [19,41]

Aa, = ag® —aSM = —(8.7+£3.6) x 10713, (40)
Aay =ay” —aSM = (251 £0.59) x 1077, 41)

We start to discuss the contributions to (g — 2), from
general scalar Leptoquark interactions, which is described
by [68,110]

LF=2 = g€ Pp 4+ 1T PLYE;S + hec. (43)

Here ¢’ denotes quark, £ denotes charged leptons, S stands for
leptoquarks and F is the fermion number. The contributions
to Aay = (g — 2)¢/2 from F = 0 terms are illustrated in
Fig. 4 and given by

3my €2 »)
Aay = ——— [m 12 4 4 F(x
¢ S Eq (yg 1"+ 1y IDF )

+mRe(y " ¥ E)G)). (44)
where
F(x) = Qs fs(x) — fr(x),
G(x) = Qs gs(x) — gr(x), (45)

and the loop functions are calculated by following formulas,

Folr) = x+1 N xInx

S = a0 =02 T2 —x)3
2+ 5x —x2 xInx

fr® = a5 Y aa—on

@ Springer
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Y
Y
Y

l q(¢%) Ji0)

Fig. 4 One-loop diagram contributing to the charged leptons anoma-
lous magnetic moments and the flavor changing process ¢ — €'y

—1 In x

—x  (1=-x)?
x—3 Inx
21 —x)2  (1—x)3

gs(x) = 7

gr(x) = (40)

where x = mg / m% and Qg is the charge of leptoquark S. The
| F| = 2 scalar leptoquarks contribution can be obtained by
changing the couplings y — y’ in Eq. (44). Itis noted that the
no-chiral scalar leptoquarks which have both left-handed and
right-handed couplings to quarks can give a chiral-enhanced
contributions to Aa, by the quark masses. This is revealed
by Eq. (44), in which the first term is proportional to the
lepton mass, while the second term is proportional to the
internal quark mass. Besides, it is worthy to notice that only
the second term in Eq. (44) can provide different sign contri-
bution, since the deviation Aa, and Aa,, have opposite sign.
Thereby among all the scalar leptoquarks, only singlet S or
doublet R, could provide solution to explain Aa, and Aa,,
simultaneously. However, the constraint from the branching
ratio of © — ey excludes the one internal quark, such as
the top quark, dominating solution [111]. In our model, we
choose the scenario that the contributions to Aa, and Aa,
come from different quarks. The new contribution is mainly
coming from the leptoquark S; mediated loop and the con-
tribution to Aay is given by

3mem, sqt_qt\| 7 | 2
Aap >~ — Z 8n2m§ Re(y”qe yi{L) 3 + glnx . 47)
q 1

4 Low energy constraints

In the previous section, we have discussed the solution to
the B-physics anomalies, Rg« and Rpw, and the anoma-
lous charged lepton magnetic moments, Aa, and Aa,. The
model also gives rise to various flavor violating processes and
rare meson decays, which are severely constrained by current
experiments. In this section, we summarize the most strin-
gent low-energy processes and give the relevant constraints
to the leptoquark couplings in the model.
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4.1 £ — 'y processes

The lepton flavor violation £ — ¢’y processes, such as yu —
ey, T — ey and T — puy, can be induced via the one-
loop diagrams shown in Fig. 4. The non-chiral leptoquark
S1 contribution to £ — ¢’y processes is enhanced by the
quark mass. On the contrary, the chiral leptoquarks R, and
S3 induce £ — ¢’y processes without chiral enhancement.
The current experimental limits on the lepton flavor violation
¢ — {'y processes are summarized as following [112,113],

Br(n — ey) < 4.2 x 10713, (48)
Br(t — ey) < 3.3 x 1078, (49)
Br(t — puy) < 4.4 x 1078, (50)

The branching ratio of the process £ — ¢’y mediated by the
leptoquarks can be calculated by the following formula,

Hem (m% - m%/)3

Br(¢ — 0'y) =
4m3 T'(€)

(oK' 2 +10{ ). 1)

where I"({) is the total decay width of the lepton ¢ and the

/ / . . . =
form factors 0115@ and O’Ilf originating from Si, Ry and S3

contribution are calculated as

o 3 [ gl _xqt’
o = —F me yipy
{5 = o 2 {[motot

=u,c,t

all
+me it ][gfs(X) - fF(x)]

TR
+mg (Y] vk )[ggs(x)—gF(m“, (52)
ot = oy 2 {[mothit”
R’Sl 167T2m§1 q=u c,t AL

all
+m y{pyR ][gfs(x) - fp(x)}

¢ sqt\| 1
+my (y{pt )[ggs(x)—gF(x)”, (53)
o _ 3 Z my yqu*ql’ %fS(x)—fF(X)
LR, ]6”2’"% 20021 | 3 ,
2 g=d,s,b
54
w o 3 Z o 0y %f @) = frx)
R.Ry — 16n2m% LY Yor 3/S F )
2 g=d,s,b
(55)
’ 3 o+ !
e _ , T ql 7T x \ql
Or.53 = —16n2m§ { Z 2me (V7 y30)T(V'y3p)
3~ g=d,s,b

4
X [gfs(x) - fF(x)i|

wqt' | 1
+ > me iyl [gfs(x)—fF(x)“, (56)
q=u,c,t
o 3

OR,S3 = T{ Z 2me (VI y3) 2 (VTy3 )1t
167 is q=d,s,b

4
X [gfs(x) - fF(x)i|

w1
+ Y meyiil [gfs(x)—fF(x)]}, (57)

q=u,c,t

where the loop functions fs r(x) and gs r(x) are defined in
Eqgs. (46). The terms above proportional to m, arising from
the non-chiral leptoquark S; give an enhancement and the
corresponding couplings are more severely limited. Whereas
the chiral leptoquarks R, and S3 only consist of the terms
proportional to m ) and get weaker limits. To get the con-
straints on the couplings, we assume that only the relevant
term dominates the contribution. The relevant constraints on
the leptoquark Yukawa couplings are summarized in Table 2.

4.2 1t — e conversion in nuclei

Besides the charged lepton flavor violating radiative decay
processes, (. — e conversion in nuclei is also a rare process
providing stringent constraints on the strength of leptoquark
interactions. The current experimental search on . — e con-
version using gold nucleus provides the most stringent upper
limits and the upper bound to the branching ratio is set by
the SINDRUM experiment as [114]

F(M - e)Au

<7x 1071, (58)
Fcapture

Br(n —e)au =

where the I'caprure = 8.6 X 1018 GeV denotes the muon
capture rate by gold nucleus [115]. The i — e conversion rate
in nuclei can be calculated by following formula [116,117]

PG = e) = 2G3m3, [a0SW + gy s® + gy v®

2
+EW VT4 (L - R). (59)

The overlap integral values of gold nucleus are S =
0.0523, 5™ = 0.0610, VP = 0.0859, V™ = 0.108 [116].
With the effective Lagrangian given in Eq. (21), the coupling
constants g are defined as

ol s 1 LL,RR\ii

g rs = GY p)z(gs,q’ )12, (60)
q

5 s 1 LL,RR\ii

gin;,Rs = Z Ggq n)z(gs,q' )12, (61)
q

g(Lp‘; _ [(g‘l;{;d)ll,IZ + (g‘ljﬁ)ll,lz]

@ Springer
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processes £ — £’y and N2
uAu — eAu n—> ey IVIEYiR | 13T vkl < 3.57 x 107 (%)

DR iR < 129 %10 (7% )
L il <538 107 (7%)
T i vl < 131 x 1070 (T )2
(VT y30)2(VTys )i < 3.98 x 1074 (’%)2

T — ey |y]lzy711el|y |)’Ti1y11133| <3.99 (%)2
DRI iR < 145 %107 (7% )
DAL TR < 602 x 1074 (%)
T i il < 0874 (M)’
(VT y30) 3 (VTyE )T < 0.240 (%)2

—— AR bt i < 401 (%)’
R TPV < 1671072 ()]
YR IR < 695 x 104 (1)
TR Tl b3l < 1ot (Ya2)
(VT ys) P (VTyi )| < 0.278 (W)2

HAuU — eAu Iy}%yﬁll, |y11%eYT1lel| <420x107° (%)2
i it < 8.2 1070 (1)
9123311 < 3.40 x 1076 (’;;2)2
pi2y511) <214 x 1076 (%)2
(VT y3p)2(VTyE 1| < 170 x 107 (%)2

+ l [(g‘L/Ld)“’lz + (g‘IELd)ll,lz] ’ (62) bounds on thé leptoquark couplings from Br(u — e)ay are
2 ' ’ summarized in Table 2.

g%ﬂ& _ I:(g‘lf’l;)]l,n + (g‘L/ft)ll,lz]
1
+3 [+ )] (63)

N 1
ggn‘)/ _ 5 I:(g‘L/’Lu)ll,IZ + (g‘lj’Lu)ll,IZ:I

+ [ 4 g2 (64)
- 1
ggz‘)/ _ 5 [(855,)“’12 + (g‘L/’[:’t)ll,IZ:I

+ [eBR)112 4 (gfRy 12 (65)

where the coefficients of scalar operators are Gg’p = Gfé’" =
5.1, G4? = G%" = 43 and G” = G%" = 2.5[118]. The

@ Springer

4.3 Rare meson leptonic decays

Introducing leptoquarks could induce meson rare decay
processes. In this subsection, we consider the relevant By
meson rare leptonic decays that include leptonic conserving
decays, B, — puTu~/tt ™, and leptonic flavor violation
decay By — p*tT. The corresponding 4-fermion operators
O, 0190 are givenin the Eq. (30). The recent experimental
measurements of these processes are given by [88,119,120]

Br(B; — pntu™) = (2.93 £0.35) x 1077, (66)
Br(B; — t717) < 6.8 x 1073, (67)
Br(B; — uttT) < 1.4 x 107°. (68)
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Among these processes, only the By — u™ ™ has been
observed by the current experiments and the branching ratio
agrees with SM prediction value at a level of 40, Br(B; —
)SM (3.63+£0.13) x 1072 [93], while the current exper-
1ments only give upper bounds for the other two processes.
The contribution to the decay width of a neutral meson to
two charged leptons P — £7¢'~ can be written as [121]

1 G%? gm * 12 1/2 1/2
Ppovie- = g3t PRV VP
P
% {Al N(me — mypr) (Céjfz’ _ ng']/'U/)
2 2
——(Cs - C
mq+mq ( S 5)

+a- ’(mz +my) (C”“ Cj{)’f‘zl)

2

2
(Cp—Ch) } (69)

my +mq

where fp is the meson decay constant, A > = m2 p— (mg £
me)? and mg, my are the masses of the valence quarks in the
pseudoscalar meson P. It is noted that the lepton flavor con-
serving decay process P — £1£~ is independent of Wilson
coefficients Cq).

4.4 Rare meson semi-leptonic decays

The meson rare semi-leptonic decays can be induced at the
tree-level by the leptoquarks and present constraints on the
corresponding parameters. Here we consider B — Kvv
and B — K™vv processes, related to the (ggvv) inter-
actions. The corresponding SM predictions are Br(B? —
K%v) = (4.1 £0.5) x 107 and Br(B® — K*0vv) =
(9.24+1.0) x 10-° [122,123], while the current experimental
upper limit bounds are given as 2.6 x 107> and 1.8 x 107>
by the Belle collaboration [124] respectively. To describe
the constraints on new physics from the B — Kvv and
B — K*vv processes, the ratio R}, is introduced and
defined as

RV BrSMHNP(p 5 g ()

= 70
K® BrS™M(B — K®vp) (70)

The latest Belle results [124] imply Ry’ < 3.9 and Ry, <
2.7. As shown in Table 1, the contributions to B — K ®vp
from leptoquarks S and S3 are represented by the Wilson
coefficients hf,fd, while by the Wilson coefficient h"i’Ld for
the case of leptoquark R, . If the new physics contribution is
dominated by the hL term, the ratios Rx and Rg+ can be

calculated by the following formula [122],

/ —E
Ry = 8" CPM + (W)L (D)

2 1

— + -

3 Z/ 3|cM|2
v,V

where CEM describes the SM contribution and the value is
C,S;M = —6.35. Note that since the experiments cannot detect
the neutrinos in the final state, we need sum over all the flavor.
On the other hand, if the new physics contribution is only
originated from the h , term, one has R}’ # Ry, and the
ratios are then presented by

2 1 / o
Rl]){\) — g + Z 3|CSM|2 |:<SUV CEM + (h‘lif;i)32,uvi|
v,V L
(SVU,CSM Re(hRL )32;\)1}/
x| 1+2 SMg R‘If’d32~ 2| (72)
CEVE -+ (L]
2 1 / o
R =5+ ST (67 M+ (]
v,v’ L
X |:1 —

4.5 Neutral meson mixing

5" CSM Re(hEL )3 -
(PP + (322

Leptoquarks can induce neutral meson mixing via box dia-
grams mediated by leptons and leptoquarks. In this subsec-
tion we study the constraints from the B — BY and K° — K0
mixing. The related effective Hamiltonian can be described
by [125]

Heit = Cf, (d}y"d])(d} yud])

+CR(py " di) yudp) + Cly

(dpy"d]) dyudp), (74)
where i, j = 3,2 corresponding to B® — BO mixing and
i,j = 2,1 related to K — K9 mixing. Mapping the con-

tribution of leptoquarks S, 152 and S3, we have the Wilson
coefficients at the scale ;1 = my g in the following form,

» 1 o 12
S - C!] — _ I:VT ik \"al * jk:l ,
1t Cfy —128n2m§]2k:( i) Viyi)

(75)
P - ij *]k
Ry: Cpp= 1287 2m2 Z (2Ly2L (76)

. l ik k
Sy: CU = —12&12 . §j [Tyt vty
(77)

The transition of the Wilson coefficients from yu = 1 TeV to
= my, scale are evaluated by the Wilson package [79] and
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Table 3 Bounds on the

leptoquark couplings from Processes

Constraints on the couplings

neutral mesons mixing and rare
decay processes

B) —> ptu~
BY — ttr~

0 +
B, — u*rt

B — Kvv

KO — KO

2
Y2922 e [—11, 11] x 1074 x (%)
2
(VT y3)2(VTy5) 2 € [-5.8,5.3] x 1074 x (%)

2
Y3y e [-13,13] x (’%2)

(VT y3)B(ViyE)3 € [-0.63, 0.63] x (’{’;3)2

32323 334522 ¢ (20,080, 0.080] x (’%)2

VT3P VI3, (VT 3022V, € [-0.040, 0.040] x
VT )3 (ViyE ¥ € [—0.070,0.029] x (%@,)2

Vi i € [-0.032,0.061] (’%)2

(VT y30)3¥ (Vi yi )% € [~0.070,0.029] x (”‘i)z

TeV

. . 2
VT v (Vi)Y € 1-0.14,0.14] x (%)

mgy 2
TeV

. . 2
2 yi3 € [0.14,0.14] x (’%)

) . 2
Tya)? (V)% € 1-0.061,0.061] x (%)

ms,

. . 2
VT3 (Vv e [-0.026,0.026] x (5% )

. . 2
¥ il € 1-0.026,0.026] x (5%

TeV

Ty (Viyi)! € [-0.013,0.013] x (%)

the results are given by

Cly gre =1TeV) =0.78CY, gl =my). (78)
The current measurements of the mass differences in BsO —

BY and K° — K0 mixing are [126],

AmP = (17.741 £0.020) x 10257,
Am® = (3.484 £ 0.0009) x 100571,

(79)
(80)

For the mass difference Am%tp, the SM prediction value is
Am$M = (18.3 +2.7) x 1012s~! [127-129]. But the SM

prediction for the mass difference in K° —KO mixing has not
been precisely estimated [130,131]. Thereby in our analysis,
we take the new physics contribution to K® — K0 mixing to
be compatible with the experimental value. The bounds on
the leptoquarks couplings from neutral meson mixing and
rare decay processes are summarized in Table 3.

5 Numerical analysis

In this section, we perform a numerical analysis of the
model parameter space to supply a common explanation of

@ Springer

B-physics anomalies in Ry, Rpe and the charged lep-
tons anomalous magnetic moment (g — 2),,, as well as
the neutrino oscillation data. Instead of exploring the entire
parameter space, we find the minimal parameters of the
model and combine the constraints from the low-energy pro-
cesses given in the Sect. 4. We fix the components of sin-
glet leptoquark S; and triplet leptoquark S3 mass at 1 TeV
(ms, = mg; = 1 TeV) and fix the components of doublet
leptoquark R, mass at 2 TeV (m R, = 2 TeV). We use the
python package Flavio to obtain the appropriate values of
Wilson coefficients that explain the anomalies at the scale of
leptoquark masses (i« = 1 TeV) and then analyze the model
parameter space.

In order to minimize the number of parameters, we adopt
the following form of the Yukawa coupling matrices in the
analysis.

0O 0 O 0O 0 O
VIR = Y%}e 0 y%?e ,  YIL = ylzi 0 y%ﬁ ,
0 yiz 0 0 i ¥l
0O 0 O 0O 0 O
vie=| 0 ¥y |, yw=|yuvivi]. @)

31,32 31,32 33
NIRRT oL Yor V2L
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21
YiL

21
“Yir

33
UL

Rp 20

10° 10° 10 10

23
“Yir

32
nr

Fig. 5 Allowed regions of the various leptoquark Yukawa couplings obtained from fitting to the corresponding processes. The dark (light) green
band represent the 1o (20°) allowed regions that explain the corresponding anomalies and the lines denote the constraints from the labelled processes

The coupling combination ( y3 7093 L) can explaln the anoma-
lies of Rx and Rg+, while the couplings (y2 IS y2 L) can
contribute to Rp and Rp+. The couplings (y1 R Vi L) and
(y1 2 Vi L) give contributions to Aa, and Aa,, respectively.
The other non-zero couplings are needed to fit the neutrino
masses and mixing angles. For a simple illustration, in Fig. 5,
we present the allowed parameter space to explain these
anomalies and satisfy the relevant processes constraints with
taking the coupling as real. Specifically, we provide two con-
crete benchmark points of the leptoquarks Yukawa couplings.
In benchmark point 1, the couplings are chosen as complex
number. While for benchmark point 2, we choose the Dirac
CP angle in the neutrino mixing matrix as 180°, which is
within 1 o allowed range [126] and it is possible to take all the
leptoquark Yukawa coupling values as real. The correspond-
ing values of observables for these two benchmark points are
summarized in Table 4.

Benchmark point 1:

0 0 0 0 0 0
yir=|-037 0 —070]|, ys;r=[0 0029 0]},
0 0054 0 0 0023 0

0 0 0
yir = | 0.012 4+ 0.016i 0 —0.049 —0.0042i |,
0 0.57 4+ 0.0082i  0.59 + 0.052i
0 0 0
yar = | 0.043 —0.042i 0.044 —0.048 (82)
—0.00013  0.00038 0.00027
Benchmark point 2:
0 0 0
yir=1]-0.014 0 -093],
0 0012 0
0O 0 O
yir=1(037 0 0 |,
0 0.210.38
0 0 0
yiL = 0 0.070 0.038 ],
0.0019 0.0059 0
0 0 0
yar = | —0.015 —0.0020  0.023 (83)

0.0015 0.0031 —0.00078
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:I?:)elrev:blseu\?;lrg :;yf:rftﬁl: Observables Allowed range BP1 BP2
benchmark points Am2,(1075 eV?) [6.82, 8.04] 7.44 7.40

Am3,(1073 eV?) [2.435,2.598] 2.50 2.51

sin? 05 [0.269, 0.343] 0.305 0.301

sin? 03 [0.405, 0.620] 0.569 0.570

sin? 0,3 [0.02064, 0.02430] 0.0226 0.0225

Scp/° [169, 246] 194 180

R [0.795, 0.901] 0.808 0.812

Ri+ [0.569, 0.845] 0.794 0.817

Ry [0.48, 0.88] 0.808 0.812

Ryt [0.53,0.91] 0.825 0.844

Rp [0.310, 0.370] 0.358 0.351

Rp [0.281, 0.309] 0.305 0.292

Aa, (10713) [—12.3, =5.1] —8.48 —9.89

Aay, (1079) [1.93,3.11] 2.52 2.06

Br(y — ey) <42x1071 6.49 x 1072 1.04 x 10717
Br(t — ey) <33x1078 2.98 x 10718 6.09 x 10~16
Br(t — uy) <44x10°8 2.99 x 10~18 7.82 x 10710
Br(it — €)au <7x10713 4.84 x 10719 2.62 x 10715
Br(B? — pup) [2.58,3.28] x10~° 293 x107° 3.42 x 1079
Br(B? — t7) <6.8x 1073 7.82 x 1077 7.95 x 1077
Br(B? — ut) <14x107° 2.11 x 10714 1.40 x 10710
RY <39 13 0.75

RY. <27 1.4 0.76
AmPNE / AmIM [0.85, 1.15] 1.03 1.01

AmRP (1010571 <0.95 0.0016 0.52

6 Conclusion

In this paper, we have proposed a simple model by extending
SM with three TeV-scale scalar leptoquarks Sy, 152 and S3,
where the source of tiny neutrino masses, the lepton flavor
anomalies in B-meson decays (R, R ) and the tension
in the charged lepton (electron and muon) anomalous mag-
netic moments have a common solution. In the model, R g
anomalies are resolved by the leptoquark S3 via the Wilson
coefficients C(’; lfo- Leptoquark S explains the anomalies of
R p through the Wilson coefficients gs, 81, as well as the
deviations of leptonic magnetic moments (g — 2),,, by one-
loop level contribution. The small mixing of leptoquarks Sy
with R; or R, with S3 can generate tiny neutrino masses. We
analyze the parameter space of the leptoquark Yukawa cou-
plings and obtain the corresponding viable region. We study
the relevant experimental constraints and conclude there is
an appropriate parameter space accommodate to combined
explanation for these anomalies and deviations.
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