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ABSTRACT

Context. During the core collapse of a massive star, and immediately before its supernova explosion, there is amplification of asym-
metric motions by the standing accretion shock instability (SASI). This imprints a frequency signature on the neutrino flux and the
gravitational waves that carries direct information about the explosion process.

Aims. The physical interpretation of this multi-messenger signature requires a detailed understanding of the instability mechanism.
Methods. We carried out a perturbative analysis to characterise the properties of SASI and assess the effect of the region of neutron-
ization above the surface of the proto-neutron star. We compared the eigenfrequencies of the most unstable modes to those obtained
in an adiabatic approximation where neutrino interactions are neglected above the neutrinosphere. We solved the differential system
analytically using a Wronskian method and approximated it asymptotically for a large shock radius.

Results. The oscillation period of SASI is well fitted with a simple analytic function of the shock radius, the radius of maximum de-
celeration, and the mass of the proto-neutron star. The oscillation period is weakly dependent on the parameterised cooling function,
but this latter does affects the SASI growth rate. We describe the general properties of SASI eigenmodes using an adiabatic model.
In this approximation, the eigenvalue problem is formulated as a self-forced oscillator. The forcing agent is the radial advection of
baroclinic vorticity perturbations and entropy perturbations produced by the shock oscillation. We reduced the differential system
defining the eigenfrequencies to a single integral equation. Its analytical approximation sheds light on the radially extended character
of the region of advective-acoustic coupling. The simplicity of this adiabatic formalism opens new perspectives for the investigation

of the effect of stellar rotation and non-adiabatic processes on SASI.
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1. Introduction

The explosive death of massive stars is sensitive to the devel-
opment of hydrodynamical instabilities, which break the spher-
ical symmetry of the stellar core, affect the efficiency of
neutrino energy absorption, and generate turbulence (Miiller
2020; Janka et al. 2016; Burrows & Vartanyan 2021). A spher-
ically symmetric scenario based on radial motions seems pos-
sible only for the lightest progenitors (Kitauraetal. 2006;
Stockinger et al. 2020). Asymmetric motions contribute to the
kick and spin of the neutron star (Miiller et al. 2019; Janka
2017), the emission of gravitational waves (Kotake & Kuroda
2017), and a modulation of neutrino emission (Miiller 2019b;
Tamborra & Murase 2019). Drago et al. (2023) considered the
correlation of instability signatures in the gravitational waves
and neutrino signals in order to improve the efficiency with
which we can detect gravitational waves from nearby super-
novae. Ultimately, the information encoded in the gravitational
waves and neutrino signals can be used to recover the properties
of the dying star and its explosion mechanism (Powell & Miiller
2022). The computational cost of 3D numerical simulations pre-
cludes systematic coverage of the large parameter space describ-
ing the initial conditions of stellar core collapse. Understand-
ing the underlying mechanism of hydrodynamical instabilities is

* Corresponding author; foglizzo@cea. fr

essential to extrapolating the results of sparse numerical sim-
ulations, evaluating the impact of additional physical ingredi-
ents, and designing effective prescriptions for parametric studies
(Miiller 2019a).

Among the hydrodynamical instabilities at work during the
phase of stalled accretion shock, the standing accretion shock
instability (SASI; Blondin et al. 2003) is able to introduce coher-
ent transverse motions with a large angular scale, growing over
a timescale related to the advection time from the shock to
the neutron star surface. The mechanism of SASI has been
described as an advective-acoustic cycle between the shock
and the vicinity of the proto-neutron star (Foglizzo et al. 2007,
Ferndndez & Thompson 2009b; Scheck et al. 2008). Our ana-
lytical understanding of SASI eigenfrequencies in the WKB
approximation is however restricted to the limit of a large shock
radius for high-frequency overtones (Foglizzo et al. 2007), while
the lowest-frequency fundamental mode is often the most unsta-
ble. A fully analytic solution including the fundamental mode
was obtained only in a very idealised model, where the sta-
tionary flow is plane parallel and uniform except in a compact
region of deceleration that mimics the vicinity of the neutron
star (Foglizzo 2009) (hereafter F09). This toy model neglected
the flow gradients that are extended all the way from the shock
to the neutron star and the non-adiabatic character of the neu-
trino processes taking place in the vicinity of the neutron star.
Despite these limitations, this model illustrated the interplay
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of the advective-acoustic and the purely acoustic cycles, and
the expected phase mixing taking place at high frequency. The
model was used by Guilet & Foglizzo (2012) to interpret the fre-
quency spacing of the eigenspectrum in the framework of the
advective-acoustic mechanism rather than a purely acoustic pro-
cess. The physical understanding of SASI led Miiller & Janka
(2014) to define an empirical formula for the SASI oscillation
period in order to interpret the modulation of the neutrino sig-
nal. Directly proportional to an approximation of the advection
time from the shock to the neutron star surface, it was tested on
a 2D numerical simulation of the collapse of a 25 M, progenitor.
However, whether or not it can be generalised for other progeni-
tors, as proposed by Miiller (2019b), remains unclear.

The aim of the present study is to improve our understand-
ing of the fundamental mode of SASI in spherical geometry
in order to better identify the physical parameters governing
its oscillation frequency. Simple cooling functions mimicking
neutrino emission are used to assess the role of the cooling
region. An adiabatic approximation is also used to assess the
role of the advective-acoustic coupling in the radially extended
region between the shock and the proto-neutron star. The adia-
batic approximation is motivated by the adiabatic simulations of
Blondin & Mezzacappa (2007) and by the shallow-water exper-
iment (Foglizzo et al. 2012, 2015), which both suggest that
several properties of SASI may be understood using adiabatic
equations. Dunham et al. (2024) have also used the adiabatic
approximation to analyse the impact of general relativistic cor-
rections on SASI eigenfrequencies.

The set of differential equations defining the eigenfrequen-
cies of spherical accretion are recalled in Sect. 2, with particular
attention being paid to the radial extension of the non-adiabatic
cooling layer and its impact on the oscillation period of SASI.
The eigenfrequencies calculated in the adiabatic approxima-
tion are compared to those including neutrino losses in Sect. 3.
The adiabatic model is formulated as a self-forced oscillator in
Sect. 4, with eigenfrequencies defined by an integral equation.
An analytic approximation of this equation is outlined and anal-
ysed in Sect. 5. Conclusions and perspectives are formulated in
Sect. 6.

2. Stationary accretion with non-adiabatic cooling
2.1. Stationary flow

We use the same general framework as Blondin et al. (2003),
Foglizzo et al. (2007), Blondin etal. (2017) to describe the
phase where the accretion shock stalls at the radius rg,. Neutrino
absorption is neglected and neutrino emission near the proto-
neutron star radius ry is idealised with a cooling function of the
density p and pressure p:
L=~ " M
The collapsing stellar core immediately after bounce is modelled
as a perfect gas with an adiabatic index of y = 4/3, dominated
by the degeneracy pressure of relativistic electrons. The gravita-
tional potential ® = —G M, /r is assumed to be dominated by the
mass M, of the proto-neutron star in the Newtonian approxima-
tion for simplicity. We neglect the self-gravity of the accreting
gas and the increase in M, with time. The dimensionless mea-
sure of the entropy S is defined as

S =

p
o logp—y. 2)
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The stationary flow is described by the mass conservation, the
entropy equation, and the Euler equation:

Tsh \?
pv = (Th) PshVsh » 3
os L
el 4
or pv’ @)
2 2
ﬁ Vi & Lol= £ 5)
or\2 vy-1 pv
where ¢ = (yp/p)'/? is the sound speed and v < 0 the radial

velocity. The geometrical parameter g = 2 accounting for the
spherical geometry is noted as a parameter in this section and
Sect. 3 to keep track of its impact on the equations in the spirit
of Walk et al. (2023). The subscript ‘sh’ in Eq. (3) refers to quan-
tities immediately below the shock, and the subscript ‘1’ refers
to pre-shock quantities. The jump conditions at the shock follow
from the conservation of mass flux and momentum flux, taking
into account the energy lost across the shock through nuclear dis-
sociation. This latter is modelled as in Ferndndez & Thompson
(2009b), Fernandez et al. (2014) by the parameter &, which is a
measure of the energy loss Aegisso per unit of mass in units of the
pre-shock kinetic energy density v%/ 2 as in Huete et al. (2018):

Aegisso
v% /2
The effect of £ on the post-shock Mach number My, and the
Rankine-Hugoniot conditions is described in Appendix A, fol-
lowing Egs. (A.4)-(A.6) of Foglizzo et al. (2006). The pre-
shock deceleration effect of pressure is neglected, with v% ~
2G Mg/ rgh. Defining the Mach number M = |v|/c as positive,
we assume a strong adiabatic shock M; > 1 in the numerical

calculations of this section.

The adiabatic compression of the post-shock flow by the
gravitational potential @ produces an inward increase in the
enthalpy ¢?/(y — 1) and thus an increase in the gas temperature
T o« ¢? according to the Bernoulli Eq. (5). In our model of sta-
tionary accretion, the temperature profile displays a maximum at
aradius denoted 7pear, Where the energy losses by neutrino emis-
sion balance the adiabatic heating due to the gravitational com-
pression. The width of the cooling layer depends a priori on the
parameters («, ) of the cooling function £, the mass accretion
rate, and the geometry. With @ = 3/2 and 8 = 5/2, Walk et al.
(2023) noted that both the radius rpeak ~ 1.27ps of maximum tem-
perature and the typical width Arpea ~ 1.57,¢ of the temperature
profile measured at half maximum seemed surprisingly indepen-
dent of both the mass-accretion rate and the shock radius, and
also seemed independent of the geometry. Closer inspection con-
firms that the location of 7y varies by less than 1% between
the cylindrical and spherical geometries, and varies by less than
0.5% with r, for rg,/rys > 3.

Figure 1 compares 7y to the radius of maximum deceler-
ation denoted ry, with ry < rpeax Over a large range of param-
eters (a,f3), except for when S approaches unity. Noting that
ry = s for @ < B (Foglizzo et al. 2007), Fig. 1 indicates that
peak/Ty ~ 1.2 for (a,8) = (3/2,5/2), and rpeac/rv ~ 1.0 for
(a,B) = (6, 1). In Sect. 2.2, the parameters (a, 8) are varied con-
tinuously from (3/2,5/2) to (6, 1) and from (3/2,5/2) to (5,6)
in order to evaluate their impact on SASI properties.

(6)

E =

2.2. Perturbed flow

The perturbations of the stationary flow are characterised by
the wavenumbers £, m of spherical harmonics and a complex
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Fig. 1. Ratios rpea/7ns (thick solid lines) and ry/rys (thin dotted lines)
depending on the coefficients (a,5) that define the cooling function in
Eq. (1). The contour lines are calculated for y = 4/3 in spherical geom-
etry, with rg,/rps = 10, without dissociation (¢ = 0). The values of
Tpeak /Tns and 7y /1ys are indicated with the same colour code. The cooling
parameters (@,8) = (3/2,5/2), (6, 1) and (5, 6) used in Fig. 3 are indi-
cated with crosses for reference and are connected by grey lines. The
black dotted line marks the threshold § = @ above which the advection
time from rpeqx 1O 7 is finite and ry = rys.

eigenfrequency w. The eigenfrequency is independent of the
azimuthal wavenumber |m| < ¢ as established in Foglizzo et al.
(2007). We use the same physical variables as in Foglizzo et al.
(2006) guided by analytical simplicity, namely the perturbation
of the Bernoulli constant ¢ f, the perturbed mass flux 6k, and
the perturbed dimensionless entropy 6S. The perturbation 6K
is a combination of perturbed entropy 65 and the quantity ow,
defined from the radial component of the curl of the vorticity
perturbation 6w = V X ov:

2

s
Sf = vév, + 2| @)
y—-1
Sv, §
sh=22r 4% 8)
voop
1 6 g,
6§=—-2 % ©)
y-l¢ p
ow, = r(V xXow),, (10)
b
= m 6_9(5W‘p sin@) - lm6W9 s (11)
C2
5K = rvow, + (0 + 1)755. (12)

We introduce the quantity 6A, which is defined as the divergence
of the ortho-radial velocity 6v, = (0, 6vg, 6vy) :

SA =1V 6v,, (13)
d
= ﬁ (6 sin6) + imbv . (14)

We establish in Appendix B that A and 6w, are related to the
perturbation dv, of the radial velocity as

_réw, B 1 &ﬂ
T+ 1) L+ or

This equation invites us to interpret SA/{(£ + 1) as the poten-
tial defining the compressible part of the perturbed velocity, and

ov,

5)

row, /€(€ + 1) as the rotational contribution to the radial veloc-
ity perturbation. Using the transverse components of the Euler
equation Eqgs. (B.10), (B.11) in Appendix B with Eq. (12), we
note that 0A is related to 6K and 6 f as
0K = iwdA + €(£ + 1)6f. (16)

The differential system satisfied by (0A, dh, S, 6K) is as follows:

1_M2£+i£ i—_ — _1+L§
v o Euer T 7 M)y
oK
_, 17
e+ ) (17
1—M2£+i£ 5h=w2_wiamb 0A
v  or (2 V22 L+ 1)
iw iw oK
TR TRy (18)
R
or v pv
0 iw\ 6K L
—- _ = =ol=). 2
((9r v)€(€+1) 6(,0\/) (20)

This system includes explicit non-adiabatic terms only in the
Egs. (19, 20) governing 6S and 6K. In Eq. (18), the Lamb fre-
quency wramp associated with the spherical harmonic of order ¢
defines the turning point of non-radial acoustic waves:

2
W = U+ 1)%(1 vy 1)

The boundary conditions at the shock are reformulated from
Egs. (28, 29, E.7, E.8) in Foglizzo et al. (2006) using Eq. (16):

6Ash Vsh

= (1= Az, 22
W+ 1) ( vl)“ ¢ (22)

) A
Shgy = (1 - “—h) = (23)

V1 ] Vsh

2
5 =y (i + wq,)Ag(l - D) , (24)
Csh Vi
C2

5Ky, = —L(L + 1)Ag%h (VST (25)

where A and Av = —iwA{ are the shock displacement and
velocity, respectively. The reference frequency we in Eq. (24)
is defined as

2rn d® _ gV Ven sh
Wolsh _ 1 V1 v% dr vy W Fsh [VS]I (26)
=57 Vg s
Vol 2ven 132 yME (1 _ th)z
Vi

where wq defines the threshold frequency separating the regime
(w < wg) — where the phase of 05 g, is opposed to that of A —
from the regime (w > wg), where the phase of 6S, is set by
that of Av.

The first two differential equations (17)—(18) are transformed
into the following second-order differential equation:

l—M22+i£2+w2_wiamb SA =
v or c?

vZc?

I rWs g 1)7—_15(£). 27
v y

or pv
A196, page 3 of 16
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Fig. 2. Growth rate (solid lines) and oscillation frequency (dashed lines)
of the fundamental SASI mode, normalised by |vg,|/rs, calculated with
& = 0 for the cooling parameters (3/2,5/2) (purple) and (6, 1) (orange),
and displayed as functions of rg,/ry. The analytic fitting formula (31)
for w, is displayed with a green dashed line.

We recognise an acoustic oscillator modified by advection on
the left-hand side of Eq. (27), with a forcing on the right-hand
side driven by vorticity perturbations and by the perturbation of
neutrino cooling. Interestingly, part of this forcing can be studied
analytically in the adiabatic approximation defined in Sect. 3.

The variables o6v,, dp, oc, and op are deduced from
0A,0h,6S, and 6K using Egs. (B.4)-(B.7), as detailed in
Appendix B. In particular, using Eq. (B.4) to express the lower
boundary condition v, (rys) = 0, leads to

(Poh +?6S -6 f)ns = 0. (28)

With a vanishing sound speed c,s = 0 resulting from the hypoth-
esis of stationary flow, the lower boundary condition év,(r,s) = 0
is equivalent to ¢ f,,s = 0.

The boundary value problem is solved numerically using a
shooting method from the shock to the inner boundary, iterating
over the value of the complex eigenfrequency w. The mathemat-
ical singularity at r,s is overcome numerically by using log M
as an integration variable, as in Foglizzo et al. (2007). The inner
boundary is then defined as the point where the Mach number
has reached a sufficiently small value (M ~ 107%).

Foglizzo et al. (2007) noted similar properties of the SASI
harmonics as functions of rg,/ry with (a,8) = (3/2,5/2) and
(6, 1) in their analysis. We extend this analysis for the fundamen-
tal mode and note in Fig. 2 that the normalised growth rate and
oscillation frequency are asymptotically independent of (a,[3)
for rgy/rv > 1, that is, when the cooling layer is thin com-
pared to the shock radius. This surprising property is checked
by varying («, 8) continuously from (3/2,5/2) to (6, 1) and from
(3/2,5/2) to (5, 6) in Fig. 3. It is remarkable that the normalised
oscillation frequency appears to be independent of the cooling
process down to a very low ratio ry,/ry: the following analytic
formula wf provides an approximation for w, within 3% for
1.8 < I‘sh/rv < 10:

adiab _ 'sh T'sh
= jog 0 29
Tadv =l 8 9
R = 1og(rriv“ - 1), (30)
Wit = 2n (o 56773 + 0.28628R; — 0 031763R2) 31)
r adiab \° . . 1)

adv
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0.1 t t t t t t
0

Fig. 3. Growth rate (solid lines) and oscillation frequency (dashed lines)
of the fundamental SASI mode, normalised by |vg|/ 7, calculated with
ra/tv = 2 (purple lines) and ry,/ry = 4 (orange lines) for a range of
cooling parameters («, §) varying continuously from (3/2,5/2) to (6, 1)
(thin lines) and from (3/2,5/2) to (5, 6) (thick lines), as indicated in
Fig. 1.

3 t +
—T_ _/t (a=3/2,8=5/2)
SASI adv
2.5 r
24 .
1.5 NS r
1 3 3 4
r /r

sh v

Fig. 4. Variation in the ratio Tsagr /725 associated with the fundamental

SASI mode, ¢ = 1, calculated for the cooling parameters (3/2,5/2)
(purple) and (6, 1) (orange) and displayed as functions of ry,/ry. The
vertical lines highlight the range of ry,/r, in the analysis of model s25
in Miiller & Janka (2014). The analytic fitting formula (31) is displayed
with a dashed green line.

The adiabatic advection time ngif‘b corresponds to a velocity pro-

file increasing linearly with radius as expected asymptotically in
spherical geometry for y = 4/3 (Eq. (19) in Walk et al. 2023).

The important role of ry rather than r,,y was also noted by
Scheck et al. (2008), where the strength of SASI in numerical
simulations seemed correlated with the abruptness of the decel-
eration close to the proto-neutron star, and was confirmed in the
toy model used by FO9 and Guilet & Foglizzo (2012).

Figures 2 and 3 also show that the detailed cooling process
affects the growth rate of SASI (solid lines) more than its oscil-
lation frequency (dashed lines) when rg, < 4ry.

We note from Fig. 4 that the oscillation period Tsast = 27/ w,
of the fundamental £ = 1 SASI mode can be significantly longer
than the approximate advection time 7°{" for a small ratio
rsn/ry. The relationship between these two timescales is further
discussed in reference to a simplified model in Sect. 5.3. The
modest impact of the specificities of the parametrised cooling
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Fig. 5. Estimate of the relative error between the oscillation period of
the neutrino signal in model s25 in Miiller & Janka (2014) and in analyt-
ical estimates. The empirical formula (32) is shown with a purple line.
The result of the perturbative calculation is shown for ry = ry without
dissociation (orange line, Eq. (33)), and for ry = 1.3r,, with dissocia-
tion prescribed by Eq. (35) (green line, Eq. (36)). The sensitivity to the
estimate of ry is shown with dashed lines for ry = 1.25r,, (khaki) and
ry = 1.35r, (blue).

1 # # | |
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Fig. 6. Effect of dissociation, measured by &, on the oscillation fre-
quency of SASI for ry,/ry = 1.8 (dashed lines), 1 (solid lines), and 2.3
(dotted lines) for (a,8) = (3/2,5/2) (purple lines) and (a,B) = (6,1)
(orange lines). The analytical formula (34) is indicated with crosses.

process on the fundamental SASI eigenfrequency encouraged us
to apply our simple model to a more realistic physical model of
core collapse in Sect. 2.3. We were also inspired by this finding
to look for a deeper analytic understanding of the SASI mecha-
nism using an adiabatic approximation, as detailed in Sect. 3.

2.3. Comparison of the perturbative model with the empirical
formula proposed by Miiller & Janka (2014)

The adiabatic approximation of the advection time was also used
in the empirical formula (33), which describes the oscillation
period Tsasy in the core-collapse simulation of a 25 Mg pro-
genitor (Miiller & Janka 2014), which is inspired by the physics
of the advective-acoustic cycle. ry was approximated with rpyg
and the time variation of the mass of the proto-neutron star was

neglected:

3
F'sh 2 Fsh
Tohs = 19ms(10()skm) log(ri).
ns

The SASI modulation of the neutrino signal was identified in
their model s25 between ¢ = 0.12s and ¢t = 0.45 s post-bounce.
The shock radius rg, decreases from 125km to 55km and the
ratio rgn/rys varies between 1.8 and 2.3 according to Figs. 3
and 6 of Miiller & Janka (2014). The formula (32) well captures
the rféz-dependence, which is the main source of variability of
Tsasi during the collapse. The overall accuracy of this formula
is ~26% for model s25 as shown in Fig. 5.

The expected variation of Tsasr estimated from Eq. (31) is as
follows:

(32)

1
1.7M5\2
™ x 1.82(—M"s@)2

0.56773 + 0.28628R, — 0.031763R>’

Tsast = (33)

According to Fig. 5, the overall accuracy of formula (33) applied
to the model s25 is improved to ~10%, which is remarkable
given the simplicity of the perturbative model, which does not
involve any adjusted parameter and neglects dissociation at the
shock. The mass increase M,s/Ms ~ 1.7-2 estimated from
Fig. 2 in Miiller & Janka (2014) contributes to a 8% decrease
in Tsasr- A more physical estimate should also take into account
dissociation, which can significantly increase Tsasi when ry, is
large, and the distinction between r,s and ry, which can signifi-
cantly decrease Tsas when rg, /7y is smallest.

Following Fig. 6, the impact of dissociation on the oscillation
frequency of SASI is tentatively approximated as

2G M, \?
wy(e) = a),(O)—[ G3 “S) £(0.19817 + 0.74804¢) .

rsh

(34)

We note that this analytical formula is tested only in the nar-
row range 1.8 < rg,/ry < 2.3 and is only meant to provide as
an order of magnitude estimate. The dissociation parameter is
approximated according to Fig. 12 in Huete et al. (2018):

re \[1.3 Mo
€ 0'5(150km)( My, )

with a saturation at € ~ 0.5 due to partial dissociation of a-nuclei
(Fernandez & Thompson 2009a). Thus, Eq. (34) is rewritten as

(35)

10ms 10ms 1.069£(0.19817 + 0.74804¢)
Tsast T re \3 (17Mo\3 ’ (36)
sast (rooem)” (H2)
with
3 1
TSASI (]06“{(“1)2 (1.;41\34@)2 log (%) 37

10.42ms ~ 0.56773 + 0.28628R, — 0.031763R?"

According to Fig. 5, taking into account dissociation improves
the accuracy of the empirical formula, but only for a limited
range of prescribed ratio 1.25 < ry/rys < 1.35. Improvement of
the accuracy of the present perturbative model beyond the +10%
level does not appear straightforward given its many approxi-
mations regarding the microphysics, neutrino interactions, and
gravity. Its main improvement compared to the empirical
formula (32) is the fact that it contains physically consistent esti-
mates of the impact of the mass, the dissociation at the shock,
and the SASI phase inferred from the perturbative analysis. Each

A196, page 5 of 16
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of them can potentially affect the oscillation period by several
tens of percent according to Eq. (33) and Figs. 4 and 6. By
neglecting these effects, the empirical formula in Eq. (32) is not
expected to maintain its ~30% accuracy for progenitors other
than s25. The accuracy of Eq. (36) should be tested on other
numerical simulations of core collapse, bearing in mind that our
prescription for dissociation is very crude.

3. Adiabatic model

Here, the adiabatic character of the flow refers to the region
between the shock and the inner boundary, while non-adiabatic
processes associated to nuclear dissociation and neutrino emis-
sion are incorporated into the boundary conditions. The produc-
tion of entropy perturbations by the shock displacement A{ is
taken into account. Nuclear dissociation across the shock is for-
mally taken into account using the parameter € (Eq. (6)), but it is
set to zero in the illustrative figures of this section. The goal of
the analysis presented in this section is to gain some analytical
understanding of the effect of the physical parameters involved
in the SASI mechanism.

3.1. Explicit expressions in the adiabatic approximation

With £ = 0, the differential Equations (19)—(20) describe the
advection of perturbations produced by the shock. Using the
boundary conditions (24), (25) with VS = 0:

68 = 68 gl ¥,
6K = 0.

(38)
(39)
Here, 0S5, is defined by Eq. (24) with a simpler expression for
Wo-

Vi

1
Wolsh _ 2vy — 9

(40)

Ysh *

vl 1-— v

Using Eq. (12) with 6K = 0 and Eq. (38) gives the explicit
expression for ow, of

2

Sw, = —€(€ + 1)~—5S. 1)
’yrv

The vorticity associated to the entropy perturbation is also
explicitly calculated in Appendix C:

ow, =0, (42)
. 2 6
Sy = ——mE_08 (43)
rvsin@ vy
2 068
=——=——. 44
We rvaoo y @4

Together with Eq. (12), Egs. (43), (44) demonstrate that 6K = 0
can be interpreted as a consequence of the baroclinic production
of vorticity.

Equation (16) implies that the wave action df/w is directly
related to 0A:

5f _ A
iw L+

(45)
The transverse velocity components (6vg, 6v,) are deduced from
0A using the transverse Euler equations Eqgs. (B.10), (B.11) with
Egs. (43), (44). Here, 6v, is deduced from Eqs. (15) and (41):
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e 1 86A
v, = ——68 - — L2 46
TN T wer ) or (46)
1 6A
-2 4
Ve =3 TE 1) a8 “7)
m  6A
rov, = — (48)

€€+ 1)sin6’
The adiabatic solution can be viewed as the asymptotic limit
of the model with a cooling function when rpex ~ rys, cOITE-
sponding to « < 1 and B > 1 according to Fig. 1. For the
sake of simplicity, we explore the adiabatic solution with an
inner boundary defined by 6v, = 0, formulated by Eq. (28) with
cns defined as the adiabatic sound speed at the inner boundary.
This prescription could be improved to better account for non-
adiabatic processes in the cooling layer. The adiabatic simula-
tions in Blondin & Mezzacappa (2007) also used év, = O at the
inner boundary.

3.2. Quantitative comparison of the eigenfrequencies with
and without the region of non-adiabatic cooling

The eigenfrequencies corresponding to the adiabatic model are
solved numerically and compared in Fig. 7 to the eigenfrequen-
cies of the non-adiabatic formulation for different values of the
shock radius. The overall trends suggest that the main proper-
ties of SASI can be qualitatively understood by focusing on adi-
abatic processes. The fundamental mode is the most unstable
one for a small shock radius, and becomes dominated by higher
overtones for a larger shock radius. Among the most visible dif-
ferences with the non-adiabatic model, the adiabatic simplifica-
tion underestimates the frequency by a factor of <1.3 for a large
shock radius of rgy, ~ 10r,. The growth rate of the most unsta-
ble mode is overestimated by a factor of <1.4 for a small shock
radius and is underestimated by a factor of <1.3 for a very large
shock radius.

4. Formulation of the SASI mechanism as a
self-forced oscillator
4.1. Derivation of the second-order differential equation

For the sake of mathematical simplicity, we use the radial coor-
dinate X defined as in Foglizzo (2001):

v
The second-order differential Eq. (27) is simplified to

0 iw\ w- wfamb 0 réow,

—+ = ———|0A = — . 50
l((?X i c2) T X v (50)

Using Eq. (41), the forcing term of Eq. (50) is thus proportional
to the entropy perturbation 65 g, produced by the shock:

0 iw\® - ] 64
9 v = —F56S . 51
l(aX’ch) e A oD
0 ei“’fsh%
= ome Y

We show in Appendix C that the forced oscillator equation can
be rewritten as follows, using boldface for vector quantities:

0w\ W - wiamb 0 row
I ) T P gy O TO0 53
l(ﬂX i C2) v2c? X v (53)
0 rvow
= X M G
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where 0L = r X 6v is the perturbed specific angular momentum
vector and ow = V X dv is the perturbed vorticity vector. We note
from Eqgs. (43), (44) that rv|dw|/c? is conserved when advected.
The relation between 0S¢, and 0Agy, is deduced from Egs. (22)
and (24):

26v
a5+nﬁliﬂ=-( (55)

76A sh

1- ﬁ) (iw + wo).
Vi

The components of transverse vorticity at the shock are related
to the components of perturbed specific angular momentum
according to Eqgs. (43), (44) and Eqgs. (47), (48):

(rvdwe) _ (rv6w¢) e+ 268
6Lg sh 5LL,0 sh )/614 sh ’

(56)

The boundary conditions at the shock and at the inner boundary
are written in Appendix C as follows:

00A iw Vsh 2 Vsh
T8 = Ap 1 -2 s (- MR |1 - 2R
X s V2 ‘h[ vy o )MSh( Vi
O0Agh [ M
14— DA ( —), 57)
[ Sh] TshVsh \ 2Vsh
5A iw 1= M2 8Sa i (™ &
B8 O A — b+ 1)— s O2sh i [ 58
X e~ 2, OAn ( ) M. € (58)

They can also be written with the variables révg, rév,, and
Owg, OW,, using Eqs. (43), (44) and (47), (48). Equations (51) and
(53) are thus equivalent for £ > 1. The same advective-acoustic
cycle can either be considered as an entropic-acoustic cycle or
as a vortical-acoustic cycle.
We define a new perturbative variable ¢Y as follows:
Of o[, % _ __0A [ %

oY = —e

iw {+1) (59)

Here, Y) is defined as the solution of the homogeneous equation
associated to Eq. (51) with 6S = 0 and 6K = 0, and satisfying
the inner boundary condition (58):

62 wz - wiamb
{ﬁ+T % =0 (©0)
19)¢ iw
= = 5 Yolrw). (61)

ns

We refer to Yy as the acoustic structure of the post-shock cavity
modified by the radial velocity, in the absence of interaction with
advected perturbations. The structure of the acoustic equation
and its modification by the advection velocity v are more easily
recognised when rewriting Eq. (60) with the variable r:

2 _ 2 2,2
{6 +(610g1 M)(') w wLamb}YOZO.

ar? or % ar " (1 — M?)? (62)

Identifying the physics of SASI with a forced oscillator enables
us to evaluate the efficiency of the coupling depending on
two effects: (i) the amplitude of the forcing term (cc 1/M?
in Eq. (52)), and (ii) the phase match between the forcing
term (advected wavelength) and the oscillator (acoustic wave-
length). The forcing amplitude is strongest where M is small-
est, in close proximity to the proto-neutron star, but a strong
phase mixing is expected there due to the decrease in the radial
wavelength (cc27|v|/w,) of advected perturbations. A trade-off
between effects (i) and (ii) favours advected perturbations with

100 ’
frequency |- cooling
y=4/3, I=1 — adiabatic
K
=104 g
o

10 100
(r -r )r

sh ns’” ns
2 t

growth rate
y=4/3, 1=1

---- cooling

—adiabatic

10 100
(rsh_rns)/rns

Fig. 7. Oscillation frequency (upper plot) and growth rate (lower plot)
of the modes £ = 1 calculated in units of the post-shock frequency
Ven/Fsh, for y = 4/3, as a function of the shock distance in the model
with cooling using (@,8) = (3/2,5/2) (dashed lines) and in the adia-
batic approximation (solid lines). The fundamental mode (in red) and
the first three overtones (green, orange, blue) are displayed. The grey
horizontal line in the upper plot indicates the Lamb frequency at the
shock. The fundamental mode becomes dominated by higher overtones
as its frequency becomes too low for acoustic propagation (w, < w{" ).

a sufficiently low frequency, coupled to the acoustic structure in
a region sufficiently far from the proto-neutron star to minimize
phase mixing.

This description as a forced oscillator was previously pro-
posed in the context of radial Bondi accretion accelerated into
a black hole (Foglizzo 2001, 2002) and in a planar adiabatic
toy model of SASI with a localised region of feedback (F09).
The present work is the first formulation where the radially
extended character of the advective-acoustic coupling is taken
into account in a shocked decelerated accretion flow in spherical
geometry. We present a quantitative evaluation of the coupling
efficiency in the following section using a classical resolution of
the forced oscillator with the Wronskian method.

4.2. Integral equation defining the eigenfrequencies

In Appendix D, we derive the integral equation defining the
eigenfrequencies, which is equivalent to the full differential sys-
tem and boundary conditions. It is formulated here with the
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variable r:

S GYO " fw _dr ;
a\ Y3 + dhrig (_a = Ml ¥y
T Jsh

sh 5 on o\ M _
iwM% dr iw
— f I (Y()e sh T-M2 v ) _Shefsh Tdrdr,
n

s Or M2
(63)
with @/, a defined as
iw o
"= (y- DM+ e 64
@ =0 - DM, iw+w¢1—t+l“ 64
1 - M
ay = - : (65)

Vi Vsh

(l _ v;h) (iw+we)rg

The first two terms associated with Yy on the left-hand side of
Eq. (63) are acoustic, and are marginally modified by advection.
The terms on the right-hand side involve the phase oscillations
of the advected perturbations. Despite the integration by part, we
recognise in the integral the forcing term of Eq. (52) multiplied
by the derivative of the homogeneous solution Yj. As expected in
Sect. 4.1 for the classical problem of a forced harmonic oscilla-
tor, this integral characterises the efficiency of the forcing, which
depends on both the amplitude profile of the forcing % and the
matching of its phase compared to the phase of the oscillator Y.
An analytic approximation of this integral equation is obtained in
Sect. 5 in the asymptotic regime, where the acoustic radial struc-
ture is non-oscillatory. We verified numerically that the eigenfre-
quencies satisfying the single equation Eq. (63) are strictly the
same as those obtained in Fig. 7 from the solution of the fourth-
order adiabatic differential system (17), (20) with £ = 0, with
the boundary conditions defined by Eq. (28) and Egs. (22), (25)
with VS = 0.

5. Analytical estimate for a large shock radius
5.1. Analytical approximations
5.1.1. Stationary flow

We focus on the case of a strong shock M; > 1 and a large
shock radius rg, > 1y, With the post-shock energy density
described by the Bernoulli equation, Eq. (5), dominated by the
enthalpy and the gravitational contributions:

2 GM,
< . (66)
vy—1 r

The kinetic energy density associated to the radial velocity is
a minor contribution, and is even more negligible when the
photodissociation across the shock is taken into account. The
parameter & impacts the post-shock Mach number and velocity
according to Egs. (A.2), (A.3):

-1
M, ~ 727<1 ~e), 67)
Vsh (y-D(-¢ y-1
w2 gD Syl (©%
Gl dyy-1(1 - )
~ . 69
GMns [2 + (’y - 1)(1 - 8)]2 ( )

Equation (66) allows a power-law approximation of the radial
velocity profile with an exponent @, deduced from Eq. (A.11).
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This exponent depends on both the adiabatic index and the
geometry g = 2:

1

o= —— —g, (70)

y-1
v=vsh(i) : (71)

V'sh

Mg (l’sh)“‘*%

— ~|— . 72
M ;. (72)

We note that Eq. (66) is valid only for r,y < r < ry,, and
becomes inaccurate in the vicinity of the shock where the sound
speed is particularly sensitive to photodissociation, as seen in
Eq. (69).

5.1.2. Acoustic structure of the oscillator

Taking advantage of the low frequency of the fundamental mode
for £ > 1, we approximate in Appendix E the homogeneous solu-
tion Y; as a linear combination of power laws independent of the
frequency for w < Wyamb:

a b
r Fas\! b—afr
Y ~|— — - s 73
0 (rns) [(r)+b+a(rns)] 73)
oy _ b‘“(L)H [(L)”_(m)”], (74)
or Tns  \7Tns Tns r
where the exponents a, b are defined as
a, +1
E N 75
> (75)
1
2 2
L+ 1
bz[(“ Al ) UL+ 1) (76)

The exponents +b correspond to the two components of the
acoustic structure Yy, where the component decreasing inwards
(+b) is associated to the evanescent profile of pressure perturba-
tions at the shock, and the component decreasing outwards (—b)
is associated to the evanescent profile of pressure perturbations
at the inner boundary.

This approximate solution of Y} satisfies the lower boundary
condition only in the asymptotic limit 7,y << rgp.

5.1.3. Forcing by advected perturbations

We use the following approximation of the advection time 7,4y (r)
profile:

" dr
Taav(r) = - )

sh V

1 s| S Gt .
~ fsh (r—h) 1| if @, £ 1, (78)
a, =1 |va| [\ 7
~ I oe B g, = 1. (79)
r

[Vsnl

In particular, Eq. (79) is applicable for y = 4/3. In this regime,
the advection time 7,4y is asymptotically dominated by the inner
region. A numerical calculation indicates that this analytical for-
mula slightly underestimates the adiabatic advection time by less
than 6% in the range 1 < rg,/rys < 100.

We examine the accuracy of our approximation of M and Y
in Fig. 8.
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1000

y=4/3, 1=1

1004

107

_(Msh/M)2 dY fdr
0.14 L

0.01
0.1

dls

sh
Fig. 8. Solution of the homogeneous equation Y, associated with the
fundamental mode ¢ = 1 (solid orange line) for rg,/r,s = 5. This solu-
tion is very well approximated analytically by Eq. (73) (dashed orange
line with crosses). The radial profile of the amplitude of the forcing
term in Eq. (63) (purple solid line) is compared to its analytical approx-
imation (dashed purple line with crosses) using Egs. (72) and (74). The
Mach number profile in the adiabatic model (green solid line) is com-
pared to its analytical approximation (Eq. (72), green dashed line with
crosses). The Mach profile of the flow including cooling is shown for
reference (dark green line).

5.2. Analytical expression of the fundamental eigenfrequency

We approximate Eq. (63) using Eq. (72) and Eq. (73) with
M? < 1, except near the shock. We use the approximations (73)
and (74) of Yy and 0Y,/0r and note that (0log Yy/dlog r)sn ~
1/(b + a) with a,b defined by Egs. (75) and (76). We define
N = a))+a} /(b+a) and introduce the normalised eigenfrequency
Z = iwrg, /|vel:

M2 - L
1 M b+a vy

- ﬁ)(z+ ol
Using the variable x = r/ry, for £ > 1 the eigenfrequency equa-
tion, Eq. (63), is approximated by

N(2) = M (80)

sh o dx
nglf (xb_x )zwfh‘ —
1 X
2
2b Msh Ty,

=N(w”m)+ 81)
[Venl

The approximation of the eigenfrequency with y = 4/3
allows an explicit calculation of the integral involved in Eq. (81).
The following equation defining the eigenfrequencies for £ > 1
is expressed using the complex amplification factor Q(w) per
advective-acoustic cycle:

{(€+1) x:;b

" A,
26 () {1+ [z 427 - 2]
Q2) = e
[1-Z+2-D)NI(Z+2+D)-
sh
(82)
Q (w) et = 1, N
|Vsh|

where b> = 1+£(£+1) and the advection time T, from the shock
to the inner boundary is approximated by Eq. (79) The numeri-
cal solution of this equation is compared to the exact solution of
Eq. (63) in Fig. 9.

10 t
S~ o y=4/3, I=1
= R —
)_‘5} 1< F
3 T \
""" ® --2nh
r adv
cooling
-
0.1 - i
10 100

(r h-rns)/ ns

Fig. 9. Eigenfrequency of the adiabatic solution (green lines) based on
the integral formulation (63) compared to its integrated approximation
(83) (orange lines), which is based on the approximate description of the
flow profile v, M and acoustic structure Y. The estimate of the oscilla-
tion frequency 27/7; neglecting the phase of Q is shown as a dashed
blue line. For reference, the eigenfrequency of the flow with cooling
using (@, ) = (3/2,5/2) is also shown (purple lines with crosses).

The good agreement obtained with the analytic
expression (83) demonstrates that the approximation of the
flow profile v, M and the approximation of the homogeneous
solution Y; are sufficient to capture the essence of the instability
in the adiabatic model and identify the leading contributions
in the integral expression (63). The frequency is overestimated
by up to 20% and the growth rate is overestimated by up to
26%. The region of radial propagation of acoustic waves was
neglected for the sake of simplicity in the analytical approxima-
tion (73) of Y, without significant consequences regarding the
approximation of the fundamental frequency w, , because the
radial extension of this region is modest compared to the region
affecting the phase of advected perturbations.

The larger inaccuracy of ~76% of the simple formula w, ~
2r/75,» also shown in Fig. 9, is mainly due to the neglect of
the frequency dependence of the phase of @, denoted ¢gq. The
complex Eq. (83) is equivalent to the following set of two real
equations:

log|@)|

i = ) (84)
Tadv
2m —
= % (85)
Tadv

5.3. Oscillation period of the advective-acoustic cycle in the
adiabatic approximation

Comparing w, and 2rr/7,3 in Fig. 9, itis particularly striking that
the oscillation period Tsasr = 271/ wy 1s significantly longer than
the adiabatic advection time 7,3 . This contrasts with the simula-
tions in Scheck et al. (2008) where T'sas; ~ T gy 10 line with the
analytic toy model of F09. Not only does Tsag; differ from 773

by more than 76%, but TSASI 1s actually 76% longer than the
longest advection timescale 7,3 , excluding the possibility that
the oscillation period could coincide with any advection time.
As explained in Scheck et al. (2008), the relation between Tsasy

and 7,3 does depend on the phase ¢q of the complex efficiency
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Fig. 10. Amplitude |Q| (solid lines) and normalised phase ¢q/27
(dashed lines) of the complex amplification factor associated through
Egs. (86), (87) to the fundamental eigenfrequency w calculated with
cooling (purple lines with crosses) and in the adiabatic approximation
(green lines), using the same adiabatic estimate of the advection time
7.3, as that in Eq. (79). The orange line shows |Q| and ¢q/27 deduced
from the analytic estimate (orange lines) using Eq. (82) with w satisfy-
ing Eq. (83).

The adiabatic approximation teaches us that, even in a simple
adiabatic model, the phase shift ¢o should not be neglected a
priori. This was also true in the calculation of Sect. 2.3 with non-
adiabatic cooling. The value of |Q| and ¢ can be deduced from
wand ™ from Egs. (84), (85):

adv
0Q = 27 — Wi Ty, 87)

This characterisation of the fundamental eigenfrequency is cal-
culated in Fig. 10 in the adiabatic approximation and compared
to the analytical estimate deduced from Egs. (82), (83); for ref-
erence, it is also displayed in the flow with cooling, using the
same adiabatic advection time, which should not be confused
with the actual advection time taking into account the cooling
layer. In the adiabatic flow, the winding angle of the spiral pat-
tern of advected perturbations from the shock to the neutron star
is @pqy = 2m — @q. We note in Fig. 10 that ¢q < m, implying
that the radial structure of advected perturbations of entropy or
vorticity contains at least a change of sign, as seen in Fig. 2 of
Blondin & Shaw (2007), Fig. 1 of Fernandez (2010), and Fig. 10
of Buellet et al. (2023).

5.4. Comparison to the analytic model in Foglizzo (2009)

The adiabatic formulation incorporates major improvements
compared to the adiabatic toy model used by F09, Sato et al.
(2009), Guilet & Foglizzo (2012): the plane parallel model
allows for explicit analytical solutions and a deeper understand-
ing of the instability mechanism, but some simplifications are
difficult to justify: (i) the assumption of a uniform flow between
the shock and the region of deceleration implies that the verti-
cal size of the acoustic and advected cavities are identical, thus
overestimating the impact of radial acoustic propagation on the
phase of the solution; (ii) the maximum strength @ ~ 2 of the
advective-acoustic cycle is arbitrarily set by the specific value
(0.75) chosen for the ratio c2 /cZ,, which limits the relative
effect of the purely acoustic cycle on the most unstable modes;
(iii) the optimum value of the vertical wavenumber compared to
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the horizontal one is set by the specific value chosen for L/H = 4
in FO9 and Sato et al. (2009) and L/H = 6 in Guilet & Foglizzo
(2012); (iv) the width of the coupling region described by Hy/H
is also a free parameter of the model.

The present adiabatic model offers a new framework over-
coming these shortcomings, and is still simple enough to allow
for analytical results:

— The spherical geometry is taken into account (rather than a
plane parallel approximation in F09).

— The adiabatic heating and deceleration are produced in a
self-consistent manner by the radial convergence in 3D and by
the proto-neutron star gravity (rather than being localised at the
lower boundary by some external potential with adjustable depth
c2./ck, and width Hy/H in F09).

— The gravity produced by the neutron star at the shock is
not neglected, allowing both displacement and velocity effects
for the production of entropy at the shock (rather than ignoring
displacement effects with we = 0 in F09).

The adiabatic model sheds light on some objections by
Blondin & Mezzacappa (2006) regarding the advective-acoustic
mechanism in a non-rotating flow:

(1) The fact that the advection time may be longer than
the oscillation period does not contradict the advective-acoustic
mechanism.

(ii) The fact that the pressure field shows no evidence for
a radially localised coupling radius is explained by the radi-
ally extended character of the coupling process, as seen in the
integral in Eq. (63). The feedback should refer to the radially
extended pressure structure rather than the radial propagation of
an acoustic wave.

6. Conclusions and perspectives

1. The oscillation period of the fundamental SASI mode can be
estimated from the shock radius rg,, the radius of maximum
deceleration ry, and the central mass M.

2. A possible improvement to the analytic formula used by
Miiller & Janka (2014) is proposed, based on the perturba-
tive analysis without any adjustment of a specific numerical
simulation.

3. An adiabatic model of the shock dynamics incorporating
non-adiabatic processes in the boundary conditions is able
to capture the general properties of SASI eigenmodes.

4. In the adiabatic approximation, the SASI mechanism can be
described as a self-forced oscillator. The forcing by advected
perturbations is distributed from the shock surface to the
cooling layer rather than inside the cooling layer.

5. An analytical description of the properties of the fundamen-
tal mode of SASI in the adiabatic approximation is obtained
in the asymptotic limit of a large ratio rg,/ry.

Improving the accuracy of the estimation of the SAST oscil-
lation period from a perturbative analysis requires (i) a more
accurate prescription for partial dissociation at the shock and in
the flow, as described in Appendix A of Fernandez & Thompson
(2009a), and (ii) a better characterisation of the parametrised
cooling function, leading to a realistic value of the ratio ry/rps.

The adiabatic framework proposed here opens a new path
for analytical investigation of the physical effect of stellar rota-
tion in the equatorial plane (Paper II), and provides a means to
address the intriguing results of Walk et al. (2023), which they
obtained by comparing SASI properties in cylindrical and spher-
ical geometries.

We note that the adiabatic approximation indeed accounts
for the growth rate and oscillation period within ~30%, leaving
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room for additional non-adiabatic effects. By decreasing the
velocity and Mach number near the proto-neutron star, the
amplitude of the forcing term is increased, as is the phase mix-
ing near the proto-neutron star. In addition to affecting the trade-
off between these two effects, non-adiabatic effects modify the
amplitude of 65 and 0K during their advection, add a source
of feedback in the cooling layer, and modify the acoustic equa-
tion. A quantitative assessment of some of these effects can be
obtained within the formalism of the self-forced oscillator by
incorporating them into the lower boundary condition.
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Appendix A: Stationary accretion

The loss of energy through nuclear dissociation is measured by
the parameter & defined by Eq. (6). It decreases the value of
the post-shock Mach number Mg, below the reference adiabatic
value M,q4, and affects the Rankine-Hugoniot conditions accord-
ing to Eqgs. (A4-A6) of Foglizzo et al. (2006):

24 (y— DM?
= ——— 1 (A.1)
2yMi -y +1
M, M,
=(1+ 2 %)(1— ;“)[1— 52“] (A.2)
y-IM M M
Vsh _ th 1+7M2 (A 3)
vi M l+yM2 ’ '
Csh _ Msh 1 +7M% (A4)

o M 1L+ yM

The nuclear binding energy of the iron nuclei is 8.8MeV per
nucleon, or 1.77 x 10°%erg/M,. If nuclear dissociation was com-
plete across the shock this would translates into a dissociation
parameter scaling linearly with rg:

B e \[(1.3Mo
£ = 0'7(150km)( Mo )

We note that our definition of ¢ in Eq. (6) follows Huete et al.
(2018), which differs from Eq. (4) in Fernandez & Thompson
(2009b) by a factor 2. A fraction of the dissociation of iron nuclei
is radially distributed between the shock and the neutron star
surface, as calculated in Fernandez & Thompson (2009a). Tak-
ing into account incomplete dissociation, the value of € formu-
lated in Eq. (35) is a rough estimate deduced from Eq. (51) and
Fig. 12 in Huete et al. (2018) for rg, < 175km. It is smaller than
Eq. (A.5) by a factor ~ 1.4 and saturates at € ~ 0.5 in exploding
models.

The value of My, is expressed as a function of M; and &(rg)
using Eq. (A.2):

(A.5)

- 3 - o
M, 1 e M
M2 = z + ; 1 (A'6)
ad 4. Mad 2
My : SM%
1+ ( M?) + 1+72]N1‘J
~ l-gif M;>1 (A.7)

The jump condition (A.3) is thus a function of &(ry,) using
Eq. (A.6), with the simple following expression for a strong
shock:

Vi 2

Yoo e—
Vsh I-e@-1D
6
1-¢

(A.8)

~ 1+

(A9)

The definition of the cooling function (1), the dimensionless
entropy (2) and the mass conservation (3) are used to eliminate
the variables p, p, M, v from the stationary equations, Egs. (4)
and (5):

2
T

pﬁh - (i)e—“—ssh), (A.10)
S| S
PEM = 1TSS, (A11)
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Appendix B: Differential system and boundary
conditions of the perturbed accretion

We rewrite the differential system satisfied by 6 f, 6 (Eqgs. (E2-
E3) in Foglizzo et al. (20006)), using the radial coordinate X
defined as in Foglizzo (2001):

%
Thus
0 iw\of 1 \dS
— 4+ 2|2 = 1+ — 1=
(6X+c2)ia) 6h+(7 +M2)7
_ AR
+1 - M 6(£), (B.2)
iwv PV
0 iw (W Lamb M2 i6K
(8X =2 )6}1 7 (T6f oS — (B 3)

The set of equations Eqs. (A1)-(A4) in Foglizzo et al. (2007) are
repeated here for completeness:

o, 1 of
= = T5E (6h+6S 62), (B.4)
o0 _ L [ sesh—ss s
i 1_Mz(/\/t(m 5S+Cz), (B.5)
6 y-1 (&f ) )
— = 1_M2( - M?5h — MéS) (B.6)
2
o Lo 08 (B.7)
Yp y-1lec Y
2

5(5) - VSC—[(ﬂ—l)d—p 6%—% : (B.8)
pv Y c %

5(£) = VS[(B—I)—+( —1)2—%}. (B.9)
pv P v

The perturbed mass conservation and transverse components of
the perturbed Euler equation are:

21968

—iwovy + vow,, + f = %;%, (B.10)
. 2 . 6S

—iwov, — véwy + l{n - zm' s (B.11)
rsinf y rsinf

We eliminate 6vg and 6v,, in the system of Egs. (12), (14), (B.10)
and (B.11) and obtain Eq. (16).

The derivative of 0A is calculated using Egs. (16), (20) and
(B.2), leading to the differential system (17-20) satisfied by
0A,0h,6S,0K. The second derivative of 0A is calculated using
Egs. (12), (20) and (B.3), resulting in Eq. (27).

Using Eq. (16), Egs. (B.4-B.7) are rewritten as follows:

% - f(fiKl)vz - {’(fi 1)va(;i:1 - f_/\iZ’ ®.12)
%3 = lz(va% - '“’) 5(5&: D yy;l‘ss’ ®.13)

2
%% = Cl—z(v%—'w)%—k% (B.14)
j_l; _ lz(vaﬁr - w)% (B.15)

Using Eq. (B.12) with Eq. (12), we can express v, with 6A and
ow, and obtain Eq. (15). We note that this relation is equiv-
alent to the radial component of the vector calculus relation
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Vv =V(V-v) =V x(VXV).

The baroclinic production of vorticity by the advection of
entropy perturbations can be calculated in the same way as
Egs. (E17-E19) in Foglizzo et al. (2005), using the conservation
of the tangential component of the velocity across the shock:

V1 — Vsh ﬁAg
F'sh 00 ’
V1 — Vsh iImAL

6V€sh = (B. 16)

SVgsh = (B.17)

rgy  sin@
The vorticity produced at the shock is defined by Egs. (B.16-
B.17), the transverse components (B.10-B.11) of the Euler
equation at the shock, together with the angular derivative of

Egs. (22):

wrn = 0, (B.18)
2 .
C m
§ = - (654, +[VSTEMAZ), B.19
Wosh yrshvshsing( o+ (VST A2) (B.19)
2
csh 1 0 sh
Wigsh 7rshvsha_9(553h + VST AZ). (B.20)

Appendix C: Adiabatic model

Following Egs. (B5)-(B7) in Foglizzo (2001), the differential
equation describing the specific vorticity in a spherical adiabatic
flow can be integrated as

2 ) .
Sw, = (r—r“) Sy ¥ (C.1)
1 A=A 6Sal e
Swg = —[(rvéw,;)sh— _sh 220 i [, (C.2)
rv sin 0%
1 c? - C%h 0 0S| ; dr
Swy = — |(roowy)g + ——0 — v [ c3
e rv [(rv Wednt G 6 y |7 ©3)

Using Egs. (B.18-B.20) with VS = 0, together with Egs. (C.1-
C.3) gives the expression (42-44) of the vorticity perturbation
throughout the flow.

With 6Y defined by Eq. (59), the expressions of 0Ag, dhgy, are
deduced from Egs. (22-24):

Y.
(1 - Vﬂ)A _ (C.4)

Vi Vi
Shay = ———— ¥, (C5)

V1Vsh
6Sa  6Y.

= G +w¢)(1 - D) (C.6)

Y Cih V1

We rewrite Eq. (17) using the definitions of X and 6Y with 6K =
0:

6Ash
§Yeqp = — , C.7
"+ 1) €7
A 1 '
() =l 22 v
ar sh l_Msh sh ‘
e )
- — +y-1|l, (C.8)
y M
Y 1- M. (85A iw
Gor) T (4} Wy C9
(ax )Sh W+ 1)v5h( or )sh+ 2o €9

which results in Eq. (57).
At the inner boundary in the adiabatic approximation, we use the
condition év, = 0:

of
>
ns

s + 68 s = (C.10)

The entropy is simply advected from the shock (38) and we
express 0h with §Y and 06Y/0X using Eq. (17):

680 = 6Sgehh @) (C.11)
aﬂ/ - 6he£h572”dx
aX
+—eMm 2 | — +y—1]. C.12
" (M2 Y ) (C.12)

The inner boundary condition (C.10) is thus reduced to Eq. (58).
Multiplying Eq. (51) by m/(w sin 8) and using Eqs. (43) and (48):

0 iw)V w? —a)iamb 0 rowy
l(ﬁ s ?) L = DO (€.13)

v2c?

Equivalently, using Eq. (44) and (47) and the derivative of
Eq. (51) with respect to 8 leads to:

9 w : 0‘)2 B wiamb g r §W¢7
—+ = +——"|réve= — ,
l(@X c2) v2c? V= 9X Ty

(C.14)

which is equivalent to Eq. (C.13) given the spherical symmetry
of the stationary flow.

Appendix D: Equation defining the
eigenfrequencies in the adiabatic model

The differential equation satisfied by Y is deduced from
Egs. (51) and (59):

62 w2 B wiamb
(W + —v2C2 (Dl)

]6Y =0F,

SF = el 8% g 55, (D.2)
We define Y} as the solution of the homogeneous equation sat-
isfying the inner boundary condition of pure acoustic waves
(i.e. without entropy and vorticity perturbations), and Y_ another
homogeneous solution such that their Wronskien is W:

6Yo iw
— | ==Y, D.3
(%), =5 o3
oY_ Yy

=Yy—-Y.— D4
W=Toox ax P4

Yo Y.
sY=Y_ld_+ | =6FdX|-Yoldo+ | —=o6Fdx|, (D.5)

ns w sh w

where 0F = F50S 4, is the forcing term on the right hand side of
Eq. (51) for the variable 6Y defined by . Using Eq. (D.5) at the
upper boundary:

sh
Y,
§Yq = Y (d + f W%ﬂx) —dyY,  (D.6)

S

asY Y- LA aY,
=) === |4 25FdX | - do | —2 D.7
( aX )sh ( ax )sh( * fn; Wég__ ) 0 ( aX )sh ' ( )
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Using Eq. (D.5) at the lower boundary:

sh
Y.
6Yns = d_YES _ Y(T)1s (d() - f W&TdX) s (DS)

oY\ aY_ Yo shoy
(a_x)ns = d(a—x)ns _(3_X)ns (do—fns W&de). (D.9)

Using Eq. (D.3), the lower boundary condition (58) translates
into

aY_ iw ME iy
¢ [(_) B —st} = 6F (1 - M) —Leh ¥ (D.10)
aX ns 01215 M%S
We note using Eq. (D.4) and (D.3) that
0Y_ iw w
7). -5" = .
Thus
M2 sy
Wd_ = Y6F (1 — Mﬁs)/vzhefsh FX (D.12)

ns

Eliminating dy between Egs.
Eq. (D.4):

(D.6) and (D.7) and using

00Y )¢
sh 1o —
(5, (7).

Y- Y, shy,
sh glo sh 1o
(%), - (&), 7l [ worex)

sh
=Wd_ + f YooF dX.

N

(D.13)
(D.14)

The eigenfrequencies are thus defined by

oY Y,
sh _0 —
Y ( X ) ( X )sh oYsn

NS o) Sh
Zhe I %ax " f
MI‘IS ns

Replacing the forcing term by its expression (D.2),

08Y Y,
" Mo\ sy =
Y ( 2.4 ) ( X )sh 6th

YOS 6Fm(1 — M2)

YoSF dX. (D.15)

SF- YnS(l _M2 )Mghefs:%dX
sh %o e Y

ns

sh 2

iw a M iw
Y, fsﬁdx_ 77 sh [ dr ]
+fns e ar(Mzeh dr

Using Eqgs. (24) and (57) this equation takes the form

(D.16)

+ a3Y85 =
sh

2
f Yoefh WdX; (//\\/(/[S; ejh '?d’) dr,
ns r
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. oYy
a; Yah + aprgy (E)

(D.17)

with ay, a,, as defined by:

()
sh
= , D.18
a o ( )
R G0 .Y T (D.19)
w+we 1 - o
1 - M2 6Yq,
a = - —, (D.20)
? TshVsh  OF sh
LM D21
- _(1 _ v;h) (iwtwe)rs (D.2D)
Vi Véh
M2 e,
@ = (1= M) helu B, (D.22)

ns
After one integration by parts:

a0Y 0Y, ns 4
sh gro - ' sh ns A 42 f zdx
Y ( X ) ( X )Sh 0Yqh = 0F s {Y Y M h

sh 2
0 iw v\ M ;
- g (roeher) el »‘”dr}(D 23)

The equation defining the eigenfrequencies becomes Eq. (63)
with a’1 = a; — 1 and @), = a, defined by Egs. (64-65).

Appendix E: Approximation of the adiabatic
stationary flow and the homogeneous
perturbative solution

The dissociation measured by the parameter ¢ affects the relation

between |vg| and the local free fall velocity, as deduced from
Eq. (68) for a strong shock:

2 2 -D( -¢
pal( ) o o =Dd-8) E.D)
2GM,, 2+ -1l -2)
2 rg 1 Vir
LML 8 (E.2)
GMnS MSh GMHS

Equation (E.2) is transformed into Eq. (69) using Egs. (E.1) and
(67). We use a power law approximation of the enthalpy profile
deduced from the Bernoulli equation for r <« ry, and M < 1

M? GM,
1+(7—1)—}—(7—1)
2
GMm
+A 1+ i -~ - D= (E.3)
A~ (y- 1)%. (E.4)

The mass conservation and the adiabatic hypothesis in
Eq. (A.11) imply the power law approximations (71) and (72)
for the velocity and Mach number profiles.

For y = 4/3 we approximate

,
M~ th(—) , (E.5)
I'sh
v~ Vs (E6)
I'sh
» f M? dr 5 iwrg x2dx E7)
L Pammarad S ’ .
sh 1 — M2y sh [Vsnl sh 1— Mghx3
iwrg, 1 - M? )
~ lo E.8
£ g(1 myveS 8
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The oscillatory phase associated to 6f in Eq. (63) is made of a
product of (iw) with two explicit contributions and a third con-
tribution from the definition of Y in Eq. (59). The sum of these
three contributions is:

M dr N M2 dr N dr
shl_sz Shl—sz sh V
1+ M?dr
= - . E.9
f;h 1-M vy ()
Witha, = 1 and 7 = r/rg,
1+ M2 MEF
My MWL (E.10)
1-M v 1-MP T
The integral can be estimated as follows:
1 + M2 d S S 2 1 B Mz
sh 1- M2 v IVsh| I'ns 3 1- M%i
. L 2MP
~ D (10 sh Sh] (E.12)
[Vsnl I'ns 3

With a strong adiabatic shock th ~ 1/8, the correction to the
advection timescale 7,3 is thus of order 12% for rg/rys = 2
and 5% for ry,/rps = 5. This correction is smaller if dissociation
diminishes the value of th.

The contribution of the integral inside the radial derivative in

Eq. (63) is limited to a contribution of order th:

TdX M2 dr
— = _ E.13
L w C2 w - 1-— Mz v ( )
wrg, M3, | o (E.14)
[Vsul @y + 2 I'sh ’ .

With w, ~ 2x|vgy|/rsh for a small shock radius this phase shift is
not negligible since it reaches 0.74 ~ /4 at the inner boundary
and it is linear in w.

We integrate Eq. (49) using Eq. (71) and neglecting M? < 1:

T'shVsh

Xsh = oo+ 1 s (EIS)
X r a,+1
X_h ~ (E) . (E.16)

The two solutions Y7 of the homogeneous equation (60) are
approximated as power laws with exponents ..

YE(r) = (i) - (E.17)
rl’lS
Injecting Y7 (r) into Eq. (60),
r —2a,-2
as (o —a, - 1)(—) =
I'sh
W22 2 2
| g4 1yl (ﬂ) . (E.18)
c? r2(\v

For ¢ > 1, the restoring force in Eq. (60) is independent of the
frequency in the region where w < Wy amp- Thus, using Eq. (E.4)
for > 1,

as(a: —a, - 1)

2 3
€(€+1)—M§h(wr5h) (L) ., (E.19)

Vsh Tsh
(E+1) if < Lo, (E.20)

¢

In this region the approximate solution is @, = a + b with a,b
defined by Egs. (75) and (76). The homogeneous solution Y, for
¢ > 1is a linear combination of power laws Y satisfying the
lower boundary condition (61):

r a—b r a+b
Yo(r) = (_) + Rus (_) > (E.21)
s Tns
1 - M2, (9Y, iw .
— == ==Y" E.22
Vns ( or )ns C%s 0 ( )
With M, < 1 and using Eq. (72),
2+a, .
a—b+(@+b)Ry = M (’—) I 1+ Ry), (E23)
“\Tsh Vsh
4 y+3+av(3-y)
a—b—M?(rﬁ) v dwrg
Rys = l e (E.24)
1 [ 1o 7+l Iwry
a+b+ M:h (a) T}.h

From Eq. (E.24) we conclude that the coefficient R, is asymp-
totically independent of w when rps < rgp.
a->b

a+b’

The acoustic function is independent of the frequency in the
asymptotic limit r,,y < rg, for low frequency perturbations € > 1
driven by advection such that wrg/lven| < 1, as described by
Egs. (73) and (74).

Using the index 0 to denote the acoustic perturbation associ-

ated to the homogeneous solution, we note from Eqs. (46) with
0S8 = 0 and Eq. (59) that the relation between 0Y,/dr and 6v9 is

(E.25)

ns

1 00A
50 - _ , E.26
Vr (+1) or (20
oY, ioM? Y, o iwM dr

The fact that Eq. (74) imposes dYy/dr = 0 is approximately
compatible with 6v9 ~ 0 to the extent that M, < 1.

Appendix F: Approximation of the eigenfrequency
equation fory = 4/3

The advection time for @, = 1 is approximated using Eq. (79):

_lwrgy

ro X Vh!
€Jsh %dr = (—) .
Xsh

Defining 0z = iwrsy/|vsh|+2—b and noting that a = 1, the leading
terms in Eq. (81) for £ > 1 are :

2bM% % \0Z [ ]
N(@Oz—2+b +—Sh"z‘3:f (—Sh) —
(02 T TR A e B
The integral on the right hand side can be calculated explicitly.
If 6z # 0,

X — 0z
f (ﬁ)(S L L N PO ) S
| X x2b x 0z 2b+6z 2b+6z
Using Eq. (F.3) in Eq. (F.2) we obtain the following equation
defining 0z:

(F.1)

- 1) dx (F2)
X

0z 0z
[l—6zN(b—2+6z)](1+ﬁ) i ™

2bM2, (1 (SZ)}.

= F4
o6+ 2b (F4)
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Reintroducing the normalised eigenfrequency Z = iwrg, /|vsnl,

b2

2b

2b
sh

{[1—(Z+2 )N (Z+2+b) - Z+—2_b}=

M,

L+ [(Z+2)? - —2— L. (F5

aelesar-v (e +1x, (=)
The approximate advection time ng from the shock to the inner

boundary, defined by Eq. (79), is introduced to obtain Eqs. (82-
83).
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