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Introduction

Negatively charged electrons and a positively charged nucleus constitute an atom being
the basic building brick of normal matter. The nucleus consists of protons and neutrons,
together known as nucleons, which were considered to be elementary particles until the
1950s. For all we know today, nucleons are composed of more basic constituents called
quarks, bound together by the exchange of gluons.

Electrons are elementary particles and interact with others mostly through electromag-
netic interaction which is described by an extremely precise theory, Quantum Electrody-
namics (QED). Meanwhile, quarks and gluons are also elementary particles governed by
the theory of strong interactions, Quantum Chromodynamics (QCD). The understanding
of how QCD works in detail remains an outstanding problem in physics.

QED describes the interaction of charged particles in terms of the exchange of photons,
which are electrically neutral. In contrast, QCD attributes the strong forces among quarks
and gluons to their color charge. The fact that gluons carry color charge causes the gluons
to interact with each other. QCD exhibits two main characteristics: color confinement
and asymptotic freedom.

Color confinement is the phenomenon that color charged quarks and gluons cannot
be isolated from their bound state, namely hadron. As the distance increases, the strong
coupling constant becomes extremely large and the strong force binds them within the
hadron. Even if high enough external energy is given to be able to separate a single
quark or gluon, it would be bound with new quarks and gluons created by the external
energy and produce a new hadron. This hadronization process also occurred shortly after
the Big Bang when quarks and gluons cooled into hadrons with several simple structural
properties.

Asymptotic freedom is the phenomenon that quarks behave as free particles at ex-
tremely short distances. In other word, the strong coupling constant is very small at high
energy. In this case, accurate perturbative calculations are allowed as in QED.

In the non-perturbative regime of QCD, the most well established and promising
theory at present is the lattice QCD, opening an exciting field and being progressing fast.
By evaluating QCD numerically on a discretized space–time Euclidean lattice, it provides
predictions for some category of non-perturbative objects. Practically, the complex quark
and gluon structure of the nucleon in its non-perturbative regime is parametrized by
the structure functions. They are mainly measured through lepton scattering due to
the structureless nature of leptons and accurate description of QED. For instance, Form
Factors (FFs) have been measured by elastic scattering and Parton Distribution Functions
(PDFs) through Deep Inelastic Scattering (DIS).

Unifying Form Factors and Parton Distribution Functions, a new type of structure
functions named Generalized Parton Distributions (GPDs) have emerged over the 1990s.
With richer information about the partons (i.e. quarks and gluons) within the nucleon
embedded in GPDs, they become one of the most powerful tools to study nucleon struc-
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10 INTRODUCTION

ture.
The GPDs are accessed mainly in Deep Exclusive Scattering (DES), i.e. the exclusive

leptoproduction of a photon or a meson on the nucleon. The simplest and the theoretically
cleanest process is Deeply Virtual Compton Scattering (DVCS). Since the beam spin
asymmetry measurements at HERMES and CLAS at the beginning of the 2000s, a series of
DVCS experiments have been followed and impressive progress has been made, gradually
providing a deeper understanding of the nucleon structure.

However, the DVCS process has a restriction by its nature for the direct measure-
ment of GPDs. Further GPDs information requires other processes, particularly the
Double Deeply Virtual Compton Scattering (DDVCS), subject of the present studies.
This thesis presents the DDVCS theoretical framework, the model-predicted experimen-
tal projections including an ideal configuration and the large acceptance detector SoLID
(Solenoidal Large Intensity Device), and develops a scheme to extract GPDs information
from simulated pseudo data. The text is organized as follows:

• Chapter 1 briefly reviews the theoretical and experimental aspects of nucleon struc-
ture functions. In particular, the theoretical framework of GPDs and the VGG
model based on double distributions are introduced, as well as the golden DVCS
channel accessing GPDs. The DDVCS process is concisely described in terms of its
benefits and difficulties by the end of this chapter.

• Chapter 2 introduces the theoretical framework for the DDVCS process, including
kinematics and cross section. The formalism of the 7-fold differential cross section is
then introduced, followed by two kinds of 5-fold differential cross section integrated
over the angles. By the end of the chapter, the experimental observables in terms
of the 5-fold cross section are presented.

• Chapter 3 presents the model-predicted observables in some specific kinematical sce-
narios, including the azimuthal dependence of the cross section and their azimuthal
moments. The sensitivities to GPDs are discussed by the end of the chapter.

• Chapter 4 presents the approach for the DDVCS events generation, the binning
based on the distribution of the events and the expected observables in an ideal
situation.

• Chapter 5 presents the realistic projections with specific experimental setups. The
feasibility of the experiments with the small acceptance detector SHMS (Super High
Momentum Spectrometers) is firstly discussed, followed by the expected observables
with the large acceptance detector SoLID (Solenoidal Large Intensity Device).

• Chapter 6 introduces two different methods for the extraction of GPDs information
from DDVCS data. The performances of the methods applied to the simulated
pseudo-data are also presented.



Chapter 1

Accessing nucleon structure via
DDVCS

1.1 Nucleon structure functions

Nucleons have been thought to be elementary particles, namely point-like, fundamental
particles that do not consist of any other particles. In the period from 1953 to 1956, the
first explicit evidence of the extented nature of the proton was obtained through elastic
electron proton scattering at Stanford [1]. Nucleon Form Factors, which can be related to
the spatial distribution of charges in the nucleon, have been introduced for interpreting
elastic ep cross section ever since. The project leader, Robert Hofstadter, was awarded
the Nobel Prize in 1961 “for his pioneering studies of electron scattering in atomic nuclei
and for his thereby achieved discoveries concerning the structure of the nucleons”.

With the development of accelerator technology, the beam energy has significantly im-
proved. It has been observed that as the momentum transfer increases, the cross section
rapidly decreases compared to elastic elctron scattering. At sufficiently large momentum
transfer, Deep Inelastic Scattering where nucleons break up becomes dominant. From the
beginning of 1967 at SLAC, experiments with GeV electron beam energy was conducted
on a target consisting either of liquid hydrogen or of deuterium. In contrast to elastic
scattering, a scaling behavior was observed, which is the phenomenon that the cross sec-
tion at large momentum transfer is almost independent on the momentum transfer [2].
This so-called Bjorken scaling demonstrated the presence of point-like charged constituent
within the nucleons, which were named “partons” by Feynman before quarks and gluons
were generally accepted. Parton Distribution Functions describing the momentum distri-
bution of the quarks within the nucleon have been introduced. The 1990 Nobel prize was
awarded to Friedman, Kendall and Taylor “for their pioneering investigations concerning
deep inelastic scattering of electrons on protons and bound neutrons, which have been of
essential importance for the development of the quark model in particle physics”.

FFs and PDFs have been measured for around half a century but are still an in-
tense subject of investigation. Despite these extraordinary achievements, a complete
understanding of the nucleon internal structure was still inaccessible. For example, FFs
integrate over the information related to the dynamics of partons inside nucleons and
PDFs do not provide information about their spatial distributions. In order to have a
stronger theoretical tool revealing the mystery of nucleon structure, especially the spin
structure, the formalism of Generalized Parton Distributions has been introduced in the
mid-1990s [3, 4, 5, 6, 7]. Encoding the correlations between transverse spatial distribu-

11



12 CHAPTER 1. ACCESSING NUCLEON STRUCTURE VIA DDVCS

Figure 1.1: Feynman diagram relative to the one photon exchange approximation of the
electron nucleon elastic scattering.

tions and longitudinal momentum distributions of partons inside the nucleon, GPDs allow
a 3-dimensional imaging of the nucleon. As a result of these position-momentum corre-
lations, GPDs provide a way to measure the unknown orbital momentum contribution of
quarks to the total spin of the nucleon through Ji’s sum rule [4]. They also enable indi-
rect access to one of the gravitational form factors encoding the shear forces and pressure
distribution on the quarks in the proton [8, 9, 10].

1.1.1 Form Factors and Parton Distribution Functions

Elastic scattering and Form Factors

The electron nucleon elastic scattering eN → eN , where N represents either a proton
or a neutron, can be described in terms of a single virtual photon exchange process
(Born term) in the lowest-order approximation, as shown in Fig. 1.1. This approximation
is expected to offer an accurate description due to the small coupling constant of the
electromagnetic interaction. In this case, the elastic scattering is characterized by the
squared four-momentum transferred to the nucleon q2 = (k − k′)2 = (p′ − p)2, where
k(E,k), k′(E ′,k′), p, p′ are the four-momenta of the incident and scattered, electron and
nucleon, respectively. The virtuality of the exchanged photon defined as Q2 = −q2 can
be thought as the resolution or the scale with which one probes the internal structure of
the nucleon. With larger Q2, smaller structure can be observed.

The laboratory frame differential cross section for the detection of the electron in
elastic scattering writes

dσ

dΩ
=

(
dσ

dΩ

)
Mott

{
F 2
1 (Q2) + τ

[
F 2
2 (Q2) + 2

[
F1(Q

2) + F2(Q
2)
]2

tan2 θe
2

]}
(1.1)

where τ = Q2/4M2 with M being the nucleon mass, and θe is the polar angle between
the beam and the scattered electron. The Mott cross section for elastic scattering from a
point-like nucleon reads (

dσ

dΩ

)
Mott

=
α2 cos2(θe/2)

4E2 sin4(θe/2)

E ′

E
, (1.2)

where the fraction E ′/E is the energy correction from the recoil nucleon. F1(Q
2) and

F2(Q
2) are the Dirac and Pauli Form Factors, which are the only structure functions

allowed in the Born term by relativistic invariance.
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Figure 1.2: Dirac and Pauli Form Factors. The red curves correspond to the proton and
the blue ones to the neutron; the solid curves stand for F1(Q

2) and the dashed ones for
F2(Q

2).

In the static limit, Q2 = 0, Dirac Form Factor represents the proton (p) or neutron
(n) electric charge: F p

1 = 1, F n
1 = 0, while Pauli Form Factor equals to the anomalous

magnetic moment: F p
2 = 1.79, F n

2 = −1.91. Fig. 1.2 shows the Form Factors as functions
of Q2 evaluated by adopting the extended Gari-Krüpelmann model (GKex02S) [11].

Experimental cross section data are most easily analysed in terms of another set of
Form Factors, the Sachs Form Factors GE(Q2) and GM(Q2), also named electric and
magnetic form factor, respectively. They are related with F1(Q

2) and F2(Q
2) following

Gi
E(Q2) = F i

1(Q
2)− τF i

2(Q
2),

Gi
M(Q2) = F i

1(Q
2) + F i

2(Q
2), (1.3)

where i is the index referring to the the nucleon type (i = p, n). The cross section can be
rewritten in terms of the Sachs Form Factors in a simpler form, without an interference
term, serving the separation method of G2

E(Q2) and G2
M(Q2) known as the Rosenbluth

technique:
dσ

dΩ
=

(
dσ

dΩ

)
Mott

1

1 + τ

[
G2
E(Q2) +

τ

ε
G2
M(Q2)

]
, (1.4)

where ε is the longitudinal polarization degree of the virtual photon defined as

ε =
1

1 + 2(1 + τ) tan2(θe/2)
. (1.5)

Taking advantage of the linear dependence on ε in the reduced cross section, which reads

σred =
ε(1 + τ)

τ

(
dσ

dΩ

)/(
dσ

dΩ

)
Mott

=
ε

τ
G2
E(Q2) +G2

M(Q2), (1.6)
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Figure 1.3: The proton Form Factors extracted from worldwide cross section measure-
ments as functions of Q2. The figure is extracted from [13].

the Rosenbluth separation technique indicates that the slope of the linear relation is
proportional to G2

E(Q2) and the intercept equals to G2
M(Q2).

The two Sachs Form Factors, GE(Q2) and GM(Q2), required to describe the nucleon
charge and magnetization distribution have been traditionally obtained by cross section
measurements and more recently from polarization observables. In the static limit, the
proton and neutron magnetic Form Factors Gp

M(0) andGn
M(0) , are equal to their magnetic

moments, µp and µn, while the proton and neutron electric Form FactorsGp
E(0) andGn

E(0),
are equal to their electric charge. The earliest experiments at low Q2 found

Gp
E(Q2) ≈ Gp

M(Q2)

µp
≈ Gn

M(Q2)

µn
≈ GD(Q2),

whereGD(Q2) is the dipole parameterization approximately characterizing theQ2-dependence
of these Form Factors:

GD(Q2) =

(
1 +

Q2

0.71

)−2
, Q2 in GeV2. (1.7)

Gn
E(Q2) can also be roughly described by the dipole model at low Q2 following

Gn
E(Q2) = − µnτ

1 + 5.6τ
GD(Q2), (1.8)

which was deduced from fits of low Q2 experimental data [12].
The data for Gp

M(Q2) have good consistency between different experiments up to 30
GeV2, however, the determination of Gp

E(Q2) at Q2 larger than 2 GeV2 has suffered from
large error bars, as shown in Fig. 1.3. The neutron electric form factor, Gn

E(Q2), is small
and difficult to extract from cross section experiments. All these difficulties originated
from the theoretical direction of cross section experiments, the Rosenbluth separation
technique. New experimental methods using spin observables were needed which pushed
the development of polarized targets and new accelerators with high duty factor and
polarized electron beams. Let me introduce a recent review [13] with respect to the
elastic scattering and electromagnetic Form Factors.



1.1. NUCLEON STRUCTURE FUNCTIONS 15

Proton charge radius

The determination of the proton charge radius RE from the proton electric Form Factor
measured experimentally through the elastic scattering of electrons off protons is the
subject of an intense scientific activity. According to the definition

RE =

√
−6

dGp
E(Q2)

dQ2

∣∣∣∣
Q2=0

, (1.9)

the experimental method to determine RE consists in the evaluation of the derivative of
the electric Form Factor of the proton GE(Q2) at zero-momentum transfer.

Within a non-relativistic (Q2 � 4M2) description of the internal structure of the
proton, one can interpret the Form Factors in terms of the Fourier transforms of the
nucleon charge and magnetization distributions:

GE,M(Q2) ≈ GE,M(q2) =

∫ ∞
0

eiq·rρ(r)d3r, (1.10)

where ρ(r) is either the electric or the magnetic spatial distribution function. At Q2 = 0,
GE,M(0) =

∫
ρ(r)d3r represents the nucleon charge or magnetic moments as mentioned

previously. Particularly, let us focus on the proton charge distribution. The MacLaurin
expansion of the electric Form Factor Gp

E(Q2) writes

Gp
E(Q2) =

∞∑
n=0

(−1)n

(2n+ 1)!
〈r2n〉E Q2n = 1− 1

6
〈r2〉E Q2 +

1

120
〈r4〉E Q4 + · · · , (1.11)

where

〈r2n〉E = (−1)n
(2n+ 1)!

n!

dnGp
E(Q2)

d(Q2)n

∣∣∣∣
Q2=0

(1.12)

relates the electric Form Factor to the even moments 〈r2n〉E of the charge density ρE(r)

〈r2n〉E ≡ 4π

∫ ∞
0

r2r2nρE(r)dr. (1.13)

Consequently, the non-relativistic charge radius of the proton, namely the root-mean-
square (rms) radius, can be expressed as

RE =
√
〈r2〉E. (1.14)

Experimentally, RE can be extracted by fitting the first few terms of the above
MacLaurin expansion of the Form Factor to the world experimental data at low Q2. How-
ever, the proton charge radius has been suffered from a substantial discrepancy between
two different measurements: the elastic electron proton scattering and the spectroscopy
of muonic hydrogen atoms. The first measurement using muonic hydrogen atoms [14]
found a 5-σ discrepancy compared with previous results [15], which became known as
the proton radius puzzle. The most recent RE obtained from the high-precision elastic
scattering experiment (PRad) at Hall B of Jefferson Laboratory [16] supported the highly
accurate results from muonic hydrogen experiments. Because no convincing explanation
for the discrepancy has been proposed, further efforts will be pursued to validate the
latest results and to critically assess the different measurement techniques.

Similar relations hold for the magnetic form factor Gp
M(Q2) and the proton magnetic

radius RM . However, the determination of the magnetic radius is more challenging be-
cause the contribution of Gp

M(Q2) to the cross section is, at low Q2, suppressed by the
factor τ as shown in Eq. (1.4).
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Figure 1.4: Feynman diagram relative to the one photon exchange approximation of DIS.

Deep Inelastic Scattering and Parton Distribution Functions

The electron nucleon inclusive scattering, also called Deep Inelastic Scattering, can be
expressed by eN → eX where X stands for an undefined final state. Fig. 1.4 shows the
process in the one photon exchange approximation, where W is the invariant mass of the
recoiling target system X. W is defined as

W 2 = (p+ q)2 = M2 + 2Mν −Q2, (1.15)

where ν = E − E ′ is the electron energy loss.
On the assumption of one photon exchange, the differential cross section for Deep

(Q2 � M2) Inelastic (W 2 � M2) Scattering in which only the electron is detected is
given by

d2σ

dΩdE ′
=

(
dσ

dΩ

)
Mott

[
W2(ν,Q

2) + 2W1(ν,Q
2) tan2 θe

2

]
. (1.16)

This expression is analogous to the Rosenbluth cross section given by Eq. (1.4) but the en-
ergy correction E ′/E in Eq. (1.2) shall be removed for the Mott cross section in Eq. (1.16).
The two structure functions W1 and W2 are functions of ν and Q2 summarizing all the in-
formation about the structure of the nucleons obtained by scattering unpolarized electrons
from an unpolarized nucleon target.

A scaling behavior had been predicted by Bjorken [17] for the DIS process before it
was verified by the subsequent experiments. In the Bjorken limit (Q2 →∞, ν →∞ and
fixed Q2/ν), the DIS cross section has the signature of the Q2-independence, namely the
absence of a scale in the process, which is know as “scaling”. The structure functions W1

and W2 become functions of a Bjorken variable only:

MW1(ν,Q
2) = F1(xB), (1.17)

νW2(ν,Q
2) = F2(xB), (1.18)

where the Bjorken variable writes

xB =
Q2

2p · q
=

Q2

2Mν
. (1.19)

xB = 1 (Q2 = 2Mν) corresponds to the elastic scattering. The accumulation of DIS data
for more than 50 years shows that the scaling begins to be valid already at Q2 ≈ 1 GeV2.

As we have already seen in the process of elastic scattering, an object with a finite
size should have Q2-dependent Form Factors describing its structure. Thus, the Bjorken
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Figure 1.5: The DIS process in the Bjorken limit: the photon interacts with a single quark
of the nucleon. The struck quark escapes the nucleon and hadronizes in an undetermined
final state.

scaling in the DIS gives evidence on the behavior of point-like, charged particles within the
nucleon, which are called “partons” in Feynman’s parton model [18]. The model assumes
an infinite momentum frame of reference and no interaction among the partons while
the virtual photon is exchanged. Therefore, electrons scattered from “free” partons and
the scattering reflects the properties and motions of the partons. This assumption was
subsequently shown to be a consequence of QCD known as asymptotic freedom [19, 20].
Moreover, the Callan-Gross relation,

F2(xB) = 2xBF1(xB), (1.20)

was verified experimentally, proving that the partons are particles with a spin of 1/2, i.e.
the well-known “quarks” inside nucleon.

In the Bjorken limit, the nucleon can be thought as a collection of non-interacting
point-like quarks, one of which carries a fraction x of the total longitudinal momentum
of the nucleon and interacts with the photon exchanged between the electron and the
nucleon in the DIS process, as shown in Fig. 1.5. Since the mass of the scattered quark
is negligible compared with Q2 and ν, one has

(xp+ q)2 = 2xp · q −Q2 ' 0. (1.21)

Thus, the momentum fraction x simply equals to the Bjorken variable xB in the DIS case:

x =
Q2

2p · q
= xB. (1.22)

We can define a function q(x) representing the probability that the nucleon contains
a quark of the flavor q inside a fast-moving nucleon, and carries a fraction x of its longi-
tudinal momentum. The DIS cross section can be calculated by combining probabilities
and the structure function F2 therefore can be expressed by

F2(x) = x
∑
q

e2qq(x), (1.23)

where eq is the electric charge of the quark q. The functions q(x) are so-called Parton
Distribution Functions (PDFs) and can be accessed by measuring F1(x) and F2(x) in DIS
experiments.
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Figure 1.6: The proton structure function F2 as a function of Q2 in bins of fixed x. The
figure is extracted from [21].

PDFs are still an intense subject of investigation. The scaling property is related to
the assumption that the transverse momentum of the partons in the infinite momentum
frame of the proton is small. In QCD, however, the radiation of gluons from the quarks
violates this assumption, leading to logarithmic scaling violations, which are particularly
large at small x, as shown in Fig. 1.6. The radiation of gluons produces the evolution of
the structure functions, i.e. the variation with Q2. As Q2 increases, more and more gluons
are radiated, which in turn split into quark-antiquark (qq̄) pairs. This process leads both
to the softening of the initial quark momentum distributions and to the growth of the
gluon density and the qq̄ sea as x decreases. The behavior of PDFs at large x is still a
mystery and needs understanding.

Factorization

The complex quark and gluon structure of the nucleon, governed by QCD, in its non-
perturbative regime is not applicable to the powerful method of perturbative QCD (only
just starting to be extracted in lattice QCD in a phenomenologically relevant way), nor is
any other cross section that involves initial-state hadrons. The structure functions (FFs
or PDFs) are determined from experimental data. One uses a procedure known as QCD
factorization where one separates a point-like, short-distance, “hard” subprocess, from the
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complex, long-distance, “soft” structure of the nucleon. Thus, the hard subprocess is then
perturbatively computable and the soft long-distance physics is encoded into structure
functions. As in the DIS process (Fig. 1.5), the hard subprocess of the photon-quark
interaction implies short distances (large Q2) and short time (large energy ν), occupying
a very small space-time volume. On the other hand, the scales involved in the formation
of the hadron non-perturbative wave function are much larger, of the order of a typical
hadronic scale (1 GeV). Hence, the two scales are uncorrelated and will not interfere.
Thus, although the process depends on the hadronic state from which a given constituent
has come, this is basically irrelevant for the hard interactions. All information about
long-distance physics is encoded into PDFs reflecting the soft internal structure of the
nucleon.

Since the number of quarks carrying the bulk of the nucleon momentum is small,
the photon is usually absorbed by one quark per collision. The probability for coherent
scattering on an n-quark configuration is suppressed by nth power of the photon virtuality
[22],

Pn ∼
(
|δz⊥|2

πR2
N

)n
∼ 1

(Q2πR2
N)n

. (1.24)

The transverse distance probed by the virtual photon in the nucleon is of order δz⊥ ∼ 1/Q,
and πR2

N is the transverse area of the nucleon. These power-suppressed corrections are
named higher twists. Thus, in “leading twist” approximation at high Q2, one can restrict
all considerations to the photon scattering on a single quark, as shown in Fig. 1.5 for
the DIS process. Conventionally, the leading twist is also called twist-2 and higher twist-
(m + 2) corrections are suppressed in powers of (1/Q)m with respect to the twist-2. In
addition, the QCD strong coupling constant αs decreases when Q2 increases. When
αs � 1 allowing perturbation theory techniques to be applied, the amplitude of a “hard”
process can be expressed as a series in powers of αs. In principle to calculate the amplitude,
one is supposed to draw and calculate all of the infinite number of possible Feynman
diagrams and add them up to get the total amplitude. The leading order (LO) term is
described by a single tree-level Feynman diagram, such as Fig. 1.1 for the elastic scattering
and Fig. 1.5 for the DIS process. Higher order corrections are suppressed by powers
of αs with respect to the leading order, which are called next-to-leading order (NLO)
corrections, next-to-next-to-leading order (NNLO) corrections, etc. The leading order
and the leading twist approximation will be kept in the bulk of this document.

In summary, in the electron nucleon scattering the nature of the interaction of the
virtual photon with the nucleon depends strongly on wavelength. At very low electron
energies, the scattering is equivalent to that from a “point-like” object. At low electron
energies, the scattering is equivalent to that from an extended charged object. At high
electron energies, the wavelength is sufficiently short to resolve sub-structure, i.e. con-
stituent quarks. At very high electron energies the nucleon appears to be a sea of quarks
and gluons.

1.1.2 Generalized Parton Distributions

Although FFs and PDFs have been precisely measured and have allowed remarkable
progress for the understanding the nucleon structure, there are still questions that cannot
be answered by these quantities. A new avenue in the study of nucleon structure opened
up in the last decade of 20th century with the investigation of exclusive electroproduction
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processes. One significant concept called Generalized Parton Distributions (GPDs) was
introduced, in which the three-dimensional structure of nucleons is embedded.

GPDs are four universal factorizing structure functions Hq, Eq, H̃q and Ẽq, describing,
at leading twist level, the non-perturbative quark structure of the nucleon [3, 4, 5, 6, 7].
Each GPD is defined for a given quark flavor q = u, d, s, · · · . Omitting the Q2-dependence
associated with QCD evolution equation, GPDs depend on three parameters: x, ξ and
t. x is the average longitudinal momentum fraction of the quark, ξ is the transferred
longitudinal momentum fraction or skewness parameter, and t is the squared momentum
transfer between the final nucleon and the intial one, namely t = ∆2 = (p′− p)2. x varies
between −1 and 1 and ξ in principle also between with −1 and 1 but, due to time reversal
invariance, the range of ξ is reduced between 0 and 1. If x > ξ, GPDs correspond to
the probability amplitude of picking a quark (or an antiquark if x < −ξ ) of momentum
fraction x+ ξ from the nucleon and inserting it back with a different momentum fraction
x − ξ plus some transverse momentum represented by t, as illustrated in Fig. 1.7. The
remaining region −ξ < x < ξ implies finding a quark (positive momentum fraction)
and putting back an antiquark (negative momentum fraction). In this region, the GPDs
behave like a meson distribution amplitude and can be interpreted as the probability
amplitude of finding a quark-antiquark pair in the nucleon. This kind of information
on qq̄ configurations in the nucleon and, more generally, the correlations between quarks
(or antiquarks) of different momenta are relatively unknown and reveal the richness and
novelty of the GPDs.

The GPDs H and E correspond to averages over the quark helicity. They are therefore
called unpolarized GPDs. The GPDs H̃ and Ẽ involve differences of quark helicities and
are called polarized GPDs. At the nucleon level, E and Ẽ are associated with a flip of
the nucleon spin while H and H̃ leave it unchanged. The four GPDs therefore reflect
the four independent helicity-spin combinations of the quark-nucleon system. These are
illustrated in Fig. 1.8.

Fig. 1.8 shows only the quark helicity conserving GPDs. When the quark helicity is
flipped, one defines “transversity” GPDs HT , ET , H̃T and ẼT . However, they are not in
the discussion of this document. In addition, the gluon GPDs (can be simply represented
by finding a gluon instead of a quark and putting it back in Fig. 1.8) in principle have a
small impact in the valence region at moderate energy. Although recent research [23, 24]
indicates that gluon contributions may not be negligible, gluon GPDs do not come within
the scope of the present study.

The present studies concern the Double Deeply Virtual Compton Scattering (DDVCS)
process within the context of 12 GeV upgrades of the Continuous Electron Beam Accel-
erator Facility at the Jefferson Laboratory (JLab12). I therefore concentrate only on the
valence region and GPDs in the following text refer to the four quark helicity conserv-

Figure 1.7: Symbolic representation of GPDs.
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Figure 1.8: The various quarks helicity and nucleon spin orientations with respect to the
four GPDs.

ing GPDs. For more details, see a recent review [25] about GPDs in the valence region.
To study the matter dominated by gluons and sea quarks originating from gluons will re-
quire the higher energy and beam polarization of the future Electron Ion Collider (EIC) at
Brookhaven National Laboratory (BNL), see the EIC White Paper [26] for more details.

Properties of GPDs

GPDs depend on two additional variables compared with PDFs and FFs. They are
therefore a much richer source of nucleon structure information and have the characters
of both PDFs and FFs.

In the forward limit (i.e. ξ = 0 and t = 0), corresponding to zero momentum transfer,
some GPDs reduce to one-dimensional PDFs:

Hq(x, ξ = 0, t = 0) = q(x), (1.25)

H̃q(x, ξ = 0, t = 0) = ∆q(x), (1.26)

where q(x) and ∆q(x) are the unpolarized and polarized PDFs, respectively, obtained
from DIS. The origin of these relations is the optical theorem and the symmetry of the
forward Compton process (see Fig. 1.9), corresponding to zero four-momentum transfer,
i.e. ξ = 0 and t = 0.

On the other hand, at finite momentum transfer, there are model-independent sum
rules which relate the first moments of GPDs to the FFs:∫ 1

−1
dxHq(x, ξ, t) = F q

1 (t), (1.27)∫ 1

−1
dxEq(x, ξ, t) = F q

2 (t), (1.28)∫ 1

−1
dxH̃q(x, ξ, t) = Gq

A(t), (1.29)∫ 1

−1
dxẼq(x, ξ, t) = Gq

P (t), (1.30)

where F q
1 (t), F q

2 (t), Gq
A(t) and Gq

P (t) are the contribution of the quark flavor q to the
Dirac, Pauli, axial-vector and pseudo-scalar FFs, respectively. When referring to the
quark FFs in the following, they are considered in the notation to be for the proton, e.g.
F u
1 (t) = F

u/p
1 (t). In this notation, the proton (p) and nucleon (n) Dirac FFs are related
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Figure 1.9: The optical theorem: the cross section of the DIS process is equal to the
imaginary part of the forward double virtual Compton amplitude. The figure is extracted
from [25].

to the quark FFs, neglecting strange quarks, as

F p
1 (t) =

2

3
F u
1 (t)− 1

3
F d
1 (t),

F n
1 (t) =

2

3
F d
1 (t)− 1

3
F u
1 (t). (1.31)

Similar relations hold for the Pauli FFs F q
2 .

It can be seen that the PDFs and the FFs appear as simple limits or moments of the
GPDs. The correspondence of GPDs to PDFs and FFs presages a possibility of studying
a spatial distribution of partons inside the nucleon. Actually, GPDs provide nucleon
tomography allowing one to extract the density of partons carrying a given fraction x
of the nucleon longitudinal momentum as a function of the position b⊥ in the plane
perpendicular to the nucleon motion. For ξ = 0 (where t = −∆2

⊥), meaning no change
of the longitudinal momentum of the active parton, the density for unpolarized partons
inside an unpolarized nucleon is expressed by:

q(x, b⊥) =

∫
d2∆⊥
4π2

e−ib⊥·∆⊥Hq(x, 0, t). (1.32)

Therefore, the zero-skewness GPDs can be interpreted as the probability of finding a
parton with longitudinal momentum fraction x at a given transverse distance in the
nucleon. In this way, the information contained in PDFs, as measured in DIS, and the
information contained within FFs, as measured in elastic scattering, are combined and
correlated in the GPDs description. This density gets distorted when the nucleon is
polarized. This effect is described by adding extra expressions related to the GPDs H̃q and
Eq. For instance, the longitudinal polarization of partons distributed in a longitudinally
polarized nucleon according to q(x, b⊥) can be studied with the Fourier transform of GPD

H̃q:

∆q(x, b⊥) =

∫
d2∆⊥
4π2

e−ib⊥·∆⊥H̃q(x, 0, t). (1.33)

Similar expression holds for the GPD Eq:

eq(x, b⊥) =

∫
d2∆⊥
4π2

e−ib⊥·∆⊥Eq(x, 0, t). (1.34)

In this case, eq(x, b⊥) can be related to a shift of parton density generated in a transversely
polarized nucleon [27].
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As shown in Eqs. (1.27)-(1.30), GPDs are linked to FFs through the 0th order Mellin
moment, which is actually a particular case of a major property of GPDs known as
polynomiality. The property expresses that the nth order Mellin moment of a given GPD
is always an even polynomial in ξ of order n (for even n) or n+ 1 (for odd n), e.g. for the
GPD H:∫ 1

−1
dx xnHq(x, ξ, t) =

{
h
q(n)
0 (t) + ξ2h

q(n)
2 (t) + · · ·+ ξnh

q(n)
n (t) if n is even,

h
q(n)
0 (t) + ξ2h

q(n)
2 (t) + · · ·+ ξnh

q(n)
n+1(t) if n is odd.

(1.35)

There are similar rules for the GPDs Eq, H̃q and Ẽq. The GPD Eq has the same coefficient
h
q(n)
n+1(t) as H but with the opposite sign. For the GPDs H̃q and Ẽq, the maximal ξ power

is n− 1 instead of n+ 1 when n is odd. The fact that only even powers of ξ appear is a
consequence of the time reversal invariance which states that H(x,−ξ, t) = H(x, ξ, t).

In particular, the 1th order Mellin moments of the GPDs H and E:∫ 1

−1
dx xHq(x, ξ, t) = h

q(1)
0 (t) + ξ2h

q(1)
2 (t), (1.36)∫ 1

−1
dx xEq(x, ξ, t) = e

q(1)
0 (t)− ξ2hq(1)2 (t), (1.37)

lead to Ji’s sum rule [4, 5], allowing for the evaluation of total angular momentum carried
by quarks Jq:∫ 1

−1
dx x [Hq(x, ξ, t = 0) + Eq(x, ξ, t = 0)] = h

q(1)
0 (0) + e

q(1)
0 (0) = 2Jq. (1.38)

The ξ dependence drops out from the sum rule. As we know, nucleons have a spin of
1/2. However, we do not fully understand how the spin of nucleons is made up from its
constituents, namely the so-called nucleon “spin puzzle” [28]. It was shown in [4] that
there exists a gauge-invariant decomposition of the nucleon spin: 1/2 = Jq +Jg, where Jg
is the total gluon contributions to the nucleon total angular momentum. On one hand,
the total quark spin contribution Jq decomposes into the quark spin (∆Σ/2) and quark
orbital contributions (Lq) to the nucleon spin. ∆Σ has been measured through polarized
DIS experiments, and its different determinations point to a value in the range 20-30%.
On the other hand, for the gluons it is still an open question how to decompose the
total angular momentum Jg into orbital angular momentum and gluon spin parts, in such
a way that both can be related to observables. Nevertheless, GPDs provides a model-
independent way for the determination of the quark orbital contribution to the nucleon
spin through the sum rule and therefore completes the quark sector of the spin puzzle.

In addition, it is remarkable fact that the GPDs also enable indirect access to the basic
mechanical properties of the nucleon encoded in the gravitational form factors (GFFs)
of the energy-momentum tensor. In particular, the GPD H has the access to one of the
GFFs through its 1th order Mellin moment, which can be recast∫ 1

−1
xH(x, ξ, t)dx = M2(t) +

4

5
ξ2d1(t). (1.39)

The GFF d1(t) encodes the shear forces and pressure distribution on the quarks in the
proton [8, 9, 10].
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1.1.3 GPDs parameterization

There are a few parameterizations of GPDs such as models based on Double Distributions
(DDs), the dual parameterization, etc. Here I introduce the VGG model. It is a model
based on DDs, was firstly proposed by M. Vanderhaeghen, P. A. M. Guichon and M.
Guidal [29], and developed as the field of GPDs grew and improved [30, 31, 32, 33].

Double Distributions

Double Distributions were originally introduced in [34, 35] and they provide an elegant
guideline to parameterize the (x, ξ)-dependence of the GPDs. The idea of the DDs is
to decorrelate the transferred momentum ∆ from the initial nucleon momentum p (see
Fig. 1.7). The link between a GPD and a DD,

GPDq
DD(x, ξ) =

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dα δ(x− β − ξα)DDq(β, α), (1.40)

is only a change of variables through a linear relation x = β + ξα. The DDq(β, α)
can be thought as the probability amplitude of finding a quark carrying a longitudinal
momentum fraction β of the average nucleon momentum and a fraction (1 + α)/2 of the
transferred momentum ∆. Because of the linear relation between x and ξ imposed by the
δ function, the nth order Mellin moment of Eq. (1.40) will always produce a ξn power,
which automatically satisfies the polynomiality relation in Eq. (1.35). The DDs should
fulfill the requirements at two limiting cases. Firstly, when ∆ = 0, namely ξ = 0, the
β-dependence must contain the standard inclusive PDF q(β), the forward limit of GPDs.
Secondly, when the final nucleon momentum equals zero, the DDq(β, α) must take the
shape of a distribution amplitude of mesons. A form which fulfills these requirements is

DDq(β, α) = h(β, α)q(β), (1.41)

h(β, α) =
Γ(2b+ 2)

22b+1Γ(2b+ 1)

[(1− |β|)2 − α2]b

(1− |β|)2b+1
, (1.42)

where h(β, α) is a profile function depending on one free parameter b. The higher the b
value, the weaker the ξ-dependence for the GPD. For example, when b→∞, h(β, α)→ 1
and the DD becomes a ξ-independent PDF. In principle, one can define a value for the
valence, bval, and another one for the sea, bsea.

The the nth order moment of GPDs built on DDs by Eq. (1.40) does not satisfy the
polynomiality relation when n is odd. The so-called D-term D(x/ξ, t) has been introduced
in [36] to complete the parameterization for the missing power ξn+1. It can be decomposed
in a Gegenbauer series as

D(z) = (1− z2)
∞∑
n=1

dnC
3/2
n (z), (1.43)

where only odd n appears in the sum. z = x/ξ and varies from −1 to 1. The D-term
receives the same contribution from each quark flavor. One can then define a D-term
contribution for each quark flavor by the factor Nf = 3, denoting the number of light
quark flavors (u, d, s), as

Dq(z) =
1

Nf

D(z). (1.44)
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Figure 1.10: Left panels: Double Distribution part to the valence (top panel) and total
(bottom panel) u-quark GPD Hu at t = 0 for different ξ and bval = bsea = 1. Right panel:
Double Distribution part to the u-quark GPD Hu at t = 0 and ξ = 0.3 for different values
of the parameters bval and bsea. The figures are extracted from [31].

The left panels of Fig. 1.10 show the parameterization of Eqs. (1.40)-(1.42) for the
DD part to the u-quark GPD Hu, for the parameter value bval = bsea = 1. It can be seen
how the GPD approach the forward u-quark distribution as ξ → 0. The right panel of
Fig. 1.10 shows the dependence of the DD part to the u-quark GPD Hu on the parameters
bval and bsea. In the limit bval = bsea =∞, one finds back the foward u-quark distribution.

VGG model and factorized t-dependence

VGG model is based on the DDs (+ D-term) ansatz for the (x, ξ)-dependence of the
GPDs and offers the parameterization of the t-dependence. The main constraint on the
t-dependence of GPDs comes from the sum rules of Eqs. (1.27)-(1.30), where the first
moment of the GPDs is given by the FFs. The simplest factorization ansatz in the form
of H(x, ξ, t) = H(x, ξ)F1(t) can be adopted in the small −t region to parameterize the
t-dependence of GPDs, which fulfills the sum rules at small −t. As for the hard exclusive
reactions (DVCS and DDVCS) t should be a small scale compared to the hard scale Q2 of
the reaction, only the small −t < 1 GeV2 region will be concerned by the present study.

(a) For the GPD H:

The complete t-independent part Hq(x, ξ) = Hq(x, ξ, t = 0) is parameterized by a
DD + D-term form as mentioned above:

Hq(x, ξ) = Hq
DD(x, ξ) + θ(ξ − |x|) 1

Nf

D(
x

ξ
), (1.45)

where Hq
DD is given by the DD ansatz of Eqs. (1.40)-(1.42).

For the GPD Hq and for a quark of flavor q, the first moment is determined in
terms of the Dirac Form Factor F q

1 for a quark of flavor q in the proton. In the
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small −t < 1 GeV2 region, the simplest parameterization of the t-dependence of
Hq(x, ξ, t) consists of a t-factorized ansatz:

Hu(x, ξ, t) = Hu(x, ξ)F u
1 (t)/2,

Hd(x, ξ, t) = Hd(x, ξ)F d
1 (t), (1.46)

where F u
1 (t) and F d

1 (t) are given by Eq. (1.31). Due to F p
1 (0) = 1 and F n

1 (0) = 0 as
shown in Fig. 1.2, the u quark Form Factor at t = 0 is normalized as F u

1 (0) = 2 so
as to yield the normalization of 2 for the PDF u(x) in the proton, while the d quark
Form Factor at t = 0 is normalized as F d

1 (0) = 1 so as to yield the normalization
of 1 for the PDF d(x) in the proton. The ansatz not only satisfies the sum rule
constraint of Eq. (1.27), but also yields the correct forward limit for the PDFs:

Hu(x, 0, 0) = Hu(x, 0) = u(x), Hd(x, 0, 0) = Hd(x, 0) = d(x). (1.47)

Note that the sum rule of Eq. (1.27) only gives a constraint for the valence part of
the GPD, as the sea contribution drops out of this sum rule. The t-dependence for
the valence quark holds for the sea quark part in the VGG model. Moreover, the
D-term is not at all constrained by this sum rule as it is odd in x. The t-dependence
for the D-term is assumed to be the same as for the DD contribution to the GPD
Hq in the VGG model.

(b) For the GPD E:

In order to guarantee that the D-term contribution is cancelled in the combination
H + E. The D-term contributes with opposite sign to H and E. Therefore, the
t-independent Eq(x, ξ) is parameterized as

Eq(x, ξ) = Eq
DD(x, ξ)− θ(ξ − |x|) 1

Nf

D(
x

ξ
). (1.48)

The parameterization of the DD part Eq
DD(x, ξ) is more difficult since no DIS con-

straint exists for the x-dependence. In the forward limit, eq(x) = Eq
DD(x, 0, 0) is

unknown except its first moment is given by the sum rule of Eq. (1.28) in terms of
the Pauli Form Factor F q

2 (0) for a quark of flavor q. The quark Form Factors F u
2 (0)

and F d
2 (0) are normalized through the nucleon anomalous magnetic moments, i.e.

F p
2 (0) = κp = 1.79 and F n

2 (0) = κn = −1.91. One can define κu = F u
2 (0) and

κd = F d
2 (0) for the quarks and find

κu = 2κp + κn = 1.67, κd = 2κn + κp = −2.03. (1.49)

The sum rule of Eq. (1.28) then writes in the forward limit:∫ 1

−1
dx eq(x) = κq. (1.50)

For the x-dependence of the forward distribution eq(x), a sum of valence and sea
quark parameterization is implemented in the VGG model as

eu(x) = Auuval(x) +Buδ(x),

ed(x) = Addval(x) +Bdδ(x), (1.51)
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where the parameter Aq is related to Jq by the Ji’s sum rule as

Aq =
2Jq −M q

2

M qval
2

, (1.52)

and the parameter Bq is given by the sum rule of Eq. (1.50). M q
2 (M qval

2 ) is the total
fraction of the proton momentum carried by the (valence) quarks and anti-quarks
of flavor q. The total angular momenta carried by u and d quarks, Ju and Jd, enter
now directly as free parameters in the parameterization.

For the ξ-dependence, the DD part Eq
DD(x, ξ) is generated also through the DD

ansatz with the replacement of the unpolarized PDF q(β) in Eq. (1.41) by the
forward distribution eq(β).

The t-dependence of Eq(x, ξ, t) is constrained through the first sum rule of Eq. (1.28)
in terms of the Pauli Form Factor F q

2 (t). In the small −t region, the simplest
parameterization satisfying this sum rule consists of a factorized ansatz

Eq(x, ξ, t) = Eq(x, ξ)GD(t), (1.53)

where GD(t) given by Eq. (1.7) is the dipole model of elastic Form Factors repre-
senting the t-dependence of Eq.

(c) For the GPD H̃:

Based on the polynomiality of the polarized GPD H̃ and Ẽ, D-term does not nec-
essarily enter in the parameterization of the (x, ξ)-dependence. Therefore, the DD

part H̃q(x, ξ) is directly parameterized through the DD ansatz with the replacement
of the unpolarized PDF q(β) in Eq. (1.41) by the polarized PDF ∆q(β).

Similarly, the t-dependence parameterization of H̃q(x, ξ, t) which fulfills the sum
rule of Eq. (1.29) is

H̃q(x, ξ, t) = H̃q(x, ξ)
Gq
A(t)

Gq
A(0)

, (1.54)

(d) For the GPD Ẽ:

As for the GPD E, no DIS constraint exists for the x-dependence of Ẽ. However,
in the chiral quark-soliton model calculation, Ẽ reduces to a pion pole contribution
at small t and the pion pole part to Ẽ dominates over a wide range of t and ξ
values [31]. The t-dependence is constrained by the sum rule of Eq. (1.30) in terms

of the pseudo-scalar Form Factor Gq
P (t). Therefore, the GPD Ẽq(x, ξ, t) is entirely

parameterized through a pion pole contribution and a t-factorized ansatz as

Ẽu(x, ξ, t) = −Ẽd(x, ξ, t) =
1

2
θ(ξ − |x|)1

ξ
φas

(
x

ξ

)
GP (t), (1.55)

where the asymptotic distribution amplitude φas(z) = 3/4 (1− z2) and GP (t) is the
induced pseudo-scalar Form Factor of the nucleon. The contribution corresponds to
a meson exchange and lives only in the |x| 6 ξ region.
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Figure 1.11: The ξ-dependence of Hu(ξ, ξ, t) at −t = 0 and 0.55 GeV2 for factorized
(FACT) and unfactorized (UNFACT) models. The figures are extracted from [31].

Unfactorized t-dependence: Regge phenomenology

It remains to be investigated how realistic the factorized parameterizations are if one goes
away from the t = 0 region. In particular, the cross sections for ρ0 electroproduction on
the proton, in which the GPDs H enter, measured at HERMES [37], shows an exponential
fall-off in the region of −t < 0.5 GeV2. A factorized ansatz deviates over this t region
already noticeably from an exponential fall-off [31]. The VGG model then provides a
more sophisticated estimate of the t-dependence of GPDs based on Regge theory. The
Regge picture suggests a xα(t) behavior at small x. Assuming a linear Regge trajectory
with the slope α′, the parameterization of GPD Hq at ξ = 0 consists of the unfactorized
ansatz:

Hq(x, 0, t) = q(x)x−α
′t. (1.56)

α′ is a free parameter which can be constrained by the sum rules of Eq. (1.27) linking
the GPD Hq to the Dirac Form Factor F q

1 . For the proton, a rather narrow range of
values around α′ = 1.0-1.1 GeV−2 are favored [33]. The full dependence of Hq(x, ξ, t) can
be obtained through Eq. (1.40) by replacing the DD ansatz given by Eq. (1.41) with a
Regge-type Double Distribution

DDq
R(β, α, t) = h(β, α)q(β)β−α

′t. (1.57)

Fig. 1.11 shows the comparison of the factorized model of Eq. 1.46 for Hu(ξ, ξ, t) with
the unfactorized model of Eq. 1.57. One sees that the unfactorized model leads to an
increasingly larger reduction when going to smaller ξ (typical for a Regge type ansatz)
and to an enhancement at larger ξ.

The ansatz is only valid for the small −t region, because at larger values of −t the
first moment of Eq. (1.56) is dominated by the large x region, for which a Regge ansatz
does not hold. The modification of Regge ansatz is introduced in the VGG model in
order to satisfy the FF counting rule at large −t. For example, the GPD Hq(x, 0, t) is
parameterized as

Hq(x, 0, t) = q(x)x−α
′(1−x)t. (1.58)

Similarly, the modified Regge-type (R2) Double Distribution writes

DDq
R2(β, α, t) = h(β, α)q(β)β−α

′(1−β)t. (1.59)
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Figure 1.12: Handband diagram of the DVCS process: at leading order and leading twist,
DVCS can be seen as the absorption of a virtual photon by a quark of the nucleon, followed
by the quasi-instantaneous emission of a real photon by the same quark.

In summary, the VGG model is based on very few free parameters. The parameters
bval and bsea drive the (x, ξ)-dependence, which are set to 1 by default. The recent fit to the
DVCS data indicates the VGG model with small skewness effects of sea quark (bsea = 5) is
in good agreement with the data [38]. The parameter α′ drives the t-dependence. The fit
to the nucleon FFs data yielded α′ = 1.105 GeV−2 [33]. The parameters Ju and Jd control
the normalization of the GPD E and are unknown. The constraint of Ju and Jd can be
extracted from proton and neutron DVCS data [39] and provides a better understanding
of the nucleon spin. The VGG model has been adopted for the estimate of DDVCS
observables shown in the following chapters.

1.2 Deeply Virtual Compton Scattering

Among the hard exclusive electroproduction processes, Deeply Virtual Compton Scatter-
ing (DVCS) is one of the cleanest channels and bears the best promises to extract the
GPDs from experimental data. It refers to the subprocess γ∗N → Nγ of the exclusive
electroproduction of real photons eN → eNγ.

In the Bjorken limit and for small enough momentum transfer to the nucleon with
respect to the photon virtuality (−t � Q2), the factorization theorem allows one to
express the DVCS amplitude as a convolution of the hard scattering part, being calculable
within the perturbative QCD approach, and soft structure functions GPDs, describing an
emission of quark from the nucleon and its subsequent reabsorption, as shown by the
so-called “handband diagram” in Fig. 1.12.

1.2.1 Kinematics

Four independent variables are needed to describe the 3-body final state reaction eN →
eNγ at a fixed beam energy E. They are usually chosen as Q2, xB, t and φ. Q2 is the
virtuality of the photon Q2 = −q2 = −(k − k′)2, where q(ν, q), k(E,k) and k′(E ′,k′) are
the four-momenta of the virtual photon, incident and scattered electron, respectively. xB
is the Bjorken variable defined in Eq. (1.19). Unlike for the DIS process, it is not equal
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Figure 1.13: DVCS in the target rest frame.

to the average longitudinal momentum fraction x in the DVCS process. t is the squared
momentum transfer to the nucleon. The skewness ξ is related to xB as

ξ = xB
1 + t/2Q2

2− xB + xB(t/Q2)
' xB

2− xB
(1.60)

Finally, φ is the azimuthal angle between the electron scattering plane (e→ eγ∗) and the
hadronic production plane (γ∗N → γN), as illustrated in Fig. 1.13. Its explicit definition
within the Trento convention is in [40].

In the DVCS experiments, at a fixed beam energy E, measurements of the final electron
(E ′, θe) with the real photon (ν ′, θγ) are enough to get all information with respect to the
final state, where θe is the polar angle between the beam and the scattered electron, θγ is
the polar angle between the incident virtual photon and the outgoing real photon, and ν ′

is the energy of the real photon. For example, the JLab Hall A experiments [41] detected
only two particles of the final state, the scattered electron and the real photon, and a
cut on the missing mass of the proton was used to identify the exclusive process. The
detection of all three particles of the final state is an over-constrained situation which
can be used to experimentally reject possible background contamination and ensure the
exclusivity of the process as done with the large acceptance detector CLAS [42]. The
Lorentz invariant variables can be expressed by the experimental variables through

Q2 = 4EE ′ sin2(θe/2), (1.61)

xB =
2EE ′ sin2(θe/2)

M(E − E ′)
, (1.62)

t = −

Q2M +
Q2

xB

 Q2

2MxB
− cos θγ

√
Q2 +

(
Q2

2MxB

)2


M +
Q2

2MxB
− cos θγ

√
Q2 +

(
Q2

2MxB

)2
. (1.63)

Phase space

Although the Lorentz invariant variables describing DVCS are independent on each other,
their ranges are inter-dependent. The total center-of-mass energy for DVCS can be ex-
pressed as

W =
√

(q + p)2 =

(
M2 +

Q2

xB
−Q2

) 1
2

. (1.64)
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Figure 1.14: Left panel: DVCS (Q2, xB) phase space at 6 GeV (blue) and 11 GeV (red)
beam energy. Right panel: DVCS (Q2, xB) phase space at 11 GeV with specific kinematic
conditions represented by the colored curves. The shaded area corresponds to the region
rejected by the physics (W > 2 GeV) constraints and the geometrical constraints (θe >
14◦) of the Hall A spectrometers. The remaining open area shows the available region
one can possibly access.

In order to allow at minima a proton in the final state, the center-of-mass energy must
be larger than or at least equal to the nucleon mass M , resulting in

xB 6 1 (1.65)

where the equality represents elastic scattering, kinematically similar to a DVCS reaction
with emission of a photon at rest. At a fixed xB, we can infer the DVCS minimum and
maximum Q2:

Q2
min = 0, Q2

max =
4E2MxB
MxB + 2E

. (1.66)

These relations can be applied to infer the (Q2, xB) phase space, as shown in Fig. 1.14 (left
panel). The vertical lines at xB = 1 represent the elastic scattering limit; the horizontal
lines at Q2 = 0 represent Q2

min for any possible xB; the diagonals represent Q2
max for any

possible xB. Consequently, any combination of (Q2, xB) for the DVCS reaction must be
within the triangle-form phase space. One clearly sees the benefit of higher beam energies
accessing a broader phase space, and reaching at fixed xB a larger range in Q2. This
is one of the motivations of the JLab 12 GeV energy upgrade. More importantly, the
flux of generated virtual photons increases with beam energy, and JLab12 benefits the
measurements with increasing cross section. I stress that this study is based on JLab12
and all the calculations and simulations in the following chapters are performed with the
fixed beam energy E = 11 GeV. Fig. 1.14 (right panel) shows some specific kinematic
conditions within the (Q2, xB) phase space.

Conditions are required for the applicability of GPDs formalism and the validity of
the handbag approximation. Precisely, the virtuality Q2 must be sufficiently large for the
reaction to happen at the parton level (Q2 � M2) and much larger than the squared
momentum transfer to the nucleon (−t/Q2 � 1). To ensure that the experimental data
are from the deep inelastic scattering regime (with nuclear excitation well above the
main nucleon resonances) the squared hadronic center-of-mass energy W must be large.
Specifically, we require

W > 2 GeV. (1.67)
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Figure 1.15: DVCS (t, Q2) and (t, xB) phase space.

Moreover, several kinds of constraints can also originate from a detector. In the first dedi-
cated DVCS experiment in JLab Hall A [43], for instance, the electromagnetic calorimeter
was centered along the direction of the virtual photon. Geometrical constraints for the
positions of detectors imply θe > 14◦. These constraints are represented as shaded zones
in Fig. 1.14 (right panel). One can search available kinematical setting only in the allowed
area, corresponding to the open area in Fig. 1.14.

At fixed Q2 and xB, the boundary of t is given by

tmax,min = −

Q2M +
Q2

xB

 Q2

2MxB
±

√
Q2 +

(
Q2

2MxB

)2


M +
Q2

2MxB
±

√
Q2 +

(
Q2

2MxB

)2
, (1.68)

where the + (−) sign stands for tmax (tmin). Note that the minimum and maximum
definitions for t correspond to |t|.

In Fig. 1.15 (left panel), the areas enclosed by the colored solid curves represent the
(t, Q2) phase space at fixed xB (0.3, 0.6 and 0.9). At a fixed Q2, a smaller xB has a
wider range in t and the t-range of small xB contains the one of large xB. At Q2 = 0,
the phase space collapses in one single point at t = 0, independently of xB. The area
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Figure 1.16: Left panel: DVCS (t, Q2) phase space at fixed xB = 0.5. Right panel:
DVCS (t, xB) phase space at fixed Q2 = 5 GeV2. The specific kinematic conditions are
represented by the colored curves.
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Figure 1.17: BH diagrams for the emission of a real photon by the incoming and the
outgoing electrons.

delimited by the black dashed curves represents the envelope of each single (t, Q2) phase
space that is the (t, Q2) phase space for all possible xB. This envelope indicates that
there exists a maximum Q2 under the condition that −t shall be smaller than a certain
value. For example, the maximum Q2 = 13.2 GeV2 (the dashed-dotted line) is given by
the condition of −t < 1 GeV2 (the dotted line stands for −t = 1 GeV2), and xB can
not be larger than 0.657. In Fig. 1.15 (right panel), the areas enclosed by the colored
solid curves represent the (t, xB) phase space at fixed Q2 (3, 6, 9 GeV2). At a fixed xB, a
larger Q2 has a wider range in t. The t-ranges of small and of large Q2 overlap over the
small xB region and separate in the vicinity of xB = 1. Each area at xB = 1 turns into a
point which represents elastic scattering condition where t = Q2. The area delimited by
the black dashed curves represents the (t, xB) envelope that is the (t, xB) phase space of
all possible Q2. Fig. 1.16 shows some special kinematic conditions within the (t, Q2) and
(t, xB) phase space. Similarly to the right panel of Fig. 1.14, the shaded zones represent
the region refused by the physics constraint W 6 2 GeV and the experimental inspired
one θe > 14◦.

1.2.2 The amplitude of the electroproduction of real photons

In the electroproduction of real photons, DVCS amplitude interferes with a so-called
Bethe-Heitler (BH) process [44], which has the same initial and final states as DVCS and
is experimentally indistinguishable from the DVCS process. The BH process is a basic
process for the production of real photons, where the real photons are produced from the
interaction of an incoming or outgoing electron with the Coulomb field of an atom or a
nucleus, as shown in Fig. 1.17. The total amplitude for the reaction is then expressed by
a sum of amplitudes for two processes as

T 2 = |TBH + TDVCS|2 = |TBH|2 + |TDVCS|2 + I (1.69)

where
I = TDVCST ∗BH + T ∗DVCSTBH (1.70)

represents the interference term. Given the knowledge of the elastic FFs, the BH contri-
bution is calculable in QED.

The importance of the BH relative to the DVCS strongly depends on the kinematic
domain. It can largely dominate or be negligible compared with DVCS. The presence
of BH can be seen as an amplifier of the DVCS process when one measures observables
sensitive to the BH-DVCS interference.
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1.2.3 Compton Form Factors

The GPDs enter the DVCS cross section through Compton Form Factors (CFFs), which
are convolution integrals over the quark loops of the diagram of Fig. 1.12 and the corre-
sponding crossed diagram. At leading order and leading twist, the CFFs F ∈ {H, E , H̃, Ẽ}
are of the form

F =

∫ 1

−1
dx F (x, ξ, t)

(
1

x− ξ + iε
± 1

x+ ξ − iε

)
, (1.71)

where F ∈ {H,E, H̃, Ẽ} stands for a generic nucleon GPD and the + and − signs apply to

the unpolarized GPDs (H,E) and to the polarized GPDs (H̃, Ẽ), respectively. One easily
notices that the variable x is integrated over, which is a “mute” variable not accessible for
DVCS experiments. In the integrals, GPDs are weighted by the factors originated from
the propagator of the quark in the diagrams. At leading order and leading twist, the CFF
can be decomposed into its real and imaginary part as

F(ξ, ξ, t) =
∑
q

e2q

{
P
∫ 1

0

dx F q
+(x, ξ, t)

(
1

x− ξ
± 1

x+ ξ

)
− iπF q

+(ξ, ξ, t)

}
. (1.72)

Here, the sum runs over all quark flavors, P denotes the principal value integral, the
x-range of integration is reduced from {−1, 1} to {0, 1} and F q

+ is the singlet GPD com-
bination of the quark flavor q defined as

F q
+(x, ξ, t) = F q(x, ξ, t)∓ F q(−x, ξ, t), (1.73)

where the − sign applies to F q ∈ {Hq, Eq} and + sign to F q ∈ {H̃q, Ẽq}, acting contrarily
to the signs in Eqs. (1.71) and (1.72). Therefore, the maximum information that can be
extracted from DVCS experiment data at a given (ξ, t) point is F (±ξ, ξ, t), when the
measured observables are sensitive to the imaginary part of the DVCS amplitude, and∫ 1

−1 dx[F (∓x, ξ, t)/(x± ξ)], when one measures the observables sensitive to the real part
of the DVCS amplitude. I introduce theoretical work [45] for the analytical relations
between the DVCS observables and the CFFs.

The quark flavor decomposition of a nucleon GPD F accessed through DVCS is written
for a proton (p) and a neutron (n)

F p(ξ, ξ, t) =
4

9
F u(ξ, ξ, t) +

1

9
F d(ξ, ξ, t),

F n(ξ, ξ, t) =
4

9
F d(ξ, ξ, t) +

1

9
F u(ξ, ξ, t). (1.74)

Note that the flavor-dependent GPDs in the notation always refer to the corresponding
quark flavor in the proton, e.g. F u = F u/p as mentioned for Eq. (1.31).

Here, I stress that the CFFs extracted from DVCS observables only depend on ξ and t
and the x-dependence of the GPDs is totally absent, which is certainly an important gain
of information but not sufficient to map out the full dependence of GPDs. In addition, I
remind that the notation of CFFs in Eqs. (1.71) and (1.72) is slightly different from [45],
where the authors include a minus sign for both real and imaginary part of the CFFs.

1.2.4 Experimental observables

The four GPDs correspond to the four independent quark helicity and nucleon spin com-
binations in the handbag diagram, as shown in Fig. 1.8. In order to separate them, one
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uses the spin degrees of freedom of the beam and of the target and measures various
polarization observables. I present here only the beam polarization observables. For all
possible beam and target polarization observables, one finds their theoretical description
in [45] and their experimental measurements in [46]. I remind that the definition of the az-
imuthal angle of Belitsky [45] differs from the Trento convention and one has the relation
φ[Belitsky] = π − φ.

Cross section

The total cross section for the exclusive electroproduction of a real photon d4σ, rep-
resenting the 4-fold differential cross section d4σ/dxBdQ

2dtdφ, can be expressed as the
combinations of beam charge and polarization following

d4σ ∼ d4σBH
UU + d4σDVCS

UU + (−el)d4σI
UU + Pl

[
d4σDVCS

LU + (−el)d4σI
LU

]
, (1.75)

where el and Pl are the charge and the helicity of the lepton beam, respectively. In
Eq. (1.75), the first subscript refers to the beam polarization state (“U” stands for un-
polarized and “L” for longitudinal polarization) while the second refers to the target
polarization (only for unpolarized target here), and the superscripts refer to the contri-
butions of BH, DVCS and their interference (I) amplitudes. In general, the interference
contributions are of great interest since they give accesses to CFFs in a linear fashion
while the CFFs enter the DVCS contributions in a bilinear one. Moreover, the beam spin
contributions are sensitive to the imaginary parts of CFFs and the unpolarized contri-
butions to both the real and imaginary. Specifically for all the terms in Eq. (1.75), the
Fourier expansions in φ up to twist-3 are given in [45] by

d4σBH
UU ∝ 1

P1(φ)P2(φ)

[
cBH
0 + cBH

1 cos(φ) + cBH
2 cos(2φ)

]
, (1.76)

d4σDVCS
UU ∝ cDVCS

0 + cDVCS
1 cos(φ) + cDVCS

2 cos(2φ), (1.77)

d4σI
UU ∝ 1

P1(φ)P2(φ)

[
cI0 + cI1 cos(φ) + cI2 cos(2φ) + cI3 cos(3φ)

]
, (1.78)

d4σI
LU ∝ 1

P1(φ)P2(φ)

[
sI1 sin(φ) + sI2 sin(2φ)

]
, (1.79)

d4σDVCS
LU ∝ sDVCS

1 sin(φ). (1.80)

The lepton propagators P1(φ),P2(φ) can be calculated within the framework of QED
from the kinematic variables. The Fourier coefficients cBH in pure BH cross section contain
the Dirac and Pauli FFs. Since F1 and F2 can be considered as well known at small −t,
the BH process is precisely calculable theoretically.

The coefficients cI1 and sI1 arise at the twist-2 level, which are expected to dominate
the cross sections and to provide the main access to the CFFs. The coefficient cI1 is
proportional to a linear combination of the real parts of CFFs,

cI1 ∝ Re

{
F1H + ξ(F1 + F2)H̃ −

t

4M2
F2E

}
, (1.81)
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and the coefficient sI1 is proportional to the same linear combination of the imaginary
parts of the CFFs,

sI1 ∝ Im

{
F1H + ξ(F1 + F2)H̃ −

t

4M2
F2E

}
. (1.82)

The coefficients cDVCS
0 and cI0 are also related to twist-2 CFFs. For the kinematically

suppressed coefficient cI0, the dominant part of it is approximately proportional to cI1,

cI0 ∝ −
√
−t
Q

cI1. (1.83)

Finally, the DVCS coefficient cDVCS
0 is related to a bilinear combination of the CFFs as

cDVCS
0 ∝ 4 (1− xB)

(
HH∗ + H̃H̃∗

)
− x2B

(
EE∗ +HE∗ + EH∗ + H̃Ẽ∗ + ẼH̃∗

)
, (1.84)

where the CFFs suppressed by the −t/Q2 factor are not shown in this expression. These
relations for the twist-2 coefficients do not cover the target mass effects and finite-t cor-
rections to DVCS [47, 48]. The other coefficients are related to combinations of CFFs
of either higher twist or helicity flip GPDs. I only present here the coefficients sensitive
to the quark helicity conserving GPDs at leading twist. For DVCS data analyses, higher
twist and higher order QCD corrections may need to be included, as recent results suggest
that their contributions might not be negligible [24].

Cross sections with polarized electron beam

With polarized electron beam, unpolarized cross section σ−UU and beam spin cross section
difference ∆σ−LU are built as

σ−UU =
1

2

(
d4σ−→ + d4σ−←

)
= d4σBH

UU + d4σDVCS
UU + d4σI

UU, (1.85)

∆σ−LU =
1

2

(
d4σ−→ − d4σ−←

)
= d4σDVCS

LU + d4σI
LU, (1.86)

where the − sign in the superscripts denotes the beam charge and the arrow → (or ←)
in the subscripts refers to the beam polarization Pl = 1 (or −1).

Neglecting non-dominant DVCS terms and the coefficients suppressed by kinematics
and higher twist, both the real and imaginary parts of the linear combination of CFFs in
Eqs. (1.81) and (1.82) can be quantitatively obtained from cI1 and sI1, respectively. The
kinematic factors ξ and t being small, the measurements of unpolarized cross section and
beam spin cross section difference on a proton target are mainly sensitive to, respectively,
ReHp and ImHp. In the neutron case, following the small value of F n

1 (F n
1 ≈ 0 at small t,

as shown in Fig. 1.2) and the cancellation between u and d polarized parton distributions

in H̃n [31], the approximation of sI1 for a neutron target writes

sI1 ∝ −
t

4M2
F2 ImEn (1.87)

and similar relation hold for cI1 and ReEn. Therefore, the measurements on a neutron
target offer the sensitivity to the GPD E and become then of direct relevance in the
determination of the quark angular momentum of Eq. (1.38). See [39, 49] for more about
DVCS off neutron.
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Cross sections with polarized electron and positron beams

With only polarized electron beam, the quantitative access to the Fourier coefficients of
the interference terms is complicated by the presence of DVCS terms. This entanglement
can be resolved by taking into account the explicit dependence of the interference terms
on the lepton beam charge.

Using polarized electron and polarized positron beams, one can measure four experi-
mental observables built as

σUU =
1

4

[(
d4σ−→ + d4σ−←

)
+
(
d4σ+

→ + d4σ+
←
)]

= d4σBH
UU + d4σDVCS

UU , (1.88)

∆σC
UU =

1

4

[(
d4σ−→ + d4σ−←

)
−
(
d4σ+

→ + d4σ+
←
)]

= d4σI
UU, (1.89)

∆σLU =
1

4

[(
d4σ−→ − d4σ−←

)
+
(
d4σ+

→ − d4σ+
←
)]

= d4σDVCS
LU , (1.90)

∆σC
LU =

1

4

[(
d4σ−→ − d4σ−←

)
−
(
d4σ+

→ − d4σ+
←
)]

= d4σI
LU, (1.91)

where the two observables with “C” in the superscripts denote beam charge cross section
differences and the others without it symbolize charge-averaged cross sections. One readily
sees that interference terms as well as the DVCS terms are singled out.

Positron beams have been promoted at JLab. The PEPPo (Polarized Electrons for
Polarized Positrons) concept is potentially capable of operating at low beam energies (a
few MeV) with high polarization transfer from incident electrons to created positrons
[50]. This technique was demonstrated at the injector of the Continuous Electron Beam
Accelerator Facility (CEBAF) [51], extends polarized positron capabilities from GeV to
MeV electron beams, and opens access to the development of a polarized positron beam
at JLab.

Asymmetries

Asymmetries are observables which are relatively straightforward to extract experimen-
tally due to the cancellation of normalization factors (such as detector acceptance and
efficiency) and many sources of systematic errors in the ratio.

With polarized electron beam, one measures the Beam Spin Asymmetry (BSA) defined
as

A−LU =
∆σ−LU
σ−UU

=
d4σDVCS

LU + d4σI
LU

d4σBH
UU + d4σDVCS

UU + d4σI
UU

. (1.92)

The BSA has a shape close to a sinφ and its leading twist expansion can be parameterized
as a form of (a sinφ)/(1+c cosφ+d cos 2φ) where higher twist terms are neglected and only
dominant terms are kept. The access to sI1 via the BSA is complicated by the presence
of cI1 in the denominator. Again, this entanglement can be cancelled by using beams of
opposite charges.

Using polarized electron and polarized positron beams, one can measure three asym-
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metries built as

AC
UU =

∆σC
UU

σUU

=
d4σI

UU

d4σBH
UU + d4σDVCS

UU

, (1.93)

ALU =
∆σLU
σUU

=
d4σDVCS

LU

d4σBH
UU + d4σDVCS

UU

, (1.94)

AC
LU =

∆σC
LU

σUU

=
d4σI

LU

d4σBH
UU + d4σDVCS

UU

, (1.95)

and the asymmetry azimuthal moments. For example, the cos(0) and cos(φ) moments of
AC

UU, and the sin(φ) moment of AC
LU write

A
C,cos(0)
UU =

1

2π

∫ 2π

0

dφ AC
UU(φ), (1.96)

A
C,cos(φ)
UU =

1

π

∫ 2π

0

dφ AC
UU(φ) cosφ, (1.97)

A
C,sin(φ)
LU =

1

π

∫ 2π

0

dφ AC
LU(φ) sinφ. (1.98)

At some kinematics, the contribution of the BH term in the denominator is strongly
dominated by the constant coefficient cBH

0 , to the degree that one can neglect the other
BH coefficients, the unpolarized DVCS contribution and the effect of the φ-dependence
of the BH propagators. In this case, the moments give direct access to the Fourier
coefficients. Specifically, the three moments above are related to twist-2 GPDs via the
Fourier coefficients cI0, c

I
1 and sI0 in Eqs. (1.81)-(1.83).

In summary, it is obviously a very complex task to actually measure the GPDs. Given
the convolution over x in the amplitudes, the number of CFFs to extract, the quark
flavor decomposition, not to mention the Q2 evolution and higher-twist corrections, it
calls for a broad experimental program comprising the measurements of different DVCS
observables on proton and neutron over large kinematics coverages. Since the beginning
of this century, various measurements of DVCS have been conducted worldwide. The
measurements by HERMES [52] at DESY and by CLAS [42] at JLab have proved the
existence of a DVCS asymmetry signal and have launched a global experimental campaign
for GPDs. The DVCS experiment in Hall A [41] at JLab has proved, via a Q2-scaling test,
that the factorization and the hypothesis of leading-twist dominance can already be valid
at relatively low Q2 (∼ 1 GeV2). Beam Spin Asymmetries measured with CLAS [53]
have provided important constraints for the study of the GPD H in a wide kinematic
range. Nowadays, the new generation of experiments is running, such as Hall A, NPS
(Neutral Particle Spectrometer) in Hall C, and CLAS12 at the upgraded CEBAF and
COMPASS-II at CERN. In particular, the data analysis for 12 GeV DVCS in Hall A have
been completed [54]. In the future, the Electron Ion Collider (EIC) at BNL will continue
this long-term mapping of GPDs..

1.3 Double Deeply Virtual Compton Scattering

The CFFs extracted from DVCS experimental data provide precious constraints on the
(ξ, t)-dependence of GPDs. However, GPDs depend on three variables x, ξ and t. In
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Figure 1.18: Handband diagram of the DDVCS process for leading order and leading twist
(there is also a crossed diagram where the final photon is emitted from the initial quark).

order to map them ultimately, x-dependence still need to be uncovered, in principle with
the help of a model-dependent deconvolution with adjustable parameters. It was first
proposed by M. Guidal and M. Vanderhaeghen [55], at the same time by A. V. Belitsky
and D. Müller [56, 57], that the x-dependence of GPDs can be indepedently accessed via
measuring the so-called Double Deeply Virtual Compton Scattering (DDVCS) process. It
corresponds to the intermediate process γ∗N → Nl−l+ of the exclusive electroproduction
of a lepton pair eN → eNl−l+.

At sufficiently high virtuality of the incident space-like photon (Q2 �M2) and small
enough momentum transfer to the nucleon with respect to the photon virtuality (−t �
Q2), DDVCS can be seen as the absorption of a space-like photon by a quark of the
nucleon, followed by the quasi-instantaneous emission of a time-like virtual photon by the
same quark, which finally decays into a muon pair, as shown on the handbag diagram of
Fig. 1.18.

In the handbag diagram, the virtuality of the time-like photon is defined by

Q′2 = q′2, (1.99)

which is different from the definition of the incident virtual photon Q2 = −q2. I intro-
duce the average photon momentum q̄, the average nucleon momentum P and nucleon
momentum transfer ∆:

q̄ =
1

2
(q + q′), P =

1

2
(p+ p′), ∆ = p′ − p = q − q′. (1.100)

Neglecting the target mass effects and t corrections, the Lorentz invariants are built as

ξ′ = − q̄2

2P · q̄
=

Q2 −Q′2 + t/2

2Q2/xB −Q2 −Q′2 + t
(1.101)

ξ = − ∆ · q̄
2P · q̄

=
Q2 +Q′2

2Q2/xB −Q2 −Q′2 + t
(1.102)

where ξ′ is the generalized Bjorken variable and ξ is the skewness. If Q′2 = 0, the final
photon becomes real, corresponding to the DVCS process, which leads to the restriction
ξ′ = ξ in the Bjorken limit. If Q2 = 0, the initial photon is a real photon, referring to
the Timelike Compton Scattering (TCS) [58, 59], which leads to the restriction ξ′ = −ξ
in the Bjorken limit. Thus, DDVCS process is the generalized case of DVCS and TCS
processes.
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1.3.1 Benefits for GPDs program

The CFFs entering the DDVCS amplitude at leading order and leading twist are given
by

F =

∫ 1

−1
dx F (x, ξ, t)

(
1

x− ξ′ + iε
± 1

x+ ξ′ − iε

)
. (1.103)

In comparison with the DVCS case, the GPDs F ∈ {H,E, H̃, Ẽ} in Eq. (1.103) (and the
application of ± signs) is the same as in Eq. (1.71) but the weighted factors 1

x∓ξ′±iε are
different since the DVCS restriction ξ′ = ξ no longer holds for quark propagators in the
DDVCS diagrams. The CFFs of DDVCS then consist of the real and imaginary parts
following

F(ξ′, ξ, t) =
∑
q

e2q

{
P
∫ 1

0

dx F q
+(x, ξ, t)

(
1

x− ξ′
± 1

x+ ξ′

)
− iπF q

+(ξ′, ξ, t)

}
. (1.104)

where the singlet GPD combination F q
+ is given by Eq. (1.73). It is obvious that imaginary

part ImF(ξ′, ξ, t) directly accesses the information of GPDs at x = ±ξ′. By varying the
virtualities of both incoming and outgoing photons, one can vary independently the scaling
variables ξ′ and ξ and eventually map out the GPDs as function of its three arguments
independently. The x-dependence of GPDs is particularly important for the access to the
strong force distribution via the 1th oder Mellin moment of GPD H of Eq. (1.39) and for
nucleon imaging strictly defined at zero skewness [27]. The x-dependence at non-zero ξ
also provides a deeper investigation of the ξ-independence of the Ji sum rule of Eq. (1.38).

It can be easily inferred from Eq. (1.73) that the singlet GPD combination F q
+(x, ξ, t)

is an antisymmetric function of x for F q ∈ {Hq, Eq},

Hq
+(−x, ξ, t) = −Hq

+(x, ξ, t), Eq
+(−x, ξ, t) = −Eq

+(x, ξ, t), (1.105)

and an symmetric function for F q ∈ {H̃q, Ẽq},

H̃q
+(−x, ξ, t) = H̃q

+(x, ξ, t), Ẽq
+(−x, ξ, t) = Ẽq

+(x, ξ, t), (1.106)

Moreover, from the definition of ξ′ and ξ in Eqs. (1.101)-(1.102) one obtains

ξ′ = ξ
Q2 −Q′2

Q2 +Q′2
(1.107)

in the Bjorken limit. This relation indicates that ξ′, and consequently the imaginary part
of the CFFs ImH(ξ′, ξ, t) and ImE(ξ′, ξ, t), changes sign about Q2 = Q′2 (ξ′ = 0), which
procures a strong testing ground of the universality of the GPD formalism [60].

The DDVCS process has the restriction |ξ′| < ξ, which is a simple consequence of
the time-like nature of the final state photon. In other words, one can access only the
|x| < ξ region of the GPDs, as shown in Fig. 1.19. Although one does not access the
whole range in x, the gain of information on the GPDs is tremendous as no deconvolution
is involved to access this region of the GPDs. However, to construct sum rules, one
also needs information in the region |x| > ξ. To access that range one would need two
space-like virtual photons, which arises in two-photon exchange events in elastic electron
nucleon scattering [55, 57].

I stress here that I use the notation of Ji [4, 5] for GPDs. The notations of ξ′ and ξ are
the same as in [59]. They related to the notation of Guidal [55] by ξ′ ≡ (2ξ′−ξ)[Guidal] and
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Figure 1.19: The Coverage of the singlet GPDs F+(x, ξ, 0) accessed by the imaginary
parts of the CFFs entering the DDVCS (the yellow area), DVCS (the diagonal x = ξ)
and TCS (the diagonal x = −ξ) processes. The x-axis (ξ = 0) represents the coverage
of forward PDFs accessed by the DIS process. H+(x, ξ, 0) and E+(x, ξ, 0) change sign at
the dashed line (x = 0).

to the notation of Belitsky [56, 57] by ξ′ ≡ ξ[Belitsky] and ξ ≡ −η[Belitsky]. In the following, I
also use the notation for the eight CFFs that can be extracted from the DDVCS process:

ReH(ξ′, ξ, t) = P
∫ 1

0

dx [H(x, ξ, t)−H(−x, ξ, t)]C+(x, ξ′), (1.108)

ReE(ξ′, ξ, t) = P
∫ 1

0

dx [E(x, ξ, t)− E(−x, ξ, t)]C+(x, ξ′), (1.109)

ReH̃(ξ′, ξ, t) = P
∫ 1

0

dx
[
H̃(x, ξ, t) + H̃(−x, ξ, t)

]
C−(x, ξ′), (1.110)

ReẼ(ξ′, ξ, t) = P
∫ 1

0

dx
[
Ẽ(x, ξ, t) + Ẽ(−x, ξ, t)

]
C−(x, ξ′), (1.111)

ImH(ξ′, ξ, t) = H(ξ′, ξ, t)−H(−ξ′, ξ, t), (1.112)

ImE(ξ′, ξ, t) = E(ξ′, ξ, t)− E(−ξ′, ξ, t), (1.113)

ImH̃(ξ′, ξ, t) = H̃(ξ′, ξ, t) + H̃(−ξ′, ξ, t), (1.114)

ImẼ(ξ′, ξ, t) = Ẽ(ξ′, ξ, t) + Ẽ(−ξ′, ξ, t), (1.115)

where the coefficient functions C± are functions of x and ξ′ given by

C±(x, ξ′),=
1

x− ξ′
± 1

x+ ξ′
. (1.116)

One clearly sees that they are (anti)symmetric function in ξ′,

Re{H, E}(−ξ′, ξ, t) = Re{H, E}(ξ′, ξ, t), (1.117)

Re{H̃, Ẽ}(−ξ′, ξ, t) = −Re{H̃, Ẽ}(ξ′, ξ, t), (1.118)

Im{H, E}(−ξ′, ξ, t) = −Im{H, E}(ξ′, ξ, t), (1.119)

Im{H̃, Ẽ}(−ξ′, ξ, t) = Im{Ẽ , Ẽ}(ξ′, ξ, t). (1.120)

Finally, the complex functions of the CFFs write

F(ξ′, ξ, t) = ReF(ξ′, ξ, t)− iπImF(ξ′, ξ, t), (1.121)
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where F ∈ {H, E , H̃, Ẽ}, and the singlet GPDs directly write F+(x, ξ, t) for nucleons,

where F+ ∈ {H+, E+, H̃+, Ẽ+}. The current notation of the eight CFFs in Eqs. (1.108)-
(1.115) follows the notation of VGG for DVCS [29, 30, 31, 32, 33] and for TCS [59], and
differs from the notation of Belitsky [57], where Belitsky includes a minus sign for the real
parts of CFFs and include −π factors for the imaginary parts.

1.3.2 Challenge of DDVCS experiments

Not taking target polarization into account, the fully differential cross section of the
exclusive electroproduction of a lepton pair is a 7-fold differential cross section, which is
denoted, for simplicity, by

d7σ =
d7σ

dxBdQ2dtdQ′2dφdΩl

. (1.122)

When integrating d7σ over the solid angle Ωl of the produced lepton pair, the resulting
5-fold DDVCS cross section d5σ reduces in the limit Q′2 → 0 to [55]

d5σ =
d5σ

dxBdQ2dtdQ′2dφ
→ d4σ

dxBdQ2dtdφ

(
N

Q′2

)
, (1.123)

where the 4-fold DVCS cross section d4σ appears on the right. The factor N is given by

N =
4

3

(αem

4π

)
(1.124)

where αem ≈ 1/137 is the fine structure constant, which is introduced by the decay of
the time-like photon into the lepton pair. At Q′2 = 1 GeV2, the DDVCS cross section
is reduced by at least a factor N of order 10−3. At lower values of Q′2, the DDVCS
cross section rises, however, as 1/Q′2. In DDVCS, the value of Q′2 cannot reach zero
and the minimal is limited by the final lepton mass. It was demonstrated in [55] that
Eq. (1.123) starts to be valid around Q′2 = 10−1 GeV at typical JLab kinematics. Thus,
the DDVCS process is most challenging from the experimental point of view due to the
small magnitude of the cross section. The measurements of DDVCS observables require
high luminosity and large acceptance detectors for reasonable statistics.

Furthermore, the consideration of the electroproduction of e+e− pairs requires the ad-
dition of antisymmetrization due to the identity of the electrons in the final state. This
complex antisymmetrization issue hampers any reliable experimental study. The produc-
tion of muon pairs is the only feasible and promising channel for DDVCS with electron
beam, necessitating a muon detector. The alternative approach is to investigate the pro-
duction of electron pairs with a muon beam possibly at COMPASS [61] if luminosity
allows.

Finally, the muon pair signal in the eN → eNµ−µ+ reaction is contaminated by the
muons resulting from the decay of vector mesons. In order to minimize contamination from
meson decay, the measurements might be performed by avoiding the regions of Q′2 close to
meson thresholds. However, this certainly restricts the phase space in the measurements
of GPDs and calls for even higher luminosity since the DDVCS cross section decreases as
1/Q′2 in Eq. (1.123).

Due to the challenges above, DDVCS data have never been extracted. Thanks to the
12 GeV upgrade of the CEBAF accelerator, it has been proposed as Letter-of-Intent to
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investigate the electroproduction of muon pairs with CLAS12 [62] and with SoLID [63]
respectively. In Hall B, the muon pair final state is employed to avoid antisymmetrization
issue for DDVCS, as well as reducing combinatorial background in a simultaneous mea-
surment of J/Ψ electroproduction. The standard CLAS12 forward detectors is shielded
by a 30 cm thick Tungsten absorber to allow operation as a muon detector and run at
luminosity around 1037 cm−2·s−1 after various modification of the CLAS12 detector. In
Hall A, the SoLID spectrometer is a large acceptance solenoidal detector designed to run a
high luminosity, which could be used for DDVCS by adding an end-cap muon detector. A
parasitic measurement during the J/Ψ experiment at a luminosity of order 1037 cm−2·s−1
would open the investigation of the DDVCS process and would guide a dedicated experi-
ment at 10 times larger luminosity. An muon detector R&D program is ongoing to meet
the requirements for DDVCS with SoLID [60].

Considering the experimental challenges associated to DDVCS in terms of luminosity
and detector acceptance, it appears necessary to establish the pertinence of this process
at reachable kinematics at existing facilities. Thus, I focus my study on the investigation
of DDVCS for a 11 GeV beam and a proton target within the context of JLab. Polarized
targets cannot sustain the required luminosity and therefore falls beyond the scope of this
study. The discussion of a small-acceptance experiment at a high luminosity, measuring
the sign change behavior of the beam spin observables by varying Q′2 at fixed (Q2, xB, t)
points, is the starting point of this investigation. From an extended data set covering
a large kinematic domain, the dependence of GPDs on the three physics variable would
eventually be extracted. Before all of these, I present the theoretical formalism of the
DDVCS process in the following chapter.
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Chapter 2

Theoretical framework

2.1 Kinematics and phase space

2.1.1 Kinematics

Seven independent variables are required to describe the 4-body final state reaction eN →
eNl+l+ at a fixed beam energy E. They are usually chosen as Q2, xB, t, Q′2, φ and Ωl.
The former four Lorentz invariants are defined by the four-momenta of particles as

Q2 = −q2 = −(k − k′)2, xB =
Q2

2p · q
,

Q′2 = q′2 = (l− + l+)2, t = ∆2 = (p′ − p)2 = (q − q′)2, (2.1)

where the particle momenta are indicated in Fig. 1.18. The azimuthal angle φ between
the electron scattering plane (e→ eγ∗) and the hadronic production plane (γ∗N → γ∗′N)
is defined within the Trento convention [40]. The solid angle of a final-state lepton Ωl is
usually chosen in the l−l+ center-of-mass frame, whose differential element is given by

dΩl = sin θldθldϕl. (2.2)

Angles are graphically defined in Fig. 2.1.

In DDVCS experiments, at a fixed beam energy E, the invariant Q2 and the Bjorken
variable xB can be determined by the measurements of the final electron (E ′, θe) by the
relation Eqs. (1.61)-(1.62). The invariants Q′2, t and the angles can be obtained by
the measurements of the three-momenta of the final muon pair. Similarly to DVCS
experiments, the measurements of the recoiled nucleon provide kinematic redundancy
and overconstraint, which is the best way to ensure exclusivity of the process.

Reference frames

Various reference frames are applied in the computations for DDVCS. The intermediate
process γ∗N → γ∗′N of the DDVCS process is an analog of the DVCS process and one
can choose a similar frame (Fig. 1.13) to describe the subprocess. The calculation for the
time-photon decay is usually performed in a center-of-frame frame, as well as with respect
to kinematics boundaries. The reference frames and the corresponding computations are
listed in the following:

45
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Figure 2.1: Left panel: DDVCS in the target rest frame. The coordinate system (x, y, z)
with the z-axis being aligned to the spacelike virtual photon is named TRF-I, while the
one (x′, y′, z′) with z′ along the timelike photon is named TRF-II. Right panel: DDVCS
in the center-of-mass frames. The γ∗N CM frame is related to TRF-I by the boost of
the space-like photon along z-axis, while the l−l+ CM frame is related to TRF-II by the
boost of the time-like photon along z′-axis. ϕl and θl are respectively the azimuthal and
polar angles between the l− and the time-like photon in the l−l+ CM frame.

(a) Firstly, I introduce the first target rest frame (TRF-I) in which the z-axis is directed
in the direction of the three-momentum of the space-like photon and the x-axis is
chosen on the electron scattering plane and for positive x-component of the incoming
lepton momentum (Fig. 2.1 left panel). In TRF-I, the momenta of the particles are
given as follows:

(i) For the initial nucleon and the space-like photon, one has

p = (M, 0, 0, 0), q = (ν, 0, 0, qz) (2.3)

where the photon components can be given by the invariants as

ν =
Q2

2MxB
, qz =

√
Q2 +

(
Q2

2MxB

)2

. (2.4)

(ii) For the incident electron, the momentum writes

k = (E, kx, 0, kz) = E(1, sin θeγ, 0, cos θeγ), (2.5)

where θeγ is the polar angle between the incident electron and the space-like
photon. One has

sin θeγ =
Q
√
E(E − ν)−Q2/4

Eqz
, cos θeγ =

Eν +Q2/2

Eqz
. (2.6)

(iii) For the time-like photon, the momentum writes

q′ = (ω, ωv), (2.7)

where its energy and velocity can be described by the invariants following

ω = ν +
t

2M
, v = |v| =

√
1− Q′2

ω2
. (2.8)
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(b) Secondly, I introduce the γ∗N CM frame (Fig. 2.1 right panel), in which the vari-
ables are denoted by an asterisk superscript, in order to derive the boundary of
the invariant t. The center-of-mass total energy W is given by Eq. (1.64), and the
momenta of the particles in the γ∗N CM frame write as follows:

(i) For the initial nucleon p∗(E∗p ,p
∗) and the space-like photon q∗(ν∗, q∗), one has

E∗p =
Mν +M2

W
, ν∗ =

Mν −Q2

W
, |p∗| = |q∗| = qzM

W
. (2.9)

(ii) For the final nucleon p′∗(E∗p′ ,p
′∗) and the time-like photon q′∗(ω∗, q′∗), there

are

E∗p′ =
W 2 −Q′2 +M2

2W
, ω∗ =

W 2 +Q′2 −M2

2W
,

|p′∗| = |q′∗| = 1

2W

√[
(W −M)2 −Q′2

] [
(W +M)2 −Q′2

]
. (2.10)

Consequently, the final nucleon energy in TFR-I can be obtained by using Lorentz
transformation as

Ep′ =
1

2W 2

{
(ν +M)(W 2 −Q′2 +M2)

+qz cos θ∗p′

√[
(W −M)2 −Q′2

] [
(W +M)2 −Q′2

]}
, (2.11)

and the components of the time-like photon momentum q′(ω, q′x, q′y, q′z) are give by

ω =
1

2W 2

{
(ν +M)(W 2 +Q′

2 −M2)

+qz cos θ∗γ

√[
(W −M)2 −Q′2

] [
(W +M)2 −Q′2

]}
, (2.12)

q′
x

= −
cosφ sin θ∗γ

2W

√[
(W −M)2 −Q′2

] [
(W +M)2 −Q′2

]
, (2.13)

q′
y

= −
sinφ sin θ∗γ

2W

√[
(W −M)2 −Q′2

] [
(W +M)2 −Q′2

]
, (2.14)

q′
z

=
1

2W 2

{
qz(W 2 +Q′

2 −M2)

+ cos θ∗γ(ν +M)
√[

(W −M)2 −Q′2
] [

(W +M)2 −Q′2
]}
, (2.15)

where θ∗ is the scattering angle of the time-like photon and scattered nucleon in the
γ∗N CM frame with the relationship θ∗p′ = π − θ∗γ ranging from 0 to π. The square
of the momentum transfer to the nucleon t = (p− p′)2 then writes

t = − M

W 2

{
(ν +M)(W 2 −Q′2 +M2)− 2MW 2

+qz cos θ∗p′

√[
(W −M)2 −Q′2

] [
(W +M)2 −Q′2

]}
. (2.16)
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The definitions of tmin and tmax in DDVCS are similar to DVCS, and write

tmin,max = − M

W 2

{
(ν +M)(W 2 −Q′2 +M2)− 2MW 2

±qz
√[

(W −M)2 −Q′2
] [

(W +M)2 −Q′2
]}
, (2.17)

with the + (−) sign standing for tmax (tmin).

(c) Thirdly, it is very suitable for evaluation of scalar products of four-momenta at
intermediate stages in the second target rest frame (TRF-II), in which the z′-axis
is directed along the velocity vector v of the time-like photon and the x′-axis lies in
the hadron scattering plane (Fig. 2.1 left panel). In TRF-II, the particle momenta
read as follows:

(i) For the initial nucleon and the two photons, one obvious has

p = (M, 0, 0, 0), q = (ν, qz sin θγ, 0, q
z cos θγ), q′ = (ω, 0, 0, ωv), (2.18)

with

cos θγ =
Q2 −Q′2 + t+ 2νω

2qzωv
. (2.19)

(ii) For the incoming electron, the momentum reads

k = E(1, − sin θeγ cos θγ cosφ+ cos θeγ sin θγ,

sin θeγ sinφ, sin θeγ sin θγ cosφ+ cos θeγ cos θγ). (2.20)

(d) Finally, I introduce the l−l+ CM frame (Fig. 2.1 right panel), in which the variables
are denoted by an asterisk superscript except the angles θl and ϕl of the final lepton
l−. Since the lepton angles defined in the l−l+ CM frame are chosen to describe the
differential cross section (see Sec. 2.2), their asterisk superscript is removed for neat
expressions for the cross section. In this frame, the momentum of the final lepton
l− writes

l∗− =

(
Q′

2
,
Q′

2
β

)
, (2.21)

where velocity β is given by

β = |β| =

√
1−

4m2
µ

Q′2
(2.22)

with the lepton (muon) mass mµ. Consequently, the momentum of l− viewed from
TRF-II moving with the velocity −v is given by

l− =

(
1

2
ω(1 + vβ cos θl),

1

2
Q′β sin θl cosϕl,

1

2
Q′β sin θl sinϕl,

1

2
ω(v + β cos θl)

)
, (2.23)

form which the momentum l+ of the other lepton is simply deduced by the substi-
tution of {

ϕl → ϕl + π
θl → π − θl

or β → −β. (2.24)
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Using the particle momenta in TRF-II and introducing the energy loss fraction y of
the electron and the nucleon mass correction factor ε,

y =
p · q
p · k

=
ν

E
, ε =

2MxB
Q

, (2.25)

the invariant form of the scalar products entering the cross section can be derived
as

k ·∆ = − 1

2y(1 + ε2)

{
(Q2 +Q′2)

(
1− 2K cosφ+

yε2

2

)
−t
(

1− xB(2− y) +
yε2

2

)}
, (2.26)

l− ·∆ = − β

4v

{
(Q2 +Q′2)

(
v

β
+ cos θl + 2

QQ′

Q2 + xBt

K sin θl cosϕl√
1− y − y2ε2/4

)

+t

(
v

β
+
Q2 − 2xBQ

′2 + xBt

Q2 + xBt
cos θl

)}
, (2.27)

where

K =
1

2(Q2 +Q′2)

√(
1− y − y2ε2

4

)
[4xB(1− xB) + ε2] (tmin − t)(t− tmax). (2.28)

Symmetric variables

The Fourier expansions of DDVCS cross section in azimuthal angles has been only pub-
lished by A. V. Belitsky and D. Müller in [57], where the results are presented in terms
of the symmetric variables. These are introduced to describe approximate forms of scalar
products entering the cross section, considered to be accurate enough for a leading twist
evaluation of the cross section.

A few symmetric variables have been introduced in Eqs (1.100)-(1.102) in Section 1.3.
Besides, an addition variable ỹ is introduced in [57] to make the results look symmetric
and is given by

1

ỹ
=
p · l−
p · q′

=
1 + vβ cos θl

2
' 1 + cos θl

2
. (2.29)

ỹ ranges in the interval [1,+∞) and 1/ỹ can be interpreted as the lepton energy fraction
of the decay.

Neglecting the nucleon mass corrections ∼ M2/Q2 and keeping only the leading and
sub-leading terms in the 1/(2P · q̄) expansion, the scalar products of Eqs.(2.26) and (2.27)
recast

k ·∆ ≈ q̄2

y

ξ

ξ′
(1− 2K cosφ), l− ·∆ ≈

q̄2

ỹ

ξ

ξ′
(1 + 2K̃ cosϕl), (2.30)

with

q̄2 = −1

2

(
Q2 −Q′2 + t/2

)
, (2.31)

and

K ≈ 1

2ξ

√(
− ξ

′

q̄2

)(
1− ξ
1 + ξ

)
(ξ + ξ′)(1− y)(tmin − t). (2.32)
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Figure 2.2: DDVCS (Q2, xB) phase space.

The symmetric variable K̃ can be derived through the substitution ξ′ → −ξ′ and y → ỹ,

K̃ ≈ 1

2ξ

√(
− ξ

′

q̄2

)(
1− ξ
1 + ξ

)
(ξ − ξ′)(ỹ − 1)(tmin − t). (2.33)

The scalar products and symmetric variables are used for the Fourier expansions of
cross section (see Sec. 2.2).

2.1.2 Phase space

Electron view: (Q2,xB) phase space

If the DDVCS process happens in the eN reaction, Ep′ shall be at least larger than M .
Taking into account this condition in the γ∗N CM frame, namely E∗p′ >M , one obtains

Q2 >
xB

1− xB
Q′(Q′ + 2M), (2.34)

which indicates that Q2 has a minimum limit at fixed xB and Q′. If the muon pairs are
the expected final states, Q′ shall be larger than the mass of a muon pair Q′ > 2mµ.
Therefore, Q2 must satisfy the limit given by

Q2 >
4xB

1− xB
mµ(mµ +M). (2.35)

As DVCS case, Q2 has a maximum given at fixed xB by

Q2
max =

4E2MxB
MxB + 2E

. (2.36)

Fig. 2.2 shows the DDVCS (Q2, xB) phase space at some fixed Q′2 (4m2
µ, 1, 4 GeV2)

for a 11 GeV beam1. Unlike DVCS, which has a triangle-shape (Q2, xB) phase space
(Fig. 1.14), DDVCS has a curved-shape Q2

min.

1I remind that E = 11 GeV is kept in the following unless explicitly indicated
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Figure 2.3: DDVCS (Q′2, Q2) and (Q′2, xB) phase space. The dotted line in the left panel
corresponds Q2 = Q′2.

Time-like photon view: (Q′2,Q2) and (Q′2,xB) phase spaces

From Eq. (2.34), it can also be derived that

Q′ 6

√
M2 +

Q2

xB
−Q2 −M, (2.37)

expressing the maximal Q′ at fixed Q2 and xB. Moreover, if a muon pair is produced,
there shall be

Q′ > 2mµ. (2.38)

Fig. 2.3 (left panel) shows the (Q′2, Q2) phase space at some fixed xB (0.2, 0.4, 0.6).
The general fact here is that the increase in Q2 expands the Q′2 range at fixed xB and
the increase in xB reduces the the Q′2 range at fixed Q2. The dotted line represents the
relation Q′2 = Q2. It is observed that at large xB, 0.4 and 0.6 for instance, all the Q′2

values are in the Q′2 < Q2 region. Only at small xB, Q′2 values can be in both Q′2 < Q2

and Q′2 > Q2 regions. Fig. 2.3 (right panel) also shows the (Q′2, xB) phase space at some
fixed Q2 (3, 6, 9 GeV2) and one can get the same general feature.

Nucleon view: (t,Q2), (t,xB) and (t,Q′2) phase spaces

The t boundaries are given by Eq. (2.17). Fig. 2.4 (left panel) shows the (t, Q2) phase
space at fixed xB (0.2, 0.4, 0.6) and Q′2 (4m2

µ, 1, 4 GeV2). It can be seen that

(a) the phase spaces shrink when Q′2 increases ;

(b) the larger Q2 has the wider t range at fixed (xB, Q
′2), larger |tmin| and larger |tmax|;

(c) the smaller xB also has the wider range in t at fixed (Q2, Q′2) but smaller |tmin|.

Fig. 2.4 (right panel) shows the (t, xB) phase space at fixed Q2 (3, 6, 9 GeV2) and Q′2

(4m2
µ, 1, 4 GeV2), and similar conclusions can be obtained. The left panel of Fig. 2.5

shows the (t, Q′2) phase space at fixed Q2 (3, 6, 9 GeV2) and xB = 0.5 and the right panel
displays the one at fixed xB (0.2, 0.4, 0.6) and Q2 = 3 GeV2. In addition to the similar
general features described above, one also observes that the larger Q2 and smaller xB
enlarge the (t, Q′2) phase space.
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GPDs view: (ξ, ξ′) phase spaces

For the QCD factorization to be applicable one has to impose the conditions −t � Q2

and Q2 �M2. Removing the negligible terms ∼ t/Q2 from Eqs. (1.101) and (1.102), the
scaling variables rewrite

ξ′ =
1−Q′2/Q2

(2− xB)/xB −Q′2/Q2
, ξ =

1 +Q′2/Q2

(2− xB)/xB −Q′2/Q2
. (2.39)

From the expressions above, one easily get the linear relation between ξ′ and ξ at t = 0
given by

ξ = −
(

1

1− xB

)
ξ′ +

(
xB

1− xB

)
. (2.40)

Leaving aside the other phase space, the (ξ, ξ′) phase space in Fig. 2.6 (left panel) illus-
trates the relation at various fixed xB represented by the solid lines. The smaller xB one
has, the closer one lies to the TCS region, and xB = 0 results in ξ = −ξ′, which is the
TCS restriction. Besides, the t-correction for some small −t is represented by the dashed,
dotted and dash-dotted lines and acts as a shift to the TCS direction. The extent of the
shift depends on the magnitude of t/Q2.

Furthermore, another linear relation can be also derived from Eq. (2.39),

ξ =

(
1 +Q′2/Q2

1−Q′2/Q2

)
ξ′. (2.41)
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Figure 2.6: (ξ, ξ′) phase space for some fixed xB (left) and some fixed ratios Q′2/Q2 (right).

Ignoring the other phase space, the relation for some fixed ratios of Q′2/Q2 is displayed
by the solid lines in the right panel of Fig. 2.6. When the ratio increases, the line rotates
from the DVCS side to the TCS side. Q′2 = 0 leads to ξ = ξ′ being the DVCS restriction
and Q2 = 0 results in ξ = −ξ′. Specially, when Q′2 = Q2 one reaches the zero value of
generalized Bjorken variable ξ′ = 0 pointed out by vertical magenta solid line.

DDVCS can access the CFFs in the region |ξ′| < ξ, where the skewness variable ξ
ranges in principle in 0 6 ξ 6 1 as shown in Fig. 1.19. However, for certain kinematics, it
has an upper boundary ξmax that cannot actually exceed an envelope determined by the
kinematics condition |t| > |tmin|, and the envelop is given by

ξmax 6

√
− t

4M2 − t
(2.42)

for all possible E, xB, Q2 and Q′2. Fig. 2.7 shows the maximal coverage in ξ and ξ′ for
some fixed t. The coverages at t = −0.01, −0.1 and −1 GeV2 are indicated respectively
by the green, yellow and cyan area, and upper limits of the envelopes are represented by
the dashed, dotted and dash-dotted lines, respectively. Note that the coverage at large
|t| contains the one at small |t|. The higher ξ, the larger the coverage of CFFs. To reach
large ξ one shall reach large |t|. Therefore, to map out the GPDs at large ξ requires
high beam energy in order to reach large Q2 and consequently satisfy the factorization
condition at large −t.

To conclude, at a fixed xB, one accesses the GPDs in (ξ, ξ′) along a line mostly fixed by
xB at small −t. The accessed maximal ξ-range depends on t, and finally the accessed po-
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Figure 2.7: (ξ, ξ′) maximal coverage for some fixed t.
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Figure 2.8: The subprocesses contributing to the electroproduction of lepton pairs includ-
ing DDVCS (left panels), BH1 (middle panels) with the di-lepton emitted by the initial
and final electrons, and BH2 (right panels) with the di-lepton virtual production in the
nuclear field.

sition within the line is determined by Q2 and Q′2. Combining with the other phase space,
the specific (ξ, ξ′) phase space of some experimental projects is discussed in chapter. 5.

2.2 Cross section

The theoretical formalism and the factorization theorem associated with the DDVCS
process have been developed to leading power accuracy in [57], as well as the Fourier
expansion of the differential cross section for the exclusive electroproduction of a lepton
pair eN → eNl−l+. In this section, I briefly present the 7-fold differential cross section
at leading order and leading twist for unpolarized targets.

Firstly, I remark that the factorization condition mentioned before, Q2 � M2 and
t � Q2, is just one part of the full condition. In the DDVCS case, it is the inverse
s-channel energy 2P · q̄ that sets the distance between the quark fields in the Compton
scattering amplitude [57] rather than the virtuality Q2 or |q̄2|. Therefore, to ensure the
factorization regime, one has to impose the condition

2P · q̄ = − q̄
2

ξ′
=

1

2

(
2Q2

xB
−Q2 −Q′2 + t

)
� max{M2,−t}, (2.43)

which is named “the generalized Bjorken limit”. In this limit, one or both photon virtu-
alities need to be large, namely

Q2 +Q′2 �M2 and − t� Q2 +Q′2. (2.44)

As long as Q2 and Q′2 are large, the factorization condition is still satisfied even when
|q̄2| ' 0 at Q2 ' Q′2. Consequently, the zero ξ′-value can be reached under the factoriza-
tion regime in the DDVCS process.

The reaction of eN → eNl−l+ consists of three undistinguishable interfering processes,
depicted in Fig. 2.8: the DDVCS process and two Bethe-Heitler processes denoted BH1
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and BH2 respectively. The BH1 process is an analog to the DVCS case (Fig. 1.17),
but the BH2, in which the lepton pair production caused by both virtual photon in the
nuclear field, is a new mechanism. As mentioned before, they are calculable in QED to a
high degree of accuracy at small −t, i.e. in the momentum transfer region where elastic
FFs are precisely known. The 7-fold differential cross section in terms of experimentally
measurable variables reads

d7σ

dxBdQ2dtdQ′2dφdΩl

= APS

∣∣∣∣Te4
∣∣∣∣2 (2.45)

being proportional to the square of the total amplitude corresponding to the coherent
sum of the three processes, which contains three essentially different contributions,

T 2 = |TBH1 + TBH2|2 + |TDDVCS|2 + I, (2.46)

with

I = TDDVCST ∗BH1 + T ∗DDVCSTBH1 + TDDVCST ∗BH2 + T ∗DDVCSTBH2. (2.47)

The phase space prefactor APS is given by

APS =
α4
em

16(2π)3
xBy

2β

Q4
√

1 + ε2
(2.48)

Analogous to the DVCS case, the pure BH terms are given in terms of FFs, the pure
DDVCS and interference terms are respectively bilinear and linear in CFFs. Therefore,
the decomposition of the cross section in terms of beam charge and polarization can be
given by

d7σ = d7σBH1
UU + d7σBH2

UU + (−el)d7σBH12
UU + d7σDDVCS

UU + (−el)d7σINT1
UU + d7σINT2

UU

+Pl
[
d7σDDVCS

LU + (−el)d7σINT1
LU + d7σINT2

LU

]
, (2.49)

where the superscript INT1 and INT2 stand for the contributions of DDVCS interfering
with BH1 and BH2, respectively, and BH12 represents the interference contributions be-
tween two Bethe-Heitler processes. The helicity-dependent contribution of the imaginary
DDVCS amplitude, denoted d7σDDVCS

LU in Eq. (2.49), arises from the interference of twist-2
and twist-3 CFFs and equals to zero in the twist-2 approximation. As for the DDVCS
process it is expected to be small and therefore is not presented in the following unless
necessary. The contributions as a Fourier expansion in terms of the azimuthal angles, φ
of the recoiled nucleon and ϕl of a lepton in the final pair, are introduced in the following.
Note that θl-dependence is embedded inside the Fourier coefficients with the symmetric
variable ỹ given by Eq. (2.29). As mentioned previously, ϕl and θl are defined in the l−l+

CM frame.



56 CHAPTER 2. THEORETICAL FRAMEWORK

2.2.1 Bethe-Heitler contributions

The Bethe-Heitler contributions can be expressed by

d7σBH1
UU ∝ 1

P2
1P2

2 (φ)

{[
ccBH1

00 + ccBH1
02 cos(2ϕl)

]
+
[
ccBH1

11 cos(ϕl)
]

cos(φ) +
[
ccBH1

20 + ccBH1
22 cos(2ϕl)

]
cos(2φ)

+
[
ccBH1

31 cos(ϕl)
]

cos(3φ) +
[
ccBH1

42 cos(2ϕl)
]

cos(4φ)

+
[
ssBH1

11 sin(ϕl)
]

sin(φ) +
[
ssBH1

22 sin(2ϕl)
]

sin(2φ)

+
[
ssBH1

31 sin(ϕl)
]

sin(3φ) +
[
ssBH1

42 sin(2ϕl)
]

sin(4φ)

}
, (2.50)

d7σBH2
UU ∝ 1

P2
3P2

4 (θl, ϕl)

{[
ccBH2

00 + ccBH2
20 cos(2ϕl)

]
+
[
ccBH2

11 cos(ϕl) + ccBH2
31 cos(3ϕl)

]
cos(φ)

+
[
ccBH2

02 + ccBH2
22 cos(2ϕl) + ccBH2

42 cos(4ϕl)
]

cos(2φ)

+
[
ssBH2

11 sin(ϕl) + ssBH2
31 sin(3ϕl)

]
sin(φ)

+
[
ssBH2

22 sin(2ϕl) + ssBH2
42 sin(4ϕl)

]
sin(2φ)

}
, (2.51)

d7σBH12
UU ∝ 1

P1P2(φ)P3P4(θl, ϕl)

{[
ccBH12

00 + ccBH12
02 cos(2ϕl)

]
+
[
ccBH12

11 cos(ϕl)
]

cos(φ) +
[
ccBH12

20 + ccBH12
22 cos(2ϕl)

]
cos(2φ)

+
[
ssBH12

11 sin(ϕl)
]

sin(φ) +
[
ssBH12

22 sin(2ϕl)
]

sin(2φ)

}
. (2.52)

The BH propagators in the denominators are defined by

(k′ + ∆)2 = 4ξP · q̄ P1(φ), (k −∆)2 = 4ξP · q̄ P2(φ),

(l+ + ∆)2 = −4ξP · q̄ P3(θl, ϕl), (l− + ∆)2 = −4ξP · q̄ P4(θl, ϕl), (2.53)

and can be expressed in terms of invariants as

P1(φ) =
2k ·∆ +Q2 +Q′2

Q2 +Q′2
, P2(φ) =

t− 2k ·∆
Q2 +Q′2

,

P3(θl, ϕl) = −
m2
µ + 2l+ ·∆ + t

Q2 +Q′2
, P4(θl, ϕl) = −

m2
µ + 2l− ·∆ + t

Q2 +Q′2
, (2.54)
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with the scalar products given by Eqs. (2.26)-(2.28). Based on the definition of the
propagators in Eq. (2.53) and the scalar products in Eq. (2.30), it can be seen that the
product P3P4 is related with P1P2 through the interchange ξ′ ↔ −ξ′, y ↔ ỹ and φ↔ ϕl,
namely

P3P4(ξ
′, y, ỹ, ϕl) = P1P2(−ξ′, ỹ, y, φ), (2.55)

and is even function under the interchange of the produced leptons in the pair l− ↔ l+,
namely

P3P4(θl, ϕl) = P3P4(π − θl, ϕl + π). (2.56)

Furthermore, all BH propagators are even functions in the azimuthal angle ϕ,

Pi(ϕ) = Pi(2π − ϕ) for i = {1, 2, 3, 4}, (2.57)

since they contain only cosϕ terms.

2.2.2 DDVCS contribution

The pure DDVCS contribution write

d7σDDVCS
UU = APSADDVCS

{
ccDDVCS

00 +
[
ccDDVCS

11 cos(ϕl)
]

cos(φ)

+
[
ccDDVCS

22 cos(2ϕl)
]

cos(2φ)

+
[
ssDDVCS

11 sin(ϕl)
]

sin(φ) +
[
ssDDVCS

22 sin(2ϕl)
]

sin(2φ)

}
, (2.58)

with the DDVCS kinematical factor

ADDVCS =
2ξ′2[

ξ2 −
(

1 +
t

4q̄2

)2

ξ′2

]
q̄4

. (2.59)

For the pure DDVCS contribution, the Fourier coefficients are a bilinear combination of
CFFs, for instance

ccDDVCS
00 =

1

y2ỹ2

[
2(2− 2y + y2)(2− 2ỹ + ỹ2)CDDVCS + 16(1− y)(1− ỹ)CDDVCS

L

]
(2.60)

with

CDDVCS = (1− ξ2)(HH∗ + H̃H̃∗)− ξ2(HE∗ + EH∗ + H̃Ẽ∗ + ẼH̃∗)

−
(

t

4M2
+ ξ2

)
EE∗ − ξ2 t

4M2
Ẽ Ẽ∗, (2.61)

CDDVCS
L =

ξ′2 − ξ2

ξ′2

[
(1− ξ2)HLH∗L − ξ2(HLE∗L + ELH∗L)−

(
t

4M2
+ ξ2

)
ELE∗L

]
. (2.62)

The CFFs F in Eq. (2.61) are given by the complex functions of Eq. (1.121). The
longitudinal CFFs FL in Eq. (2.62) are analogous to the longitudinal structure function
of the DIS process. They start at next-to-leading order and are approximated to zero
at leading order. I remind that the helicity-dependent DDVCS contribution d7σDDVCS

LU is
approximated to zero at leading twist.
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2.2.3 Interference contributions

The interference contributions write

d7σINT1
UU =

APSAINT

P1P2(φ)

{[
ccINT1

01 cos(ϕl)
]

+
[
ccINT1

10 + ccINT1
12 cos(2ϕl)

]
cos(φ)

+
[
ccINT1

21 cos(ϕl)
]

cos(2φ) +
[
ccINT1

32 cos(2ϕl)
]

cos(3φ)

+
[
ssINT1

12 sin(2ϕl)
]

sin(φ) +
[
ssINT1

21 sin(ϕl)
]

sin(2φ)

+
[
ssINT1

32 sin(2ϕl)
]

sin(3φ)

}
, (2.63)

d7σINT2
UU =

APSAINT

P3P4(θl, ϕl)

{[
ccINT2

10 cos(ϕl)
]

+
[
ccINT2

01 + ccINT2
21 cos(2ϕl)

]
cos(φ)

+
[
ccINT2

12 cos(ϕl) + ccINT2
32 cos(3ϕl)

]
cos(2φ)

+
[
ssINT2

21 sin(2ϕl)
]

sin(φ)

+
[
ssINT2

12 sin(ϕl) + ssINT2
32 sin(3ϕl)

]
sin(2φ)

}
, (2.64)

d7σINT1
LU =

APSAINT

P1P2(φ)

{[
csINT1

01 sin(ϕl)
]

+
[
csINT1

21 sin(ϕl)
]

cos(2φ)

+
[
scINT1

10

]
sin(φ) +

[
scINT1

21 cos(ϕl)
]

sin(2φ)

}
, (2.65)

d7σINT2
LU =

APSAINT

P3P4(θl, ϕl)

{[
csINT2

01 + csINT2
21 cos(2ϕl)

]
sin(φ)

+
[
scINT2

10 sin(ϕl)
]

+
[
scINT2

21 sin(2ϕl)
]

cos(φ)

}
, (2.66)

with the interference kinematical factor

AINT =
2ξ′(1 + ξ)[

ξ2 −
(

1 +
t

4q̄2

)2

ξ′2

]
q̄2t

. (2.67)

For the interference contributions, the Fourier coefficients are a linear combination of
CFFs. ccINT1,2 and ssINT1,2 are related to the real part of CFFs, while csINT1,2 and
scINT1,2 are related to the imaginary part. For example

ccINT1
10 =

8K

y3ỹ2

[
(2− 2y+ y2)(2− 2ỹ+ ỹ2)Re

{
CINT
UU

}
− 8(1− y)(1− ỹ)Re

{
CINT
UU,L

} ]
(2.68)
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with the linear CFFs combinations

CINT
UU =

ξ′

ξ

(
F1H−

t

4M2
F2E

)
+ ξ(F1 + F2)H̃, (2.69)

CINT
UU,L =

ξ′2 − ξ2

ξξ′

(
F1HL −

t

4M2
F2EL

)
, (2.70)

and

scINT1
10 = −8πK(2− y)(2− 2ỹ + ỹ2)

y2ỹ2
Im
{
CINT
LU

}
(2.71)

with the linear CFFs combination

CINT
LU = F1H + ξ′(F1 + F2)H̃ −

t

4M2
F2E . (2.72)

The corresponding coefficients in INT2 contributions are given by

{
ccINT2

10 , scINT2
10

}
=
K̃y

Kỹ

{
ccINT1

10 ,−scINT1
10

}
(2.73)

being proportional to the same combinations of CFFs respectively. I emphasize that the
real and imaginary parts the CFFs above are given by the Eqs. (1.108)-(1.115) and the
longitudinal CFFs FL contributions are approximated to zero for this study, which focuses
on the leading order.

2.3 Cross section integrated over lepton solid angle

As discussed in section 1.3.2, in comparison to DVCS, the DDVCS cross section is small
even if integrating over the solid angle of the produced lepton pair. Thus, any measure-
ment of 7-fold differential cross section is too difficult for the current facilities. In order
to conduct feasible measurements with reasonable statistics, one can measure the observ-
ables in terms of the 5-fold differential cross section integrated over the lepton pair solid
angle at a high luminosity and with a large detector acceptance. I present the theoretical
description of the integration first and then introduce the experimental observables in the
following.

2.3.1 Integration over lepton solid angle

The DDVCS and the BH1 amplitudes are even under the interchange of the produced
leptons in the pair l− ↔ l+, namely θl ↔ π−θl and ϕl ↔ ϕl+π, while the BH2 amplitude
is odd [57]. Therefore, the integration over the solid angle leads to the vanishing of the
interference terms between TBH2 and the other two mechanisms. The integrated 5-fold
cross section is given by

d5σ

dxBdQ2dtdQ′2dφ
=

∫ 2π

0

dϕl

∫ π/2+θ0

π/2−θ0
dθl sin θl

d7σ

dxBdQ2dtdQ′2dφdΩl

(2.74)

where the integral over θl is in a symmetric interval around the point π/2 and θ0 takes
any value from 0 < θ0 6 π/2. The 5-fold cross section decomposition can be expressed in
terms of the beam charge and polarization as

d5σ = d5σBH1
UU +d5σBH2

UU +d5σDDVCS
UU +(−el)d5σINT1

UU +Pl
[
d5σDDVCS

LU + (−el)d5σINT1
LU

]
, (2.75)
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where the helicity-dependent DDVCS contribution d5σDDVCS
LU equals to zero at leading

twist. The form is analogous to the DVCS case in Eq. (1.75) expect it contains an
additional pure BH2 contribution. All the contributions are presented in the following as
a Fourier expansion in φ.

Bethe-Heitler contributions

In the 7-fold BH1 contribution of Eq. (2.50), the ccBH1
00 and ccBH1

20 harmonic terms are even
under the leptons interchange, while the others (odd) vanish from the integration over ϕl.
The pure BH1 contribution can be then expressed

d5σBH1
UU ∝

1

P2
1P2

2 (φ)

[
cBH1
0 + cBH1

2 cos(2φ)
]
, (2.76)

where the Fourier coefficients cBH1
0 , cBH1

2 are respectively given by the integral of ccBH1
00 ,

ccBH1
20 .

For the pure BH2 contribution, one has

d5σBH2
UU ∝ cBH2

0 + cBH2
1 cos(φ) + cBH2

2 cos(2φ), (2.77)

where the Fourier coefficients cBH2
0 , cBH2

1 , cBH2
2 are given by the integral of the cos 0, cosφ,

cos 2φ harmonic terms of Eq. (2.51), respectively. The BH propagators P3P4 are also
integrated. Since each term in Eq. (2.51) becomes a cos-Fourier expansion in ϕl after the
integration over θl, as shown in Eq. (2.95), the sine harmonics in ϕl drop out from the
integration due to the orthogonal property.

DDVCS contribution

The only harmonic term in Eq. (2.58) that does not vanish from the integration is the
ccDDVCS

00 and the 5-fold pure DDVCS contribution writes

d5σDDVCS
UU = APSADDVCScDDVCS

0 , (2.78)

where the coefficient cDDVCS
0 is given by the integral of ccDDVCS

00 as

cDDVCS
0 =

∫ 2π

0

dϕl

∫ π/2+θ0

π/2−θ0
dθl sin θl cc

DDVCS
00 . (2.79)

The integral of the components depending on the lepton angles is given by∫ 2π

0

dϕl

∫ π/2+θ0

π/2−θ0
dθl sin θl

(
2− 2ỹ + ỹ2

ỹ2

)
= 2π sin θ0

(
1 +

1

3
sin2 θ0

)
. (2.80)

It equals 8π/3 when integrating over the full range of θl, i.e. θ0 = π/2, and becomes about
62% over the half of the full range when θ0 = π/4. Consequently, the Fourier coefficient
of the 5-fold pure DDVCS contribution of full range integration writes

cDDVCS
0 =

16π(2− 2y + y2)

3y2
CDDVCS (2.81)
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Interference contributions

The only harmonic term in Eq. (2.63) that survives the integration is the ccINT1
10 and the

5-fold unpolarized INT1 contribution writes

d5σINT1
UU =

APSAINT

P1P2(φ)
cINT1
1 cos(φ), (2.82)

where the coefficient cINT1
1 is given by the integral of ccINT1

10 analogously to Eq. (2.79). For
the integration over the full range of θl, one has

cINT1
1 =

64πK(2− 2y + y2)

3y3
Re
{
CINT
UU

}
, (2.83)

Similarly, the 5-fold helicity-dependent INT1 contribution writes

d5σINT1
LU =

APSAINT

P1P2(φ)
sINT1
1 sin(φ), (2.84)

with the coefficient sINT1
1 given by the integral of ssINT1

10 . For the θl-full-range integration,
sINT1
1 reads

sINT1
1 = −64π2K(2− y)

3y2
Im
{
CINT
LU

}
. (2.85)

The BH propagators P1P2 are kinematics factors with a φ dependence entering into the
denominator of the cross section contributions. Consequently, the cosφ or sinφ moment
of the cross section can not directly access the Fourier coefficients. However, their full
expressions are calculable through Eqs. (2.54), (2.26) and (2.28) at a fixed kinematic point
(xB, Q

2, t, Q′2, φ).
Applying the approximation for introducing the symmetric variables, the propagators

can be given by using Eqs. (2.30)-(2.33) as

P1P2(φ) ≈ − 1

y2

{[
(1− y) + y(1− y)

(
t

Q2 +Q′2

)]
−2

[
2− y

(
1− t

Q2 +Q′2

)]
K cosφ+ 4K2 cos2 φ

}
. (2.86)

It is obvious that the φ dependence can be neglected only when K � 1 − y. Neglecting
the kinematically suppressed term ∼ t/(Q2+Q′2) and keeping the leading and sub-leading
terms only, the formula simplify considerably,

P1P2(φ) ≈ − 1

y2
[(1− y)− 2(2− y)K cosφ] . (2.87)

When the generalized Bjorken limit is fulfilled, to the degree that the kinematically sup-
pressed terms are negligible, the approximations mentioned above are good enough to
describe the contributions. Then, the 5-fold cross section contributions integrated over
the full range of the final lepton solid angle are expressed in term of the experimental
variables, respectively, by

d5σDDVCS
UU ≈ α4

em

12π2

xB(2− 2y + y2)

Q6Q′2
CDDVCS, (2.88)

d5σINT1
UU ≈ α4

em

3π2

(2− 2y + y2)yK ′ cosφ

Q4Q′2t
[√

1− y − 2(2− y)K ′ cosφ
] Re

{
CINT
UU

}
, (2.89)

d5σINT1
LU ≈ −α

4
em

3π

(2− y)y2K ′ sinφ

Q4Q′2t
[√

1− y − 2(2− y)K ′ cosφ
] Im

{
CINT
LU

}
, (2.90)
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where

K ′ =

√
tmin − t

√
|(1− xB)Q2 − xBQ′2|
Q2 +Q′2

. (2.91)

The kinematical factor K ′ > 0 has positive value, and when it is non-negligible the d5σINT1
UU

contribution therefore has larger absolute magnitude at φ = 0 than at φ = π. I emphasize
that when Q2 +Q′2 becomes of order M2 or −t the approximations break down and one
must use the full expressions.

2.3.2 Integration over φ and θl

The magnitude of interference contributions depends on the relative strength of the BH
amplitudes with respect to the DDVCS one. The BH1 amplitude becomes smaller when
one goes from the the space-like region ξ′ > 0 (Q2 > Q′2) to the time-like region ξ′ < 0
(Q2 < Q′2), while the BH2 amplitude acts contrarily and dominates the cross section
except when one approaches the limit Q′2 → 0 [57]. In the time-like region, the INT1
contributions therefore becomes considerably small, but one can alternatively measure
the observables sensitive to INT2 contributions.

Due to the antisymmetric property of the INT2 contributions under the interchange
of the final leptons in the pair, they drop out from the integration over the lepton solid
angle. In order to access the INT2 contribution, one can do the azimuthal integration in
another way to interpret data:

d5Σ

dxBdQ2dtdQ′2dϕl
=

∫ 2π

0

dφ

∫ π/2+θ0

π/2−θ0
dθl sin θl

d7σ

dxBdQ2dtdQ′2dφdΩl

. (2.92)

Here I use the symbol Σ denoting the 5-fold cross section to discriminate it from the
previous one. The decomposition form is given by

d5Σ = d5ΣBH1
UU + d5ΣBH2

UU + (−el)d5ΣBH12
UU + d5ΣDDVCS

UU + (−el)d5ΣINT1
UU + d5ΣINT2

UU

+Pl
(
d5ΣDDVCS

LU + d5ΣINT2
LU

)
, (2.93)

where the helicity-dependent DDVCS contribution d5ΣDDVCS
LU equals to zero at leading

twist. In comparison to the 7-fold form in Eq. (2.49), the only term that drop out is
the helicity-dependent INT1 contribution, in which every single Fourier harmonic is odd
under the substitution of φ → φ + π and θl → π − θl. All the contributions as a Fourier
expansion in ϕl are presented in the following.

Bethe-Heitler contributions

For the pure 7-fold BH1 contribution of Eq. (2.50), the integration over φ removes all
sine terms in φ, but the cosine terms survive due to the cosine terms of P1P2 in the
denominator. The ccBH1

00 , ccBH1
20 , ccBH1

02 , ccBH1
22 and ccBH1

42 harmonic terms are even under
the substitution of θl → π − θl, while the others are odd and therefore vanish from the
integration over θl. Then, one has

d5ΣBH1
UU ∝ CBH1

0 + CBH1
2 cos(2ϕl), (2.94)

where CBH1
0 is given by the integrals of the ccBH1

00 , ccBH1
20 harmonic terms of Eq. (2.50), and

CBH1
2 is given by the integrals of the ccBH1

02 , ccBH1
22 , ccBH1

42 harmonic terms of Eq. (2.50).
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For the pure 7-fold BH2 contribution of Eq. (2.51), the integration over φ removes
all sine and cosine terms in φ. The only remaining terms is the ccBH2

00 and ccBH2
20 . As a

consequence of the symmetry of the product P3P4, see Eq. (2.56), the integration over dθl
in a symmetric interval around the point θl = π/2 gives for any (anti)symmetric moment
τ(θl) the following characteristic cos-Fourier expansion (for any integer r) [57]:∫ π/2+θ0

π/2−θ0
d cos θl

τ(θl)

[P3P4]r
=

∑
n=0,1,···

τn(θ0)

{
cos[(2n+ 1)ϕl]

cos(2nϕl)

}
for

{
τ(θl) = −τ(π − θl)
τ(θl) = τ(π − θl))

}
.

(2.95)
The ccBH2

00 and ccBH2
20 harmonic terms are even under the substitution of θl → π − θl,

and their integration over θl expands into even cos-expansions in terms of cos(2nϕl).
Eventually, the 5-fold pure BH2 contribution writes

d5ΣBH2
UU ∝ CBH2

0 + CBH2
2 cos(2ϕl) + CBH2

4 cos(4ϕl) + · · · (2.96)

Similarly for the BH12 contribution of Eq. (2.52), the cBH12
00 , cBH12

20 , cBH12
02 and cBH12

22

terms being odd under the θl substitution and the cBH12
11 being even survive from the inte-

gration over φ. Their integration over θl expands into both even and odd cos-expansion,
and one has then

d5ΣBH12
UU ∝ CBH12

1 cos(ϕl) + CBH12
2 cos(ϕl) cos(2ϕl) + · · · (2.97)

DDVCS contribution

The only harmonic term in Eq. (2.58) surviving the integration is still the azimuthal
independent term ccDDVCS

00 and the 5-fold pure DDVCS contribution writes

d5ΣDDVCS
UU = APSADDVCSCDDVCS

0 , (2.98)

where the coefficient CDDVCS
0 is given by the integral of ccDDVCS

00 as

CDDVCS
0 =

∫ 2π

0

dφ

∫ π/2+θ0

π/2−θ0
dθl sin θl cc

DDVCS
00 . (2.99)

Since ccDDVCS
00 is independent on the angles, CDDVCS

0 is given by the right-hand side of
Eq. (2.80) and related to the CFFs similarly to Eq. (2.81) when integration over the full
range of θl. Therefore, the 5-fold pure DDVCS contributions with respect to the two
azimuthal integrations have the same magnitude at leading twist.

Interference contributions

Following the same approach, the interference contributions in terms of ϕl can be obtained.
The unpolarized INT1 contribution reads

d5ΣINT1
UU ∝ CINT1

0 + CINT1
2 cos(2ϕl). (2.100)

For the INT2 contributions, the only terms that survive the integration over φ are the
Fourier harmonic terms with the coefficients ccINT2

10 and scINT2
10 given by the relation of

Eq. (2.73). Then, one has

d5ΣINT2
UU = 2π

∫ π/2+θ0

π/2−θ0
dθl sin θl

APSAINT

P3P4(θl, ϕl)
ccINT2

10 cos(ϕl), (2.101)

d5ΣINT2
LU = 2π

∫ π/2+θ0

π/2−θ0
dθl sin θl

APSAINT

P3P4(θl, ϕl)
scINT2

10 sin(ϕl), (2.102)
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where the terms being even under the θl substitution give even cos-expansions in the
expression:

d5ΣINT2
UU = 2πAPSAINT cos(ϕl)

[
CINT2

1 + CINT2
2 cos(2ϕl) + · · ·

]
, (2.103)

d5ΣINT2
LU = 2πAPSAINT sin(ϕl)

[
SINT2
1 + SINT2

2 cos(2ϕl) + · · ·
]
. (2.104)

To obtain the coefficients above, one need the full expression of the product P3P4 given
by the Eqs. (2.54), (2.27) and (2.28) at a fixed kinematic point (xB, Q

2, t, Q′2, θl, ϕl). It
is rather lengthy, but simplify considerably in kinematics where t, M2 and m2

µ can be
neglected compared to terms going with Q2 +Q′2 as

P3P4 ≈
sin2 θl

4
≈ ỹ − 1

ỹ2
, (2.105)

which has been noticed in [58]. Indeed, Eq. (2.105) is the leading term of the expression
obtained by using Eqs. (2.30)-(2.33), which reads

P3P4 ≈
sin2 θl

4

(
1 + 4K

′′ cos θl
sin θl

cosϕl − 4K
′′2

cos2 ϕl

)
(2.106)

with

K
′′

=

√
Q′2/Q2

√
tmin − t

√
|(1− xB)Q2 − xBQ′2|

Q2 +Q′2
(2.107)

It can be seen that the product P3P4 of lepton propagators goes to zero at sin θl = 0 in this
approximation. Closer inspection reveals that when sin θl becomes of order t/(Q2 + Q′2)
or m2

µ/(Q
2 +Q′2) the approximations break down and one must use the full expressions.

Using the approximation of Eq. (2.105), the integral of the θl-dependent components in
the INT2 contributions is given by∫ π/2+θ0

π/2−θ0
dθl sin θl

(
ỹ2

ỹ − 1

)(
2− 2ỹ + ỹ2

ỹ3

)
K̃ = K

′′
(

3θ0 −
sin 2θ0

2

)
(2.108)

when θ0 = π/2, namely integrating over the full range in θl, one gets 3πK
′′
/2. It becomes

about 39% over the half of the full range when θ0 = π/4. Eventually, the 5-fold INT2
contributions integrated over the full range of the final lepton solid angle are expressed in
term of the experimental variables, respectively, by

d5ΣINT2
UU ≈ −3α4

em

8π

(2− 2y + y2)K
′′

cosϕl
Q4Q′2t

Re
{
CINT
UU

}
, (2.109)

d5ΣINT2
LU ≈ −3α4

em

8

(2− y)yK
′′

sinϕl
Q4Q′2t

Im
{
CINT
LU

}
. (2.110)

The expressions above are valid only when one sufficiently satisfies the generalized Bjorken
limit. It can be seen that the d5ΣINT2 contributions access the same linear CFFs combina-
tions accessed by the corresponding d5σINT1, however, the magnitudes of the contribution
are different, depending on different kinematic factors. Neglecting the φ-dependent sub-
leading term of P1P2 in the denominators of Eqs. (2.89) and (2.90), the ratio of the
absolute magnitudes of d5ΣINT2 to d5σINT1, at the same corresponding azimuthal angles,
can be roughly expressed as∣∣∣∣d5ΣINT2(ϕ)

d5σINT1(ϕ)

∣∣∣∣ ≈ 9π

8

√
Q′2/Q2√

y2/(1− y)
. (2.111)
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In the space-like region, one has Q′2/Q2 < 1 (see the right panel of Fig. 2.6) and large Q2

supporting the factorization regime, thus, d5σINT1 has a relatively considerable magnitude,
especially at small Q′2. Thus, it is appropriate to measure observables responsive to
d5σINT1 in this region. When one goes to the time-like region where Q′2/Q2 > 1, d5σINT1

becomes very small while d5ΣINT2 becomes significant, particularly when Q2 → 0 at large
Q′2. Then, one shall perform measurements of observables sensitive to d5ΣINT2. Let’s
discuss how we access the CFFs through the specific experimental observables in the next
section.

2.4 Experimental observables

Neglecting the twist-3 heilicity-dependent DDVCS contributions and considering 100%
beam polarization, the experimental observables in terms of the 5-fold differential cross
sections are listed in the following.

2.4.1 5-fold cross sections with polarized electron beam

With polarized electron beam, the 5-fold unpolarized cross section and beam spin cross
section difference for DDVCS measurements are built as

σ−UU(φ) =
1

2

(
d5σ−→ + d5σ−←

)
= d5σBH1

UU + d5σBH2
UU + d5σDDVCS

UU + d5σINT1
UU ,

∆σ−LU(φ) =
1

2

(
d5σ−→ − d5σ−←

)
= d5σINT1

LU , (2.112)

which are the integrals over the final lepton solid angle and eventually consist of the
Fourier harmonics in the nucleon azimuthal angle φ. In order to single out the polarized
INT2 contribution, one can also follow the other integration scheme to obtain

Σ−UU(ϕl) =
1

2

(
d5Σ−→ + d5Σ−←

)
= d5ΣBH1

UU + d5ΣBH2
UU + d5ΣBH12

UU

+d5ΣDDVCS
UU + d5ΣINT1

UU + d5ΣINT2
UU

∆Σ−LU(ϕl) =
1

2

(
d5Σ−→ − d5Σ−←

)
= d5ΣINT2

LU , (2.113)

containing only harmonics in the lepton azimuthal angle ϕl after the integration over φ
and the lepton polar angle θl.

Similarly to the DVCS case, the beam spin cross section differences are of great interest,
since they are directly proportional to the imaginary part of the linear CFFs combination
CINT
LU given by Eq. (2.72). At leading twist approximation, they can be expressed by

∆σ−LU(φ) = KLU(φ) Im

{
F1H + ξ′(F1 + F2)H̃ −

t

4M2
F2E

}
, (2.114)

and similar relation holds for ∆Σ−LU(ϕl). The azimuthal-angle-dependent factor KLU can
be read off from the corresponding Fourier coefficients, where the phase space prefactor
APS, kinematical factor of the interference contribution AINT, and most of all, the corre-
sponding integration and the propagators should be exactly taken into account. Sec. 6.1.1
will present the specific expression of KLU for the extraction of the CFFs combination. In
Eq. (2.114), the kinematical factors ξ′ and t being small, the measurements of the beam



66 CHAPTER 2. THEORETICAL FRAMEWORK

spin cross section differences on a proton target are mainly sensitive to ImHp(ξ′, ξ, t), be-
ing the proton singlet GPD Hp

+(ξ′, ξ, t). Due to the small value of F n
1 and the cancellation

between u and d polarized parton distributions in H̃n, the measurements on a neutron
target provide access to ImEn(ξ′, ξ, t), which is the neutron singlet GPD En

+(ξ′, ξ, t).

Since the imaginary parts of H, E and ξ′H̃ are antisymmetric in ξ′, as displayed in
Eqs. (1.119) and (1.120), one experts the beam spin cross section differences with different
sign in the space-like and time-like region, and becoming zero at ξ′ = 0.

Actually, ∆σ−LU(φ) is complicated by the presence of the twist-three DDVCS con-
tribution d5σDDVCS

LU . Moreover, although one can get rid of all the BH terms by QED
calculations, the unpolarized cross section σ−UU is still a mix of the bilinear and linear
CFFs combinations coming from the DDVCS and INT1 contributions, respectively. The
unpolarized cross section Σ−UU has more contributions. To separate them, the cross sec-
tions with positron beam are needed.

2.4.2 5-fold cross sections with polarized electron and positron
beam

Using polarized electron and polarized positron beam, one can measure the experimental
observables built as

σUU(φ) =
1

4

[(
d5σ−→ + d5σ−←

)
+
(
d5σ+

→ + d5σ+
←
)]

= d5σBH1
UU + d5σBH2

UU + d5σDDVCS
UU ,

∆σC
UU(φ) =

1

4

[(
d5σ−→ + d5σ−←

)
−
(
d5σ+

→ + d5σ+
←
)]

= d5σINT1
UU ,

∆σLU(φ) =
1

4

[(
d5σ−→ − d5σ−←

)
+
(
d5σ+

→ − d5σ+
←
)]

= 0,

∆σC
LU(φ) =

1

4

[(
d5σ−→ − d5σ−←

)
−
(
d5σ+

→ − d5σ+
←
)]

= d5σINT1
LU , (2.115)

where ∆σLU equals to zero only at leading twist and should include the twist-3 d5σDDVCS
LU

contribution. Its contamination totally drops out in the ∆σC
LU, as a direct benefit of

combining electron and positron beam DDVCS observables. The interference contribution
and the DDVCS contribution are singled out from each cross section, which offers a cleaner
platform for the extraction of CFFs. Following the other integration scheme, one also
obtains

ΣUU(ϕl) =
1

4

[(
d5Σ−→ + d5Σ−←

)
+
(
d5Σ+

→ + d5Σ+
←
)]

= d5ΣBH1
UU + d5ΣBH2

UU + d5ΣDDVCS
UU + d5ΣINT2

UU ,

∆ΣC
UU(ϕl) =

1

4

[(
d5Σ−→ + d5Σ−←

)
−
(
d5Σ+

→ + d5Σ+
←
)]

= d5ΣBH12
UU + d5ΣINT1

UU ,

∆ΣLU(ϕl) =
1

4

[(
d5Σ−→ − d5Σ−←

)
+
(
d5Σ+

→ − d5Σ+
←
)]

= d5ΣINT2
LU ,

∆ΣC
LU(ϕl) =

1

4

[(
d5Σ−→ − d5Σ−←

)
−
(
d5Σ+

→ − d5Σ+
←
)]

= 0, (2.116)

where ∆ΣLU equals to d5ΣINT2
LU only at leading twist and should also include the twist-3

d5ΣDDVCS
LU contribution. In this case, one cannot get rid of its contamination by introducing

opposite beam charge. In ΣUU(ϕl), the INT2 contribution is contaminated by the DDVCS
contribution. However, one can get rid of the DDVCS term by taking advantage of σUU,
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since d5ΣDDVCS
UU and d5σDDVCS

UU are independent on φ or ϕl and have the same value when
they are integrated over the identical interval in θl in the leading twist approximation.

At leading twist and leading order, ∆σC
UU, as well as ΣUU subtracting its BH and

DDVCS contributions, are directly proportional to the real part of the linear CFFs com-
bination CINT

UU given by Eq. (2.69),

∆σC
UU(φ) = KUU(φ) Re

{
ξ′

ξ

(
F1H−

t

4M2
F2E

)
+ ξ(F1 + F2)H̃

}
. (2.117)

I remind that, unlike Eq. (2.114), there shall be longitudinal CFFs originating from next-
to-leading order in the CFFs combination. The kinematical factor KUU can be read off
as mentioned before, see more details in Sec. 6.1.1. For a proton target, one realizes
that ReHp(ξ′, ξ, t) is suppressed by a kinematical factor ξ′/ξ, thus with decreasing |ξ′| the

contribution of ReH̃p(ξ′, ξ, t) begins to be important. Similarly, ReEn(ξ′, ξ, t) is accessed
by the measurements of a neutron target.

In Eq. (2.117) H̃ seems to be dominant at |ξ′| → 0, however, its real part also becomes

zero at ξ′ = 0, since ReH̃(−ξ′, ξ, t) = −ReH̃(ξ′, ξ, t) is antisymmetric in ξ′. Therefore,
the beam charge cross section difference also goes to zero at ξ′ = 0 and has the sign
change behavior due to the antisymmetric property of the real parts of ξ′H, ξ′E and H̃,
as displayed in Eqs. (1.117) and (1.118).

In order to obtain more information on the other GPDs, the observable with target
polarization are needed. As mentioned before, in the current state of polarized target
technology, a fixed-target DDVCS experiment is not achievable. However, it can be
achieved in the collider experiment, such as the EIC program. They are not discussed
here but the polarized-nucleon formalism can be found in [57].

2.4.3 Asymmetries

Only the asymmetries in terms of d5σ are presented here. With polarized electron beam,
one measures the BSA defined as

A−LU(φ) =
∆σ−LU(φ)

σ−UU(φ)
=

d5σINT1
LU

d5σBH1
UU + d5σBH2

UU + d5σDDVCS
UU + d5σINT1

UU

. (2.118)

The access to Im{CINT
LU } via the BSA is mostly complicated by the presence of Re{CINT

UU } in
the denominator. Again, this entanglement can be cancelled by the application of beam
charge, and then one can build the unpolarized and polarized Beam Charge Asymmetries
as

AC
UU(φ) =

∆σC
UU(φ)

σUU(φ)
=

d5σINT1
UU

d5σBH1
UU + d5σBH2

UU + d5σDDVCS
UU

, (2.119)

AC
LU(φ) =

∆σC
LU(φ)

σUU(φ)
=

d5σINT1
LU

d5σBH1
UU + d5σBH2

UU + d5σDDVCS
UU

, (2.120)

The access to Re{CINT
UU } and Im{CINT

LU } via the BCAs are still complicated by the pres-
ence of CDDVCS in the denominator, making the physical interpretation more involved
in comparison with measuring absolute cross sections. On the other hand, asymmetries
measurements have the benefit that many experimental uncertainties cancel out because
of the cross section ratio. Therefore, one can also perform these measurements as a first
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step of the investigation. The azimuthal moments of the BCAs can also give direct access
to the linear CFFs combinations only if the DDVCS contribution is negligible.

With respect to the BH2 contribution in the denominator, one shall notice the fact
that it has large magnitude when θl approaches the edges of the phase space θl = 0, π
due to small value of the propagators in Eq. (2.106). Therefore, the maginitudes of the
asymmetries will be suppressed. To partly get rid of this problem, instead of integrating
over the full range of θl, one rather has to sum over a restricted domain and exclude the
endpoint regions, such as [π/4, 3π/4]. Even though the integration over [π/4, 3π/4] in
θl also reduces the magnitude of the nominators of the asymmetries, it still benifits the
asymmetry measures, since the BH2 contribution generally dominates the cross section.
Furthermore, the extent of BH2’s decrease are greater than the the other contributions
for a decreasing interval in θl, which one can roughly get from Eqs. (2.80) and (2.108).



Chapter 3

Model-predicted observables

To give quantitative estimates of the observables and provide some insights into the pro-
cedure of extracting the GPDs from DDVCS experiments, I have used the VGG model
for computing the cross sections of the electroproduction of muon pairs off proton targets.
Both the 5-fold cross section d5σ and d5Σ have been investigated at different kinematics
to obtain a quantitative view of the sensitivities to kinematics and GPDs. The interfer-
ence contribution to the cross section is particularly are highlighted since offering eventual
access to a linear combinations of CFFs.

3.1 Estimates with VGG

The GPD model used in the calculations is as follows. The (x, ξ)-dependence of the GPDs
is parameterized by using DDs ansatz, where the parameters are chosen as bval = 1,
bsea = 5, Ju = 0.3 and Jd = 0.1. For the quark distributions, the MRST02 NNLO
parameterization [64] at scale µ2 = 1 GeV2 is used. The t-dependence of the GPD H
is parameterized by using modified Regge model, given by Eq. (1.59), where the Regge
slope is chosen as α′ = 1.098. For the t-dependences of the other GPDs, the t-factorized
ansatz is used. This GPD model is also used throughout the rest of this document. As
discussed in Sec. 2.4, the GPD H is dominant in the observables for proton unpolarized
targets. Therefore, the observables shown in this section include only GPD H.

The kinematical variables have been chosen as a fixed set of (Q2 = 1.25 GeV2, t =
−0.15 GeV2, ξ = 0.135) and varying ξ′, in order to investigate the ξ′ dependence of the
observables. Note that the range of ξ′ in principle is |ξ′| < ξ, however, it is constrained
here by the phase spaces and the muon pair mass. Eventually, ξ′ varies approximately
from −0.06 to 0.11. The integration over final muon polar angle θl has been performed
for the full range between 0 and π, namely θ0 = π/2 in Eqs. (2.74) and (2.92).

3.1.1 Cross sections as functions of the azimuthal angles

The 5-fold unpolarized cross sections, σ−UU(φ) and Σ−UU(ϕl), at ξ′ = 0.06 are displayed by
the solid black curves in Fig. 3.1 and their contributions are represented by the colored
curves. Note that the unit for the cross sections is pb/GeV6, implying the necessity of a
high luminosity for the measurements. For this moderate ξ′, it is obviously seen that the
BH2 contributions (red dashed curves) are dominant. I remind that BH1 contributions
(red dotted curves) become significant when Q′2 → 0, namely ξ′ → ξ. The DDVCS con-
tributions (green curves) are significant and cannot be neglected. Although the DDVCS

69
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Figure 3.1: σ−UU(φ) (left panel) and Σ−UU(ϕl) (right panel) at ξ′ = 0.06.
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Figure 3.2: ∆σ−LU(φ) (left panel) and ∆Σ−LU(ϕl) (right panel) at ξ′ = 0.11, 0.06, −0.06.

contributions dominate the CFFs involving parts, they are related to the bilinear CFFs
combination. For the real part of the CFFs in a linear fashion, accessed through the
unpolarized interference contributions, additional positron beam is needed to single out
them in the beam charge cross section differences. The unpolarized INT1 (blue dotted
curves) and INT2 (blue dashed curve) contributions are relative small, and their measure-
ments therefore require even higher luminosities. With respect to Σ−UU(ϕl) (right panel in
Fig. 3.1), the unpolarized INT1 contribution (blue dotted curves) is much smaller than
the INT2 contribution (blue dashed curve). Therefore, the latter is more appropriate for
the extraction of the real part of the CFFs, which is singled out in ΣUU(ϕl), the sum of
unpolarized cross section with electron and positron given by Eq. (2.116).

The 5-fold beam spin cross section differences, ∆σ−LU(φ) and ∆Σ−LU(ϕl), at ξ′ = 0.11
(black curves), 0.06 (red curves), −0.06 (green curves) are shown in Fig. 3.2. They
include only the helicity-dependent INT1 and INT2 contributions, d5σINT1

LU and d5ΣINT2
LU ,

respectively. Their sign change behavior can be readily seen when ξ′ changes sign. For
∆σ−LU(φ), the magnitude at ξ′ = 0.11 is larger than ξ′ = 0.06 since the BH1 contribution
becomes significant, while ∆Σ−LU(ϕl) acts contrarily since the BH2 contribution becomes
small when one approaches ξ′ = ξ.

3.1.2 Azimuthal moments as functions of ξ′

Fig. 3.1 and 3.2 show the examples for the specific ξ′, which offer the basic picture on
the φ dependence of the observables. For the ξ′ dependence, it is more convenient to
investigate the azimuthal moments of the observables. For any observable d5σ(φ), its
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Figure 3.3: The cosine moments of the unpolarized cross section as functions of ξ′. The
upper panels show the moments of σ−UU(φ) and the bottom panels show the moments of
Σ−UU(ϕl). The scale of each panel is unified while the internal panels display with different
scales in the y-axis for visual clarity. The black solid curves represent the total moments
and the colored curves stand for the non-zero moments of the corresponding contributions.

azimuthal moments are given by

mc0 =
1

2π

∫ 2π

0

dφ d5σ(φ),

mcn =
1

π

∫ 2π

0

dφ d5σ(φ) cos(nφ),

msn =
1

π

∫ 2π

0

dφ d5σ(φ) sin(nφ), (3.1)

where n = 1, 2, 3 · · · . The azimuthal moments of any observable d5Σ(ϕl), denoted by
mC0, mCn and mSn instead, are given by the similar expressions integrated over ϕl.

Moments of the unpolarized cross section

Fig. 3.3 show the cosine moments of the unpolarized cross sections and the corresponding
contributions. With respect to the total moments represented by the black solid curves,
the cos0 moments are dominant and higher order moments are much smaller.

The BH1 contributions d5σBH1
UU and d5ΣBH1

UU are given by Eqs. (2.76) and (2.94), re-
spectively. The red dotted curves in Fig. 3.3 present their non-zero moments as functions
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of ξ′. It can be readily seen that the BH1 contributions are small in the time-like re-
gion (ξ′ < 0), especially for d5σBH1

UU , and become significant when ξ′ increases. The cos0
moments are dominant and higher order moments are much smaller except mcBH

1 . The
presence of a significant mcBH

1 is inconsistent with Eq. (2.76). The possible explanation
is that this inconsistency is attributed to the accuracy of the VGG calculation and the
approximations used in Belitsky and Müller formalism. The VGG calculation is regarded
as an accurate tool for the estimation of BH processes at small t, while the formalism
in [57] is developed at leading order approximation. Moreover, the nucleon mass correc-
tions are neglected and only leading and subleading terms are kept in the scalar products
of Eq. (2.30) when introducing the symmetric variables, which are the cornerstone for the
deduction of the 7-fold cross section and the (anti)symmetric properties of the Fourier
coefficients. Therefore, the mcBH

1 shall be related to an accurate Fourier coefficient ccBH
1

which survives from the integration over the muon angle and does not exist in [57].
The BH2 contributions d5σBH2

UU and d5ΣBH2
UU are given by Eqs. (2.77) and (2.96), re-

spectively. The red dashed curves in Fig. 3.3 present their non-zero moments, where one
can find that the magnitudes of BH2 moments are in general larger than the BH1 ones
except for the region of ξ′ → ξ where the BH2 moments become less significant. One
easily sees the dominance of the cos0 moments.

The BH12 contribution survives only in Σ−UU, given by Eq. (2.97). The red dash-dotted
curves in Fig. 3.3 present their non-zero moments and the cos(3ϕl) moment mCBH12

3 comes
from the second term in Eq. (2.97) , which can be decomposed following

cos(ϕl) cos(2ϕl) =
cos(ϕl)

2
+

cos(3ϕl)

2
. (3.2)

The cos(ϕl) moment mCBH12
1 shows its dominance and consists of the contributions from

the CBH12
1 and CBH12

2 Fourier harmonics.
The DDVCS contribution d5σDDVCS

UU is given by Eq. (2.78) and d5ΣDDVCS
UU equals to

d5σDDVCS
UU at leading twist. They have the most concise expression, containing only cos0

Fourier harmonics without the entanglement of the BH propagators. The green solid
curves in Fig. 3.3 present their non-zero moments. The presence of the cosφ moment
mcDDVCS

1 in d5σDDVCS
UU is inconsistent with Eq. (2.78). It is caused by the minimal twist-

3 corrections to restore gauge invariance in the VGG calculation. For d5ΣDDVCS
UU , the

twist-3 effect drops out from the integration over φ, resulting in the absence of cosϕl and
the slight difference between the cos0 moments. For the current kinematics, the DDVCS
contribution is small in the time-like region and becomes significant in the space-like
region especially in the limit ξ′ → ξ.

The unpolarized contribution d5σINT1
UU is given by Eq. (2.82) and offers access to the

real part of the linear CFFs combination CINT
UU . Experimentally, this contribution can

be singled out in the beam charge cross section by introducing positron beam, as shown
in Eq. (2.115). The blue dotted curves in the upper panels of Fig. 3.3 present its non-
zero moments. The cos(φ) moment mcINT1

1 dominates while the cos(2φ) moment mcINT1
2

caused by the minimal twist-3 correction is small. The presence of the moderate mcINT1
0

is inconsistent with Eq. (2.76). The possible explanation is that it might result from the
interference between the accurate BH1 term related with mcBH1

1 and DDVCS term with
minimal twist-3 and therefore is not present in Eq. (2.82). For the current kinematics,
the ξ′ dependence of d5σINT1

UU is similar to the BH1 and DDVCS contribution, having
significant magnitude only in the space-like region. Therefore, extracting Re{CINT

UU } from
d5σINT1

UU is more challenging in the time-like region.
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Figure 3.4: The sine moments of the beam spin cross section difference as functions of
ξ′. The upper panels show the moments of ∆σ−LU(φ) and the bottom panels show the
moments of ∆Σ−UU(ϕl). The scale of each panel is unified. The internal panel in the
bottom right panel for mS3 display with different scales in the y-axis for visual clarity.
The black solid curves represent the moments of ∆σ−LU(φ) and the magenta solid curves
stand for the moments extracted from P1P2 ·∆σ−LU(φ).

The unpolarized contributions d5ΣINT1
UU and d5ΣINT2

UU are given by Eqs. (2.100) and
(2.103), respectively. They also offer access to the real part of the linear CFFs com-
bination. Experimentally, these contributions can be derived indirectly by introducing
positron beam, as discussed in Sec. 2.4.2. Their non-zero moments are presented by the
blue dotted (INT1) and dashed (INT2) curves in Fig. 3.3. It can be seen that the moments
of d5ΣINT1

UU have much smaller magnitudes than d5ΣINT2
UU . Thus, it is easier to extract the

CFFs from d5ΣINT2
UU , which also provides access to Re{CINT

UU }. The cos(ϕl) moment mCINT2
1

is dominant and the cos(3ϕl) moment mCINT2
3 comes from the second term of Eq. (2.103)

through Eq. (3.2). In comparison with the d5σINT1
UU contribution, d5ΣINT1

UU has a wider
ξ′ range with relatively significant magnitude since it is partly driven by the dominant
BH2 process. In the time-like region, it is better to alternatively extract Re{CINT

UU } from
d5ΣINT1

UU .

Moments of the beam spin cross section difference

The beam spin cross section difference ∆σ−LU(φ) includes only the helicity-dependent con-
tribution d5σINT1

LU given by Eq. (2.84) and ∆Σ−UU(ϕl) includes only d5ΣINT2
LU given by

Eq. (2.104). They offer access to the imaginary part of the linear CFFs combination
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CINT
LU . The black solid curves in Fig. 3.4 present their sine moments. Due to the entan-

glement of the BH propagators in the d5σINT1
LU contributions, as shown in Eq. (2.84), one

shall also investigate the moments calculated through the substitution of P1P2 · d5σINT1
LU

for d5σINT1
LU in Eq. (3.1), presented by the magenta curves in Fig. 3.4. They are zero for

the sin(2φ) and sin(3φ) moments when getting rid of the entanglement, which implies
that the non-zero values of msINT1

2 and msINT1
3 just result from the numerical integration

and the VGG calculation is consistent with Eq. (2.84). For ∆Σ−UU(ϕl), it can be seen
that the sin(ϕl) moment mSINT1

1 are dominant. The sin(3ϕl) moment msINT1
3 has a small

magnitude and results from the second term of Eq. (2.104) through

sin(ϕl) cos(2ϕl) =
sin(3ϕl)

2
− sin(ϕl)

2
. (3.3)

Moreover, It can be observed that the moments change sign from ξ′ < 0 to ξ′ > 0.
Similarly, extracting Im{CINT

LU } from d5σINT1
LU is very challenging in the time-like region,

where one better perform the extraction from d5ΣINT2
LU .

Basic on the GPD formalism, both Re{CINT
UU } and Im{CINT

LU } are antisymmetric func-
tions in ξ′. Thus, measurements in either space-like or time-like region offers the full map
of Re{CINT

UU } and Im{CINT
LU }. Therefore, measurements in both region offers additional

tests for the universality of the GPD formalism.

3.2 Dominance of the CFF H

3.2.1 CFFs

The calculation is here performed including the 4 GPDs. The kinematical variables are
the same as in the previous section. The CFFs as functions of ξ′ are displayed in Fig. 3.5,
where Ẽ is not presented since it does not enter the interference contributions. The CFF
Ẽ only enters into the pure DDVCS contributions and eventually has negligible impact
on the unpolarized cross section. In Fig. 3.5, it can be easily seen that the CFFs are
(anti)symmetric in ξ′, given by Eqs. (1.117) to (1.120). In addition, the real and imaginary
parts of H (red curves) are dominant with respect to the magnitudes of the CFFs. For

proton target, the contributions of E (green curves) and H̃ (blue curves) are suppressed
by the small kinematics factors and the sensitivities to them can be foreseen to be very

'ξ
0.06− 0.04− 0.02− 0 0.02 0.04 0.06 0.08 0.1 0.12

R
e{

C
F

F
s}

0

10

20

Re{H} Re{E} }H
~

Re{

'ξ
0.06− 0.04− 0.02− 0 0.02 0.04 0.06 0.08 0.1 0.12

Im
{C

F
F

s}

4−

2−

0

2

4

Im{H} Im{E} }H
~

Im{

Figure 3.5: The real (left panel) and imaginary (right panel) parts of the CFFs as function
of ξ′ in the VGG calculation at ξ = 0.135.
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Figure 3.6: The dominant moments in the interference contributions at ξ = 0.135. Left
upper panel: the cos(φ) moment mcINT1

1 of d5σINT1
UU ; Right upper panel: the cos(ϕl)

moment mCINT2
1 of d5ΣINT2

UU ; Left bottom panel: the sin(φ) moment msINT1
1 of d5σINT1

LU ;
Right bottom panel: the sin(ϕl) moment mSINT2

1 of d5ΣINT2
UU . The thick black dotted

curves correspond to the calculation including only H, the red dashed curves include H
and E and the blue solid curves include H and H̃.

small at the current kinematics. Note that the wiggle around the point ξ′ → 0 of the blue
curve in the left panel arise from the numerical convolution of ReH̃.

3.2.2 Azimuthal moments

The dominant moments of the interference contributions, mcINT1
1 , mCINT2

1 , msINT1
1 and

mSINT2
1 , are shown in Fig. 3.6. At the current kinematics, they are dominated by the

CFF H and hardly sensitive to the CFF E or H̃ for both the real and imaginary parts.

3.2.3 Theoretical sensitivity to H̃
According to Belitsky and Müller formalism, there shall be some sensitivity to the CFFs
H̃ other than the strong dominance ofH, though I concentrate only on unpolarized proton
target. Eq. (2.117) displays that ReH is suppressed by a kinematical factor ξ′/ξ and ReH̃
is suppressed by ξ. In order to find the sensitivity to H̃, I have investigated ξ′ dependence
of the interference contributions at a larger ξ. As shown in Fig. 2.7, −t shall be large as
well in order to cover large ξ. Eventually, The kinematical variables have been chosen as
a fixed set of (Q2 + Q′2 = 8 GeV2, t = −0.825 GeV2, ξ = 0.4) and varying ξ′. The large
value of the sum of the virtualities not only opens the phase space to enlarge the accessible
ξ′ range, but also supports factorization regime at the same time (2P · q̄ ≈ 10 GeV2).
Eventually, ξ′ varies approximately from −0.36 to 0.37.
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Figure 3.7: The real (left panel) and imaginary (right panel) parts of the CFFs as function
of ξ′ in the VGG calculation at ξ = 0.4.
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Figure 3.8: The dominant moments in the unpolarized interference contributions at ξ =
0.4. The styles of curves are the same as Fig. 3.6.

Fig. 3.7 shows that the CFFs as functions of ξ′ for the kinematical set of ξ = 0.4.
Comparing with Fig. 3.5, the CFFs decrease generally by one order of magnitude and
result in small cross sections, which are further suppressed kinematically due to the large
−t and virtualities. Therefore, the measurements for this kinematical set are very chal-
lenging and demand an extreme high luminosity. It can also be seen from the comparison
that the dominance of H (red curves) becomes less significant, especially for the real part
at the edges, namely in the region of ξ′ → ±ξ.

The dominant moment mcINT1
1 in d5σINT1

UU and mCINT2
1 in d5ΣINT2

UU are shown in Fig. 3.8.

The dominance of ReH still holds in general but the sensitivity to ReH̃ is much more
obvious and becomes even dominant when one approaches the edges. At the edge of the
space-like region, namely ξ′ → ξ, d5σINT1

UU is strongly sensitive to ReH̃ and so is d5ΣINT2
UU

in the time-like region. Similar feature can also be found for the helicity-dependent
interference contributions, as shown in Fig. 3.9. However, the sensitivity to ImH̃ is weaker.
Therefore, the way one processes the data, namely the way of the integration over the
angles, not only determines the ξ′ dependence of the observables for the CFFs extraction
but also impacts the ξ′ dependence of CFFs.

However, one can notice the magnitudes of the moments are very small. They are 104

to 105 smaller than the ones in Fig. 3.6, making the measurements extremely difficult.
In practice, the CFF H always dominates the observables for proton unpolarized targets.
Therefore, the extraction of the GPD H information shall be set as the main goal for the
proton DDVCS experiments at JLab 12 GeV.
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Figure 3.9: The dominant moments in the helicity-dependent interference contributions
at ξ = 0.4. The styles of curves are the same as Fig. 3.6.

3.3 Sensitivities to the other CFFs

As discussed in Sec. 2.4, the interference contributions are sensitive to the CFF E for the
unpolarized neutron target, and the GPD E can be therefore investigated through neutron
DDVCS. Moreover, different combinations of CFFs enter the observables with polarized
nucleons, which are sensitive to the CFFs beside H [56]. For example, the longitudinal
target spin cross section difference ∆σ−UL, measured by using unpolarized electrons and
longitudinal polarized nucleons, is related with the imaginary part of CFFs by

∆σ−UL ∼ Im

{
F1H̃ + ξ′ (F1 + F2)

(
H +

ξ

1 + ξ
E
)

+ · · ·
}
, (3.4)

and the double spin cross section difference ∆σ−LL, measured by using polarized electrons
and longitudinal polarized nucleons, is related with the real part of CFFs by

∆σ−LL ∼ Re

{
ξ′

ξ
F1H̃ + ξ (F1 + F2)

(
H +

ξ

1 + ξ
E
)

+ · · ·
}
. (3.5)

The observables clearly offer access to the CFF H̃ for longitudinal polarized protons and
the measurements would be possibly performed at the future EIC facilities.
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Chapter 4

DDVCS events generation

DDVCS experimental pseudo-data consist of two components: the magnitude of the ob-
servable and the corresponding uncertainty. The magnitude of the observable can be
directly obtained by using the VGG code at a given kinematical point. For the statistical
uncertainty, the number of events within the kinematical bin shall be well evaluated. As
the DDVCS cross section is extremely small, the kinematical bin shall be large in order
to obtain a high statistics. The DDVCS cross section is not a linear function in each
variables and its variation within a large kinematical bin can be huge. Therefore, the
number of events shall be evaluated by an dedicated event generator, in which the phase
space is divided into tiny bins and the cross section within each tiny bin can be approxi-
mately considered as linear function. However, an powerful and reliable event generator
for the DDVCS process requires a massive table of 7-fold cross section, which is not yet
developed. Therefore, a “quasi” event generator for the exclusive electroproduction of
muon pairs off a proton target has been developed, in which the 5-fold cross section in-
tegrated over the lepton solid angle and the adopted GPDs are calculated by using the
VGG model. The goal of developing such a quasi event generator is to derive reliable
statistical errors for the observables in terms of the 5-fold cross section. The dependence
of the muon angle is lost in the event generator and corrections is needed when applying
to the limited acceptance of muon angles, which is discussed in the next chapter. I stress
that the event generator is only used for the evaluation of the statistical error and not for
the generation of the magnitude of the observable.

4.1 Development of the event generator

The development of the event generator follows the steps below:

(a) A grid covering the full phase space of interest is adopted to divide the 5-dimensional
phase space (xB, Q

2, t, Q′2, φ) into small bins such that one can approximately con-
sider the integrated cross section as the differential cross section at the bin center
multiplied by the bin widths.

(b) The bins whose geometric centers lie within the kinematically authorized phase
space might not be fully occupied in the calculation of the integrated cross section.
Therefore, bin weights are introduced representing the occupancy rate determined
by a Monte Carlo method. The bin weight computation is performed with respect to
the 4-dimensional phase space (xB, Q

2, t, Q′2), since the φ bins are always fully occu-

79
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pied. The bins whose geometric centers lie outside of the kinematically authorized
phase space are not considered in the determination of the number of events.

(c) The number of events for each 5-dimensional bin (xB, Q
2, t, Q′2, φ), is computed as

N =
d5σ

dxBdQ2dtdQ′2dφ
·∆xB ·∆Q2 ·∆t ·∆Q′2 ·∆φ · wb · L · T, (4.1)

where wb is the bin weight, L is the luminosity and T is the running time.

(d) The final step is making the continuous distributions in the kinematical variables
with respect to all the events. For each 5-dimensional bin (xB, Q

2, t, Q′2, φ), the Q2

value of the event i out of N events is assigned by

Q2
i = Q2

c + ∆Q2 ·
(
ri −

1

2

)
, (4.2)

where Q2
c is the value at the bin center, ∆Q2 is the bin width and ri is a random

number between 0 and 1. The values in xB, t and Q′2 are assigned simultaneously
by a similar approach. The assignment runs iteratively until the values are kine-
matically authorized. Using the assigned values, the values in ξ′ and ξ of each event
are calculated through Eqs.(1.101) and (1.102). The assigned kinematical values for
all the events are stored in a root file.

The finer grid one adopt for the event generator, the better projection one can derive.
In consideration of the computing power and time, the following 5-dimensional grid of
bins has been adopted for the event generator (see Fig. 4.1):

• 40 bins in xB from 0.05 to 0.85, ∆xB = 0.02;

• 32 bins in Q2 from 1 to 17 GeV2, ∆Q2 = 0.5 GeV2;
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Figure 4.2: Distributions of kinematic variables for DDVCS events: xB distribution (top
left panel), Q2 distribution (top right panel), t distribution (bottom left panel), and Q′2

distribution (bottom right panel).

Bx
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

)
2

 (
G

eV
2

Q

0

2

4

6

8

10

12

14

1

10

210

3
10

)2 (GeV 2Q'
0 1 2 3 4 5 6 7 8

)
2

t (
G

eV

1−

0.9−

0.8−

0.7−

0.6−

0.5−

0.4−

0.3−

0.2−

0.1−

0

1

10

210

3
10
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(Q2, xB) (left panel) and distribution in (t, Q′2) (Right panel).

• 20 bins in t from 0 to −1 GeV2, ∆t = 0.05 GeV2;

• Multiple bins in Q′2 from 4m2
µ to Q′2max, ∆Q′2 = 0.25 GeV2;

• 24 bins in φ from 0◦ to 360◦, ∆φ = 15◦,

where Q′2max is determined following Eq. (2.37).
Eventually, about 3×104 bins in the 4-dimensional hypervolume of (xB, Q

2, t, Q′2) have
the kinematically authorized bin center and make about 7×105 bins in the 5-dimensional
hypervolume of (xB, Q

2, t, Q′2, φ) for the event generator. With respect to the Monte
Carlo computation of the bin weights, 107 times iterations have been performed for each
bin.

Fig. 4.2 illustrates the distributions of kinematic variables for DDVCS events when L =
1036 cm−2·s−1 and T = 50 days. Globally speaking, the number of events roughly follows
an exponential distribution in each variable. In another word, the events concentrate in
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Figure 4.4: Distributions of kinematic variables for DDVCS events: ξ distribution (left
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the region of small Q2, xB, |t| and Q′2. Similar feature can be also seen from Fig. 4.3,
showing the events distribution in the (Q2, xB) and (t, Q′2) planes.

4.2 Binning

Since the significance of DDVCS measurements is the access to GPDs as a function of its
three arguments independently, the 5-dimensional grid of bins for the observables shall
be made with respect to ξ, ξ′, t, Q2 and φ. The distributions of ξ and ξ′ are shown in
Fig. 4.4. The number of events deceases exponentially in ξ, while the events concentrate
in the region of |ξ′| close to 0 and decrease dramatically when |ξ′| increases. In order to
eventually be able to investigate ξ′ dependence of CFFs at fixed ξ, t and Q2 and derive
relatively good statistical errors for the observables, the following 5-dimensional grid of
bins has been adopted:

• 6 bins in ξ [0.03, 0.06, 0.09, 0.12, 0.15, 0.2, 0.3];

• 8 bins in ξ′ [−0.19, −0.09, −0.03, 0, 0.03, 0.06, 0.09, 0.15, 0.25];

• 5 bins in −t [0.1, 0.2, 0.3, 0.45, 0.65, 1 GeV2];

• 5 bins in Q2 [1, 1.5, 2.25, 3.25, 4.75, 6.75 GeV2];

• 12 bins in φ, each 30◦ wide.

The grid of bins is illustrated by the black lines in Fig. 4.5. In order to investigate the
dependence of the cross section on single kinematical varibles while keeping the other
variables invariant, one shall estimate the observable at the bin center. Therefore, the
bins whose geometric centers lie outside of the kinematically authorized phase space are
abandoned.

I stress that the binning above is only used to obtain the number of events for the
evaluation of statistical errors. The cross section to be investigated remains the 5-fold
differential cross section with respect to (xB, Q

2, t, Q′2, φ), namely d5σ
dxBdQ2dtdQ′2dφ

. For

example, the 5-dimensional bin i has the kinematical variables denoted (ξ′i, ξi, ti, Q
2
i , φi)

at the bin center. The corresponding values of xBi and Q′2i can be derived through
Eqs.(1.101) and (1.102). The magnitude of d5σi is calculated at (xBi, Q

2
i , ti, Q

′2
i , φi), i.e.

the kinematics at the bin center, by using VGG code. The number of events Ni is derived
from the event generator by selecting the kinematical variables within the 5-dimensional
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Figure 4.5: Distributions of kinematic variables for DDVCS events: the distribution in
(ξ, ξ′) (left panel) and distribution in (t, Q2) (right panel).

(ξ′, ξ, t, Q2, φ) hypervolume of the bin. The observable for the bin i eventually consists of
the d5σi and its statistical error, which is given by

δ(d5σi)

d5σi
=

1√
Ni

. (4.3)

For the real data, the average value of the cross section is obtained from the number
of events in the 5-dimensional (ξ, ξ′, t, Q2, φ) bin. However, the cross section might not
vary linearly across the width of a bin, which would result in the cross section at the bin
center not coinciding with the average value of the cross section in that bin. Therefore,
bin centering corrections must be considered and determined. One can divide each bin
over (ξ, ξ′, t, Q2, φ) into multiple smaller bins, calculate the BH cross section at the center
of each of the smaller bins (CSav), and separately calculate the BH cross section at the
center of the large bin (CSc). The bin centering correction is then defined as

B(ξ, ξ′, t, Q2, φ) =
CSc
CSav

, (4.4)

which must be included in the calculation of the cross section. The reason of using BH
cross section instead of total cross section is that BH processes are accurately calculable
and dominate the total cross section.

On the current stage of experimental projections, the cross section at the bin center
is directly calculated by the VGG model.

4.3 Observables in an ideal situation

Assuming that the measurements are performed in the ideal situation that all the particles
of the final state can be detected with 100% efficiency and the beam polarization is also
100%, the number of events for each bin can be directly derive from the event generator
without any correction. When the running time is equally divided for each beam helicity
and charge, the statistical errors of the observables in Eqs. (2.112) and (2.115) are then
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given by

δ(σ−UU) = δ(∆σ−LU) =
σ−UU√
N
, (4.5)

δ(σUU) = δ(∆σC
UU) = δ(∆σLU) = δ(∆σC

LU) =
σUU√
N
, (4.6)

where N is the sum of the number of events for each beam helicity and charge. Whereas,
the statistical errors on asymmetries (A) in Eqs. (2.118)-(2.120) depend on the values of
the asymmetry, through the formula

δA =

√
1− A2

√
N

. (4.7)

The calculation of the number of events has been done for a luminosity L = 1037

cm−2·s−1 (corresponding to roughly 1µA on a 40 cm long liquid hydrogen target) and for
T = 50 days running time.

Fig. 4.6 shows an example of σ−UU, the unpolarized cross section with only electron
beam, as functions of φ with statistic errors at ξ = 0.135. The unpolarized cross section
with very small statistical errors can be obtained. Fig. 4.7 shows an example of A−LU
(BSA) as functions of φ with statistic errors at ξ = 0.135. The expected accuracy can be
also obtained at a high level. The BSA is considerable in the region of ξ′ = −0.06 and
ξ′ > 0.045 but very small when ξ′ = −0.015 and 0.015, caused by the imaginary CFFs
combination being zero at ξ′ = 0. It can be seen that the measurements of the BSA is
challenging for the bins at large −t. At a moderate ξ′, for instance ξ′ = 0.075, the BSA
becomes large when Q2 increases. Although the error bars become large, the expected
accuracy is still significant in this case. Unlike the unpolarized cross section, the accuracy
of the BSA would strongly degrades with a 10 times smaller luminosity. Fig. 4.8 shows
an example of AC

UU (BCA) as functions of φ with statistic errors at ξ = 0.135 when one
has additional 50 days running with positron beam at the same luminosity. The expected
accuracy stays at the level between the unpolarized cross section and the BSA. Contrary
to the BSA, the measurements of the BCA is challenging for the bins at small −t. When
one has 10 times less the luminosity, the accuracy of the BCA remains at an acceptable
level.

The expected accuracy of the observables is presented in the Appendix A for the
remaining covered bins in ξ.

In summary, the evaluated observables of a DDVCS experiment indicate a high degree
of feasibility at L = 1037 cm−2·s−1 in an ideal life. The unpolarized cross section with
very small statistics error can be obtained. Although the BCA or the beam charge cross
section difference has less precision, a better extraction of the real part of CFFs can
be performed. The BSA or the beam spin cross section difference can also be obtained
accurately for most of the covered bins, and it is the most powerful tools to directly access
the totally unexplored GPDs phase space, otherwise inaccessible. The realistic projections
with specific experimental setups are presented in the next chapter.
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Figure 4.7: The expected accuracy on A−LU(φ) for all the covered bins in ξ′ , −t and Q2

at fixed ξ = 0.135 for an ideal situation and a 50 days run at L = 1037 cm−2·s−1.
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Chapter 5

Experimental projections

With respect to the experimental setup, there are two typical scenarios for DVCS mea-
surements at JLab. The first dedicated DVCS experiment [41] in Hall A used the high
luminosity scenario, which detected the scattered electron in the High Resolution Spec-
trometers (HRS, δp/p ≈ 10−4 for momentum) on one side of the beam and the real
photon in an electromagnetic calorimeter (δE/E ≈ 4% for energy) on the other side.
This scenario was kept for following DVCS experiments at 6 GeV and 12 GeV. In this
case, measurements require high luminosities and are limited over a relatively narrow
phase space due to the small acceptance of the detectors. Another approach is the large
acceptance scenario. For instance, the CLAS collaboration used a large acceptance spec-
trometer with a lesser resolution (δp/p ≈ 10−2 for momentum) to measure the DVCS
process [42, 53] by detecting the three particles of the final state over a much broader
phase space than in Hall A. The CLAS12 collaboration also pursues this scenario for the
current DVCS/TCS measurements in Hall B.

For the anticipated measurements of the ep → epµ−µ+ process, the detection of the
scattered electron can also follow the two scenarios using the existing spectrometers. For
the muon detection, however, a dedicated muon detector with large acceptance is the
only realistic choice for statistically significant measurements of the 5-fold cross sections
or corresponding asymmetries. Since the muon detector does not exist at the moment,
the two scenarios are both discussed here in order to provide some insights about the
eventual experimental setup and the development of the muon detector. Therefore, an
ideal muon detector with 4π acceptance and 100% efficiency has been firstly considered in
the evaluation of the experimental projection of chapter 4. The purpose was to determine
the generic conditions of the feasibility of a DDVCS experiment. In this chapter, more
realistic projections are performed with the parameters of some existing detectors. The
experimental observables have been calculated only in terms of d5σ, namely the 5-fold
cross section integrated over the final muon solid angle. One can certainly analyze the
same data by means of the integration over the nucleon azimuthal angle and the final
muon polar angle, i.e. d5Σ, but this aspect is not included in the following.

5.1 Kinematics for the high luminosity scenario

It is indeed predicted that the Beam Spin Asymmetry (BSA) should have an opposite
sign in the Q′2 < Q2 and Q′2 > Q2 regions due to the sign change of the imaginary part of
the DDVCS amplitude [56, 57, 60, 62, 63]. This special sign change behavior in BSA is a
distinctive signature of the DDVCS process. Here I introduce two experimental schemes
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Figure 5.1: Illustration for the experimental setup of the high luminosity scenario. The
polar angles are defined in the lab frame.

of the high luminosity scenario intending at an experimental determination of the change
of the BSA-sign.

5.1.1 Experimental setup

Fig. 5.1 illustrates the experimental setup for the high luminosity scenario, where the
spectrometer is located on one side of the beam line and the dedicated muon detector is
on the other. One can use existing spectrometers, such as the Super High Momentum
Spectrometers (SHMS) of Hall C, to detect the scattered electron at suitable Q2, xB bins.
The detection of muons would be conducted by a dedicated muon detector. I only present
the phase spaces with respect to the detection of scattered electrons and the virtuality
of time-like photons at the initial step of DDVCS in order to obtain the suitable phase
spaces, in which we can achieve the experimental plan. The explored GPDs phase space
is presented as well.

5.1.2 Q′ scan scenario

A first possibility to demonstrate the BSA sign-change could be to scan theQ′2 dependence
of the BSA at fixed (Q2, xB). One fixes Q2 and xB experimentally by means of selection of
the scattered electron energy and angle in a spectrometer though Eqs. (1.61) and (1.62).
Fig. 5.2 (left panel) shows the (Q2, xB) phase space with additional physics constraints:
(a) the bottom black curve is Q2

min when Q′ = 2mµ, which ensures the production of a
muon pair; (b) the blue line is Q2 = 1 GeV2, a minimal restriction to favor the reaction
at the parton level; (c) the red curve is W = 2 GeV, the minimal center of mass energy
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Figure 5.2: Left panel: (Q2, xB) phase space with physics constraints. Right Panel: (t, Q′2)
phase space at (Q2, xB) = (2 GeV2, 0.12).

to ensure the deep inelastic scattering regime. The region delimited by these constraints
is the physics region of interest, the yellow area, where one can select (Q2, xB) points.
The candidates do not reach very high Q2 that are likely unreachable at JLab energies
because of the very small cross section magnitude.

As mentioned before, the difference between the two virtualities can cause the sign
change of the beam spin asymmetry (BSA). Therefore, the selected (Q2, xB) points shall
cover both Q′2 < Q2 and Q′2 > Q2 region at relatively small −t, at least smaller than
1 GeV2 in order to support the factorization regime. Fig. 5.2 (right panel) displays the
behavior of one selected (Q2, xB) point in the corresponding (t, Q′2) phase space, where (a)
the solid curve is the boundary of the (t, Q′2) phase space; (b) the dashed line represents
t = −1 GeV2; (c) the dashed-dotted line stands for Q′2 = Q2; (d) the green shaded
area represents the allowed Q′2 < Q2 region; (e) the magenta shaded area represents the
allowed Q′2 > Q2 region. As Fig. 5.3 shows, when xB = 0.27 the Q′2 > Q2 region becomes
tiny and disappears when xB = 0.32. It implies that there exists an upper limit in xB for
covering both regions. Fig. 5.4 (left panel) shows tmin at Q′2 = Q2 as a function of xB,
in which it can be easily observed that the Q′2 > Q2 region cannot be explored above
xB ∼ 0.31 no matter the photon virtualities. Actually, the constraint −t < 1 GeV2 is
only a rough form of −t/Q2 � 1, which means −t shall be much smaller than Q2 and as
small as possible at small Q2. In order to get enough coverage for the Q′2 > Q2 region,
xB = 0.25 seems to be the maximum measurable value, named “constraint of interest”.
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Figure 5.3: (t, Q′2) phase spaces of the (Q2, xB) points up to disagreeing with the request.
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Fig. 5.4 (right panel) shows the (Q2, xB) phase space where the constraint of interest is
inserted.

From Eqs. (1.101) and (1.102) one can get the (ξ, ξ′) phase space of proper (Q2, xB)
points at |t| varying from |tmin| to 1 GeV2, as shown in Fig. 5.5. The shown (Q2, xB)
points cover both positive and negative ξ′ region when scanning all possible Q′2. As
discussed above, the BSA is predicted to change sign when ξ′ = 0 represented by the
black dashed line. The BSA measurements at a few fixed kinematics not only can test the
universality of the GPD formalism, but also can provide the opportunity to measure the
unknown GPDs values within |ξ′| < ξ region, which offer additional GPD constraints on
the model-dependent deconvolution of experimental observables. Since the (ξ, ξ′) phase
space has strong sensitivity to xB and tiny to Q2, and high Q2 causes small cross section
magnitude, low Q2 is expected to be the most suitable initial virtuality. Moreover, at low
Q2 the phase space has a larger coverage in xB.

In an anticipated DDVCS experiment, the detection of the muon pairs in the final
state is mandatory. Each of the available spectrometers at JLab can be a choice for the
DDVCS experiment.
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The Super High Momentum Spectrometers (SHMS) of the 12 GeV upgrade in Hall C
enables measurements of charged particles with momenta approaching that of the beam
highest energy. Together with its companion, the HMS, this makes Hall C capable of
studying deep exclusive reactions at the highest momentum transfers with appropriate
high luminosity [65]. It has central momentum: 2 - 11 GeV and scattering angle: 5.5◦ -
40◦. As shown in Fig. 5.6, it is suitable to use the SHMS, which hardly limits the region of
interest, for the high luminosity scenario. In conclusion, the SHMS designed for 12 GeV
upgrade have abilities to play the role for a DDVCS experiment to achieve our physics
aims in terms of the electron view.

5.1.3 Fixed Q′ scenario

Additional contributions from vector meson decay would most likely degrade the small
physics signal in a DDVCS experiment. Although the contribution of the ρ-meson reso-
nance to the BSA turns out to be small in a perturbative QCD estimate [55], the selection
of the final virtual photon mass Q′ simply above 1.8 GeV would minimize eventual con-
tamination from vector mesons decay. As a second scenario towards the demonstration of
the BSA sign-change, measurements can also be foreseen at fixed Q′ and different (Q2, xB).
This approach can also obtain BSA in both Q′2 < Q2 and Q′2 > Q2 regions. Adding this
Q′ = 1.8 GeV constraint in the (Q2, xB) phase space, the suitable kinematics can be
obtained in order to guide the measurement of scattered electrons using a spectrometer,
as shown in Fig. 5.7 (left panel). It can be seen that the (Q2, xB) phase space is further
limited by the green curve representing the minimal Q2 at Q′ = 1.8 GeV. The suitable xB
can be directly obtained covering both Q2 < Q′2 (cyan area) and Q2 > Q′2 (yellow area)
regions separated by the dashed line representing Q2 = Q′2 = 3.24 GeV2. The (Q2, xB)
phase space of interest further constrained with the SHMS acceptance is shown in the
right panel.

Fig. 5.8 shows the (t, Q2) phase space for some xB values considering −t < 1 GeV2

constraint. Due to the minimal momentum of SHMS (blue line) cutting the Q2 > Q′2

region (green shaded area), the small xB is rejected; the large xB rejects the Q2 < Q′2

region (magenta shaded area), being the same as in the scheme of Q′ scan. As mentioned
before, the constraint −t < 1 GeV2 is only a rough form of Q2/(−t) � 1. Therefore,
measurements at a small −t, especially when one goes low in Q2, is necessary for support-
ing the factorization regime, for instance −t < 0.5 GeV2 (red line). In order to obtain
suitable coverage of Q2 in both regions, xB = 0.22 seems to be the optimal value meeting
physics requirements. In comparison to the scanned Q′, the fixed Q′ scheme not only has
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with the request.

very limited phase space but also calls for higher luminosity.

5.1.4 Feasibility analysis

On one hand, the muon detector shall be centered in the direction of the momentum
of the time-like virtual photon without crossing the beam pipe, as shown in Fig. 5.1.
Therefore, the polar angle in the lab frame between the space-like photon and the incident
electron must be larger than the one between the muons and the space-like photon, namely
θeγ > θγ + θµ. Fig. 5.9 shows the results of the simulation of the polar angle acceptance
for typical kinematics for the scheme of Q′ scan. Under the cut of −t < 0.5 GeV2, θγ is
constrained below a maximum of 5.7◦, as shown in the top left panel of Fig. 5.9. Since
the fixed Q2 and xB lead to a fixed θeγ = 8.3◦, the requirement of not crossing the beam
pipe is reached. However, θµ covers the full range even after the cut, as shown in the
top right panel of Fig. 5.9. Thus, the muons are only detected when θµ < 2.6◦ for the
full azimuthal coverage, resulting in extremely poor statistics. Moreover, the muons of
the pair need to be detected to reconstruct the kinematics. The bottom panel of Fig. 5.9
displays the opening angle of two muons in pairs, which varies up to 180◦ and centres at
35◦. Therefore, the measurements with SHMS makes the muon detection very difficult.
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the openning angle of two muons in pairs. The black histograms stand for the acceptance
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GeV2. The kinematical variables used here are Q2 = 2 GeV2, xB = 0.17 and any possible
Q′2.

On the other hand, SHMS has only ±40 mrad vertical acceptance unlike large accep-
tance spectrometers, such as SoLID in Hall A and CLAS12 in Hall B, owning 2π azimuthal
coverage. So the azimuthal acceptance of SHMS for φe is 80 mrad. The number of events
measured by SHMS is then 2π/0.08 ≈ 80 times less than by SoLID or CLAS12 when other
conditions are the same. Thus, the measurements with SHMS need 80 times higher lumi-
nosity in order to obtain the same quality of statistics for the observables. As discussed
before, 1037 cm−2·s−1 is demonstrated to be a reasonable value for the BSA measurements
in the ideal situation. Simply speaking, the measurements with SHMS need at least 1039

cm−2·s−1 in practice but only investigate a small phase space for a 50 days run.

5.2 The large acceptance scenario

The CEBAF Large Acceptance Spectrometer of the 12 GeV upgrade (CLAS12) in Hall
B has a full 2π azimuthal coverage and a very large acceptance in polar angle, 5◦ to 35◦

for the forward detector (FD), 35◦ to 125◦ for the central detector, even larger with the
backward detector. However, a DDVCS experiment demands extremely high luminosity
which brings much more incident particles with respect to detectors than their limits. The
CLAS12 detectors must be modified to allow for high luminosity. In [62], it was proposed
to detect the muon pairs from time-like photon in the CLAS12 FD and scattered electrons
in a new PbWO4 calorimeter mounted in place of the CLAS12 high threshold Cherenkov
counter. The Solenoidal Large Intensity Device (SoLID) in Hall A is dedicated to run at
high luminosity also has a full 2π azimuthal coverage. For the J/Ψ configuration of the
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Figure 5.10: (Q2, xB) phase space with SoLID constraints.

SoLID spectrometer, the polar angle acceptance is 7◦ to 25◦, as shown in Fig. 5.10. The
phase-space loss concerns the high Q2-region where the number of events is small (see
Fig. 4.2 and 4.3). A realistic study of DDVCS with the SoLID spectrometer is presented
in the following, .

5.2.1 SoLID spectrometer

The SoLID spectrometer is based on the CLEO II solenoidal magnet [66]. Solenoidal
geometry is the most suitable arrangement for high luminosity capabilities because of the
trapping effect of the magnetic field on low energy background particles acting therefore as
detector shielding. The detection capabilities developped for the experiments are essential
for GPDs study, and particularly for a DDVCS experimental program. DDVCS involves
the detection of muon pairs produced around the virtual photon defined by the scattered
electron. In such a case, a full and symmetrical azimuthal angle coverage is a minimal
requirement to allow for the determination of angular harmonics from the observables.
The additionnal DDVCS constraint is the high luminosity needed to compensate small
cross section. SoLID is especially designed to achieve these goals and would be ideally
suited for a DDVCS program [63]. The SoLID detection system is built around the
solenoidal field of the CLEO II magnet having an uniform axial central field of 1.5 T
and a ±0.2% field uniformity. The main technology developped for the high luminosity
purpose of the SoLID detector are Gas Electron Multiplier (GEM) systems arranged in
three layers [67]. They allow tracking at high rates and are providing the momentum
measurement capabilities of the spectrometer.

As shown in Fig. 5.11, the target is located outside of the detector for the J/Ψ setup.
The experiment is designed to detect electron-positron pairs from the J/Ψ decay and is
planned for running at 3 µA on a 15 cm long liquid hydrogen target, corresponding to
the instantaneous luminosity 1.2 × 1037 cm−2·s−1. The Forward Angle Electromagnetic
Calorimeter (FAEC) covers polar angles from 7◦ to 15◦ and part of the FAEC at large
angle will be reconfigured in a Large Angle Electromagnetic Calorimeter (LAEC) located
inside the detector to cover angles from 15◦ to 25◦. The main trigger of that experiment
is the 3-fold coincidence between the scattered electron and the two leptons from the
J/Ψ decay. This triple coincidence yields a moderate trigger rate (a few kHz) allowing
to run parasitically other trigger type. Additionally, the expected detector resolutions,
2% in momentum, 0.6 mrad in polar angle and 5 mrad in azimuthal angle, would be also
suitable for a DDVCS experiment.

With respected to the muon detection, it is proposed in [63] to complement the SoLID
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Figure 5.11: J/Ψ-µ configuration of the SoLID spectrometer for a parasitic DDVCS
experiment.

detector package with muon detection capabilities over a large angular phase space, as
shown in Fig. 5.11. Such addition would not only establish the capability to achieve
a di-muon DDVCS experimental program. The parasitic data taking of the DDVCS
experiment would be parallel to the J/Ψ experiment run and would involve supplementing
the J/Ψ setup with the muon detection system (J/Ψ-µ setup).

5.2.2 Acceptance of SoLID

According to the SoLID Geant4 detector simulation with energy loss in materials [68],
the J/Ψ-µ configuration of SoLID has the prelimilary acceptance parameters:

• The electron acceptance covers 7◦-15◦ with the momentum threshold of E ′ > 0.5
GeV for the FAEC and 15◦-25◦ with E ′ > 0.2 GeV for the LAEC.

• The muon acceptance covers 7◦-15◦ with the momentum threshold Pµ > 1.5 GeV
for the forward angle muon chambers and 15◦-25◦ with Pµ > 1 GeV for the large
angle muon chambers.

Due to the limited acceptance of the muon polar angle in the lab frame, the muon
polar angle θl in the l−l+ CM frame does not cover the full range. With respect to the
evaluation of the cross section at the bin center, the integration of d7σ over the solid angle
needs to be adjusted to the proper interval of θl. In order to obtain the boundary of θl for
the integration, an acceptance simulation has been developed specifically. The simulation
is performed with uniform distributions for 7 kinematical variables, Q2, xB, Q′2, θ∗γ, φ, θl
and ϕl (see the definitions in Sec. 2.1.1), to determine kinematics of the final-state muon
pairs in the lab frame with the z axis being aligned to the beam direction (beam frame).
The muon polar angles are denoted θµ1 and θµ2 in the beam frame and the corresponding
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Figure 5.12: Global spectrum of θcmµ1 with SoLID acceptance.

polar angles in l−l+ CM frame are denoted θcmµ1 and θcmµ2 in the following. When the SoLID
fiducial cuts for the scattered electron and the pair of muons in pairs together with the
physics cuts (Q2 > 1 GeV2 and −t < 1 GeV2) are included, the boundary of θl can be
derived. For example, the global spectrum of θcmµ1 is shown in the left panel of Fig. 5.12.
It can be seen that the distribution is symmetric and centered at 90◦. The threshold for
the determination of the boundary is defined as 10% of the maximum, which gives the
40◦-140◦ interval in the global case as shown by the red lines.

With a limited acceptance for the muon detection, the detected exclusive events do
not directly reflect the 5-fold cross section integrated over the corresponding range in θcmµ1 .
Therefore, the number of the events cannot be directly calculated by Eq. 4.1 and need to
include a muon acceptance efficiency Eµ. The right panel of Fig. 5.12 shows the global
distribution of θcmµ1 for generated events (black curve), the SoLID cuts only for θµ1 and
θµ2 (green histogram) and the complete SoLID cuts (cyan histogram). Thus, the muon
acceptance efficiency Eµ is defined as

Eµ =
Nd

Ng

, (5.1)

where Nd stands for the number of DDVCS events accepted by SoLID and Ng for the one
generated within the boundary (yellow histogram). The global muon acceptance efficiency
is Eµ = 32% for the J/Ψ-µ configuration of SoLID.

To obtain the pseudo-data, the same grid of bins is adopted as in the ideal situation
in Sec. 4.2 . The boundary of θcmµ1 and the muon acceptance efficiency Eµ for each bin
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Figure 5.13: The spectra of θcmµ1 for three specific bins centred at ξ = 0.135, −t = 0.25
GeV2, ξ′ = −0.06 (left) and 0.075 (middle and right), and Q2 = 1.25 (left and middel)
and 1.875 GeV2 (right).
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can be different and are determined specifically. For example, Fig. 5.13 shows the spectra
of θcmµ1 for three specific bins. The θcmµ1 intervals are respectively 40◦-140◦, 60◦-120◦ and
45◦-135◦ represented by the red lines. The muon acceptance efficiencies Eµ are 56%, 46%
and 44% respectively. Moreover, the region of interest in the (Q2, xB) plane is not fully
covered by SoLID due to the limited electron acceptance. Some bins might be partially
occupied, as shown in the right panel of Fig. 5.10. Thus, the electron acceptance efficiency
Ee also need to be included for the calculation of the number of events, which follows the
same approach as for the the bin weight in 4.1. For the three bins above, the electron
acceptance efficiencies Ee are respectively 87%, 53% and 100%.

5.2.3 Observables with SoLID

Assuming the acceptance efficiency is independent on the beam polarization and charge,
the BSA and BCA at the bin center are calculated directly in term of the 5-fold cross
section integrated over the limited range of θcmµ1 , due to the cancellation of the efficiency
in the numerator and denominator.

With respect to the number of events for each bin, one shall in principle use a dedicated
event generator using 7-fold fine bins and 7-fold differential cross section. This computer
demanding method is approached here. I use here the quasi event generator developed in
Sec. 4.1 by introducing some corrections based on the SoLID configuration. The number
of events N for each bin is given by

N = Nid · F (θ0) · Ee · Eµ · Ed, (5.2)

where Nid is the number of events given by the event generator for the ideal case, Ee and
Eµ are respectively the electron and muon acceptance efficiencies and Ed is the global
detection efficiency for the three final-state particle. Since Nid indicates the full coverage
of the muon angle, a function F (θ0) need to be included for the proper integration interval
of θcmµ1 . I recall that the integration over the symmetric interval of θcmµ1 decreases by a factor
determined by the boundary, see Eq. (2.80), in comparison with the integration over the
full range. For an interval [π/2− θ0, π/2 + θ0],

F (θ0) =
sin θ0

(
3 + sin2 θ0

)
4

. (5.3)

Note that Eq. (2.80) is only applicable to the BH1, DDVCS, INT1 contributions in the
cross section integrated over the lepton solid angle but not to BH2 contributions. The
approximation of the total cross section following Eq. (2.80) is made here. For the global
case, the interval of 40◦-140◦ gives F (θ0 = 50◦) = 0.69.

Considering 85% polarized electron beam for L = 1.2 × 1037 cm−2·s−1, 50 days run-
ning and a global detection efficiency of Ed = 50%, Fig. 5.14 displays distributions of
kinematical variables for DDVCS events with the J/Ψ-µ configuration of SoLID. The left
panel of Fig. 5.15 shows the results of the evaluation of A−LU(φ) (BSA) as functions of φ
with statistic errors for the three bins above. Considering additional 50 days running with
unpolarized positron beam for L = 1.1 × 1037 (corresponding to 1 µA on a 40 cm long
liquid hydrogen target), the BCA can also be obtained with a good precision, as shown
in the right panel of Fig. 5.15. For all the covered bins for the J/Ψ-µ configuration of
SoLID, the expected accuracy of the observables is presented in the Appendix B.
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In summary, the expected asymmetries and statistics for the J/Ψ-µ configuration
of SoLID demonstrate the actual feasibility of the experiment. In order to minimize
contamination from meson decay, a minimum value of the final virtual photon mass is
required (Q′2 > 3 GeV2) inspired from photoproduction experiments. However, the final
experimental value of this cut may be lower depending on the true cross section for the
electroproduction of meson at DDVCS kinematics. There exists some indications [55]
supporting reduced cross sections that would allow to relax this cut and access high
counting rate regions. The parasitic project here would answer such questions while
simultaneously providing a set of experimental data for di-muon electroproduction at
different physics regimes. However, in the high ξ region where DDVCS asymmetries are
predicted to be small (Appendix B), statistics will most likely be not large enough for a
significant impact. Thus, higher luminosities are needed to investigate this domain, which
could be achieved by a dedicated DDVCS detector or a modified CLAS12.
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Chapter 6

Extraction of the CFFs

The attempts to determine CFFs from experimental data mostly fall into two categories:
global fits and local fits. With respect to the global fits, the free coefficients of a CFF
parameterization are matched to experimental data. Kinematical bins are not treated
independently. Interpolating between measurements of the same observable on neigh-
boring kinematic bins is feasible. Extrapolating out of the probed kinematical domain
constrained by measurements becomes possible too. However the estimation of the sys-
tematic uncertainty associated to the choice of a parameterization is an extremely difficult
task. On the other hand, the local fits determine CFFs independently between different
kinematical bins. This amounts to a sampling of CFFs over the probed kinematical do-
main. The model-dependence of the result is low, but the problem is often ill-posed by
lack of uniqueness.

In the following, two approaches are applied to extract CFFs information from the
DDVCS pseudo-data. Firstly, two specific linear CFFs combinations mentioned in Sec. 2.4
are directly obtained from cross section differences. With limited number of observables
over the current kinematical domain, the CFFs combinations are the maximum informa-
tion one can obtain uniquely and model-independently. Such CFFs information certainly
offers constraints on CFFs and can contribute to the global fits program, such as the recent
DVCS global fits studies [69, 70] within the PARTONS framework [71]. Then, a local fit-
ting inspired from the one of the DVCS process [72, 73, 74, 75, 76, 77, 78] is discussed and
applied to extract the CFFs from the DDVCS pseudo-data at given (ξ′, ξ, t, Q2) points.

6.1 Extraction of the CFFs combinations

As discussed in Sec. 2.4, the beam spin cross section difference ∆σ−LU and the beam charge
cross section difference ∆σC

UU are of great interest, since ∆σ−LU is directly proportional to
the imaginary part of the linear CFFs combination CINT

LU given by Eq. (2.72) and ∆σC
UU is,

in the absence of longitudinal CFF FL, proportional to the real part of the linear CFFs
combination CINT

UU given by Eq. (2.69). The process and results of extracting the linear
CFFs combinations from the pseudo-data in the ideal situation are presents here.

6.1.1 The extraction method

The pseudo-data consist of 12 data points in φ for each (ξ′, ξ, t, Q2) bin. For the bin i cen-
tered at φi, being ∆φi wide, I denote the value of the cross section difference by ∆σ−LU(φi)
and ∆σC

UU(φi) and its errors by δ∆σ−LU(φi) and δ∆σC
UU(φi). Thus, the combinations are

103
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obtained through modified moments following

Im
{
CINT
LU

}
=

1

π

12∑
i=1

[
P1P2(φi)Ks

APSAINT

]
∆σ−LU(φi)∆φi sinφi, (6.1)

Re
{
CINT
UU

}
=

1

π

12∑
i=1

[
P1P2(φi)Kc

APSAINT

]
∆σC

UU(φi)∆φi cosφi, (6.2)

where

Ks = − 3y2

64π2K(2− y)
, (6.3)

Kc =
3y3

64πK(2− 2y + y2)
, (6.4)

are the kinematical prefactors of the Fourier coefficients sINT1
1 in Eq. (2.85) and cINT1

1 in
Eq. (2.83), respectively. The statistical errors of the extracted combinations are given by

(
δIm

{
CINT
LU

})2
=

1

π2

12∑
i=1

{[
P1P2(φi)Ks

APSAINT

]
∆φi sinφi

}2

·
[
δ∆σ−LU(φi)

]2
, (6.5)

(
δRe

{
CINT
UU

})2
=

1

π2

12∑
i=1

{[
P1P2(φi)Kc

APSAINT

]
∆φi cosφi

}2

·
[
δ∆σC

UU(φi)
]2
. (6.6)

Smearing

In order to make the pseudo-data more realistic, the central value of the cross section
differences is smeared according to a Gaussian probability distribution whose standard
deviation is equal to the error bar. Fig. 6.1 shows an example of the smearing effects,
where the colored points present the smeared pseudo-data and the dashed curves show
the theoretical estimate of observables.

6.1.2 The expected results

Using the smeared pseudo-data, the linear CFFs combinations are obtained for all covered
(xB, Q

2, t, Q′2) bins, shown in Appendix. C. Fig. 6.2 shows the results as functions of ξ′
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at specific ξ and t. It can be seen that the extracted CFFs combinations recover the
theoretical curves with good accuracy. Such experimental measurements will provide
unprecedented CFFs constraints at ξ′ 6= ξ.

6.2 Local fits of the CFFs

Based on the merging of the well-established VGG code, a local fitting code has been
specifically developed for the DDVCS process. It consists in taking the eight CFFs as
free parameters and, using the BH and DDVCS leading-twist amplitudes, to fit at a fixed
kinematics simultaneously the φ-distributions of a set of experimental observables. The
VGG code uses its own models for the GPDs but in fact any GPD model can be used.
When the range of variation of the CFFs is limited, the dominant CFFs contributing
to the observables which are fitted are obtained from the fit procedure with finite error
bars. These error bars are mainly due to the correlations between the CFFs. Rather than
the error on the experimental data, they reflect the influence of the other sub-dominant
CFFs [77, 78]. Except for the limits imposed on the variation of the CFFs, it has the
merit of being mostly model-independent as there is no need to assume and hypothesize
any functional shape for the CFFs. It has been proved in [72, 73] that the fitting code
is reliable and powerful to extract all CFFs, given enough observables. If only limited
observables are available, limits and constraints can still be derived for specific CFFs, as
shown in [74, 75, 76] for JLab and HERMES DVCS data.

6.2.1 Monte Carlo studies

In this section, some examples of the simulations are presented in order to test and
demonstrate the reliability and robustness of the fitting method. Considering the least
constrained case and most challenging case, only two observables, σ−UU and ∆σ−LU in
Eq. (2.112), are fitted. The fitting with four observables, σUU, ∆σC

UU, ∆σLU and ∆σC
LU in

Eq. (2.115), is also presented.
Each observable receives contributions from several CFFs, which are strongly corre-

lated. Thus, the extraction of 8 CFFs from only two or four observables, with finite
experimental uncertainties, is an underconstrained problem. However, some observables
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E (GeV) xB Q′2 (GeV2) Q2 (GeV2) −t (GeV2) ξ ξ′

11 0.138 1.012 2.75 0.25 0.105 0.045

Table 6.1: The particular kinematics for the simulations.

a(ReH) a(ReE) a(ReH̃) a(ReẼ)
0.790050 1.336966 3.864845 1.450441

a(ImH) a(ImE) a(ImH̃) a(ImẼ)
−1.485952 0.587110 −2.346204 −2.134648

Table 6.2: The generated CFF multipliers for the simulations.

are dominated by and mostly sensitive to one or two CFFs compared to the others. For
instance, σ−UU is particularly sensitive to the real part of H and ∆σ−LU is dominated by
the imaginary part of H. Other CFFs contributing to these observables are kinematically
suppressed. Therefore, the range of variation of the CFFs is limited in a conservative
way. While keeping the 8 CFFs in the fit, this reduces the underconstrained problem to
fitting the one or two dominant CFFs to the one or two experimental observables. The
influence of the non-dominant CFFs, over the domain in which they are allowed to vary, is
then reflected in the resulting uncertainty on the dominant CFFs extracted. The mostly
model-dependent input in this approach is the definition of the range of variation of the
CFFs. In addition, the nucleon mass correction and higher twist effects for the calculation
of the amplitude also enter the fitting code as a model-dependent factor.

Pseudo-data generation

The first step of this study consists in generating the pseudo-data for the fit. A particular
set of kinematical variable shown in Table 6.1 is taken. Then, the 8 CFFs entering the
DDVCS amplitude are generated randomly. In order to keep the problem realistic, they
are chosen to vary within a bounded 8-fold hypervolume, whose limits are defined as ±5
times the CFFs predicted by the VGG model. It is chosen not to generate the CFF values
themselves but rather their “multipliers”, namely their deviations from the VGG CFFs.
The CFFs entering the DDVCS amplitude are then the product of these multipliers by
the VGG reference CFFs. The randomly generated CFF multipliers are denoted a(F)
and their values for generating the cross sections are shown in Table 6.2. Some of the
multipliers are very far from 1. They correspond probably to quite unrealistic CFFs.
However, exploring such a large range of values should make the fitting code more robust
and convincing.

The goal of this study is to see if the 8 original randomly generated CFF multipliers, or
some of them, can be retrieved under realistic conditions. Therefore, the calculated cross
sections are smeared according to the statistical errors obtained in Chapter 4. Fig. 6.3
shows the unpolarized cross section and beam spin cross section difference generated with
the 8 random CFFs. The fit is carried out with only 6 points in φ spread in steps of 30◦

between 15◦ and 165◦, since little improvement is observed in fitting more φ values.
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Pseudo-data fitting

The second step of the study consists in fitting the generated φ distributions leaving the
8 CFFs as free parameters, ignoring any information about the initial generated values.
The idea is to match as much as possible real conditions. However, the condition for the
fitting procedure to converge is to limit the hyperspace in which the 8 CFFs are allowed
to vary. The choice of the values of the boundaries is the only model-dependent input. In
this study, the same hyperspace in which the 8 CFFs were originally generated, namely ±5
times the VGG CFFs., is chosen. Similarly to the generation of the CFFs, the multipliers
of the VGG CFFs are fitted, rather than the absolute CFFs themselves, with the goal to
retrieve the originally generated ones. Using the least square method, the quantity to be
minimized is

χ2 =
n∑
i=1

(σtheoi − σexpi )2

(δσexpi )2
, (6.7)

where σtheoi is the theoretical cross section depending on the CFFs multipliers, σexpi is
the corresponding value of the pseudo- or experimental data and δσexpi is its associated
error bar. The index i runs over all the available φ points of all the observables to be
fitted for a given (ξ′, ξ, t, Q2) bin. The MIGRAD minimizer of MINUIT [79] is used to
perform the fit, with the MINOS subpackage for the error analysis. This method allows
to explore in a gradual and automatic way the χ2 landscape around the minimum and
define one-standard-deviation uncertainties for each parameter when it reaches χ2 + 1. It
is costly in terms of computing time but can find the global minimum (or minima) of the
non-linear problem, reducing the risk of falling into local minima. When the problem is
severely underconstrained and has strong correlations between the parameters, this is the
only way to determine the error.
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Figure 6.4: Results of a series of fits, differing by their randomly generated starting values,
of σ−UU and ∆σ−LU smeared pseudo-data of Fig. 6.3. The red dots show for each fit, on
the x-axis, the values of the CFFs multipliers which minimize the problem and, on the
y-axis, the corresponding minimal value of reduced χ2. The blue error bars indicate the
uncertainties derived from the MINOS analysis. The green vertical lines indicate the CFF
multiplier values used for the generation of the pseudo-data in Table. 6.2.

Fitting the specifically smeared pseudo-data of σ−UU and ∆σ−LU in Fig. 6.3 for dozens
of times with various starting points randomly selected in [−5, 5], the red dots in Fig. 6.4
shows the results of the fits for the 8 CFF multipliers as a function of reduced χ2. The
blue error bars indicate the one-standard-deviation uncertainties corresponding to χ2 + 1.
The non-finite error bars for the CFFs E and H̃ mean that the χ2 + 1 value lies out of
the ±5 times VGG CFF range. It can be interpreted as the whole range of values for the
associated parameter can accommodate the fit with relatively equally good χ2. In other
words, the corresponding CFF multiplier is essentially unconstrained and therefore no
particular confidence and meaning can be given to the quoted numerical value. Obviously,
the result of the fit is not dependent on the particular starting values of the 8 CFFs. It
can also be observed that only CFF H, very close to the originally generated values (green
lines), can be retrieved from the fit with good minimum and accuracy, χ2/Ndof ≈ 2.74
and about 15% uncertainties for both a(ReH) and a(ImH). The result actually implies
that σ−UU and ∆σ−LU are dominantly sensitive to the CFFs ReH and ImH.

Fitting the pseudo-data of σ−UU and ∆σ−LU in Fig. 6.3 for dozens of times with different
random smearings, Fig. 6.5 shows the results of the fits for the 8 CFF multipliers as a
function of reduced χ2. Each fit yields a different solution and different values in χ2/Ndof

from 1 to 4. However, it is remarkable that the originally generated values of a(ReH)
and a(ImH) mostly lies within the error bars (mostly about 20%) of the fitted ones. A
closer look (see the top panels of Fig. 6.6) reveals that the values of a(ReH) and a(ImH)
(red dots) are not exactly centered on the originally generated values (green lines). The
origin of such shifts is the random smearing of the data that can accidentally bias the φ
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Figure 6.5: Results of a series of fits, differing by their different random smearings, of σ−UU

and ∆σ−LU pseudo-data.

distributions in a given direction. It can also be seen that there are chances that the fit
does not converge and/or ends up with non-finite error bars for a(ReH) and/or a(ImH),
also resulting from the random smearings for the pseudo-data. The fit is very challenging
for the low statistics data.

It has been proved in [77] that the more observables one fit, the smaller and more
symmetric the error bars on the resulting fitted CFFs can be derived, together with the
less dependence on the the allowed domain of variation of the CFFs. This feature can be
also observed in Fig. 6.6, where the bottom panels shows the resulting fitted a(ReH) and
a(ImH) derived from the fits of σUU, ∆σC

UU, ∆σLU and ∆σC
LU for dozens of times with

different random smearings. In order to compare the impact of number of observables,
the statistical errors for the 4 observables are evaluated in the same condition as for the
2 observables, namely L = 1036 cm−2 · s−1 and 50 days in total. In comparison with the
fits with the 2 observables, the fits with the 4 observables results in smaller errors on the
fitted a(ReH) and a(ImH), higher degree of concentration on the originally generated
values and smaller values in χ2/Ndof (from 0.5 to 3). The other CFFs still cannot be
retrieved with the 4 observables, since the generation and fitting are performed at leading
twist approxiamtion, where they are all dominated by the CFF H and do not provide
essential constraints on CFFs other than H. The observables with neutron and nucleon
polarization offer the additional constraints and meanwhile improve the accuracy of the
fitted H.

Since the problem is severely underconstrained and the available observables predicted
by VGG model are dominantly sensitive to ReH and ImH, the fits with only CFF H
are also tested. Fig. 6.7 shows the results of these fits, differing by their different ran-
dom smearings, of 2 observables, σ−UU and ∆σ−LU (top panels), and 4 observables, σUU,
∆σC

UU, ∆σLU and ∆σC
LU (bottom panels). The originally generated values of a(ReH) and

a(ImH) mostly lies within the error bars (about 6%) of the fitted ones, even though the
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pseudo-data are generated with 8 VGG CFFs. The error bars of fitted CFFs are no more
asymmetric due to the absence of the correlation between H and the others, which are set
to zero for the fits. These results actually indicate the strong sensitivity of the available
pseudo-data to the CFF H again.

Altogether, the Monte Carlos studies above proves that the fitting method is reliable
and robust and CFFH can be conservatively obtained when the smearing does not distort
the pseudo-data.

6.2.2 Application

Here I apply the fit method (with 8 CFF as free parameters) to the pseudo-data derived
in the ideal situation discussed in Chapter 4. The pseudo-data are smeared according to
errors evaluated for 50 days and two luminosities, 1036 cm−2 · s−1 and 1037 cm−2 · s−1.
When the statistics of the pseudo-data is too poor, the fits mostly will not converge and/or
end up with non-finite error. Thus, I only carry out the fit on the pseudo-data fulfilling a
certain statistics requirement: the errors on minimal σ−UU at φ = 165◦ need to be smaller
than 10% and the errors on the maximal BSA and BCA need to be smaller than 100%.
There are 120 (ξ′, ξ, t, Q2) bins satisfying the requirement at 1036 cm−2 · s−1 and 266 at
1037 cm−2 · s−1.

Fig. 6.8 shows the fitting results for ImH as a function of ξ′ at ξ = 0.135, −t = 0.25
GeV2 and Q2 = 1.25 GeV2. The CFF ImH, defined in Eq. 1.112, actually is the singlet
GPD H+(x, ξ, t) at x = ξ′, which is a asymmetric function in ξ′ (see the dashed curve in
the bottom panel). Thus, ∆σ−LU (and ∆σC

LU) is very small around ξ′ = 0, where it offers
weak constraints on ImH. This feature makes the fit very challenging in this region. For
example, the fitted CFF multipliers (top panel) at ξ′ = −0.015 have non-finite errors
and the corresponding fitted CFF values (bottom panel) are not presented, regarded as
unsuccessful fit. The successfully fitted ImH, namely with finite errors, appearing in the
bottom panel of Fig. 6.8 mostly lies in the space-like region (ξ′ > 0). This is caused
by the smallness of ∆σ−LU (and ∆σC

LU) in the time-like region (ξ′ < 0), as discussed in
Sec. 2.3.2. However, the GPD H+ in the time-like region can be deduced through its
model-independent asymmetry in ξ′ and eventually mapped out over the full phase space.
Simultaneously, the fitted ReH is derived from the fit, as shown in Fig. 6.9. With the
additional constraints, fitting with 4 observables seems to have higher probabilities than
with 2 observables to end up with finite error bars, as shown at ξ′ = ±0.015. This is
simply due to the real part of the linear CFFs combination in the beam charge cross
section difference.

In summary, the fit method specially developed for DDVCS shows it is possible to
extract the imaginary (singlet GPD) and real part of the CFFs H from the pseudo-data.
For all the bins meeting the statistics requirement, the results of the fits are presented in
the Appendix D.
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Conclusion

Generalized Parton Distributions contain a wealth of information and have become a
powerful paradigm to study the structure and dynamics of the nucleon. Encoding the
correlations between the parton, i.e. quarks and gluons, of the nucleon, GPDs allows
3-dimensional imaging of the nucleon from the dynamical link between the transverse po-
sition and the longitudinal momentum of partons. As a result of these position-momentum
correlations, GPDs provide a way to measure the unknown orbital momentum contribu-
tion of quarks to the total spin of the nucleon.

Double Deeply Virtual Compton Scattering is one of the cleanest reaction accessing
GPDs. The electroproduction of a lepton pair eN → eNl−l+, which is sensitive to the
DDVCS amplitude, provides the only experimental framework for a decoupled measure-
ment of GPDs(x, ξ, t) as a function of both the average momentum fraction x and the
transferred one ξ. This unique feature of DDVCS is of relevance, among others, for the
determination of the transverse parton densities and the distribution of nuclear forces.

Because of complex antisymmetrization concerns, the production of muon pairs appear
the only feasible and promising channel for the investigation of DDVCS with electron and
positron beams, asking, in the JLab experimental context, for the availability of a muon
detector. The DDVCS process is most challenging from the experimental point of view due
to the small magnitude of the cross section. The measurements of DDVCS observables
require high luminosity and large acceptance detectors for reasonable statistics. Thus,
measurements of the observables in terms of the 5-fold differential cross section is more
realistic than the full differential cross section measurements. The leading-twist formulas
of the cross section integrated over final lepton solid angle and over final lepton polar
angle and nucleon azimuthal angle have been deduced to obtain the theoretical ground of
the phenomenological studies of the DDVCS process discussed in the present work.

At JLab 12 GeV kinematics, the DDVCS observables with unpolarized targets have
been evaluated by using VGG model and show a dominant sensitivity to the CFFsH. The
model-predicted projections of a DDVCS experiment indicate a high degree of feasibility
at a luminosity of 1037 cm−2·s−1 with exclusive final states completely detected. A more
realistic study is supporting feasibility with large acceptance and reasonable luminosity as
opposed to small acceptance and very high luminosity. A more detailed study with SoLID
spectrometer shows a realistic possibility for the measurements with the J/Ψ configuration
complemented by muon detection capabilities.

Numerical methods have been specifically developed for the extraction of CFFs. Con-
sidering polarized electron and positron beams, two specific linear combinations of CFFs
with a good accuracy have been extracted from simulated experimental pseudo-data at
a luminosity of 1037 cm−2·s−1. Covering a broad kinematics phase space, it is highly
possible to obtain, by applying a local fitter algorithm, the dependence of the CFF H
on its three arguments independently, where the GPD H singlet is directly given by the
extracted imaginary part of the CFF H.
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SoLID project is moving forward and the design of various detectors of SoLID spec-
trometer is being optimized. The DDVCS measurements with SoLID is considered as the
most promising DDVCS experiment in the future.

In order to reveal the spin puzzle of the nucleon, the knowledge of the GPD E is still
needed. The measurements on a neutron target offer the sensitivity to the GPD E and
become then of direct relevance in the determination of the quark angular momentum.
To access the other GPDs, the measurements of the observables with polarized target
are required. In the current state of polarized target technology, a fixed-target DDVCS
experiment is not achievable. However, it can be achieved at the future EIC facility. The
observables with polarized nucleon related to complementary combinations of CFFs will
provide additional constraints on the CFFs other than H, which will also benefit the
extraction of H in the local fit.



Appendix A

Observables in the ideal situation

When L = 1037 cm−2·s−1 and T = 50 days, the observables for the covered bins in
ξ = 0.045, 0.075, 0.105, 0.175 and 0.25 are shown in the following figures. Fig. A.1-A.5
display the expected accuracy of the unpolarized cross section, Fig. A.6-A.10 display the
expected accuracy of the BSA and Fig. A.11-A.15 display the expected accuracy of the
BCA with additional 50 days running of positron beam.
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Figure A.1: σ−UU(φ) at ξ = 0.045.
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Figure A.2: σ−UU(φ) at ξ = 0.075.
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Figure A.3: σ−UU(φ) at ξ = 0.105.
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Figure A.6: A−LU(φ) at ξ = 0.045.
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Figure A.7: A−LU(φ) at ξ = 0.075.
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Figure A.8: A−LU(φ) at ξ = 0.105.
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Figure A.9: A−LU(φ) at ξ = 0.175.
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Figure A.10: A−LU(φ) at ξ = 0.25.
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Figure A.11: AC
UU(φ) at ξ = 0.045.
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Figure A.12: AC
UU(φ) at ξ = 0.075.
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Figure A.13: AC
UU(φ) at ξ = 0.105.
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Figure A.14: AC
UU(φ) at ξ = 0.175.
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Figure A.15: AC
UU(φ) at ξ = 0.25.



Appendix B

Observables with SoLID

With the J/Ψ-µ configuration of SoLID for 50 days, the observables for the covered bins
in ξ = 0.045, 0.075, 0.105, 0.135, 0.175 and 0.25 are shown in the following figures.
Fig. B.1-B.6 display the expected accuracy of the BSA and Fig. B.7-B.12 display the
expected accuracy of the BCA with additional 50 days running of positron beam.
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Figure B.1: A−LU(φ) at ξ = 0.045.
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Figure B.2: A−LU(φ) at ξ = 0.075.
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Figure B.3: A−LU(φ) at ξ = 0.105.
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Figure B.4: A−LU(φ) at ξ = 0.135.



138 APPENDIX B. OBSERVABLES WITH SOLID

 =
 0

.1
75

ξ
) 

at
 

φ(
− L
U

A

0.
3

−0.
1

−0.
1

0.
3

0.
3

−0.
1

−0.
1

0.
3

0.
3

−0.
1

−0.
1

0.
3

0.
3

−0.
1

−0.
1

0.
3

0.
3

−0.
1

−0.
1

0.
3

 =
 1

.2
5

2
Q

 =
 1

.8
75

2
Q

 =
 2

.7
5

2
Q

2
 =

 4
 G

eV
2

Q

0
18

0
0

18
0

0
18

0
0

18
0

0
18

0
0

18
0

0
18

0
0

 (
de

g)
φ

0.
14

−
0.

06
−

0.
01

5
−

0.
01

5
0.

04
5

0.
07

5
0.

12
0.

2
'ξ

0.150.250.3750.550.825
)

2
t (GeV −

Figure B.5: A−LU(φ) at ξ = 0.175.
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Figure B.6: A−LU(φ) at ξ = 0.25.
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Figure B.7: AC
UU(φ) at ξ = 0.045.
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Figure B.8: AC
UU(φ) at ξ = 0.075.
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Figure B.9: AC
UU(φ) at ξ = 0.105.
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Figure B.10: AC
UU(φ) at ξ = 0.135.
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Figure B.11: AC
UU(φ) at ξ = 0.175.
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Appendix C

Extracted linear CFFs combinations

The linear CFFs combinations as functions of ξ′ extracted from the covered bins are shown
in the following figures for ξ = 0.045, 0.075, 0.105, 0.135, 0.175 and 0.25. Fig. C.1-C.6
display the expected accuracy of the extracted imaginary part of linear CFFs combination

CINT
LU = F1H + ξ′(F1 + F2)H̃ −

t

4M2
F2E , (C.1)

and Fig. C.7-C.12 display the expected accuracy of extracted real part of linear CFFs
combination

CINT
UU =

ξ′

ξ

(
F1H−

t

4M2
F2E

)
+ ξ(F1 + F2)H̃. (C.2)

The results of Im{CINT
LU } are extracted from ∆σ−LU, based on the pseudo-data in the ideal

situation at L = 1037 cm−2 · s−1 for 50 days running of polarized electron beam, while
the results of Re{CINT

UU } are extracted from ∆σC
UU, based on the pseudo-data in the ideal

situation at L = 1037 cm−2 · s−1 for additional 50 days running of unpolarized positron
beam.
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Figure C.1: Im{CINT
LU }(ξ′) at ξ = 0.045.
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LU }(ξ′) at ξ = 0.075.
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Figure C.3: Im{CINT
LU }(ξ′) at ξ = 0.105.
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Figure C.6: Im{CINT
LU }(ξ′) at ξ = 0.25.
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Figure C.9: Re{CINT
UU }(ξ′) at ξ = 0.105.
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Figure C.11: Re{CINT
UU }(ξ′) at ξ = 0.175.
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Figure C.12: Re{CINT
UU }(ξ′) at ξ = 0.25.
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Appendix D

Extracted CFFs H

When the statistics of the pseudo-data is too poor, the fits mostly will not converge and/or
end up with non-finite error. Thus, I only carry out the fit on the pseudo-data fulfilling a
certain statistics requirement: the errors on minimal σ−UU at φ = 165◦ need to be smaller
than 10% and the errors on the maximal BSA and BCA need to be smaller than 100%.
There are 120 (ξ′, ξ, t, Q2) bins satisfying the requirement at 1036 cm−2 · s−1 and 266 at
1037 cm−2 · s−1 for 50 days run. The results presented here are obtained when fitting σUU,
∆σC

UU, ∆σLU and ∆σC
LU simultaneously.

Fig. D.1-D.4 show the fitting results at ξ = 0.045, where Fig. D.1 for the fitted CFFs
multiplier a(ImH), Fig. D.2 for the resulting value of ImH, Fig. D.3 for the fitted CFFs
multiplier a(ReH),, and Fig. D.4 for the resulting value of ReH. Fig. D.5-D.24 follow the
same pattern and show the results at ξ = 0.075, 0.105, 0.135, 0.175 and 0.25. Note that
the resulting value CFFs are presented only for the converging fits and the finite error
bars. In each figure, the red points stand for the results obtained at L = 1036 cm−2 · s−1
and the blue points at L = 1037 cm−2 · s−1. Note that the blue points are offset by +0.005
in ξ′ for visual clarity.
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Figure D.1: a(ImH) at ξ = 0.045.
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Figure D.2: ImH at ξ = 0.045.
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Figure D.3: a(ReH) at ξ = 0.045.
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Figure D.4: ReH at ξ = 0.045.
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Figure D.5: a(ImH) at ξ = 0.075.
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Figure D.6: ImH at ξ = 0.075.
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Figure D.7: a(ReH) at ξ = 0.075.
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Figure D.8: ReH at ξ = 0.075.
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Figure D.9: a(ImH) at ξ = 0.105.
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Figure D.10: ImH at ξ = 0.105.
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Figure D.11: a(ReH) at ξ = 0.105.
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Figure D.12: ReH at ξ = 0.105.
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Figure D.13: a(ImH) at ξ = 0.135.
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Figure D.14: ImH at ξ = 0.135.
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Figure D.15: a(ReH) at ξ = 0.135.
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Figure D.16: ReH at ξ = 0.135.
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Figure D.17: a(ImH) at ξ = 0.175.
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Figure D.18: ImH at ξ = 0.175.
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Figure D.19: a(ReH) at ξ = 0.175.
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Figure D.20: ReH at ξ = 0.175.
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Figure D.21: a(ImH) at ξ = 0.25.
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Figure D.22: ImH at ξ = 0.25.
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Figure D.23: a(ReH) at ξ = 0.25.
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Figure D.24: ReH at ξ = 0.25.



186 APPENDIX D. EXTRACTED CFFS H



Bibliography

[1] R. Hofstadter and R. W. McAllister, Phys. Rev. 98, 217 (1955).

[2] M. Breidenbach et al., Phys. Rev. Lett. 23, 935 (1969).

[3] D. Müller et al., Fortschr. Phys. 42, 101 (1994).

[4] X. Ji, Phys. Rev. Lett. 78, 610 (1997).

[5] X. Ji, Phys. Rev. D 55, 7114 (1997).

[6] A. V. Radyushkin, Phys. Lett. B 380, 417 (1996).

[7] A. V. Radyushkin, Phys. Rev. D 56, 5524 (1997).

[8] M. V. Polyakov, Phys. Lett. B 555, 57 (2003).
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[78] R. Dupré et al., Eur. Phys. J. A 53, 171 (2017).

[79] F. James, MINUIT, D507, CERN (1978).



190 BIBLIOGRAPHY



Résumé en Français

Les Distributions Généralisées de Partons (GPD) constituent une source d’information
sans précédent et sont devenues un puissant paradigme pour l’étude de la structure et
la dynamique du nucléon. Codant les corrélations entre les partons (les quarks et les
gluons) du nucléon, les GPD permettent une représentation tridimensionnelle du nucléon
à partir du lien dynamique entre la position transverse et l’impulsion longitudinale des
partons. En raison de ces corrélations position-impulsion, les GPD fournissent un moyen
de mesurer la contribution inconnue du moment orbital des partons au spin total du
nucléon.

Le processus de Diffusion Compton Profonde Doublement Virtuelle (DDVCS) est une
réaction privilégiée pour accéder les GPD. L’électroproduction d’une paire de leptons
eN → eNl−l+, qui implique le processus DDVCS, fournit le seul cadre expérimental
permettant une mesure découplée des GPD(x, ξ, t) en fonction de la fraction d’impulsion
moyenne x et de celle transférée ξ. Cette caractéristique unique du DDVCS est d’importance,
entre autres, pour la détermination des densités de partons transverses et la distribution
des forces nucléaires.

En raison de complexes problémes d’antisymmétrisation, la production de paires de
muons apparâıt comme le seul canal réalisable et prometteur pour la mesure du DDVCS
avec des faisceaux d’électrons et de positrons au Jefferson Lab (JLab), et demandent
en conséquence le développement d’un détecteur de muons. Le processus DDVCS est
très difficile du point de vue expérimental en raison de la très faible grandeur de la
section efficace. Les mesures des observables DDVCS nécessitent une luminosité élevée
et des détecteurs de grande acceptance pour l’obtention d’une statistique significative sur
une durée raisonnable des prises de données. Ainsi, la mesure des observables en terme
de section efficace 5 fois différentielle est plus réaliste que celle d’une section efficace
complètement (7 fois) différentielle. Les expressions des sections efficaces intégrées d’une
part sur l’angle solide des muons, et d’autre part sur l’angle polaire des muons et l’angle
azimutal du nucléon, ont été déterminées pour obtenir le fondement théorique des études
phénoménologiques du processus DDVCS discutées dans le présent travail.

Dans le domaine cinématique accessible à JLab 12 GeV, les observables DDVCS avec
des cibles non polarisées ont été évaluées en utilisant le modèle VGG et sont dominées
par le Facteur de Forme Compton (CFF) H. La projection des observables prédites
selon le modèle VGG, indique un degré élevé de faisabilité d’une exprérience DDVCS
à une luminosité de 1037cm−2·s−1, avec un état final complètement détecté. Une étude
plus réaliste soutient la faisabilité expérimentale d’une configuration couplant luminosité
raisonnable et grande acceptance par opposition á une configuration de luminosité élevée
de faible acceptance. Une étude plus détaillée avec le spectromètre SoLID montre une
possibilité concrète de mesure du DDVCS dans la configuration J/Ψ de SoLID complètée
d’un détecteur de muons.

Des méthodes numériques ont été spécifiquement développées pour extraire les CFF
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des observables. En considérant des faisceaux polarisés d’électrons et de positrons, deux
combinaisons linéaires spécifiques de CFF ont été extraites avec une bonne précision à par-
tir de pseudo-données expérimentales simulées à la luminosité de 1037cm−2·s−1. Couvrant
un large espace de phase cinématique, il est alors possible d’obtenir, à l’aide d’un algo-
rithme d’ajustement local, la dépendance du CFF H sur ses trois arguments de manière
indépendante, la GPD H singulet étant directement donnée par la partie imaginaire ex-
traite du CFF H.

Le projet SoLID progresse et la conception des divers détecteurs du spectromètre est
en cours d’optimisation. La mesure du DDVCS avec SoLID est considérée comme la
solution la plus prometteuse pour une future expérience.

Afin de résoudre le puzzle du spin du nucléon, la connaissance de la GPD E est
également nécessaire. Les mesures sur une cible de neutrons offrent la sensibilité recherché
à la GPD E et deviennent alors particulièrement pertinentes pour la détermination du
moment angulaire des partons. Pour accéder aux autres GPD, la mesure d’observables
sur cible polarisée est nécessaire. Dans l’état actuel de la technologie des cibles polarisées,
une expérience DDVCS sur cible fixe polarisée n’est pas envisageable. Cependant, elle
pourrait être réalisée dans un futur proche auprès du prochain Collisonneur Electron-Ion
(EIC). Les observables liées à la polarisation des nucléons mesurent d’autres combinaisons
de CFF et fournissent des contraintes supplémentaires sur les CFF autres que H, ce qui
profite également à l’extraction de H dans la procédure d’ajustement local.
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