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New paradigms in modemn communication of the brain, be mimicked in artificial neural networks to enhance the learning efficiency with simultaneous
Syétems reduction in complexity and power consumption.

I?/IL At the same time, machine learning algorithms, on their own, become increasingly complex, resulting in
Complex networks complex neural networks. To speed up the machine learning algorithms, research on 7G networks will be looking
n-Sci for new computing technologies, like quantum (q-) computing (QC), and new models for complex networks that

q- biology and q-chemistry for brain modeling

will enable us to efficiently control/optimize the processes run on them.

Tensor networks
Synchronization

In this paper, under the umbrella of well-established complex networks theory, we provide a unified pre-
sentation of how quantum computing, implemented on near-future computers, can enable solving various
problems in the above disciplines, otherwise difficult to solve by using classical (c-) approaches. The emphasis is
on the commonalities in QC applications and modeling for the different systems listed above. For 7G network
designers, the survey is expected to provide an insight into how much the research results in natural, QC based
sciences can be integrated into new network paradigms to support above initiatives.
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1. Introduction

It is anticipated that 6G/7G networks will continue growing and
extending their demands with respect to data rates, number of users and
network access points, energy efficiency, network intelligence, decision
latency in network dynamic reconfiguration and control protocols and
efficiency of spectrum and overall resource sharing among multiple
network operators.

In large scale (Is-) networks, social, economic, information, techno-
logical, biological, quantum chemistry, n-Sci and brain study, here
collectively referred to as complex networks, there is a trend of con-
trolling the complex systems in real time by more and more relaying on
the help of artificial intelligence.

At the same time, machine learning (ML) algorithms, on their own,
become increasingly more complex resulting in complex neural net-
works. To speed up the ML algorithms new computing technologies have
been investigated, like quantum computing QC, and new models for
complex networks that will enable efficient control/optimization of the
processes run on them. This includes applying results of lessons learned
in neuroscience to enhance ML algorithms. In this paper, under the
umbrella of well-established complex networks (cN) theory, a unified
presentation is provided on how QC, can enable solving various prob-
lems in above disciplines that are difficult to solve otherwise.

The emphasis is on the commonalities in QC applications and
modelling for different systems listed above. In addition to discussing
the algorithms the pertaining implementation problems are reviewed
like the network synchronization (N-sync) and analytical and simulation
tools for the system analysis. A comprehensive survey of the work in
these fields is provided resulting in a long list of references. For this
reason, in the form of tables, a selected list of references is provided, for
the first iteration of additional readings.

Tutorial and survey type papers are rather efficient ways to get an
insight into the latest advances in a specific technology. Usually, these
papers focus on a specific technology and often, even more narrowly, on
a specific application of a given technology. For example, references
(Cui et al., 2018; Buczak & Guven, 2016; Fatima & Pasha, 2017) present
surveys on application of ML for Internet of things, cyber security
intrusion detection and disease diagnostic respectively. Similarly (Her-
man et al., 2022) presents a survey of QC for finance. On the other hand,
when designing complex systems/networks consisting of variety of
different technologies there is a need for an integral view of the optimum
solution and especially on the interdependence of the optimal choices in
different segments of the system.

Such an example is a recent initiative to integrate results from n-Sci
and brain research into new paradigms of modern communication sys-
tems (Moioli et al., 2020; Moioli et al., 2021). In support to these ini-
tiatives here a survey of enabling technologies for such an approach is
provided with emphasis on how much the research results in natural, QC
based sciences can be integrated into such systems.

Structure of the paper: To achieve the above objective the paper is
organized in the following way: As the very first step application of the
results from neuroscience in 6G wireless networks is discussed in Section
1.1 and extension to QC in 7G in Section 1.2. Advances in classical NN
are surveyed in Section 2. Advantages of using spiking NN for power
savings and QC based solution for speeding up algorithms are covered in
Sections 3 and 4 respectively. The prospects of using experience in
complex quantum models form computational chemistry in future net-
works are discussed in Section 5. The key implementation problem of
these algorithms, network synchronization, is discussed in Section 6. At
this point the impact of processing and propagation delays on the pulse
position coding in spiking networks and resulting limitations in
leveraging fully the potential in energy savings are discussed in detail.
The work on tools for network analysis, namely tensor networks and
quantum simulations respectively are surveyed in Sections 7 and 8
respectively. The network optimization frame work, a specific contri-
bution of this paper, id presented in Section 9. The structure/flow of the
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presentation is shown graphically in Fig. 1.
1.1. n-Sci and 6G wireless networks

As already indicated above, the starting point for this work are
already recognized potentials in convergence of neuroscience and
modern paradigms in communications presented in Moioli et al. (2020);
Moioli et al. (2021).

The papers discuss how brain signals will be incorporated in future
wireless systems. The brain is modelled as, densely connected set of
neurons, with small-world properties, which is a category explicitly
studied by complex networks theory (Glisic, 2016). For this reason, the
presentation in this paper is organized under the umbrela of complex
networks theory.

Energy consumption limits the optimization of neural connectivity.
Spiking activity, the way neurons communicate (Laughlin & Sejnowski,
2003), contributes significantly to the brain energy consumption.
Consequently, the paper presents a detailed survey on spiking neural
networks offering several orders of magnitude energy savings compared
to the classical (c-) solutions with continuous signaling within the
network.

Discussion on how the research results in n-Sci are used to improve
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Fig. 1. Overview of the paper content.
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development of the 6G/7G systems through brain type communications
BTC, is presented also in Moioli et al. (2020); Moioli et al. (2021)
providing additional details and challenges of wireless brain implants.

On the other hand, advantages that wireless networks may provide to
n-Sci’s are also discussed in detail, in particular new generation of brain
machine interfaces BMIs based on wireless connectivity for BTC (Leb-
edev & Nicolelis, 2006; Lebedev, 2014; Moxon & Foffani, 2015;
Andersen et al., 2004; Lebedev & Nicolelis, 2017) and even the Internet
of Bio-Nano Things (IoBNT) (Akyildiz et al., 2015; Akyildiz et al., 2008;
Veletic¢ et al., 2019). This also includes the theory of chaotic neuronal
communications.

The references also include discussion on data security and privacy
as well as ethical issues recommendations to guide both wireless com-
munications and n-Sci’s in the near future. Future solutions for network
security will be heavily based on QC and due to the complexity of the
subject we will address the problem separately in our future publications
(Glisic & Lorenzo, 2022, Glisic, 2023a, 2023b).

1.2. QC n-Sci and 6G/7G networks

1.2.1. Motivation

As already indicated, the main motivation here is to support the
initiatives like those in Moioli et al. (2020); Moioli et al. (2021) to
leverage the convergence of neuroscience and modern paradigms in
communications by providing a comprehensive survey of the work on
QC as enabling technology for above initiatives. The survey is extended
to include additional relevant fields as quantum biology and quantum
chemistry which are also participating in the overall modelling and
analysis of the operation of the brain and its relation to the design
principles of modern communications.

As already indicated in Glisic and Lorenzo (2022); Chen and Liu
(2016) complex networks theory enables us to use a high level of
abstraction to model basic principles supporting the operation of the
human brain.

In their own way, these networks evolve into large-scale networks
(IsN) controlled by algorithms based on artificial intelligence. Here, the
advances are reviewed in modeling, analysis, design, and operation of
these networks with focus on optimum energy and computational effi-
ciency. In addition, advanced solutions for network synchronization (N-
sync) are reviewed along with the available tools for their analysis, and
simulations under the umbrella of complex networks theory. This “cross
technology” coverage of the survey should help network designers to get
a comprehensive insight into the interrelation/interdependency of the
different technologies used for the overall future communication net-
works design.

1.2.2. Energy efficiency

Since ML is used for the network control, after a survey of classical
solutions (Section 2) the survey will focus on ML based on spiking neural
networks (SNN) as a possible solution in 7G, which is supposed to pro-
vide several orders of magnitude in energy savings (Section 3).

Even when the paper talks about classical ML, the paper will focus on
the latest advances in the field like Lifelong ML, and review work on
related problems.

Under the umbrella of classical ML, the paper will also survey the
work on Deep NN (DNN) and Federated Learning (FL).

Most of the advanced signal processing algorithms often require
considerable complexity, making them less attractive for practical ap-
plications. Here, the paper will review the work demonstrating how ML
can help to solve this issue. The solutions based on ML use a DNN to find
an acceptable approximation of the input/output nonlinear mapping of
an SP algorithm.

The survey will include work on: Optimization algorithm approxi-
mation by DNN, generic optimization problem, algorithm approxima-
tion background, spatial scheduling by DNN, wireless link scheduling,
scheduling by DNN, training process, link deactivation, spatial sched-
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uling by DNN with proportional fairness, DNN in vehicular networks,
system model, channel model, modeling age of information problem
(Aol), link clustering, network optimization, Aol-aware RRM objectives
and Bellman’s equation and DRL algorithm.

This segment will also include federated learning system (FLS)
(Mohassel & Rindal, 2018; Araki et al., 2016; Furukawa et al., 2016;
Mohassel et al., 2015). Here ML models process data sets coming from
the sources from different locations. In this scenario the objective is to
prevent data leakage. The survey will include works on algorithms,
classification, FLS architecture, and block chains.

After a survey of classical solutions (Section 2) the paper will focus
on ML based on spiking neural networks (SNN) as a possible solution,
which is supposed to provide several orders of magnitude in energy
savings (Section 3). This will include work on a. Spiking neuron timing.
b. Spiking neuron networks c. n-Sci and Al and d. Deep learning and n-
Sci.

The basics of bio-learning (b#) and memory is synaptic plasticity
(sP). Here, the paper will survey works modeling short- and long-term
sP, with focus on spike-timing (sT) dependent plasticity (STDP). This
approach requires detailed analysis of the synchronization in these
networks which the paper covers in Section 6. The objective is to build
up a framework for modeling different types of plasticity. All models
discussed here can be used for large-scale network simulations.

In summary, in this segment the survey will include the works on
models of sP based on sT, works on plasticity, experimental results,
theoretical concepts, short-term plasticity, Markram-Tsodyks model,
Abbott model, long-term plasticity (STDP), pair-based STDP rules,
weight dependence of STDP, beyond pair effects, voltage dependence,
induction versus maintenance, supervised and reinforcement learning
(r9®), r# and STDP, r# algorithm for SNN, mathematical foundation of
the basic #-rule, bidirectional associative plasticity, intrinsic plasticity,
modulation of STDP by reward with experimental examples and adap-
tive Z in brain.

In the sequel, the paper will review the work on spiking neuron (sN)
networks (sNN’s). They are based on computing principles in the brain
and latest research results in n-Sci requiring precise timing of spike firing
and detailed description of synaptic (sy) role in the interactions between
neurons. When it comes to computational power, SNN’s outperform the
classical NN’s. They provide a basis for building up models with high
capacity for memorizing and an ability to adapt fast. The objective here
is to design learning rules that combine both good features of sSNN’s and
useful properties of traditional connectionist models.

Here the paper starts by summarizing currently available models of
neurons and sP, the capabilities of sNN’s, different approaches for
designing algorithms for learning in sNN and finally by discussing ap-
plications, implementations and several simulation frameworks. The
work reviewed in this segment will include: Artificial neural networks,
biological inspiration, information coding by spikes timing, sNN,
network science (nS) and sP, integrate&fire (iF) model, model of the
spike response, sP and STDP, learning algorithms in sNN, mimicking
classical models, the neural code, input encoding, output decoding,
objective functions, activity regularization, training sNN, shadow
training, backpropagation (bp) using spike times, bp using spikes, long-
term temporal dependencies, online learning, temporal locality, spatial
locality and comments on further research in sNN.

Before going to the review of artificial quantum neurons (gN) the
paper will survey the work on n-Sci and AI dealing with physical pro-
cesses in the brain and discuss in depth the latest research results in nS,
n-Sci and dynamic systems (dS), and their interrelations with focus on
the latest trend in the filed referred to as brain-inspired intelligence. A
practical way to imitate brain intelligence is to mimic cortical networks
(corN) with its dynamics that support the brain functions, rather than
use classical artificial NN. Here the paper reviews the work providing a
complex network (cN) and space/time dynamics (referred to as network
dynamics -nD) models for analyzing the brain and corN and develop n-
Sci and nD based integrated approaches for designing intelligence
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including learning and resilience functions mimicking the brain
behavior. For this, the paper needs to cover issues such as fundamentals
of ¢N, n-Sci, and hybrid dS, and the work about the brain and
intelligence.

The survey includes in particular works on n-Sci and nD, modeling
dynamic neurons and networks, hybrid network control applications,
optimization for learning and resilience, SNN with computing dynamics,
different options for encoding spiking data, and electrophysiological
connectivity patterns in cortex.

In the sequel, the paper surveys the work studying commonalities
between Deep Learning and n-Sci. The interest of n-Sci is in the imple-
mentation of computation, constructing neural codes, studying and
modeling dynamics, and designing circuits. In ML, however, ANNs tend
to intentionally avoid exactly designed codes, dynamics or circuits but
rather use optimization objective function (0oF), with simple architec-
tures. These seemingly divergent perspectives are lately converging
based on two recent results within ML.

1) structured architectures are used for memory storage. 2) ooF and
training algorithms evolve into more complex procedures varying across
layers and over time. In this paper the work exploring the brain with
focus on these ideas is surveyed. It was hypothesized in Marblestone
(2016b) that: (1) the brain also uses 0oF, (2) There is a variety of such
ooF and they are different at different brain segments and time instances,
and (3) Objective function (oF) minimization/maximization works
within a preset structure adjusted to the problems defined by behavior.
The system combines a number of interdependent oF, makes #-data--
efficient and adjusted to the human individual.

Here the paper reviews work on possible options n-Sci has available
to improve and test these hypotheses. Intending to answer the questions
Can the brain optimize cost functions? and Can the brain learn differently?
the paper focuses in particular on work including: Local organization/
optimization, biological optimization, impact of training data on su-
pervised and reinforcement learning, analytical models for credit
assignment in NN, modeling Deep Feedback Control (DFC), learning
theory, stability of DFC, learning the feedback weights, derivation of the
key theorems, learning theory revisited, linearized dynamics and fixed
points, DFC approximates Gauss-Newton optimization, DFC uses mini-
mum norm updates, Gauss-Newton optimization with a mini-batch size
of 1, effects of the nonlinearity ¢ in the weight update, continuous DFC
vs steady-state DFC weight updates, compatibility of DFC with various
controller types, stability of DFC revisited, stability analysis with
instantaneous system dynamics, stability of the full system, design ex-
amples, learning the feedback weights: revisited, learning the feedback
weights in a sleep phase, learning the forward and feedback weights
simultaneously, influence of noisy dynamics on learning the forward
weights, simulations and algorithms of DFC, simulating DFC and DFC-SS
for training the forward weights and simulating DFC with noisy dy-
namics for training the feedback weights.

1.2.3. Computing efficiency and complexity reduction

For reducing required computational resources and speeding up the
execution of the algorithms, the paper will survey solutions for ML based
on QC, referred to as Quantum ML (QML) (Section 4).

The starting point in studying ML algorithms and Al protocols in
ANN is the modeling of an artificial neuron (aN). The first work of an aN
is the classical Rosenblatt’s “perceptron” (P*), with the main drawback
being complexity, preventing the use for training of multilayered P¥-
networks. QC-based perceptron, with significant reduction in hardware
resources over classical (c-) options was presented in Tacchino et al.
(2018) together with experimental test.

The survey of the work in this segment includes modeling quantum
P, unitary transformations, P -model complexity, online quantum P%,
quantum version space P¥, hybrid quantum-classical P algorithm,
quantum computation, Grover’s search algorithm, quantum activation
functions for QNN, computation of the polynomial series, approxima-
tion of analytical activation functions, quantum neuron (gN),
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feedforward neural network, and Hopfield network.

Moving from gN to the quantum NN (gNN): The g-analog of an aN,
presented above, leads to a q-feed forward NN capable of universal QC.
Here the paper surveys work on qNN using graph-structured data and
those using ansatz for a Q generative adversarial network.

Quantum machine learning (QML) can be used as c-ML enhancing g-
tasks, q-algorithms speeding up c-ML, or using QC circuits for tasks with
g-data. The dissipative gNN (DQNN) uses QC hardware for tasks with g-
data. It consists of several layers of qubits and a pair of g- states is used
for its training. An input state and a desired output reflecting the
training objective represent a training data pair.

The DQNN is built of g-perceptrons (gP*) like those reviewed in the
previous section. A gP% interconnects two adjacent layers of qubits and
is modeled as a completely positive (CP) transition map (tM). The term
dissipative specifies the operation of tM’s which defines both tensoring
the states of the two layer’s qubits and executing unitary (U) operations
and tracing out the qubits from the first of the two layers. So, through the
interaction between the two adjacent layers, tM’s propagates input
states forward throughout the DQNN. At the end the resulting output
state is compared with the targeted result. For this step the fidelity of
two g-states is used to determine how the perceptron U’s should be
updated to perform the training efficiently. The work that will be
reviewed in this section will include Network architecture, optimization
of objective functions, training QNN, implementation, performance
limits of QNN, performance limits of classical and quantum optimization
algorithm, continuous-variable (CV) QNN, the CV model, embedding
classical neural networks, convolutional, recurrent, and residual CV
QNN.

Given the full understanding of the QNN the paper then reviews the
work on Quantum Machine Learning (QML) algorithms. Here the paper
surveys the work on: Methods of ML, ANN and deep learning, support
vector machines, Learning Theory, Computational learning theory, VC
theory, reinforcement learning theory, ML in g-physics, estimating
Hamiltonian, phase estimation (phe) settings, group-theoretic approach
to QML, gradient (G) - invariance and Lie group-invariant models.

1.2.4. Complex quantum models

The presentation of the use of multiple-body g-systems will be
illustrated on different models of molecules in chemistry (Section 5).
Familiarity with this work should provide solid base for further work,
within 7G umbrella, on advanced modelling on BTC and especially on
brain to network interface (BNI).

Quantum computing is used nowadays more and more for solving
otherwise difficult chemistry problems. These solutions may also help us
to improve algorithms used in other fields, especially in ML learning the
paper is focused on in this survey. Research results in solving these
problems with existing q-resources are important since building a suf-
ficiently large QC may take time. Based on these expectations, g-
computational chemistry (cCh) has become a research field using
knowledge from both QC and cCh. Here the paper surveys the work in
both cCh and QC, reducing the current knowledge gap. Here the paper
discusses the main results in the field, with a focus on potential provided
with the existing results in QC. The reviewed work shows how to model
chemical problems in such a way that can be solved using QC.

Works to be reviewed in Section 4 will already indicate the results
significantly reducing the implementation complexity needed to simu-
late problems in g-computing chemistry. The solutions are based on
using linear combinations of U’s and plane wave (pW) basis Coulomb
(Co) operator. In the sequel the paper will further detail these techniques
and review the work achieving approximately same results even by
using arbitrary basis sets by leveraging structure in the Co operator. This
is based either on leveraging sparseness, or a low rank tensor (.7)
factorization (Ir.7 f). As an example, authors in Dominic (2019) provide
circuits with Z(NS/ 2A)T (Toffoli gates) complexity, with N representing
a number of orbitals and A being the 1-norm of the chemical



S. Glisic and B. Lorenzo

Hamiltonian (che-H).

Along these lines the paper will review the work in this field
including arbitrary basis q-chemistry, Ir.7 f of the Co, linear combination
of unitaries (LCU) based simulation, the Hamiltonian as a LCU, state
preparation, controlled U’s, complexity exploiting sparsity in the Co, QC
molecular energies, classical approaches to q-chemistry, unitary coupled
cluster (UCC) and variational q-eigensolver for (UCC).

1.2.5. Large scale system level implementation

Synchronization, as a pertaining problem in the implementation of
large-scale networks (LSN) will be reviewed in Section 6.

Complex dynamic networks (cDN) can simulate practical models
such as LSN of sensors and Internet objects or neural nodes in SNN
(Pecora, 1990; Abbasi et al., 2013; Stanoev, 2013). Since cDN exhibits
more sophisticated and uncertain behaviors than a single NN (Stanoev,
2013), its synchronization is a challenging problem. In this paper works
studying relation between n-Sci and N-sync are reviewed with focus on:
Synchronization of NN with stochastic perturbation, synchronization
analysis, synchronization with aperiodically (adaptive) intermittent
control, stability of spiking NN synchronization under stochastic per-
turbations, feedback control of NN synchronization, exponential syn-
chronization of NN under time-varying sampling, synchronizing cort-
oscillations in human brain, analytical description of a single oscillator,
phase reduction methods for a single oscillator and oscillator network
and complex networks synchronization.

In the next iteration the paper will revisit the problem of synchro-
nization by generalizing the problem and reviewing the work on the cN’s
with extremely large number of nodes. Such networks include physical,
biological, chemical, and technological networks, as well as in the
economic and social systems.

The topics covered include oscillator models on cN, phase oscillators,
the onset of synchronization in cN, the evolution of synchronization
process in cN, stability of synchronized cN, graph theoretical bounds to
synchronizability, other stability function formalisms, relevance for bio-
systems and n-Sci, and computer science and engineering.

1.2.6. Analytical tools

Tensor Networks (TN) as a useful tool in the modeling and design of
LSN will be reviewed in Section 7.

TNs use an intuitive graphical language (gL) enabling efficient
reasoning about them. The methods have been adapted to studying
problems in physics, mathematics, and computer science.

In this segment the paper reviews the work covering: TN models,
wire tensors, graphical singular value decomposition, matrix product
states, TN based ML, the presence/absence of barren plateaus (bp) for
global ooF, ML by q-TN and g-entanglement based learning architecture.

As a further extension of the survey, the objective will be to survey
the work showing how TN’s can be used for big data optimization
problems by using relatively small size matrices and tensors.

These works will include topic like: low-rank tensor approximations
via TN, TN models, reconfiguration of TN, distributed (concatenated)
representation of tensors, tensorization, analytical representation of
tensor trains (TT), matrix TT decomposition, operations in TT repre-
sentation, (TT/MPS) splitting, large-scale optimization problems,
generalized eigenvalue problems in TT formats, canonical correlation
analysis in TT format and solving large-scale systems of linear equations.

1.2.7. Quantum simulations

Quantum (q) Simulations (gS), as an unavoidable part of the overall
network design, will be reviewed in Section 8.

In digital ¢S, the evolution of the physical process on time scale is
mapped, using the mathematical formulation of g-mechanics, onto the
effective algebra of g-registers (%#’s) made of qubits. The g-time prop-
agator, modelled by U operation, can then be implemented in digital
steps as a sequence of g- logic gates (i.e. U transformations on the qubits)
defining a q- circuit (Nielsen, 2000). In this segment the paper will
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concentrate on the contributions using the class of quantum spin models,
which besides being extremely interesting on their own right, usually
constitute the ideal formal conjunction between general q-mechanical
models and their corresponding representation in terms of qubits. Spin
models are in this sense the key to the ¢S of many-body q-models (Troyer
& Wiese, 2005). Examples are the Hubbard model discussed in Casanova
et al. (2012); Barends et al. (2014), or the Schwinger model in lattice
theory (Hauke et al., 2013; Martinez et al., 2016; Klco et al., 2018).
Here, the paper will emphasize the role of quantum correlations (Rog-
gero et al., 2018) in many-body systems. Despite being in principle much
more powerful, universal quantum simulators UQS are typically difficult
to realize in practice compared to analog simulators, mainly due to the
well-known stringent requirements for general purpose quantum
computation (DiVincenzo, 2000). Here, it should be mentioned that
hybrid qS have also been analyzed (Mezzacapo et al., 2015). The revied
work covers the following topics: Preliminaries on qS, spin mapping,
universal sets of quantum gates on NISQ processors, library of quantum
gates sequences for quantum simulations, approximation and digital
error, extracting physical observables, experimental results for
tunneling of S = 1 total magnetization and Spin-1/2 chains, simulation
of QML, quantum classification and quantum neurons, implementing
quantum algorithm for binary-valued artificial neurons, implementation
on NISQ processors, a quantum feed-forward neural network and
pattern classification on a real quantum processor.

1.2.8. Complex networks theory framework

Throughout the survey, all these components of network design will
be unified under the umbrella of the complex network theory frame-
work. The relations between different sections of the paper are illus-
trated in Fig. 1.

1.2.9. Contributions
The paper provides comprehensive survey of sources of information
to 7G network designer on:

- How to choose the ML algorithms to minimize the energy con-
sumption in the network

- Possible speed ups by using lifelong learning.

Achievable speed up in computing rates when using quantum

neurons.

How to choose U’s in Q algorithms for a given objective

- How to create complex quantum models: lessons learned from

quantum chemistry.

How to estimate complexity of the algorithms

How to estimate probability of wrong decision in quantum neural

network

How to design network connectivity to achieve network onset and

full synchronization

How to ensure network stability

How to use TN theory in the system analysis

- How to use QS for the system analysis

- How to leverage experience from n-Sci and brain studies to enhance

efficiency of complex networks: lessons used form assigning spatially

and temporally varying waiting coefficients in neural networks,

referred to as credit assignments.

How to design and optimize Multi-Task Learning [MTL]:

How to optimize the network by considering the complex interde-

pendency between the different components of the system. This is a

specific contribution of the paper which is valid for existing algo-

rithms and the new algorithms that might be developed in the future.

NOTE: At this point it should be repeated that 6/7G networks will be,
as all previous generations, open standards enabling competition be-
tween different technical solutions and standardizing a minimum of the
system parameters that will be required to secure the compatibility of
these solutions. For these reasons here the paper does not propose
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specific solutions for different problems that 6/7G networks will face,
but rather present a variety of technology enablers for a designer to
choose from when building its own specific solution. However, in
addition to identifying these solutions the paper presents an original
complex network optimization framework considering the complicated
interdependency between the different components of the system, that
can be used for both, the existing algorithms and those that might be
developed in the future. By using this framework, the network designers
should be able to compare the performance of the compound systems
using different components.

2. Classical NN
2.1. Advances in ML

Lifelong machine learning (LML): In real life, every learning experi-
ence or decision made increase the human’s knowledge (experience ¢),
so that when next time faced with a similar question human can decide
more efficiently. On the other hand, classical ML algorithms reset the
learning process back to the beginning once they face a new problem to
learn. For classical ML algorithms see Glisic and Lorenzo (2022).

Lifelong machine learning (lifelong ML or LML) is an advanced ML
concept that learns continuously and uses accumulated experience &
from the past to improve the Z-process in the future. In other words, up
to a certain moment, the #-object (lo) has completed an ordered set/
sequence of learning assignments, .71, .7 o, ..., .7 y (earlier assignments),
by using the respective datasets &1, &3, ..., Zn. The assignments are
not of the same type nor from the same domains. For the (N+1)th
assignment .7 ;1 using data Zy;i1, the learner can leverage the
memorized experience € to enhance the decision about .7 y.;. LML is
supposed to optimize the decision about the new assignment. It can also
optimize the decision of any Z-assignment by considering the rest of the
assignments as the previous assignments. The memory keeps ¢ and after
the completion of learning .7 y,1, the memory will be updated with the
knowledge gained from learning .7 1.

Multi-Task Learning (MTL): By using the information of common in-
terest shared by multiple #-assignments (Caruana, 1997; Chen et al.,
2009; Li et al., 2009) here the algorithm learns multiple related .- as-
signments in parallel, to improve the performance. The algorithm in-
troduces inductive bias in the joint hypothesis space of all assignments
by leveraging the #-assignment correlations.

MTL referred to as batch MTL, learns multiple learning assignments
.7 ={1,2, ..., N} at the same time. Each learning assignment t € .7~
with pertaining training data &' has objective to maximize the im-
provements for all assignments. The work here mainly involves super-
vised learning (sL). For each Z-assignments t with corresponding
training data ' = {(x{, y{) : i=1, ..., n }, and n, the number of
training/reference instances in &', &' is given by an unknown true

mapping ft(x) from an instance space 2 C R? to a set of labels
7' (vt € ") (or 7' =R for regression). Parameter d is dimension of
the feature /pattern. The system is supposed to learn f*(x) for each ¥

assignment ¢ so that f'(x) ~ ft(x) . Therefore, for a given ooF ¥/, MTL
minimizes 35 ; S0, Z(f(x}), ¥%) . Different from this batch MTL, on-
line MTL (OMTL) learns the assignments one by one and memorizes
decisions made earlier and uses the memorized experience ¢ to improve
future /-tasks (or to help some previous ones). So, OMTL is lifelong
learning. MTL expects that /-assignments are closely related (high
correlated). For different assumptions about /-assignment relatedness/
correlation, different modeling solutions are used (Evgeniou & Pontil,
2004; Baxter, 2000; Ben-David & Schuller, 2003; Daumé, 2009; Argyr-
iou et al., 2008; Jacob et al., 2009; Ruvolo & Eaton, 2013).

Lifelong sL is a sequential #-process where the Z-object has
completed a sequence of sL Z-assignments, .7 1, .7 o, ..., .7 y and saved
the Z-results (experience €). For #- assignment .7 y.i, the learner
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leverages the memorized & to improve learning fy,1 from .7 y.1’s
reference Dy, 1. After #- .7 y.1, the memory is updated as well with the
Z-results from .7 ny1. In (Thrun, 1996), a lifelong sL procedure was
presented for two e-based #-methods: k-nearest neighbors (Altman,
1992) and Shepard’s method (Shepard, 1968).

Lifelong Neural Networks: MTL net (MTL with neural network) (Car-
uana, 1997) is presented as a lifelong learning procedure in Thrun
(1996). It operates as a batch MTL method. In MTL net, instead of
creating a NN for each #-assignment separately, a joint /universal NN
for all the learning assignment is constructs. Several upgrades of MTL net
are presented in Silver and Mercer (2005), Silver and Poirier (2004),
Silver and Poirier (2007). These upgrades either use virtual training
examples to generate the training data of all earlier #-assignments or
add contexts.

Lifelong Unsupervised Learning (uL): Most of the research here is
focused on topic or subject modeling (tM) and information extraction (iE).
In tM, the knowledge acquired about the topic or subject in the past
(experience on a topic- ;) in related domains or fields (e q) is impacting
the modeling in the other or current field (Chen & Liu, 2014; Liu et al.,
2016). Memory stores the e;. When it comes to iE, LML is also a natural
choice since the objective of iE is to maximize the amount of extracted
and stored useful data or knowledge. The iE is thus cumulative. The
information extracted in the past helps to extract more data later with
higher quality (Liu et al., 2016).

Lifelong Reinforcement Learning (LrL): In each iteration of reinforce-
ment learning (rL), a #-object learns decision steps through action/
correction relation with a time varying environment (Kaelbling et al.,
1996; Sutton and Barto, 1998a). In each iteration, the #-object observes
the environment in a given instant and selects a move from the available
options. The move changes the state of the environment. Depending on
the gain of the state transition, the agent selects, it receives a reward or
fine. The agent learns a sequence of movements, through the repetition
of the process, so maximizing the long run sum of rewards. The objective
of rL is to learn an optimal policy that maps states to movements.

A rL algorithm has no input/output pair as in sL. For details, and
more examples, see sections on Q-Learning in Glisic and Lorenzo (2022).
For good results, a large number of iterations is needed, especially in
high-dimensional (hd) control problems, resulting in high computa-
tional complexity. To mitigate the problem of complexity, LrL has been
proposed. The expectation is that using the accumulated experience ¢
from other #-assignments should improve the Z-object’s decision
making in the new Z-assignments. LrL was introduced in Thrun and
Mitchell (1995) and further elaborated by several other authors (Ammar
et al., 2015).

2.2. Deep NN and federated learning (fL)

Optimization algorithms for signal processing (SP) applications in
advanced wireless networks nowadays often require high complexity.
This diminishes feasibility for real-time processing. A deep neural
network (DNN) is used to approximate any unknown input/output
nonlinear mapping of SP algorithm. If an acceptable accuracy in the
approximation can be achieved by a DNN this may be a solution, since a
DNN may require a smaller number of operations while providing
acceptable performance.

In the open literature, similar logic has been used for replacing an
iterative optimization algorithm by its DNN approximation. As an
example, reference (Gregor & LeCun, 2010) proposes using a multilayer
network to approximate by a separate layer each iteration of the itera-
tive soft-thresholding algorithm (ISTA) for sparse optimization (Beck &
Teboulle, 2009).

Similar ideas are used in Hershey et al. (2014), Sprechmann et al.
(2013) for nonnegative matrix factorization. Authors in Andrychowicz
et al. (2016), Li and Malik (2017) propose learning per-iteration
behavior of G-based algorithms.

Regarding the communication tasks, the recent works in O’Shea
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et al. (2016) reported using DNN in anomaly detection and decoding.
Different from the above, these papers have not been interested in al-
gorithm approximation but rather in signal modeling. Following the
unfolding concept from Gregor and LeCun (2010) authors in Samuel
(2017) proposed a DNN to approximate MIMO detection problem while
using DNN, for links scheduling is discussed in Cui et al. (2019).

For autonomous driving algorithms the freshness (age) of information
(Aol) about the vehicular network state is of paramount importance and
proper network resource allocation aware of the Aol is the major tech-
nical issue in this field. The problem modelling and possible solutions
based on DNN have been also considered (Chen et al., 2020; Zhuang,
2012).

Federated Learning (fL): The concept of fL system (fLS) is proposed in
Yang et al. (2019), Konecny et al. (2016a, 2016b), Brendan et al. (n.d.).
These ML models are designed to prevent data leakage for data
distributed on separate locations.

Privacy of fL: This is the main feature of fL. Secure Multi-party
Computation (SMC) involves a group of users and provides security
based on the so called zero knowledge (zN) concept, where each user
knows only its own input and output. Unfortunately, practical imple-
mentation of the zN, is not efficient. So, it could be considered to allow
disclosure of a part of knowledge if security guarantees are provided.
Accepting controlled reduction of security requirement in SMC in ex-
change for efficiency in implementation, is presented in Du et al. (2004).
Authors in Mohassel and Zhang (2017) used SMC for training ML with
semi-honest assumptions and in Kilbertus (2018) MPC protocols for
model training while preserving user’s data privacy. A solution for SMC
is Sharemind’s framework presented in Bogdanov et al. (2008). Authors
in Mohassel and Rindal (2018) proposed a model assuming that the
majority of the participants are honest and discussed the data protection
in such environments. For the implementation of these solutions users’
data need to be confidentially distributed among non-colluding servers
(Araki et al., 2016; Furukawa et al., 2016; Mohassel et al., 2015).

Differential Privacy (dP) or -Anonymity (Sweeney, 2002) for data
privacy protection (Abadi et al., 2016a) is another line of work here. The
methods of dP (Agrawal & Srikant, 2000) are based on the idea of
intentionally disturbing data by adding noise or obscuring certain sen-
sitive features so that the adversary cannot identify the individual. For
this the data needs to be transmitted somewhere else, and a part of the
algorithm is a trade-of between accuracy and privacy. Reference (Geyer
etal., 2017), introduces a dP approach to fL to additionally protect user’s
data by not discovering user’s role during training.
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Homomorphic Encryption (h&), presented in Rivest et al. (1978) is
also included for protecting data privacy by encrypted parameter ex-
change during ML (Giacomelli et al., 2017). Here, no information is
exchanged, and it cannot be estimated by the other party’s data. So, the
leakage of data is significantly reduced. The h& has been also adopted
for training data on cloud (Yuan & Yu, 2014; Zhang et al., 2016). Ad-
ditive h& (Acar et al., 2018) are implemented in practice, using poly-
nomial approximations of non-linear functions in ML algorithms. This
enables accuracy-privacy trading-offs (Aono et al., 2016; Kim et al.,
2018).

Block Chain protection of FL has been considered as well in references
(Pokhrel, 2020). In Table 1 Cross-Technology Coverage (focus-NN) of
the reviewed papers focused on neural Networks is presented. One can
see that these papers besides focusing on NN cover very little if any of
the other topics needed for getting a fair insight into complex network
design. In the sequel, papers with different focus will be reviewed. Their
coverage will be higher and higher but still significantly lower than one
achieved in this paper.

3. Spiking NN

The interest of this paper in spiking neural networks is twofold. First,
using spikes instead of continuous presence of signals enables several
orders of magnitude better energy efficiency. Second, deep under-
standing of the neurological processes enables better insights in the
operation of the human brain which is expected to help in further
developing better modelling and design of the algorithms for control of
artificial neural networks.

3.1. Spiking neuron

Learning and memory in biology are based on synaptic (sy) plasticity
(syP) (see Fig. 2). This section surveys models of short-term (sT) and
long-term (IT) syP, including spike-timing dependent plasticity (STDP). The
algorithms depending on timing, require precise N-sync, topic covered in
Section 6. This paper focuses on simple models based on integrate-and-
fire type neurons. Here sy update rules for sT or IT syP depend on spike
timing, membrane potential, and the value of the sy weight. The paper
also reviews the literature discussing the relations of these rules to sL
and rL.

It is believed that learning, memory, and cort-plasticity (coP) are
based on syP changes, although the relation between syP features and

Table 1
CrossTechology coverage (focus-NN).
1 2 3 4 5 6 7 8 9 10
(Glisic and Lorenzo, 2022) ML v v/ Details on ML and QC
modelling and analysis
(Chen & Liu, 2016) ML \/ Detailed Modelling and
analysis of Life Long ML
(Caruana, 1997; Chen et al., 2009; Li et al., 2009) ML \/ Multi-Task Learning [MTL]
(Evgeniou & Pontil, 2004; Baxter, 2000; Ben-David & Schuller, 2003; Daumé, 2009; Argyriou ML \/ online multi-task learning
et al., 2008; Jacob et al., 2009; Ruvolo & Eaton, 2013) (OMTL)
(Thrun, 1996; Caruana, 1997; Silver & Mercer, 2005, Silver & Poirier, 2004, Silver & Poirier, ML \/ Lifelong Neural Networks:
2007) modelling and analysis
(Chen & Liu, 2014, Liu et al., 2016) ML \/ Lifelong Unsupervised Learning
(Kaelbling et al., 1996, Sutton and Barto, 1998a) ML \/ Lifelong Reinforcement
Learning
(LRL): modelling and analysis
(Gregor & LeCun, 2010, Beck & Teboulle, 2009, Hershey et al., 2014, Sprechmann et al., 2013, ML \/ Deep NN and Federated
Andrychowicz et al., 2016, Li & Malik, 2017, O’Shea et al., 2016, Samuel, 2017, Cui et al., 2019, Learning

Chen et al., 2020, Zhuang, 2012, Yang et al., 2019, Konecny et al., 2016a, 2016b, Brendan et al.,
n.d.; Du et al., 2004, Mohassel & Zhang, 2017, Kilbertus, 2018, Bogdanov et al., 2008, Mohassel
& Rindal, 2018, Araki et al., 2016, Furukawa et al., 2016, Mohassel et al., 2015, Sweeney, 2002,

Abadi et al., 2016a, Agrawal & Srikant, 2000, Geyer et al., 2017)

(Rivest et al., 1978, Giacomelli et al., 2017, Yuan & Yu, 2014, Zhang et al., 2016, Acar et al., 2018, ML \/

Aono et al., 2016, Kim et al., 2018)

Homomorphic Encryption

1 reference, 2 focus, 3 classic, 4 quantum, 5 complex networks, 6 tensors, 7 q-simulations, 8 contribution, 9 energy efficiency, 10 computational efficiency.
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functional consequences is still rather unclear. In experimental initia-
tion, syP changes can be a consequence of stimulations defined by pre-sy
(Tsy) firing rates (Bliss & Lomo, 1973), postsynaptic (Tsy) membrane
potential (Artola et al., 1990), calcium entry (Lisman, 1989), or spike
timing (Markram & Sakmann, 1995).

While comprehensive biophysical models are of paramount impor-
tance to understand syP mechanisms, phenomenological models (phM)
describing the syP changes with no need to specify the mechanism of
these changes, are simpler. Therefore, the latter are widely used in
analytical and simulation analysis. Experimental and theoretical results
have been compared for several phM. Here, a syP changes from a “sy to a
*sy neuron are considered. The intensity of a connection from-to is
measured by the height of the *sy potential at onset. The directions and
magnitudes for syP changes can be formulated as sy #-rules. These rules
can be defined either theoretically or experimentally. The rules can be
developed for experiments in which syP is measured as a result of ~sy
and *sy spikes (Cooper et al., 2004).

Example 1. For the classification of the syP rules, the time required to
induce a change and the duration of persistence of the change are used. It
takes about 1 s or less to induce the changes for both sT and IT syP. In sT syP,
it takes a sequence of 8 sy spikes at 20 Hz to get decreasing (depression dep)
or increasing (facilitation fac) responses in the *sy cell. For sT syP this change
persists less than a few 100's ms: the time required for the amplitude of the *sy
response to comes back to near-normal value is less than a second (Markram
et al., 1998).

Different from sT syP, IT potentiation (pot) and dep (ITP and ITD)
characterize the persistent changes of syP reactions. The time needed for
inducing the changes is relatively short. In STDP (Morrison et al., 2008) for
instance, a change of the syP can be caused by 60 pairs of ~sy and " sy spikes
with a frequency of 20 Hgz, ending the stimulation after 3 s. On the other
hand, this change can persist for more than 1 h. The final stabilization of a
post-syP can be reached only thereafter, referred to as the late phase of ITP
(Frey, 1997). In this process, despite the changes induced by ITP and ITD, the
neurons in the brain must remain within a sustainable activity regime (Tur-
rigiano & Nelson, 2004).

The models discussed here operate by using uL rules. Learning is a
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Fig. 2. Artistic interpretation of the major elements in chemical synaptic
transmission (http, n.d.a).
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continuous process of adjustment of the syP to the statistics of the ac-
tivity of “sy and sy neurons. In 7L (Sutton & Barto, 1998b), on the other
hand, the change depends on a decision outcome, that reflects the cur-
rent reward (Schultz & Montague, 1997). The rL rules are different from
sL since the success signal is considered as an uL rule (Bohte et al., 2002).
The sL, uL, or rL rules are widely studied in open literature.

The importance of molecular mechanisms (Lisman, 1989) for models
of syP (Lisman & Zhabotinsky, 2001; Shouval et al., 2002; Florian, 2007;
Graupner, 2007; Zou, 2007; Badoual et al., 2006) as well as the
importance of the sy voltage (Kelso et al., 1986; Sjostrom & Turrigiano,
2001), is also explored in the literature.

3.1.1. Implementing various types of syP rules in VLSI

Reference (Azghadi et al., 2014) reviews the most common and
useful electronic building blocks required for implementing various
types of syP rules in VLSIL. In addition, authors describe analog very
large-scale integration (VLSI) circuit implementations of multiple syP
rules, ranging from phenomenological ones (e.g., based on spike timing,
mean firing rates, or both) to biophysically realistic ones (e.g.,
calcium-dependent models). They discuss the application domains,
weaknesses, and strengths of various representative approaches pro-
posed in the literature, and provide insight into the challenges that en-
gineers face when designing and implementing synaptic plasticity rules
in VLSI technology for utilizing them in practical applications.

In (Azghadi et al., 2017) a high-performance nano-scale Comple-
mentary Metal Oxide Semiconductor (CMOS)-memristive circuit, was
presented, which mimics a number of essential learning properties of
biological sy’s. The proposed sy circuit that is composed of memristors
and CMOS transistors, alters its memristance in response to timing dif-
ferences among its “sy and 'sy action potentials, giving rise to a family
of STDP. The presented design advances preceding memristive synapse
designs with regards to the ability to replicate essential behaviors
characterized in a number of electrophysiological experiments per-
formed in the animal brain, which involve higher order spike in-
teractions. Furthermore, the proposed hybrid device CMOS area is
estimated as 600 um? in a 0.35 pm process—this represents a factor of
ten reduction in area with respect to prior CMOS art. The new design is
integrated with silicon neurons in a crossbar array structure amenable to
large-scale neuromorphic architectures and may pave the way for future
neuromorphic systems with spike timing-dependent learning features.
These systems are emerging for deployment in various applications
ranging from basic neuroscience research to pattern recognition, to
Brain-Machine-Interfaces.

3.2. sN networks (SNN)

Design principles of SNN'’s, sometimes called the 3rd generation of
NN, use widely accumulated knowledge on brain operation and research
results in n-Sci’s. They are based on modeling of cross-neuronal sy in-
teractions, related to the time of spike firing. When it comes to
computational power SNN’s outperform the classical NN using threshold
or sigmoidal units. They enable design of the models with high capacity
of memorizing and adaptability. Here, an adequate #-algorithms is
needed that at the same time exploit specific characteristics of SNN’s
and easy-to-use, traditional connectionist models for which sophisti-
cated simulators are already available.

The original work (McCulloch & Pitts, 1943) presented a NN model
with cross-neuronal connections in the form of (N; ¢ Nj) links with
weight (wy). If the weighted sum of the states of all the neurons N;,
representing the input to a neuron Nj reaches level above a certain
threshold of Nj, the state of Nj is set to active, otherwise it stays inactive
as shown in Fig. 3.

Even, such simple networks can realize several analytical functions
mapping input/output states. By optimizing the cross-neuronal weights,
these ANN can “learn” such mapping. A number of Z-rules are used, for
both families sL, and uL. Gradient descent algorithm with error
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backpropagation (bp) (Glisic & Lorenzo, 2022; Rumelhart et al., 1986)
that enforces the NN behavior to some target function, is an example of
the sL algorithms.

The origins of uL in NN are associated with the work on syP pre-
sented in Hebb (1949), stating: “When an axon of cell is near enough to
excite cell or repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes place in one or both cells such
that its efficiency, as one of the cells firing, is increased.”

Later this work was followed by extensive work on:

Calculability: Discussion on NNs processing power (Huh & Sejnowski,
2017).

Complexity: The loading problem being NP-complete (Valiant, 1984;
Mehta et al., 2002)

Capacity: MLP (Multi-Layer P®"), RBF (Radial Basis Function net-
works) and WNN (Wavelet Neural Networks) being universal
approximators (Cybenko, 1988)

Regularization theory (Poggio & Girosi, 1989); PAC (Probably
Approximately Correct)-learning (Valiant, 1984); St-learning theory,
VC (Vapnik - Chervonenkis)-dimension, SVM (Support Vector Ma-
chines) (Vapnik, 1998)

Information coding: In general, data can be encoded into the number
of spikes (spike rate) at the output of the neuron or by a position (timing)
of a spike at the output.

Example 2. The relevance of the two options has been intensively studied.
Different options for timing coding are shown in Fig. 4. Arguments against
rate coding are discussed in Thorpe et al. (1996). Poisson distributing rate
code for describing how neurons transmit information has a lot of supporters
among physiologists. The opponents of this theory argue that the high volume
of transmitted information needed to support human vision, is hard to
reconcile with Poisson rate codes. To differentiate selectively between com-
plex visual stimuli a human needs 100-150 ms. On the other hand, in the
feedforward (ff-) architecture of visual system, with multiple layers of neu-
rons, in practice at most one spike could be fired by each neuron during round
trip adaptation process. A group of neurons with st-firing as a function of the
stimulus, could realize a time varying rate code: a spike density code. Having
such a group to encode a single variable is expensive energy wise (Olshausen,
1996). This suggests that the timing of individual spikes can encode data, and
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First mathematical model of artificial neuron

Fig. 3. The first model of neuron incorporated the main characteristics of a
natural neuron: All-or-none output resulting from a non-linear transfer function
applied to a weighted sum of inputs.
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Fig. 4. Comparing different coding alternatives for spiking neurons.

not just the rate of spikes.

High resolution time positioned spikes achieve better encoding,
given a small set of sN. The pros and cons of other coding algorithms
have been discussed in Recce (1999) and analyzed in Thorpe et al.
(2001). For sNN with backpropagation learning for brain visual dy-
namics decoding see Stauffer and Zhang (2023).

3.3. n-Sci and Al

In the sequel, some physical processes in the brain are described and
their relationship with research in n-Sci, research challenges covered by
nS and dS theory, with focus on the incoming interest in research of
brain-inspired intelligence (bil). A practical way to mimic brain intelli-
gence (bI) is to build up dynamic cortical networks (corN’s) that
implement the brain functions, instead of using only ANN (Hu, 2021).

Here this paper provides a complex network (cN) and space/time
dynamics (network dynamics nD) approach to modeling the brain and
corN’s and develop integrated concept of n-Sci and nD for building bil
with # and resilience functions. For this the paper covers issues as
fundamental concepts and principles of cN (to be revisited in few
additional iterations in the following sections), major challenges and
solutions in n-Sci, and theory and implementation issues in hS, including
corresponding experimental and theoretical studies about the brain and
intelligence. Topics like theory and practice of brain science, data sci-
ence with emphasis on big data mining, q- information science including
discrete and continuous variables (to be addressed in the sequel in more
details), and machine behavior covering dynamics and stability prob-
lems are also briefly discussed toward future applications.

Here this paper first reviews the main problems in modeling, opti-
mization, and implementation of cN including analytical tools for per-
formance analysis. Then it surveys the relevant work in n-Sci and hybrid
space/time dynamic systems, highlighting problems and solutions
related to the brain and intelligence. Commonalities in n-Sci and nD are
further discussed to explain the reverse-engineered steps toward bil.

Complex Network-cN: A cN theory is used to model a multitude of
elements interconnected in such a way that the network characteristics
cannot be understood from the current state of a few of its individual
components (Glisic, 2016). Internet, mobile communication networks,
the brain and neural systems are examples of such networks. cN are
represented by a graph ¢ having a set of nodes 7" and a set of edges &,
in which 77, # may change in time and space. The connections among
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nodes are specified by the adjacency matrix W = [wy](i,j € 7). In
practice, variations in W may enable the development of the brain or in
extreme case cause a breakdown of the Internet.

Based on observation of real networks, fundamental properties in cN
include modeling of both topology and collective dynamics. Main fea-
tures used to characterize the network include clustering coefficient,
distribution of node degree, modularity, path length, community, and
hierarchy structures. On the other hand, collective dynamics, such as
synchronization (to be discussed in detail later in Section 6), intelli-
gence, emergence, and resilience contribute to maintaining network
functions. The Erdos-Rényi (ER) network, discussed in Glisic (2016),
examines how a graph, representing the network, is modified with
changes in density of edges, indicating the importance of studying the
random networks. Small-world networks (SW), presented in Glisic
(2016) by Watts-Strogatz (WS), have a short average path length and
large clustering coefficient, whereas the Barabasi-Albert (BA) scale-free
(SF) network, described in Glisic (2016), has node degree characterized
by power-law distribution. These models are used to represent or design
systems in practice, with features (e.g., development, %, and recovery)
that can be improved by optimizing network control (Arenas et al.,
2008b).

Works on the cN also include investigation of the structural effects on
overall network behaviors, induced by failures, attacks, or viruses in
network elements (Majdandzic et al., 2013). Quantitative analyses of
structures and functions in complex brain networks (cbN) has also
attracted considerable attention (Bullmore & Sporns, 2009). In social
networks, people with common interests interact among themselves and
then make decisions. This type of overall network behavior can be
modeled via a cN spreading and regulated with dynamic control (Arenas
et al., 2008b). Similarly, in a corN, each neuron has about 10,000 sy
connections. Here this paper is interested in finding out how the neurons
interact with nearby and distant neighbors and how the network dy-
namics impacts cognitive behaviors. n-Sci, especially the cross disci-
plinary studies with cN, has offered some plausible answers (Bullmore &
Sporns, 2009).

n-Sci Inspired Al (nil): The research in n-Sci including neurobiology,
physiology, and cognitive science form a fundamental basis to the work
on intelligence (Marblestone et al., 2016a).

With advances in brain research, the field of n-Sci has been broad-
ened to include different methods for investigating corN at different
scales in time and space. By studying the structure-function relations in
bN (Bullmore & Sporns, 2009) empirical research of cN have attracted
significant attention. The quality and resolution in visualizing bN have
been significantly improved by advances in image processing. Among
the other activities, computational n-Sci study also analytical represen-
tation of the brain and neural operations, for full understanding of the
relations, neural activities vs. behavior (Dayan & Abbott, 2001).

Work presented in Hodgkin and Huxley (1952) models the inhibi-
tion- excitation time variation of an elementary neuron for producing
action potential (spike or nerve impulse) by using ion channel mecha-
nisms. Given an excitation, neurons generate spikes and then pass the
spikes to Tsy neurons. Here recall that synapse (sy) is the unit that
connects two neurons. It can be modeled by a coupling weight, referred
to as sy efficacy. Hundreds of milliseconds long changes of a sy are called
sT syP, that can be detected after a ~sy neuron generates spikes. In a [T
lasting few seconds or hours, the syP depends on the joint activity of “sy
and sy neurons (Dayan & Abbott, 2001). There is more and more evi-
dence of integration of n-Sci and ML, in an effort to construct computing
and intelligence based on the principles they operate in human body
(Marblestone et al., 2016a).

Neurons in the brain act collectively to adjust themselves to the
environment (Graves et al., 2014) by interconnecting with each other.
Neural coding defines how spiking patterns depend on excitation and
how reactions are interpreted from spike trains. The mechanisms of nD
are used for solving coding design, along with st-analysis (Dayan &
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Abbott, 2001; Clopath et al., 2010). Since mesoscopic dynamics may
relate micro-spiking activities and system-level functions (Curto, 2019;
Whiteway, 2019), there is also a need for interpretable dynamic models
(dM) of neuronal nodes activities. An important segment of network
n-Sci research models the evolution in time of the bN, facilitating
anticipation of irregular impacts on the brain (Bassett et al., 2017).
Because of the multitude of neurons, sy’s and spike patterns, multiscale
(ms-) modeling is needed to further elaborate the study of n-Sci, focused
on the brain and intelligence.

ms-Space/Time Dynamics: An analytical model of a ds can be defined
either by a continuous-time (ct-) differential or a discrete-time (dt-)
algebraic equation. The model facilitates prediction of the system’s long-
term behavior, together with stability and synchronization analyses.
Hybrid systems (hS) involving evolution in time across multiple space/
time scales, are recently attracting significant attention (Cassandras,
2014). Such a system is defined by a mixture of differential and algebraic
equations (Goebel, 2009), jointly characterizing both ct- and dt-dynamic
behaviors.

To simulate excitatory sy, a pulse-coupled model is incorporated into
ct-systems and is studied on integrate-and-fire neural oscillators (Arenas
et al., 2008a; Guan & Chen, 1999). The main characteristic of a hS is its
space/time correlated behaviour, bringing adaptability in control ac-
tions (Branicky et al., 1998). The hS-s are appropriate to model neural
units in corN, considering the spiking stimulus and the stimulus-res-
ponse pattern (Dayan & Abbott, 2001; Whiteway, 2019). Incorporating
ms-space/time dynamics enhances ML by introducing a causality
mechanism (David et al., 2006).

Authors in Deneve (2017) describe the brain as a learner with
adaptability. When adapting to surroundings, different neurons emit
spike patterns with varying inter spike intervals and demonstrate
different dynamics at a mean firing rate (Breakspear, 2017). Observa-
tions show that neural systems (nS) may demonstrate collective dy-
namics, like frequency synchronization (to be discussed later in Section
6) and asynchronous oscillations with certain frequencies (e.g., @ -band
and p-band) (Fultz et al., 2019). Such collective behaviors of nS enable
the establishment of memory, # and motion actions (Connors, 2007;
Gerstner, 2014). Although having the deep hierarchy structure, ANN
does not utilize advanced dynamic mechanisms of NN (Abbott et al.,
2016b). They use reverse- engineered (rEng-) methods trying to design
ms-nS for mimicking brain intelligence.

A multitude of recent works are focused on the interdisciplinary
research of n-Sci and nD, indicating such rEng-intelligence steps (Hu,
2019).

Brain-Inspired Intelligence (bil): Authors in Guan and Chen (1999)
consider that a machine has “intelligence” if the behaviour of an intel-
ligent object and a human cannot be distinguish. The word intelligence
assumes objective directed behaviors, like prediction and optimization
(Werbo, 2009). When it comes to structure and function Al use biolog-
ical lessons from cortical networks (corN) (Werbo, 2009). In corN, both
hierarchical structures and heterogeneous neuro-sy node dynamics can
be seen. Dynamics of neural circuits and nodes supports cognitive ca-
pabilities, like those related to perceptual decision making and learning
(Marblestone et al., 2016a; Gerstner, 2014).

By broad #-networks network types using versatile neural nodes
instead the deep hierarchy configuration for image recognition assign-
ments are considered (Chen et al., 2019). There are proposals for using
an integrated approach to nD with nonlinearity (O’Reilly et al., 2014b)
for characterizing macro behaviors, such as opinion propagations.
Network dynamics models are being used to specify and reconstruct
neural activities supporting possible brain intelligence (Breakspear,
2017). It is believed that nD with n-Sci could be used to design brain--
mimicking computer and intelligence, based on the spike-based machine
intelligence (MI) principles (Ekman, 2012).

In this context the question is: How much MI is sensitive to different
types of adversities? In general, this depends on the type of MI being used.
Nowadays ML algorithms are trained on preset data. Perturbed inputs,
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like damaged images or noise corrupted signals could impact the opti-
mization process and so reduce the overall network performance (Frady
& Sommer, 2019). Authors in Goodfellow et al. (2014) use a small--
sample learning method. St-model-based #-schemes have a discrimi-
nation capability to operate with inadequate sample data, but still are
vulnerable to tampered structure or data. Besides the Z-capabilities,
intelligent networks need more brain mimicking features, especially
when operating with perturbed (or damaged) data or structures. Here, a
resilience function like immunity is needed, to enhance the #-process
when operating with perturbed or insufficient data and unpredictable
failures.

The brain and neural systems (Avena-Koenigsberger et al., 2018)
have a resilience function incorporated in the overall system. Certain
immunity is included in the natural organisms, making them insensitive
to certain diseases and damage. This idea is also built into artificially
designed systems, leading to resilience control with fault tolerance
(Dolk, 2017). Using nD solutions to immunize real systems and make
them insensitive to structural vulnerabilities and changes in environ-
ment, has also been studied (Cassandras, 2014; Dolk, 2017). More work
is still needed to better understand how dynamic resilience could be
included in intelligence. When it comes to ¢cN and hybrid systems (Guan
etal., 2019; Gao et al., 2016; Yan et al., 2017; Yu & Kaynak, 2017), n-Sci
and nD, can integrated by using high dimensional (hD) NN’s, for
building bil.

The latest works in this field include use of neuroscience and network
dynamics paradigms in designing brain-inspired intelligence (Hu et al.,
2022). Brain-like intelligent data mining mechanism based on con-
volutional neural network is presented in Wen et al. (2023). A discussion
on how brain organoids are revolutionizing neuroscience is presented in
Abrams (2023). Higher-order interactions in functional brain networks
in state of disorder is discussed in Kurkin (2023). An EEG based study of
scientific problem solving and brain symmetry index is presented in
Wang et al. (2023), Romanchuk et al. (2023) and potential of
brain-computer interfaces in Rostami et al. (2023). An insights into
electrophysiological brain states dynamics is presented in Tabbal et al.
(2023). Experiments using R code, MRI measurements and SpikerNet are
discussed in Panayotova et al. (2023), Udayakumar and Subhashini
(2023), Coventry and Bartlett (2023). Assessments of variability in
cortical and subcortical measurements and within-network connectivity
of the brain using test-retest data is presented in Tavakoli et al. (2023).
The latest work on devices used in these measurements are presented in
Wu et al. (2023), Aimone and Misra (2023), Jia and Zhao (2023).

3.4. Deep learning and n-Sci

Until recently, ML and n-Sci have been carrying on their research
without any insight into each other’s results. Brain science has become
aware of several brain segments, cell types with different functions,
molecules, cellular states, and methods for computation and data stor-
age. Opposite to this, most of the time ML implements simple objective
function optimization (Glisic, 2023a, 2023b). Such an approach enables
comprehensive internal modelling and algorithmic processing in
multilayer (#%) and rN (LeCun et al., n.d.). Here the commonalities of
these two research areas are of interest and the possibility to connect
these prospects.

Authors in Marblestone et al. (2016b) suggest that research in n-Sci
and ML is moving towards convergence, which is the argument of this
survey as well. There are three aspects of ML supporting this argument.

1) ML optimizes predefined objective functions.

2) Recently the research in ML has been introducing complex 0oF’s,
varying across layers and time, resulting from network segments
interactions. To improve #-process ML algorithms can incorporate in
ooF request for temporal coherence in lower layers (spatially non-
uniform 0oF) (Sermanet et al., 2013). The ooF schedules (temporally
non-uniform o0oF) improve generalization (Andrew et al., 2013;
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Goodfellow et al., 2014b; Giilcehre et al., 2016) and adversarial
networks allow G-based training of generative models (Goodfellow,
2014a). Solutions of using simpler networks, to provide initial
guesses “hints” to improve the training of complex networks are
presented in Romero et al. (2014).

In the ongoing process of diversification/optimization of the Z-ar-
chitectures, ML nowadays uses memory cells with multiple persistent
states (Hochreiter et al., n.d.), more advanced elementary units such
as “capsules” and other structures (Hinton et al., 2011) content
addressable (Weston et al., 2014; Graves et al., 2014) and location
addressable memories (Graves et al., 2014), as well as pointers
(Kurach et al., 2015) and hard-coded arithmetic operations (Neela-
kantan et al., 2015).

3

-

To attract more attention to these three ideas in n-Sci, authors in
Marblestone et al. (2016b) summarize them in the form of three hy-
potheses about the brain, that can be restated as:

H1 The brain finds the best optimization objective functions (ooF). The
main premise for relating the two fields is that the brain, like ML
algorithms, can find the best ooF. The idea is that neurons in a brain
can modify the characteristics of their sy, to perform better at
executing the assignment the ooF defines for them. Humans occa-
sionally get close to the best performance in a given segment, e.g.,
during movement (Kording, 2007), suggesting that the brain can
learn optimal strategies. They manage to maximize movement gains
with minimum energy (Taylor et al., n.d.). From the computation
point of view, nowadays ooF enables solutions for very complex
motor tasks (Mordatch et al., 2012). Marblestone et al. (2016b)
suggests that the best 0oF is found by optimizing the models used by
the brain. It also suggests that for this the brain needs to have al-
gorithms for credit assignment (cr-ass) in .4 % and rN.

H2 The ooF are space/time diverse: A second fact is that ooF does not
need to be global. Neurons in different brain segments may focus on
optimizing different ooF, minimizing the error of movements, man-
aging reactions to visual stimulus, or paying attention. For locally
generating such an ooF, neurons should locally asses the fitness of
their st-model of their inputs. An ooF may be different in time, e.g.,
enabling a human when young first to comprehend simple visual
data early on, and more comprehensive #’s in the following steps
later allowing the evolving brain to establish more complex knowl-
edge based on simpler experience. The 00oF in the brain are complex
and space/time dependent.

H3 Problem Specialized Systems: The types of information flow appear
to be distinct across different brain segments, specialized to solve
different processing problems. Some segments are recurrent,
adjusted for short-term memory storage (Wang, n.d.). Others cell
types can switch between different states of activation, persistent/-
transient firing mode, in response to given neurotransmitters (Has-
selmo, n.d.). The thalamus is for example a segment having
information from other segments flowing through it, suggesting
being responsible for information routing (Sherman, n.d.). Basal
ganglia are a segment participating in rL and gating of discrete de-
cisions (Sejnowski et al., n.d.). Specialized algorithms enhance effi-
ciency of solutions to data processing problems, and the brain is
using them when appropriate.

These concepts are mimicked by recent advances in ML but (Mar-
blestone et al., 2016b) argues that the brain operation is still much
different from any of today’s ML techniques. For example, biology gives
little information that could be used for sL (Fodor et al., 2002). On the
other hand, there is a lot of information available for uL. For making uL
solve the “right” problems a sequence of deterministic 0oF’s is deeded to
design circuits and reactions according to preset evolutional stages,
enabling a relatively small amount of information to produce the right
behavior.
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Based on this and other studies (Ullman et al., n.d.), authors in
Marblestone et al. (2016b) suggest that many of 0oF’s used by the brain
come from such an internal bootstrapping process. The potential boot-
strapping mechanisms, operate with uL and rL and go well beyond the
types of Z-algorithms used in today’s ML (Bengio et al., 2009; Werbos,
1974; George et al., 2009a; Kappel et al., n.d.; Baldi et al., 2015).

Bio-implementation of gradient (G-) descent: To develop bio-# (bL) as
good as ML, better G- propagation methods are needed. Different from
earlier used assumptions, nowadays there are many bio-plausible
methods enabling a neural circuit to realize optimization processes that,
like bp, can use the G. Examples of these methods are generalized
recirculation (O’Reilly, n.d.), contrastive Hebbian & (Xie et al., n.d.),
random feedback (fb-) weights together with sy homeostasis (Lillicrap
et al., 2014; Liao et al., 2015), STDP with iterative guessing and target
propagation (Bengio et al., 2015a), complex neurons with bp action--
potentials (Kording et al., n.d.), and others (Balduzzi et al., 2014).

Temporal credit assignment (t-cra): The bio-realizations of bp
explained above, can be used in feedforward networks, but it does not
provide a natural realization of bp through time (bpTT) (Werbos, 1990)
for rN, used in ML for training rN on sequential processing assignments.
The bpTT unfolds a rN over a number of discrete time steps and then uses
bp over such structure to assign credit to different units at a corre-
sponding time steps. Authors in Ollivier and et al., n.d.) argue that it is
unclear how much such assignment is truly needed for # given
temporally extended assignments.

If memorized data and representations (Gershman et al., 2012;
Weston et al., 2014) of temporal context would be available, this could
eliminate the need for t-cra since memory could “spatialize” the problem
of t-cra. As an example, certain deep network architectures possessing
specific types of skip connections, represent actually not so deep networks
(Veit et al., 2016) applied in the time domain eliminating the need to
pass errors far backwards in time.

The next question would be whether generic rN use t-cra which is
more bio-plausible than bpTT? Authors in Werbos (1974) propose an
algorithm approximating bpTT obtained by predicting the back-
ward-through-time G- signal (costate) in the same way as the prediction
of value functions in rL (Sussillo et al., 2009; Si, 2004). All this is still
only starting point in comprehending how neural activity itself can
represent the time variable (Finnerty et al., 2015), and how rN can learn
evolutions of nodes’ activity over time (Liu et al., n.d.). Several corM
suggests ways, different from bpTT, for networks training on sequential
prediction assignments (Cui et al., 2015; O’Reilly et al., 2014b). A
number of different methods are available to mimic bpTT more
realistically.

Spiking networks (SN): It is not straightforward to apply G-descent
algorithm to SN. Several optimization algorithms are available to create
SN which can execute complex assignments, by optimizing an ooF of the
nD and incorporating varying parameters into high dimensional (hD)
spaces with many sN representing each parameter (Abbott et al., 2016a).
The bp can be replaced in the direct training of spiking rN by using
recurrent connections with multiple timescales (Bourdoukan et al.,
2015).

Despite the existing work reviewed above better understanding of
the relations between the temporal dynamics of bio-realistic networks
and methods for time/space credit assignment (cr-ass) is still needed.
Even so, authors in Marblestone et al. (2016b) suggest that existing work
already supports the argument that bio- plausible NN are solutions to
these problems. In other words, SN can optimize complex functions of
temporal history using bio-realistic neurons and realistic population
coding.

The next question is whether the brain can learn differently? The answer
is yes, the brain does have mechanisms and structures supporting
-algorithms different from typical G-based optimization methods. How
exactly? It may exploit bio-neural methods: The physiology of bio-neurons
(bN) explains how G-descent could be used within the brain and enable
learning different from bp. This indicates that the brain may be using
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methods of cr-ass quite different from those used by ML.

Dendritic computation (dC) is an example of such mechanisms,
impacting #-algorithms in several ways:

1) The dendrites of each neuron are implemented like a three-layer
NN (Mel, 1992). 2) Propagation back, from the soma into the dendritic
tree, of action potential generated by neuron’s spikes, penetrates more
intense the parts of the dendritic tree that have been active (Williams
et al., n.d.), which simplifies the problem of cr-ass (Kording et al., n.d.a).
3) Neurons possess multiple, partly independent dendritic and somatic
sections, suggesting that the neuron is storing more than one variable.

So, it could store both its activation itself, and the error derivative of
an ooF, needed for bp, and such bio-realization of bp have been proposed
in Kording et al. (n.d.b). In summary, more research is needed for a full
understanding of the implications in dC in credit assignment in deep
networks.

Beyond dC, diverse mechanisms (Marblestone et al., n.d.) like
retrograde (*ps to “ps) signals using cannabinoids (Wilson and Nicoll, n.
d., Arancio et al., n.d.), go beyond bp. It was proposed in Harris (2008)
how slow, retro axonal transport of molecules could enable NN to pro-
vide data to downstream neurons that are trained via faster error signals.

Another bio-mechanism is neuromodulation (nM). The same neuron
can exhibit different sP as a function of a concentrations of various nM
like opioids (Bargmann et al., 2013; Perea et al., 2009). The nM could
have many roles in learning.

1) nM can gate sP on/off selectively in different space/time points,
enabling orchestration of space/time ooF’s application. There are sug-
gestions that a neural circuit can be seen as a group of circuits with nM
switching between them (Bargmann et al., 2013) potentially enabling
sharing of sy weight data. Authors in Dayan (n.d.) discuss further pos-
sibilities nM could add for creating algorithms for optimization.

Learning in the cortical sheet (corS): Several models use specifics of the
6-layered corS to explain cort-learning (corL). The cortex uses uL via
prediction (O’Reilly et al., 2014b). Some corL models map cort-structure
onto the message-passing algorithms for Bayesian estimation (George
et al., 2009b).

One-Shot Learning: Human learning (hL) can remember even a single
stimulus and leverage it in new examples. Z-invariant modeling for
object recognition (Anselmi et al., n.d.; Serre et al., 2007) is one
example. It can be shown that objects can be represented invariantly and
discriminatively using a single sample, even of a new class (Anselmi
et al.,, n d.).

Active Learning (aL): hL is most often active, conscious, and inten-
tional act chosen to generate training examples of interest, and for
testing specific hypotheses. Such ideas of al, initiated by Piaget, have
been revisited more recently in Gopnik et al. (2000). The most effective
% should use maximally informative samples.

Obviously, it would help here to have explicit representations of the
sample uncertainty available and use it to instruct the system how to
reduce it most quickly. The use of population coding algorithms could
enable explicit probabilistic computations (Ma et al., 2006). At this point
it is not fully understood how much and in what segment the brain uses
an explicitly probabilistic (prob) framework (Emin et al., 2016).

Classical G-descent algorithm does not consciously and intentionally
choose data in such a way to reduce its uncertainty. On the other hand,
stochastic G-descent algorithm can be used to support a system that
samples adaptively (Bouchard et al., 2015).

4. Quantum solutions

Implementation of the algorithms discussed so far by using Quantum
Computing (QC) is anticipated to be more effective in the sense that
complexity should be lower and the speed of the algorithms’ execution
should be higher. For the basics of QC see Glisic and Lorenzo (2022).

NOTE: Qubit: Similar to the bit, used in c- ¢, g- ¢®®" is conceived
upon a similar concept, the q- bit, called qubit (gb). Just as a classical bit
has a state - either 0 or 1- a qubit also has a state. For example a gb can be
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Table 2
CrossTechology coverage (focus-Spiking NN).
1 2 3 4 5 6 7 8 9 10
(http, n.d.a, Bliss & Lomo, 1973, Artola et al., 1990, Lisman, 1989, Markram & Sakmann, SNN \/ Details on spiking neuron modelling \/
1995, Morrison et al., 2008, Cooper et al., 2004, Markram et al., 1998, Frey, 1997, and analysis
Turrigiano & Nelson, 2004, Sutton & Barto, 1998b, Schultz & Montague, 1997, Lisman,
1989, Lisman & Zhabotinsky, 2001, Shouval et al., 2002, Florian, 2007, Graupner, 2007,
Zou, 2007, Badoual et al., 2006)
(Badoual et al., 2006, McCulloch & Pitts, 1943, Sasaki & Carlini, 2002, Rumelhart et al., SNN \/ Details on spiking neuron networks \/
1986, Hebb, 1949, Bohte et al., 2002, Huh & Sejnowski, 2017, Valiant, 1984, Mehta et al., modelling and analysis
2002, Cybenko, 1988, Poggio & Girosi, 1989, Valiant, 1984, Vapnik, 1998, Thorpe et al.,
1996, Olshausen, 1996, Recce, 1999, Thorpe et al., 2001)
(Hu, 2021) SNN 4/ Details on Neuroscience and Al v
networks modelling and analysis
(Glisic, 2016, Arenas et al., 2008b, Majdandzic et al., 2013, Bullmore & Sporns, 2009, SNN \/ \/ Modelling and analysis of SNN as \/
Marblestone et al, 2016a, Dayan & Abbott, 2001, Hodgkin & Huxley, 1952, Deneve, 2017, Complex Network
Clopath, 2010, Curto, 2019, Whiteway, 2019, Bassett et al., 2017)
(Cassandras, 2014, Goebel, 2009, Arenas et al., 2008a, Guan & Chen, 1999, Branicky et al., SNN \/ \/ Hybrid Models: Multiscale \/
1998, David, 2006, Deneve, 2017, Breakspear, 2017, Fultz et al., 2019, Connors, 2007, Spatiotemporal Dynamics
Gerstner, 2014, Rabinovich, 2006, Hu, 2019)
(Werbo, 2009, LeCun, 2015, Chen et al., 2019, Poter, 2019, Ekman, 2012, Goodfellow et al., SNN \/ Brain-Inspired Intelligence \/
2014, Avena-Koenigsberger et al., 2018, Dolk, 2017, Abbott et al., 2016b, Frady &
Sommer, 2019)
(Glisic, 2023a, 2023b, Johansson et al., 2013, LeCun et al., Sermanet et al., 2013, Andrew SNN \/ Deep learning and neuroscience \/
et al., 2013, Goodfellow et al., 2014b, Giilcehre et al., 2016, Goodfellow, 2014a, Romero
et al., 2014, Hochreiter et al., n.d.; Hinton et al., 2011, Weston et al., 2014, Graves et al.,
2014, Kurach et al., 2015, Neelakantan et al., 2015, Kording, 2007, Taylor et al.,
Mordatch et al., 2012, Wang, Hasselmo, Sherman, Sejnowski, Fodor et al., 2002, Ullman
et al., Bengio et al., 2009, Werbos, 1974, George et al., 2009a, Kappel et al., n.d.; Baldi
et al., 2015)
(O’Reilly, n.d.; Xie et al., n.d.; Lillicrap et al., 2014, Liao et al., 2015, Bengio et al., 2015a, SNN \/ Biologically plausible approximations \/
Kording et al., n.d.a; Balduzzi et al., 2014, Werbos, 1990, Ollivier et al., n.d.; Gershman of gradient descent
et al., 2012, Weston et al., 2014, Veit et al., 2016, Sussillo et al., 2009, Si, 2004, Finnerty
et al.,, 2015, Liu et al., n.d.a; Cui et al., 2015, O’Reilly et al., 2014b)
(Abbott et al., 2016a, Bourdoukan et al., 2015, Mel, 1992, Williams et al., n.d.; Kording et al., SNN \/ Spiking networks \/
n.d.a; Kording et al., n.d.b; Marblestone et al., n.d.; Wilson & Nicoll, n.d.; Arancio et al., n.
d.; Harris, 2008, Bargmann et al., 2013, Perea et al., 2009, Dayan, n.d.)
(O’Reilly et al., 2014b, George et al., 2009b) SNN \/ Learning in the cortical sheet \/
(Anselmi et al., n.d.; Serre et al., 2007) SNN 4/ One-Shot Learning v
(Gopnik et al., 2000, Ma et al., 2006, Emin et al., 2016, Bouchard et al., 2015) SNN \/ Active Learning \/
1 reference, 2 focus, 3 classic, 4 quantum, 5 complex networks, 6 tensors, 7 q-simulations, 8 contribution, 9 energy efficiency, 10 computational efficiency.
in.7"*s|0) and [1), corresponding to the .”** ‘s 0 and 1 for a c- bit. Here
we use so called the Dirac notation | )’, adopted from g- mechanics. A gb |‘1)
can be in a.7"" other than |0) or |1). A" combinations of /' ‘s, referred :
to as superpositions (s£°’s): |q) = a|0) + f|1) is also used. [+) = 510) + Z51)
Assuming only r - V! -a™! s for a g- /" a, § € R, the resultant 2-D /4 o .
. L it C 0" . |g) = cos0|0) + sinf|1)
graphical model of a gb’s - """ is shown in Fig. i1. ’
Multi- gb -g- r® s: In a two- gb -r%", there are four legitimate .7 ‘s 0 > 0)
that the composite g- 8*' can be superimposed in. If the ."*’s are |q;) = N
@|0) + p|1) and |q2) = y]0) + 8|1), the /™ of the & is S
= = = 1 1
9) = lg1) ®192) = |q192) =) = Z10) - 1)
(al0) + A1) @ (r|0) +5]1))
Fig. i1. The 2D graphical model of a gb, when the a™" ‘s of its g- $™s are !

= a7[00) + a-5|01) + #7|10) + f-6/11)

where @ is the .7 ™ product 0" and the s”*"’s .7 . 7 entries are the
a™!t s of the four g-.7% ‘s |00),|01), |10) and |11). In G, in an n- gb ¥,
the .- 7" will include 2" entries, each corresponding to the ™" of the
PPt iy o't - 1,

4.1. Artificial quantum neuron (qN)

The starting point in studying ML algorithms and Al protocols in
artificial neural networks is modeling of artificial neurons (aN) (Tac-
chino, 2018). The simplest implementation of an aN is Rosenblatt’s
perceptron (P?), although its realization is not straightforward due to
complexity, especially of interest for the training of multilayered (.#.%)
P“-networks. A q-computer version of a P¥, showing exponential sav-
ings in computational components over classical (c-) options is
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presented first. Test of this model on a g-processor, is presented in
Tacchino (2018) showing good agreement with expected theoretical
results. This q- model of a P can be used as an initial step towards
training of artificial q-NN, discussed in the next section, to be practically
realized on near-term q-processing hardware.

In practice, ANN are usualy run as classical (c-) algorithms on c-
computers, although there is an interest in NN implemented on dedi-
cated hardware (Merolla, 2014).

Prospective q-computers are well suited for implementing ANN. The
capabilities of q- mechanics to store large complex valued vectors (cvV)
and matrices and process such vectors by a variety of linear operations,
provides an exponential savings either in memory storage or processing
power for NN built on g-processors. A model of an aN, the so-called P%, is
outlined in Fig. 3 and redrawn in Fig. 5(a). Real valued n dimensional
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input vector (rvV) x, is combined with a rvV of weight w. The P* output y
is a yes/no response to the input. In the simplest realization, x and w are
binary valued vectors themselves (Schmidhuber, 2015; Zurada, 1992;
McCulloch, 1943).

Perceptrons can perform a limited range of operations, although they
are the basis of ML in more complex ANN in (#%) P*’s architectures.
Their implementation is not feasible due to complexity, even though
different solutions can be used to improve the efficiency of c-algorithms
(Mocanu, 2018). So, several new solutions have been published recently
to implement P*’s on q-computers. In qubit neuron concept, each qubit
operates as a separate neuron in the network and nonlinearity of the
measurement (.#) implements the threshold function (Schuld, 2014).

Example 3. A solution, for mimicking a Rosenblatt perceptron on a q-
computer, has been presented in Tacchino (2018). As a first step, an m
-dimensional c-input is encoded on the g-hardware by using N qubits,
where m = 2V . Here (Tacchino, 2018) implements a new method to
create multipartite entangled (ent-) states based on g-data principles by
significantly reducing the q-computational resources needed. Reference
(Tacchino, 2018) shows by experiment the efficacy of such a solution by
realizing the algorithm on the IBM g-processor.

For illustration purposes here the scheme of the g-algorithm is pre-
sented in Fig. 5(b). The binary input and weight coefficients have the
form i, w; € { — 1,1}.

By using N qubits, where m = 2V, an input vector is encoded to

define a general wavefunction (WF) |y;). For an input (7)
(io, i1, .., im,l)T and weight (W) = (Wo, W1, .., wm,l)T vectors with i
wel{— 1 1}, two g states: |y;) =70 il)/vm and |y,,)
Zj";f)lvw{j)/ v/m. are defined.

The states [j) € {|00. .. 00), |00...01), ..., 11...11)} creating
the basis in the Hilbert space of N qubits, are labeled with integers
j€{0, ..., m—1} obtained by the decimal equivalent of the respective

binary string. Now factors +1 to encode the m-dimensional c- vectors
into a uniformly weighted superposition of the full computational basis

Encoding

Uy qubits

E wj

" dncilla © A

Fig. 5. P*" models. (a) c- P*" as a model of aN: (b) Scheme of the g-algorithm for
the realization of an model on a g-processor.
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are used.
Then, W- i using the g-%. For this U-transformation, U, is used,
rotating g-state as Uy, |w,,) =|1)* = |m —1) is computed. Again, any m x

m U-matrix having W in the last row satisfies this condition. If now U,

m—

is applied overall N-qubits q- state becomes U, |y;) = Ejzol ili) = lpiw )-
Using this (i, [y;) = (w,,|ULUnlw;) = (m-1|¢;,,) = cm1 is obtained and

from the above definitions of |y;) and |y,,) follows Wi = m{y,, ;).
Here the useful information is in the ¢;,1 of the final state |g;,,).

Authors in Tacchino (2018) use an .%/-qubit initiated in the state |0)
to extract such an information. A multi-controlled NOT gate between the
encoding qubits and the target ./ gives: |¢;,)[0),~ ].”Q)zcj[i)m)a
+em_1|m —1)|1), (Hale, 1993).

Performing a q-# produces immediately the nonlinearity at the
output of the P*. By measuring the state of the .- qubit in the
computational basis (c.%) produces the output |1), (i.e., an activated

P®) with probability |c,,_1|*. This choice produces the correct result
effectively. In addition, here a refined threshold functions can be applied
once the inner product data are stored on the .o/ (Hu, 2018; Cao et al.,
2017; Torrontegui, 2018).

4.2. Quantum NN

The g-analogue of a c-neuron, presented above, is a g-feed-forward
NN enabling universal g-computation with nice generalization behavior.
The scheme is robust to noisy training data and an initial stage for
further studies. One can categorize quantum ML (qQML) techniques into c-
ML (Glisic, 2023b) improving q- assignments, g-algorithms speeding up
¢-ML and using g- computing devices for tasks with g-data. The dissi-
pative g-NN (dgNNs) belonging to the latter category, comprises layers of
qubits and can be trained with pairs of g-states. A training data pair
(input state- targeted output), depends on the training objective.

The dgNN is built of q-P*"’s like those discussed in the previous
section. This block, connecting two successive layers of qubits, is a
completely positive (CP) transition map (t-map) (Arunachalam et al.,
2017). Such a map tensors the state of the current layer to the state of the
next layer’s qubits including applying U-operations. In addition, t-map is
responsible to trace out the qubits from the first of the two layers when
forwarding input states through the dgNN. The resulting output state is
then compared with the targeted output. For this the fidelity function
(fF) of two g-states is used allowing conclusions about how the P U
must be updated to further improve the training objective.

Example 4. Similarly, to a classical NN (Glisic, 2023b), the dgNN is
built of quantum perceptrons (P”) (see Fig. 6) acting on qubits arranged in
layers. The P”“s are designed as general U- operators. Such a P* U acts on
m+ n qubits and depends on (2™")* — 1 parameters, where m of the
qubits is defined as input qubits and remaining n as output qubits.

Here the input and the output qubits need to be initialized in states
p™™ and |0...0), respectively. After applying the P U, the m input qubits
are traced out and leaving the n -qubit state p°"*. Network representation
of a dgNN is shown in Fig. 7. One single P* can be considered as a small
dgNN having only two layers of qubits and one U operation as shown in
Fig. 6.

By choosing n =1, (i.e. the Ps are m + 1-qubit U’s) as an example,
the model will still remain universal. Although here 2-level qubits are
used, the P* defined in this way can be easily generalized for qudits.

As indicated earlier, the entire network can be considered as a
collection of layer-to-layer t-maps. This notation will be used throughout
the entire section. Based on the definition of a single P*, the output of
the dgNN becomes
pout — (:f/([)in) — g,LJrl((Z,L ( . Z/Z(Z/l (pin)) .

)

using the CP (Completely Positive) maps defined via
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u

0 0 -|_f——»

(a) Network. (b) Implementation

Fig. 6. Quantum P

Fig. 7. Network representation of a dgNN.

X =t ( [TU(x* 2]0...0),0...0]) ﬁ Uj;),

j=m =1

where U]l corresponds to the jth P* operating on the qubit layers I —1 and
I, and m; is the total number of P*“s operating on these layers. With this
notation, it is evident that the data propagates from the input to the
output layer and a g-feed forward NN is obtained. This represents the
basis for the bp algorithm. The q-circuits of the network can be
treated as a single unitary 7/ = U 'U*U! ... U, where U =U%, ... U
are the layer U’s, consisting of a product of q-P“‘s operating on the
qubits in layers ] — 1 and [, see Fig. 7. To get the correct dimensions when
constructing the architecture, every U}( must be extended by identities
for the remaining qubits. Here these are left off for simplicity. Having
this in mind the formula for the output state becomes

Z(pP™) = Cinpia (% (™ ® 10...0),,4 1 0---0) Z7).

hid,out

For the choices of 0oF # and the training of dqNN algorithm see
Abbasi et al. (2013), Bouchard et al. (2015), Stanoev (2013). QNNs can
be realized on a q-computer using parametrized g-circuits (Glisic, 2023b;
Du, 2020; Bu et al., 2021) comprising parameterized g-gates. To do so,
two aspects are important: the realization should be universal, and the
complexity should be kept low. In (Beer et al., 2021), a proper
compromise between these objectives enables good training results on
NISQ devise. A discussion of over parameterization can be found at
(Larocca, 2021). Implementation of P U’s with two-qubit gates
(Peterson, 2020) using a two-qubit canonical gate and twelve single
qubit gates is presented in Beer (2022).

Performance Limits of QNN: To characterize these limits, here a lower
bound on the probability of QNN giving an incorrect output for an
arbitrary input is used. These limits are studied in Arunachalam et al.
(2017), Sentis et al. (2012), Sasaki (2001), Gammelmark (2009).

Continuous-variable (CV) QNN: Most natural q-computing architec-
ture (c-arch) is CV model. Q-data are encoded in the g-states of fields,
like the electromagnetic field. The standard variables in the CV picture,
e.g., position or momentum are continuous (Du, 2020). Qubit operations
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can be embedded into the g-field picture (Gottesman, 2001). Authors in
Killoran (2019), use the CV model for ML, showing how a number of
basic ML primitives can be built in the CV setting. A kernel-based clas-
sifier implemented as CV g-circuit was trained in Mitarai (2018).

Convolutional, Recurrent and Residual CV QNN: Nowadays, deep %
(DL) methods are not limited only to the basic architecture. Diverse DL
software tools (Bergstra et al., 2010; Jia, 2014; Maclaurin, 2015; Paszke,
2017; LeCun, 1989; Goodfellow, 2016; Bloch, 1929; Noether, 1918)
enable us to study more sophisticated and complex topologies. For the
g-case, an effort should made to also try to go beyond restrictions
imposed by the basic network structure discussed so far.

In this respect, by using CV model the problems can be encoded in a
variety of representations (Arunachalam et al., 2017) like the phase
space, the wave-function and the Hilbert space picture, or some com-
bination of these. The information can be encoded in coherent states
(cS), squeezed states (sS), Fock states (fS), or superpositions of these
states (6S).

In addition, the network can be tuned to match a specific class of
problems by selecting the gates and their parameters with a specific
structure. This should improve efficiency of parameters’ use and better
overall performance. In (Killoran, 2019; Giovannetti, 2008), authors
discuss potential q-versions of various special NN architectures as
visualized in Fig. 8.

4.3. Quantum Ml

Having roots in the traditional pattern recognition, such as identi-
fying handwriting, and st-# theory (using analytical tools for ML
modeling), ML studies the design of methods that can learn from data
and make predictions about them. With respect to data analysis and data
mining-type assignments, c- ML can be organized as supervised (sL) and
unsupervised learning (uL) (Shalev-Shwartz, 2014). More generally,
reference (Alpaydin, 2010) also includes here reinforcement learning
(rL) (Sutton et al., 1998), which is closely related to % as is implemented
by bio-intelligent objects. For c-ML algorithms see Glisic and Lorenzo
(2022), Arunachalam et al. (2017).

ML in Quantum Physics: In recent times, ML is used as a buzzword, for
a number of techniques like #-algorithms, but also techniques used for
indirectly related problems. From such a broad perspective, ML also
includes st-#, the black-box optimization problems and solving hard
optimization problems in general.

NOTE: Position and momentum space:
Position (%*) space (") is the collection of all position vectors (p 7)
r defining points in "%, Similarly, the collection of all .#°™ -vectors

(b)
h®)

\h(’* 1 ))
recurent L

convolutional L

ly®)

»(x))

Fig. 8. Q-adaptations of the convolutional (conv), rL, and residual layer. The
conv layer is enacted using a Gaussian U with translationally invariant
Hamiltonian, resulting in a corresponding sy matrix that has a block Toeplitz
structure. The r- layer combines an internal signal from previous layers with an
external source, while the residual layer combines its input and output signals
using a controlled-X gate.
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(m7s) p a physical (p?%)-9* can have is referred to as momentum
#°™)- 7. The m 7" of a particle (p'®) describes its movement . In
physics, .4°™ is usually defined as mass times velocity p = mv.

For a function (F) f(r) defined in #%-sP%“, the Fourier transform
(7.7) gives the F-¢(p)in .#4°™-s"*°, and a . 7*-s"*“-F is obtained by the
inverse- 7.7 of a .#°™-*°_F (Pontryagin dudlity). So, a p™* - ' can be
represented using either the *°*‘s of its components, or their .4°™ ‘a, in both
cases the information (/) about the ' is same. The wave vector (w 7") k
can be also defined having dimension of 1/length (note the similarities with
angular frequency w having dimensions of 1/time). The collection of all
w7 s is k-sPe.

% and .4°™-sP*°®- s in classic mechanics:

Lagrangian (.2)- m®: The #- L(q, dq/dt, t), in configuration space
(c.v), with vector q = (q1,q2, ..., qa) of the generalized (g“rlz) co-
ordinates (g #). The Euler-Z eq’s of motion are

doL oL . _dg

ditaiql_diq, q; = dr (i1
By defining the canonical (¢®") .«°™ for each g 7,

pi = dL/dq;

one has

p; = dL/dq;

In.#°™-sP*¢ @, 1/(p, dp /dt, 1), p = (P, Py, ..., P,) isa vector of the

g™ _4°™ ‘a. One can show

’ n . .
I'=L-) " (9;+dpo),

o o (i2)
—q; = av —qi = ay

Combining (1) and (2) gives the .4°™ -s**® Euler-¥ equations
d o' oL .
i a = a (i3)

Hamiltonian (/77') mechanics: While #-mechanics uses either .#°%s
or the .#°™ ‘a, the 7 equations of motion place .#7°*s and .#°™ ‘a
together. For a 8 with /7- H(q, p, t), the equations are

OH/ot = —dL/dt, q; = oH/dp;

and p, — —0H/dg; (i4)

A g¢- mechanical (m*") ¢ is governed by the time dependent
Schrédinger equation, H lw(t)) = ihdw(t))/ot, where |y (t)) is the s' of
the ¢- 9" at time t, # is the reduced Planck’s constant # /2, and H is the
Hamiltonian (%) that describes the total energy of the . The “hat” is
used to indicate that H is a g- 0®* ‘or. As the Schrédinger equation is a
first-order linear (1) differential equation, the temporal dynamics of
the ¢- ' may be viewed as a straightforward example of a " dynamical
& with formal solution, |y(t)) = e"#/"y(0)).The time- I“? -7- H
governs the time evolution of the ' through the oP* ‘or e~#t/"_ Thus,
just as with classical (c-) 8’ ‘s, determining the .7 of a s - whether the
¢-#- H or its ¢- counterpart H— is the first step to deriving its
dynamical behavior.

% and 4°"-P* ‘s in q- mechanics

In g- m™", a p'® is represented (#%") by a q- s that can be described
as a superposition of basis s ‘s. If the eigenfunctions (eF’s) of the .7 -
operator (07" are used as a set of b® -F ‘s (bF), then a 5" as a wave F (wF)
w(r) in Z% - P is defined. The Schrodinger (S°9) eq in terms of the
-1 is an example of g- m*" in the #%-%%". Using the eF of a different
0P’ as a set of bF ‘s gives different .#%"s of the same s™. If the eF -s of the
MM - oP are used, the resulting wF -¢(K) is in .4°™ -sP*. A library of
Hamiltonians for benchmarking g- algorithms and hardware can be
found in Sawaya et al. (2023).
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Estimating Hamiltonian: Hamiltonian (H) estimation, observes a g-
system operated by Hamiltonian, unknown within a given family H(6),
with parameters @ = (61, . . ., 6,). H- estimation identifies the best al-
gorithm for estimating the H- parameters.

This includes selecting the best option for initial state (iS), to be
processed by operator H, and the selection of the subsequent.#’s, which
reveal the effect the operator H had, and so, indirectly, the parameter
values. This study incorporates a number of limitations, modifications,
and generalizations of this assignment. As an example, a situation may
be considered where either evolution time t of operator H is controlled,
or it is fixed so that t = ty, options referred to as frequency and phase
estimation respectively.

The quality of the estimation is expressed in different ways. In a
frequency estimation method, the focus is on estimation strategies giv-
ing the best precision / number of ./#’s scaling. Here so-called quantum
Fisher information is used, which quantifies and bounds the scaling. In
this setting, referred to as the local regime, typically having many rep-
etitions of .#’s is assumed. On the other hand, the main objects in the
single-shot regime (Bayesian) (Jarzyna, 2015) are the prior data, defined
by the parameter to be estimated distribution, and its update to the
posterior (p-) distribution given a.# methods and outcome. Here the aim
is to identify the initiation/.# methods which minimize the average
variance of the p- distribution, computed here via Bayes’ theorem.

The interest here is the utilization of specific g-features, such as
entanglement, squeezing etc. in the structure of the probe states and .#’s
may result in a provably better estimation than by so-called c-strategies
for many natural estimation problems. Such g-improvements are of
important practical relevance (Giovannetti, 2011). Finding the optimal
solutions has been achieved in certain clean theoretical scenarios,
although often impractical. It is in this context that ML-flavored mech-
anisms, and ML methods can help.

phe settings: A relevant estimation problem from a ML point of view,
is already simple example of a phase shift in an optical interferometer,
where one of the arms has a phase shift of 6. It is known from earlier
discussions, that for an optimal probe state, with mean photon number
N, and an optimal (so-called canonical) .#, the asymptotic phase un-
certainty can decay as N~! (Sanders, 1995), known as the Heisenberg
limit.

On the other hand, if limited to simple .« strategies (as defined in
Sanders (1995)), involving only photon number .# a scaling of vN-T
achieved, called the standard g-limit. Authors in Berry et al. (n.d.) define
more general proof: the optimal measurement (.#°P") constitutes a complex,
experimentally unfeasible Positive-Operator Valued Measure (POVM) and
cannot be achieved by the c-post-processing of photon number .4 of the output
arms. Reference (Berry et al., n.d.) also shows how to overcome this by
using simple .4, provided they can be altered in run-time.

The.#°"* process is an adaptive strategy: In the process an ent-N -photon
state is initiated (Berry et al., 2001), the photons are sequentially
inserted into the interferometer, and photon numbers are measured. A
differing phase shift ¢ modifies the .# at each step, depending on pre-
vious .# outcomes. In (Berry et al., n.d.; Berry et al., 2001), a method
achieving the Heisenberg scaling of the optimal order O(1 /N) was
given. The implementation of these methods was first suggested in
Hentschel (2011), and later in Sergeevich et al. (n.d.). In follow up
works, differential evolution has been shown to be better and more
practical (Lovett et al., n.d.).

Group-theoretic approach to gML: gML models are designed for
learning by using data encoded in g-states. To facilitate training, some
assumptions about the problem embedded in the model are necessary.
So, encoding that includes as much data as possible about the problem at
hand is needed. Authors in Larocca (2022), present group-invariant (gI)
models whose decisions is invariant under the action of any element of
the symmetry group (sG) associated to the set of data. Their results sup-
port the construction of invariant models and present several gML ex-
amples, including cases using Lie group and a discrete sG. The presented
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framework enables efficiently recovering of several well-known algo-
rithms and discovering new ones. In summary, the results encourage
further research on geometric and group-theoretic methods for qML
model design.

Discrete gl Models: The previous options dealt with models where the
sG modeling of dataset was based on a U-representation of Lie group.
This approach can be used also for representations with discrete groups
(dG) (http, n.d.b; Frigerio, 2016). As an example, dG are the appropriate
analytical structures when the g-data is invariant under permutations.
This includes cases of structural invariances in states of molecular
systems.

Graph isomorphism dataset: Here, a dataset in the context of graph
isomorphism problem (Izquierdo, 2020; http, n.d.c) is discussed, with
objective to find out if two graphs are isomorphic. This classification
problem (Kobler, 2012) is NP hard. Several c-algorithms (with quasi
polynomial complexity in the graph size (Babai, 2016)), and g-heuristics
(Gaitan, 2014; Izquierdo, 2020) are available to solve this problem. If a
g-model is used for graph classification, the first step is to encode graphs
onto g-states. For the discussion on q-computing for the brain see Swan
et al. (2022) and quantum-like modeling in biology with open quantum
systems and instruments (Basieva et al., 2021).

For discussion on parameterized q- circuit approximation, opti-
mizing parameterized g- circuits and variational quantum eigensolver
see Ibrahim et al. (2023), Watanabe et al. (2023), Bertels et al. (2023).

5. Complex g- models

In the evolution of communication networks from 6G to 7G further
growth should be expected of our ambitions to model more sophisticated
optimization processes requiring more powerful analytical tools. For
these reasons, it is useful to review the work done in the field of quantum
computational chemistry where some advances in building complex
quantum models have been already achieved.

5.1. g-Computational chemistry (cCh)

Q-computing is being used more and more for solving c-intractable
chemistry problems. This should enable us to solve otherwise unresolved
problems related to chemistry specific phenomena.

Among these phenomena this paper is interested in biochemical re-
actions and their relevancy to brain operation and new advanced solu-
tions to ML.

Since having large QC resources may take time, solutions enabling
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analysis of these problems with fewer g-resources are very important.
Motivated by this need, g-cCh is an evolving field requiring knowledge
of both QC and cCh. This section presents a survey of both cCh and g-
computing works, reducing the existing knowledge gap. Here the
progress in this field is discussed.

As a part of integrative research, full understanding of the problems
and solutions in this field is expected to help in generating new models
and algorithms in the field of n-Sci and ANN which are expected to be
massively used in 6G/7G networks.

NOTE: Functions and oP°"’s in #°° -space

For a three-dimensional (7™=2%) wF in 7° - P% 4y (r), these F’s
can be represented as a weighted sum of orthogonal bF ‘s y;(r) : or,
(i5)

y(r) = / () (1)K

k—space

If the set of F’s- y (r), is the set of eF ‘s of the .#°™-0P*"-s, the F- (k)
contains all the / needed to regenerate y(r) and so is yet another option
to describe the s -y. In g- m™", the .#°™-0P"" is represented by

p = —ino/or (i6)

with appropriate domain. The eF ‘s are

v (1) = exp(ikr) / (\/55)3 i7)

and eigenvalues (eV) tik. So
1

— k)exp(ikr)d*k
vz ¢ (k)exp(ikr)

k—space

w(r) = (i8)

so, the .#°™-#%" is related to the #” -#% by a 7.7 .
1

(\/z—ﬂ)s i9)

o(k) = / w(r)exp(—ikr)dr

k—space

Momentum Operator: Let us now go back to Eq. (i6). In g-mechanics,
the #°™ -0P" is, in the % -#%", a differential operator. For the case of
one p' in spatial Z? (r= x), the definition is p = —ifd/dx with h being
Planck’s constant, i = v/—1, x represents spatial coordinate, and a p™
derivative (denoted by d/0x) is used instead of a total derivative (d /dx)
since the wF is also a F of time. The ‘hat’ indicates an 0”*". The @ of the

oP“ on a WF is as py = — ihdy/dx. In a b® of Hilbert sP*° -(7'.)

Table 3
CrossTechology coverage (focus q-NN).
1 2 3 4 5 6 7 8 9 10 11
(Glisic & Lorenzo, 2022) QC \/ \/ Fundamentals of Q- \/
computing (QC)

(Tacchino, 2018, Schmidhuber, 2015, Zurada, 1992, Merolla, 2014, Biamonte et al., QC \/ \/ Artificial Quantum Neuron \/
2017b, Neukart, 2013, Schuld, 2014, Schuld, 2015, Kapoor, 2016, Lloyd, 2013, Schuld,
2017, Lamata, 2017, Alvarez-Rodriguez et al., 2017, Otterbach, 2017, Rebentrost, 2018,
Rosenblatt, 1957, McCulloch, 1943, Mocanu, 2018, Rossi, 2013, Nielsen, 2004, Hu,
2018, Cao et al., 2017, Torrontegui, 2018)

(Torrontegui, 2018, Du, 2020, Arunachalam, 2017, Beer, 2022) QC \/ \/ Quantum Neural Networks \/

(Arunachalam, 2017, Sentis et al., 2012, Sasaki, 2001, Gammelmark, 2009, Du, 2020, QC \/ \/ Performance Limits of QNN \/
Killoran, 2019, Gottesman, 2001, Mitarai, 2018) and CV QNN

(Bergstra, 2010, Jia, 2014, Maclaurin, 2015, Paszke, 2017, LeCun, 1989, Goodfellow, QC \/ \/ Convolutional, Recurrent and \/
2016, Bloch, 1929, Noether, 1918) Residual CV QNN

(Shalev-Shwartz, 2014, Alpaydin, 2010, Sutton et al., 1998, Arunachalam, 2017) QC \/ \/ Quantum Machine Learning \/

(Jarzyna, 2015, Giovannetti, 2011) QC \/ \/ Estimating Hamiltonian \/

(Larocca, 2022) QC v v/ Group-theoretic approach to v

QML

(Larocca, 2022, http, n.d.b, Frigerio, 2016, Kobler, 2012, Babai, 2016, Gaitan, 2014, QC \/ \/ Discrete Group-Invariant \/
Izquierdo, 2020) Models:

This paper NET \/ \/ \/ \/ v/ Cross-Technology survey \/ \/ \/

1 reference, 2 focus, 3 classic, 4 quantum, 5 complex networks, 6 tensors, 7 q-simulations, 8 contribution, 9 energy efficiency, 10 computational efficiency, 11

synchronization.
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consisting of .#°"-eigenstates (eSt) expressed in the .4°™- %", the action
of the oP*" is multiplication (m™") by p, i.e. it is a m™! -oP", just as the %
0P is a m™P! -oP¢" in the 7%~ 7.

Hamiltonian Operator: In q- mechanics, the .7 of a system (") is an
0P describing to the total energy (¢™®) of that '™, consisting of kinetic
(k%)- e"® and potential (p'™)- €. Its s°7, or its set of e"® -eV ‘s is the
collection of potential outcomes of a measurement (.#) of the s**s total-
€. The 77 of a & is the sum of the k™ - &"® of all the p' ‘s, plus the
plent - e of the p™ ‘s associated with the .

58 _7: For one p'®®, like in ¢- m*™, the 7 is described as the sum of
0P ‘s representing the kc and p'™ -¢™® ‘s of a & in the form

H=T+V

where

V=v=vr1

is the p"™ -e™® - oP°" and
~~ ~ ~2 2

~ . fl

is the k' -¢™® - oP*" with m being the mass of the pide, the (-) defines the
dot product of 7”s, and

P =—inv

is the .#°™ - oP*" with a V being the del - 0". The dot product of V with
itself is the Laplacian V2. In &> using Cartesian coordinates the Laplace
- 0P is V2 = 9 /ax® + 0% /dy? + 0% /o2

This is the form /7 most commonly takes, although this is not the its
technical definition in c- m*". Putting all of these together gives familiar

form used in the S -eq:
H:?+V:@+V(rt):j‘—2v2+wrt) ({11)
2m ’ 2m ’

allowing us to apply the .7 to 8*"s described by a wF-¥(r, t) . This is the
approach used in introductory discussions of g- meh, using the
formalism of S -wave m®".

The electronic structure problem: For specifying the energy of the
molecule’s components, atomic, molecular, and optical physics and g-
cCh use molecular H operator. The analytical representation of multiple
observables (H’s specifying observable quantities) is established by
using a set of precise rules (http, n.d.d): a) Use the c-representation of
the observable in H form (as a function of momenta p and positions q)
(http, n.d.d; Christiansen, 2012). Both p and q are represented within a
space fixed frame. b) Substitute p by —i#V and use q as a multiplicative
operator.

Here V is a vector of first derivatives as its components. It follows
from the differentiation rules that p and q operators commute.

Kinetic energy (kE) in a c-model of the electrons and nuclei in a
molecule, has the form pz/(2 m) (Glisic, 2023a). They interact via
Coulomb (Co-) interactions, inversely proportional to the distance r
between particle i and j.

£y = I =/ (1) (r ) = (w3

Here r; is the general coordinate vector of either electron or nucleus.
To make the equations self-explanatory, here R is used for the nuclear,
and r for the electrons coordinates of the system. By using quantized c-
energy in H-form, the molecular H-operator called the Co-H consisting
of five terms is obtained:

-x) +m-z) @

1. For each nucleus in the system the kE operator is represented as; T, =
- Yih*VR? /2M;
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2. The same operator for each electron are given by; 7}: — 32 Vfi /2m,
3. The potential energy (pE) between the electrons and nuclei is;

Uen = ZZZ e* / 4neo|R; — 1] 2
4. The pE due to Co- electron-electron repulsions
Uee 2:24neo|rl—r| 2;;4neo\rl—rj| 3
5. The pE due to Co-nuclei-nuclei repulsions is
PN 1 Z,Z;e* Z,Z;e?
Unm = EZiZ;¢x4neo\Rl R| 2Z ZJ>147750|R R;| @

Here M; stands for the mass of nucleus i, Z; is the atomic number of
nuclei i and m, is the mass of the electron. The Laplace operator of
particle i is:

V2= o+ oy + g

As indicated above, the kE operator is invariant under rotation of the
Cartesian frame used to express X; ¥;, and z;.

With slight abuse of notations (double sum replaced by one sum with
two indices), the H of a molecule comprising N electrons and K nuclei is
obtained by summing up the above component resulting into

)

1)

o,
- 2’

(2)

Z471'(:’() |l‘l RI

1 ZZ, ©
[4
T ) DL L
& 47'[80 |l‘i71‘j} I#J47[€0 |R1*R]‘
(4) (5)

where Z;, M;, and Ry, stand for atomic number, the mass, and position of
the Ith nucleus, and r; is vector of coordinates of the ith electron. Terms
(1) and (2) in the expression for H are the kE components of the electrons
and nuclei, respectively. The terms (3), (4) and (5) represent the Co-
repulsion between the indicated components of a molecule. For
simplicity, atomic units are used, for length ap =1 Bohr (0.529 x

10~'m), for mass electron mass m,, and for energy 1Hartree (1 Hartree
€% /4neoay = 27.211 €V). Using M; = M;/m,, the H in atomic units
becomes

\v& Y Z;
H=-) —L_ I _
XI:ZMI ;h‘i_Rl‘
ZZ. @
JCEN
2§\rl—rj| ,#J|RI—RJ\

The focus here is on the electronic component of the molecule. Since a
nucleon is considerably heavier than an electron, the Born-Oppenheimer
expression is used, considering the nuclei as c-point charges so that for a
given nuclear configuration it is only needed to solve the electronic H

V2 z 1 1
N e\ L2
zi: 2 ;mfR,\ 2;|ri -1

The goal is to find energy eigenstate (eigS) |E;) and the corresponding
energy eigenvalues (eigV) E; of H, .

Quantum phe: phe (Kitaev, 1995b) is used to identify the lowest en-
ergy eigS, |Eo), and excited states, |Ei~o), of a physical H (Abrams et al.,
1999). The canonical phe algorithm is described in Nielsen and Chuang

(®
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(2002) and presented in Fig. 9.

1. The qubit .% is prepared in state |¥), having partial overlap with the
eigS of the system. Here an extra . of w ancilla (.2/-) qubits is needed.
The |¥) can be expanded in terms of energy eigS’s of the H, as |¥)
Yici|Ei), where ¢; are complex coefficients.

2. Then the .«/-% is set in the superposition 3, |x)/v/2?, by applying a
Hadamard gate to each .«/-qubit, where x are all possible bit-strings
that can be obtained from w bits. Then the controlled gates shown in
Fig. 9 is used.

3. In the next step the q-IFT is applied to the .o/-qubits to identify the
phase, which encodes the data about the energy eigV.

4. Measuring the .o/-qubits in the Z basis, returns an estimate of eigV’
(E;), with probability |c;/> This .# collapses the main .% into the
corresponding energy eigS, |E;)

The number of ./~ qubits w, used for the mechanism of phe presented
above, defines the achievable success probability and precision in the
energy estimate. Authors in Nielsen and Chuang (2002) show that for a
precision of a binary estimate of the energy over n bits, with success
probability p, @ =n + [log,(2+1 /2p)] .«/-qubits are needed. The phe
has been experimentally studied in a variety of q- systems (Du, 2010,
Lanyon et al., 2010, Li, 2011, O’Malley, 2016, Paesani, 2017, Santagati,
2018, Wang et al., 2015).

To execute this algorithm, it is needed to sequentially evolve in time
the main .%# using the H for times ty = 2z, t; = 4x, ..., t,_1 = 2°n . The
overall coherent time evolution, T, is T = 2“1 z. With this, for a psyccess
=0.5, o = n+ 2 .&/-qubits are needed. The relation between the binary
precision epg = 1/2" and Tis T = 87/ epg. FOr psyccess =0.5, the number of
the procedure repetitions n, =2 is needed to get a fair estimate of the
eigS, |Eo) . This leads to an overall number of 16x/epg uses of the U e~
(Reiher, 2017). Now, since ¢y < 1, the n, must be multiplied by 1 / \co|2,
to get the ground state.

In addition to epg, obtained in Ey, the errors ey caused by imperfect
design of the controlled U evolutions applied to the main .%2, must be
also accounted for. This error is caused by disassembling e # into
arbitrary single and two qubit gates, in the process of a Trotter dis-
assembling. Circuit synthesis errors, ecs, arise from building up gates
from a discrete set (library) of gates. An example is approximating single
qubit rotations from multiple T (Tiffoli) and Hadamard gates. They can
be calculated using the Solovay-Kitaev theorem (Dawson, 2005). For a
Trotter disassembling of e #, (Reiher, 2017) shows that the upper
bound on error in the energy eigV obtained from phe is epg + ey + €cs. In
practice, it is not easy to optimize these error budgets in order to
minimize the overall error (Reiher, 2017, Kivlichan, 2019a).

For any version of phe, there are two general features.

1) The .% needs to be initially in a state partially overlapping with the
target eigS. 2) There must be a solution for coherent realization of a U-
operator defined by an invertible function of the H. The common choice
for U-operator is e ¥ used above. Methods to satisfy both requirements

- Had

— Had I
— Had

a I T
4‘ e—2miH2° H e—2wiH2! |_ o—2miH2? '7

Fig. 9. The canonical g- phe circuit with three .«/- qubits. When the .«/- qubits
are in state |x), a control rotation e 2H* is applied to the target state |¥). QFT
denotes the q- Fourier transform (Caruana, 1997; Glisic, 2023a). By measuring
the .«/- qubits in the computational basis, they collapse to an eigenvalue of H
and the .%#- qubits collapse to an estimate of the corresponding energy eigS
(McArdle, 2020).

|0)
|0)
|0)
V)
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will be surveyed in the following sections.

State Initialization (sD): It is not trivial to initialize the qubit .# in a
state with a needed overlap with the target eigS (typically the ground
state-gS). If chosen at random, the state would collapse to the desired gS
with an exponentially vanishing probability, as the system size
increases.

In addition, authors in McClean (2014) show that the complexity of
phe exponentially increases, by taking into account the imperfect initi-
ation of eigS’s of subsystems that do not interact. This supports the need
for sI procedures with at least a polynomially decreasing overlap with
the full configuration interaction (FCI) gS, as the system size increases.
Different such techniques are available for sI. One solution is to initialize
reference states obtained from c-tractable calculations, like configura-
tion interaction states (Babbush et al., 2015), open-shell spin symme-
try-adapted states (Sugisaki, 2016), multireference states (Sugisaki,
2019), or states generated by adaptive sampling configuration interac-
tion methods (Tubman et al., 2018a). Additional options of interest are
also: the variational methods discussed in Yung (2014), q-algorithms for
imaginary time evolution (Motta, 2019), or adiabatic sI (Aspuru-Guzik
et al., 2005). Here the paper focuses on adiabatic s, inspired by the
adiabatic model of q-computation (Farhi et al., 2000).

For given Hamiltonian H;, a state |¥) that is near its gS can be
initiated by using adiabatic sI (Albash et al., 2018). In this process, the
starting point is a simple Hamiltonian Hj initiated in its gS. Then the
system is evolved in time by using a H that evolves step by step from H,
to Hs, thus initiating a state that is near the gS of H;. Such approach to sI
will be more efficient if the gap between the gS and the next state on the
path between Hy and H; is smaller. For cCh, adiabatic state preparation
(ASP) may be reached by starting the system in the gS of the Har-
tree-Fock H (Hp), and interpolating in time t between the starting and
final Hy as H(t) = (1 — t/T)Ho + (t/T)H;, where T is the maximum
simulation time (Aspuru-Guzik et al., 2005). For other options poten-
tially more suitable for problems of cCh see (Veis, 2014, Wecker, 2015).
The maximum annealing time, T is given by T~ ¢ (M*/minsA(t)),
where A(t) = E1(t) — Eo(t) and M is the number of spinorbitals in the
molecule. Authors in Reiher (2017) suggest that the scaling may be
closer to @ (M? /minA(t)) .

Difficulties in knowing a priori how big the gap along the entire
adiabatic path is, limits the possibility to perform ASP in the limited time
window. One option for reducing the annealing time needed is to use
additional driving H’s, like what was used in Matsuura (2018), Veis
(2014). Although the above expression T ~ ¢ (M* /minsA(t)) does not
explicitly depend on the iS used, by starting in a state that is near the
target gS should make the anneal path shorter.

If an iS overlapping sufficiently with the gS is available, it may be
possible to surpass adiabatic sI completely, and instead do phe directly
on that iS. As seen from the above discussion, ph& only needs an overlap
with the target gS. There are several methods for evolving the system
under this time-dependent H, as well. H and ph& for chemistry simu-
lation (ChSim) will be discussed in Section 8.

5.2. Complexity of q- Chemistry (qCh) algorithms

Most work on g-simulation in chemistry provides answers to the
electronic structure estimation by using ph& to estimate eigV’s by sam-
pling molecular eigS’s (Kitaev, 1995a). Even with limited resources
(=2 100 qubits), this could provide meaningful results in different
research areas and the development of technologies.

By using a basis of single-particle functions called orbitals to dis-
cretize the multiple-body wF, molecular systems on a q-computer have
been modeled. Most qCh processing uses either plane wave (pW) or-
bitals, or the orbitals obtained by linear combinations of Gaussians.
Using pW enables highly structured H’s. Authors in Babbush et al.
(2018a) show that this approach enables asymptotic advantages for
g-algorithms. Nowadays, the best-scaling gCh-algorithms in second
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quantization (2ndQ) use pW; achieving ¢(N®) (Babbush et al., 2018b;
Kivlichan, 2019) or (N2 log N) (Low & Wiebe, 2018) gate complexity,
with small or large constant factors and more spatial complexity,
respectively.

A need for rather large number of spin-orbitals to represent many
molecular systems to chemical accuracy represents the main constraint
to using pW in 2ndQ. For resolving this problem, the work of Babbush
etal. (2019) suggests simulating the pW H in the first quantization (1stQ)
offering @ (N/3y®/%) gate complexity, with 1 being the number of
electrons. (Note: 1stQ uses quantized variables like position and momentum,
as operators. 2ndQ uses quantized fields, rather than variables.) Due to low
scaling in N, one might need an extremely large pW basis. The feasibility
of practical implementation of that approach has not been studied
enough. It has not been compiled to specific circuits, and it is not known
how large the basis should be (Low & Wiebe, 2018).

The low resolution of pW can be improved by using a more compact
basis. Nowadays, most approaches for the q- ChSim suggest using very
compact molecular orbitals. Unfortunately, this results into complex H
with coefficients expressed by integrals and ¢ (N*) distinct terms. The
first such algorithm had gate complexity ¢(N'!) (Whiteld,2011). Later,
researchers have reduced the complexity by using tighter bounds
(Poulin, 2015), better mappings between fermions and qubits (Jiang,
2018), improved sI techniques (Tubman et al., 2018b), application of
new time-evolution strategies (Low, 2019, Babbush et al., 2016,
Campbell, 2019), considerations of fault-tolerant overheads (Litinski,
2019) and other solutions in representation and algorithmic structures
(Motta, 2018).

The minimum implementation cost of earlier work on 2ndQ arbitrary
basis ChSim is either the @ (N®) scaling of Babbush et al. (2016), or the
ﬁ(iz) scaling of Campbell (2019), with A being the 1-norm of the H.
While the solution from Babbush et al. (2016) has large constant factors
in the scaling, the method of Campbell (2019) scales quadratically worse
than post-Trotter solutions regarding the evolution time (eT). For
practical implementation, the best prior solution is Lie-Trotter proosal
(Motta, 2018), although the step size for that method is unknown. Au-
thors in Dominic (2019) present a solution with @(Ne’/ 2)) T (Toffoli)

cost, which looks better than any prior work as long as 4 = Q(N%/2),
which is most common case.

Works presented in Babbush et al. (2018b), Kivlichan (2019) enable
compilation of gCh algorithms in terms of Clifford 4T (Toffoli) gates and
calculate the resources needed within an error-correcting code are.
These works minimize T-complexity since these gates cannot be trans-
versely realized within practical codes (Litinski, 2019). The gates are
implemented by distilling magic states or Toffoli states, which needs
orders of magnitude more space/time volume (qubit seconds) than
executing Clifford gates, together with a large consumption of physical
qubits (Fowler, 2018).

Authors in Reiher et al. (2017), Beinert et al. (1997) focus on the
simulation of an active space of the FeMo cofactor of the Nitrogenase
enzyme. Due to the complex electronic structure, the process is not fully
understood although the reaction is important. Nitrogen fixation is
much more efficient than the option used in industry. Authors in Reiher
et al. (2017), Litinski (2019) used a 108-qubit active space requiring
about 10T gates.

Authors in Babbush et al. (2018b), Kivlichan (2019) demonstrate
feasibility to perform ChSim of similar size with approximately
108 T-gates, using a pW rather than Gaussian basis. By using methods
published in Gidney (2019) such calculations could be realized in the
surface code (Glisic and Lorenzo, 2022) at 10~2 physical error rates with
less than a million physical qubits in just hours.

The solution presented in McArdle et al. (2020) suggests performing
ph& directly on a g- walk (Dominic, 2019, Szegedy, 2004, Low, 2019),
used to simulate H’s in the linear combinations of U’s query model
(Childs, 2012). The analysis of the ph& -algorithm presented in McArdle
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et al. (2020) is similar to that in Babbush et al. (2018b), implementing a
solution proposed in Poulin (2017), Berry et al. (2018) based on qubi-
tization (Low, 2019). Reference (McArdle et al., 2020) uses the U-iter-
ation technique from Babbush et al. (2018b), Childs (2018) and the
QROM based sI and coherent alias sampling methods suggested in
Babbush et al. (2018b) and then simplified to reduce the complexity in
Low (2018). The algorithm leverages the sparse nature of the
Co-operator, using a low rank representation from Motta (2018).

If a limited number of .<7-qubits is used (McArdle et al., 2020), using
the system qubits as “dirty” .27, the algorithm can reach che- accuracy for
FeMoco with about 2 x 103 Toffoli gates, using the active spaces of
Reiher et al. (2017) or Li (2019).

If many ./ were used then the number of Toffoli gates needed with
the best option of McArdle et al. (2020) would be about 2 x 10'! for the
(Reiher and al, 2017) orbitals, or 8 x 10'° for the (Li, 2019) orbitals. The
required number of gates is four times larger but since Toffolis are
critical, Toffoli states can be distilled directly. The cost for this would be
approximately the same as for distilling two magic states for gates
(Gidney, 2019).

Although (McArdle et al., 2020) improves upon the distillation
space/time volume required by Reiher et al. (2017), at 10~ error rates,
about 3 times 10° qubitweeks of state distillation are still required,
which improves over previous results by a factor of seven hundred but is
still unacceptable.

For the latest results on Chemistry Application to Quantum Error
Correction Primitives and Benchmarking Adaptive Quantum Circuit
Optimization Algorithms for Quantum Chemistry see Blunt et al. (2023)
and Saib et al. (2023) respectively.

6. Synchronization
6.1. n-Sci and N-sync

Over the past several decades, an extensive study of stability and
periodic oscillation for NNs has been witnessed. Time delay (¢D) is often
present in bio- and ANNs, causing oscillation and instability for a NN.
Nowadays research results are available, defining conditions guaran-
teeing the stability of NNs with tD (Zhang, 2008). Sometimes, in dS, tD is
present in both the system state and in its derivative (Hale, 1993). To
model such systems, differential neutral (n-) delay (nD) equation is used,
where the delay consists of the nD and the retarded delay (http, n.d.e;
http, n.d.f). This model is used in several applications. Since the nD
exists in NNs, the stability analysis of n- NNs has attracted a lot of
attention (Gao, 2018; Wen, 2012).

Complex dynamic networks (dN) are of interest for this paper, since
among the number of important practical models they can also simulate
neural networks. Since its introduction in Pecora (1990), synchronizing
complex dN (cdN) has become an important topic applicable in many
fields including ch-reaction, bio-systems, and info-science (Abbasi et al.,
2013). In addition, cdN’s exhibit more sophisticated behaviors than a
single NN (Stanoev, 2013) making sync of cdN an appealing problem.
The sync problem has been modeled by using the c-methods such as
feedback control (Ctr) (Karimi, 2010), sampled-data Ctr (Wi et al., 2013a),
backstepping Ctr (Xia, 2009), pinning Ctr (Yang, 2013), impulsive Ctr (L,
2011), adaptive Ctr (aCtr) (Yang, 2010) and st-perturbation (Zhang).

In (Qin, 2015), a unified method was used to study the exponential
sync (e-sync) of cdN. Authors in Wang (2015) studied the global sync of
cdN with a limited data rate. Investigating the sync-problem in NNs of
n-type in reliable network of robots (Yamamoto, 2004) and chaotic
secure communication (Yang, 2004) has shown promising results. By
using the linear matrix inequality (LMI), the global-sync of cdN with
n-type delayed nodes is presented in Ji (2011).

Markov jump system (Mjs) (Boukas, 2006) is used to model dynamics
with abrupt changes. Here parameters describing the state are contin-
uous and the jumping parameters are discrete, therefore such a system is
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synchronization.

regarded as a hybrid system. Modeling using Mjs was presented in Bo
et al. (2014). Sync for cdN with Mjs has been studied in Liu et al. (2009a),
Wu et al. (2013b), Yang (2012), Zhang (2015).

Authors in Yang (2012), derive sufficient sync conditions for NN’s
with the Markovian coupling and different node-delays and random
coupling strengths. For the same network conditions and time-varying
delay (tvD), st-sync was investigated in Zhang (2015). The analysis is
based on a new mode-dependent augmented Lyapunov (Ly-) sync-cri-
teria. Unfortunately, sync for the cdN of n-type with Mj parameters did
not attract much research interest. By using Ly-sync-theory, the problem
of robust mode-dependent delayed state feedback control (fb-Ctr) was
solved for a class of uncertain tD systems with Mj parameters and mixed
discrete, distributed and n-delays in Karimi (2011).

The sync of coupled NN’s of n-type with Mj -mode dependent discrete
and unbounded distributed delays has been considered in Liu (2013), by
constructing a Ly-functional. Sync for Markovian st-coupled (Msc) NNs
has also been considered in Wang (2010), Zhu (2012), since external
st-disturbances, modeled by Brownian motion (Mao, 2011), exist in
practice. The e-sync for Msc NNs of n-type with tvD has not been dis-
cussed due to the difficulty lying in the complexity caused by the
simultaneous existence of the n- item, the st-perturbation, and the
Markov switching.

Adaptive control (aCtr) is useful in designing the sync of cdN (Sastry,
1989) since the control variables can adapt via corresponding updating
rules in reacting to the variation in the behaviour of the system (Parino,
2000). Sufficient conditions to guarantee the adaptive e-Sync in st-cou-
pled NNs of n-type under an adaptive feedback control rule were ob-
tained in Zhang et al. (2013b), by using the Ly-method and some
properties of the Kronecker product. By using mechanisms presented in
Mao (2008) and Kolmanovskii (2003), the adaptive e-Sync for st-NNs of
n-type with Mjs was presented in Gu (2003). The algorithms presented in
Karimi (2011) Liu (2013), and Zhou (2014) are valid for constant delay
case.

As discussed in Gu (2003), in practice, the tvD model is more
adequate than the model with constant delay. The extensions of those
methods to the tvD are not simple, especially when the restrictive con-
ditions (r-Con), that the derivative of the tD function is less than one, are
not imposed. If both, n-item and the st-perturbation are present at the
same time the problem becomes difficult. As an example, in Zhou
(2013), although the adaptive e-Sync for n- st-NNs with tvD and
Markovian switching is studied by using the methods from Mao (2008)
and Kolmanovskii (2003), this r-Con on the tvD must be imposed. The
case without the r-Con has not been studied yet. Thus, the global e-Sync
for the Msc- NNs of n-type with tvD under an adequate adaptive feedback
control (afbC) law needs to be further examined.

In the sequel, some of the above-mentioned solutions will be
explicitly discussed in more detail.

Synchronization of NN with stochastic perturbation (st-pert): Here the
sync problem for NN with st-pert with intermittent control (iC) via
adaptive aperiodicity (aA) is discussed. By using st-theory and Ly
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stability methodology, methods of iC with aA are used to achieve the
sync of st-NN. Sufficient conditions for achieving a sync of the under-
lying network are established in Zhang et al. (n.d.).

NOTE: Preliminaries on Synchronization

Here a neural network system is considered consisting of N identical
nodes with nonlinear coupling ¢ with vector-form stochastic perturba-
tions, described by

N
—Cxi(t)+Bf (i) + > ay [0 (x:(0)) =y (xi(2))] | dt
=i

xi(t)=

+o(x;(t))dw(t) (i12)
where X;(t) = (xq (t), Xia(t), . . ., Xin(t))" € R" represents the state vec-
tor of the i- th node; C = diag (c1, c3, . . ., ¢p) with¢e >0,k =1,2,.. .,
n, denotes the rate with which the kth cell rests its potential to the
resting state when isolated from other cells and inputs; B = [bl]}nxn €

R™" represent the connection weight matrix; A = [ay] € RV

FO(0) = [fi(xi(0), f2(x:(0)), - - -, f,,(x,-(t))]T is a continuous vector;
o(xi(t)) = o(x1, X2, . . ., Xq) € R¥" is the noise intensity matrix and
o(t) = (01(t), wa(t), . .., wa(t))" € R" is bounded vector-form Weiner

process, satisfying Ewj(t) = 0, Eo? = 1, Ew;(t)wj(s) = 0(s £ t) .

In the case that system (8.1) reaches synchronization,

x1(t) = xa(t) - = xn(t) = s(t), by introducing a controller into
each individual node, where s(t) € R is defined as

s (t) = [— Cs(t) + Bf (s(t))]dt + o(s(t))dw(t)

>i13)

where s(t) can be set to be any desired state: either equilibrium point, or
a nontrivial periodic orbit, or even a chaotic orbit.

To achieve the synchronization objective, the aperiodically inter-
mittent controllers will be applied to some of its nodes. For convenience,
notation

P (%(t), xi(t)) = 0;(%(0)) — @:(xi(t))

is used. Thus, the intermittent controlled network can be formulated as

N
)+ Z a;p xj

J=LiA

Xi(t)= {—Cxl( )+Bf (xi(t xi(0)) 4w (o) | de

+o(xi(t))dw(t)

where u;(t)(i=1,2, ..., n) are the intermittent linear state feedback
controller and are constructed as following:

u-(t) _ 78,@0(.)(1-([‘), S(t))v te [th Si)v
' 07 te [Sh ti+1)7 i:071727 e

>i14)

(i15)

where ¢ > 0 represents control gain and E =diag (1, éo,
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en) € R™". The synchronization error is defined to be e;(t) = x;(t) —s(t)
. By the controller expression (8.4), the error dynamics is governed by

Z a;g xJ

j=1i#j

é(t) = | —Cei(t)+Bglei(t xi(0)) +w(t) | de+5(ei(t))do(t)

(i16)

where g(ei(t)) = f(xi(t)) - f(s(t)) and 6i(t) = 6(xi(t)) — a(s(t)) -

6.1.1. Design example 5

Here, along the lines presented in Zhang et al. (n.d.), numerical simu-
lations of two examples are presented to demonstrate the main results ob-
tained in the previous section.

Xi(t)= | —Cx;(t)+Bf (x;(t

+o(x(t))dw(t) >i17)
where N =100, f(-) =
= diag(1.5,1.5).

In this case, the coupling configuration matrix A and the connection
weight matrix B are given by

(be+1[ = e =1[)/2, o(x(£)) = x(t) + tanh(x(t)), C

-1 1 0 e 0

o -1 -1 -0 2 -0l
A= : R B=( " 45 )

0 -« 0 -1 1 :

1 0 « 0 -1

100x100

Fig. i2a depicts the trajectories of error states of (i17) without
aperiodically intermittent, which indicates that the network (i17)
without aperiodically intermittent cannot synchronize itself.

Fig. i2b shows the trajectories of error states of the system with
aperiodically intermittent, which approach to zero as time increases.
Hence the network is synchronized under the synchronizing aperiodi-
cally intermittent control.

6.1.2. Design example 6

xi(t) =
i

In the following example, neural network is modelled as:

where hi(t) = me ||| p(e: ()|, ¢ = 3, C = diag (2.5, 2.5) and N
100. The other parameters are the same as those given in example #2.

X(1.6%1.2.....100)
X(0.6=1.2.....100)

Fig. i2. a) Time response of the error states of (i17) without aperiodically
intermittent b) Time response of the error states (i17) with aperiodically
intermittent (Zhang et al., n.d.).

— Cx;(t) +Bf (x;(t)) + i ajp(x;(t), x:(t)) +h(Owi(t) | dt + o(x;(t))do(t)
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Fig. i3a and b show the synchronization errors of x;; — x;3 and x;5 —
Xi2, respectively. These figures indicate that synchronization can be
achieved.

Complex networks (cN) are nowadays becoming more and more pre-
sent in society. A cN is modeled by a large collection of nodes commu-
nicating and interacting via a collection of links. Phenomena, appearing
in communication network, bio formation, chemical reaction, NN, social
organization, the WWW, etc., can be characterized by cN. Since the first
discussion on the small-world (SW) and scale-free (SF) properties (Glisic,
2016; Watts & Strogatz, 1998; Barabasi & Albert, 1999), the interest in
studying cN has been increased and had an impact on the work of re-
searchers in other fields. The theory of cdN, is used to study dynamic
behaviors, such as sync, consensus, self-organization, and combinatorial
optimization (Kitaev, 1995b; Guan, 2010; Li, 2014; He et al., 2014a;
Wen, 2015; Lu, 2009; Wen et al., n.d.; Liu et al., 2009b, He et al., 2014b;
Wen, 2013; Tang, 2012). In the past, sync of large-scale (Is-) cN con-
sisting of coupled dS has been studied in Tang (2012), Wu (2007).

Coupled NN, as a special class of cN, have been in the focus of
research interest including NN-sync with all dynamical nodes, general
NN, secured communication and network updating. As a part of the
effort, many control algorithms are available for sync of NN governed by
nonlinear systems, such as aCtr (Zhang, 2009), fuzzy control (Gao,
2014), impulsive control (Zhang et al., 2013b) and iC (Hu et al., n.d.).

The iC, used to control the nonlinear dS in Zochowski (2000), among
the other applications has been also used in communication.

Earlier, the iC was mainly used as periodical iC (Wang, 2013). In (Cai
et al., 2009), periodical iC is used for the NN with tvD in a desired orbit.
Ref. (Yu, 2012), discusses the e-sync for delayed fuzzy cellular NN using
periodically iC. Imperfections always exist in practice, such as st-forces
on the physical systems and noisy .#’s. Communication between nodes
of NN is always subject to st-perturbations from environment, which
may cause loss of data. Therefore, st-perturbations must be considered as
well (Wang, 2013; Lu, 2008; Yang, 2009; Pototsky, 2009). In (Wang,
2013), the e-sync of s-perturbed cN with tvD via periodically intermittent
pinning was studied. In (Yang, 2009), st-synchronization of coupled NN
with iC was also analyzed.

The need for periodicity of iC methods may not be convenient in real
applications. The electricity production by wind power, for example,

(i18)

depends on the weather, which is aperiodically (ap-) intermittent. So, for
the analytical study of real systems, it is better to analyze the sync using
ap-iC model. The analysis of system dynamical behavior by using ap-iC

b)

g
o

0,0(i%1.2,...100)

t

Fig. i3. a) Time response of the error states of (i18) with adaptive aperiodically
intermittent b) Time response of the error states (i18) with adaptive aperiodi-
cally intermittent (Zhang et al., n.d.).
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methods was presented in Liu (2014), investigating sync of nonlinear
coupled networks via a-intermittent pinning control.

Inspired by Liu (2014), reference (Zhang et al., n.d.) investigates the
problem of sync of NN with st-perturbation via ap-iC. The authors
establish sufficient conditions to achieve sync for nonlinear coupled
networks under ap-iC. By using Weiner estimation techniques, suitable
a-intermittent and adaptive ap- iC are developed to ensure st-sync for the
coupled cN with st- perturbations. Sync criteria obtained are verifiable,
and practically useful.

6.2. Large scale (Is-) networks synchronization

Here the problem of sync is revisited by generalizing the problem to
the cN with extremely large number of nodes. Sync processes of inter-
acting nodes are the focus of study in the networks discussed in the
survey so far, as well as in the economic and social systems. The work in
synch leverages the recent theory of cN. Here, the sync phenomena are
discussed when the oscillating objects interact in a cN topology. The
interdependency between the structure and the function of the given
type of connections is also discussed. Applications of sync in cN modeling
are also surveyed: bio-systems and n-Sci, and other types of networks,
discussed earlier in the paper, as well as in economy and social sciences.

Complex Networks: Analytical abstraction of cN is a graph < con-
sisting of a set./” of N nodes interconnected by a set #* of L links, with
degree k; of node. Here 7 is specified by matrix A, with elements a; = 1
if there is a directed link from j to i, and O otherwise. For a weighted
network (WN), G is defined by a matrix W, with elements wy;, reflecting
some parameter (cost, delay, capacity...) of the link between j and i. The
study of the st- characteristics of many cN shows that, even for very
different systems, some categorization/ classification of these networks
is possible. Among these properties, the most characteristic one refers to
the degree distribution P(k), representing the likelihood that a node has a
degree k. This parameter of cN is considered as its most differentiating
factor. A number of other parameters are used to additionally elaborate
the categorization. Among those the most often used are the average
shortest path (shp) length / = (dy), with d; being the length of the shp
between node i and node j, and the clustering coefficient C accounting for
the fraction of actual triangles (three vertices forming a loop) over
possible triangles in the graph.

The first characterization of cN uses the degree distribution P(k)
where the degree is related to the tail of the distribution. In homoge-
neous networks, like the Erdés-Rényi (ER) random graph (Glisic, 2016;
Erdos & Rényi, 1959), the distribution decays exponentially with the
degree. The network is heterogeneous if the distribution has a heavy tail.
As an example, scale-free (SF) networks (Glisic, 2016) have a power-law
distribution, P(k) ~ k™7, the Barabasi-Albert (BA) model (Glisic, 2016;
Barabasi & Albert, 1999) being the typical model of this type of graph. In
this network new incoming nodes are linked preferentially to the
existing nodes (Glisic, 2016) with highest degree. (By the rule, the like-
lihood of connecting a new edge to a given node is higher if he has higher
degree k).

On the other hand, in lattices networks, all nodes have the same
degree. The average shp length (asp) / can be also included into this
categorization. For a lattice with N vertices, obviously, / ~ N'/4, An
approximate estimate of / for a random network, is also possible. For the
network with the average number of nearest neighbors of a node k,
approximately k nodes of the network are at a distance / from the node

or closer. Hence, N ~ k" and then / ~ In (N)/ In ( k ), i.e., the aspl is

small even for large networks. This is known as the SW (Small World)
property (Glisic, 2016). When it comes to distances, there are a number
of parameters providing information about centrality of nodes. A node
centrality is expresed in terms of the relative distance to the rest of the
network. The betweenness is a parameter that represents the number of
shp’s between any pair of nodes in the network that go through a given
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node or link.

The clustering coefficient C is also useful for differentiating types of
networks. It is expressed as: C =Y} ,Ci/N = YN, ni/(Nki(k; —1) /2),
with n; being the number of connections between nearest neighbors of
node i, and k; is its degree. A high C indicates the existence of many
transitive connections, and a low C indicates the opposite.

Community structure tells us if the nodes are mutually connected in
densely linked groups with sparser connections between the groups. The
optimum partitioning of a network into groups is a hard problem. The
most accurate and computationally efficient approaches, Danon et al.
(2005), use the optimization of a parameter referred to as modularity
(Newman & Girvan, 2004), defined as Q = 3 (ay —kikj /2M) ¢, ¢, /2M
ci.c;/2M, M = 3" ki /2, where c; is the group to which node is assigned
and the Kronecker delta function &, takes the value 1 if nodes i and j
are in the same group, and O otherwise. The larger the Q the more
modular the network is. This feature is especially adequate to unveil
structure- function relationships in cN (Girvan, 2002).

Oscillator models on cN: Proper synchronization is of paramount
importance for functioning of bio-NN discussed in this paper. The first
studies of sync consider a network of coupled oscillators and interactions
between them.

NOTE:

Coupled oscillators: For illustration, a network of five weakly
coupled oscillators is sketched in Fig. i4. Every node shows oscillatory
behavior in the two-dimensional state variables x; = (xk, yk) ceR% k =
1, ..., 5. For each of the five nodes, a closed orbit is found, the limit cycle
(depicted in blue), which describes the nodal dynamics in the absence of
coupling. The weak coupling between the oscillators will ‘kick’ the dy-
namics away from the closed orbit, but only so far that the convergence
toward it is sufficiently fast (see the two exemplary trajectories in black
within the limit cycle). This allows for identifying the state of each
oscillator x; with a circular variable, the phase 6, € S!. Deriving the
dynamics 6y of the phase variables from the network dynamics Xy is
central to this section. Given the phase dynamics 6, the collective
behavior of the full network can be inferred by means of the nodes’
phase synchronization.

Throughout this section, the framework of weakly coupled oscilla-
tors is considered. A brief sketch of why this is beneficial for a concise
presentation of the theory is given along with proper introduction of all
required definitions later at due time. The governing dynamics of a
network of N>> 1 interacting oscillators shall be of the form

Xy = fi (ks py) + kg (%1, X2, ..oy Xn), k=1,..,N. (i19)

The functions f, determine the node-specific and uncoupled dy-
namics, whereas g, comprises all coupling effects on oscillator x;
through the other nodes x;.. The coupling strength is denoted by k € R
and y, are bifurcation parameters. The weak coupling is guaranteed by

xR, =< K__7

Fig. i4. A network of weakly coupled planar limit cycle oscillators. Each
oscillator = 1, N = 5, is described in the two-dimensional state variables x; =
(e ¥) - The coupling between oscillators is indicated by red arrows. Without
coupling, each oscillator follows the blue limit-cycle trajectory. Upon pertur-
bation, the oscillator will be kicked away from the limit cycle and follows a
trajectory that leads exponentially fast towards the globally attracting limit
cycle. Globally attracting implies that the basin of attraction spans the whole
x —y plane except for the unstable origin (red). Two trajectories from within
the basin of attraction are shown in black (Pietras & Daffertshofer, 2019).
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assuming the coupling strength to be sufficiently small, k <1. Further-
more, it is assumed that the oscillators are nearly identical and that the
coupling structure is pairwise, i.e. the coupling function g, can be
decomposed into the sum of pairwise interactions. Hence, one can
rewrite (i19) as

N
% =f(xi;p) +x Y &gl X)) (i20)

Jj=1

with y being the only bifurcation parameter. Phase reduction implies
transforming (i20) into the phase model

d=0+xY ) Hy(0—0),=1, .. N (i21)

In particular, the state xy of every oscillatory node will be charac-
terized by a phase variable 6. The corresponding phase dynamics
comprises a natural frequency term ® and contributions from the other
oscillators. The latter add up by means of phase interaction functions Hy;
that depend on the pairwise phase differences 6, — 6; of oscillators k and
Jj.

Phase reductions and weakly coupled oscillators: There already exists
abundant literature covering approaches to phase reduction. In the
following, the paper will review the details of the most commonly used
reduction techniques in a unified language focusing on coupled neural
oscillators (Ermentrout, 1981, Ermentrout & Kopell, 1984, Ermentrout
& Kopell, 1991, Ermentrout, 1996, Hansel et al., 1993, Hansel et al.,
1995, Van Vreeswijk et al., 1994, Bressloff & Coombes, 2000, Izhike-
vich, 2000, Ermentrout & Kleinfeld, 2001, Lewis & Rinzel, 2003, Brown
et al., 2004, Ermentrout & Kopell, 1990).

Works presented in Strogatz (1988) and later in Niebur (1991)
analyzed the collective ph-Sync of non-linear oscillators with random
intrinsic frequencies under several different coupling models in 2D lat-
tices. Even with models different from the actual conception of a cN, the
examples studied in Niebur (1991) are considered as an initial step to
study how network complexity affects sync. In the paper a square lattice
is used as a referent connectivity scheme to design three different to-
pologies: 1) four nearest neighbors, 2) Gaussian connectivity truncated
at 20, and finally a 3) random sparse connectivity. The study reveals that
type 3) topology leads to a more rapid sync between oscillators than
types 1) and 2). This is one of the most important results about sync in cN
of oscillating network elements. Here the paper surveys the work on
three different types of collections of oscillating objects: limit cycle os-
cillators (Kuramoto), pulse-coupled models and coupled map systems.

The Kuramoto (K-) model: The work in Winfree (1967) initiated the
study on collective synchronization (cSync) and emphasized the need for
analytical methods to investigate the problem. One of these methods, as
already discussed, examines a large collection of loosely coupled, almost
identical, interacting limit-cycle oscillating objects, where each object
impacts a phase of the others and changes its rhythm in accordance with
its sensitivity function. Even if these approximations oversimplify the
problem, its nature can be captured.

When the natural frequencies of the oscillating objects are too
different compared to the strength of the mutual coupling, they are
unable to synchronize, and the collection of the objects remains un-
synchronized. But, if the coupling is strong enough, all elements oscillate
in synchronism. The transition from one regime to the other happens at a
certain coupling threshold. At this point some elements lock their rela-
tive phase developing a cluster of synchronized nodes. This is referred to
as the onset of synchronization (oSync). By further increasing the
coupling, more and more elements join the synchronized cluster, and the
system finally settles in the completely sync state (Kuramoto, 1975)

K-model on cN: For the K-model on complex topologies, the paper
reformulates @ to include the connectivity 6 = w; + Y";05a; sin (6; —0))
for (i =1, ..., N), where oy is the strength of the coupling between el-
ements i and j and a; are the entries of the connectivity matrix. These
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relations are referred to as equations of motions.

The oSync in cN: Studies on sync in cN where each node is modeled as
a K- oscillating element, are presented for Watts-Strogatz networks in
Glisic (2016) and Barabasi-Albert graphs in Glisic (2016). These works
study the oSync, with objective to model the coupling point when groups
of nodes start oscillating coherently. In (Hong, 2002), oscillating ele-
ments with Gaussian distributed w; in a WS network with varying
probability of rewiring p where used to study how the order parameters,
defined above, change when long-range links are added. In the analysis a
normalized coupling strength o; = K/(k) was used, where (k) is the
average degree of the graph. It was shown that cSync emerges even for
very small values of p.

The results demonstrate that topologies generated by rewiring even a
small fraction of links in a regular ring, can be synchronized with a finite
K. Analysis of the same model in Watts (1999) demonstrates that the
K-limit is reached when the average connectivity grows.

In (Dorogovtsev et al., n.d.) the same problem in Barabasi-Albert
networks is discussed with w; and the initial values of ¢; uniformly dis-
tribution in the range (-1/2, 1/2) and ( — #, =), respectively. The pres-
ence of a critical point for the K-model on SF networks was not expected.
Here a dynamical process shows a critical behavior when the network is
described by a power- law connectivity distribution (Boccaletti et al.,
2006; Dorogovtsev et al., n.d.; Newman, 2003). To find the exact value
of 0., one can use standard finite-size scaling analysis.

Graph theoretical bounds to synchronizability: In the sync-context,
graph theoretical analyses of the Laplacian matrix, of the connectivity
matrix A, provides the bounds of its extreme eigV’s. The impact of these
bounds on different types of cN was discussed in Chung (2003), Fiedler
(1973).

Relevance for this Paper: The objective of the section up to now was to
survey the main works relevant to our understanding of theoretical and
practical aspects of sync-processes in cN. In what follows, the survey will
be narrowdown to the applications to specific problems relevant to this
paper, such as biology and n-Sci, engineering, and computer science,
with some comments on economy and social sciences, which are not in
the focus of this survey.

Bio-systems and n-Sci: In biology, cN are present at different space/
time scales: from the molecular level up to the population level,
including many scales of bio-systems in between. In the former case the
evolution of genetic networks and in the latter case the dynamics of
populations of species can be analyzed.

On a different context, n-Sci offers applications for the sync of indi-
vidual sN and for the coupling between cort-areas in the brain, both
discussed in the previous sections of this survey. Application of the
above concepts in genetic networks is considered in Garcia-Ojalvo et al.
(2004); Wagemakers (2006); Koseska (2007), Cir-rhythms in Strogatz
(2003), neuronal networks in Binzegger et al. (2004) and corN of the
brain in Bassett et al. (2006). For superconducting-oscillatory NN for
image recognition see Cheng et al. (2023).

Computer science and engineering: cN and sync are important in many
computers science (compSci) and engineering areas. In compSci, sync is
needed for a proper functioning of distributed systems (distrS). The
objective of the distrS is to establish a global common state (consensus).
These systems are growing in size and their topologies are becoming
increasingly complex. At the same time, some engineering problems also
need coordination at the level of large-scale cN (distribution of infor-
mation or energy).

Parallel Distributed Computation is considered in Nicol (1994),
consensus problems in Olfati-Saber (2004), Wireless communication net-
works in Hekmat (2006) and power grid (Crucitti et al., 2004).

7. Tensor networks
7.1. Tensor networks (TN) for QML

TN’s are a powerful tool for studying q-multiple-body systems (Orus,
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Table 5
CrossTechology coverage (focus-Synchronization).

1 2 3 4 5 6 7 8 9 10 11

(Zhang, 2008, Hale, 1993, Lu, 2011, http, n.d.e, http, n.d.f, Gao, 2018, Wen, sync A Neuroscience and Network \/
2012) Synchronization

(Pecora, 1990, Abbasi et al., 2013, Stanoev, 2013, Karimi, 2010, Wu et al, sync Complex dynamic networks \/
2013a, Xia, 2009, Yang, 2013, Lu, 2011, Yang, 2010, Zhang, Qin, 2015,
Wang, 2015, Yamamoto, 2004, Yang, 2004, Ji, 2011, Boukas, 2006, Bo,
2014, Liu et al., 2009a, Wu et al., 2013b, Yang, 2012, Zhang, 2015, Karimi,
2011, Liu, 2013, Mao, 2011, Wang, 2010, Zhu, 2012, Sastry, 1989, Parino,
2000, Zhou, 2014, Gu, 2003, Zhou, 2013, Zhang et al., 2013b, Mao, 2008,
Kolmanovskii, 2003)

(Zhang et al., n.d.) sync Synchronization of neural networks with v

stochastic perturbation

(Glisic, 2016, Watts & Strogatz, 1998, Barabasi & Albert, 1999, Guan, 2010, Li, sync Complex networks \/
2014, He et al., 2014a, Wen, 2015, Lu, 2009, Wen et al., n.d.; Liu et al.,
2009b, He et al., 2014b, Wen, 2013, Tang, 2012, Cai et al., 2009, Yu, 2012)

(Zhang, 2009, McClean, 2014) sync Coupled neural networks \/

(Glisic, 2016, Danon et al., 2005, Newman & Girvan, 2004, Girvan, 2002, sync Large Scale Networks Synchronization \/
Strogatz, 1988, Niebur, 1991)

(Strogatz, 1988, Niebur, 1991, Winfree, 1967, Kuramoto, 1975) sync Oscillator models on complex networks \/

(Glisic, 2016, Hong, 2002, Watts, 1999, Dorogovtsev, et al., n.d.) sync Onset of synchronization in complex \/

networks

(Chung, 2003, Fiedler, 1973, Strogatz, 2003, Binzegger et al., 2004, Bassett sync Graph theoretical bounds to \/
et al., 2006, Nicol, 1994, Olfati-Saber, 2004, Hekmat, 2006, Crucitti et al., synchronizability, Biological systems and
2004) neuroscience

This paper NET \/ \/ \/ \/ \/ Cross-Tecnology survey \/ \/ \/

1 reference, 2 focus, 3 classic, 4 quantum, 5 complex networks, 6 tensors, 7 q-simulations, 8 contribution, 9 energy efficiency, 10 computational efficiency, 11

synchronization.

2019). With its roots in g-physics, nowadays an increased interest in
adapting them to ML (Levine, 2019) can be seen. TN’s have been used in
various ML problems, such as dimensionality reduction [622], image
recognition (Stoudenmire et al., 2016a), generative models (Han, 2018),
natural language processing (Guo, 2018), anomaly detection (Wang
et al., 2020a), etc. ML models based on TN have several useful features
from both theoretical and practical perspectives. When used for
analytical representations, their expressive power (&.7°) can be modeled
by the ent-structure of the underlying TN g-states.

This enables us to understand their applicability to a given learning
assignment by analyzing the entanglement properties (Convy, 2021).
TN’s also provide a foundation to analyze exponential improvements
certain gL models exhibit over their c-analogues (Gao, 2021; Gao, 2018;
Levine, 2019). By using TN’s, recently a separation in &% between
Bayesian networks and their q- version has been shown to originate from
g-nonlocality (Gao, 2021). In practice, numerical techniques used for
TN’s, Stoudenmire et al. (2016a), are also handy for optimizing and
training of ML models. Several open-source libraries have been released,
which have supported and will continue to help the work on TN based
ML. Nowadays, this research field is being extended, with significant
advances. Even so, a number of important questions remain largely
unanswered.

In addition, in classical ML, a serious obstacle for training ANN is so
called barren plateau (bp) problem, causing that G of the ooF reduces
exponentially with the problem size (Cichocki, 2017). The bp also exists
for many gL models based on variational g-circuits and nowadays the
topics are still being studied (McClean, 2018). The problem of bp for TN
based ML models is crucial but still not enough explored topic. Here the
matrix product states (MPS) based circuits are studied, which is a special
case of TN in one dimension.

TN Based ML: As already indicated earlier, in classical ML, an
obstacle for training ANN is the bp problem (Zhao, 2021). The problem
also exists for many gL models and is still under active study (McClean,
2018; Wang et al., 2020b; Cerezo et al., 2021). By exploring different
00F, authors in Liu (2021) proved rigorously that bp arise generally for
MPS-based # with ooF, making their training by G-based methods
ineffective and the related circuits unscalable. In contrast, for local 0oF,
bp is not present and these models can be efficiently trained. Ref. (Liu,
2021) also proves that for local ooF the G-decays exponentially with the
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distance between the region where the local observable acts and the site
that hosts the derivative parameter. This demonstrates the locality
property of TN which is useful in reducing the complexity in training
corresponding models. In addition, Liu (2021) shows by numerical
simulations that these results hold as well for MPS-based learning
models which are not too large.

ML by qTN: Authors in Liu (2018) describe an experiment with MPS
to show how g-entanglement (ent-) can be used for Z-architecture. In the
experiment, a set of images with a certain shade of grey is encoded onto
the many-qubit states in a Hilbert space (Stoudenmire et al., 2016b). The
classifiers of the encoded images are implemented as matrix product
states (MPS). Multiscale ent-Renormalization Ansatz (MERA) (Liu et al., n.
d.b) training algorithm is used for optimizing the MPS.

7.2. Tensor networks for complex systems optimization

Tensor (.7 -) decompositions (TD) and TN’s are used as an efficient
tool in data analysis and data mining. Here models and pertaining al-
gorithms for Is-TN are surveyed, especially decompositions of .7 -Train
(TT) using novel analytical and graphical representations. The survey
covers the methods for creating very high-order’s from lower-order
original data, referred to as .7 -ization, and data compression by using
quantized TT networks. The goal here is to show how TN’s are used for
solving a wide class of big data (bD) optimization problems (not trac-
table otherwise) by applying .7 -ization using relatively small size
matrices and ‘s and applying iteratively optimized .7 - contractions.

Big Data (bD) of large volume and high complexity cannot be
handled by existing standard methods. bD is characterized not only by
its large volume but also by veracity, variety, velocity, and value. High
volume needs scalable algorithms; high velocity needs real-time pro-
cessing of stream of data; high veracity requires techniques for noisy,
incomplete and/or inconsistent data, high variety assumes the use of
different types of data, e.g., binary, continuous data, images, time series,
etc., and finally the value refers to more informative data that provide
meaningful and interpretable results.

Multidimensional (#~-) data, like multimedia signals (speech,
video), and medical/biological data are present across the sciences and
engineering. The analysis of bD requires new methods to process large
datasets within tolerable time without excessive complexity. Tensors
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. 7 -representation of matrices, provide a natural sparse and distributed
models for such data.

.7 ‘s are used in different types of data analysis, e.g in signal and
image processing, psychometric, chemometrics, biometric, g-physics/
information, q- chemistry (Che) and brain science (Cichocki, 2014b;
Cichocki et al., 2014c; Cichocki, n.d.; Cichocki et al., 2009). .7 ‘s are
especially useful for data having simultaneously large volumes and high
variety.

TD’s enable some upgrades of blind source separation (BSS)
(Cichocki et al., 2014c). TN’s/TD’s are convenient for dimensionality
reduction, they can operate with missing and noisy data (Kressner,
2016). They are used for analysis of coupled blocks of big

.7 ‘s with non-zero entries, using the map-reduce methods, and out-
of-core approaches (Cichocki et al., 2014c; Wang, 2005; Suter, 2013;
Phan, 2011; Lee & Cichocki, n.d.). Moreover, multiblock’s can be
decomposed to correlated and uncorrelated or st-independent compo-
nents. New models and associated methods that can identify the core
relations among the different’s, and scale to large datasets are needed
for the analysis of coupled’s.

EXAMPLE: 7.

Complex interactions between .7 ’s can be visualized by TN graphs
in which .7 ‘s are represented by nodes in the form of circles, spheres,
triangular, squares, ellipses and outgoing edges (lines) emerging from a
node representing a mode, way, a dimension, indices, as shown in
Fig. 10 (Orus, 2012; Orus, 2013). TN diagrams are useful in visualizing
TD and expressing complex analytical (multilinear) operations of con-
tractions of .7 ‘s.

TN’s are used in g-physics, q-chemistry, and g-information, which
study the ways to build a q-computer and to program it (Orus, 2012;
Orus, 2013).

The benefits of multiway .7 -analysis for bD include:

1) Compression of big .# &-data via .7 -ization and TD’s of a high-
order .7 into factor matrices and/or core .7 ‘s of low-rank and low-
order; 2) Executing all calculations in feasible .7~ -formats (Orus,
2012; Orus, 2013); 3) Flexible distributed representations of struc-
turally rich data; 4) Possibility to process noisy and missing data by
using low-rank .7~ /matrix approximations and by leveraging
robustness and stability of TD algorithms; 5) A framework to incor-
porate various diversities or constraints in different modes or
different factors (core .7 ‘s) and thus naturally extend the standard
(2-way) component analysis and blind source separation methods
(Cichocki et al., 2014c) to Is- .4 &- data;

6) TN’s provide graphically represented large distributed networks

and perform complex .7 -operations (i.e., .7 -contractions and
reshaping) in an intuitive way and without using explicitly analytical
expressions.

K I/ K
- @~
I X + J
J i k
7&
(Hony (/) |/

Fig. 10. A 3rd order .7~ X € R"Xwith entries xj = X(i,j,k) and exemplary
symbols used in tensor network diagrams. Each node in the diagram represents
a .7 and each edge represents a mode or dimension. Maximum size in each
mode I,J,K or running indices: i = 1,2, ...,;j=1,2,...,Jand k=1,2, ..., K, is
indicated (Orus, 2012).
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A wide range of review and tutorial papers (Cichocki et al., 2014c;
Comon et al., 2009; Lu et al., 2011; Mgrup, 2011; Sidiropoulos, n.d.) and
books (Cichocki, 2009) covering TD’s and TN’s have been available.
However, they either only focus exclusively on s-models and/or are not
explicitly linked to bD processing problems and/or do not explore con-
nections to wide class of optimization problems.

This section adds to it and extends beyond the s-TD models like the
Tucker and CPD models, with objective to demonstrate flexibilities of
TN’s in the optimization problems of .# &, multi-modal data, together
with their role as an analytical tool for the discovery of hidden structures
in large-scale (Is-) data (IsD) (Cichocki, 2009).

The objective is to survey the work on TN for bD, and to present
methods for Is-TN’s/TD’s, together with pointing out to practical ap-
plications. In addition to the optimization framework, many other prob-
lems in bD related to anomaly detection, visualization, clustering,
feature extraction and classification can also be solved by using TD and
low-rank .7 -approximations.

Low-Rank .7 -Approximations via TN: TN’s can be considered as a new
language for bD TD for mimicking large complex systems (IcS) even with
using s-computers (Cichocki, n.d.; Orus, 2013; Sachdev, 2009; Espig,
2011). In this context, TN can be seen as a methodology for analyzing
the internal structure of high-order TD. Discussions on connections be-
tween TN’s and graphical models used in ML can be found in Vidal
(2003).

Reconfiguration of TN: Transformation of TN from one form to
another one can be easily performed by using .7 -synthesis, reshaping
and basic matrix factorizations, typically using SVD (Vidal, 2003, Ose-
ledets, 2011). The basic steps in modifying .7 -structure are: 1)
sequential core synthesis, 2) unfolding synthesized’s into matrices, 3)
performing matrix factorizations (typically, SVD) and then 4) reshaping
matrices back to new core .7’s.

.7 -ization: The mechanism of transforming lower-order (l-ord) orig-
inal data into a higher-order (h-ord) .7 is called tensorization. Such
.7 -ization is needed in order to obtain a low-rank approximation with
high level of compression. For example, big vectors, matrices even l-ord
‘s can be .7 -ized to extremely h-ord .7 ‘s, then compressed by using a
suitable TD which is the underlying principle for bD analysis (Cichocki
et al., 2014c; Oseledets, 2010; Khoromskij, 2011b).

Curse of Dimensionality (c-dim): The term c-dim, expresses the fact
that in a .7 of an N-th- order (I xI x --- xI), the number of elements, IV,
grows exponentially with the .7 order. By using low-rank .7 structured
approximations the complexity of computation is reduced and the c-dim
relaxed or avoided (Oseledets, 2011; Khoromskij, 2011a).

Quantized TN: The c-dim can be overcome by using quantized TN,
representing a .7~ of high order as a set of sparsely interconnected, low
dimensions (typically, 3rd-order) cores (Oseledets, 2010; Khoromskij,
2011a). The quantized TN was first proposed in Oseledets (2010) and
Khoromskij (2011b).

8. g-Simulation
8.1. g-Simulations and ML

In a digital g- simulation (QS), the evolution of the physical (phy-)
model is mapped, after the usual mathematical formulation of q-me-
chanics, onto the effective algebra of q-.%’s made of qubits. The g-time
propagator, a unitary (U) operation, is then applied in steps through a
sequence of g-logic gates (i.e. U operations on the qubits) defining a g-
circuit (Nielsen, 2000). In this section, the survey will cover specific
examples and general options for the mapping of the target system and
for the translation of evolution operators into q-& operations. Focus will
be on the class of g-spin (sp-) models, which besides being extremely
interesting, usually constitute the ideal formal conjunction between
general g-mechanical models and their corresponding representation in
terms of qubits.

Sp-models are the key towards the QS of a large class of many-body g-
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Table 6
CrossTechology Coverage (focus-TN).
1 2 3 4 5 6 7 8 9 10 11
(Orus, 2019, Biamonte, 2019, Cirac, 2020, Levine, 2019, Cichocki, 2014a, Cichocki, TN \/ \/ Tensor Networks (TN) for QML
2016, Stoudenmire et al., 2016a, Han, 2018, Wang et al., 2020a, Guo, 2018,
Meichanetzidis, 2020, Convy, 2021, Lu, 2021, Gao, 2021, Levine, 2019, Abadi et al.,
2016b, Cichocki, 2017, McClean, 2018)
(McClean, 2018, Wang et al., 2020a, Cerezo, 2021, Liu, 2021, Zhao, 2021) TN \/ \/ Tensor-network Based Machine
Learning
(Liu, 2018, Stoudenmire et al., 2016b, Liu et al., n.d.b) TN \/ \/ \/ ML by Quantum Tensor Network
(Cichocki, 2014b, Cichocki et al., 2014c, Cichocki, Cichocki, 2009, Kressner, 2016, N \/ \/ Tensor Networks for Complex
Wang, 2005, Suter, 2013, Phan, 2011, Lee & Cichocki, n.d.; Orus, 2012, Orus, 2013, Systems Optimization
Comon, 2009, Lu et al., 2011, Mgrup, 2011, Sidiropoulos, n.d.)
(Cichocki, Orus, 2013, Sachdev, 2009, Espig, 2011) TN \/ Low-Rank Tensor
Approximations via Tensor
Networks
(Vidal, 2003, Oseledets, 2011, Oseledets, 2010, Khoromskij, 2011a, 2011b) TN \/ Reconfiguration of Tensor
Networks
(Oseledets, 2011, Khoromskij, 2011a) N Vv Curse of Dimensionality
(Oseledets, 2010, Khoromskij, 2011a, 2011b) TN \/ Quantized Tensor Networks
This paper NET v v v v v  CrossTecnology survey v v v

1 reference, 2 focus, 3 classic, 4 quantum, 5 complex networks, 6 tensors, 7 q-simulations, 8 contribution, 9 energy efficiency, 10 computational efficiency, 11

synchronization.

models, which are known to be c-intractable (Troyer & Wiese, 2005;
Casanova et al., 2012; Barends et al., 2014; Hauke et al., 2013; Martinez
et al., 2016; Klco et al., 2018). The role is emphasized of quantities that
are known to be difficult to compute but extremely important in the
characterization of the dynamical response (Roggero, 2018) of many
body systems, such as q-correlations.

Despite being in principle much more powerful, universal qS are
typically difficult to realize in practice compared to analog simulators,
mainly due to the stringent requirements for general purpose q-
computation (DiVincenzo, 2000). Here it should be mentioned that
hybrid digital-analog gS’s, combining analog approaches (easier scal-
ability) with digital QS (intrinsic universality) (Mezzacapo et al., 2015)
have also been proposed. This method might lead to universal digital--
analog g-computation.

Several general purpose (Preskill, 2018) and more category- or
hardware-specific (Lamata et al., 2018) accounts of the development in
the field of QS can be found in the literature. The following sections will
start by a summary of the theoretical foundations of digital QS, com-
menting on the related mathematical techniques and with a clear focus
on the tools that are most often required in practical cases. Then the
recent and future development of the field will be described and com-
mented on in terms of both algorithmic procedures and experimental
results. Special attention will be paid to near-term realizations of digital
q- computers and QS, and particularly to those technological platforms
which are currently leading the way, namely coherently manipulated
trapped ions (Monroe & Kim, 2013; Schindler et al., 2013) and super-
conducting circuits working at microwave frequencies (Clarke & Wilhelm,
2008; Schoelkopf & Girvin, 2008, Devoret & Schoelkopf, 2013).

The fast pace of advancement will be closely followed which, in
recent years, has made programmable devices available even outside
research laboratories, attracting widespread interest. Indeed, estab-
lished technological companies such as IBM and Google, startup ven-
tures (Rigetti Computing and IonQ to name a few) and public
institutions (Acin et al., 2018) all have designed and deployed consistent
strategies in search of the long-sought goal of g- advantage. Such efforts
promise to break the barriers currently limiting the simulations of
complex many-body physics with c-computing. Without entering
rigorous definitions here (Pednault et al., 2017; Boixo et al., 2018; Vil-
lalonga et al., 2019; Yamamoto, 2004), such threshold close to the size
of 50 to 60 fully operational qubits can be identified. Indeed, by
reasoning in orders of magnitude and by assuming that bytes are needed
to store a complex number in single-precision, a 50-qubit g-% would in
general be able to manipulate around 8 x 2N ~ 9-10%° bytes of infor-
mation, corresponding to roughly 9 Pb. This in turn approximates the

typical amount of random-access memory in state-of-the-art supercom-
puters (Pednault et al., 2017; Boixo et al., 2018).

Q-advantage for scientific applications is already reached in the
existing Noisy Intermediate Scale (NISQ) g-devices (Preskill, 2018), and
it represents the landmark which would unequivocally certify the
maturity of the field and probably its potential commercial value. To-
wards this direction, relevant claims of a 53-qubit superconducting g-
hardware outperforming even the most powerful supercomputer
currently available in the completion of a specific algorithmic task have
recently been reported (Arute et al., 2019). While being an important
result, such a device has not been used so far for the demonstration of
practical use cases. A meaningful impact may be achieved if fully fault
tolerant and scalable g- circuits will effectively become available
(Barends et al., 2014; Schindler et al., 2011; You, 2013; Corcoles et al.,
2015), where in addition to logical qubits a much larger number of
auxiliary q-bits aimed at correcting noise induced errors are also used.
However, it is difficult to say when the practical realization of this
paradigm will be available.

Although the object here is restricted to QS of phy- models, it should
be mentioned already at this stage that the same techniques could in
principle be applied to more general computational tasks. Some complex
problems in fields outside the physical sciences, such as optimization,
stock market pricing (Woerner, 2019; Martin et al., 2019) and ML
(Biamonte et al., 2017a) are known to have close relationships with
many mathematical models in physics or engineering and might there-
fore benefit from speedup advantages over classical computers.

Preliminaries on QS: Mathematical description of a system evolution
in time is typically formulated by using differential (d-) equations.
Solving these equations is the essence of most simulation protocols
nowadays. A typical example is a set of differential equations such as
dx /dt = MX where M is a matrix and X a vector of variables. Given
initial values X (0), the solution is X (t) = eMx'(0).

In g-mechanics, the equivalent example is the Schrodinger equation
(Glisic & Lorenzo, 2022) (assuming & = 1) d|¥)/dt = —i7'|¥) where 7
is known as the H- operator and the associated complex linear space is
the well know Hilbert space of wF’s. The Schrodinger equation can in
principle be fully solved by using the U time-evolution operator U(t) =
e ™t Once U(t) is known, any starting condition can be evolved linearly
as [¥(0)) = U(0)|¥(0)) .

From the few examples above, it can be already seen that matrix
exponentiation (m-exp) is a ubiquitous numerical task in simulation
scenarios, and crucially in the field of q- mechanical systems. On c-
computers, m-exp is not an easy problem whose computational
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complexity is believed to scale at least polynomially with the size of the
matrix (Moler, 2003). When combined with the exponential growth of
the linear dimensions associated to a composite g-mechanical system
with the number of sub-systems, this in turn results in general to an
exponential demand of resources for manybody QS. Q-computing de-
vices might be able to overcome such limitations in many cases of
practical interest.

Here the survey focuses on system H'’s of the form H = ZlLHl where
H; acts only on an isolated portion of the total system. Computing the
corresponding time evolution operator U(t) = exp (—iHt) is equivalent
to the task of realizing a well-defined U transformation. As is well known
(Nielsen, 2000), a q-computing device composed of a universal set of
g-gates can perform any arbitrary U transformation. It was proved that
U(t) can be efficiently obtained whenever H is a sum of local terms.

Any U-operation acting on N qubits can be realized with 0(22")
elementary operations (Nielsen, 2000; Barenco et al., 1995). Since the
Hilbert space associated with N qubits is d = 2V for given H as a sum of
local terms, with say Lop-N, where p measures some degree of locality
and N is the total number of qubits required to encode the computation,
according to the rules above, computing directly U(t) = exp (—iHt) in
general requires O(22V) operations, and is therefore exponentially (exp-)
inefficient. Now, if m; is the dimension of the subsystem over which the
action of each H; is limited, for m;<2V, since typical local terms need
few- body interactions, the unitary U(t) = exp (—iH;t) can be

computed with O(m?) operations. Now the overall product U = [;U;(t)
can be obtained on a universal g-computer by juxtaposing the circuit
realizations of the single Uj(t)-matrices with at most O(Lm?,, )
elementary operations, where m y.x = maxym;. The concluding
reasoning lies in the Suzuki-Trotter (ST) decomposition: e =M
limp_ o, (Hle—iHlt/n)"

If all the H;'s commute, i.e. [H;, Hy] =0 VL, [ the ST identity holds
already for n = 1. In general the product of local time evolution oper-
ators will not be exactly equal to the total target U(t) = exp ( — iHt), but
Vo, U(t) = e ™ = (T[,e ™" 1 O(£ /n). Still, here the initial
—iH;t/n

problem could be broken into smaller segments, e , which can now
be realized using only a limited set of elementary gates with arbitrarily
small digital error O(¢? /n) . For any ¢ > 0 and t, there exists an n, such
that U(t) can be applied within an approximation ¢ in at most
n.Lm?__ steps. This is polynomial in N whenever L = poly(N), as in the
case of nearest neighbors’ interactions.

A universal g-computer will be described, from now on, as a qubit-
based digital q-device operating within the algebra of Pauli matrices and
using a universal set of q-gates (Glisic & Lorenzo, 2022; Nielsen, 2000).
Given the results presented above, the problem of QS can then be
defined and run on such a machine in a few simple steps.

1) A model H of interest from a set /7 must be defined. As for any
sensible physical description, /7" contains all the dynamical data
characterizing the phh-g-system under study. The best set of variables
and operators will be included in the analytical structure of the H,
such as for example frequencies and couplings, spin matrices, fer-
mionic/bosonic creation and annihilation operators or lattice-dis-
cretized q-fields.

The target HC .7 must be mapped into its equivalent representation
on the qubit Pauli algebra 7’cH {o,}. This step requires a suitable
encoding of the degrees of freedom of the target system into a
number N of qubits. All the relevant q- mechanical states and oper-
ators must be rephrased in terms of computational basis states and
Pauli matrices {o,} acting on them, thus resulting in mapped
Hamiltonian H. It should be recalled here that the Pauli algebra of
qubits is characterized by the following well known set of SU(2)
matrices (Glisic & Lorenzo, 2022)

2

—
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6:(0 1)0:<0 —i)G:<1 0)
x 1 0/ i 0 i 0 -1

satisfying the following commutation and anti-commutation rules
(0w 0p] = 2ieap,0y, {00, 05} = 28451, 0, B,y € {x, ¥, 2}, €qp,is the Levi-
Civita tensor, ,4 is the Kronecker delta and [ is the identity matrix.
The Pauli algebra is at the heart of the physical description of spin -
1/2 g- systems and therefore the mapped H will in general corre-
spond to a model of interacting spin - 1/2 operators, such as for
example the Heisenberg or Ising chain. It is easy to understand at this
stage the reason why spin systems represent the ideal contact point
between physical and computational g-problems. Despite being
intrinsically more involved, effective mappings are also known for a
large variety of interesting cases, ranging from spin § > 1/2 (Santini
et al., 2011) to fermionic and fermionic-bosonic systems (Casanova
et al., 2012; Mezzacapo et al., 2015; Santini et al., 2011) usually
through the famous Jordan-Wigner transformation (Santini et al.,
2011; Somma et al., 2002; Jordan, 1928; Bari, 1973). Other recent
examples include lattice models related to gauge theories (Martinez
et al., 2016; Klco et al., 2018) and even g- gravity studies (Gar-

)]

cia-Alvarez et al., 2017). Regardless of the details of the original 7/,
the g- simulation will be efficient, in Lloyd’s sense, whenever the
corresponding H is the sum of local terms.

3) For the target H mapped onto a sum of local increments H = > H;
[

-

one must check whether [H;, Hy | = 0 VI, I . If that is the case, then
e Mt = [T ,e™t with no error. It not, an appropriate number of ST
steps (Trotter steps) must be chosen according to the preset preci-
sion, in such a way that, by applying above equations
e M ~ ([T,e™/")". This application of the ST formula is sometimes
called Trotterization in QS jargon, and the error which arises from the
above approximation formula is also named digitalization or digital
error. In pictorial terms, one might somehow compare this situation
with the analog-to-digital conversion tasks performed on classical
computers, where a finite set of discrete operations accessible to the
machine must be used to approximate a continuum of possible
signals.

Each local unitary e ™t (or e~Hit/1) must be translated into a
sequence of g-gates. This is always possible with less than O(m?)
operations and with any universal set of single- and two-qubit op-
erations available on a general-purpose q-computer. However, no
unique scheme or library exists in general to carry out such trans-
lation, as different universal set of operations are in principle all
equivalent and specific choices are usually dictated by the processor
architecture or by technical efficiency considerations. Once the in-
dividual sequences corresponding to the segments in the ST
decomposition are known, the total g- circuit encoding the time
evolution will simply be the juxtaposition of all of them, repeated in
general n times.

Finally, the state initiation must be included at the beginning of the
circuit, and an appropriate set of .#’s must be appended at the end to
recover expectation values of the relevant observable quantities on
the evolved g-state. Notice that these are by no means trivial tasks,
since general g- states and .#’s require the ability of preparing and
observing highly correlated states and properties.

4

—

5

-

While the points outlined above represent quite a general set of in-
structions towards the design of a QS algorithm, moving to practical
implementations of such scheme usually requires a number of algo-
rithmic and ¢g- computational tools, which must also be adapted to the
specific hardware platform on which the computation is to be per-
formed. Once more, it should be stressed that the class of computational
tasks which can be treated with the methods of g- simulations is not at all
limited to actual phy-systems but extends towards any problem that is
expressible in the form of Hamiltonian g- dynamics.
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9. Network optimization framework
9.1. Network specification
Parameters relevant for the network optimization are

T-optimization of processing cycle

Tqc-processing time for the algorithm (a=1,2,...,A), assuming there are A
different options, mainly compromising between serial and parallel pro-
cessing. This includes known and new algorithms that might be discovered
in the future and evaluated using this optimization framework.

At the moment, in addition to the significant speed up in the computation
due to the parallelism in the operation (Google has announced a Q-computer
that can perform computing 10° times faster than the classical one) quantum
information theory offers additional advantages:

QSA algorithm like Grover’s algorithm can find the maximum/minimum
value of the component in the set of N entries in ~N'/2 iterations while the
classical approach with exhaustive search would require ~N iterations. So, if
for example N=10°, Grover’s algorithm would find the maximum (optimum
value) 10° time faster than the classical approach.

In general, quantum approximative optimization algorithms (QAOA) can
find the maximum of the combinatorial optimization problem in polynomial
times so turning the NP hard problems with exponential times into faster
problems with the price that the optimum value is an approximation. The
compromise between the accuracy and speed up in the execution of the
optimization algorithm is the design parameter.

c-computer type (¢ = 1,2,..., C), assuming C different computers type are
available ranging from simple processor laptop/ desktop computer to near
future and full size quantum computer.

1p-propagation time over network diameter (p = 1,2,..., P). P different
options are considered. This time might be negligible when locally opti-
mizing NN design and relevant when optimizing distributed network like
routing in large size network or federated ML.

7.- size of the encoding slots (e = 1,2,..., E). The larger size of the slot
enables encoding the amplitudes in SNN with high precision.

Te.q- aggregate size of the encoding slots (e, = 1,2, ..., Eg).

Ts-Sync acquisition time (s = 1,2,..., S)

JAXPxEXSXC_yq 1 e s, c}-set of indices, includes all combination of
the indices a, p, e, s, €

i=(a, p, e, s) given combination of indices a, p, e, s

Dcp-network coherency probability for a given p. The larger p increases the
probability that something might go wrong in the network reducing the
probability of network coherency. For the faster computer the processing
time is reduced reducing the probability of incoherency.

By using above notation, the optimization processing cycle can be
expressed as

Intelligent Systems with Applications 23 (2024) 200346

(i) = (ta+ T + Tea)Pep + (Ta + Tp + Tea +7s) (1 _pcp> 10)

9.1.1. Processing cost

N, .-number of operations for algorithm a on a computer c
C. -cost per operation on computer type c
$°=N, C. - Processing cost for computer c

9.1.2. Optimization problem

Py=mnsE (i) x 1)

Ties

Pr=0% §°(i); w.c. Tmax > 1
min

e/

P3 = $¢(i); w.c. trmax > tand 7, > T.min 1D

10. Conclusions

It is anticipated that 6G/7G networks will continue growing and
extending their demands with respect to data rates, number of users and
network access points, energy efficiency, network intelligence, decision
latency in network dynamic reconfiguration and control protocols, ef-
ficiency of spectrum and overall resource sharing among multiple
network operators....

As already indicated in Is- networks, social, economic, information,
technological, biological, g- chemistry, n-Sci and the brain study ..., here
collectively referred to as complex networks, the problem of controlling
the complex systems in real time is more and more relaying on the help
of artificial intelligence.

The ML algorithms, on their own, become increasingly more complex
resulting in complex neural networks. In order to speed up the ML al-
gorithms new computing technologies are considered, like g- computing
QC, and new models for complex networks that will enable us to effi-
ciently control/optimize the processes run on them. This paper, under
the umbrella of well-established complex networks theory, provides a
unified presentation of how g- computing, implemented on near future
computers, can enable solving various problems in above disciplines
that cannot be solved efficiently by using classical approaches.

The emphasis is on the commonalities in QC applications and
modelling for different systems listed above. In addition to discussing
the algorithms the paper reviews the pertaining implementation prob-
lems like the N-sync and analytical and simulation tools for the system
analysis. A comprehensive survey of the work in these fields is provided
resulting in a long list of references. For this reason, the paper also en-
closes a selected list of references in Table 8, for the first iteration of
additional readings.

In the segment of classical NN the paper draws reader’s attention to

Table 7
Cross-technology coverage (focus-QS).
1 2 3 4 5 6 7 8 9 10 11
(Nielsen, 2000) QS \/ \/ Quantum Simulations and \/
Machine Learning
(Santini et al., 2011; Somma et al., 2002; Jordan et al., 1928; Bari, 1973; Garcia-Alvarez Qs \/ \/ \/ universal quantum computer \/
et al., 2017)
(Troyer & Wiese, 2005, Casanova et al., 2012, Barends et al., 2014, Hauke et al., 2013, QS \/ \/ \/ Spin models \/
Martinez et al., 2016, Klco et al., 2018, Roggero, 2018, DiVincenzo, 2000, Mezzacapo
et al., 2015, Preskill, 2018, Lamata et al., 2018, Monroe & Kim, 2013, Schindler et al.,
2013, Clarke & Wilhelm, 2008, Schoelkopf & Girvin, 2008, Devoret & Schoelkopf, 2013,
Acin et al., 2018, Pednault et al., 2017, Boixo et al., 2018, Villalonga et al., 2019,
Schindler et al., 2011, You, 2013, Corcoles et al., 2015, Woerner, 2019, Martin et al.,
2019, Biamonte et al., 2017a)
This paper NET \/ \/ \/ \/ \/ CrossTecnology survey \/ \/ \/

1 reference, 2 focus, 3 classic, 4 quantum, 5 complex networks, 6 tensors, 7 q-simulations, 8 contribution, 9 energy efficiency, 10 computational efficiency, 11

synchronization.
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Table 8
Selected readings.
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Research topic

Selected references

Advances in ML
Deep NN and federated
learning

Spiking neuron timing
Spiking neuron networks
Neuroscience and Al

Deep learning and neuroscience

Artificial quantum neuron

Quantum Neural Networks

Quantum Machine Learning

Quantum Computational
Chemistry

Complexity of Quantum
Chemistry Algorithms

Neuroscience and Network
Synchronization

Large Scale Networks
Synchronization
Tensor Networks for QVIL

Tensor Networks for Complex Systems

(Chen & Liu, Nov 2016, Caruana, 1997, Li et al., 2009, Argyriou et al., 2008, Altman, 1992, Caruana, 1997, Kaelbling et al., 1996)
(Hershey et al., 2014, Sprechmann et al., 2013, Andrychowicz et al., 2016, O’Shea et al., 2016, Cui et al., 2019, Chen et al., 2020, Yang
et al., 2019, Konecny et al., 2016a, 2016b, Furukawa et al., 2016, Agrawal & Srikant, 2000, Geyer et al., 2017, Yuan & Yu, 2014, Zhang
et al., 2016, Acar et al., 2018, Aono et al., 2016, Kim et al., 2018)

(Lisman, 1989, Morrison et al., 2008, M. & Wang, 1998, Turrigiano & Nelson, 2004, Florian, 2007, Badoual et al., 2006)

(Cybenko, 1988, Poggio & Girosi, 1989, Vapnik, 1998, Thorpe et al., 2001)

(Hu, 2021, Arenas et al., 2008b, Bullmore & Sporns, 2009, Marblestone et al., 2016a, Dayan & Abbott, 2001, Hodgkin & Huxley, 1952,
Deneve, 2017, Clopath, 2010, Curto, 2019, Whiteway, 2019, Bassett et al., 2017, Hu, 2019)

(Marblestone et al., 2016b, Andrew et al., 2013, Goodfellow et al., 2014b, Kurach et al., 2015, Baldi et al., 2015, Lillicrap et al., 2014, Liao
et al.,, 2015, Bengio et al., 2015a, Balduzzi et al., 2014, Cui et al., 2015, Marblestone et al., Harris, 2008, Bargmann et al., 2013, Perea
et al., 2009, Dayan, n.d.; George et al., 2009b, Emin et al., 2016, Bouchard et al., 2015)

(Sentis et al., 2012, Tacchino, 2018, Schmidhuber, 2015, Merolla, 2014, Biamonte et al., 2017b, Neukart, 2013, Schuld, 2014, Schuld,
2015, Kapoor, 2016, Lloyd, 2013, Schuld, 2017, Lamata, 2017, Alvarez-Rodriguez et al., 2017, Otterbach, 2017, Rebentrost, 2018,
Mocanu, 2018, Hu, 2018, Cao et al., 2017, Torrontegui, 2018)

(Beer, 2022, Bu et al., 2021, Larocca, 2021)

(Shalev-Shwartz, 2014, Hentschel, 2011, Larocca, 2022, Izquierdo, 2020)

(Christiansen, 2012, McArdle, 2020, Lanyon et al., 2010, McClean, 2014, Babbush et al., 2015, Sugisaki, 2016)

(Babbush et al., 2018b, Kivlichan, 2019, Dominic, 2019; Szegedy, 2004; Childs, 2012)

(Zhang, 2008, Lu, 2011, Wen, 2012, Stanoev, 2013, Karimi, 2010, Wu et al., 2013a, Xia, 2009, Yang, 2013, Lu, 2011, Yang, 2010, Zhang,
Qin, 2015, Wang, 2015, Ji, 2011, Bo, 2014, Liu et al., 2009a, Wu et al., 2013b, Yang, 2012, Zhang, 2015, Karimi, 2011, Liu, 2013, Wang,
2010, Parino, 2000)

(Strogatz, 2001, Albert & Barabasi, 2002, Watts, 1999, Fiedler, 1973)

(Orus, 2019, Biamonte, 2019, Cirac, 2020, Cichocki, 2014a, Wang et al., 2020a, Lu, 2021)
(Cichocki, 2014b, Cichocki et al., 2014c, Cichocki, n.d.; Cichocki, 2009, Kressner, 2016, Wang, 2005, Suter, 2013, Lee & Cichocki, n.d.;

Optimization
Quantum Simulations and
Machine Learning

Orus, 2012, Orus, 2013, Comon, 2009, Lu et al., 2011, Sachdev, 2009, Oseledets, 2011, Khoromskij, 2011a, 2011b)
(Hauke et al., 2013, Klco et al., 2018, Roggero, 2018, Preskill, 2018, Pednault et al., 2017, Santini et al., 2011)

advances in ML. One example is lifelong machine learning which improves
performance by using previous decisions when making a decision on a new set
of data. Here the paper also surveys the work on its variants, lifelong
supervised, unsupervised and reinforcement learning including lifelong neural
networks.

Here the paper also discusses an important application of ML to
simplify complex signal processing algorithms used in wireless net-
works. Most of these algorithms require rather high complexity, pre-
venting real-time processing. A learning- based solution has been
developed to address this issue. Here an SP algorithm is modeled as an
unknown nonlinear mapping and a DNN is used to approximate its
operation.

For distributed ML the survey covers works on federated learning
including its privacy. Block Chain protection of FL has been considered
as well.

Then the paper presents the work on spiking neural networks. The
interest in spiking neural networks is twofold. First using spikes instead
of continuous presence of signals enables several orders of magnitude
better energy efficiency. Second, deep understanding of the neurological
processes enables us to have better insights in the operation of the
human brain which is expected to help us further develop better
modelling and design of the algorithms for control of artificial neural
networks.

Here the paper surveys the work on spiking neurons and spiking
neural networks. The focus in this segment is on relation between the n-
Sci and AL The paper surveys the work on ML solutions based on the
results of brain science. The latest advancements in modern Al borrow
biological results from corN, in terms of both structure and function.

Here the authors argue that n-Sci and ML are developing towards
convergence, since ML focuses nowadays on the optimization of objec-
tive functions, is introducing complex cost functions, not uniform across
layers and time and begins to diversify the architectures that are subject
to optimization.

Implementation of the above algorithms by using q- Computing (QC)
is expected to minimize the complexity and increase the execution speed
of the algorithms. In this segment the paper surveys the work on
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artificial q- neuron and q- neural networks. Here deep learning tech-
niques do not use only fully connected architecture. The q- CV models
encode problems in a number of different representations. When it
comes to - ML the paper surveys the work on Hamiltonian estimation,
which is the most common operator used in q- information processing.
The survey also covers the work on group-theoretic approach to QML
dealing with group-invariant models (produce outputs that remain
invariant under the action of any element of the symmetry group asso-
ciated to the dataset. The methods can be equally applied in the case of
representations of discrete groups (mathematical structures, for
instance, when the gq-data is invariant under a finite set of permutations).

In the evolution of communication networks from 6G to 7G further
growth of our ambitions to model more sophisticated optimization
processes requiring more powerful analytical tools should be expected.
For these reasons, it is useful to review the work done in the field of g-
computational chemistry where some advances in building complex g-
models have been achieved already.

Applying g- computing to solve classically intractable chemistry
problems generated a number of sophisticated models that can be
considered to be used directly or modified in future 7G network opti-
mization as well. This is particularly relevant for direct brain/network
communication. Here the paper surveys the work on molecular Hamil-
tonian, again as a gq- operator commonly used in g- chemistry.

The existence of tD in biological and artificial NNs, is a source of
oscillations and instability. For this reason, synchronizing complex dy-
namic networks has become a mainstream topic in secure communica-
tions (including 6/7G), chemical reactions and biological systems. In
this section the problem of synchronization is revisited by generalizing
the problem to the complex networks with extremely large number of
nodes. Here the paper surveys the work based on different models of
complex networks, Erdos-Rényi (ER) random graph network model,
scale-free (SF) networks, the Barabasi-Albert (BA) model, network with
community and modular structure. A survey is provided for application
of the above concepts in genetic networks, Circ-rhythms, neuronal networks
and cor-networks of brain. This also includes parallel distributed compu-
tation, consensus problems, large scale wireless communication networks
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and power grid.

At this point the reader should become aware of the complexity of
the modeling and analysis/optimization of the complex networks the
paper is focusing on here. For that reason, it is argued that future 6/7G
network designers should become aware of what tensor networks as a
tool offer in facilitating the analysis of such networks. A work has been
surveyed on how tensor networks could be used in the analysis and
design of QML algorithms, the optimization of these algorithms and
reconfiguration of tensor networks. Finally, as an unavoidable tool in
this process, g- simulation tools are reviewed by surveying several pa-
pers in this field.

i) Contribution: A list of the contributions, exploiting the results from
research in neuroscience and QC, is enclosed at the end of Section 1. Asa
specific contribution, paper lays out a complex network optimization
framework enabling the analysis of the interrelations between different
segments of the network: network diameter, type of the algorithms,
quality of network synchronization, precision in signal encoding in SNN,
type of the computer used for running the protocols and network co-
herency time.

Due to the complexity of the optimization problem, QC offers the
ultimate solution to cope with the network dynamics. In addition to the
significant speed up in the computation due to the parallelism in the
operation (Google has announced a Q-computer that can perform
computing 10% times faster than the classical one) quantum information
theory offers additional advantages:

a) QSA algorithm like Grover’s algorithm can find the maximum/
minimum value of the component in the set of N entries in ~N/2
iterations while the classical approach with exhaustive search would
require ~N iterations. So, if for example N = 10%, Grover’s algorithm
would find the maximum (optimum value) 10° times faster than the
classical approach.

In general, quantum approximative optimization algorithms (QAOA)
can find the maximum of the combinatorial optimization problem in
polynomial times so turning the NP hard problems with exponential
times into faster problems with the price that the optimum value is
an approximation. The compromise between the accuracy and speed
up in the execution of the optimization algorithm is the design
parameter.

b

-

ii) Limitations of this work: The main limitation of using QC technol-
ogy in future networks is the need to use centralized rather than
distributed information processing making the impact of propagation
delays 7,-relevant. With the advances in distributed QC these limitations
might be relaxed to some extent.

Due to the limited space, the second limitation of this paper is that it
surveys the work on limited set of potential technologies to be used in
7G. It does not cover the possible advances in legacy technologies
dealing with increasing data rates, improving energy efficiency, enhance
connectivity, reduce data transmission latency etc.

iii) Improvements and directions for future work: Constant monitoring of
the research results in neurosciences and brain studies and the work on their
use to enhance Al should continue in the future as well. Further work on the
complex network optimization framework, presented in Section 9, should
extend the number of network parameters included in the utility function.
Joint optimization always offers better results than optimization that includes
only a limited set of parameters. This is especially encouraged since the
progress in the QC will continue.

When it comes to the technology coverage of the survey one can see the
following: Empty columns in Tables 1 and 2 mean that none of the references
in column 1 covers the given technical problem specified at the top of the
column. From Tables 3—7 one can see that only our paper covers all technical
problems specified at the top of the columns.
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