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Abstract: A convenient γ-matrix basis is built for the problem of a neutrino
propagation through a non-polarized medium. The basis consists of eight elements and
is founded on using of off-mass-shell projection operators. It has simple multiplicative
properties.
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Пропагатор нейтрино в среде: алгебраические
аспекты

Калошин А.Е.1, Потапова И.В.2 Иркутский Государственный Университет

Аннотация
Для задачи распространения нейтрино в движущейся неполяризован-

ной среде построен удобный гамма-матричный базис. Он состоит из
восьми элементов, основан на использовании внемассовых проекцион-
ных операторов и имеет простые мультипликативные свойства.

1 Введение
Рассмотрим взаимодействие нейтрино и антинейтрино с электронами. Для дви-
жущейся неполяризованной материи, состоящей из электронов, получаем урав-
нение Дирака для волновой функции нейтрино [1]:

{iγµ∂µ −
1

2
γµ(1 − γ5)fµ −m}Ψ(x) = 0,

fµ =
Gf√

2
(1 + 4sin2θw)jµ, jµ = (n, nu),

(1)

где n - плотность электронов среды, u - скорость среды.
Уравнение на функцию Грина в импульсном представлении:

{p̂−m− 1

2
f̂(1 − γ5)}G(p, u) = −1.

Пропагатор нейтрино в среде зависит от двух четырехмерных векторов p и u,
что приводит к более сложной гамма-матричной структуре и, соответственно, к
усложнению его алгебраических свойств.

2 Проекционный и γ-матричный базис
Наиболее естественным базисом для разложения является γ-матричный базис:

S(p, u) =s1I + s2p̂+ s3û+ s4σ
µνpµuν + s5iε

µνλρσµνuλpρ+

+ s6γ
5 + s7p̂γ

5 + s8ûγ
5,

(2)
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где si – Лоренц-инвариантные коэффициенты, uµ – четырехмерная скорость. Все-
го в разложении имеется восемь независимых компонент с учетом нарушения
четности. Известно, что γ-матричный базис является полным, коэффициенты
разложения свободны от сингулярностей и связей. Однако, этот базис неудобен
при умножении и обращении, так как базисные элементы не ортогональны друг
другу.

Построим Λ-базис, который наиболее удобен при умножении и обращении
выражений типа S(p, u):

Q1 = Λ+ 1 + x̂γ5

2
, Q2 = Λ− 1 + x̂γ5

2
,

Q3 = Λ+ 1 − x̂γ5

2
, Q4 = Λ− 1 − x̂γ5

2
,

Q5 = Λ+ γ5 + x̂

2
, Q6 = Λ− γ5 + x̂

2
,

Q7 = Λ+ γ5 − x̂

2
, Q8 = Λ− γ5 − x̂

2
.

Строится он с использованием внемассовых проекционных (
1 ± x̂γ5

2
) и нильпо-

тентных (
γ5 ± x̂

2
) операторов со следующими свойствами:

1 ± x̂γ5

2

1 ± x̂γ5

2
=

1 ± x̂γ5

2
,

γ5 ± x̂

2

γ5 ∓ x̂

2
=

1 ± x̂γ5

2
.

(3)

Основу составляют операторы Λ± =
1

2
(1 ± p̂

W
) [2, 3], причем

Λ± Λ± = Λ±, Λ± Λ∓ = 0, W =
√
p2.

Введенный здесь вектор xµ = b(pµ(up) − uµp2) обладает свойствами:

xµpµ = 0, xµxµ = b2p2[p2 − (up)2],

где b – нормировочный множитель. Таким образом, xµ ортогонален импульсу, а
его квадрат зависит от знака квадрата импульса. Если p2 > 0 и среда покоится
или движется медленно, то xµ – пространственноподобный вектор. Тогда, выби-
рая нормировочный множитель b2 = 1/(p2[(up)2−p2]), можно положить x2 = −1.

Полученный базис является полным, его элементы независимы и имеют про-
стые свойства относительно умножения (табл. 1).
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q1 Q1 0 0 0 Q5 0 0 0

Q2 0 Q2 0 0 0 Q6 0 0

Q3 0 0 Q3 0 0 0 Q7 0

Q4 0 0 0 Q4 0 0 0 Q8

Q5 0 0 0 Q5 0 0 0 Q1

Q6 0 0 Q6 0 0 0 Q2 0

Q7 0 Q7 0 0 0 Q3 0 0

Q8 Q8 0 0 0 Q4 0 0 0

Таблица 1: Мультипликативные свойства операторов базиса.

3 Процедура обращения пропагатора
Уравнение для нахождения значения, обратного данному:

(
∑
M

QMSM)(
∑
L

QLGL) = Q1 + Q2 + Q3 + Q4 = I.

Оно сводится к системе уравнений на коэффициенты GL (SM считаем известны-
ми), которая разбивается на четыре:

S5G8 + S1G1 = 1, S8G1 + S4G8 = 0,

S6G7 + S2G2 = 1, S7G2 + S3G7 = 0,

S7G6 + S3G3 = 1, S6G3 + S2G6 = 0,

S8G5 + S4G4 = 1, S5G4 + S1G5 = 0.

Отсюда выражения для Gi:

G1 = −S4/∆1, G2 = −S3/∆2, G3 = −S2/∆2, G4 = −S1/∆1,

G5 = S5/∆1, G6 = S6/∆2, G7 = S7/∆2, G8 = S8/∆1.
(4)

∆1 = S8S5 − S4S1, ∆2 = S7S6 − S3S2.

4 Частные случаи. Отсутствие среды
Положим коэффициенты при û в γ-матричном базисе (2) равными нулю (отсут-
ствие среды), тогда коэффициенты в проекционном базисе будут иметь следую-
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щий вид:

S1 = s1 + s2W, S2 = s1 − s2W, S3 = s1 + s2W, S4 = s1 − s2W,

S5 = s6 + s7W, S6 = s6 − s7W, S7 = s6 + s7W, S8 = s6 − s7W.
(5)

Коэффициенты в γ-матричном базисе для обратного пропагатора:

G1 =
s1

s2
7W

2 − s2
6 − s2

2W
2 + s2

1

,

G2 =
−s2

s2
7W

2 − s2
6 − s2

2W
2 + s2

1

,

G3 = G4 = G5 = 0,

G6 =
−s6

s2
7W

2 − s2
6 − s2

2W
2 + s2

1

,

G7 =
−s7

s2
7W

2 − s2
6 − s2

2W
2 + s2

1

,

G8 =
−s7

s2
7W

2 − s2
6 − s2

2W
2 + s2

1

.

5 Частные случаи. Сохранение четности
В случае сохранения четности коэффициенты при членах, содержащих γ5, будут
равняться нулю. Тогда коэффициенты в γ-базисе обратного пропагатора имеют
вид:

G1 =
s3(pu) + s2W

2 + s1W

W
,

G2 =
−s3(pu) − s2W

2 + s1W

W
,

G3 =
s3(pu) + s2W

2 + s1W

W
,

G4 =
−s3(pu) − s2W

2 + s1W

w
,

G5 =
−s4W − s3

bW 2
,

G6 =
s4W − s3

bW 2
,

G7 =
s4W + s3

bW 2
,

G8 =
−s4W + s3

bW 2
.
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6 Пропагатор нейтрино: явный вид
Используя проекционный базис и данную процедуру обращения легко записать
выражение для функции Грина в веществе [4]:

Gmatt =
−(p2 −m2)(p̂+m) + f̂(p̂−m)PL(p̂+m) − f2p̂PL + 2(fp)PR(p̂+m)

(p2 −m2)2 − 2(fp)(p2 −m2) + f 2p2
,

PL =
1

2
(1 − γ5), PR =

1

2
(1 + γ5).

7 Заключение
Так, получен наиболее удобный базис на основе внемасовых проекционных опе-
раторов с максимально простыми мультипликативными свойствами для изотроп-
ной неполяризованной среды, учитывая ее движение и нарушение четности. Ис-
пользованные внемассовые проекционные операторы имеют достаточно широкое
применение в других задачах (например, пропагатор поля спина 3/2 в вакууме
или среде, смешивание фермионов). Предложенный базис и найденную процеду-
ру обращения в дальнейшем возможно применить для рассмотрения нейтринных
осцилляций в среде.

Работа выполнена при поддержке АВЦП «Развитие научного потенциала
высшей школы (2009-2010 гг.)» (проект РНП.2.2.1.1/1483, 2.1.1/1539).
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