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ABSTRACT

Collective dipole interaction has recently emerged as a powerful tool in controlling light-

matter interactions. Ordered atomic arrays, in particular, enhance cooperative responses

and are promising for applications in coherent control and quantum information. This thesis

examines three distinct phenomena associated with collective dipole interactions. First,

we study the recoil effects resulting from subradiant and superradiant emissions in sub-

wavelength atom arrays. Second, we analyze the photon statistics of the emitted light in

different directions and modes in the low-intensity regime. Finally, we explore the collective

behavior of atoms confined near a nanophotonic micro-ring resonator, where the interplay

of chiral cavity interactions and free space dipole-dipole coupling leads to novel subradiant

and superradiant states.
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1. INTRODUCTION

Collective dipole emissions have recently been used in many novel and interesting applications

in the control of the interaction between light and matter. Reference [  1 ] showed that when

an ensemble of atoms interacts and radiates collectively, the dynamics are altered due to

the interference of the outgoing light waves. This has led to abundant research investigating

a wide variety of concepts including subradiance, superradiance, and collective Lamb shifts

[ 2 ]–[ 12 ]. These concepts are also being used in establishing a link between atoms separated

by more than their resonant wavelength [ 13 ]–[ 15 ].

Placing the atoms in uniformly spaced arrays will enhance the co-operative response

resulting in increased coupling between the atoms and radiation field [ 16 ]–[ 24 ]. Recent

experiments have achieved the realization of arrays of atoms with a high level of filling

efficiency [  25 ]–[ 31 ]. Closely packed atom arrays, where the atom separation is less than

the wavelength of the light, have been found to have highly reflective properties due to the

cooperative dipole interactions [  18 ], [ 19 ], [ 31 ]. Reference [  32 ] showed that atomic arrays can

be used to coherently focus or steer light by individually varying the detuning of the atoms.

Such arrays have also been suggested to be efficient options for photon storage [ 33 ]–[ 35 ].

Non-linear interactions to facilitate coupling between individual photons show exciting

potential [  36 ]–[ 40 ]. The scattering of two photons with the help of interaction with other

systems has been explored in Refs. [  41 ]–[ 45 ]. The collective interaction between emitters has

been harnessed to facilitate this, especially in the more controllable case of emitters coupled

to waveguides [ 46 ]–[ 57 ].

There has been significant progress in engineering nanophotonic interfaces for versatile

control over light-matter interaction. The interaction between atoms has been experimentally

implemented using nanofibers [ 14 ], [ 58 ]–[ 64 ], photonic crystals [  65 ], [ 66 ], and slot waveguides

[ 67 ], [  68 ]. Since the atoms are usually trapped close to dielectric surfaces, the complexities

of modeling the interactions have been explored in Refs. [  35 ], [ 69 ]–[ 71 ].

Collective dipole interactions have found many applications in quantum information [ 15 ],

[ 28 ], [ 72 ], [ 73 ]. Reference [ 13 ] described a system using distant atom arrays to form highly

subradiant states which can be used as Bell states to perform computations. As such,

11



quantum information processing requires an extremely high degree of fidelity and coherence.

Many proposals ignore the effect of the recoil during the photon atom interactions. However,

the recoil impulse to the atoms can cause the information in the internal states to entangle

with the vibrational states of the atomic motion, leading to a loss of coherence in the many

atom electronic states. The subsequent motion can also affect the dynamics of the internal

states of the system. Thus, the atom recoil can affect the overall robustness of the quantum

system and introduce avenues for decoherence. The depth of the trapping potential required

in experiments will be determined by this recoil and having a depth that is too low could

escalate this problem. But, the role of the photon recoil may be counter intuitive. For

example, the authors of Ref. [  31 ] discussed that their experiments showed that increasing

the depth beyond a certain level resulted in a reduced cooperative response. This raises

the question of an optimal potential depth in experiments. Reference [  74 ] also proposed to

utilize atomic arrays to drive opto-mechanical systems and the recoil energy would play a

large role in such interactions. Hence, it is imperative to accurately model the recoil force

effects in such cases.

1.1 Outline of Thesis

In Chapter 2, the recoil due to the collective interactions in the atomic systems interacting

with lasers are studied using density matrix calculations. It expands on the work done in

Ref. [  75 ] and studies the emergence of patterns of excitation and recoil in atomic arrays.

The calculations are done under the slow oscillation approximation which assumes that the

timescales of the atomic vibration are much larger than the timescales of the atomic internal

state dynamics. This means that the atoms can be considered as almost stationary and

the forces due to the interactions can be considered as impulses. Hence this model will be

referred to as the ‘impulse model’ in this report. Several numerical methods to calculate the

recoil during a decay process and in a steady state system are described.

The eigenstates of excitations of an atomic array and its effects on the recoil are studied.

In particular situations, the recoil deposited on the array was found to be proportional

to the lifetime of the electronic excitation. The recoil in the highly subradiant system

12



described in Ref. [ 13 ] was calculated and the results show a surprisingly high amount of

recoil energy deposited on the atom array. But this abnormal result needed to be verified

because the large lifetimes of the highly subradiant state will no longer satisfy the slow

oscillation approximation.

In Chapter 3, the recoil is calculated by quantizing the vibrational states of the atoms.

This method is not limited by the slow oscillation approximation and allows for the explo-

ration of the regime beyond. Hence the results can be compared with the impulse model

and the validity of the slow oscillation approximation can be tested. The effects of the

trap frequency and the contributions to the recoil from the different terms of the Lindblad

superoperator and the Hamiltonian are studied.

In Chapter 4, we study the photon statistics of the emitted light from collectively in-

teracting dipole systems in the low-intensity limit using the double excitation states. We

investigate how the eigenstates of the double excitation manifold relate to the eigenstates of

the more accessible single excitation eigenstates. We also study how the lifetimes of these

states can affect the initial time photon correlation g(2)(τ = 0) of the emitted light under dif-

ferent detection schemes. By using two interfering beams of light that can address different

eigenmodes of the system, we can constructively or destructively control the two-excitation

probabilities and hence control the emission photon statistics.

In Chapter 5, we simulate the collective effects in atom ensembles and arrays trapped

near a nanophotonic micro-ring resonator. This is a collaboration with the experimental

group of Prof C. L. Hung from Purdue University. The atoms trapped near the resonator

can interact with each other through two channels, free space and the chiral resonator cavity.

The different properties of the two interaction channels can facilitate interesting combinations

of subradiant and superradiant states with the potential to achieve “selective radiance” [ 35 ].

We simulate the current experiment using randomly distributed atom clouds to investigate

the dynamics under pulsed and steady-state excitation. Further, we explore the potential

of ordered atomic arrays, which are planned for implementation in the next phase of the

experiment.
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1.2 Theoretical Introduction to Collective Dipole Interactions in Atomic en-
sembles

In this thesis, we study how monochromatic light interacts with N two-level systems

with average nearest neighbor separation less than a wavelength of the light. We use a

semiclassical treatment, where the light is treated as classical EM waves interacting with

quantized energy levels to describe the atom.

When light is incident on an atom with a frequency corresponding to a two-level tran-

sition, the atom absorbs the photon and gets excited to a higher energy level. This excited

atom is usually unstable and can spontaneously emit a single photon, returning to the ground

state. This spontaneous emission causes an exponential decay of the excitation and is deco-

herent, implying that the photon is emitted at a random time. The direction of emission is

also random, but the probability of emitting into different directions depends on the orien-

tation of the dipole. The emission pattern can be described by the equation governing the

electric field due to a dipole and is shown in Fig.  1.1 (a).

E(r) = 1
4πε0

{
k2((n × d) × n

eikr

r
+ [3n(n · d) − d]

( 1
r3 − ik

r2

)
eikr

}
(1.1)

where d is the dipole moment, n and r are the unit vector and magnitude of r.

We consider the atoms to be two-level systems with ground state |g〉, and excited states

|e〉. The energy difference corresponding to this transition will be given by ω0. When N

such emitters are located very close to each other (separation < resonant wavelength λ0)

the spontaneous emission from each atom can constructively or destructively interfere and

increase the rate of emission. This constructive or destructive interference is known as

superradiance or subradiance respectively.

This was first discovered by Dicke [  1 ] where he studied the emission from an ensemble

of atoms confined to a radius much smaller than the resonant wavelength. When all the

atoms are excited (inverted ensemble) the emission is bolstered in proportion to the number

of atoms in the system. There is a momentary burst of emission followed by a quick drop in

the emission rate.
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Figure 1.1. The dipole emission pattern for (a) single dipole, (b) and (c) two
dipoles separated by d = 0.04λ. (b) has the dipoles excited in phase resulting in
constructive interference and superradiance. (c) has the the dipoles excited out
of phase resulting in destructive interference and subradiance. The emission
intensity is plotted on a logarithmic scale.
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This interference can also work when there is only a single excitation in the system. The

single excitation can be spread over the ensemble, where there is a superposition of each

atom being excited at a time. The emission wavefunction of each atom can then interfere

to give collective effects. When two atoms, with each having an emission pattern shown

in Fig.  1.1 (a), are close to each other with the same (or opposite) phases, the resulting

emission pattern would look like Fig.  1.1 (b) (or Fig. 1.1 (c)). Thus, the spontaneous emission

from the collective decay of atoms can increase or decrease depending on the circumstances.

However, when there are many atoms placed in ordered lattices, we get interesting effects

such as perfect reflection.

Another way to understand this is through the addition or subraction of the single and

collective effects. While the single atom emission cannot be altered, the collective two atom

emission can either add or subtract the single atom emission wavefunction, thereby causing

superradiance or subradiance.

1.2.1 Laser interaction

The interaction between lasers and atoms can be studied as perturbations in the system

due to oscillating electric fields. When there is an incoming EM radiation with frequency

ω incident on the atoms, we can use time-dependent perturbation theory to describe the

dynamics of the excitation. This will give us Rabi oscillations and a characteristic Rabi

frequency with which the excitation oscillates between the atom and the EM field. This

Rabi frequency is dependent on both the transition dipole moment and the intensity of the

incident light, and is given by,

Ω = 〈i|er · E0|j〉
~

(1.2)

where r is the position of the electron with respect to the center of mass and −er is the

electric dipole moment for the transition from state i → j and E0 is the amplitude of the

oscillating electric field of the EM radiation.

For most cases, the frequency of the light is close to the frequency of the two-level system,

i.e., the detuning is very small (∆ = ω − ω0 � ω0). This means that the rapidly oscillating

terms in the time dynamics (counter-rotating terms with frequencies ω+ω0) can be neglected.
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This is called the Rotating Wave Approximation and is crucial to simplify and extend the

range of calculations possible. This approximation will breakdown when (a) the intensity

becomes too large, or (b) the detuning becomes too large.

The interaction with the laser is a coherent process and can be described by the Rotating

Wave approximation Hamiltonian

ĤL = ~
∑

j

[
−∆σ̂+

j σ̂−
j +

(
Ω
2 σ̂+

j eik0·rj + h.c.

)]
(1.3)

where Ω is the Rabi frequency, ∆ is the detuning, rj is the position of the jth atom, and

k0 = kẑ is the initial wavevector of the incoming photons. σ̂+
j and σ̂−

j are the raising and

lowering operators of the electronic excitation of the jth atom.

1.2.2 Lindblad Operator

In the semiclassical treatment, the Electromagnetic degrees of freedom are traced out

and will be considered as the environment. The spontaneous emission of photons into the

environment will be a decoherent process with randomness involved and cannot be described

by a Hamiltonian alone. The typical methods to simulate such dynamics are Quantum

Trajectory [ 76 ]–[ 78 ], Wavefunction Monte-Carlo [ 79 ]–[ 82 ], or Lindblad operator with density

matrices [ 83 ], [ 84 ].

In this thesis, we primarily use the density matrix representation to describe the spon-

taneous emission dynamics. Using the density matrix method provides several advantages.

The density matrix describes the average ensemble of the system, making it easy to cal-

culate expectation values directly from the density matrix. The off-diagonal terms can be

used to understand the coherence involved in the system. It also allows for the representa-

tion of mixed states, unlike the wavefunction picture which can only describe pure states.

The scaling of the size with the number of atoms for the density matrix is worse than the

wavefunction methods. Nevertheless, since the density matrix directly works on ensemble

averages instead of requiring random sampling, it performs better for a relatively limited

number of atoms.
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We consider the effects of collective interaction in the Low-intensity Limit, where only a

single photon interacts with the system at a time. We assume that the incoming laser light

has such low intensities that the rate of incoming photons is low enough that the previous

excitation decays before the next photon is incident on the atoms. This also greatly helps

with simplifying the calculations because the size of the density matrix only grows linearly

with the number of atoms present.

To properly study the interaction of light with the emitters, the light field has to be

quantized. While this works well in single mode systems like cavities, it becomes tedious

to describe the infinite modes present in the spontaneous emission into free space. Hence,

we use a Green’s function approach to decompose the dynamics into a Lindblad operator

form. To arrive at this form, we need to start with the full density matrix which includes

the N atoms as well as the infinite dimensional Fock states that are associated with the EM

field bath. Using second-order perturbation theory and then tracing out the EM field by

integrating over all k, gives a reduced density matrix and corresponding master equation

that uses a Lindblad term to describe the decoherent spontaneous emission process. This

has been derived for a general situation in the thesis of T. Sutherland [ 85 ].

This description is only valid under the Markovian approximation, where the system

does not hold memory and the dynamics of the past do not contribute to the dynamics of

the present. This is relevant to our situation because the timescales of the internal state

dynamics are much longer than the timescales that bring about memory effects. Using this

approximation, the dependence of the Green’s function response on the frequency can be

ignored. Another limitation is that this cannot be used in the strong coupling regime where

the EM field can cause changes to the energy level of the emitters (as we will see in Chapter

5).

In the Low-intensity limit, the Hilbert space of the atom excitations can be simplified to

N + 1 states. The state where all the atoms are in the ground state is represented by |g〉
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and the states where only the atom ′j′ is excited will be represented by |ej〉 = σ̂+
j |g〉. The

density matrix will be represented by,

ρ = ρgg|g〉〈g| +
∑

j
ρgej |g〉〈ej|

+
∑

j
ρejg|ej〉〈g| +

∑
i,j

ρeiej|ei〉〈ej| (1.4)

where the coefficients in the diagonal describe the populations and the off-diagonal terms

describe the coherences between the corresponding states.

The Lindblad term for the evolution of atoms with dipole interactions from m = 0 to

m = ±1 will be given by

L(ρ̂) =
∑
i,j

[
(g(rij) + g∗(rij))σ̂−

i ρ̂σ̂+
j − g(rij)σ̂+

i σ̂−
j ρ̂ − ρ̂σ̂+

i σ̂−
j g∗(rij)

]
(1.5)

There are two key components to the Lindblad super-operator. The first is the component

that describes the hopping of the excitation between atoms, without any photon being

emitted. These are the second and third terms in Eq. (  1.5 ) and can also be represented as a

commutator of the density matrix with a complex operator. These do not cause a change in

the number of excitations in the system. On the other hand, we have the ’quantum jump’

operator that transfers the population from the excited state to the ground state when a

photon is being emitted. This takes the form of two operators surrounding the density matrix

as seen in the first term of Eq. (  1.5 ).

The coefficients of the Lindblad operator are determined by the dyadic Green’s function

of the interaction between two atoms. This Green’s function is the fundamental solution

of the EM wave equation. In the case of dipoles interacting in free space, it will simply be

determined by the electric field due to a dipole at the position of the other:

g(rij) = Γ
2

[
h

(1)
0 (krij) + 3(r̂ij · q̂)(r̂ij · q̂∗) − 1

2 h
(1)
2 (krij)

]
(1.6)
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where q̂i is the dipole orientation of the ith atom, rij = |rij| is the norm of rij, r̂ij = rij/rij is the

unit vector along rij, Γ is the decay rate of a single atom and h
(1)
l are the outgoing spherical

Hankel function of angular momentum l. h
(1)
0 (x) = eix/(ix) and h

(1)
2 (x) = eix(−3i/x3−3/x2+

i/x).

It is important to note that the description of Green’s function used in this thesis is −i

times the Green’s function generally described in the literature. The real part of Green’s

function will describe the lifetime and decay dynamics, while the imaginary part will describe

the energy shift.

The density matrix can be evolved in time using the master equation,

dρ̂

dt
= − i

~
[Ĥ, ρ̂] + L(ρ̂) (1.7)

Since there is decoherence in the time evolution, the differential equation can be time evolved

using simple second-order Runge-Kutta methods.

While in some cases the atoms have been assumed to be fixed in lattice positions, there are

situations discussed in this thesis where the atoms are in a cloud with random positions. To

simplify the integration of the position of the atoms over the cloud wavefunction, we perform

Monte Carlo integration. The positions of the atoms are generated randomly according to

the corresponding probability distribution and are repeated many times until the results

converge.
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2. RECOIL IN THE SLOW OSCILLATION APPROXIMATION

The contents of this chapter were published as Deepak A. Suresh and F. Robicheaux (2021),
Photon-induced atom recoil in collectively interacting planar arrays, Phys. Rev. A 103,
043722 [ 86 ].

2.1 Introduction

This chapter continues the exploration of the role of recoil in atomic ensembles conducted

in Ref. [  75 ]. We study the recoil energy when photons interact with atomic ensembles, more

specifically, ordered planar atomic arrays with sub-wavelength interatomic spacing. See Fig.

 2.1 for a schematic drawing. We describe a method to determine the recoil momentum

and energy deposited in such cases using density matrix master equations. We focus on

the regime where the periods of the atomic vibrations are much larger than the lifetimes

of the internal excited states and the duration of the light pulse. We also work in the low

light intensity regime, limiting the system to have one excited state at most, to reduce the

computational complexity.

Reference [ 75 ] treated simplified cases where the array size was considered near-infinite,

ignoring the effects of the edges and assuming that most of the bulk of the array experiences a

recoil to the same degree as the center atom. In the present work, we explore the role of finite

array size and situations where the excitation of an atom strongly depends on its position

in the array. Calculations for the individual atoms of the array show that the finiteness of

the array has pronounced effects. We study the recoil and reflectance of the array when the

atoms are driven by a pulsed excitation and a steady state excitation.

When all the atoms of the array are uniformly illuminated by light, interesting patterns

arise in the recoil distribution as well as in the distribution of the excitation itself. This is due

to the interference of the different eigenmodes of excitation, each associated with a modified

lifetime and energy shift. We study these eigenmodes which leads to an understanding of the

patterns, as well as the relation between the decay lifetimes and the recoil energies deposited

in individual atoms. We also investigate the case where two nearly planar arrays act as a
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cavity, which have been proposed as interesting elements for connecting distant qubits. The

prolonged lifetimes of cavities lead to enhanced recoil.

The chapter is structured as follows. Section  2.2 describes the methods used for the

calculations. Section  2.3 presents results from a variety of situations. Section  2.4 presents

the conclusions followed by the Appendices  2.A and  2.B .

2.2 Methods

The calculations are done for an ensemble of N atoms arranged in a planar array with

sub-wavelength interatomic spacing, d. The atoms have two internal energy levels which

couple to each other through collective dipole-dipole interactions and with an external light

field. The array lies in the x-y plane (with minor deviations in the z-direction when using

curved arrays) and the direction of propagation of the incident laser light is chosen to be the

z-direction (k0 = kẑ) (Fig.  2.1 ). The light is circularly polarized in the ê+ = −(x̂ + iŷ)/
√

2

direction and the dipoles are also oriented in the ê+ direction. The circular polarization

is chosen to form symmetric patterns in the array but the main conclusions should remain

valid for other polarizations. Bold fonts denote vectors.

To describe the dynamics of the collective dipole emissions, we use the density matrix

formalism where the density matrix evolves according to

dρ̂

dt
= − i

~
[Ĥ, ρ̂] + L(ρ̂) (2.1)

where ρ̂ is the density matrix of the system, Ĥ is the effective Hamiltonian and L(ρ̂) is the

Lindblad super-operator which describes the lossy collective dipole emissions. They shall be

discussed subsequently.

To perform density matrix calculations for a large number of atoms, we adopt a few

simplifications. We work in the low intensity limit where only the singly excited states are

relevant, meaning only one atom can be excited at any time. In this limit, the density matrix

dimensions scales more slowly with increasing number of atoms. This simplification allows

us to perform calculations up to N = 300 for the effects studied below.
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Figure 2.1. A schematic of the system considered. The atoms are the blue
spheres and are placed in an ordered array in the x-y plane with interatomic
separation d. The incoming light (red wavy arrow) is in the ẑ direction with
wavevector k0
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The ground state of the system which corresponds to all the atoms being in the electronic

ground state, is represented by |g〉 = |g1〉 ⊗ |g2〉 ⊗ ...|gN〉, where |gj〉 denotes the electronic

ground state of atom j. The raising and lowering operators of jth atom are represented

by σ̂+
j and σ̂−

j respectively. The state where only the jth atom is excited is represented

by |ej〉 = σ̂+
j |g〉. The density matrix describes both the internal degrees of freedom and

the positional dependence of the atoms. The positional dependence is based on the atoms’

coordinates rj and the density matrix is represented as

ρ̂ = ρgg(r1, r2, ...rN ; r′
1, r′

2, ...r′
N)|g〉〈g|∑

i
ρeig(r1, r2, ...rN ; r′

1, r′
2, ...r′

N)|ei〉〈g|

∑
j

ρgej(r1, r2, ...rN ; r′
1, r′

2, ...r′
N)|g〉〈ej|

∑
i,j

ρeiej(r1, r2, ...rN ; r′
1, r′

2, ...r′
N)|ei〉〈ej|

(2.2)

where i, j go from 1 to N. The coefficients describe the spatial dependence of the density

matrix and are functions of 6N positional coordinates.

Since operators acting on the left and right sides of the density operator will act on

different indices, we define the following convention

rij ≡ ri − rj; r′
ij ≡ ri − r′

j; r′′
ij ≡ r′

i − r′
j (2.3)

The effective Hamiltonian of the system will have (i) The laser interaction, (ii) the col-

lective dipole interaction and (iii) the center of mass motional Hamiltonian consisting of the

kinetic energy and the trapping potential of each atom. For the laser interaction, we work

in the rotating wave approximation with

ĤL = ~
∑

j

[
−δσ̂+

j σ̂−
j + Ω

2 σ̂+
j eik0·rj + Ω∗

2 σ̂−
j e−ik0·rj

]
(2.4)
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which describes the Hamiltonian for a plane wave incident laser with Ω as the Rabi fre-

quency, δ as the detuning and k0 = kẑ as the initial wavevector of the incoming photons.

The collective dipole emission also participates in the effective Hamiltonian based on the

imaginary part of the Green’s function (Im{g(rij)}) and is given by

Ĥdd = ~
∑
i 6=j

Im{g(rij)}σ̂+
i σ̂−

j (2.5)

where the g(rij) is the free space dyadic Green’s function given by Eq. (  5.11 ). When

calculating the commutator of the effective Hamiltonian (Ĥ = ĤL + Ĥdd) with the density

matrix ρ̂ in Eq. ( 4.2 ), indices of the position vector must be carefully implemented. When

right-multiplying ρ̂ with Ĥ, the corresponding primed indices must be used (r′
j for ĤL and

r′′
ij for Ĥdd).

The decay effects of the collective dipole interaction will be captured by the Lindblad

term

L(ρ̂) =
∑
i,j

[
2Re{g(r′

ij)}σ̂−
i ρ̂σ̂+

j − Re{g(rij)}σ̂+
i σ̂−

j ρ̂ − Re{g∗(r′′
ij)}ρ̂σ̂+

i σ̂−
j

]
(2.6)

where the i = j terms are the usual single atom decay part of the Lindblad operator. The

Green’s function g(rij) is given by

g(rij) = Γ
2

[
3(r̂ij · q̂i)(r̂ij · q̂∗

j ) − (q̂i · q̂∗
j )

2 h
(1)
2 (krij) + (q̂i · q̂j

∗)h(1)
0 (krij)

]
(2.7)

where q̂i is the dipole orientation of the ith atom, rij = |rij| is the norm of rij, r̂ij = rij/rij

is the unit vector along rij, Γ is the decay rate of a single atom and h
(1)
l are the outgoing

spherical Hankel function of angular momentum l. When i = j, that is when rij = 0, the

imaginary part of the function becomes undefined, while the real part is defined. Hence, we

redefine g(rij) to be
g(rij) = g(rij) for i 6= j

= Re{g(rij)} for i = j
(2.8)
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2.2.1 Slow Oscillation approximation

In this chapter, the calculations are primarily in the limit where the timescales of the

atomic motion in the trap are much slower than the timescales for the evolution of the internal

states. This means that during the evolution of the internal states, the position of the atom

does not change. This also implies that the photon recoil can be considered as impulsive

forces. This is a sudden approximation and allows us to drop the motional Hamiltonian with

the kinetic energy and trapping potential. The recoil imparted by the photons and collective

interactions can then be described by calculating the change in momentum (∆p) and change

in kinetic energy (∆K) of the atoms. Typically, the frequencies of the trapping potentials

will be around a few 10s of KHz and are much slower than the decay rates which are usually

of the order of MHz. We also assume that the spread of the initial center of mass position is

small compared to the separations. This will allow using the perfect position of the atoms

in the calculations.

In the calculations where the system settles in the ground state, at infinite time, only

the ρgg term is left non-zero and its spatial dependence will be of the form

ρgg(r1, r2, ...; r′
1, r′

2, ...) = ρ0(r1, r2, ...; r′
1, r′

2, ...) × F (r1, r2, ...; r′
1, r′

2, ...) (2.9)

where ρ0 is the spatial dependence at the initial time and F describes the evolution of the

ground state spatial dependence. To calculate the momentum and kinetic energy change of

the atoms, we take the expectation value of the corresponding operator using the density

matrix.

〈pj〉 = ~
i

∫
[∇̂jρgg]δ(r′

11)δ(r′
22)...dr1dr′

1dr2dr′
2...

= Tr[p̂i(ρ0F )] = 〈pj〉0 + ∆pj

(2.10)
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where ∇̂j = x̂ ∂
∂xj

+ ŷ ∂
∂yj

+ ẑ ∂
∂zj

is the momentum operator of the jth atom. The term 〈pj〉0

denotes the initial expectation value of the momentum and derives from ρ0. Hence, the

change in momentum can be calculated from the function F using

∆pj = ~
i

∫
[ρ0(∇̂jF )]δ(r′

11)δ(r′
22)...dr1dr′

1dr2dr′
2...

= Tr[ρ0(p̂iF )]
(2.11)

For the Kinetic energy, we follow a similar reasoning and use the KE operator Kj =

p2
j /(2m) to get

∆Kj = − ~2

2m

∫
[ρ0(∇̂2

j F )]δ(r′
11)δ(r′

22)...dr1dr′
1dr2dr′

2...

= Re{Tr[ρ0(K̂jF )]}
(2.12)

The density matrix is propagated in time using the Runge-Kutta second order integration

until the system completely decays into the ground state. This ground state density matrix

coefficient is used to evaluate F (r1, r2, ...; r′
1, r′

2, ...). This is in turn used to calculate the ∆p

and ∆K in three dimensions using Eq. ( 2.11 ) and Eq. (  2.12 ) by using symmetric 2-point and

3-point differentiation. To calculate the derivatives ∇j, the positions of either the primed

(rj) or the unprimed coordinates (r′
j) are shifted by a small distance δr and evaluated. For

a more detailed explanation of the methods followed, refer to Section II of Ref. [  75 ].

2.2.2 Interatom distance

The process of subradiance can be thought of as the destructive interference of the wave-

functions of the light emitted by spontaneous decay of excited atoms. For example, when

there are two atoms close together to the point of overlap (d → 0), the wavefunctions of the

emitted light will cancel out if they have opposing phases. This results in a prolonged life-

time for the excited state. For two atoms, the out of phase state remains as the subradiant

state until the separation of d ∼ λ/2. As the separation goes beyond half a wavelength, the

light acquires an extra phase of π which causes the in-phase states to be subradiant until

d ∼ λ. This behavior continues as we increase d and oscillates with a period of λ/2. The
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maximum effect of subradiance and superradiance possible decreases with increasing d and

becomes small beyond d ∼ λ.

This behavior carries over to the periodically placed atoms in arrays. For interatomic

distances less than ∼ λ/2, the subradiant states have adjacent atoms out-of-phase, while

the superradiant states have them in-phase. Between λ/2 and λ, the subradiant states have

adjacent atoms in-phase. Since we want to primarily focus on subradiant states, and exciting

atoms with adjacent atoms being in-phase is easier to experimentally realize, we choose the

range of interatomic distance to be between 0.5λ and 1.0λ.

2.3 Photon Recoil Energy and Momentum

When a photon is absorbed or emitted by a single atom, the photon imparts a momentum

kick ~k and recoil kinetic energy Er = ~2k2/(2m). But when there is an ensemble of atoms

and collective dipole interactions take place, Ref. [  75 ] showed that the energy deposited is

different and depends on collective decay dynamics. We delve deeper into this topic and

discuss the directional properties of the kicks and its relation to the decay properties of the

collective ensemble. Since a single photon undergoing perfect reflection on an atom imparts

2~k momentum, the ∆pz/(2~k) serves as a good measure of reflectance.

The two different factors that contribute to the kicks have slightly different effects. In the

out-of-plane direction, the collective dipole emissions emit light symmetrically on both sides

and hence contribute to no net momentum kick in this direction, but will still contribute to

the recoil energy deposited. In the in-plane direction, the atoms exchange photons among

each other and, hence, the momentum and energy deposited will depend on the position of

the atom within the array. The contribution from the laser will only be in the out of plane

direction and has non-zero contributions to both momentum and kinetic energy deposition.

2.3.1 Eigenstates

Reference [  2 ] discussed the interference of many eigenmodes of the system which con-

tributes to the cooperative emission. To get an understanding of the effect of the decay rate

on the recoil energy, we analyze the photon recoil momentum and energy deposited when
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the initial state is an eigenstate of the excitation. When there is no driving interaction with

the laser, the eigenstate of the excitation is the eigenstate of the dyadic Green’s function

in free space. They are eigenstates of a complex symmetric matrix which means that they

maintain the distribution pattern of the excitation among the atoms while the magnitude

of the total excitation in the system decays exponentially. We define the Green’s tensor

Gij = g(rij) which is an N×N-dimensional matrix, and Vα is an N-dimensional vector. The

eigenvalue equation is

∑
j

GijVjα = GαViα = (γα

2 + i∆α)Viα (2.13)

where i,j are atom indices and α denotes the index for the eigenstate. Gα is the eigenvalue

and Vα is the corresponding eigenvector. The rate of decay is given by the real part of the

eigenvalue, γα, and the shift in energy is given by the imaginary part, ∆α. Since the Green’s

function is not Hermitian, the regular orthogonality conditions do not apply. Therefore, the

vectors Vα have to be normalized to satisfy,

∑
i

ViαViα′ = δα,α′ (2.14)

This relation should be used with care when there are degenerate eigenstates in the system.

Each set of degenerate vectors must be orthogonalized to follow this condition. These eigen-

states form interesting and symmetric patterns on the array and exhibit similarities to TEM

modes of light. As noted earlier in Section  2.2.2 , the adjacent atoms in the subradiant modes

tend to be in-phase while the superradiant modes have the adjacent atoms out-of-phase in

the specified range of d.

The array is initialized to one of the eigenstates, β, leading to the electronic part of the

density matrix starting as ρ(t = 0) = Nβ|Vβ〉〈Vβ|, where the ket |Vβ〉 = ∑
i Viβ|ei〉 and

Nβ = (∑i |Viβ|2)−1 is a normalizing factor to have only one excitation at the initial time;

note the magnitude in the definition of Nβ. The system is evolved in time until it completely

reaches the ground state, at which point, the ∆p and ∆K of each atom are calculated.

The total kinetic energy deposited in the array for each eigenstate is inversely proportional

to the decay rate of that state. This implies that highly subradiant states will have very high
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photon recoil energies. Another trend observed was that the kick on each individual atom

was roughly proportional to the excitation probability of that atom. This, while being an

expected result, allows for an easier way to look at the distribution of the energy deposition

over the array. Commonly, the most subradiant mode at this range of interatomic distances

is similar to a Gaussian distribution (TEM00 like) on the array. This implies that the

deposition of the recoil is concentrated near the center, while the atoms close to the edges

have relatively low recoil.

When the system is initialized to its eigenstates, it is possible to analytically obtain an

expression to calculate the recoil after the system has decayed to the ground state. This

expression can then be used to find the recoil in any arbitrary initial state configuration by

decomposing it into its eigenstates. The coefficient of the ground state density matrix at

infinite time will be

ρgg(∞) =
∑
α,α′

∑
j,j′

2Re{g(r′
jj′)}VjαU∗

j′α′
Cα,α′(0)
Gα + G ′′∗

α′
(2.15)

where G ′′
α′ and Ujα′ are the eigenvalue and eigenvector of the tensor G′′

ij = g(r′′
ij). The

contribution of each eigenstate is given by Cα,α′(0) = ∑
jj′ VjαU∗

j′α′ρejej′
(0). If the initial

state is an eigenstate β, then it is given by Cα,α′(0) = Nαδαβ
∑

i V∗
iβU∗

iα′ . and the term where

α = α′ = β will be the most dominant. The derivation can be found in Appendix  2.A .

When initialized to eigenstates, this expression can be used to calculate the momentum

and kinetic energy kicks using Eqs. ( 2.11 ) and ( 2.12 ). The calculation using Eq. (  2.15 ) is

much easier than solving for large density matrices over extended times and it also provides

intuition towards the trends observed. The denominator of the dominant term, Gβ + G ′′∗
β ≈

2Re{Gβ} = γβ explains why the kicks are inversely proportional to the decay rates of the

eigenstates. The term VjβU∗
j′β also explains why the kicks on each atom is proportional to

their excitation probabilities.

An expression for kick in the out-of-plane direction can be obtained to express the ∆Kz

depending only on the decay rate of the eigenvector (γα). The derivation can be found in

Appendix  2.A.1 .
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∆Kz

Er

= 2
5

Γ
γα

(2.16)

This was a surprising result because there is no photon mediated atom-atom interaction

in the z-direction and there is just a single photon emitted. Hence one might expect the

∆Kz/Er to be independent of the lifetime of the excited state. However, the results from Eq.

( 2.16 ) show that when there is spontaneous emission, the decay lifetimes play an important

role in the recoil of the atoms in the array.

Figure  2.2 shows the results for the net ∆K deposited in the out-of-plane and in-plane

directions with respect to the decay lifetimes of the eigenstates using full density matrix

calculations. While the out-of-plane kicks are highly proportional, the in-plane kicks have a

more complicated dependence and are only roughly proportional.

This section has discussed the recoil momentum and energy calculation for the case when

the system is in either an eigenstate or an arbitrary excited state and allowed to decay into

the ground state. This is a simplified case in which there are no incoming photons and it

is highly unlikely to be experimentally seen. Nevertheless, it provides insight into how the

lifetimes of the state affect the recoil.

2.3.2 Cavity

The degree of subradiance can be further increased by trapping the light between two

arrays and forming a cavity. By slightly curving the arrays, the cavity formed can greatly

improve light retention, in turn making the system more subradiant. Reference [  13 ] have

proposed to utilize such curved mirrors to couple distant qubits, under the simplification of

the atoms being fixed in space. This simplification may not be reasonable because the states

are so subradiant that they give rise to enormous kicks on individual atoms. Hence in this

section, we calculate the recoil experienced by the atoms in such highly subradiant cavities.

The system consists of 2N atoms making up two arrays each with N atoms. The arrays

are separated by a distance L. This is similar to the system described in Fig. 1 of Ref. [ 13 ].

To find the most efficient cavity mode, we find the eigenstates of the Green’s function for

the cavity and find the most subradiant mode. We vary the separation L and the curvature
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Figure 2.2. The net kinetic energy kick and the linear fit for an array of
8 × 8 array, initially in an eigenstate, with respect to the inverse of the decay
rate of the eigenvalue. Blue dots denote the calculated plot points and the red
line denotes the linear fit of the data. (a) denotes the kick in the out-of-plane
direction which is proportional to the lifetime with slope 2/5, as expected from
Eq. (  2.16 ). (b) denotes the net kick in the plane of the array.
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of the array until we find the optimal parameters for maximum subradiance. The imaginary

part of the eigenvalue also provides the detuning at which the cavity mode should be driven.

The large lifetimes of the subradiant states prevent the calculation of the kick in all the

atoms of the array within reasonable computation time using the density matrix method.

Hence we use the second method described in Sec.  2.3.1 to calculate the recoil.

To characterize the light retention capacity of the cavity, we calculate the finesse of the

cavity. In this case, we define the finesse using the intensity distribution of the cavity. The

cavity is driven using lasers of fixed detuning, while scanning the separation of the arrays.

The finesse, F , will be defined as the free spectral range, λ/2, divided by the full width at

half maximum in the separation of the intensity:

F = λ/2
δLF W HM

(2.17)

This gives an estimate of the number of times a photon bounces in the cavity before decaying.

In the following sections, we discuss the results calculated for a few typical cavities with

different decay rates. The cavities are initialized into their most subradiant eigenstate with

a single excitation and evolved until they reach the ground state, similar to Sec.  2.3.1 . The

results are also compared with the finesse of the cavity. In each case, we take a 11×11 array

and the separation has been optimized around L = 20λ.

Spherical Mirrors

Reference [  13 ] utilizes a set of spherically curved atom arrays to form highly subradiant

states. Since light trapped in a cavity will have a Gaussian intensity profile, spherically

curved mirrors match the spherical wavefront of the light and provides good energy retention.

The mirrors are placed confocally. Following similar parameters to Ref. [  13 ], with d = 0.75λ,

separation L = 19.75λ, we attain the most subradiant mode to be extremely subradiant, with

decay rates reaching ∼ 10−4Γ. The finesse of this particular configuration was found to be

1250. The kick the center atom experiences was calculated to be around 920Er in the out-

of-plane direction and 33Er in the in-plane directions. This progressively reduces as we go

closer to the edge in the shape of a Gaussian (See Fig.  2.3 ). This trend is expected because
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the most subradiant eigenmode is typically a TEM00 mode (as noted in the supplementary

of Ref. [  13 ]). The atoms in the corner received a total of only 1.5 × 10−3Er. The net kick

on the array leads to an energy increase of ∼ 10364Er.

Unfortunately, this result is not completely valid because the decay rate is too small

for the slow oscillation approximation to be satisfied. If the duration of the force on the

array is of the order of the oscillation period, the impulsive nature of the recoil force will

not be valid. In this timescale, the exact nature of the way fields interact with the atoms is

not precisely known. A fully quantum mechanical treatment considering the motion of the

particles as quantum oscillators is required to get a better understanding of the dynamics.

While such a calculation would be very difficult, the enormous size of the kicks from our

simplified treatment suggests that an attempt should be made.

Parabolic Mirrors

Another typical type of mirrors used in cavities are parabolic mirrors. Confocal cavities

are only marginally stable and any small errors in the positions of the mirrors will cause

destabilization. Hence, we use a cavity in the region between confocal and concentric to

provide some room for errors. This configuration, with d = 0.8λ, parabolic focus f = 15λ

and separation L = 19.694λ, while not as subadiant as the previous case, has a decay rate

of ∼ 10−3Γ. This decay rate also is at the edge of the slow oscillation approximation. The

finesse for this cavity was calculated to be 263. The center atoms experienced 62Er recoil in

the z-direction and 9.3Er in the x and y direction. A similar trend of decreasing kick in the

edge atoms is seen and a total of only 8.3 × 10−4Er was deposited in the corner atom. The

total energy deposited on the whole array in this decay process is ∼ 774Er

Plane mirrors

Curving a plane array of atoms as required in the above cases may prove to be com-

plicated. Hence, to compare, we discuss the case where a cavity is formed by two plane

mirrors. In this configuration, with d = 0.8λ and separation L = 20.045λ, the decay rates

reach ∼ 10−2Γ. The finesse was calculated to be approximately 14. The center atom received
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Figure 2.3. The recoil energy deposited in the z-direction on one array of
a cavity with two 11 × 11 curved arrays with d = 0.75λ and L = 19.75λ
corresponding to the system in Sec.  2.3.2 . Each cell denotes one atom in the
array. Note the center atom has a kick of ∼ 900Er.

a total of 0.61Er, while the corner atom received a total of 0.007Er. The array as a whole,

received a kick of 10Er in the out-of-plane direction and 12Er in the in-plane directions.

2.3.3 Pulsed Laser

To simulate the effects of a single photon interacting with the array, a low intensity pulse

of light is incident on it. A planar array with N atoms is initially in the ground state and a

laser pulse with a Gaussian time profile is incident. The atoms are then evolved until they

reach ground state. The ∆K and ∆p of each atom are calculated in this time frame and are

compared to the probabilities of excitation of each atom. The Gaussian time profile of the

light pulse of the form

Ω(t) = Ω0e−t2/t2
w (2.18)

with peak Rabi frequency Ω0 and pulse width tw. The Ω0 is kept low enough to not go

beyond the single excitation limit. We see that like the trend in the previous section, the

recoil is proportional to the integral of the excitation probabilities of each atom. That is,

the excitation patterns are similar to the recoil distribution pattern in the array.
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This calculation is similar to in Ref. [  75 ], except that Ref. [ 75 ] assumes that there is a

nearly uniform excitation of the atoms in the array and only calculates the dynamics of the

central atom. By calculating the kicks in each atom of the array, we see patterns arise that

vary with the detuning of the laser. Figure  2.4 shows the comparison between the excitation

pattern and the recoil distribution in the array. Figure  2.4 (a) shows the time integrated

excitation probability of each atom, while Fig.  2.4 (b) depicts the ∆Kz deposited on each

atom. There is significant variation in the amount of energy deposited on the atoms and the

corner atoms experienced only half the recoil energy of the atoms with the maximum recoil.

These patterns are a combination of the eigenstates of the excitation as seen in Section  2.3.1 .

The selection of the eigenstates depends on both the pattern as well as the detuning of the

incoming light.

Experimentally, achieving a 100% filling fraction for the array is difficult. Hence, the

effects of the array missing a single atom have been studied. The scale of the disturbance

caused by a missing atom depends on the contribution it would have made if present. If an

atom is missing where the excitation is naturally weak, it has less effect on the excitation

pattern and recoil (Fig.  2.5 a). However, if the atom is missing where the excitation is large,

there is a more substantial effect seen spanning a few nearby atoms (Fig.  2.5 b). The recoil in

the in-plane direction for the neighboring atoms will also change. The recoil they experience

in the direction towards the missing atom will be increased.

As explained in Section  2.2.2 , we have chosen the range of d between 0.5λ to 1.0λ so that

coupling subradiant modes, which have adjacent atoms in-phase, will be easier with uniform

illumination. For other experiments that prioritize working with superradiant states, the

interatomic distance could be chosen in the range d < 0.5λ for easy coupling with uniform

light.

2.3.4 Steady State

So far, we have studied the recoil received after the system has completely relaxed to the

ground state at infinite time. But in most experiments and applications, it is also important

to understand the behavior of these kicks when there is a steady state involved. Instead of
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Figure 2.4. The excitation and recoil distribution pattern on a 11 × 11 atom
array with d = 0.68λ when excited by a laser pulse with peak Rabi frequency
Ω0 = 0.02Γ and pulse width tw = 16/Γ at zero detuning. Each cell denotes
one atom in the array. (a) shows the integral of the excitation probability in
time for each atom in arbitrary units and (b) shows the ∆Kz/Er deposited on
each atom of the array per photon incident on the atom.
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Figure 2.5. The effects of an atom missing from an array of 11 × 11 atoms
with d = 0.68λ and pulsed light illumination with no detuning. The plots
show the total integrated probability of excitation of each atom in arbitrary
units. Compare with Fig.  2.4 (a) which is the case where no atoms are missing.
(a) has atom at coordinate (2,2) missing. It has a larger impact and affects up
to second nearest neighbour atoms. (b) has atom at coordinate (3,3) missing.
It has a smaller impact and only affects the immediate neighbours.
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finding the total momentum and energy deposited, a more useful quantity will be the rate

of energy deposited in each atom in steady state.

The methods described earlier as well as in Ref. [ 75 ] describe the process in which

the final state of the system is the ground state. Hence we developed a different method

to determine the rate of momentum and energy deposited. When the system has reached

steady state, we can approximate that up to the first order in time, all the density matrix

elements except the ground state coefficient reaches equilibrium. This means that the only

linear time dependent term will be the ground state density matrix coefficient (ρgg). Taking

the positional derivatives on ρ̇gg similar to Eq. (  2.11 ) and Eq. (  2.12 ) yields the rate of the

momentum and energy kicks. The density matrix can be evolved until steady state is reached

and the ρ̇gg can be calculated. Alternatively, the master equation can be solved analytically

to obtain an expression for ρ̇gg.

ρ̇gg(t) = − i
∑

j

Ω∗(rj)
2 ρejg + i

∑
j

Ω(r′
j)

2 ρgej

+
∑

ij
2Re{g(r′

ij)}ρeiej

(2.19)

where Ω(rj) describes the spatial profile of the incoming laser as well as carrying a phase

factor e−ik0·rj . The derivation and the procedure to calculate the density matrix terms at

steady state are discussed in Appendix  2.B . For this approximation to have good accuracy,

it is important that we stay within the low intensity limit and use low Rabi frequencies.

The momentum and the energy deposited increase as a function of Ω2 which is expected

as it is proportional to the number of incoming photons. To calculate the number of photons

incident on an atom, we can integrate the intensity arriving on the area corresponding to one

atom (d2) per unit time and divide by the energy of a single photon (~c/λ0). The number

of photons incident on each atom in one lifetime of a single atom is

νΓ = 2π

3

(
d

λ

)2 (Ω
Γ

)2

(2.20)
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The recent experimental work of Ref. [  31 ] to measure the reflectance of a subradiant

atomic mirror with around 200 atoms can be simulated. For a 14×14 array at peak resonance,

with d = 0.68λ and an influx of 1.8 × 10−4 photons per lattice site in one lifetime of a single

atom, the calculations show that the average total energy deposited is 4.4Er per incoming

photon. Each individual atom experienced a total recoil ranging from 2.6Er to 5.6Er per

photon incident on each atom. The total average momentum imparted on each atom is 1.7~k

per incoming photon, which corresponds to a reflectance of 85%.

Reference [  18 ] discussed a null transmission situation for an infinite plane array with

d = 0.8λ. Figure 8 of Ref. [  75 ] also showed that the reflectance is near unity for an infinite

array and estimates the same for a 11 × 11 array using the ∆pz of the center atom. The

emergence of the excitation patterns implies that this will be an overestimation for non-

infinite arrays. Performing the recoil calculations on all the individual atoms shows that the

reflectance only reaches 80% for a 11 × 11 array when taking the average over all the atoms.

The atoms at the edges couple less with the incoming light, decreasing the reflectance of the

array. Re-calculating the average ignoring the edge atoms increases the reflectance to 95%.

By altering the detuning and the incident laser’s transverse spatial profile, we can excite

individual eigenmodes of the array. This would be impossible to experimentally implement

for most states because of the high density of the atoms and the interatomic spacing being

comparable to the resonant wavelength. The momentum imparted by the laser when exciting

individual eigenmodes was inversely proportional to the eigenmode’s decay rate. This is the

result of the altered absorption rate of the incoming light. When the system is at steady state,

the absorption rate must match the decay rate of that eigenmode. The energy deposited

due to the collective dipole interaction followed a similar trend to the previous discussions

and is also inversely proportional to the decay rate. This can be seen by the presence of

the eigenvalue Gα in the denominator of the dominant terms in the analytical solutions (Eq.

( 2.42 )).

When driving with lasers, the detuning plays a role in deciding the contribution of the

different eigenmodes as specified in Section  2.3.3 . The eigenmodes closest to the symmetric

Dicke state ((∑i |ei〉)/
√

N) will couple better with the uniform incoming light. Since each

eigenstate is associated with an energy shift (Im{Gα} = ∆α), matching the detuning also
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Figure 2.6. The decomposition of the state into its eigenmodes when excited
by uniform light for a 5 × 5 array with d = 0.4λ versus the detuning δ. The
thick lines show the probability of each eigenmode in rescaled arbitrary units
while varying the detuning. The thin vertical lines show the line shift ∆α of
the eigenmode with the corresponding color and dash-type. Only the 5 states
that have a significant contribution are shown.

contributes to selecting the eigenstate. By using these factors, it is possible to influence which

eigenstates contributes to the coupling of the atoms to the laser, to a certain extent. By using

the orthogonality relations defined in Eq. (  4.9 ), we can determine the contribution from each

eigenstate as we vary the detuning. As seen from Fig.  2.6 , the maximum contribution from

a particular eigenstate is when the detuning matches with the shift associated with it.

2.3.5 Comparison to Trap Parameters

There are various mechanisms used in experiments for trapping atoms, including optical

lattices, tweezers, ion traps, etc. But in general, we can assume that the trap is deep enough

to be approximated as a harmonic oscillator potential. The vibrational state of the atom in

a quantum harmonic potential with trap frequency ωt can be denoted by n. If the atom is

initially in the ground state, the relation between the recoil energy deposited and the final

expectation value of the vibrational state is given by

〈n〉 = ∆K

~ωt

(2.21)
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Typically, the trap frequencies used in experiments will be around 10 kHz in the out-

of-plane direction and 100 kHz in the in-plane direction. For a Rubidium atom using the

780 nm resonance, a recoil of 4Er due to the reflection of a single photon would bring the

average vibrational state to 〈n〉 = 1.5 and 0.15 for 10 kHz and 100 kHz respectively.

If subradiance doubles the recoil, the average vibrational state reached also doubles. This

causes unnecessary heating or loss of coherence in the system. Even an 〈n〉 = 0.15 could be

an issue in quantum computing applications where the entanglement with the center of mass

degrees of freedom must be less than 1%. In the case of the calculation in Section  2.3.2 , the

center atom receives ∼ 900Er in the decay process. Even with a high trap frequency of 100

kHz, the center atom goes to the 〈n〉 = 35 average vibrational state. The high vibrational

state and the large spread over vibrational states would cause problems with decoherence in

qubit implementations. The other atoms in the array would be in lower vibrational states

and this uneven heating effect could lead to unforeseen issues.

2.4 Conclusion

We presented the calculations for the recoil energy and momentum deposited in an array

of atoms interacting collectively with light. We studied the directional properties of the

recoil and explored the effects of the eigenmodes of excitation in the system. The recoil

energies added to each atom are proportional to the decay lifetimes of the eigenmodes and

the more subradiant states experience more recoil than might be expected. This implies that

recoil effects should be considered more carefully in experiments involving highly subradiant

states. We note that when driving the array with uniform light, the excitation and recoil

distribution in the array is not uniform but forms patterns that vary with the detuning. The

patterns form due to the interference of the different eigenmodes coupling with the uniform

light. These patterns also strongly contribute to the recoil of individual atoms. Calculations

were done to determine the rate of energy deposition when the system reaches a steady state

due to a constant influx of light.

We also calculated the recoil effects in cavities made of curved atomic arrays and found

pronounced effects as the decay rate decreased. However, our calculations are not applicable
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when the decay lifetimes become comparable to the timescale of the atomic vibration. Thus,

our results for photon cavities (Sec.  2.3.2 ) can be taken only as a qualitative estimate. It is

unclear how the momentum transfer occurs on such timescales. A fully quantum approach

would require large amounts of computational resources but exploring this situation with

a few simplifying assumptions would give a better answer to this question. Reference [ 74 ]

explored the opposite regime where the internal state lifetimes are far larger than the mo-

tional timescale. It would be interesting to explore the physics at the interface of these two

regimes.

2.A Appendix: Eigenstate decay analytical calculation

We derive an analytical method to calculate the kicks when the system starts off with

a single excitation in any arbitrary excitation pattern. There is no driving from the laser

interaction. We write the state in terms of the eigenmodes Vα and Uα which are the

eigenvectors of Gij = g(rij) and G′′
ij = g(r′′

ij) respectively.

∑
j′

Gjj′Vj′α = GαVjα
∑

j′
G′′

jj′Uj′α = G ′′
αUjα (2.22)

Since G and G′′ are non-Hermitian, their eigenvectors are not orthonormal and Vα and Uα

have to be normalized to follow

∑
j

VjαVjα′ = δαα′
∑

j
UjαUjα′ = δαα′ (2.23)

Hence, we can write the g(rij)s as follows

g(rij) =
∑

α

ViαVjαGα

g∗(r′′
ij) =

∑
α

U∗
iαU∗

jαG∗
α

(2.24)
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In the case where there is no laser interaction, the terms ρejg and ρgej will vanish giving

ρ̂(t) = ρgg(t)|g〉〈g| +
∑
jj′

ρejej′
(t)σ̂+

j |g〉〈g|σ̂−
j′ (2.25)

where the positional dependence has been suppressed for notational convenience. We can

write the density matrix equation as

dρ̂

dt
=
∑
i,j

[
− g(rij)σ̂+

i σ̂−
j ρ̂ − g∗(r′′

ij)ρ̂σ̂+
i σ̂−

j + 2Re{g(r′
ij)}σ̂−

j ρ̂σ̂+
i

]
(2.26)

Solving this we get,

dρejej′
(t)

dt
=
∑

k

(
−g(rjk)ρekej′

− ρejek
g∗(r′′

kj′)
)

(2.27)

Decomposing the ρejej′
in terms of the eigenfunctions Vα and U∗

α′

ρejej′
=
∑
αα′

VjαU∗
j′α′Cαα′ (2.28)

Using this, we get

dCαα′

dt
= −(Gα + G ′′∗

α′ )Cαα′

=⇒ Cαα′(t) = Cαα′(0)e−(Gα+G′′∗
α′ )t

(2.29)

Since the ρgg term only arises from the last term of Eq. (  2.26 ), we get

dρgg

dt
=
∑
jj′

2Re{g(rjj′)}ρejej′

=
∑
αα′

∑
jj′

2Re{g(rjj′)}VjαU∗
j′α′Cαα′(t)

(2.30)

Since Cαα′(t) are exponentials,

ρgg(∞) =
∑
α,α′

∑
j,j′

2Re{g(r′
jj′)}VjαU∗

j′α′
Cα,α′(0)
Gα + G ′′∗

α′
(2.31)

44



The expression for Cαα′(0) can be obtained from Eq. ( 2.28 ) using the orthogonality relations

(Eq. (  2.23 )) to be

Cα,α′ =
∑
jj′

VjαU∗
j′α′ρejej′

(2.32)

If the system is initialized to one of its eigenstates β with ρ(t = 0) = Nβ|Vβ〉〈Vβ|, then

Cα,α′(t = 0) = Nβδαβ

∑
i

V∗
iβU∗

iα′ (2.33)

where Nβ = (∑i |Viβ|2)−1 is the normalization factor.

2.A.1 Out-of-plane eigenstate recoil energy

When we analyze the kinetic energy kick imparted on the out-of-plane direction when the

system is initialized to an eigenstate, we get a proportionality equation between the energy

deposited and the state lifetimes. This can be derived by taking the second derivative from

Eq. (  2.12 ) only in the z-direction. When the system is initialized to an eigenstate β, the

dominant terms in the summation of Eq. ( 2.31 ) will be the terms with α = α′ = β. Hence

the summation over the eigenstates will vanish giving

ρgg(∞) =
∑
j,j′

2Re{g(r′
jj′)}VjβU∗

j′β
Cβ,β(0)

Gβ + G ′′∗
β

(2.34)

To take derivatives in the z-direction, we shift the primed coordinates, r′
j = rj + δz. This

would result an insignificant change in G ′′
β = Gβ + 10−2O(δz3) and a second order change

in the eigenvectors, Ujβ = Vjβ + 10−2O(δz2). Hence when taking up to second derivatives,

we can assume G ′′
β ≈ Gβ and Ujβ ≈ Vjβ. This implies that Gβ + G ′′∗

β = 2Re{Gβ} = γβ and

VjβU∗
jβ = |Vjβ|2. Using Eq. (  2.33 ), Cβ,β(0) will also become Nβ. This gives

ρgg(∞) =
∑
j,j′

2Re{g(r′
jj′)}VjβU∗

j′β
Nβ

γβ

(2.35)

When taking the second derivative for the atom k, only the term j = j′ = k will be non

vanishing.
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ρgg(∞) = 2Re{g(r′
kk)}|Vkβ|2 Nβ

γβ

(2.36)

At the limit of δz → 0,

lim
δz→0

∂2Re{g(r′
kk)}

∂z2 = −k2 Γ
5 (2.37)

Hence the kinetic energy deposited on atom k will be

∆K(k)
z = ~2k2

2m

2Γ
5 |Vkβ|2 Nβ

γβ

(2.38)

The total kinetic energy deposited on the whole array in the z-direction will be (using

Nβ = (∑i |Viβ|2)−1)

∆Kz

Er

= 2
5

Γ
γβ

(2.39)

2.B Appendix: Steady state analytical calculation

In this appendix, we derive analytically a method to find the recoil at steady state by

decomposing the state into its eigenstates. For simplicity in this derivation, ρejg, ρgej and

ρeiej will be represented as wj, w̃j and ρ̃ij respectively and the positional dependence will not

be explicitly shown. That is, Eq. (  5.14 ) will be represented as

ρ̂ = ρgg|g〉〈g| +
∑

i
wi|ei〉〈g|

+
∑

j
w̃j|g〉〈ej| +

∑
i,j

ρ̃ij|ei〉〈ej|
(2.40)

A constant laser with detuning δ and Rabi frequency Ω(rj) is incident on the jth atom

of the array. By using Eq. (  4.2 ), we can obtain the rate of change of the coefficients of the

density matrix.

ẇj = −iΩ(rj)
2 ρgg + iδwj −

∑
k

g(rjk)wk (2.41a)
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˙̃wj = i
Ω∗(r′

j)
2 ρgg − iδw̃j −

∑
k

g∗(r′′
jk)w̃k (2.41b)

˙̃ρij = − iΩ(ri)
2 w̃j + i

Ω∗(r′
j)

2 wi

−
∑

k

g(rik)ρ̃kj −
∑

k

g∗(r′′
kj)ρ̃ik

(2.41c)

ρ̇gg =
∑

ij
2Re{g(r′

ij)}ρ̃ij

−i
∑

j

Ω∗(rj)
2 wj + i

∑
j

Ω(r′
j)

2 w̃j

(2.41d)

where Ω(rj) describes the spatial profile of the incoming laser as well as carrying a phase

factor e−ik0·rj . We can decompose the coefficients wj, w̃j and ρ̃ij in terms of the eigenstates

Vjα and Ujα (defined in Eq. (  2.22 )) to get w′
α, w̃′

α and ρ̃′
αα′ using

w′
α =

∑
j

Vjαwj wj =
∑

α

Vjαw′
α (2.42a)

w̃′
α =

∑
j

U∗
jαw̃j w̃j =

∑
α

U∗
jαw̃′

α (2.42b)

ρ̃′
αα′ =

∑
ij

ViαU∗
jαρ̃ij ρ̃ij =

∑
αα′

ViαU∗
jαρ̃′

αα′ (2.42c)

In the first order in time, the recoil will only build up on the ground state and the change

in the other coefficients will be zero, i.e., ẇj, ˙̃wj and ˙̃ρij will be zero. Therefore, we can solve

for w′
α, w̃′

α and ρ̃′
αα′ using Eqs. (  2.41a ), ( 2.41b ) and ( 2.41c ), which gives

w′
α = −iρgg

2
∑

i

Ω(ri)Viα

Gα − iδ
(2.43a)

w̃′
α = iρgg

2
∑

i

Ω∗(r′
i)U∗

iα
G ′′∗

α + iδ
(2.43b)
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ρ̃′
αα′ = ρgg

4
∑

i

Ω(ri)Viα

Gα − iδ
∑

j

Ω∗(r′
j)U∗

jα′

G ′′∗
α′ + iδ

(2.43c)

The term ρgg can be calculated using Tr[ρ̂] = 1, but in the low intensity limit, it will

be close to 1. These equations can be used in conjunction with Eqs. (  2.41d ) and (  2.42 ) to

calculate ρ̇gg to find the recoil kinetic energy and momentum.
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3. RECOIL USING QUANTIZED VIBRATIONAL STATES

The contents of this chapter were published as Deepak A. Suresh and F. Robicheaux (2022),
Atom recoil in collectively interacting dipoles using quantized vibrational states, Phys. Rev.
A 105, 033706 [ 87 ].

3.1 Introduction

The impulse model described in Ch.  2 was constructed under the slow oscillation, or

equivalently, the sudden approximation, where the timescales of the atomic oscillations are

much longer than the timescales of the internal state dynamics. This implies that the trap

frequencies should be much smaller than the decay rate of the system. Typically, the trap

frequencies used are 10 to 100 kHz while the decay rates of electronic excitations are often

around 10s of MHz. While these trap frequency ranges would normally be within the sudden

approximation, problems arise when the system becomes subradiant and the collective decay

rates approach the trap frequencies.

The results from the impulse model also indicated that the recoil is typically proportional

to the lifetime of the excitation in certain cases, leading to enormous recoils in highly sub-

radiant systems. While the sudden approximation gives an intuitive understanding of how

energy is added to the center of mass motion and how decoherence arises, the assumptions in

the approximation are dubious for some of the more interesting atomic arrangements. The

goal of this chapter is to clarify such ambiguous results and to extend the analysis beyond

the approximations used in Ch.  2 .

The quantum harmonic oscillator model described in this chapter calculates the recoil in

collectively interacting systems but removes the assumptions in the sudden approximation.

The N atoms are assumed to be trapped in harmonic potentials having quantized vibrational

energy states. Using the density matrix formalism, we time evolve the combined-vibrational

and internal state density matrix, to calculate the momentum and energy deposited in the

system at a later time. This model does not have the limitation of the sudden approximation

and can be used to simulate a wide range of trap frequencies and, thus, can serve as an

important test of the sudden approximation. It will also provide insight into how the different

49



terms of the Hamiltonian and the Lindblad operator contribute to the recoil of the atoms.

We focus on the transfer of energy in the system rather than the vibrational population as

the population in the excited states trivially decreases as the frequency increases for the

same energy transfer.

To simplify the calculations, we will work in the low intensity limit where there is only

a single excitation in the system, i.e., only one atom can be electronically excited at a time.

This will reduce the number of internal states from 2N to (N + 1). We also investigate

only cases where the spread of the atomic wavefunction is smaller than the distances of

atom separation, to reduce the overlap of wavefunctions. This is expected in reasonable

experimental arrangements because otherwise the atom grid is not well defined.

This chapter proceeds as follows. Section  3.2 discusses the model and equations used.

Section  3.3.1 discusses the decay and laser interaction for a single atom to illustrate the role

of recoil and Sec.  3.3.2 extends the analysis to N atoms. We discuss approximations to

simulate a large number of atoms in Sec.  3.3.3 to calculate the recoil in arrays of atoms and

subradiant cavities. Section  3.4 presents the conclusions and summarises the results and

future outlook.

3.2 Methods

We shall consider N atoms, each trapped in a quantum harmonic potential with each

atom having two internal electronic states. The center of each trap will form a spatial

arrangement required by the experiment, for example, a square array. Since the atoms are

in a harmonic trap potential, they will each have an infinite Hilbert space of vibrational

levels. We can limit the number of vibrationally excited states for each atom to be states

n < Nvib for calculation purposes. When the spread of the atomic wavefunction is small, the

effects on the harmonic oscillator wavefunctions are separable across the different directions.

Hence, we can run the calculations by choosing one oscillation direction at a time. The N

atoms together will have a combined vibrational Hilbert space of V = (Nvib)N states. Since

we are working in the low intensity limit and only one atom can be electronically excited at
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any time, the total number of internal states is N + 1. Hence, the total number of states is

(N + 1)(Nvib)N .

The internal states will be represented by |j〉, the collective vibrational states will be

represented by |m〉 and the total state will be denoted by |j, m〉. The internal state index

goes from 0 to N, where j = 0 represent the electronic ground state (alternatively |g〉)

with no atom excited and j = 1 to N represent only the jth atom being excited. The

collective vibration state |m〉 is the tensor product of all possible vibrational states, i.e,

|m〉 = |n1〉 ⊗ |n2〉 ⊗ ⊗ |nN〉 where |ni〉 is the vibrational state of the ith atom. The index m

goes from m = 0 to (Nvib)N − 1.

Hence, the density matrix will be represented by

ρ =
∑
j,j′

∑
m,m′

ρm,m′

j,j′ |j, m〉〈j′, m′| (3.1)

The density matrix evolves according to the equation given by

dρ̂

dt
= − i

~
[Ĥ, ρ̂] + L(ρ̂) (3.2)

where ρ̂ is the density matrix of the system, Ĥ is the effective Hamiltonian and L(ρ̂) is the

Lindblad super-operator. The effective Hamiltonian consists of three parts. (1) The trap

potential of the atoms, which is a quantum harmonic oscillator Hamiltonian, (2) the laser

Hamiltonian, and the (3) dipole-dipole resonant interaction.

The Hamiltonian of the trap potential will be given by

Ht =
∑

j
~ωt(a†

j aj + 1
2) (3.3)

where ωt is the trap frequency of the harmonic oscillator and a†
j and aj are the harmonic

oscillator ladder operators for the jth atom in the chosen direction. The mean position of

the wavefunction or the fixed point positions of the atoms will be given by Rj and the spread

of the atom or the position of the atom with respect to the mean will be given by rj. The

position operator along the chosen direction is given by sj =
√

~
2Mωt

(aj + a†
j ). We define the
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quantity κ = k
√

~
2Mωt

where the length-scale for the atoms’ motion and the spread of the

atomic wavefunction is described by κ/k. Here, k is the wavenumber of the resonant light

and M is the mass of a single atom.

When the laser interacts with the atoms, it imparts a momentum of ~k which will manifest

in the Hamiltonian through the position operators sj The Hamiltonian due to the laser is

ĤL = ~
∑

j

[
−δσ̂+

j σ̂−
j +

(
Ω
2 σ̂+

j eik0·(Rj+r̂j) + h.c.

)]
(3.4)

where Ω is the Rabi frequency, δ is the detuning and k0 = kẑ as the initial wavevector of

the incoming photons. σ̂+
j and σ̂−

j are the raising and lowering operators of the electronic

excitation of the jth atom. If the laser is propagating in the chosen direction of vibrational

oscillation, the term k0 · rj can be replaced by κ(âj + â†
j ). Otherwise, the k0 · rj term will be

dropped and the laser will not cause any vibrational transitions.

In the following equations, the primed and unprimed coordinates are used to signify right

and left multiplication of the density operator, respectively. To signify differences, we will

use the following convention

rij ≡ ri − rj; r′
ij ≡ ri − r′

j; r′′
ij ≡ r′

i − r′
j (3.5)

The resonant dipole-dipole interactions are given by the imaginary part of the Lindblad term

and is given by

Ĥdd = ~
∑
i6=j

Im{g(Rij + rij)}σ̂+
i σ̂−

j (3.6)

The real part of the Lindblad term describes the dynamics of the decay and is given by

L(ρ̂) =
∑
i,j

[
2Re{g(Rij + r′

ij)}σ̂−
i ρ̂σ̂+

j − Re{g(Rij + rij)}σ̂+
i σ̂−

j ρ̂ − ρ̂σ̂+
i σ̂−

j Re{g∗(Rij + r′′
ij)}

]
(3.7)

where the Green’s function g(R) is given by

g(R) = Γ
2

[
h

(1)
0 (kR) + 3(R̂ · q̂)(R̂ · q̂∗) − 1

2 h
(1)
2 (kR)

]
(3.8)
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where q̂ is the dipole orientation, R = |R| is the norm of R, R̂ = R/R is the unit vector

along R, Γ is the decay rate of a single atom and h
(1)
l (x) are the outgoing spherical Hankel

function of angular momentum l; h
(1)
0 (x) = eix/[ix] and h

(1)
2 (x) = (−3i/x3 − 3/x2 + i/x)eix.

When we calculate the Green’s function, we take a Taylor expansion up to second order

which is valid under the condition that the spread of the wavefunction (κ/k) is much less

than the separation of atoms.

g(Rij + ε) = g(Rij) +
(g′(Rij)

k

)
kε +

(g′′(Rij)
k2

)k2ε2

2 + ... (3.9)

where the derivatives are taken in the chosen oscillation direction. Since the Hankel functions

in g(R) are functions of kR, the k’s in the denominator make the expansion term, kε, more

explicit. The ε = si − sj is expanded into the corresponding vibrational ladder operators.

The zeroth order term does not depend on the spread of the atoms and does not cause any

transitions in the vibrational state. The first and second order terms depend on the spread

of the wavefunction and will induce single level and two level transitions in the vibrational

states respectively.

Since the Green’s function depends on both rj and r′
j, which correspond to the left or

right operation on the density matrix, we have sj and s′
j respectively. While the last two

terms of the Lindblad expression only have left or right multiplication, the first term behaves

differently. Upon expanding the Harmonic vibrational wavefunctions, we see that the first

term acts on the combined density matrix as

Re{g(Rij + r′
ij)}σ̂−

i ρ̂σ̂+
j =Re{g(Rij)}σ̂−

i ρ̂σ̂+
j

+Re{g′(Rij)
k

}k(siσ̂
−
i ρ̂σ̂+

j − σ̂−
i ρ̂σ̂+

j s′
j)

+Re{g′′(Rij)
k2 }k2

2 (s2
i σ̂

−
i ρ̂σ̂+

j + σ̂−
i ρ̂σ̂+

j s′2
j − 2siσ̂

−
i ρ̂σ̂+

j s′
j)

(3.10)

53



where the ksi’s will be replaced by κ(ai + a†
i ) notation when solving the equations. The

expectation values of the momentum and energy in the vibrational state of atom j can then

be calculated from the density matrix,

pj = i
2κ

Tr
[
(a†

j − aj)ρ
]
~k (3.11)

Ej = 1
2κ2 Tr

[
(2a†

j aj + 1)ρ
]

Er (3.12)

where ~k and Er = ~2k2/(2M) are the recoil momentum and energy deposited when one

photon is absorbed or emitted by an atom. Since the expression for the energy is divided

by κ2, only the terms of the order κ2 in the diagonal of the density matrix will primarily

contribute to a change in energy. The contribution from the κ4 terms and beyond will be

negligible for small wavefunction spreads. The energy difference in the vibrational levels will

be given by 1/κ2. That is, if κ = 0.01, the energy difference of consecutive vibrational levels

will be 104Er.

3.3 Results

The impulse model used in Ch.  2 calculates the kinetic energy and momentum kick

imparted in a collective dipole interaction system interacting with a laser. Since the quantum

oscillator model discussed in this chapter has a fundamental difference in the way the kinetic

energy is imparted to the system, the two models can be compared and tested for validity.

To account for the spread of the wavefunction, the impulse model can be spatially integrated

over the wavefunction probability density using Gaussian quadrature integration for small

number of atoms. At low frequencies, the sudden approximation is valid and both the models

agree. The results match exactly at low wavefunction spreads and with a small difference

for higher spreads. This difference can be shown to be due to stopping at the second order

when expanding g(R) in the Taylor’s series, i.e., the error is mainly in the harmonic oscillator

model for low trap frequencies.

The quantum oscillator model does not have any restrictions with respect to the trap

frequency, and hence we can investigate the validity of the sudden approximation, beyond
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the low frequency regime. We can also study the separate contributions from the different

terms of the Hamiltonian and the Lindblad equations. We are more interested in the cases

with higher trap frequencies where the vibrational energy spacing is much larger than Er.

Hence we do not need to include many vibrational levels. This also implies that the spread

of the wavefunction will be small and we can limit the Taylor series expansion, Eq. ( 3.9 ), to

second order terms.

3.3.1 Single atom decay

To begin, we analyze the simple decay process of a single atom trapped in a harmonic

potential. The atom is initially excited and no laser interaction is present. The effective

Hamiltonian becomes

Ht = ~ωt(a†
1a1 + 1/2) (3.13)

Since the Ht is purely diagonal with respect to the vibrational states, its contribution to the

change in the density matrix,

ρ̇ = −i
~

[Ht, ρ] (3.14)

has zero diagonal elements and only interacts with the off-diagonal coherence terms of the

density matrix. The Lindblad term for a single atom is

L(1)(ρ) = 2Re{g(r′
11)}σ−

1 ρσ+
1 − Re{g(r11)}σ−

1 σ+
1 ρ − ρσ−

1 σ+
1 Re{g(r′′

11)} (3.15)

Since r11 = r′′
11 = 0, Re{g(r11)} = Re{g(r′′

11)} = Γ/2. The last two terms do not contribute

to changes in the vibrational states. Expanding the first term using r′
11 = 0 + s1 − s′

1 up to

the second order gives

Re{g(r′
11)} = g(0) + g′′(0)

2 κ2(s1 − s′
1)2 (3.16)

since the first derivative g′(0) = 0. The next non-zero leading order term will be the fourth

order, since the third derivative is again 0, but they will be of the order κ4 and will not cause
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significant contributions when calculating the energy. If we assume the atom is initially

excited and in the vibrational ground state, the first term of Eq. (  3.15 ) becomes

L1(ρ) = |g〉〈g|ρ0,0
1,1

((
Γ + 2κ2g′′(0)

)
|0〉〈0| − 2κ2g′′(0) |1〉〈1|

+ κ2g′′(0)
√

2(|2〉〈0| + |0〉〈2|)
) (3.17)

We can analytically solve the above equation to obtain the change in the vibrational

energy at infinite time when the decay is complete. The change in vibrational energy is

given by

∆E = −2g′′(0)
Γ Er (3.18)

This result remains valid when the initial density matrix is any incoherent combination of

vibrational states. For an atom initially excited and polarized in the e+ = −(x̂ + iŷ)/
√

2

direction, ∆Ez = 0.4Er and ∆Ex = ∆Ey = 0.3Er. The energy deposited due to the

recoil from the emission of a single photon is independent of the frequency of the harmonic

oscillator. This result is correct even if we go beyond the second order approximation in Eq.

( 3.16 ).

Laser interaction

When the atoms absorb a single photon from the laser, there is a momentum of ~k added

to the atoms. The contribution to the change in vibrational state comes as eiks1 in Eq. (  3.4 ).

Since κ is small, a Taylor expansion gives

eiks1 = 1 + iks1 − k2s2
1

2 + ...

= 1 + iκ(a†
1 + a1) − κ2

2 (a†
1 + a1)2 + ...

(3.19)

Since the laser interacts with the density matrix through the coherence terms, the order of

the transitions to the population from the first order and second order terms are κ2 and κ4

respectively. Hence, the energy deposited is primarily contributed by the first order term.
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When there is a continuous laser incident on the atoms, the electronic internal states of the

atoms reach a steady state. Instead of the total recoil energy and momentum deposited, we

calculate the rate of recoil deposited in the atoms by time evolving the density matrix using

Eq. (  4.2 ). Figure  3.1 shows the energy deposited per incident photon in the direction of the

incident laser on a single atom as we vary the trap frequency. It also shows the contribution

of the kick due to the coherent laser interaction and the decoherent single atom decay term.

To ignore long term effects like shifts in position due to radiation pressure, the expectation

values are taken immediately after reaching electronic steady state. It is important to note

that we are discussing the transfer of energy across different trap frequencies and not the

population in the excited states. As the frequency goes up, the energy difference between the

vibrational states will increase. If the energy transfer remains the same but the frequency

goes up, there will necessarily be a lower population in excited vibrational states.

The atom absorbs a photon and randomly emits it in an arbitrary direction. At low trap

frequencies, the absorption of the photon results in Er recoil and the emission gives 0.4Er in

the laser direction. The recoil due to the emission agrees with the result of Eq. (  3.18 ), and

is independent of the trap frequency. But as we increase the frequency, the contribution for

vibrational excitation from the laser becomes negligible. At low trap frequencies (ωt � Γ),

the vibrational energy states are close enough that the linewidth spread of the excited state

can allow vibrational transitions. On the other hand, at high trap frequencies (ωt � Γ), the

vibrational energy states are far enough apart that there is no vibrational transitions due to

the laser. Hence the kick from the laser reduces when the trap frequency is higher than the

decay rate of the system. Effects such as side-band cooling can also be seen when the trap

frequencies are higher than the decay rate.

Coherent and decoherent transfers

There are two types of vibrational population transfer occurring in the system. When the

population transfers through the coherence terms (off-diagonal terms) of the density matrix

it is called coherent transfer. This is a two-step process where the initial population terms

couple to coherence terms which then couple to population terms in different vibrational
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Figure 3.1. The vibrational energy deposited, per incoming photon, at steady
state for a laser incident on a single atom. The red solid line shows the total
energy deposited while the blue dashed and orange dashed lines show the
contribution from the coherent laser transfer and the decoherent decay. The
calculations were run using Nvib = 5.
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states ultimately leading to a change in vibrational energy. Hence, any coherent transfers of

the order κ2 will lead to a population change of the order κ4. The transfers due to the laser

Hamiltonian are an example.

Decoherent transfers occur when the population directly transfers between the diagonal

terms, without going through the coherence terms. This can be seen in the second line of

Eq. (  3.17 ), where there is a direct single level transition from the |0〉〈0| to |1〉〈1| vibrational

state. Since the trap Hamiltonian acts on only the coherence terms, it does not affect the

dynamics of the decoherent transfers. Hence, the decoherent energy transfers, such as the

single atom decay term, are unaffected by the trap frequency.

3.3.2 Multi-atom decay

When there is more than one atom interacting, the Hdd Hamiltonian [Eq. ( 5.5 )] and the

two atom Lindblad terms [i.e, i 6= j terms of Eq. (  3.7 )] come into effect. Since the vibrational

raising and lowering operators in these terms act on different atoms, they cannot directly

transfer the vibrational population. They go through the coherence terms and are coherent

population transfers, see Sec.  3.3.1 .

For simplicity, we can look at the case of two atoms. When there are two atoms very

close to each other (d ≈ 0.02λ), and one of the atoms is excited, the excitation rapidly

hops between the two atoms while decaying, as seen from Fig.  3.2 . This is the resonant

dipole-dipole interaction arising from the Hamiltonian term from Eq. (  5.5 ). Even though

the excitation probability of the atom alternates, the recoil energy deposited on the atom

increases continuously. All the recoil in this timescale comes from the near-field dipole dipole

interactions, i.e., through the two atom dipole-dipole Hamiltonian [Eq. (  5.5 )].

When two atoms interact, the direction along the line connecting the atoms and the

directions perpendicular have considerably different physics. Let the atoms be separated

in the x-direction by a distance d < λ. In the directions along the separation, ie, in the

x-direction, interatom forces arise due to the collective interactions. These forces act only

along the line joining the two atoms. In the directions perpendicular to the separation, i.e.,
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Figure 3.2. The excitation is exchanged between two atoms that are very
close to each other (d = 0.02λ) when one atom is initially excited. Orange
and blue dashed lines indicate the excitation probability of the two atoms.
Red line shows the increase in the vibrational energy of the first atom. The
calculation was done using κ = 0.00001 and Nvib = 2 using the full density
matrix.
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y and z-direction, there are no interatom forces and only the kick from the photon emitted

contributes to the recoil.

In Figs.  3.3 and  3.4 , κ is held constant while the trap frequency is altered. Since κ

depends on M and ωt, we assume that the mass also varies accordingly to compensate.

While this is not a physical assumption, it is made in order to study and isolate the effects

of the change in trap frequency while ignoring the more trivial effects of altering the spread

of the wavefunction.

Transverse Oscillation

For two atoms, when the chosen direction of vibrational quantization is perpendicular

to the separation of the atoms, there are no inter-atom forces. While taking the Taylor

expansion, the first derivative of the Green’s function g′(Rij) in the direction perpendicular

to the separation is zero. This results in the equations being similar to the equations for the

single atom case, where only zero and second order terms remain. But since the two atom

Lindblad terms are coherent transfers, the second order term of κ2 will contribute to only a κ4

order of vibrational population transfer. Hence we see that in the perpendicular direction,

only the contribution from the single atom Lindblad terms contribute to the change in

vibrational energy to the lowest order in κ. The single atom terms being decoherent transfers

also imply that the energy deposited in the perpendicular direction is independent of the

trap frequency. Thus, the impulse model is valid even beyond the sudden approximation

in the directions where there are no inter-atom interactions i.e., perpendicular to the atom

array.

Figure  3.3 shows that the recoil in the perpendicular direction is independent of the

frequency and agrees with the impulse model calculations. In Figs.  3.3 and  3.4 , the atoms

are initially excited to a singly excited state with the amplitude of the electronic excitation

distributed uniformly or to an eigenstate of the complex Green’s function matrix of the

system. There is no laser interaction and the recoil is measured after the system is allowed

to decay into the electronic ground state. Further details are included in Sec. III A of Ch.

 2 .
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Figure 3.3. The energy deposited during the decay of two atoms uniformly
excited, separated by d = 0.4λ in the x-direction, versus the trap frequency.
The blue circles and orange squares indicate the quantum harmonic oscilla-
tor model results in the z and x-direction respectively. The thin solid lines
indicate the respective impulse model result. The black vertical line denotes
the collective decay rate of the system. The calculations are done using full
density matrix with κ = 0.001. To isolate the effects of the trap frequency, κ
is kept constant and the mass M is varied to compensate for changing ωt.

Another inference is that the rate of energy deposited into the system is only dependent

on the single atom terms and is not directly dependent on the collective decay dynamics. The

single atom term results in the rate of increase of the electronic ground state and, indirectly,

the rate of accumulation of vibrational excitation being proportional to the excitation in

the system. However, the collective decay dynamics is what determines the lifetime of the

excitation. If we integrate the vibrational excitation accumulation over the entire decay

process, the energy deposited in such a collective decay will be proportional to the lifetime

of the collective excitation. This was also discussed in Sec. III A of Ch.  2 .
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Longitudinal Oscillation

In the case of the oscillations in the direction of the separation, the first derivative

g′(Rij) in Eq. ( 3.9 ) is no longer zero. These first order coherent transfers contribute to a κ2

order of population transfer. Hence there are two sources of vibrational excitation. Single

atom decoherent transfers and first order two atom Lindblad coherent transfers. While the

former is unaffected by the trap Hamiltonian, the latter interacts and develops a complicated

dependence with the trap Hamiltonian. Figure  3.3 shows that the recoil in the direction of

separation is dependent on the trap frequency and the impulse model is not valid beyond

the sudden approximation.

Figure  3.4 shows an example of the energy deposited in the direction of separation varying

with ωt when the atoms are initially excited in different distributions. The contributions

from the coherent and decoherent transfers are also shown. The decoherent transfers are

independent of the trap frequency and only depends on the excitation probability of that

atom and the decay rate of the system. The coherent transfers, on the other hand, change

with the trap frequency and is highly dependent on the way the excitation is distributed

among the atoms and can be either negative or positive. The threshold of what determines

high trap frequency is set by the collective decay rate of the system and not the individual

decay rate of the atom (Γ).

Another distinguishing feature of the coherent and decoherent transfers is the directional-

ity. The coherent transfers are facilitated by the near field dipole-dipole interaction between

the two atoms and the recoil in this process is strictly in the direction of separation. The

laser interaction is also coherent and has a strict directionality with respect to the direction

of the incident light. On the other hand, the decoherent transfer is from spontaneous decay

where the direction of photon emission is random and the probability distribution of the

direction is governed by the dipole orientation.
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Figure 3.4. The vibrational energy deposited during the decay of the exci-
tation. We look at the energy deposited in the x-direction on the center atom
when there are three atoms in a line in x-direction separated by d = 0.4λ. The
red solid line shows the total energy deposited while the blue circles and or-
ange squares show the contribution from the coherent and decoherent transfers
respectively. The initial excitation is different for the 4 cases. (a) has uniform
excitation, (b)-(d) have the 3 eigenstates as excitation. The increase or de-
crease in energy is dependent on the excitation pattern in the higher ωt region.
(c) has zero decoherent transfers because the center atom has zero excitation
probability in this particular eigenstate. The calculations are done using full
density matrix with κ = 0.001. To isolate the effects of the trap frequency, κ
is kept constant and the mass M is varied to compensate for changing ωt.
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3.3.3 Large ensemble of atoms

From Sec.  3.2 , the number of states required for calculations increases exponentially with

increasing number of atoms. All the atoms having Nvib vibrational states would result in all

the possible permutation of vibrational state ensembles, i.e., (Nvib)N states.

While the internal state dynamics of absorption, decay, and exchange in excitation are

the driving factors of the dynamics of the vibrational states, in the approximation that

the spread of the wavefunction is much smaller than the distance separating the atoms,

we see that the vibrational state dynamics have little to no effect on the internal state

dynamics. Hence we can approximate the calculation so that only one atom is allowed to

have quantized vibrational states while the rest are fixed in space. This reduces the total

available vibrational states to just Nvib. We calculated the vibrational energy acquired when

four atoms in a square are initially excited and decay into the ground state. The error when

using this approximation is only 0.2% when the wavefunction spread is as high as 25% of

the separation.

We also see from Sec.  3.3.2 that the second order transfers in the vibrational state are

of the order of κ4. When taking the expectation of energy, they hardly contribute when κ is

small. The same reasoning applies to the lasers (as seen in Sec.  3.3.1 ). Hence we can limit

Nvib to two without losing generality in this case. For small enough κ = 0.01, the maximum

vibrational energy in the atom can reach up to 104Er which will be within the expected

recoil limits. To verify this, the results were tested for convergence using different Nvib in a

small number of atoms.

With these two approximations, we can limit the number of states to Nvib × (N + 1) that

is, 2(N + 1) which brings it within the realm of computation for up to 250 atoms.

Arrays of atoms

If there is a constant laser incident perpendicular to an array of closely packed atoms,

the recoil in the two different directions have different behavior. Since the laser Hamiltonian

does not have two atom interactions, the recoil of the atoms in the direction perpendicular

to the array is similar to the single atom laser interaction seen in Sec.  3.3.1 . The recoil
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within the plane of the array is due to the in-plane collective decay effects as seen in Sec.

 3.3.2 and is dependent on the distribution of the excitation. Figure  3.5 shows the trend of

the recoil in the different directions as a function of the trap frequency. The calculations

from the impulse model are also included as a solid line.

Typically, the trap frequencies in the in-plane (x and y) directions are higher and are

about 100kHz, while the perpendicular trap frequencies are often an order of magnitude

lower at about 10kHz. These trap frequencies will give a spread of κ/k = 0.08λ and 0.25λ

respectively for a Cs atom. When in steady state, such frequency ranges will be within the

slow oscillation approximation and the results from the impulse model can be reproduced

with the current model.

When there is a perfect reflection of a photon from an atom array, there is a momentum

of 2~k imparted on the atoms. Hence, the momentum change of the atoms describe the

reflectivity of the atom array. This can also be used to study the effects of higher vibrational

excited states on the reflectivity. At 10 kHz frequency in the z-direction, the momentum

imparted on the central atom of an array reduces by approximately 8% when the atom is

in the first vibrational excite state instead of in the ground state. However, at 100 kHz

frequency in the z-direction, there is only a decrease of 0.6%. This reinforces that atomic

mirror experiments would need to have high trap frequencies to have a reflection probabilities

close to 1.

Cavity

In Ref. [ 86 ], we calculated the kinetic energy kick on a cavity when it decays from a

highly subradiant eigenmode. This follows the design of the cavity used in Ref. [ 13 ] to

perform quantum information processing. Under the slow oscillation approximation, the

central atom experienced a kick of up to 926Er in the duration of the decay in the direction

perpendicular to the plane. The results were thought to be purely qualitative because of the

large lifetimes violating the slow oscillation approximation.

The results from the Sec.  3.3.2 imply that those calculations were more accurate than

suggested in Ch.  2 for the direction perpendicular to the array. In the perpendicular di-
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Figure 3.5. The vibrational energy deposited in the center atom of a 11 × 11
atom array with d = 0.8λ separation when in steady state with an incident
laser in the z-direction. The orange squares represent the recoil energy in the z-
direction, while the blue circles denote the recoil energy in the x-direction, per
photon incident on the center atom. The orange and blue thin lines denote
the comparison with the impulse model. This data is calculated using the
approximations discussed in Sec  3.3.3 .
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rection, since there are no or negligible inter-atom forces, the trap frequency does not play

a significant role in determining the vibrational energy deposited. The recoil due to the

decoherent transfers accumulates over an extended duration due to the subradiant decay

resulting in large recoil energies deposited. Another way to interpret this is the large quality

factor causing there to be multiple reflections of the photon on the array faces.

Calculations for the same cavity as that in Ch.  2 , using the harmonic oscillator model

resulted in the center atom experiencing similar vibrational energy deposited, approximately

922Er in the direction perpendicular to the array. This recoil was unaffected when the

trap frequencies were increased beyond the decay rate of the system. On the other hand,

the energy deposited in the in-plane direction at high frequencies decreased to 15.0Er as

compared to 16.6Er at low frequencies. These results show that the recoil of the atoms due

to collective decay, especially in highly subradiant systems, should not be ignored.

3.4 Conclusion

We presented a model to describe and calculate the recoil in light-matter collective in-

teraction using quantum harmonic oscillator trap potentials. We compared our results with

the results of the impulse model used in Ch.  2 under the slow oscillation approximation and

explored the regime beyond. We studied the contribution to recoil from the different terms

of the Hamiltonian and Lindblad equation. In essence, the single-atom Lindblad term causes

a recoil in a random direction and the energy deposited is independent of the trap frequency

used. The laser Hamiltonian causes a recoil in the direction of the laser propagation and

recoil energy deposited falls off to zero when the trap frequency goes beyond the collective

decay rate of the system. The two-atom Lindblad terms induce a recoil in the direction of

the separation between the atoms and it is dependent on both the trap frequency and the

distribution of the excitation in the system.

In atom arrays, in the directions where there are no inter-atom forces or lasers, the recoil

is independent of trap frequency and the impulse model can be used even beyond the slow

oscillation approximation. If the atoms are excited by a laser or for those directions in
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the plane of the atom array, the impulse model is no longer valid when the trap frequency

approaches or is higher than the decay rate of the system.

This model was used to verify the extremely high recoil calculated in a cavity with high

subradiance. This shows that recoil effects have to be considered seriously when working

with highly subradiant systems. The effects of vibrational excitation in the reflectivity of

arrays were also studied.

References [  74 ], [ 88 ] worked on the opposite regime of the sudden approximation, where

the focus is on the slow center of mass motion rather than the fast internal state dynamics.

Studying this regime, especially the collective modes of vibration of the atoms using the

quantum harmonic oscillator model could lead to a better understanding and control of

atom arrays.
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4. PHOTON STATISTICS OF EMITTED LIGHT IN

COLLECTIVELY INTERACTING ATOM ARRAYS

4.1 Introduction

Making photons interact has been a longstanding goal in optics. The regime of non-linear

effects at low intensities, where individual photons interact strongly with one another can

be called ’Quantum nonlinear optics’ [  36 ]. It holds great potential for applications in optical

transistors, non-linear optical switches [  37 ], quantum information and communication [  38 ],

and metrology using non-classical fields [  39 ], [  40 ]. The scattering of two photons with the

help of interaction with other systems has been explored in Refs. [  41 ]–[ 45 ]

On a single photon level, collective interactions in free space have had many applica-

tions in coherent control [  1 ]–[ 13 ], [  15 ], [  17 ], [  20 ]–[ 24 ]. The interaction with emitters has

been harnessed to make individual photons interact with each other, especially in the more

controllable case of emitters coupled to waveguides [ 46 ]–[ 57 ].

In the case of atom-light interactions with high intensities, many of the atoms are simul-

taneously excited, sometimes even reaching full inversion. Superradiance and subradiance

can be seen in the emission of photons. Ref. [ 89 ], [ 90 ] have studied the correlations in

the photons emitted in such systems. They showed that bunching is a characteristic of the

emission in superradiant systems in this regime of near-total inversion. Alternatively, will

these associations be valid in the opposite regime where the intensity is low enough that

there are only one or two excitations on average? The process of building coherences for the

enhanced/suppressed emission is quite different in the two cases.

The correlations will be investigated when the system is excited by a constant drive

and reaches steady state. There are two contributions from where correlations might arise.

The first is due to the interference of the incoming driving light and the emitted light,

which is analogous to the g(2) in the forward direction in most systems like atom arrays. In

the low-intensity limit, this effect primarily comes from the single excitation terms of the

ensemble, which has a population proportional to the intensity (∝ Ω2). The terms from the

two excitations will be proportional to the square of intensity (∝ Ω4) and will not have a

significant contribution.
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On the other hand, in the backward direction, the correlations arise only due to the light

emitted by the ensemble. The correlations arise purely due to the interactions between the

atoms in the ensemble. The second-order correlation between two emitted photons no longer

depends only on the single excitation states but also on the doubly excited states. Hence,

we will include and focus on how the doubly excited states evolve, and contribute to the

dynamics of the second-order correlation of the photon emission. In this chapter, we will

study the correlations only in the emitted light, without including the incoming laser field,

which is analogous to studying the backward scattering of light.

More generally, we study the properties of the emitted light when the intensity of the

incoming light is weak. We particularly emphasize investigating the early time correlation

function g(2)(0) to determine the emission statistics. It describes the probability of two

photons being emitted together, normalized by their independent emission. Uncorrelated

emission will have g(2)(0) = 1. If the atoms are more prone to be emitted together, it is

called bunched emission and will have a g(2)(0) > 1. The opposite is called anti-bunching

and will have a g(2)(0) < 1.

We study these dynamics using density matrix formalism using both the single and double

excitation states of the ensemble. We study how the early time g(2)(0), which pertains to the

emission of two photons together, depends quantitatively on the decay rates of both the single

and double excitation eigenmodes. Reference [  44 ] has also studied the effects of the double

excitation manifold in the context of two-photon scattering in waveguide QED systems.

Reference [ 91 ] has also explored single and double excitation eigenmodes but in the case

of atom rings and orbital angular momentum. Our study will focus on the double-excited

states as a consequence of working beyond the edge of the low-intensity/single excitation

regime.

We also observed that the interference of two coherent beams can allow better control of

the correlations in the photon emission. By being able to selectively detect light emitted by

a single mode, we can control the g(2)(τ = 0) to go from antibunched to bunched behavior

by changing the relative phase of the two beams. If the beams are eigenmodes of the system,

their orthogonality will also ensure that the relative phase does not alter the intensity of

the light that we are detecting. A source that can have its correlation properties changed
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in real-time without changing the intensity can be used as an interesting building block for

novel applications.

The formalism used for calculations is detailed in Sec.  5.2 . Section  4.3.1 investigates

the properties of the double excitation states and how they connect to the single excitation

manifold. Section  4.3.2 investigates the initial time correlation, g(2)(0), of the emitted light

when the atoms are excited by a single eigenmode. The effects of interference of two different

modes is explored in Sec.  4.3.3 

4.2 Methods

We consider N atoms and assume each to be a two-level system. The atoms are arranged

in 1D or 2D arrays with separation (d) less than the wavelength of the resonant light (λ).

The dynamics of the system is calculated using the density matrix formalism.

The Low-intensity limit is often assumed when performing calculations for collective

interaction dynamics. There can only be a single excitation in the system at any time,

which means that only the single excitation states have to be considered in the density

matrix. The g(2) correlations, which describe the correlation between the emission of two

photons, also requires the doubly excited states to be considered. This increases the total

number of states (of the order N2) which considerably reduces the total number of atoms

that can be accurately simulated.

The raising and lowering operators of the jth atom are represented by σ̂+
j and σ̂−

j respec-

tively. The state where all the atoms are in the ground state is represented by |g〉 and the

states where only the atom ′j′ is excited will be represented by |ej〉 = σ̂+
j |g〉. The doubly

excited state will be represented by |eeµ〉 = σ̂+
m1σ̂+

m2|g〉 and the index µ = (m1, m2) represents
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atom m1 and m2 being excited. Since m1 6= m2, the index µ goes from 0 to N(N − 1)/2 − 1.

Hence the density matrix will be represented by

ρ = a0|g〉〈g| +
∑

j
v∗

j |g〉〈ej| +
∑

µ

w∗
µ|g〉〈eeµ|

+
∑

j
vj|ej〉〈g| +

∑
i,j

ρ̃ij|ei〉〈ej| +
∑
j,µ

s∗
jµ|ej〉〈eeµ|

+
∑

µ

wµ|eeµ〉〈g| +
∑
j,µ

sjµ|eeµ〉〈ej| +
∑
µ,ν

˜̃ρµν |eeµ〉〈eeν |
(4.1)

The dynamics of the system will be calculated by using the Hamiltonian and the Lindblad

superoperator
dρ̂

dt
= − i

~
[Ĥ, ρ̂] + L(ρ̂) (4.2)

The laser interaction is described by the Laser Hamiltonian in the rotating wave approx-

imation given by

ĤL = ~
∑

j

[
−δσ̂+

j σ̂−
j + Ωj

2 σ̂+
j +

Ω∗
j

2 σ̂−
j

]
(4.3)

where Ωj = Ω0eik0·rj is the Rabi frequency of atom j, which governs the intensity of the driving

laser and δ is the detuning. rj gives the position of the jth atom. The laser Hamiltonian

can induce transitions from the ground state to the first excited state and also from the first

excited state to the second excited state.

Since this study is restricted to the low-intensity limit, the Rabi frequency should be

small: Ω � Γ, which is the decay rate of a single atom. Even beyond that, the Rabi

frequency should be smaller than the eigenmode decay rates: Ω � γα to ensure there are

only one or two photons in the case of long-lived eigenmodes. The probability of excitation

in the first excited state is proportional to Ω2, while the probability of excitation in the

second excited state is of order Ω4.
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The collective interaction and spontaneous emission are modeled by the dipole-dipole

exchange Hamiltonian and the non-Hermitian Lindblad super-operator. The former is given

by

Ĥdd = ~
∑
i 6=j

Im{g(rij)}σ̂+
i σ̂−

j (4.4)

which governs the exchange of excitation among the atoms and contributes to energy shifts

in the system. The rij = ri − rj denotes the distance between atoms i and j, and the g(rij) is

the free space dyadic Green’s function given by Eq. (  5.11 ). This will also contribute to the

effective Hamiltonian Ĥ in Eq. (  4.2 ).

The Lindblad operator is given by

L(ρ̂) =
∑
i,j

[
2Re{g(rij)}σ̂−

i ρ̂σ̂+
j − Re{g(rij)}σ̂+

i σ̂−
j ρ̂ − Re{g∗(rij)}ρ̂σ̂+

i σ̂−
j

]
(4.5)

where the i = j terms describe the single atom spontaneous emission and the i 6= j terms

describe the collective interaction. The Green’s function g(rij) is given by

g(rij) = Γ
2

[
3(r̂ij · q̂i)(r̂ij · q̂∗

j ) − (q̂i · q̂∗
j )

2 h
(1)
2 (krij) + (q̂i · q̂j

∗)h(1)
0 (krij)

]
(4.6)

where q̂i is the dipole orientation of the ith atom, rij = |rij| is the norm of rij, r̂ij = rij/rij

is the unit vector along rij, Γ is the decay rate of a single atom and h
(1)
l are the outgoing

spherical Hankel function of angular momentum l. When i = j, that is when rij = 0, the

imaginary part of the function becomes undefined, while the real part is defined. Hence, we

redefine g(rij) to be
g(rij) = g(rij) for i 6= j

= Re{g(rij)} for i = j
(4.7)

4.2.1 Eigenmodes

The Green’s function of the interaction between the atoms can be used to construct a

matrix Gij = g(rij) which when diagonalized will give the natural single excitation eigenmodes

of the system. Each eigenvector Vα corresponds to a mode of the system with a particular
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decay rate given by the real part of the eigenvalue γα and energy shift given by the imaginary

part ∆α. ∑
j

GijVjα = GαViα = (γα

2 + i∆α)Viα (4.8)

The index α will be used in general to denote the single excitation eigenmodes Since the Gij

matrix is not Hermitian, the orthogonality conditions are different. The eigenmodes have to

be normalized to follow ∑
i

ViαViα′ = δα,α′ (4.9)

For the two excitation states, a similar matrix can be defined using the Green’s function. It

connects the two excitation states that have a single common atom excited, i.e., the state

can change from one (|eeµ〉) to the other (|eeν〉) using a single photon jump operator (σ̂+
m1σ̂−

n1

). Since the two excitation states are twice more likely to decay, the diagonal terms will be

2 × Re{g(0)} = Γ.
G̃µν = g(rm1n1) for m2 = n2, m1 6= n1

= g(rm2n2) for m1 = n1, m2 6= n2

= Γ for m1 = n1, m2 = n2

= 0 for m1 6= n1, m2 6= n2

(4.10)

This can be diagonalized to obtain the eigenmodes that correspond to the doubly excited

states. The index β will be used to generally denote two excitation eigenmodes. These

eigenvectors Wµβ also follow a similar situation where the real part of the eigenvalue denotes

the decay rate of a single photon being emitted and the atom descending into the single

excitation states. ∑
ν

G̃µνWνβ = G(2)
β Wµβ = (

γ
(2)
β

2 + i∆(2)
β )Wµβ (4.11)

It is important to note that the γβ describes the rate at which the first photon is emitted.

Each such state will then connect to a mix of single excitation states after the emission.
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4.2.2 Calculation of g(2) correlation

To calculate the g(2), the system is driven with a laser until it reaches steady state up

to time t. Then the density matrix is projected into a state where the system has emitted a

photon.
σ̂−ρ̂(t)σ̂+

〈σ̂+σ̂−〉(t) → ρ̂′(t) (4.12)

where σ̂− defines the emission of a photon in a particular direction k or from a particular

eigenmode α,

σ̂− =
∑

j
e−ik.rjσ̂−

j OR σ̂− =
∑

j
Vjασ̂−

j (4.13)

This projected density matrix is then evolved again in time using Eq. ( 4.2 ) up to time

t + τ . Then the probability of another photon being emitted is calculated and normalized

with the intensity

g(2)(τ) = Tr[σ̂−ρ̂′(t + τ)σ̂+]
〈σ̂+σ̂−〉(t) (4.14)

which can also be written as

g(2)(τ) = Tr[σ̂−(t + τ)σ̂−(t)ρ̂σ̂+(t)σ̂+(t + τ)]
[〈σ̂+σ̂−〉(t)]2 (4.15)

In many cases, we focus on the g(2) when τ = 0, that is without any time delay, or the

instantaneous two-photon correlation. That simplifies Eq. (  4.15 ) as

g(2)(τ = 0) = Tr[σ̂−σ̂−ρ̂σ̂+σ̂+]
〈σ̂+σ̂−〉2 (4.16)

If the system is excited to a particular eigenmode α using the operator σ̂+
α = ∑

j Vjασ̂+
j ,

we cannot use the same set of σ̂+
α , σ̂−

α for the detection of light emitted in that mode.

Due to the unusual orthogonality relation defined in Eq. ( 4.9 ), the raising and lowering

operators used for the detection have to be redefined as σ̂′+
α = ∑

j V ∗
jασ̂+

j , σ̂′−
α = (σ̂′+

α )∗ to give

σ̂′−
α′ σ̂+

α |g〉 = δα,α′|g〉.
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4.3 Results

Using the formalism described in Sec.  5.2 , the density matrix can be evolved to study

the dynamics of both the single and the double excitation states. This chapter will focus

exclusively on correlations in the emitted light, and the correlations with the driving light

fields will be ignored.

To keep the data shown consistent, the configuration of the atoms will be kept the same

in this section. The atoms are in a square lattice in the XZ plane with lattice separation

d ranging from 0.3λ to 1.0λ. The atoms are polarized along the Z-axis. While the data

shown is only for a two-dimensional array, the results are consistent across 1D, 2D, 3D, and

low-density Gaussian clouds.

4.3.1 Double excitation eigenmodes

In this section, we will provide some basic descriptions of the second excitation eigen-

modes. We will also explore the connection between the single and doubly excited states.

A detailed investigation of the characteristics of the double excitation eigenmodes has been

done in [  44 ]. Even though their description is for Waveguide-qubit systems, many of the

properties are similar to atoms in free space.

The most subradiant double excitation state decays faster than the most subradiant

single excitation state in a single configuration of atoms in space. When two atoms are being

excited, each excitation can only hop to the other N-2 atoms that are not excited, which is

analogous to the second excited atom being invisible to the first excited atom. This ’hole’

interferes with the perfect destructive interference necessary to get to the most subradiant

state. The alternate is true for the superradiant state where the most superradiant second

excitation state decays faster than the most superradiant single excitation state.

The manifold of the two excitation states is of N(N − 1)/2 dimensions and the corre-

sponding eigenmodes can be renormalized to form a complete ortho-normal subspace with

the new definition of the inner product as in Eq. ( 4.9 ). On the other hand, there are N2/2

vectors that can be made when any two single excitation eigenmodes are used to excite the

ground state procedurally. This discrepancy in the number of states of the second excitation
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eigenmodes and two single excitations comes about because there cannot be two excitations

on a single atom, i.e., σ̂+
i σ̂+

i |g〉 = 0.

The real part of the eigenmode γβ gives the rate of decay of the double excitation eigen-

mode. Once the first photon is emitted into free space, the system is brought into a com-

bination of single excitation states. This combination of single excitation states will then

result in a corresponding average decay rate for the second photon. This decay rate of the

second photon will be represented by ζβ has been plotted in Fig.  4.1 and is defined by,

ζβ = 4
γβ

Tr[
∑
iji′j′

Re{g(ri′j′)}Re{g(rij)}σ̂−
i′ σ̂−

i ρβσ̂+
j σ̂+

j′ ] (4.17)

where ρβ is the density matrix initialized to contain only the second excitation eigenmode β.

In most cases, the ζβ is approximately close to γβ/2, especially for higher atom separations.

There are exceptions to this when the atom separations get smaller. Specifically, for states

that have very small γβ, the ζβ’s are not as suppressed and tend to go above the line that

depicts ζβ = γβ/2. This becomes more relevant in Sec.  4.3.2 .

The single and double excitation eigenmodes are vectors with different sizes and normal-

ization schemes which makes it hard to draw conclusions on how they correlate with each

other. To understand this, we can define a quantity that describes the overlap of the double

excitation eigenmode β with two single excitation eigenmodes α1 and α2. This can also be

understood as the tendency of mode β to emit two photons, each in mode α1 and α2.

Lα1α2β =
∑

µ

(Vm1α1Vm2α2 + Vm1α2Vm2α1)Wµβ (4.18)

When α1 = α2, it can be redefined as Xαβ which is analogous to a projection of (Viα)2

over Wµβ. This describes the geometric overlap of the double excitation eigenmode with the

state where both photons are in the same single excitation eigenmode. This quantity will

become more relevant in Sec.  4.3.2 .

Xαβ =
∑

µ

(2Vm1αVm2α)Wµβ (4.19)
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Figure 4.1. The decay rate of the second photon (ζβ) versus the decay rate
of the first photon (γβ) from a double excitation eigenmode β. The separation
has been varied from 0.3 to 1.0 λ. The color shows the separation d of the
atoms in the array. The dashed line corresponds to ζβ = γβ/2.
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Fig.  4.2 shows the |Xαβ| and |Lα1α2β| (α1 6= α2) for a square array with 25 atoms with

separations of 0.3 and 0.8 λ. The points correspond to the N- single excitation eigenmodes

α and N(N − 1)/2 double excitation eigenmodes β.

Although |Xαβ| and |Lα1α2β| only depend on the spatial profile of the eigenmodes, they

are inherently still connected to the decay rates of the eigenmodes. In both plots, the overlap

is maximized when the sum of the single excitation decay rates matches the double excitation

decay rates. In the case of|Xαβ|, the overlap is maximum when γβ = 2γα.

The spread of the points along the x-axis (difference in decay rate) depends on the

separation of the atoms d. For large separations, most of the points are clustered around a

difference of 0. On the other hand, for small separations, there is a larger spread, and states

that have a considerable difference still have non-negligible contributions.

4.3.2 Single mode excitation

In experiments, it is usually possible to detect/input light from only a single mode (a

common example is a Gaussian light mode). But using the geometry of the atom ensemble,

it can be made to excite eigenmodes with different decay rates. For example, when using

Gaussian light to excite and detect light from a finite array of atoms, having the separation

between the atoms to be less than half a wavelength will result in the superradiant modes

being predominantly excited. The opposite is true for separations in the range of half to

one wavelength where the subradiant modes are excited. Hence we first consider a situation

where we are exciting and detecting the same mode of light, but each mode will be an

eigenmode of the atomic ensemble. While most of the eigenmodes in atomic systems will be

difficult to directly excite in experiments, we are studying this to isolate the effect of only

the decay rate on the correlations in the light. There are also certain systems, like Transmon

waveguide QED, where exact eigenmodes can be directly driven without using light.

In the calculations, hypothetical lasers that can exactly address a particular single exci-

tation eigenmode of the system can be used. The corresponding spatial profile and detuning

of the eigenmode can be imprinted on the driving laser. After emitting a photon, the time
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Figure 4.2. (a),(b) The |Xαβ| versus the difference in decay rate of the single
and double excitation eigenmodes (γβ − 2γα)/Γ0 for d = 0.3λ (red) and 0.8λ
(blue). (c),(d) The |Lα1α2β| versus the difference in decay rate of the single and
double excitation eigenmodes (γβ − γα1 − γα2)/Γ0, where α1 6= α2 for d = 0.3λ
(orange) and 0.8λ (purple). The data is calculated for a square array of 25
atoms. The smaller separations seem to have a larger spread in the points.
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the system takes to recover back to steady state is usually determined by the eigenmode’s

decay rate.

On the other hand, the early-time photon correlation g(2)(0) does not trivially depend on

this decay rate. Since g(2)(0) describes how likely it is to emit two photons together, the decay

rates of the double excitation eigenmodes will also contribute. Therefore, we numerically

and analytically study and understand the dependence of the early-time second-order photon

correlation on the decay rates of the single and double excitation eigenmodes.

Detection in the same Eigenmode α

In this section, the g(2)(0) will be calculated when the light is emitted into the same

single excitation eigenmode with which it is excited. This represents how two photons each

in a single excitation eigenmode Viα connects with the double excitation modes Wµβ, which

was described by Xαβ as discussed in Sec.  4.3.1 and in Fig.  4.2 (a) and  4.2 (b).

While the g(2)(0) can be calculated numerically by time evolving the density matrix to

steady state and taking projections, we can simplify the calculation by using eigenmode

decomposition. An analytical expression can be derived for the steady state and g(2)(0)

when exciting using a single eigenmode. The derivation is detailed in the Appendix  4.A .

The g(2)(0) when driven and detected using the single excitation eigenmode α with decay

rate γα and a detuning corresponding its line shift δ = ∆α is given by,

g(2)(0) = Re{γα}2
∣∣∣∣∣∑

β

X2
αβ

γ
(2)
β + 2i(∆(2)

β − 2∆α)

∣∣∣∣∣
2

(4.20)

where the sum over β goes over all the double excitation eigenmodes.

The g(2)(0) can be understood as the ratio between the decay rates of the single excitation

eigenmodes over the decay rates of the double excitation eigenmodes weighted over the

coupling coefficient Xαβ. The detuning also plays a role in decreasing how well the double

excitation eigenmode is excited. As seen in Fig.  4.2 (a), the coupling coefficient Xαβ only

has a significant contribution when γα ≈ γ
(2)
β /2 resulting in the g(2)(0) almost always being

less than 1.

82



0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

g
(2

) (0
)

Decay rate of single excitation eigenmode α (γα/Γ0)

g
(2)

(0) when detected in mode α

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
e
p
a
ra

ti
o
n
 o

f 
a
to

m
s
 (

d
/λ

)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

g
(2

) (0
)

Decay rate of single excitation eigenmode α (γα/Γ0)

g
(2)

(0) when detected in Free Space

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
e
p
a
ra

ti
o
n
 o

f 
a
to

m
s
 (

d
/λ

)

Figure 4.3. The g(2)(0) when excited using a single eigenmode α for an
ensemble of 25 atoms arranged in a square array, versus the decay rate of the
eigenmode (γα). (a) depicts the situation when the detection is also in mode
α, while (b) corresponds to detection over all of free space. The separation has
been varied from 0.3 to 1.0 λ. The color shows the separation d of the atoms
in the array.
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Another way to interpret this is as a ratio of the population of the doubly excited states

over the single excitation states. In the low-intensity limit, the population of a state is

generally proportional to 1/Γ2 at steady state. This means that we are summing over all

the populations of the two excitation eigenmodes and normalizing it with the population in

the single excitation states.

For highly subradiant states, the g(2)(0) is very low and is almost proportional to the decay

rate. This shows a clear correlation between antibunching and low-intensity subradiance.

But once the decay rate reaches 0.5Γ, the g(2)(0) starts to saturate and approaches 1. Even

for highly superradiant states, the g(2)(0) is only around or less than 1. This means that,

unlike in the high-intensity situation where superradiance implies bunching, superradiance

in the low-intensity limit only makes the photon emission uncorrelated.

When the separation is less than 0.3λ, the line shifts of the single excitation states start

increasing drastically and the effects due to the mismatch of detuning with the second exci-

tation eigenmodes start playing a greater role. As the denominator in Eq. (  4.20 ) increases,

the g(2)(0) gets smaller and starts approaching zero. There will also be some rare eigenmodes

with g(2)(0) a little higher than 1.

Detection in all of Free space

So far, we described the photons being detected in the same mode they were excited in.

In this section, the detection scheme covers the light emitted into all of free space. This type

of detection is more relevant in some experimental implementations, especially in Waveguide

QED where all the light being emitted can be easily detected from the two ends of the

waveguide. Since light can be emitted into all possible modes, it will include the possibility

of the two photons being emitted into a combination of modes α1 and α2. This also consists

of both photons being emitted into the same mode, which overlaps with the situation in Sec.

 4.3.2 .

The intensity of light can be calculated from the surrounding term of the Lindblad Op-

erator 2Re{g(rij)}σ̂−
i ρ̂σ̂+

j that represents the emission of light and lowering of the excitation

in the system. Since the eigenmodes of g(rij) discussed so far, will no longer be eigenmodes
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of this decay operator 2Re{g(rij)}, we cannot derive a simple relation like Eq. ( 4.20 ). Nev-

ertheless, it can be directly calculated and we can draw simple conclusions.

The results have been plotted in Fig.  4.3 (b) for a similar configuration. Contrary to

the Fig.  4.3 (a), the g(2)(0) in this case starts as bunched emission for subradiant states

and approaches 1 again for superradiant states. The initial time emission correlation g(2)(0)

describes the possibility of the second photon being emitted immediately after the first

photon is emitted. As seen in Fig.  4.1 , for a double excitation eigenmode β, the second

photon decay rate ζβ follows the line ζβ = γβ/2 for large γβ, but fails to keep up as it reaches

very small decay rates. When excited using subradiant states, even though the decay rate

of the first photon is small, the second photon rate is comparatively larger, leading to the

larger g(2)(0) and bunched emission.

In conclusion, when exciting the system using a single characteristic eigenmode α, the

trend of the g(2)(0) versus the decay rate γα depends on the type of detection of the pho-

tons. For subradiant states, detecting in the same eigenmode α displayed anti-bunched

emission, while detecting in all of free space results in bunched emission. On the other hand,

superradiant states tend to converge on g(2)(0) = 1 irrespective of the detection scheme.

4.3.3 Two interfering modes

In this section, we will discuss how two different single excitation eigenmodes interfere

and interact with the double excitation eigenmodes. We let the two eigenmodes, α1 and α2,

have a relative phase and observe the effects on g(2)(0) while varying this phase. The Rabi

frequency for each atom will be given by,

Ωj = Ω0(a1Vjα1 + a2eiφVjα2) (4.21)

where φ is the relative phase, and a1,a2 are relative amplitudes of the two modes.

When the two eigenmodes interfere, the orthogonality ensures that the populations in

the single excitation eigenmodes do not vary with the relative phase. But for the case of the

double excitation eigenmodes, the correlations are emphasized and affect their population.

Since the g(2)(0) is effectively the ratio of population in two excitations, with the square of
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the population in the single excitation, we can see a change in g(2)(0) without a change in

intensity.

For a system with 16 atoms in a square array with separation d = 0.4λ, we can have

the g(2)(0) oscillate between 0.002 and 4 using the most subradiant and most superradiant

eigenstates as the two interfering modes. Although the amplitudes a1 and a2 have been set as

equal in this situation, varying their ratio allows for control in the range of accessible g(2)(0).

The recovery time of the g(2)(τ) will simply be the decay rate of the mode that is being

detected. This essentially means that with the relative phase as a knob, the g(2)(0) of the

emitted light can be controlled. This can also be thought of as a controllable non-linearity.

To get an intuition behind this, we can study the simple case with two atoms. The

eigenmodes of the system are |+〉 = (|eg〉 + |ge〉)/
√

2 and |−〉 = (|eg〉 − |ge〉)/
√

2. By

interfering two modes with an arbitrary relative phase, the minima of 〈ee〉 occurs when the

modes cancel out on one atom and only the other atom interacts with the incident light.

This means that the phase controls whether the incident light interacts with one or two

atoms. While this seems simple, the situation becomes non-trivial when many atoms are

involved and the level of non-linearity can be changed on a much larger scale.

When there are many atoms, the caveat is that having a beam that can address or detect

individual eigenmodes becomes difficult. In some cases, the variation in the spatial part of

the eigenmode becomes so fast that it becomes dark and cannot be simply accessed with

optical beams. Therefore, we need systems that are similar, yet have a greater degree of

control than free space atoms.

One such system with a higher degree of control is the Transmon Waveguide QED sys-

tems. These are artificial atom-like systems made using superconducting circuits that can

interact with each other through microwave waveguides. These transmons can also be di-

rectly driven using the electronics, in addition to the usual optical driving through the

waveguide. This facilitates individual addressing of the qubits which can be used to access

any arbitrary eigenmode of the system. This can then be the knob that can be used to

control the g(2) emission of the optical mode. The chirality in such systems can also be

utilized to make the different modes emit in a different direction
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4.4 Conclusion

We studied the photon statistics of the emitted light in collectively interacting dipole

systems using the double excitation states. We described the emission properties of the dou-

ble excitation eigenmodes and explored how they couple to the single excitation eigenmodes.

Since the Green’s function between dipoles is not hermitian but complex symmetric, we need

to redefine the orthogonality relation to get ortho-normal eigenmodes.

When the system is excited by a single excitation eigenmode, we study the g(2)(0) of

the emission when the photons are detected in (i) the same excitation eigenmode or (ii) free

space. For superradiant states, irrespective of the detection type, the emission is mostly

uncorrelated, and the g(2)(0) tended towards 1. On the other hand for subradiant states,

the emission is either (i) antibunched or (ii) bunched depending on the type of detection.

This is contrary to the many-photon situation where superradiance induces bunching and

subradiance causes anti-bunching.

When the system is excited by two distinct single excitation eigenmodes, the interference

between the two can cause interesting dependencies on the photon statistics. By changing the

phase between the two incident excitations, the non-linearity of the system can be controlled

to an extent resulting in being able to arbitrarily control the g(2)(0) of the emitted light.

Most of the effects observed can be attributed to the coupling between the different sets of

eigenmodes. This formalism can be easily extended to other types of atom-atom interactions

once the corresponding eigenmodes and orthogonality relations can be established.

4.A Appendix: Single mode emission analytical calculation

The density matrix can be evolved in time using Eq. ( 4.2 ) until it reaches steady state.

However, this method becomes tedious to calculate when N increases or when dealing with

highly subradiant modes. Hence we can use the low-intensity approximation and directly

calculate the steady state using eigenstate decomposition. Each of the types of terms in the

87



density matrix represented in Eq. (  5.14 ) can be transformed into the correspond eigenmode

basis.

ṽα =
∑

j
vjVjα vj =

∑
α

ṽαVjα

w̃β =
∑

µ

wµWµβ wµ =
∑

β

w̃βWµβ

(4.22)

and similar relations can be shown for the other terms.

In the low-intensity limit, the Rabi frequency is much smaller than the decay timescales.

As a consequence, each term in Eq. (  5.14 ), to the right or below is one order higher with

respect to Ω, i.e., a0 ∝ Ω0, vj ∝ Ω1, wµ, ρ̃ij ∝ Ω2, sjµ ∝ Ω3 and ˜̃ρµν ∝ Ω4. It can be shown

that by ignoring the higher order Ω terms in the rate equations, the terms in Eq. (  5.14 )

become

ρ̃ij =
viv

∗
j

a0
sjµ =

wµv∗
j

a0
˜̃ρµν = wµw∗

ν

a0
(4.23)

where a0 is the population in the ground state, which can be calculated from Tr[ρ] = 1.

Using these Eqs. ( 4.2 ), (  4.22 ), and (  4.23 ), the steady state value can be directly calculated

from Ωj

ṽα = ia0

2

∑
j ΩjVjα

(Gα − iδ)

w̃β = ia0

2

∑
µ(Ωm1vm2 + Ωm2vm1)Wµβ

(G(2)
β − 2iδ)

(4.24)

When the system is excited using a particular single excitation eigenmode α̃, Ωj = Ω0Vjα̃

and δ = ∆α̃ will give

ṽα = ia0Ω0

2γα̃

δα,α̃

w̃β = a0Ω2
0

4γα̃

Xα̃β

(G(2)
β − 2i∆α̃)

(4.25)

For detecting the light emitted into the same eigenmode α̃, we use σ̂−
α̃ = ∑

j Vjα̃σ̂−
j to

arrive at Eq. (  4.20 )

88



g(2)(0) =Tr{σ̂−
α̃ σ̂−

α̃ ρσ̂+
α̃ σ̂+

α̃ }
Tr{σ̂−

α̃ ρσ̂+
α̃ }2

=Re{γα̃}2
∣∣∣∣∣∑

β

X2
α̃β

γ
(2)
β + 2i(∆(2)

β − 2∆α̃)

∣∣∣∣∣
2 (4.26)
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5. COLLECTIVE INTERACTIONS IN ATOMS NEAR A

MICRORING RESONATOR

5.1 Introduction

The study of collective effects due to dipole interactions has been a major topic of interest

since Dicke described the concept of superradiance in his seminal paper in 1954 [  1 ]. There has

been abundant research following this on the different aspects of collective dipole interactions

like superradiance, subradiance, and collective Lamb shifts [  2 ]–[ 12 ]. These effects have been

utilized for applications in quantum control, photon storage, and quantum information [ 18 ],

[ 19 ], [ 33 ], [ 34 ].

Great progress has been achieved in engineering nanophotonic interfaces for versatile

control over light-matter interaction. The interaction between atoms has been experimentally

implemented using nanofibers [ 14 ], [ 58 ]–[ 64 ], photonic crystals [  65 ], [ 66 ], and slot waveguides

[ 67 ], [  68 ]. Since the atoms are usually trapped close to dielectric surfaces, the complexities

of modeling the interactions have been explored in Refs. [  35 ], [ 69 ]–[ 71 ].

Recently, cold atoms have been trapped adjacent to a nanophotonic micro-ring resonator

[ 92 ], [ 93 ] to be used as a versatile light-matter interaction platform. The ring-resonator can

act as a whispering gallery mode cavity and facilitate chiral atom-atom interactions.

This platform has several unique advantages over other light-matter interfaces. The

atoms can interact with each other through two different channels, through free space and

through the resonator, each with a different characteristic k-vector. The interaction strength

with the resonator channel can also be varied by adjusting the position of the atoms.

One of the potentials of this unique light-matter interface is the concept of ”selective

radiance” as was first described in Ref. [ 35 ]. These selectively radiant states have been

described as simultaneously superradiant in a desired mode and subradiant in undesired or

error-inducing channels. Due to the nature of the coupling with the ring resonator cavity, the

atoms will superradiantly couple with the cavity and the decay rate will scale with the atom

number [  93 ]. If the decay into free space can be reduced due to the collective interactions, the

interface becomes more robust towards error from spontaneous emission into the vacuum.
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Figure 5.1. Representative image of the micro-ring resonator is coupled to a waveguide

This light-matter platform could have potential applications involving quantum memories

[ 94 ], quantum simulation [  95 ]–[ 98 ], quantum networks [  99 ], and applications in quantum

computing [  100 ]–[ 102 ]. It also holds the potential for implementing photon interactions [  41 ],

[ 47 ], [ 50 ], non-Markovian [ 103 ], and topological models [ 104 ].

In this chapter, we theoretically and computationally model the atom and ring resonator

system to understand the physics underlying the interactions and explore further possibilities.

We give particular emphasis on how the collective interactions of the atoms in free space

can affect the interaction with the micro-ring resonator. We describe the system and the

numerical methods used in Sec.  5.2 . We simulate the current status of the experiment, which

involves trapping a cloud of atoms above the ring resonator in Sec.  5.3.2 . In Sec.  5.3.3 ,

we explore the potential of trapping atoms in arrays near the ring resonator and consider

disorders that arise in the experiments.

5.2 Methods

The experimental system consists of a micro-ring resonator coupled to a waveguide, as

represented in Fig.  5.1 . The waveguide near-critically couples with the resonator and acts

as the input-output channel. This rate of coupling (κe) is comparable to the intrinsic loss

rate of the resonator cavity (κi). The micro-ring resonator acts as a whispering gallery mode

cavity that can sustain light circulating in the two directions.

The experiment uses the TM mode, where the +1 circularly polarized light can only

travel in one direction and the -1 polarization will couple with the other. Once excited
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by a +1 polarized light, to a large extent, the atom only re-emits into the same mode.

This configuration results in the atom-atom interaction through the waveguide being chiral.

Modes traveling in only one direction will be supported. Since the back-scattering rate from

the atoms is also very small, light traveling in the other direction can be ignored.

Cold atoms are cooled and trapped above the micro-ring resonator with a density of

around 1013cm−3 in an almost cigar-shaped configuration. The number of atoms in the cloud

can be varied from a few to up to 60 atoms. These atoms are coupled to the evanescent field of

the circulating light in the resonator. Since the evanescent field drops off exponentially above

the ring, each atom has a different interaction strength with the cavity. This interaction

strength can also be controlled by moving the atom cloud closer or farther away from the

resonator.

We shall consider N atoms interacting with the micro-ring resonator. The +1 circularly

polarized mode will be considered as a cavity. Since we are restricted to the low-intensity

limit, there can only be one excitation in the system at any time. Hence the Hilbert space of

the atom excitations can be simplified to N + 1 states. The raising and lowering operators

of the jth atom are represented by σ̂+
j and σ̂−

j respectively. The state where all the atoms

are in the ground state is represented by |g〉 and the states where only the atom ′j′ is excited

will be represented by |ej〉 = σ̂+
j |g〉. The single-atom decay rate of the atoms will be denoted

by Γ0 and will serve to set the timescale of the system.

The cavity can be modeled as a harmonic oscillator with raising (lowering) operators,

â, â†. The Hamiltonian of the atom-cavity interaction can be represented as

HI =
∑

j
gjeiφj(âσ̂+

j + â†σ̂−
j ) −

∑
j

∆Aσ̂+
j σ̂−

j (5.1)

where gj depends on the evanescent electric field at the position of atom j, and φj = neffk0 ·rj.

∆A = ω −ωA is the detuning of the atom resonance with the input light. neff is the effective

refractive index of the ring-resonator waveguide and k0 is the wavevector associated with

the resonant wavelength of light.
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In the experiment, the single-atom cooperativity plays a more relevant role in describing

the strength of the atom-cavity interaction. The single atom cooperativity of the jth atom

will be given by,

Cj =
4g2

j

(κi + κe)Γ0
(5.2)

This single atom cooperativity decays exponentially with distance from the resonator with

a decay length of 42nm. The average single-atom cooperativity will be denoted as C1. In

general, the total cooperativity of the waveguide interaction scales as NC1.

The cavity decay will be defined by the Lindblad operator for the resonator cavity,

LR(ρ) = (κi + κe)[âρâ† − 1
2 â†âρ − 1

2ρâ†â] (5.3)

The incoming and outgoing waves in the external waveguide can be represented by the

corresponding input and output cavity operator, ŝin, ŝ†
in; ŝout, ŝ†

out. Hence the Hamiltonian

coupling the input mode of the waveguide and the cavity is given by

He = −
√

κe(ŝ†
inâ + ŝinâ†) − ∆C â†â (5.4)

where ∆C = ω − ωC gives the detuning between the input light in the waveguide and the

cavity resonance. Since the separations between adjacent atoms are small and comparable

to the wavelength of the light, there will be collective dipole-dipole interactions. This can

be modeled using the free space dyadic Green’s function, and the corresponding Lindblad

operator and dipole-dipole exchange Hamiltonian.

The resonant dipole-dipole interaction is described by the imaginary part of the Green’s

function and is given by

Ĥdd = ~
∑
i6=j

Im{GF S
ij }σ̂+

i σ̂−
j (5.5)

The Lindblad term describes the dynamics of the decay and is given by

LF S(ρ̂) =
∑
i,j

[
2Re{GF S

ij }σ̂−
i ρ̂σ̂+

j − Re{GF S
ij }σ̂+

i σ̂−
j ρ̂ − Re{GF S

ij }ρ̂σ̂+
i σ̂−

j

]
(5.6)
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where the Green’s function g(R) is given by

GF S
ij = Γ

2

[
h

(1)
0 (krij) + 3(r̂ij · q̂)(r̂ij · q̂∗) − 1

2 h
(1)
2 (krij)

]
(5.7)

where q̂i is the dipole orientation of the ith atom, rij = |rij| is the norm of rij, r̂ij = rij/rij is the

unit vector along rij, Γ is the decay rate of a single atom and h
(1)
l are the outgoing spherical

Hankel function of angular momentum l. h
(1)
0 (x) = eix/(ix) and h

(1)
2 (x) = eix(−3i/x3−3/x2+

i/x).

Since the cavity dynamics happen at a much faster rate than the internal state dynam-

ics, (κe, κi ≈ 100Γ), the cavity field can be adiabatically eliminated to better capture the

dynamics of the internal excitations of the atoms. This will also drastically decrease the

computational requirements. By enforcing that the cavity reaches a steady state at ev-

ery time-step of the internal dynamic evolution, we can arrive at an expression for the 〈â〉

depending on the atomic excitations.

â = 2i√κe

κ
ŝin − 2i

κ

∑
j

gjeiφjσ̂−
j (5.8)

By replacing â in Eq.  5.1 and Eq.  5.3 , we can re-write the master equation in the form,

dρ̂

dt
= − i

~
[Ĥ, ρ̂] + LF S(ρ̂) + LC(ρ̂) (5.9)

where ρ̂ is the density matrix of the system, Ĥ is the effective Hamiltonian and LF S(ρ̂) is

the Lindblad super-operator for the interaction through free space as defined in Eq. ( 5.6 ).

The interaction of the atoms through the ring resonator cavity is now included from the

Lindblad operator LC(ρ̂) which will be defined as,

LC(ρ̂) =
∑
i,j

[
2GC

ij σ̂−
i ρ̂σ̂+

j − GC
ij σ̂+

i σ̂−
j ρ̂ − (GC

ij )∗ρ̂σ̂+
i σ̂−

j

]
(5.10)
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The atom-cavity interaction also contains a Hamiltonian part that describes the resonant

hopping, similar to Eq. ( 5.5 ), and has been absorbed into the Lindblad term for simplicity.

The GC
ij is the Green’s function of the interaction through the cavity and is given by,

GC
ij =

gig
∗
j

κ̃
eik·(ri−rj)neff (5.11)

where κ̃ = (κi + κe)/2 − i∆C and gj is the evanescent coupling of the atom with the micro-

ring resonator mode, Eq. (  5.2 ), which has an exponential dependence on the z-position. The

Hamiltonian defined in Eq. (  5.1 ) and Eq. (  5.4 ) will be redefined in a form similar to the

rotating wave laser Hamiltonian

ĤL = ~
∑

j

[
−∆Aσ̂+

j σ̂−
j + Ωj

2 σ̂+
j +

Ω∗
j

2 σ̂−
j

]
(5.12)

where Ωj = Ω0gjei(k·rj)neff is the coupling with each atom is excited due to the evanescent

mode of the micro-ring. The Ω0 can be connected with the waveguide input-output operator

in Eq. (  5.4 ) as

Ω0 = i√κe

κ̃
|ŝin| (5.13)

After adiabatically eliminating the cavity mode, the reduced density matrix, which only

describes the atom’s internal states will be represented as,

ρ = a0|g〉〈g| +
∑

j
v∗

j |g〉〈ej|

+
∑

j
vj|ej〉〈g| +

∑
i,j

ρ̃ij|ei〉〈ej| (5.14)

The cavity model and the adiabatically eliminated Lindblad model have both been numer-

ically compared and verified in the weak field limit. An important limitation to adiabatic

elimination is that the cavity cannot be in the strong-coupling regime.

An important approximation is that the atoms are stationary within the timescale of

the internal excitation decay. This is reasonable since the atoms in the cloud have a mean
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velocity of 3 cm/s which corresponds to a couple of nanometers of movement in one excitation

lifetime. Hence, to capture the dynamics of the ensemble, we can use Monte Carlo to take the

average of many different possible positions for the atoms. In each iteration, the positions

of the atoms are randomly assigned according to the configuration of the atom cloud.

The density matrix can then be time-evolved using the master equation shown in Eq.  5.9 

with Runge-Kutta methods. Once the system reaches steady state, the transmission ratio

can be calculated using the expectation values of the 〈σ̂−
j 〉 operator of the atoms using Eq.

 5.8 .

T =
∣∣∣∣∣1 − 2κe

κ
+ 2√

κe

κ

∑
j

gjeiφj〈σ̂−
j 〉
∣∣∣∣∣
2

(5.15)

Time evolving the master equation in this particular scenario can give rise to a few

complications in the calculations. Since the atom cloud is considerably dense, the atoms in

the random positions could end up being very close to another atom. This will cause the

free space Green’s function to blow up and go beyond the energy scale of the calculation.

Additionally, since these systems tend to have some states with subradiant character, the

time to reach steady states is much longer than the timescale of typical excitation decay.

These issues make it challenging to reach convergence when using more than a few atoms.

Hence, we utilize the low-intensity limit and can derive a procedure to directly calculate the

steady state using eigenmode decomposition.

5.2.1 Eigenmodes of the excitation

To understand the characteristics of the system, we can study the eigenmodes of the

Green’s function of the two different interaction channels. Apart from having a mismatched

k-vector, the nature of the Green’s function matrices are different.

The Green’s function of the atom-cavity interaction is Hermitian because of the chirality

of the resonator. If GC
ij = |GC

ij |eiφ, then due to the standing wave nature of the resonator

mode, GC
ji = |GC

ij |ei(2πn−φ) = |GC
ij |e−iφ. This results in purely real eigenvalues, meaning

none of the eigenmodes of the atom-cavity interaction have any energy shift associated with

them. There is only one non-zero eigenmode with decay rate NC1 and N − 1 completely
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dark subradiant states. These eigenmodes also follow the familiar orthogonality relation

U · V = U†V.

On the other hand, the Green’s function of the Free space decay is complex-symmetric.

This means that GF S
ij = GF S

ji . This results in the eigenmodes having a different orthogonality

relation 〈U, V〉 = UV.

The combined Green’s function will be neither Hermitian nor Complex-symmetric. This

will result in having different left (L) and right eigenvectors (R) and a different orthogonality

relation.

GRα = GαRα

L†
αG = GαL†

α

(5.16)

where Gα are the eigenvalues of eigenmode α of the full Green’s function. The Left and Right

eigenvectors Lα and Rα can then be normalized to follow

∑
j

L†
jαRjα′ = δα,α′ (5.17)

Using this orthogonality relation and solving the master equation Eq. (  5.9 ) for steady state

in the low-intensity limit (ignoring terms of order Ω3), we get

vi = −ia0

2

∑
jα ΩjL†

jαRiα

(Gα − i∆A) (5.18)

and ρ̃ij = viv
∗
j /a0, and the ground state population a0 can be calculated using Tr[ρ] = 1.

Using this result to directly calculate the final steady state instead of time propagating the

density matrix will provide an exponential speed in the time required to run computations.

In the case of pulsed excitation, the state can be directly initialized into a Timed Dicke State

with a small population since the pulse time will be too short to cause mixing into any other

states.

97



5.2.2 Rates into the cavity and free space

The rate of photons being emitted into the two channels can be calculated using the

quantum jump operator (σ−ρσ+).

RC =
∑
i,j

2GC
ij σ̂−

i ρσ̂+
j (5.19)

RF =
∑
i,j

2Re{GF S
ij }σ̂−

i ρσ̂+
j (5.20)

Although each eigenstate evolves as an exponential, the rates are a sum of interference of

all the eigenmodes. Hence the rates, as well as the total excitation probability do not decay

exponentially. The decay rate of the light emitted into the two channels varies over time. In

this chapter, the focus will be on the instantaneous decay rate, right after the moment when

the drive is turned off in order to study the initial time behaviors of the system. The decay

rates into the free space and resonator cavity channels have been defined as

ΓF = RF

〈e〉
ΓC = RC

〈e〉
(5.21)

where 〈e〉 is the total excitation probability in the system.

It is interesting to note that the decay rate into free space is independent of the single

atom cooperativity C1. This is because, at low intensities, the decay rate into free space is

solely dependent on the relative phase and the relative amplitude of the excitation on the

atoms. Moving the atoms in the z-axis and changing the atom-cavity interaction strength

changes neither of the two.

5.3 Results

We consider two main configurations, atoms in a randomly distributed cloud and an

array of atoms. The focus of this study will be on the decay characteristics due to emission

into free space and into the resonator cavity.

In the experiment, the most reliable measurement that can be made is the rate of photons

being emitted into the cavity mode, which can be measured as a change in transmission rate
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from the output waveguide. These measurements can be utilized to verify the theoretical cal-

culations, and further calculations can be performed to expand the scope and understanding

of the experiment.

The atoms can be excited using either a Gaussian short-timed pulse or can be driven up

to steady state. The physics behind both of these situations are considerably different. In

the case of the short pulse, the state that the atoms get excited into will be a Timed Dicke

State (TDS) with a k-vector corresponding to the resonator mode. Since the pulse time is

short, the detuning will also play a negligible role. This will be a superradiant state of the

atom-cavity interaction. For decay into free space, the state will have a higher k-vector than

k0, and are typically associated with subradiance.

The system can also be driven until steady state (SS) by using a significantly longer pulse

duration. Since there is constant driving, the system is usually pumped into subradiant

modes. The detuning will also play an important role in determining which modes are

excited.

5.3.1 Evanescent coupling

The atoms couple with the resonator mode through an evanescent coupling. The coupling

decreases exponentially with distance from the resonator. The atom’s average position along

the z-axis depends on the trapping potential, allowing control of the single atom cooperativity

C1. This provides an opportunity for studying the scaling of different parameters as a

function of the atom-cavity interaction strength.

With the current capabilities of the experiment, the average position of the atoms can be

as close as 400nm away from the surface which corresponds to C1 ≈ 0.05. In the proposed

plan to implement an atom array, the trapping methodology can afford the atoms to be much

closer to the resonator waveguide, leading to much higher average cooperativities (C1 ∼ 10).

Although the position-dependent coupling can provide an opportunity for controlling the

interaction strength, it can also cause issues when it comes to the randomized position of

atoms in the cloud. The spread of the atoms in the z-direction due to the trapping potential

99



 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0  20  40  60  80  100  120

Li
ne

w
id

th
 (

in
 t

er
m

s 
of

 Γ
)

Number of Atoms

Linewidth of Spectrum

Theoretical Calculation
Experimental Measurement
Theoretical Calculation with No Free Space Interaction

Figure 5.2. The measured and calculated linewidth of the spectrum as a
function of number of atoms. Blue points with error bars denote experimental
data. Red circles with lines show theoretical calculations. The black line shows
the theoretical calculation of the hypothetical situation where there is no free
space collective interaction.

will cause a spread in the single-atom cooperativity of the atoms. This is further explored

in the context of atom arrays in Sec.  5.3.3 

5.3.2 Atom Cloud

In the current state of the experiment, a cloud of atoms is trapped and cooled near the

micro-ring resonator. The cloud is shaped almost like a cigar with a lengthwise spread of

around 2µm along the waveguide. In the transverse direction, the cloud is tightly trapped

to a spread of around 100nm. Although the position dependence on the z-direction above

the resonator is not Gaussian, it has an approximate spread of 200nm.

When the atom cloud is excited into a Timed Dicke State (TDS) using a fast pulse of

light, it is excited into a state similar to a spin-wave excitation with the k-vector as ∼ 1.7k0.
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While one might expect this state to be subradiant to free space, Ref. [  105 ] has shown that

for an atom cloud, the smallest decay rate for such high-k states in atom clouds is Γ0.

The TDS state will be perfectly superradiant to the cavity with a decay rate of NC1Γ0,

while having a decay rate of Γ0 into free space. Therefore, the TDS will excite a state with

a total decay rate (1 + NC1)Γ0.

When the atom cloud is excited to Steady State (SS), even though the excitation is with

a high k-vector, the state is pumped towards subradiant states. The free space interaction

facilitates the mixing between the superradiant state and the completely dark subradiant

states of the atom-cavity interaction. The cavity decay rate dips below the superradiant rate

of NC1Γ0, but remains larger than the single atom cooperativity of C1Γ0. Although there

is a reduction in the superradiance, it is not subradiant with respect to emission into the

cavity.

Without the free space interaction, the state will only be excited to the superradiant

mode of the atom-cavity interaction and the decay rate will scale as (1 + NC1)Γ0. This

is depicted in Fig.  5.2 where the measured and calculated line-width of the spectrum of

transmission is shown.

The eigenmodes of the atom-cavity Green’s function are purely dissipative and will not

contribute to line-shifts. On the other hand, the interaction through free space will contribute

to a shift depending on the density of the atoms. Therefore, a shift in the spectrum due

to the free-space interaction can be expected. Contrary to expectations, the shifts observed

experimentally were an order of magnitude higher than the calculations. Several effects like

AC Stark shift, vicinity to a dielectric surface, and motion of the atoms were explored but

were unable to explain the discrepancy. Much larger shifts are expected in the case of atom

arrays, and clearer answers are expected once they are implemented in the next stage of the

experiment.

Although the rate of the photon emission into the output waveguide is the only robust ex-

perimental measure, the early time decay rate of the photon rate can also be computed. This

is equivalent to calculating the 〈Ṙc/Rc〉. Fig.  5.3 shows the measurement and calculation of

this quantity as a function of the single atom cooperativity C1.
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Figure 5.4. The decay rate into free space when a perfect atom array is
excited to the TDS through the resonator, as the separation d and effective
refractive index neff are varied. The white point denotes the proposed param-
eters of the experiment.

In a system with non-exponential decay, the measurement of the rate of decay of the

photon rate is not analogous to the measurement of the decay rate. It remains a challenge

in experiments to reliably measure the rate of decay in a system. In this particular platform

where the interaction strength can be varied and non-exponential decay is present, the

discrepancy is much more apparent.

5.3.3 Atom Arrays

Although the system can become subradiant to free space through a steady state excita-

tion in atom clouds, the degree of superradiant interaction with the cavity will also decrease.

Timed Dicke States will be more useful in utilizing the full superradiance benefit of this

platform. In this section, we explore the potential of atom arrays in reaching subradiance in

free space through the simple Timed Dicke State excitation.
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The next stage of the experiment involves the implementation of an array of atoms

trapped above the ring resonator. The atoms will be trapped using an evanescent field trap,

resulting in the atoms being separated by about 0.3λ. This is close to half the wavelength

of the high-k excitation mode of the ring resonator. When the atoms are excited through

the resonator, it can facilitate almost perfectly subradiant states into free space due to the

alternating phases in adjacent atoms.

The higher effective refractive index neff of the resonator plays a major role in contribut-

ing to accessing highly subradiant states in the case of atom arrays. The decay rate into free

space as a function of the effective refractive index of the resonator, and the separation of

the atom d has been depicted in Fig.  5.4 . Although very good subradiance (ΓF < 0.1) can

only be achieved in the regime of high neff and separations d < 0.5λ, there are still other

regions where nominal subradiance (ΓF < 0.5) can be achieved. As mentioned at the end

of Sec.  5.2.2 , in the low-intensity limit, ΓF is only dependent on the relative phase between

the atomic excitation and is therefore independent of the single atom cooperativity C1.

The white dot depicts the proposed parameters of the upcoming experiment. For a

perfect array with separation of d = 0.3λ and effective refractive index neff = 1.69, the free

space decay rate ΓF = 0.035Γ0.

Effects of Disorder

Although atom arrays show great promise in achieving subradiance in free space, in-

evitable defects due to experimental implementations can be limiting. We study how two

common sources of imperfection can disturb the perfect coherences that go into making an

ideal subradiant state.

The coupling of the cavity mode with the atoms has an exponential dependence on the

z-position due to the nature of the evanescent coupling. Thus, the spread in the z-position

due to trapping will cause a spread in C1 of each atom. The randomness in the single atom

cooperativity C1 contributes to another source of decoherence.

In Fig.  5.5 (a), the decay rate into free space is plotted as a function of the spread in

the z-position of the atoms. In this case, the spread in the other two directions is assumed
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to be negligible to isolate the effect of the z-spread. The red squares denote the case when

all the atoms have a uniform C1 and the red squares denote the situation where the C1 is

z-position dependent. Just the spread in position alone can cause decoherence and reduce

the degree of subradiance, but the randomness in C1 causes a much larger effect At 50nm

spread, the reduction in subradiance into free space due to randomness in C1 is 8 times larger

than the reduction due to randomness in z-position alone. This emphasizes the importance

of confining the atom tightly in the z-direction in the case of a system with evanescent

coupling.

In Fig.  5.5 (b), the effect of the filling fraction of the array is depicted. The atoms are

filled in each site with a probability depending on the filling fraction until there are 20 or 40

atoms in the system. This is done to maintain the scaling of the waveguide interaction with

the number of atoms. The trend is almost linear, connecting the points from Γ0 at 0% filling

fraction to the minimum possible decay rate at 100% filling fraction. This emphasizes the

importance of implementing arrays with a high filling fraction to achieve good subradiance

in free space. Even if the state is completely dark for a perfect array, 50% filling fraction

can only allow a minimum of ΓF = 0.5Γ0.

Circular Array

For the linear array that we have been discussing so far, most of the emission into free

space occurs at the ends of the array. Reference [  35 ] has shown an exponential increase in

subradiance when using rings. The structure of the micro-ring resonator naturally lends itself

to the potential of having a ring of atoms trapped all along the resonator. The evanescent

field trap runs throughout the resonator and the atoms can be guided around the ring. Since

the atoms are still interacting with the chiral mode, the orientation of the dipole will be

along the radial direction.

Figure  5.6 shows the comparison between a linear array and a ring array trapped along

the micro-ring resonator. It depicts the decay rate into free space that is achievable using

a TDS excitation through the waveguide as a function of the number of atoms in the array.
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This is similar to Fig 7 in Ref. [ 35 ] since we can almost reach the perfect subradiant state

with the ring resonator setup and evanescent field traps which use the same high k-vectors.

The ring of atoms can form another whispering gallery mode resulting in minimal loss

of photons into free space. The interactions between this mode and the whispering gallery

mode of the resonator hold great potential for applications in quantum control and photon

storage.

Although there is great promise with a ring due to the exponential scaling, the effects

of disorder described in Se.  5.3.3 will play a similar role in limiting the effectiveness of the

system.

5.4 Conclusion

We have studied the effects of collective dipole interactions in a system of atoms trapped

in the vicinity of a nanophotonic micro-ring resonator. We simulated the current experimen-

tal setup to understand the dynamics and to inform potential future research directions. The

atoms can interact with each other through two channels, free space and the chiral resonator

cavity. The different properties and the mismatched k-vector of the two channels lead to

interesting dynamics.

We studied the spectrum and decay rates of a cloud of atoms trapped near the resonator.

The atom-cavity interaction has a single superradiant mode with all the other modes being

completely dark. When driven to a steady state, the free space interactions can cause mixing

between these states and pump the whole system towards subradiance.

We explored the potential of trapping atoms in sub-wavelength arrays along the resonator.

We studied the effects of the interplay between the effective refractive index of the waveguide

and the separation of the atoms in the array. We explored the effects of potential factors

of disorder in experimental implementations. This platform can also be used to form a ring

of atoms around the ring resonator to achieve much better scaling on subradiance when

compared to linear arrays of atoms.

This versatile light-matter interaction platform holds great potential with its many de-

grees of control and tunable parameters. Implementing atom arrays will open up the possibil-

108



ity of ”selective radiance”. Expanding the study to three-level atoms opens new application

possibilities, such as EIT and photon storage.
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6. SUMMARY AND OUTLOOK

In this thesis, we discussed two published and two to-be-submitted manuscripts that describe

the effects of collective dipole interactions in various contexts. In Chap. 2 and Chap. 3, we

studied the impact of the recoil in atom arrays when interacting collectively with incident

light in various scenarios. The eigenstates of the excitations of an atomic array and its effects

on the recoil are studied. The recoil, in certain cases, was found to be proportional to the

lifetime of the excitation in the process of collective spontaneous decay. The recoil energy

deposited by a single photon emission in a highly subradiant decay was about a thousand

times higher than expected. This suggests significant challenges in utilizing subradiant states

of atoms for quantum information processing, as it could lead to atoms being expelled from

the trap. Further, the effects of the trap frequency and the contributions to the recoil from the

different terms of the Lindblad superoperator and the Hamiltonian are studied. In Chap. 4,

we study the photon statistics of the emitted light from collectively interacting dipole systems

in the low-intensity limit using the double excitation states. We study the properties of the

double excitation eigenmodes and how they connect with the single excitation eigenmodes.

We explore how the lifetimes of the eigenmodes can impact the initial time correlation g(2)(0)

of the emission. In Chap. 5 we explore the experimental system of atoms trapped near a

nanophotonic micro-ring resonator and the potential for being used as a versatile light-

matter interaction platform. The atoms can interact with each other through two channels,

free space and the chiral resonator cavity. We simulate the current experiment involving

randomized atom clouds and further explore the potential of ordered atomic arrays.

Collective interactions have increasingly become an important tool for coherent control

and quantum manipulation applications. Dense atom arrays have been shown to have excit-

ing applications like coherent control of light, topological states, and quantum information

processing. But most of these demand very small inter-atom separations and high trapping

frequencies, which can be very hard to achieve with atoms trapped with light. An alternative

approach could be exploring other systems like impurities in solid state or quantum dots to

overcome these issues. There have been recent engineering advances in creating dense arrays

in such systems [  106 ]. While this approach may introduce new challenges, like inhomoge-
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neous broadening, the advantage of being able to overcome the issues with atoms trapped

in free space, makes it a promising avenue worth investigating.

Although nanophotonic systems are experimentally difficult to work with, there has been

considerable progress toward various implementations that can facilitate interactions between

atoms. These systems offer stronger interaction between the atoms when compared to just

free space. The study of the nanophotonic system discussed has only barely scratched the

surface and further work remains for exploring other potential applications.
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