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Synopsis

The UA1 Experiment at the CERN pp Collider has identified 67 candidates for the decay W—uv
and 21 candidates for the decay Z-»pp. In this thesis we use a subset of these events to determine the
masses of the W and Z bosons. Methods to improve the momentum estimates of fast muons are also

discussed. We find

my, = 81.8 +6.0,—5.3(stat) + 2.6(syst) GeV/c?

and

m, = 90.7 +5.2,— 4.8(stat) % 3.2(syst) GeV/c?.

The measurements are in good agreement with results from the UA1 and UA2 electron analyses.
Supersymmetry is a theory which may explain some of the puzzles of the Standard Model. If the
theory is valid, then we might expect to see the supersymmetric partners of the leptons. We have used
UALI data to search for the supersymmetric decays of the W and Z bosons. In the absence of any clear
signal, we have used the agreement between our data and the Standard Model expectations to set limits
on the masses of the supersymmetric electron (€) and neutrino (v). For degenerate supersymmetric

partners of the left handed electron and neutrino, we find

m(ép) > 32 GeV/c? at 90% confidence, if m(e[) = m().
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1. INTRODUCTION
1.1 A Historical Overview

Ever since the discovery of radioactivity by Becquerel in 1896 and the subsequent identification of
B rays, physicists have struggled to understand the nature of the weak interaction. However, a complete
understanding was not achieved until the 1960’s when the work of Glashow [1], Salam [2] and
Weinberg [3] (GSW) pointed to a credible theory of the electroweak interaction. This theory, in
conjunction with QCD, forms the crux of the Standard Model, which provides an excellent description
of the laws of nature, excluding gravitational phenomena. Central to the theory of GSW were the
predictions of unobserved particles: W*, W~ and Z° (the intermediate vector bosons, or I[VB’s) with
masses greater than 40, 40 and 80 GeV/c? respectively [3].

To observe these new particles demanded energies in excess of those available in the late 1960's.
In 1976, Rubbia, McIntyre and Cline [4] proposed a scheme to increase the energy of the CERN
Super Proton Synchrotron (SPS) by converting it to a colliding bearn machine. In 1978, a proposal [5]
for an experiment (to be called UAl) to detect the W and Z bosons was submitted. The following
year, Glashow, Salam and Weinberg received the Nobel Prize for Physics. UA1 came into operation in
1981, and the W was discovered in 1982, with the Z in the following year. Finally, in 1984, the Nobel
Prize was awarded jointly to Carlo Rubbia for his tremendous role in the discoveries, and to Simon

van der Meer for his pioneering work on stochastic cooling.

1.2 The Collider Project

To produce very massive particles requires high centre of mass energies (,/s) for collisions. When
a particle of energy E collides with a stationary particle of mass m (typically about 1 GeV/c?), the

energy available to form new particles is

Vs = {/(2mc?E) = \JE (1.1)



To be able to reach the energies required for the production of the W and Z bosons (whose masses, at
the time of the UA1 proposal, were estimated as 60 to 80 GeV/c?), necessitated a beam energy which
was unobtainable in the 1970’s. The alternative was to collide one beam of particles with a second

beam with the opposite momentum. In this way, the available energy becomes
Js=2E (1.2)

It was anticipated that the W could be produced in proton-antiproton collisions, the creation
mechanism proceeding via the interaction of the point-like constituents, namely the quarks. However,
since the quarks carry only a fraction of the proton momentum (typically about !/,), the energy of the
beams needs to be several hundred GeV. The proposal of Rubbia et al to utilise the SPS at CERN
made use of an existing facility, and by using a cqunter-rotating beam of antiprotons, it was not
necessary to install a new ring for the second beam. What was lacking was a source of large numbers
of antiprotons - this is discussed in more detail in the following chapter. Although the SPS routinely
operated at beam energies of 450 GeV, it was possible to attain beam energies of only 273 GeV at the
initial operation, due to the problems of cooling the magnets during the continuous acceleration. With

improvements, this was raised to 315 GeV in 1984.

1.3 The UAI Experiment

The aim of UA1 was to search for the W and Z bosons. The first evidence for W production and
subsequent decay came from the observation of high transverse! momentum electrons accompanied by
‘missing transverse energy’ [6]. This ‘missing energy’ corresponds to a neutrino, which cannot be
detected directly, recoiling against the electron. The Z was identified by its decay to pairs of energetic
high py electrons [7]. Subsequently, the muonic decay modes were also observed [8], [7]. The total

numbers of candidates to date are shown in table 1.

! perpendicular to the colliding beams



Table 1: Cwrrent Numbers of W|Z Candidates

w Z
electron 290 35
muon 67 21

As well as discovering the W and the Z, the UA1 Collaboration has contributed substantially to

particle physics by exploring a new energy range. Significant work has been done on:

e B-physics: associated with the b quark. In 1986, UA1 reported the first observation of B°-B°
oscillations [9].

e Jet physics: for the first time, jets were unambiguously seen in the collisions of hadrons [10],
and extensive tests have been made of QCD.

e Missing Energy: in addition to significant missing energy arising from decays of W’s to
electrons and muons, the decays into tau leptons have also been seen. Further, the agreement
between the data and the theoretical predictions for known contributions has enabled limits to
be placed on other sources of missing energy, namely the production of heavy leptons or
supersymmetric particles (see chapter 8).

e Top Quark: while it is expected that there should be a sixth quark, there is yet no evidence for

it at present, and UA1 has set limits on its mass (see chapter 9).

1.4 The Layout of This Thesis
The contents of this thesis are in three parts:

1. Introductory Material,
2. Estimates of the W and Z Masses from the Muon Channel,

3. A Search for the Supersymmetric Decays of the W and Z Bosons.



1) After a description of the UAI detector (chapter 2), methods for improving the momentum
estimates of fast muons are described (chapter 3). The first of these relies on a more elaborate version
of the standard track reconstruction. The second combines information from the muon chambers and
central detector in an overall momentum fit (OMF). These procedures are applied to the W and Z
candidates. In chapter 4, likelihood methods for statistical analysis are discussed and some of the
relevant proofs are given. Heavy use is made of these methods in the subsequent analysis, and an
understanding of the statistical methods used is essential to the interpretation of the results derived.

2) The theoretical ideas underlying the electroweak theory of Glashow, Weinberg and Salam are
presented in chapter 5. Some of the more important phenomenological consequences for the W and Z
are also examined. In chapters 6 and 7, the standard selection of the W and Z candidates in the muon
channel is described. Using these events, the masses of the bosons are deduced and the parameters of
the Standard Model are derived.

3) In chapter 8, the motivation for ‘new physics’ beyond the Standard Model is given. The
phenomenology of one such model, Supersymmetry, is explained. In chapter 9, we discuss a search
that has been made for the supersymmetric decays of the W and Z, and the limits derived for these

processes.

Throughout, substantial use is made of the ISAJET Monte-Carlo computer program of Paige and
Protopopescu [11]. This has been used consistently by the UA1 collaboration and is found to provide
a good description of the physics at the collider [55]. Frequently, reference will be made to ‘ISAJET",
where the implications are that the events produced by the Monte-Carlo are subjected to a software

simulation of the UA1 detector. Further comments are made in appendix F.

The units used in this thesis for energies, momenta and masses are GeV, GeV/c and GeV/c?

respectively. This will be assumed, unless stated otherwise.



The Author's Contribution.
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confidence limits.



2. THE UA1 EXPERIMENT

The first section of this chapter contains a brief outline of the accelerators vital for creating the pp
collisions. This includes details on the accumulation of the p’s. The rest of the chapter is devoted to a

fairly detailed discussion of the UA1 detector.

2.1 The Accelerators

Figure 1: The Accelerators at CERN

The layout of the CERN accelerators [12] is shown in figure 1. Protons are obtained by ionising
hydrogen gas with an electrical discharge. They then enter a linac, leaving at 50 MeV, and pass through
a booster to enter the Proton Synchrotron (PS) at 800 MeV. Most of the 26 GeV protons leaving the

PS are sent to the Antiproton Accumulator (AA) where they strike a copper target, forming




antiprotons. These antiprotons are collected and transferred to the storage ring, where they are kept .
until sufficient numbers have been collected. Roughly every 24 hours, antiprotons from the AA are
returned to the PS, from which three bunches are injected into the SPS. The three bunches of protons
are injected just beforehand. These are then ramped up td the maximum energy (273 or now 315 GeV)
at which they are kept until the next refill. The bunches are arranged to intersect at the centre of UAl
to within +30 cm every 7.6 pus.

The rate at which interactions take place is measured by the luminosity, &£:
dN/dt = Lo 2.1)

where o is the interaction cross-section for the process. In terms of the machine parameters (see table

2), the luminosity is given by:
& = NpNgf/A 22)

where Np’ﬁ are the number of protons,antiprotons per bunch; f is the bunch crossing frequency and A
is the effective cross-sectional area of the two beams. This area is reduced in the neighbourhood of
UALI by quadrupole magnets. The beam lifetime is determined by the beam-beam interactions and the
scattering of beam particles by gas molecules inside the beam pipe. The integrated luminosity collected

by UAL is shown in table 3.

Table 2: Approximate Values for the Parameters of the SPS

AA stacking rate 7x10°ph~?
Transfer efficiency 75 %

N. 2x 101!

NI—, 2x 10!°

Mpax initial & 5x102° cm~%s~!
Lifetime (Luminosity) 24h

Gas pressure at UA1 1078 Pa




Table 3: Integrated Luminosity Recorded at UAI

Period Energy (GeV) [£adt (nb~?)
1981 Dec 546 0.023

1982 Oct/Dec 546 28

1983 Apr/Jul 546 136

1984 Sep/Dec 630 263

1985 Sep/Dec 630 305

2.1.1 The Accumulation of Antiprotons

The AA must perform two tasks: i) store §’s and ii) reduce their phase space. The second point is
important, since, according to Liouville’s theorem, the phase space of a group of particles is conserved,
so that as more P’s are accumulated, so the phase space which they occupy grows. If this space is not
reduced the AA would rapidly be filled up, and no more particles could be stored. Further, to attain
reasonable luminosity, it is essential to make the bunches as dense as possible, while minimising the
spread of the momenta of the particles within the bunch. So how can the AA violate Liouville’s
theorem? The theorem applies only to a continuum where separations of coordinates and their
canonical momenta can be considered infinitesimal. For discrete particles it is possible to apply
corrections with kicker magnets to small groups of p’s in such a way as to reduce the overall phase
space - a process known as stochastic cooling. The greater the density of particles, the closer continuity
is approached and the slower the rate of cooling.

Every 2.6 seconds, 10'? protons from the PS strike a copper target. Magnetic lenses focus s of
around 3 to 5 GeV into the AA ring, which has a large acceptance (70 cm wide) - only about 5x 10®
p’s are collected each time. These undergo precooling for 2.2 seconds, during which their momentum
spread is reduced by a factor of 10 to about 0.1 %. Then these antiprotons are moved into the inner
part of the ring where a ‘stack’ grows, separated from the precooling section by ferrite shutters. The
stack is continuously compressed by the action of 100 ldckér magnets controlled by 32 pick-ups. The

pick-ups detect the bunch as it passes and transmit signals at the speed of light across the diameter of



the AA, so that the kickers can correct the bunch as it arrives. After 24 hours, the phase space of the
particles has been reduced by a factor of 10%, and a dense core has formed. From this, roughly 30% of

the particles are extracted in three bunches of antiprotons. This operation is summarised in figure 2.

150 puises iater, the stack intensity is 10° antiprotons.

C E—

After 3 hours. a dense core i1 forrng i the stack.

8 I I :’""f"‘"’h I
After 1. the core contans enough antiprotons to be

The puise is moved into the stack posinon.

a
§
WAWAWAW

4 I: =2 owcted,
The second puise is injected 2.2 seconds later. 9 [ K-WI
The second puise is after beng pr

Figure 2: Operation of the Antiproton Accunulator

2.2 The UAI Detector

The detector is shown in figure 3. The coordinates and angles used are defined in figure 4. The
basic setup is a large central detector (CD) surrounded by calorimetry, with large chambers to detect
muons outermost. For a general overview of the UA1 detector, the reader is referred to [13].

The CD provides tracking of charged particles and, from the bending caused by the strong
magnetic field, measures particle momenta. The magnet produces a homogeneous field of 0.7 T over
the central region covering, all of the CD. This field is dipolar and parallel to z (see the coordinates in
figure 4). This allows particles from interactions which would otherwise travel down the beam pipe to
be deflected into the forward chambers. Further, the dipolar field, in conjunction with the design of the

CD, provides easy identification of high momentum particles emitted at low rapidity, without the
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Figure 3: The UAI Detector

confusion caused by low p; particles at high rapidity. This situation is to be contrasted with the
solenoidal geometry of some experiments.

The calorimeters are designed to absorb all the energy of charged and neutral particles, except for
muons and neutrinos. There are two types: firstly the electromagnetic calorimeter, which absorbs
electrons and photons; and secondly the hadron calorimeter, which absorbs the hadrons. In addition
there is forward calorimetry covering down to an angle of 0.2° from the beam direction.

Surrounding the calorimeters is an iron shield to absorb any remnants of hadronic showers
(leakage”) or particles which have failed to interact (‘punch through”). This is instrumented by limited
streamer tubes and outside these are the muon chambers - both being designed to detect muons.

The aim of the design is to achieve a 4 coverage of the solid angle surrounding the interaction
region. This is important, so as to identify neutrinos in W decay, since they can only be inferred by the
momentum imbalance in the whole event. This aim is largely achieved, although there are gaps in the

calorimetry in the vertical z=0 plane.
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tand = /(py’+p;’)/Px,  tan¢ = py/p,
tanA = p,/,/(Px’ +py®),  tan® = py/py
Pt = J(®y’+p;’),  rapidity:y = !/,log [(E+pg)/(E—py)]

pseudorapidity: 7 = —log tan(6/2)

Figure 4: Coordinate System used in UA/

2.2.1 The Central Detector

The CD [14] is a large cylindrical drift chamber (see figure ), filled with a mixture of argon and
ethane. It consists of alternating anode and cathode wire planes aligned parallel to the z direction. The
sense wires in each anode plane are in two layers separated by field shaping wires - this avoids

ambiguities in the drift direction (see figure 6). On passing through the CD, charged particles liberate
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Table 4: The Magnet Parameters
Field strength 07T
Total Current 2.0x 10® ampere turns
Material Aluminium
Thickness (absorption lengths) 0.342,
Volume covered 80 m?
Power consumption ' 6 MW
Q

Figure 5: The Central Detector

electrons from the argon, which drift in the electric field towards the sense wires. Close to the wires,
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Figure 6: Details of Wire Planes in CD

the strong electric field creates an avalanche which provides a multiplication of the signal. For more
details of the mechanisms, the reader is referred to [15]. The leading edges of pulses on the sense wires
are measured to 4 ns, and the complete pulse is sampled every 32 ns by fast electronics. The maximum
drift time is 3.6 s, which is less than the originally proposed beam crossing period of 3.8 us.

The wire planes are orientated to provide a large number of measured points (‘digitisings”) for all
track directions (see figure 7). The x—y coordinates are found by using the drift times measured for
each sense wire. The z coordinates are found by charge division: the ratio of charges measured at each
end of a sense wire gives the ratio of lengths along the wire. The latter measurement is not very precise
and leads to considerable scatter (see figure 7). Energy loss (dE/dx) of particles, which can be used to
identify slow particles, is measured by the total charge collected. Each channel produces a huge
amount of data, and this condensed by the readout processors (ROP’s). These processors reduce the
1.6 Mbytes of raw data to less than 0.1 Mbytes; providing the drift time, charge emerging from the left
hand end of the sense wire and the total charge [16].
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along the x-axis

along the z-axis

Figure 7: Digitisings in the UAI Central Detector

The reconstruction of tracks is discussed in the following chapter. The momentum estimation is
best for long forward tracks, while there is a vanishing acceptance for particles travelling parallel to the

magnetic field. Calibration is performed with physics data and the alignment with cosmic rays.

Table 5: The CD Parameters

Length 6m

Radius 0.1 m (inner), 1.2 m (outer)

Gas 40% argon + 60% ethane

Wire voltages —27kV (field), — 1.5 or —2.5kV (field), 0 kV (sense)
Separation 18 cm (plane), 1 cm (wire)

Drift velocity 5.3 cm/us

Number of wires 6250 (sense), 23000 (total)

Spatial resolution 290 pm (x—y), 2 cm (2)

Momentum resolution §(1/p) (typical)  0.01 to 0.02 (stat. + syst.)
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2.2.2 The Electromagnetic Calorimeter

light guides _@

1

lead scintillator stack

(petal)

Gondolas and C’s Bouchons
Figure 8: Schematic View of the Electromagnetic and Hadron Calorimeters

This is a sampling calorimeter [17], as is the hadron calorimeter (discussed in the next section).
This implies that it consists of alternating layers of absorber and sensitive material. A good review of

calorimeters can be found in reference [18]. The calorimeter is in two parts:

1. the Gondolas, which fit around the CD and inside the magnet coil, covering an angular range
25° < § < 155°; ‘
2. the Bouchons, which cover the ends of the CD, covering an angular range 5° < 6 < 25° and

155° < 6 < 175°.

The Gondolas consist of 1.2 mm sheets of lead sandwiched between 1.5 mm sheets of plastic

scintillator. These sheets are in the form of long strips, 22.5 cm wide and moulded to cover one side of
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the CD (see figure 8). Electrons and photons, entering the calorimeter, readily shower in the lead,
repeatedly dissipating energy by bremsstrahlung, pair production and annihilation. The shower excites
the scintillator, which radiates in the UV. This light is transmitted through the plastic to wavelength
shifting bars, doped with BBQ. The BBQ absorbs the ultraviolet light and isotropically reradiates green
light, which is then carried by light guides to photomultipliers (PM’s) situated outside the magnetic
field.

The Gondolas are segmented in depth at 3.3, 6.6, 9.9, 6.6 radiation lengths,?> each sampling
containing many alternate layers of lead and scintillator. The total depth of 26 radiation lengths at
normal incidence allows complete containment of EM showers. Each sampling is read out by four
PM'’s, one at each of the four corners - two at the top, and two at the bottom. The shower profile in
the four segments allows a distinction to be made between electrons (or photons) and other energetic
particles. The total light collected is a measure of the energy deposited in that segment. The nominal

energy resolution measured in a test beam is:
AE = 0.15 x \/E (2.3)

where the energy is measured in GeV. The ,/E dependence is due to the statistical nature of shower
production: the energy measured is roughly proportional to the number (N) of secondaries produced,
and this will have an error like ,/N. Similarly, the number of photons emitted by the scintillator is also
described by Poisson statistics. The light travelling to the PM’s is attenuated within the plastic, so that
by comparing the light collected by the PM’s at the top with the light from those at the bottom, the

azimuthal angle (¢) can measured, with a resolution:

A¢ = 03 + /E radians 29

The Bouchons use the same principles as the Gondolas, but are designed differently. Each
Bouchon comprises of 16 ‘petals’ (see figure 8). They consist of 4 mm lead sheets alternating with 6
mm sheets of scintillator, with segmentation at 3.6, 7.2, 8.7, 7.2 radiation lengths. Each sampling is

read out by a single PM at the outer edge. To help localise showers, there is a position detector

2 1 radiation length (X,) is the distance over which the energy of an electron falls by a factor e. In lead, this is about 0.5 cm.
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consisting of proportional tubes. This is located between the second and third samplings. The nominal

energy resolution is:
AE = 0.12 x \/E (2.5)

with a spatial resolution of 2 mm.

The calorimeter is calibrated by lasers and cosmic rays while the experiment is running, and a
®9Co source otherwise. In recent years, it has been found that the scintillator has ‘aged” due to
radiation damage. This has reduced the photon yield from the scintillator and introduced uncertainties

in the calibration. Further, the energy resolution has deteriorated, and in 1985 is found to be more like

0.23 x ,/E.

2.23 The Hadron Calorimeter

Like the electromagnetic calorimeter, this comes in two parts: the C’s in the central region and the
I’s in the forward region (see figure 8) [19]. Hadrons lose their energy by quite different mechanisms,
namely the creations of mesons and the breakup of nuclei. The absorption length?® is considerably
longer than typical radiation lengths, and large amounts of dense material are required to absorb the
hadronic showers. The probability for a 10 GeV hadron to punch through the calorimeter is about
1%, depending on angles. Steel is used for reasons of cost, structural strength and to provide a good
path for the return flux from the magnet.

The construction is alternating 5 cm sheets of iron and 1 cm sheets of scintillator, in two
samplings each of 2.5 (3.5) absorption lengths in the C’s (I's). The Gondolas (Bouchons) represent 1.1

(1.1) A, and the magnet coil another 0.3 A,. The energy resolution is:

AE = 0.80 x /E (2.6)

3 1 absorption length (A,) is the distance over which a hadron has a probability of 1/e of surviving without a nuclear
interaction. In iron, this is about 17 cm.



18

where the energy is meas{n'ed in GeV. The spatial resolution is limited by the cell size, which is 0.9 x
0.8 m? for the C’s, 0.9 x 0.9 m? for the large cells in the Is, and 0.4 x 0.5 m? for the small cells in the

I’s. In addition there is forward and very forward calorimetry (both electromagnetic and hadronic).

2.2.4 The Iarocci System

600 mm

PLANES of LIMITED STREAMER TUBES

Figure 9: Section of Side Wall with larocci Chambers

This consists of iron shielding, complemented by Iarocci chambers [20], and added for the 1984
and 1985 runs. The aim was to improve the momentum determination of muons in the side walls by
magnetising the iron to provide additional bending where the dipole field is least effective [21]. With
the extra 60 cm of iron, it was anticipated that there would be a reduction in punch through to the
side muon chambers, and the trigger rate from mesons decaying in flight to muons would be reduced.
Further, the magnetic field would also reduce the muon trigger rate by deflecting slow particles (see
section 2.2.6).

The side walls consist of three layers, each of 20 cm iron, interleaved with Iarocci chambers. The
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chambers are operated in a limited streamer mode.* Each plane consists of parallel gas-filled (25%
argon, 75% isobutane) plastic tubes, 1 cm x 1 cm in cross-section. Charged particles ionise the gas, -
and the liberated electrons accelerate towards the central anode wire in the high electric field (the
potential difference is 4.2 kV). Simultaneously, anions move towards the earthed graphite coating of
the tubes and a streamer develops. The charge on the tube induces a charge on the readout strips
which lie perpendicular to the tubes (see figure 9). Since charge is deposited on several strips, a
Gaussian is fitted to the distribution and a resolution of 0.5 mm in the direction of the tubes is
obtainable. Each chamber has two crossed planes to allow a complete measurement of position. In
addition, there are 2 (1) pairs of crossed planes in the forward (bottom) regions. The Iarocci chambers

are simple and inexpensive to construct, and do not require complicated electronic timing.
2.2.5 The Muon Chambers (or Aachen Chambers)

These are large, modular drift chambers constructed from aluminium drift tubes [22]. They cover
an area of about 700 m?, or about 70 % of the solid angle. There are 12, 12 and 4 modules (each
consisting of two chambers) in the forward, side and top regions, respectively. Each chamber has tubes
in both transverse directions. However, in the bottom region, due to space limitations, there are 8
small and 2 large chambers which have tubes parallel to z only.

Part of a module is shown in figure 10. The chamber separation of 60 cm allows good position
and angle measurement, which is important for the triggering (see section 2.2.6) and momentum
determination (see chapter 3). The tubes are constructed from extruded aluminium and are glued
together. Part of a muon tube, with the associated electric field lines, is shown in figure 11. The offset
between tubes in adjacent layers resolves ambiguities associated with the drift times. In all but the
bottom tubes, there is readout only at one end of the sense wires. In the bottom, timing is used to get
a very rough measurement of the z coordinate.

Muons can be identified offline by:

4 A streamer is like a spark, but less energetic. It is ‘propagated’ by photons emitted from the argon, and this process gives a
gain of about 10%, The streamer is ‘limited’ by the isobutane absorbing the photons. The streamer mode is useful because the
gas provides the gain, so that amplifiers are not needed. Because they are ‘limited’, the dead time associated with streamers is
avoided.
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Figure 10: Part of a Muon Chamber Module

1. a charged track in the CD,
2. a minimum ionising deposition in calorimeters (1 to 3 GeV, typically),

3. an Iarocci cross and/or a muon chamber track.

2.2.6 The UAI Trigger

Beam crossings occur at 1.3 x 10° Hz in the UALl detector, while interactions occur at a rate
which is an order of magnitude lower, depending on the actual luminosity. It is essential that the event
rate is reduced because i) the tape writing capability is limited to 4 or 5 events per second, and ii) most

of the interactions are low energy collisions with soft gluon exchange, and consequently are not of
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Figure 11: Transverse Section of a Muon Tube

Table 6: The Muon Chamber Parameters
Max chamber size 4 x 6 m?
Tube cross-section 15 x 4.5 cm?
Gas 40% argon + 60% ethane
Electric field > 0.5kV/cm
Drift velocity 5.3 cm/ps
Maximum drift time 1.5 ps
Number of sense wires 5200
Spatial resolution 300 pm

great interest. The trigger must decide which events to keep, while introducing the minimum of dead

time.® This is done in a number of steps.

% time in which new events cannot be considered, and are thus lost, because the trigger or data acquisition system is still
processing earlier events
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The pretrigger consists of scintillation hodoscopes covering angles extending down to 0.6° from
the beam direction [23]. For normal data taking, we demand that the hodoscopes at both ends of the
detector give a signal in time with the beam crossing, to a few ns. These are 96 + 2% efficient at
detecting non-diffractive pp interactions. There are two first level triggers: one for the calorimeters, and
another for the muon chambers. They are both hard wired processors which use look-up tables loaded

into RAM.
The Calorimeter Trigger

The calorimeter trigger [23] adds all the individual signals coming from any cell to form a total
signal for that cell. The results from neighbouring cells are then combined. These signals are then
compared with lobk-up tables which allow for the pedestal subtraction and the geometric position of

the corresponding cells when finding the transverse energy. The various possible trigger conditions are:

e Single electron: E; > 10 GeV in adjacent electromagnetic cells, about 96% efficient [24].

e Di-electron: two clusters with E; > 6 GeV in adjacent electromagnetic cells.

Jet: E; > 25 GeV in 4 adjacent electromagnetic cells or 4 hadronic cells.

High scalar Ey: total transverse energy in calorimeters > 80 GeV.

Missing transverse energy: left-right E; imbalance > 17 GeV.

The Fast Muon Trigger

The first level muon trigger [25] uses only the information about which tubes have been fired in
the muon chambers. In the time required to make a decision, the timing information is not available.
For each tube in the first layer of the chambers (a so called ‘reference tube”), there is an associated
group of 10 tubes in the same projection (see figure 10). For this group, there are several
configurations of fired tubes which are recognised as track candidates, corresponding to muons
originating at the vertex. All configurations are represented by addresses in RAM, and the contents of
these addresses indicate whether a given configuration corresponds to a track candidate or not. Every

beam crossing, the pattern of fired tubes is transformed to an address, and the corresponding contents



are checked. All groups in every muon module are checked, and the trigger is fired if two tracks in
projection are found in a module (only one projection is required in the bottom). The allowed tracks
point back to the nominal vertex to within +9° - this removes most of the cosmic rays, beam halo®
and low energy muons (less than about 1 GeV after the shielding) which are substantially deviated by
multiple scattering. The di-muon trigger is satisfied if two such candidate muon tracks are found in
separate modules. In practice, there is an increasing background from penetrating hadrons, as one
considers regions closer and closer to the beam direction. Therefore, a large region of the forward
chambers is vetoed for the single muon trigger in order that the trigger rate should be manageable. As
the luminosity falls, the veto area is reduced in order to increase the acceptance. The di-muon trigger

rate is considerably less, and so this trigger uses almost all the sensitive area.
Final Level Trigger and Data Acquisition

The central trigger processor receives signals from the pretrigger and the first level triggers, and
makes the decision as to whether to keep the event. Interesting events are then digitised; the data are
compressed to 120 kbytes and passed to the emulators. UA1 uses five emulators’ running in parallel.
These execute Fortran code which performs a rapid and simple event reconstruction, and then makes
the final event selection. Here we describe the code used for the muon selecﬁon [26].

Using the timing information, a track is reconstructed in the muon chambers and this is required
to point to the vertex within a certain tolerance which is determined by Monte-Carlo and takes
account of i) the spread of the vertex, ii) the magnetic deflection, iii) multiple scattering, and iv) the
resolution. If a good track is found, the program searches for a corresponding track in the CD. This is
done by searching in a road +30 cm in x—y and +40 cm in y—z between the muon chamber track
and the vertex. In this road, the reconstructed digitisings are histogrammed and a search is made for a
concentration of points corresponding to a fast (and thus straight) track. If the corresponding

digitisings can be found, a rapid circle fit is made to estimate the momentum, and the event is accepted

® The halo is a swarm of muons which travel within the accelerator tunnel in time with the particle bunches. The muons
originate from interactions caused by stray beam protons colliding with the walls of the beam pipe or with gas molecules.

7 An emulator is a copy of the central processing unit (CPU) of a mainframe computer but without the peripherals.
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as a muon candidate if th; pt exceeds 2 GeV/c.

The input rate to the emulators is 10 Hz, while the code takes about 0.5 seconds per event to
execute, with an output rate of about 4 Hz. Events are then passed to the online computer which
formats the events and writes them onto magnetic tape.

Special trigger conditions are implemented to collect cosmic ray data, which are used for
calibration and alignment. Scintillation hodoscopes are placed at the top and bottom of the side muon
chambers. Cosmic rays are required to trigger pairs of diametrically opposite hodoscopes - this ensures
that they give long tracks through the CD. The Bouchon hodoscopes are used for triggering on

horizontal cosmic rays.



25

3. IMPROVED MOMENTUM ESTIMATES USING THE CD AND THE
MUON CHAMBERS

In this chapter, we discuss the standard reconstruction in the CD. This is followed by discussion
of a method to improve the quality of the CD tracks. The remainder of the chapter is occupied by a
description of how the muon and larocci chambers can be used to improve the momentum estimates

of high momentum muons.

3.1 Standard CD Reconstruction

3.1.1 Pattern Recognition

This is discussed in depth in [27]. Here, we summarise the important points. The individual drift
volumes® of the CD are searched independently for ‘chains’ of digitisings. Using the wire numbers, the
drift times and the z coordinate, one looks for three hits which lie in an approximate line. Then by
linear extrapolation, one searches for another hit on the following wire. The search is repeated using
the last three hits each time, until the chain is broken by a gap greater than one missing hit, or a wire
plane is reached. This is repeated for all chains that can be found in each drift volume. The chains are
then broken down into segments of typically 5 to 10 hits. A parabola is fitted to these points, and the
point lying at the centre of the parabolic arc (the ‘master point’) is found. For each chain, the master
points are used to obtain a parameterisation of the chain using an improved approximation to a circle.

Finally, chains from different drift volumes are linked up, to form the track candidates.

3.1.2 Track Reconstruction

After the digitisings comprising a given track have been identified, the coordinates of these points
have to be obtained [28]. The x—y coordinates are found from the drift time and the known wire

position. The drift time is corrected for:

8 the regions separated by the wire planes



26

i. time of flight for the ionising particle to travel at the speed of light from the vertex;
ii. propagation time for the signal to travel to the ends of the wire;
iii. time for the pulse to exceed the hit threshold in the electronics - depends on the pulse height
- time slewing;
iv. angular correction to allow for tracks which are not perpendicular to the drift direction - the
point of the trajectory immediately “upstream’ of the wire is not the source of the first charge
to reach the wire;

v. effect of diffusion on the pulse recorded on the wires.

The last two depend on tany, where v is the angle between the track in question and the normal to the
drift at any point (see figure 6). The wire positions are determined by surveying the detector and are

corrected for:

a. sag of the CD and twists;
b. displacements of the six chambers which make up the CD;

c. electrostatic displacement of the wires.

The z coordinate is calculated offline using the principle of charge division. The charge collected
on a wire, as a result of a passing particle, flows to the left and right hand ends. The ROP’s sum the

charges collected, QLi and QRi, for each hit on each wire in 32 ns bins, up to a maximum of 8 bins:
QL=2Qpl and Q= Z(QLi+QR) (3.1)

Q, and QT are saved on tape, and their ratio (found offline) gives an estimate of the z coordinate of
that hit, as a fraction of the wire length. Corrections are made to allow for the effective electrical wire
length, the difference in gains of the amplifiers at the ends of the wire and their biases and resistances.
Many of the required calibration constants can be determined using real data, and demanding that
the reconstructed tracks have semsible behaviour: that the distributions of tracks are left-right

symmetric and that the digitisings lie in continuous curves.
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3.1.3 Parameter Estimation

Tracks are fitted in the x—y plane using parabolic approximations to circles [29]. The digitisings
are weighted according to their pulse height. For each track, the digitising which has the worst fit is
removed if it fails certain criteria and the track is refitted. This procedure is repeated until a satisfactory
fit is obtained. From this, the curvature can be estimated for each track, and this is proportional to the
reciprocal of the component of the momentum in the bending plane, p| ~*. The measure of the fit
quality is given by the so called ‘Sadoulet chi-squared’. This is the well known normalised variable
defined in [30]. The distribution of this variable (the label ‘chi-squared” is a misnomer) is
approximately Gaussian, with unit width and zero mean.

To determine the fit in the z direction, the arc length (s) is calculated, where ds? = dx® + dy*.
Subsequently, a straight line fit is made in the s—z plane. This leads to an estimate of the angle (A)
between the track and the bending plane (z=0). The quality of this fit is usually expressed in terms of
the chi-squared per degree of freedom.

The reciprocal momentum is determined from:
p!=cosAp, ! 3.2
The main source of error for high momentum tracks comes from the estimate of the curvature:
x = 8s/1? 3.3)

where s is the sagitta of the track and 1 is the track length. The largest fractional uncertainty is on s,
and this will vary roughly like the reciprocal root of the number of digitisings on the track, and thus
the uncertainty behaves like 1/,/1. Thus the error on p~! is a function of geometry and not
momentum.

Finally, the interaction vertex is found by using the well measured tracks and then the track fitting

is repeated including the vertex as a high weight point on the track.
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3.2 The Automatic Fixup Procedure

Using the standard reconstruction procedures, once the digitisings are assigned to the track
candidates by the pattern recognition, that is it! The track fitting methods do not allow for the use of
digitisings not assigned to a given track. With hindsight, it is possible to make more intelligent
decisions. Sometimes, it is easy to see why a certain digitising may be dubious or why another
digitising has been overlooked by the chaining. This is realised by scanning events on a ‘high resolution
graphics display facility’ - otherwise known as a Megatek. A physicist is well suited to pattern
recognition, and the tracks are readily identified in the x—y plane (see figure 7). Using an interactive
method known as ‘hand fixup’, the scanner can chose to add or remove digitisings from a track.
Unfortunately, this is both time consuming and subjective. Therefore, an automatic procedure,
Autofixup, has been established.

At the heart of Autofixup is a routine which uses the fitted track parameters for a given track to
predict the expected drift times on every wire which the track passes. These hits are compared with the
real hits on the wires. This allows additional hits to be identified. Further, hits which are questionable
for some well defined reason are rejected. Examples of problems are: overlapping pulses from nearby
tracks, large tany’s, large drift times, large z coordinates, large errors, bad drift angle, hits close to wire
planes. Finally, using the parameterisation of the track, an improved estimate of tany can be made -

normally this is estimated early in the chaining process for a cluster of four digitisings.
3.2.1 Results from Autofixup

We have tested the program on the 1985 W-ev events (110 events) [31]. We find that the
number of hits per track is reduced by about 10%, while the Sadoulet chi-squared falls on average by
about 1 unit. Not surprisingly, the inverse momenta estimates are highly correlated before and after
Autofixup is applied (see figure 12). Looking at the quantities Q/plgld — Q/Plpew: We find a mean of
—0.0008 with an rms for the distribution of 0.0122. We also consider Q/plojd —Q/E and Q/plpew —
Q/E, where E is measured by the calorimetry. These distributions are symmetric with widths of 2.2 x

10~2 and 2.0 x 10~2 GeV ~!c? respectively. This suggests that the improvement on the value of p~* is
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about 10%. The errors before and after are shown in figure 13. The mean value of the ratio

p = <0pnew/oold> is 0.84 - suggesting a slightly greater improvement.
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Figure 12: Q|p Before and After Autofixup

When we apply the method to the W-pv candidates, we find that the changes in p~! are smaller
than for the electrons. Also, the reduction in error is smaller, with p = 0.96. The reason for this is the
tight selection criteria applied to the muon candidates in the CD (see chapter 6). In particular, there is
the isolation of the tracks and the checks to remove background events coming from the decay of
pions and kaons. While it has been demonstrated that this method is generally useful, we conclude that
it is not of great benefit when used on events which have very strict track requirements. For this

reason, we have not used it for the muonic Z candidates.
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Figure 13: o(1/p) Before and After Autofixup

3.3 An Overall Momentum Fit with the Muon Chambers

High p; muons are identified by tracks in the muon chambers (or Aachen chambers) and the
Tarocci chambers, which we will collectively refer to as the muon chambers. The hits in these chambers
can be used in conjunction with the known magnetic fields inside UA1 to estimate the momentum of
the muons. The magnetic field causes a muon to bend so that the hits in the muon chambers do not
point exactly to the interaction vertex. In practice, using this information alone leads to problems,
since the long lever arm of the muon chambers can introduce large fluctuations in the estimated
momentum, and the estimate is very sensitive to any reconstruction problems in the outer chambers. A

better approach is to use, in addition, the direction of the muon at the vertex, as determined by the
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CD. This estimate of momentum is independent of the estimate derived from the curvature of a track -
in the CD - at least, to first order. In practice, there is some correlation between the angle ® and p~?, -
measured in the CD.

The error on r = p~! is dominated by the error on the sagitta (see equation 3.3). In {he CD, o(s)
is independent of the momentum for a track in a given direction. However, o(s) using external points is
dominated by multiple scattering (although, see later) and this falls like p~!. So a determination of r
from the muon chambers has an error which varies like r. Therefore, at higher momentum (smaller r)
the muon chambers become increasingly more useful in estimating the momentum.

Having obtained an estimate of r from the muon chambers alone, r,, this can be combined with
the measurement from the CD, r, to obtain the overall momentum fit (OMF) estimate. In practice,
this is done in a single coherent manner, as described below, and if is not necessary to calculate T
separately. For the purposes of understanding the procedure, we should test i) the computer code to
perform the fitting - which is non-trivial, and ii) our description of the detector. To achieve this, we
study the estimate from the muon chambers alone (with the track direction from the CD). This is

done by setting the weights for the CD momentum equal to zero.

3.3.1 Method for Obtaining the Fitted Momentum

Here, we present an outline of the method used to obtain the momentum estimate from the
muon chambers - more details are given in reference [32]. The important quantities are illustrated in
figure 14. We envisage a set of parameters, a (implicitly a vector), which describe the track in the CD
at the vertex. These parameters consist of two positions, two angles and the reciprocal momentum.
The hits in the muon chambers are denoted by x (again, implicitly a vector). There are up to 6 hits in
the Iarocci chambers for each muon, while the hits in the Aachen chambers (of which there are up to
8) are replaced by 2 hits in each of the 2 planes of the chambers, corresponding to the intersection of
the fitted track with these planes. The crux of the method is that the {x;} are functions of the {aj}, and
in particular the reciprocal momentum, r. So we write that x = x(a). If the covariance matrix for a is

A, and for x is X, we can form a chi-squared for the track:
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a, = initial CD parameters

a = estimated CD parameters

a = change in CD parameters

Xo = initial muon chamber hits

x = estimated muon chamber hits x(a) 4
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Figure 14: Definition of Variables used in Fit
x* = (@-2)TA  a-ag) + (x—x) TX ¥ (x—x,) (3.4)

where the subscript ‘0" denotes the actual measurements. We measure the departure from the measured
parameters in the CD by a = a—a,. We anticipate that the changes in a will be such as to produce
linear changes in the coordinates x(a). In other words, we assume that the derivative D = dx/dal is

constant (note: D is a matrix, which is not square, in general). The difference in the x values becomes:
X(a)— %o = [x(a)—x(ao)] + [x(ag)—x,] = Da + A (3.5

where A is the difference between the measured hits in the muon chambers and the hits found on
extrapolation from the CD using the measured parameters. Minimising x> with respect to a gives the

estimate for a:
a = - GDIX-1A (3.6)

where . G!' = A-! + DIX-'D (3.7
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The covariance matrix for a is given by !/,8%x?/3adal and is found to be G. The resulting value of
the chi-squared is found by substitution into (3.4). After a considerable amount of algebra, one finds

that
x* = AT(x+DADT)-1a (3.8)

It is useful to consider the quantity @ = a—a, - in particular, the momentum term r— 1. After even
more algebra, it is possible to show that covariance of the of a is A—G. Thus the variance of f—r, is
oc?—o? (where o is the estimated error on r), and the quantity (r—r.)/y/(oc2—0?), known as the
‘stretch’ or ‘pull’, has a normalised Gaussian distribution.

The equation for a is readily suited for our application. A is trivially calculated. X contains two
components: the intrinsic resolution in the muon chambers and the multiple scattering - these are
combined in quadrature. In practice, it is found that the matching between the CD and the muon
chambers cannot be explained by just these resolution effects, and there is some unknown source of
systematic problem in performing extrapolations. For this reason, error floors are added to the intrinsic
chamber resolution to describe the discrepancies in the matching. The multiple scattering is very
complicated since it introduces correlations between hits in different planes. The form of these
correlations is given in appendix A. D is calculated explicitly, by making small changes in each of the
parameters a; and finding the change in the extrapolated points x;. This is done by using extrapolation

routines and the known geometry and magnetic fields. A is found during the CD reconstruction.

Some Appropriate Comments

1) Using the muon chamber information only (that is, not using the CD estimate), at very high
momentum, the floor on the hits dominates the error on the momentum. At lower momentum, the
multiple scattering, which is a function of momentum, dominates. The error on the hits in the muon
chambers is therefore a function of momentum, and so the estimated error is a function of the

estimated momentum.



2) In deciding whether the estimate r is an unbiassed estimate of the true reciprocal momentum,
Tirye: One should consider the variations of the measured hits x,, which lead to a spread in the
estimated values r. The key point to note is that the distributions of x, are Gaussian, centred on the
points corresponding to 4. and with a width also determined by ryp;.. Therefore, the distribution of
fis also Gaussian with a width given by o(r) - where r is evaluated at r,, not r. Thus the estimate
is unbiassed, in the sense that its expectation value is ryq.

3) Using the CD measurement, it is easy to convince oneself that the overall solution presented
here is effectively a weighted mean of the CD estimate of r and the estimate from the muon chambers

(to see this: remove all D’s and replace the vector quantities by simple scalars). Explicitly, we have:
TR (fgfog? + 1,/0,%) + (1/oc? + 1/o,?) (3.9)

We wish to evaluate the multiple scattering term in o pat the true value of the momentum - this is not
possible, and so we must use our best estimate. Thus, equation (3.9) is used iteratively, feeding in the
current estimate in to the multiple scattering term. It can be shown (see appendix B) that this

expression for the momentum leads to an unbiassed estimate of the true value.

To show that OMF is working properly, we must demonstrate:

Lor really is unbiassed,
2. op provides a correct description of the spread on the estimates T
3. using both the muon chambers and the CD, ¢ < o, - if we cannot reduce the error below that

coming from the CD, we are wasting our time !

3.3.2 Tests with Cosmic Rays

To test OMF, the program was modified to use cosmic rays, which provide a high statistics .
sample of pure muons of fairly large momenta (of the order of 20 GeV/c) (see also [33]). Loose cuts

were made on the cosmic rays:
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1. We require that there should be a CD track with p > 5 GeV/c.

2. At either entry or departure, there should be a track in the muon chambers matched to the
CD track with a mean matching chi-squared in the bending plane < 9.

3. The OMEF fit is rejected if the OMF chi-squared® is > 15. High chi-squares are indicative of
reconstruction problems rather than simple Gaussian fluctuations - these can be seen on the

Megatek.

In order to test the situations encountered in pp data more realistically, each cosmic ray was split into
an incoming and an outgoing track, with a dummy vertex located near the centre of the CD. For the
incoming track, its momentumn vector was reversed in the CD, and care was taken to reverse the
energy loss when tracking the muon from the CD back to the muon chambers. Using the momentum
estimates from the muon chambers only gives two independent estimates of the same momentum.!®
We distinguish between cosmic rays travelling in different directions, and thus passing through different

sets of muon chambers. The three categories are:

e horizontal: +x and —x; we distinguish cosmic rays passing through the large or small muon
chambers,
e vertical: +y (top) or —y (bottom),

e side: +zor —z.

The results presented here correspond to the 1984 cosmic ray data, for which there was no reliable
Iarocci information, and so only the Aachen chambers were used.

It was found that the scatter plots of the reciprocal momentum estimates from the muon
chambers versus the CD measurements showed strong correlations (see figure 15), indicative that it is

possible to measure 1/p using the muon chambers. To check this more carefully, we studied the

® The number of degrees of freedom is equal to the number of hits used in the muon chambers, when the CD momentum is
used, and one less otherwise.

10 Note that if we were to use the fit including the CD, the two estimates would not be independent because of the common
CD momentum. With more effort, the two halves of the CD track can be fitted separately to alilow independent estimates
to be made. This was done: however the results are not so important for the discussion of this chapter, and are not
presented.
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quantity (Q,r, —Qcre), V;'here Q is the estimated charge, which is related to the sign of the curvature.
All the distributions were found to be approximately Gaussian in appearance, and were well centred.
The parameters are given in table 7 (the units are GeV~'c?). The mean momentum of the sample of
cosmic rays is given - the momentum spectrum was approximately exponential. The size of the rms for
each category is readily explained by the geometry. In using the charged quantities, we are sensitive to

systemnatics which might arise due to the misalignment of the muon chambers with respect to the CD.

0.2 ' Ve +ie ¢ ¢

(GeV/e)™*

0.2
Tc (GeV/e)~!
Figure 15: Momenta of Cosmic Rays Measured by the Muon Chambers and the CD
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Table 7: Difference in Momentun Estimates from the Muon Chambers and the CD

N <p> mean (m) rms (s) m+s//N
horizontal — large 3774 37 -0.21x10"% 1.1x10°2 -1.14
horizontal — small 4278 +0.58x10"% 1.0x10°2 +3.87
vertical — +y 2558 19 -0.88x10"% 2.8x10°2 —1.58
vertical — —y 1665 +2.57x1073 4.8x107? +2.19
side — +z 2712 26 -0.36x10"% 4.7x10°2 +0.40
side — —z 2197 +2.05x10°% 4.7x10°2 +2.06

The errors on r are dominated by the floors on the resolution and the multiple scattering. For
muons produced in the decay of a W or Z, the momenta will tend to be higher (of the order of
50 GeV/c) and, consequently, the errors due to the multiple scattering will be lower. On the other
hand, the CD errors on the track directions, which feed in to the error, will tend to be lower for the
cosmic rays, which tend to have better defined tracks in the CD. Nevertheless, we can make some
useful comparisons for the horizontal (or forward) cosmic rays: o, = Ix 1072, with a systematic
uncertainty (estimated from the mean of the distribution) less than about 2x 10~*, while o, evaluated
for W-uv candidates is about 0.5x 10~2. Therefore, we can see that the error from the muon chamber
estimate is of the same order of magnitude as the error from the CD, and it makes sense to use the
combined estimate. If we consider the combined estimate as being effectively a weighted mean, then
the error on the OMF value is 0 = 1/,/(o; "2 +a#'2), and if o, is approximately 2o, then this gives a
o of roughly 90% of o, so we could expect a reduction in error of the order of 10%.

To test the reasonableness of the estimated errors on the momentum estimate from the muon
chambers, we could consider the quantity (r# —1c)//(oc? +o#z). On the face of it, this quantity ought
to be Gaussian, with a mean of zero and a width of one. In practice, because o, is a function of the
estimated quantity, r, (and for significant multiple scattering, o), < 1,,), the distribution turns out to be
significantly skew. To some extent, this can be alleviated by multiplying o, by r¢/r,. However, at high

momentum, the floors dominate, and the skewness returns in the opposite sense.
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A good alternative is to obtain separate and independent estimates of r from the incoming and
outgoing tracks. (Note: the momentum estimate is evaluated so as to be consistent with the estimate
from the CD. So for pp interactions, it represents the momentum of muons at the point of creation -
not after they have traversed the calorimeters.) If the incoming and outgoing muon tracks pass through
muon chambers with similar geometry, then to first order the skewness encountered above is removed
by the symmetry. Therefore, we limit our study to horizontal and side cosmic rays. We consider the
quantity (fjn —Tout)/v/(%in® + 9out’)- The results are shown in table 8. The closeness to unity of the

rms’s is an indication that the error estimates from OMF are satisfactory.

Table 8: Difference in Momentum Estimates from In/Out Going Tracks

N mean (m) rms (s) m+s/\/N
horizontal 1980 —0.046 1.04 -20
side 1461 —0.084 0.95 -3.2

3.3.3 The Application of OMF to the W and Z events

OMEF, incorporating the CD momentum estimate, has been applied where possible to the W and
Z candidates (muonic decays) - these events will be discussed in chapters 6 and 7. The matching
between the muon chambers and CD has been studied carefully only for the \/s = 630 GeV data, and
so we use only these events. 53 out of the 57 muons in the W candidates have good chi-squareds
(< 15). As will be seen in chapter 7, we require only one of the muons in a candidate Z event to have
a muon track. In 1985, unfortunate statistical fluctuations resulted in only 1 out of 10 events with two
good muon tracks; and, out of a total of 16 events, OMF was successfully applied to 24 muons. The
mean and rms’s of the stretches are shown in table 9. The most important are the stretches in the

bending plane (r,®), since they relate to the momentum determination.
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Table 9: Stretches for W and Z Events

mean ms

X -0.20 0.97

y +0.02 1.02

w r -0.07 0.98
A -0.58 1.01

o +0.21 0.98

x -0.23 0.96

y -0.31 0.83

Y4 b +0.09 0.80
A -0.44 1.05

o -0.10 0.95

The scatter plot of the OMF errors versus the CD errors on momentum for the W candidates is
shown in figure 16. The mean of the ratio of OMF error to CD error is 0.76. Thus we conclude that
OMEF is successfully reducing the errors on the momentum estimation, and the studies with cosmic

rays verifies that the procedure is fairly well understood.
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4. LIKELIHOOD METHODS

Often with statistical methods there is no right or wrong way of presenting results. The only
unambiguous procedure is to present all measurements and to let the reader derive the quantities in
which he is interested. However, this is neither feasible nor useful. Therefore the experimentalist must
choose some scheme for deriving meaningful quantities. Generally, the problems encountered are less
significant where the statistics are high, but with low statistics, different procedures (namely, classical or
Bayesian approaches with different prior densities) may lead to very different numerical conclusions
(see, for example, reference [34]). Thus, the best one can hope to do is to utilise a simple method
which leads to robust'! conclusions, while clearly explaining the method and the assumptions.
Further, any results should be interpreted with a measure of care, since even exact methods do not
always lead to the conclusions one would imagine.!?

In the analysis described in this thesis, we have relied heavily on likelihood methods. These

methods are good because:

e They can incorporate as much information as is available and test the complete shape of a
distribution.

¢ They can be used in a bin free way and need not depend on the position of cuts.

¢ They provide simple methods for estimating variances and confidence limits.

¢ In testing distributions for new signals, they are not very sensitive to fluctuations or systematic

deviations outside the signal region, whereas naive chi-squared tests may be.

With respect to the last comment, we note that chi-squared methods should be reserved for tests of
goodness of fit; and that parameter estimation and the derivation of confidence limits are the domain
of likelihood methods. In what follows, we prove some of the important results which are used later in

this thesis. We will consider simple cases, where a single quantity is estimated and there is only one

11 j e. with minimal sensitivity to small changes

12 In reference [34], James points out that exact methods for calculating confidence levels for low statistics Poisson problems
often lead to an over-satisfaction of the required confidence level. That is, in trying to calculate a 90% C.L., the actual jevel
represented by the limit (which is a function of the true, yet unknown, mean of the distribution) is greater than 90%.



42

parameter to be measured - the appropriate generalisations are readily made.

4.1 Estimation of central value

We envisage a problem where we have N measurements of the quantity x: {x;; i=1,N}. We know
that the measurements are distributed according to a probability density function (pdf) f(x|a) where a is
an unknown parameter which we wish to estimate. Here, we consider the asymptotic situation where
N, although the case of finite N is considered later. If the true value of a is a, then the distribution
of measurements is dN/dx = Nf(x|a).

The log likelihood!? is defined by
Z(a) = Z log f(x;la) 4.1)

In the asymptotic limit, the sum gets replaced by an integral: Z - fdx Nf(x|a). So the likelihood

becomes:

Z(a) = Nfdx f(x|a) log f(xla) 4.2)
> d&/da = Nfdx f(x|a)/f(x|a) of/dal, (4.3)
Evaluating this at a = a gives

d%/daj, =, = Nfdx f/dal, 4.4)

and since jdx f(xla) = 1 by the normalisation condition of the pdf, the integral of the derivative with
respect to a vanishes. Thus, (4.4) leads to d#/dajy =, = 0. So we see that the likelihood has a turning
point (a2 maximum) at a = a. Therefore, the location of the maximum is an estimator of the true

value of the parameter a.

13 ysually the word ‘log’ will be omitted
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Note that in practice, a minus sign is often slipped into the definition of the likelihood (4.1). This
is done simply because it is easier to handle with standard computer software (minimisation routines
and histogram packages). This has little significance, other than inverting the likelihood curves so that

maxima become minima.
4.1.1 The Discrete Regime
If the likelihood attains its maximum at a = a +48a, then
0 = d¥/da|, = o +8a = dL/dal, = o + d*L/da?|, = S0a (4.5)
S sa < d2/dal, (46)

The quantity in which we are interested is the expectation value of §a with respect to variations in the
measurements {x;}. Since the behaviour of the second derivative of the likelihood is fairly insensitive to

the variations in the measurements,
E[éa] « E[d¥/da|,] 4.7)

The expectation value is obtained by the integral of the probability of a set of measurements {x;} over
all values. For independent measurements, this probability is the product of the individual pdf’s. So the
expectation of the first derivative is
E[d%/da|,] = [IIdx; f(x;]a) { = l/f(lea) of/da } (4.8)
i i
where the term in { } is the derivative of the likelihood. On rearrangement, this becomes:
Eld¥/da|,] = = { [IIdx; f(xj|e) }{ j'dx] af/da } (4.9)
i s
As in the asymptotic regime, the second bracket vanishes, and so the expectation of the derivative is
zero, and consequently the expectation of 8a is also zero. Thus we find that the expectation value of
the estimate of the parameter obtained at the maximum of the likelihood is .equal to the true value of

the parameter. Alternatives to this proof can be found in reference [35].



4.2 Estimating the Variance

Using the asymptotic methods, we consider statistical fluctuations of the measured distribution.

Suppose the measured distribution is N{f(x|a) + 8f(x)}, then the likelihood becomes
£(a) = Nfdx {f(x|a) + 6f(x)} log f(x|a) (4.10)
We expand d.#/da at a = a +§a, equating it to zero:
d%/da|, = d&/da|, + d*L/da®|,6a = 0 (4.11)

The first term in (4.11) can be expanded in terms of &f, and in this expansion, the zeroth order term

vanishes, as in (4.2) — (4.4). This gives
ba = —Nf 6f/f 8f/da + d*&/da’ (4.12)

We now seek the variance of a (or 8a) due to variations from éf.

If we have a quantity B = N_[dx f(x)b(x) where f(x) is the distribution of x, then the discrete form
of this quantity is =b;, where the sum is over all the measurements (this is the reverse of the step
(4.1)-(4.2)). The variation of B due to statistical fluctuations of the measurements {x;} is Nfdx &f b.

Using the discrete form, we know that the variance of B is
V(B) = NV(b) = N{ E[b’]—-E[b]* } (4.13)

which becomes N{ {dx f b2 — (fdx f b)? }. Identifying b with (1/f 9f/a), we find that the variance of

&a becomes
V(sa) = N{ [dx f (1/f of/0a)® — [j'dxf (1/f of/da))? } + (82L& /0a?)? (4.19)

The second term of the numerator of (4.14) vanishes, and the first term is readily shown to be equal to
the negative of the second derivative of the likelihood. Thus we end up with our final result that the

variance of éa, or equally of our estimate a, is

V(a) = —1/8*%/0a? (4.15)
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If the likelihood is pa.;'abolic, centred on the estimate a, with a curvature &, then
P =L, - Y k(a—a)? (4.16)

and the variance is the reciprocal of the curvature, namely x~!. We note that at the ‘one sigma’

positions, i.e. a = a*./x~?, the likelihood falls by half a unit (see figure 17).

Figure 17: Parabolic Likelihood Curve

4.3 Changing Variables
4.3.1 ... for the Measured Quantities

We consider a change of variables from the measurements {x;} to {y;=Y(x;)}. The pdf for y is
given by fy(y) = fy(x)J(y) where J is the Jacobian dx/dy. In the y representation, the likelihood

becomes
Zy(a) = 3 log fy(yila) = 2 log fx(xjla) + = log J(y;)

= P,(a) + = log J(y;) 4.17)



Seen as a function of a, the last term is a constant, and has no effect on the estimation of statistics .
from the likelihood, which depend only on derivatives of the likelihood. So we can use whatever .

functions of the measured quantities we find convenient.
4.3.2 ... for the Parameter to be Estimated

Next we consider the effects of a change of variable for the parameter which we are trying to
estimate. If the parameter a’ = x(a), then the probability of a measurement x is identical, regardless of
whether it is viewed as a function of a or of a’. Thus the operational definition of the likelihood (4.1) is
unchanged by a change of parameter variable, although the functional form is changed.

This means, in principle, we can transform parameter variables so as to obtain a parabolic
likelihood. The interpretation of such a likelihood is straightforward, since it is essentially the logarithm
of the pdf of a Gaussian distribution representing the distribution of possible values of the parameter
to be estimated. (If the distribution of the possible values of the parameter a vares like
exp(—!/;x(a—a)?), then the likelihood varies like —*/ ,x(a—a)2.) When the likelihood is parabolic, it
was shown that it falls by !/, from the maximum, one sigma above and below the central estimate.
Since the likelihood is invariant, then the likelihood will also fall by !/, at the values of the original
parameter which would be transformed onto the plus or minus one sigma values. It is these values
which we think of as the one sigma values of the original parameter. These ‘errors’ will lnot in general
be symmetric, but they correspond to the (reverse) transformation of the symmetric errors on the
Gaussian variable, or alternatively, the bounds defining the symmetric interval with a 68% probability
of containing the true value of the parameter.

Since we need only note the change in the likelihood to estimate the errors, it is not necessary
actually to derive or perform the change of variables - however, implicitly, such a transformation is
required to exist. To obtain any confidence limit, the limit must be expressed in terms of the
corresponding number of standard deviations for a Gaussian distribution, N,. The appropriate limit in
the parameter is found where the likelihood falls by A% = !/, N,2. So to evaluate 90% confidence
limits, corresponding to 1.280, the shift is A# = 0.83. Further discussion of non-parabolic likelihoods

is found in chapter 9 of reference [35].
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4.4 The Effect of Finite Monte-Carlo Statistics

In the first section, it was assumed that we knew the pdf f(x|a) exactly. In practice, f(x|a) is often
non-parametric!* and must be generated by a Monte-Carlo, with finite statistics. This has two

consequences:

i. The Monte-Carlo data must be binned, leading to a loss of resolution.
ii. The finite statistics mean that f(x|a) is not precisely determined, but has statistical

fluctuations.

One way to overcome these problems is to use explicit non-parametric methods, instead of likelihood
methods, as advocated in reference [36]. Here, we consider the second point, since it leads to additional

fluctuations of the central estimate, which are not accounted for in the error estimate derived from the

curvature of the likelihood.
If we generate a Monte-Carlo distribution fi(x|a) which is an approximation to the distribution

f(x|a), and the data is described by a distribution f4(x), then we consider fluctuations in both f4 and

fm- The likelihood which we use is
& = Ndjdx f4 log fr, (4.18)
> 8% = Ndjdx { 8f4 log f(x]a) + f(x|a)/f(x|a) 8fm } (4.19)

The important term is d.#/da, since this leads to the estimates of the statistics. Differentiating (4.19),

we find:
ds.#/da = Nyfdx { 8f4/f(x|a) 8f/8a — f(x|a)/f(x|a)? f/0a 8fy + f(xla)/f(x]a) B(6fm)/da } (4.20)
When this expression is evaluated at a = a, the last term vanishes and we are left with

ds#/da = Ngyfdx (8fq —6fr)/f of/0a (4.21)

14 j e. cannot be expressed in terms of simple functions
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Comparing this equation with the expression for the variation of d.¢/da in (4.12), we see that &f is
replaced by (8fg —8fr,). The fluctuations 84 m result in statistical variations proportional to 1/,/ Ndm
and these combine in quadrature, so that the error should behave like l/\/Neﬁ‘ rather than I/JNd,

where
l/JNeﬁ = l/JNd ® l/JNm = JR x I/JNd where R = 1+ Ng/Np (4.22)

We use @ to denote addition in quadrature. We see that the error derived from the curvature of the
likelihood is increased by /R to allow for the statistical errors on the Monte-Carlo pdf. A more
natural way of incorporating this term is to reduce the likelihood by R itself, since the variance is

inversely proportional to the (second derivative of the) likelihood.

4.5 Setting Confidence Limits in the presence of Poisson Processes

Likelihood methods work well when used to estimate parameters from distributions where the
parameters do not explicitly or implicitly relate to Poisson variables, for example the estimation of the
W mass from the transverse mass distribution. However, some care is required when the parameters do
relate to Poisson variables, for example the mass of some new particles deduced from the excess of
events in some kinematic region.

While, in the latter case, the likelihood can be formed in a manner precisely as in (4.1), it is
important to recognise the distinction between the two problems. When we have a single class of
events (for example, every event is a W--p» decay) and we use a set of measurements {x;; i=1,N} to
estimate a parameter a, then every measurement has ’knowledge’ of a, and it is meaningful to write the
pdf as f(x|a). However, where there are two classes of events - background and signal - and only the
distribution of signal events and their absolute rate depend on the unknown parameter a, while the
background events have no ’knowledge’ of a, then not all measurements of x have ’knowledge’ of a.

The pdf can be written as f(x|a), but it is also important to identify this as f(x)pack + f(xla)sig.
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In cases where backgrounds and numbers of events are low, and it is possible to identify a
kinematic region where one is sensitive to a potential signal, while being fairly insensitive to the cuts,
then one can use more explicit Poisson (or binomial) methods. One such method is described in an

appendix of reference [37]. However, in situations where:

1. there is considerable background and no readily identified region to search for a signal;

2. results would be very sensitive to cuts made to isolate some kinematic region;

3. the shapes as well as the number of events depend on the parameter to be investigated, and it
is not possible to express the problem simply in terms of ‘numbers of events’ in a conventional

Poisson formulation;

then it is worthwhile to exploit the full power of the likelihood method and to use continuous density
functions. Poisson distributions are no more than a limit of binomial distributions, which in turn are a
special case of the multinomial distribution. The likelihood expressed in (4.1) is no more than the
logarithm of the multinomial probability in the continuum limit.

It is useful to examine the method of likelihoods from a probabilistic view point. Ideally, we ‘have
a set of measurements X = {x;}, and wish to infer the probability distribution of some unknown
parameter a - this distribution is p(a|X). Usually, we know the distribution expected for X for a given

a - this is p(X|a). Using Bayes theorem we can write:
p@alX) = p(X|a)p(a)/p(X) = p(X[a)p(a) + [da p(X|a)p(a) 4.23)

Unfortunately, the ‘prior distribution’, p(a), is not usually known, and frequently one assumes that it is

uniform in the physical region. This results in the ‘likelihood’, defined as:
L(a) = p(alX) = p(X|a) + [da p(Xla) (4.24)

Frequently, we take the logarithm, and the numerator becomes identical to (4.1). In estimating the
most likely value of the parameter, the denominator in (4.24) is merely a normalisation. Further, the

denominator has no significant effect in the derivation of the variance, or of confidence limits when the
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distribution of some function of the parameter is Gaussian, and the likelihood peaks at a value far
from any bounds on the range of a. However, in situations with implicit Poisson statistics, the
formulation of the likelihood L(a) is more useful. The normalisation allows for the fact that the
number of events expected is never negative, and leads to the same behaviour as the formulation of
reference [37]. Since L(a) is the pdf for a, confidence intervals may be defined as desired, such that the
bounded interval contains the appropriate integrated probability.

There are two major problems with this approach. Firstly, one has to assume some prior density.
Secondly, implicit (but not at all apparent) in the probabilistic formulation is the assumption that the
signal is potentially observable. This is unfortunate, since it means that the pdf for the parameter of
interest is always normalised to unity, and one can always find confidence intervals. This is rigorously
correct, although may it not be physically very sensible. It results in the possibility of setting limits in

cases where:

i. there is no sensitivity to the signal, even though there may be plenty of signal events in the
sample;
ii. there are too few events expected from the signal to make it possible to set a limit using

simple Poisson arguments for the number of events expected.

In the second case, if one were to use Poisson statistics to find the number of events required to form
a limit, it might turn out that it would never be possible to obtain this mean number of events, for
physical values of the parameter a. However, by formulating the likelihood as a function of a, the

existence of the model under investigation is imposed on the statistical analysis.

4.6 Final Remarks

The limits derived from a given set of data naturally depend on the events used, and hence are
subject to statistical fluctuations. In some cases, the limits derived will be more optimistic than would

be expected in the absence of statistical fluctuations. While this may be useful when comparing with a
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set of limits derived under’simila: circumstances - as is the case with limits deduced from searches for
anomalous single photons (see chapter 8) - when there are no comparable results, it may be more
useful to quote the sensitivity’® expected, in cases of optimistic fluctuations. This is the approach
which has been adopted in the subsequent analysis.

To conclude, likelihood methods may not be perfect, but they do have many good features which
were expounded at the start of this chapter. Further, most other statistical methods assume asymptotic
behaviour for their validity and suffer from the same problems as likelihood methods, plus more
serious problems. Parameters estimated with likelihood methods can generally be considered as being
fairly robust. However, there is some uncertainty in the derivations of confidence limits, which is an

inescapable feature of statistical problems. It is with these caveats that we will use the methods

outlined in this chapter.

13 We define ‘sensitivity’ as the limit which would be expected with an equivalent number of events, but in the absence of
statistical fluctuations.
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5. THEORETICAL BACKGROUND TO W/Z PHYSICS

5.1 A Brief History

The birth of the weak interaction occured in 1896 with Becquerel’s discovery of radioactivity, and
the subsequent observation of the emission of B rays (electrons) from some decaying nuclei. In 1914,
Chadwick observed that the spectrum of these electrons was continuous. However, it was not until
1930 that Pauli [38] was able to explain this puzzle in terms of a new particle, the neutrino.

Soon afterwards, in 1934, Fermi [39] developed a quantitative theory of B decay along the lines of
the theory of QED, pioneered by Dirac, Heisenberg and Pauli. In QED, the interaction of two charged
particles can be envisaged as the exchange of a photon between two charged currents. The propagation
of the photon is described by a ‘propagator’ which varies like q~2%, where q is the four-momentum
transfer of the process. According to Fermi’s theory, the weak interaction was, unlike the long range
electromagnetic interaction, a four fermion interaction, where the propagator was proportional to the
constant G (Fermi’s constant).

After a suggestion by Lee and Yang [40] in 1957, experimental work by Wu [41] showed that the
charged current weak interactions only involved 7left handed’ (‘right handed”) fermion (antifermions) -
where the particle spin is antiparallel (parallel) to the momentum vector.

However, the early models were far from satisfactory. They predicted that for neutrino-electron
scattering, the cross-section would rise like s (the square of the centre of mass energy). This was
undesirable, since this rise would violate the unitarity principle, which is derived from the conservation
of probability. Since the interaction is point-like, it is all S-wave scattering, and unitarity imposes a
bound, which falls like 1/s, on each partial-wave term. Therefore it was proposed to introduce
exchange particles in analogy to the photons exchanged in QED; but, in the weak interaction, the
exchange bosons were given a mass, m, in order to describe the low energy results. The propagator
became — Gm?/(q? —m?). So now, at small g2, the propagator behaves like G, agreeing with the
observations. At large q2, for the s-channel (i.e. e scattering), the cross-section falls like s”!, and

unitarity is not violated; however, for the t-channel (i.e. ve scattering), the cross-section is constant, and
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the partial-wave amplitudes rise logarithmically, eventually leading to the violation of unitarity at some
very high energy. The violation of unitarity is even worse for vv = W*W~,

One method for introducing the exchange particles into a quantum field theoretical description is
to invoke the gauge principle, which is discussed in the next section. The gauge symmetry requires a
neutral exchange particle, and it can be shown that this controls the behaviour of the v# scattering.
Further, 't Hooft [42] demonstrated that theories possessing gauge -symmetry avoid uncontrollable

divergences.

5.2 A Gauge Theory of the Electroweak Interaction

The theoretical ideas presented here are motivated in many textbooks [43], [44] by series of
heuristic arguments which correspond to the historical developments. Instead, in this section and the
next, we will try to summarise directly how the W and Z bosons fit into current theories and what
predictions are made. We proceed by assembling the components of the Lagrangian describing the
electroweak model of Weinberg and Salam.

The starting point is to construct a Lagrangian for the fermions. The particles are classified
according to a new quantum number, weak isospin. This is analogous to isospin used in the
description of hadronic processes. In the case of isospin, the proton and neutron are seen as
manifestations of the two states of a ‘nucleon’, where the third component of isospin is *!/, or ~1/,
respectively. Similarly the neutrino and electron are seen as members of a weak isospin doublet, as are
the up and down quarks. Further, each particle except the neutrino belongs in its own singlet. The
particles in the doublets are in the left handed state (eigenstates of 1—1v;), while the particles in the
singlets are in the right handed state (eigenstates of 1+ vs) (for the definition of the y matrices and vs,

see reference [44]). Ignoring the mass terms, and symbolically labelling the doublets and singlets as L

and R respectively, the Lagrangian looks like:

£ ~ fypa“L + I-IY#G“R (5.1
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The assignment of the third component of weak isospin (T,) within the isospin multiplets is
arbitrary, and so the physics (and hence the Lagrangian) ought to be invariant to local transformations
from one representation to another. This is the gauge principle. The particular class of transformations
we wish to consider are those of SU(2). The second term of our Lagrangian (5.1) is a singlet and thus
is trivially invariant. However the invariance of the first term can only be maintained by replacing the

first derivative 6* by the so called covariant derivative:
DH = 8k +1/,igo;Wi# (5.2

where g is a coupling strength, {o;; i=1,3} are the Pauli matrices (which are the generators of the
SU(2) transformations), and there are three gauge fields {W;; i=1,3} - which are W*, W~ and W° in
an alternative basis. Under an SU(2) transformation, the gauge fields transform in such a way as to
compensate for the operation of the derivative on the local transformation. In addition a kinetic energy
term for the gauge fields can be added.

Further, we can consider the invariance of the matter fields under a local phase transformation -
this is a special type of gauge transformation, under the group U(l), which is associated with the
quantity weak hypercharge. This motivates the introduction of an additional single vector field, B,
which interacts with both left and right handed particles, with a coupling g’. (U(1) invariance applied
to the Lagrangian for a single charged fermion yields the electromagnetic interactions.)

At this point we note that the W*, W™ interact with the left handed fermions, but not the right
handed ones. It is tempting to identify these fields with the IVB’s, however this is a little premature,
si;we our Lagrangian contains no mass term like m?*W? for these particles. Unfortunately, an explicit
mass term violates gauge invariance. Further, the B couples to the left handed neutrino and so cannot
be considered as a candidate for the photon. The answers are to be found in the model of Glashow [1],
Salam [2] and Weinberg [3] (GSW).
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5.3 The Glashow-Salam-Weinberg Model

The first step to generating IVB masses is the Goldstone model [45]. To the Lagrangian
constructed so far, we introduce terms describing an elementary complex scalar field, ¢, which is a
doublet of weak isospin (the field has four real components).

The Lagrangian for ¢ contains a potential term —p2¢1'¢ + )\(¢"'¢)2, where p? and A are both
positive. Considered classically, this potential has an unstable maximum at ¢ =0, and stable minima
on the hypersurface ¢T¢ = p?/(2A) = v2. Although the Lagrangian shows rotational symmetry (in the
space of the four component fields), the solution chosen by nature will be a unique point on the
hypersurface. This causes the symmetry to be spontaneously broken, and the field acquires a non-zero
vacuum expectation value (vev) at this point: | <0|¢|0>| = v. Perturbation calculations are performed
about this stable vacuum solution, and as a consequence, we are left with a real massive scalar (the
Higgs boson) and, in accordance with Goldstone’s theorem, three massless scalars.

The kinetic energy term for the scalar, 6#¢T6F‘¢, is modified by the requirement of gauge
invariance, which leads to the Higgs model [46]. Again the derivative is xeplaceci by the covariant

derivative: 3 - D. This leads to an expression like:
3¢tap - DetDg ~ 8gtae + 2gW Im(sTae) + 2WWoTe (5.3)

The important term is the third one. Since we expand ¢ about its non-vanishing vev, v, to first order it
becomes g?v*W? - which looks like a mass term m,*W?. Therefore the W particles obtain a mass of
the order of gv. Thus we see the role played by the new scalar field is to provide the IVB masses.
Further, this can be achieved only by a scalar, since, as the vev is in principle an observable, it should
satisfy Poincaré invariance (space-time invariance). This is only possible for a spinless field. The
i)msence of the second term like Wd¢ (the first ¢ is constant to first order) represents the interference
between the Goldstone bosons and the gauge fields. This interaction (indicative that our fields are not
the normal modes of the Lagrangian) is trivially removed by a gauge transformation. This is fortuitous
since i) it removes the unobserved massless particles, and ii) it removes three degrees of freedom which

have manifested themselves as the longitudinal polarisation of the three massive gauge fields.
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So far, the role of the U(1) gauge field has been neglected. It too interacts with the scalar field
and, in addition, mixes with the neutral W°. With an appropriate choice for the location of the vev of
the ¢ field on the hypersurface, W° and B mix in such a way that there emerge particles corresponding
to the normal modes: one which is massless, identified as the photon, and a second massive particle,
identified as the Z boson. The observation of neutral currents in 1973 in the Gargamelle bubble
chamber [47] provided the first confirmation of the GSW theory. A key ingredient of the theory was
the proof by ‘t Hooft in 1971 that such gauge theories were indeed renormalisable.’®

We note that, in addition, the Higgs mechanism may be used to generate the fermion masses in a
gauge invariant way. Unfortunately, this requires the introduction of one new parameter (the coupling
to the Higgs field) for each fermion type - and so provides no constraints on the fermion masses.

The physiéal fields, the photon and Z, are identified as rotations of the gauge fields, B and we,
through an angle 6. This is the key parameter of the model. The principal predictions of the model,

in addition to the above, are:

i. the Higgs mass: myg = /(v
ii. the IVB masses: my, = !/,gvand m, = !/,,/(g* +g?)Vv

iii. the couplings: g = e/sinf, and g’ = e/cosfy,
The first is of no use since A is unknown. Eliminating v from ii) and substituting from iii) gives:
my,/m, = cosfy, (54

The constant g relates to the couplings of the charged current, and this can be measured as the Fermi

constant, G. At the tree level, this is given by:
G = /2 g*/(8my?) = /2 e?/(8my,*sin?0y,) (5.5)

Finally, the Z couples to matter with an effective current

16 Calculations in perturbation theory inevitably lead to divergences which must be controlled by the introduction of additional
terms. A theory is renormalisable if measurable quantities can be calculated without the need to introduce new parameters
at each level of perturbation.
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J(Z) = J,—sin?0,J(em) (5.6)

where the current J, is associated with the third component of isospin. By measuring the form of the

neutral current interactions, sinzew can be determined.

5.4 W|Z Phenomenology

Much of the phenomenology of the W and Z bosons is well known and discussed in the

literature, for example [48]. Here, we consider some of the features of relevance to later discussions.
5.4.1 Production Mechanism

The W couples to the left handed doublet (u,d);, and thus can be produced in high energy

collisions of protons with antiprotons:
ud- W* and du -+ W~
The Z couples to the doublet and the singlets ug and dg:
uu-Zand dd- Z

At collider energies, the principal contribution to W and Z production comes from the fusion of
valence quarks, while the sea contribution!” is between 2 and 4%. Also, there is a contribution - about

6% - from the Compton process:
qg~+qWorqg=-qZ
The lowest order process is where two quarks collide, the so called two-to-two process'®

(analogous to simple Drell-Yan production), and the p; of the IVB results from the small intrinsic

motions of the colliding quarks. The main process leading to IVB’s with a significant p; is the first

17 evaluated with the ISAJET Monte-Carlo using several parameterisations for the structure functions

18 there being two incoming quarks, and two leptons from the subsequent decay of the IVB
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order process (in ag) in which one of the colliding quarks radiates an external bremsstrahlung gluon, .
the so called two-to-three process [49]. The Compton process, which is first order in ag, inevitably .
gives rise to an VB with a non-zero py. The longitudinal motion of the IVB arises from the difference

in momenta of the colliding quarks.

5.4.2 Decay Process

Once formed, the W and Z can decay to left handed lepton pairs, and left and right handed lepton
pairs respectively. Because of the left handed couplings of the W to the quarks, the quarks (antiquarks)
forming the W are polarised with their spins aligned antiparallel (parallel) to their momentum vectors,
as illustrated in figure 18. The decay leptons (electron and neutrino, or whatever) are similarly
polarised. Therefore the decay can be described by an initial state with J=1, J,=1 and a final state
also with J=1, J,=1, rotated by an angle 0° (in the rest frame of the W). (Note that the angle is
measured between the momentum vectors of the antiproton and positron or proton and electron.
Alternatively, the charge may be explicitly included.) The amplitude for this decay is proportional to

the rotation matrix
d,2,(8%) = Y/,(1+cos8™) (5.7)

Therefore, the decay of W’s produced in valence quark interactions will show a significant asymmetry

in the (charged) angular distribution of the decay leptons in the W rest frame (the V — A distribution):
do/dQ o« (1+cos”)? (5.8)

The Z, since it couples to the right handed fermions with almost the same strength as the left ha.nded
couplings, has a decay angular distribution which is almost symmetric (and, in fact, if sin?6,, were */,,
it would be symmetric).

The p; distribution of the leptons is readily calculated if we ignore the p; of the W or Z.

do/dpy = do/dQ + dpy/dQ (5.9
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Figure 18: The Angular Distribution in W Decay

Since py = po sinf”, where p, is the momentum of the lepton in the rest frame of the IVB (my,/2 or

m,/2), and dQ2 = 27 dcos8”™

dpy/dQ « cotf”™ = /(P> —Py?) / Py (5.10)

dp4/dQ has a zero at py, and so do/dpy has a singularity at p,, falling to zero beyond this. This is the so
called Jacobian peak. This distribution is useful for the W's since we are able to reconstruct only the
transverse energy of the neutrinos, whereas for the Z’s, the mass can be reconstructed from the

di-lepton 4-momenta. In practice we use the transverse mass, which is defined by

my? = 2p;B4(1 —cosA¢) (5.11)

where By is the transverse energy of the neutrino, and A4 is the angle between the lepton and the
neutrino in the transverse plane. Where the p; of the W is zero, the transverse mass reduces to 2p;. To
first order, the expression (5.11) for the transverse mass is invariant to transverse boosts to the system
arising from the p; of the W; and by using the transverse quantity, the sensitivity to the longitudinal
motion of the system is removed. In practice the finite width of the W smears p,, so that the my
distribution has a rapid fall to zero in the region of my, + T'y,. Of course, experimental resolution

further smears the distribution.



6. ESTIMATING THE MASS OF THE W FROM THE MUONIC DECAY

6.1 Data Selection

The detection of events is described in chapter 1. During the runs of 1984 and 1985, of the order
of 107 events were written to tape. Of these, roughly 40% contained muon triggers. The details of the
data reduction are slightly different for the two data sets, but the cuts are essentially the same. The data
reduction for 1985 is described below; that for 1984 was similar. The aim was to select candidate events
for the decay W-»pv with a low background. The background was reduced by cuts on the kinematic
variables and quality cuts to select events with well measured parameters consistent with the decay
W pv,

An initial selection was made of the good muon candidates with p; > 4.5 GeV/c. This led to
22 x 10? events. This cut was then tightened to a py cut of 10 GeV/c, giving 1764 events. Finally the
cut was raised to its final value of 15 GeV/c and the following cuts were made to improve the muon

quality:

1. Basic CD quality cuts:
a. average matching x? between the CD and the muon chambers < 15 (2 degrees of
freedom);
b. CD track length in bending plane > 40 cm, with > 30 points on the track;
c. Sadoulet x> < 3 and the x? per degree of freedom for the z coordinate < 9 (see
chapter 3).
2. Cosmic rays identified by software were removed.
3. = and K decays identified by software were removed.
4. Events where the muon candidates were identified as passing through gaps in the calorimeter
were rejected.
These cuts ensured a reasonable quality of the muon candidates, leading to 411 events. Further cuts
were made to select W candidates:

S. We required the missing energy > 15 GeV.
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6. It is expected that leptons from W decays should not be strongly correlated with other
particles, and in particular jets. Therefore the following isolation criteria were required:

a. in a cone of AR = ./(An?+A¢?) (see chapter 2) of 0.4 around the muon, the net
transverse energy seen in the calorimetry, 2E;, < 3 GeV; while the net transverse
momentum of charged tracks seen in the CD, Zp;, < 1 GeV/c;

b. no calorimeter jet, E; > 10 GeV, within a cone of AR of 0.7 around the muon;

c. within 30° back to back with the muon in the transverse plane, no CD jet with p; >
5 GeV/c and no calorimeter jet with E; > 10 GeV.

This led to 97 events, which were then scanned on the Megatek. Of these, there were:

® 1Z -+ py,
® 1 cosmic ray,

2 clear double interactions which have total reconstructed energy in the calorimetry > 630

GeV and two reconstructed vertices - double interactions are usually not used due to the

increased problems of reconstruction in the CD,

43 events considered to have CD tracks incompatible with high momentum muons, being

either #/K decay candidates or tracks suffering from reconstruction problems,

50 good candidates.

Finally, further cuts were made to reduce the decay background and facilitate the acceptance
calculations:

7. We required that the matching between CD and muon chamber tracks in each of the two
spatial coordinates and each of the two angular coordinates should be < 4 standard
deviations.

8. Each event was required to have a muon trigger.

9. Suspected double interactions were removed by a requirement that the total energy
reconstructed in the calorimetry should be less than 480 GeV.
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10. Following the application of the automatic CD Fixup (see chapter 3), the events were passed
through all the quality cuts again.

11. A final scan was made to remove all dubious CD tracks.

This gave a final data set containing 34 events for the cross-section calculations. A similar procedure

was applied to the 1984 data, yielding 23 events.

6.2 Backgrounds and Cross-section

Using ISAJET, it is anticipated that the background from W-»r with 7= pw is of the order of 4
or 5%. In addition there are decays of longer lived mesons, namely pions and kaons. If a fast meson
decays before the calorimeter (ct is 8 and 4 metres, respectively), sometimes the meson and daughter
muon are reconstructed as a single track. The combined track can sometimes be recognised by the
change of curvature and the poorer CD-muon chamber matching. In addition, there is background
from tracks which have been distorted by systematic effects in the CD, and subsequently reconstructed
with high momentum. The background from these two sources is greatly reduced by the strict quality
cuts in the CD and in the matching to the muon chambers. It is estimated that the background is less
than one event.

The acceptance of the trigger (39% at the first level, and 94% at the final level) and the efficiency
of the software cuts have been evaluated as 15 + 1%. The integrated luminosity collected over the two
running periods was 551 nb~!. This leads to a measurement of the cross-section times branching ratio
of 0.66 + 0.12 + 0.14 nb at /s = 630 GeV. This work is discussed in greater detail in [50], [S1]. The

cross-section is in good agreement with the UAL electron result, which is 0.63 + 0.04 + 0.10 nb [55].

To improve the quality of the events used for the mass fitting, all events which showed any
evidence of distortions of the CD track were removed by software. This left 46 events for the mass
fitting. To improve the determination of the momentum of the muon tracks, the OMF procedure was

applied, as described in chapter 3.
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6.3 Methods for Obta;'ning the W Mass

To estimate the W mass for the W-=puv events, the transverse mass (see chapter 5 for definition)
distribution was compared with Monte-Carlo expectations using a likelihood method (see chapter 4).

Monte-Carlo transverse mass distributions were generated for a series of different W masses. For
each mass, m, the log likelihood!® was found. If the probability density function (pdf) for M; is

f(M|m), then the likelihood is defined as
Z(m) = —Z log f(My(i)lm) (6.1

where the sum is over the eventsi = 1to N.

In practice, it is more convenient to use the inverse transverse mass distribution, M;~! (it is
shown in chapter 4 that the likelihood result is invariant to a change of variable). This is useful, since
the muon momentum, which is directly reflected in My, is measured in the CD, and the measurement
is Gaussian in 1/p (rather than p) to a good approximation. Thus it is more natural to use quantities
related to 1/p. In addition, because the smearing (in 1/p) of high energy muons can give rise to very
high estimates of the momentum, it is difficult to establish a reliable shape for the pdf at large M;.

There was some uncertainty as to the parameterisation of the CD errors on the momentum. The
momentum has two components of error: a statistical error (og,) due to the scatter of ‘the digitisings,
and a systematic component ("sys) of unknown origin. The systematic error was seen in studies with
cosmic rays, by looking at the reconstructed momenta of the two halves of the cosmic track. It is
systematic in any given region of the CD; however, it varies irregularly between different regions. There
is some small overlap between the two types of error, and the total error on a measurement of 1/p is

defined as

oot = V{(0.83053)" + (05y5)*} (6.2)

19 often the word ‘log’ will be left implicit



However, it is not obvious that this is the most appropriate parameterisation of the total statistical
error to use for pp data. Thus, in order to understand the nature of this error, we have made (6.2) -

more general, and we parameterise the total statistical error as
o(e) = V/{(0.83055)* + (e 05y5)*) - (6.3)

where ¢ is an unknown which can be estimated with the likelihood expressed as a function of m and &:
%(m,e). The approximate behaviour of the pdf, f(M;|m,e), is that m controls the centering of the M;

distribution, while ¢ feeds into the width.
6.3.1 Generating the M, Distribution

It is necessary to have access to Monte-Carlo distributions of M; for different values of m and e.
For maximum efficiency, it is desirable to have a fast Monte-Carlo generator within the mass fitting
program. While it is desirable that such a generator should provide a reasonable description of the M;
distribution, it is not essential, as the method can be calibrated using a more detailed Monte-Carlo,
such as ISAJET with UA1 detector simulation. To perform this calibration, Monte-Carlo events were
selected in precisely the same way as the real events. The selection was made from the inclusive W
production, described in appendix F.

The principal features of this internal Monte-Carlo used to generate W’s are the same as those of
the generator described in detail in chapter 9. W’s are gencrated using theoretical parameterisations of
the longitudinal and transverse momentum, and are decayed according to the V—A distribution. The
reciprocal momentum of the muon is then smeared with the error o(e) (defined above), where the
values of og, and Osys are taken from the data event which is nearest in cosf and ¢. The simulated
neutrino is smeared according to the resolution. This resolution is a function of the scalar sum of the
transverse energy, although for simplicity, we have evaluated it at a value typical for W events, namely
Z|E4| = 80 GeV. The simulated muon is then extrapolated rectilinearly to the muon chambers, and
the probability for firing the muon trigger is evaluated from look-up tables. Finally, the inverse

transverse mass is calculated from the smeared momenta.
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6.4 Systematic Errors and Calibration
There are two important points to establish:

1. Is the muon momentum being correctly estimated ?
2. Given a good measurement of momentum, is this being used to make an unbiassed estimate of

the W mass ?

6.4.1 Systematics on the Momentumn Determination
There are two basic stages with the estimation of momentum.

i. Digitisings have to be obtained from the raw data.

ii. The muon momentum has to be estimated from the track curvature.

The algorithm used to perform the second task was explicitly tested. Digitisings were generated which
lay exactly on a circle, and from these the corresponding momentum was estimated. For tracks with
momenta around 50 GeV/c, it was found that the mismeasurement of the momenta was less than
0.1 GeV/c. Therefore, it was concluded that there were no serious systematics in the reconstruction,
and the precision was not a problem. This allowed us to use the reconstructed momentum as an
unbiassed tool with which to investigate possible systematics in the formation of the digitisings for real
data.

The original studies performed on the CD momentum estimation using cosmic rays were
insensitive to global systematics which tend to move the momenta of all tracks in the same direction.
(These cosmic ray tests were sensitive to systematics in the variable Q/p, since the two halves of a
cosmic ray curve in the opposite sense with respect to the nominal event vertex in the median plane,
and so it appears that they have the opposite charge.) Generally, it is not necessary to provide absolute
calibrations of multi-wire drift chambers since the calibraﬁon coefficients can be determined from

internal consistency, unlike in the case of a calorimeter. The only parameter which must be measured
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is the magnetic field, and the accuracy with which the J/psi mass is reconstructed [52] in the CD
means that the field is measured to better than !/,%.2° However, due to the ease with which problems
can manifest themselves as systematic effects on the measurement of the sagitta, even for simulated
data (see below), it was considered desirable to obtain some check on the absolute calibration. Using
electron tracks in W-ev events, the calorimetric energy was compared with the CD momentum.

Explicitly, the quantity
A=[p7'=E7' + flo(p~')? +o(E"?)] (6.4)

was compared with Monte-Carlo predictions, allowing for the bremsstrahlung spectrum of the
electrons. The expression of equation (6.4) is a better approximation to a normal variable than [p—
E] + J[o(p)2+b(E)2]. With and without some of the muon cuts (to give the tracks the same
topology as the muon tracks), it was found that the agreement between the calorimetric and CD
measurements was very good (see figure 19). Therefore, the limit on global systematics for the CD is of

the same order as that of the electromagnetic calorimeter, namely 3%.

20 Although the J/psi mass can be used as a check on the magnetic field, it cannot provide useful limits on the sagitta errors
because of the low momenta of the tracks.
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Figure 19: Comparison of CD Momentum (p) and Calorimetric Energy (E)

6.4.2 Systematic Errors on the Method

The internal consistency of the mass fitting program was tested directly. Event parameters were
generated with the internal Monte-Carlo and fed into the program. In all cases, the input mass was
recovered. It was anticipated that systematic shifts arising from imperfections in the internal
Monte-Carlo could be removed by calibrating the procedure with ISAJET events.

Before applying the mass fitting procedure to simulated W-»uv events, the Z mass fitting was
tested with simulated Z-»ux events (see chapter 7). It was found that there was a significant offset of
the fitted mass from the input mass - the former was 4 GeV/c? larger. While it is desirable to allow for
genuine offsets coming from any bias of the program, it is important to avoid problems which are a
feature of the simulation alone. In this case, the discrepancy was found to be due to a systematic
overestimation of the CD momentum of the simulated muons. The origin of this was the simulation of
digitisings in the CD. The algorithm used to simulate the location of the digitisings was stepping from
one CD wire to the next, however, the approximations used were not sufficiently accurate at high

momentum, and there was a systematic loss of precision which increased along the track. Further,
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there were severe discontinuities which occurred at the boundaries between wire planes. It should be
emphasised that these systematics are of the order of 10-3 GeV !¢, which should be compared to a
typical statistical error, which is of the order of 1072 GeV~*c. These effects were extensively studied
using a dedicated single track Monte-Carlo generator, and in reference [53] an improved algorithm was
proposed, although it was not implemented for this analysis.

In order to be able to calibrate the W mass fitting, without introducing erroneous shifts, ISAJET
events passing the selection were used, but their momenta were adjusted. The generated reciprocal
momentum for each muon CD track was smeared by the total error (equation (6.3) with ¢ = 1), and
this value of momentum was used rather than the reconstructed quantity. This caused the low
transverse mass tail to be a extended a little; however, precisely the same procedure was used for the

internal Monte-Carlo, when applied to ISAJET events.

6.5 Results
6.5.1 Results for Data

It is found that the internal Monte-Carlo provides a good description of the data with e = 1 (see
figure 20). The likelihood, #(m), attained its maximum at a mass of 78.2 GeV/c?, with a fit
probability (evaluated from the chi-squared) of 98%. The statistical errors evaluated from the
likelihood are +6.0 and —5.3 GeV/c?. Allowing the error coefficient (¢) to vary leads to a mass

estimate of 78.2 GeV/c?, with ¢ = 0.97 + 0.24. These values are before corrections.
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The breakdown of the results for 1984/1985 and the effect of OMF in 1985 is shown in table 10.
OMEF has not succeeded in significantly reducing the errors, and the Iarocci chamber information has
not added to the precision. These results are a little disappointing in view of the conclusions of chapter
3, where it was shown that OMF can produce a significant reduction in the error on the momentum.
Several comments can be made which may offer some explanation for this. Firstly, the OMF
procedure is statistical: so even though the error is reduced on an event by event basis, the momentum
estimate will not necessarily be closer to the true value for every event (however, on average, one
expects that the estimate will be an improvement). Secondly, the statistical errors on the individual
event parameters are only one contribution to the statistical error deduced on the W mass estimate.
There is a second significant contribution: this comes from spread of the unsmeared M; ™! distribution.
Thirdly, the requirement that the extrapolated CD track should match the muon chamber track is

quite strict, and tends to introduce some correlations between the two parts of the muon track. While
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the estimated error on the momentum may be reduced, since the implicit correlations are not allowed

for, the true uncertainty on the momentum may be a little larger than the error would suggest.

Table 10: Breakdown of W Masses Before Corrections
1984 81.7 %9.2
1985 754 £8.0
All 782 %59
1985
CD only 69.3 79
OMEF (without Iarocci’s) 742 +7.6
OMF (with Iarocci’s) 754 +8.0

To test our understanding of the event sample, we studied the W* and W~ candidates separately.
The number of events and masses for the two charges are shown in table 11. In the table, results are
given for no additional cuts, and with a cut to remove events whose momenta are within 20 from
infinity (p~! < 20). From the table, two things are apparent: firstly, the mass reconstructed for the
W+ candidates is higher than that of the W~ candidates. Secondly, we have more W+ candidates than
W-. It is important to ask whether either of these observations is indicative of systematic problems.
On further study, we find that these effects do not seem to be related to OMF, the cuts applied or the
later stages of the CD reconstruction - Monte-Carlo data shows no charge asymmetry. We have
looked at the W-sev candidates, imposing the muon chamber geometry and our CD quality cuts. The
electron events show no significant asymmetry in the p; distributions for W* and W~, although there
is a large asymmetry in the number of events of different charges. For the 98 electron events passing
our muon-type cuts, 37 are positive and 61 are negative - an asymmetry which is in the opposite sense
to the asymmetry in the muon channel. One might anticipate systematics in the CD for the quantity
charge/momentum, however, it is not clear that these could explain these observations consistently. If
there were a shift in charge/momentum so that some W™~ events were measured as being positive, then
we would expect the mass for the W™ events to be higher - this is not the case. Of course, there may

be some more complicated explanation.
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Table 11: Masses for W* and W~ Events Before Corrections

no cut 20 cut
events masses events masses
w* 27 852 +89 16 730 7.6
w- 19 65.7 =+10.1 15 686 *8.6

To conclude, although the differences between W* and W~ are curious, they are not inconsistent
with statistical fluctuations. Further, we are unable to‘identify a systematic effect which could account

for these differences.
6.5.2 Results for ISAJET

Using four similar ISAJET samples, we obtain the masses shown in table 12, with the
corresponding fit probabilities. The value of the W mass used by ISAJET is 83.4 GeV/c?. The four
individual samples have a mean of 79.6 GeV/c?, with an error estimated from the spread of
+0.34 GeV/c?. Using the combined samples, we estimate a correction of +3.6 £1.1 GeV/c?, where we

believe that the shift is due to biases contained solely in the mass fitting program.

Table 12: Masses from ISAJET Samples

sample events mass probability

1 390 79.2 %22 6%

2 411 796 122 53%

3 387 79.8 %23 11%

4 387 80.0 23 49%
Combined 1587 798 1.1 7%

The combined sample does not correspond identically to the four individual samples due to
the random manner in which muon trigger decisions are made for Monte-Carlo events.
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If we allow € to vary for the ISAJET data, we obtain 79.3 +1.2 GeV/c? with ¢ = 1.18 £0.05,
with a fit probability of 44%. A certain amount of care is needed in interpreting the effect of varying «.
The ISAJET events are smeared corresponding to e = 1. The fact that we do not recover e = 1 possibly
indicates that the distributions generated by the internal MC are too narrow and that some additional
smearing is required to make up the width of the M; distribution. So although the total errors (e = 1)
seem to describe the data, it may be the result of a balance between the smearing and the description
of the W production/decay. It should be noted, however, that the motivation for the ‘total’ errors
comes from cosmic rays, and may not be totally appropriate to describe real data. We conclude that,
although we now have a far better understanding of the nature of &, there remains some small

uncertainty, which we estimate corresponds to an error of +0.5 GeV/c? on the W mass.
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6.5.3 Results for the Corrected Data

We use the ISAJET result, with £ =1 (as is favoured by the data), as an indication that there is a
calibration shift in the method used for the mass fitting . This shift is 3.6 GeV/c?, with an error of
+1.1 due to the statistics of the Monte-Carlo, and +0.5 due to a residual uncertainty in the nature of
the smearing. This leads to a mass of 81.8 GeV/c?. The statistical errors are obtained from the
likelihood curve, and the asymmetric errors are +6.0, — 5.3 GeV/c?. The systematic errors are those
from the calibration, with a 3% error included to cover scale systematics in the CD. It is found that

the effect of systematics on the calorimetry tend to cancel out giving a negligible net effect.

6.6 Conclusions on the W Mass

Using a sample of the current UA1 W-pv candidates, we have obtained an estimate of the W

mass:

81.8 +6.0,— 5.3(stat) + 2.6(syst) GeV/c2.

This result is to be compared with our result of 82.7 + 1.0 * 2.7 GeV/c? from the electron
channel [55]. Also, it is in good agreement with the results from the UA2 Collaboration of 80.2 £ 0.6
+ 0.5(sys,) + 1.3(sys,) GeV/c? (the first systematic comes from uncertainty in the evaluation of p;”;

the second is from the uncertainty in the absolute energy scale calibration of the calorimetry) [56].
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7. ESTIMATIN& THE MASS OF THE Z FROM THE MUONIC DECAY
7.1 Data Selection and Cross-Section

The starting point for the Z-p*p~ search was the initial selection used for the W search. Events
were considered if they had a muon trigger: either a single muon trigger or a di-muon trigger. The
latter was not a subset of the former due to the larger area covered by the di-muon trigger. We
required that there should be a muon candidate with p, > 15 GeV/c, identified by the muon
chambers. Further, we required that there should be a second muon candidate with pt > 10 GeVye,
which was seen in the CD and had a deposit in the calorimeters compatible with a minimum ionising
particle. However, this second muon was not required to have a track in the muon chambers provided
that it lay outside the acceptance of the chambers. In addition, the following software cuts were applied
(in 1985):

1. Basic quality cuts were applied to the first muon candidate (precisely as for the W selection):

a. average matching x* between the CD and the muon chambers < 15 (2 degrees of
freedom);
b. CD track length in bending plane > 40 cm, with > 30 points on the track;
c. Sadoulet x> < 3 and the x? per degree of freedom for the z coordinate < 9.
2. Looser cuts were applied to the second muon candidate:
a. CD track length in bending plane > 30 cm, with > 25 points on the track;
b. Sadoulet x> < 6 and the x2 per degree of freedom for the z coordinate < 9.

3. Finally a mass cut of 40 GeV/c? was applied to the di-muon pair.

A similar procedure was followed in 1983 and 1984. In 1985, 21 events passed the above cuts. These

events were then scanned on the Megatek. It was found that:

o 2 of the events were cosmic rays,

® 10 events had a second track belonging to a clear jet,
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e 1 event had a track distorted in the CD by the proximity of another track. After hand fixup, .
the muon candidates were f_‘ou.nd to have the same sign, and a mass of 15 GeV/c?. In addition .
there was considerable hadronic activity.

e 8 events were good Z-p*p~ candidates.

An additional candidate was found in the data taken with reversed magnetic field (which was generally
not used in UA1 analysis). A second event was recovered from the W selection. One of the muons in
this event was not associated to the vertex due to a distortion of the track. This effect was removed by
the fixup procedure; however, the event was not used for the cross-section calculations. This gave a
total of ten candidates, while in 1983 and 1984, similar analysis yielded five?! and six events
respectively, giving a complete sample of 21 events. These events were then subjected to the OMF
procedure.

As for the W’s, detailed studies were made of the acceptance, and are discussed fully in [571, [58].
The acceptance for Z’s is complicated by the overlapping trigger conditions and the multitude of active
areas used by the muon fast trigger. For 1985, the total acceptance for the events firing the di-muon
trigger was 19 + 3%, and 23 + 1% for those firing the single muon trigger. The effective integrated
luminosities for 1984, 1985 running periods were 256 and 296 nb~!, yielding estimates of the

cross-section at /s = 630 GeV of 66 + 11 £17 pb.

7.2 Methods for Obtaining the Z Mass

In principle, the best way to obtain an estimate of the Z mass is a likelihood method using the
individual muon momenta and the recorded energy flow in the event. Although this method provides a
ﬁatural way of incorporating energy balance (see later), it requires a multidimensional Monte-Carlo
probability density function (pdf), and this is difficult to obtain reliably. Instead we make use of the
fact that, unlike for the W events, for the Z candidates it is possible to form the mass on an event by

event basis. The methods which are described here are discussed in more detail in [59].

21 Ope of these five events fails the track cuts which are applied in the 1985 analysis, and so is not used for the cross-section
calculations.
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In practice, it is more natural to use the quantity R, defined as the square of the reciprocal of the

event mass. This is proportional to the product of the muon reciprocal momenta, r, and r,:
R(M) = 1/M? = K(8)r,r, where K(8) = —1/,Q,Q,/(1 —cos8) (7.1)

where © is the angle between the muons. Since the values of r are measured with Gaussian errors
which are independent for r, and r,, the value R will be an unbiassed estimate of 1/m,?. (Strictly, it is
the charged reciprocal momenta which are Gaussian, hence the inclusion of the muon charges Q, and
Q..) So if we have several estimates of R (each coming from one of our measured events) {R;;

i=1,N}, with weights {w;; i=1,N}, we can combine these estimates to form a weighted mean:

a~

R = ZwR; /2w (7.2)

This will be an unbiassed estimator of 1/m,? provided that the weights do not depend on the
measurements of r,, r, and 6.2? Usually one sets weights equal to the reciprocal variances to minimise

the variance on the result. The variance of R is given by:
V(R) = K?(p,%0,%+p,%,%) (7.3)

to first order, where p, 0, are the true values of r,,r,. Unfortunately, the true quantities are not known,
and if the measured values are used instead, a bias is introduced. It is easy to show that if r fluctuates
upwards, the weight decreases, and higher mass events get a larger weight, causing a bias to higher
masses. Instead, we replace p,,0, in expression (7.3) by the mean value of r taken over all
measurements (so that p, 0, are effectively replaced by a constant).

The pdf f(R;j|m) which describes the probability of an event with R = R;, given that the mass of

the Z is m, is essentially the resolution function:

f(R;lm) ~ exp[ —!/,wj(Rj — R(m))’] (7.4

22 To be more explicit, this means that the weights {w;j} must not depend on the deviations of the event parameters from their
true values. However, the weights may depend on the true values of the parameters, which may be related to the topology
of the event and to where the tracks lie in the detector. So the weights may depend on the ‘configuration’, but not on
‘fluctuations’.
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Further, this can be convolved with the probability function B(m|u), where B is the Breit-Wigner
function, and u is the mass at the Z pole. From this we can form a likelihood, whose minimum gives
an estimate of the Z mass with its error. Due to the symmetry of the Breit-Wigner function and its
relative sharpness compared to the di-muon mass resolution, our likelihood effectively reduces to a
simple x?, whose minimum corresponds to the weighted mean of (7.2).

Explicitly, the likelihood used is

Z(w) = —Z log{ [B(m|u)(R;}m)dm }

= —Z log( | mA exp{ —*/,wj(R;— 1/m?)*]dm }
(mz _’_‘z)z + “21-2

(7.5)

where the constant A is irrelevant to the nature of the minimum of the log likelihood. The decay width

is taken as 2.9 GeV [60].
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7.3 The Energy Balance Method
In an event containing a Z, the missing energy vector can be defined by
missing energy = —(di-muon momenta + energy flow) (7.6)

where the ‘energy flow’ is the sum of the vector energies of particles (excluding the muons) detected by
the calorimeter. As usual, we restrict ourselves to the transverse quantity, as the measurement of
longitudinal energy flow is made difficult by the losses in the forward region of the detector. In an
event containing a decay Z-»pu, we anticipate that there should be no high py neutrinos, or other
sources of genuine ‘missing energy’, for example photinos. Thus, in the ‘energy balance’ method, we
impose the constraint that the missing energy vector is zero. In reality there may be some low p,
neutrinos from the decays of low energy particles (=, K,n etc.), and these are best included in the
effective resolution of the energy flow of the ‘rest of the event’. Indeed, this resolution is paramete;rised
from studies of minimum bias events,?® which may include low energy decay neutrinos. However one
does not expect minimum bias events events to contain the production of high p; neutrinos, which are
usually associated with W and heavy quark decays.

In the method, a chi-squared is formed from the measured muon momenta and the energy flow
on an event by event basis. The estimated energy flow is set equal to the negative of the estimated

di-muon momenta.

x2 = (r;—110)%/0(r,)? + (r;—10)%/0(r,)? + (‘-71y/1'1""7zy/1'z"'l-='yo)z/"'(rf"y)z +

(C12/11 + C25/1; + E0)? [0(E)? (.7

where subscript ‘0’ denotes the measured quantities and Cy:Cz are the y and z direction cosines. As
usual, the best estimates are obtained by minimising the chi-squared with respect to r, and r,, for each
event. These estimates are then used to calculate R; and w; for use in the likelihood method described

above.

23 events collected with only a pretrigger requirement
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7.3.1 Applying Energy Balance

There are several ways in which the chi-squared of equation (7.7) can be used. The classical way
to treat a chi-squared minimisation with constraints is to employ the matrix formalism as discussed by
several authors, for example [35]. Because of the non-linear functions of r, namely the reciprocals,
which appear in the constraints of energy balance, the matrix solutions for r, and r, must be expressed
as functions of the unknown estimates. Therefore, it is necessary to use iteration to estimate the
parameters r, and r,. Unfortunately, because the matrix solution overlooks some of the derivatives
which vanish when the constraints are linear, the estimates converge to values which do not minimise
the chi-squared of (7.7). This was verified by using an internal Monte-Carlo.

An alternative is explicitly to minimise the chi-squared by differentiation. This yields quartic
equations which are not readily solved. As a further alternative, we were able to obtain a simple
representation of the solution which was amenable to iterative approximations. However, using the
internal Monte-Carlo, it was found that often the solutions failed to converge.

The most robust solution of the problem is numerically to minimise the chi-squared. To find the
weights {w;}, we use a more complete first order expression for the variance of r,r,, which allows for

the correlations introduced by the energy balance method:
v(r,1;) = r1,%0,2+r,%0,%+ 2r,1,c0V(r,,T;) (7.8)

where in practice r,,r, are replaced by their mean values (evaluated from the complete data set). The
variances and covariance are extracted from the covariance matrix (‘/262x2/ariarj)“, evaluated at the
best estimates. Also, since r, and r, are correlated by the energy balance, we use the unbiassed estimate

of the product, namely r,r, —cov(r, r,).
Some Simple Remarks on Energy Balance

Before considering some technical details of the energy balance technique, it is worth looking at
some simple aspects of the method. Firstly, if the energy flow of the event is determined very precisely

and the muons are not back to back, then by resolving the energy-momentum vectors orthogonal to
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each of the muon rnomen;um vectors in turn, it is possible to determine the momentum of the other
muon very precisely. Secondly, if the muons are back to back, and the energy flow is determined very
precisely to be close to zero while the muon momenta are measured with comparable errors, then the
estimates of r, and r, will both be the average of the two measured quantities, namely (r,o+r30)/2.
This is nice because it reduces the variances on the reciprocal momenta by a factor of 2. However,
because the estimates, r, and r,, are now highly correlated, we see from the expression (7.8) that the
variance on the product, and hence on R, is unchanged. Therefore, in this situation, energy balance

has not helped. In practice, the actual situation lies somewhere between these two examples.

Refinements on Energy Balance

1. It is to be anticipated that minimising the x? of equation (7.7) will lead to expressions for r,
and r, which are non-linear functions of the measured Gaussian variables. Therefore, we must expect
that our simple estimates of r, and r, will be biassed. These biases are proportional to the product of
the second derivatives of the estimated parameters with respect to the measured quantities, and the
variances of the measured quantities. Evaluating second derivati‘ves is numerically unpleasant, and so
we have obtained an expression for the biases in terms of first derivatives, which can be evaluated with
greater ease. Although this bias could be eliminated by calibration, we apply an analytic correction.
The effect of this is to raise the final mass estimate by about 0.5 GeV/c2. The form of this correction is
discussed in appendix C.

2. Using the Monte-Carlos (the internal Monte-Carlo and ISAJET), it was found that a few high
mass events received exceptionally high weights. This situation arose when the muons were very close
to being back to back, and the energy flow, while having a true value close to zero, was measured as
having a large component perpendicular to the line of the muons (which nevertheless was compatible
with statistical fluctuations). In these situations, when the energy flow term of the chi-squared
dominates the determination of the muon momentum (i.e. small errors on energy flow), then the
application of energy balance results in equal muon reciprocal momenta, r. The energy flow

contribution to the chi-squared then becomes

xg* ~ [(E—2sina/r) + o(E)} (7.9)
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where the quantities are illustrated in figure 24.

a is small and E ~ O(o(E))

Figure 24: Energy Balance - definition of x g

Minimisation yields an estimate f = 2sina/E, with o(r) = (o(E)/E)r. Since a is very small, r is very
small and so is o(r). It is the latter which is the problem, since it leads to an event with a very high
weight.

The origin of the problem lies in the interpretation of the ‘error’, and hence the event weight. The
‘error’ usually provides an estimate of the range in which the true value of a parameter lies. In this
sense, it is most meaningfully represented by the rms of a distribution. The chi-squared is little more
than the logarithm of the pdf. However, the interpretation of the error (or variance) in terms of the
curvature of the chi-squared is only appropriate when the pdf is Gaussian, and Vhence the chi-squared is
quadratic. In the situation described here, the chi-squared (7.9) has a very sharp minimum and
consequently a very high curvature, leading to an apparently very small error on the reciprocal
momentum estimate. Therefore, the event is assigned an unrealistically high weight which does not
reflect its statistical significance; and further, this weight is a function of the fluctuations - see the
footnote to section 7.2.

In most cases, the Gaussian approximation is not too Bad. Where events gain anomalously high

weights, the energy balance solution for the momenta is rejected; although, for the real data, only one
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of the events showed serious problems. This problem can never be fully overcome, due to the inherent
non-Gaussian nature of the chi-squared, but after the removal of severe problems, the effects can be
allowed for by calibration.

3. In principle, the use of energy balance allows a reasonable attempt to be made to restore the
sign of the charge (Q) of a fast muon whose charge has been incorrectly determined. Viewed as a
function of the variable Q/p = Qr, the chi-squared has two minima either side of Qr = 0. Where one
of the charges is mismeasured, the absolute minimum will be associated with the wrong charge
determination. Thus, by choosing the second minimum, the sign can be restored and the momentum
estimated accordingly. A guess can be made as to which track is mismeasured by using the quantity
r/o(r) - its proximity to 0 indicating a poorer charge determination. In practice, after OMF, only one
data event had muons measured with like signs, and since this event received a large correction (see

point 1. above), the energy balance for the event was suspect and was not used.

7.4 A More Detailed Look at the Data

The events were scanned on the Megatek to check for particles belonging to jets which were
identified in the CD and appeared to escape through gaps in the calorimetry. Three events were found
in this category, and since it was considered that the calorimetric energy flow was unreliable for these
events, the mass estimates before energy balance were used. The same was true for one event where the
muon passed through a light guide, causing an anomalous energy flow.

One event had a mass of 53+ 16 GeV/c? and was fairly well measured. After energy balance, the
mass became 91+ 10 GeV/c?. The event was compatible with Z-r7 with 7= v, or a mismeasured
pair from Z-pp. For the mass fitting, we only want to use the well measured events which we are
fairly sure have come from the decay Z-»pup. Therefore, in order to remove this event, two mass cuts
were made in 1/M?2. These cuts were approximately symmetric about the mass peak, and studies with
ISAJET events suggested that they would remove about 1% of the weighted distribution, see figure 26.

The cuts removed events with 1/M? > (60 GeV/c?)~2 and 1/M? < —(180 GeV/c?)~2. (Out of 435
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Figure 25: Data After Energy Balance

pp events selected from ISAJET data, 3 events came from Z- 7. The di-muon masses of these were

between 50 and 60 GeV/c?.) Making this cut caused a small bias, for which a correction was made.

7.5 Calibration and Errors

It had been intended to calibrate the mass fitting procedure with ISAJET events?* however, as
was discussed in the previous chapter, there were problems with the simulation of CD tracks. It was
found for a Z mass of 94.1 GeV/c?, the reconstructed mass was 97.8 GeV/c? - where this discrepancy
arose solely from the biases in the simulation. Since the methods of section 7.2 are not expected to

suffer from any significant biases, there should be no biases arising from the mass fitting program, and

34 Again, these Monte-Carlo events were selected, in precisely the same way as the real events, from the inclusive Z production,
described in appendix F.
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Figure 26: 1/M? for ISAJET Events

thus no attempt was made to calibrate the program for use without energy balance. However, there
could be some biases on the muon momenta after energy balance. Therefore the effect of using the
energy balance was assessed by comparing the results on ISAJET data with and §vithout energy
balance. A limit on the systematics from the CD momentum measurement was estimated, as for the
W’s.

The statistical errors on the Z mass were estimated by fluctuating the reciprocal momenta for each
event, as prescribed by the covariance matrix. This was done for a number of ‘experiments’, each with
the same number of events as in our data set; and for each, an estimate was made of the Z mass. The
confidence limits corresponding to one standard deviation were found from the distribution of these
different estimates. This is a little better than relying on the curvature of the likelihood, since
expression (7.8) which was used for the variances is only a first order approximation, and is inevitably

an underestimate.
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7.6 Results

The masses of the individual events are given in table 13 (the errors are simple parabolic errors

derived from those on 1/M?3). Because of their questionable nature, the ‘radiative’ events?’

are not used.
Table 13: Masses for Z Candidates

mass before energy balance mass after energy balance
{ 74 +20 89  £25
{ 209 £336 not used

1983 { radiative event
{ 130 215 104 £90
{ 83 31 83 £28
{ 101 %49 87 18
{ 94 %35 81 %11
1984 { 84 15 89 15
{ 53 IS 91 =14
{ 106 +£22 95 %11
{ 142 +60 not used
{ 163 70 109 17
{ 277 %518 like sign
{ 85 24 not used
{ 135 £88 91 14
1985 { 85 +36 86 %35
{ 87 47 not used
{ 67 11 83 zll

{ radiative event
{ 106 £26 103 %21
{ 80 124 76 +20

Using these events, we obtain the uncorrected masses shown in table 14. The table shows, that in
spite of increased data in 1985, the quality of the data was disappointing - mainly due to the muons
populating all the ‘bad’ regions of the detector: only one of the events had two good muon chamber

tracks. Before the final corrections, the masses obtained are 94.7 +8.4,— 6.6 GeV/c?, before energy

23 There are two events where there is an energetic photon candidate and the muon-muon-photon mass is close to the Z mass.
It is not clear whether the photons in these events are radiated from the muons, or whether they are indicative of some
new process.
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balance; and 93.1 + 5.2,—4.8 GeV/c?, after energy balance.

Table 14: Masses Before Correction for Individual Years

year mass before energy balance mass after energy balance
1983 89.7 +31.6, —15.8 97.2 +329, —164
1984 99.2 +14.1, —10.2 90.6 + 7.2, — 6.2
1985 929 +125, - 8.7 9.1 + 8.7, — 6.8
All 947 +84, — 6.6 93.1 + 52, — 438

Finally, for interest the results of OMF on the 1985 data are shown in table 15. It can be seen
that quite an improvement is made by using Iarocci information. This arises because in the 1985 data
there are several muons which do not have good muon chamber tracks but do have larocci hits.
Further, due to the looser CD track requirements for Z candidates, the CD momentum determination
is less dominating in the OMF procedure. Also, the errors on the momentum dominate the

uncertainty arising from the intrinsic width of the Z; so the reduction of the momentum errors has a

more direct effect.
Table 15: Masses Before Corrections for 1985
before energy balance after energy balance
CD only 108.3 +£22.0 1009 £11.0
OMF (without Iarocci’s) 1039 +15.8 101.3 +88
OMEF (with Iarocci’s) 929 +10.1 9.1 %75

Correction factors of —0.6+0.4 GeV/c? (no energy balance) and —0.9+0.2 GeV/c? (energy
balance) were applied, to correct for the effects of the 1/M? cuts. Using the ISAJET events, we
estimated that a calibration shift of —1.5+0.5 GeV/c? was required to correct for small biases in the
energy balance method. Looking at the effects of various systematics in the calorimetry led to an
estimate of an error of a further + 1.4 GeV on the energy balance mass estimate. Finally, there is a 3%

limit on systematics on the CD momentum measurement.
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These lead to results: 94.1 +8.4,—6.6(stat) +2.8(syst) GeV/c? and 90.7 +5.2,—4.8(stat) °
+3.2(syst) GeV/c? for the two methods.

The statistical errors above are calculated as described in the previous section. If we use the
likelihood to estimate simple parabolic statistical errors,?® we obtain +7.2 and +4.9 GeV/c?
respectively. A third way of obtaining the statistical errors is to use the spread of the values of 1/M?
(which is non-trivial in the presence of weighted events, if one requires an unbiassed estimate of the
variance). The distribution of events before and after energy balance is shown in figures 23 and 25
respectively, and from the weighted distributions, errors of +7.6 and +3.0 GeV/c? are obtained. The
errors derived before the application of energy balance are in good agreement, suggesting that the total
CD errors do indeed provide a good description of the statistical errors. The errors for the energy
balance result are slightly curious since the spread of the measurements seems to have been reduced
more than would be anticipated from the nominal errors on the event parameters. Looking at the
ISAJET data, we obtained a statistical error of +1.43 GeV/c? before energy balance,?” to be compared
with an error of +1.03 after. The reduction in error is compatible with that obtained on the real data
using the fluctuation estimate. This confirms that the energy balance method has reduced the spread of
masses for the data more than one would expect, and that the error estimate derived with our first

method is reasonable.

28 Brrors are approximately symmetric in 1/M? — this means they will not be symmetric in M — however, for small errors, a
simple estimate of the errors is given by o(M) = 0.5M3(1/M?).

27 The size of the error estimated with the Monte-Carlo events will depend on the number of events used. 341 events went into
the fit, compared with 18 from the actual data. Therefore, the error should be reduced by a factor ./(341/18) = 4.4, which
is in good agreement with observations.
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7.7 Conclusions on the Z Mass
Using the current UA1 Z-pp candidates, we have obtained an estimate of the Z mass:
without energy balance, 94.1 +8.4,— 6.6(stat) + 2.8(syst) GeV/c?,

and with energy balance, 90.7 +5.2,—4.8(stat) + 3.2(syst) GeV/c?.
This result is to be compared with our result of 93.1 + 1.0 % 3.1 GeV/c? from the electron
channel [55]. Also, it is in good agreement with the result from the UA2 Collaboration of 91.5 + 1.2

+ 1.7 GeV/c? [56]. For subsequent calculations, we choose to use the energy balance result.

7.8 The Standard Model Parameters from the Muon Channel

An outline of the Standard Model was given in chapter 5. Quantitatively it predicts the ratio of

the W and Z masses and also the strength of the weak (charged and neutral) coupling constants in
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terms of a single parameter: sin®d,, [61], [62]. By manipulating the form of these results, it is possible
to provide tests of the consistency of the model. Such tests are important since they can ultimately
yield information on the unknown parameters of the Standard Model: the top quark mass, the Higgs
mass and the number of additional fermion generations [61], [63].

In order to compare experimental results from different energy ranges (for example: low energy
neutrino scattering with results from the Collider), it is necessary to allow for the radiative corrections.

Therefore, sin?8y, is defined by:
sin?0y, = 1—(my,/m,)? (7.10)

since this definition is least susceptible to theoretical uncertainties?® [64]. All other estimates of sin®6y,
are radiatively corrected to be compatible with this definition.
Following the ideas of reference [63], we use our measurements [65] of the W and Z masses to

estimate i) the value of sin®6y,, ii) the radiative correction Ar defined by

my? = 7a {/2G,sin*0,(1—An)} ! (7.11)

where sin?6,, can be provided by equation (7.10) or low energy results,?® and G, is the muon decay
constant. The values of the constants can be found in reference [63]. Other parameters can be
obtained; however, they are not all independent.

Using expression (7.10), some of the systematics on the W/Z masses cancel in the ratio. In table
16, our value of sin?6y, is compared with the current estimate from the UA1 electron analysis [55], the
UA2 result [S6] and a compilation from vN experiments [66]. The latter provides a measurement of
sin?, independent of the W and Z masses, by measuring the ratios of charged to neutral current
couplings. To estimate Ar, G“ is used to make connection with the weak charged current couplings. At
the tree level, Ar is zero; however, there are important radiative corrections, which make it non-zero.
These come mainly from the photon vacuum polarisation, which modifies « at the W/Z mass scale.

These corrections are predicted, within the framework of the Standard Model, and depend on the

28 The only renormalisation is that of the fine structure constant, a.

2% In what follows, we will use the low energy estimates, which provide greater precision.
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unknown parameters listed at the start of this section. The theoretical result [63] given in table 16 is
evaluated for a top quark mass of 60 GeV/c? and a Higgs mass equal to m,. The theoretical error
quoted in the table is due to the hadronic contributions.

The precision which is obtained from the muon channel is insufficient to be able to derive helpful

conclusions.

Table 16: Standard Model Parameters

sin?6,, Ar
UAI (muon)  0.187 +0.148 +0.033 0.10 +0.12 +0.08
UAL (electron) 0.211 +0.025 0.125 +£0.021 #0.057
UAZ2 (electron) 0.232 +0.025 #0.010 0.068 +£0.022 £0.032
vN 0.232 +0.004 +0.003 -
Theory - 0.071  +0.002 (theory)
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8. OVERVIEW OF SUPERSYMMETRY

In this chapter some of the problems of the Standard Model are discussed. These provide the
motivation for its extension to include Supersymmetry (SUSY) [67]. We discuss some of the
theoretical and phenomenological ideas behind SUSY and present a selection of the current

experimental results.

8.1 The Need for SUSY

Throughout the history of particle physics, scientists have attempted to obtain the simplest and
neatest description of the constituents of our universe. There is a diversity of ‘fundamental’ particles
and forces and the goal is to unite these into a simpler scheme.

A major step forward in our understanding has arisen with the emergence of the Standard Model,
incorporating the electroweak theory of GSW, discussed in chapter 5. The obvious step after this is to
unite the electroweak force, associated with the group SU(2)p® U(1), with the QCD colour force,
associated with the group SU(3).. This is the task of Grand Unified Theories (GUT’s). It tumns out
that it is possible to embed the known particles in certain groups, for example SU(5), SO(10), SO(32);
and at very high energies the interactions associated with SU(3)c, SU(2), and U(l) asymptotically
attain the same coupling strengths. The increased symmetry of these groups introduces additional
gauge bosons, labelled X and Y, with masses my = 10'% GeV/c2. The manifestation of the separate
gauge forces at low energies less than about 1 TeV implies that the symmetry of the GUT group is
broken, and the scale at which this happens is my. The mechanism proposed for this is spontaneous
symmetry breaking (ssb) generated by a new scalar field - a heavy Higgs mechanism. The Higgses have
vacuum expectation values (vev’s) which are of the order of the mass scales at which ssb occurs (see
section 5.3) and their masses are proportional to their vev’s. Therefore, in the theory, there are light
Higgses which generate the masses of the W and Z bosons, and have vev's of the order of

my, ~ 10> GeV/c?, while the heavy GUT Higgses have vev’s of the order of my = 10'* GeV/c?.
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On the face of it, all is fine and it would seem that we are well on the way to a unified theory.
However, since the two sets of Higgses inevitably interact, the light Higgs will pick up a contribution
to its mass, proportional to the vev of the heavy Higgs, which is of the order of my [68]. This then
destroys the ssb at the W mass. By special arrangement of the couplings, known as ‘fine tuning’, it is
possible to restore the light Higgs mass to around 10? GeV/c?. However, this requires adjustments to
my? to a precision of (my,/mx)? =~ 1072° ! This is bad enough, but because the Higgses are
elementary scalars, they pick up quadratically divergent contributions to the mass, which must be
controlled at each level of perturbation. While there is no reason why this is not possible, it seems
unnatural and inelegant. Maybe, it is indicative that the use of perturbation theory is not the ‘natural’
way to perforni calculations which require renormalisation, and that perhaps we have ‘missed the
point’. Further, Hawking et al [70] propose that a scalar propagating through the space-time foam
picks up radiative corrections due to quantum gravity which produce a shift in the Higgs mass of the
order of the Planck mass, mp =~ 10'° GeV/c?.

In addition to the interactions with the heavy Higgs, there are simple, quadratically divergent
contributions to the propagator of the light Higgs. These modify the effective mass of the elementary

scalar? particle [69], producing a shift:
smp? ~ g* pfA kdk (8.1)

where the limits of the integration are the momentum of the particle, and A - the scale at which ‘new
physics’ manifests itself. In the absence of any new interactions, A is of the order of m,.

There are two solutions to the above problems:

1. Dynamic symmetry breaking or Technicolour - kill the Higgs !

2. Supersymmetry (SUSY) - kill the quadratic divergences.

30 fermions and vector particles do not suffer from these problems [70]
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8.1.1 Technicolour

Technicolour [71] avoids the quadratic divergences associated with the Higgses By dissolving them .
on a scale A around 1 TeV. The Higgs is replaced by a technipion, containing technifermions. The
technipions have interactions with the gauge bosons analogous to the coupling of a normal pion to a
W or Z. Thus the gauge bosons effectively gain mass due to the modification of the propagator - the
mass being proportional to the technipion form factor. With this mechanism, the troubles associated

with the vev’s in ssb are totally avoided. However, there are several problems with Technicolour:

a. Unlike with ssb, it is necessary to invoke additional features (Extended Technicolour) to
generate fermion masses.

b. It is anticipated that there should be light technipions around 5 to 15 GeV/c? - these have not
been seen at PEP or PETRA.

c. Technicolour tends to lead to flavour changing neutral currents far in excess of present limits.
So Technicolour has been abandoned by most theorists in favour of SUSY.

8.1.2 Supersymmetry

It can be shown [72] that the quadratically divergent corrections to the propagator of a scalar are
opposite in sign for fermion and boson loops. By invoking a scalar partner for every fermion and a
fermion for every boson, it becomes possible to cancel the radiative divergences which plague the
Higgs. If the fermions or bosons have masses mg or my, then the shift of the square of the Higgs mass
is proportional to |m¢ —mp?|. As will be seen below, SUSY gives rise to a spectrum of pairs of
bosons and fermions, and these are able to restore the respectability of the Higgs.

It was originally shown by Coleman and Mandula [73] that the only symmetries which preserved
the unitarity of the S matrix were those associated with Poincaré invariance (space-time invariance)
and internal symmetries (global symmetries, e.g. isospin; and local symmetries, e.g. gauge symmetries)
and their direct products. However, they considered only the existence of commutators of the
generators, and the transformation of fermions to fermions and bosons to bosons. By contrast, SUSY

introduces explicit transformations between the different types of particles:
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Qff> = [b> and Qpb> = |f> (8.2)

Since the algebra [74] of the generator Q includes anticommutators, it avoids the no-go theorem of
Coleman and Mandula. In fact, the symmetries of the generator Q provide the only remaining
symmetry of the S matrix [75]. One can consider several such generators {Qi; i=1,N} where Nis < 8
and where each Qi relates different spins. However, N = 1 is the most popular model due to its
simplicity and the fact that the others lead to left-right symmetric models which are in conflict with the
existence of SU(2)..

The (anti-)commutation relations satisfied by Q are:

[Q.M™] = iok*Q | (8.3)
[QpH =0 (8.4)
{Qa:Qp} = —2rPlap (8.5)

where MM are the generators of the proper Lorentz transformations (i.e. space-time rotations);
ot = 1/ [y*y"]; p# is the generator of translations (i.e. it is the four-momentum); and « and B are
spinor indices.

From (8.3), we see that Q transforms as a spinor. This is not unreasonable, since in (8.2), to
transform a fermion into a boson requires an operator which transforms with half integer spin.

From (8.5), we see that the operation of Q on itself leads to the momentum operator - the
generator of space-time translations, and in this sense, Q is the ‘square root’ of translation.

The N=1 operator, Q, transforms within the spin supermultiplets:
gauge (1,'/;) and chiral (!/,,0).

The ‘chiral’ fields are the matter fields, which are labelled as left’ or ‘right’ handed; the ‘gauge’ fields
are those which appear when gauge invariance is imposed; and in addition there are the Higgs fields. It
is important to ask if the operation of Q on known particles yields particles which are also identified.

Since Q carries no internal quantum numbers (for example: charge, baryon number, lepton number),
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all the internal quantum numbers of a particle will be unchanged by the operation of Q. Within the
known spectrum of particles, it is impossible to identify partners which have all the same quantum
numbers, apart from spin. We conclude that if Supersymmetry is true, then for every known particle,
there exists a supersymmetric partner (or sparticle) which has not been observed yet. This is somewhat
uneconomical ! A list of some of the particles and their partners is shown in table 17. The naming
convention is such that the partners of the fermions gain the prefix ‘s’; while the partners of the

bosons, the suffix ‘ino’. The partners are represented by a tilde over the particle symbol.

Table 17: Particles and S-Particles
particle spin sparticle spin
Higgs 0 Higgsino Y,
lepton 1, slepton 0
neutrino Y, sneutrino 0
quark ., squark 0
photon 1 photino Y,
gluon 1 gluino Y,
w 1 wino 1,

VA 1 zino Y,

It is important to note that for every known particle, there exists a sparticle. For example, when
discussing the electron, one should distinguish between two particles: the left handed electron, eg,
which is a member of the weak isospin doublet (v,e~)1,, and the right handed electron, which is the
singlet eg. The SUSY partners are e[, and eR. Since the sleptons are spinless, and therefore do not
have spinor wave functions, they cannot have handedness in the sense of being eigenstates of 1+ys. 'L’
and ‘R’ are therefore labels which distinguish particles.

From (8.4), we see that if Q and p# commute, then so do Q and p-p. Therefore, since p? is the

mass operator, the particles related by Q must have the same mass.
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8.2 SUSY Phenomenology

8.2.1 Masses

The non-observation of the supersymmetric partners of the electron, muon, gluon and quarks is
evidence that if these particles are to exist, then, in contradiction to the conclusions of the last section,
they cannot have the same masses as the known particles. Therefore, the world cannot be exactly
invariant under transformations generated by Q. Thus, SUSY must be broken and the masses of the
sparticles may be larger than thoseof their partners. Nevertheless, the symmetry breaking must not
invalidate the original aim of taming the quadratic divergences of the Higgs. Therefore, we require that
Im? —m?| is less than or of the same order as my,2 (SUSY masses are denoted by m). Thus the SUSY
masses ought to be in the region of 0 to 1 TeV/c2.

BMg SUSY turns out to be non-trivial due to its special properties. For example, invoking
ssb introduces scalar fields with negative mass-squared terms; in turn, this carries over to the fermion
partners, giving them imaginary masses. Symmetry breaking can be obtained by explicitly adding mass
terms to the Lagrangian or alternatively it can be extracted from local supersymmetry or Supergravity
(SUGRA) in the presence of ssb. The coupling of the particles and sparticles to the Goldstino
generates a mass difference (see chapter 9 of reference [72]). Unfortunately, the predictions which can
be derived are very model dependent.

In the analysis which follows in chapter 9, we consider a model in which the photino is the
lightest supersymmetric particle (see below), the wino and zino have masses greater my, and can be
ignored as can the squarks; and the sleptons are unstable, decaying very rapidly.?! It is a immaterial
whether the sneutrinos decay - whatever, they will give missing energy. If they do decay, it is through

the triangle graphs of figure 28. (Expressions for the decay widths of the sneutrino and selectron are

given in chapter 3 of reference [72].)

3! For m) 2 m,, the width will be amy/2 which is around T'y,, giving a cr of about 1fm.
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Figure 28: Examples of Graphs for Sneutrino Decay

A typical SUGRA model, which has some correspondence with the above, is discusﬁed by

Kounnas et al [76]). The masses derived in this model are shown in table 18.

Table 18: Suggested SUSY Masses from one Supergravity Model

m, ~5GeV/c m, ~ 80 GeV/c?
my, ~25 GeV/c? mg ~ 60 GeV/c?

Because of the different couplings of the left and right handed selectrons, the presence of
renormalisation effects causes the mass degeneracy of the left and right handed states to be lifted.
Looking at W-=¢j v], provides information on €y, while, in principle, the decay Z~ €11, and €ReR
provides information on €R.

Further, we note that in the light of the result Elg > 53 GeV/c? (see experimental results below),

it becomes less plausible that xi., = 0 GeV/c?; since in a minimal N=1 SUGRA model, ﬁa_, = xig/s.
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8.2.2 R-Parity and the LSP

In SUSY theories, there is an additional global symmetry, leading to a conserved ‘charge’ called
R-parity. Its definition is not unique; however all the known’ particles (including the Higgs) have one
value, while their SUSY partners have another value. When a massive sparticle decays it will eventually
give rise to the lightest supersymmetric particle (LSP), which is unable to decay due to the
conservation of R-parity and consequently is stable. In many models, the LSP is taken to be the
photino.

It is important to consider the interaction of the LSP with matter, in particular, its signature in

the calorimeter of a collider detector.??
The Consequence of the Photino as the LSP

Firstly, we consider the case when the photino is the LSP, while the selectron is significantly more
massive. An energetic photon loses energy by pair production; however, the corresponding process for
a photino (an example of such a graph is shown in figure 29 [a]) is highly suppressed due to the
difficulty of obtaining the required centre of mass energy. Fayet [77] has shown that the most
important process is Compton scattering (for an example, see figure 29 [b]). However, this too is
highly suppressed due to the propagator involving the massive selectron. The nature of the suppression
is identical to that found for neutrino interactions, which are suppressed by the exchange of a very

massive W boson. The cross-section, relative to the antineutrino cross-section, is given by
o(ye~ve) = (75Gev/me)* o(ve) (8.6)

In addition there are interactions with the nuclei to consider. Nevertheless, the cross-sections are very
low in the relevant energy range, and the flux is so low that one would not expect a photino to be seen

at a collider (with the above conditions), and it behaves as an additional source of missing energy.

32 The significance of a collider detector is the implied energy available to an LSP, and the implication of low fluxes of such
particles.
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Figure 29: Photino Interactions with Atomic Electrons

The Consequence of the Selectron as the LSP

In the case of a stable selectron [79], since the particle is charged, it can radiate photons. Very
light selectrons readily radiate bremsstrahlung, and thus behave like electrons. Heavier selectrons will

be only minimum ionising, and so behave like muons.

8.3 Experimental Results

At present, there is no evidence for SUSY from any experimental observations. The most
promising suggestions of the manifestation of SUSY came in the observations of ‘monojets’ by the

UALI collaboration. These results are considered below.
8.3.1 Missing Energy Analysis of UA1

In 1984, UAI reported on the observation of events with large single hadronic jets (monojets)
with little visibly recoiling against them (leading to ‘missing energy”) [81]. These events gave rise to

speculation that their origin was the pair production of squarks or gluinos with a mass around
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40 GeV/c? [75]. It was suggested that the squarks decayed to quarks (giving rise to jets) and photinos

(giving rise to missing energy). One of the squarks gave most of its energy to a jet, while the other gave

most of its energy to the photino, and the second smaller jet failed to cross the threshold of 12 GeV.
However careful analysis by UA1 of the final data set®* [82], [83], has shown that the monojets

observed are well described by

¢ W- -+ hadrons (70%),
e Z-»wv with a recoil jet (14%),
o jet fluctuations (7%),

e W-ev, W—=puv and W-mv—leptons (7%),

The agreement between the Monte-Carlo predictions and the data is used to provide limits on the
mass of a fourth generation heavy lepton: m; > 41 GeV/c? at 90% confidence [84]. Subsequently, the
analysis has been extended [85] to maximise the sensitivity to SUSY in the hadronic sector. Events

were selected with the following cuts:

1. It was required that the missing transverse energy, By, > 15 GeV and N, > 4, where N, =
By/o(By).

2. There should be > 2 jets with E; > 12 GeV and with CD validation of the largest jet.

3. Events with electrons or muons were removed.

4. The tau likelihood [82], L,, should be negative in order to remove most of the W-=v decays.

S. The angle in the transverse plane, A¢, between the two highest E; jets should be < 140° (see
figure 30),

6. Finally, additional technical cuts were applied to remove cosmic rays, beam halo and double

interactions.
Four events passed the cuts, where the expected backgrounds are:

e heavy flavour decays: 2.0 events

33 with an increase of a factor of six on the integrated luminosity
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Figure 30: A¢ between Two Highest E; Jets

o W-1v: 1.9 events
o Z-wvv: 1.2 events

o jet fluctuations: 0.2 events

with a total of 5.2 + 1.9 events. For example, with ﬁzq = xig = 70 GeV/c?, one would expect an

additional 10.2 events. This leads to the limit on the squark and gluino masses shown in figure 31.
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Figure 31: 90% Confidence Limit on Squark and Gluino Masses

8.3.2 Search for W—ev by UAI

A quick study of the process W—ev (with m, = 0) was made by UALI using the data from 1982,
1983 and 1984 [86]. No evidence was found for W--ev and the limits obtained are shown in figure 32.
This search has been considerably extended with

e more data - including 1985 data,
e improved methods and, in particular, better Monte-Carlo,
e more channels.

The new analysis is presented in chapter 9.
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8.3.3 Search for SUSY by UA2

UA2 have used their di-electron data to search for Z—éc—eeyy (where me > m,) [87]. This has
been done using a two dimensional distribution of events with py7 against M (the mass of the
electron pair) (see figure 33). In the dashed region, they observe one event, while the number expected
from Drell-Yan is six [78]. The absence of a SUSY signal leads to the confidence limits shown in

figure 34. The downwards fluctuation of the background has not been used to provide stronger limits.
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Figure 34: Confidence Limits from UA2 for the Selectron Mass

8.3.4 Results from e* e~ Experiments

There are many results from e*e~, all of which show no indication of SUSY. Limits have been
derived for all manner of processes and under different hypotheses for the LSP. It would be beyond

the scope of this discussion to review all the results; instead a selection of some of the results
concerning sleptons are presented.
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Smuons

Smuons can be produced only in pairs through virtual photons. The corresponding limits are
therefore bounded by the beam energy, and in practice lie just below it. If 51“ > ﬁ':.y, then each u
decays to a v and a muon, leading to an acoplanar di-muon pair. For m, < m, with a stable B, at
lower r.ﬁ“, the agreement between the theoretical differential cross-section for muon pair production
and the data excludes g production. At higher masses, the absence of slow minimum ionising particles

excludes the production. Limits from the Jade Collaboration [79] are shown in figure 35.
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Figure 35: Confidence Limits from JADE for the Smuon Mass




108

Selectrons

The results for selectrons can be treated in a similar manner to those for smuons. However, in

addition, there are virtual processes which allow the limits to be extended considerably beyond the

beam energy.
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Figure 36: Diagrams Involving Virtual Selectrons

In the processes where there is one real selectron in the final state (figure 36 [a]), the electron
which radiates the photon is hardly perturbed and is lost down the beam pipe, while the selectron
decays to an observed electron and missing energy. Where there are no final state selectrons (figure 36
[b]), the signature is a single photon with missing energy. This process extends the sensitivity to fﬂe
beyond those from the processes of figure [a]. The best limits come from the single photon searches
made by the CELLO [88], MAC [89], and ASP [90] Collaborations which report zero, one and one
events respectively. The expected backgrounds from e*e~—+yw are of the order of 0.7, 1.1 and 2.2
events respectively. The limits are presented in figure 37. The ‘best’ limit comes from ASP, who find

me > 66 GeV/c? at 90% (m, = 0 with degenerate er, and eR).
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8.4 Cross-section for W—ev
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Figure 38: Decay of W to Selectron and Sneutrino
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In preparation for the analysis of the next chapter, we examine the decay W-»ev. The form of the

differential cross-section relative to W ev is readily understood.

a. The decay matrix is proportional to the product of the W polarisation vector, W#, and the
vector current of the sleptons, which is proportional to the slepton four-momentum, p¥. As
the spin of the W is aligned along the beam direction, its polarisation is transverse, so that
summing over the polarisation states picks up the transverse component of p#. Therefore the

matrix element is
M~ W,pk ~py = psinf” (8.7

b. Spin factors give a term (2Jg+ 1), which is 1 for the decay to scalars, and 2 for the fermion
decay. '

c. Phase space gives a factor k = p(m)/p(m=0).
Putting all these things together, we deduce that the angular distribution is
o(Q) ~ sin?0" (8.9)
and the rate is given by
o(W-=e)/o(W=er) = 1}/, (k)% = 1/, x® (8.10)

where x? = [1—(ge—py)?2] x [1—(ne+p,)?], with p = m/my, The full calculation of the matrix
element is performed in appendix D.

The angular distribution should be compared with the V—A distribution arising in standard
leptonic decays of the W. Further, the fact that, for the proton, the u quark structure function is harder
than that of the d, means that the W tends to acquire a longitudinal boost in the reverse direction to
the V—A electron decay asymmetry, so that the angular distribution of selectrons in the lab frame
shows the reverse asymmetry compared with standard elect.fon decays. The subsequent decay of the
selectron and boost from the W tend to force the angular distribution of the electrons to even higher

|cosd|.
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The above results also hold for the decay W-gv. In addition, they hold for the sleptonic decays
of the Z, but the different ‘chirality’ states of the sleptons (‘;L or ‘;R' and JIL or ER) must be treated
separately if they are not degenerate. The left and right handed couplings of the sleptons are exactly the

same as those of the corresponding leptons.
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9. DESPERATELY SEEKING SUSY

In the previous chapter, we reviewed some of the theoretical concepts of SUSY. In this chapter, -
the search for sleptonic®* decays of the W and Z bosons is discussed. After a short discussion of where
to look for SUSY decays, and the potential backgrounds, a simple Monte-Carlo program is discussed.
Initially this Monte-Carlo is used to understand how to test the data for events resulting from leptonic
decays of supersymmetric particles. Next, the data selection is discussed, and the distributions are
tested to see if they are compatible with known processes, as predicted by the ISAJET Monte-Carlo.
No clear evidence for SUSY is found, and the agreement between the data and the predictions is used
to set limits on the masses of the supersymmetric particles. The derivation of these limits is discussed
in the second half of this chapter. The shapes of the distributions expected for various slepton and
sneutrino masses are derived with the simple Monte-Carlo, while the normalisation is obtained from
calculations with a supersymmetric version of ISAJET.

In the following analysis, we have not assumed the degeneracy of the left-handed slepton and
sneutrino, as suggested in some models.?® The shape of the lepton spectrum from the decay of the
slepton is in principle sensitive to the difference between a heavy ["with a light v, and a light ['with a
heavy v. However, in the decay Z-IT; there is little sensitivity to the distinction between Ij, and IR -
both have a sin28” distribution, and the only distinction comes from the different rates for the /leﬂ and
right handed decays, which occur in the ratio 0.6 to 0.4 [75]. Therefore, as in reference [75], the left

and right handed sleptons are treated as degenerate, even though this is not generally expected.

9.1 Where to look for SUSY, and Potential Backgrounds
To investigate the processes

W-1vand Z-IT 9.1)

38 we will use ‘(s)lepton’ to refer collectively to the (scalar) electron and (scalar) muon, which will be denoted by ‘I’ for the
leptons, and [ for the sleptons.

33 In the absence of ‘D-terms’ [80], I} and »} are degenerate in mass.
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with the subsequent decay I=1 y, we are interested in events with properties similar to the observed

decays:
W1y and Z - 11 (9.2)

where frequently the virtual photon processes will be implicitly included in the processes labelled as ‘Z’
decays. The leptons from the SUSY decays should have a relatively large py, although this will be less
than that of leptons from the direct decays. In both cases, the leptons should be isolated. In the SUSY
decays of the W, there will be substantial missing transverse energy (E;) and there may be some in the
Z decays. The obvious place to search for these new processes is in data similar to that used for our
search for standard W and Z events. To maximise our sensitivity, it is desirable to relax some of the
cuts used in selecting standard W and Z candidates. Howgver, this must not be done at the cost of
introducing substantial proportions of other backgrounds. The major contributions to such data sets

are shown in table 19.

Table 19: Backgrounds to SUSY processes
.. SUSY processes
W-1» Z-+11
backgrounds
electron W=ev Z—+cee
y=-ee
Wy YA K
jet fluc.
muon W=y Z->pp
Y- BB
W-r1» Z-+r1

The contribution labelled as ‘jet fluc.” is the background which typically arises from two-jet events,
resulting from QCD processes. Occasionally, one of the jets fluctuates so that it contains at least one

high energy neutral particle (7°’s) and a fast charged particle (v* or #~), and can fake an electron in
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the CD and calorimeter. In addition, the response of the calorimetry may be such that the jet energies
are not well measured, and a significant amount of missing energy is recorded.

Even in the presence of SUSY it is anticipated that most of our data will be described by standard
W/Z decays. There are, in addition, a number of negligible backgrounds, which are discussed where
appropriate. The effect of ignoring any of the remaining backgrounds will be to gain apparent
sensitivity to new processes or will result in conservative limits, since the other backgrounds lie in a
similar kinematic region (i.e. at lower py) to that populated by SUSY decays. The decay background to
the muonic channels is less than about one event, and is ignored. Due to the isolation requirements,
the contributions from heavy quark decays are negligiblé. We estimate that the background from bb
and cc to the W-=¢v events is about 0.5 events (the selection of events is discussed in section 9.4);
while the background to the Z-ee events is about 0;2 events. The implications of possible top quark

decays are discussed in section 8.

9.2 SUSYMC - a Simj:le Monte-Carlo

From the start, it was very clear that there would be great demand on Monte-Carlo simulation.
Testing distributions for SUSY is especially demanding because the uncertainty in the mass parameters
means that tests should be made at a variety of different SUSY masses. It was envisaged that a fast
Monte-Carlo program capable of producing high statistics would be tremendously helpful for this

study. Such a program would be invaluable for:

Understanding the physics of SUSY.

Examining the effect of the cuts applied in the data selection.

Choosing the best variables to use for the search.

Obtaining the differential cross-section for SUSY decays.

Estimating the sensitivity.
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For these reasons, and in view of the simplicity of the mechanism for W/Z production and decay, a
simple program called SUSYMC was written. (It tumed out that this program was very useful for
understanding the structure function of the u and d quarks sampled by the W, and also the kinematic
properties of a low mass W-like boson.)

The starting point of the program was the simple generator used in the W mass fitting. The basic
aims were to be able to generate event parameters or differential cross-section distributions for W and
Z/y decays to leptons, sleptons and tau leptons, with their subsequent decay to electrons or muons.

The program consists of several distinct parts which are described below.
9.2.1 Generating W|Z Bosons

W Bosons

W'§ are generated with a Breit-Wigner distribution with a central mass of 83.4 GeV/c? (as used by
ISAJET) and width 2.8 GeV (the method for this is described in appendix E). Since Fhe W is produced
with an essentially unique mass (ignoring its width), we can construct a simple relationship involving
the values of the momenta, p,; and py, of the quarks which form the W. In the simple parton model,
the quarks travel along the beam directions, so that the requirement that they should form an

on-mass-shell W is

my,? = 4pypq : (9.3)

The longitudinal motion of the W is p,, = #(p,; —pq), where the sign depends on the charge of the
W. Using equation (9.3) to eliminate either p,, or py, it is possible to express the other momentum as
a function of pyy, and therefore the structure function effects may be described solely in terms of py,.
Using the structure functions of Eichten et al (with A = 0.2 GeV) in the context of the ISAJET
Monte-Carlo, we find that the longitudinal motion is well described by a Gaussian of width 65 GeV/c
and with an offset in Qpy, of 16 GeV/c - where Q is the charge of the W. The transverse motion,

which to first order is independent of py,, is parameterised from the calculations of Altarelli at al [91].
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Z Bosons

The generation of Z’s is considerably more complicated if we consider the full Z-y electroweak
interference. This means that there is no unique mass for the intermediate state, and the simplicity of
equation (9.3) is lost. The approach taken is to ‘collide’ incoming quarks and weight events by the

cross-section.

Very simple structure functions have been used [48]. For the valence quarks, a single function is

used for u and d quarks:
xv(x) ~ Jx(1-x)’
and for the sea quarks:
xs(x) ~ (1=x)?
with the following sum rules:

fv(x)dx = 3
and

fxv(x)dx = 40%, [xs(x)dx = 10%

with the remaining 50% of proton momentum being carried by the gluons. The effective structure
function arising from the possible quark combinations sampled by the Z is approximately xf(x) =
x(v(x) + 0.3s(x)). It should be emphasised that fpr the production of Z's, the form of the sea quark
structure function is not very important since their contribution to the cross-section is only a few
percent, and for the production of I'l; the main contribution comes from valence quarks interacting at
t;he Z resonance. The quark momenta are generated according to a (1 —x)? distribution and are then
weighted to the distribution f(x).

At this stage, the quark and lepton chiralities are chosen at random. The p; of the Z is generated

in a manner similar to that of the W; however, the p, is scaled in proportion to the mass of the Z.
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Subsequently, the events are weighted to the Z cross-section [44] at the parton centre of mass

energy, /s:

o(s) ~ s"qu+cqclr|2 (9.9

where

r = ./2Gm,?*/(s—m,?+im,[,) x s/e? (9.5)

and q and ¢ are the quark and lepton couplings, respectively, and Qq is the quark charge.
Since the most important contribution comes from the Z resonance, events where the mass lies

within 3T, of the pole are preferentially used to increase the useful statistics, and the event weights are

adjusted accordingly.

The production cross-section is essentially independent of the decay modes. The event yields are,
however, dependent on the branching ratios, which are taken as 1:1:!/,x3 (see section 8.4 for definition
of ) for W-s1:W-s»:W-1v and for Z-+1l:Z-+ r7:Z-11; with branching ratios of 17}/,% for the 7 to

decay to either an electron or a muon.
9.2.2 Decays of W|Z Bosons
Direct Decays

W'’s are forced to decay with the V— A asymmetry in the centre of mass frame, that is with a
distribution (1+ Qcose')z. The leptons are then boosted into the lab frame. A similar method is used
for the Z’s. However, the angular distribution of the decay leptons is a mixture of (1+ QcosO')zand

2
(1-Qcosé”) in nearly equal proportions, leading to a distribution which is almost symmetric.
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Tau decays

The decay of a W or Z to tau leptons proceeds precisely as for the decay to electrons or muons )
(with a slight reduction in the centre of mass momentum). The subsequent decay of the tau is very
complicated because of the polarisation effects. A simplified model is used where m., is neglected with
respect to the W or Z masses, so that the tau is not depolarised. The subsequent decay of the tau is

-weighted according to the distribution [92]:
2e2(3—2¢) x {1—H(1—2¢)/(3-2¢) cos8”) (9.6)

where the decay leptons are treated as being massless, ¢ is the energy of the daughter lepton as a
fraction of the maximum possible, and 0* is the direction of the charged lepton in the tau rest frame
with respect to the direction of the tau in the W rest frame. #{ is a factor which describes the helicity
of the tau, and is + 1 for W decays. For the W’s, this distribution peaks for ¢ = 1 and cosd” = +1,
which tends to give rise to a harder lepton spectrum than would be expected from a decay with a

structureless matrix element. This point is important, and is discussed later.
SUSY Decays

For both W and Z decays to sleptons, the angular distribution is symmetric and given by sin26™
in the centre of mass (see chapter 8). The sleptons are then boosted into the lab frame. Subsequently,

the sleptons are decayed in their rest frame to leptons and photinos with an isotropic distribution.
9.2.3 Simulation of the Real Event and Event Selection
Smearing
The electron energies are smeared according to the following parameterisation of the resolution:
o(E) = 23%./E 9.7
The CD momentum is smeared according to

o(1/p) = f(A,0) (9:8)
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where the angles A and @ are defined in chapter 2. This parameterisation is obtained separately for
electrons and muons (the errors on electron tracks tend to be greater, due to the less stringent track
quality cuts). In addition to the W or Z pmdmed in an event, there are other particles which emerge
from the breakup of the proton and antiproton, and some particles may appear in one or more jets
recoiling against the IVB. All the particles other than those originating from the IVB are described as
the ‘rest of the event’. For our purposes, the only characteristic of the ‘rest of the event’ which is
important is the summed vector E;. While none of these extra particles are simulated, the vector E; of
the ‘rest of the event’ can be found from the reversed vector p; of the W or Z. This is then smeared
according to its nominal resolution. For the di-electron events, it is very important to have a
reasonable parameterisation of this quantity, as it affects the resolution of the missing energy in an

event. Therefore, the Z—ee data itself has been used to provide this parameterisation.

Acceptance and Cuts

The electron acceptance and trigger efficiency is taken as being 100% - in practice, any global
effects are removed by the normalisation, as discusséd in section 9.6. Further, when used to compare
distributions from standard processes with those expected from SUSY, and where both are obtained
from SUSYMC, many of the simplifications should cancel out. The muon acceptance is simulated
using a simple geometrical description of the muon chambers and the approximation that the muons
from IVB decays travel in almost straight lines.

. E, and py cuts are applied precisely as for the real data - these will be described in section 9.4. To
simulate the track quality cuts, which heavily depopulate the horizontal region, a horizontal ¢ cut is
made which removes between +15° and +30° of the horizontal region, being largest at the centre.
There is also a +6° ¢ cut in the vertical plane for the electrons alone.

Finally, the event parameters for each generated event are constructed precisely as for the real data

events.
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9.3 Choice of Variables

Classes of events with different features (for example, masses and spins of particles) can, in
principle, be distinguished by examining the distributions of events in the same variables. The number
of these defines the maximum number of independent quantities which can be measured and allow
distinction of the different event types. In practice, it is more usual that we have only indirect measures
of these features, and there is no unique nor totally obvious set of variables to use. In principle, all
useful measurements can be used. However, since the derivation of the pdf's inevitably requires
Monte-Carlo techniques, it is difficult to estimate these distributions in many dimensions.

The goal is to choose a small set of variables which provide good sensitivity to the different
processes being analysed. Fortunately, in simple situations it is often possible to find a few variables
which are fairly closely correlated to the distinguishing features. Using fewer variables than there are
distinguishing features leads to a loss of sensitivity, while using many more may not be a great
advantage due to the correlations. Further, using many variables leads to greater complications, in
particular, it becomes difficult to visualise multidimensional pdf’s, and the statistical fluctuations in the

estimated pdf’s can become substantial.
93.1 W-iv
The characteristics of this decay, as compared to W-»1» are:

i. The production of spinless particles - this gives rise to an angular distribution which is
different from the V— A distribution.

ii. The charged slepton decays to a lepton and a photino which is not detected - this results in a
lepton with less energy than the slepton.

iii. The decaying slepton may have significant mass - this affects the branching ratio of the
SUSY decay of the W. Also, the hardness of the lepton py spectrum is sensitive to mj and
hence the number of events passing the cuts is affected. However, since the masses are
unknown, the experimental distributions can be used to determine them, if the SUSY decays

can be detected.
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So we can identify two useful features of the decay W-»1"v, namely the first two above. The ideal
variables to use would be Qcosd”, which measures the charge-angular distribution in the centre of mass
of the W, and My, which is a measure of the momentum of the lepton. In a simplified picture, where
the W is produced with zero py, then M; is 2psing” and one finds that W-1» events lie on an ellipse in
the (Qcosé”,M,) plane, while W-1"v events lie inside the ellipse, with a different angular distribution.
Unfortunately, we do not actually measure cos8” directly, since we are unable to measure the neutrino
longitudinal momentum and hence cannot deduce the W rest frame. By imposing the mass constraint -
which explicitly imposes the W mass on the system, we can estimate cosd”™. However, the use of the

mass constraint effectively gives
cosd” = /(my?—M,?)/my (9.9)

and this forces all events to lie on one ellipse !

We note in the simplified description of the lepton-neutrino event, we measure only two useful
quantities: cos@ and p of the lepton. In chapter 4, it is shown that the likelihood is invariant to a
change of variables. Therefore, the sensitivity which we can obtain is independent of how we use these
two measurements. Therefore, the variables we choose to use are Qcosd and M;. The charge is
determined by the CD with a fractional error which grows with p and hence M;. However, since we
are interested in distinguishing the processes at lower M, the charge resolution is satisfactory for
charge measurement. For practical reasons, as discussed in chapter 6, we use M;~! for the W—-p
search.

There are other pairs of variables which we could use, but since they are closely related to the two
we have chosen, there is no statistical gain. Further, since these two variables are easily visualised and
the location of various backgrounds is readily understood, it is easier to identify problems with
(Qcosé,M;) than with other choices for the variables. '

Finally, since the pdf's cannot be generated continuously by Monte-Carlo methods, it is necessary
to evaluate them in bins. It is important to retain reasonable statistics in each bin, while not losing the

shape of the distribution. Also, care must be taken not to lose data events outside the region of the
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binning and to avoid data events falling in bins in such a way that they receive ‘uncharacteristic’
estimates of the pdf, which may arise when the pdf is a rapidly falling function or is dominated by
statistical errors from the Monte-Carlo. With these points in mind, a grid of ten by ten bins was
chosen, with Qcosf running from —1 to +1 and with M; (M;™?) between 0 to 120 GeV/c? (0 to

0.04 GeV ~c?) for the electrons (muons).
932 Z-iT

This process was first suggested as a good place to look for SUSY by Cabibbo et al [93]. We
consider this decay in a similar manner to the above. The characteristics are as for W17, although
there are now two sleptons which decay to charged leptons. The measurable quantities in a simple

description are:

i. the momentum p, and angle 8, of the first lepton,
ii. the momentum p, and angle 8, of the second lepton,

ili. the azimuthal angle between the leptons.
Possible variables which might be considered are:

a. M (or M~! for muons) : leptonic decays of the Z should appear as a clear resonance, whereas
the SUSY decays should have a smooth distribution below the pole.

b. B, :some SUSY decays should have considerable missing energy.

C. w:w= 180°—A¢ (see figure 39). Leptons from the decays of sleptons will not, in general, be
back to back in the transverse plane due to the emission of photinos. This contrasts with the
back to back leptons from the direct decay of Z's (with low py).

d. By(L) : since there is missing energy in a SUSY event and the leptons are not back to back, it
is to be expected that the transverse missing energy will have a component along the bisector
of the di-leptons (see figure 39). This is especially useful if there is substantial smearing of the

leptons causing significant amounts of fake missing energy along the lines of the leptons.

The last three are all characteristics of the missing energy, and the last two are highly correlated.
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The perpendicular component of missing energy (see figure 39), B4(L), and the difference in
azimuthal angle, w, have signs which are defined as positive if the neutrino lies on the same side as the
lepton pair. This means that for ordinary leptonic Z decays where there is some recoil (so that the
leptons are not back to back) and the lepton momenta are mismeasured, then when the di-lepton mass
is reconstructed too low, By(Ll) and w are positive, whereas for SUSY decays with similar topologies,

these quantities are negative.

Figure 39: Definition of w and B;(L)

For the electrons, the mass affords a good distinction between Z--ee and Z-ee. However, there
is little distinction between Drell-Yan and Z— 7 and SUSY in just the mass variable. Therefore M is
used in a trivial way to distinguish between Z-ce and Z-»ee. Consequently, we choose a further pair
of variables to give us sensitivity below the Z resonance: either (M,F;,») or (M,E4,E4(L)).

For the muons, it makes little sense to use B, due to the substantial smearing on the
measurement of p from the CD for standard muonic Z decays. So for the di-muon search, it is

appropriate to use the variables (M™!,w) or (M~1,B;(L)).
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9.3.3 Bayesian Risks

Ideally, to choose the best set of variables, one would estimate which variables would give the
most significant estimate of the signal or the strongest confidence limits. This is not simple to do.
Alternatively, we can seek a measure of how well different sets of variables distinguish between signal
and background. One such measure is the Bayesian [36] risk which estimates the overlap of two
distributions.

Given two density functions s (the signal) and b (the background) defined in some space {T}, with
the correct relative normalisation and such that the normalisation of the sum is unity, the Bayesian risk

is usually defined as the overlap:
%D = [dT" min(s,b) (9.10)
This can never exceed [dI's or {dT'b, and here, it is more useful to normalise to the signal:
% =28b + [d's (9.11)

® varies between 0 (no overlap) and 1 (complete overlap). The latter case corresponds to a situation
where on an event by event basis, one would be forced to conclude that it was more likely that each
event was a background event - hence the ‘risk’.

The risk has been evaluated in the context of SUSYMC using distributions binned in a grid 50 by
50 or 25 by 25. It is necessary to use fine bins to obtain a good approximation to the continuous
distributions, however it is important to avoid statistical fluctuations within bins. The risks have been
evaluated for several sets of variables using the distributions for Z(and y)-I I and those for
Z(and y)=11and rr. This has been done for m) = 25 GeV/c? and m, = 0 GeV/c?. Note that the
best choice of variables to obtain sensitivity to one SUSY mass combination may not represent the
best choice at some other mass combination, so the values chosen are in the region of our previous
limits. For the electrons, since we will probe the distribution in 3-D and we are interested in events
well below the Z resonance, the mass variable is ignored, but a mass cut of 75 GeV/c? is used to

remove events coming from the resonance.
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Table 20: Bayesian Risk for Various Variables for Di-leptons

Risk (%)

e {Bivse 31 <« best
{ByvsBy(L) 36
{Mvsh, 40
N {Mvsow 43

- {MvsBy(l) 32« best

For Z-»ee, (M,E,,w) appear to be the best variables, By(L) seems less useful due to its correlation
with B;. For Z—pp, (M,B4(L)) appear to be the best pair. Due to the poor resolution giving rise to
large fluctuations in the reconstructed missing energy along the line of the muons, E; is not so useful.
Which variable is favoured when comparing By(1) and «, depends on whether the smearing of the
‘rest of the event’ or the effect of the p; of the Z dominates. It appears that the p; of the Z is
sufficiently large to give the Z—pup events a significant spread in w causing them to overlap the SUSY
signal.

Due to the sharpness of the  distribution in the allowed range [ — 180°, + 180°], it is quite difficult
to reproduce the shape with a binned pdf. For numerical convenience, the variable ,/w is used. This
introduces a Jacobian 2,/w which makes the distribution easier to handle with bins.

For the electrons, M is coarsely binned in the bins 0—40, 40—80 and 80— 120, the last bin
containing all of the Z—ee candidates. B, is binned in 6 bins in the range [0,60], while ,/w is binned in
20 bins in the range [ —12,+ 12] - which corresponds to #* 144°. For the di-muons, M~! is binned in
10 bins in the range [0,0.05] and By(Ll) is binned in 10 bins in the range [—55,15] - we use an
asymmetric interval since Z-pup will tend to populate the central region at lower masses (and the
negative side at higher masses), while the SUSY decays will predominantly populate the negative

region.
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9.4 Selection of Events
94.1 Weev

The selection of events which has been used for this process is the standard UALI selection which
was made for W-=ev [24] and is described below. Note that in the following, a distinction is frequently
made between the energy of particles determined by the calorimetry and the energy measured in the
CD. The former is usually referred to as the ‘energy’ E, while the latter is referred to as the
‘momentum’, p. In the case of a single electron, these are different measures of the same quantity - the

rest mass is absolutely insignificant.

1. Electron energy: we require an electromagnetic cluster in the Gondolas or Bouchons of
E; > 15 GeV.

2. Cluster validation: to ensure reliable reconstruction of the electron energy, we demand that the
summed p; of all tracks, other than the electron candidate, entering the calorimeter cell
containing the cluster is < 3 GeV/c and that the centroids of the samplings are consistent with
a shower produced by a single electron.

3. Track validation: the CD track identified as belonging to the electron candidate should have
py > 7GeV/c or be within 3 standard deviations of 15 GeV/c. Further, it should include
> 20 points and have a projected length (in the x-y plane) of > 30 cm.

4. Isolation: to exclude jet fluctuation background and remove heavy flavour contamination, we
demand that

a. in a cone of AR=0.4, =p, from all other tracks < 10% of the E; of the electron
cluster, and the hadronic energy is < 10% of the total calorimetric energy;

b. in a cone of AR=0.7, =p; from all other tracks < 3 GeV/c, and ZE;, excluding the
electron cluster, < 3.2 GeV.

5. Electromagnetic shape: we require that the energy deposition in the four samplings of the
electromagnetic calorimeter and the hadronic cells immediately behind the cluster should have

a longitudinal profile which is compatible with results found in an electron test beam.
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6. Neutrino energy: finally we demand that the missing transverse energy should be in excess of
15 GeV. Events where the electron candidate is within 15° of the vertical are removed if there
is a jet (Ey > 7.5 GeV) also within 15° of the vertical, since such topologies are subject to fake
neutrinos caused by the loss of particles through the crack in the calorimetry.

7. Transverse mass: a cut was made at 15 GeV/c? to remove one very low transverse mass event

which was consistent with being a jet fluctuation.

This selection yields 290 W--ev candidates. Since these data are compared with ISAJET Monte-Carlo
data which have a 10 GeV/c cut®® on the CD track, the same cut was applied to the data, leaving 275

events.

94.2 Z~ee

The standard UA1 Z—ee selection [86] is inappropriate for this search due to a 70 GeV/c? mass
cut which removes the sensitivity to SUSY. Instead, we have used the same selection, but without the

mass cut. The cuts applied to obtain the di-electrons are:

1. There must be one electromagnetic cluster (E; > 15 GeV) which passes the electron W cuts,
with the exception of the requirement of a CD track in regions of poor CD acceptance.
2. A second cluster is required with E; > 8 GeV. We demand that this pass cuts similar to those

of the first cluster, but with relaxed isolation and technical quality.

This selection is available only for the \/s = 630 GeV data and yields an initial sample of 60 events.
The mass spectrum of these events is shown in figure 40.

Inspection of these events on the Megatek revealed that for most of the low mass events, the
electrons were far from isolated and appeared compatible with jet fluctuation events. Further, many of
these lower energy electromagnetic clusters did not have fast CD tracks pointing to them. Since we
expect that the general features of Z-ee events will be similar to those of Z- ee events, apart from the

magnitude and angular distribution of the electron momentum vectors, we can use the latter as a

3¢ The ISAJET preselection was made for the top quark search, which had a more stringent CD track requirement.
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Figure 40: Initial Di-electron Mass Spectrum

control sample for choosing appropriate cuts with which to search for the former. Therefore, further
cuts have been applied to the data which retain as many Z-ee events as possible while, at the same
time, removing the low mass events.

Since we expect that electrons from the decay e—ey will have fairly fast CD tracks, a very loose
cut of 2 GeV/c is made on the p; of both electrons. The effect of this cut is seen in table 21. Non-zero
losses of Z events are anticipated from events with horizontal electrons for which there is virtually no
CD acceptance. Also, it is possible that an electron has a substantial bremsstrahlung which

dramatically distorts the CD track and hence the reconstructed momentum.
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In the decay Z-’ée;-eeﬁ', the electrons have opposite charges. Therefore a very loose cut to
remove like sign events is made. A measure of the accuracy of the sign determination from the
curvature of a CD track is provided by the quantity p~!/o(p~') - the ‘number of sigma’ of the
measurement. Events are rejected if the charges of the two electron candidates are the same, and both
tracks are measured to at least 2 sigma. With this cut, one Z-ee event is removed. Inspection on the
Megatek indicates that the digitisings belonging to one of the electrons in one of the CD drift volumes
are systematically displaced as a result of some slightly inaccurate calibration constants. As a result, the
track is distorted and the charge incorrectly measured.

We are left with 27 known Z--ee candidates and 4 low mass events. Of the latter, three contain a
pair of very isolated clusters with fast CD tracks pointing at them. The fourth is a very interesting
event. It too has an isolated pair with fast CD tracks, but there is substantial missing energy and a
couple of small jets found by the jet algorithm [94]. This event will be discussed in more detail in
section 9.5. Finally, as for the W’s, a 10 GeV/c p; cut was applied to the highest momentum CD track

- however, this did not remove any data events.

Table 21: Effects of Cuts on Di-electron Sample

Z candidates non-Z events

original sample 31 29
py cut 28 7
charge cut 27 4

9.43 W=pv

The standard W-» v data set of 67 events from 1983, 1984 and 1985 is used. The selection of this

data is described in chapter 6.
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9.4.4 Z~pp

The selection for di-muon events has been made in the spirit of the one used for the selection of
Z candidates, described in chapter 7. However, we have returned to the inclusive muon sample3” with
“tight’ selection (see below) and performed a new di-muon selection with lower p; and mass cuts. This
has the advantage of giving access to events with lower di-muon mass, although some events are lost
due to the strict cuts made in the ‘tight” selection.®®

The muon ‘tight’ selection is intended to select reasonable quality inclusive single-muon events,
while attempting to eliminate background coming from pion and kaon decays (see chapter 6). The cuts
for the ‘tight’ selection [95] are similar to some of those used for the W—pu»r selection, and are

reproduced below:

1. We demand a muon chamber track with matching CD track associated to the primary vertex.

2. The chi-squared for the matching between the CD and the muon chamber track must be less
than 16 for each of the 4 quantities compared (two positions and two angles).

3. The p; of the CD track must be greater than 3 GeV/c, and it is required to be at least 40 cm
long in x—y and have more than 20 digitisings, with a Sadoulet chi-squared of less than 3.

4. Finally, the muon should pass all the checks to remove i) cosmic rays, il) non-interacting

hadrons, iii) shower debris and iv) #/K decays.

Starting from this selection made for the /s = 630 GeV data, a basic di-muon selection was
made. In addition to the candidate muon, a second fast track in the CD was required. The cuts applied

are:

1. py of the first track > 10 GeV/,
2. py of the second track > 10 GeV/c,

3. mass of the pair > 20 GeV/c?,

37 This sample includes all events containing at least one muon candidate.

38 Tq test the feasibility of making a further selection from the events passing the ‘tight’ cuts, the effect of the ‘tight’ cuts was
tested on the Z-»pup candidates in their final form. It was found that all but one of the candidates passed the cuts.
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4. charge of the tracks must not be the same - as for the di-electron selection,

5. very loose isolation of the muon candidates.

This selects 27 out of 8050 events and 55 out of 12032 events from the 1984 and 1985 ‘'tight’ selection

data respectively (see table 22). Several of the 16 known Z-pp candidates in 1984 and 1985 were lost:

e One event was not included in the ‘tight’ selection as it occurred in a period of running with

reversed magnetic field.

e One event occurred while the muon trigger was only partially operational and was thus

excluded.

e One event was lost since the second track was not associated to the primary vertex - this was

recovered by hand’ from the W-spuv selection for the Z-» uu analysis.

e One event appears simply to have been lost when the ‘tight’ selection was made.

No additional Z-» pux candidates were found.

% 1 2
1984 906 85
1985 89.6 9.3

Table 22: Percentage of Events Removed by Di-muon Cuts

cuts

3 4 5 survive
0.3 0.1 0.2 0.3
0.2 0.2 0.1 0.5

Subsequent cuts were applied - again the philosophy used was to keep as many Z-pup candidates
as possible, while removing events of lower di-muon mass which had characteristics of events coming
from sources other than Z-y decays. The events surviving cuts 1 to 5 were scanned on the Megatek. It
was found that the low mass events (70 of them) appeared to be poorly isolated; or the second muon
candidate in these events had a low quality track in the CD. Therefore the following cuts were made:

6. The isolation was tightened to demand that in a cone of AR = 0.7 ZE; < 15 GeV and Zpy

< 10 GeV/c for each track.
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7. If the second track was seen only in the CD, it was required that the number of digitisings >
20 or the track length > 40 cm.

8. There should be no CD track of p; > 1 GeV/c within a cone of AR = 0.2 around either
track.

9. For tracks seen only in the CD, cosé < 0.98.

Table 23: Events Removed by Final Di-muon Cuts

cuts
6 7 8 9 survive
Z candidates 1 1 0 0 10
non-Z candidates 32 21 7 4 6
total 33 22 7 4 16

One of the Z candidates was lost due to a large neutral cluster in the Gondolas surrounding one
of the muon tracks. A second was lost due to a track length of 15 cm and 18 digitisings in the CD. It
had been recovered from the W-»puv selection. The latter is a radiative event.

A final examination of the events revealed one cosmic ray. This was removed by hand’. Further,
all of the events in which the second muon track was seen only in the CD were examined to check
consistency with its being a muon, that is: i) minimum ionising in the calorimeters, and ii) no muon
chamber hit expected since the track lies outside the geometrical acceptance. None of the events
unambiguously violated these criteria. Of the 10 Z candidates, only 2 had a pair of muon chamber
tracks, while 4 of the 5 non-Z candidates did.

In order to increase the statistics, the same procedure was employed in one step for the 1983
‘tight’ selection data. A further 2 Z candidates were selected. Of the 5 1983 candidates, the radiative
event failed the isolation cuts; a second fa.iledv the track length cuts (this event was not used for the

cross-section calculations); and a third event was lost when the ‘tight” selection was made.
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To summarise, we thcrefore use 17 events for the Z-pup search, 12 of which are known Z-pu

candidates.

The events selected in the four categories above will be referred to as the W-e, Z-e, W-u and Z-p

events, respectively.

9.5 Comparison of the Data with Monte-Carlo Predictions

The first question to ask is: ‘Are our events compatible with expectations from known processes,
or is there evidence for additional contributions, such as SUSY ? To answer this question,
Monte-Carlo evenfs have been selected from a large Monfe.Ca.rlo production performed for the UAl
"Top’ analysxs The resulting distributions are compared with those found for the data.

The Monte-Carlo production is described in appendix F. The selection was performed in precisely
the same way as for the real events. Since the production was for inclusive W/Z decays, contributions
from standard W and Z decays to tau’s are included and should be selected with the correct
proportions. The most significant additional background to W-e is from jet ﬂuctuations. The
magnitude of the contribution is estimated from the shape of the missing energy spectrum [24], while
the shapes of the various distributions are deduced by looking at inclusive electron events with
10 GeV < By < 15GeV, and scaling the energy to be greater than the cut. In table 24, the
percentages of events expected solely from backgrounds (direct decays of IVB'’s to electrons or muons,
decays of IVB's to tau’s to electrons or muons, jet fluctuations, and Drell-Yan) are given.

In figures 41 and 42, the data are shown with the Monte-Carlo expectations (also, the SUSY
predictions for me, m,, or m, = 25 GeV/c? are shown as dotted). Generally the agreement is fairly
good and there are no significant departures. The x? probabilities for the 1-D fits are also shown in the
figures - as usual, the probabilities have to be interpreted with care. The probabilities are given as

percentages: the first value is calculated using the data in the denominator of the chi-squared, while the
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Table 24: Contributions from Known Processes

fraction of events (%)
direct tau jet fluc. Y
W-e 92 6 2 -
W-]L 95 5 - -
Z-e 77 2 - 21
Z-p 66 1 - 33

second number, in brackets, uses the theoretical estimate. More meaningful fit probabilities will be

derived in the next section.
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Figure 41: 1-D Distributions for Data, with Monte-Carlo Predictions

9.5.1 Methods for 2-Dimensional Tests

Using multidimensional distributions gives greater sensitivity to new processes and therefore it is

important to test the distributions in several variables, in addition to their projections.
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Figure 42: 1-D Distributions for Data, with Monte-Carlo Predictions

The standard method for comparing shapes, predicted and measured, is a x? test. However, a x?
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may be used meaningfully®® only if the contents of each bin are large and can be considered to vary in
an approximately Gaussian way. While it may be possible to rebin a distribution such that the bin
contents are expected to be large, it is in practice non-trivial, and inevitably leads to a loss of shape
information.

Instead, we seek a method for testing shapes which in principle can be made bin free. However,
since we are dealing with non-parametric distributions, it is inevitable that we have to generate
distributions which are binned.

If we have a multi-dimensional distribution which is binned in B bins, then these bins can be
arbitrarily labelled with a single index ‘i’, where i takes values from 1 to B. If our data has n; events in

bin i, where Zn; = N, then we can define a multinomial probability:
M=NIlel/mn! (9.12)
1 1

where ¢; (i=1,B) is the probability that ;1 single event should be in bin i. We evaluate the fraction of
times we would expect to see a multinomial probability less than our calculated value M for sets of
simulated events which are described by the distribution {e;; i=1,B}. This fraction is the probability
that the data can be described by the Monte-Carlo distribution. The double use of the word
‘probability’ is a little confusing. The ‘multinomial probability’ (which will inevitably be a very small
number) is best thought of as a measure of fit - as is a x* - and as for a x?, the ‘probability” is the
integral of the pdf for the measure of fit beyond the value obtained for the data being tested. This
probability should be uniform in the interval [0,1] if the Monte-Carlo predictions correctly describe the
underlying distribution of the data. No allowance is made for the fluctuations in the Monte-Carlo
pdf’s; so care has been taken to ensure that in important regions, the predicted distributions are
satisfactorily smooth.

This method can in principle be extended to the continuum limit: as cell size = 0, ¢; = pdf (at
centre of bin i) x cell size, and n; = 0 or 1, so that apart from some normalisation factors (and
removing the vanishing cell size), M - IIfj, where the product is now over the events, j=1,N and f is

the pdf. This is identically the likelihood function. For this analysis, the continuum limit was not used

39 in the sense that its distribution is described by the probabilities found in chi-squared tables
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since it is incompatible with the method for evaluating the expected distribution of M.

Just as with likelihoods, the distribution of M is not known (to be contrasted with a x, which is
the reverse of the continuum limit, and where the distribution is known). Instead, the distribution must
be evaluated by Monte-Carlo methods. This can be done quite simply: we envisage B cells containing
the probabilities {g;} and we find the cumulative probabilities {¢; = iZe.y}. Then we choose a random
number, 5, which is uniformly distributed in [0,1]. If Ci—1) S T <‘ ;il, then an ‘event’ is attributed to
cell i’. This is done for j equals 1 to N, and in this way, a multinomial distribution is generated. By
finding the multinomial probability for many samples of size N, it is possible to establish the
distribution of M. If S samples are generated and the estimated probability for the observation of the
data is p, then the statistical error on this estimate is /[p(1 —p)/S]. In practice, 1000 samples were
generated. '

By using SUSYMC data and using pdf’s generated by SUSYMC in a self consistent manner, it
was possible to test the operation of this method. For 10 different data sets, each of 100 events, the
following probabilities were obtained:

28%, 74%, 80%, 78%, 9%, 34%, 92%, 57%, 58%, 20.4%.
which have a mean of 53.1% and a spread of 30.3% — to be compared with an eWed mean of

50% and width 28.9%.
9.5.2 Testing the Data
The W-e Events

The distribution of the events in (Qcosd,M;) is shown in figure 43. Also shown are the
distributions expected for the direct process W-=ev and the tau contributions - the jet fluctuation
contribution is not included. In addition, the distribution for the SUSY decays with
m, = m, = 25 GeV/c? is given. For illustrative reasons, the Monte-Carlo scatter plots are produced
with SUSYMC, although the multinomial test was performed using ISAJET and did include the jet

fluctuations.
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Naive attempts to obtain the probability that ISAJET can describe the (Qcos6,M;) distribution
yield very low values. There are two main reasons. The first is that ISAJET (or, more correctly, the
UALI detector simulation) does not describe the high M; tail of the data very well. This is due to a
somewhat optimistic estimation of the resolution at high M; in the standard simulation. (For the
W-electron mass-fitting, this is handled more carefully, and the simulation describes the data better.)
However, in this analysis we are not interested in deviations at high M;, but rather at the low end. So
to test the description of the bulk of the distribution, it is sufficient to look at the data below
108 GeV/c? in M;.

Further, in the data M, distribution, we see a significant shoulder around 40 to 50 GeV/c?. In this
region, we expect contributions from W- v and the jet fluctuations. Our estimate, using ISAJET, for
the fraction of tau background is 4.0% of the W—ev rate (exclugiing the hadronic decays of the tau),
which should be compared to the estimate of 6.0% for the cross-section estimate [55]. The latter uses
Monte-Carlo data where the polarisation effects of the tau decay have been included, whereas in the
former, the decay is determined solely by phase-space. With SUSYMC, we have estimated this fraction
as 5.8% as opposed to 4.5% with a flat cos@” distribution for the tau decay. To allow for the
underestimation of the contribution from tau’s in the Monte-Carlo generation used, an additional
number of tau events have been included (from SUSYMC) to restore the contribution to 6.0%.

With these two modifications, the probability of describing the data is 24%.
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Figure 43: Distributions for W-e Events, with Monte-Carlo Predictions

The Z-¢ Events

The distribution of the data in the variables B, and M is shown in figure 44, along with the
predictions from SUSYMC (where the same comments as made for the W-e events apply). The data
contains 27 Z’s and 4 low mass pairs, whereas we expect 23.7 Z’s and 7.3 events from Drell-Yan and
Z-tau decays (normalised to the total number of events). It is obvious, looking at the 2-D distribution
for the di-electrons, that there is an ‘interesting’ event at lower mass and with significant missing energy

. we shall refer to this as Event A. Removing this event, we find that the data is well described by the
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background distributions,‘with a fit probability of 18%. Event A lies in a region where it would appear
that the largest background contribution is from Z--tr. However, the total tau contribution is
expected to be 0.7 + 0.2 events and the density of ISAJET Monte-Carlo events in the vicinity of A in
(M,B;,/w) is low (as it is everywhere).*® Therefore, the Z+77 contribution to the pdf has been
removed in the ISAJET generation and replaced by an estimate using SUSYMC which is smooth due
to the considerably larger statistics. With this adjustment, we obtain a fit probability of 4+1'/,%,

where the uncertainty comes from the uncertainty in the size of the tau contribution.

40 Of the ISAJET events, 10 tau events pass all the cuts. This leads to the estimate of a contribution of 0.7 to the data
However, SUSYMC suggests that one would expect a contribution of 0.3 events.
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Figure 44: Distributions for Z-e Events, with Monte-Carlo Predictions
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general view

track: p; > 1 GeV/c
calo: E; > 1 GeV

transverse view

track: py > 2 GeV/c
calo: E; > 2 GeV

Figure 45: Event A

Event A is shown in figure 45 and its parameters are given in table 25. Several technical comments can




144

Table 25: Parameters for Event A

E; = 15GeV pt = 16 £ 2GeV/c
Ey = 52 GeV pt = 31 £ 18 GeV/c
M = 52 £ 2 GeV/c?
By = 20 GeV
w = 19°
By(L) = 9 GeV

jets Ey = 13 GeV E; = 5GeV

be made about this event:

. The e* is very close to the vertical (¢ = 10°) and the response of the Gondolas is sometimes
dubious close to the vertical, so that for the Z mass fitting, events in which either electron is
within + 15° of the vertical are removed. This event might arguably be removed.

. The CD track momenta are in good agreement with the calorimetry - although they have large
errors, and, if anything, can be expected to be underestimates due to possible bremsstrahlung.

. is measured in the CD, which is more accurate than the Gondolas. However, it does rely on
the measurement of the z coordinate, which can be prone to systematics. For the e*, most of
the digitisings lie in a reasonable line; however, there are a few which lie above the track,
probably due to the effect of a nearby track, but perhaps indicating that « has been
overestimated.

. The jets lie close to the direction of the missing energy flow in the transverse plane, so that if
their energies were underestimated, this might account for some of the missing energy. Further,
one of the jets is close to the crack in the calorimetry at x=0, although the displacement of
the vertex by + 17 cm in x should ensure that no particles escape down the crack.

. There is one track of p; = 2.6 GeV/c which apparently deposits 1.2 GeV in the calorimetry,
and has some matching Iarocci hits in the side wall, but no muon chamber hits. This particle

could be a muon which is ranged out in the side wall iron. If this were the case, it represents a
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loss in the recorded calorimetric energy, and would increase B4 by about 1 GeV. There are no
other muon candidates in the event.

6. The distribution of energy in the Gondola samplings for the e* is a little unusual, since it is
spread quite widely. However, the x? which measures the longitudinal development of the
electromagnetic shower (comparing it with results from test beam) is 22, which is below the
cut of 60. Although the shower shape is not as good as would be expected for a good electron,
it is acceptable, and could appear worse by being near the end of the Gondola. Also, it is
possible that there could be neutral particles entering the Gondola; however, there are no
charged particles entering. The e~ has a chi-squared of 5.

7. The measurement of B is highly susceptible to the corrections which allow for the response of

the calorimeter to electrons as opposed to hadrons, and the corrections to measured jet

‘energies.
The physics comments which can be made are:

1. If Event A is to be explained by the known physics, the highest probability comes from the
tau decays of the Z. However, Event A is at the edge of all interesting distributions for Z-» 7,
except the mass plot. For Z-» 7, due to the low mass of the tau, the electrons should more or
less follow the line of flight of the tau’s and therefore be fairly back to back. The fact that one
electron has an E; of 52 GeV is hard to explain in terms of Z--r with the subsequent decay
T>e.

2. Although we expect 0.7+0.2 Z-7r events, the probability of 1 event out of 31 having
By > 20 GeV and \/w < —3.6 (or w < 13°) is about 1/,%. However, this probability is not
as meaningful as the probability derived from the multinomial test.

3. Other possible explanations of the event are:

a. Z-ee: this explains the E; of e~, but then there is a significant mismeasurement of
the e* to understand.
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b. pp-Wg-ev+‘fake e using ISAJET, we estimate this background to be of the
order of 10~! events. One Monte-Carlo event passed the selection, and it did not
look at all like Event A.

c. Heavy flavour production: we estimate that the contribution from bb and ccis of the
order of 2x 10~ !, and none of the Monte-Carlo events selected resembled Event A.

d. Top production: see section 9.8.

e. Jet fluctuations: the technical quality of the e~ would suggest that it is probably a
genuine electron, and that it is unlikely that the event is a jet fluctuation. More
comments are provided below.

f. SUSY: could be ! It lies comfortably in the centre of all the distributions for
Me,m, = 35 GeV/c?. However, even with SUSY, it is difficult to explain the

52 GeV E; of thee™.

Before concluding, we comment on the possibility that Event A is a result of jet fluctuations. The
most important cut to remove the background in the later stages of the event selection is the p; cut
applied to the lowest energy electron candidate - we denote this p; by py,. The preferred way of
determining jet fluctuation backgrounds is to use the actual data (rather than Monte-Carlo) and to
examine the effects of relaxing the cut used to remove the background. The effects of this can be seen
in figure 46 [a], where the data is shown as a function of the p;, after all the cuts have been applied
(except the 10 GeV/c cut on the fastest track in the CD). It can be seen that there is a steeply falling
section of the spectrum below 2 GeV/c which is attributed to jet fluctuations. Above 10 GeV/c are the
four low mass di-electron events and the Z’s. One is tempted to conclude that the probability that one
of the 31 selected events is background is negligible. However, we note that in figure 46 [b], for the
like sign events, there are 8 events below the cut at 2 GeV/c; but in addition, there are 3 events
above the cut. Two of these 3 events have indications that they could be jet fluctuations, while the
third appears to be a photon conversion. By contrast, the 4 opposite sign low mass di-electron

candidates are very clean and show no signs of being the result of jet fluctuations.



147

@ 2 CANDIDATES @ Z CANDIDATES

L

, e | H [—] . oooiooou . !E ‘ ‘ H . H ’ ' '
0. 2.5 s, 7.8 1C. 125 15, 17.% 2C. 0 0. 2.8 5. 7.5 10. 128 15, 17.5 20.
OPPOSITE SIGN Ptz . UKE SIGN Ptz
(a] (GeV/c) [b] (GeV/c)

Figure 46: Z-e spectrum as a function of pg,

To conclude, it would appear that Event A is difficult to describe by known processes and could
be explained by a supersymmetric decay of a Z. However, there are some doubts as to the reliability of
the measurement of the energy of the e*. Further, the only process which gives a good explanation of
the transverse energy of the e~ around m,/2 is the direct electronic decay of the Z. It seems to the
author that the best explanation of Event A is that of Z-ee, where one of the electrons is very badly
measured in the detector, and in a way that is not described by the detector simulation. On the basis of
one event, it is impossible to conclude that we have observed ‘new physics’. Furthermore, there are no

indications from the other three channels of anything exciting.
The Muon Events

The probabilities which are obtained for the muon data are 60% and 35% for the W-x and Z-
data respectively. The W-p events are well described by the Monte-Carlo predictions. It can be seen
from the 1-D distributions for the di-muon events that one event has a significant By(L). This is the
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Z-pp candidate which was removed from the Z mass fitting - see chapter 7. The event is compatible
with the decay Z#r-r, with 7—=pwv, or a simple Z decay where the momenta of both muons are
underestimated. In spite of the large By(L), the event is nbt well explained by SUSY, where one
expects that the missing energy arises from photinos recoiling on the opposite side of the muon pair,

and hence leading to negative By(L).
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9.6 S-ISAJET — a More Sophisticated Monte-Carlo

So far, we have seen that the UA1 data is fairly well explained by known processes, and that there
is no compelling evidence for ‘new physics’ beyond the Standard Model. We therefore attempt to find
the extent to which we can exclude contributions from SUSY, and set limits on the masses of the
supersymmetric particles.

A simple Monte-Carlo (SUSYMC) has already been discussed. However it is important to
cross-check its predictions and test the effects of the detector and selection with a more realistic
simulation. To this extent, we have attempted to incorporate the SUSY processes in the ISAJET
Monte-Carlo. This means that the SUSY events can then be handled in an identical way to the events

generated by ISAJET for standard processes. In particular, there are three important tasks to perform:

i. Estimate the observable*! cross-sections to obtain the normalisation for the distributions
generated from SUSYMC.
ii. Verify the shapes of distributions generated by SUSYMC.
iti. Verify the predictions from SUSYMC for the change in observable cross-section with SUSY

masses.

For the production of W’s, Z’s and virtual photons (Drell-Yan) ISAJET [11] uses the explicit

matrix element*? for:

qq=-1+v+g-viaW

qg-1+1+g-viaZory (9.13)

This is the so called 2+ 3 matrix element, and its form is very complicated. Since the author is unable
to calculate reliably the 23 matrix element for final state sleptons, the 2-»2 matrix element has been

used. This is calculated for the SUSY decays in appendix D.

1 the cross-section which we effectively measure because of the effects of acceptance and selection: agpg @ < Ngpg> /&

42 The phrase ‘matrix element’ is a misnomer, since what is actually used is the square of the spin averaged matrix element,
which is proportional to the differential cross-section, but without the phase-space factor.
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ISAJET optionally uses a 22 matrix element where the IVB is generated with zero py. However,
due to the subsequent evolution according to the scheme of Altarelli and Parisi [96] it gains a finite py,
the distribution of which is not too different from that produced in the 2+ 3 process. (Use of the 2+ 3
matrix element is essential only when one requires a reasonable description of the primary jets in W/Z
events.)

The appropriate form of the matrix element for the SUSY decays in the Mandelstam

representation (see for example [97]) is
(ut—m,?m,?)/((q* — my*)* + my, Ty*) (9.14)

which replaces the standard 2-2 matrix element, and can be derived from (D.5). m, and m, are the
masses of the sleptons. Further, the phase space factor is explicitly added - since ISAJET assumes that
the decay products of W’s and Z's are massless. The modified version of ISAJET will be referred to as
S-ISAJET.
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