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ABSTRACT

Context. During the core collapse of a massive star, and immediately before its supernova explosion, there is amplification of asym-
metric motions by the standing accretion shock instability (SASI). This imprints a frequency signature on the neutrino flux and the
gravitational waves that carries direct information about the explosion process.
Aims. The physical interpretation of this multi-messenger signature requires a detailed understanding of the instability mechanism.
Methods. We carried out a perturbative analysis to characterise the properties of SASI and assess the effect of the region of neutron-
ization above the surface of the proto-neutron star. We compared the eigenfrequencies of the most unstable modes to those obtained
in an adiabatic approximation where neutrino interactions are neglected above the neutrinosphere. We solved the differential system
analytically using a Wronskian method and approximated it asymptotically for a large shock radius.
Results. The oscillation period of SASI is well fitted with a simple analytic function of the shock radius, the radius of maximum de-
celeration, and the mass of the proto-neutron star. The oscillation period is weakly dependent on the parameterised cooling function,
but this latter does affects the SASI growth rate. We describe the general properties of SASI eigenmodes using an adiabatic model.
In this approximation, the eigenvalue problem is formulated as a self-forced oscillator. The forcing agent is the radial advection of
baroclinic vorticity perturbations and entropy perturbations produced by the shock oscillation. We reduced the differential system
defining the eigenfrequencies to a single integral equation. Its analytical approximation sheds light on the radially extended character
of the region of advective-acoustic coupling. The simplicity of this adiabatic formalism opens new perspectives for the investigation
of the effect of stellar rotation and non-adiabatic processes on SASI.
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1. Introduction

The explosive death of massive stars is sensitive to the devel-
opment of hydrodynamical instabilities, which break the spher-
ical symmetry of the stellar core, affect the efficiency of
neutrino energy absorption, and generate turbulence (Müller
2020; Janka et al. 2016; Burrows & Vartanyan 2021). A spher-
ically symmetric scenario based on radial motions seems pos-
sible only for the lightest progenitors (Kitaura et al. 2006;
Stockinger et al. 2020). Asymmetric motions contribute to the
kick and spin of the neutron star (Müller et al. 2019; Janka
2017), the emission of gravitational waves (Kotake & Kuroda
2017), and a modulation of neutrino emission (Müller 2019b;
Tamborra & Murase 2019). Drago et al. (2023) considered the
correlation of instability signatures in the gravitational waves
and neutrino signals in order to improve the efficiency with
which we can detect gravitational waves from nearby super-
novae. Ultimately, the information encoded in the gravitational
waves and neutrino signals can be used to recover the properties
of the dying star and its explosion mechanism (Powell & Müller
2022). The computational cost of 3D numerical simulations pre-
cludes systematic coverage of the large parameter space describ-
ing the initial conditions of stellar core collapse. Understand-
ing the underlying mechanism of hydrodynamical instabilities is
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essential to extrapolating the results of sparse numerical sim-
ulations, evaluating the impact of additional physical ingredi-
ents, and designing effective prescriptions for parametric studies
(Müller 2019a).

Among the hydrodynamical instabilities at work during the
phase of stalled accretion shock, the standing accretion shock
instability (SASI; Blondin et al. 2003) is able to introduce coher-
ent transverse motions with a large angular scale, growing over
a timescale related to the advection time from the shock to
the neutron star surface. The mechanism of SASI has been
described as an advective-acoustic cycle between the shock
and the vicinity of the proto-neutron star (Foglizzo et al. 2007;
Fernández & Thompson 2009b; Scheck et al. 2008). Our ana-
lytical understanding of SASI eigenfrequencies in the WKB
approximation is however restricted to the limit of a large shock
radius for high-frequency overtones (Foglizzo et al. 2007), while
the lowest-frequency fundamental mode is often the most unsta-
ble. A fully analytic solution including the fundamental mode
was obtained only in a very idealised model, where the sta-
tionary flow is plane parallel and uniform except in a compact
region of deceleration that mimics the vicinity of the neutron
star (Foglizzo 2009) (hereafter F09). This toy model neglected
the flow gradients that are extended all the way from the shock
to the neutron star and the non-adiabatic character of the neu-
trino processes taking place in the vicinity of the neutron star.
Despite these limitations, this model illustrated the interplay
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of the advective-acoustic and the purely acoustic cycles, and
the expected phase mixing taking place at high frequency. The
model was used by Guilet & Foglizzo (2012) to interpret the fre-
quency spacing of the eigenspectrum in the framework of the
advective-acoustic mechanism rather than a purely acoustic pro-
cess. The physical understanding of SASI led Müller & Janka
(2014) to define an empirical formula for the SASI oscillation
period in order to interpret the modulation of the neutrino sig-
nal. Directly proportional to an approximation of the advection
time from the shock to the neutron star surface, it was tested on
a 2D numerical simulation of the collapse of a 25 M� progenitor.
However, whether or not it can be generalised for other progeni-
tors, as proposed by Müller (2019b), remains unclear.

The aim of the present study is to improve our understand-
ing of the fundamental mode of SASI in spherical geometry
in order to better identify the physical parameters governing
its oscillation frequency. Simple cooling functions mimicking
neutrino emission are used to assess the role of the cooling
region. An adiabatic approximation is also used to assess the
role of the advective-acoustic coupling in the radially extended
region between the shock and the proto-neutron star. The adia-
batic approximation is motivated by the adiabatic simulations of
Blondin & Mezzacappa (2007) and by the shallow-water exper-
iment (Foglizzo et al. 2012, 2015), which both suggest that
several properties of SASI may be understood using adiabatic
equations. Dunham et al. (2024) have also used the adiabatic
approximation to analyse the impact of general relativistic cor-
rections on SASI eigenfrequencies.

The set of differential equations defining the eigenfrequen-
cies of spherical accretion are recalled in Sect. 2, with particular
attention being paid to the radial extension of the non-adiabatic
cooling layer and its impact on the oscillation period of SASI.
The eigenfrequencies calculated in the adiabatic approxima-
tion are compared to those including neutrino losses in Sect. 3.
The adiabatic model is formulated as a self-forced oscillator in
Sect. 4, with eigenfrequencies defined by an integral equation.
An analytic approximation of this equation is outlined and anal-
ysed in Sect. 5. Conclusions and perspectives are formulated in
Sect. 6.

2. Stationary accretion with non-adiabatic cooling

2.1. Stationary flow

We use the same general framework as Blondin et al. (2003),
Foglizzo et al. (2007), Blondin et al. (2017) to describe the
phase where the accretion shock stalls at the radius rsh. Neutrino
absorption is neglected and neutrino emission near the proto-
neutron star radius rns is idealised with a cooling function of the
density ρ and pressure p:

L = −Acoolρ
β−αpα. (1)

The collapsing stellar core immediately after bounce is modelled
as a perfect gas with an adiabatic index of γ = 4/3, dominated
by the degeneracy pressure of relativistic electrons. The gravita-
tional potential Φ ≡ −GMns/r is assumed to be dominated by the
mass Mns of the proto-neutron star in the Newtonian approxima-
tion for simplicity. We neglect the self-gravity of the accreting
gas and the increase in Mns with time. The dimensionless mea-
sure of the entropy S is defined as

S ≡
1

γ − 1
log

p
ργ
. (2)

The stationary flow is described by the mass conservation, the
entropy equation, and the Euler equation:

ρv =

( rsh

r

)g
ρshvsh , (3)

∂S
∂r

=
L

pv
, (4)

∂

∂r

(
v2

2
+

c2

γ − 1
+ Φ

)
=
L

ρv
, (5)

where c ≡ (γp/ρ)1/2 is the sound speed and v < 0 the radial
velocity. The geometrical parameter g = 2 accounting for the
spherical geometry is noted as a parameter in this section and
Sect. 3 to keep track of its impact on the equations in the spirit
of Walk et al. (2023). The subscript ‘sh’ in Eq. (3) refers to quan-
tities immediately below the shock, and the subscript ‘1’ refers
to pre-shock quantities. The jump conditions at the shock follow
from the conservation of mass flux and momentum flux, taking
into account the energy lost across the shock through nuclear dis-
sociation. This latter is modelled as in Fernández & Thompson
(2009b), Fernández et al. (2014) by the parameter ε, which is a
measure of the energy loss ∆edisso per unit of mass in units of the
pre-shock kinetic energy density v2

1/2 as in Huete et al. (2018):

ε ≡
∆edisso

v2
1/2

. (6)

The effect of ε on the post-shock Mach number Msh and the
Rankine-Hugoniot conditions is described in Appendix A, fol-
lowing Eqs. (A.4)–(A.6) of Foglizzo et al. (2006). The pre-
shock deceleration effect of pressure is neglected, with v2

1 ∼

2GMns/rsh. Defining the Mach number M ≡ |v|/c as positive,
we assume a strong adiabatic shock M1 � 1 in the numerical
calculations of this section.

The adiabatic compression of the post-shock flow by the
gravitational potential Φ produces an inward increase in the
enthalpy c2/(γ − 1) and thus an increase in the gas temperature
T ∝ c2 according to the Bernoulli Eq. (5). In our model of sta-
tionary accretion, the temperature profile displays a maximum at
a radius denoted rpeak, where the energy losses by neutrino emis-
sion balance the adiabatic heating due to the gravitational com-
pression. The width of the cooling layer depends a priori on the
parameters (α, β) of the cooling function L, the mass accretion
rate, and the geometry. With α = 3/2 and β = 5/2, Walk et al.
(2023) noted that both the radius rpeak ∼ 1.2rns of maximum tem-
perature and the typical width ∆rpeak ∼ 1.5rns of the temperature
profile measured at half maximum seemed surprisingly indepen-
dent of both the mass-accretion rate and the shock radius, and
also seemed independent of the geometry. Closer inspection con-
firms that the location of rpeak varies by less than 1% between
the cylindrical and spherical geometries, and varies by less than
0.5% with rsh for rsh/rns > 3.

Figure 1 compares rpeak to the radius of maximum deceler-
ation denoted r∇, with r∇ < rpeak over a large range of param-
eters (α, β), except for when β approaches unity. Noting that
r∇ = rns for α < β (Foglizzo et al. 2007), Fig. 1 indicates that
rpeak/r∇ ∼ 1.2 for (α, β) = (3/2, 5/2), and rpeak/r∇ ∼ 1.0 for
(α, β) = (6, 1). In Sect. 2.2, the parameters (α, β) are varied con-
tinuously from (3/2, 5/2) to (6, 1) and from (3/2, 5/2) to (5, 6)
in order to evaluate their impact on SASI properties.

2.2. Perturbed flow

The perturbations of the stationary flow are characterised by
the wavenumbers `,m of spherical harmonics and a complex

A196, page 2 of 16



Foglizzo, T.: A&A, 692, A196 (2024)

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

1.0
1.1
1.2
1.3

1.4
1.6
1.8
1.9

β

α

X

X

r
∇
/r

ns
=1.0

r
peak

/r
ns
=1.1

1.2

1.3 1.4 1.6 1.8 1.9

1.1

1.2

1.3
1.4
1.6
1.8
1.9

X

Fig. 1. Ratios rpeak/rns (thick solid lines) and r∇/rns (thin dotted lines)
depending on the coefficients (α, β) that define the cooling function in
Eq. (1). The contour lines are calculated for γ = 4/3 in spherical geom-
etry, with rsh/rns = 10, without dissociation (ε = 0). The values of
rpeak/rns and r∇/rns are indicated with the same colour code. The cooling
parameters (α, β) = (3/2, 5/2), (6, 1) and (5, 6) used in Fig. 3 are indi-
cated with crosses for reference and are connected by grey lines. The
black dotted line marks the threshold β = α above which the advection
time from rpeak to rns is finite and r∇ = rns.

eigenfrequency ω. The eigenfrequency is independent of the
azimuthal wavenumber |m| ≤ ` as established in Foglizzo et al.
(2007). We use the same physical variables as in Foglizzo et al.
(2006) guided by analytical simplicity, namely the perturbation
of the Bernoulli constant δ f , the perturbed mass flux δh, and
the perturbed dimensionless entropy δS . The perturbation δK
is a combination of perturbed entropy δS and the quantity δw⊥
defined from the radial component of the curl of the vorticity
perturbation δw ≡ ∇ × δv:

δ f ≡ vδvr +
δc2

γ − 1
, (7)

δh ≡
δvr

v
+
δρ

ρ
, (8)

δS ≡
1

γ − 1
δc2

c2 −
δρ

ρ
, (9)

δw⊥ ≡ r(∇ × δw)r, (10)

=
1

sin θ

[
∂

∂θ
(δwϕ sin θ) − imδwθ

]
, (11)

δK ≡ rvδw⊥ + `(` + 1)
c2

γ
δS . (12)

We introduce the quantity δA, which is defined as the divergence
of the ortho-radial velocity δv⊥ ≡ (0, δvθ, δvϕ) :

δA ≡ r2∇ · δv⊥, (13)

=
r

sin θ

[
∂

∂θ
(δvθ sin θ) + imδvϕ

]
. (14)

We establish in Appendix B that δA and δw⊥ are related to the
perturbation δvr of the radial velocity as

δvr =
rδw⊥
`(` + 1)

−
1

`(` + 1)
∂δA
∂r

. (15)

This equation invites us to interpret δA/`(` + 1) as the poten-
tial defining the compressible part of the perturbed velocity, and

rδw⊥/`(` + 1) as the rotational contribution to the radial veloc-
ity perturbation. Using the transverse components of the Euler
equation Eqs. (B.10), (B.11) in Appendix B with Eq. (12), we
note that δA is related to δK and δ f as

δK = iωδA + `(` + 1)δ f . (16)

The differential system satisfied by (δA, δh, δS , δK) is as follows:(
1 −M2

v
∂

∂r
+

iω
c2

)
δA

`(` + 1)
= −δh −

(
γ − 1 +

1
M2

)
δS
γ

+
δK

v2`(` + 1)
, (17)(

1 −M2

v
∂

∂r
+

iω
c2

)
δh =

ω2 − ω2
Lamb

v2c2

δA
`(` + 1)

−
iω
v2 δS +

iω
v2c2

δK
`(` + 1)

, (18)(
∂

∂r
−

iω
v

)
δS = δ

(
L

pv

)
, (19)(

∂

∂r
−

iω
v

)
δK

`(` + 1)
= δ

(
L

ρv

)
. (20)

This system includes explicit non-adiabatic terms only in the
Eqs. (19, 20) governing δS and δK. In Eq. (18), the Lamb fre-
quency ωLamb associated with the spherical harmonic of order `
defines the turning point of non-radial acoustic waves:

ω2
Lamb ≡ `(` + 1)

c2

r2 (1 −M2). (21)

The boundary conditions at the shock are reformulated from
Eqs. (28, 29, E.7, E.8) in Foglizzo et al. (2006) using Eq. (16):

δAsh

`(` + 1)
= −

(
1 −

vsh

v1

)
v1∆ζ , (22)

δhsh =

(
1 −

vsh

v1

)
∆v
vsh

, (23)

δS sh = γ
v1

c2
sh

(iω + ωΦ)∆ζ
(
1 −

vsh

v1

)2

, (24)

δKsh = −`(` + 1)∆ζ
c2

sh

γ
[∇S ]sh

1 , (25)

where ∆ζ and ∆v ≡ −iω∆ζ are the shock displacement and
velocity, respectively. The reference frequency ωΦ in Eq. (24)
is defined as

ωΦrsh

|vsh|
≡

1
2

v1

vsh

2rsh

v2
1

dΦ
dr − 4 vsh

v1

1 − vsh
v1

+

vsh
v1

γM2
sh

rsh [∇S ]sh
1(

1 − vsh
v1

)2 , (26)

where ωΦ defines the threshold frequency separating the regime
(ω � ωΦ) – where the phase of δS sh is opposed to that of ∆ζ –
from the regime (ω � ωΦ), where the phase of δS sh is set by
that of ∆v.

The first two differential equations (17)–(18) are transformed
into the following second-order differential equation:(1 −M2

v
∂

∂r
+

iω
c2

)2

+
ω2 − ω2

Lamb

v2c2

 δA =

∂

∂r
rδw⊥

v
− `(` + 1)

γ − 1
γ

δ

(
L

pv

)
. (27)
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Fig. 2. Growth rate (solid lines) and oscillation frequency (dashed lines)
of the fundamental SASI mode, normalised by |vsh|/rsh, calculated with
ε = 0 for the cooling parameters (3/2, 5/2) (purple) and (6, 1) (orange),
and displayed as functions of rsh/r∇. The analytic fitting formula (31)
for ωr is displayed with a green dashed line.

We recognise an acoustic oscillator modified by advection on
the left-hand side of Eq. (27), with a forcing on the right-hand
side driven by vorticity perturbations and by the perturbation of
neutrino cooling. Interestingly, part of this forcing can be studied
analytically in the adiabatic approximation defined in Sect. 3.

The variables δvr, δρ, δc, and δp are deduced from
δA, δh, δS , and δK using Eqs. (B.4)–(B.7), as detailed in
Appendix B. In particular, using Eq. (B.4) to express the lower
boundary condition δvr(rns) = 0, leads to(
c2δh + c2δS − δ f

)
ns

= 0. (28)

With a vanishing sound speed cns = 0 resulting from the hypoth-
esis of stationary flow, the lower boundary condition δvr(rns) = 0
is equivalent to δ fns = 0.

The boundary value problem is solved numerically using a
shooting method from the shock to the inner boundary, iterating
over the value of the complex eigenfrequency ω. The mathemat-
ical singularity at rns is overcome numerically by using logM
as an integration variable, as in Foglizzo et al. (2007). The inner
boundary is then defined as the point where the Mach number
has reached a sufficiently small value (M ∼ 10−9).

Foglizzo et al. (2007) noted similar properties of the SASI
harmonics as functions of rsh/r∇ with (α, β) = (3/2, 5/2) and
(6, 1) in their analysis. We extend this analysis for the fundamen-
tal mode and note in Fig. 2 that the normalised growth rate and
oscillation frequency are asymptotically independent of (α, β)
for rsh/r∇ � 1, that is, when the cooling layer is thin com-
pared to the shock radius. This surprising property is checked
by varying (α, β) continuously from (3/2, 5/2) to (6, 1) and from
(3/2, 5/2) to (5, 6) in Fig. 3. It is remarkable that the normalised
oscillation frequency appears to be independent of the cooling
process down to a very low ratio rsh/r∇: the following analytic
formula ωfit

r provides an approximation for ωr within 3% for
1.8 < rsh/r∇ < 10:

τadiab
adv ≡

rsh

|vsh|
log

rsh

r∇
, (29)

R1 ≡ log
(

rsh

r∇
− 1

)
, (30)

ωfit
r ≡

2π
τadiab

adv

(
0.56773 + 0.28628R1 − 0.031763R2

1

)
. (31)
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Fig. 3. Growth rate (solid lines) and oscillation frequency (dashed lines)
of the fundamental SASI mode, normalised by |vsh|/rsh, calculated with
rsh/r∇ = 2 (purple lines) and rsh/r∇ = 4 (orange lines) for a range of
cooling parameters (α, β) varying continuously from (3/2, 5/2) to (6, 1)
(thin lines) and from (3/2, 5/2) to (5, 6) (thick lines), as indicated in
Fig. 1.
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Fig. 4. Variation in the ratio TSASI/τ
adiab
adv associated with the fundamental

SASI mode, ` = 1, calculated for the cooling parameters (3/2, 5/2)
(purple) and (6, 1) (orange) and displayed as functions of rsh/r∇. The
vertical lines highlight the range of rsh/rns in the analysis of model s25
in Müller & Janka (2014). The analytic fitting formula (31) is displayed
with a dashed green line.

The adiabatic advection time τadiab
adv corresponds to a velocity pro-

file increasing linearly with radius as expected asymptotically in
spherical geometry for γ = 4/3 (Eq. (19) in Walk et al. 2023).

The important role of r∇ rather than rns was also noted by
Scheck et al. (2008), where the strength of SASI in numerical
simulations seemed correlated with the abruptness of the decel-
eration close to the proto-neutron star, and was confirmed in the
toy model used by F09 and Guilet & Foglizzo (2012).

Figures 2 and 3 also show that the detailed cooling process
affects the growth rate of SASI (solid lines) more than its oscil-
lation frequency (dashed lines) when rsh < 4r∇.

We note from Fig. 4 that the oscillation period TSASI ≡ 2π/ωr
of the fundamental ` = 1 SASI mode can be significantly longer
than the approximate advection time τadiab

adv for a small ratio
rsh/r∇. The relationship between these two timescales is further
discussed in reference to a simplified model in Sect. 5.3. The
modest impact of the specificities of the parametrised cooling

A196, page 4 of 16



Foglizzo, T.: A&A, 692, A196 (2024)

-30

-20

-10

0

10

20

30

0 0.1 0.2 0.3 0.4 0.5

Eq. (32) 'empirical'
Eq. (33) 'perturbative' r

∇
=r

ns
, ε=0

Eq. (36) 'perturbative' r
∇
/r

ns
=1.3

re
la

tiv
e 

er
ro

r [
%

]

time after bounce [s]

Fig. 5. Estimate of the relative error between the oscillation period of
the neutrino signal in model s25 in Müller & Janka (2014) and in analyt-
ical estimates. The empirical formula (32) is shown with a purple line.
The result of the perturbative calculation is shown for r∇ = rns without
dissociation (orange line, Eq. (33)), and for r∇ = 1.3rns with dissocia-
tion prescribed by Eq. (35) (green line, Eq. (36)). The sensitivity to the
estimate of r∇ is shown with dashed lines for r∇ = 1.25rns (khaki) and
r∇ = 1.35rns (blue).

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

ω
r r sh

/|v
1|

ε

r
sh

/r
∇
=1.8 2 2.3

α=3/2, β=5/2

α=6, β=1

Fig. 6. Effect of dissociation, measured by ε, on the oscillation fre-
quency of SASI for rsh/r∇ = 1.8 (dashed lines), 1 (solid lines), and 2.3
(dotted lines) for (α, β) = (3/2, 5/2) (purple lines) and (α, β) = (6, 1)
(orange lines). The analytical formula (34) is indicated with crosses.

process on the fundamental SASI eigenfrequency encouraged us
to apply our simple model to a more realistic physical model of
core collapse in Sect. 2.3. We were also inspired by this finding
to look for a deeper analytic understanding of the SASI mecha-
nism using an adiabatic approximation, as detailed in Sect. 3.

2.3. Comparison of the perturbative model with the empirical
formula proposed by Müller & Janka (2014)

The adiabatic approximation of the advection time was also used
in the empirical formula (33), which describes the oscillation
period TSASI in the core-collapse simulation of a 25 M� pro-
genitor (Müller & Janka 2014), which is inspired by the physics
of the advective-acoustic cycle. r∇ was approximated with rns
and the time variation of the mass of the proto-neutron star was

neglected:

T MJ
SASI ≡ 19 ms

( rsh

100 km

) 3
2

log
(

rsh

rns

)
. (32)

The SASI modulation of the neutrino signal was identified in
their model s25 between t = 0.12 s and t = 0.45 s post-bounce.
The shock radius rsh decreases from 125 km to 55 km and the
ratio rsh/rns varies between 1.8 and 2.3 according to Figs. 3
and 6 of Müller & Janka (2014). The formula (32) well captures
the r3/2

sh -dependence, which is the main source of variability of
TSASI during the collapse. The overall accuracy of this formula
is ∼26% for model s25 as shown in Fig. 5.

The expected variation of TSASI estimated from Eq. (31) is as
follows:

TSASI =
T MJ

SASI × 1.82
(

1.7 M�
Mns

) 1
2

0.56773 + 0.28628R1 − 0.031763R2
1

. (33)

According to Fig. 5, the overall accuracy of formula (33) applied
to the model s25 is improved to ∼10%, which is remarkable
given the simplicity of the perturbative model, which does not
involve any adjusted parameter and neglects dissociation at the
shock. The mass increase Mns/M� ∼ 1.7−2 estimated from
Fig. 2 in Müller & Janka (2014) contributes to a 8% decrease
in TSASI. A more physical estimate should also take into account
dissociation, which can significantly increase TSASI when rsh is
large, and the distinction between rns and r∇, which can signifi-
cantly decrease TSASI when rsh/rns is smallest.

Following Fig. 6, the impact of dissociation on the oscillation
frequency of SASI is tentatively approximated as

ωr(ε) = ωr(0) −
2GMns

r3
sh

 1
2

ε (0.19817 + 0.74804ε) . (34)

We note that this analytical formula is tested only in the nar-
row range 1.8 < rsh/r∇ < 2.3 and is only meant to provide as
an order of magnitude estimate. The dissociation parameter is
approximated according to Fig. 12 in Huete et al. (2018):

ε ∼ 0.5
( rsh

150 km

) (1.3 M�
Mns

)
, (35)

with a saturation at ε ∼ 0.5 due to partial dissociation of α-nuclei
(Fernández & Thompson 2009a). Thus, Eq. (34) is rewritten as

10 ms
TSASI

=
10 ms
T 0

SASI

−
1.069ε (0.19817 + 0.74804ε)(

rsh
100 km

) 3
2
(

1.7 M�
Mns

) 1
2

, (36)

with

T 0
SASI

10.42 ms
≡

(
rsh

100 km

) 3
2
(

1.7 M�
Mns

) 1
2 log

(
rsh
r∇

)
0.56773 + 0.28628R1 − 0.031763R2

1

. (37)

According to Fig. 5, taking into account dissociation improves
the accuracy of the empirical formula, but only for a limited
range of prescribed ratio 1.25 < r∇/rns < 1.35. Improvement of
the accuracy of the present perturbative model beyond the ±10%
level does not appear straightforward given its many approxi-
mations regarding the microphysics, neutrino interactions, and
gravity. Its main improvement compared to the empirical
formula (32) is the fact that it contains physically consistent esti-
mates of the impact of the mass, the dissociation at the shock,
and the SASI phase inferred from the perturbative analysis. Each
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of them can potentially affect the oscillation period by several
tens of percent according to Eq. (33) and Figs. 4 and 6. By
neglecting these effects, the empirical formula in Eq. (32) is not
expected to maintain its ∼30% accuracy for progenitors other
than s25. The accuracy of Eq. (36) should be tested on other
numerical simulations of core collapse, bearing in mind that our
prescription for dissociation is very crude.

3. Adiabatic model

Here, the adiabatic character of the flow refers to the region
between the shock and the inner boundary, while non-adiabatic
processes associated to nuclear dissociation and neutrino emis-
sion are incorporated into the boundary conditions. The produc-
tion of entropy perturbations by the shock displacement ∆ζ is
taken into account. Nuclear dissociation across the shock is for-
mally taken into account using the parameter ε (Eq. (6)), but it is
set to zero in the illustrative figures of this section. The goal of
the analysis presented in this section is to gain some analytical
understanding of the effect of the physical parameters involved
in the SASI mechanism.

3.1. Explicit expressions in the adiabatic approximation

With L = 0, the differential Equations (19)–(20) describe the
advection of perturbations produced by the shock. Using the
boundary conditions (24), (25) with ∇S = 0:

δS = δS sheiω
∫

sh
dr
v , (38)

δK = 0. (39)

Here, δS sh is defined by Eq. (24) with a simpler expression for
ωΦ:

ωΦrsh

|vsh|
≡

1
2

v1
vsh
− g

1 − vsh
v1

. (40)

Using Eq. (12) with δK = 0 and Eq. (38) gives the explicit
expression for δw⊥ of

δw⊥ = −`(` + 1)
c2

γrv
δS . (41)

The vorticity associated to the entropy perturbation is also
explicitly calculated in Appendix C:

δwr = 0, (42)

δwθ = −
imc2

rv sin θ
δS
γ
, (43)

δwϕ =
c2

rv
∂

∂θ

δS
γ
. (44)

Together with Eq. (12), Eqs. (43), (44) demonstrate that δK = 0
can be interpreted as a consequence of the baroclinic production
of vorticity.

Equation (16) implies that the wave action δ f /ω is directly
related to δA:

δ f
iω

= −
δA

`(` + 1)
. (45)

The transverse velocity components (δvθ, δvϕ) are deduced from
δA using the transverse Euler equations Eqs. (B.10), (B.11) with
Eqs. (43), (44). Here, δvr is deduced from Eqs. (15) and (41):

δvr = −
c2

γv
δS −

1
`(` + 1)

∂δA
∂r

, (46)

rδvθ = −
1

`(` + 1)
∂δA
∂θ

, (47)

rδvϕ = −
im

`(` + 1)
δA

sin θ
. (48)

The adiabatic solution can be viewed as the asymptotic limit
of the model with a cooling function when rpeak ∼ rns, corre-
sponding to α � 1 and β � 1 according to Fig. 1. For the
sake of simplicity, we explore the adiabatic solution with an
inner boundary defined by δvr = 0, formulated by Eq. (28) with
cns defined as the adiabatic sound speed at the inner boundary.
This prescription could be improved to better account for non-
adiabatic processes in the cooling layer. The adiabatic simula-
tions in Blondin & Mezzacappa (2007) also used δvr = 0 at the
inner boundary.

3.2. Quantitative comparison of the eigenfrequencies with
and without the region of non-adiabatic cooling

The eigenfrequencies corresponding to the adiabatic model are
solved numerically and compared in Fig. 7 to the eigenfrequen-
cies of the non-adiabatic formulation for different values of the
shock radius. The overall trends suggest that the main proper-
ties of SASI can be qualitatively understood by focusing on adi-
abatic processes. The fundamental mode is the most unstable
one for a small shock radius, and becomes dominated by higher
overtones for a larger shock radius. Among the most visible dif-
ferences with the non-adiabatic model, the adiabatic simplifica-
tion underestimates the frequency by a factor of ≤1.3 for a large
shock radius of rsh ∼ 10rns. The growth rate of the most unsta-
ble mode is overestimated by a factor of ≤1.4 for a small shock
radius and is underestimated by a factor of ≤1.3 for a very large
shock radius.

4. Formulation of the SASI mechanism as a
self-forced oscillator

4.1. Derivation of the second-order differential equation

For the sake of mathematical simplicity, we use the radial coor-
dinate X defined as in Foglizzo (2001):

dX ≡
v

1 −M2 dr. (49)

The second-order differential Eq. (27) is simplified to( ∂∂X
+

iω
c2

)2

+
ω2 − ω2

Lamb

v2c2

 δA =
∂

∂X
rδw⊥

v
. (50)

Using Eq. (41), the forcing term of Eq. (50) is thus proportional
to the entropy perturbation δS sh produced by the shock:( ∂∂X

+
iω
c2

)2

+
ω2 − ω2

Lamb

v2c2

 δA
`(` + 1)

= −FS δS sh, (51)

FS ≡
∂

∂X
eiω

∫
sh

dr
v

γM2 . (52)

We show in Appendix C that the forced oscillator equation can
be rewritten as follows, using boldface for vector quantities:( ∂∂X

+
iω
c2

)2

+
ω2 − ω2

Lamb

v2c2

 δL =
∂

∂X
rδw

v
, (53)

=
∂

∂X
rvδw
c2M2 , (54)
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where δL ≡ r × δu is the perturbed specific angular momentum
vector and δw ≡ ∇× δu is the perturbed vorticity vector. We note
from Eqs. (43), (44) that rv|δw|/c2 is conserved when advected.
The relation between δS sh and δAsh is deduced from Eqs. (22)
and (24):

`(` + 1)
c2

shδS sh

γδAsh
= −

(
1 −

vsh

v1

)
(iω + ωΦ). (55)

The components of transverse vorticity at the shock are related
to the components of perturbed specific angular momentum
according to Eqs. (43), (44) and Eqs. (47), (48):(

rvδwθ

δLθ

)
sh

=

(
rvδwϕ

δLϕ

)
sh

= −`(` + 1)
c2

shδS sh

γδAsh
. (56)

The boundary conditions at the shock and at the inner boundary
are written in Appendix C as follows:

∂δA
∂X sh

=
iω
v2

sh

δAsh

[
1 − 2

vsh

v1
+ (γ − 1)M2

sh

(
1 −

vsh

v1

)]
−

[
1 + (γ − 1)M2

sh

] δAsh

rshvsh

(
v1

2vsh
− 2

)
, (57)

∂δA
∂X ns

=
iω
c2

ns
δAns − `(` + 1)

1 −M2
ns

M2
ns

δS sh

γ
eiω

∫ ns
sh

dX
v2 . (58)

They can also be written with the variables rδvθ, rδvϕ, and
δwθ, δwϕ, using Eqs. (43), (44) and (47), (48). Equations (51) and
(53) are thus equivalent for ` ≥ 1. The same advective-acoustic
cycle can either be considered as an entropic-acoustic cycle or
as a vortical-acoustic cycle.

We define a new perturbative variable δY as follows:

δY ≡
δ f
iω

eiω
∫

sh
dX
c2 = −

δA
`(` + 1)

eiω
∫

sh
dX
c2 . (59)

Here, Y0 is defined as the solution of the homogeneous equation
associated to Eq. (51) with δS = 0 and δK = 0, and satisfying
the inner boundary condition (58): ∂2

∂X2 +
ω2 − ω2

Lamb

v2c2

 Y0 = 0, (60)

∂Y0

∂X ns
=

iω
c2

ns
Y0(rns). (61)

We refer to Y0 as the acoustic structure of the post-shock cavity
modified by the radial velocity, in the absence of interaction with
advected perturbations. The structure of the acoustic equation
and its modification by the advection velocity v are more easily
recognised when rewriting Eq. (60) with the variable r: ∂2

∂r2 +

(
∂ log
∂r

1 −M2

v

)
∂

∂r
+
ω2 − ω2

Lamb

c2(1 −M2)2

 Y0 = 0. (62)

Identifying the physics of SASI with a forced oscillator enables
us to evaluate the efficiency of the coupling depending on
two effects: (i) the amplitude of the forcing term (∝ 1/M2

in Eq. (52)), and (ii) the phase match between the forcing
term (advected wavelength) and the oscillator (acoustic wave-
length). The forcing amplitude is strongest where M is small-
est, in close proximity to the proto-neutron star, but a strong
phase mixing is expected there due to the decrease in the radial
wavelength (∝2π|v|/ωr) of advected perturbations. A trade-off
between effects (i) and (ii) favours advected perturbations with

1
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1 10 100

frequency
γ=4/3, l=1

cooling
adiabatic

ω
r r sh

/ |
v sh

|

(r
sh

-r
ns

)/r
ns

-2

-1

0

1

2

1 10 100

growth rate
γ=4/3, l=1

cooling
adiabatic

ω
i r sh

/ |
v sh

|

(r
sh

-r
ns

)/r
ns

Fig. 7. Oscillation frequency (upper plot) and growth rate (lower plot)
of the modes ` = 1 calculated in units of the post-shock frequency
vsh/rsh, for γ = 4/3, as a function of the shock distance in the model
with cooling using (α, β) = (3/2, 5/2) (dashed lines) and in the adia-
batic approximation (solid lines). The fundamental mode (in red) and
the first three overtones (green, orange, blue) are displayed. The grey
horizontal line in the upper plot indicates the Lamb frequency at the
shock. The fundamental mode becomes dominated by higher overtones
as its frequency becomes too low for acoustic propagation (ωr < ω

sh
Lamb).

a sufficiently low frequency, coupled to the acoustic structure in
a region sufficiently far from the proto-neutron star to minimize
phase mixing.

This description as a forced oscillator was previously pro-
posed in the context of radial Bondi accretion accelerated into
a black hole (Foglizzo 2001, 2002) and in a planar adiabatic
toy model of SASI with a localised region of feedback (F09).
The present work is the first formulation where the radially
extended character of the advective-acoustic coupling is taken
into account in a shocked decelerated accretion flow in spherical
geometry. We present a quantitative evaluation of the coupling
efficiency in the following section using a classical resolution of
the forced oscillator with the Wronskian method.

4.2. Integral equation defining the eigenfrequencies

In Appendix D, we derive the integral equation defining the
eigenfrequencies, which is equivalent to the full differential sys-
tem and boundary conditions. It is formulated here with the
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variable r:

a′1Ysh
0 + a′2rsh

(
∂Y0

∂r

)
sh

= −M2
she

∫ ns
sh

iω
v

dr
1−M2 Yns

0

−

∫ sh

ns

∂

∂r

(
Y0e

∫
sh

iωM2

1−M2
dr
v

)M2
sh

M2 e
∫

sh
iω
v drdr,

(63)

with a′1, a
′
2 defined as

a′1 ≡ (γ − 1)M2
sh +

iω
iω + ωΦ

vsh
v1

1 − vsh
v1

, (64)

a′2 ≡ −
1 −M2

sh(
1 − vsh

v1

)
(iω+ωΦ)rsh

vsh

. (65)

The first two terms associated with Y0 on the left-hand side of
Eq. (63) are acoustic, and are marginally modified by advection.
The terms on the right-hand side involve the phase oscillations
of the advected perturbations. Despite the integration by part, we
recognise in the integral the forcing term of Eq. (52) multiplied
by the derivative of the homogeneous solution Y0. As expected in
Sect. 4.1 for the classical problem of a forced harmonic oscilla-
tor, this integral characterises the efficiency of the forcing, which
depends on both the amplitude profile of the forcing δF and the
matching of its phase compared to the phase of the oscillator Y0.
An analytic approximation of this integral equation is obtained in
Sect. 5 in the asymptotic regime, where the acoustic radial struc-
ture is non-oscillatory. We verified numerically that the eigenfre-
quencies satisfying the single equation Eq. (63) are strictly the
same as those obtained in Fig. 7 from the solution of the fourth-
order adiabatic differential system (17), (20) with L = 0, with
the boundary conditions defined by Eq. (28) and Eqs. (22), (25)
with ∇S = 0.

5. Analytical estimate for a large shock radius

5.1. Analytical approximations

5.1.1. Stationary flow

We focus on the case of a strong shock M1 � 1 and a large
shock radius rsh � rns, with the post-shock energy density
described by the Bernoulli equation, Eq. (5), dominated by the
enthalpy and the gravitational contributions:

c2

γ − 1
∼

GMns

r
. (66)

The kinetic energy density associated to the radial velocity is
a minor contribution, and is even more negligible when the
photodissociation across the shock is taken into account. The
parameter ε impacts the post-shock Mach number and velocity
according to Eqs. (A.2), (A.3):

M2
sh ∼

γ − 1
2γ

(1 − ε), (67)

vsh

v1
∼

(γ − 1)(1 − ε)
2 + (γ − 1)(1 − ε)

≤
γ − 1
γ + 1

, (68)

c2
shrsh

GMns
∼

4γ(γ − 1)(1 − ε)[
2 + (γ − 1)(1 − ε)

]2 . (69)

Equation (66) allows a power-law approximation of the radial
velocity profile with an exponent αv deduced from Eq. (A.11).

This exponent depends on both the adiabatic index and the
geometry g = 2:

αv ≡
1

γ − 1
− g, (70)

v = vsh

(
r

rsh

)αv

, (71)

Msh

M
∼

( rsh

r

)αv+
1
2
. (72)

We note that Eq. (66) is valid only for rns ≤ r � rsh, and
becomes inaccurate in the vicinity of the shock where the sound
speed is particularly sensitive to photodissociation, as seen in
Eq. (69).

5.1.2. Acoustic structure of the oscillator

Taking advantage of the low frequency of the fundamental mode
for ` ≥ 1,we approximate in Appendix E the homogeneous solu-
tion Y0 as a linear combination of power laws independent of the
frequency for ω � ωLamb:

Y0 ∼

(
r

rns

)a ( rns

r

)b
+

b − a
b + a

(
r

rns

)b , (73)

∂Y0

∂r
∼

b − a
rns

(
r

rns

)a−1 ( r
rns

)b

−

( rns

r

)b
 , (74)

where the exponents a, b are defined as

a ≡
αv + 1

2
, (75)

b ≡

(αv + 1
2

)2

+ `(` + 1)


1
2

. (76)

The exponents ±b correspond to the two components of the
acoustic structure Y0, where the component decreasing inwards
(+b) is associated to the evanescent profile of pressure perturba-
tions at the shock, and the component decreasing outwards (−b)
is associated to the evanescent profile of pressure perturbations
at the inner boundary.

This approximate solution of Y0 satisfies the lower boundary
condition only in the asymptotic limit rns � rsh.

5.1.3. Forcing by advected perturbations

We use the following approximation of the advection time τadv(r)
profile:

τadv(r) ≡
∫ r

sh

dr
v
, (77)

∼
1

αv − 1
rsh

|vsh|

[( rsh

r

)αv−1
− 1

]
if αv , 1, (78)

∼
rsh

|vsh|
log

rsh

r
if αv = 1. (79)

In particular, Eq. (79) is applicable for γ = 4/3. In this regime,
the advection time τadv is asymptotically dominated by the inner
region. A numerical calculation indicates that this analytical for-
mula slightly underestimates the adiabatic advection time by less
than 6% in the range 1 < rsh/rns < 100.

We examine the accuracy of our approximation ofM and Y0
in Fig. 8.
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Fig. 8. Solution of the homogeneous equation Y0 associated with the
fundamental mode ` = 1 (solid orange line) for rsh/rns = 5. This solu-
tion is very well approximated analytically by Eq. (73) (dashed orange
line with crosses). The radial profile of the amplitude of the forcing
term in Eq. (63) (purple solid line) is compared to its analytical approx-
imation (dashed purple line with crosses) using Eqs. (72) and (74). The
Mach number profile in the adiabatic model (green solid line) is com-
pared to its analytical approximation (Eq. (72), green dashed line with
crosses). The Mach profile of the flow including cooling is shown for
reference (dark green line).

5.2. Analytical expression of the fundamental eigenfrequency

We approximate Eq. (63) using Eq. (72) and Eq. (73) with
M2 � 1, except near the shock. We use the approximations (73)
and (74) of Y0 and ∂Y0/∂r and note that (∂ log Y0/∂ log r)sh ∼

1/(b + a) with a, b defined by Eqs. (75) and (76). We define
N ≡ a′2 +a′1/(b+a) and introduce the normalised eigenfrequency
Z ≡ iωrsh/|vsh|:

N (Z) ≡
γ − 1
b + a

M2
sh +

1 −M2
sh −

Z
b+a

vsh
v1(

1 − vsh
v1

) (
Z +

ωΦrsh
|vsh |

) . (80)

Using the variable x ≡ r/rns, for ` ≥ 1 the eigenfrequency equa-
tion, Eq. (63), is approximated by

−x3a−b−1
sh

∫ xsh

1

(
xb − x−b

)
eiω

∫
sh

dr
v

dx
x3a

= N
(

iωrsh

|vsh|

)
+

2b
`(` + 1)

M2
sh

xa+b
sh

eiωτns
adv . (81)

The approximation of the eigenfrequency with γ = 4/3
allows an explicit calculation of the integral involved in Eq. (81).
The following equation defining the eigenfrequencies for ` ≥ 1
is expressed using the complex amplification factor Q(ω) per
advective-acoustic cycle:

Q(Z) ≡
2b

(
rsh
rns

)2−b
{
1 +

[
(Z + 2)2 − b2

]
M2

sh

`(`+1)x3
sh

}
[1 − (Z + 2 − b) N] (Z + 2 + b) − Z+2−b

x2b
sh

,

(82)

Q

(
iωrsh

|vsh|

)
eiωτns

adv = 1, (83)

where b2 = 1+`(`+1) and the advection time τns
adv from the shock

to the inner boundary is approximated by Eq. (79). The numeri-
cal solution of this equation is compared to the exact solution of
Eq. (63) in Fig. 9.
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Fig. 9. Eigenfrequency of the adiabatic solution (green lines) based on
the integral formulation (63) compared to its integrated approximation
(83) (orange lines), which is based on the approximate description of the
flow profile v,M and acoustic structure Y0. The estimate of the oscilla-
tion frequency 2π/τns

adv neglecting the phase of Q is shown as a dashed
blue line. For reference, the eigenfrequency of the flow with cooling
using (α, β) = (3/2, 5/2) is also shown (purple lines with crosses).

The good agreement obtained with the analytic
expression (83) demonstrates that the approximation of the
flow profile v, M and the approximation of the homogeneous
solution Y0 are sufficient to capture the essence of the instability
in the adiabatic model and identify the leading contributions
in the integral expression (63). The frequency is overestimated
by up to 20% and the growth rate is overestimated by up to
26%. The region of radial propagation of acoustic waves was
neglected for the sake of simplicity in the analytical approxima-
tion (73) of Y0, without significant consequences regarding the
approximation of the fundamental frequency ωr , because the
radial extension of this region is modest compared to the region
affecting the phase of advected perturbations.

The larger inaccuracy of ∼76% of the simple formula ωr ∼

2π/τns
adv, also shown in Fig. 9, is mainly due to the neglect of

the frequency dependence of the phase of Q, denoted ϕQ. The
complex Eq. (83) is equivalent to the following set of two real
equations:

ωi =
log|Q|
τns

adv
, (84)

ωr =
2π − ϕQ
τns

adv
. (85)

5.3. Oscillation period of the advective-acoustic cycle in the
adiabatic approximation

Comparingωr and 2π/τns
adv in Fig. 9, it is particularly striking that

the oscillation period TSASI ≡ 2π/ωr is significantly longer than
the adiabatic advection time τns

adv. This contrasts with the simula-
tions in Scheck et al. (2008) where TSASI ∼ τ

ns
adv, in line with the

analytic toy model of F09. Not only does TSASI differ from τns
adv

by more than 76%, but TSASI is actually 76% longer than the
longest advection timescale τns

adv, excluding the possibility that
the oscillation period could coincide with any advection time.
As explained in Scheck et al. (2008), the relation between TSASI
and τns

adv does depend on the phase ϕQ of the complex efficiency
Q.
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Fig. 10. Amplitude |Q| (solid lines) and normalised phase ϕQ/2π
(dashed lines) of the complex amplification factor associated through
Eqs. (86), (87) to the fundamental eigenfrequency ω calculated with
cooling (purple lines with crosses) and in the adiabatic approximation
(green lines), using the same adiabatic estimate of the advection time
τns

adv as that in Eq. (79). The orange line shows |Q| and ϕQ/2π deduced
from the analytic estimate (orange lines) using Eq. (82) with ω satisfy-
ing Eq. (83).

The adiabatic approximation teaches us that, even in a simple
adiabatic model, the phase shift ϕQ should not be neglected a
priori. This was also true in the calculation of Sect. 2.3 with non-
adiabatic cooling. The value of |Q| and ϕQ can be deduced from
ω and τns

adv from Eqs. (84), (85):

|Q| = eωiτ
ns
adv , (86)

ϕQ = 2π − ωrτ
ns
adv. (87)

This characterisation of the fundamental eigenfrequency is cal-
culated in Fig. 10 in the adiabatic approximation and compared
to the analytical estimate deduced from Eqs. (82), (83); for ref-
erence, it is also displayed in the flow with cooling, using the
same adiabatic advection time, which should not be confused
with the actual advection time taking into account the cooling
layer. In the adiabatic flow, the winding angle of the spiral pat-
tern of advected perturbations from the shock to the neutron star
is Φadv ≡ 2π − ϕQ. We note in Fig. 10 that ϕQ < π, implying
that the radial structure of advected perturbations of entropy or
vorticity contains at least a change of sign, as seen in Fig. 2 of
Blondin & Shaw (2007), Fig. 1 of Fernández (2010), and Fig. 10
of Buellet et al. (2023).

5.4. Comparison to the analytic model in Foglizzo (2009)

The adiabatic formulation incorporates major improvements
compared to the adiabatic toy model used by F09, Sato et al.
(2009), Guilet & Foglizzo (2012): the plane parallel model
allows for explicit analytical solutions and a deeper understand-
ing of the instability mechanism, but some simplifications are
difficult to justify: (i) the assumption of a uniform flow between
the shock and the region of deceleration implies that the verti-
cal size of the acoustic and advected cavities are identical, thus
overestimating the impact of radial acoustic propagation on the
phase of the solution; (ii) the maximum strength Q ∼ 2 of the
advective-acoustic cycle is arbitrarily set by the specific value
(0.75) chosen for the ratio c2

sh/c
2
out, which limits the relative

effect of the purely acoustic cycle on the most unstable modes;
(iii) the optimum value of the vertical wavenumber compared to

the horizontal one is set by the specific value chosen for L/H = 4
in F09 and Sato et al. (2009) and L/H = 6 in Guilet & Foglizzo
(2012); (iv) the width of the coupling region described by H∇/H
is also a free parameter of the model.

The present adiabatic model offers a new framework over-
coming these shortcomings, and is still simple enough to allow
for analytical results:

– The spherical geometry is taken into account (rather than a
plane parallel approximation in F09).

– The adiabatic heating and deceleration are produced in a
self-consistent manner by the radial convergence in 3D and by
the proto-neutron star gravity (rather than being localised at the
lower boundary by some external potential with adjustable depth
c2

sh/c
2
out and width H∇/H in F09).

– The gravity produced by the neutron star at the shock is
not neglected, allowing both displacement and velocity effects
for the production of entropy at the shock (rather than ignoring
displacement effects with ωΦ = 0 in F09).

The adiabatic model sheds light on some objections by
Blondin & Mezzacappa (2006) regarding the advective-acoustic
mechanism in a non-rotating flow:

(i) The fact that the advection time may be longer than
the oscillation period does not contradict the advective-acoustic
mechanism.

(ii) The fact that the pressure field shows no evidence for
a radially localised coupling radius is explained by the radi-
ally extended character of the coupling process, as seen in the
integral in Eq. (63). The feedback should refer to the radially
extended pressure structure rather than the radial propagation of
an acoustic wave.

6. Conclusions and perspectives

1. The oscillation period of the fundamental SASI mode can be
estimated from the shock radius rsh, the radius of maximum
deceleration r∇, and the central mass Mns.

2. A possible improvement to the analytic formula used by
Müller & Janka (2014) is proposed, based on the perturba-
tive analysis without any adjustment of a specific numerical
simulation.

3. An adiabatic model of the shock dynamics incorporating
non-adiabatic processes in the boundary conditions is able
to capture the general properties of SASI eigenmodes.

4. In the adiabatic approximation, the SASI mechanism can be
described as a self-forced oscillator. The forcing by advected
perturbations is distributed from the shock surface to the
cooling layer rather than inside the cooling layer.

5. An analytical description of the properties of the fundamen-
tal mode of SASI in the adiabatic approximation is obtained
in the asymptotic limit of a large ratio rsh/r∇.
Improving the accuracy of the estimation of the SASI oscil-

lation period from a perturbative analysis requires (i) a more
accurate prescription for partial dissociation at the shock and in
the flow, as described in Appendix A of Fernández & Thompson
(2009a), and (ii) a better characterisation of the parametrised
cooling function, leading to a realistic value of the ratio r∇/rns.

The adiabatic framework proposed here opens a new path
for analytical investigation of the physical effect of stellar rota-
tion in the equatorial plane (Paper II), and provides a means to
address the intriguing results of Walk et al. (2023), which they
obtained by comparing SASI properties in cylindrical and spher-
ical geometries.

We note that the adiabatic approximation indeed accounts
for the growth rate and oscillation period within ∼30%, leaving
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room for additional non-adiabatic effects. By decreasing the
velocity and Mach number near the proto-neutron star, the
amplitude of the forcing term is increased, as is the phase mix-
ing near the proto-neutron star. In addition to affecting the trade-
off between these two effects, non-adiabatic effects modify the
amplitude of δS and δK during their advection, add a source
of feedback in the cooling layer, and modify the acoustic equa-
tion. A quantitative assessment of some of these effects can be
obtained within the formalism of the self-forced oscillator by
incorporating them into the lower boundary condition.
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Appendix A: Stationary accretion

The loss of energy through nuclear dissociation is measured by
the parameter ε defined by Eq. (6). It decreases the value of
the post-shock Mach numberMsh below the reference adiabatic
valueMad, and affects the Rankine-Hugoniot conditions accord-
ing to Eqs. (A4-A6) of Foglizzo et al. (2006):

M2
ad ≡

2 + (γ − 1)M2
1

2γM2
1 − γ + 1

, (A.1)

ε =

1 +
2

γ − 1
1
M2

1

 1 − M2
sh

M2
ad

 1 − M2
sh

M2
1

 , (A.2)

vsh

v1
=
M2

sh

M2
1

1 + γM2
1

1 + γM2
sh

, (A.3)

csh

c1
=
Msh

M1

1 + γM2
1

1 + γM2
sh

. (A.4)

The nuclear binding energy of the iron nuclei is 8.8MeV per
nucleon, or 1.77× 1052erg/M�. If nuclear dissociation was com-
plete across the shock this would translates into a dissociation
parameter scaling linearly with rsh:

ε = 0.7
( rsh

150km

) (1.3M�
Mns

)
. (A.5)

We note that our definition of ε in Eq. (6) follows Huete et al.
(2018), which differs from Eq. (4) in Fernández & Thompson
(2009b) by a factor 2. A fraction of the dissociation of iron nuclei
is radially distributed between the shock and the neutron star
surface, as calculated in Fernández & Thompson (2009a). Tak-
ing into account incomplete dissociation, the value of ε formu-
lated in Eq. (35) is a rough estimate deduced from Eq. (51) and
Fig. 12 in Huete et al. (2018) for rsh < 175km. It is smaller than
Eq. (A.5) by a factor ∼ 1.4 and saturates at ε ∼ 0.5 in exploding
models.
The value of Msh is expressed as a function of M1 and ε(rsh)
using Eq. (A.2):

M2
sh

M2
ad

=
1
2

+

1 − 2ε
1+ 2

γ−1
1
M2

1

−
M2

ad

2M2
1

1 +

(1 − M2
ad

M2
1

)2
+

4ε
M2

ad
M2

1

1+ 2
γ−1

1
M2

1


1
2

, (A.6)

∼ 1 − ε if M1 � 1 (A.7)

The jump condition (A.3) is thus a function of ε(rsh) using
Eq. (A.6), with the simple following expression for a strong
shock:
v1

vsh
∼ 1 +

2
(1 − ε)(γ − 1)

, (A.8)

∼ 1 +
6

1 − ε
. (A.9)

The definition of the cooling function (1), the dimensionless
entropy (2) and the mass conservation (3) are used to eliminate
the variables ρ, p,M, v from the stationary equations, Eqs. (4)
and (5):

ρ

ρsh
=

(
c

csh

) 2
γ−1

e−(S−S sh), (A.10)

rgc
γ+1
γ−1M = rgshc

γ+1
γ−1

sh eS−S sh . (A.11)

Appendix B: Differential system and boundary
conditions of the perturbed accretion

We rewrite the differential system satisfied by δ f , δh (Eqs. (E2-
E3) in Foglizzo et al. (2006)), using the radial coordinate X
defined as in Foglizzo (2001):

dX ≡
v

1 −M2 dr. (B.1)

Thus (
∂

∂X
+

iω
c2

)
δ f
iω

= δh +

(
γ − 1 +

1
M2

)
δS
γ

+
1 −M2

iωv
δ

(
L

ρv

)
, (B.2)(

∂

∂X
+

iω
c2

)
δh =

iω
v2

ω2 − ω2
Lamb

ω2c2 δ f − δS
 +

1 −M2

v2

iδK
ωr2 (B.3)

The set of equations Eqs. (A1)-(A4) in Foglizzo et al. (2007) are
repeated here for completeness:

δvr

v
=

1
1 −M2

(
δh + δS −

δ f
c2

)
, (B.4)

δρ

ρ
=

1
1 −M2

(
−M2δh − δS +

δ f
c2

)
, (B.5)

δc2

c2 =
γ − 1

1 −M2

(
δ f
c2 −M

2δh −M2δS
)
, (B.6)

δp
γp

=
1

γ − 1
δc2

c2 −
δS
γ
, (B.7)

δ

(
L

ρv

)
= ∇S

c2

γ

[
(β − 1)

δρ

ρ
+ α

δc2

c2 −
δvr

v

]
, (B.8)

δ

(
L

pv

)
= ∇S

[
(β − 1)

δρ

ρ
+ (α − 1)

δc2

c2 −
δvr

v

]
. (B.9)

The perturbed mass conservation and transverse components of
the perturbed Euler equation are:

−iωδvθ + vδwϕ +
1
r
∂

∂θ
δ f =

c2

γ

1
r
∂δS
∂θ

, (B.10)

−iωδvϕ − vδwθ +
im

r sin θ
δ f =

c2

γ

imδS
r sin θ

, (B.11)

We eliminate δvθ and δvϕ in the system of Eqs. (12), (14), (B.10)
and (B.11) and obtain Eq. (16).
The derivative of δA is calculated using Eqs. (16), (20) and
(B.2), leading to the differential system (17-20) satisfied by
δA, δh, δS , δK. The second derivative of δA is calculated using
Eqs. (12), (20) and (B.3), resulting in Eq. (27).
Using Eq. (16), Eqs. (B.4-B.7) are rewritten as follows:

δvr

v
=

δK
`(` + 1)v2 −

1
`(` + 1)v

∂δA
∂r
−

δS
γM2 , (B.12)

δρ

ρ
=

1
c2

(
v
∂

∂r
− iω

)
δA

`(` + 1)
−
γ − 1
γ

δS , (B.13)

1
γ − 1

δc2

c2 =
1
c2

(
v
∂

∂r
− iω

)
δA

`(` + 1)
+
δS
γ
, (B.14)

δp
γp

=
1
c2

(
v
∂

∂r
− iω

)
δA

`(` + 1)
, (B.15)

Using Eq. (B.12) with Eq. (12), we can express δvr with δA and
δw⊥ and obtain Eq. (15). We note that this relation is equiv-
alent to the radial component of the vector calculus relation
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∇2v = ∇(∇ · v) − ∇ × (∇ × v).
The baroclinic production of vorticity by the advection of
entropy perturbations can be calculated in the same way as
Eqs. (E17-E19) in Foglizzo et al. (2005), using the conservation
of the tangential component of the velocity across the shock:

δvθsh =
v1 − vsh

rsh

∂∆ζ

∂θ
, (B.16)

δvϕsh =
v1 − vsh

rsh

im∆ζ

sin θ
. (B.17)

The vorticity produced at the shock is defined by Eqs. (B.16-
B.17), the transverse components (B.10-B.11) of the Euler
equation at the shock, together with the angular derivative of
Eqs. (22):

δwrsh = 0, (B.18)

δwθsh = −
c2

sh

γ

im
rshvsh sin θ

(
δS sh + [∇S ]sh

1 ∆ζ
)
, (B.19)

δwϕsh =
c2

sh

γ

1
rshvsh

∂

∂θ

(
δS sh + [∇S ]sh

1 ∆ζ
)
. (B.20)

Appendix C: Adiabatic model

Following Eqs. (B5)-(B7) in Foglizzo (2001), the differential
equation describing the specific vorticity in a spherical adiabatic
flow can be integrated as

δwr =

( rsh

r

)2
δwrsheiω

∫
sh

dr
v , (C.1)

δwθ =
1
rv

(rvδwθ)sh −
c2 − c2

sh

sin θ
im
δS sh

γ

 eiω
∫

sh
dr
v , (C.2)

δwϕ =
1
rv

(rvδwϕ)sh +
c2 − c2

sh

sin θ
∂

∂θ

δS sh

γ

 eiω
∫

sh
dr
v . (C.3)

Using Eqs. (B.18-B.20) with ∇S = 0, together with Eqs. (C.1-
C.3) gives the expression (42-44) of the vorticity perturbation
throughout the flow.
With δY defined by Eq. (59), the expressions of δAsh, δhsh are
deduced from Eqs. (22-24):(

1 −
vsh

v1

)
∆ζ =

δYsh

v1
, (C.4)

δhsh = −
iω

v1vsh
δYsh, (C.5)

δS sh

γ
=
δYsh

c2
sh

(iω + ωΦ)
(
1 −

vsh

v1

)
. (C.6)

We rewrite Eq. (17) using the definitions of X and δY with δK =
0:

δYsh = −
δAsh

`(` + 1)
, (C.7)(

∂δA
∂r

)
sh

=
`(` + 1)vsh

1 −M2
sh

δYsh
iω
v2

sh

(
vsh

v1
+M2

sh

)
−
δS sh

γ

 1
M2

sh

+ γ − 1
 , (C.8)(

∂δY
∂X

)
sh

= −
1 −M2

sh

`(` + 1)vsh

(
∂δA
∂r

)
sh

+
iω
c2

sh

δYsh, (C.9)

which results in Eq. (57).
At the inner boundary in the adiabatic approximation, we use the
condition δvr = 0:

δhns + δS ns =
δ f
c2

ns
. (C.10)

The entropy is simply advected from the shock (38) and we
express δh with δY and ∂δY/∂X using Eq. (17):

δS ns = δS she
∫ ns

sh iω dr
v , (C.11)

∂δY
∂X

= δhe
∫

sh
iω
c2 dX

+
δS
γ

e
∫

sh
iω
c2 dX

(
1
M2 + γ − 1

)
. (C.12)

The inner boundary condition (C.10) is thus reduced to Eq. (58).
Multiplying Eq. (51) by m/(ω sin θ) and using Eqs. (43) and (48):( ∂∂X

+
iω
c2

)2

+
ω2 − ω2

Lamb

v2c2

 rδvϕ = −
∂

∂X
rδwθ

v
. (C.13)

Equivalently, using Eq. (44) and (47) and the derivative of
Eq. (51) with respect to θ leads to:( ∂∂X

+
iω
c2

)2

+
ω2 − ω2

Lamb

v2c2

 rδvθ =
∂

∂X
rδwϕ

v
, (C.14)

which is equivalent to Eq. (C.13) given the spherical symmetry
of the stationary flow.

Appendix D: Equation defining the
eigenfrequencies in the adiabatic model

The differential equation satisfied by δY is deduced from
Eqs. (51) and (59): ∂2

∂X2 +
ω2 − ω2

Lamb

v2c2

 δY = δF , (D.1)

δF ≡ e
∫

sh
iω
c2 dX
FS δS sh. (D.2)

We define Y0 as the solution of the homogeneous equation sat-
isfying the inner boundary condition of pure acoustic waves
(i.e. without entropy and vorticity perturbations), and Y− another
homogeneous solution such that their Wronskien is W:(

∂Y0

∂X

)
ns

=
iω
c2

ns
Yns

0 , (D.3)

W ≡ Y0
∂Y−
∂X
− Y−

∂Y0

∂X
, (D.4)

δY = Y−

(
d− +

∫
ns

Y0

W
δF dX

)
− Y0

(
d0 +

∫
sh

Y−
W
δF dX

)
, (D.5)

where δF ≡ FS δS sh is the forcing term on the right hand side of
Eq. (51) for the variable δY defined by . Using Eq. (D.5) at the
upper boundary:

δYsh = Ysh
−

(
d− +

∫ sh

ns

Y0

W
δF dX

)
− d0Ysh

0 , (D.6)(
∂δY
∂X

)
sh

=

(
∂Y−
∂X

)
sh

(
d− +

∫ sh

ns

Y0

W
δF dX

)
− d0

(
∂Y0

∂X

)
sh
, (D.7)
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Using Eq. (D.5) at the lower boundary:

δYns = d−Yns
− − Yns

0

(
d0 −

∫ sh

ns

Y−
W
δF dX

)
, (D.8)(

∂δY
∂X

)
ns

= d−

(
∂Y−
∂X

)
ns
−

(
∂Y0

∂X

)
ns

(
d0 −

∫ sh

ns

Y−
W
δF dX

)
. (D.9)

Using Eq. (D.3), the lower boundary condition (58) translates
into

d−

[(
∂Y−
∂X

)
ns
−

iω
c2

ns
Yns
−

]
= δFsh(1 −M2

ns)
M2

sh

M2
ns

e
∫ ns

sh
iω
v2 dX . (D.10)

We note using Eq. (D.4) and (D.3) that(
∂Y−
∂X

)
ns
−

iω
c2

ns
Yns
− =

W
Yns

0
. (D.11)

Thus

Wd− = Yns
0 δFsh(1 −M2

ns)
M2

sh

M2
ns

e
∫ ns

sh
iω
v2 dX . (D.12)

Eliminating d0 between Eqs. (D.6) and (D.7) and using
Eq. (D.4):

Ysh
0

(
∂δY
∂X

)
sh
−

(
∂Y0

∂X

)
sh
δYsh =[

Ysh
0

(
∂Y−
∂X

)
sh
−

(
∂Y0

∂X

)
sh

Ysh
−

] (
d− +

∫ sh

ns

Y0

W
δF dX

)
, (D.13)

= Wd− +

∫ sh

ns
Y0δF dX. (D.14)

The eigenfrequencies are thus defined by

Ysh
0

(
∂δY
∂X

)
sh
−

(
∂Y0

∂X

)
sh
δYsh =

Yns
0 δFsh(1 −M2

ns)
M2

sh

M2
ns

e
∫ ns

sh
iω
v2 dX

+

∫ sh

ns
Y0δF dX. (D.15)

Replacing the forcing term by its expression (D.2),

Ysh
0

(
∂δY
∂X

)
sh
−

(
∂Y0

∂X

)
sh
δYsh =

δFsh

Yns
0 (1 −M2

ns)
M2

sh

M2
ns

e
∫ ns

sh
iω
v2 dX

+

∫ sh

ns
Y0e

∫
sh

iω
c2 dX ∂

∂r

M2
sh

M2 e
∫

sh
iω
v dr

 dr

 . (D.16)

Using Eqs. (24) and (57) this equation takes the form

a1Ysh
0 + a2rsh

(
∂Y0

∂r

)
sh

+ a3Yns
0 =∫ sh

ns
Y0e

∫
sh

iω
c2 dX ∂

∂r

M2
sh

M2 e
∫

sh
iω
v dr

 dr, (D.17)

with a1, a2, a3 defined by:

a1 ≡

(
∂δY
∂X

)
sh

δFsh
, (D.18)

= 1 + (γ − 1)M2
sh −

iω
iω + ωΦ

vsh
v1

1 − vsh
v1

, (D.19)

a2 ≡ −
1 −M2

sh

rshvsh

δYsh

δFsh
, (D.20)

= −
1 −M2

sh(
1 − vsh

v1

)
(iω+ωΦ)rsh

vsh

, (D.21)

a3 ≡ −(1 −M2
ns)
M2

sh

M2
ns

e
∫ ns

sh
iω
v2 dX . (D.22)

After one integration by parts:

Ysh
0

(
∂δY
∂X

)
sh
−

(
∂Y0

∂X

)
sh
δYsh = δFsh

{
Ysh

0 − Yns
0 M

2
she

∫ ns
sh

iω
v2 dX

−

∫ sh

ns

∂

∂r

(
Y0e

∫
sh

iω
c2 dX

)M2
sh

M2 e
∫

sh
iω
v drdr

 .(D.23)

The equation defining the eigenfrequencies becomes Eq. (63)
with a′1 ≡ a1 − 1 and a′2 ≡ a2 defined by Eqs. (64-65).

Appendix E: Approximation of the adiabatic
stationary flow and the homogeneous
perturbative solution

The dissociation measured by the parameter ε affects the relation
between |vsh| and the local free fall velocity, as deduced from
Eq. (68) for a strong shock:

|vsh|

(
rsh

2GMns

) 1
2

∼
(γ − 1)(1 − ε)

2 + (γ − 1)(1 − ε)
, (E.1)

c2
shrsh

GMns
=

1
M2

sh

v2
shrsh

GMns
. (E.2)

Equation (E.2) is transformed into Eq. (69) using Eqs. (E.1) and
(67). We use a power law approximation of the enthalpy profile
deduced from the Bernoulli equation for r � rsh andM2 � 1:

c2
[
1 + (γ − 1)

M2

2

]
= (γ − 1)

GMns

r

+c2
sh

1 + (γ − 1)
M2

sh

2

 − (γ − 1)
GMns

rsh
, (E.3)

c2 ∼ (γ − 1)
GMns

r
. (E.4)

The mass conservation and the adiabatic hypothesis in
Eq. (A.11) imply the power law approximations (71) and (72)
for the velocity and Mach number profiles.
For γ = 4/3 we approximate

M2 ∼ M2
sh

(
r

rsh

)3

, (E.5)

v ∼ vsh
r

rsh
, (E.6)

iω
∫

sh

M2

1 −M2

dr
v
∼ −M2

sh
iωrsh

|vsh|

∫
sh

x2dx
1 −M2

shx3
, (E.7)

∼
iωrsh

3|vsh|
log

 1 −M2

1 −M2
sh

 . (E.8)
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The oscillatory phase associated to δ f in Eq. (63) is made of a
product of (iω) with two explicit contributions and a third con-
tribution from the definition of δY in Eq. (59). The sum of these
three contributions is:∫

sh

M2

1 −M2

dr
v

+

∫
sh

M2

1 −M2

dr
v

+

∫
sh

dr
v

=

∫
sh

1 +M2

1 −M2

dr
v
. (E.9)

With αv = 1 and r̃ ≡ r/rsh,

1 +M2

1 −M2

vsh

v
∼

2M2
shr̃2

1 −M2
shr̃3

+
1
r̃
. (E.10)

The integral can be estimated as follows:∫
sh

1 +M2

1 −M2

dr
v
∼

rsh

|vsh|

log
rsh

rns
−

2
3

log
1 −M2

sh

1 −M2
ns

 , (E.11)

∼
rsh

|vsh|

log
rsh

rns
+

2M2
sh

3

 (E.12)

With a strong adiabatic shockM2
sh ∼ 1/8, the correction to the

advection timescale τns
adv is thus of order 12% for rsh/rns = 2

and 5% for rsh/rns = 5. This correction is smaller if dissociation
diminishes the value ofM2

sh.
The contribution of the integral inside the radial derivative in
Eq. (63) is limited to a contribution of orderM2

sh:∫ r

sh
ω

dX
c2 = ω

∫ r

sh

M2

1 −M2

dr
v
, (E.13)

∼
ωrsh

|vsh|

M2
sh

αv + 2

1 − (
r

rsh

)αv+2 . (E.14)

With ωr ∼ 2π|vsh|/rsh for a small shock radius this phase shift is
not negligible since it reaches 0.74 ∼ π/4 at the inner boundary
and it is linear in ω.
We integrate Eq. (49) using Eq. (71) and neglectingM2 � 1:

Xsh ≡
rshvsh

αv + 1
, (E.15)

X
Xsh

∼

(
r

rsh

)αv+1

. (E.16)

The two solutions Y±0 of the homogeneous equation (60) are
approximated as power laws with exponents α±.

Y±0 (r) ≡

(
r

rns

)α±
. (E.17)

Injecting Y±0 (r) into Eq. (60),

α± (α± − αv − 1)
(

r
rsh

)−2αv−2

=

−

ω2r2
sh

c2 − `(` + 1)
r2

sh

r2

 (vsh

v

)2
. (E.18)

For ` ≥ 1, the restoring force in Eq. (60) is independent of the
frequency in the region where ω � ωLamb. Thus, using Eq. (E.4)
for ` ≥ 1,

α± (α± − αv − 1) = `(` + 1) −M2
sh

(
ωrsh

vsh

)2 (
r

rsh

)3

, (E.19)

∼ `(` + 1) if ω � ωLamb. (E.20)

In this region the approximate solution is α± ≡ a ± b with a, b
defined by Eqs. (75) and (76). The homogeneous solution Y0 for
` ≥ 1 is a linear combination of power laws Y±0 satisfying the
lower boundary condition (61):

Y0(r) =

(
r

rns

)a−b

+ Rns

(
r

rns

)a+b

, (E.21)

1 −M2
ns

vns

(
∂Y0

∂r

)
ns

=
iω
c2

ns
Yns

0 . (E.22)

WithMns � 1 and using Eq. (72),

a − b + (a + b)Rns =M2
sh

(
rns

rsh

)2+αv iωrsh

vsh
(1 + Rns) , (E.23)

Rns =
a − b −M

4
γ+1

sh

(
rns
rsh

) γ+3+αv (3−γ)
γ+1 iωrsh

vsh

a + b +M
4
γ+1

sh

(
rns
rsh

) γ+3+αv (3−γ)
γ+1 iωrsh

vsh

. (E.24)

From Eq. (E.24) we conclude that the coefficient Rns is asymp-
totically independent of ω when rns � rsh.

Rns ∼ −
a − b
a + b

. (E.25)

The acoustic function is independent of the frequency in the
asymptotic limit rns � rsh for low frequency perturbations ` ≥ 1
driven by advection such that ωrsh/|vsh| ≤ 1, as described by
Eqs. (73) and (74).
Using the index 0 to denote the acoustic perturbation associ-
ated to the homogeneous solution, we note from Eqs. (46) with
δS = 0 and Eq. (59) that the relation between ∂Y0/∂r and δv0

r is

δv0
r = −

1
`(` + 1)

∂δA0

∂r
, (E.26)

=

(
∂Y0

∂r
−

iωM2

1 −M2

Y0

v

)
e−

∫
sh

iωM2

1−M2
dr
v . (E.27)

The fact that Eq. (74) imposes ∂Y0/∂r = 0 is approximately
compatible with δv0

r ∼ 0 to the extent thatMns � 1.

Appendix F: Approximation of the eigenfrequency
equation for γ = 4/3

The advection time for αv = 1 is approximated using Eq. (79):

e
∫ r

sh
iω
vr

dr =

(
x

xsh

)− iωrsh
|vsh |

. (F.1)

Defining δz ≡ iωrsh/|vsh|+2−b and noting that a = 1, the leading
terms in Eq. (81) for ` ≥ 1 are :

N(δz − 2 + b) +
2bM2

sh

`(` + 1)
xδz−3

sh =

∫ xsh

1

( xsh

x

)δz ( 1
x2b − 1

)
dx
x
, (F.2)

The integral on the right hand side can be calculated explicitly.
If δz , 0,∫ xsh

1

( xsh

x

)δz ( 1
x2b − 1

)
dx
x

=
1
δz

1 − δzx−2b
sh

2b + δz
−

2bxδzsh

2b + δz

 , (F.3)

Using Eq. (F.3) in Eq. (F.2) we obtain the following equation
defining δz:

[1 − δzN(b − 2 + δz)]
(
1 +

δz
2b

)
−

δz
2bx2b

sh

=

xδzsh

1 + δz
2bM2

sh

`(` + 1)x3
sh

(
1 +

δz
2b

) . (F.4)
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Reintroducing the normalised eigenfrequency Z = iωrsh/|vsh|,

xb−2
sh

2b

[1 − (Z + 2 − b) N (Z)] (Z + 2 + b) −
Z + 2 − b

x2b
sh

 =

xZ
sh

1 +
[
(Z + 2)2 − b2

] M2
sh

`(` + 1)x3
sh

 . (F.5)

The approximate advection time τsh
adv from the shock to the inner

boundary, defined by Eq. (79), is introduced to obtain Eqs. (82-
83).
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