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Abstract 
The calculation technique for multipole design is 

described for the case when the pole shape is consisted 
of different areas. Some requirements can be imposed 
on the curvature of these areas. The pole shape of the 
dipole magnets, quadrupoles and sextupoles for the 2 
GeV accelerator - synchrotron storage ring complex 
developing in KIPT were designed using the described 
technique of calculation. 

1 INTRODUCTION 
Reaching of required parameters of modem installati­

ons [1,2] has demanded of magnets with complex 
multipolar composition of the rield. The necessity of 
modelling of such complex fields (stipulated by 
demanded allowable deviations ~ 10-4) generates desire 
to have expression connecting a field and geometric 
performances of a magnet, namely with the form of a 
pole. Even the saturation of iron can be compensated by 
preliminary geometric distorions of a pole shape [3]. 
As is known, it is possible to express field both 

through the complex potential z(ω), and through the 
inverse function to the complex potential, ω (z) (ω (z) -
conformal map of the band 0≤Im(z)≤H on a pole [4]. 
Β = - i ( ) = - i (1) 
Following exposition is devoted to deriving of the 

map of the line band 0≤Im(z)≤H on the band of pole 
area, ω=x+iy. 

2 THE "BAND TO BAND" CONFORMAL 
MAPPING 

Let's consider a conformai map of a line band 
0≤Im(z)≤ of an area z=t+ih on a band of a pole area 
ω=x+iy (Fig.1). Let the angle of declination ν=ν(t) of a 
tangent to L in apoint ω that is appropriated to point t is 
known in each point t of boundaries of a band 
0≤Im(z)≤H. Let also dz=dt and dω=|dω|exp[iv(t)] are 
elements of a boundary of a band and contour L, 
appropriate one another in considered conformai 
mapping, then 
dω/dz = exp[iν(t)] |dω|/dt (2) 
Let's remark that: 
-i ln[dω/dz] = ν(t)-i ln|dω|/<dt] = g(z), (3) 

where g(z) - function, which real part on boundaries of a 
band accepts significances ν(r). Obviously, that a 
deriving map has a form: 

ω(z) = C 
z 
exp[ig(z)]dz + C0; (4) ω(z) = C ∫ exp[ig(z)]dz + C0; (4) ω(z) = C 

z0 

exp[ig(z)]dz + C0; (4) 

where C, C0 are constants of an integration 

Fig.1 Map of a band 0≤Im(z)≤H on a band with any 
boundaries. 

Let's establish the correspondence ω(0)=0; that is 
C0=0. For ω(z), the ratio of real and imaginary parts is 
important. Therefore let's assume C=1. The function 
g(z), by virtue of an above-stated property (3), is 
restored by an integral of the Schwarz for a band. For 
map of a circle to any symply connected region the 
formula of a kind (4) is known as the formula Chizoti 
[4]. 
2.1 Integral of the Schwarz for a band 
The integral of the Schwarz for a circle |ζ|≤1 has a 

form 

G(ζ)= 1 V(exp(iτ)) exp(iτ)+ζ dτ; (5) G(ζ)= 1 π V(exp(iτ)) exp(iτ)+ζ dτ; (5) G(ζ)= 2π ∫ V(exp(iτ)) exp(iτ)-ζ dτ; (5) G(ζ)= 2π 
-π 
V(exp(iτ)) exp(iτ)-ζ dτ; (5) 

where τ it a an angular coordinate of a plane ζ  
containing a circle |ζ|≤1. Let's consider a conformai 
mapping of a band 0≤Im(z)≤H of a plane z=t+ih on a 
circle|ζ|≤1 of a plane ζ=r exp(iτ), 
ζ(z)=th(π(2z-iΗ)/4Η), (6) 
transferring the lower and upper boundaries of a band in 
the lower and upper semicircles accordingly, also we 
shall designate G[ζ(z)]=g(z), V[exp(iτ)]=ν(t). By 
allocating two intervals of an integration, [-π,0] [-∞,∞]; [0, π] [∞,-∞] and, by making a 
change of variables, we shall receive 

g(z)= i {-∞ ν0(t)[cth π(t - z) -th πt dt + g(z)= i {-∫ ν0(t)[cth π(t - z) -th πt dt + g(z)= 2H {-∫ ν0(t)[cth 2H -th H dt + g(z)= 2H {--∞ ν0(t)[cth 2H -th H dt + 
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∞ 

νH(t)[th 
π(t-z) -th πt ]dt}. (7) ∫ νH(t)[th 
π(t-z) -th πt ]dt}. (7) ∫ νH(t)[th 2H -th H ]dt}. (7) 

-∞ 

νH(t)[th 2H -th H ]dt}. (7) 

The first integral responces for degrees of a 
symmetry, the second - for the form of a pole. The 
preservation of an addend th(πt/H) under the integral (in 
[4] it is brought in constants of an integration) allows, 
by substituting (7) in (4) to receive analytical expression 
for map "band to band". The formulas (4,7) allow to 
describe practically all "Halbach geometries" [5]. 

3 INFLUENCE OF VARIOUS AREAS OF 
THE STRUCTURE ON THE FIELD 

The formulas (4,7) result in expression for a 
conformai mapping "band to band". 

ω ( z ) = 
z 

exp[G(z)]dz; (8) ω ( z ) = ∫ exp[G(z)]dz; (8) ω ( z ) = 

z0 

exp[G(z)]dz; (8) 

where 

G(z) = 1 
∞ 

ν0(t)[cth π(t-z) -th πt dt-G(z) = 1 ∫ ν0(t)[cth π(t-z) -th πt dt-G(z) = 2H ∫ ν0(t)[cth 2H -th H dt-G(z) = 2H 
-∞ 

ν0(t)[cth 2H -th H dt-

1 
∞ 

νH(t)[th π(t-z) -th πt ]dt 1 ∫ νH(t)[th π(t-z) -th πt ]dt 2H ∫ νH(t)[th 2H -th Η ]dt 2H 
-∞ 

νH(t)[th 2H -th Η ]dt 
(9) 

We shall define the function describing the behaviour 
of an angle of declination of a structure of the pole νH(t), 
as 
νH(t) = { const = U-∞ , t [-∞,a1]; 

(10) 
νH(t) = { 

qj(t), t[aj,aJ+1] j = 1Λ M-1; (10) 
νH(t) = { 

const = U-∞, t [a1,∞]; 
(10) 

M, is number of points on the upper coast of a band, 
between which νH(t) is continuous. In case of a 
multipolar symmetry, ν0(t) is determined as: 
ν0 (t) = { const = Umult t [-∞,0] (11) ν0 (t) = { const = 0, t [0,∞] (11) 

For a dipole symmetry Umult = 0; for a quadrupole 
symmetry Umult = -π/2; for sextupole Umult, = -π2/3; etc. 
We shell rewrite (8) under of accepted definition of 

the angle of declination of a pole structure (10) as: 

ω ( z ) = 
z 
exp Gmult(z)+Gle(z)+Gre(z)+ 

M-1 Gj(z)]dz; (12) ω ( z ) = ∫ exp Gmult(z)+Gle(z)+Gre(z)+ Σ Gj(z)]dz; (12) ω ( z ) = 

z0 

exp Gmult(z)+Gle(z)+Gre(z)+ 
J=1 

Gj(z)]dz; (12) 

where 
exp[Gmult(z)] = [1 - exp(- πz/Η)/√2]; (13) 
This factor originating from the first integral of the 

formula (9) describes influence of the degree of the 
symmetry on the field. So for the dipole symmetry 
exp[Gmult(z)]=1. 

Gle(z) = U-∞z - U-∞ί/-~ (ln√2+ln ch(π(a1 - z)/2H) ) (14) Gle(z) = 2H - π (ln√2+ln √ch(πa1/H) 
) (14) 

This member responces for the left-hand edge of a 
pole. 

Gre(z) = U∞z + U∞ ln√2+ln ch(π(a2-z)/2H) ) (15) Gre(z) = 2H + π ln√2+ln √ch(πa2/H) ) (15) 

This member responces for the right-hand edge or a 
pole. Gle(z), G?e(z) is an outcomes of an integration of 
the second integral of expression (9) in limits [-∞,a1], 
[a2,∞] accordingly. 

Gj(z)=- 1 aj+1 
qj(t)[th π(t-z) -th π ]dt (16) Gj(z)=- 1 ∫ qj(t)[th π(t-z) -th π ]dt (16) Gj(z)=-2H ∫ qj(t)[th 2H -th H ]dt (16) Gj(z)=-2H a

j 
qj(t)[th 2H -th H ]dt (16) 

This member responces for a area of a pole between 
points aj, aj-1. 
Formally, each of the members Gle(z), GKe(z), Gj(z) 

can be considered as function generating a conformai 
mappings of a rectilinear band on a band which at upper 
boundary is tangent to the lower one everywhere, except 
the area described by the appropriate member. Let's a 
pole of a dipole magnet is determine by a specific 
behaviour of an angle of declination of a structure of a 
pole between 6 points in Fig.2.?. To each of areas 
between points -∞, a1, a2, a3, a4, a5, a6, ∞ we shall get in 
accordance with the conformai mapping. 

Fig.2 Influence of areas of the pole structure to the 
field. At the left there are area of a pole structure. On the 
right fields, appropriate to these areas of a pole 
structure. 

For example, we shall consider the contribution for a 
left-hand slope of a pole (-∞,a1). Let angle of 
declination forming of a pole structure νH(t) (10) is 
determined in such a manner that: 
(qj(t=0,(j=1,M),U∞=0). Then the expression (12) 
acquires a form 
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ω(z)= 

z 

exp[Gle(z)]dz; (17) ω(z)= ∫ exp[Gle(z)]dz; (17) ω(z)= 
z0 

exp[Gle(z)]dz; (17) 

It is a conformai mapping of a rectilinear band on a 
band, which the lower boundary is a direct line, upper: 
an angle between direct lines is tangent to axes 0X, the 
other one intersect the first line under the angle U∞ in a 
point A1 Fig.2.b. Similarly it is possible to construct 
maps, therefore are fields for each site of a pole 
structure. Fig.2 illustrates the contribution separate site 
of a pole structure between points aj in a field for a 
dipole magnet. 
The influence of a different areas of a structure on a 

field consists of the following: the field, in coordinates 
of a plane containing a rectilinear band, is equal to the 
product of fields from elementary conformai mappings, 
which are determined by the initial parameters of the 
areas. 

4 THE MULTIPOLAR ANALYSIS OF A 
FIELD 

Using expression (1), (9), we shall derive an 
expression for the field in coordinates of the band 
0≤Im(z)≤H 
For the dipole symmetry ν0(t)=0 
B(z)=exp[-F(z)] (18) 

where 

F(z)=- 1 ∞ 

νH(t)[th π(t-z) -th ]dt (19) F(z)=- 1 ∫ νH(t)[th π(t-z) -th πt ]dt (19) F(z)=- 2H ∫ νH(t)[th 2H -th H ]dt (19) F(z)=- 2H 
-∞ 

νH(t)[th 2H -th ]dt (19) 

as 
dω(z)=exp[F(z)dz 

that 
diB(z) = exp[-f(z)] d 

[ di-1B(z) ]• (20) 
dω(z)i 

= exp[-f(z)] 
dz 
[ 
dω(z)i-1 

]• (20) 

By applying this procedure so many times as many 
derivatives on the field we know, we shall get a system, 
which ?an be solved concerning a derivatives of 
function F(z). And, as we are free to establish the 
correspondence ω(0)=0,: 

{ f(0)=exp[-F(0)] 

(21) 

{ 
B'(0)=-F'(0)B(0)2; 

(21) 

{ 

B"(0)=(2F(z)2-F"(z))B(0)3; 
(21) 

{ 

B(3)(0)=(-6F'(0)3 + 7F'(0)F"(0)- F(3)(0))B(0)4 

(21) 

For the quadrupole symmetry 

ν0(t)={ 
-0.5π, t[-∞,0]; (22) ν0(t)={ 0, t[0,∞]; (22) 

dw(z) = √√2/[1 - exp(- πz/Η)]exp[f(z)]dz (23) 

B(z)=√[1-exp(-πz/H)]/√2 exp[-F(z)] (24) 

diB(z) = 
√[1-exp(-πz/H)]/√2 d [ di-1B(z) (25) 

dω(z)i 
= expl^WJ dz 

[ 

dω(z)i-1 
(25) 

{K 

B'(0) = π 
; 

{K 

B'(0) = 
H2√2exp[2F(0)] ; 

{K 

B(3)(0) = -π
2(π + 4HF'(0)) 
; 

{K 

B(3)(0) = 
H38exp[4F(0)] ; 

{K 

B(5)(0)= (26) 

{K 

π3(π2 + 13HπF(0)+ 26H2F'(0)2 - 9H2F"(0)2) 
; 

{K 
H58√2exp[6F(0)] ; 

All the even derivatives are equal to zero at the point 
ω=0. The influence of the multipolar member (13) 
consists of that. The analysis of expressions (26) shows, 
that if νH(t)+ π/4 is the odd function (the right member 
of a pole is symmetric left-hand), the only derivatives 
allowed for a quadrupole symmetry, with numbers η = 1 
+ 4*i are not equal to zero. Using the determined with 
the help of (26) the value of the derivatives of F(z), one 
can restored the function F(z) itself, and the inverse to 
the complex potential function as well. Thus, knowing a 
field it is possible to restore the pole structure which 
will realize this field. 

5 CONCLUSION 
The above mentioned expressions allow to calculate 

the field and the forms of poles of multipoles if the 
function of an angle of declination forming of a pole 
structure νH(t) - in coordinates of a rectilinear band 
0≤Im(z)≤H is known. The inverse solution is posible to 
get as well: by a field is discovered νH(t), so also form of 
a pole.The form of function νH(t) can be those, that of a 
pole will take the form necessary of technological 
reasons. These circumstances have allowed to develop 
the program of synthesis of a pole structure. Input data 
of the program are: the field specified explicity or as 
aseries, and some design data of a pole. The Fig.2 is 
ploted using this program. 
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