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A B S T R A C T   

Recently significant effort has been invested in studying commonalities of human brain operation and advanced 
algorithms for machine learning to answer the question: Can the learning mechanisms, identified in the operation 
of the brain, be mimicked in artificial neural networks to enhance the learning efficiency with simultaneous 
reduction in complexity and power consumption. 

At the same time, machine learning algorithms, on their own, become increasingly complex, resulting in 
complex neural networks. To speed up the machine learning algorithms, research on 7G networks will be looking 
for new computing technologies, like quantum (q-) computing (QC), and new models for complex networks that 
will enable us to efficiently control/optimize the processes run on them. 

In this paper, under the umbrella of well-established complex networks theory, we provide a unified pre
sentation of how quantum computing, implemented on near-future computers, can enable solving various 
problems in the above disciplines, otherwise difficult to solve by using classical (c-) approaches. The emphasis is 
on the commonalities in QC applications and modeling for the different systems listed above. For 7G network 
designers, the survey is expected to provide an insight into how much the research results in natural, QC based 
sciences can be integrated into new network paradigms to support above initiatives.   
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1. Introduction 

It is anticipated that 6G/7G networks will continue growing and 
extending their demands with respect to data rates, number of users and 
network access points, energy efficiency, network intelligence, decision 
latency in network dynamic reconfiguration and control protocols and 
efficiency of spectrum and overall resource sharing among multiple 
network operators. 

In large scale (ls-) networks, social, economic, information, techno
logical, biological, quantum chemistry, n-Sci and brain study, here 
collectively referred to as complex networks, there is a trend of con
trolling the complex systems in real time by more and more relaying on 
the help of artificial intelligence. 

At the same time, machine learning (ML) algorithms, on their own, 
become increasingly more complex resulting in complex neural net
works. To speed up the ML algorithms new computing technologies have 
been investigated, like quantum computing QC, and new models for 
complex networks that will enable efficient control/optimization of the 
processes run on them. This includes applying results of lessons learned 
in neuroscience to enhance ML algorithms. In this paper, under the 
umbrella of well-established complex networks (cN) theory, a unified 
presentation is provided on how QC, can enable solving various prob
lems in above disciplines that are difficult to solve otherwise. 

The emphasis is on the commonalities in QC applications and 
modelling for different systems listed above. In addition to discussing 
the algorithms the pertaining implementation problems are reviewed 
like the network synchronization (N-sync) and analytical and simulation 
tools for the system analysis. A comprehensive survey of the work in 
these fields is provided resulting in a long list of references. For this 
reason, in the form of tables, a selected list of references is provided, for 
the first iteration of additional readings. 

Tutorial and survey type papers are rather efficient ways to get an 
insight into the latest advances in a specific technology. Usually, these 
papers focus on a specific technology and often, even more narrowly, on 
a specific application of a given technology. For example, references 
(Cui et al., 2018; Buczak & Guven, 2016; Fatima & Pasha, 2017) present 
surveys on application of ML for Internet of things, cyber security 
intrusion detection and disease diagnostic respectively. Similarly (Her
man et al., 2022) presents a survey of QC for finance. On the other hand, 
when designing complex systems/networks consisting of variety of 
different technologies there is a need for an integral view of the optimum 
solution and especially on the interdependence of the optimal choices in 
different segments of the system. 

Such an example is a recent initiative to integrate results from n-Sci 
and brain research into new paradigms of modern communication sys
tems (Moioli et al., 2020; Moioli et al., 2021). In support to these ini
tiatives here a survey of enabling technologies for such an approach is 
provided with emphasis on how much the research results in natural, QC 
based sciences can be integrated into such systems. 

Structure of the paper: To achieve the above objective the paper is 
organized in the following way: As the very first step application of the 
results from neuroscience in 6G wireless networks is discussed in Section 
1.1 and extension to QC in 7G in Section 1.2. Advances in classical NN 
are surveyed in Section 2. Advantages of using spiking NN for power 
savings and QC based solution for speeding up algorithms are covered in 
Sections 3 and 4 respectively. The prospects of using experience in 
complex quantum models form computational chemistry in future net
works are discussed in Section 5. The key implementation problem of 
these algorithms, network synchronization, is discussed in Section 6. At 
this point the impact of processing and propagation delays on the pulse 
position coding in spiking networks and resulting limitations in 
leveraging fully the potential in energy savings are discussed in detail. 
The work on tools for network analysis, namely tensor networks and 
quantum simulations respectively are surveyed in Sections 7 and 8 
respectively. The network optimization frame work, a specific contri
bution of this paper, id presented in Section 9. The structure/flow of the 

presentation is shown graphically in Fig. 1. 

1.1. n-Sci and 6G wireless networks 

As already indicated above, the starting point for this work are 
already recognized potentials in convergence of neuroscience and 
modern paradigms in communications presented in Moioli et al. (2020); 
Moioli et al. (2021). 

The papers discuss how brain signals will be incorporated in future 
wireless systems. The brain is modelled as, densely connected set of 
neurons, with small-world properties, which is a category explicitly 
studied by complex networks theory (Glisic, 2016). For this reason, the 
presentation in this paper is organized under the umbrela of complex 
networks theory. 

Energy consumption limits the optimization of neural connectivity. 
Spiking activity, the way neurons communicate (Laughlin & Sejnowski, 
2003), contributes significantly to the brain energy consumption. 
Consequently, the paper presents a detailed survey on spiking neural 
networks offering several orders of magnitude energy savings compared 
to the classical (c-) solutions with continuous signaling within the 
network. 

Discussion on how the research results in n-Sci are used to improve 

Fig. 1. Overview of the paper content.  
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development of the 6G/7G systems through brain type communications 
BTC, is presented also in Moioli et al. (2020); Moioli et al. (2021) 
providing additional details and challenges of wireless brain implants. 

On the other hand, advantages that wireless networks may provide to 
n-Sci’s are also discussed in detail, in particular new generation of brain 
machine interfaces BMIs based on wireless connectivity for BTC (Leb
edev & Nicolelis, 2006; Lebedev, 2014; Moxon & Foffani, 2015; 
Andersen et al., 2004; Lebedev & Nicolelis, 2017) and even the Internet 
of Bio-Nano Things (IoBNT) (Akyildiz et al., 2015; Akyildiz et al., 2008; 
Veletić et al., 2019). This also includes the theory of chaotic neuronal 
communications. 

The references also include discussion on data security and privacy 
as well as ethical issues recommendations to guide both wireless com
munications and n-Sci’s in the near future. Future solutions for network 
security will be heavily based on QC and due to the complexity of the 
subject we will address the problem separately in our future publications 
(Glisic & Lorenzo, 2022, Glisic, 2023a, 2023b). 

1.2. QC n-Sci and 6G/7G networks 

1.2.1. Motivation 
As already indicated, the main motivation here is to support the 

initiatives like those in Moioli et al. (2020); Moioli et al. (2021) to 
leverage the convergence of neuroscience and modern paradigms in 
communications by providing a comprehensive survey of the work on 
QC as enabling technology for above initiatives. The survey is extended 
to include additional relevant fields as quantum biology and quantum 
chemistry which are also participating in the overall modelling and 
analysis of the operation of the brain and its relation to the design 
principles of modern communications. 

As already indicated in Glisic and Lorenzo (2022); Chen and Liu 
(2016) complex networks theory enables us to use a high level of 
abstraction to model basic principles supporting the operation of the 
human brain. 

In their own way, these networks evolve into large-scale networks 
(lsN) controlled by algorithms based on artificial intelligence. Here, the 
advances are reviewed in modeling, analysis, design, and operation of 
these networks with focus on optimum energy and computational effi
ciency. In addition, advanced solutions for network synchronization (N- 
sync) are reviewed along with the available tools for their analysis, and 
simulations under the umbrella of complex networks theory. This “cross 
technology” coverage of the survey should help network designers to get 
a comprehensive insight into the interrelation/interdependency of the 
different technologies used for the overall future communication net
works design. 

1.2.2. Energy efficiency 
Since ML is used for the network control, after a survey of classical 

solutions (Section 2) the survey will focus on ML based on spiking neural 
networks (SNN) as a possible solution in 7G, which is supposed to pro
vide several orders of magnitude in energy savings (Section 3). 

Even when the paper talks about classical ML, the paper will focus on 
the latest advances in the field like Lifelong ML, and review work on 
related problems. 

Under the umbrella of classical ML, the paper will also survey the 
work on Deep NN (DNN) and Federated Learning (FL). 

Most of the advanced signal processing algorithms often require 
considerable complexity, making them less attractive for practical ap
plications. Here, the paper will review the work demonstrating how ML 
can help to solve this issue. The solutions based on ML use a DNN to find 
an acceptable approximation of the input/output nonlinear mapping of 
an SP algorithm. 

The survey will include work on: Optimization algorithm approxi
mation by DNN, generic optimization problem, algorithm approxima
tion background, spatial scheduling by DNN, wireless link scheduling, 
scheduling by DNN, training process, link deactivation, spatial sched

uling by DNN with proportional fairness, DNN in vehicular networks, 
system model, channel model, modeling age of information problem 
(AoI), link clustering, network optimization, AoI-aware RRM objectives 
and Bellman’s equation and DRL algorithm. 

This segment will also include federated learning system (FLS) 
(Mohassel & Rindal, 2018; Araki et al., 2016; Furukawa et al., 2016; 
Mohassel et al., 2015). Here ML models process data sets coming from 
the sources from different locations. In this scenario the objective is to 
prevent data leakage. The survey will include works on algorithms, 
classification, FLS architecture, and block chains. 

After a survey of classical solutions (Section 2) the paper will focus 
on ML based on spiking neural networks (SNN) as a possible solution, 
which is supposed to provide several orders of magnitude in energy 
savings (Section 3). This will include work on a. Spiking neuron timing. 
b. Spiking neuron networks c. n-Sci and AI and d. Deep learning and n- 
Sci. 

The basics of bio-learning (bL ) and memory is synaptic plasticity 
(sP). Here, the paper will survey works modeling short- and long-term 
sP, with focus on spike-timing (sT) dependent plasticity (STDP). This 
approach requires detailed analysis of the synchronization in these 
networks which the paper covers in Section 6. The objective is to build 
up a framework for modeling different types of plasticity. All models 
discussed here can be used for large-scale network simulations. 

In summary, in this segment the survey will include the works on 
models of sP based on sT, works on plasticity, experimental results, 
theoretical concepts, short-term plasticity, Markram-Tsodyks model, 
Abbott model, long-term plasticity (STDP), pair-based STDP rules, 
weight dependence of STDP, beyond pair effects, voltage dependence, 
induction versus maintenance, supervised and reinforcement learning 
(rL ), rL and STDP, rL algorithm for SNN, mathematical foundation of 
the basic L -rule, bidirectional associative plasticity, intrinsic plasticity, 
modulation of STDP by reward with experimental examples and adap
tive L in brain. 

In the sequel, the paper will review the work on spiking neuron (sN) 
networks (sNN’s). They are based on computing principles in the brain 
and latest research results in n-Sci requiring precise timing of spike firing 
and detailed description of synaptic (sy) role in the interactions between 
neurons. When it comes to computational power, sNN’s outperform the 
classical NN’s. They provide a basis for building up models with high 
capacity for memorizing and an ability to adapt fast. The objective here 
is to design learning rules that combine both good features of sNN’s and 
useful properties of traditional connectionist models. 

Here the paper starts by summarizing currently available models of 
neurons and sP, the capabilities of sNN’s, different approaches for 
designing algorithms for learning in sNN and finally by discussing ap
plications, implementations and several simulation frameworks. The 
work reviewed in this segment will include: Artificial neural networks, 
biological inspiration, information coding by spikes timing, sNN, 
network science (nS) and sP, integrate&fire (iF) model, model of the 
spike response, sP and STDP, learning algorithms in sNN, mimicking 
classical models, the neural code, input encoding, output decoding, 
objective functions, activity regularization, training sNN, shadow 
training, backpropagation (bp) using spike times, bp using spikes, long- 
term temporal dependencies, online learning, temporal locality, spatial 
locality and comments on further research in sNN. 

Before going to the review of artificial quantum neurons (qN) the 
paper will survey the work on n-Sci and AI dealing with physical pro
cesses in the brain and discuss in depth the latest research results in nS, 
n-Sci and dynamic systems (dS), and their interrelations with focus on 
the latest trend in the filed referred to as brain-inspired intelligence. A 
practical way to imitate brain intelligence is to mimic cortical networks 
(corN) with its dynamics that support the brain functions, rather than 
use classical artificial NN. Here the paper reviews the work providing a 
complex network (cN) and space/time dynamics (referred to as network 
dynamics -nD) models for analyzing the brain and corN and develop n- 
Sci and nD based integrated approaches for designing intelligence 
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including learning and resilience functions mimicking the brain 
behavior. For this, the paper needs to cover issues such as fundamentals 
of cN, n-Sci, and hybrid dS, and the work about the brain and 
intelligence. 

The survey includes in particular works on n-Sci and nD, modeling 
dynamic neurons and networks, hybrid network control applications, 
optimization for learning and resilience, sNN with computing dynamics, 
different options for encoding spiking data, and electrophysiological 
connectivity patterns in cortex. 

In the sequel, the paper surveys the work studying commonalities 
between Deep Learning and n-Sci. The interest of n-Sci is in the imple
mentation of computation, constructing neural codes, studying and 
modeling dynamics, and designing circuits. In ML, however, ANNs tend 
to intentionally avoid exactly designed codes, dynamics or circuits but 
rather use optimization objective function (ooF), with simple architec
tures. These seemingly divergent perspectives are lately converging 
based on two recent results within ML. 

1) structured architectures are used for memory storage. 2) ooF and 
training algorithms evolve into more complex procedures varying across 
layers and over time. In this paper the work exploring the brain with 
focus on these ideas is surveyed. It was hypothesized in Marblestone 
(2016b) that: (1) the brain also uses ooF, (2) There is a variety of such 
ooF and they are different at different brain segments and time instances, 
and (3) Objective function (oF) minimization/maximization works 
within a preset structure adjusted to the problems defined by behavior. 
The system combines a number of interdependent oF, makes L -data-
efficient and adjusted to the human individual. 

Here the paper reviews work on possible options n-Sci has available 
to improve and test these hypotheses. Intending to answer the questions 
Can the brain optimize cost functions? and Can the brain learn differently? 
the paper focuses in particular on work including: Local organization/ 
optimization, biological optimization, impact of training data on su
pervised and reinforcement learning, analytical models for credit 
assignment in NN, modeling Deep Feedback Control (DFC), learning 
theory, stability of DFC, learning the feedback weights, derivation of the 
key theorems, learning theory revisited, linearized dynamics and fixed 
points, DFC approximates Gauss-Newton optimization, DFC uses mini
mum norm updates, Gauss-Newton optimization with a mini-batch size 
of 1, effects of the nonlinearity φ in the weight update, continuous DFC 
vs steady-state DFC weight updates, compatibility of DFC with various 
controller types, stability of DFC revisited, stability analysis with 
instantaneous system dynamics, stability of the full system, design ex
amples, learning the feedback weights: revisited, learning the feedback 
weights in a sleep phase, learning the forward and feedback weights 
simultaneously, influence of noisy dynamics on learning the forward 
weights, simulations and algorithms of DFC, simulating DFC and DFC-SS 
for training the forward weights and simulating DFC with noisy dy
namics for training the feedback weights. 

1.2.3. Computing efficiency and complexity reduction 
For reducing required computational resources and speeding up the 

execution of the algorithms, the paper will survey solutions for ML based 
on QC, referred to as Quantum ML (QML) (Section 4). 

The starting point in studying ML algorithms and AI protocols in 
ANN is the modeling of an artificial neuron (aN). The first work of an aN 
is the classical Rosenblatt’s “perceptron” (Per), with the main drawback 
being complexity, preventing the use for training of multilayered Per- 
networks. QC-based perceptron, with significant reduction in hardware 
resources over classical (c-) options was presented in Tacchino et al. 
(2018) together with experimental test. 

The survey of the work in this segment includes modeling quantum 
Per, unitary transformations, Per -model complexity, online quantum Per, 
quantum version space Per, hybrid quantum-classical Per algorithm, 
quantum computation, Grover’s search algorithm, quantum activation 
functions for QNN, computation of the polynomial series, approxima
tion of analytical activation functions, quantum neuron (qN), 

feedforward neural network, and Hopfield network. 
Moving from qN to the quantum NN (qNN): The q-analog of an aN, 

presented above, leads to a q-feed forward NN capable of universal QC. 
Here the paper surveys work on qNN using graph-structured data and 
those using ansatz for a Q generative adversarial network. 

Quantum machine learning (QML) can be used as c-ML enhancing q- 
tasks, q-algorithms speeding up c-ML, or using QC circuits for tasks with 
q-data. The dissipative qNN (DQNN) uses QC hardware for tasks with q- 
data. It consists of several layers of qubits and a pair of q- states is used 
for its training. An input state and a desired output reflecting the 
training objective represent a training data pair. 

The DQNN is built of q-perceptrons (qPer) like those reviewed in the 
previous section. A qPer interconnects two adjacent layers of qubits and 
is modeled as a completely positive (CP) transition map (tM). The term 
dissipative specifies the operation of tM’s which defines both tensoring 
the states of the two layer’s qubits and executing unitary (U) operations 
and tracing out the qubits from the first of the two layers. So, through the 
interaction between the two adjacent layers, tM’s propagates input 
states forward throughout the DQNN. At the end the resulting output 
state is compared with the targeted result. For this step the fidelity of 
two q-states is used to determine how the perceptron U’s should be 
updated to perform the training efficiently. The work that will be 
reviewed in this section will include Network architecture, optimization 
of objective functions, training QNN, implementation, performance 
limits of QNN, performance limits of classical and quantum optimization 
algorithm, continuous-variable (CV) QNN, the CV model, embedding 
classical neural networks, convolutional, recurrent, and residual CV 
QNN. 

Given the full understanding of the QNN the paper then reviews the 
work on Quantum Machine Learning (QML) algorithms. Here the paper 
surveys the work on: Methods of ML, ANN and deep learning, support 
vector machines, Learning Theory, Computational learning theory, VC 
theory, reinforcement learning theory, ML in q-physics, estimating 
Hamiltonian, phase estimation (phε) settings, group-theoretic approach 
to QML, gradient (G) - invariance and Lie group-invariant models. 

1.2.4. Complex quantum models 
The presentation of the use of multiple-body q-systems will be 

illustrated on different models of molecules in chemistry (Section 5). 
Familiarity with this work should provide solid base for further work, 
within 7G umbrella, on advanced modelling on BTC and especially on 
brain to network interface (BNI). 

Quantum computing is used nowadays more and more for solving 
otherwise difficult chemistry problems. These solutions may also help us 
to improve algorithms used in other fields, especially in ML learning the 
paper is focused on in this survey. Research results in solving these 
problems with existing q-resources are important since building a suf
ficiently large QC may take time. Based on these expectations, q- 
computational chemistry (cCh) has become a research field using 
knowledge from both QC and cCh. Here the paper surveys the work in 
both cCh and QC, reducing the current knowledge gap. Here the paper 
discusses the main results in the field, with a focus on potential provided 
with the existing results in QC. The reviewed work shows how to model 
chemical problems in such a way that can be solved using QC. 

Works to be reviewed in Section 4 will already indicate the results 
significantly reducing the implementation complexity needed to simu
late problems in q-computing chemistry. The solutions are based on 
using linear combinations of U’s and plane wave (pW) basis Coulomb 
(Co) operator. In the sequel the paper will further detail these techniques 
and review the work achieving approximately same results even by 
using arbitrary basis sets by leveraging structure in the Co operator. This 
is based either on leveraging sparseness, or a low rank tensor (T ) 
factorization (lrT f). As an example, authors in Dominic (2019) provide 
circuits with O

(
N3/2λ

)
T (Toffoli gates) complexity, with N representing 

a number of orbitals and λ being the 1-norm of the chemical 
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Hamiltonian (che-H). 
Along these lines the paper will review the work in this field 

including arbitrary basis q-chemistry, lrT f of the Co, linear combination 
of unitaries (LCU) based simulation, the Hamiltonian as a LCU, state 
preparation, controlled U’s, complexity exploiting sparsity in the Co, QC 
molecular energies, classical approaches to q-chemistry, unitary coupled 
cluster (UCC) and variational q-eigensolver for (UCC). 

1.2.5. Large scale system level implementation 
Synchronization, as a pertaining problem in the implementation of 

large-scale networks (LSN) will be reviewed in Section 6. 
Complex dynamic networks (cDN) can simulate practical models 

such as LSN of sensors and Internet objects or neural nodes in SNN 
(Pecora, 1990; Abbasi et al., 2013; Stanoev, 2013). Since cDN exhibits 
more sophisticated and uncertain behaviors than a single NN (Stanoev, 
2013), its synchronization is a challenging problem. In this paper works 
studying relation between n-Sci and N-sync are reviewed with focus on: 
Synchronization of NN with stochastic perturbation, synchronization 
analysis, synchronization with aperiodically (adaptive) intermittent 
control, stability of spiking NN synchronization under stochastic per
turbations, feedback control of NN synchronization, exponential syn
chronization of NN under time-varying sampling, synchronizing cort- 
oscillations in human brain, analytical description of a single oscillator, 
phase reduction methods for a single oscillator and oscillator network 
and complex networks synchronization. 

In the next iteration the paper will revisit the problem of synchro
nization by generalizing the problem and reviewing the work on the cN’s 
with extremely large number of nodes. Such networks include physical, 
biological, chemical, and technological networks, as well as in the 
economic and social systems. 

The topics covered include oscillator models on cN, phase oscillators, 
the onset of synchronization in cN, the evolution of synchronization 
process in cN, stability of synchronized cN, graph theoretical bounds to 
synchronizability, other stability function formalisms, relevance for bio- 
systems and n-Sci, and computer science and engineering. 

1.2.6. Analytical tools 
Tensor Networks (TN) as a useful tool in the modeling and design of 

LSN will be reviewed in Section 7. 
TNs use an intuitive graphical language (gL) enabling efficient 

reasoning about them. The methods have been adapted to studying 
problems in physics, mathematics, and computer science. 

In this segment the paper reviews the work covering: TN models, 
wire tensors, graphical singular value decomposition, matrix product 
states, TN based ML, the presence/absence of barren plateaus (bp) for 
global ooF, ML by q-TN and q-entanglement based learning architecture. 

As a further extension of the survey, the objective will be to survey 
the work showing how TN’s can be used for big data optimization 
problems by using relatively small size matrices and tensors. 

These works will include topic like: low-rank tensor approximations 
via TN, TN models, reconfiguration of TN, distributed (concatenated) 
representation of tensors, tensorization, analytical representation of 
tensor trains (TT), matrix TT decomposition, operations in TT repre
sentation, (TT/MPS) splitting, large-scale optimization problems, 
generalized eigenvalue problems in TT formats, canonical correlation 
analysis in TT format and solving large-scale systems of linear equations. 

1.2.7. Quantum simulations 
Quantum (q) Simulations (qS), as an unavoidable part of the overall 

network design, will be reviewed in Section 8. 
In digital qS, the evolution of the physical process on time scale is 

mapped, using the mathematical formulation of q-mechanics, onto the 
effective algebra of q-registers (R ’s) made of qubits. The q-time prop
agator, modelled by U operation, can then be implemented in digital 
steps as a sequence of q- logic gates (i.e. U transformations on the qubits) 
defining a q- circuit (Nielsen, 2000). In this segment the paper will 

concentrate on the contributions using the class of quantum spin models, 
which besides being extremely interesting on their own right, usually 
constitute the ideal formal conjunction between general q-mechanical 
models and their corresponding representation in terms of qubits. Spin 
models are in this sense the key to the qS of many-body q-models (Troyer 
& Wiese, 2005). Examples are the Hubbard model discussed in Casanova 
et al. (2012); Barends et al. (2014), or the Schwinger model in lattice 
theory (Hauke et al., 2013; Martinez et al., 2016; Klco et al., 2018). 
Here, the paper will emphasize the role of quantum correlations (Rog
gero et al., 2018) in many-body systems. Despite being in principle much 
more powerful, universal quantum simulators UQS are typically difficult 
to realize in practice compared to analog simulators, mainly due to the 
well-known stringent requirements for general purpose quantum 
computation (DiVincenzo, 2000). Here, it should be mentioned that 
hybrid qS have also been analyzed (Mezzacapo et al., 2015). The revied 
work covers the following topics: Preliminaries on qS, spin mapping, 
universal sets of quantum gates on NISQ processors, library of quantum 
gates sequences for quantum simulations, approximation and digital 
error, extracting physical observables, experimental results for 
tunneling of S = 1 total magnetization and Spin-1/2 chains, simulation 
of QML, quantum classification and quantum neurons, implementing 
quantum algorithm for binary-valued artificial neurons, implementation 
on NISQ processors, a quantum feed-forward neural network and 
pattern classification on a real quantum processor. 

1.2.8. Complex networks theory framework 
Throughout the survey, all these components of network design will 

be unified under the umbrella of the complex network theory frame
work. The relations between different sections of the paper are illus
trated in Fig. 1. 

1.2.9. Contributions 
The paper provides comprehensive survey of sources of information 

to 7G network designer on: 

- How to choose the ML algorithms to minimize the energy con
sumption in the network  

- Possible speed ups by using lifelong learning.  
- Achievable speed up in computing rates when using quantum 

neurons.  
- How to choose U’s in Q algorithms for a given objective  
- How to create complex quantum models: lessons learned from 

quantum chemistry.  
- How to estimate complexity of the algorithms  
- How to estimate probability of wrong decision in quantum neural 

network  
- How to design network connectivity to achieve network onset and 

full synchronization  
- How to ensure network stability  
- How to use TN theory in the system analysis  
- How to use QS for the system analysis  
- How to leverage experience from n-Sci and brain studies to enhance 

efficiency of complex networks: lessons used form assigning spatially 
and temporally varying waiting coefficients in neural networks, 
referred to as credit assignments.  

- How to design and optimize Multi-Task Learning [MTL]: 
- How to optimize the network by considering the complex interde

pendency between the different components of the system. This is a 
specific contribution of the paper which is valid for existing algo
rithms and the new algorithms that might be developed in the future. 

NOTE: At this point it should be repeated that 6/7G networks will be, 
as all previous generations, open standards enabling competition be
tween different technical solutions and standardizing a minimum of the 
system parameters that will be required to secure the compatibility of 
these solutions. For these reasons here the paper does not propose 
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specific solutions for different problems that 6/7G networks will face, 
but rather present a variety of technology enablers for a designer to 
choose from when building its own specific solution. However, in 
addition to identifying these solutions the paper presents an original 
complex network optimization framework considering the complicated 
interdependency between the different components of the system, that 
can be used for both, the existing algorithms and those that might be 
developed in the future. By using this framework, the network designers 
should be able to compare the performance of the compound systems 
using different components. 

2. Classical NN 

2.1. Advances in ML 

Lifelong machine learning (LML): In real life, every learning experi
ence or decision made increase the human’s knowledge (experience ε), 
so that when next time faced with a similar question human can decide 
more efficiently. On the other hand, classical ML algorithms reset the 
learning process back to the beginning once they face a new problem to 
learn. For classical ML algorithms see Glisic and Lorenzo (2022). 

Lifelong machine learning (lifelong ML or LML) is an advanced ML 
concept that learns continuously and uses accumulated experience ε 
from the past to improve the L -process in the future. In other words, up 
to a certain moment, the L -object (lo) has completed an ordered set/ 
sequence of learning assignments, T 1, T 2, …, T N (earlier assignments), 
by using the respective datasets D 1, D 2, …, D N. The assignments are 
not of the same type nor from the same domains. For the (N+1)th 
assignment T N+1 using data D N+1, the learner can leverage the 
memorized experience ε to enhance the decision about T N+1. LML is 
supposed to optimize the decision about the new assignment. It can also 
optimize the decision of any L -assignment by considering the rest of the 
assignments as the previous assignments. The memory keeps ε and after 
the completion of learning T N+1, the memory will be updated with the 
knowledge gained from learning T N+1. 

Multi-Task Learning (MTL): By using the information of common in
terest shared by multiple L -assignments (Caruana, 1997; Chen et al., 
2009; Li et al., 2009) here the algorithm learns multiple related L - as
signments in parallel, to improve the performance. The algorithm in
troduces inductive bias in the joint hypothesis space of all assignments 
by leveraging the L -assignment correlations. 

MTL referred to as batch MTL, learns multiple learning assignments 
T = {1,2, . . ., N} at the same time. Each learning assignment t ∈ T 

with pertaining training data D t has objective to maximize the im
provements for all assignments. The work here mainly involves super
vised learning (sL). For each L -assignments t with corresponding 
training data D t =

{(
xt

i , yt
i
)

: i = 1, . . ., nt
}
, and nt the number of 

training/reference instances in D t , D t is given by an unknown true 

mapping f̂
t
(x) from an instance space X t ⊆ Rd to a set of labels 

Y t ( yt
i ∈ Y t) (or Y t = R for regression). Parameter d is dimension of 

the feature /pattern. The system is supposed to learn f t(x) for each L 

assignment t so that f t(x) ≈ f̂
t
(x) . Therefore, for a given ooF L , MTL 

minimizes 
∑N

t=1
∑nt

i=1L
(
f
(
xt

i
)
, yt

i
)

. Different from this batch MTL, on
line MTL (OMTL) learns the assignments one by one and memorizes 
decisions made earlier and uses the memorized experience ε to improve 
future L -tasks (or to help some previous ones). So, OMTL is lifelong 
learning. MTL expects that L -assignments are closely related (high 
correlated). For different assumptions about L -assignment relatedness/ 
correlation, different modeling solutions are used (Evgeniou & Pontil, 
2004; Baxter, 2000; Ben-David & Schuller, 2003; Daumé, 2009; Argyr
iou et al., 2008; Jacob et al., 2009; Ruvolo & Eaton, 2013). 

Lifelong sL is a sequential L -process where the L -object has 
completed a sequence of sL L -assignments, T 1, T 2, …, T N and saved 
the L -results (experience ε). For L - assignment T N+1, the learner 

leverages the memorized ε to improve learning fN+1 from T N+1’s 
reference DN+1. After L - T N+1, the memory is updated as well with the 
L -results from T N+1. In (Thrun, 1996), a lifelong sL procedure was 
presented for two ε-based L -methods: k-nearest neighbors (Altman, 
1992) and Shepard’s method (Shepard, 1968). 

Lifelong Neural Networks: MTL net (MTL with neural network) (Car
uana, 1997) is presented as a lifelong learning procedure in Thrun 
(1996). It operates as a batch MTL method. In MTL net, instead of 
creating a NN for each L -assignment separately, a joint /universal NN 
for all the learning assignment is constructs. Several upgrades of MTL net 
are presented in Silver and Mercer (2005), Silver and Poirier (2004), 
Silver and Poirier (2007). These upgrades either use virtual training 
examples to generate the training data of all earlier L -assignments or 
add contexts. 

Lifelong Unsupervised Learning (uL): Most of the research here is 
focused on topic or subject modeling (tM) and information extraction (iE). 
In tM, the knowledge acquired about the topic or subject in the past 
(experience on a topic- εt) in related domains or fields (εt,d) is impacting 
the modeling in the other or current field (Chen & Liu, 2014; Liu et al., 
2016). Memory stores the εt. When it comes to iE, LML is also a natural 
choice since the objective of iE is to maximize the amount of extracted 
and stored useful data or knowledge. The iE is thus cumulative. The 
information extracted in the past helps to extract more data later with 
higher quality (Liu et al., 2016). 

Lifelong Reinforcement Learning (LrL): In each iteration of reinforce
ment learning (rL), a L -object learns decision steps through action/ 
correction relation with a time varying environment (Kaelbling et al., 
1996; Sutton and Barto, 1998a). In each iteration, the L -object observes 
the environment in a given instant and selects a move from the available 
options. The move changes the state of the environment. Depending on 
the gain of the state transition, the agent selects, it receives a reward or 
fine. The agent learns a sequence of movements, through the repetition 
of the process, so maximizing the long run sum of rewards. The objective 
of rL is to learn an optimal policy that maps states to movements. 

A rL algorithm has no input/output pair as in sL. For details, and 
more examples, see sections on Q-Learning in Glisic and Lorenzo (2022). 
For good results, a large number of iterations is needed, especially in 
high-dimensional (hd) control problems, resulting in high computa
tional complexity. To mitigate the problem of complexity, LrL has been 
proposed. The expectation is that using the accumulated experience ε 
from other L -assignments should improve the L -object’s decision 
making in the new L -assignments. LrL was introduced in Thrun and 
Mitchell (1995) and further elaborated by several other authors (Ammar 
et al., 2015). 

2.2. Deep NN and federated learning (fL) 

Optimization algorithms for signal processing (SP) applications in 
advanced wireless networks nowadays often require high complexity. 
This diminishes feasibility for real-time processing. A deep neural 
network (DNN) is used to approximate any unknown input/output 
nonlinear mapping of SP algorithm. If an acceptable accuracy in the 
approximation can be achieved by a DNN this may be a solution, since a 
DNN may require a smaller number of operations while providing 
acceptable performance. 

In the open literature, similar logic has been used for replacing an 
iterative optimization algorithm by its DNN approximation. As an 
example, reference (Gregor & LeCun, 2010) proposes using a multilayer 
network to approximate by a separate layer each iteration of the itera
tive soft-thresholding algorithm (ISTA) for sparse optimization (Beck & 
Teboulle, 2009). 

Similar ideas are used in Hershey et al. (2014), Sprechmann et al. 
(2013) for nonnegative matrix factorization. Authors in Andrychowicz 
et al. (2016), Li and Malik (2017) propose learning per-iteration 
behavior of G-based algorithms. 

Regarding the communication tasks, the recent works in O’Shea 
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et al. (2016) reported using DNN in anomaly detection and decoding. 
Different from the above, these papers have not been interested in al
gorithm approximation but rather in signal modeling. Following the 
unfolding concept from Gregor and LeCun (2010) authors in Samuel 
(2017) proposed a DNN to approximate MIMO detection problem while 
using DNN, for links scheduling is discussed in Cui et al. (2019). 

For autonomous driving algorithms the freshness (age) of information 
(AoI) about the vehicular network state is of paramount importance and 
proper network resource allocation aware of the AoI is the major tech
nical issue in this field. The problem modelling and possible solutions 
based on DNN have been also considered (Chen et al., 2020; Zhuang, 
2012). 

Federated Learning (fL): The concept of fL system (fLS) is proposed in 
Yang et al. (2019), Konecný et al. (2016a, 2016b), Brendan et al. (n.d.). 
These ML models are designed to prevent data leakage for data 
distributed on separate locations. 

Privacy of fL: This is the main feature of fL. Secure Multi-party 
Computation (SMC) involves a group of users and provides security 
based on the so called zero knowledge (zN) concept, where each user 
knows only its own input and output. Unfortunately, practical imple
mentation of the zN, is not efficient. So, it could be considered to allow 
disclosure of a part of knowledge if security guarantees are provided. 
Accepting controlled reduction of security requirement in SMC in ex
change for efficiency in implementation, is presented in Du et al. (2004). 
Authors in Mohassel and Zhang (2017) used SMC for training ML with 
semi-honest assumptions and in Kilbertus (2018) MPC protocols for 
model training while preserving user’s data privacy. A solution for SMC 
is Sharemind’s framework presented in Bogdanov et al. (2008). Authors 
in Mohassel and Rindal (2018) proposed a model assuming that the 
majority of the participants are honest and discussed the data protection 
in such environments. For the implementation of these solutions users’ 
data need to be confidentially distributed among non-colluding servers 
(Araki et al., 2016; Furukawa et al., 2016; Mohassel et al., 2015). 

Differential Privacy (dP) or -Anonymity (Sweeney, 2002) for data 
privacy protection (Abadi et al., 2016a) is another line of work here. The 
methods of dP (Agrawal & Srikant, 2000) are based on the idea of 
intentionally disturbing data by adding noise or obscuring certain sen
sitive features so that the adversary cannot identify the individual. For 
this the data needs to be transmitted somewhere else, and a part of the 
algorithm is a trade-of between accuracy and privacy. Reference (Geyer 
et al., 2017), introduces a dP approach to fL to additionally protect user’s 
data by not discovering user’s role during training. 

Homomorphic Encryption (hℰ), presented in Rivest et al. (1978) is 
also included for protecting data privacy by encrypted parameter ex
change during ML (Giacomelli et al., 2017). Here, no information is 
exchanged, and it cannot be estimated by the other party’s data. So, the 
leakage of data is significantly reduced. The hℰ has been also adopted 
for training data on cloud (Yuan & Yu, 2014; Zhang et al., 2016). Ad
ditive hℰ (Acar et al., 2018) are implemented in practice, using poly
nomial approximations of non-linear functions in ML algorithms. This 
enables accuracy-privacy trading-offs (Aono et al., 2016; Kim et al., 
2018). 

Block Chain protection of FL has been considered as well in references 
(Pokhrel, 2020). In Table 1 Cross-Technology Coverage (focus-NN) of 
the reviewed papers focused on neural Networks is presented. One can 
see that these papers besides focusing on NN cover very little if any of 
the other topics needed for getting a fair insight into complex network 
design. In the sequel, papers with different focus will be reviewed. Their 
coverage will be higher and higher but still significantly lower than one 
achieved in this paper. 

3. Spiking NN 

The interest of this paper in spiking neural networks is twofold. First, 
using spikes instead of continuous presence of signals enables several 
orders of magnitude better energy efficiency. Second, deep under
standing of the neurological processes enables better insights in the 
operation of the human brain which is expected to help in further 
developing better modelling and design of the algorithms for control of 
artificial neural networks. 

3.1. Spiking neuron 

Learning and memory in biology are based on synaptic (sy) plasticity 
(syP) (see Fig. 2). This section surveys models of short-term (sT) and 
long-term (lT) syP, including spike-timing dependent plasticity (STDP). The 
algorithms depending on timing, require precise N-sync, topic covered in 
Section 6. This paper focuses on simple models based on integrate-and- 
fire type neurons. Here sy update rules for sT or lT syP depend on spike 
timing, membrane potential, and the value of the sy weight. The paper 
also reviews the literature discussing the relations of these rules to sL 
and rL. 

It is believed that learning, memory, and cort-plasticity (coP) are 
based on syP changes, although the relation between syP features and 

Table 1 
CrossTechology coverage (focus-NN).  

1 2 3 4 5 6 7 8 9 10 

(Glisic and Lorenzo, 2022) ML √ √   √ Details on ML and QC 
modelling and analysis   

(Chen & Liu, 2016) ML √     Detailed Modelling and 
analysis of Life Long ML   

(Caruana, 1997; Chen et al., 2009; Li et al., 2009) ML √     Multi-Task Learning [MTL]   
(Evgeniou & Pontil, 2004; Baxter, 2000; Ben-David & Schuller, 2003; Daumé, 2009; Argyriou 

et al., 2008; Jacob et al., 2009; Ruvolo & Eaton, 2013) 
ML √     online multi-task learning 

(OMTL)   
(Thrun, 1996; Caruana, 1997; Silver & Mercer, 2005, Silver & Poirier, 2004, Silver & Poirier, 

2007) 
ML √     Lifelong Neural Networks: 

modelling and analysis   
(Chen & Liu, 2014, Liu et al., 2016) ML √     Lifelong Unsupervised Learning   
(Kaelbling et al., 1996, Sutton and Barto, 1998a) ML √     Lifelong Reinforcement 

Learning 
(LRL): modelling and analysis   

(Gregor & LeCun, 2010, Beck & Teboulle, 2009, Hershey et al., 2014, Sprechmann et al., 2013,  
Andrychowicz et al., 2016, Li & Malik, 2017, O’Shea et al., 2016, Samuel, 2017, Cui et al., 2019,  
Chen et al., 2020, Zhuang, 2012, Yang et al., 2019, Konecný et al., 2016a, 2016b, Brendan et al., 
n.d.; Du et al., 2004, Mohassel & Zhang, 2017, Kilbertus, 2018, Bogdanov et al., 2008, Mohassel 
& Rindal, 2018, Araki et al., 2016, Furukawa et al., 2016, Mohassel et al., 2015, Sweeney, 2002,  
Abadi et al., 2016a, Agrawal & Srikant, 2000, Geyer et al., 2017) 

ML √     Deep NN and Federated 
Learning   

(Rivest et al., 1978, Giacomelli et al., 2017, Yuan & Yu, 2014, Zhang et al., 2016, Acar et al., 2018,  
Aono et al., 2016, Kim et al., 2018) 

ML √     Homomorphic Encryption   

1 reference, 2 focus, 3 classic, 4 quantum, 5 complex networks, 6 tensors, 7 q-simulations, 8 contribution, 9 energy efficiency, 10 computational efficiency. 
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functional consequences is still rather unclear. In experimental initia
tion, syP changes can be a consequence of stimulations defined by pre-sy 
(− sy) firing rates (Bliss & Lomo, 1973), postsynaptic (+sy) membrane 
potential (Artola et al., 1990), calcium entry (Lisman, 1989), or spike 
timing (Markram & Sakmann, 1995). 

While comprehensive biophysical models are of paramount impor
tance to understand syP mechanisms, phenomenological models (phM) 
describing the syP changes with no need to specify the mechanism of 
these changes, are simpler. Therefore, the latter are widely used in 
analytical and simulation analysis. Experimental and theoretical results 
have been compared for several phM. Here, a syP changes from a − sy to a 
+sy neuron are considered. The intensity of a connection from-to is 
measured by the height of the +sy potential at onset. The directions and 
magnitudes for syP changes can be formulated as sy L -rules. These rules 
can be defined either theoretically or experimentally. The rules can be 
developed for experiments in which syP is measured as a result of − sy 
and +sy spikes (Cooper et al., 2004). 

Example 1. For the classification of the syP rules, the time required to 
induce a change and the duration of persistence of the change are used. It 
takes about 1 s or less to induce the changes for both sT and lT syP. In sT syP, 
it takes a sequence of 8 − sy spikes at 20 Hz to get decreasing (depression dep) 
or increasing (facilitation fac) responses in the +sy cell. For sT syP this change 
persists less than a few 100′s ms: the time required for the amplitude of the +sy 
response to comes back to near-normal value is less than a second (Markram 
et al., 1998). 

Different from sT syP, lT potentiation (pot) and dep (lTP and lTD) 
characterize the persistent changes of syP reactions. The time needed for 
inducing the changes is relatively short. In STDP (Morrison et al., 2008) for 
instance, a change of the syP can be caused by 60 pairs of − sy and +sy spikes 
with a frequency of 20 Hz, ending the stimulation after 3 s. On the other 
hand, this change can persist for more than 1 h. The final stabilization of a 
post-syP can be reached only thereafter, referred to as the late phase of lTP 
(Frey, 1997). In this process, despite the changes induced by lTP and lTD, the 
neurons in the brain must remain within a sustainable activity regime (Tur
rigiano & Nelson, 2004). 

The models discussed here operate by using uL rules. Learning is a 

continuous process of adjustment of the syP to the statistics of the ac
tivity of − sy and +sy neurons. In rL (Sutton & Barto, 1998b), on the other 
hand, the change depends on a decision outcome, that reflects the cur
rent reward (Schultz & Montague, 1997). The rL rules are different from 
sL since the success signal is considered as an uL rule (Bohte et al., 2002). 
The sL, uL, or rL rules are widely studied in open literature. 

The importance of molecular mechanisms (Lisman, 1989) for models 
of syP (Lisman & Zhabotinsky, 2001; Shouval et al., 2002; Florian, 2007; 
Graupner, 2007; Zou, 2007; Badoual et al., 2006) as well as the 
importance of the +sy voltage (Kelso et al., 1986; Sjostrom & Turrigiano, 
2001), is also explored in the literature. 

3.1.1. Implementing various types of syP rules in VLSI 
Reference (Azghadi et al., 2014) reviews the most common and 

useful electronic building blocks required for implementing various 
types of syP rules in VLSI. In addition, authors describe analog very 
large-scale integration (VLSI) circuit implementations of multiple syP 
rules, ranging from phenomenological ones (e.g., based on spike timing, 
mean firing rates, or both) to biophysically realistic ones (e.g., 
calcium-dependent models). They discuss the application domains, 
weaknesses, and strengths of various representative approaches pro
posed in the literature, and provide insight into the challenges that en
gineers face when designing and implementing synaptic plasticity rules 
in VLSI technology for utilizing them in practical applications. 

In (Azghadi et al., 2017) a high-performance nano-scale Comple
mentary Metal Oxide Semiconductor (CMOS)-memristive circuit, was 
presented, which mimics a number of essential learning properties of 
biological sy’s. The proposed sy circuit that is composed of memristors 
and CMOS transistors, alters its memristance in response to timing dif
ferences among its − sy and +sy action potentials, giving rise to a family 
of STDP. The presented design advances preceding memristive synapse 
designs with regards to the ability to replicate essential behaviors 
characterized in a number of electrophysiological experiments per
formed in the animal brain, which involve higher order spike in
teractions. Furthermore, the proposed hybrid device CMOS area is 
estimated as 600 µm2 in a 0.35 µm process—this represents a factor of 
ten reduction in area with respect to prior CMOS art. The new design is 
integrated with silicon neurons in a crossbar array structure amenable to 
large-scale neuromorphic architectures and may pave the way for future 
neuromorphic systems with spike timing-dependent learning features. 
These systems are emerging for deployment in various applications 
ranging from basic neuroscience research to pattern recognition, to 
Brain-Machine-Interfaces. 

3.2. sN networks (SNN) 

Design principles of SNN’s, sometimes called the 3rd generation of 
NN, use widely accumulated knowledge on brain operation and research 
results in n-Sci’s. They are based on modeling of cross-neuronal sy in
teractions, related to the time of spike firing. When it comes to 
computational power SNN’s outperform the classical NN using threshold 
or sigmoidal units. They enable design of the models with high capacity 
of memorizing and adaptability. Here, an adequate L -algorithms is 
needed that at the same time exploit specific characteristics of SNN’s 
and easy-to-use, traditional connectionist models for which sophisti
cated simulators are already available. 

The original work (McCulloch & Pitts, 1943) presented a NN model 
with cross-neuronal connections in the form of (Ni ⊂ Nj) links with 
weight (wij). If the weighted sum of the states of all the neurons Ni, 
representing the input to a neuron Nj reaches level above a certain 
threshold of Nj, the state of Nj is set to active, otherwise it stays inactive 
as shown in Fig. 3. 

Even, such simple networks can realize several analytical functions 
mapping input/output states. By optimizing the cross-neuronal weights, 
these ANN can “learn” such mapping. A number of L -rules are used, for 
both families sL, and uL. Gradient descent algorithm with error 

Fig. 2. Artistic interpretation of the major elements in chemical synaptic 
transmission (http, n.d.a). 

S. Glisic and B. Lorenzo                                                                                                                                                                                                                       



Intelligent Systems with Applications 23 (2024) 200346

9

backpropagation (bp) (Glisic & Lorenzo, 2022; Rumelhart et al., 1986) 
that enforces the NN behavior to some target function, is an example of 
the sL algorithms. 

The origins of uL in NN are associated with the work on syP pre
sented in Hebb (1949), stating: “When an axon of cell is near enough to 
excite cell or repeatedly or persistently takes part in firing it, some 
growth process or metabolic change takes place in one or both cells such 
that its efficiency, as one of the cells firing, is increased.” 

Later this work was followed by extensive work on: 

Calculability: Discussion on NNs processing power (Huh & Sejnowski, 
2017). 
Complexity: The loading problem being NP-complete (Valiant, 1984; 
Mehta et al., 2002) 
Capacity: MLP (Multi-Layer Per), RBF (Radial Basis Function net
works) and WNN (Wavelet Neural Networks) being universal 
approximators (Cybenko, 1988) 
Regularization theory (Poggio & Girosi, 1989); PAC (Probably 
Approximately Correct)-learning (Valiant, 1984); St-learning theory, 
VC (Vapnik - Chervonenkis)-dimension, SVM (Support Vector Ma
chines) (Vapnik, 1998) 

Information coding: In general, data can be encoded into the number 
of spikes (spike rate) at the output of the neuron or by a position (timing) 
of a spike at the output. 

Example 2. The relevance of the two options has been intensively studied. 
Different options for timing coding are shown in Fig. 4. Arguments against 
rate coding are discussed in Thorpe et al. (1996). Poisson distributing rate 
code for describing how neurons transmit information has a lot of supporters 
among physiologists. The opponents of this theory argue that the high volume 
of transmitted information needed to support human vision, is hard to 
reconcile with Poisson rate codes. To differentiate selectively between com
plex visual stimuli a human needs 100–150 ms. On the other hand, in the 
feedforward (ff-) architecture of visual system, with multiple layers of neu
rons, in practice at most one spike could be fired by each neuron during round 
trip adaptation process. A group of neurons with st-firing as a function of the 
stimulus, could realize a time varying rate code: a spike density code. Having 
such a group to encode a single variable is expensive energy wise (Olshausen, 
1996). This suggests that the timing of individual spikes can encode data, and 

not just the rate of spikes. 

High resolution time positioned spikes achieve better encoding, 
given a small set of sN. The pros and cons of other coding algorithms 
have been discussed in Recce (1999) and analyzed in Thorpe et al. 
(2001). For sNN with backpropagation learning for brain visual dy
namics decoding see Stauffer and Zhang (2023). 

3.3. n-Sci and AI 

In the sequel, some physical processes in the brain are described and 
their relationship with research in n-Sci, research challenges covered by 
nS and dS theory, with focus on the incoming interest in research of 
brain-inspired intelligence (biI). A practical way to mimic brain intelli
gence (bI) is to build up dynamic cortical networks (corN’s) that 
implement the brain functions, instead of using only ANN (Hu, 2021). 

Here this paper provides a complex network (cN) and space/time 
dynamics (network dynamics nD) approach to modeling the brain and 
corN’s and develop integrated concept of n-Sci and nD for building biI 
with L and resilience functions. For this the paper covers issues as 
fundamental concepts and principles of cN (to be revisited in few 
additional iterations in the following sections), major challenges and 
solutions in n-Sci, and theory and implementation issues in hS, including 
corresponding experimental and theoretical studies about the brain and 
intelligence. Topics like theory and practice of brain science, data sci
ence with emphasis on big data mining, q- information science including 
discrete and continuous variables (to be addressed in the sequel in more 
details), and machine behavior covering dynamics and stability prob
lems are also briefly discussed toward future applications. 

Here this paper first reviews the main problems in modeling, opti
mization, and implementation of cN including analytical tools for per
formance analysis. Then it surveys the relevant work in n-Sci and hybrid 
space/time dynamic systems, highlighting problems and solutions 
related to the brain and intelligence. Commonalities in n-Sci and nD are 
further discussed to explain the reverse-engineered steps toward biI. 

Complex Network-cN: A cN theory is used to model a multitude of 
elements interconnected in such a way that the network characteristics 
cannot be understood from the current state of a few of its individual 
components (Glisic, 2016). Internet, mobile communication networks, 
the brain and neural systems are examples of such networks. cN are 
represented by a graph G having a set of nodes V and a set of edges E , 
in which V , E may change in time and space. The connections among 

Fig. 3. The first model of neuron incorporated the main characteristics of a 
natural neuron: All-or-none output resulting from a non-linear transfer function 
applied to a weighted sum of inputs. 

Fig. 4. Comparing different coding alternatives for spiking neurons.  
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nodes are specified by the adjacency matrix W =
[
wij
]
(i, j ∈ V ). In 

practice, variations in W may enable the development of the brain or in 
extreme case cause a breakdown of the Internet. 

Based on observation of real networks, fundamental properties in cN 
include modeling of both topology and collective dynamics. Main fea
tures used to characterize the network include clustering coefficient, 
distribution of node degree, modularity, path length, community, and 
hierarchy structures. On the other hand, collective dynamics, such as 
synchronization (to be discussed in detail later in Section 6), intelli
gence, emergence, and resilience contribute to maintaining network 
functions. The Erdös–Rényi (ER) network, discussed in Glisic (2016), 
examines how a graph, representing the network, is modified with 
changes in density of edges, indicating the importance of studying the 
random networks. Small-world networks (SW), presented in Glisic 
(2016) by Watts-Strogatz (WS), have a short average path length and 
large clustering coefficient, whereas the Barabási–Albert (BA) scale-free 
(SF) network, described in Glisic (2016), has node degree characterized 
by power-law distribution. These models are used to represent or design 
systems in practice, with features (e.g., development, L , and recovery) 
that can be improved by optimizing network control (Arenas et al., 
2008b). 

Works on the cN also include investigation of the structural effects on 
overall network behaviors, induced by failures, attacks, or viruses in 
network elements (Majdandzic et al., 2013). Quantitative analyses of 
structures and functions in complex brain networks (cbN) has also 
attracted considerable attention (Bullmore & Sporns, 2009). In social 
networks, people with common interests interact among themselves and 
then make decisions. This type of overall network behavior can be 
modeled via a cN spreading and regulated with dynamic control (Arenas 
et al., 2008b). Similarly, in a corN, each neuron has about 10,000 sy 
connections. Here this paper is interested in finding out how the neurons 
interact with nearby and distant neighbors and how the network dy
namics impacts cognitive behaviors. n-Sci, especially the cross disci
plinary studies with cN, has offered some plausible answers (Bullmore & 
Sporns, 2009). 

n-Sci Inspired AI (niI): The research in n-Sci including neurobiology, 
physiology, and cognitive science form a fundamental basis to the work 
on intelligence (Marblestone et al., 2016a). 

With advances in brain research, the field of n-Sci has been broad
ened to include different methods for investigating corN at different 
scales in time and space. By studying the structure-function relations in 
bN (Bullmore & Sporns, 2009) empirical research of cN have attracted 
significant attention. The quality and resolution in visualizing bN have 
been significantly improved by advances in image processing. Among 
the other activities, computational n-Sci study also analytical represen
tation of the brain and neural operations, for full understanding of the 
relations, neural activities vs. behavior (Dayan & Abbott, 2001). 

Work presented in Hodgkin and Huxley (1952) models the inhibi
tion- excitation time variation of an elementary neuron for producing 
action potential (spike or nerve impulse) by using ion channel mecha
nisms. Given an excitation, neurons generate spikes and then pass the 
spikes to +sy neurons. Here recall that synapse (sy) is the unit that 
connects two neurons. It can be modeled by a coupling weight, referred 
to as sy efficacy. Hundreds of milliseconds long changes of a sy are called 
sT syP, that can be detected after a − sy neuron generates spikes. In a lT 
lasting few seconds or hours, the syP depends on the joint activity of − sy 
and +sy neurons (Dayan & Abbott, 2001). There is more and more evi
dence of integration of n-Sci and ML, in an effort to construct computing 
and intelligence based on the principles they operate in human body 
(Marblestone et al., 2016a). 

Neurons in the brain act collectively to adjust themselves to the 
environment (Graves et al., 2014) by interconnecting with each other. 
Neural coding defines how spiking patterns depend on excitation and 
how reactions are interpreted from spike trains. The mechanisms of nD 
are used for solving coding design, along with st-analysis (Dayan & 

Abbott, 2001; Clopath et al., 2010). Since mesoscopic dynamics may 
relate micro-spiking activities and system-level functions (Curto, 2019; 
Whiteway, 2019), there is also a need for interpretable dynamic models 
(dM) of neuronal nodes activities. An important segment of network 
n-Sci research models the evolution in time of the bN, facilitating 
anticipation of irregular impacts on the brain (Bassett et al., 2017). 
Because of the multitude of neurons, sy’s and spike patterns, multiscale 
(ms-) modeling is needed to further elaborate the study of n-Sci, focused 
on the brain and intelligence. 

ms-Space/Time Dynamics: An analytical model of a ds can be defined 
either by a continuous-time (ct-) differential or a discrete-time (dt-) 
algebraic equation. The model facilitates prediction of the system’s long- 
term behavior, together with stability and synchronization analyses. 
Hybrid systems (hS) involving evolution in time across multiple space/ 
time scales, are recently attracting significant attention (Cassandras, 
2014). Such a system is defined by a mixture of differential and algebraic 
equations (Goebel, 2009), jointly characterizing both ct- and dt-dynamic 
behaviors. 

To simulate excitatory sy, a pulse-coupled model is incorporated into 
ct-systems and is studied on integrate-and-fire neural oscillators (Arenas 
et al., 2008a; Guan & Chen, 1999). The main characteristic of a hS is its 
space/time correlated behaviour, bringing adaptability in control ac
tions (Branicky et al., 1998). The hS-s are appropriate to model neural 
units in corN, considering the spiking stimulus and the stimulus-res
ponse pattern (Dayan & Abbott, 2001; Whiteway, 2019). Incorporating 
ms-space/time dynamics enhances ML by introducing a causality 
mechanism (David et al., 2006). 

Authors in Deneve (2017) describe the brain as a learner with 
adaptability. When adapting to surroundings, different neurons emit 
spike patterns with varying inter spike intervals and demonstrate 
different dynamics at a mean firing rate (Breakspear, 2017). Observa
tions show that neural systems (nS) may demonstrate collective dy
namics, like frequency synchronization (to be discussed later in Section 
6) and asynchronous oscillations with certain frequencies (e.g., α -band 
and β-band) (Fultz et al., 2019). Such collective behaviors of nS enable 
the establishment of memory, L and motion actions (Connors, 2007; 
Gerstner, 2014). Although having the deep hierarchy structure, ANN 
does not utilize advanced dynamic mechanisms of NN (Abbott et al., 
2016b). They use reverse- engineered (rEng-) methods trying to design 
ms-nS for mimicking brain intelligence. 

A multitude of recent works are focused on the interdisciplinary 
research of n-Sci and nD, indicating such rEng-intelligence steps (Hu, 
2019). 

Brain-Inspired Intelligence (biI): Authors in Guan and Chen (1999) 
consider that a machine has “intelligence” if the behaviour of an intel
ligent object and a human cannot be distinguish. The word intelligence 
assumes objective directed behaviors, like prediction and optimization 
(Werbo, 2009). When it comes to structure and function AI use biolog
ical lessons from cortical networks (corN) (Werbo, 2009). In corN, both 
hierarchical structures and heterogeneous neuro-sy node dynamics can 
be seen. Dynamics of neural circuits and nodes supports cognitive ca
pabilities, like those related to perceptual decision making and learning 
(Marblestone et al., 2016a; Gerstner, 2014). 

By broad L -networks network types using versatile neural nodes 
instead the deep hierarchy configuration for image recognition assign
ments are considered (Chen et al., 2019). There are proposals for using 
an integrated approach to nD with nonlinearity (O’Reilly et al., 2014b) 
for characterizing macro behaviors, such as opinion propagations. 
Network dynamics models are being used to specify and reconstruct 
neural activities supporting possible brain intelligence (Breakspear, 
2017). It is believed that nD with n-Sci could be used to design brain-
mimicking computer and intelligence, based on the spike-based machine 
intelligence (MI) principles (Ekman, 2012). 

In this context the question is: How much MI is sensitive to different 
types of adversities? In general, this depends on the type of MI being used. 
Nowadays ML algorithms are trained on preset data. Perturbed inputs, 
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like damaged images or noise corrupted signals could impact the opti
mization process and so reduce the overall network performance (Frady 
& Sommer, 2019). Authors in Goodfellow et al. (2014) use a small-
sample learning method. St-model-based L -schemes have a discrimi
nation capability to operate with inadequate sample data, but still are 
vulnerable to tampered structure or data. Besides the L -capabilities, 
intelligent networks need more brain mimicking features, especially 
when operating with perturbed (or damaged) data or structures. Here, a 
resilience function like immunity is needed, to enhance the L -process 
when operating with perturbed or insufficient data and unpredictable 
failures. 

The brain and neural systems (Avena-Koenigsberger et al., 2018) 
have a resilience function incorporated in the overall system. Certain 
immunity is included in the natural organisms, making them insensitive 
to certain diseases and damage. This idea is also built into artificially 
designed systems, leading to resilience control with fault tolerance 
(Dolk, 2017). Using nD solutions to immunize real systems and make 
them insensitive to structural vulnerabilities and changes in environ
ment, has also been studied (Cassandras, 2014; Dolk, 2017). More work 
is still needed to better understand how dynamic resilience could be 
included in intelligence. When it comes to cN and hybrid systems (Guan 
et al., 2019; Gao et al., 2016; Yan et al., 2017; Yu & Kaynak, 2017), n-Sci 
and nD, can integrated by using high dimensional (hD) NN’s, for 
building biI. 

The latest works in this field include use of neuroscience and network 
dynamics paradigms in designing brain-inspired intelligence (Hu et al., 
2022). Brain-like intelligent data mining mechanism based on con
volutional neural network is presented in Wen et al. (2023). A discussion 
on how brain organoids are revolutionizing neuroscience is presented in 
Abrams (2023). Higher-order interactions in functional brain networks 
in state of disorder is discussed in Kurkin (2023). An EEG based study of 
scientific problem solving and brain symmetry index is presented in 
Wang et al. (2023), Romanchuk et al. (2023) and potential of 
brain-computer interfaces in Rostami et al. (2023). An insights into 
electrophysiological brain states dynamics is presented in Tabbal et al. 
(2023). Experiments using R code, MRI measurements and SpikerNet are 
discussed in Panayotova et al. (2023), Udayakumar and Subhashini 
(2023), Coventry and Bartlett (2023). Assessments of variability in 
cortical and subcortical measurements and within-network connectivity 
of the brain using test-retest data is presented in Tavakoli et al. (2023). 
The latest work on devices used in these measurements are presented in 
Wu et al. (2023), Aimone and Misra (2023), Jia and Zhao (2023). 

3.4. Deep learning and n-Sci 

Until recently, ML and n-Sci have been carrying on their research 
without any insight into each other’s results. Brain science has become 
aware of several brain segments, cell types with different functions, 
molecules, cellular states, and methods for computation and data stor
age. Opposite to this, most of the time ML implements simple objective 
function optimization (Glisic, 2023a, 2023b). Such an approach enables 
comprehensive internal modelling and algorithmic processing in 
multilayer (M L ) and rN (LeCun et al., n.d.). Here the commonalities of 
these two research areas are of interest and the possibility to connect 
these prospects. 

Authors in Marblestone et al. (2016b) suggest that research in n-Sci 
and ML is moving towards convergence, which is the argument of this 
survey as well. There are three aspects of ML supporting this argument.  

1) ML optimizes predefined objective functions.  
2) Recently the research in ML has been introducing complex ooF’s, 

varying across layers and time, resulting from network segments 
interactions. To improve L -process ML algorithms can incorporate in 
ooF request for temporal coherence in lower layers (spatially non- 
uniform ooF) (Sermanet et al., 2013). The ooF schedules (temporally 
non-uniform ooF) improve generalization (Andrew et al., 2013; 

Goodfellow et al., 2014b; Gülcehre et al., 2016) and adversarial 
networks allow G-based training of generative models (Goodfellow, 
2014a). Solutions of using simpler networks, to provide initial 
guesses “hints” to improve the training of complex networks are 
presented in Romero et al. (2014). 

3) In the ongoing process of diversification/optimization of the L -ar
chitectures, ML nowadays uses memory cells with multiple persistent 
states (Hochreiter et al., n.d.), more advanced elementary units such 
as “capsules” and other structures (Hinton et al., 2011) content 
addressable (Weston et al., 2014; Graves et al., 2014) and location 
addressable memories (Graves et al., 2014), as well as pointers 
(Kurach et al., 2015) and hard-coded arithmetic operations (Neela
kantan et al., 2015). 

To attract more attention to these three ideas in n-Sci, authors in 
Marblestone et al. (2016b) summarize them in the form of three hy
potheses about the brain, that can be restated as: 

H1 The brain finds the best optimization objective functions (ooF). The 
main premise for relating the two fields is that the brain, like ML 
algorithms, can find the best ooF. The idea is that neurons in a brain 
can modify the characteristics of their sy, to perform better at 
executing the assignment the ooF defines for them. Humans occa
sionally get close to the best performance in a given segment, e.g., 
during movement (Körding, 2007), suggesting that the brain can 
learn optimal strategies. They manage to maximize movement gains 
with minimum energy (Taylor et al., n.d.). From the computation 
point of view, nowadays ooF enables solutions for very complex 
motor tasks (Mordatch et al., 2012). Marblestone et al. (2016b) 
suggests that the best ooF is found by optimizing the models used by 
the brain. It also suggests that for this the brain needs to have al
gorithms for credit assignment (cr-ass) in M L and rN. 
H2 The ooF are space/time diverse: A second fact is that ooF does not 
need to be global. Neurons in different brain segments may focus on 
optimizing different ooF, minimizing the error of movements, man
aging reactions to visual stimulus, or paying attention. For locally 
generating such an ooF, neurons should locally asses the fitness of 
their st-model of their inputs. An ooF may be different in time, e.g., 
enabling a human when young first to comprehend simple visual 
data early on, and more comprehensive L ’s in the following steps 
later allowing the evolving brain to establish more complex knowl
edge based on simpler experience. The ooF in the brain are complex 
and space/time dependent. 
H3 Problem Specialized Systems: The types of information flow appear 
to be distinct across different brain segments, specialized to solve 
different processing problems. Some segments are recurrent, 
adjusted for short-term memory storage (Wang, n.d.). Others cell 
types can switch between different states of activation, persistent/
transient firing mode, in response to given neurotransmitters (Has
selmo, n.d.). The thalamus is for example a segment having 
information from other segments flowing through it, suggesting 
being responsible for information routing (Sherman, n.d.). Basal 
ganglia are a segment participating in rL and gating of discrete de
cisions (Sejnowski et al., n.d.). Specialized algorithms enhance effi
ciency of solutions to data processing problems, and the brain is 
using them when appropriate. 

These concepts are mimicked by recent advances in ML but (Mar
blestone et al., 2016b) argues that the brain operation is still much 
different from any of today’s ML techniques. For example, biology gives 
little information that could be used for sL (Fodor et al., 2002). On the 
other hand, there is a lot of information available for uL. For making uL 
solve the “right” problems a sequence of deterministic ooF’s is deeded to 
design circuits and reactions according to preset evolutional stages, 
enabling a relatively small amount of information to produce the right 
behavior. 
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Based on this and other studies (Ullman et al., n.d.), authors in 
Marblestone et al. (2016b) suggest that many of ooF’s used by the brain 
come from such an internal bootstrapping process. The potential boot
strapping mechanisms, operate with uL and rL and go well beyond the 
types of L -algorithms used in today’s ML (Bengio et al., 2009; Werbos, 
1974; George et al., 2009a; Kappel et al., n.d.; Baldi et al., 2015). 

Bio-implementation of gradient (G-) descent: To develop bio-L (bL) as 
good as ML, better G- propagation methods are needed. Different from 
earlier used assumptions, nowadays there are many bio-plausible 
methods enabling a neural circuit to realize optimization processes that, 
like bp, can use the G. Examples of these methods are generalized 
recirculation (O’Reilly, n.d.), contrastive Hebbian L (Xie et al., n.d.), 
random feedback (fb-) weights together with sy homeostasis (Lillicrap 
et al., 2014; Liao et al., 2015), STDP with iterative guessing and target 
propagation (Bengio et al., 2015a), complex neurons with bp action-
potentials (Körding et al., n.d.), and others (Balduzzi et al., 2014). 

Temporal credit assignment (t-cra): The bio-realizations of bp 
explained above, can be used in feedforward networks, but it does not 
provide a natural realization of bp through time (bpTT) (Werbos, 1990) 
for rN, used in ML for training rN on sequential processing assignments. 
The bpTT unfolds a rN over a number of discrete time steps and then uses 
bp over such structure to assign credit to different units at a corre
sponding time steps. Authors in Ollivier and et al., n.d.) argue that it is 
unclear how much such assignment is truly needed for L given 
temporally extended assignments. 

If memorized data and representations (Gershman et al., 2012; 
Weston et al., 2014) of temporal context would be available, this could 
eliminate the need for t-cra since memory could “spatialize” the problem 
of t-cra. As an example, certain deep network architectures possessing 
specific types of skip connections, represent actually not so deep networks 
(Veit et al., 2016) applied in the time domain eliminating the need to 
pass errors far backwards in time. 

The next question would be whether generic rN use t-cra which is 
more bio-plausible than bpTT? Authors in Werbos (1974) propose an 
algorithm approximating bpTT obtained by predicting the back
ward-through-time G- signal (costate) in the same way as the prediction 
of value functions in rL (Sussillo et al., 2009; Si, 2004). All this is still 
only starting point in comprehending how neural activity itself can 
represent the time variable (Finnerty et al., 2015), and how rN can learn 
evolutions of nodes’ activity over time (Liu et al., n.d.). Several corM 
suggests ways, different from bpTT, for networks training on sequential 
prediction assignments (Cui et al., 2015; O’Reilly et al., 2014b). A 
number of different methods are available to mimic bpTT more 
realistically. 

Spiking networks (SN): It is not straightforward to apply G-descent 
algorithm to SN. Several optimization algorithms are available to create 
SN which can execute complex assignments, by optimizing an ooF of the 
nD and incorporating varying parameters into high dimensional (hD) 
spaces with many sN representing each parameter (Abbott et al., 2016a). 
The bp can be replaced in the direct training of spiking rN by using 
recurrent connections with multiple timescales (Bourdoukan et al., 
2015). 

Despite the existing work reviewed above better understanding of 
the relations between the temporal dynamics of bio-realistic networks 
and methods for time/space credit assignment (cr-ass) is still needed. 
Even so, authors in Marblestone et al. (2016b) suggest that existing work 
already supports the argument that bio- plausible NN are solutions to 
these problems. In other words, SN can optimize complex functions of 
temporal history using bio-realistic neurons and realistic population 
coding. 

The next question is whether the brain can learn differently? The answer 
is yes, the brain does have mechanisms and structures supporting 
L -algorithms different from typical G-based optimization methods. How 
exactly? It may exploit bio-neural methods: The physiology of bio-neurons 
(bN) explains how G-descent could be used within the brain and enable 
learning different from bp. This indicates that the brain may be using 

methods of cr-ass quite different from those used by ML. 
Dendritic computation (dC) is an example of such mechanisms, 

impacting L -algorithms in several ways: 
1) The dendrites of each neuron are implemented like a three-layer 

NN (Mel, 1992). 2) Propagation back, from the soma into the dendritic 
tree, of action potential generated by neuron’s spikes, penetrates more 
intense the parts of the dendritic tree that have been active (Williams 
et al., n.d.), which simplifies the problem of cr-ass (Körding et al., n.d.a). 
3) Neurons possess multiple, partly independent dendritic and somatic 
sections, suggesting that the neuron is storing more than one variable. 

So, it could store both its activation itself, and the error derivative of 
an ooF, needed for bp, and such bio-realization of bp have been proposed 
in Körding et al. (n.d.b). In summary, more research is needed for a full 
understanding of the implications in dC in credit assignment in deep 
networks. 

Beyond dC, diverse mechanisms (Marblestone et al., n.d.) like 
retrograde (+ps to − ps) signals using cannabinoids (Wilson and Nicoll, n. 
d., Arancio et al., n.d.), go beyond bp. It was proposed in Harris (2008) 
how slow, retro axonal transport of molecules could enable NN to pro
vide data to downstream neurons that are trained via faster error signals. 

Another bio-mechanism is neuromodulation (nM). The same neuron 
can exhibit different sP as a function of a concentrations of various nM 
like opioids (Bargmann et al., 2013; Perea et al., 2009). The nM could 
have many roles in learning. 

1) nM can gate sP on/off selectively in different space/time points, 
enabling orchestration of space/time ooF’s application. There are sug
gestions that a neural circuit can be seen as a group of circuits with nM 
switching between them (Bargmann et al., 2013) potentially enabling 
sharing of sy weight data. Authors in Dayan (n.d.) discuss further pos
sibilities nM could add for creating algorithms for optimization. 

Learning in the cortical sheet (corS): Several models use specifics of the 
6-layered corS to explain cort-learning (corL). The cortex uses uL via 
prediction (O’Reilly et al., 2014b). Some corL models map cort-structure 
onto the message-passing algorithms for Bayesian estimation (George 
et al., 2009b). 

One-Shot Learning: Human learning (hL) can remember even a single 
stimulus and leverage it in new examples. L -invariant modeling for 
object recognition (Anselmi et al., n.d.; Serre et al., 2007) is one 
example. It can be shown that objects can be represented invariantly and 
discriminatively using a single sample, even of a new class (Anselmi 
et al., n d.). 

Active Learning (aL): hL is most often active, conscious, and inten
tional act chosen to generate training examples of interest, and for 
testing specific hypotheses. Such ideas of aL, initiated by Piaget, have 
been revisited more recently in Gopnik et al. (2000). The most effective 
L should use maximally informative samples. 

Obviously, it would help here to have explicit representations of the 
sample uncertainty available and use it to instruct the system how to 
reduce it most quickly. The use of population coding algorithms could 
enable explicit probabilistic computations (Ma et al., 2006). At this point 
it is not fully understood how much and in what segment the brain uses 
an explicitly probabilistic (prob) framework (Emin et al., 2016). 

Classical G-descent algorithm does not consciously and intentionally 
choose data in such a way to reduce its uncertainty. On the other hand, 
stochastic G-descent algorithm can be used to support a system that 
samples adaptively (Bouchard et al., 2015). 

4. Quantum solutions 

Implementation of the algorithms discussed so far by using Quantum 
Computing (QC) is anticipated to be more effective in the sense that 
complexity should be lower and the speed of the algorithms’ execution 
should be higher. For the basics of QC see Glisic and Lorenzo (2022). 

NOTE: Qubit: Similar to the bit, used in c- compt, q- compt is conceived 
upon a similar concept, the q- bit, called qubit (qb). Just as a classical bit 
has a state - either 0 or 1- a qubit also has a state. For example a qb can be 
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in S tat ‘s |0〉 and |1〉, corresponding to the S tat ‘s 0 and 1 for a c- bit. Here 
we use so called the Dirac notation ‘ | 〉’, adopted from q- mechanics. A qb 
can be in a S tat other than |0〉 or |1〉. A line combinations of S tat ‘s, referred 
to as superpositions (spos’s): |q〉 = α|0〉 + β|1〉 is also used. 

Assuming only ral - vlu -amplt ‘s for a q- S tat α, β ∈ R, the resultant 2-D 
graphical model of a qb’s -S tat is shown in Fig. i1. 

Multi- qb -q- rgst ‘s: In a two- qb -rgst, there are four legitimate S tat ‘s 
that the composite q- syst can be superimposed in. If the S tat’s are |q1〉 =

α|0〉 + β|1〉 and |q2〉 = γ|0〉+ δ|1〉, the S tat of the syst is 

|q〉 = |q1〉 ⊗ |q2〉 = |q1q2〉 =

(α|0〉+ β|1〉) ⊗ (γ|0〉+ δ|1〉)

= α⋅γ|00〉 + α⋅δ|01〉 + β⋅γ|10〉 + β⋅δ|11〉

where ⊗ is the T 
nsor product oprtr and the syst’s S tat -V entries are the 

amplt ‘s of the four q- S tat ‘s |00〉,|01〉, |10〉 and |11〉. In G, in an n- qb -rgst, 
the S tat -V will include 2n entries, each corresponding to the amplt of the 
rspct ‘ive orth -S tat. 

4.1. Artificial quantum neuron (qN) 

The starting point in studying ML algorithms and AI protocols in 
artificial neural networks is modeling of artificial neurons (aN) (Tac
chino, 2018). The simplest implementation of an aN is Rosenblatt’s 
perceptron (Per), although its realization is not straightforward due to 
complexity, especially of interest for the training of multilayered (M L ) 
Per-networks. A q-computer version of a Per, showing exponential sav
ings in computational components over classical (c-) options is 

presented first. Test of this model on a q-processor, is presented in 
Tacchino (2018) showing good agreement with expected theoretical 
results. This q- model of a Per can be used as an initial step towards 
training of artificial q-NN, discussed in the next section, to be practically 
realized on near-term q-processing hardware. 

In practice, ANN are usualy run as classical (c-) algorithms on c- 
computers, although there is an interest in NN implemented on dedi
cated hardware (Merolla, 2014). 

Prospective q-computers are well suited for implementing ANN. The 
capabilities of q- mechanics to store large complex valued vectors (cvV) 
and matrices and process such vectors by a variety of linear operations, 
provides an exponential savings either in memory storage or processing 
power for NN built on q-processors. A model of an aN, the so-called Per, is 
outlined in Fig. 3 and redrawn in Fig. 5(a). Real valued n dimensional 

Table 2 
CrossTechology coverage (focus-Spiking NN).  

1 2 3 4 5 6 7 8 9 10 

(http, n.d.a, Bliss & Lomo, 1973, Artola et al., 1990, Lisman, 1989, Markram & Sakmann, 
1995, Morrison et al., 2008, Cooper et al., 2004, Markram et al., 1998, Frey, 1997,  
Turrigiano & Nelson, 2004, Sutton & Barto, 1998b, Schultz & Montague, 1997, Lisman, 
1989, Lisman & Zhabotinsky, 2001, Shouval et al., 2002, Florian, 2007, Graupner, 2007,  
Zou, 2007, Badoual et al., 2006) 

SNN √     Details on spiking neuron modelling 
and analysis 

√  

(Badoual et al., 2006, McCulloch & Pitts, 1943, Sasaki & Carlini, 2002, Rumelhart et al., 
1986, Hebb, 1949, Bohte et al., 2002, Huh & Sejnowski, 2017, Valiant, 1984, Mehta et al., 
2002, Cybenko, 1988, Poggio & Girosi, 1989, Valiant, 1984, Vapnik, 1998, Thorpe et al., 
1996, Olshausen, 1996, Recce, 1999, Thorpe et al., 2001) 

SNN √     Details on spiking neuron networks 
modelling and analysis 

√  

(Hu, 2021) SNN √     Details on Neuroscience and AI 
networks modelling and analysis 

√  

(Glisic, 2016, Arenas et al., 2008b, Majdandzic et al., 2013, Bullmore & Sporns, 2009,  
Marblestone et al, 2016a, Dayan & Abbott, 2001, Hodgkin & Huxley, 1952, Deneve, 2017,  
Clopath, 2010, Curto, 2019, Whiteway, 2019, Bassett et al., 2017) 

SNN √  √   Modelling and analysis of SNN as 
Complex Network 

√  

(Cassandras, 2014, Goebel, 2009, Arenas et al., 2008a, Guan & Chen, 1999, Branicky et al., 
1998, David, 2006, Deneve, 2017, Breakspear, 2017, Fultz et al., 2019, Connors, 2007,  
Gerstner, 2014, Rabinovich, 2006, Hu, 2019) 

SNN √  √   Hybrid Models: Multiscale 
Spatiotemporal Dynamics 

√  

(Werbo, 2009, LeCun, 2015, Chen et al., 2019, Poter, 2019, Ekman, 2012, Goodfellow et al., 
2014, Avena-Koenigsberger et al., 2018, Dolk, 2017, Abbott et al., 2016b, Frady & 
Sommer, 2019) 

SNN √     Brain-Inspired Intelligence √  

(Glisic, 2023a, 2023b, Johansson et al., 2013, LeCun et al., Sermanet et al., 2013, Andrew 
et al., 2013, Goodfellow et al., 2014b, Gülcehre et al., 2016, Goodfellow, 2014a, Romero 
et al., 2014, Hochreiter et al., n.d.; Hinton et al., 2011, Weston et al., 2014, Graves et al., 
2014, Kurach et al., 2015, Neelakantan et al., 2015, Körding, 2007, Taylor et al.,  
Mordatch et al., 2012, Wang, Hasselmo, Sherman, Sejnowski, Fodor et al., 2002, Ullman 
et al., Bengio et al., 2009, Werbos, 1974, George et al., 2009a, Kappel et al., n.d.; Baldi 
et al., 2015) 

SNN √     Deep learning and neuroscience √  

(O’Reilly, n.d.; Xie et al., n.d.; Lillicrap et al., 2014, Liao et al., 2015, Bengio et al., 2015a,  
Körding et al., n.d.a; Balduzzi et al., 2014, Werbos, 1990, Ollivier et al., n.d.; Gershman 
et al., 2012, Weston et al., 2014, Veit et al., 2016, Sussillo et al., 2009, Si, 2004, Finnerty 
et al., 2015, Liu et al., n.d.a; Cui et al., 2015, O’Reilly et al., 2014b) 

SNN √     Biologically plausible approximations 
of gradient descent 

√  

(Abbott et al., 2016a, Bourdoukan et al., 2015, Mel, 1992, Williams et al., n.d.; Körding et al., 
n.d.a; Körding et al., n.d.b; Marblestone et al., n.d.; Wilson & Nicoll, n.d.; Arancio et al., n. 
d.; Harris, 2008, Bargmann et al., 2013, Perea et al., 2009, Dayan, n.d.) 

SNN √     Spiking networks √  

(O’Reilly et al., 2014b, George et al., 2009b) SNN √     Learning in the cortical sheet √  
(Anselmi et al., n.d.; Serre et al., 2007) SNN √     One-Shot Learning √  
(Gopnik et al., 2000, Ma et al., 2006, Emin et al., 2016, Bouchard et al., 2015) SNN √     Active Learning √  

1 reference, 2 focus, 3 classic, 4 quantum, 5 complex networks, 6 tensors, 7 q-simulations, 8 contribution, 9 energy efficiency, 10 computational efficiency. 

Fig. i1. The 2D graphical model of a qb, when the amplt ‘s of its q- Stat‘s are ral 

- vlu. 
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input vector (rvV) x, is combined with a rvV of weight w. The Per output y 
is a yes/no response to the input. In the simplest realization, x and w are 
binary valued vectors themselves (Schmidhuber, 2015; Zurada, 1992; 
McCulloch, 1943). 

Perceptrons can perform a limited range of operations, although they 
are the basis of ML in more complex ANN in (M L ) Per’s architectures. 
Their implementation is not feasible due to complexity, even though 
different solutions can be used to improve the efficiency of c-algorithms 
(Mocanu, 2018). So, several new solutions have been published recently 
to implement Per’s on q-computers. In qubit neuron concept, each qubit 
operates as a separate neuron in the network and nonlinearity of the 
measurement (M ) implements the threshold function (Schuld, 2014).  

__________________________ 

Example 3. A solution, for mimicking a Rosenblatt perceptron on a q- 
computer, has been presented in Tacchino (2018). As a first step, an m 
-dimensional c-input is encoded on the q-hardware by using N qubits, 
where m = 2N . Here (Tacchino, 2018) implements a new method to 
create multipartite entangled (ent-) states based on q-data principles by 
significantly reducing the q-computational resources needed. Reference 
(Tacchino, 2018) shows by experiment the efficacy of such a solution by 
realizing the algorithm on the IBM q-processor. 

For illustration purposes here the scheme of the q-algorithm is pre
sented in Fig. 5(b). The binary input and weight coefficients have the 
form ij, wj ∈ { − 1,1}. 

By using N qubits, where m = 2N, an input vector is encoded to 

define a general wavefunction (wF) |ψ i〉. For an input 
(

i→
)

=

(i0, i1,…, im− 1)
T and weight (w→) = (w0,w1, .., wm− 1)

T vectors with ij,
wj ∈ { − 1, 1}, two q- states: |ψ i〉 =

∑m− 1
j=0 ij|j〉/

̅̅̅̅
m

√
and |ψw〉 =

∑m− 1
j=0 wj|j〉/

̅̅̅̅
m

√
. are defined. 

The states |j〉 ∈ {|00. . . 00〉, |00. . . 01〉, . . ., 11 . . . 11〉} creating 
the basis in the Hilbert space of N qubits, are labeled with integers 
j ∈ {0, . . ., m − 1} obtained by the decimal equivalent of the respective 
binary string. Now factors ±1 to encode the m-dimensional c- vectors 
into a uniformly weighted superposition of the full computational basis 

are used. 
Then, w→⋅ i

→
using the q-R . For this U-transformation, Uw is used, 

rotating q-state as Uw|ψw〉 =|1〉⊗N
= |m − 1〉 is computed. Again, any m ×

m U-matrix having w→T in the last row satisfies this condition. If now Uw 

is applied overall N-qubits q- state becomes Uw|ψ i〉 =
∑m− 1

j=0 cj|j〉 ≡ |φi,w 〉. 

Using this 〈ψw|ψ i〉 = 〈ψw|U
†
wUw|ψ i〉 = 〈m-1|φi,w〉 = cm− 1 is obtained and 

from the above definitions of |ψ i〉 and |ψw〉 follows w→⋅ i
→

= m〈ψw|ψ i〉. 
Here the useful information is in the cm− 1 of the final state |φi,w〉.

Authors in Tacchino (2018) use an A -qubit initiated in the state |0〉
to extract such an information. A multi-controlled NOT gate between the 
encoding qubits and the target A gives: |φi,w〉|0〉a→

∑m− 2
j=0 cj|j〉|0〉a 

+cm− 1|m − 1〉|1〉a (Hale, 1993). 
Performing a q-M produces immediately the nonlinearity at the 

output of the Per. By measuring the state of the A - qubit in the 
computational basis (cB ) produces the output |1〉a (i.e., an activated 
Per) with probability |cm− 1|

2. This choice produces the correct result 
effectively. In addition, here a refined threshold functions can be applied 
once the inner product data are stored on the A (Hu, 2018; Cao et al., 
2017; Torrontegui, 2018). 

4.2. Quantum NN 

The q-analogue of a c-neuron, presented above, is a q-feed-forward 
NN enabling universal q-computation with nice generalization behavior. 
The scheme is robust to noisy training data and an initial stage for 
further studies. One can categorize quantum ML (qML) techniques into c- 
ML (Glisic, 2023b) improving q- assignments, q-algorithms speeding up 
c-ML and using q- computing devices for tasks with q-data. The dissi
pative q-NN (dqNNs) belonging to the latter category, comprises layers of 
qubits and can be trained with pairs of q-states. A training data pair 
(input state- targeted output), depends on the training objective. 

The dqNN is built of q-Per’s like those discussed in the previous 
section. This block, connecting two successive layers of qubits, is a 
completely positive (CP) transition map (t-map) (Arunachalam et al., 
2017). Such a map tensors the state of the current layer to the state of the 
next layer’s qubits including applying U-operations. In addition, t-map is 
responsible to trace out the qubits from the first of the two layers when 
forwarding input states through the dqNN. The resulting output state is 
then compared with the targeted output. For this the fidelity function 
(fF) of two q-states is used allowing conclusions about how the Per U 
must be updated to further improve the training objective. 

Example 4. Similarly, to a classical NN (Glisic, 2023b), the dqNN is 
built of quantum perceptrons (Per) (see Fig. 6) acting on qubits arranged in 
layers. The Per‘s are designed as general U- operators. Such a Per U acts on 
m + n qubits and depends on (2m+n)

2
− 1 parameters, where m of the 

qubits is defined as input qubits and remaining n as output qubits. 
Here the input and the output qubits need to be initialized in states 

ρin and |0…0〉, respectively. After applying the Per U, the m input qubits 
are traced out and leaving the n -qubit state ρout. Network representation 
of a dqNN is shown in Fig. 7. One single Per can be considered as a small 
dqNN having only two layers of qubits and one U operation as shown in 
Fig. 6. 

By choosing n = 1, (i.e. the Per‘s are m+ 1-qubit U’s) as an example, 
the model will still remain universal. Although here 2-level qubits are 
used, the Per defined in this way can be easily generalized for qudits. 

As indicated earlier, the entire network can be considered as a 
collection of layer-to-layer t-maps. This notation will be used throughout 
the entire section. Based on the definition of a single Per, the output of 
the dqNN becomes 

ρout = E
(
ρin) = E

L+1(
E

L (
. . . E

2(
E

1( ρin)) . . .
))
,

using the CP (Completely Positive) maps defined via 
Fig. 5. Per models. (a) c- Per as a model of aN: (b) Scheme of the q-algorithm for 
the realization of an model on a q-processor. 
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E
l( Xl− 1) ≡ trl− 1

(
∏1

j=ml

Ul
j
(
Xl− 1 ⊗ |0…0〉l〈0…0|

)∏ml

j=1
Ul†

jj

)

,

where Ul
j corresponds to the jth Per operating on the qubit layers l − 1 and 

l, and ml is the total number of Per‘s operating on these layers. With this 
notation, it is evident that the data propagates from the input to the 
output layer and a q-feed forward NN is obtained. This represents the 
basis for the bp algorithm. The q-circuits of the network can be 
treated as a single unitary U = UoutULUL− 1 . . . U1, where Ul = Ul

ml
. . . Ul

1 

are the layer U’s, consisting of a product of q-Per‘s operating on the 
qubits in layers l − 1 and l, see Fig. 7. To get the correct dimensions when 
constructing the architecture, every Ul

k must be extended by identities 
for the remaining qubits. Here these are left off for simplicity. Having 
this in mind the formula for the output state becomes 

E
(
ρin) ≡ trin,hid

(
U
(
ρin ⊗

⃒
⃒0…0

〉

hid,out〈0…0
⃒
⃒
)
U

†
)
.

For the choices of ooF L and the training of dqNN algorithm see 
Abbasi et al. (2013), Bouchard et al. (2015), Stanoev (2013). QNNs can 
be realized on a q-computer using parametrized q-circuits (Glisic, 2023b; 
Du, 2020; Bu et al., 2021) comprising parameterized q-gates. To do so, 
two aspects are important: the realization should be universal, and the 
complexity should be kept low. In (Beer et al., 2021), a proper 
compromise between these objectives enables good training results on 
NISQ devise. A discussion of over parameterization can be found at 
(Larocca, 2021). Implementation of Per U’s with two-qubit gates 
(Peterson, 2020) using a two-qubit canonical gate and twelve single 
qubit gates is presented in Beer (2022). 

Performance Limits of QNN: To characterize these limits, here a lower 
bound on the probability of QNN giving an incorrect output for an 
arbitrary input is used. These limits are studied in Arunachalam et al. 
(2017), Sentís et al. (2012), Sasaki (2001), Gammelmark (2009). 

Continuous-variable (CV) QNN: Most natural q-computing architec
ture (c-arch) is CV model. Q-data are encoded in the q-states of fields, 
like the electromagnetic field. The standard variables in the CV picture, 
e.g., position or momentum are continuous (Du, 2020). Qubit operations 

can be embedded into the q-field picture (Gottesman, 2001). Authors in 
Killoran (2019), use the CV model for ML, showing how a number of 
basic ML primitives can be built in the CV setting. A kernel-based clas
sifier implemented as CV q-circuit was trained in Mitarai (2018). 

Convolutional, Recurrent and Residual CV QNN: Nowadays, deep L 

(DL) methods are not limited only to the basic architecture. Diverse DL 
software tools (Bergstra et al., 2010; Jia, 2014; Maclaurin, 2015; Paszke, 
2017; LeCun, 1989; Goodfellow, 2016; Bloch, 1929; Noether, 1918) 
enable us to study more sophisticated and complex topologies. For the 
q-case, an effort should made to also try to go beyond restrictions 
imposed by the basic network structure discussed so far. 

In this respect, by using CV model the problems can be encoded in a 
variety of representations (Arunachalam et al., 2017) like the phase 
space, the wave-function and the Hilbert space picture, or some com
bination of these. The information can be encoded in coherent states 
(cS), squeezed states (sS), Fock states (fS), or superpositions of these 
states (σS). 

In addition, the network can be tuned to match a specific class of 
problems by selecting the gates and their parameters with a specific 
structure. This should improve efficiency of parameters’ use and better 
overall performance. In (Killoran, 2019; Giovannetti, 2008), authors 
discuss potential q-versions of various special NN architectures as 
visualized in Fig. 8. 

4.3. Quantum Ml 

Having roots in the traditional pattern recognition, such as identi
fying handwriting, and st-L theory (using analytical tools for ML 
modeling), ML studies the design of methods that can learn from data 
and make predictions about them. With respect to data analysis and data 
mining-type assignments, c- ML can be organized as supervised (sL) and 
unsupervised learning (uL) (Shalev-Shwartz, 2014). More generally, 
reference (Alpaydin, 2010) also includes here reinforcement learning 
(rL) (Sutton et al., 1998), which is closely related to L as is implemented 
by bio-intelligent objects. For c-ML algorithms see Glisic and Lorenzo 
(2022), Arunachalam et al. (2017). 

ML in Quantum Physics: In recent times, ML is used as a buzzword, for 
a number of techniques like L -algorithms, but also techniques used for 
indirectly related problems. From such a broad perspective, ML also 
includes st-L , the black-box optimization problems and solving hard 
optimization problems in general.  

__________________________ 
NOTE: Position and momentum space: 
Position (P

os) space (space) is the collection of all position vectors (pV ) 
r defining points in space. Similarly, the collection of all M

om -vectors 

Fig. 6. Quantum Per.  

Fig. 7. Network representation of a dqNN.  

Fig. 8. Q-adaptations of the convolutional (conv), rL, and residual layer. The 
conv layer is enacted using a Gaussian U with translationally invariant 
Hamiltonian, resulting in a corresponding sy matrix that has a block Toeplitz 
structure. The r- layer combines an internal signal from previous layers with an 
external source, while the residual layer combines its input and output signals 
using a controlled-X gate. 
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(mV ’s) p a physical (phys)-syst can have is referred to as momentum 
(M

om)- space. The mV of a particle (picle) describes its movement . In 
physics, M om is usually defined as mass times velocity p = mv. 

For a function (F) f(r) defined in P
os-space, the Fourier transform 

(F T ) gives the F-ϕ(p)in M om-space, and a P os-space-F is obtained by the 
inverse-F T of a M om-space-F (Pontryagin duality). So, a phys - syst can be 
represented using either the P os‘s of its components, or their M om ‘a, in both 
cases the information (J ) about the syst is same. The wave vector (wV ) k 
can be also defined having dimension of 1/length (note the similarities with 
angular frequency ω having dimensions of 1/time). The collection of all 
wV ’s is k-space. 

P
os and M om-space- s in classic mechanics: 

Lagrangian (L )- mech: The L - L(q, dq/dt, t), in configuration space 
(cS ), with vector q = (q1, q2,…, qn) of the generalized (gnrlz) co
ordinates (gC ). The Euler-L eq’s of motion are 

d
dt

∂L
∂q̇i

=
∂L
∂qi

, q̇i ≡
dqi

dt
(i1) 

By defining the canonical (can) M om for each gC , 

pi = ∂L/∂q̇i  

one has 

ṗi = ∂L/∂qi 

In M om -space 
L , Lʹ(p, dp /dt, t), p = (p1, p2,…, pn) is a vector of the 

gnrlz -M om ‘a. One can show 

Lʹ = L −
∑n

i=1
(qiṗi + q̇ipi),

− q̇i =
∂Lʹ

∂pi
, − qi =

∂Lʹ

∂ṗi
,

(i2) 

Combining (1) and (2) gives the M om -space Euler-L equations 

d
dt

∂Lʹ

∂ṗi
=

∂Lʹ

∂pi
(i3) 

Hamiltonian (H ) mechanics: While L -mechanics uses either P os‘s 
or the M

om ‘a, the H equations of motion place P
os‘s and M

om ‘a 
together. For a syst with H - H(q, p, t), the equations are 

∂H/∂t = − ∂L/∂t, q̇i = ∂H/∂pi
and ṗi = − ∂H/∂qi

(i4) 

A q- mechanical (mech) syst is governed by the time dependent 
Schrödinger equation, Ĥ|ψ(t)〉 = iћ∂|ψ(t)〉/∂t, where |ψ(t)〉 is the sta of 
the q- syst at time t, ћ is the reduced Planck’s constant ћ /2π, and Ĥ is the 
Hamiltonian (H ) that describes the total energy of the syst. The “hat” is 
used to indicate that H is a q- oper ‘or. As the Schrödinger equation is a 
first-order linear (line) differential equation, the temporal dynamics of 
the q- syst may be viewed as a straightforward example of a line dynamical 
syst with formal solution, |ψ(t)〉 = e− iĤt/ћ|ψ(0)〉.The time- Idep -H - Ĥ 
governs the time evolution of the syst through the oper ‘or e− iĤt/ћ. Thus, 
just as with classical (c-) syst ‘s, determining the H of a syst - whether the 
c-H - H or its q- counterpart Ĥ − is the first step to deriving its 
dynamical behavior. 

P
os and M om-space ‘s in q- mechanics 

In q- mech, a picle is represented (R epr) by a q- sta that can be described 
as a superposition of basis sta ‘s. If the eigenfunctions (eF’s) of the P os - 
operator (oper) are used as a set of bas -F ‘s (bF), then a sta as a wave F (wF) 
ψ(r) in P os - space is defined. The Schrödinger (Schrö) eq in terms of the 
P

os- r is an example of q- mech in the P os-R epr. Using the eF of a different 
oper as a set of bF ‘s gives different R epr’s of the same sta. If the eF -s of the 
M

om - oper are used, the resulting wF -φ(k) is in M om -space. A library of 
Hamiltonians for benchmarking q- algorithms and hardware can be 
found in Sawaya et al. (2023).  

__________________________ 

Estimating Hamiltonian: Hamiltonian (H) estimation, observes a q- 
system operated by Hamiltonian, unknown within a given family H(θ), 
with parameters θ = (θ1, . . ., θn). H- estimation identifies the best al
gorithm for estimating the H- parameters. 

This includes selecting the best option for initial state (iS), to be 
processed by operator H, and the selection of the subsequent M ’s, which 
reveal the effect the operator H had, and so, indirectly, the parameter 
values. This study incorporates a number of limitations, modifications, 
and generalizations of this assignment. As an example, a situation may 
be considered where either evolution time t of operator H is controlled, 
or it is fixed so that t = t0, options referred to as frequency and phase 
estimation respectively. 

The quality of the estimation is expressed in different ways. In a 
frequency estimation method, the focus is on estimation strategies giv
ing the best precision / number of M ’s scaling. Here so-called quantum 
Fisher information is used, which quantifies and bounds the scaling. In 
this setting, referred to as the local regime, typically having many rep
etitions of M ’s is assumed. On the other hand, the main objects in the 
single-shot regime (Bayesian) (Jarzyna, 2015) are the prior data, defined 
by the parameter to be estimated distribution, and its update to the 
posterior (p-) distribution given a M methods and outcome. Here the aim 
is to identify the initiation/M methods which minimize the average 
variance of the p- distribution, computed here via Bayes’ theorem. 

The interest here is the utilization of specific q-features, such as 
entanglement, squeezing etc. in the structure of the probe states and M ’s 
may result in a provably better estimation than by so-called c-strategies 
for many natural estimation problems. Such q-improvements are of 
important practical relevance (Giovannetti, 2011). Finding the optimal 
solutions has been achieved in certain clean theoretical scenarios, 
although often impractical. It is in this context that ML-flavored mech
anisms, and ML methods can help. 

phε settings: A relevant estimation problem from a ML point of view, 
is already simple example of a phase shift in an optical interferometer, 
where one of the arms has a phase shift of θ. It is known from earlier 
discussions, that for an optimal probe state, with mean photon number 
N, and an optimal (so-called canonical) M , the asymptotic phase un
certainty can decay as N− 1 (Sanders, 1995), known as the Heisenberg 
limit. 

On the other hand, if limited to simple M strategies (as defined in 
Sanders (1995)), involving only photon number M a scaling of 

̅̅̅̅̅̅̅̅̅
N− 1

√

achieved, called the standard q-limit. Authors in Berry et al. (n.d.) define 
more general proof: the optimal measurement (M

opt) constitutes a complex, 
experimentally unfeasible Positive-Operator Valued Measure (POVM) and 
cannot be achieved by the c-post-processing of photon number M of the output 
arms. Reference (Berry et al., n.d.) also shows how to overcome this by 
using simple M , provided they can be altered in run-time. 

The M opt process is an adaptive strategy: In the process an ent-N -photon 
state is initiated (Berry et al., 2001), the photons are sequentially 
inserted into the interferometer, and photon numbers are measured. A 
differing phase shift φ modifies the M at each step, depending on pre
vious M outcomes. In (Berry et al., n.d.; Berry et al., 2001), a method 
achieving the Heisenberg scaling of the optimal order O(1 /N) was 
given. The implementation of these methods was first suggested in 
Hentschel (2011), and later in Sergeevich et al. (n.d.). In follow up 
works, differential evolution has been shown to be better and more 
practical (Lovett et al., n.d.). 

Group-theoretic approach to qML: qML models are designed for 
learning by using data encoded in q-states. To facilitate training, some 
assumptions about the problem embedded in the model are necessary. 
So, encoding that includes as much data as possible about the problem at 
hand is needed. Authors in Larocca (2022), present group-invariant (gI) 
models whose decisions is invariant under the action of any element of 
the symmetry group (sG) associated to the set of data. Their results sup
port the construction of invariant models and present several qML ex
amples, including cases using Lie group and a discrete sG. The presented 
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framework enables efficiently recovering of several well-known algo
rithms and discovering new ones. In summary, the results encourage 
further research on geometric and group-theoretic methods for qML 
model design. 

Discrete gI Models: The previous options dealt with models where the 
sG modeling of dataset was based on a U-representation of Lie group. 
This approach can be used also for representations with discrete groups 
(dG) (http, n.d.b; Frigerio, 2016). As an example, dG are the appropriate 
analytical structures when the q-data is invariant under permutations. 
This includes cases of structural invariances in states of molecular 
systems. 

Graph isomorphism dataset: Here, a dataset in the context of graph 
isomorphism problem (Izquierdo, 2020; http, n.d.c) is discussed, with 
objective to find out if two graphs are isomorphic. This classification 
problem (Kobler, 2012) is NP hard. Several c-algorithms (with quasi 
polynomial complexity in the graph size (Babai, 2016)), and q-heuristics 
(Gaitan, 2014; Izquierdo, 2020) are available to solve this problem. If a 
q-model is used for graph classification, the first step is to encode graphs 
onto q-states. For the discussion on q-computing for the brain see Swan 
et al. (2022) and quantum-like modeling in biology with open quantum 
systems and instruments (Basieva et al., 2021). 

For discussion on parameterized q- circuit approximation, opti
mizing parameterized q- circuits and variational quantum eigensolver 
see Ibrahim et al. (2023), Watanabe et al. (2023), Bertels et al. (2023). 

5. Complex q- models 

In the evolution of communication networks from 6G to 7G further 
growth should be expected of our ambitions to model more sophisticated 
optimization processes requiring more powerful analytical tools. For 
these reasons, it is useful to review the work done in the field of quantum 
computational chemistry where some advances in building complex 
quantum models have been already achieved. 

5.1. q-Computational chemistry (cCh) 

Q-computing is being used more and more for solving c-intractable 
chemistry problems. This should enable us to solve otherwise unresolved 
problems related to chemistry specific phenomena. 

Among these phenomena this paper is interested in biochemical re
actions and their relevancy to brain operation and new advanced solu
tions to ML. 

Since having large QC resources may take time, solutions enabling 

analysis of these problems with fewer q-resources are very important. 
Motivated by this need, q-cCh is an evolving field requiring knowledge 
of both QC and cCh. This section presents a survey of both cCh and q- 
computing works, reducing the existing knowledge gap. Here the 
progress in this field is discussed. 

As a part of integrative research, full understanding of the problems 
and solutions in this field is expected to help in generating new models 
and algorithms in the field of n-Sci and ANN which are expected to be 
massively used in 6G/7G networks.  

__________________________ 
NOTE: Functions and oper’s in P os -space 
For a three-dimensional (D m=D

3) wF in P os - space -ψ(r), these F’s 
can be represented as a weighted sum of orthogonal bF ‘s ψ j(r) : or, 

ψ(r) =
∫

k− space

φ(k)ψk(r)d3k (i5) 

If the set of F’s- ψk(r), is the set of eF ‘s of the M om-oper-s, the F- φ(k)
contains all the J needed to regenerate ψ(r) and so is yet another option 
to describe the state -ψ. In q- mech, the M om-oper is represented by 

p̂ = − iℏ∂/∂r (i6)  

with appropriate domain. The eF ‘s are 

ψk(r) = exp(ikr)
/( ̅̅̅̅̅̅

2π
√ )3

(i7)  

and eigenvalues (eV) ħk. So 

ψ(r) = 1
( ̅̅̅̅̅̅

2π
√ )3

∫

k− space

φ(k)exp(ikr)d3k (i8)  

so, the M om-R epr is related to the P os -R epr by a F T . 

φ(k) =
1

( ̅̅̅̅̅̅
2π

√ )3

∫

k− space

ψ(r)exp(− ikr)d3r (i9) 

Momentum Operator: Let us now go back to Eq. (i6). In q-mechanics, 
the M om -oper is, in the P os -R epr, a differential operator. For the case of 
one picle in spatial D 1 (r= x), the definition is p̂ = − iℏ∂/∂x with ħ being 
Planck’s constant, i =

̅̅̅̅̅̅̅
− 1

√
, x represents spatial coordinate, and a prti 

derivative (denoted by ∂/∂x) is used instead of a total derivative (d /dx)
since the wF is also a F of time. The ‘hat’ indicates an oper. The app of the 
oper on a wF is as p̂ψ = − iℏ∂ψ/∂x. In a bas of Hilbert space -(H S ) 

Table 3 
CrossTechology coverage (focus q-NN).  

1 2 3 4 5 6 7 8 9 10 11 

(Glisic & Lorenzo, 2022) QC  √   √ Fundamentals of Q- 
computing (QC)  

√  

(Tacchino, 2018, Schmidhuber, 2015, Zurada, 1992, Merolla, 2014, Biamonte et al., 
2017b, Neukart, 2013, Schuld, 2014, Schuld, 2015, Kapoor, 2016, Lloyd, 2013, Schuld, 
2017, Lamata, 2017, Alvarez-Rodriguez et al., 2017, Otterbach, 2017, Rebentrost, 2018, 
Rosenblatt, 1957, McCulloch, 1943, Mocanu, 2018, Rossi, 2013, Nielsen, 2004, Hu, 
2018, Cao et al., 2017, Torrontegui, 2018) 

QC  √   √ Artificial Quantum Neuron  √  

(Torrontegui, 2018, Du, 2020, Arunachalam, 2017, Beer, 2022) QC  √   √ Quantum Neural Networks  √  
(Arunachalam, 2017, Sentís et al., 2012, Sasaki, 2001, Gammelmark, 2009, Du, 2020,  

Killoran, 2019, Gottesman, 2001, Mitarai, 2018) 
QC  √   √ Performance Limits of QNN 

and CV QNN  
√  

(Bergstra, 2010, Jia, 2014, Maclaurin, 2015, Paszke, 2017, LeCun, 1989, Goodfellow, 
2016, Bloch, 1929, Noether, 1918) 

QC  √   √ Convolutional, Recurrent and 
Residual CV QNN  

√  

(Shalev-Shwartz, 2014, Alpaydin, 2010, Sutton et al., 1998, Arunachalam, 2017) QC  √   √ Quantum Machine Learning  √  
(Jarzyna, 2015, Giovannetti, 2011) QC  √   √ Estimating Hamiltonian  √  
(Larocca, 2022) QC  √   √ Group-theoretic approach to 

QML  
√  

(Larocca, 2022, http, n.d.b, Frigerio, 2016, Kobler, 2012, Babai, 2016, Gaitan, 2014,  
Izquierdo, 2020) 

QC  √   √ Discrete Group-Invariant 
Models:  

√  

This paper NET √ √ √ √ √ Cross-Technology survey √ √ √ 

1 reference, 2 focus, 3 classic, 4 quantum, 5 complex networks, 6 tensors, 7 q-simulations, 8 contribution, 9 energy efficiency, 10 computational efficiency, 11 
synchronization. 
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consisting of M om-eigenstates (eSt) expressed in the M om-R epr, the action 
of the oper is multiplication (mtipl) by p, i.e. it is a mtipl -oper, just as the P os- 
oper is a mtipl -oper in the P os-R epr. 

Hamiltonian Operator: In q- mechanics, the H of a system (syst) is an 
oper describing to the total energy (enrgy) of that syst, consisting of kinetic 
(ktic)- enrgy and potential (ptent)- enrgy. Its sctr, or its set of enrgy -eV ‘s is the 
collection of potential outcomes of a measurement (M ) of the syst’s total- 
enrgy. The H of a syst is the sum of the ktic - enrgy of all the picle ‘s, plus the 
ptent - enrgy of the picle ‘s associated with the syst. 

Schrö -H : For one picle, like in c- mech, the H is described as the sum of 
oper ‘s representing the ktic and ptent -enrgy ‘s of a syst in the form 

Ĥ = T̂ + V̂  

where 

V̂ = V = V(r, t)

is the ptent -enrgy - oper and 

T̂ =
p̂⋅p̂
2m

=
p̂2

2m
= −

ℏ2

2m
∇2 (i10)  

is the ktic -enrgy - oper with m being the mass of the picle, the (⋅) defines the 
dot product of V ’s, and 

p̂ = − iℏ∇

is the M om - oper with a ∇ being the del - oper. The dot product of ∇ with 
itself is the Laplacian ∇2. In D 3 using Cartesian coordinates the Laplace 
- oper is ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. 

This is the form H most commonly takes, although this is not the its 
technical definition in c- mech. Putting all of these together gives familiar 
form used in the Schrö -eq: 

Ĥ = T̂ + V̂ =
p̂⋅p̂
2m

+ V(r, t) = −
ℏ2

2m
∇2 + V(r, t) (i11)  

allowing us to apply the H to syst’s described by a wF-Ψ(r, t) . This is the 
approach used in introductory discussions of q- mech, using the 
formalism of Schrö -wave mech.  

__________________________ 
The electronic structure problem: For specifying the energy of the 

molecule’s components, atomic, molecular, and optical physics and q- 
cCh use molecular H operator. The analytical representation of multiple 
observables (H’s specifying observable quantities) is established by 
using a set of precise rules (http, n.d.d): a) Use the c-representation of 
the observable in H form (as a function of momenta p and positions q) 
(http, n.d.d; Christiansen, 2012). Both p and q are represented within a 
space fixed frame. b) Substitute p by − iћ∇ and use q as a multiplicative 
operator. 

Here ∇ is a vector of first derivatives as its components. It follows 
from the differentiation rules that p and q operators commute. 

Kinetic energy (kE) in a c-model of the electrons and nuclei in a 
molecule, has the form p2/(2 m) (Glisic, 2023a). They interact via 
Coulomb (Co-) interactions, inversely proportional to the distance rij 
between particle i and j. 

rij =
⃒
⃒rirj

⃒
⃒=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
ri − rj

)(
ri − rj

)T
√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
xi − xj

)2
+
(

yi − yj

)2
+
(
zi − zj

)2
√

(1) 

Here ri is the general coordinate vector of either electron or nucleus. 
To make the equations self-explanatory, here R is used for the nuclear, 
and r for the electrons coordinates of the system. By using quantized c- 
energy in H-form, the molecular H-operator called the Co-H consisting 
of five terms is obtained:  

1. For each nucleus in the system the kE operator is represented as; T̂n =

−
∑

ih
2
∇Ri

2 /2Mi  

2. The same operator for each electron are given by; T̂e= − Σiћ2∇2
ri
/2me  

3. The potential energy (pE) between the electrons and nuclei is; 

Ûen =
∑

i

∑

j
Zie2 /4πε0

⃒
⃒Ri − rj

⃒
⃒ (2)    

4. The pE due to Co- electron-electron repulsions 

Ûee =
1
2
∑

i

∑

j∕=i

e2

4πε0
⃒
⃒ri − rj

⃒
⃒

=
1
2
∑

i

∑

j>i

e2

4πε0
⃒
⃒ri − rj

⃒
⃒

(3)    

5. The pE due to Co-nuclei-nuclei repulsions is 

Ûnn =
1
2
∑

i

∑

j∕=i

ZiZje2

4πε0
⃒
⃒Ri − Rj

⃒
⃒
=

1
2
∑

i

∑

j>i

ZiZje2

4πε0
⃒
⃒Ri − Rj

⃒
⃒

(4)   

Here Mi stands for the mass of nucleus i, Zi is the atomic number of 
nuclei i and me is the mass of the electron. The Laplace operator of 
particle i is: 

∇2
ri
= ∂2

/
∂x2

i + ∂2
/

∂y2
i + ∂2

/
∂z2

i . (5) 

As indicated above, the kE operator is invariant under rotation of the 
Cartesian frame used to express xi, yi, and zi. 

With slight abuse of notations (double sum replaced by one sum with 
two indices), the H of a molecule comprising N electrons and K nuclei is 
obtained by summing up the above component resulting into 

H = −
∑

i

ℏ2

2me
∇2

i

(1)

−
∑

I

ℏ2

2MI
∇2

I

(2)

−
∑

i,I

e2

4πε0

ZI

|ri − RI|

(3)

+
1
2
∑

i∕=j

e2

4πε0

1
⃒
⃒ri − rj

⃒
⃒

(4)

+
1
2
∑

I∕=J

e2

4πε0

ZIZJ

|RI − RI|

(5)

,

(6)  

where ZI, MI, and RI, stand for atomic number, the mass, and position of 
the Ith nucleus, and ri is vector of coordinates of the ith electron. Terms 
(1) and (2) in the expression for H are the kE components of the electrons 
and nuclei, respectively. The terms (3), (4) and (5) represent the Co- 
repulsion between the indicated components of a molecule. For 
simplicity, atomic units are used, for length a0 = 1 Bohr 

(
0.529 ×

10− 10m
)
, for mass electron mass me, and for energy 1Hartree (1 Hartree 

e2/4πε0a0 = 27.211 eV). Using MÍ = MI/me, the H in atomic units 
becomes 

H = −
∑

i

∇2
i

2
−
∑

I

∇2
I

2Mʹ
I
−
∑

i,I

ZI

|ri − RI|

+
1
2
∑

i∕=j

1
⃒
⃒ri − rj

⃒
⃒
+

1
2
∑

I∕=J

ZIZJ

|RI − RJ|

. (7) 

The focus here is on the electronic component of the molecule. Since a 
nucleon is considerably heavier than an electron, the Born-Oppenheimer 
expression is used, considering the nuclei as c-point charges so that for a 
given nuclear configuration it is only needed to solve the electronic H 

He = −
∑

i

∇2
i

2
−
∑

i,I

ZI

|ri − RI|
+

1
2
∑

i∕=j

1
⃒
⃒ri − rj

⃒
⃒ . (8) 

The goal is to find energy eigenstate (eigS) |Ei〉 and the corresponding 
energy eigenvalues (eigV) Ei of He . 

Quantum phε: phε (Kitaev, 1995b) is used to identify the lowest en
ergy eigS, |E0〉, and excited states, |Ei>0〉, of a physical H (Abrams et al., 
1999). The canonical phε algorithm is described in Nielsen and Chuang 
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(2002) and presented in Fig. 9.  

1. The qubit R is prepared in state |Ψ〉, having partial overlap with the 
eigS of the system. Here an extra R of ω ancilla (A -) qubits is needed. 
The |Ψ〉 can be expanded in terms of energy eigS’s of the H, as |Ψ〉 =

Σici|Ei〉, where ci are complex coefficients.  
2. Then the A -R is set in the superposition 

∑
x|x〉/

̅̅̅̅̅̅
2ω

√
, by applying a 

Hadamard gate to each A -qubit, where x are all possible bit-strings 
that can be obtained from ω bits. Then the controlled gates shown in 
Fig. 9 is used.  

3. In the next step the q-IFT is applied to the A -qubits to identify the 
phase, which encodes the data about the energy eigV.  

4. Measuring the A -qubits in the Z basis, returns an estimate of eigV 
(Ei), with probability |ci|

2 This M collapses the main R into the 
corresponding energy eigS, |Ei〉

The number of A - qubits ω, used for the mechanism of phε presented 
above, defines the achievable success probability and precision in the 
energy estimate. Authors in Nielsen and Chuang (2002) show that for a 
precision of a binary estimate of the energy over n bits, with success 
probability p, ω = n + ⌈log2(2+1 /2p)⌉ A -qubits are needed. The phε 
has been experimentally studied in a variety of q- systems (Du, 2010, 
Lanyon et al., 2010, Li, 2011, O’Malley, 2016, Paesani, 2017, Santagati, 
2018, Wang et al., 2015). 

To execute this algorithm, it is needed to sequentially evolve in time 
the main R using the H for times t0 = 2π, t1 = 4π, …, tω− 1 = 2ωπ . The 
overall coherent time evolution, T, is T = 2ω+1π. With this, for a psuccess 
=0.5, ω = n + 2 A -qubits are needed. The relation between the binary 
precision εPE = 1/2n and T is T = 8π/εPE. For psuccess =0.5, the number of 
the procedure repetitions nr =2 is needed to get a fair estimate of the 
eigS, |E0〉 . This leads to an overall number of 16π/εPE uses of the U e− iH 

(Reiher, 2017). Now, since c0 < 1, the nr must be multiplied by 1 /|c0|
2, 

to get the ground state. 
In addition to εPE, obtained in E0, the errors εU caused by imperfect 

design of the controlled U evolutions applied to the main R , must be 
also accounted for. This error is caused by disassembling e− iH into 
arbitrary single and two qubit gates, in the process of a Trotter dis
assembling. Circuit synthesis errors, εCS, arise from building up gates 
from a discrete set (library) of gates. An example is approximating single 
qubit rotations from multiple T (Tiffoli) and Hadamard gates. They can 
be calculated using the Solovay-Kitaev theorem (Dawson, 2005). For a 
Trotter disassembling of e− iH, (Reiher, 2017) shows that the upper 
bound on error in the energy eigV obtained from phε is εPE + εU + εCS. In 
practice, it is not easy to optimize these error budgets in order to 
minimize the overall error (Reiher, 2017, Kivlichan, 2019a). 

For any version of phε, there are two general features. 
1) The R needs to be initially in a state partially overlapping with the 

target eigS. 2) There must be a solution for coherent realization of a U- 
operator defined by an invertible function of the H. The common choice 
for U-operator is e− iH used above. Methods to satisfy both requirements 

will be surveyed in the following sections. 
State Initialization (sI): It is not trivial to initialize the qubit R in a 

state with a needed overlap with the target eigS (typically the ground 
state-gS). If chosen at random, the state would collapse to the desired gS 
with an exponentially vanishing probability, as the system size 
increases. 

In addition, authors in McClean (2014) show that the complexity of 
phε exponentially increases, by taking into account the imperfect initi
ation of eigS’s of subsystems that do not interact. This supports the need 
for sI procedures with at least a polynomially decreasing overlap with 
the full configuration interaction (FCI) gS, as the system size increases. 
Different such techniques are available for sI. One solution is to initialize 
reference states obtained from c-tractable calculations, like configura
tion interaction states (Babbush et al., 2015), open-shell spin symme
try-adapted states (Sugisaki, 2016), multireference states (Sugisaki, 
2019), or states generated by adaptive sampling configuration interac
tion methods (Tubman et al., 2018a). Additional options of interest are 
also: the variational methods discussed in Yung (2014), q-algorithms for 
imaginary time evolution (Motta, 2019), or adiabatic sI (Aspuru-Guzik 
et al., 2005). Here the paper focuses on adiabatic sI, inspired by the 
adiabatic model of q-computation (Farhi et al., 2000). 

For given Hamiltonian Hs, a state |Ψ〉 that is near its gS can be 
initiated by using adiabatic sI (Albash et al., 2018). In this process, the 
starting point is a simple Hamiltonian H0 initiated in its gS. Then the 
system is evolved in time by using a H that evolves step by step from H0 
to Hs, thus initiating a state that is near the gS of Hs. Such approach to sI 
will be more efficient if the gap between the gS and the next state on the 
path between H0 and Hs is smaller. For cCh, adiabatic state preparation 
(ASP) may be reached by starting the system in the gS of the Har
tree-Fock H (H0), and interpolating in time t between the starting and 
final Hs as H(t) = (1 − t /T)H0 + (t /T)Hs, where T is the maximum 
simulation time (Aspuru-Guzik et al., 2005). For other options poten
tially more suitable for problems of cCh see (Veis, 2014, Wecker, 2015). 
The maximum annealing time, T is given by T ≈ O

(
M4 /minsΔ(t)

)
, 

where Δ(t) = E1(t) − E0(t) and M is the number of spinorbitals in the 
molecule. Authors in Reiher (2017) suggest that the scaling may be 
closer to O

(
M2 /mintΔ(t)

)
. 

Difficulties in knowing a priori how big the gap along the entire 
adiabatic path is, limits the possibility to perform ASP in the limited time 
window. One option for reducing the annealing time needed is to use 
additional driving H’s, like what was used in Matsuura (2018), Veis 
(2014). Although the above expression T ≈ O

(
M4 /minsΔ(t)

)
does not 

explicitly depend on the iS used, by starting in a state that is near the 
target gS should make the anneal path shorter. 

If an iS overlapping sufficiently with the gS is available, it may be 
possible to surpass adiabatic sI completely, and instead do phε directly 
on that iS. As seen from the above discussion, phℰ only needs an overlap 
with the target gS. There are several methods for evolving the system 
under this time-dependent H, as well. H and phℰ for chemistry simu
lation (ChSim) will be discussed in Section 8. 

5.2. Complexity of q- Chemistry (qCh) algorithms 

Most work on q-simulation in chemistry provides answers to the 
electronic structure estimation by using phℰ to estimate eigV’s by sam
pling molecular eigS’s (Kitaev, 1995a). Even with limited resources 
(≅ 100 qubits), this could provide meaningful results in different 
research areas and the development of technologies. 

By using a basis of single-particle functions called orbitals to dis
cretize the multiple-body wF, molecular systems on a q-computer have 
been modeled. Most qCh processing uses either plane wave (pW) or
bitals, or the orbitals obtained by linear combinations of Gaussians. 
Using pW enables highly structured H’s. Authors in Babbush et al. 
(2018a) show that this approach enables asymptotic advantages for 
q-algorithms. Nowadays, the best-scaling qCh-algorithms in second 

Fig. 9. The canonical q- phε circuit with three A - qubits. When the A - qubits 
are in state |x〉, a control rotation e− 2πiHx is applied to the target state |Ψ〉. QFT 
denotes the q- Fourier transform (Caruana, 1997; Glisic, 2023a). By measuring 
the A - qubits in the computational basis, they collapse to an eigenvalue of H 
and the R - qubits collapse to an estimate of the corresponding energy eigS 
(McArdle, 2020). 
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quantization (2ndQ) use pW; achieving O
(
N3) (Babbush et al., 2018b; 

Kivlichan, 2019) or O
(
N2 log N

)
(Low & Wiebe, 2018) gate complexity, 

with small or large constant factors and more spatial complexity, 
respectively. 

A need for rather large number of spin-orbitals to represent many 
molecular systems to chemical accuracy represents the main constraint 
to using pW in 2ndQ. For resolving this problem, the work of Babbush 
et al. (2019) suggests simulating the pW H in the first quantization (1stQ) 
offering O

(
N1/3η8/3) gate complexity, with η being the number of 

electrons. (Note: 1stQ uses quantized variables like position and momentum, 
as operators. 2ndQ uses quantized fields, rather than variables.) Due to low 
scaling in N, one might need an extremely large pW basis. The feasibility 
of practical implementation of that approach has not been studied 
enough. It has not been compiled to specific circuits, and it is not known 
how large the basis should be (Low & Wiebe, 2018). 

The low resolution of pW can be improved by using a more compact 
basis. Nowadays, most approaches for the q- ChSim suggest using very 
compact molecular orbitals. Unfortunately, this results into complex H 
with coefficients expressed by integrals and O

(
N4) distinct terms. The 

first such algorithm had gate complexity O
(
N11) (Whiteld,2011). Later, 

researchers have reduced the complexity by using tighter bounds 
(Poulin, 2015), better mappings between fermions and qubits (Jiang, 
2018), improved sI techniques (Tubman et al., 2018b), application of 
new time-evolution strategies (Low, 2019, Babbush et al., 2016, 
Campbell, 2019), considerations of fault-tolerant overheads (Litinski, 
2019) and other solutions in representation and algorithmic structures 
(Motta, 2018). 

The minimum implementation cost of earlier work on 2ndQ arbitrary 
basis ChSim is either the O

(
N5) scaling of Babbush et al. (2016), or the 

O
(
λ2) scaling of Campbell (2019), with λ being the 1-norm of the H. 

While the solution from Babbush et al. (2016) has large constant factors 
in the scaling, the method of Campbell (2019) scales quadratically worse 
than post-Trotter solutions regarding the evolution time (eT). For 
practical implementation, the best prior solution is Lie-Trotter proosal 
(Motta, 2018), although the step size for that method is unknown. Au
thors in Dominic (2019) present a solution with O

(
N3/2λ

)
T (Toffoli) 

cost, which looks better than any prior work as long as λ = Ω
(
N3/2), 

which is most common case. 
Works presented in Babbush et al. (2018b), Kivlichan (2019) enable 

compilation of qCh algorithms in terms of Clifford +T (Toffoli) gates and 
calculate the resources needed within an error-correcting code are. 
These works minimize T-complexity since these gates cannot be trans
versely realized within practical codes (Litinski, 2019). The gates are 
implemented by distilling magic states or Toffoli states, which needs 
orders of magnitude more space/time volume (qubit seconds) than 
executing Clifford gates, together with a large consumption of physical 
qubits (Fowler, 2018). 

Authors in Reiher et al. (2017), Beinert et al. (1997) focus on the 
simulation of an active space of the FeMo cofactor of the Nitrogenase 
enzyme. Due to the complex electronic structure, the process is not fully 
understood although the reaction is important. Nitrogen fixation is 
much more efficient than the option used in industry. Authors in Reiher 
et al. (2017), Litinski (2019) used a 108-qubit active space requiring 
about 1014T gates. 

Authors in Babbush et al. (2018b), Kivlichan (2019) demonstrate 
feasibility to perform ChSim of similar size with approximately 
108 T-gates, using a pW rather than Gaussian basis. By using methods 
published in Gidney (2019) such calculations could be realized in the 
surface code (Glisic and Lorenzo, 2022) at 10− 3 physical error rates with 
less than a million physical qubits in just hours. 

The solution presented in McArdle et al. (2020) suggests performing 
phℰ directly on a q- walk (Dominic, 2019, Szegedy, 2004, Low, 2019), 
used to simulate H’s in the linear combinations of U’s query model 
(Childs, 2012). The analysis of the phℰ -algorithm presented in McArdle 

et al. (2020) is similar to that in Babbush et al. (2018b), implementing a 
solution proposed in Poulin (2017), Berry et al. (2018) based on qubi
tization (Low, 2019). Reference (McArdle et al., 2020) uses the U-iter
ation technique from Babbush et al. (2018b), Childs (2018) and the 
QROM based sI and coherent alias sampling methods suggested in 
Babbush et al. (2018b) and then simplified to reduce the complexity in 
Low (2018). The algorithm leverages the sparse nature of the 
Co-operator, using a low rank representation from Motta (2018). 

If a limited number of A -qubits is used (McArdle et al., 2020), using 
the system qubits as “dirty” A , the algorithm can reach che- accuracy for 
FeMoco with about 2 × 1013 Toffoli gates, using the active spaces of 
Reiher et al. (2017) or Li (2019). 

If many A were used then the number of Toffoli gates needed with 
the best option of McArdle et al. (2020) would be about 2 × 1011 for the 
(Reiher and al, 2017) orbitals, or 8 × 1010 for the (Li, 2019) orbitals. The 
required number of gates is four times larger but since Toffolis are 
critical, Toffoli states can be distilled directly. The cost for this would be 
approximately the same as for distilling two magic states for gates 
(Gidney, 2019). 

Although (McArdle et al., 2020) improves upon the distillation 
space/time volume required by Reiher et al. (2017), at 10− 3 error rates, 
about 3 times 106 qubitweeks of state distillation are still required, 
which improves over previous results by a factor of seven hundred but is 
still unacceptable. 

For the latest results on Chemistry Application to Quantum Error 
Correction Primitives and Benchmarking Adaptive Quantum Circuit 
Optimization Algorithms for Quantum Chemistry see Blunt et al. (2023) 
and Saib et al. (2023) respectively. 

6. Synchronization 

6.1. n-Sci and N-sync 

Over the past several decades, an extensive study of stability and 
periodic oscillation for NNs has been witnessed. Time delay (tD) is often 
present in bio- and ANNs, causing oscillation and instability for a NN. 
Nowadays research results are available, defining conditions guaran
teeing the stability of NNs with tD (Zhang, 2008). Sometimes, in dS, tD is 
present in both the system state and in its derivative (Hale, 1993). To 
model such systems, differential neutral (n-) delay (nD) equation is used, 
where the delay consists of the nD and the retarded delay (http, n.d.e; 
http, n.d.f). This model is used in several applications. Since the nD 
exists in NNs, the stability analysis of n- NNs has attracted a lot of 
attention (Gao, 2018; Wen, 2012). 

Complex dynamic networks (dN) are of interest for this paper, since 
among the number of important practical models they can also simulate 
neural networks. Since its introduction in Pecora (1990), synchronizing 
complex dN (cdN) has become an important topic applicable in many 
fields including ch-reaction, bio-systems, and info-science (Abbasi et al., 
2013). In addition, cdN’s exhibit more sophisticated behaviors than a 
single NN (Stanoev, 2013) making sync of cdN an appealing problem. 
The sync problem has been modeled by using the c-methods such as 
feedback control (Ctr) (Karimi, 2010), sampled-data Ctr (Wu et al., 2013a), 
backstepping Ctr (Xia, 2009), pinning Ctr (Yang, 2013), impulsive Ctr (Lu, 
2011), adaptive Ctr (aCtr) (Yang, 2010) and st-perturbation (Zhang). 

In (Qin, 2015), a unified method was used to study the exponential 
sync (e-sync) of cdN. Authors in Wang (2015) studied the global sync of 
cdN with a limited data rate. Investigating the sync-problem in NNs of 
n-type in reliable network of robots (Yamamoto, 2004) and chaotic 
secure communication (Yang, 2004) has shown promising results. By 
using the linear matrix inequality (LMI), the global-sync of cdN with 
n-type delayed nodes is presented in Ji (2011). 

Markov jump system (Mjs) (Boukas, 2006) is used to model dynamics 
with abrupt changes. Here parameters describing the state are contin
uous and the jumping parameters are discrete, therefore such a system is 
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regarded as a hybrid system. Modeling using Mjs was presented in Bo 
et al. (2014). Sync for cdN with Mjs has been studied in Liu et al. (2009a), 
Wu et al. (2013b), Yang (2012), Zhang (2015). 

Authors in Yang (2012), derive sufficient sync conditions for NN’s 
with the Markovian coupling and different node-delays and random 
coupling strengths. For the same network conditions and time-varying 
delay (tvD), st-sync was investigated in Zhang (2015). The analysis is 
based on a new mode-dependent augmented Lyapunov (Ly-) sync-cri
teria. Unfortunately, sync for the cdN of n-type with Mj parameters did 
not attract much research interest. By using Ly-sync-theory, the problem 
of robust mode-dependent delayed state feedback control (fb-Ctr) was 
solved for a class of uncertain tD systems with Mj parameters and mixed 
discrete, distributed and n-delays in Karimi (2011). 

The sync of coupled NN’s of n-type with Mj -mode dependent discrete 
and unbounded distributed delays has been considered in Liu (2013), by 
constructing a Ly-functional. Sync for Markovian st-coupled (Msc) NNs 
has also been considered in Wang (2010), Zhu (2012), since external 
st-disturbances, modeled by Brownian motion (Mao, 2011), exist in 
practice. The e-sync for Msc NNs of n-type with tvD has not been dis
cussed due to the difficulty lying in the complexity caused by the 
simultaneous existence of the n- item, the st-perturbation, and the 
Markov switching. 

Adaptive control (aCtr) is useful in designing the sync of cdN (Sastry, 
1989) since the control variables can adapt via corresponding updating 
rules in reacting to the variation in the behaviour of the system (Pariño, 
2000). Sufficient conditions to guarantee the adaptive e-Sync in st-cou
pled NNs of n-type under an adaptive feedback control rule were ob
tained in Zhang et al. (2013b), by using the Ly-method and some 
properties of the Kronecker product. By using mechanisms presented in 
Mao (2008) and Kolmanovskii (2003), the adaptive e-Sync for st-NNs of 
n-type with Mjs was presented in Gu (2003). The algorithms presented in 
Karimi (2011) Liu (2013), and Zhou (2014) are valid for constant delay 
case. 

As discussed in Gu (2003), in practice, the tvD model is more 
adequate than the model with constant delay. The extensions of those 
methods to the tvD are not simple, especially when the restrictive con
ditions (r-Con), that the derivative of the tD function is less than one, are 
not imposed. If both, n-item and the st-perturbation are present at the 
same time the problem becomes difficult. As an example, in Zhou 
(2013), although the adaptive e-Sync for n- st-NNs with tvD and 
Markovian switching is studied by using the methods from Mao (2008) 
and Kolmanovskii (2003), this r-Con on the tvD must be imposed. The 
case without the r-Con has not been studied yet. Thus, the global e-Sync 
for the Msc- NNs of n-type with tvD under an adequate adaptive feedback 
control (afbC) law needs to be further examined. 

In the sequel, some of the above-mentioned solutions will be 
explicitly discussed in more detail. 

Synchronization of NN with stochastic perturbation (st-pert): Here the 
sync problem for NN with st-pert with intermittent control (iC) via 
adaptive aperiodicity (aA) is discussed. By using st-theory and Ly 

stability methodology, methods of iC with aA are used to achieve the 
sync of st-NN. Sufficient conditions for achieving a sync of the under
lying network are established in Zhang et al. (n.d.).  

__________________________ 
NOTE: Preliminaries on Synchronization 
Here a neural network system is considered consisting of N identical 

nodes with nonlinear coupling φ with vector-form stochastic perturba
tions, described by 

ẋi(t)=

[

− Cxi(t)+Bf(xi(t))+
∑N

j=1,i∕=j
aij
[
φj
(
xj(t)

)
− φi(xi(t))

]
]

dt

+σ(xi(t))dω(t) (i12)  

where xi(t) = (xi1(t), xi2(t), . . ., xin(t))T
∈ Rn represents the state vec

tor of the i- th node; C = diag (c1, c2, . . ., cn) with ck > 0,k = 1,2, . . ., 
n, denotes the rate with which the kth cell rests its potential to the 
resting state when isolated from other cells and inputs; B =

[
bij
]

n×n ∈

Rn×n represent the connection weight matrix; A =
[
aij
]

n×n ∈ RN×N;

f(xi(t)) =
[
f1(xi(t)), f2(xi(t)), . . ., fn(xi(t))

]T is a continuous vector; 
σ(xi(t)) = σ(x1, x2, . . ., xn) ∈ Rn×n is the noise intensity matrix and 
ω(t) = (ω1(t), ω2(t), . . ., ωn(t))T

∈ Rn is bounded vector-form Weiner 
process, satisfying Eωj(t) = 0, Eω2

i = 1, Eωj(t)ωj(s) = 0(s ∕= t) . 
In the case that system (8.1) reaches synchronization, 
x1(t) = x2(t) = ⋯ = xN(t) = s(t), by introducing a controller into 

each individual node, where s(t) ∈ R is defined as 

ṡ (t) = [ − Cs(t)+Bf(s(t))]dt + σ(s(t))dω(t) (i13)  

where s(t) can be set to be any desired state: either equilibrium point, or 
a nontrivial periodic orbit, or even a chaotic orbit. 

To achieve the synchronization objective, the aperiodically inter
mittent controllers will be applied to some of its nodes. For convenience, 
notation 

φ
(
xj(t), xi(t)

)
= φj

(
xj(t)

)
− φi(xi(t))

is used. Thus, the intermittent controlled network can be formulated as 

ẋi(t)=

[

− Cxi(t)+Bf(xi(t))+
∑N

j=1,i∕=j
aijφ
(
xj(t),xi(t)

)
+ui(t)

]

dt

+σ(xi(t))dω(t) (i14)  

where ui(t)(i= 1, 2, . . ., n) are the intermittent linear state feedback 
controller and are constructed as following: 

ui(t) =
{
− εiφ(xi(t), s(t)), t ∈ [ti, si),

0, t ∈ [si, ti+1), i = 0, 1, 2, . . .
(i15)  

where εi > 0 represents control gain and Ξ = diag (ε1, ε2, . . .,

Table 4 
CrossTechology coverage (focus-Complex q-models).  

1 2 3 4 5 6 7 8 9 10 11 

(http, n.d.d, Christiansen, 2012, Abrams et al., 1999, Nielsen & Chuang, 2002,  
McArdle, 2020, Du, 2010, Lanyon et al., 2010, Li, 2011, O’Malley, 2016,  
Paesani, 2017, Santagati, 2018, Wang et al., 2015, Reiher, 2017, Glisic, 2023a,  
Kivlichan, 2019a) 

QCh  √   √ The electronic structure problem in 
Quantum Computational Chemistry  

√  

(Kitaev, 1995a-3013, Reiher et al, 2017, Gidney, 2019, Poulin, 2017, Li, 2019) QCh  √   √ Complexity of Quantum Chemistry 
Algorithms  

√  

(McClean, 2014, Babbush et al., 2015, Sugisaki, 2016, Sugisaki, 2019, Tubman 
et al., 2018a, Yung, 2014, Motta, 2019, Aspuru-Guzik et al., 2005, Farhi et al., 
2000, Albash, 2018, Veis, 2014, Wecker, 2015, Reiher, 2017, Matsuura, 2018,  
Veis, 2014) 

QCh  √   √ State preparation: Initializing the qubit 
register  

√  

This paper NET √ √ √ √ √ CrossTecnology survey √ √ √ 

1 reference, 2 focus, 3 classic, 4 quantum, 5 complex networks, 6 tensors, 7 q-simulations, 8 contribution, 9 energy efficiency, 10 computational efficiency, 11 
synchronization. 
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εN) ∈ Rn×n. The synchronization error is defined to be ei(t) = xi(t) − s(t)
. By the controller expression (8.4), the error dynamics is governed by 

ėi(t)=

[

− Cei(t)+Bg(ei(t))+
∑N

j=1,i∕=j
aijφ
(
xj(t), xi(t)

)
+ui(t)

]

dt+ σ̃(ei(t))dω(t)

(i16)  

where g(ei(t)) = f(xi(t)) − f(s(t)) and σ̃i(t) = σ(xi(t)) − σ(s(t)) .  
__________________________ 

6.1.1. Design example 5 
Here, along the lines presented in Zhang et al. (n.d.), numerical simu

lations of two examples are presented to demonstrate the main results ob
tained in the previous section. 

ẋi(t)=

[

− Cxi(t)+Bf(xi(t))+
∑N

j=1,i∕=j
aij
[
φj
(
xj(t)

)
− φi(xi(t))

]
]

dt

+σ(xi(t))dω(t) (i17)  

where N = 100, f(⋅) = (|x+1| − |x − 1|)/2, φ(x(t)) = x(t) + tanh(x(t)), C 
= diag(1.5,1.5).

In this case, the coupling configuration matrix A and the connection 
weight matrix B are given by 

A =

⎛

⎜
⎜
⎜
⎜
⎝

− 1 1 0 ⋯ 0
0 − 1 − 1 ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋮
0 ⋯ 0 − 1 1
1 0 ⋯ 0 − 1

⎞

⎟
⎟
⎟
⎟
⎠

100×100

B =

(
2 − 0.1
− 5 4.5

)

,

Fig. i2a depicts the trajectories of error states of (i17) without 
aperiodically intermittent, which indicates that the network (i17) 
without aperiodically intermittent cannot synchronize itself. 

Fig. i2b shows the trajectories of error states of the system with 
aperiodically intermittent, which approach to zero as time increases. 
Hence the network is synchronized under the synchronizing aperiodi
cally intermittent control. 

6.1.2. Design example 6 

In the following example, neural network is modelled as:  

where hi(t) = πie− ρ1t‖‖φ(ei(t))‖‖2
2, φ = 3, C = diag (2.5, 2.5) and N =

100. The other parameters are the same as those given in example #2. 

Fig. i3a and b show the synchronization errors of x11 − xi1 and x12 −

xi2, respectively. These figures indicate that synchronization can be 
achieved. 

Complex networks (cN) are nowadays becoming more and more pre
sent in society. A cN is modeled by a large collection of nodes commu
nicating and interacting via a collection of links. Phenomena, appearing 
in communication network, bio formation, chemical reaction, NN, social 
organization, the WWW, etc., can be characterized by cN. Since the first 
discussion on the small-world (SW) and scale-free (SF) properties (Glisic, 
2016; Watts & Strogatz, 1998; Barabasi & Albert, 1999), the interest in 
studying cN has been increased and had an impact on the work of re
searchers in other fields. The theory of cdN, is used to study dynamic 
behaviors, such as sync, consensus, self-organization, and combinatorial 
optimization (Kitaev, 1995b; Guan, 2010; Li, 2014; He et al., 2014a; 
Wen, 2015; Lu, 2009; Wen et al., n.d.; Liu et al., 2009b, He et al., 2014b; 
Wen, 2013; Tang, 2012). In the past, sync of large-scale (ls-) cN con
sisting of coupled dS has been studied in Tang (2012), Wu (2007). 

Coupled NN, as a special class of cN, have been in the focus of 
research interest including NN-sync with all dynamical nodes, general 
NN, secured communication and network updating. As a part of the 
effort, many control algorithms are available for sync of NN governed by 
nonlinear systems, such as aCtr (Zhang, 2009), fuzzy control (Gao, 
2014), impulsive control (Zhang et al., 2013b) and iC (Hu et al., n.d.). 

The iC, used to control the nonlinear dS in Zochowski (2000), among 
the other applications has been also used in communication. 

Earlier, the iC was mainly used as periodical iC (Wang, 2013). In (Cai 
et al., 2009), periodical iC is used for the NN with tvD in a desired orbit. 
Ref. (Yu, 2012), discusses the e-sync for delayed fuzzy cellular NN using 
periodically iC. Imperfections always exist in practice, such as st-forces 
on the physical systems and noisy M ’s. Communication between nodes 
of NN is always subject to st-perturbations from environment, which 
may cause loss of data. Therefore, st-perturbations must be considered as 
well (Wang, 2013; Lu, 2008; Yang, 2009; Pototsky, 2009). In (Wang, 
2013), the e-sync of s-perturbed cN with tvD via periodically intermittent 
pinning was studied. In (Yang, 2009), st-synchronization of coupled NN 
with iC was also analyzed. 

The need for periodicity of iC methods may not be convenient in real 
applications. The electricity production by wind power, for example, 

depends on the weather, which is aperiodically (ap-) intermittent. So, for 
the analytical study of real systems, it is better to analyze the sync using 
ap-iC model. The analysis of system dynamical behavior by using ap-iC 

Fig. i2. a) Time response of the error states of (i17) without aperiodically 
intermittent b) Time response of the error states (i17) with aperiodically 
intermittent (Zhang et al., n.d.). 

Fig. i3. a) Time response of the error states of (i18) with adaptive aperiodically 
intermittent b) Time response of the error states (i18) with adaptive aperiodi
cally intermittent (Zhang et al., n.d.). 

ẋi(t) =

[

− Cxi(t)+Bf(xi(t))+
∑N

j=1,i∕=j
aijφ
(
xj(t), xi(t)

)
+ hi(t)ui(t)

]

dt + σ(xi(t))dω(t) (i18)   
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methods was presented in Liu (2014), investigating sync of nonlinear 
coupled networks via a-intermittent pinning control. 

Inspired by Liu (2014), reference (Zhang et al., n.d.) investigates the 
problem of sync of NN with st-perturbation via ap-iC. The authors 
establish sufficient conditions to achieve sync for nonlinear coupled 
networks under ap-iC. By using Weiner estimation techniques, suitable 
a-intermittent and adaptive ap- iC are developed to ensure st-sync for the 
coupled cN with st- perturbations. Sync criteria obtained are verifiable, 
and practically useful. 

6.2. Large scale (ls-) networks synchronization 

Here the problem of sync is revisited by generalizing the problem to 
the cN with extremely large number of nodes. Sync processes of inter
acting nodes are the focus of study in the networks discussed in the 
survey so far, as well as in the economic and social systems. The work in 
synch leverages the recent theory of cN. Here, the sync phenomena are 
discussed when the oscillating objects interact in a cN topology. The 
interdependency between the structure and the function of the given 
type of connections is also discussed. Applications of sync in cN modeling 
are also surveyed: bio-systems and n-Sci, and other types of networks, 
discussed earlier in the paper, as well as in economy and social sciences. 

Complex Networks: Analytical abstraction of cN is a graph G con
sisting of a set N of N nodes interconnected by a set L * of L links, with 
degree ki of node. Here G is specified by matrix A, with elements aij = 1 
if there is a directed link from j to i, and 0 otherwise. For a weighted 
network (wN), G is defined by a matrix W, with elements wij, reflecting 
some parameter (cost, delay, capacity…) of the link between j and i. The 
study of the st- characteristics of many cN shows that, even for very 
different systems, some categorization/ classification of these networks 
is possible. Among these properties, the most characteristic one refers to 
the degree distribution P(k), representing the likelihood that a node has a 
degree k. This parameter of cN is considered as its most differentiating 
factor. A number of other parameters are used to additionally elaborate 
the categorization. Among those the most often used are the average 
shortest path (shp) length l =

〈
dij
〉
, with dij being the length of the shp 

between node i and node j, and the clustering coefficient C accounting for 
the fraction of actual triangles (three vertices forming a loop) over 
possible triangles in the graph. 

The first characterization of cN uses the degree distribution P(k)
where the degree is related to the tail of the distribution. In homoge
neous networks, like the Erdös–Rényi (ER) random graph (Glisic, 2016; 
Erdös & Rényi, 1959), the distribution decays exponentially with the 
degree. The network is heterogeneous if the distribution has a heavy tail. 
As an example, scale-free (SF) networks (Glisic, 2016) have a power-law 
distribution, P(k) ∼ k− γ, the Barabási-Albert (BA) model (Glisic, 2016; 
Barabási & Albert, 1999) being the typical model of this type of graph. In 
this network new incoming nodes are linked preferentially to the 
existing nodes (Glisic, 2016) with highest degree. (By the rule, the like
lihood of connecting a new edge to a given node is higher if he has higher 
degree k). 

On the other hand, in lattices networks, all nodes have the same 
degree. The average shp length (aspl) l can be also included into this 
categorization. For a lattice with N vertices, obviously, l ∼ N1/d. An 
approximate estimate of l for a random network, is also possible. For the 
network with the average number of nearest neighbors of a node k, 
approximately k nodes of the network are at a distance l from the node 

or closer. Hence, N ∼ kl and then l ∼ ln (N)/ ln
(

k
)

, i.e., the aspl is 

small even for large networks. This is known as the SW (Small World) 
property (Glisic, 2016). When it comes to distances, there are a number 
of parameters providing information about centrality of nodes. A node 
centrality is expresed in terms of the relative distance to the rest of the 
network. The betweenness is a parameter that represents the number of 
shp’s between any pair of nodes in the network that go through a given 

node or link. 
The clustering coefficient C is also useful for differentiating types of 

networks. It is expressed as: C =
∑N

i=1Ci/N =
∑N

i=1 ni/(Nki(ki − 1) /2),
with ni being the number of connections between nearest neighbors of 
node i, and ki is its degree. A high C indicates the existence of many 
transitive connections, and a low C indicates the opposite. 

Community structure tells us if the nodes are mutually connected in 
densely linked groups with sparser connections between the groups. The 
optimum partitioning of a network into groups is a hard problem. The 
most accurate and computationally efficient approaches, Danon et al. 
(2005), use the optimization of a parameter referred to as modularity 
(Newman & Girvan, 2004), defined as Q =

∑
ij
(
aij − kikj /2M

)
δci ,cj /2M 

δci ,cj/2M, M =
∑

iki /2, where ci is the group to which node is assigned 
and the Kronecker delta function δci ,cj takes the value 1 if nodes i and j 
are in the same group, and 0 otherwise. The larger the Q the more 
modular the network is. This feature is especially adequate to unveil 
structure- function relationships in cN (Girvan, 2002). 

Oscillator models on cN: Proper synchronization is of paramount 
importance for functioning of bio-NN discussed in this paper. The first 
studies of sync consider a network of coupled oscillators and interactions 
between them.  

__________________________ 
NOTE: 
Coupled oscillators: For illustration, a network of five weakly 

coupled oscillators is sketched in Fig. i4. Every node shows oscillatory 
behavior in the two-dimensional state variables xk =

(
xk, yk

)
∈ R2, k =

1, …, 5. For each of the five nodes, a closed orbit is found, the limit cycle 
(depicted in blue), which describes the nodal dynamics in the absence of 
coupling. The weak coupling between the oscillators will ‘kick’ the dy
namics away from the closed orbit, but only so far that the convergence 
toward it is sufficiently fast (see the two exemplary trajectories in black 
within the limit cycle). This allows for identifying the state of each 
oscillator xk with a circular variable, the phase θk ∈ S1. Deriving the 
dynamics θ̇k of the phase variables from the network dynamics ẋk is 
central to this section. Given the phase dynamics θ̇k, the collective 
behavior of the full network can be inferred by means of the nodes’ 
phase synchronization. 

Throughout this section, the framework of weakly coupled oscilla
tors is considered. A brief sketch of why this is beneficial for a concise 
presentation of the theory is given along with proper introduction of all 
required definitions later at due time. The governing dynamics of a 
network of N>> 1 interacting oscillators shall be of the form 

ẋk = fk(xk; μk) + κgk(x1, x2, …, xN), k = 1,…,N. (i19) 

The functions fk determine the node-specific and uncoupled dy
namics, whereas gk comprises all coupling effects on oscillator xk 

through the other nodes xj∕=k. The coupling strength is denoted by κ ∈ R 

and μk are bifurcation parameters. The weak coupling is guaranteed by 

Fig. i4. A network of weakly coupled planar limit cycle oscillators. Each 
oscillator = 1, N = 5, is described in the two-dimensional state variables xk =
(
xk, yk

)
. The coupling between oscillators is indicated by red arrows. Without 

coupling, each oscillator follows the blue limit-cycle trajectory. Upon pertur
bation, the oscillator will be kicked away from the limit cycle and follows a 
trajectory that leads exponentially fast towards the globally attracting limit 
cycle. Globally attracting implies that the basin of attraction spans the whole 
x − y plane except for the unstable origin (red). Two trajectories from within 
the basin of attraction are shown in black (Pietras & Daffertshofer, 2019). 
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assuming the coupling strength to be sufficiently small, κ ≪1. Further
more, it is assumed that the oscillators are nearly identical and that the 
coupling structure is pairwise, i.e. the coupling function gk can be 
decomposed into the sum of pairwise interactions. Hence, one can 
rewrite (i19) as 

ẋ = f(xk; μ) + κ
∑N

j=1
gkj
(
xk, xj

)
(i20)  

with μ being the only bifurcation parameter. Phase reduction implies 
transforming (i20) into the phase model 

θ̇ = ω + κ
∑N

j=1
Hkj
(
θk − θj

)
,= 1, …, N (i21) 

In particular, the state xk of every oscillatory node will be charac
terized by a phase variable θk. The corresponding phase dynamics 
comprises a natural frequency term ω and contributions from the other 
oscillators. The latter add up by means of phase interaction functions Hkj 

that depend on the pairwise phase differences θk − θj of oscillators k and 
j. 

Phase reductions and weakly coupled oscillators: There already exists 
abundant literature covering approaches to phase reduction. In the 
following, the paper will review the details of the most commonly used 
reduction techniques in a unified language focusing on coupled neural 
oscillators (Ermentrout, 1981, Ermentrout & Kopell, 1984, Ermentrout 
& Kopell, 1991, Ermentrout, 1996, Hansel et al., 1993, Hansel et al., 
1995, Van Vreeswijk et al., 1994, Bressloff & Coombes, 2000, Izhike
vich, 2000, Ermentrout & Kleinfeld, 2001, Lewis & Rinzel, 2003, Brown 
et al., 2004, Ermentrout & Kopell, 1990).  

__________________________ 
Works presented in Strogatz (1988) and later in Niebur (1991) 

analyzed the collective ph-Sync of non-linear oscillators with random 
intrinsic frequencies under several different coupling models in 2D lat
tices. Even with models different from the actual conception of a cN, the 
examples studied in Niebur (1991) are considered as an initial step to 
study how network complexity affects sync. In the paper a square lattice 
is used as a referent connectivity scheme to design three different to
pologies: 1) four nearest neighbors, 2) Gaussian connectivity truncated 
at 2σ, and finally a 3) random sparse connectivity. The study reveals that 
type 3) topology leads to a more rapid sync between oscillators than 
types 1) and 2). This is one of the most important results about sync in cN 
of oscillating network elements. Here the paper surveys the work on 
three different types of collections of oscillating objects: limit cycle os
cillators (Kuramoto), pulse-coupled models and coupled map systems. 

The Kuramoto (K-) model: The work in Winfree (1967) initiated the 
study on collective synchronization (cSync) and emphasized the need for 
analytical methods to investigate the problem. One of these methods, as 
already discussed, examines a large collection of loosely coupled, almost 
identical, interacting limit-cycle oscillating objects, where each object 
impacts a phase of the others and changes its rhythm in accordance with 
its sensitivity function. Even if these approximations oversimplify the 
problem, its nature can be captured. 

When the natural frequencies of the oscillating objects are too 
different compared to the strength of the mutual coupling, they are 
unable to synchronize, and the collection of the objects remains un
synchronized. But, if the coupling is strong enough, all elements oscillate 
in synchronism. The transition from one regime to the other happens at a 
certain coupling threshold. At this point some elements lock their rela
tive phase developing a cluster of synchronized nodes. This is referred to 
as the onset of synchronization (oSync). By further increasing the 
coupling, more and more elements join the synchronized cluster, and the 
system finally settles in the completely sync state (Kuramoto, 1975) 

K-model on cN: For the K-model on complex topologies, the paper 
reformulates θ̇ to include the connectivity θ̇ = ωi +

∑
jσijaij sin

(
θj − θi

)

for (i = 1, …, N), where σij is the strength of the coupling between el
ements i and j and aij are the entries of the connectivity matrix. These 

relations are referred to as equations of motions. 
The oSync in cN: Studies on sync in cN where each node is modeled as 

a K- oscillating element, are presented for Watts–Strogatz networks in 
Glisic (2016) and Barabasi-Albert graphs in Glisic (2016). These works 
study the oSync, with objective to model the coupling point when groups 
of nodes start oscillating coherently. In (Hong, 2002), oscillating ele
ments with Gaussian distributed ωi in a WS network with varying 
probability of rewiring p where used to study how the order parameters, 
defined above, change when long-range links are added. In the analysis a 
normalized coupling strength σij = K/〈k〉 was used, where 〈k〉 is the 
average degree of the graph. It was shown that cSync emerges even for 
very small values of p. 

The results demonstrate that topologies generated by rewiring even a 
small fraction of links in a regular ring, can be synchronized with a finite 
K. Analysis of the same model in Watts (1999) demonstrates that the 
K-limit is reached when the average connectivity grows. 

In (Dorogovtsev et al., n.d.) the same problem in Barabasi-Albert 
networks is discussed with ωi and the initial values of θi uniformly dis
tribution in the range (-1/2, 1/2) and ( − π, π), respectively. The pres
ence of a critical point for the K-model on SF networks was not expected. 
Here a dynamical process shows a critical behavior when the network is 
described by a power- law connectivity distribution (Boccaletti et al., 
2006; Dorogovtsev et al., n.d.; Newman, 2003). To find the exact value 
of σc, one can use standard finite-size scaling analysis. 

Graph theoretical bounds to synchronizability: In the sync-context, 
graph theoretical analyses of the Laplacian matrix, of the connectivity 
matrix A, provides the bounds of its extreme eigV’s. The impact of these 
bounds on different types of cN was discussed in Chung (2003), Fiedler 
(1973). 

Relevance for this Paper: The objective of the section up to now was to 
survey the main works relevant to our understanding of theoretical and 
practical aspects of sync-processes in cN. In what follows, the survey will 
be narrowdown to the applications to specific problems relevant to this 
paper, such as biology and n-Sci, engineering, and computer science, 
with some comments on economy and social sciences, which are not in 
the focus of this survey. 

Bio-systems and n-Sci: In biology, cN are present at different space/ 
time scales: from the molecular level up to the population level, 
including many scales of bio-systems in between. In the former case the 
evolution of genetic networks and in the latter case the dynamics of 
populations of species can be analyzed. 

On a different context, n-Sci offers applications for the sync of indi
vidual sN and for the coupling between cort-areas in the brain, both 
discussed in the previous sections of this survey. Application of the 
above concepts in genetic networks is considered in García-Ojalvo et al. 
(2004); Wagemakers (2006); Koseska (2007), Cir-rhythms in Strogatz 
(2003), neuronal networks in Binzegger et al. (2004) and corN of the 
brain in Bassett et al. (2006). For superconducting-oscillatory NN for 
image recognition see Cheng et al. (2023). 

Computer science and engineering: cN and sync are important in many 
computers science (compSci) and engineering areas. In compSci, sync is 
needed for a proper functioning of distributed systems (distrS). The 
objective of the distrS is to establish a global common state (consensus). 
These systems are growing in size and their topologies are becoming 
increasingly complex. At the same time, some engineering problems also 
need coordination at the level of large-scale cN (distribution of infor
mation or energy). 

Parallel Distributed Computation is considered in Nicol (1994), 
consensus problems in Olfati-Saber (2004), Wireless communication net
works in Hekmat (2006) and power grid (Crucitti et al., 2004). 

7. Tensor networks 

7.1. Tensor networks (TN) for QML 

TN’s are a powerful tool for studying q-multiple-body systems (Orus, 
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2019). With its roots in q-physics, nowadays an increased interest in 
adapting them to ML (Levine, 2019) can be seen. TN’s have been used in 
various ML problems, such as dimensionality reduction [622], image 
recognition (Stoudenmire et al., 2016a), generative models (Han, 2018), 
natural language processing (Guo, 2018), anomaly detection (Wang 
et al., 2020a), etc. ML models based on TN have several useful features 
from both theoretical and practical perspectives. When used for 
analytical representations, their expressive power (ℰP ) can be modeled 
by the ent-structure of the underlying TN q-states. 

This enables us to understand their applicability to a given learning 
assignment by analyzing the entanglement properties (Convy, 2021). 
TN’s also provide a foundation to analyze exponential improvements 
certain qL models exhibit over their c-analogues (Gao, 2021; Gao, 2018; 
Levine, 2019). By using TN’s, recently a separation in ℰP between 
Bayesian networks and their q- version has been shown to originate from 
q-nonlocality (Gao, 2021). In practice, numerical techniques used for 
TN’s, Stoudenmire et al. (2016a), are also handy for optimizing and 
training of ML models. Several open-source libraries have been released, 
which have supported and will continue to help the work on TN based 
ML. Nowadays, this research field is being extended, with significant 
advances. Even so, a number of important questions remain largely 
unanswered. 

In addition, in classical ML, a serious obstacle for training ANN is so 
called barren plateau (bp) problem, causing that G of the ooF reduces 
exponentially with the problem size (Cichocki, 2017). The bp also exists 
for many qL models based on variational q-circuits and nowadays the 
topics are still being studied (McClean, 2018). The problem of bp for TN 
based ML models is crucial but still not enough explored topic. Here the 
matrix product states (MPS) based circuits are studied, which is a special 
case of TN in one dimension. 

TN Based ML: As already indicated earlier, in classical ML, an 
obstacle for training ANN is the bp problem (Zhao, 2021). The problem 
also exists for many qL models and is still under active study (McClean, 
2018; Wang et al., 2020b; Cerezo et al., 2021). By exploring different 
ooF, authors in Liu (2021) proved rigorously that bp arise generally for 
MPS-based L with ooF, making their training by G-based methods 
ineffective and the related circuits unscalable. In contrast, for local ooF, 
bp is not present and these models can be efficiently trained. Ref. (Liu, 
2021) also proves that for local ooF the G-decays exponentially with the 

distance between the region where the local observable acts and the site 
that hosts the derivative parameter. This demonstrates the locality 
property of TN which is useful in reducing the complexity in training 
corresponding models. In addition, Liu (2021) shows by numerical 
simulations that these results hold as well for MPS-based learning 
models which are not too large. 

ML by qTN: Authors in Liu (2018) describe an experiment with MPS 
to show how q-entanglement (ent-) can be used for L -architecture. In the 
experiment, a set of images with a certain shade of grey is encoded onto 
the many-qubit states in a Hilbert space (Stoudenmire et al., 2016b). The 
classifiers of the encoded images are implemented as matrix product 
states (MPS). Multiscale ent-Renormalization Ansatz (MERA) (Liu et al., n. 
d.b) training algorithm is used for optimizing the MPS. 

7.2. Tensor networks for complex systems optimization 

Tensor (T -) decompositions (TD) and TN’s are used as an efficient 
tool in data analysis and data mining. Here models and pertaining al
gorithms for ls-TN are surveyed, especially decompositions of T -Train 
(TT) using novel analytical and graphical representations. The survey 
covers the methods for creating very high-order’s from lower-order 
original data, referred to as T -ization, and data compression by using 
quantized TT networks. The goal here is to show how TN’s are used for 
solving a wide class of big data (bD) optimization problems (not trac
table otherwise) by applying T -ization using relatively small size 
matrices and ‘s and applying iteratively optimized T - contractions. 

Big Data (bD) of large volume and high complexity cannot be 
handled by existing standard methods. bD is characterized not only by 
its large volume but also by veracity, variety, velocity, and value. High 
volume needs scalable algorithms; high velocity needs real-time pro
cessing of stream of data; high veracity requires techniques for noisy, 
incomplete and/or inconsistent data, high variety assumes the use of 
different types of data, e.g., binary, continuous data, images, time series, 
etc., and finally the value refers to more informative data that provide 
meaningful and interpretable results. 

Multidimensional (M D -) data, like multimedia signals (speech, 
video), and medical/biological data are present across the sciences and 
engineering. The analysis of bD requires new methods to process large 
datasets within tolerable time without excessive complexity. Tensors 

Table 5 
CrossTechology coverage (focus-Synchronization).  

1 2 3 4 5 6 7 8 9 10 11 

(Zhang, 2008, Hale, 1993, Lu, 2011, http, n.d.e, http, n.d.f, Gao, 2018, Wen, 
2012) 

sync      A Neuroscience and Network 
Synchronization   

√ 

(Pecora, 1990, Abbasi et al., 2013, Stanoev, 2013, Karimi, 2010, Wu et al, 
2013a, Xia, 2009, Yang, 2013, Lu, 2011, Yang, 2010, Zhang, Qin, 2015,  
Wang, 2015, Yamamoto, 2004, Yang, 2004, Ji, 2011, Boukas, 2006, Bo, 
2014, Liu et al., 2009a, Wu et al., 2013b, Yang, 2012, Zhang, 2015, Karimi, 
2011, Liu, 2013, Mao, 2011, Wang, 2010, Zhu, 2012, Sastry, 1989, Pariño, 
2000, Zhou, 2014, Gu, 2003, Zhou, 2013, Zhang et al., 2013b, Mao, 2008,  
Kolmanovskii, 2003) 

sync      Complex dynamic networks   √ 

(Zhang et al., n.d.) sync      Synchronization of neural networks with 
stochastic perturbation   

√ 

(Glisic, 2016, Watts & Strogatz, 1998, Barabasi & Albert, 1999, Guan, 2010, Li, 
2014, He et al., 2014a, Wen, 2015, Lu, 2009, Wen et al., n.d.; Liu et al., 
2009b, He et al., 2014b, Wen, 2013, Tang, 2012, Cai et al., 2009, Yu, 2012) 

sync      Complex networks   √ 

(Zhang, 2009, McClean, 2014) sync      Coupled neural networks   √ 
(Glisic, 2016, Danon et al., 2005, Newman & Girvan, 2004, Girvan, 2002,  

Strogatz, 1988, Niebur, 1991) 
sync      Large Scale Networks Synchronization   √ 

(Strogatz, 1988, Niebur, 1991, Winfree, 1967, Kuramoto, 1975) sync      Oscillator models on complex networks   √ 
(Glisic, 2016, Hong, 2002, Watts, 1999, Dorogovtsev, et al., n.d.) sync      Onset of synchronization in complex 

networks   
√ 

(Chung, 2003, Fiedler, 1973, Strogatz, 2003, Binzegger et al., 2004, Bassett 
et al., 2006, Nicol, 1994, Olfati-Saber, 2004, Hekmat, 2006, Crucitti et al., 
2004) 

sync      Graph theoretical bounds to 
synchronizability, Biological systems and 
neuroscience   

√ 

This paper NET √ √ √ √ √ Cross-Tecnology survey √ √ √ 

1 reference, 2 focus, 3 classic, 4 quantum, 5 complex networks, 6 tensors, 7 q-simulations, 8 contribution, 9 energy efficiency, 10 computational efficiency, 11 
synchronization. 
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M D -representation of matrices, provide a natural sparse and distributed 
models for such data. 

T ‘s are used in different types of data analysis, e.g in signal and 
image processing, psychometric, chemometrics, biometric, q-physics/ 
information, q- chemistry (Che) and brain science (Cichocki, 2014b; 
Cichocki et al., 2014c; Cichocki, n.d.; Cichocki et al., 2009). T ‘s are 
especially useful for data having simultaneously large volumes and high 
variety. 

TD’s enable some upgrades of blind source separation (BSS) 
(Cichocki et al., 2014c). TN’s/TD’s are convenient for dimensionality 
reduction, they can operate with missing and noisy data (Kressner, 
2016). They are used for analysis of coupled blocks of big 

T ‘s with non-zero entries, using the map-reduce methods, and out- 
of-core approaches (Cichocki et al., 2014c; Wang, 2005; Suter, 2013; 
Phan, 2011; Lee & Cichocki, n.d.). Moreover, multiblock’s can be 
decomposed to correlated and uncorrelated or st-independent compo
nents. New models and associated methods that can identify the core 
relations among the different’s, and scale to large datasets are needed 
for the analysis of coupled’s. 

EXAMPLE: 7__________________________ 
Complex interactions between T ’s can be visualized by TN graphs 

in which T ‘s are represented by nodes in the form of circles, spheres, 
triangular, squares, ellipses and outgoing edges (lines) emerging from a 
node representing a mode, way, a dimension, indices, as shown in 
Fig. 10 (Orus, 2012; Orus, 2013). TN diagrams are useful in visualizing 
TD and expressing complex analytical (multilinear) operations of con
tractions of T ‘s. 

TN’s are used in q-physics, q-chemistry, and q-information, which 
study the ways to build a q-computer and to program it (Orus, 2012; 
Orus, 2013). 

The benefits of multiway T -analysis for bD include: 

1) Compression of big M D -data via T -ization and TD’s of a high- 
order T into factor matrices and/or core T ‘s of low-rank and low- 
order; 2) Executing all calculations in feasible T -formats (Orus, 
2012; Orus, 2013); 3) Flexible distributed representations of struc
turally rich data; 4) Possibility to process noisy and missing data by 
using low-rank T /matrix approximations and by leveraging 
robustness and stability of TD algorithms; 5) A framework to incor
porate various diversities or constraints in different modes or 
different factors (core T ‘s) and thus naturally extend the standard 
(2-way) component analysis and blind source separation methods 
(Cichocki et al., 2014c) to ls- M D - data; 
6) TN’s provide graphically represented large distributed networks 
and perform complex T -operations (i.e., T -contractions and 
reshaping) in an intuitive way and without using explicitly analytical 
expressions. 

A wide range of review and tutorial papers (Cichocki et al., 2014c; 
Comon et al., 2009; Lu et al., 2011; Mørup, 2011; Sidiropoulos, n.d.) and 
books (Cichocki, 2009) covering TD’s and TN’s have been available. 
However, they either only focus exclusively on s-models and/or are not 
explicitly linked to bD processing problems and/or do not explore con
nections to wide class of optimization problems. 

This section adds to it and extends beyond the s-TD models like the 
Tucker and CPD models, with objective to demonstrate flexibilities of 
TN’s in the optimization problems of M D , multi-modal data, together 
with their role as an analytical tool for the discovery of hidden structures 
in large-scale (ls-) data (lsD) (Cichocki, 2009). 

The objective is to survey the work on TN for bD, and to present 
methods for ls-TN’s/TD’s, together with pointing out to practical ap
plications. In addition to the optimization framework, many other prob
lems in bD related to anomaly detection, visualization, clustering, 
feature extraction and classification can also be solved by using TD and 
low-rank T -approximations. 

Low-Rank T -Approximations via TN: TN’s can be considered as a new 
language for bD TD for mimicking large complex systems (lcS) even with 
using s-computers (Cichocki, n.d.; Orus, 2013; Sachdev, 2009; Espig, 
2011). In this context, TN can be seen as a methodology for analyzing 
the internal structure of high-order TD. Discussions on connections be
tween TN’s and graphical models used in ML can be found in Vidal 
(2003). 

Reconfiguration of TN: Transformation of TN from one form to 
another one can be easily performed by using T -synthesis, reshaping 
and basic matrix factorizations, typically using SVD (Vidal, 2003, Ose
ledets, 2011). The basic steps in modifying T -structure are: 1) 
sequential core synthesis, 2) unfolding synthesized’s into matrices, 3) 
performing matrix factorizations (typically, SVD) and then 4) reshaping 
matrices back to new core T ’s. 

T -ization: The mechanism of transforming lower-order (l-ord) orig
inal data into a higher-order (h-ord) T is called tensorization. Such 
T -ization is needed in order to obtain a low-rank approximation with 
high level of compression. For example, big vectors, matrices even l-ord 
‘s can be T -ized to extremely h-ord T ‘s, then compressed by using a 
suitable TD which is the underlying principle for bD analysis (Cichocki 
et al., 2014c; Oseledets, 2010; Khoromskij, 2011b). 

Curse of Dimensionality (c-dim): The term c-dim, expresses the fact 
that in a T of an N-th- order (I×I× ⋯ ×I), the number of elements, IN, 
grows exponentially with the T order. By using low-rank T structured 
approximations the complexity of computation is reduced and the c-dim 
relaxed or avoided (Oseledets, 2011; Khoromskij, 2011a). 

Quantized TN: The c-dim can be overcome by using quantized TN, 
representing a T of high order as a set of sparsely interconnected, low 
dimensions (typically, 3rd-order) cores (Oseledets, 2010; Khoromskij, 
2011a). The quantized TN was first proposed in Oseledets (2010) and 
Khoromskij (2011b). 

8. q-Simulation 

8.1. q-Simulations and ML 

In a digital q- simulation (QS), the evolution of the physical (phy-) 
model is mapped, after the usual mathematical formulation of q-me
chanics, onto the effective algebra of q-R ’s made of qubits. The q-time 
propagator, a unitary (U) operation, is then applied in steps through a 
sequence of q-logic gates (i.e. U operations on the qubits) defining a q- 
circuit (Nielsen, 2000). In this section, the survey will cover specific 
examples and general options for the mapping of the target system and 
for the translation of evolution operators into q-R operations. Focus will 
be on the class of q-spin (sp-) models, which besides being extremely 
interesting, usually constitute the ideal formal conjunction between 
general q-mechanical models and their corresponding representation in 
terms of qubits. 

Sp-models are the key towards the QS of a large class of many-body q- 

Fig. 10. A 3rd order T X ∈ RI×J×Kwith entries xijk = X(i, j, k) and exemplary 
symbols used in tensor network diagrams. Each node in the diagram represents 
a T and each edge represents a mode or dimension. Maximum size in each 
mode I, J,K or running indices: i = 1,2, …, I; j = 1, 2, …, J and k = 1,2, …, K, is 
indicated (Orus, 2012). 
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models, which are known to be c-intractable (Troyer & Wiese, 2005; 
Casanova et al., 2012; Barends et al., 2014; Hauke et al., 2013; Martinez 
et al., 2016; Klco et al., 2018). The role is emphasized of quantities that 
are known to be difficult to compute but extremely important in the 
characterization of the dynamical response (Roggero, 2018) of many 
body systems, such as q-correlations. 

Despite being in principle much more powerful, universal qS are 
typically difficult to realize in practice compared to analog simulators, 
mainly due to the stringent requirements for general purpose q- 
computation (DiVincenzo, 2000). Here it should be mentioned that 
hybrid digital-analog qS’s, combining analog approaches (easier scal
ability) with digital QS (intrinsic universality) (Mezzacapo et al., 2015) 
have also been proposed. This method might lead to universal digital-
analog q-computation. 

Several general purpose (Preskill, 2018) and more category- or 
hardware-specific (Lamata et al., 2018) accounts of the development in 
the field of QS can be found in the literature. The following sections will 
start by a summary of the theoretical foundations of digital QS, com
menting on the related mathematical techniques and with a clear focus 
on the tools that are most often required in practical cases. Then the 
recent and future development of the field will be described and com
mented on in terms of both algorithmic procedures and experimental 
results. Special attention will be paid to near-term realizations of digital 
q- computers and QS, and particularly to those technological platforms 
which are currently leading the way, namely coherently manipulated 
trapped ions (Monroe & Kim, 2013; Schindler et al., 2013) and super
conducting circuits working at microwave frequencies (Clarke & Wilhelm, 
2008; Schoelkopf & Girvin, 2008, Devoret & Schoelkopf, 2013). 

The fast pace of advancement will be closely followed which, in 
recent years, has made programmable devices available even outside 
research laboratories, attracting widespread interest. Indeed, estab
lished technological companies such as IBM and Google, startup ven
tures (Rigetti Computing and IonQ to name a few) and public 
institutions (Acín et al., 2018) all have designed and deployed consistent 
strategies in search of the long-sought goal of q- advantage. Such efforts 
promise to break the barriers currently limiting the simulations of 
complex many-body physics with c-computing. Without entering 
rigorous definitions here (Pednault et al., 2017; Boixo et al., 2018; Vil
lalonga et al., 2019; Yamamoto, 2004), such threshold close to the size 
of 50 to 60 fully operational qubits can be identified. Indeed, by 
reasoning in orders of magnitude and by assuming that bytes are needed 
to store a complex number in single-precision, a 50-qubit q-R would in 
general be able to manipulate around 8 × 2N ∼ 9⋅1015 bytes of infor
mation, corresponding to roughly 9 Pb. This in turn approximates the 

typical amount of random-access memory in state-of-the-art supercom
puters (Pednault et al., 2017; Boixo et al., 2018). 

Q-advantage for scientific applications is already reached in the 
existing Noisy Intermediate Scale (NISQ) q-devices (Preskill, 2018), and 
it represents the landmark which would unequivocally certify the 
maturity of the field and probably its potential commercial value. To
wards this direction, relevant claims of a 53-qubit superconducting q- 
hardware outperforming even the most powerful supercomputer 
currently available in the completion of a specific algorithmic task have 
recently been reported (Arute et al., 2019). While being an important 
result, such a device has not been used so far for the demonstration of 
practical use cases. A meaningful impact may be achieved if fully fault 
tolerant and scalable q- circuits will effectively become available 
(Barends et al., 2014; Schindler et al., 2011; You, 2013; Córcoles et al., 
2015), where in addition to logical qubits a much larger number of 
auxiliary q-bits aimed at correcting noise induced errors are also used. 
However, it is difficult to say when the practical realization of this 
paradigm will be available. 

Although the object here is restricted to QS of phy- models, it should 
be mentioned already at this stage that the same techniques could in 
principle be applied to more general computational tasks. Some complex 
problems in fields outside the physical sciences, such as optimization, 
stock market pricing (Woerner, 2019; Martin et al., 2019) and ML 
(Biamonte et al., 2017a) are known to have close relationships with 
many mathematical models in physics or engineering and might there
fore benefit from speedup advantages over classical computers. 

Preliminaries on QS: Mathematical description of a system evolution 
in time is typically formulated by using differential (d-) equations. 
Solving these equations is the essence of most simulation protocols 
nowadays. A typical example is a set of differential equations such as 
d x→/dt = M x→ where M is a matrix and x→ a vector of variables. Given 
initial values x→(0), the solution is x→(t) = eMt x→(0). 

In q-mechanics, the equivalent example is the Schrödinger equation 
(Glisic & Lorenzo, 2022) (assuming ћ = 1) d|Ψ〉/dt = − iH |Ψ〉 where H 

is known as the H- operator and the associated complex linear space is 
the well know Hilbert space of wF’s. The Schrödinger equation can in 
principle be fully solved by using the U time-evolution operator U(t) =

e− iHt . Once U(t) is known, any starting condition can be evolved linearly 
as |Ψ(t)〉 = U(t)|Ψ(0)〉 . 

From the few examples above, it can be already seen that matrix 
exponentiation (m-exp) is a ubiquitous numerical task in simulation 
scenarios, and crucially in the field of q- mechanical systems. On c- 
computers, m-exp is not an easy problem whose computational 

Table 6 
CrossTechology Coverage (focus-TN).  

1 2 3 4 5 6 7 8 9 10 11 

(Orus, 2019, Biamonte, 2019, Cirac, 2020, Levine, 2019, Cichocki, 2014a, Cichocki, 
2016, Stoudenmire et al., 2016a, Han, 2018, Wang et al., 2020a, Guo, 2018,  
Meichanetzidis, 2020, Convy, 2021, Lu, 2021, Gao, 2021, Levine, 2019, Abadi et al., 
2016b, Cichocki, 2017, McClean, 2018) 

TN  √  √  Tensor Networks (TN) for QML    

(McClean, 2018, Wang et al., 2020a, Cerezo, 2021, Liu, 2021, Zhao, 2021) TN √   √  Tensor-network Based Machine 
Learning    

(Liu, 2018, Stoudenmire et al., 2016b, Liu et al., n.d.b) TN √ √  √  ML by Quantum Tensor Network    
(Cichocki, 2014b, Cichocki et al., 2014c, Cichocki, Cichocki, 2009, Kressner, 2016,  

Wang, 2005, Suter, 2013, Phan, 2011, Lee & Cichocki, n.d.; Orus, 2012, Orus, 2013,  
Comon, 2009, Lu et al., 2011, Mørup, 2011, Sidiropoulos, n.d.) 

TN   √ √  Tensor Networks for Complex 
Systems Optimization    

(Cichocki, Orus, 2013, Sachdev, 2009, Espig, 2011) TN    √  Low-Rank Tensor 
Approximations via Tensor 
Networks    

(Vidal, 2003, Oseledets, 2011, Oseledets, 2010, Khoromskij, 2011a, 2011b) TN    √  Reconfiguration of Tensor 
Networks    

(Oseledets, 2011, Khoromskij, 2011a) TN    √  Curse of Dimensionality    
(Oseledets, 2010, Khoromskij, 2011a, 2011b) TN    √  Quantized Tensor Networks    
This paper NET √ √ √ √ √ CrossTecnology survey √ √ √ 

1 reference, 2 focus, 3 classic, 4 quantum, 5 complex networks, 6 tensors, 7 q-simulations, 8 contribution, 9 energy efficiency, 10 computational efficiency, 11 
synchronization. 
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complexity is believed to scale at least polynomially with the size of the 
matrix (Moler, 2003). When combined with the exponential growth of 
the linear dimensions associated to a composite q-mechanical system 
with the number of sub-systems, this in turn results in general to an 
exponential demand of resources for manybody QS. Q-computing de
vices might be able to overcome such limitations in many cases of 
practical interest. 

Here the survey focuses on system H’s of the form H =
∑L

l Hl where 
Hl acts only on an isolated portion of the total system. Computing the 
corresponding time evolution operator U(t) = exp (− iHt) is equivalent 
to the task of realizing a well-defined U transformation. As is well known 
(Nielsen, 2000), a q-computing device composed of a universal set of 
q-gates can perform any arbitrary U transformation. It was proved that 
U(t) can be efficiently obtained whenever H is a sum of local terms. 

Any U-operation acting on N qubits can be realized with O
(
22N)

elementary operations (Nielsen, 2000; Barenco et al., 1995). Since the 
Hilbert space associated with N qubits is d = 2N for given H as a sum of 
local terms, with say L∝p⋅N, where p measures some degree of locality 
and N is the total number of qubits required to encode the computation, 
according to the rules above, computing directly U(t) = exp (− iHt) in 
general requires O

(
22N) operations, and is therefore exponentially (exp-) 

inefficient. Now, if ml is the dimension of the subsystem over which the 
action of each Hl is limited, for ml≪2N, since typical local terms need 
few- body interactions, the unitary Ul(t) = exp (− iHlt) can be 
computed with O

(
m2

l
)

operations. Now the overall product Ũ =
∏

lUl(t)
can be obtained on a universal q-computer by juxtaposing the circuit 
realizations of the single Ul(t)-matrices with at most O

(
Lm2

max
)

elementary operations, where m max = maxlml. The concluding 
reasoning lies in the Suzuki–Trotter (ST) decomposition: e− iΣlHl t =

limn→∞
( ∏

le− iHl t/n)n 

If all the Hl
ʹs commute, i.e. [Hl, Hĺ ] = 0 ∀l, lʹ the ST identity holds 

already for n = 1. In general the product of local time evolution oper
ators will not be exactly equal to the total target U(t) = exp ( − iHt), but 
∀n, U(t) = e− iΣlHl t =

( ∏
le− iHl t/n)n

+ O
(
t2 /n

)
. Still, here the initial 

problem could be broken into smaller segments, e− iHl t/n, which can now 
be realized using only a limited set of elementary gates with arbitrarily 
small digital error O

(
t2 /n

)
. For any ε > 0 and t, there exists an nε such 

that U(t) can be applied within an approximation ε in at most 
nεLm2

max steps. This is polynomial in N whenever L = poly(N), as in the 
case of nearest neighbors’ interactions. 

A universal q-computer will be described, from now on, as a qubit- 
based digital q-device operating within the algebra of Pauli matrices and 
using a universal set of q-gates (Glisic & Lorenzo, 2022; Nielsen, 2000). 
Given the results presented above, the problem of QS can then be 
defined and run on such a machine in a few simple steps.  

1) A model H of interest from a set H must be defined. As for any 
sensible physical description, H contains all the dynamical data 
characterizing the phh-q-system under study. The best set of variables 
and operators will be included in the analytical structure of the H, 
such as for example frequencies and couplings, spin matrices, fer
mionic/bosonic creation and annihilation operators or lattice-dis
cretized q-fields.  

2) The target H⊆ H must be mapped into its equivalent representation 
on the qubit Pauli algebra H ⊂H {σα}. This step requires a suitable 
encoding of the degrees of freedom of the target system into a 
number N of qubits. All the relevant q- mechanical states and oper
ators must be rephrased in terms of computational basis states and 
Pauli matrices {σα} acting on them, thus resulting in mapped 
Hamiltonian H. It should be recalled here that the Pauli algebra of 
qubits is characterized by the following well known set of SU(2) 
matrices (Glisic & Lorenzo, 2022) 

σx =

(
0 1
1 0

)

σy =

(
0 − i
i 0

)

σz =

(
1 0
0 − 1

)

(9)  

satisfying the following commutation and anti-commutation rules 
[σα, σβ] = 2iεαβγσγ, {σα, σβ} = 2δαβI, α, β, γ ∈ {x, y, z}, εαβγis the Levi- 
Civita tensor, δαβ is the Kronecker delta and I is the identity matrix. 
The Pauli algebra is at the heart of the physical description of spin - 
1/2 q- systems and therefore the mapped H will in general corre
spond to a model of interacting spin - 1/2 operators, such as for 
example the Heisenberg or Ising chain. It is easy to understand at this 
stage the reason why spin systems represent the ideal contact point 
between physical and computational q-problems. Despite being 
intrinsically more involved, effective mappings are also known for a 
large variety of interesting cases, ranging from spin S > 1/2 (Santini 
et al., 2011) to fermionic and fermionic-bosonic systems (Casanova 
et al., 2012; Mezzacapo et al., 2015; Santini et al., 2011) usually 
through the famous Jordan-Wigner transformation (Santini et al., 
2011; Somma et al., 2002; Jordan, 1928; Bari, 1973). Other recent 
examples include lattice models related to gauge theories (Martinez 
et al., 2016; Klco et al., 2018) and even q- gravity studies (Gar
cía-Álvarez et al., 2017). Regardless of the details of the original H , 
the q- simulation will be efficient, in Lloyd’s sense, whenever the 
corresponding H is the sum of local terms.  

3) For the target H mapped onto a sum of local increments H =
∑

l
Hl 

one must check whether [Hl, Hĺ ] = 0 ∀l, ĺ  . If that is the case, then 
e− iHt =

∏
le− iHl t with no error. It not, an appropriate number of ST 

steps (Trotter steps) must be chosen according to the preset preci
sion, in such a way that, by applying above equations 
e− iHt ≃

( ∏
le− iHl t/n)n. This application of the ST formula is sometimes 

called Trotterization in QS jargon, and the error which arises from the 
above approximation formula is also named digitalization or digital 
error. In pictorial terms, one might somehow compare this situation 
with the analog-to-digital conversion tasks performed on classical 
computers, where a finite set of discrete operations accessible to the 
machine must be used to approximate a continuum of possible 
signals.  

4) Each local unitary e− iHl t (or e− iHl t/n) must be translated into a 
sequence of q-gates. This is always possible with less than O

(
m2

l
)

operations and with any universal set of single- and two-qubit op
erations available on a general-purpose q-computer. However, no 
unique scheme or library exists in general to carry out such trans
lation, as different universal set of operations are in principle all 
equivalent and specific choices are usually dictated by the processor 
architecture or by technical efficiency considerations. Once the in
dividual sequences corresponding to the segments in the ST 
decomposition are known, the total q- circuit encoding the time 
evolution will simply be the juxtaposition of all of them, repeated in 
general n times.  

5) Finally, the state initiation must be included at the beginning of the 
circuit, and an appropriate set of M ’s must be appended at the end to 
recover expectation values of the relevant observable quantities on 
the evolved q-state. Notice that these are by no means trivial tasks, 
since general q- states and M ’s require the ability of preparing and 
observing highly correlated states and properties. 

While the points outlined above represent quite a general set of in
structions towards the design of a QS algorithm, moving to practical 
implementations of such scheme usually requires a number of algo
rithmic and q- computational tools, which must also be adapted to the 
specific hardware platform on which the computation is to be per
formed. Once more, it should be stressed that the class of computational 
tasks which can be treated with the methods of q- simulations is not at all 
limited to actual phy-systems but extends towards any problem that is 
expressible in the form of Hamiltonian q- dynamics. 
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9. Network optimization framework 

9.1. Network specification 

Parameters relevant for the network optimization are 

τ-optimization of processing cycle 
τa,c-processing time for the algorithm (a=1,2,…,A), assuming there are A 
different options, mainly compromising between serial and parallel pro
cessing. This includes known and new algorithms that might be discovered 
in the future and evaluated using this optimization framework. 

At the moment, in addition to the significant speed up in the computation 
due to the parallelism in the operation (Google has announced a Q-computer 
that can perform computing 108 times faster than the classical one) quantum 
information theory offers additional advantages: 

QSA algorithm like Grover’s algorithm can find the maximum/minimum 
value of the component in the set of N entries in ~N1/2 iterations while the 
classical approach with exhaustive search would require ~N iterations. So, if 
for example N=106, Grover’s algorithm would find the maximum (optimum 
value) 103 time faster than the classical approach. 

In general, quantum approximative optimization algorithms (QAOA) can 
find the maximum of the combinatorial optimization problem in polynomial 
times so turning the NP hard problems with exponential times into faster 
problems with the price that the optimum value is an approximation. The 
compromise between the accuracy and speed up in the execution of the 
optimization algorithm is the design parameter. 

c-computer type (c = 1,2,…, C), assuming C different computers type are 
available ranging from simple processor laptop/ desktop computer to near 
future and full size quantum computer. 
τp-propagation time over network diameter (p = 1,2,…, P). P different 
options are considered. This time might be negligible when locally opti
mizing NN design and relevant when optimizing distributed network like 
routing in large size network or federated ML. 
τe- size of the encoding slots (e = 1,2,…, E). The larger size of the slot 
enables encoding the amplitudes in SNN with high precision. 
τe,a- aggregate size of the encoding slots (ea = 1,2,…, Ea). 
τs-sync acquisition time (s = 1,2,…, S) 
J

A×P×Ea×S×C={a, p, e, s, c}-set of indices, includes all combination of 
the indices a, p, e, s, c 
i=(a, p, e, s) given combination of indices a, p, e, s 
pc,p-network coherency probability for a given p. The larger p increases the 
probability that something might go wrong in the network reducing the 
probability of network coherency. For the faster computer the processing 
time is reduced reducing the probability of incoherency. 

By using above notation, the optimization processing cycle can be 
expressed as 

τ(i) =
(
τa + τp + τe,a

)
pc,p +

(
τa + τp + τe,a + τs

)(
1 − pc,p

)
(10)  

9.1.1. Processing cost 

Na,c-number of operations for algorithm a on a computer c 
Cc -cost per operation on computer type c 
$c=Na,c Cc - Processing cost for computer c 

9.1.2. Optimization problem 

P 1=
min
i∈J $

c(i) × τ(i)

P 2=
min
i∈J $c(i); w.c. τmax ≥ τ  

P 3 = min
i∈J $c(i); w.c. τmax ≥ τ and τe ≥ τemin (11)  

10. Conclusions 

It is anticipated that 6G/7G networks will continue growing and 
extending their demands with respect to data rates, number of users and 
network access points, energy efficiency, network intelligence, decision 
latency in network dynamic reconfiguration and control protocols, ef
ficiency of spectrum and overall resource sharing among multiple 
network operators…. 

As already indicated in ls- networks, social, economic, information, 
technological, biological, q- chemistry, n-Sci and the brain study …, here 
collectively referred to as complex networks, the problem of controlling 
the complex systems in real time is more and more relaying on the help 
of artificial intelligence. 

The ML algorithms, on their own, become increasingly more complex 
resulting in complex neural networks. In order to speed up the ML al
gorithms new computing technologies are considered, like q- computing 
QC, and new models for complex networks that will enable us to effi
ciently control/optimize the processes run on them. This paper, under 
the umbrella of well-established complex networks theory, provides a 
unified presentation of how q- computing, implemented on near future 
computers, can enable solving various problems in above disciplines 
that cannot be solved efficiently by using classical approaches. 

The emphasis is on the commonalities in QC applications and 
modelling for different systems listed above. In addition to discussing 
the algorithms the paper reviews the pertaining implementation prob
lems like the N-sync and analytical and simulation tools for the system 
analysis. A comprehensive survey of the work in these fields is provided 
resulting in a long list of references. For this reason, the paper also en
closes a selected list of references in Table 8, for the first iteration of 
additional readings. 

In the segment of classical NN the paper draws reader’s attention to 

Table 7 
Cross-technology coverage (focus-QS).  

1 2 3 4 5 6 7 8 9 10 11 

(Nielsen, 2000) QS  √   √ Quantum Simulations and 
Machine Learning  

√  

(Santini et al., 2011; Somma et al., 2002; Jordan et al., 1928; Bari, 1973; García-Álvarez 
et al., 2017) 

QS √ √   √ universal quantum computer  √  

(Troyer & Wiese, 2005, Casanova et al., 2012, Barends et al., 2014, Hauke et al., 2013,  
Martinez et al., 2016, Klco et al., 2018, Roggero, 2018, DiVincenzo, 2000, Mezzacapo 
et al., 2015, Preskill, 2018, Lamata et al., 2018, Monroe & Kim, 2013, Schindler et al., 
2013, Clarke & Wilhelm, 2008, Schoelkopf & Girvin, 2008, Devoret & Schoelkopf, 2013,  
Acín et al., 2018, Pednault et al., 2017, Boixo et al., 2018, Villalonga et al., 2019,  
Schindler et al., 2011, You, 2013, Córcoles et al., 2015, Woerner, 2019, Martin et al., 
2019, Biamonte et al., 2017a) 

QS √ √   √ Spin models  √  

This paper NET √ √ √ √ √ CrossTecnology survey √ √ √ 

1 reference, 2 focus, 3 classic, 4 quantum, 5 complex networks, 6 tensors, 7 q-simulations, 8 contribution, 9 energy efficiency, 10 computational efficiency, 11 
synchronization. 
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advances in ML. One example is lifelong machine learning which improves 
performance by using previous decisions when making a decision on a new set 
of data. Here the paper also surveys the work on its variants, lifelong 
supervised, unsupervised and reinforcement learning including lifelong neural 
networks. 

Here the paper also discusses an important application of ML to 
simplify complex signal processing algorithms used in wireless net
works. Most of these algorithms require rather high complexity, pre
venting real-time processing. A learning- based solution has been 
developed to address this issue. Here an SP algorithm is modeled as an 
unknown nonlinear mapping and a DNN is used to approximate its 
operation. 

For distributed ML the survey covers works on federated learning 
including its privacy. Block Chain protection of FL has been considered 
as well. 

Then the paper presents the work on spiking neural networks. The 
interest in spiking neural networks is twofold. First using spikes instead 
of continuous presence of signals enables several orders of magnitude 
better energy efficiency. Second, deep understanding of the neurological 
processes enables us to have better insights in the operation of the 
human brain which is expected to help us further develop better 
modelling and design of the algorithms for control of artificial neural 
networks. 

Here the paper surveys the work on spiking neurons and spiking 
neural networks. The focus in this segment is on relation between the n- 
Sci and AI. The paper surveys the work on ML solutions based on the 
results of brain science. The latest advancements in modern AI borrow 
biological results from corN, in terms of both structure and function. 

Here the authors argue that n-Sci and ML are developing towards 
convergence, since ML focuses nowadays on the optimization of objec
tive functions, is introducing complex cost functions, not uniform across 
layers and time and begins to diversify the architectures that are subject 
to optimization. 

Implementation of the above algorithms by using q- Computing (QC) 
is expected to minimize the complexity and increase the execution speed 
of the algorithms. In this segment the paper surveys the work on 

artificial q- neuron and q- neural networks. Here deep learning tech
niques do not use only fully connected architecture. The q- CV models 
encode problems in a number of different representations. When it 
comes to q- ML the paper surveys the work on Hamiltonian estimation, 
which is the most common operator used in q- information processing. 
The survey also covers the work on group-theoretic approach to QML 
dealing with group-invariant models (produce outputs that remain 
invariant under the action of any element of the symmetry group asso
ciated to the dataset. The methods can be equally applied in the case of 
representations of discrete groups (mathematical structures, for 
instance, when the q-data is invariant under a finite set of permutations). 

In the evolution of communication networks from 6G to 7G further 
growth of our ambitions to model more sophisticated optimization 
processes requiring more powerful analytical tools should be expected. 
For these reasons, it is useful to review the work done in the field of q- 
computational chemistry where some advances in building complex q- 
models have been achieved already. 

Applying q- computing to solve classically intractable chemistry 
problems generated a number of sophisticated models that can be 
considered to be used directly or modified in future 7G network opti
mization as well. This is particularly relevant for direct brain/network 
communication. Here the paper surveys the work on molecular Hamil
tonian, again as a q- operator commonly used in q- chemistry. 

The existence of tD in biological and artificial NNs, is a source of 
oscillations and instability. For this reason, synchronizing complex dy
namic networks has become a mainstream topic in secure communica
tions (including 6/7G), chemical reactions and biological systems. In 
this section the problem of synchronization is revisited by generalizing 
the problem to the complex networks with extremely large number of 
nodes. Here the paper surveys the work based on different models of 
complex networks, Erdös–Rényi (ER) random graph network model, 
scale-free (SF) networks, the Barabási-Albert (BA) model, network with 
community and modular structure. A survey is provided for application 
of the above concepts in genetic networks, Circ-rhythms, neuronal networks 
and cor-networks of brain. This also includes parallel distributed compu
tation, consensus problems, large scale wireless communication networks 

Table 8 
Selected readings.  

Research topic Selected references 

Advances in ML (Chen & Liu, Nov 2016, Caruana, 1997, Li et al., 2009, Argyriou et al., 2008, Altman, 1992, Caruana, 1997, Kaelbling et al., 1996) 
Deep NN and federated 

learning 
(Hershey et al., 2014, Sprechmann et al., 2013, Andrychowicz et al., 2016, O’Shea et al., 2016, Cui et al., 2019, Chen et al., 2020, Yang 
et al., 2019, Konecný et al., 2016a, 2016b, Furukawa et al., 2016, Agrawal & Srikant, 2000, Geyer et al., 2017, Yuan & Yu, 2014, Zhang 
et al., 2016, Acar et al., 2018, Aono et al., 2016, Kim et al., 2018) 

Spiking neuron timing (Lisman, 1989, Morrison et al., 2008, M. & Wang, 1998, Turrigiano & Nelson, 2004, Florian, 2007, Badoual et al., 2006) 
Spiking neuron networks (Cybenko, 1988, Poggio & Girosi, 1989, Vapnik, 1998, Thorpe et al., 2001) 
Neuroscience and AI (Hu, 2021, Arenas et al., 2008b, Bullmore & Sporns, 2009, Marblestone et al., 2016a, Dayan & Abbott, 2001, Hodgkin & Huxley, 1952,  

Deneve, 2017, Clopath, 2010, Curto, 2019, Whiteway, 2019, Bassett et al., 2017, Hu, 2019) 
Deep learning and neuroscience (Marblestone et al., 2016b, Andrew et al., 2013, Goodfellow et al., 2014b, Kurach et al., 2015, Baldi et al., 2015, Lillicrap et al., 2014, Liao 

et al., 2015, Bengio et al., 2015a, Balduzzi et al., 2014, Cui et al., 2015, Marblestone et al., Harris, 2008, Bargmann et al., 2013, Perea 
et al., 2009, Dayan, n.d.; George et al., 2009b, Emin et al., 2016, Bouchard et al., 2015) 

Artificial quantum neuron (Sentís et al., 2012, Tacchino, 2018, Schmidhuber, 2015, Merolla, 2014, Biamonte et al., 2017b, Neukart, 2013, Schuld, 2014, Schuld, 
2015, Kapoor, 2016, Lloyd, 2013, Schuld, 2017, Lamata, 2017, Alvarez-Rodriguez et al., 2017, Otterbach, 2017, Rebentrost, 2018,  
Mocanu, 2018, Hu, 2018, Cao et al., 2017, Torrontegui, 2018) 

Quantum Neural Networks (Beer, 2022, Bu et al., 2021, Larocca, 2021) 
Quantum Machine Learning (Shalev-Shwartz, 2014, Hentschel, 2011, Larocca, 2022, Izquierdo, 2020) 
Quantum Computational  

Chemistry 
(Christiansen, 2012, McArdle, 2020, Lanyon et al., 2010, McClean, 2014, Babbush et al., 2015, Sugisaki, 2016) 

Complexity of Quantum  
Chemistry Algorithms 

(Babbush et al., 2018b, Kivlichan, 2019, Dominic, 2019; Szegedy, 2004; Childs, 2012) 

Neuroscience and Network 
Synchronization 

(Zhang, 2008, Lu, 2011, Wen, 2012, Stanoev, 2013, Karimi, 2010, Wu et al., 2013a, Xia, 2009, Yang, 2013, Lu, 2011, Yang, 2010, Zhang, 
Qin, 2015, Wang, 2015, Ji, 2011, Bo, 2014, Liu et al., 2009a, Wu et al., 2013b, Yang, 2012, Zhang, 2015, Karimi, 2011, Liu, 2013, Wang, 
2010, Pariño, 2000) 

Large Scale Networks  
Synchronization 

(Strogatz, 2001, Albert & Barabasi, 2002, Watts, 1999, Fiedler, 1973) 

Tensor Networks for QML (Orus, 2019, Biamonte, 2019, Cirac, 2020, Cichocki, 2014a, Wang et al., 2020a, Lu, 2021) 
Tensor Networks for Complex Systems 

Optimization 
(Cichocki, 2014b, Cichocki et al., 2014c, Cichocki, n.d.; Cichocki, 2009, Kressner, 2016, Wang, 2005, Suter, 2013, Lee & Cichocki, n.d.;  
Orus, 2012, Orus, 2013, Comon, 2009, Lu et al., 2011, Sachdev, 2009, Oseledets, 2011, Khoromskij, 2011a, 2011b) 

Quantum Simulations and  
Machine Learning 

(Hauke et al., 2013, Klco et al., 2018, Roggero, 2018, Preskill, 2018, Pednault et al., 2017, Santini et al., 2011)  
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and power grid. 
At this point the reader should become aware of the complexity of 

the modeling and analysis/optimization of the complex networks the 
paper is focusing on here. For that reason, it is argued that future 6/7G 
network designers should become aware of what tensor networks as a 
tool offer in facilitating the analysis of such networks. A work has been 
surveyed on how tensor networks could be used in the analysis and 
design of QML algorithms, the optimization of these algorithms and 
reconfiguration of tensor networks. Finally, as an unavoidable tool in 
this process, q- simulation tools are reviewed by surveying several pa
pers in this field. 

i) Contribution: A list of the contributions, exploiting the results from 
research in neuroscience and QC, is enclosed at the end of Section 1. As a 
specific contribution, paper lays out a complex network optimization 
framework enabling the analysis of the interrelations between different 
segments of the network: network diameter, type of the algorithms, 
quality of network synchronization, precision in signal encoding in SNN, 
type of the computer used for running the protocols and network co
herency time. 

Due to the complexity of the optimization problem, QC offers the 
ultimate solution to cope with the network dynamics. In addition to the 
significant speed up in the computation due to the parallelism in the 
operation (Google has announced a Q-computer that can perform 
computing 108 times faster than the classical one) quantum information 
theory offers additional advantages:  

a) QSA algorithm like Grover’s algorithm can find the maximum/ 
minimum value of the component in the set of N entries in ~N1/2 

iterations while the classical approach with exhaustive search would 
require ~N iterations. So, if for example N = 106, Grover’s algorithm 
would find the maximum (optimum value) 103 times faster than the 
classical approach.  

b) In general, quantum approximative optimization algorithms (QAOA) 
can find the maximum of the combinatorial optimization problem in 
polynomial times so turning the NP hard problems with exponential 
times into faster problems with the price that the optimum value is 
an approximation. The compromise between the accuracy and speed 
up in the execution of the optimization algorithm is the design 
parameter. 

ii) Limitations of this work: The main limitation of using QC technol
ogy in future networks is the need to use centralized rather than 
distributed information processing making the impact of propagation 
delays τp-relevant. With the advances in distributed QC these limitations 
might be relaxed to some extent. 

Due to the limited space, the second limitation of this paper is that it 
surveys the work on limited set of potential technologies to be used in 
7G. It does not cover the possible advances in legacy technologies 
dealing with increasing data rates, improving energy efficiency, enhance 
connectivity, reduce data transmission latency etc. 

iii) Improvements and directions for future work: Constant monitoring of 
the research results in neurosciences and brain studies and the work on their 
use to enhance AI, should continue in the future as well. Further work on the 
complex network optimization framework, presented in Section 9, should 
extend the number of network parameters included in the utility function. 
Joint optimization always offers better results than optimization that includes 
only a limited set of parameters. This is especially encouraged since the 
progress in the QC will continue. 

When it comes to the technology coverage of the survey one can see the 
following: Empty columns in Tables 1 and 2 mean that none of the references 
in column 1 covers the given technical problem specified at the top of the 
column. From Tables 3–7 one can see that only our paper covers all technical 
problems specified at the top of the columns. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

No data was used for the research described in the article. 

References 

M. Abadi, et al. 2016a. Deep learning with differential privacy. https://doi.org/10.114 
5/2976749.2978318. 

Abadi, M., et al. (2016b). Tensor-flow: A system for large-scale machine learning. In 
Proceedings of the 12th USENIX conference on operating systems design and 
implementation, OSDI’16 (pp. 265–283). USA: USENIX Association.  

Abbasi, A., et al. (2013). Hybrid centrality measures for binary and weighted networks. 
In R. Menezes, A. Evsukoff, & M. C. González (Eds.), Complex networks. Berlin, 
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