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Abstract: In the era of noisy intermediate-scale quantum (NISQ) computing, the synergistic collabo-

ration between quantum and classical computing models has emerged as a promising solution for

tackling complex computational challenges. Long short-term memory (LSTM), as a popular network

for modeling sequential data, has been widely acknowledged for its effectiveness. However, with

the increasing demand for data and spatial feature extraction, the training cost of LSTM exhibits

exponential growth. In this study, we propose the quantum convolutional long short-term memory

(QConvLSTM) model. By ingeniously integrating classical convolutional LSTM (ConvLSTM) net-

works and quantum variational algorithms, we leverage the variational quantum properties and the

accelerating characteristics of quantum states to optimize the model training process. Experimental

validation demonstrates that, compared to various LSTM variants, our proposed QConvLSTM model

outperforms in terms of performance. Additionally, we adopt a hierarchical tree-like circuit design

philosophy to enhance the model’s parallel computing capabilities while reducing dependence on

quantum bit counts and circuit depth. Moreover, the inherent noise resilience in variational quan-

tum algorithms makes this model more suitable for spatiotemporal sequence modeling tasks on

NISQ devices.

Keywords: quantum computing; long short-term memory; variational quantum algorithm; quantum

convolutional neural network; noise issues

1. Introduction

Weather forecasting is a complex and crucial task that involves modeling and predict-
ing a large amount of spatiotemporal data. Traditional meteorological forecasting methods
typically rely on physical models and statistical approaches; however, these methods have
limitations in capturing complex spatiotemporal dynamics and handling nonlinear data.
Long short-term memory (LSTM) networks, as a powerful type of recurrent neural network
architecture [1], have gained significant attention in the field of weather forecasting.

LSTM networks are renowned for their unique memory cell structure and gating
mechanisms, enabling them to effectively capture long-term dependencies in time series
data and alleviate the common issue of vanishing gradients during training [2–5]. Therefore,
LSTM has been widely applied in short-term weather forecasting, climate pattern prediction,
and extreme weather event alerts [6–13]. However, due to the complex nature of the LSTM
network structure, substantial computational resources are required during training, and
challenges may arise when dealing with large time spans and deep networks [14–16].

Meanwhile, the fusion of quantum and machine learning has become a hot research
direction [17]. A significant body of previous work indicates that quantum computing
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holds enormous potential in enhancing the performance of machine learning, surpassing
traditional classical computing methods [18,19]. In 2020, Samuel et al. first introduced
the concept of quantum long short-term memory (QLSTM) [20]. QLSTM successfully
leverages the acceleration and entanglement properties of quantum mechanics to address
the computational complexity and convergence issues encountered during training. In
comparison to classical LSTM, QLSTM exhibits shorter computation times and more stable
convergence [21,22].

The current era of quantum computing has entered the NISQ technology phase [23,24],
where quantum noise becomes an unavoidable challenge. In practical NISQ devices, unre-
solved noise interference issues ultimately lead to deviations between the model’s actual
results and theoretical values. Huang et al. have introduced various quantum computing
techniques, including variational quantum algorithms, error mitigation, quantum circuit
compilation, and benchmark protocols [25]. Among them, variational quantum algo-
rithms have proven to possess natural noise resilience and are sometimes even beneficial in
the presence of noise, making them considered the most promising avenue for realizing
quantum advantage in practical applications during the NISQ era. Variational quantum
algorithms have demonstrated impressive performance in various domains, such as classi-
fication tasks, generative adversarial learning, and deep reinforcement learning [26–30].

Currently, most QLSTM models utilize a quantum fully connected network struc-
ture [31–33], neglecting the consideration of spatial correlations in the data. Additionally,
in the context of the NISQ era, evaluating the model’s noise resistance is a valuable re-
search endeavor. Therefore, this paper proposes a novel network framework from several
perspectives. The contributions of this paper are as follows:

To address the issue of traditional QLSTM lacking in learning data spatial features,
we propose the QConvLSTM model based on the quantum convolutional neural network
(QCNN) structure. This model introduces QCNN into LSTM for the first time, not only
retaining the temporal modeling ability of classical LSTM but also enhancing the extraction
of spatial features from data, endowing the model with spatiotemporal characteristics.
Experimental results demonstrate that our proposed model outperforms other LSTM
variants with equal parameters.

To improve the training efficiency and noise robustness of the model, we design a
special VQC structure. By fully exploiting the parallelism of quantum computation through
layered circuit stacking and utilizing a tree-like structure to reduce the requirements
for quantum bit counts and circuit depth, we effectively enhance the training efficiency.
Furthermore, the inherent noise resilience in the variational quantum algorithm greatly
enhances the model’s own noise resistance.

In contrast to the neglect of noise in other studies, we investigate the noise robustness
of the model. By adding noise channels of different interference levels in VQC, we design
noise simulation experiments. The results show that QConvLSTM exhibits strong robust-
ness against various common incoherent noises, demonstrating its potential for stable
training on NISQ devices.

2. Preliminaries

2.1. Long Short-Term Memory

Hochreiter and Schmidhuber introduced LSTM networks in 1997 [1] to address the
vanishing gradient problem encountered by traditional RNNs during training on long
sequences. LSTM networks enhance the standard RNN structure with specialized memory
units, enabling them to effectively capture long-term dependencies. Each LSTM unit
consists of a cell state ct and a hidden state ht. At each time step, LSTM receives input
xt from the current time step and the hidden state ht−1 from the previous time step, and
controls the flow of information through various gate mechanisms, including the forget gate
ft, the input gate it, and the output gate ot. Specifically, whenever a new input xt arrives,
if the input gate it is activated, its information is accumulated in the cell. Furthermore, if
the forget gate ft is open, the past cell state ct−1 is forgotten. Finally, the output gate ot
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controls whether the output ct propagates to the final state ht. The key formula is shown as
follows (1):

it = σ(Wxixt + Whiht−1 + Wci ◦ ct−1 + bi)
ft = σ(W x f xt + Wh f ht−1 + Wc f ◦ ct−1 + b f )

ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt + Whcht−1 + bc)
ot = σ(W xoxt + Whoht−1 + Wco ◦ ct + bo)

ht= ot ◦ tanh(ct)

(1)

where σ represents the sigmoid activation function, W represents the parameters of the
weight matrix, and # denotes the Hadamard product.

2.2. Convolutional Long Short-Term Memory

Shi et al. first incorporated convolutional neural networks into classical LSTM in
2015 [34]. ConvLSTM, as an improvement of the classical LSTM model, not only possesses
the capability to process time series data like LSTM networks but also has the ability to
extract spatial local features like CNNs. Compared to LSTM models, ConvLSTM models
can take images as input to the network and perform convolutional operations on image
sequences to extract image features, thus performing better sequence modeling where the
temporal data are images. Its innovation lies in integrating the convolutional operations of
convolutional neural networks into LSTM units. It applies one-dimensional convolutional
operations on the input gate, forget gate, and output gate of LSTM, enabling the capturing
of features of input data simultaneously in both time and space dimensions. ConvLSTM
finds wide applications in various fields [35,36]. For instance, it can model dynamic features
in video sequences [37]. In natural language processing, ConvLSTM can be applied to
tasks such as text classification and sentiment analysis [38,39]. The LSTM formula with
incorporated convolutional operations is shown as follows (2):

it = σ(W xi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi)
ft = σ(W x f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f )

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1bc)
ot = σ(W xo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct)

(2)

where * represents the convolution operator, and the input and output of ConvLSTM
networks are both three-dimensional tensors, whereas in traditional LSTM models, they
are two-dimensional.

3. Related Work

3.1. Amplitude Encoding

LaRose et al. introduced several quantum encoding methods, including angle encod-
ing, dense angle encoding, and amplitude encoding [40]. Angle encoding and dense angle
encoding are beneficial for reducing the depth of quantum circuits. However, these two
encoding methods require O(N) orders of magnitude of qubits to encode classical data
of dimension N, while most current NISQ devices can only provide a limited number of
qubits. In contrast, choosing amplitude encoding, although it may deepen the circuit to
some extent, only requires O(log N) orders of qubits to encode classical data of dimension
N [41], making it more suitable for data encoding in the current era.

During the amplitude encoding process, the information of classical data is encoded
into the amplitudes of quantum bits. A normalized classical N-dimensional data point x is
encoded into a quantum state | ϕx⟩ requiring n qubits, with its amplitudes represented as

| ϕx⟩ =∑
N
i=1 xi| i⟩ . Here, N = 2n, xi represents the ith element in the data point x, and | i⟩ is

the ith computational basis state.
To achieve amplitude encoding, a series of quantum gate operations are required to

control the state of the quantum bits. Commonly used quantum gate operations include
the Hadamard gate and the phase gate. The Hadamard gate can transform a basis state
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into a uniform superposition state, thereby adjusting the values of the amplitudes. The
phase gate can introduce phase differences, further altering the encoding of amplitudes.

3.2. Variational Quantum Circuits

In 2007, Sousa et al. proposed a universal circuit model for implementing quantum
variational algorithms [42]. Subsequently, scholars in the field of quantum machine learning
began to gradually focus on using variational quantum circuits (VQC) to enhance the
performance of classical networks [43–45]. A VQC consists of a series of quantum gate
operations, with the adjustment of parameters in the circuit aimed at optimizing specific
quantum states or quantum operations. As shown in Figure 1, VQC typically comprise two
main parts: the encoding layer Uε and the variational layer U(θ). The encoding layer is
used to encode classical data into quantum states, while the variational layer introduces
adjustable parameters θ and applies a series of parameterized quantum gate operations
on the input quantum state. These parameterized quantum gates can be adjusted using
classical optimization algorithms to minimize a target function. Finally, the measurement
layer M is employed to obtain the final result.

Figure 1. Parameter update process in a VQC. The entire process occurs simultaneously in both

quantum and classical environments. Variational operations are performed on a quantum computer,

while parameter optimization operations are carried out on a classical computer.

3.3. Incoherent Noise

Ren et al. have explored several types of incoherent noise [46]. The application of
incoherent noise channels converts input quantum pure states into mixed states. Specifically,
the noise channel randomly rotates the input quantum state in a new direction, resulting
in an interaction between the input state and the environment, leading to the output state
being a density matrix. This density matrix typically consists of multiple pure states, each
corresponding to a possible rotation direction. In a pure state, the quantum state of the
system is completely determined, allowing us to predict its behavior precisely. However, in
a mixed state, the quantum state of the system is uncertain, and thus we can only make
probabilistic predictions about its behavior, as depicted by Equation (3):

ρ =
n

∑
i=1

pi|ϕi⟩⟨ϕi| (3)

where | ϕi⟩ is a pure state within the mixed state ρ, where p represents the probability of
being in that state and must satisfy normalization.

4. Model

We now present our QConvLSTM network. Although the QLSTM model has been
proven to be powerful in handling time-correlated data, it contains too much spatial data
redundancy. To address this issue, we propose the architecture of QConvLSTM, which
includes quantum convolution operations in both the input-to-state and state-to-state



Information 2024, 15, 175 5 of 12

transitions. Not only does it fully exploit the entanglement and acceleration properties
of quantum mechanics to enhance training efficiency, but it also has an advantage in
spatiotemporal sequence modeling problems through the combination of multiple quantum
LSTM layers containing convolution operations.

4.1. Quantum Convolutional Long Short-Term Memory

The main drawback of QLSTM in handling spatiotemporal data is that it uses quantum
fully connected neural networks in both the input-to-state and state-to-state transitions,
without encoding spatial information. Therefore, we replace the quantum fully connected
circuit layer with a quantum convolution circuit layer, as illustrated in Figure 2. We treat
each time step of the input sequence as an image. When the image sequence at a certain
time enters the quantum LSTM unit, three types of control gates composed of quantum
convolution circuits are applied to the sequence based on the actual situation. This is
carried out to learn the spatial and temporal information contained in the sequence, thereby
performing the modeling of the image sequence.

Figure 2. The basic framework of the LSTM unit based on quantum convolutional neural networks.

σ represents the sigmoid function, while the tanh block denotes the hyperbolic tangent activation

function. xt represents the input at time t, ht represents the hidden state, ct represents the cell state,

and yt represents the output. ⊕ and
⊗

, respectively, denote addition and multiplication operations.

4.2. Quantum Convolutional Circuit Structure

The approach adopted in this paper utilizes a hierarchical stacking method to design
quantum circuits, gradually decreasing the number of qubits layer by layer in a tree-like
structure. From a design perspective, the structure of this circuit is similar to that of
a convolutional neural network. Through stacking and layer-by-layer qubit reduction
operations, we fully exploit the parallelism of quantum computation while reducing the
count of qubits and parameters, thus improving training efficiency. Additionally, the
hierarchical structure offers flexibility and adjustability, allowing us to design and optimize
according to specific problem requirements, adjust the number of layers, and select suitable
gate operations and parameterization forms to improve the performance and convergence
speed of the quantum algorithm.

The specific operations are illustrated in Figure 3. Firstly, we employ multiple sets
of two-qubit VQC modules for combination, used to initialize the first layer of the circuit.
Subsequently, we reduce the number of qubits in the next layer by discarding one qubit
from each module’s output. In the next layer, we apply the two-qubit VQC module again
to the remaining qubits and then discard half of them. This process is repeated until only
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one qubit remains, and finally, the average expectation value on the remaining qubits is
measured. This design effectively avoids problems such as barren plateaus, enhancing the
overall trainability and performance of the network. The VQC1 and VQC2 in the figure
represent different circuit design structures. Different structures will lead to changes in the
performance of the model, so it is necessary to design a circuit structure suitable for the
current application scenario based on the actual situation. The details of this design will be
discussed in Section 7.

Figure 3. A quantum convolutional circuit based on a hierarchical tree-like structure. The entire

circuit is composed of multiple two-qubit VQC modules concatenated together, with each column

representing a layer of the circuit. Each blue square represents a VQC module, which can be flexibly

constructed according to specific requirements.

5. Experiments

5.1. Experimental Setup

The dataset used in this experiment was the Moving-MNIST image dataset, with
images having a resolution of 64 × 64 pixels. We selected 500 sequences from the dataset for
training and 200 sequences for testing. The learning rate was set to 0.001, and the encoding
method was amplitude encoding. The experiments were conducted on a Linux operating
system, specifically Ubuntu 18.04.5 LTS, with GPU processing. The experimental code
was implemented using Python 3, and the libraries chosen were PyTorch and PennyLane.
PyTorch is an open source ML library that offers various ways to construct models and can
utilize GPU acceleration for computing, making it suitable for large-scale data and complex
models. PennyLane, on the other hand, is an open source quantum machine learning
library specifically designed for gradient descent optimization in quantum computing. It
provides interfaces based on popular machine learning frameworks such as PyTorch and
TensorFlow and integrates code for simulating quantum noise, allowing users to develop
and train noisy quantum machine learning models.

In our noise simulation experiment, we utilized noncoherent noise channels, namely
(1) bit flip, (2) phase flip, (3) bit–phase flip, and (4) depolarizing. The Kraus operators
corresponding to these four noise channels are represented by Equations (4)–(7) in sequence.

K1 =
√

1 − p

(

1 0
0 1

)

, and K2 =
√

p

(

0 1
1 0

)

(4)

Equation (4) represents the Kraus operators for the bit flip channel, where p is the
probability of a qubit undergoing a bit flip. The operator K1 describes the case where no
quantum state flip occurs, while the operator K2 describes the case where an X gate is
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applied to the quantum state with a certain probability, controlling the quantum state to
transition from state |0⟩ to state |1⟩ , or from state |1⟩ to state |0⟩ .

K2 =
√

p

(

1 0
0 −1

)

, and K1 =
√

1 − p

(

1 0
0 1

)

(5)

Equation (5) represents the Kraus operators for the phase flip channel, where the
operator K2 describes the case where a Z gate is applied to the quantum state with a certain
probability, controlling the quantum state to remain unchanged if it is in state |0⟩ , or to
transition from state |1⟩ to state −|1⟩ .

K1 =
√

1 − p

(

1 0
0 1

)

, and K2 =
√

p

(

0 −i
i 0

)

(6)

Equation (6) represents the Kraus operators for the bit–phase flip channel, where the
operator K2 describes the case where a Y gate is applied to the quantum state with a certain
probability, controlling the quantum state to transition from state |0⟩ to state i |1⟩ , or from
state |1⟩ to state −i|0⟩ .

K1 =

√
1−3p

2

(

1 0
0 1

)

, K2 =
√

p
2

(

1 0
0 −1

)

K3 =
√

p
2

(

0 −i
i 0

)

, and K4 =
√

p
2

(

1 0
0 −1

)

(7)

Equation (7) represents the Kraus operators for the depolarizing channel. The depolar-
izing channel is characterized by the application of X, Y, and Z gates with equal probabilities
on the quantum state.

5.2. Noiseless Simulations

In this section, we apply the proposed QConvLSTM framework to model the Moving-
MNIST dataset. To compare the differences between classical and quantum learning, all
model network hyperparameters were kept consistent. Firstly, based on the model architec-
ture described in Section 4.1, we constructed the QConvLSTM model framework containing
quantum convolutional layer operations. Additionally, during the model experimentation
process, we adjusted and compared the model circuit’s number of layers to optimize the
model’s performance. Ultimately, we chose the optimal setting with the circuit layers as 2.

In addition to ensuring the final training effectiveness of the model, it is also necessary
to consider the available computing resources. Since we used the quantum simulator
provided by the PennyLane platform in our experiment, the running speed of a real
quantum computer could not be achieved. Therefore, to reduce the time complexity of
training, we had to use circuits with as few qubits as possible. In this experiment, we used
a two-layer four-qubit structure for the circuit. If using amplitude encoding, the maximum
dimension of the input sequence that this circuit could accept was 16. However, since the
Moving-MNIST dataset has a size of 64 × 64 pixels, it requires preprocessing to reduce
the dimensionality of the sequences. We first reduced the original sequences to 64 × 16
using a fully connected layer and then split them into 64 batches to input into the circuit
and encode them into quantum states.

5.3. Noisy Simulations

We simulated the scenario of noise by adding noise channels at each layer of the
quantum convolutional network. Initially, based on the aforementioned experiments, we
added noise channels at the end of the convolutional circuits in the QConvLSTM model,
with the same type of noise channel added for each test. We conducted multiple tests using
the same methodology as described in the previous experiment. Finally, we evaluated the
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robustness of our model to various types of noise during the training process by observing
changes in performance metrics, thus assessing the noise robustness of the model. We
utilized the four types of noise channels introduced in Section 5.1, namely bit flip, bit–phase
flip, phase flip, and depolarizing noise. These four types of noise capture the impacts that
most common noise sources may have.

6. Results

6.1. Noiseless

Table 1 presents the average results of all comparative models on each frame. We
utilized evaluation metrics widely used by previous researchers: mean squared error
(MSE) [47], structural similarity index measure (SSIM) [48], and learned perceptual image
patch similarity (LPIPS) [49]. The distinctions among these metrics lie in the fact that
the MSE estimates absolute pixel errors; the SSIM measures the similarity of structural
information within spatial neighborhoods; and the LPIPS is based on deep features, which
better align with human perception. Through these three types of metrics, we can com-
prehensively assess the sequence modeling ability of the models, where smaller MSE and
LPIPS values indicate better performance, while the SSIM value is the opposite. Figure 4
provides the corresponding frame-by-frame comparison changes. By comparing multiple
datasets, we can intuitively understand the performance differences among various LSTM
variants. Regarding the MSE, firstly, by adding convolutional operations to LSTM, the
ConvLSTM model reduced the mean MSE from 132.7 to 113.4 compared to the LSTM model.
Secondly, by combining quantum algorithms with classical LSTM models, the QLSTM
model further reduced the mean MSE to 87.2. Finally, our proposed QConvLSTM model
further increased the mean MSE by 25.7% (from 87.2 to 64.8) by incorporating quantum
convolutional networks. Additionally, the SSIM and LPIPS, respectively, improved by
2.1% and 14.5% over QLSTM. Therefore, it is concluded that, under the same parameters,
the performance of the QConvLSTM model is superior to classical models and quantum
models with quantum fully connected network structures.

Table 1. Average performance of different models on 10 prediction time steps.

Model
MSE SSIM LPIPS

(↓) (↑) (↓)

LSTM 132.7 0.687 0.174
ConvLSTM 113.4 0.758 0.162

QLSTM 87.2 0.843 0.095
QConvLSTM 64.8 0.861 0.083

Figure 4. Frame-by-frame results of the Moving-MNIST test set generated by models trained on the

training set: (a) MSE; (b) SSIM; (c) LPIPS.

6.2. Noisy

Table 2 shows the results of the simulation experiments for the four types of noise. The
results indicate that the influence of these four types of noise on our QConvLSTM model
can be neglected. The robustness of QConvLSTM to noise interference is determined by
the special structure of the model. Firstly, the circuit depth used in our experiments is only
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two layers, and circuits with shallower depths are less prone to noise issues. Secondly, the
LSTM unit with added convolutional operations can better extract features from the input
data, enabling the network to adapt to and fit the influence of noise. Lastly, the introduced
variational quantum algorithm can enhance the network’s ability to handle some nonlinear
problems, assisting the network in better capturing and processing nonlinear information
in the noise.

Table 2. Performance metric comparison of QConvLSTM in different noise environments.

Environment
MSE SSIM LPIPS

(↓) (↑) (↓)

Noiseless 64.8 0.861 0.083
Bit flip 64.1 0.859 0.084

Phase flip 65.0 0.857 0.081
Bit–phase flip 65.9 0.853 0.085
Depolarizing 66.1 0.850 0.089

7. Discussion

As mentioned in Section 4.2, our circuit structure design adopts a hierarchical stacking
approach. Therefore, we conducted multiple tests on the number of stacked layers in the
circuit to find the optimal number of layers. As shown in Table 3, we tested the performance
of the models under three scenarios. The single-layer circuit structure yielded the worst
results, while the performance of the three-layer structure was slightly better than the
two-layer structure. However, as the number of layers increased, both the computational
complexity and time complexity grew exponentially, and an increase in network depth was
more likely to lead to the emergence of noise. Therefore, we ultimately chose two layers as
the number of layers for the experimental circuit.

Table 3. Performance comparison of circuit structures with different numbers of layers.

Layers
MSE SSIM LPIPS

(↓) (↑) (↓)

1 Layer 67.5 0.783 0.092
2 Layers 64.8 0.861 0.083
3 Layers 64.9 0.863 0.081

Typically, the structure of a quantum circuit can significantly impact the performance
of the model. In the early stages of experimentation, we designed six types of circuit
structures, as shown in Figure 5. We conducted comparative tests on these six types of
circuits to select the one with the best performance as the final circuit for this experiment.
According to the results in Table 4, the circuit labeled as (c) exhibited the best performance,
surpassing the circuits with other structures. Therefore, we chose this structure as the final
component of the model in this paper.

Table 4. Comparison of the impact of different VQC structures on training effectiveness.

Structure
MSE SSIM LPIPS

(↓) (↑) (↓)

VQC (a) 65.9 0.805 0.095
VQC (b) 65.2 0.832 0.089
VQC (c) 64.8 0.861 0.083
VQC (d) 65.3 0.846 0.092
VQC (e) 65.7 0.827 0.094
VQC (f) 65.4 0.836 0.092
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Figure 5. Structural design of VQC: (a–f) represent the design schemes of a single VQC module in

the quantum convolution circuit based on a hierarchical tree structure.

8. Conclusions

This paper introduces a novel QConvLSTM model that combines the advantages of
quantum computing and convolutional networks on the basis of classical LSTM networks.
This model not only improves the training efficiency but also enhances the model’s ca-
pability to extract spatial features. We first utilized the proposed model to predict the
Moving-MNIST dataset and then evaluated the model’s performance based on loss value
and accuracy. Experimental results demonstrate that, under the same parameters, the
performance of QConvLSTM surpasses that of classical LSTM structures and QLSTM.
Specifically, compared to QLSTM, QConvLSTM achieved a 25.7%, 2.1%, and 14.5% im-
provement in MSE, SSIM, and LPIPS, respectively. Furthermore, due to the hierarchical
tree-like structure adopted by the circuit, we utilized fewer quantum bits during design,
reduced network depth, decreased the overall parameter count of the model, and im-
proved training efficiency. Finally, we demonstrate the robustness of QConvLSTM to the
most common noise sources, which holds considerable practical significance in the era of
NISQ computing.

The integration of quantum convolutional networks into classical LSTM provides new
insights for future researchers in the study of quantum long short-term memory networks.
The robustness of QConvLSTM to noise enables training on most current NISQ devices.
However, due to device limitations, the experiments in this work were confined to low-
resolution image data. In future work, we aim to extend our model to high-resolution
image tasks and attempt to reconstruct the control gate structure within LSTM units
using structurally diverse quantum neural networks. Furthermore, our research on noise
robustness remains incomplete. In the future, we will expand our study to include noise
factors such as phase damping, amplitude damping, and depolarization damping.

Author Contributions: Methodology, C.Z.; Formal analysis, Y.C.; Writing—original draft, Z.X.;

Writing—review & editing, W.Y. All authors have read and agreed to the published version of

the manuscript.

Funding: This research was funded by the Natural Science Foundation of China, grant number

62071240, and the Natural Science Foundation of Jiangsu Province, grant number BK20231142.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data are publicly available. The dataset used for this study is

the Moving-MNIST.



Information 2024, 15, 175 11 of 12

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]

2. Karpathy, A.; Fei-Fei, L. Deep visual-semantic alignments for generating image descriptions. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015.

3. Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the 30th International

Conference on Machine Learning, PMLR, Atlanta, GA, USA, 16–21 June 2013; pp. 1310–1318.

4. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of the Advances in Neural

Information Processing Systems 27 (NIPS 2014), Montreal, QC, Canada, 8–13 December 2014; pp. 3104–3112.

5. Bengio, Y.; Goodfellow, I.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2015.

6. Srivastava, N.; Mansimov, E.; Salakhudinov, R. Unsupervised learning of video representations using lstms. In Proceedings of the

32nd International Conference on Machine Learning, PMLR, Lille, France, 6–11 July 2015.

7. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Bengio, Y. Show, attend and tell: Neural image caption generation

with visual attention. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015.

8. Gers, F.A.; Schmidhuber, E. LSTM recurrent networks learn simple context-free and context-sensitive languages. IEEE Trans.

Neural Netw. 2001, 12, 1333–1340. [CrossRef] [PubMed]

9. Eck, D.; Schmidhuber, J. A first look at music composition using lstm recurrent neural networks. Ist. Dalle Molle Studi Sull Intell.

Artif. 2002, 103, 48–56.

10. Wang, S.; Jiang, J. Learning natural language inference with LSTM. arXiv 2015, arXiv:1512.08849.

11. Monner, D.; Reggia, J.A. A generalized LSTM-like training algorithm for second-order recurrent neural networks. Neural Netw.

2012, 25, 70–83. [CrossRef] [PubMed]

12. Krause, B.; Lu, L.; Murray, I.; Renals, S. Multiplicative LSTM for sequence modelling. arXiv 2016, arXiv:1609.07959.

13. Chen, Q.; Zhu, X.; Ling, Z.; Wei, S.; Jiang, H.; Inkpen, D. Enhanced LSTM for natural language inference. arXiv 2016,

arXiv:1609.06038.

14. Cao, Z.; Zhu, Y.; Sun, Z.; Wang, M.; Zheng, Y.; Xiong, P.; Tian, L. Improving prediction accuracy in LSTM network model for

aircraft testing flight data. In Proceedings of the 2018 IEEE International Conference on Smart Cloud (SmartCloud), New York,

NY, USA, 21–23 September 2018.

15. Wang, Y.; Zhu, S.; Li, C. Research on multistep time series prediction based on LSTM. In Proceedings of the 2019 3rd International

Conference on Electronic Information Technology and Computer Engineering (EITCE), Xiamen, China, 18–20 October 2019.

16. Edholm, G.; Zuo, X. A Comparison between Aconventional LSTM Network and Agrid LSTM Network Applied on Speech Recognition;

KTH Royal Institute of Technology: Stockholm, Sweden, 2018.

17. Schuld, M.; Sinayskiy, I.; Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 2015, 56, 172–185.

[CrossRef]

18. Lloyd, S.; Mohseni, M.; Rebentrost, P. Quantum algorithms for supervised and unsupervised machine learning. arXiv 2013,

arXiv:1307.0411.

19. Havenstein, C.; Thomas, D.; Chandrasekaran, S. Comparisons of performance between quantum and classical machine learning.

SMU Data Sci. Rev. 2018, 1, 11.

20. Chen, S.Y.C.; Yoo, S.; Fang, Y.L.L. Quantum long short-term memory. In Proceedings of the ICASSP 2022—2022 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022.

21. Yulita, I.N.; Purwani, S.; Rosadi, R.; Awangga, R.M. A quantization of deep belief networks for long short-term memory in

sleep stage detection. In Proceedings of the 2017 International Conference on Advanced Informatics, Concepts, Theory, and

Applications (ICAICTA), Denpasar, Indonesia, 16–18 August 2017.

22. Khan, S.Z.; Muzammil, N.; Zaidi, S.M.H.; Aljohani, A.J.; Khan, H.; Ghafoor, S. Quantum long short-term memory (qlstm) vs.

classical lstm in time series forecasting: A comparative study in solar power forecasting. arXiv 2023, arXiv:2310.17032.

23. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010.

24. Torlai, G.; Melko, R.G. Machine-learning quantum states in the NISQ era. Annu. Rev. Condens. Matter Phys. 2020, 11, 325–344.

[CrossRef]

25. Huang, H.L.; Xu, X.Y.; Guo, C.; Tian, G.; Wei, S.J.; Sun, X.; Long, G.L. Near-term quantum computing techniques: Variational

quantum algorithms, error mitigation, circuit compilation, benchmarking and classical simulation. Sci. China Phys. Mech. Astron.

2023, 66, 250302. [CrossRef]

26. Cerezo, M.; Arrasmith, A.; Babbush, R.; Benjamin, S.C.; Endo, S.; Fujii, K.; Coles, P.J. Variational quantum algorithms. Nat. Rev.

Phys. 2021, 3, 625–644. [CrossRef]

27. Lubasch, M.; Joo, J.; Moinier, P.; Kiffner, M.; Jaksch, D. Variational quantum algorithms for nonlinear problems. Phys. Rev. A 2020,

101, 010301. [CrossRef]

28. Jones, T.; Endo, S.; McArdle, S.; Yuan, X.; Benjamin, S.C. Variational quantum algorithms for discovering Hamiltonian spectra.

Phys. Rev. A 2019, 99, 062304. [CrossRef]

29. Zhao, A.; Tranter, A.; Kirby, W.M.; Ung, S.F.; Miyake, A.; Love, P.J. Measurement reduction in variational quantum algorithms.

Phys. Rev. A 2020, 101, 062322. [CrossRef]

https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1109/72.963769
https://www.ncbi.nlm.nih.gov/pubmed/18249962
https://doi.org/10.1016/j.neunet.2011.07.003
https://www.ncbi.nlm.nih.gov/pubmed/21803542
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1146/annurev-conmatphys-031119-050651
https://doi.org/10.1007/s11433-022-2057-y
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1103/PhysRevA.101.010301
https://doi.org/10.1103/PhysRevA.99.062304
https://doi.org/10.1103/PhysRevA.101.062322


Information 2024, 15, 175 12 of 12

30. Bonet-Monroig, X.; Wang, H.; Vermetten, D.; Senjean, B.; Moussa, C.; Bäck, T.; O’Brien, T.E. Performance comparison of

optimization methods on variational quantum algorithms. Phys. Rev. A 2023, 107, 032407. [CrossRef]

31. Sakib, S.N. SM Nazmuz Sakib’s Quantum LSTM Model for Rainfall Forecasting; OSF Preprints: Peoria, IL, USA, 2023.

32. Beaudoin, C.; Kundu, S.; Topaloglu, R.O.; Ghosh, S. Quantum Machine Learning for Material Synthesis and Hardware Security.

In Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design, San Diego, CA, USA, 30 October–3

November 2022.

33. Parcollet, T.; Morchid, M.; Linarès, G.; De Mori, R. Bidirectional quaternion long short-term memory recurrent neural networks

for speech recognition. In Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP 2019), Brighton, UK, 12–17 May 2019.

34. Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for

precipitation nowcasting. In Advances in Neural Information Processing Systems; Curran Associates Inc.: Witless Bay, NL, Canada,

2015; p. 28.

35. Mateo-García, G.; Adsuara, J.E.; Pérez-Suay, A.; Gómez-Chova, L. Convolutional long short-term memory network for multitem-

poral cloud detection over landmarks. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium

(IGARSS 2019), Yokohama, Japan, 28 July–2 August 2019.

36. Kosana, V.; Madasthu, S.; Teeparthi, K. A novel hybrid framework for wind speed forecasting using autoencoder-based

convolutional long short-term memory network. Int. Trans. Electr. Energy Syst. 2021, 31, e13072. [CrossRef]

37. Sudhakaran, S.; Lanz, O. Learning to detect violent videos using convolutional long short-term memory. In Proceedings of the

2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Lecce, Italy, 29 August–1

September 2017.

38. Paiva, E.; Paim, A.; Ebecken, N. Convolutional neural networks and long short-term memory networks for textual classification

of information access requests. IEEE Lat. Am. Trans. 2021, 19, 826–833. [CrossRef]

39. Gandhi, U.D.; Malarvizhi Kumar, P.; Chandra Babu, G.; Karthick, G. Sentiment analysis on twitter data by using convolutional

neural network (CNN) and long short term memory (LSTM). In Wireless Personal Communications; Springer: Berlin/Heidelberg,

Germany, 2021; pp. 1–10.

40. LaRose, R.; Coyle, B. Robust data encodings for quantum classifiers. Phys. Rev. A 2020, 102, 032420. [CrossRef]

41. Gao, S.; Yang, Y.G. New quantum algorithm for visual tracking. Phys. A Stat. Mech. Its Appl. 2023, 615, 128587. [CrossRef]

42. Huang, S.Y.; An, W.J.; Zhang, D.S.; Zhou, N.R. Image classification and adversarial robustness analysis based on hybrid

quantum–classical convolutional neural network. Opt. Commun. 2023, 533, 129287. [CrossRef]

43. Bar, N.F.; Yetis, H.; Karakose, M. An efficient and scalable variational quantum circuits approach for deep reinforcement learning.

Quantum Inf. Process. 2023, 22, 300. [CrossRef]

44. Kim, R. Implementing a Hybrid Quantum-Classical Neural Network by Utilizing a Variational Quantum Circuit for Detection of

Dementia. arXiv 2023, arXiv:2301.12505.

45. Gong, L.H.; Pei, J.J.; Zhang, T.F.; Zhou, N.R. Quantum convolutional neural network based on variational quantum circuits. Opt.

Commun. 2024, 550, 129993. [CrossRef]

46. Ren, W.; Li, Z.; Huang, Y.; Guo, R.; Feng, L.; Li, H.; Li, X. Quantum generative adversarial networks for learning and loading

quantum image in noisy environment. Mod. Phys. Lett. B 2021, 35, 2150360. [CrossRef]

47. Error, M.S. Mean Squared Error; Springer: Boston, MA, USA, 2010; p. 653.

48. Jia, X.; De Brabandere, B.; Tuytelaars, T.; Gool, L.V. Dynamic filter networks. In Proceedings of the Advances in Neural Information

Processing Systems 29 (NIPS 2016), Barcelona, Spain, 5–10 December 2016; pp. 667–675.

49. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the

International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October

2015; pp. 234–241.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1103/PhysRevA.107.032407
https://doi.org/10.1002/2050-7038.13072
https://doi.org/10.1109/TLA.2021.9448317
https://doi.org/10.1103/PhysRevA.102.032420
https://doi.org/10.1016/j.physa.2023.128587
https://doi.org/10.1016/j.optcom.2023.129287
https://doi.org/10.1007/s11128-023-04051-9
https://doi.org/10.1016/j.optcom.2023.129993
https://doi.org/10.1142/S0217984921503607

	Introduction 
	Preliminaries 
	Long Short-Term Memory 
	Convolutional Long Short-Term Memory 

	Related Work 
	Amplitude Encoding 
	Variational Quantum Circuits 
	Incoherent Noise 

	Model 
	Quantum Convolutional Long Short-Term Memory 
	Quantum Convolutional Circuit Structure 

	Experiments 
	Experimental Setup 
	Noiseless Simulations 
	Noisy Simulations 

	Results 
	Noiseless 
	Noisy 

	Discussion 
	Conclusions 
	References

