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Abstract

Measurements of production cross-sections for Z bosons that decay to muons are pre-

sented in this thesis. The data used to perform the measurements were recorded by the

LHCb detector during pp collisions at centre-of-mass energies of 7 and 8 TeV, correspond-

ing to integrated luminosities of approximately 1.0 and 2.0 fb−1. The cross-sections are

measured for muons in the pseudorapidity range 2.0 < η < 4.5 with transverse momenta

pT > 20 GeV/c. The dimuon mass is restricted to 60 < Mµ+µ− < 120 GeV/c2. Total

cross-sections are determined with a precision of approximately 2%. Cross-sections are

also measured as functions of kinematic variables relating to the Z boson.

Ratios of production cross-sections of electroweak bosons are presented using measure-

ments of W boson production. A precise test of the Standard Model is provided by the

measurement of the ratio
σW+→µ+νµ + σW−→µ−ν̄µ

σZ→µ+µ−

where the uncertainty due to luminosity, and other correlated uncertainties, cancels.

This cancellation allows the cross-section ratios to be measured with an overall precision

below 1%.

Measurements of electroweak boson cross-section ratios as functions of muon η are pre-

sented for the first time. Measurements of cross-section ratios and ratios-of-ratios of

cross-sections at different centre-of-mass energies are also presented for the first time.

Cross-section ratios at different centre-of-mass energies are determined with a precision

of approximately 1.6%. Ratios-of-ratios of cross-sections are measured with an overall

precision below 1%.

All measurements are consistent with the predictions of the SM. It is expected that the

data presented here will help place significant constraints on the form of proton PDFs.
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Chapter 1

Introduction

Particle physics is the field of enquiry that concerns itself with the fundamental particles

of nature and their interactions. There are four such interactions, in one-to-one corre-

spondence with the four fundamental forces of nature: gravity, electromagnetism, the

weak nuclear force and the strong nuclear force. Each force acts on fundamental particles

that are charged with respect to that force. It is not understood why these forces exist,

rather, it is accepted that they do, and classifying their effect on fundamental particles

is a worthwhile pursuit.

Theories and measurements go hand-in-hand in understanding these forces. As with

all branches of science, observations, measurements, and human thirst for patterns and

predictability, inspire the design of theoretical models to describe nature. Sophisticated

models describe the observed data, but also go one step further to provide predictions of

new phenomena, motivating new experiments. Measurements then validate or invalidate

these predictions, and the cycle continues.

The theoretical framework that best describes the interactions of fundamental particles is

called quantum field theory. This framework incorporates the quantum theory developed

in the early 20th century, and interprets particles as manifestations of fields that pervade

all of space. In the laboratory, particle interactions are best studied using energetic

beams of stable particles that are brought into collision with other stable particles. The

latter can be at rest (fixed-target), or constitute a second energetic beam. Given the

initial particle species and their energy, quantum field theories may be used to predict

rates of specific interactions in the laboratory. These rates are referred to as cross-

sections.

The primary objective of this thesis is the measurement of the Z boson cross-section

using the data collected by the LHCb detector from proton-proton collisions during

1
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LHC Run-I [1] [2]. The Z boson is the fundamental particle that is responsible for

the mediation of electrically neutral weak interactions. Similar to the photon, it is an

electrically neutral particle. Two more important properties of the Z boson are its mass,

which is 91.2 GeV/c2, and its half-life, which is O(10−23) s [3]. The mass of the Z boson

is quite large with respect to the masses of the particles to which it decays.

In the analysis presented here, the Z boson is reconstructed through its decay to muons

and anti-muons. This particular decay channel accounts for (3.366 ± 0.007)% of all Z

boson decays [3]. Muons have masses of 105.7 MeV/c2 and half-lives of about 2.2 x 10−6

s [3]. The relatively long half-life is significant because it allows the muon to be observed

by a detector. Mass-energy conservation dictates that the mass difference between the Z

boson and the two muons be translated into momentum for the muons. The presence of

a Z boson is thus inferred from the existence of two oppositely charged, high momentum

muons.

After its discovery in 1983, precision measurements of the Z boson’s properties were

performed at the Large Electron Positron collider (LEP), which operated between 1989-

2000 [4]. In terms of precision, many of the LEP measurements remain unrivalled,

however, measurements of production in a hadronic environment at the LHC are im-

portant for a number of reasons. First, they help to unravel the sub-structure of the

proton, to assign the proportion of quarks and gluons therein. The unique geometry of

the LHCb detector is an advantage in this regard. Second, isolated, high momentum

leptons from decays of the Z boson typically have a high trigger efficiency; studies re-

quiring a Z boson in the event benefit from this. Third, the relatively clean signature

allows a number of calibration studies to be performed, the results of which may be used

in a variety of different analyses. These include the estimation of lepton reconstruction

efficiencies and the evaluation of corrections to jet energy and lepton momentum.

The W boson is the fundamental particle that is responsible for the mediation of elec-

trically charged weak interactions. It has one unit of electric charge, has a mass of

80.4 GeV/c2, has a lifetime similar to the Z boson, and decays to muons and neutrinos

(10.57 ± 0.15)% of the time [3]. Another objective of this thesis is the measurement

of ratios of W boson to Z boson cross-sections. The ratio of the cross-sections is a

much more precisely determined observable than either of the cross-sections themselves,

as many of the common experimental systematic uncertainties cancel. It is thus more

sensitive to phenomena that are not accounted for by existing predictions, as well as

differences between these predictions.

The nominal energy in the centre-of-mass frame of the colliding protons (centre-of-mass

energy) was set at two distinct values during LHC Run-I. As a consequence, the Run-I
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data set is naturally divided into two sub-sets of data, corresponding to two different

centre-of-mass energies. The measurements mentioned above are performed on both

of these data sets separately. The final objective of this thesis is to measure ratios

of quantities that have been determined at different centre-of-mass energies. These

measurements are sensitive to new phenomena when certain criteria relating to the

evolution of cross-sections with centre-of-mass energy are met.

The remainder of this thesis is organised as follows: Chapter 2 introduces the established

theoretical framework used to predict observable quantities at particle colliders; Chap-

ter 3 describes the apparatus used to collect the data, the Large Hadron Collider and the

LHCb experiment; Chapter 4 describes the measurement of Z boson cross-sections on

two separate data samples; Chapter 5 describes how these may be combined with W bo-

son cross-section measurements to form new observables that are both experimentally

and theoretically well-determined; and Chapter 6 is devoted to conclusions. Finally,

Appendices A - G give additional information on various aspects of the analysis.



Chapter 2

Theory

The main focus of this thesis is the measurement of electroweak boson cross-sections and

their ratios, detailed in Chapters 4 and 5. These measurements test the current under-

standing of the sub-atomic world, which is best described by the theoretical framework

known as the Standard Model (SM) of particle physics. This chapter is a review of

this theory. The first part describes relativistic quantum field theory. The second part

introduces the particles of the SM and their properties, as well as the construction of

the SM lagrangian. The third is a discussion of hadron structure. The fourth part deals

with the various computational tools for calculating these cross-sections, as well as event

generation.

2.1 Quantum field theory

The mathematical language that describes fundamental particles and their interactions

is called quantum field theory. One of the main advantages of this theory is its ability

to describe changes in the total number of particles of a system. This is an essential

feature of any theory hoping to describe proton collisions at the Large Hadron Collider

(LHC). A snapshot of the result of one such collision is shown in Figure 2.1, where

the black lines represent the new particles created in the collision. Indeed, flexibility in

the number of particles goes beyond just the empirical evidence. The very notion of a

single, point-like, particle existing in isolation is dispelled by the principles of quantum

mechanics. These dictate that at distance scales less than one Compton wavelength

λ = ~
2mc , pairs of particles are being readily produced, for short periods of time, from

the energy intrinsic to the vacuum [5]. As one looks ever more closely, a single particle

must actually be thought of as a swarm of particles.

4
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Figure 2.1: Display of a proton-proton collision event containing a Z boson that decays
to muons at the LHC. The muons are represented by green lines. Particles from the
rest of the event are represented by black lines. Energy deposits left in the detector are
represented by blue, green and orange blocks.

The following sections describe field theory, how field theory is quantised, and finally, how

interactions are handled (perturbation theory). In the midst of these, the interpretation

of a particle as an excitation of a field is explained.

2.1.1 Field theory

In the abstract mathematical sense, a quantity that has a value at every point of space-

time is called a field.

φ(x) ≡ φ(~x, t) (2.1)

There are different types of fields, scalar fields, vector fields and tensor fields. An example

of a scalar field is a temperature field - every point in space-time has a temperature

associated with it. An example of a vector field is a wind velocity field. The wind

velocity field is similar to the temperature field in that the wind has a strength, but

it differs in that it also has a direction. The concept of the field is needed in order to

make the laws of physics local and to explain the communication of forces over large

distances. Without such a concept, forces are felt instantaneously without any medium

for transmission, contrary to intuition. Einstein called this “spooky action at a distance”.
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The dynamics of a field (or set of fields) is governed by a function called the lagrangian

L(t) =
∫
d3x L (φ, ∂µφ) , (2.2)

which depends on the field(s) and its derivative(s). Associated to every lagrangian is a

dimensionless functional called the action S =
∫
dt L(t). The equations of motion of the

field

∂µ

(
∂L

∂ (∂µφ)

)
− ∂L
∂φ

= 0 (2.3)

may be determined from the principle of least action [6].

A useful class of lagrangians are those for free field theories. These lagrangians are

quadratic in the fields, and consequently, the equations of motions are linear. One

example is the free Klein-Gordon equation for scalar fields.

∂µ∂
µφ+m2φ = 0 (2.4)

This equation of motion arises from the application of Equation 2.3 to the Klein Gordon

lagrangian

LKG =
1
2
∂µφ∂

µφ− 1
2
m2φ2. (2.5)

The solution to the Klein-Gordon equation is a linear combination of plane waves in

momentum space, given by the Fourier expansion of the field φ

φ (~x, t) =
∫

d3p

(2π)3 ei~p·~x φ (~p, t) , (2.6)

where the Fourier coefficients satisfy a harmonic oscillator equation. Every point in

space oscillates like a harmonic oscillator with frequency ω2
~p = ~p2 +m2 [5].

Another important quantity in field theory is the conjugate momentum of the field, π,

defined as

π =
∂L
∂φ̇

(2.7)

not to be confused with the 3-momentum ~p above.

Free field theories do not describe interactions between fields, by definition, but they are

of great importance if interaction terms, that eventually get added to the lagrangian,

are weakly coupled. In these cases the solutions to the equations of motions can be built

on top of the free field solutions with the formalism of perturbation theory.
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2.1.2 Canonical quantisation

The transition from field theory to quantum field theory is done by imposing commu-

tation (or anti-commutation) relations on the field and its conjugate momentum, in

analogy with quantum mechanics [7]. This is called canonical quantisation. A quantum

field is an operator valued function of space and time that satisfies the commutation

relations [5].

Consider the Klein-Gordon lagrangian for a scalar field as described in Section 2.1.1.

If Equation 2.6 is expanded as an infinite sum of creation and annihilation operators

(a† and a), one may compute the energy spectrum of the theory [6, 7]. The creation

operator acts on the vacuum state and creates an excited state of energy ω =
√
p2 +m2.

If one takes this excited state and acts with the momentum operator, the eigenvalue is

the 3-momentum ~p. Acting on the excited state with the angular momentum operator

and setting ~p = 0 gives the intrinsic angular momentum of the state, which in this case

is 0. These ingredients allow the excited state of the field to be interpreted as a particle,

since it has the correct energy, momentum and spin [5].

Particles with integer spin are called bosons as they obey Bose-Einsteins statistics. The

Klein-Gordon field introduced above gives rise to bosons as the states have integer

spin. Particles with half-integer spin obey Fermi-Dirac statistics and are called fermions.

The spin of a field is determined by the type of commutation relations imposed in the

quantisation step. The imposition of commutation relations dictates that the resulting

particles are bosons, whereas the imposition of anti-commutation relations dictates that

the resulting particles are fermions. The fact that spin-statistics [8] is a consequence of

quantisation, as opposed to something that is enforced by hand, is another reason for

using quantum field theories to describe nature.

The spin-0 lagrangian was given in Equation 2.5. The spin-1 and spin-1/2 lagrangians

are given below as they describe the particles that are the subject of this thesis. The

Proca lagrangian describes spin-1 particles

LProca = −1
4

(∂µV ν − ∂νV µ) (∂µVν − ∂νVµ) , (2.8)

given here for a massless field V . The Dirac lagrangian describes spin-1/2 particles

LDirac = iΨ̄γµ∂µΨ−mΨ̄Ψ. (2.9)
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Here Ψ is a four component vector called a Dirac spinor, and Ψ̄ is called the Dirac

adjoint with

Ψ̄ = Ψ†γ0, (2.10)

while the γµ are 4 x 4 matrices.

2.1.3 Interactions

In this section, interactions are added to the free scalar field theory described by Equa-

tion 2.5. Before doing so, an important quantity, which will aid the understanding of

interacting theories, is introduced. This quantity is called the Feynman propagator [7].

In the free Klein-Gordon theory it is given by

〈0|Tφ(x)φ(y) |0〉 =
∫

d4x

(2π)4

ieip·(x−y)

p2 +m2 − iε

≡ DF (x− y). (2.11)

It is interpreted as the quantum mechanical amplitude for the quantum field φ(y) to

excite the ground state of the free theory |0〉, for the excited state to propagate from y

to x, and for the excited state to be annihilated at x. The symbol T is the time ordering

symbol, which ensures that in the sequence of fields immediately following it, fields that

occur at later times are placed to the left. The factor iε is included in the integral to

denote the fact that the singularity that would otherwise arise in the integration along

the real x0 axis is avoided.

The interacting Klein-Gordon theory is obtained by adding an interaction term

Lint =
λ

4!
φ4 (2.12)

to the free lagrangian in Equation 2.5. This quantum field theory does not form part of

the SM but is useful for illustrative purposes. For the perturbative techniques to apply,

the dimensionless number λ should be small, with λ << 1. Since the ground state of

the interacting theory is different to the ground state of the free theory, it is denoted by

|Ω > and the Feynman propagator in the interacting field theory is

〈Ω|Tφ(x)φ(y) |Ω〉 =
〈0|T

{
φ(x)φ(y) exp(−i

∫
dt Lint)

}
|0〉

〈0|T
{

exp(−i
∫
dt Lint)

}
|0〉

. (2.13)

If the coupling constant λ is small, the interaction term can be considered a small pertur-

bation of the free theory, and the exponential can be expanded in powers of −i
∫
dt Lint.
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The computation of the Feynman propagator in the interacting field theory becomes an

exercise of evaluating time ordered products of fields. Using Wick’s theorem [7], the first

non-trivial term in the expansion of the numerator in Equation 2.13 is

〈0|Tφ(y)φ(x) (−i)
∫
d4z

λ

4!
φ4 |0〉 = 3 ·

(−iλ
4!

)
DF (x− y)

∫
d4z DF (z − z)DF (z − z)

+ 12 ·
(−iλ

4!

)∫
d4z DF (x− z)DF (y − z)DF (z − z)

(2.14)

Drawing each Feynman propagator as a line, and each point as a dot, the first term can

be depicted graphically as the product of Figures 2.2(a) and 2.2(b), while the second

term may be represented by Figure 2.2(c). The value of the diagram can be recovered

x y

1

(a)

z

1

(b)

x y
z

1

(c)

Figure 2.2: Diagrams representing the corrections to the free Feynman propagator in
φ4 theory.

by assigning DF to each line, (−iλ)
∫
d4z to each vertex and unity to each external line.

These assignments are called the Feynman rules in position space for φ4 theory.

There is thus a diagrammatic interpretation of Equation 2.13. The total amplitude can

be written down by applying the Feynman rules to all possible diagrams with external

points x and y. The example above is for the calculation of the Feynman propagator in

the interacting Klein-Gordon theory, but any amplitude in the theory may be calculated

in this way. Furthermore, rules may be derived for any lagrangian. The following

sections will involve writing down lagrangians for theories relevant to the interactions of

particles in nature. Amplitudes of scattering processes are calculated with exactly the

same techniques as discussed in this section.

2.2 The Standard Model

The Standard Model (SM) is a relativistic quantum field theory that describes the in-

teractions between particles due to three of the four fundamental forces of nature: the

strong interaction, the weak interaction and the electromagnetic interaction.1 Particles
1The fourth fundamental force, gravity, is not incorporated into the SM.
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called quarks and leptons constitute the matter content of theory, and forces between

these are communicated, or mediated, via other particles called gauge bosons. The

fundamental particles of the SM are displayed in Figure 2.3. There are six quarks of dif-

c

d

u

s

tu

b

e

ν
e

μ τ
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Figure 2.3: Particle content of the SM. The abbreviations are explained in the text.

ferent flavour, the up-, down-, charm-, strange-, top- and bottom-quark, or u, d, c, s, t, b

for short. The quarks have fractional electric charge +2
3 for u, c, t and −1

3 for d, s, b. An-

other quantum number, unique to quarks and gluons, is colour. Quarks can be coloured

either red (r), green (g), or blue (b) (or anti-red (r̄), anti-green (ḡ), anti-blue (b̄)). There

are six leptons, three of which have one unit of electric charge. The charged leptons

are the electron, the muon and the tau-lepton (e, µ, τ). The neutral leptons are called

the electron-, the muon- and the tau-neutrino (νe, νµ, ντ ). The quarks and leptons are

fermions since they obey Fermi-Dirac statistics; their intrinsic angular momentum (spin)

is half-integer. It is also convenient to think of the quarks and leptons as members of

one of three families called the first (i), second (ii) and third (iii) generations of matter.

Lepton masses increase from the first to the third generation.

The electromagnetic force is mediated by the electrically neutral photon (γ). This force

is felt by all particles with electric charge. The weak force is mediated by the charged

W and neutral Z. It is the only force that governs neutrino interactions. Gluons (g)

are carriers of the strong force, which acts on particles with colour charge, i.e. quarks.

Gluons carry two colour indices, allowing quarks to change colour. For example, a blue

quark (qb) may change into a red quark (qr) if it emits a blue/anti-red gluon (gbr̄):

qb → gbr̄qr. Photons, gluons, W and Z particles all have one unit of intrinsic angular
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momentum. They thus obey Bose-Einstein statistics and are referred to collectively as

bosons.

The masses of all particles in the SM are generated by a mechanism called spontaneous

symmetry breaking (SSB). The symmetry breaking leads to the appearance of four scalar

particles (spin-0 and thus bosons). One of these is called the Higgs boson (H), which

gives rise to the masses of electroweak bosons and fermions. Further details on SSB and

the Higgs boson are given in Section 2.2.5.

To make predictions for how these particles interact, it is necessary to construct the SM

lagrangian. The general strategy is to start with a lagrangian describing a free system

and then add the necessary interaction terms, while at the same time adhering to what

is called the gauge principle.

2.2.1 The gauge principle

Consider the lagrangian describing free Dirac fermions

L0 = iΨ̄(x)γµ∂µΨ(x)−mΨ̄(x)Ψ(x). (2.15)

The fermion field may be transformed by a multiplicative phase, defined as the expo-

nential of i ≡
√
−1 times some factor. If this factor is independent of the space-time

point, the value of the field at every space-time point is multiplied by the same factor.

This is called a global phase transformation.

The lagrangian above is invariant under global phase transformations of the form

Ψ(x)→ Ψ′(x) ≡ eiQθΨ(x), (2.16)

where the argument of the exponential is factored into Q and θ by convention. If the

transformation is made local, corresponding to the replacement of θ with θ(x) (meaning

that the value of the field is changed by different amounts at different points), the

lagrangian is no longer invariant. If a new spin-1 field Aµ(x) is introduced, and it is

defined such that it transforms as

Aµ(x)→ A′µ(x) ≡ Aµ(x)− 1
e
∂µθ(x), (2.17)

then the lagrangian

L = L0 − eQAµ(x)Ψ̄(x)γµΨ(x) (2.18)
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is invariant under local phase transformations. The new term is an interaction term,

involving the fermion and Aµ fields. The lagrangian must include an additional Proca

lagrangian for the spin-1 Aµ field (see Equation 2.8). Defining

DµΨ(x) ≡ (∂µ − ieQAµ(x))Ψ(x), (2.19)

and the electromagnetic field strength tensor as

Fµν = ∂µAν − ∂νAµ, (2.20)

the full lagrangian of the quantum theory of electrodynamics (QED) is

LQED = Ψ̄γµ
(
i /D −m

)
Ψ− 1

4
(Fµν)2. (2.21)

This lagrangian provides a theory that describes the electromagnetic interactions be-

tween electrically charged fermions, mediated by photons. A mass term for the photon

field Aµ is not added since such a term is not gauge invariant.

In Section 2.1.3, a term, quartic in scalar fields, was added to the Klein-Gordon la-

grangian to describe interactions between fields. It was seen that the amplitude for a

particle to propagate between two points was represented by Feynman diagrams, and

that corrections to the free field amplitude involved four-legged vertices. For QED, the

interactions are represented by three-legged vertices. The relevant term in the lagrangian

is the AΨ̄Ψ term, which is cubic in fields. Two fields correspond to fermions, and one to

the photon. Corrections to propagators, indeed any amplitude in QED, involve diagrams

that have vertices like the one shown in Figure 2.4. Feynman diagrams appear several

f±

f±

γ

1

Figure 2.4: The vertex representing the interaction term of the QED lagrangian between
charged fermions (f±) and photons (γ).

more times in this thesis. In some cases it is to represent interaction vertices, in others

it is to represent the quantum amplitudes of various processes.
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QED predicts an array of quantities that agree with experimental measurements to an

astonishing degree [7]. The lagrangian that describes QED can be constructed from a

lagrangian describing free fermions by requiring that this lagrangian is invariant under

local phase transformations. It is important to stress that local invariance has no moti-

vation other than that it leads to the correct lagrangian, and predicts the existence of

the photon. Since the imposition of invariance under local phase transformations suc-

cessfully constructs the lagrangian of QED, it is also taken as the basis for constructing

other lagrangians of the SM. This is known as the gauge principle.

2.2.2 Lie groups

The transformation given by Equation 2.16 is also known as a U(1) transformation.

U(1) is a group, in the mathematical sense, and the exponential factor that multiplies

the field is an element of the representation of that group [9]. The U(1) group is a

member of a family of groups, SU(N) or Lie groups, consisting of N x N matrices. U

denotes the fact that the matrices are unitary and S denotes the fact that the matrices

have determinant 1.2 Lie groups are infinitesimally generated, which means that every

element of the group can be obtained by continuously transforming the identity element

by infinitesimal amounts. The SU(N) group elements are generated by N generators,

and for N > 1, there are N2 − 1 independent generators.

The particles in the SM transform under the combination of three symmetry groups. The

combination can be represented by the group product, written as SU(3)C⊗SU(2)L⊗U(1)Y .

The subscripts specify the types of fields that the symmetry transformations apply to.

Coloured fields (C) transform under SU(3) transformations, left-handed fields (L) trans-

form under SU(2), and fields with another quantum number called hypercharge (Y )

transform under U(1) transformations. These concepts are defined and developed in

the following sections, where it will be shown that each symmetry group can be loosely

associated with a force: SU(3)C with the strong interaction, SU(2)L with the weak

interaction, and U(1)Y with the electromagnetic interaction. It isn’t a strict correspon-

dence. The weak and electromagnetic forces are unified and, for example, the U(1)

transformation of fermion fields in QED is embedded in the SU(2)L⊗U(1)Y portion of

the SM group structure.

The U(1) transformation in the previous section corresponds to multiplication of fields

by a number. In the following sections, fields are subject to SU(2) and SU(3) transfor-

mations, which correspond to matrix multiplication of fields. It will also be shown that
2When N = 1, the S is redundant and is dropped. Hence, U(1) ≡ SU(1).



Chapter 2. Theory 14

invoking the gauge principle, and insisting that the lagrangians are invariant under local

versions of these transformations, requires the addition of three new fields for SU(2)

and eight new fields for SU(3). The number of additional fields that are required for the

lagrangian to remain invariant under local phase transformations is equal to the number

of independent generators of the underlying Lie group.

2.2.3 Quantum chromodynamics

There is a considerable amount of evidence to suggest that quarks interact via the strong

force and have an additional quantum number called colour charge [10]. This idea of

colour arose due to the discovery of particles called baryons (B) that seemed to be com-

posed of three quarks with the same flavour, electric charge and spin quantum numbers

(B ≡ qqq). Three fermions in the same state is disallowed due to Pauli exclusion, but

the concept of colour solves the problem. The solution in this example is to assign differ-

ent colours to the quarks such that they are coloured red, green and blue (B ≡ qrqgqb)

and are thus in unique quantum states. The study of the interactions between coloured

particles is called quantum chromodynamics (QCD).

Since the quarks are coloured they are described by a triplet of fermionic fields

Ψ =


Ψr

Ψg

Ψb

 , (2.22)

where r, g, b labels the quark colour. A free Dirac lagrangian

L0 = Ψ̄(x) (γµ∂µ −m) Ψ(x) (2.23)

is invariant under global SU(3) transformations

Ψα(x)→ (Ψα)′ (x) ≡
[
ei
λa

2
θa
]α
β
Ψβ(x), (2.24)

which rotate the colour fields into one another. The λa (a = 1, ..., 8) matrices are the

generators of SU(3) and the Greek indices α, β label the colour. Invoking the gauge

principle, one introduces eight gauge bosons Gµa (gluons) and, as before with QED, the

additional interaction terms can be absorbed into a covariant derivative

DµΨ =
[
∂µ + igs

λa

2
Gµa(x)

]
Ψ. (2.25)



Chapter 2. Theory 15

The strength of the QCD interaction, gs, has been separated out and plays a similar

role to λ (Equation 2.12) in interacting Klein-Gordon theory. To have gauge invariant

kinetic terms for the gluons, one must define the gluon equivalent of Fµν (Equation 2.20)

Gµνa = ∂µGνa − ∂νGµa + gsf
abcGµbG

ν
c . (2.26)

The third term does not appear in Fµν . This additional term arises due to the non-

abelian nature of the SU(3) symmetry group and gives rise to cubic and quartic inter-

actions between the gluon fields in addition to the interactions between the fermion and

gluon fields. These interactions are represented by the vertices in Figure 2.5. The fabc

q

q

g

1

g

g

g

1

g

g

g

g

1

Figure 2.5: The vertices representing the interaction terms of the QCD lagrangian
between quarks (q) and gluons (g).

are SU(3) structure constants [7]. With these definitions, the lagrangian for QCD can

be written succinctly as

LQCD = Ψ̄(i /D −m)Ψ− 1
4

(Gµνa )2. (2.27)

Note the similarity with the QED lagrangian in Equation 2.21.

The presence of cubic and quartic interactions between the gluon fields makes the phe-

nomenology of QCD very different to that of QED, particularly in how the strength of

the electromagnetic and strong forces vary with energy. In QED the strength increases

with energy, making the charge of an electron seem small at large distances (or low

energy) and large at small distances (or high energy). In general, the smaller charge of

a fermion at lower energies is due to the screening effect of charged fermion pairs arising

from fluctuations in the vacuum.
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The QED coupling constant α is related to the coefficient of the interaction term in

Equation 2.19 such that α = (eQ)2

4π . The dependence of α with energy Q is given by the

beta-function.

β (α) ≡ ∂α

∂ (lnQ2)
=

2α2

3π
(2.28)

At the scale relevant to this analysis α(MZ) ≈ 1/127, whereas at low energies, there is

the familiar value α ≈ 1/137.

Screening also occurs in QCD, however, the gluon interactions in the vacuum create

an anti-screening effect which make colour charge larger at higher energies. The corre-

sponding beta-function for QCD is

β (αs) ≡
∂αs

∂ (lnQ2)
= −

(
11−

2nf
3

)α2
s

2π
, (2.29)

where αs is related to the strong coupling in the QCD lagrangian (see Equations 2.25 and

2.27) in the same way as the QED case with αs = g2
s

4π . Since the QCD beta-function

is negative (nf = 6), the coupling gets large at low energies. This gives rise to the

phenomena of asymptotic freedom, where quarks are essentially free at high energies,

and confinement, where quarks and gluons bind together to such a great extent that no

isolated colour charge has yet been observed. At the scale relevant to this analysis, the

value of the strong coupling constant is αs(MZ) = 0.118.

2.2.4 Electroweak unification

The third fundamental force that is described by the SM is that of the weak interactions,

so-called because its strength is about a million times less than that of the strong force.

A number of experimental observations motivate the choice of underlying symmetry

group and place restrictions on terms appearing in any lagrangian.

• The weak force is transmitted by two charged (W±) and one neutral (Z) force

carrier.

• β-decay processes like hadronic n → pe−ν̄e and leptonic µ− → e−νeν̄µ couple to

the weak force with the same strength [11].

• Due to the angular distributions of decay products observed in experiment, the

charged weak current couples to left-handed fermions and right-handed anti-fermions.3

3The handedness of a particle refers to the relationship between the momentum and spin vectors of
that particle. If these vectors are parallel, the particle is right-handed. If they are anti-parallel, the
particle is left-handed.
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This implies a breaking of the discrete symmetries of parity P (reflections in a mir-

ror) and charge conjugation C (replacement of particle with anti-particle).

• The neutral weak current couples to left- and right-handed charged fermions, with

different interaction strengths. This current differs from the photon in that it also

couples to neutrinos.

• The vast majority of neutrinos are left-handed. Right-handed neutrinos must exist

to account for neutrino oscillations and masses, but these are not included in the

SM.

These requirements motivate the choice of an SU(2) symmetry group to account for

the similar behaviour, with respect to the charged weak force, of up- and down-type

left-handed fermions.4 The corresponding fields are arranged in doublets(
u

d

)
L

(
c

s

)
L

(
t

b

)
L(

νe

e−

)
L

(
νµ

µ−

)
L

(
ντ

τ−

)
L

(2.30)

to highlight the fact that these fields transform into one another under SU(2) trans-

formations. The couplings of right-handed fermions to the neutral force carrier can be

accounted for by an additional U(1) symmetry. This allows the

eR, µR, τR, uR, dR, cR, sR, tR, bR (2.31)

fields to be added to the theory. Letting f denote fermion fields, and ν neutrino fields,

the free, and massless, fermion lagrangian is then

L0 =
∑
f

Ψ̄L(x)γµ∂µΨL(x) +
∑
f 6=ν

Ψ̄R(x)γµ∂µΨR(x) (2.32)

= LL0 + LR0 (2.33)

where the left- and right-handed spinor components have been projected out using the

γ5 operator. Defining the projection operators as

PL =
1− γ5

2
, PR =

1 + γ5

2
, (2.34)

4The fermions u, c, t, νe, νµ, ντ are up-type while d, s, b, e, µ, τ are down-type.



Chapter 2. Theory 18

νe eL eR uL dL uR dR
t3 1/2 -1/2 0 1/2 -1/2 0 0
Y -1 -1 -2 1/3 1/3 4/3 -2/3
Q 0 -1 -1 2/3 -1/3 2/3 -1/3

Table 2.1: Values of third component of weak isospin (t3), electric charge (Q) and
hypercharge (Y ) for up- and down-type quarks a leptons.

the left- and right-handed fermion fields are

ΨL = PLΨ, ΨR = PRΨ. (2.35)

The imposition of SU(2) local gauge invariance on the left-handed part of the lagrangian

requires the introduction of three additional vector fields Wµ
i (i = 1, 2, 3). The left-

handed lagrangian becomes

LL =
∑
f

Ψ̄L(x)γµ
(
∂µ − ig~τ

2
· ~W (x)

)
ΨL(x)− 1

4
Fµνi Fiµν (2.36)

where ~τ encodes the generators of the SU(2) group and the weak interaction strength

g has been factored out, similar to what was done for QCD. The weak field strength

tensor is

Fµνi = ∂µW ν
i (x)− ∂νWµ

i (x) + gεijkW
µ
j (x)W ν

k (x). (2.37)

which, as in the QCD case of Equation 2.26, has one more term than the electromagnetic

field strength tensor.

The W1,2(x) vector fields combine to give the observed W± bosons. The W3(x) field

cannot be interpreted as the Z boson because it only couples to left-handed fields. The

solution is to invoke a new U(1) symmetry, giving rise to a new vector field Bµ, whose

conserved charge is called hypercharge (Y ). This new charge is defined in terms of

other charges as the difference between the electric charge Q and the charge associated

with transformations of the W3(x) field, t3, which is called the third component of weak

isospin [12, 13].
Y

2
= Q− t3 (2.38)

The hyper-, electric, and third component of weak isospin charges for left- and right-

handed fermion fields are given in Table 2.1.

The left- and right-handed lagrangians are amended to include the interactions between

the field Bµ and the spinor fields. Kinetic terms for the new field are added to give the



Chapter 2. Theory 19

unified electroweak lagrangian

LEW =
∑
f

Ψ̄L(x)γµ
(
∂µ − ig~τ

2
· ~W (x)− ig′yΦLB

µ(x)
)

ΨL(x)− 1
4
Fµνi Fiµν

+
∑
f 6=ν

Ψ̄R(x)γµ
(
∂µ − ig′yΦRB

µ(x)
)

ΨR(x)− 1
4
HµνHµν , (2.39)

where

Hµν = ∂µBν − ∂νBµ. (2.40)

The strength of the interaction with the Bµ field is g′. By considering admixtures of

the B and W3 fields, one obtains the physical photon and Z boson. The admixture is

parameterised by the weak mixing angle θW .

Bµ = cos θW Aµ − sin θW Zµ

Wµ
3 = sin θW Aµ + cos θW Zµ

(2.41)

With the requirement that

g sin θW = g′ cos θW = e (2.42)

the field Aµ couples vectorially to left- and right-handed fields and is interpreted as the

photon. The Zµ has vector and axial-vector couplings to fermions gv and ga

gv =
t3
2
− eQ sin2 θW , ga =

t3
2
, (2.43)

where t3 is the third component of weak isospin given in Table 2.1.

In summary, the SU(2)L ⊗ U(1)Y symmetry requires four fields, W1,W2,W3, and B.

Some of the properties of the observed the W±, Z and photon are obtained by superpo-

sitions of these fields. The most important property of the observed W± and Z bosons,

their large mass, has not been accounted for yet. This is the subject of the next section.

2.2.5 Spontaneous symmetry breaking and mass

Suppose a system has an infinite family of degenerate ground states due to some sym-

metry. If one of these states is chosen to be the unique ground state, then the original

symmetry is broken. This is called spontaneous symmetry breaking (SSB). To see the

effect of the symmetry breaking in action, consider a lagrangian involving a complex
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scalar field.

L = ∂µφ
†∂µφ− V (φ) , V (φ) = µ2φ†φ+ h

(
φ†φ
)2

(2.44)

The lagrangian is invariant under the global phase transformation

φ (x)→ φ′ (x) ≡ eiλφ (x) . (2.45)

In other words, the lagrangian is invariant under the action of a U (1) symmetry group,

generated by λ. Finite minima of the potential are ensured by the requirement h > 0. If

µ2 > 0 there is a unique minimum, but if µ2 < 0 there is an infinite set of ground states

φ0 =
ν√
2
eiλ, ν =

√
µ2

2h
, (2.46)

and if a particular ground state is chosen, at λ = 0 say, the symmetry is broken. If the

ground state is excited to

φ (x) =
1√
2

(ν + φ1 + iφ2) (2.47)

then the potential becomes

V (φ) = V (φ0)− µ2φ2
1 + hνφ1

(
φ2

1 + φ2
2

)
+
h

4
(
φ2

1 + φ2
2

)2
. (2.48)

It is clear from this equation that φ1 has a mass term but φ2 does not. The excitations

described by φ2 are in directions around the degenerate minimum energy state, and

there is no mass term penalty for such excitations. The massless excitation is called a

Nambu-Goldstone boson, and there are as many of these as there are generators of the

broken symmetry group [14]. There is only one of these in the case considered above.

In the SM, these ideas are extended to the symmetry group governing electroweak in-

teractions SU(2)L ⊗ U(1)Y . This is done such that the weak part is broken and the

electromagnetic part remains unbroken, a choice motivated by the experimental fact

that W and Z bosons are massive while the photon is massless. A new field arises,

the Higgs boson, as well as three Goldstone bosons (two charged, one neutral). The

example above considered global symmetries. In the case of the SM, the symmetry is a

local one and the Goldstone bosons can be removed from the lagrangian by a suitable

choice of gauge. Their degrees of freedom remain, but are now interpreted as longitu-

dinal polarisation states of the W± and Z bosons. Longitudinal polarisation states are

characteristic of all massive particles. To see this explicitly consider a complex scalar
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doublet5

Φ =
1√
2

(
φ1 − iφ2

φ3 − iφ4

)
. (2.49)

Using a similar lagrangian and potential to before, the ground state is

Φ0 =
1√
2

(
0

ν

)
. (2.50)

If the ground state is excited to

Φ =
1√
2

(
−iω1 − ω2

ν +H − iω3

)
. (2.51)

the scalar potential becomes

V (Φ) = hνH2 + hνH
(
H2 + ~ω2

)
+
h

4
(
H2 + ~ω2

)2
, (2.52)

where it is clear that the H field has a mass term but the ωi fields do not. To see the

conferral of mass to the electroweak bosons, write down the scalar lagrangian with the

necessary covariant derivative and evaluate it at the ground state.

LS |Φ=Φ0 =

∣∣∣∣∣
(
∂µ − ig~τ

2
· ~Wµ − i1

2
g′Bµ

)
Φ0

∣∣∣∣∣
2

− V (Φ0)

=
e2

4 sin2θW
ν2 W+

µ W
−µ +

e2

8 sin2θW cos2θW
ν2 ZµZ

µ − V (Φ0) (2.53)

The W and Z boson masses are

MW =
e

2 sinθW
ν MZ =

e

2 sinθW cosθW
ν, (2.54)

and as desired, there is no mass term for the Aµ field.

The mass terms for a Dirac field have the form

mΦ̄Φ = m(Φ̄RΦR + Φ̄RΦL + Φ̄LΦR + Φ̄LΦL)

= m(Φ̄PLPRΦ + Φ̄PLPLΦ + Φ̄PRPRΦ + Φ̄PRPLΦ)

= m(Φ̄RΦL + Φ̄LΦR) (2.55)

where use has been made of the projection operators PL,R of Equation 2.34. Equa-

tion 2.55 is invariant under U(1) gauge transformations but not SU(2) transformations.
5To keep U(1)QED unbroken, the hypercharge of this scalar must be 1.
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In other words, fermion mass terms are forbidden in the SM because they break gauge in-

variance. To include fermions mass terms in a gauge invariant way, interactions between

the fermions and scalar field H are added with the following lagrangian

LY = −
(

1 +
H

ν

)∑
f

mf Φ̄fΦf . (2.56)

The strength of the couplings between the fermions and Higgs scalar, and hence the

fermion masses, are not predicted by the theory and must be determined from experi-

ment.

2.3 Scattering and factorisation

The scattering of high energy leptons on nuclear targets has been a very successful

method of determining hadron structure. Not being affected by the strong nuclear force,

leptons can penetrate deep into the hadron to interact with the quarks. In experiments

during the 1960s, the rate of large angle electron scattering from a hydrogen target

was measured [15]. The rate was expected to be small, since previous proton-proton

collision experiments resulted in the production of hadrons colinear to the beam axes,

supporting the hypothesis that the constituents of the proton disfavoured partaking in

hard collisions [7]. The rate was found to be large, suggesting that elastic collisons were

taking place between the electron and proton. However, for the vast majority of these

large-angle scattering events, the proton broke up.

The parton model was introduced to account for these results [16]. The model claims

that the proton consists of quarks and other uncharged particles that keep the proton

intact. The quarks carry the electric charge necessary for the scattering to occur. The

other uncharged particles (gluons) are responsible for binding the proton together as

well as the production of hadrons, which occurs through the exchange of momentum

with the struck quark.

The electron-proton scattering process is represented by the Feynman diagram in Fig-

ure 2.6(a). The initial proton and electron have momenta P and k, the exchanged

photon has momentum q = k − k′, and the final state electron momentum is k′. Deep

inelastic scattering occurs when −q2 ≡ Q2 >> m2
P (deep), where the proton is being

probed at energies much larger than its mass, and (P + q)2 ≡ W 2 >> m2
P (inelastic),

where the struck proton obtains energies that are also much larger than its mass, causing

it to break up.
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Figure 2.6: Feynman diagrams representing (a) ep and (b) pp deep inelastic scattering.

Consider the centre-of-mass frame, where the proton constituents are travelling toward

the electron at relativistic velocities, colinear to the proton velocity. Any transverse mo-

mentum that the constituents may have is suppressed by αs. The constituent momentum

p is thus a fraction x of the proton’s longitudinal momentum P such that p = xP . The

probability that a proton contains a parton with this momentum cannot be computed

from perturbation theory since it depends on processes that take place in an energy

regime where perturbative expansions don’t converge; it must be determined from ex-

periment instead. This probability is also called a parton density function (PDF). For a

particular parton species q, the PDF is a function of x and Q2, fq = fq(x,Q2), in agree-

ment with data [17–21]. The original parton model considered the PDFs as functions

of x only, to reflect the data at the time [22]. This phenomenon is known as Bjorken

scaling, which is a good approximation at low Q2. The QCD-improved parton model

takes into account a dependence on Q2 and more will be said about this in Section 2.3.2.

To determine the total electron-proton scattering cross-section, one must multiply the

electron-quark scattering amplitude by the PDF, integrate over all possible momentum

fractions and sum over all parton species.

The extension of these ideas to proton-proton scattering is straightforward. In this case,

one parton from each proton participates in the interaction, which is represented in
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Figure 2.6(b). The cross-section is given by

σpp→V =
∑
qa,qb

∫
dxadxb fqa/A

(
xa, Q

2
)
fqb/B

(
xb, Q

2
)︸ ︷︷ ︸

PDFs

σ̂qaqb(xa, xb, Q
2). (2.57)

The formula expresses the proton-proton (pp) cross-section as the sum of contributions

from individual partonic cross-sections (σ̂), which are weighted according to the par-

ticular partons involved (qa from hadron A, qb from hadron B) and their momentum

fractions with respect to the total proton momenta (xa, xb). The information for how to

assign these weights is encoded in the parton distribution functions (PDFs). The PDFs

are not predicted by the SM itself but must be determined from fits to data obtained in

previous experiments. Equation 2.57 is a consequence of one of the factorisation theo-

rems of QCD [23], where factorisation refers to the separation of perturbative (σ̂) and

non-perturbative phenomena (PDFs).

Consider the proton-proton collision represented by Figure 2.6(b). In the centre-of-mass

frame the protons have 4-momenta

PA = (E, 0, 0, E) , PB = (E, 0, 0,−E) , (2.58)

and the centre-of-mass energy squared is s = 4E2. The 4-momentum of the intermediate

particle is

q = xaPA + xbPB

= ((xa + xb)E, 0, 0, (xa − xb)E) (2.59)

which implies that the invariant mass of the intermediate particle is

Q2 ≡M2 = xaxbs. (2.60)

Defining a variable y using the zeroth component of q

q0 = Mcosh y, (2.61)

one has

cosh y =
xa + xb
2
√
xaxb

=
1
2

(√xa
xb

+
√
xb
xa

)
. (2.62)
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This gives

xa =
M√
s
ey, xb =

M√
s
e−y. (2.63)

In this thesis, Z boson production is measured at different centre-of-mass energies,
√
s,

and rapidities, y. Equation 2.63 demonstrates the link between the proton momentum

fractions of the partons and the rapidity, and thus, these measurements can be used to

constrain PDFs as functions of x and Q2.

2.3.1 Parton distribution functions

In general, a PDF takes the form

f
(
x,Q2

)
= F

(
x,Q2

)
xm(Q2) (1− x)n(Q

2) . (2.64)

The function F is a polynomial in x, whose coefficients and powers are given by param-

eters that depend on Q2. The probability of finding a parton with momentum fractions

of 0 or 1 vanishes. This is reflected in the factors xm(Q2) and (1− x)n(Q
2), which control

the low- and high-x behaviour, respectively. The values of the parameters at various Q2

must be constrained empirically using data. The energy reach of the experiment, and

indeed the particular process under study, determines the values of Q2 that the hadron

structure is probed at. Since the momentum fractions are related to the rapidity of the

particle produced in the Drell-Yan process (see Equation 2.63), different experiments

can also probe different regions of the PDF phase-space due to differing geometric ac-

ceptances. Figure 2.7 shows how various experiments cover this phase-space, where the

coverage is due to the geometry of each experiment and the energy scale of the processes

studied. The green domain represents fixed target data, which probe PDFs in the low-

Q2 and quite a broad range of x. Experiments at the Tevatron have a higher Q2 but

do not encompass as broad a range of x. The LHC experiments are represented by the

orange and blue domains. These cover a broad range of both x and Q2. The regions

accessible to the Large Hadron Collider beauty (LHCb) detector are indicated by the

orange domains. A Z boson produced in LHCb with an invariant mass of 91 GeV/c2

corresponds to momentum fractions xa,b of ∼ 10−4 and ∼ 10−1, and Q2 ∼ 104 GeV/c2.

The proton is a bound state, consisting of three quarks (two u-quarks, one d-quark)

held together with gluons. The three quarks are called valence quarks. Quark anti-

quark pairs may also arise due to fluctuations of the QCD vacuum. Such quarks are

called sea-quarks. The sea is the source of all anti-quarks and s-quarks in the proton. It

is also an additional source of u- and d-quarks. The PDFs for each proton constituent
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Figure 2.7: The coverage of the x−Q2 phase-space probed by various experiments [24].
The dashed red lines are lines of constant rapidity.

may be represented by

u, ū, d, d̄, s, s̄, g.

Heavy quarks (c, b, t) are given special treatment.6

PDFs are extracted by fitting Equation 2.57 to data. The cross-sections are usually

measured as functions of rapidity, where the correspondence between the rapidity and

the value of the PDF at a particular Q2 is given by Equation 2.63. The best choice of

parameters (p1, ..., pn say, which specify F , m and n in Equation 2.64) is obtained by

minimising a χ2:

χ2(p1, ..., pn) =
N∑
i,j

(
σdatai −σNNLOi (p1, ..., pn)

)
C−1
ij

(
σdataj −σNNLOj (p1, ..., pn)

)
. (2.65)

Suppose there are N cross-section measurements, denoted by σdatai (i=1,...,N), with co-

variance matrix Cij . The predictions at NNLO in perturbative QCD (see Section 2.4.2),

given by Equation 2.57, are represented by σNNLOi . The minimisation amounts to

choosing parameters p1, ..., pn to best describe the data and, in this way, the PDFs are

extracted.
6Various schemes account for the heavy quark PDFs. These are the Fixed-Flavour-Number-

Scheme, the Zero-Mass-Variable-Flavour-Number-Scheme and the General-Mass-Variable-Flavour-
Number-Scheme. More details can be found in Ref [25].
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The PDFs listed above are not independent. It is more convenient to extract the fol-

lowing linearly independent combinations of PDFs:

uv = u− ū, dv = d− d̄, S = 2(ū+ d̄+ s̄),

s+ s̄, s− s̄, ∆ = ū− d̄, g,

where the subscript v denotes a valence quark distribution. Further constraints on the

PDFs come in the form of number sum rules. It is required that there are two up valence

quarks in the proton at the lowest energy scale Q2
0∫ 1

0
dx uv(x,Q2

0) = 2 (2.66)

and there is one down valence quark∫ 1

0
dx dv(x,Q2

0) = 1. (2.67)

The fraction of the proton momentum that a particular parton is expected to have is∫
dx x f(x). It follows that the fractional momenta of all species adds up to unity

∫ 1

0
dx x[uv(x,Q2

0) + dv(x,Q2
0) + S(x,Q2

0) + g(x,Q2
0)] = 1. (2.68)

In Figure 2.8, x f(x) is plotted for different combinations of parton species, at the lowest

energy scale Q2
0 = 1 GeV2.
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Figure 2.8: NNLO MSTW08 PDFs at input scale Q2
0 = 1 GeV2. Parameters and

uncertainties are taken from Ref [25].
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2.3.2 PDF evolution

Initial, low energy, scattering experiments [15] demonstrated that the parton distribu-

tion functions were dependent on the fractional momentum x and independent of the

Q2 of the process, a phenomenon known as Bjorken scaling. However, at higher proton

momenta, partons are more likely to radiate gluons as their energy is greater. Simi-

larly, at higher gluon momenta, the rate at which quark anti-quark pairs are created

increases. These effects lead to Q2-dependent scattering, and deviations from pure scal-

ing behaviour, known as scaling violations. The reshuffling of partons in the proton is

governed by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi or DGLAP equations [26–

29]. These are given below in Equations 2.69 and 2.70.

dqi(x,Q2)
d(ln Q2)

=
αs(Q2)

2π

∫ 1

x

dw

w

[
qi(w,Q2)Pqq

( x
w

)
+ g(w,Q2)Pqg

( x
w

)]
+O(α2

s(Q
2))

(2.69)

dg(x,Q2)
d(ln Q2)

=
αs(Q2)

2π

∫ 1

x

dw

w

[
qi(w,Q2)Pgq

( x
w

)
+g(w,Q2)Pgg

( x
w

)]
+O(α2

s(Q
2)) (2.70)

These equations lead to two important observations. The first is that the PDFs increase

as ln Q2, which is quite a slow growth. It is not surprising that these scaling violations

were not detected until many measurements were made over a range of Q2. The second

is that the quark and gluon PDFs are coupled. For example, the rate of change of the

quark PDF with ln Q2 depends on the quark PDF and its probability to radiate a gluon

Pqq, but it also depends on the gluon PDF and the probability for it to radiate a quark

Pqg. This means that as quark PDFs decrease, gluon PDFs increase, and vice versa.

The right-hand-side of the DGLAP equations indicate that partons at high-x tend to

radiate and drop to lower values of x, forming new partons at low-x. The left-hand-

side tells us that this happens more often at higher values of Q2. In this way, the

PDFs decrease at high-x, increase much more rapidly at low-x, and as Q2 increases,

the proton has more and more constituents sharing its momentum. With the help of

these equations, parameters that are extracted from fits to data at a certain Q2 (as

in Equation 2.65) can be evolved to any other value, facilitating the prediction of the

cross-section for some other process at this new scale.
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Parton distributions depend on the longitudinal momentum fraction x as well as the

hard scale of the process Q2. The probability to find partons with smaller and smaller

x grows, particularly for gluons, and is characterised by a ln 1
x dependence. This can be

seen in Figure 2.8 at Q2 = 1 GeV2. It is an open question as to whether the probability

becomes infinite at the smallest x values, or whether gluon recombination occurs, a

hypothetical phenomenon called saturation. The evolution of parton distributions with

x is given by the Balitsky-Fadin-Kuraev-Lipatov, or BFKL, equation [30–32].

2.3.3 Different PDF fits

It is clear from the preceding discussion that the explicit form for PDFs depends on the

particular parameterisation chosen, the flavour decomposition of the proton, and the

data used in the extraction. Several phenomenologists have produced PDFs that differ

due to choices made in their construction. The PDF sets used in this analysis to compare

cross-section measurements with predictions are listed in Table 2.2, where the data that

is considered in each PDF set is also indicated. The data can be broadly separated into

two types, depending on whether it was collected at fixed-target or collider experiments.

The data can be further classified as deep inelastic lepton-hadron (or lepton-nucleon)

scattering as in Figure 2.6(a), Drell-Yan as in Figure 2.6(b), or inclusive jet production.

The PDF sets from the MSTW [25], MMHT [33], CT [34, 35], and NNPDF [36, 37]

groups include data from all of the data-types listed above.

The NNPDF23Coll set is an example of a PDF set extracted from a reduced set of

data, in this case collider data only. This can be used, for example, to study the impact

that certain data sets have on the PDF parameters. The HERAPDF set [21] only

includes collider data from HERA. This data is used by all other PDF fitting groups.

The ABM [38] and JR [39] sets use a combination of fixed-target and HERA data,

although the JR set does not use νN scattering data. Finally, the ATLAS collaboration

has extracted a PDF set called epWZ [40] using ATLAS and HERA data. Further

differences between the PDF sets can be found in the references, also given in Table 2.2.

The MMHT PDF set is an update of the MSTW PDF set. Similarly, the NNPDF30

and CT14 sets are updates of the NNPDF23 and CT10 sets.
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Fixed-target Collider
`±had pp/pd DY νN HERA CC/NC/jets TEVATRON DY/jets LHC DY/jets LHC tt̄/Wc

MSTW08 [25] 4 4 4 4 4

MMHT14 [33] 4 4 4 4 4 4 4

CT10 [34] 4 4 4 4 4

CT14 [35] 4 4 4 4 4 4

NNPDF23 [36] 4 4 4 4 4 4

NNPDF23Coll [36] 4 4 4

NNPDF30 [37] 4 4 4 4 4 4 4

HERAPDF1.5 [21] 4

ABM12 [38] 4 4 4 4 4

JR09 [39] 4 4 4

epWZ [40] 4 4

Table 2.2: This analysis considers different PDF sets. These are listed above, as well
as the data considered for each fit. The fixed target data includes results from the
BCDMS, NMC, SLAC, NuSea, NuTeV, Chorus and CCFR experiments. The collider
data includes data from H1, Zeus, D0, CDF, CMS, ATLAS and LHCb. Some abbre-
viations in the table are listed: proton-proton (pp), proton-deuteron (pd), Drell-Yan
(DY), charged-current (CC), neutral-current (NC), neutrino-nucleon (νN).

2.4 Calculating cross-sections

2.4.1 Monte Carlo integration

Consider two initial-state particles, A and B, with momenta pA and pB, that scatter

to produce n final-state particles with momenta p1, p2 ... pn. The quantum mechanical

initial- and final-states can be represented by |pA pB〉 and |p1 p2 ... pn〉. The quantum

mechanical amplitude for the process is represented by the overlap of these two states

at equal times [7]

〈p1 p2 ... pn|S |pA pB〉 , (2.71)

where the matrix, S, evolves the initial state from the infinite past to the infinite future.

The S-matrix can be written as a sum of an interacting piece and a non-interacting

piece. The former can be expressed in terms of another matrix, T . The latter is just

the identity.

S = 1 + iT (2.72)

It is now possible to define the matrix element M

〈p1 p2 ... pn| iT |pA pB〉 = (2π)4 δ4(pA+pB−
∑
n

pn) iM(pA, pB → p1, p2... pn). (2.73)

It was mentioned in Section 2.1.3 that the Feynman rules and Feynman diagrams are

convenient tools for calculating amplitudes. To be precise, the procedure calculates

matrix elements.

To calculate the cross-section for some process (see, for example, Equation 2.57) one

must integrate a matrix element over the relevant phase-space of final-state momenta.
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These integrals have the form

I =
∫
V
dnxf(x) (2.74)

where f is a function of the momenta of the final state particles and V is the volume

of the multi-dimensional space. If N random points xi (i=1,...,N) in the volume V are

chosen, the central limit theorem of statistics gives

I ' < f > =
V

N

N∑
i=1

f(xi). (2.75)

This equation indicates that the cross-section may be computed by evaluating the matrix

element at several points in phase-space. The estimated error on the integral is given by

E = V

√
< f2 > − < f >2

N − 1
. (2.76)

Thus, the error on the integral decreases as the inverse of the square-root of the number

of points sampled.

The Monte Carlo (MC) method involves randomly selecting points in the phase-space,

evaluating the matrix element f at these points, and averaging the results to obtain the

integral I. The error E is made small by increasing the number of randomly chosen

points. In later chapters this uncertainty will be referred to as the uncertainty due

to numerical integration. The fact that the points correspond to final-state momenta

make the MC method ideal for generating events that can be passed through detector

simulation.

2.4.2 Fixed-order perturbation theory

The matrix elements mentioned in the previous section are calculated with the aid of

perturbation theory, which gives a series of contributing terms that become less and less

significant at higher powers of an expansion parameter, or coupling constant. Typically

one decides on the desired theoretical precision and truncates the perturbation series at

a fixed order. This idea is represented schematically in Equation 2.77.

σ = σ0 +
(αs

2π

)
σ1 +

(αs
2π

)2
σ2 +

(αs
2π

)3
σ3 + ... (2.77)

The first term, σ0 is called the leading-order (LO) contribution to the cross-section.

The second term is the next-to-leading-order (NLO) contribution, represented by αsσ1,

where this has a factor of αs due to the additional strong interaction vertex in the

Feynman diagram. The LO process is shown in Figure 2.9(a), while Figures 2.9(b)-
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Figure 2.9: Feynman diagrams representing Z production at LO (a) and NLO (b-f) in
the strong coupling constant αs for qq̄ initiated production.

(f) represent NLO processes. In particular, Figure 2.9(b) corresponds to radiation of

gluons from initial state-quarks and Figures 2.9(c)-(d) represent corrections to the qq̄Z

interaction vertex and the quark propagators. The final two diagrams represent qg

initiated production of Z bosons. Since the value of αs(MZ) is about 0.12, this NLO

correction is expected to be about 10% of the leading-order term. The next-to-next-

to-leading-order (NNLO) term includes the real emission of two gluons as well as two

loop corrections (propagator and vertex corrections with quark loops). The calculations

become more complex at higher and higher orders. Measurements in this analysis are

compared to NNLO predictions of the Drell-Yan process using the FEWZ [41] (version

3.1) and DYNNLO [42] (version 1.4) generators.

2.4.3 Analytic resummation

For fixed-order perturbation theory to give an accurate estimate of the cross-section,

the higher order terms must be small, where small is ensured by αs(MZ) << 1. It turns

out that this is not a sufficient condition to ensure that all higher order terms are small

as there are regions of phase-space in which the matrix element (and hence the σi) are

large, negating the smallness of αs. In particular, a singularity in the matrix element for

electroweak boson production at low transverse momentum is caused by colinear and

soft emission of initial-state gluons. The cross-sections obtain additional factors of the

form L = ln(Q2/Q2
0), where Q2

0 is small and L is thus large. The total cross-section in
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Equation 2.77 can be rewritten as

σ = σ0 +
(αs

2π

)
(σ12L

2 + σ11L+ σ10) +
(αs

2π

)2
(σ24L

4 + σ23L
3 + σ22L

2 + σ21L+ σ20) +

+
(αs

2π

)3
(σ36L

6 + σ35L
5 + σ34L

4 + σ33L
3 + σ32L

2 + σ31L+ σ30) + ... (2.78)

where the contributions with large logarithms have been separated from those that are

well behaved. At O(αs) there is one potentially soft and/or one potentially colinear

gluon, so the order of the power series is 2. At O(α2
s) there are potentially four large

logarithms per diagram, so the order is 4. The problem for the perturbation expansion

is that αsL ∼ 1, or worse.

To describe electroweak boson transverse momentum spectra, it is necessary to account

for these large logarithms that appear at all orders of αs in the perturbation series. The

contributions ∑
k=1

(αs
2π

)k
σk,2kL

2k (2.79)

are known as the leading-logarithms (LL) since they give the largest contribution to the

cross-section at each order of αs. The terms

∑
k=1

(αs
2π

)k
σk,2k−1L

2k−1 (2.80)

have one less power of L and are referred to as next-to-leading-logarithms (NLL). The

definition of next-to-next-to-leading-logarithms (NNLL) is as one might expect. One

mathematical procedure for resumming these logarithms is known as the Collins-Soper-

Sterman resummation formalism [43], which involves a transformation into a conjugate

space (impact parameter space) where these sums exponentiate. The resummed loga-

rithms may be combined with the well behaved parts of the fixed-order cross-sections

using so-called matching procedures. This allows predictions at arbitrary order in αs,

that also take into account logarithmic enhancements at higher orders of αs. In Fig-

ure 2.10 the resummed cross-section, differential in Z boson transverse momentum, is

compared to the fixed-order result. The resummed distribution is much more repre-

sentative of measured distributions at low pT . Of course, this is not to say that the

resummation is correct and fixed order perturbation theory is incorrect. It is that they

both have their own domains of applicability. For the Z boson transverse distribution,

resummation describes the low pT domain and fixed order perturbation theory describes

the high pT domain. Measurements in this analysis are compared to NLO+NNLL pre-

dictions of the Drell-Yan process using the Resbos [44–46] generator.
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Figure 2.10: Predicted Z boson transverse momentum distribution. The dashed line in-
dicates the fixed-order result of DYNNLO, while the solid line indicates the resummed
result of Resbos.

2.4.4 Parton showers

Fixed-order perturbation theory with, when necessary, logarithmic resummation are ex-

cellent tools for computing cross-sections. However, they cannot describe the many

particles that are produced in hadron collisions. In this section, an algorithm that de-

scribes the radiative cascade of partons, and their subsequent hadronisation, is discussed.

The algorithm is known as the parton shower.

Highly energetic electrons are known to radiate photons. In a similar way, the partonic

content of the proton (quarks and gluons) radiate gluons. In a parton shower, initial- and

final-state partons are evolved from high energy down to ΛQCD (∼ 200 MeV) through

a sequence of gluon splittings. Around scales close to ΛQCD, non-perturbative effects

start to take over and partons hadronise to form the colour neutral particles that we

observe in nature. The parton shower thus has the ability to describe the large particle

multiplicities seen at hadron colliders. Since there is no limit to the number of branchings

that can take place, the shower approximates gluon radiation from partons to all orders

in αs. The shower thus resums large logarithms due to soft and colinear gluon emission.

Typically one uses a LO matrix element, so the formal accuracy of the predicted cross-

sections is LO+NLL.

For this analysis, the Pythia8 [47] and Herwig++ [48] parton shower MC programmes

have been used to generate detector-simulated events, assess systematic uncertainties,

and evaluate final-state radiation corrections. A major difference between the two pro-

grammes is how the shower is ordered. With Herwig++, the shower is ordered by
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having the large-angle emissions come first. In Pythia8, emissions are ordered in trans-

verse momentum. There are also differences in the hadronisation models, with Pythia8

using the string model [49] and Herwig++ using the cluster model [50].

An important parameter in parton showers is the intrinsic/primordial kT /pT , referred

to here as the intrinsic kT . This parameter accounts for the fact that the momenta

of the partons may not be colinear with the proton momentum. Fermi motion of par-

tons has a magnitude on the order of an inverse proton radius (ΛQCD) and may cause

this. Unresolved initial state radiation may give the partons a small kick in transverse

momentum. In addition there may be certain aspects to the parton shower algorithm

that do not take into account the interactions between the partons. These effects are

considered together. The intrinsic kT is assumed to be Gaussian distributed and the

parameter that is set for the shower is the square-root of the mean-squared (RMS) of

this distribution, i.e.
√
< kT >2. The value is extracted from fits to Drell-Yan data, as

the width of the peak in the transverse momentum distribution is quite sensitive to the

choice. The parameter is typically set to about 2 GeV/c, but it is important to extract

the value in complementary scenarios such as different masses of Drell-Yan production,

different centre-of-mass energies and different rapidity ranges. The latter two are most

relevant to this analysis.

2.4.5 NLO matching

In general, fixed-order calculations do a good job of describing features of events whose

final-states involve relatively few partons that are well-separated and have large trans-

verse momenta. On the other hand, the parton shower is able to describe many parton

final-states, where these partons are almost colinear or have small transverse momenta

with respect to one another. One way of combining the best features of both approaches

is called NLO matching, where a fixed-order NLO matrix element is matched to a par-

ton shower. There are two main approaches to correcting the parton shower and they

are called the Powheg [51, 52] and MC@NLO [53, 54] approaches. The formal ac-

curacy of these predictions is NLO+NLL. Measurements in this thesis are compared

to Powheg and MC@NLO with Pythia [55], Herwig [56, 57], Herwig++ [48] and

Herwiri [58–60] parton showers.

2.4.6 Theoretical uncertainties

Four different types of theoretical uncertainty are relevant to the predictions of cross-

sections and cross-section ratios in this thesis. These uncertainties are due to the choice
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of scale, the strong coupling constant (αs), the PDFs, and numerical integration.

Scale

One type of divergence that arises in quantum field theories is due to unspecified mo-

menta in amplitudes represented by diagrams with loops, as in Figures 2.9(c) and 2.9(d).

These divergences are handled with a technique called renormalisation, which essentially

absorbs the divergences into the bare parameters of the theory (mass and coupling con-

stant), yielding the physical parameters. Renormalisation depends on a set of conditions

called renormalisation conditions [7]. These conditions depend on an arbitrary mass

scale, which is called the renormalisation scale µR, and are required to give precise def-

initions to the physical parameters. The perturbatively calculated cross-sections given

by Equation 2.77 depend on µR.

As mentioned in Section 2.3, the cross-section for hadronic production of vector bosons

(and virtual photons) factorises into a perturbative part and a non-perturbative part.

The factorisation depends on an additional energy scale, µF , called the factorisation

scale. In Equation 2.57, µF has been set to the mass of the intermediate boson, denoted

by Q.

The factorisation and renormalisation scales are not physical. If it were possible to

include all terms of the perturbative expansion in Equation 2.77, the cross-section would

not depend on these. In practice, calculations are performed at a fixed order, and the

result depends on the choice of scale.

Usually, cross-sections are calculated with the factorisation (µF ) and renormalisation

(µR) scales set to MZ . The scale dependence is evaluated using the 7-point method [61].

With this method, the cross-section is re-evaluated with six additional combinations

of scales; (µF /2, µR), (µF , µR/2), (µF /2, µR/2), (2µF , µR), (µF , 2µR), and (2µF , 2µR).

The envelope defined by these observables about the nominal choice, (µF , µR), sets the

scale uncertainty.

Coupling constant, αs

The strong coupling constant αs depends on the renormalisation scale (see Section 2.2.3).

αs ≡ αs(µR) (2.81)
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It is usually quoted at µR = MZ . This is a convenient choice of scale, for which pertur-

bative calculations are reliable. Each PDF fitting group extracts a value of αs(MZ), as

it is treated as a free parameter in the PDF fit. Special PDF sets are provided, where

the value of αs(MZ) is varied by its 68.3% confidence level uncertainty. These are used

to compute the uncertainties on cross-sections due to αs.

PDF

Uncertainties on PDFs are due to the uncertainties obtained on the parameters (p1, ..., pn)

extracted from the global fit to data (see Equation 2.65). These parameters are corre-

lated with one another, so the evaluation of an uncertainty for any observable that

depends on PDFs needs to take the covariance matrix into account.

Numerical integration

The numerical integration uncertainties are evaluated as in Equation 2.76. Since it

is possible to make these uncertainties arbitrarily small, these uncertainties are often

negligible compared to those of PDF, scale and αs.
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LHC machine and LHCb

experiment

The data used to make the measurements in this thesis were collected by the Large

Hadron Collider beauty experiment (LHCb), a fundamental particle detector housed on

the Large Hadron Collider (LHC) ring [1] [2]. This chapter describes both the LHC and

LHCb, with particular focus on their aspects relevant in performing the measurements.

3.1 LHC

The LHC is the most powerful and energetic particle accelerator in the world. It is

located on the Franco-Swiss border, 100 m below the ground. The LHC is a colliding

beam facility; particle beams are accelerated to velocities close to the speed of light

in a circular ring, whose circumference is 27 km, before being brought into collision at

various interaction points on the ring. These interaction points (IP) are indicated in

Figure 3.1(a). The LHCb experiment is located at IP8. Other large experiments are

located at IP1, IP2 and IP5, including the ATLAS, ALICE and CMS experiments.

When the LHC was commissioned, one of the main goals was to look for experimental

confirmation of a mechanism to explain electroweak boson masses, as well as fermion

masses (see Section 2.2.5). One such mechanism involves the existence of a hitherto

unknown, massive, scalar particle, the so-called Higgs boson. Collision experiments

involving hadrons can be used to produce Higgs bosons via gluon fusion, vector boson

(W±, Z) fusion, Higgs radiation (Higgsstrahlung), and associated production with tt̄.

38
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Figure 3.1: (a) Schematic of the LHC ring (dotted) and relative location of detector
caverns, labelled here as IP1, IP2, IP5 and IP8. The LHCb detector is located at IP8.
The orientations of LHC beam one (b1, blue, clockwise) and LHC beam two (b2, red,
anti-clockwise) are also indicated. The figure is not to scale - the separation of the
beams is on the order of cm while the radius of the LHC ring is on the order of km.
(b) Proton injection chain from LINAC 2 through to LHC, via the Proton Synchrotron
Booster (PSB), the Proton Synchrotron (PS) and the Super Proton Synchrotron (SPS).

The discovery of the Higgs boson was announced during the first LHC run period (Run-

I). The achievement of this primary objective has ensured that the LHC project will be

forever considered a success. The LHC continues to test the SM to its limits, and indeed

look for evidence of new physics beyond the SM (BSM).

3.1.1 Proton acceleration

Protons are prepared for use in the LHC by stripping electrons from H2 molecules. They

are then accelerated in straight lines through a linear accelerator (LINAC 2) by means

of an electric field. The sections of LINAC 2, through which the protons pass, alternate

between regions of zero and non-zero electric field. As the protons pass through, the
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electric field flips polarity to allow the protons to continue travelling in one direction,

instead of being trapped in a potential well.

LINAC 2 brings the proton energies up to 50 MeV. They then enter the Proton Syn-

chrotron Booster (PSB), which consists of four synchrotron rings that accelerate the

protons to 1.4 GeV. From here they pass into the Proton Synchrotron (PS) where they

are accelerated to 25 GeV. Then they pass to the Super Proton Synchrotron (SPS) where

they reach 450 GeV. At this energy the protons are injected into the LHC ring. The

various accelerating stages are depicted schematically in Figure 3.1(b).

During Run-I, protons were accelerated up to energies of 4 TeV in the LHC. In June 2015

they were accelerated to 6.5 TeV, heralding the beginning of Run-II. Proton beams at

these high energies are contained within the LHC ring with the aid of dipole (bending)

and quadrupole (focusing) magnets, where the required magnetic field strengths are

about 8 T. The large electric currents that produce these magnetic fields flow in NbTi

superconductors, which are cooled to about 2 K using super fluid He.

3.1.2 Filling scheme

The beams described above are not continuous streams of protons, but rather spatially

separated packets of O(1011) protons. The configuration of these bunches is chosen in

order to give as much data as possible to the experiments, and to maximise the time

before the beam intensity (see Section 3.1.4) degrades. In addition, it is necessary to

dump the beam of protons on a regular basis. Large gaps in the bunch train allow this

to be done safely. Roughly 30–40 interactions occur at the ATLAS and CMS interaction

points (IP1 and IP5) per bunch crossing, whereas about 2 occur at LHCb’s interaction

point, IP8.

The LHC rings are filled with bunches at locations defined by the radio-frequency system.

These locations are called buckets, and a sequence of ten buckets is called a slot. There

are 3600 slots in each beam and, given the relativistic speeds at which the protons travel,

each slot is separated by 25 ns. In each slot, one bucket is filled while the other nine are

nominally empty. Only some of the slots are filled. For example, during Run-I, much of

the data was taken with 1262 filled slots. Protons that occupy nominally empty buckets

in a slot give rise to what is called satellite charge. In a similar way, protons that leak

into nominally empty slots give rise to what is called ghost charge.

Data are recorded for four different types of bunch crossing [62]. The first type is bunch-

bunch (bb), where a filled bucket in beam one collides with a filled bucket in beam two at

the interaction point. The majority of recorded data are of this type. The second type
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is bunch-empty (be), where a filled bucket in beam one collides with an empty bucket in

beam two. The third type is empty-bunch (eb), where the roles of beam one and beam

two are interchanged. Finally, there is the empty-empty (ee) configuration, where the

buckets are both empty. These last three types are used for calibration studies.

3.1.3 Beam energy and centre-of-mass energy

An important quantity in colliding beam experiments is the centre-of-mass energy,
√
s,

which is the total energy available in the centre-of-mass frame of the colliding beams.

The Higgs boson cross-section increases with
√
s, so the LHC is designed to maximise

this quantity. It also gives an upper limit to the mass of any particle produced during

the collisions, so it is a very important parameter in the context of searches for new

particles.

The centre-of-mass energy for proton-proton collisions at the LHC is just twice the beam

energy. During Run-I, data was taken at nominal centre-of-mass energies of
√
s = 7

TeV and
√
s = 8 TeV. Currently, Run-II data is being collected at

√
s = 13 TeV. In

the context of the analysis presented in this thesis, the centre-of-mass energy is impor-

tant because cross-section predictions are specified at particular centre-of-mass energies.

If the actual centre-of-mass energy is different to the nominal centre-of-mass energy,

comparisons between measurements and predictions would be difficult to interpret. To

measure the actual centre-of-mass energy, the proton beam energies must be measured.

At the LHC, the beam energy is determined in two ways, both of which rely on calcu-

lating the momentum P. The first is to integrate the magnetic field, B, over the beam

path as expressed in Equation 3.1

P =
Ze

2π

∮
dx B(x), (3.1)

where Z is the atomic number of the hadron and e is the proton charge. This is done us-

ing the magnetic calibration curves of the dipole magnets (magnetic transfer functions).

This leads to an uncertainty on the beam energy of about one part per mille, although

there is some discussion over whether or not all sources of uncertainty have been taken

into account in this estimation [63].

The second method is to use the different frequencies of rotation of protons and lead

ions [64], with the momentum given by Equation 3.2

P ≈ mpc

√
fp

2(fp − fi)

(( mi

Zmp

)2
− 1
)
, (3.2)
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where fp and fi are the revolutions frequencies of the protons and lead ions, and mp

and mi are their masses. A measurement of the beam energy was determined with

this method at 4 TeV and 450 GeV during the p-Pb run in January and February

of 2013. The precision on the beam energy at 4 TeV was determined to be 0.65%. No

measurement was performed at 3.5 TeV, however, the energy at injection to the LHC ring

of 450 GeV may be extrapolated to higher energies using the magnetic transfer functions.

The extrapolated beam energy is consistent with 3.5 TeV with a precision of 0.1%, but

as mentioned above, it is not known if all sources of uncertainty have been taken into

account. Since there is good reason to believe that there are no additional uncertainties

related to beam energy at 3.5 TeV compared to those at 4 TeV, the same relative

uncertainty of 0.65% is taken [64]. As a consequence, the beam energy uncertainty is

fully correlated between different centre-of-mass energies.

3.1.4 Luminosity

The factor of proportionality between the event rate (dN
dt ) of a specific process and the

related cross-section (σ) is called the instantaneous luminosity, L; it is a flux, a measure

of the number of particles crossing an area in unit time [65].

dN
dt

= Lσ (3.3)

The instantaneous luminosity of two colliding bunches is given by Equation 3.4.

L = N1N2f

√
(v1 − v2)2 − v1 × v2

c2

∫
d3x dt ρ1(~x, t) ρ2(~x, t) (3.4)

The prefactors N1, N2 and f are the bunch populations of beams one and two and

the revolution frequency. The factor involving the velocities of the bunches v1,2 is the

M/oller factor, which approximates to 2c for highly relativistic beams and small crossing

angles [66]. The integral over the bunch densities ρ1 and ρ2 is known as the beam overlap

integral. In order to measure the instantaneous luminosity, it is necessary to determine

the total charge in the LHC ring (and hence the populations of the bunches) and the

beam overlap integral.

The beam overlap integral is measured using two methods, van der Meer scans [67] and

beam-gas imaging [68], the latter being unique to LHCb. In the case of the van der

Meer scan, the overlap integral is inferred by moving the beams across one another and

examining the variation of some interaction rate that is proportional to the luminosity.

With beam-gas imaging, the interaction region at LHCb is injected with an inert gas,

for example Ne. The overlap integral is then determined using the spatial distribution
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of beam-gas interaction vertices [62]. The beam-gas method complements the van der

Meer scan for a number of reasons.

• The effect of complicated beam-beam interactions is not a concern.

• There is no need to make assumptions about the beam profile (see Ref [62]).

• The sources of uncertainty for each method are independent and uncorrelated.

Thus, the relative uncertainty on the combination is much reduced with respect

to the individual determinations.

• Beam-gas imaging may be used to determine the total ghost charge in the ring.

It is important to emphasise that the luminosity is fully determined only during dedi-

cated calibration runs. However, rates of certain observables (number of tracks, number

of vertices, etc) that are proportional to the luminosity are recorded during these cal-

ibration runs and during normal data-taking. The factors of proportionality that are

determined during the calibration runs can then be used to determine the luminosity

during normal data-taking.

When L is integrated over a data-taking period, one obtains the integrated luminosity

L,

L =
∫

dt L. (3.5)

The integrated luminosity is a measure of the size of the data set. It determines the

number of events, N, that one expects to observe due to a process with cross-section σ.

N = Lσ (3.6)

To maximise the statistical significance of any measurement, and to maximise the sensi-

tivity of searches for new (rare) phenomena, it is desirable to obtain as large an integrated

luminosity as possible.
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3.2 LHCb

The LHCb detector is a single-arm spectrometer primarily designed for reconstructing

B-mesons that decay in the forward region. Since B-mesons are relatively long-lived,

their experimental signature is a decay vertex that is significantly displaced from the

primary interaction vertex. Reconstruction of these secondary decay vertices is best

achieved in a low occupancy environment. This is achieved by offsetting the colliding

beams so that there is a low number (∼1.8 in Run-I) of interactions per bunch crossing.

Figure 3.2 is a side-view of the LHCb detector; the beam pipe (grey) passes through the

middle of the detector, and most of the detector instrumentation/material (coloured) is

located after the magnet. As with most high energy physics experiments, the detector

is designed to identify, and measure the energies and momenta of, final-state particles.

This is facilitated by the layered structure. The particle tracking system consists of the

Vertex Locator (VELO), Tracker Turicensis (TT), magnet and T-stations (T1, T2, T3).

The calorimeter system consists of the Scintillating Pad Detector (SPD), Pre-Shower

detector (PS), the Electromagnetic Calorimeter (ECAL) and the Hadronic Calorimeter

(HCAL). The particle identification system consists of the Ring Imaging Cherenkov

detectors (RICH) and the muon system (M1-M5). These components are explained in

more detail in the following sections and in Ref. [1].

3.2.1 Co-ordinate system

Co-ordinates in LHCb are defined with respect to Cartesian axes in a right-handed

frame, as in Figure 3.3. The z-axis is in the direction of the clockwise rotating beam, as

viewed from above, and points from IP8 to IP1 (see Figure 3.1). The positive direction

of the x-axis points toward the centre of the LHC ring. The y-axis completes the right

handed system, and points vertically upwards.

3.2.2 Vertex Locator

The Vertex Locator (VELO) consists of 42 silicon modules surrounding the interaction

point, as shown in Figure 3.4. Each module consists of an R-type sensor and a Phi-

type sensor as shown in Figure 3.5(a). The R-type sensor provides information on the

radial distance of a charged particle’s trajectory, while the Phi-type sensor provides

azimuthal information. A picture of a VELO module is given in Figure 3.5(b). The

resolution on the primary interaction vertex (PV) and impact parameters (IP) of tracks

with respect to this vertex are maximised by having the modules as close as possible
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Figure 3.2: Side-view of LHCb detector in the direction of the positive x-axis. RICH1,
RICH2 = Ring Imaging Cherenkov detectors 1 and 2. TT= Tracker Turicensis. T1, T2,
T3 = Tracking stations 1, 2 and 3. SPD/PS = Scintillating Pad Detector / Preshower.
ECAL = Electromagnetic Calorimeter. HCAL = Hadronic Calorimeter. M1, M2, M3,
M4, M5 = Muon stations 1, 2, 3, 4, and 5.

to the beam pipe.1 During beam injection, the VELO modules are retracted to avoid

radiation damage. Once the beams are stable, the modules close around the beam to a

distance of ∼8 mm, allowing an IP resolution of (15+29/pT ) µm. Further details on the

VELO can be found in Ref. [69].

3.2.3 Tracker Turicensis

The Tracker Turicensis (TT) is located between the magnet and RICH1. The detector

consists of four p+ on n-type silicon layers, which are shown in Figure 3.6. The layers

are grouped in pairs (TTa and TTb) that are separated by ∼30 cm. The silicon strips

in the first and last layers are vertically oriented whereas the second and fourth layers

are rotated by ±5◦ with respect to the vertical. Orienting the strips vertically improves

the spatial resolution of hits in the x-direction and thus the momentum resolution in

this direction. The slight rotations with respect to the vertical of the second and third

layers allows hits in the y-direction to be measured as well, albeit at lower resolution.

Further details on the TT can be found in Ref. [71].
1The IP is defined as the distance of closest approach of the line defining the track and the interaction

vertex.
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Figure 3.3: Drawing of LHCb co-ordinate system. The z-axis is in the direction of
the clockwise rotating proton beam, b1 (see Figure 3.1). The x-axis points toward the
centre of the LHC ring and the y-axis points vertically upwards.

3.3. TRACKING SYSTEM 35

3.3.2 Vertex Locator
The VELO [54, 55, 57] is installed directly around the interaction point. It allows
to measure the trajectories of charged particles and to determine the vertices from
which they originate. At LHCb, the average distance between the production vertex
and the vertex of a decayed B hadron is approximately 12 mm [58]. The trigger
system uses this relatively long decay length to select B events. The resolution is
su�cient to identify and reconstruct B-hadron decays as well as to measure their
lifetime and the Bs oscillation frequency. An average uncertainty in the primary
vertex position of 42 µm along the beam and 10 µm in the perpendicular plane is
predicted, which translates into an average B-decay proper-time resolution of 40 fs.

The sensitive component of the VELO detector is formed by 21 stations, each
consisting of two halves with each two silicon strip sensors, which measure the R
and � coordinates. These are placed along the beam, enclosing the nominal interac-
tion point. The layout of the stations is such that tracks between 15 and 390 mrad
from a vertex located inside 106 mm, which corresponds to 2� of the nominal inter-
action point, cross at least three stations. This requirement ensures that the track will
be properly reconstructed. The resulting arrangement of the stations which respects
the requirements, while being close to the beam for precision, and introducing a
minimum amount of material to traversing particles, is shown in figure 3.7. An ad-
ditional two VELO stations, located more upstream, are called the pile-up system.
This identifies bunch crossings with multiple interactions and through the first-level
hardware trigger vetoes such events, as detailed in subsection 3.5.1.

Interaction region 5�3 mmσ =

390
m

ra
d

15 mrad

1 m

60 mrad
cross section at y=0:

x

z

Figure 3.7: Layout of the VELO tracking stations, showing that at least three sta-
tions are crossed by particles within the acceptance.

The VELO uses semi-circular silicon sensors in a 10�4 mbar vacuum, separated
from the machine vacuum by a corrugated 300 µm thick Aluminium foil. A corru-
gated design minimises the interaction length encountered by particles, allows the
sensors to overlap and o↵ers greater mechanical strength compared to a flat foil.
The foil protects the machine vacuum from the lower quality vacuum inside the
VELO and shields the sensors from the RF currents induced by the beams. On the
sensor side, the foil is coated to electrically insulate it from the sensors. Both the
sensors and foil can be moved to and from the beam line within a range from 5 mm

Figure 3.4: VELO module positions.

The purpose of the TT is to help with a fast reconstruction of track momentum in the

trigger. It also plays a role in reducing the rate of randomly associated hits (ghosts). TT

hits are not used in the search for long tracks, the primary tracks of this analysis (see

Section 3.2.6). In this thesis, this fact is used in the measurement of the muon tracking

efficiency.
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(a) (b)

Figure 3.5: (a) R- and Phi-type sensors. (b) VELO module.
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Figure 3.6: The TT sub-detector [70].

3.2.4 Spectrometer dipole magnet

A spectrometer dipole magnet is positioned between the VELO and the tracking stations.

Its primary function is to bend charged particles in order to obtain estimates of their

momentum. The main component of the magnetic field is oriented along the y-axis and

thus positively and negatively charged particles are separated in the x-z plane.
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In order to achieve the required momentum resolution for charged particles, the magnetic

field integral
∫
B · dl must be measured with sub per mille precision and the position

where the B-field is strongest must be determined with a precision of a few millime-

tres [1]. These are measured using an array of Hall-probes that can be moved along the

z-axis. The strength of the field as a function of z co-ordinate is indicated in Figure 3.7.

z [m]
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Figure 3.7: The strength of the magnetic field in the y-direction as a function of z
co-ordinate.

The polarity of the magnet may be reversed. In this thesis, the two configurations

are referred to as Magnet Up (MU) and Magnet Down (MD). The polarity is flipped

periodically in order to have MD and MU sub-samples that are approximately equal in

size. The relative proportion of MD data to MU data in this thesis (see Chapter 4) is

2:1 for data collected at
√
s = 7 TeV and 1:1 for data collected at

√
s = 8 TeV. Further

details on the LHCb spectrometer dipole magnet can be found in Ref. [72].

3.2.5 T-stations

Between the magnet and RICH2 there are three tracking stations called T1, T2 and T3

(T-stations) located about 9 m from the interaction point. The T-stations are composed

of an outer tracker (OT) and an inner tracker (IT), as shown in Figure 3.8.



Chapter 3. LHC machine and LHCb experiment 49

OT

IT

y

x
5.97 m

4.85 m

(a)

21
.8

 c
m

41
.4

 c
m

125.6 cm

19.8 cm

(b)

Figure 3.8: (a) Schematic of a T-station showing the inner tracker (IT) and outer
tracker (OT). (b) Dimensions of the IT.

Inner tracker

The component of the T-station closest to the beam pipe, where particle the flux is

highest, is called the IT. It is a silicon strip detector similar to the TT. There are four

inner tracker boxes and each box consists of four layers of silicon strips. The inner two

layers are aligned at ±5◦, in a similar way to those of the TT. Further details on the IT

can be found in Ref. [71].

Outer tracker

The rest of the T-station is called the OT. The OT is a straw tube drift-time detector.

Each OT module consists of four layers, and the inner two layers are aligned at ±5◦,

similar to the TT and IT. Further details on the OT can be found in Ref. [73].

3.2.6 Track and vertex reconstruction

The tracking system is used to reconstruct the trajectories and momenta of charged

particles. It is also used to determine the position of interaction and decay vertices from

tracks that lead back to a common point. Several types of track are defined, depending

on the sub-detector hits used to reconstruct the track. These tracks are listed below and

sketched in Figure 3.9.

VELO tracks are reconstructed from hits in at least three VELO modules.
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Figure 3.9: LHCb track types.

Upstream tracks are reconstructed from hits in the VELO and the TT sub-detector.

They do not reach the T-stations.

Downstream tracks are reconstructed from hits in the TT and T-stations. They are

used to reconstruct long-lived particles that decay outside of the VELO, such as Ks

mesons and Λ baryons.

T-tracks only have hits in the T-stations.

Long tracks are found using hits from the VELO and T-stations. Once the long track

has been found, TT hits are added to improve the momentum estimate. Long tracks

have the most precise momentum estimate. The tracks used in this analysis are long

tracks.

MuonTT tracks are reconstructed using hits in the TT and muon stations (see Sec-

tion 3.2.9). In this thesis, these tracks are used to determine the muon tracking efficiency.

A number of fitting algorithms are used to fit a track to the hits in the various tracking

stations. These are based on the Kalman filter method [74]. In regions of negligible
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magnetic field, for example in the VELO, straight line tracks are fitted to the hits.

Parabolic trajectories are fitted to match hits in regions where the magnetic field is

more influential, for example the T-stations (c.f Figs 3.2 and 3.7). In this thesis, the

quality of the fit to the detector hits is used to select good tracks for the analysis, both

in the trigger (see Section 3.2.10) and in the selection of Z boson candidates offline (see

Section 4.1).

Two types of vertex are relevant to the analyses presented in Chapters 4 and 5, the

PV and the Z boson decay vertex. The PV is the location of the hard proton-proton

interaction. A minimum of four tracks are required to form a PV. For more details on

the reconstruction of PVs at LHCb, consult Ref. [75]. The midpoint along the vector

defining the distance of closest approach (see Figure 3.10) between the muon tracks

is used to seed the Z boson decay vertex position. A fit based on a χ2 minimisation

procedure, involving the muon momenta and their covariance matrices, is performed

to extract an improved Z boson vertex position, as well as the corresponding Z boson

momenta and mass. In Chapters 4 and 5, the kinematic variables of the Z boson refer

to those after this fitting procedure, whereas the kinematic variables of the muon refer

to those before this fitting procedure. The quality of the vertex fit is quantified by the

χ2/ndf , which is the χ2 divided by the number of degrees of freedom. In this analysis,

the χ2/ndf of the vertex fit is used to enrich Z boson candidate samples in heavy flavour

background (see Section 4.3.1). It is also used by the dimuon trigger to decide which

events are saved for offline analysis (see Section 3.2.10).

3.2.7 Particle Identification (RICH)

A number of sub-detectors are used for the purpose of particle identification. These

include the Ring Imaging Cherenkov detectors (RICH1 and RICH2), the calorimeters,

and the muon system.

The purpose of the RICH detectors is to identify particles over a wide range of momenta.

This is done by measuring particle velocities that, when combined with independent

measurements of particle momenta, translate into measurements of particle masses. The

particles are then identified by association with the known masses [3].

The velocity of the particle is measured in the RICH detectors using the Cherenkov

effect. When relativistic particles enter a medium at speeds that exceed the speed of

light in that medium, photons are emitted at an angle θC (the Cherenkov angle) with

respect to the direction of the particle. The radiation arises from the excitation of the

medium under the action of the field of the particle moving in it. For this reason the
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Figure 3.10: The initial position of the Z boson decay vertex is located along the line
of closest approach of the muon momentum vectors.

medium is referred to as the radiator. The radiation is distinct to bremsstrahlung, which

is the type of radiation emitted by a charged particle as it moves in the field of a nearby

nucleus. The Cherenkov angle is related to the particle velocity v = βc and the refractive

index of the radiator n by

cos θC =
1
βn

. (3.7)

Therefore, if the refractive index is known and if θC is measured, the particle velocity

can be measured.

RICH1 is located ∼1.5 m from the interaction point, upstream of the magnet, between

the VELO and the TT, and is sketched in Figure 3.11(a). It is designed to measure

the velocities of low momentum (a few GeV/c) and medium momentum (< 60 GeV/c)

particles. RICH2 is located after the T-stations, before the calorimeters and muon

system. A sketch of RICH2 is given in Figure 3.11(b). It is designed to measure the

velocities of particles over a range of momenta, from 15–150 GeV/c. The Cherenkov

photons are reflected, first from a spherical mirror and then from a planar mirror, before

they reach an array of Hybrid Pixel photon Detectors (HPD). A photograph of a HPD

is shown in Figure 3.12(a). The Cherenkov light form rings from which θC may be

determined. This angle is given as a function of momentum for different particles and
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(a) (b)

Figure 3.11: (a) Schematic of RICH1 and (b) schematic of RICH2, taken from Ref [1].

radiators in Figure 3.12(b). Further details on the RICH detectors can be found in

Ref. [76].

3.2.8 Calorimetry

The calorimeter system consists of four sub-detectors, the Scintillating Pad Detector

(SPD), the Pre-Shower (PS), the Electromagnetic Calorimeter (ECAL) and the Hadronic

Calorimeter (HCAL). The purpose of this system is the identification of hadrons, elec-

trons, photons, and the measurement of their energies and positions.

Electrons and positrons moving through dense materials emit photon radiation via

bremsstrahlung. If the emitted photon is energetic enough, it may decay into an electron-

positron pair, which in turn may radiate due to bremsstrahlung. This cascade effect is

called an electromagnetic shower. Electromagnetic calorimeters induce these showers

with layers of dense material, such as Pb. The thickness of these materials is usually

expressed in interaction lengths, denoted by X0, defined as the distance over which the

particle is reduced to 1/e of its original energy.
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(a) (b)

Figure 3.12: (a) Photograph of Hybrid Pixel Detector (HPD), and (b) Cherenkov angle
as a function of momentum for different radiators, taken from Ref [1].

The energy loss due to bremsstrahlung is inversely proportional to the mass of the

accelerating particle, and is thus relatively large for the lightest particles, i.e. electrons.

For heavier particles like muons and hadrons, energy loss due to bremsstrahlung is small

compared to energy loss due to interactions with the nuclei in the material. The effect of

these interactions with nuclei is to produce secondary hadrons with lower energies, which

in turn interact with other nuclei and so on, producing a hadronic shower. Hadronic

calorimeters induce these showers with layers of dense material. The thickness of these

materials is usually expressed in hadronic interaction lengths λI , defined as the mean

distance that a hadron travels before interacting.

For both electromagnetic and hadronic calorimeters, the dense layers that induce the

showers are interwoven with scintillating material. These absorb the energy of ionising

particles and re-emit it as light, which gets collected in a photo multiplier tube (PMT).

The energy of the collected radiation is roughly proportional to the original energy of

the particle. It is thus important to calibrate the response of the calorimeter material

with a test-beam facility. Particular aspects of calorimetry at LHCb are given in the

next few sections. Further details can be found in Ref. [77].

SPD/PS

Starting at the interaction point and moving in the direction of increasing z, the first

two planes of scintillating material in the calorimeter system are the SPD and PS. These

planes are separated by a 15mm (2.5X0) Pb sheet [1]. The granularity of both the SPD
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and PS (and ECAL) is indicated in Figure 3.13(a). Each cell in this figure represents

an SPD module consisting of scintillator material and a PMT.
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Figure 3.13: (a) Lateral segmentation of the PS, SPD and ECAL. (b) Lateral segmen-
tation of the HCAL. In both cases one quarter of the detector front face is shown [77].

Since the first layer of the calorimeter system (SPD) is a scintillating material, and since

there is no absorber material preceding it to induce pair-production from neutrals, the

energy absorbed by the scintillators in the SPD can be attributed to charged particles

produced in the primary collision. The benefits of this are two-fold. First, the combi-

nation of information in the SPD and PS can be used to distinguish between charged

and neutral particles (see Figure 3.14). Second, the SPD may be used as a charged

Electron

Hadron

Photon

HCALECALPSPbSPD

Figure 3.14: Signal (red ellipse) deposited in the scintillating material of the calorimeter
(blue) by an electron, photon and hadron. Adapted from Ref. [78].

particle multiplicity counter. In the LHCb trigger, upper limits on the SPD multiplicity

are imposed in order to reject high multiplicity events that would take large amounts
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of time to process online2. These thresholds need to be accounted for in cross-section

measurements, especially those of Z boson production, where events often involve hard

jets and large charged-particle multiplicities. The necessary correction is explained in

more detail in Section 4.4.3.

ECAL

The segmentation of the ECAL is similar to that of the SPD and PS as in Figure 3.13(a).

Each module consists of 66 alternating layers of lead (2mm) and scintillator material

(4mm), corresponding to 25X0. In this thesis, ECAL energy information is used to

reduce backgrounds in W boson candidate samples. See Section 5.1 for more details.

HCAL

The segmentation of the HCAL is shown in Figure 3.13(b). Hadronic showers are induced

with iron layers and the energy is measured using scintillator material and PMTs. In

the HCAL modules, the iron and scintillator layers are parallel to the z-axis. The total

thickness of the HCAL corresponds to 5.6λI . In this thesis, HCAL energy information

is used to reduce backgrounds in W boson candidate samples. See Section 5.1 for more

details.

3.2.9 Muon system

The outermost layers of the LHCb detector are dedicated to muon identification. The

system consists of five muon stations labelled M1-M5. M1 is located before the PS and

M2-M5 are after the calorimeters. These latter four are interleaved with thick layers

of iron, labelled as muon filters in Figure 3.15(a). Multi-wire proportional chambers

(MWPC) are used in all stations except for the inner regions of M1 where the large

particle flux would age such technology at an unacceptable rate. Instead, triple-GEM

tubes are used in this region [1]. Each muon station is divided into four regions R1-

R4 with increasing distance from the beam axis. These regions have roughly equal

occupancy and, as a consequence, the spatial resolution does not need to be so precise

in the outer regions. Further details on the LHCb muon system can be found in Ref. [80].
2In the context of this thesis, online refers to real-time analysis as the data is being taken, while

offline refers to analysis of data after it has been stored.
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Figure 3.15: (a) Components of the LHCb muon system and (b) subdivision of muon
stations in to regions R1-R4. Taken from Ref. [79].

The measurements in this analysis rely on the trigger decision from the muon system

as well as muon identification. Tracks are labelled as muons if they satisfy the isMuon

condition. This condition is summarised in Table 3.1.

Momentum range (GeV) Muon Detector Hits
1 < p < 6 M2&M3
6 < p < 10 M2&M3&(M4 || M5)
p > 10 M2&M3&M4&M5

Table 3.1: The isMuon criteria. Hits from different combinations of muon system sub-
detectors (M2-M5) are required in order to identify the track as a muon, where these
combinations depend on the momentum p of the track.

3.2.10 Trigger

During Run-I, the frequency of proton bunch crossings at LHCb was about 10 MHz [81].

Only a subset of these events were recorded due to finite read-out times and data storage

limitations. It is the trigger system that selects the most interesting events to obtain a

more manageable rate. This trigger consists of two stages, Level-0 (L0) and the High

Level Trigger (HLT), and uses information from the sub-detectors described above in

order to make its decision. Further details on the LHCb trigger system and performance

can be found in Refs. [81] and [82].
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L0

The L0 trigger is implemented in custom electronics on the actual detector. During

data-taking in 2011 it reduced the rate from 11 MHz to about 870 kHz [82]. The L0

trigger uses information from the calorimeter, muon system or VELO.

Only muon system triggers are relevant for measurements described in this thesis. One

such trigger is used to select signal candidates and requires events that have less than

600 hits in the SPD, and at least one muon with pT > 3.7 GeV/c. This trigger is

called L0Muon. A second is used to determine the efficiency of the SPD hit threshold

in L0Muon (see Sections 3.2.8 and 4.4.3). It requires events with less than 900 SPD hits

that have a dimuon (two muons, combined) with pµ
1

T · p
µ2

T > 10.5 GeV/c. This trigger is

called L0DiMuon.

HLT

The HLT trigger is implemented on farm of PCs adjacent to the detector. The HLT

is divided into two stages called HLT1 and HLT2. During data-taking in 2011, HLT1

processed the L0 rate and used a partial event reconstruction to reduce the rate to 43

kHz. HLT2 then performed a more complete event reconstruction, reducing the rate to

3 kHz.

Three triggers are relevant for this analysis at the HLT1 level. The first accepts events

that satisfied L0Muon and have a muon with pT > 4.8 GeV/c, with momentum p > 8

GeV/c and good track-fit quality (χ2/ndf < 4). Hlt1SingleMuonHighPT is the name

of this trigger. The second accepts events that satisfied L0Muon, or L0DiMuon, and

contain two muons with pT > 0.5 GeV/c, each having momentum p > 6 GeV/c, good

track-fit quality (χ2/ndf < 4) and a dimuon invariant mass Mµ+µ− > 2.7 GeV/c2. This

trigger is called Hlt1DiMuonHighMass. The third trigger is a random trigger that was

rate limited at either 11 or 97 Hz throughout the data-taking periods. This trigger is

called Hlt1MBNoBias.

Two triggers are relevant for this analysis at the HLT2 level. The first accepts events

containing a muon with pT > 10 GeV/c that satisfied any trigger at HLT1. This trigger

is called Hlt2SingleMuonHighPT. The second trigger accepts events that satisfied any

trigger at HLT1 containing a dimuon with a vertex χ2/ndf < 25 and an invariant mass

Mµ+µ− > 40 GeV/c2. This trigger is called Hlt2DiMuonZ.
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Trigger combinations

In the analysis described in this thesis, a signal event must have at least one muon

that satisfies each of L0Muon, Hlt1SingleMuonHighPT and Hlt2SingleMuonHighPT,

as in Section 4.1. Events that satisfy each of L0DiMuon, Hlt1DiMuonHighMass and

Hlt2DiMuonZ are used to evaluate efficiencies in Section 4.4.3. Additional background

studies are performed using events that satisfy Hlt1MBNoBias (see Section 4.3.2).

3.3 Variables of interest

There is sufficient data from Run-I to measure Z boson cross-sections as functions of a

number of different variables. This section is devoted to the definition of these variables.

Rapidity

Consider the Lorentz transformations between frames S and S′, which are in relative

motion along the x-axis such that the x- and x′-axis are colinear. Then(
x′

ct′

)
=

1√
1− v2

c2

(
1 −v/c
−v/c 1

)(
x

ct

)
(3.8)

and with the redefinition tanh ϕ ≡ v/c,(
x′

ct′

)
=

(
cosh ϕ −sinh ϕ

−sinh ϕ cosh ϕ

)(
x

ct

)
. (3.9)

The variable ϕ is the rapidity of the Lorentz boost. In high energy physics, the rapidity,

y, corresponds to the particular ϕ that parameterises the Lorentz boost along the z-

axis that takes an observer from the lab frame to a frame in which the particle moves

perpendicular to the beam. The Lorentz boost along the z-axis of a 4-vector is described

by the matrix equation
E′

p′x

p′y

p′z

 =


cosh ϕ 0 0 −sinh ϕ

0 1 0 0

0 0 1 0

−sinh ϕ 0 0 cosh ϕ




E

px

py

pz

 . (3.10)
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Requiring that p′z = 0 gives

y ≡ ϕ|p′z=0 = tanh
pz
E

=
1
2

ln
(E + pz
E − pz

)
. (3.11)

The measurement of the rapidity distribution of Z bosons is particularly interesting for

PDF fitting because of the relation between the rapidity and the fractional momenta of

the partons, x± = M√
s
e±y (see Section 2.3).

Pseudorapidity

Related to the rapidity is the pseudorapidity η, which is obtained from the formula for

y given by Equation 3.11. In the limit where m << p, the energy can be approximated

by the momentum and

y|m<<p ≈
1
2

ln
(p+ pz
p− pz

)
≡ η. (3.12)

Transverse momentum

The transverse momentum, pT , is the momentum that a particle has perpendicular to

the beam axis, as measured in the lab-frame. As explained in Section 3.2.1, the beam

axis is the z-axis of a Cartesian co-ordinate frame. The transverse momentum is defined

as

pT =
√
p2
x + p2

y. (3.13)

Measurements of the Z boson pT distribution probe both perturbative and non-perturbative

QCD, and may be used to place constraints on the gluon PDF [83].

φ∗

The φ∗ variable is defined as

φ∗ =
tan (φacop/2)
cosh (∆η/2)

, (3.14)

with φacop = π − |∆φ|, where ∆φ is the azimuthal difference of the two muons and ∆η

denotes the difference in pseudorapidities of the muons. The φ∗ variable is constructed

to probe the same physics as the Z boson pT distribution. Experimentally, φ∗ can be

determined with greater precision than pT because it depends on measurements of muon

angles as opposed to muon momenta [84].
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Measurement of the Z boson

cross-section

The LHC operated with colliding proton beams between 2010-2013 at centre-of-mass

energies of
√
s = 7 TeV and

√
s = 8 TeV. Collisions at

√
s = 13 TeV commenced in

2015. The measurements in this thesis are performed with 1 fb−1 of data recorded at
√
s = 7 TeV during 2011, and 2 fb−1 of data recorded at

√
s = 8 TeV during 2012.

These data sets are referred to as Sample-I and Sample-II.

4.1 Candidate selection

The Z boson candidates are selected by requiring a pair of well-reconstructed tracks of

opposite charge, identified as muons, with a combined invariant mass, Mµ+µ− , in the

range 60 < Mµ+µ− < 120 GeV/c2. Each muon track must have a transverse momentum

pT > 20 GeV/c and lie in the pseudorapidity range 2 < η < 4.5. The relative uncertainty

on the momentum measurement is required to be less than 10% and the probability χ2 of

the track fit must be larger than 0.1%. These two criteria are known as the track quality

criteria. Track quality variables, in both data and simulated samples, are compared in

Figure 4.1. Both tracks are required to be identified as muons as per the isMuon criteria,

which are detailed in Table 3.1. At least one of the muons is required to trigger the event

at all stages of the trigger: L0Muon, Hlt1MuonHighPT and Hlt2SingleMuonHighPT (see

Section 3.2.10). In total, 58,466 (136,702) Z boson candidates are selected in Sample-I

(Sample-II). Figure 4.2 shows the invariant mass distribution of selected events.

61
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Figure 4.1: The figures show track quality of muons in Z boson candidate Sample-
I, where the track quality criteria have been relaxed. Muon-track probability χ2 is
displayed in (a) and the relative uncertainty on muon momenta is displayed in (b).
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Figure 4.2: Invariant mass of dimuon candidates in (a) Sample-I and (b) Sample-II.
Sample-I corresponds to 1 fb−1 of data recorded at

√
s = 7 TeV, while Sample-II

corresponds to 2 fb−1 at
√
s = 8 TeV.
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4.2 Beam crossing angles

The pT distributions of Z boson candidates are shown in Figure 4.3, separately for

each magnet polarity of Sample-I and Sample-II. There is some indication that the

underlying pT distributions are different for magnet down and magnet up in Sample-I,

whereas a difference is not evident in Sample-II.
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Figure 4.3: Distribution of candidates in Z boson pT for Sample-I in (a) and (b) and
Sample-II in (c) and (d). The same data are plotted in (a) and (b), but the pT range
differs. Similar for (c) and (d). The distributions in magnet polarity sub-samples are
similar in Sample-II, but differ in the low pT region in Sample-I.

One difference between data taking conditions for Sample-I and Sample-II was the

effective crossing angle of the proton beams. The effective crossing angle is a combina-

tion of the internal and external crossing angles. The external angle (Figure 4.4(a)) is

generated by magnetic correctors to prevent multiple bunch crossings within the LHCb

beam pipe. The internal angle is generated by three magnets, acting in consort with the

LHCb spectrometer dipole magnet, as shown in Figure 4.4(b). These three ensure that

the beam orbits do not get warped over successive cycles, which would be the case if the

spectrometer dipole magnet acted alone. Further details on the internal and external

crossing angles can be found in Refs. [85] and [86].
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Figure 4.4: The crossing angle of the beams is a combination of (a) external and (b)
internal angles. Panel (b) is a close-up view of the interaction point displayed in panel
(a). The solid lines show the path of the beams near interaction point 8 (IP8). The
dotted lines show the path in the case of zero external angle. Beam one (b1) is blue
and travels into the LHCb acceptance, while beam two (b2) is red and travels away
from the LHCb acceptance.

For Sample-I, the beams crossed in the horizontal plane, the plane of the LHC ring. The

effective crossing angle depended on the magnet polarity due to the different external

angles required to avoid parasitic interactions [85]. For Sample-II, the beams crossed

in a plane that was tilted with respect to the horizontal. This allowed the absolute value

of the effective crossing angle to be the same for both polarities [87].

A study was performed to quantify the effect of beam crossing geometry by generating

Z bosons using simulation configured with the relevant beam crossing angles. The

configuration of the beams are as in Table 4.1 and Figure 4.5. The resulting Z boson

pT distributions are compared in Figure 4.6.

Sample-I Sample-II

MD MU MD MU
Crossing plane Horizontal Horizontal Tilted Tilted
Effective half crossing angle (µRad) -520 +20 -236 +236

Table 4.1: Beam crossing conditions.
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Figure 4.5: Angles in µRad between the beams and the LHCb z-axis during Sample-I
data-taking. The angles are consistent with the half crossing angles of Table 4.1. The
crossing angle is defined as the angle between the extension of beam 1 (blue dotted)
and beam 2 (red arrow).

In Sample-I, the pT distributions in MD and MU samples differ at low values. An

interpretation of this result is that the larger crossing angle (when the magnet polarity

is down) is giving the Z boson a small pT boost, reducing the number of events in the

first bin. Since the goal is to compare measurements with theoretical predictions, where

the longitudinal boost vector of the Z boson and the beam axis are colinear, a correction

must be applied for this crossing angle effect. The correction used here is to redefine

the z-axis as the direction of beam one (b1) and measure pT with respect to this new

axis, z′, which is shown in Figure 4.7. This choice is motivated by the fact that b1 must

carry the high momentum parton required to produce a Z boson inside the acceptance

of LHCb.1

The pT distribution in this new reference frame is shown in Figure 4.8. Comparing

Figure 4.6(b) and Figure 4.8(b), the distributions are now consistent irrespective of the

polarity. When the same procedure is applied to the data there is a similar improvement,

although the rotation of frame does not account for the full difference.

Two final comments must be made. First, the cross-sections are measured in a fidu-

cial volume with requirements on the muon momenta, pseudorapidities and Z mass.

Thus the muon momenta and pseudorapidities must be calculated in the primed co-

ordinate frames. These primed quantities are then subjected to the selection cuts of
1To give some feeling for the values, and assuming a Z boson is produced inside the LHCb acceptance,

a typical quark/anti-quark from beam 1 will have about 25% of its proton’s momentum whereas the
anti-quark/quark from beam 2 will have 0.05% of its proton’s momentum.



Chapter 4. Measurement of the Z boson cross-section 66

 [GeV/c]
T,Z

p
0 20 40 60

[A
.U

]

-310

-210

-110
Sample-I MD Simulation

Sample-I MU Simulation

(a)

 [GeV/c]
T,Z

p
0 5 10

[A
.U

]

-110

Sample-I MD Simulation

Sample-I MU Simulation

(b)

 [GeV/c]
T,Z

p
0 20 40 60

[A
.U

]

-310

-210

-110

Sample-II MD Simulation

Sample-II MU Simulation

(c)

 [GeV/c]
T,Z

p
0 5 10

[A
.U

]

-110

Sample-II MD Simulation

Sample-II MU Simulation

(d)

Figure 4.6: Simulated distribution of candidates in Z boson pT (x-axis) for beam
crossing conditions similar to Sample-I in (a) and (b) and Sample-II in (c) and (d).
Distributions are normalised to the number of events in each sample. As in data, a
discrepancy in the low pT region for Sample-I conditions is observed (see panel (b)).

Section 4.1. Second, muon reconstruction efficiencies have been calculated in the un-

primed co-ordinate frame as a function of pseudorapidity (see Section 4.4.2). These ef-

ficiencies are not re-calculated in the primed co-ordinate frames; instead, the unprimed

pseudorapidities of each muon are used to correct for muon inefficiencies. This poses

a problem for muons that are inside the fiducial volume in the primed frame but not

inside the fiducial volume of the unprimed frame (there is no efficiency for them). Since

the changes in pseudorapidity are small, and since this is only a problem for a handful

of events, these strays are treated as if they came from the neighbouring bin on the edge

of the unprimed fiducial volume.

The effect of different beam crossing angles has a negligible impact on the cross-section

results. It is therefore not considered in the total systematic uncertainty.
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Figure 4.7: Rotated co-ordinate frame (dotted axes, primed labels) in which corrected
pT is measured. The z′-axis follows the direction of beam 1. The values shown are
for the MD configuration in the (a) x-z plane and (b) y-z plane. Similar rotations are
made for MU.
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Figure 4.8: Simulated distribution of candidates in Z boson pT for beam crossing
conditions similar to Sample-I in (a) and (b). In this case the reference frame has
been rotated and pT is measured with respect to the direction of b1.



Chapter 4. Measurement of the Z boson cross-section 68

4.3 Purity

The background contribution to the Z → µ+µ− candidate samples is very low. Five

different sources are investigated. These include decays of heavy flavour hadrons, hadron

misidentification, Z → τ+τ−, tt̄ and W+W−. These are described in Sections 4.3.1,

4.3.2, 4.3.3, 4.3.4 and 4.3.5, respectively. The same procedures are applied to the analyses

of Sample-I and Sample-II. For the sake of clarity, only numbers pertaining to the

analysis of Sample-I are mentioned in the discussion. The summary in Section 4.3.6

brings both sets of background estimates together.

4.3.1 Heavy flavour

The production of bb̄ and cc̄ can contribute to the background if the resulting heavy

flavour hadrons decay semi-leptonically. This contribution is estimated from data using

two independent heavy flavour enriched samples, labelled HF-VTX and HF-ISO below.

Both samples are based on the sample described in Section 4.1. In addition to these

requirements, the dimuon invariant mass requirement is relaxed to Mµ+µ− > 40 GeV/c2

and special cuts are applied to increase the proportion of heavy flavour decays in the

sample.

Muons from signal result in tracks inside the detector whose orientations suggest a

common origin vertex. Muon tracks arising from decays of b- and c-hadrons will have

a large vertex χ2/ndf (see Section 3.2.6). These ideas are represented graphically in

Figure 4.9. The first sample (HF-VTX) requires a low probability for the two selected
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Figure 4.9: Schematic representation of muons arising from (a) Z → µ+µ− decays and
(b) decays of B-hadrons. Due to finite resolution on muon momenta, even muon tracks
from signal do not lead back to the exact same point. However, this impact parameter
(thin black line d in (b)) is much greater for heavy flavour decays. Decays of B-hadrons
also have higher momentum tracks within the η − φ cone about the muon.
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muons to come from the same vertex (dimuon vertex fit χ2/ndf > 100), thus enriching

the sample in heavy flavour backgrounds.

The second sample (HF-ISO) is composed of events that contain two muons that are

poorly isolated, which are characteristic of QCD processes like bb̄ and cc̄ production.

To quantify the degree of isolation of the muon, the variable pµ−cone
T is defined. It is

the sum of the transverse momenta of tracks inside a cone around the muon, where the

cone is defined using the radius parameter R =
√

∆η2 + ∆φ2 = 0.5. Here, ∆η and ∆φ

give the separation between the muon track and neighbouring tracks in η and azimuthal

angle φ. If a track (excluding the muon track) is inside the cone it contributes to the

cone momentum. A variable, z, is then constructed. It is defined as

z =
pµT

pµT + pµ−coneT

, (4.1)

where pµT is the transverse momentum of the muon whose isolation is being quantified.

Well-isolated muons have z values close to 1 while poorly isolated muons have values

closer to 0. Requiring that both of the final state muons have z < 0.7 defines the second

heavy flavour sample, HF-ISO.

The efficiency of the vertex fit χ2 requirement on heavy flavour events is determined

from data. To do this, one assumes that the HF-ISO sample is 100% heavy flavour.

The effect of the vertex χ2 cut is then checked on this sample and is found to have an

efficiency of 34%. In a similar fashion, the efficiency of the muon isolation cut can be

determined by assuming the HF-VTX sample is 100% heavy flavour and applying the

isolation criteria. The efficiency is determined to be 29%.

The resulting dimuon invariant mass distributions of the two heavy flavour enriched

samples are shown in Figure 4.10. Since the heavy flavour background falls off rapidly

with dimuon invariant mass, an exponential is fitted to each distribution to determine

the background contribution. The portion of the distribution between 60–120 GeV/c2,

denoted by the red hatching, constitutes background to the signal. Integrating the

exponential function in the signal regions gives 65.5 events for the HF-VTX sample

and 47.9 events for the HF-ISO sample. Applying the efficiencies of the cuts on the

heavy flavour samples gives estimated backgrounds of 195± 7 and 165± 7 for the HF-

VTX and HF-ISO samples, respectively. The uncertainty quoted here is due to the

uncertainties on the fit parameters.

In order to apply the efficiencies of the cuts on heavy flavour events as above, the

isolation of the final state muons and the vertex fit χ2 of the dimuon candidate must be
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Figure 4.10: Mass distributions of heavy flavour samples (a) with vertex χ2/ndf > 100
and (b) z < 0.7 for both muons. The shaded area under the curve represents the
heavy flavour background in this analysis. The muons are required to have transverse
momentum greater than 20 GeV/c.

largely uncorrelated for heavy flavour events. This assumption has been verified using

simulated bb̄ and cc̄ events, where the correlation coefficient is determined to be 0.4.

The best estimate for the heavy flavour background and its systematic uncertainty are

evaluated using a number of cross-checks, which are now described. There are relatively

few candidates in the HF-ISO and HF-VTX samples. The first cross-check aims at

increasing the size of the heavy flavour samples. This is done by reducing the muon pT

threshold (all thresholds between 10 and 20 GeV/c2 in 1 GeV/c2 steps) to allow more

statistics for the mass fit. Most of the additional candidates have invariant masses be-

low 60 GeV/c2. Figure 4.11 shows the mass distributions of the HF-VTX and HF-ISO

samples, where the pT threshold is at 14 GeV/c2. The quality of the fit is improved,
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Figure 4.11: Mass distributions of heavy flavour samples (a) with vertex χ2/ndf > 100
and (b) z < 0.7 for both muons. The shaded area under the curve represents the
heavy flavour background in this analysis. The muons are required to have transverse
momentum greater than 14 GeV/c.

especially in the low mass region. The procedure of evaluating integrals and dividing
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by efficiencies is repeated with different muon transverse momentum thresholds. Dif-

ferent background estimates are obtained, which are given in Tables A.3 and A.4 of

Appendix A.

The second cross-check assesses the impact of fitting the exponential in different mass

ranges. Instead of fitting the full mass range, where the result can be affected by

residual signal in the samples, fitting in a restricted range between 40–60 GeV/c2 is

also investigated. The background contamination in this specific mass range is expected

to be larger than in the sample considered as a whole. Results of this procedure are

detailed in Tables A.5 and A.6 and of Appendix A.

Considering the estimates from the different cross-checks, and their spread, a heavy

flavour background of 227 ± 32 events is assigned. More detail on how this number is

arrived at is given in Section 4.5, where systematic uncertainties are discussed.

4.3.2 Hadron misidentification

Pions or kaons may be misidentified as muons if they decay in flight before they reach

the muon stations or if they have sufficient energy to traverse the calorimeters and be

detected in the muon stations. Two cases are distinguished, that where there is one good

muon and one misidentified hadron, and that where there are two misidentified hadrons.

In both cases di-track samples are formed and weighted by a momentum dependent

probability (Pmisid) for the tracks to be misidentified as muons. A cross-check of the

method is performed using same-sign muon-pair events.

Pmisid is measured using tracks selected from randomly triggered events (see Section 3.2.10).

The vast majority of tracks in these events are not muons, so the fraction of these tracks

identified as muons is considered an upper limit on Pmisid. Shown in Figure 4.12 is the

fraction of tracks satisfying the isMuon criteria (see Table 3.1) as a function of loga-

rithm of momentum. Only tracks above 12 GeV/c are considered to avoid steps in the

data when crossing the momentum thresholds at 6 and 10 GeV/c. The distribution has

been fitted with the following function

Pmisid (p) =
(

1− e−
p0
p

)
+ (p1 + p2 · p) (4.2)

The exponential describes decays in flight while the linear component describes punch-

through. A discussion on this expected form can be found in Ref. [88].

The first hadron misidentification background to the signal is a high pT muon accom-

panied by a misidentified hadron. To quantify this, a muon-hadron sample passing the
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Figure 4.12: The probability for a hadron to be misidentified as a muon in (a) Sample-I
and (b) Sample-II.

analysis cuts is made, where it is required that the event would have been triggered

in the absence of the hadron. The mass distribution of the muon-hadron candidate is

shown in Figure 4.13. This sample contains a small contribution from signal events due

to the inefficiency of the muon trigger and identification. An exponential function is used

to model the background while a Gaussian models the signal contamination. Note that

each candidate has been scaled by the probability for the hadron to be misidentified.

The integral under the fitted exponential gives 2.3± 0.2 events.
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Figure 4.13: Distribution of masses for muon-track combinations in (a) Sample-
I and (b) Sample-II. Each candidate has been scaled by the probability of hadron
misidentification, as given by Equation 4.2, with parameters as in Figure 4.12.

The second hadron misidentification background process is where both muon candidates

are misidentified hadrons. To evaluate this, di-hadron candidates are formed by com-

bining pions and kaons from randomly triggered events and imposing the analysis cuts.
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Both legs of the combination have been scaled by Pmisid, as specified by Equation 4.2,

with parameters from Figure 4.12.

The rate at which unbiased (by the trigger) data is taken is limited throughout the

data taking period, so the integrated luminosity of this data does not correspond to the

integrated luminosity of the sample used to select Z candidates. The randomly triggered

sample thus needs to be normalised to the Z candidate sample.

The rate limit depends on the configuration of the trigger (TCK) and was either 11 or

97 Hz. One can safely assume that this allotted bandwidth is always saturated (i.e. the

LHCb event rate is never less than 11 or 97 Hz) so the rate limitation amounts to an

effective prescale. At relativistic speeds, proton bunches rotate around the LHC at a

frequency f of 11245 Hz. The number of colliding bunches (CB) depends on the run,

so the bunch-bunch (bb) collision rate is f ·CB(run). Not all of the randomly triggered

rate corresponds to bb crossings, but also be, eb and ee crossings (see Section 3.1.2).

The Z candidate sample is uniquely bb crossing-type, so an additional scaling by the bb

fraction of the randomly triggered data (typically 70%) is required. Formula 4.3 gives

the effective prescale, where the dependency on trigger configuration and run is made

explicit.

peff (TCK,run) =
R (TCK) · Nbb

Nbb+Nbe+Neb+Nee

f · CB (run)
(4.3)

Shown in Figure 4.14 is this effective prescale for candidates in the di-hadron sample.
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Figure 4.14: The plot shows the effective prescale calculated using Equation 4.3 for
events in the di-hadron sample. Plot (a) is for Sample-I and plot (b) is for Sample-II.

Once the candidates in the di-hadron sample have been weighted by misidentification

probabilities, and once the luminosity of the sample is corrected with peff to match that

of the Z candidate sample, the contribution from this background is estimated to be
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114± 31. The uncertainty is driven by the uncertainty on the parameters of Pmisid and

the statistics in the di-hadron sample. The mass distribution of these background events

is shown in Figure 4.15 as black points.
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Figure 4.15: Masses of charged track combinations in (a) Sample-I and (b) Sample-
II. In the case of the black points, the tracks are hadrons from randomly triggered
data that have been weighted by a hadron misidentification probability and an effective
prescale to normalise the sample to the Z candidate sample. The red points indicate
the masses of dimuon candidates with muons of the same electric charge.

Muon misidentification is due to hadrons that have either decayed-in-flight or have

punched through the calorimeters. The probabilities for these to happen depend on

momentum, so it should not matter whether the two muons have the same charge or

opposite charge. Thus, an alternative evaluation of the misidentification background can

be found from pairs of same-sign muons. This has been checked explicitly on randomly

triggered data, where there are 1313 events that have two high-pT tracks. In 680 of

these events, the tracks have the same sign, while in 633 of these events, the tracks have

opposite sign. Using the same-sign dimuon sample, 148 events with both muons having

the same charge are found by the Z selection. The red points in Figure 4.15 show the

masses of these same-sign dimuons. This background estimate also includes a possible

contribution from W (or Z if one of the muons is outside of the acceptance) production

together with a misidentified muon.

In conclusion, the contribution to the background due to hadron misidentification is

estimated to be (114 ± 31) + (2.3 ± 0.2) = 116 ± 31 events, the sum of µ-hadron and

hadron-hadron backgrounds. The uncertainty here is the statistical uncertainty due to

the number of di-hadron events and the uncertainty on the parameters in Pmisid. The

number of events in the same-sign sample (148) is used to set an additional systematic

uncertainty, which is discussed in Section 4.5.
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4.3.3 Z → τ+τ−

Remaining backgrounds are determined using a combination of simulation and previous

measurements. The LHCb simulation generates events with decay products inside the

detector volume, subject to additional kinematic constraints. The restrictions on the

decay products are known as the generator cuts, and their efficiency is known as the

generator cut efficiency, εcut. To obtain background estimates, one imposes the Z →
µ+µ− selection on the simulated sample, divides the number of these events by εcut

to obtain the number of events that would have been produced without the cuts, and

then uses the total cross-section (or 4π cross-section) to calculate an effective luminosity,

Leff . The ratio of Leff and the luminosity of the sample used to measure the Z boson

cross-section is used to scale the number of events in the simulated sample passing the

Z → µ+µ− selection to give the background estimate.

Decays from Z → τ+τ− can be background to the signal if both taus decay leptonically

to muons and neutrinos. The tau background is estimated from Pythia simulation that

has been normalised to a weighted average of ATLAS and CMS cross-sections [89, 90].

First, the number of Z → τ+τ− decays in the sample is divided by εcut. Then, using

the measured cross-section to evaluate Leff , the events passing the Z → µ+µ− selection

criteria are normalised to 1 fb−1. The relevant numbers are given in column four of

Table 4.2. The estimate is 59± 4± 4 events for Sample-I. The first uncertainty here is

due to the statistics in the simulation sample and the second is due to the uncertainty

on the measured cross-section.

4.3.4 tt̄

Decays of top quark pairs may contribute if both top quarks decay semi-leptonically. At

NLO the 4π tt̄ cross-section is about 160 pb [91] and at
√
s = 7 TeV this can be thought

of as a mix of the gg and qq production mechanisms in the ratio 4:1. Using PYTHIA8

simulation as well as the measured cross-sections [92, 93] in Table 4.2, a contribution of

4.5± 0.1± 0.2 events is expected.

4.3.5 W+W−

Production of W pairs contributes to the sample if both W bosons decay to a muon and

a neutrino. At NLO the 4π W+W− cross-section is about 45 pb [94], which is slightly

smaller than the measured values of about 53 pb [95, 96]. This contribution has been

estimated with the use of PYTHIA8 simulation and measured cross-sections, as above.
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tt̄(gg) tt̄(qq) Z → τ+τ− W+W−

Sample-I

Events 2008493 1609793 1045497 104499
εcut 0.049 0.068 0.36 0.29x0.1057x0.1057
σATLAS [pb] 140.8± 13.6 35.2± 3.4 970± 97 54.4± 5.9
σCMS [pb] 129.6± 5.6 32.4± 1.4 1000± 102 52.4± 5.1
σGPDs [pb] 131.2± 4.8 32.8± 1.2 984± 70 53.3± 3.9
Leff. [fb−1] 312.4 721.8 2.951 605.1
Z → µ+µ− selection 679 1689 174 1191
Background estimate 2.2 2.3 59 2

Sample-II

Events 1017496 1007498 4046990 1037552
εcut 0.049 0.067 0.37 0.30x0.1057x0.1057
σATLAS [pb] 195.5± 39.1 34.5± 6.9 1136± 22.7 70± 7
σCMS [pb] 195.5± 39.1 34.5± 6.9 1136± 22.7 70± 7
σGPDs [pb] 195.5± 39.1 34.5± 6.9 1136± 22.7 70± 7
Leff. [fb−1] 106.2 435.9 9.65 49.4
Z → µ+µ− selection 448 1170 709 9152
Background estimate 8.4 5.4 147 3.7

Table 4.2: Summary of background estimation using simulation and measured cross-
sections. The branching fractions of W boson decays to muons are included with the
generator cut efficiency for the W+W− simulation.

Background Estimation Sample-I Sample-II

Heavy flavour (bb̄,cc̄) Data-driven 227± 32 490± 72
Hadron misidentification Data-driven 116± 45 262± 110
Z → τ+τ− Pythia8+σGPDs 59± 6 147± 7
tt̄ Pythia8+σGPDs 4.5± 0.2 14± 2
W+W− Pythia8+σGPDs 2.0± 0.2 3.7± 0.4
Total 409± 56 916± 132
Purity 0.993± 0.002 0.993± 0.002

Table 4.3: Background composition of the candidate samples.

Since the W boson is forced to decay to muons in this sample, a correction is required

to account for the branching fraction, which is 10.57% [3]. This is included with εcut in

Table 4.2. The background amounts to 2.0± 0.2± 0.1 events.

4.3.6 Total

The background composition of the candidate sample is summarised in Table 4.3. The

total background contribution in the Z sample in the range 60–120 GeV/c2 amounts to

409 ± 56 events. The purity is defined as the ratio of signal to candidate events and is



Chapter 4. Measurement of the Z boson cross-section 77

given by ρ = 0.993± 0.002. For this analysis the purity is assumed not to vary with y,

pT and φ∗ of the Z boson, nor the η of the muons. The assignment of an appropriate

systematic uncertainty due to this assumption is discussed in Section 4.5.5.

4.4 Cross-section

4.4.1 Cross-section definition

Cross-sections are quoted in the kinematic range defined by the measurement and are

corrected for quantum electrodynamic (QED) final-state radiation (FSR) in order to

provide a consistent comparison with NLO and NNLO QCD predictions. No correc-

tions are applied for initial-state radiation, electroweak effects, nor their interplay with

QED effects. The cross-sections are measured as functions of rapidity (y), transverse

momentum (pT ) and φ∗ of the Z boson, which have been defined in Section 3.3.

The cross-section in a given bin i of ηµ, y, pT and φ∗ of the Z boson, with both final-state

muons inside the fiducial region, is measured as

σZ→µ+µ−(i) =
ρ

L
fFSR(i)
εGEC(i)

∑
j

Uij

(∑
k

1

ε(ηµ
+

k , ηµ
−

k )

)
j

. (4.4)

The indices i and j run over the bins of the variable under study. The index k runs over

the candidates contributing to bin j. The total muon reconstruction efficiency for an

event is given by ε(ηµ
+

k , ηµ
−

k ), which is dependent on the pseudorapidity of the two muons,

and is described in Section 4.4.2. The matrix U corrects the data for bin migrations

due to detector resolution effects. It is determined using an unfolding procedure, which

is described in Section 4.4.6. The efficiency of the requirement on the number of SPD

hits in the hardware trigger is denoted by εGEC. The correction factors for QED final-

state radiation are denoted by fFSR(i) and are determined for each bin, as described

in Section 4.4.5. The integrated luminosity is denoted by L. Though not entering the

expression for the cross-section, an uncertainty due to the beam energy is assigned to

all cross-sections. More detail on these individual components is given below. Once the

binned cross-sections are determined, they are summed to give the total cross-section

σZ→µ+µ− =
∑
i

σZ→µ+µ−(i). (4.5)
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Tag Probe
Trigger ID Tracking

Long track Long track Long track MuonTT track
isMuon isMuon - -

TOS - - -
P(χ2) > 0.1% P(χ2) > 0.1% P(χ2) > 0.1% -
σP/P < 0.1 σP/P < 0.1 σP/P < 0.1 -

pT > 20 GeV/c pT > 20 GeV/c pT > 20 GeV/c pT > 20 GeV/c
2 < η < 4.5 2 < η < 4.5 2 < η < 4.5 2 < η < 4.5

Table 4.4: Summary of requirements on tag and probe tracks defining samples for muon
reconstruction efficiency studies.

The most precise estimate of the total cross-section is obtained by summing the differen-

tial cross-sections determined as a function of rapidity, where uncertainties due to data

unfolding are negligible.

4.4.2 Muon reconstruction efficiencies

In this analysis, the presence of a Z boson is inferred from the existence of two high-

pT muons in the final-state. When such a muon enters the LHCb acceptance, there

is a possibility that the detector fails to associate the combination of hits in the vari-

ous sub-detectors with the presence of a high momentum muon. Firstly, the tracking

software has some inefficiency. Secondly, even when a track has been reconstructed,

it may not be identified as a muon due to inefficiencies in the particle identification.

Thirdly, the trigger system that has about 1 µs to partially reconstruct and identify a

muon, is also less than 100% efficient. In order to make comparisons with theoretical

predictions, the data must be corrected for these inefficiencies. The corrections can be

determined using simulation, which has the advantages of quasi-infinite statistics and no

background. However, simulation may not model crucial effects like detector occupancy,

which typically reduce efficiencies. For this reason, the muon reconstruction efficiencies

are determined using the data itself, by implementing the tag-and-probe method on the

Z resonance. The tag-and-probe samples used here have O(104) events, so uncertainties

are at the per mille level.

The tag-and-probe method requires a pure sample of Z bosons. The final-state decay

products are labelled, one as the tag, the other as the probe. The requirements on the

tags and probes of this analysis are summarised in Table 4.4. The tag must be identified

as a muon and be consistent with triggering the event, while the probe is defined so that

it is unbiased by the requirement for which the efficiency is being measured. By checking
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if the probe satisfies a tracking, identification or trigger requirement, the efficiency of

the probe may be determined. It is the number of events in the sample where the probe

satisfies this requirement, divided by the total number of events in the sample. In this

analysis, the efficiency is studied as a function of several variables, which describe both

the muon kinematics and the detector occupancy of the event.

Trigger efficiency

The candidate samples of Section 4.1 are examples of tag-and-probe samples that may

be used to measure the trigger efficiency. The efficiency is given by the fraction of events

that have two muons that fire the trigger. The efficiencies as functions of probe muons

and anti-muons are shown in Figure 4.16 for the sub-samples of the data where the mag-

net polarity is down. The efficiencies vary between 71.6% and 82.0% with uncertainties
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Figure 4.16: Muon trigger efficiencies as functions of η in (a) Sample-I and (b)
Sample-II with the LHCb magnet in the down configuration. Filled markers represent
muons and open markers represent anti-muons.

between 0.5% and 1.2%. These values are given in Table 4.5. The uncertainties (δεtrg)

are statistical in nature, and therefore uncorrelated between bins. Since the purity of

the sample is so high, no additional uncertainty is considered. Only one muon candidate

is required for the event to pass the trigger requirements so the overall trigger efficiency

is about 95%.

Identification efficiency

To determine the muon identification efficiency, tag-and-probe samples are constructed

with fully reconstructed tag tracks that are identified as muons, and probes that are long

tracks. The invariant mass of the tag-and-probe combination is required to be between
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η εtrg δεtrg
2.000-2.080 0.716 0.008
2.080-2.165 0.760 0.007
2.165-2.250 0.781 0.007
2.250-2.375 0.783 0.006
2.375-2.500 0.788 0.006
2.500-2.750 0.794 0.004
2.750-3.000 0.779 0.004
3.000-3.250 0.777 0.005
3.250-3.500 0.801 0.005
3.500-3.750 0.795 0.006
3.750-4.000 0.773 0.007
4.000-4.250 0.820 0.007
4.250-4.500 0.812 0.010

Table 4.5: Single muon trigger efficiencies and their total uncertainties as a function of
pseudorapidity. These numbers correspond to Sample-I. The corresponding efficiencies
for Sample-II can be found in Appendix B.

60–120 GeV/c2. To reduce background, an additional cut is placed on the azimuthal

separation of the muons |∆φ|, which must be greater than 2.7 radians. The efficiencies as

functions of probe muons and anti-muons are shown in Figure 4.17 for the sub-samples

of the data where the magnet polarity is up. The efficiencies vary between 91.3% and
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Figure 4.17: Muon identification efficiencies as functions of η in (a) Sample-I and (b)
Sample-II with the LHCb magnet in the up configuration. Filled markers represent
muons and open markers represent anti-muons.

99.2% with uncertainties between 0.1% and 0.9%. These values are given in Table 4.6.

The first component of the total uncertainty (δεTPID ) is statistical in nature, and therefore

uncorrelated between bins. A second uncertainty (δεsys.ID ) of 0.1% accounts for additional

backgrounds in the tag-and-probe sample. This uncertainty is correlated across muon η

bins.
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η εID δεTPID δεsys.ID δεID
2.000-2.080 0.966 0.004 0.001 0.004
2.080-2.165 0.989 0.002 0.001 0.002
2.165-2.250 0.992 0.002 0.001 0.002
2.250-2.375 0.988 0.002 0.001 0.002
2.375-2.500 0.986 0.002 0.001 0.002
2.500-2.750 0.986 0.001 0.001 0.001
2.750-3.000 0.987 0.001 0.001 0.001
3.000-3.250 0.987 0.002 0.001 0.002
3.250-3.500 0.987 0.002 0.001 0.002
3.500-3.750 0.986 0.002 0.001 0.002
3.750-4.000 0.983 0.003 0.001 0.003
4.000-4.250 0.981 0.003 0.001 0.003
4.250-4.500 0.913 0.008 0.001 0.008

Table 4.6: Single muon identification efficiencies and their total uncertainties as a
function of pseudorapidity. The corresponding efficiencies for Sample-II can be found
in Appendix B.

Tracking efficiency

To determine the muon tracking efficiency, a fully reconstructed muon is used as the tag

and a MuonTT track is used as the probe. MuonTT tracks are reconstructed using hits

in the Muon and TT sub-detectors. These can be used as probes because the efficiency

to reconstruct a long track is not expected to depend on hits in these particular sub-

detectors [74]. The probe requirements are summarised in Table 4.4. A tighter mass

window of 70–110 GeV/c2 is imposed to reduce background in the sample. The efficiency

is determined by examining all long tracks of the event (excluding the tag). The probe

is deemed efficient if one of these long tracks satisfies the following criteria.

• At least 40% of the Muon hits are common between the long track and MuonTT

track.

• At least 60% of the TT hits are common between the long track and MuonTT

track, if the long track has TT hits.

• The tag and long track 4-vectors combine to give an invariant mass greater than

40 GeV/c2.

The lower limit of 40 GeV/c2 on the invariant mass of the tag and long tracks is required

to prevent the MuonTT track being matched to soft long tracks from the underlying

event.
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Two corrections are made to the tracking efficiency as determined using the tag-and-

probe method, εTPtrk . These are described here, and in more detail in Ref. [97]. The first

correction accounts for the bias of the MuonTT track method to determine the efficiency,

Cbias. This is determined using simulation by comparing efficiencies to reconstruct long

tracks in cases where (a) the muon has an associated MuonTT track and (b) the muon

does not have an associated MuonTT track. On average, Cbias is about 99%. The second

correction is for the inefficiency of the matching procedure εmatch. This is obtained

by switching the roles of the MuonTT track and the long track in the tag-and-probe

procedure described above. The average value of εmatch is greater than 99%. The

tracking efficiency is then

εtrk =
εTPtrk · Cbias

εmatch
. (4.6)

The tracking efficiencies as functions of probe muons and anti-muons are shown in

Figure 4.18 for the sub-samples of the data where the magnet polarity is down. The
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Figure 4.18: Muon tracking efficiencies as functions of η in (a) Sample-I and (b)
Sample-II with the LHCb magnet in the down configuration. Filled markers represent
muons and open markers represent anti-muons.

efficiency varies between 89.5% and 98.5% with uncertainties between 0.4% and 1.9%.

These vales are given in Table 4.7. The first component of the uncertainty (δεTPtrk ) is

due to the size of the tag-and-probe sample. The other uncertainties are due to the

efficiency of the track matching procedure (δεTMtrk ) and the inherent bias of the MuonTT

track method δεBias1trk and δεBias2trk . The uncertainty δεBias2trk is correlated between muon

η bins. The others are uncorrelated in this regard.

Total efficiency

The efficiency to reconstruct an event is the product of the tracking and identification

efficiencies for each muon combined with the efficiency for at least one of the muons
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η εtrk δεTPtrk δεTMtrk δεBias1trk δεBias2trk δεtrk
2.000-2.080 0.895 0.011 0.007 0.003 0.010 0.017
2.080-2.165 0.939 0.010 0.007 0.002 0.001 0.012
2.165-2.250 0.948 0.010 0.006 0.002 0.001 0.011
2.250-2.375 0.955 0.008 0.006 0.001 0.001 0.010
2.375-2.500 0.970 0.006 0.005 0.001 0.001 0.008
2.500-2.750 0.961 0.004 0.002 0.001 0.001 0.004
2.750-3.000 0.970 0.004 0.002 0.001 0.001 0.004
3.000-3.250 0.964 0.004 0.002 0.001 0.002 0.005
3.250-3.500 0.975 0.003 0.002 0.001 0.001 0.004
3.500-3.750 0.975 0.004 0.003 0.001 0.001 0.005
3.750-4.000 0.985 0.004 0.003 0.002 0.001 0.006
4.000-4.250 0.960 0.006 0.003 0.002 0.002 0.007
4.250-4.500 0.919 0.013 0.006 0.002 0.003 0.015

Table 4.7: Single muon tracking efficiencies and their total uncertainties as a func-
tion of pseudorapidity. The corresponding efficiencies for Sample-II can be found in
Appendix B.

to fire the trigger. It is determined on an event-by-event basis as a function of muon

pseudorapidity.

ε = εµ
+

trk · ε
µ−

trk · ε
µ+

id · ε
µ−

id ·
(
εµ

+

trg + εµ
−

trg − ε
µ+

trg · ε
µ−

trg

)
(4.7)

Equation 4.7 shows how the efficiency ε is factorised. εtrk, εid and εtrg denote tracking,

identification and trigger efficiencies respectively. The validity of the factorised form in

Equation 4.7 is tested using MC2011 simulation, where the true distributions of variables

in Z → µ+µ− events are compared to the reconstructed distributions after the efficiency

correction. Agreement is achieved at the level of 0.4%. This uncertainty is largely due to

the available statistics, and since these uncertainties are also included in the data-driven

determinations of the efficiency, this number is not included as an additional systematic

uncertainty.

Effects that correlate the inefficiency of the two muons arising from Z boson decay can

bias the tag-and-probe efficiency toward higher values. Examples of such effects are the

existence of inefficient regions in the detector that are back-to-back in φ, or a dependence

of the efficiency on detector occupancy. The MC closure test explained above suggests

that such effects bias the result below the level of 5 per mille, but this is only true if these

effects are accurately modelled by the simulation. The simulation models the inefficient

regions back-to-back in φ, but it does not model the detector occupancy well.

To estimate the size of the bias, an iterative tag-and-probe technique is employed. In the

first iteration the tag-and-probe method is used to measure the efficiency as a function
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of η and occupancy. In the second iteration, events in the tag-and-probe sample are

reweighted by the efficiency as a function of occupancy from the first iteration. This

yields a new set of efficiencies as a function of η. The reweighting recovers the events

where neither leg of the Z decay is reconstructed, which contribute to the true efficiency.

The corrections to the original efficiencies are ∼0.02% and are considered negligible for

this analysis.

4.4.3 Global event cut efficiency

In order to prevent large events from dominating the processing time, global event cuts

(GEC) are applied in the trigger to reject events with large particle multiplicities. The

main effect comes from the requirement that, for the L0Muon trigger, events with more

than 600 hits in the scintillating pad detector (SPD) are rejected. The efficiency of the

GEC is evaluated from data using two independent methods. The first determines the

efficiency by superimposing the event multiplicities of randomly triggered, single PV

(primary interaction vertex), events on those of single PV events containing a Z boson.

The second fits the SPD distribution directly. These methods are explained in more

detail below. The efficiency calculated with both methods agree and (94.0 ± 0.2)% is

the value used in the analysis of Sample-I data. A value of (93.0± 0.3)% is measured

for Sample-II data.

The evaluation of the efficiency is facilitated with the use of a Z candidate sample, which

is identical to the sample described in Section 4.1 except for the trigger definition. The

triggers used in this sample have the SPD hit threshold set to 900 (see Section 3.2.10).

The shapes of the SPD distributions for both sets of Z candidate samples are identical

up to 600 hits, as can be seen in Figure 4.19. This fact is used to help determine the

efficiency.

Determination of GEC efficiency by superimposing pileup events

The first method simulates higher pileup (thus higher multiplicity) events by adding

the multiplicities of randomly triggered events with one PV to the multiplicities of Z

events with one PV. The PV multiplicity distribution of Z candidates in data is shown

in Figure 4.20. The method relies on the SPD multiplicities in data, both single PV Z

candidate events and single PV randomly triggered events, being unaffected by the 900

SPD hit threshold. The relevant distributions are shown in Figures 4.21, 4.22. One can

see that the assumption that there are no events with more than 900 SPD hits is a good

one. This is discussed further in Section 4.5
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Figure 4.19: The SPD hit multiplicity for events containing a Z candidate in (a)
Sample-I and (b) Sample-II. The black points correspond to candidates that satisfy
the dimuon triggers. The red histogram shows the shape of candidate events satisfying
single muon triggers.
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Figure 4.20: The primary vertex multiplicity in data for (a) Sample-I and (b) Sample-
II. Each event considered satisfies the dimuon triggers and contains a Z candidate.

Naively adding the multiplicities can result in an over-counting. There are three main

causes of this.

• The same cell could be counted by the randomly triggered event and the Z candi-

date event. This results in an over-counting because a real event with two charged

particles in the vicinity of the same cell would still be counted as one SPD hit.

• There is noise in the the SPD sub-detector. Noise exists in both the randomly

triggered event and the Z candidate event, and would be double counted unless

accounted for.

• There may be hits from previous bunch crossings (spillover). If the events selected

to construct the multiplicity distribution happen to have left-over hits from the

previous crossing, then the multiplicities may be artificially large.
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Figure 4.21: SPD multiplicities for Z events with one primary vertex that satisfy the
dimuon triggers in (a) Sample-I and (b) Sample-II.

SPD hits
0 200 400 600 800

Si
ng

le
-P

V
 n

o 
bi

as

1

10

210

310

(a)

SPD hits
0 200 400 600 800

Si
ng

le
-P

V
 n

o 
bi

as

1

10

210

310

410

(b)

Figure 4.22: SPD multiplicities of randomly triggered events with one primary vertex
in (a) Sample-I and (b) Sample-II.

To see how these issues are resolved, consider Equation 4.8.

Z(2PV) = Z(1PV)⊕NoBias(1 PV)noise/spillover (4.8)

This equation represents the addition of the multiplicities of a single PV Z candidate

event and a single PV, randomly triggered (no bias) event. The terms of the equation

are to be understood as two dimensional grid maps. Each grid map has the same spatial

resolution as the SPD, as shown in Figure 3.13(a). Cells in these grids have values of 0 or

1, depending on whether or not a charged particle has activated the pad corresponding

to that cell. The sense of the addition indicated by ⊕ is that cell(i,j) of the grid on

the left-hand-side of Equation 4.8 is considered activated if cell(i,j) is activated in at

least one of the two grids on the right-hand-side of the equation. The first grid on

the right-hand-side is populated by randomly selecting an SPD multiplicity from the

distribution of SPD multiplicities in 1 PV Z events (see Figure 4.21) and distributing
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this multiplicity according to the probability density in Figure 4.23. The second grid on

the right-hand-side is populated in a similar fashion, randomly selecting a multiplicity

from the distribution in Figure 4.22 and distributing according to the probability density

shown in Figure 4.24. The subscript on the NoBias term is to indicate that 6% of the

hits sampled from the distribution in Figure 4.22 are subtracted to account for noise

and spillover. This 6% is motivated by comparing the average multiplicities of single

PV randomly triggered events (117) and noise events (7). Noise events are randomly

triggered events with no primary vertices that do not fire a physics trigger. Finally,

the constructed SPD multiplicity is obtained by summing over occupied cells in the

composite grid (the left-hand-side of Equation 4.8).

The result obtained from the method described above is an estimate for the SPD mul-

tiplicity of an event containing a Z with two PVs. The method may be extended to

account for events with n PVs by iterating. This is represented by Equation 4.9.

Z(n PV) = Z(n− 1 PV)⊕NoBias(1 PV)noise/spillover (4.9)
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Figure 4.23: Occupancies in the SPD detector for Z boson events with one primary
vertex in (a) Sample-I and (b) Sample-II.

The suitability of the method can be seen in Figure 4.25. Here the SPD hit distribution

of the constructed sample is compared to Z candidate events that satisfy the dimuon

triggers. The χ2/ndf of the constructed sample with respect to the data is 0.91.

Since the constructed, higher multiplicity, events have no upper limit to the SPD mul-

tiplicity, it is a sample on which the efficiency can be determined. When the SPD

multiplicity cut at 600 hits is applied, it is found to have an efficiency of (94.0± 0.1)%

for Sample-I, and (93.0± 0.1)% for Sample-II.
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Figure 4.24: Occupancies in the SPD detector for randomly triggered events with one
primary vertex in (a) Sample-I and (b) Sample-II.
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Figure 4.25: Constructed SPD hit multiplicity distributions compared to candidates
passing the dimuon trigger path, where data corresponding to Sample-I has been
used. The good agreement in (a) indicates that the constructed sample may be used
to calculate the GEC. Noise has not been subtracted in (b).

Determination of the GEC efficiency from a fit to the SPD distribution

The second method to determine the GEC efficiency fits a function to the SPD multi-

plicity distribution of Z candidate events that satisfy the dimuon triggers (Figure 4.26).

Various shapes were tested and the best fit to the data is obtained with a Γ distribution.

The χ2/ndf of the fit shown is 1.6. The efficiency is determined to be (94.1± 0.5) % for

Sample-I, and (93.0± 0.3)% for Sample-II.

Dependence of GEC efficiency

Both methods described above give consistent measurements of the GEC efficiency. The

first method is used in the cross-section determination as it has better precision, while

the second acts as a cross-check.
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Figure 4.26: SPD multiplicity distributions for candidate events firing the dimuon trig-
ger path in (a) Sample-I and (b) Sample-II. The data are fitted with a Γ distribution.

It is also important to establish the dependence of the efficiency on the variables under

study. This is investigated using the Z candidates that satisfy the dimuon triggers and

checking the fraction of these events that survive the 600 SPD hit cut. This gives a good

estimate of the shape of the GEC efficiency.

In the case of the pT and φ∗ distributions, there is little evidence of variation. A linear

dependence is observed as a function of boson rapidity, as shown in Figure 4.27. The

same behaviour is observed for the efficiency as a function of muon pseudorapidity. This

is explained as follows. The soft tracks from the underlying event are mainly produced

close to the beam line. If the Z boson and accompanying jet are produced centrally in

rapidity, their resulting charged tracks will not overlap with those from the underlying

event. This gives rise to high SPD multiplicities and low GEC efficiencies. Conversely, if

the Z boson and accompanying jet are quite boosted, the charged tracks are close to the

soft tracks from the underlying event. This increases the chance of two tracks lighting

up the same SPD cell, thus producing low SPD multiplicities and high GEC efficiencies.

4.4.4 Luminosity

The absolute luminosity scale was measured at specific periods during the data taking,

using both van der Meer scans and beam-gas imaging methods [62, 98]. Both methods

give similar results and are combined to give the final luminosity estimate with an

uncertainty of 1.7% in Sample-I and 1.2% in Sample-II. The corresponding integrated

luminosities are 975± 17 and 1978± 23 pb−1.
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Figure 4.27: GEC efficiencies as a function of Z boson rapidity in (a) Sample-I and
(b) Sample-II.

4.4.5 Final-state radiation

The measured cross-sections are corrected to Born level in quantum electrodynamics

(QED) in order to provide a consistent comparison with NLO and NNLO QCD predic-

tions, which do not include the effects of final-state radiation (FSR). The corrections are

defined by lepton momenta, at the truth level, before and after QED FSR. Corrections

have been calculated with both Herwig++ [48] and Pythia8 [47]. The final FSR

correction is taken as the mean of the Herwig++ and Pythia8 values, which is about

2.1%. Figure 4.28 shows the FSR correction as a function of Z boson pT . As a function

of rapidity, the dependence is flat.
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Figure 4.28: Correction factors for QED final state radiation as a function of Z boson
pT for (a) Sample-I and (b) Sample-II.
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4.4.6 Calibrated simulation and unfolding

In this analysis, cross-sections are measured differentially in Z boson y, pT , φ∗ and muon

η. The choice of bin size must take into account the desired statistical precision, the rate

of change of the underlying physical distribution, as well as the experimental resolution.

If the binning is too fine, due to the finite resolution of the variable in question, the bin

that is assigned to a variable may be different to the bin that nature intended. This

problem can be solved, in part, by increasing the bin width. Unfortunately, information

about the shape of the distribution is then lost. The solution is to use detector simulation

to determine the extent to which reconstructed variables deviate from their true values

and, in turn, use this information to correct data. For this to work, the resolution in

simulation must reflect the resolution in data.

Consider a vector of measurements νi and the corresponding true values µj . These are

related by a matrix R, known as the response of the detector, such that

νi = R j
i µj . (4.10)

The ideal situation, with true and measured values falling in the same bin, is represented

mathematically by a diagonal response matrix. The response matrix will be populated

with off-diagonal entries if the variable is poorly resolved, if the bin width is too fine, or

both.

For data, the response matrix R is unknown. Detector simulation allows simultaneous

knowledge of the reconstructed- and truth-level values of some variable. As a conse-

quence, for simulation, R is known. To unfold data, R may be determined on simulation,

inverted, and applied to data to obtain the true distribution. The procedure is called

unfolding.

For the unfolding procedure to work, the simulation must model detector response well.

In Figure 4.29 the Z mass peak observed in data is compared to simulation (uncali-

brated). A discrepancy in the modeling of the resolution and scale for high pT muons

is evident. There are many reasons for such a discrepancy, including a mismodelling of

the magnetic field map of the LHCb dipole spectrometer magnet, or translational and

rotational misalignment of the tracking stations.

The momentum in simulation can be calibrated to data with the parameterisation,

pi = s
(
pi

FSR + r(piREC − piFSR)
)

(4.11)
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Figure 4.29: The Z boson mass peak from data (black points) compared to uncalibrated
(blue curve) and calibrated (red curve) simulation for (a) Sample-I and (b) Sample-II.

where pi is the calibrated x, y, or z-component of momentum, piFSR is the post-FSR

generator-level momentum component, and piREC is the reconstructed-level momentum

component. The parameter s governs the scale of the calibration, while the parameter

r controls the resolution. The Z mass peak from data is fit with simulation according

to Equation 4.11 to determine values for s and r. These values depend on the φµ+ so

fits in bins of φµ+ are performed (they also depend on φµ− but the choice doesn’t effect

the result). The values for s and r obtained with different magnet polarity are shown in

Figures 4.30 and 4.31. Using these values, the simulation is calibrated prior to building

the response matrix.

To build the response matrix, a 2D histogram is filled with fully reconstructed events

from a simulated sample that has been calibrated as described above.2 The rows and

columns of this histogram represent the calibrated values of the variable, and the true

values of the variable after QED final-state radiation. The histogram is filled such that

(a) the sum of the entries in the first (second, third, etc) row is the total number of

events whose calibrated value is in the first (second, third, etc) bin, and (b) the sum of

the entries in the first (second, third, etc) column is the total number of true events in

the first (second, third, etc) bin. The response matrix is obtained by dividing the first

(second, third, etc) column by the total number of true events in the first (second, third,

etc) bin. In this way Equation 4.10 is satisfied.

There are a number of different methods that unfold for detector resolution effects. The

first method is to invert the response matrix R that is described above. This method has

the advantage of being unbiased (in the sense of estimators). The disadvantages are that

the matrix R must be invertible and that the covariance matrix is often troublesome [99].
2For an event to be fully reconstructed, two long-tracks must be reconstructed, both long-tracks must

be identified as muons, and both muons must fire the trigger.
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Figure 4.30: Momentum resolution correction factors (factor r in Equation 4.11) for
different magnet polarities in Sample-I and Sample-II.

The second is called the bin-by-bin method. Correction factors Ci are evaluated and

applied to the data, where these are defined using the same notation as in Equation 4.10.

Ci =
µi
νi
. (4.12)

This method gives biased unfolded estimates [99], where the bias is induced by the model

used in the simulation (PYTHIA8 in this case). The third is the singular value decom-

position (SVD) method, which is a regularisation method that treats the singularities

that may prevent the response matrix from being invertible [100]. The fourth method is

based on Bayes’ theorem and iteratively determines the unfolded estimate based on the

best possible information at hand. This last method is used in this analysis. The other

methods are used for cross-checks and uncertainty evaluation.

The iterative Bayesian approach implemented in RooUnfold [101] is used to determine

an unfolding matrix for the data, where 4 iterations of the algorithm are used. The un-

folding techniques of bin-by-bin corrections, SVD (with regularisation parameter k=7),

and simple inversion have also been tested and provide similar results to the Bayesian

method.
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Figure 4.31: Momentum scale correction factors (factor s in Equation 4.11) for different
magnet polarities in Sample-I and Sample-II.

The simulation uses the PYTHIA8 event generator. The dependence of the result

on the model used has been checked by reweighting the PYTHIA8 pT distribution at

truth level using pT distributions from other generators. All methods except bin-by-bin

corrections are found to be model independent.
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4.5 Systematic uncertainties

Various sources of systematic uncertainty are considered. Their effect on the total cross-

section measurement is discussed below.3 The measured differential cross-sections as a

function of pT,Z and φ∗Z have additional systematic uncertainties due to unfolding.

4.5.1 Muon reconstruction efficiencies

The systematic uncertainty on cross-sections measurements associated with the trigger,

identification and tracking efficiencies is determined as follows. First, the cross-sections

are re-evaluated with the values of the individual efficiencies increased or decreased by

one standard deviation. Second, the difference between these values and the nominal

cross-section is divided by the uncertainty on the efficiency to give a matrix of numerical

derivatives, G. Each element of this matrix is defined as

Gij =
σi − σ j

i

δεj
(4.13)

where i indexes the cross-section, j indexes the efficiency, σi represents the nominal

cross-section, σ j
i represents the cross-section with efficiency j varied, and δεj is the

uncertainty on the efficiency j. More details on this are given in Appendix C. For cross-

section measurements in Z boson rapidity, G is an 18 x 13 matrix. The full covariance

matrix of the differential cross-section measurements Vσ is evaluated as

Vσ = GVεGT, (4.14)

for each source of uncertainty separately. The matrix Vε is a 13 x 13 diagonal matrix

and the elements are the squares of the uncertainties on the efficiencies. Depending

on whether the efficiencies are varied up or down gives different results for Vσ, so the

average is taken.

The covariance matrices (Vσ) for each source are added and the diagonal elements of

the result determine the total systematic uncertainty due to reconstruction efficiencies

(the usual definition of a covariance matrix), which vary between 0.5 and 2.0% on the

differential cross-section measurements, depending on the particular bin.
3Many of the systematic uncertainties detailed here have a statistical component but are quoted as

part of the systematic uncertainty. The statistical uncertainty on the final measurement is only due to
the number of observed Z candidates. In the case of unfolded measurements, the statistical uncertainty
is provided by the covariance matrix returned by RooUnfold.
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4.5.2 Magnet polarity

As a cross-check the full analysis has been performed separately using data with mag-

net polarity up and magnet polarity down. The polarity dependent cross-sections are

given in Table 4.8. The differences are within the statistical uncertainties. In addition,

[pb] MU MD All
Sample-I 75.4± 0.5 76.4± 0.4 76.0± 0.3
Sample-II 95.1± 0.4 94.9± 0.4 95.0± 0.3

Table 4.8: Total cross-section calculated using magnet up (MU) and magnet down
(MD) data sub-samples. Statistical uncertainties are indicated.

there is no discrepancy seen in the differential distributions (see Appendix D). Thus, no

additional systematic is applied.

4.5.3 Unfolding and calibration

A systematic uncertainty due to the particular unfolding method chosen in the analysis

is considered. As a first step, the total cross-sections are recalculated with the various

unfolding methods. Results are in Table 4.9. The largest deviation of the total cross-

section with respect to the method used in this analysis (Bayesian) suggests a 0.3%

systematic uncertainty. However, this uncertainty is driven by the bin-by-bin correction

method, which is known to be biased by the pT distribution of the generator, in this

case Pythia8 [99]. For the differential distributions, the systematic uncertainty is taken

as the difference between the cross-sections as calculated using the Bayesian [102] and

matrix inversion [99] unfolded estimates. As a function of pT , this uncertainty varies

between 0.1–3.0% while as a function of φ∗, the variation is 0.1–4.0%, except for the last

bin where the uncertainty is 24%. This is not of concern because the measurement in

the last bin in φ∗ is limited statistically (17%) and only accounts for 0.05% of the total

cross-section.

An uncertainty is also assigned due to the calibration of the momentum in simulation.

The values of r and s determined in Section 4.4.6 are changed up and down by their un-

certainty. This changes the calibrated momentum used to train the unfolding procedure

and in turn induces a spread in the Bayesian unfolded estimates. This spread sets the

uncertainty due to calibration. As a function of pT it varies between 0.2–1.6% while as

a function of φ∗ it is less than 0.1%.
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Cross-section [pb]
Unfolding method Sample-I Sample-II

None 75.9± 0.3 95.1± 0.3
Bayesian 76.0± 0.3 95.0± 0.3
Bin-by-bin 76.2± 0.3 95.1± 0.3
SVD 75.9± 0.6 94.9± 0.4
Inversion 76.0± 0.2 95.0± 0.2

Table 4.9: Total cross-section calculated using the pT distribution and different un-
folding methods. Statistical uncertainties are indicated.

4.5.4 FSR correction

The uncertainty on the FSR correction is the quadratic sum of the statistical uncertainty

from Herwig++ and half the difference between the total corrections determined using

Herwig++ and Pythia8. Half of the difference is taken because the FSR correction

is an average of the Herwig++ and Pythia8 corrections. As a function of boson

rapidity, the uncertainty on the correction varies between 0.3–3.0%. As a function of

boson transverse momentum, the uncertainty varies between 0.3–0.7% and as a function

of boson φ∗, the uncertainty varies between 0.3–4.0%.

4.5.5 Purity

The statistical uncertainty on the determination of the sample purity leads to a 0.2%

uncertainty on the total cross-section. This uncertainty is mainly due to the uncertainties

on the data-driven methods for determining heavy flavour and hadron misidentification

backgrounds.

As explained in Section 4.3.1, the heavy flavour background is determined using different

samples (HF-ISO and HF-VTX), different muon transverse momentum thresholds (10–

20 GeV/c) and different fitting regimes (either above 40 GeV/c2 or between 40 and 60

GeV/c2 ). By lowering the pT cut in steps of 1 GeV/c2 the statistics in the low mass

region are increased allowing better fits. Lowering the transverse momentum threshold

is not expected to allow Z boson decays (see Table A.2) into the sample.

The average of the background estimates at different pT thresholds (see Appendix A)

is taken for each combination of HF sample and fitting regime. The results of this are

presented in Table 4.10. Conservative uncertainties are set by taking the largest devia-

tion between the estimates at different pT thresholds and their average. For Sample-I,

the background estimate 227 ± 32 is most precise and is taken for the analysis. For

Sample-II, 490± 72 is taken.
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Sample-I Sample-II

Fitting regime HF-ISO HF-VTX HF-ISO HF-VTX

Above 40 GeV/c2 226± 64 233± 49 572± 140 568± 157
Between 40–60 GeV/c2 227± 32 215± 41 467± 58 490± 72

Table 4.10: Average heavy flavour backgrounds calculated with the different HF sam-
ples and fitting regimes. The uncertainty is the largest difference between the average
value shown in this table and the background estimates at different transverse momen-
tum thresholds.

The systematic uncertainty for hadron misidentification is defined as the difference

between the default estimate (see Section 4.3.2) and the estimate obtained using the

same-sign muon-pair sample. For Sample-I, this difference is 32 events so the hadron

misidentification background is 116± 45. For Sample-II, the background is 262± 110.

In this analysis the purity is assumed not to vary with ηµ, yZ , φ∗Z and pT,Z . To assign

an uncertainty due to this assumption, the cross-section measurements are repeated

but this time using a bin dependent purity. The total cross-section does not change.

Differential cross-sections change by up to 0.1–5.0%, except for the highest φ∗, which

changes by 24%. The per bin percentage difference is assigned as the per bin systematic

uncertainty.

4.5.6 GEC efficiency

The uncertainty on the overall GEC efficiency (distinct from the binned ones discussed

below) is the quadratic sum of three parts. The first part is the uncertainty due to the

size of the sample used in evaluating it, which is 0.1%. The second part is due to how

well the constructed SPD hit multiplicity distribution matches the data. To evaluate

this, an efficiency ε900 is calculated using:

• the constructed sample of Section 4.4.3, but in this case, the constructed sample

is required to have no events above 900 SPD hits;

• the Z candidate sample where events satisfy dimuon triggers.

The efficiency ε900 is calculated for both samples as the number of events below 600

SPD hits divided by the total number of events. The difference in ε900 calculated with

the two samples is considered a systematic uncertainty and contributes 0.16%. Finally

the difference of 0.1%, between the two methods described in Section 4.4.3, is taken as

the third component. The total systematic uncertainty is thus 0.2%.
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Since there is some indication that the GEC efficiency varies across the variables of

interest (see Figure 4.27), the GEC is applied on a per bin basis. The total uncertainty

is then the sum in quadrature of the uncertainty on the total GEC efficiency described

above plus the statistical uncertainty of the efficiencies measured in each bin. The

statistical component is considered uncorrelated between bins and varies between 0.3–

4.0%.

4.5.7 Proton beam energy

The measurements are specified at centre-of-mass energies of
√
s = 7 TeV or

√
s = 8 TeV.

The beam energy, and consequently the centre-of-mass energy, is known to 0.65% [64].

This uncertainty is fully correlated between different centre-of-mass energies, as ex-

plained in Section 3.1.3. The sensitivity of the cross-section to the centre-of-mass energy

is evaluated using DYNNLO [42] with the MSTW08 [25] PDF set at centre-of-mass en-

ergies between 1–20 TeV. The result is shown in Figure 4.32 where a cubic spline is used

to interpolate between predictions. At
√
s = 7 TeV (

√
s = 8 TeV) a 0.65% variation of

the beam energy corresponds to a 1.25% (1.15%) variation in the cross-section.

4.5.8 Summary

For the total cross-section measurement, the systematic uncertainties are combined by

taking the uncertainties associated with the GEC, the luminosity, the beam energy, as

well as the purity and muon reconstruction efficiencies, to be correlated between mea-

surement bins. Most of the muon reconstruction efficiencies are partially correlated

between rapidity bins. The other contributions are treated as uncorrelated. The contri-

butions to the uncertainty on the total cross-section are listed in Table 4.11, as well as

the correlation between Z boson rapidity bins.
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Figure 4.32: The curve is the DYNNLO prediction of the Z boson cross-section as a
function of centre-of-mass energy. The vertical grey bands indicate the uncertainty on
the centre-of-mass energy and the horizontal grey bands indicate the resulting uncer-
tainty on the cross-section.
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Source Uncertainty (%) Correlation between yZ bins
Sample-I Sample-II

Statistical 0.39 0.27 Uncorrelated
Muon Trigger Eff. (TP) 0.07 0.05 Partially Correlated
Muon Identification Eff. (TP) 0.11 0.07 Partially Correlated
Muon Identification Eff. (Sys.) 0.20 0.20 Correlated
Muon Tracking Eff. (TP) 0.34 0.29 Partially Correlated
Muon Tracking Eff. (TM) 0.22 0.13 Partially Correlated
Muon Tracking Eff. (Bias1) 0.08 0.10 Partially Correlated
Muon Tracking Eff. (Bias2) 0.33 0.35 Correlated
FSR correction 0.11 0.13 Uncorrelated
Purity 0.20 0.20 Correlated
Purity (Binned) 0.09 0.06 Uncorrelated
GEC Eff. 0.23 0.32 Correlated
GEC Eff. (Binned) 0.12 0.09 Uncorrelated
Systematic 0.68 0.67 Partially Correlated
Beam Energy 1.25 1.15 Correlated
Luminosity 1.72 1.16 Correlated
Total 2.27 1.78

Table 4.11: Contributions to the uncertainty on the total Z cross-section. If ρij denotes
the correlation between measurements in distinct y bins i and j due to a particular
source, then correlated means that ρij=1 ∀ i and j, uncorrelated means that ρij=0 ∀ i
and j, while partially correlated means that 0 < |ρij | < 1 ∀ i and j.
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4.6 Results

4.6.1 Differential cross-sections

As explained in Section 4.4, the fundamental measurements of the analysis are differen-

tial cross-sections as functions of ηµ, yZ , φ∗Z and pT,Z .

Rapidity

The yZ distribution is shown in Figure 4.33 for Sample-I, together with predictions

from Fewz [41, 103]. The orange and yellow bands indicate the measurements, while

the predictions from Fewz, configured with six different PDF sets, are indicated by the

open markers. Excellent agreement is observed between measurement and prediction,

and any small difference is accounted for by the different overall normalisations of the

distributions. The differential cross-section measurements are given in Table 4.12 for

Sample-I. The quoted uncertainties, in order, are due to the sample size, systematic

effects, the beam energy and the luminosity. The last column is the FSR correction.

The corresponding results for Sample-II are displayed in Figure 4.34 and given in

yZ σZ [pb] fFSR

2.000 – 2.125 0.969 ± 0.039 ± 0.032 ± 0.012 ± 0.017 1.050±0.020
2.125 – 2.250 2.840 ± 0.063 ± 0.050 ± 0.036 ± 0.049 1.032±0.008
2.250 – 2.375 4.428 ± 0.077 ± 0.078 ± 0.055 ± 0.076 1.027±0.006
2.375 – 2.500 5.823 ± 0.088 ± 0.060 ± 0.073 ± 0.100 1.026±0.004
2.500 – 2.625 6.877 ± 0.095 ± 0.068 ± 0.086 ± 0.118 1.025±0.004
2.625 – 2.750 7.669 ± 0.100 ± 0.069 ± 0.096 ± 0.132 1.026±0.004
2.750 – 2.875 8.306 ± 0.104 ± 0.070 ± 0.104 ± 0.143 1.026±0.003
2.875 – 3.000 8.241 ± 0.103 ± 0.066 ± 0.103 ± 0.142 1.025±0.003
3.000 – 3.125 7.783 ± 0.099 ± 0.059 ± 0.097 ± 0.134 1.026±0.003
3.125 – 3.250 7.094 ± 0.096 ± 0.058 ± 0.089 ± 0.122 1.028±0.004
3.250 – 3.375 5.894 ± 0.087 ± 0.049 ± 0.074 ± 0.101 1.026±0.004
3.375 – 3.500 4.160 ± 0.073 ± 0.041 ± 0.052 ± 0.072 1.027±0.005
3.500 – 3.625 2.896 ± 0.061 ± 0.030 ± 0.036 ± 0.050 1.026±0.005
3.625 – 3.750 1.741 ± 0.047 ± 0.023 ± 0.022 ± 0.030 1.021±0.007
3.750 – 3.875 0.825 ± 0.032 ± 0.014 ± 0.010 ± 0.014 1.025±0.010
3.875 – 4.000 0.321 ± 0.020 ± 0.008 ± 0.004 ± 0.006 1.011±0.015
4.000 – 4.250 0.115 ± 0.013 ± 0.006 ± 0.001 ± 0.002 1.018±0.033
4.250 – 4.500 − −

Table 4.12: Inclusive differential cross-sections for Z boson production as functions of
yZ in Sample-I. Uncertainties are due to the sample size, systematic effects, the beam
energy and the luminosity. No candidates are observed in the 4.25–4.50 bin.
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yZ σZ [pb] fFSR

2.000 – 2.125 1.223 ± 0.033 ± 0.055 ± 0.014 ± 0.014 1.047±0.040
2.125 – 2.250 3.263 ± 0.051 ± 0.060 ± 0.038 ± 0.038 1.031±0.012
2.250 – 2.375 4.983 ± 0.062 ± 0.064 ± 0.057 ± 0.058 1.028±0.007
2.375 – 2.500 6.719 ± 0.070 ± 0.072 ± 0.077 ± 0.078 1.025±0.006
2.500 – 2.625 8.051 ± 0.076 ± 0.074 ± 0.093 ± 0.094 1.026±0.005
2.625 – 2.750 8.967 ± 0.079 ± 0.074 ± 0.103 ± 0.105 1.026±0.003
2.750 – 2.875 9.561 ± 0.081 ± 0.076 ± 0.110 ± 0.112 1.026±0.004
2.875 – 3.000 9.822 ± 0.082 ± 0.071 ± 0.113 ± 0.115 1.025±0.003
3.000 – 3.125 9.721 ± 0.081 ± 0.074 ± 0.112 ± 0.114 1.028±0.004
3.125 – 3.250 9.030 ± 0.078 ± 0.071 ± 0.104 ± 0.105 1.026±0.003
3.250 – 3.375 7.748 ± 0.072 ± 0.074 ± 0.089 ± 0.090 1.026±0.007
3.375 – 3.500 6.059 ± 0.063 ± 0.051 ± 0.070 ± 0.071 1.025±0.004
3.500 – 3.625 4.385 ± 0.054 ± 0.041 ± 0.050 ± 0.051 1.026±0.006
3.625 – 3.750 2.724 ± 0.042 ± 0.027 ± 0.031 ± 0.032 1.023±0.005
3.750 – 3.875 1.584 ± 0.032 ± 0.020 ± 0.018 ± 0.019 1.018±0.008
3.875 – 4.000 0.749 ± 0.022 ± 0.012 ± 0.009 ± 0.009 1.021±0.010
4.000 – 4.250 0.383 ± 0.016 ± 0.008 ± 0.004 ± 0.004 1.018±0.014
4.250 – 4.500 0.011 ± 0.003 ± 0.001 ± 0.000 ± 0.000 1.018±0.076

Table 4.13: Inclusive differential cross-sections for Z boson production as functions of
yZ for Sample-II. Uncertainties are due to the sample size, systematic effects, the
beam energy and the luminosity.

Table 4.13. The relationship between the measurements and predictions in Sample-II

is qualitatively the same as for Sample-I.
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Figure 4.33: Differential cross-sections (top) and normalised differential cross-sections
(bottom) as functions of yZ for Sample-I compared with the prediction of Fewz,
configured with various PDF sets. Different predictions are displaced horizontally for
visibility. The shaded (yellow) bands indicate the statistical and total uncertainties on
the measurements, which are symmetric about the central value.
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Figure 4.34: Differential cross-sections (top) and normalised differential cross-sections
(bottom) as functions of yZ for Sample-II compared with the prediction of Fewz,
configured with various PDF sets. Different predictions are displaced horizontally for
visibility. The shaded (yellow) bands indicate the statistical and total uncertainties on
the measurements, which are symmetric about the central value.
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Transverse momentum

In Figure 4.35, the differential cross-section measurements as functions of pT,Z are com-

pared to the predictions from Resbos [44–46] and Powheg [104], where events are

interfaced with a parton shower that is simulated using Herwig [56, 57]. The distri-

butions are well described. The differential cross-section measurements are given in

Table 4.14 for Sample-I. As before, the quoted uncertainties are due to the sample size,

systematic effects, the beam energy and the luminosity. The last column is the FSR

correction. The corresponding results for Sample-II are displayed in Figure 4.36 and

pT,Z [GeV/c] σZ [pb] fFSR

0.0 – 2.2 6.454 ± 0.105 ± 0.129 ± 0.081 ± 0.111 1.090±0.006
2.2 – 3.4 6.520 ± 0.106 ± 0.150 ± 0.081 ± 0.112 1.080±0.004
3.4 – 4.6 6.209 ± 0.102 ± 0.221 ± 0.078 ± 0.107 1.063±0.004
4.6 – 5.8 5.868 ± 0.099 ± 0.208 ± 0.073 ± 0.101 1.049±0.004
5.8 – 7.2 5.749 ± 0.098 ± 0.154 ± 0.072 ± 0.099 1.034±0.004
7.2 – 8.7 5.607 ± 0.098 ± 0.083 ± 0.070 ± 0.096 1.021±0.004
8.7 – 10.5 5.637 ± 0.098 ± 0.054 ± 0.070 ± 0.097 1.002±0.004

10.5 – 12.8 5.524 ± 0.096 ± 0.081 ± 0.069 ± 0.095 0.996±0.004
12.8 – 15.4 5.158 ± 0.092 ± 0.067 ± 0.064 ± 0.089 0.984±0.005
15.4 – 19.0 4.963 ± 0.087 ± 0.053 ± 0.062 ± 0.085 0.978±0.005
19.0 – 24.5 5.517 ± 0.088 ± 0.055 ± 0.069 ± 0.095 0.985±0.004
24.5 – 34.0 5.465 ± 0.085 ± 0.067 ± 0.068 ± 0.094 1.013±0.004
34.0 – 63.0 5.789 ± 0.085 ± 0.076 ± 0.072 ± 0.100 1.038±0.004
63.0 – 270.0 1.516 ± 0.043 ± 0.044 ± 0.019 ± 0.026 1.060±0.007

Table 4.14: Inclusive differential cross-sections for Z boson production as functions of
pT,Z in Sample-I. Uncertainties are due to the sample size, systematic effects, the
beam energy and the luminosity.

given in Table 4.15.

Comparisons of these measurements with MC@NLO + Herwiri and MC@NLO +

Herwig are shown in Figure 4.37 for Sample-I and Figure 4.38 for Sample-II. Here

Herwig is configured with the RMS of the intrinsic kT (see Section 2.4.4) distribution

set to 0 GeV/c in one instance and 2.2 GeV/c in another. The predictions straddle the

measurement at low pT,Z . The high pT,Z tails are underestimated.
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pT,Z [GeV/c] σZ [pb] fFSR

0.0 – 2.2 7.903 ± 0.082 ± 0.130 ± 0.091 ± 0.092 1.096±0.005
2.2 – 3.4 7.705 ± 0.080 ± 0.108 ± 0.089 ± 0.090 1.079±0.006
3.4 – 4.6 7.609 ± 0.078 ± 0.080 ± 0.088 ± 0.089 1.062±0.004
4.6 – 5.8 7.073 ± 0.075 ± 0.078 ± 0.081 ± 0.083 1.047±0.004
5.8 – 7.2 7.379 ± 0.078 ± 0.069 ± 0.085 ± 0.086 1.029±0.004
7.2 – 8.7 6.813 ± 0.076 ± 0.074 ± 0.078 ± 0.080 1.017±0.006
8.7 – 10.5 6.751 ± 0.075 ± 0.064 ± 0.078 ± 0.079 1.004±0.004

10.5 – 12.8 7.204 ± 0.078 ± 0.073 ± 0.083 ± 0.084 0.995±0.006
12.8 – 15.4 6.270 ± 0.073 ± 0.053 ± 0.072 ± 0.073 0.985±0.004
15.4 – 19.0 6.534 ± 0.072 ± 0.064 ± 0.075 ± 0.076 0.983±0.004
19.0 – 24.5 6.953 ± 0.071 ± 0.066 ± 0.080 ± 0.081 0.985±0.004
24.5 – 34.0 6.999 ± 0.069 ± 0.062 ± 0.080 ± 0.082 1.011±0.003
34.0 – 63.0 7.602 ± 0.070 ± 0.072 ± 0.087 ± 0.089 1.038±0.003
63.0 – 270.0 2.176 ± 0.037 ± 0.025 ± 0.025 ± 0.025 1.060±0.006

Table 4.15: Inclusive differential cross-sections for Z boson production as functions of
pT,Z in Sample-II. Uncertainties are due to the sample size, systematic effects, the
beam energy and the luminosity.
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Figure 4.35: Normalised differential cross-sections as functions of pT,Z in Sample-I
on logarithmic (top) and linear (bottom) scales. The shaded (yellow) bands indicate
the statistical and total uncertainties on the measurements, which are symmetric about
the central value. The measurements are compared to the predictions of Resbos and
Powheg + Herwig.
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Figure 4.36: Normalised differential cross-sections as functions of pT,Z in Sample-II
on logarithmic (top) and linear (bottom) scales. The shaded (yellow) bands indicate
the statistical and total uncertainties on the measurements, which are symmetric about
the central value. The measurements are compared to the predictions of Powheg +
Pythia and Powheg + Herwig.



Chapter 4. Measurement of the Z boson cross-section 110

 [GeV/c]
T,Z

p
1 10 210

]
-1

 [
(G

eV
/c

)
T,

Z
dp

σd
 σ1

-410

-310

-210

-110

totData

statData

HERWIRI

 = 0 GeV/c>2
T<kHW: 

 = 2.2 GeV/c>2
T<kHW: 

 = 7 TeVsLHCb, 

 [GeV/c]
T,Z

p
1 10 210

]
-1

 [
(G

eV
/c

)
T,

Z
dp

σd
 σ1

0

0.02

0.04

0.06

0.08

0.1
totData

statData

HERWIRI

 = 0 GeV/c>2
T<kHW: 

 = 2.2 GeV/c>2
T<kHW: 

 = 7 TeVsLHCb, 

Figure 4.37: Normalised differential cross-sections as functions of pT,Z in Sample-I
on logarithmic (top) and linear (bottom) scales. The shaded (yellow) bands indicate
the statistical and total uncertainties on the measurements, which are symmetric about
the central value. The measurements are compared to MC@NLO + Herwig (HW)
and MC@NLO + Herwiri (HERWIRI). Herwig is configured with two choices of the
RMS of the intrinsic kT distribution, 0 and 2.2 GeV/c.
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Figure 4.38: Normalised differential cross-section as functions of pT,Z in Sample-II
on logarithmic (top) and linear (bottom) scales. The shaded (yellow) bands indicate
the statistical and total uncertainties on the measurements, which are symmetric about
the central value. The measurements are compared to MC@NLO + Herwig (HW)
and MC@NLO + Herwiri (HERWIRI). Herwig is configured with two choices of the
RMS of the intrinsic kT distribution, 0 and 2.2 GeV/c.
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φ∗

In Figure 4.39, differential measurements as functions of φ∗Z are compared to the pre-

dictions from Resbos [44–46] and Powheg [104], where events are interfaced with a

parton shower that is simulated using Herwig [56, 57]. The differential cross-section

measurements are given in Table 4.14 for Sample-I. The quoted uncertainties are due

to the sample size, systematic effects, the beam energy and the luminosity. The last

column is the FSR correction. The corresponding results for Sample-II are displayed

φ∗Z σZ [pb] fFSR

0.00 – 0.01 8.549 ± 0.099 ± 0.088 ± 0.107 ± 0.147 1.034±0.004
0.01 – 0.02 7.805 ± 0.096 ± 0.106 ± 0.098 ± 0.134 1.035±0.003
0.02 – 0.03 7.051 ± 0.091 ± 0.083 ± 0.088 ± 0.121 1.034±0.004
0.03 – 0.05 11.362 ± 0.114 ± 0.108 ± 0.142 ± 0.195 1.029±0.003
0.05 – 0.07 8.124 ± 0.097 ± 0.120 ± 0.102 ± 0.140 1.026±0.003
0.07 – 0.10 8.436 ± 0.097 ± 0.074 ± 0.105 ± 0.145 1.021±0.003
0.10 – 0.15 8.611 ± 0.098 ± 0.131 ± 0.108 ± 0.148 1.020±0.003
0.15 – 0.20 4.819 ± 0.073 ± 0.092 ± 0.060 ± 0.083 1.018±0.004
0.20 – 0.30 5.206 ± 0.076 ± 0.058 ± 0.065 ± 0.090 1.019±0.004
0.30 – 0.40 2.541 ± 0.054 ± 0.051 ± 0.032 ± 0.044 1.022±0.006
0.40 – 0.60 2.018 ± 0.048 ± 0.060 ± 0.025 ± 0.035 1.024±0.007
0.60 – 0.80 0.755 ± 0.029 ± 0.035 ± 0.009 ± 0.013 1.029±0.011
0.80 – 1.20 0.457 ± 0.023 ± 0.018 ± 0.006 ± 0.008 1.025±0.014
1.20 – 2.00 0.166 ± 0.014 ± 0.011 ± 0.002 ± 0.003 1.030±0.023
2.00 – 4.00 0.045 ± 0.008 ± 0.017 ± 0.001 ± 0.001 1.031±0.041

Table 4.16: Inclusive differential cross-sections for Z boson production as a function of
φ∗Z at

√
s = 7 TeV. Uncertainties are due to the sample size, systematic effects, the

beam energy and the luminosity.

in Figure 4.40 and given in Table 4.17.

Comparisons of measurements to MC@NLO + Herwiri and MC@NLO + Herwig

are shown in Figure 4.41 and Figure 4.42. Here Herwig is configured with the RMS of

the intrinsic kT (see Section 2.4.4) distribution set to 0 GeV/c in one instance and 2.2

GeV/c in another. The predictions straddle the measurement at low φ∗Z . The high φ∗Z

tails are underestimated.
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φ∗Z σZ [pb] fFSR

0.00 – 0.01 10.442 ± 0.077 ± 0.118 ± 0.120 ± 0.122 1.037±0.003
0.01 – 0.02 9.704 ± 0.076 ± 0.116 ± 0.112 ± 0.113 1.035±0.003
0.02 – 0.03 8.510 ± 0.071 ± 0.130 ± 0.098 ± 0.099 1.032±0.003
0.03 – 0.05 13.749 ± 0.089 ± 0.151 ± 0.158 ± 0.161 1.029±0.002
0.05 – 0.07 10.085 ± 0.076 ± 0.119 ± 0.116 ± 0.118 1.025±0.004
0.07 – 0.10 10.662 ± 0.077 ± 0.159 ± 0.123 ± 0.125 1.021±0.003
0.10 – 0.15 10.575 ± 0.077 ± 0.133 ± 0.122 ± 0.123 1.020±0.003
0.15 – 0.20 6.322 ± 0.059 ± 0.074 ± 0.073 ± 0.074 1.018±0.003
0.20 – 0.30 6.681 ± 0.061 ± 0.085 ± 0.077 ± 0.078 1.019±0.004
0.30 – 0.40 3.213 ± 0.042 ± 0.064 ± 0.037 ± 0.038 1.021±0.006
0.40 – 0.60 2.837 ± 0.040 ± 0.055 ± 0.033 ± 0.033 1.025±0.007
0.60 – 0.80 1.030 ± 0.024 ± 0.027 ± 0.012 ± 0.012 1.026±0.011
0.80 – 1.20 0.670 ± 0.020 ± 0.030 ± 0.008 ± 0.008 1.027±0.011
1.20 – 2.00 0.263 ± 0.013 ± 0.022 ± 0.003 ± 0.003 1.028±0.021
2.00 – 4.00 0.094 ± 0.008 ± 0.023 ± 0.001 ± 0.001 1.035±0.040

Table 4.17: Inclusive differential cross-sections for Z boson production in Sample-II as
functions of φ∗Z . Uncertainties are due to the sample size, systematic effects, the beam
energy and the luminosity.
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Figure 4.39: Normalised differential cross-section as functions of φ∗Z in Sample-I on
logarithmic (top) and linear (bottom) scales. The shaded (yellow) bands indicate the
statistical and total uncertainties on the measurements, which are symmetric about
the central value. The measurements are compared to the predictions of Resbos and
Powheg + Herwig.
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Figure 4.40: Normalised differential cross-section as functions of φ∗Z in Sample-II on
logarithmic (top) and linear (bottom) scales. The shaded (yellow) bands indicate the
statistical and total uncertainties on the measurements, which are symmetric about
the central value. The measurements are compared to the predictions of Powheg +
Pythia and Powheg + Herwig.
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Figure 4.41: Normalised differential cross-section as functions of φ∗Z in Sample-I on
logarithmic (top) and linear (bottom) scales. The shaded (yellow) bands indicate the
statistical and total uncertainties on the measurements, which are symmetric about
the central value. The measurements are compared to MC@NLO + Herwig (HW)
and MC@NLO + Herwiri (HERWIRI). Herwig is configured with two choices of the
RMS of the intrinsic kT distribution, 0 and 2.2 GeV/c.
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Figure 4.42: Normalised differential cross-section as a function of φ∗Z in Sample-II
on logarithmic (top) and linear (bottom) scales. The shaded (yellow) bands indicate
the statistical and total uncertainties on the measurements, which are symmetric about
the central value. The measurements are compared to MC@NLO + Herwig (HW)
and MC@NLO + Herwiri (HERWIRI). Herwig is configured with two choices of the
RMS of the intrinsic kT distribution, 0 and 2.2 GeV/c.
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Muon pseudorapidity

The measurements of the Z boson cross-sections as functions of ηµ are shown in Fig-

ure 4.43. The plot shows that there is a preference for the Z to decay to forward muons

and central anti-muons. The differential cross-section measurements are given in Ta-

ble 4.18 for Sample-I. The quoted uncertainties are due to the sample size, systematic

effects, the beam energy and the luminosity. The last column is the FSR correction.

ηµ σZ(ηµ
−

) [pb] fFSR(ηµ
−

)
2.00 – 2.25 50.747 ± 0.525 ± 0.628 ± 0.634 ± 0.872 1.029±0.004
2.25 – 2.50 49.236 ± 0.505 ± 0.506 ± 0.615 ± 0.847 1.025±0.003
2.50 – 2.75 45.096 ± 0.483 ± 0.405 ± 0.564 ± 0.775 1.024±0.004
2.75 – 3.00 40.651 ± 0.457 ± 0.392 ± 0.508 ± 0.699 1.024±0.004
3.00 – 3.25 33.748 ± 0.417 ± 0.310 ± 0.422 ± 0.580 1.023±0.003
3.25 – 3.50 28.578 ± 0.380 ± 0.272 ± 0.357 ± 0.491 1.026±0.005
3.50 – 4.00 18.961 ± 0.219 ± 0.155 ± 0.237 ± 0.326 1.029±0.003
4.00 – 4.50 8.971 ± 0.156 ± 0.108 ± 0.112 ± 0.154 1.039±0.004

ηµ σZ(ηµ
+

) [pb] fFSR(ηµ
+

)
2.00 – 2.25 47.718 ± 0.510 ± 0.749 ± 0.596 ± 0.820 1.029±0.005
2.25 – 2.50 46.445 ± 0.490 ± 0.566 ± 0.581 ± 0.799 1.025±0.003
2.50 – 2.75 44.459 ± 0.480 ± 0.476 ± 0.556 ± 0.764 1.024±0.003
2.75 – 3.00 39.707 ± 0.451 ± 0.405 ± 0.496 ± 0.683 1.024±0.003
3.00 – 3.25 35.621 ± 0.429 ± 0.427 ± 0.445 ± 0.612 1.024±0.004
3.25 – 3.50 29.553 ± 0.387 ± 0.319 ± 0.369 ± 0.508 1.025±0.005
3.50 – 4.00 20.320 ± 0.227 ± 0.216 ± 0.254 ± 0.349 1.027±0.005
4.00 – 4.50 9.889 ± 0.164 ± 0.170 ± 0.124 ± 0.170 1.038±0.005

Table 4.18: Inclusive differential cross-sections for Z boson production as functions of
muon η in Sample-I. Uncertainties are due to the sample size, systematic effects, the
beam energy and the luminosity.

The corresponding results for Sample-II are displayed in Figure 4.44 and given in

Table 4.19.
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ηµ σZ(ηµ
−

) [pb] fFSR(ηµ
−

)
2.00 – 2.25 61.108 ± 0.432 ± 0.718 ± 0.703 ± 0.714 1.029±0.004
2.25 – 2.50 57.539 ± 0.404 ± 0.516 ± 0.662 ± 0.672 1.025±0.003
2.50 – 2.75 53.542 ± 0.382 ± 0.455 ± 0.616 ± 0.625 1.024±0.004
2.75 – 3.00 49.479 ± 0.367 ± 0.417 ± 0.569 ± 0.578 1.024±0.003
3.00 – 3.25 43.710 ± 0.343 ± 0.366 ± 0.503 ± 0.510 1.023±0.004
3.25 – 3.50 36.089 ± 0.308 ± 0.315 ± 0.415 ± 0.421 1.025±0.005
3.50 – 4.00 25.886 ± 0.186 ± 0.200 ± 0.298 ± 0.302 1.027±0.003
4.00 – 4.50 13.344 ± 0.138 ± 0.136 ± 0.153 ± 0.156 1.037±0.004

ηµ σZ(ηµ
+

) [pb] fFSR(ηµ
+

)
2.00 – 2.25 56.277 ± 0.415 ± 0.706 ± 0.647 ± 0.657 1.029±0.006
2.25 – 2.50 54.725 ± 0.395 ± 0.501 ± 0.629 ± 0.639 1.025±0.003
2.50 – 2.75 52.359 ± 0.378 ± 0.409 ± 0.602 ± 0.611 1.025±0.003
2.75 – 3.00 49.736 ± 0.368 ± 0.419 ± 0.572 ± 0.581 1.024±0.003
3.00 – 3.25 44.050 ± 0.346 ± 0.387 ± 0.507 ± 0.514 1.023±0.004
3.25 – 3.50 37.968 ± 0.317 ± 0.325 ± 0.437 ± 0.443 1.025±0.004
3.50 – 4.00 27.702 ± 0.192 ± 0.223 ± 0.319 ± 0.323 1.027±0.004
4.00 – 4.50 14.705 ± 0.144 ± 0.148 ± 0.169 ± 0.172 1.035±0.005

Table 4.19: Inclusive differential cross-sections for Z boson production as functions of
muon η in Sample-II. Uncertainties are due to the sample size, systematic effects, the
beam energy and the luminosity.
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Figure 4.43: Differential (top) and normalised differential (bottom) Z cross-sections in
bins of muon pseudorapidity for Sample-I. Measurements, represented as bands cor-
responding to the (orange (blue) for µ+(µ−)) statistical and (yellow (light blue) for
µ+(µ−)) total uncertainty, are compared to NNLO predictions with different parame-
terisations of the PDFs.
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Figure 4.44: Differential (top) and normalised differential (bottom) Z cross-sections
in bins of muon pseudorapidity for Sample-II. Measurements, represented as bands
corresponding to the (orange (blue) for µ+(µ−)) statistical and (yellow (light blue) for
µ+(µ−)) total uncertainty, are compared to NNLO predictions with different parame-
terisations of the PDFs.
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4.6.2 Total cross-section

The total cross-section is obtained by summing the contributions of the yZ bins. The

total inclusive cross-section for Z → µ+µ− production at
√
s = 7 TeV for muons with

pT > 20 GeV/c in the pseudorapidity region 2.0 < η < 4.5 and the invariant mass range

60 < Mµ+µ− < 120 GeV/c2 is measured to be

σ7 TeV
Z→µ+µ− = 76.0± 0.3± 0.5± 1.0± 1.3 pb (4.15)

where the quoted uncertainties are due to the sample size, systematic effects, the beam

energy and the luminosity. The uncertainties are calculated by taking the correlation be-

tween the measurements into account. These are calculated using the methods explained

in Section 5.3, and are given in Appendix E. Summing the φ∗ and pT distributions give

the same central value for the cross-section with slightly larger uncertainties.

This measurement agrees with the NNLO prediction of Fewz. The agreement can be

seen in Figure 4.45, where the total cross-section measurement is compared to the pre-

dictions of Fewz configured with various PDF sets. It is noted that the HERAPDF1.5

 [pb]-µ+µ→Zσ
60 65 70 75 80 85 90

 [pb]-µ+µ→Zσ
60 65 70 75 80 85 90

Data MSTW08 CT10

statData NNPDF23 HERAPDF1.5
totData ABM12 JR09 = 7 TeVsLHCb, 

Figure 4.45: Measurement of the Z boson production cross-section times branching
ratio to muons at

√
s = 7 TeV. The data are compared to predictions of NNLO per-

turbative QCD, as implemented by the Fewz generator, using various PDF sets.

set leads to a prediction that is slightly higher than that measured, while other PDF

sets are systematically lower than the measurement. The cross-section at
√
s = 8 TeV

is measured as

σ8 TeV
Z→µ+µ− = 95.0± 0.3± 0.7± 1.1± 1.1 pb. (4.16)
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The correlation coefficients are given in Appendix E. Comparisons with Fewz and var-

ious PDF sets are shown in Figure 4.46 and good agreement is again observed. The

central value of the HERAPDF1.5 prediction is again slightly higher than the measure-

ment. As explained in Section 2.3.3, the MMHT14 PDF set is an update of the MSTW08

PDF set. MMHT14 gives only a slightly higher cross-section than MSTW08, so one can

conclude that the updates have little impact on Z boson production.

 [pb]-µ+µ→Zσ
80 85 90 95 100 105 110

 [pb]-µ+µ→Zσ
80 85 90 95 100 105 110

Data MSTW08 ABM12

statData NNPDF30 HERAPDF1.5
totData CT10 MMHT14 = 8 TeVsLHCb, 

Figure 4.46: Measurement of the Z boson production cross-section times branching
ratio to muons at

√
s = 8 TeV. The data are compared to predictions of NNLO per-

turbative QCD, as implemented by the Fewz generator, using various PDF sets.

The Z boson cross-section has also been measured by the ATLAS [105] and CMS [106], [107]

collaborations in their respective fiducial volumes. The results are summarised in Ta-

ble 4.20. The relative precision of the measurements is expressed in terms of the fiducial

cross-sections σfid.
Z and their total uncertainties δσfid.

Z . The integrated luminosities (L)
√
s = 7 TeV

√
s = 8 TeV

Collaboration L [pb−1] δσfid.
Z

σfid.
Z

x 100 [%] L [pb−1] δσfid.
Z

σfid.
Z

x 100 [%]

ATLAS 36 3.5 – –
CMS 36 4.0 18 4.2
LHCb 1000 2.3 2000 1.8

Table 4.20: Relative precision on Z boson cross-section measurements from different
LHC experiments. The ATLAS and CMS results do not include uncertainties due to
proton beam energy.

and centre-of-mass energies of the samples are also indicated. The LHCb result has

smaller uncertainties due to more precise luminosity determinations and the negligible

effect of pileup.
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4.6.3 Lepton universality

LHCb has also measured the Z boson cross-section at
√
s= 7 TeV in the electon [108]

and tau lepton [109] channels. Consequently, a measurement of lepton universality in

the forward region can be made. A summary of the Z boson cross-section measurements

at
√
s= 7 TeV is provided in Figure 4.47. The ratio Reµ is defined as the ratio of the Z

 [pb]-l+l→Zσ
60 65 70 75 80 85 90

 [pb]-l+l→Zσ
60 65 70 75 80 85 90

FEWZ

scaleFEWZ

totFEWZ
-µ+µ→Z

-e+e→Z
-τ+τ→Z

 = 7 TeVsLHCb, 

Figure 4.47: Measurements of the Z boson production cross-section times branching
ratio to three charged lepton species at

√
s = 7 TeV. Beam energy uncertainties are

not displayed. The data are compared to predictions of NNLO perturbative QCD, as
implemented by the Fewz generator.

production cross-sections in the electron and muon channels. The ratio Rτµ is defined

as the ratio of the Z production cross-sections in the tau-lepton and muon channels.

Reµ =
σZ→e+e−

σZ→µ+µ−
(4.17)

Rτµ =
σZ→τ+τ−

σZ→µ+µ−
(4.18)

For this calculation the luminosity uncertainty is assumed fully correlated and cancels

in the ratio. All other uncertainties are assumed uncorrelated. The values are found to

be Reµ = 1.00±0.03 and Rτµ = 0.94±0.06 consistent with a universal coupling of the Z

boson to charged leptons. This is to be compared with similar measurements from the

SLC and LEP ep-colliders [4], where these quantities are determined with a precision of

0.3%.
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4.6.4 Extraction of intrinsic kT

As explained in Section 2.4.4, the RMS of the intrinsic kT distribution is a parameter

used in shower MC programmes. It accounts for any transverse momentum given to

initial-state partons other than that generated by initial-state radiation [110]. The

width of the pT distribution of generated Z bosons is sensitive to this parameter. The

default value used in Herwig++ 2.7.0 is 2.2 GeV/c.

The measured Z boson pT distributions (see Tables 4.14 and 4.15) may be used to extract

this parameter, as in Ref. [110]. Using Herwig++ 2.7.0, a scan in steps of 0.1 GeV/c

from 1.5 to 2.9 GeV/c is performed. The predicted pT distributions are superimposed

on measured cross-sections from Sample-I in Figure 4.48. The χ2/ndf between the
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Figure 4.48: The Z boson pT distribution measured from Sample-I compared to Her-
wig++. The best agreement is achieved with <

√
k2
T > = 1.9 GeV/c, which is slightly

less than the default value in Herwig++ of 2.2 GeV/c.

these distributions and the data are shown in Table 4.21. The data show a preference

for a value of 1.9 GeV/c. The same procedure applied to Sample-II data indicates a

preferred value of 1.8 GeV/c (see Figure 4.49). These values are consistent with the

values obtained from the CDF collaboration’s data [110, 111].
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<
√
k2
T > [ GeV/c] 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3

χ2/ndf (Sample-I) 1.54 1.37 1.26 1.24 1.23 1.37 1.57 1.78 1.99
χ2/ndf (Sample-II) 1.72 1.53 1.48 1.44 1.70 1.84 2.12 2.35 2.73

Table 4.21: χ2 compatibility between Herwig++ and data for different choices of the
RMS of the intrinsic kT distribution.
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Figure 4.49: The Z boson pT distribution measured from Sample-II compared to
Herwig++. The best agreement is achieved with <

√
k2
T > = 1.8 GeV/c, which is

slightly less than the default value in Herwig++ of 2.2 GeV/c.
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A precise test of the Standard

Model

Both measurements in the previous chapter have a precision of approximately 2%, where

the majority of the uncertainty is due to the luminosity and the proton beam energy.

Of course, the luminosity and its uncertainty are not specific to the current analysis.

The same value is used for any production cross-section measurement, provided the data

samples used to make the measurement are the same. The size of the uncertainty due

to the proton beam energy depends on the rate of change of the cross-section in the

vicinity of the nominal centre-of-mass energy.

It is interesting to consider what happens when cross-sections are combined, for instance

a Z boson cross-section measurement and a W boson cross-section measurement from

the same data set. How do uncertainties propagate onto their sum, difference, product

and quotient? The answer depends on the degree of correlation between the measure-

ments. The correlations between electroweak boson cross-section measurements, and

the correlations between electroweak boson cross-section predictions, are usually posi-

tive. This means that the relative precision on a sum, difference or product is larger

than the relative precision on the cross-sections individually, while the relative precision

on a quotient is smaller. This chapter describes the measurement of W to Z boson

production cross-section ratios.

As can be seen from Figures 4.45 and 4.46, the SM predictions of the Z boson cross-

sections also have a precision of about 2%. Similar uncertainties apply to the predicted

W boson cross-sections. The uncertainties on these predictions are due to the PDFs,

the factorisation and renormalisation scales, the numerical integration errors and αs.

The initial-state quark energy is larger for Z production than W production due to its

127
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higher mass, otherwise the PDF uncertainties are largely correlated. The scale and αs

uncertainties are also highly correlated [83]. Since uncertainties are correlated between

cross-section predictions, predicted cross-section ratios are relatively much more precise.

The high precision, at both the experimental and theoretical level, make measurements

of cross-section ratios a stringent test of the SM (at the level of about 1%).

Ratios of cross-sections and ratios-of-ratios of cross-sections at different centre-of-mass

energies may also be measured, and are important for two reasons. First, they can be

used to calibrate the ratio between the luminosities of each data set [112]. Consider the

ratio of Z boson cross-sections at two different centre-of-mass energies as an example.

The PDF uncertainties on the cross-section predictions are highly correlated (although

the contribution from the quark sea is greater at larger beam energies) and cancel in

the ratio. As a consequence, the SM prediction of this ratio is largely independent of

the PDF set, varying by only a few parts per mille [112]. If the measurement differs

from these predictions, where these are still within the dominant luminosity uncertainty,

and if it is assumed that SM physics is the only physics at play, then the measurement

can be used to calibrate the ratio of the luminosities. Second, the measurements can be

used to search for Beyond Standard Model (BSM) contributions to the measured cross-

sections [112]. It is important to point out that for a BSM particle (or BSM energy) to be

detected with this method, it must decay to muons in the same kinematic region, and the

production must have a sufficiently different dependence on centre-of-mass energy. BSM

production that grows with centre-of-mass energy at the same rate as SM production

cannot be excluded with this method because the measured (BSM+SM) and predicted

(SM) ratios have the same values. This is shown explicitly in Appendix F.

5.1 W boson cross-section

About 11% of W bosons decay to muons and neutrinos. Neutrinos have negligibly small

interaction cross-sections with typical particle-detector materials (see Chapter 3). Their

presence is often inferred from a large imbalance between the known initial transverse

energy, which is zero, and the visible transverse energy, ~EvisT , of all final-state particles.

The energy that accounts for this imbalance is called the missing transverse energy
~EmissT , defined by

0 = ~EmissT +
∑
i

( ~EvisT )i, (5.1)

where i indexes the final-state particles.
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Experiments with cylindrical geometry are well equipped to reconstruct the energies of

all final-state particles. For these experiments, ~EmissT is an important variable [113, 114].

Since LHCb is a forward arm spectrometer, much of the initial centre-of-mass energy is

not reconstructed inside the detector and ~EmissT cannot be accurately measured. This

means that at LHCb, only the muon momentum is known; neither the mass nor pT of

the W boson is reconstructed. For this reason, W boson cross-sections are defined for

muons with pT > 20 GeV/c and 2 < η < 4.5. This is the fiducial volume for the W

boson measurements, which differs from that of the Z boson in that the muon kinematic

requirements only apply to one lepton instead of two, and there is no W boson invariant

mass requirement, since it is not reconstructed. Although the fiducial volumes differ,

ratios of the fiducial cross-sections are still well-defined, and because they are similar,

there is partial cancellation of common systematic uncertainties when one takes this

ratio (see Section 5.3).

In this thesis, use is made of the
√
s = 7 TeV W boson cross-section measurements

published in Ref. [115]. Preliminary measurements (soon to be published) of W boson

cross-sections at
√
s = 8 TeV are also used. In order to measure the W boson cross-

sections, samples of high-pT muons are selected (Sample-I and Sample-II as before).

The selection criteria are summarised in Table 5.1. Similar to the requirements of muons

for the Z boson selection, muons for the W boson selection must satisfy the kinematic

criteria 2.0 < η < 4.5 and 20 < pT < 70 GeV/c. The muon tracks must also be of

good quality with Prob(χ2) > 1% and σp
p < 10%. The additional criteria that are not

2.0 < η < 4.5
20 < pT < 70 GeV/c
Prob(χ2) > 1%

σp
p < 10%

pcone
T < 2 GeV/c
Econe
T < 2 GeV

pextraT < 2 GeV/c
IP < 40 µm

(EECAL + EHCAL)/pc < 4%

Table 5.1: Summary of muon selection requirements.

required of muons from decays of Z bosons are to reduce backgrounds.

Muons from decays of W bosons are generally isolated. To establish the degree of isola-

tion, a cone with radius R =
√

∆η + ∆φ < 0.5 is constructed about the direction of the

muon track. Neglecting the candidate muon’s momentum, requiring that there is a small

amount of transverse energy (Econe
T < 2 GeV) and momentum (pcone

T < 2GeV/c) in the

cone cuts out generic QCD events. The variable pextraT denotes the pT of other muons in
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the event. Requiring that the transverse momentum of all other muons in the event is less

than 2 GeV/c reduces the Z → µ+µ− contamination. The requirement on the impact

parameter (IP), defined in Section 3.2, removes events whose muons are not consistent

with originating at the primary vertex. These could be due to electroweak boson decays

to τ -leptons, which in turn decay to muons, or semi-leptonic decays of heavy flavour

hadrons. Genuine muons are expected to leave low energy deposits in the electromag-

netic and hadronic calorimeters. The upper limit on the variable (EECAL +EHCAL)/pc

reduces punch-through of energetic pions and kaons to the muon stations.

The efficiency of these requirements is evaluated using a sample of Z bosons from data,

where one muon plays the role of a neutrino. This sample is called the Pseudo-W sample.

Selection efficiencies are evaluated by applying the requirements to the designated muon

of the Pseudo-W sample. With the available statistics, the efficiency is the same for

positively and negatively charged muons [116].

Evaluating the selection efficiency in this way biases the efficiency because the pT dis-

tribution of muons from Z bosons is harder than the pT distribution of muons from W

bosons. The bias is corrected using differences observed on simulated W and Z boson

samples. The correction has the effect of reducing the efficiency that is evaluated using

the Pseudo-W sample. Simulation is also used to correct for the fact that the Pseudo-W

sample requires two muons in the acceptance [116].

The muon pT distributions of these samples are then fitted with templates representing

both signal and background using the method of extended maximum likelihood. The fit

for Sample-I is shown in Figure 5.1. The cross-sections are then measured as a function

of η using Equation 5.2.

σW±→µ±ν(i) =
1
L
· N

W±

εGEC
·

ρW
±

(i) · fW±FSR(i)
AW±(i) · εW (i) · εW±SEL(i)

(5.2)

The number of W boson candidates in each η bin is given by NW± , and the purities

evaluated from the template fit are denoted ρW
±

. The luminosity is given by L and

the GEC efficiency by εGEC . The W boson reconstruction efficiency εW is given by the

product of a trigger efficiency, an identification efficiency and a tracking efficiency.

εW (ηµ) = εtrg(ηµ) · εid(ηµ) · εtrk(ηµ) (5.3)

The acceptance correction, AW± , corrects for the 70 GeV/c upper limit on the muon pT .

The efficiency of the selection criteria (Econe
T , pcone

T , pextraT , IP, and (EECAL+EHCAL)/pc)

is denoted by εW
±

SEL. The components that are common with the Z boson cross-sections
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Figure 5.1: Transverse momentum distribution of the (left panel) positive and (right
panel) negative muon candidates in Sample-I. The data are compared to fitted contri-
butions described in the legend. The fit residuals normalised to the data uncertainty
are shown at the bottom of each distribution. Taken from Ref. [116].

defined in Equation 4.4 are the luminosity, the GEC efficiency and the individual muon

reconstruction efficiencies.

The W+ boson cross-sections measured at
√
s = 7 TeV used in this analysis is

σW+→µ+νµ = (878.0± 2.1± 6.7± 9.3± 15.0) pb, (5.4)

where the uncertainties are due to the sample size, systematic effects, the beam energy

and the luminosity determination. The W− boson cross-section is

σW−→µ−ν̄µ = (689.5± 2.0± 5.3± 6.3± 11.8) pb. (5.5)

These measurements are in good agreement with the predictions of NNLO perturbative

QCD, as shown in Figure 5.2. The Z boson cross-section from Equation 4.15 is also

plotted for completeness. The differential W boson cross-sections are given in Table 5.2.

At
√
s = 8 TeV, the W+ boson cross-section is

σW+→µ+νµ = (1093.6± 2.1± 7.2± 10.9± 12.7) pb, (5.6)
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Figure 5.2: Sample-I measurements (
√
s = 7 TeV) of electroweak boson production

cross-sections compared to NNLO perturbative QCD, as implemented by the Fewz
generator using various PDF sets. The shaded (yellow) bands indicate the statistical
and total uncertainties on the measurements, which are symmetric about the central
value. The uncertainties on the theoretical predictions are due to the PDFs. Scale and
αs uncertainties are similar and about one third of the size.

and the W− boson cross-section is

σW−→µ−ν̄µ = (818.4± 1.9± 5.0± 7.0± 9.5) pb. (5.7)

These measurements are also in good agreement with the predictions of NNLO pertur-

bative QCD, as shown in Figure 5.3. The Z boson cross-section from Equation 4.16

is also plotted for completeness. The differential W boson cross-sections are given in

Table 5.3.

The systematic uncertainties on the W boson cross-sections are summarised in Table 5.4.

These uncertainties are discussed in Section 5.3, when considering how uncertainties on

cross-sections propagate onto ratios.
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ηµ σW+ [pb] fW
+

FSR

2.00 – 2.25 192.2± 1.2± 3.5± 2.0± 3.3 1.016± 0.004
2.25 – 2.50 178.8± 0.9± 3.1± 1.9± 3.1 1.018± 0.004
2.50 – 2.75 154.3± 0.8± 2.1± 1.6± 2.6 1.025± 0.005
2.75 – 3.00 122.8± 0.7± 1.6± 1.3± 2.1 1.015± 0.004
3.00 – 3.25 94.3± 0.6± 1.3± 1.0± 1.6 1.021± 0.005
3.25 – 3.50 61.6± 0.5± 0.9± 0.7± 1.1 1.015± 0.005
3.50 – 4.00 60.0± 0.5± 0.7± 0.6± 1.0 1.024± 0.005
4.00 – 4.50 14.3± 0.4± 0.4± 0.2± 0.2 1.021± 0.005

ηµ σW− [pb] fW
−

FSR

2.00 – 2.25 111.1± 0.9± 2.1± 1.0± 1.9 1.019± 0.003
2.25 – 2.50 104.9± 0.7± 1.9± 1.0± 1.8 1.015± 0.003
2.50 – 2.75 96.1± 0.7± 1.3± 0.9± 1.6 1.010± 0.003
2.75 – 3.00 88.4± 0.7± 1.5± 0.8± 1.5 1.007± 0.002
3.00 – 3.25 80.6± 0.6± 1.4± 0.7± 1.4 1.009± 0.003
3.25 – 3.50 68.6± 0.6± 1.5± 0.6± 1.2 1.017± 0.005
3.50 – 4.00 95.9± 0.7± 1.2± 0.9± 1.6 1.012± 0.005
4.00 – 4.50 43.8± 0.8± 1.2± 0.4± 0.7 1.000± 0.000

Table 5.2: Inclusive differential cross-sections for W+ (left) and W− (right) boson
production as functions of muon η, measured with Sample-I data. Uncertainties are
due to the sample size, systematic effects, the beam energy and the luminosity. These
results are taken from Ref. [115].
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Data MSTW08 CT10  = 8 TeVsLHCb, 
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Figure 5.3: Sample-II measurements (
√
s = 8 TeV) of electroweak boson production

cross-sections compared to NNLO perturbative QCD, as implemented by the Fewz
generator using various PDF sets. The shaded (yellow) bands indicate the statistical
and total uncertainties on the measurements, which are symmetric about the central
value. The uncertainties on the theoretical predictions are due to the PDFs. Scale and
αs uncertainties are similar and about one third of the size.
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ηµ σW+ [pb] fW
+

FSR

2.00 – 2.25 236.5± 1.2± 3.2± 2.4± 2.7 1.019± 0.005
2.25 – 2.50 208.4± 0.9± 2.2± 2.1± 2.4 1.016± 0.003
2.50 – 2.75 182.0± 0.8± 1.8± 1.8± 2.1 1.016± 0.003
2.75 – 3.00 153.3± 0.7± 1.6± 1.5± 1.8 1.015± 0.003
3.00 – 3.25 119.5± 0.6± 1.3± 1.2± 1.4 1.015± 0.003
3.25 – 3.50 84.4± 0.5± 1.0± 0.8± 1.0 1.015± 0.005
3.50 – 4.00 86.4± 0.5± 1.2± 0.9± 1.0 1.018± 0.005
4.00 – 4.50 23.0± 0.4± 0.7± 0.2± 0.3 1.021± 0.009

ηµ σW− [pb] fW
−

FSR

2.00 – 2.25 134.0± 0.9± 1.8± 1.2± 1.6 1.017± 0.003
2.25 – 2.50 119.8± 0.7± 1.4± 1.0± 1.4 1.016± 0.003
2.50 – 2.75 110.6± 0.6± 1.2± 1.0± 1.3 1.015± 0.003
2.75 – 3.00 102.4± 0.6± 1.2± 0.9± 1.2 1.016± 0.003
3.00 – 3.25 92.5± 0.6± 1.1± 0.8± 1.1 1.016± 0.003
3.25 – 3.50 79.9± 0.5± 0.9± 0.7± 0.9 1.018± 0.003
3.50 – 4.00 119.3± 0.6± 1.5± 1.0± 1.4 1.020± 0.003
4.00 – 4.50 60.0± 0.7± 1.6± 0.5± 0.7 1.024± 0.005

Table 5.3: Inclusive differential cross-sections for W+ (left) and W− (right) boson
production as functions of muon η, measured with Sample-II data. Uncertainties are
due to the sample size, systematic effects, the beam energy and the luminosity. These
results are preliminary.
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Source Uncertainty (%)
Sample-I Sample-II

W+ W− W+ W−

Statistical 0.24 0.28 0.19 0.23
Muon Eff.
Trigger (TP) 0.23 0.21 0.14 0.13
Identification (TP) 0.06 0.06 0.04 0.04
Identification (Sys.) 0.10 0.10 0.10 0.10
Tracking (TP) 0.22 0.18 0.17 0.14
Tracking (TM) 0.14 0.11 0.07 0.06
Tracking (Bias1) 0.05 0.04 0.06 0.05
Tracking (Bias2) 0.17 0.16 0.18 0.18
Acceptance/FSR 0.18 0.12 0.16 0.14
Purity 0.30 0.40 0.28 0.21
Selection 0.33 0.32 0.24 0.24
GEC Eff. 0.23 0.23 0.32 0.32
GEC Eff. (∆WZ) 0.27 0.27 0.20 0.20
GEC Eff. (∆W+W−) 0.13 0.15 0.07 0.10
Systematic 0.73 0.74 0.64 0.60
Beam energy 1.06 0.91 1.00 0.86
Luminosity 1.71 1.71 1.16 1.16
Total 2.15 2.09 1.67 1.58

Table 5.4: Contributions to the relative uncertainty on the W boson cross-section.
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5.2 Definition of observables

The cross-section ratios are defined for muons with pT > 20 GeV/c, 2.0 < η < 4.5 and,

in the case of the Z boson cross-section, a dimuon invariant mass between 60 and 120

GeV/c2. The ratio of W boson to Z boson production is defined as

RWZ =
σW+→µ+νµ + σW−→µ−ν̄µ

σZ→µ+µ−
. (5.8)

The separate ratios of W+ and W− to Z boson production cross-sections are defined as

RW±Z =
σW±→µ±νµ
σZ→µ+µ−

, (5.9)

while the W boson cross-section ratio is defined as

RW =
σW+→µ+νµ

σW−→µ−ν̄µ
. (5.10)

The cross-sections above are all obtained by summing differential cross-section measure-

ments. The W boson cross-sections are obtained by summing differential cross-sections

as functions of muon η, while the Z boson cross-section is obtained by summing dif-

ferential cross-sections as functions of boson y.1 For example, Equation 5.8 written in

terms of the differential measurements is

RWZ =

8∑
i=1

W+
i +

8∑
i=j

W−j

18∑
k=1

Zk

. (5.11)

It is important to keep this in mind, especially when the propagation of uncertainties is

discussed in Section 5.3. Since the ratios defined above are measured using cross-sections

from identical data sets, the uncertainty due to luminosity drops out.

The ratios of cross-sections at different centre-of-mass energies (either 7 or 8 TeV) are

R
8/7
W+ =

σ8 TeV
W+→µ+νµ

σ7 TeV
W+→µ+νµ

, (5.12)

R
8/7
W− =

σ8 TeV
W−→µ−ν̄µ
σ7 TeV
W−→µ−ν̄µ

, (5.13)

1 There are two main reasons for measuring cross-sections differentially. First, muon reconstruction
efficiencies depend on η, so binning the measurements reduces the systematic uncertainty. Second, the
shapes of measurements may be compared with predictions, which very often have different shapes.
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R
8/7
Z =

σ8 TeV
Z→µ+µ−

σ7 TeV
Z→µ+µ−

. (5.14)

Unlike ratios of cross-sections measured on the same data set, the uncertainty due to

luminosity does not fully cancel and it is still the dominant uncertainty for these mea-

surements. The theoretical predictions for these ratios have uncertainties that are small

in comparison to the uncertainties on the predicted cross-sections. This is mainly due

to the cancellation of the PDF uncertainty, which is significant since the cross-sections

are for the same type of boson. This interplay between experimental and theoretical

uncertainty makes measurements of these quantities ideal for calibrating the ratio of

luminosities from distinct data sets, as explained in the introduction to this chapter and

Ref. [112].

Ratios-of-ratios of cross-sections at different centre-of-mass energies are defined as

R
8/7
RW

=
R8 TeV

W

R7 TeV
W

, (5.15)

R
8/7
RW±Z

=
R8 TeV

W±Z

R7 TeV
W±Z

, (5.16)

R
8/7
RWZ

=
R8 TeV

WZ

R7 TeV
WZ

. (5.17)

The uncertainty due to luminosity drops out in these ratios. Measurements of these

quantities constitute precision tests of the SM, and may be used in searches for BSM

physics, as explained in the introduction to this chapter.

5.3 Systematic uncertainties

The ratios defined in Equations 5.8 - 5.17 are calculated from the total cross-sections

in Equations 4.15 - 4.16 and 5.4 - 5.7. In order to correctly assign uncertainties on

the derived quantities, the correlations between the cross-section measurements must be

taken into account.

The cross-section measurements depend on the determination of various different compo-

nents, efficiencies, correction factors, etc, all of which are given in Equations 4.4 and 5.2.

If these components are common to any two cross-section measurements, the effect of

an under- or over-estimate of this component may be to either under-estimate both
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cross-sections, over-estimate both cross-sections or under-estimate one cross-section and

over-estimate the other. This is the basic notion of correlation. Two measurements are

positively correlated when they increase or decrease together, and negatively correlated

when one decreases and the other increases. Ratios of the cross-section measurements

are better determined if there is a positive correlation (see Appendix C).

In the following sections, the components of the W and Z cross-sections measurements

are discussed. Particular attention is given to the correlations (if any) that these compo-

nents induce on the cross-section measurements, which in turn dictate how uncertainties

are propagated onto cross-section ratios. Only the uncertainties on Sample-I measure-

ments are discussed. Similar arguments apply to the propagation of uncertainties onto

Sample-II measurements. A summary of all relevant systematic uncertainties is given

in Table 5.5.

5.3.1 Muon reconstruction efficiencies

The measurement of an electroweak boson cross-section relies on the measurement of

the efficiency to reconstruct high-pT muons. These measurements are described in Sec-

tion 4.4.2, where the efficiencies are measured as functions of muon η. Since the same

efficiencies are used in the W and Z cross-section measurements, these measurements are

correlated to some degree. Seven different uncertainties were described in Section 4.4.2:

three uncertainties related to the sizes of the tag-and-probe samples; one uncertainty

due to backgrounds in the tag-and-probe sample used to measure the identification ef-

ficiency; one uncertainty due to the inefficiency of the track matching procedure; and

two uncertainties due to the use of the MuonTT track method to determine the track-

ing efficiency. Most of these sources of uncertainty are uncorrelated between muon η

bins. The uncertainties due to backgrounds in the sample used to measure the muon

identification efficiency, and one of the uncertainties due to the MuonTT track method

for measuring the tracking efficiency, are correlated between η bins.

Once the covariance matrix in known, the correlation matrix may be determined (see Ap-

pendix C). These correlation coefficients are used in standard error propagation formulae

(see Appendix G) to propagate uncertainties due to muon reconstruction efficiencies onto

the cross-section ratios. The resulting uncertainties are given in Table 5.5. These should

be compared to those on the Z boson cross-section measurement in Table 4.11, and the

relative uncertainties on the efficiencies given in Tables 4.5, 4.6, and 4.7. The W boson

cross-sections are measured as functions of η just like the efficiencies, therefore the rela-

tive uncertainties on the W boson cross-sections are identical to the relative uncertainties
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on the efficiencies. From this comparison, it is clear that relative uncertainties due to

reconstruction efficiencies are smaller on ratios of cross-sections than on cross-sections.

Source Uncertainty (%)
Sample-I Sample-II

RWZ RW +Z RW−Z RW RWZ RW +Z RW−Z RW

Statistical 0.45 0.48 0.50 0.38 0.31 0.33 0.36 0.30
Muon Eff.
Trigger (TP) 0.15 0.16 0.13 0.07 0.09 0.10 0.09 0.04
Identification (TP) 0.06 0.06 0.05 0.03 0.04 0.04 0.04 0.01
Identification (Sys.) 0.10 0.10 0.10 0.00 0.10 0.10 0.10 0.00
Tracking (TP) 0.14 0.14 0.16 0.07 0.13 0.13 0.15 0.05
Tracking (TM) 0.07 0.09 0.11 0.04 0.06 0.06 0.07 0.02
Tracking (Bias1) 0.04 0.04 0.04 0.02 0.05 0.05 0.05 0.02
Tracking (Bias2) 0.16 0.16 0.17 0.01 0.17 0.16 0.17 0.01
Acceptance/FSR 0.16 0.21 0.17 0.21 0.17 0.21 0.19 0.21
Purity (Z) 0.20 0.20 0.20 0.00 0.20 0.20 0.20 0.00
Purity (W ) 0.18 0.30 0.40 0.60 0.22 0.28 0.21 0.25
Selection 0.31 0.33 0.32 0.18 0.23 0.24 0.24 0.10
GEC Eff. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GEC Eff. (∆WZ) 0.27 0.27 0.27 0.00 0.20 0.20 0.20 0.00
GEC Eff. (∆W+W−) 0.10 0.13 0.15 0.20 0.06 0.07 0.10 0.13
Systematic 0.60 0.68 0.72 0.70 0.54 0.58 0.55 0.37
Beam energy 0.26 0.19 0.34 0.15 0.21 0.15 0.29 0.14
Total 0.79 0.85 0.94 0.81 0.66 0.68 0.72 0.50

Table 5.5: Contributions to the relative uncertainty on the electroweak boson cross-
section ratios.

In order to get a feel for these uncertainties, consider those of Sample-I. The precision

of the trigger efficiency, labelled Trigger (TP) in Table 5.5, leads to an uncertainty on

W+(W−) cross-sections of 0.23(0.21)% and 0.07% on the Z boson cross-section (see

Tables 4.11 and 5.4). The uncertainty on the Z boson cross-section is relatively smaller

because the trigger efficiency is higher, having two chances to fire the muon trigger. In

the ratios involving W and Z bosons, the precision is about 0.15%. This is smaller than

the relative uncertainties on the W boson cross-sections, as there is cancellation of the

uncertainty that is correlated between W and Z boson cross-sections.

The uncertainties on the ratios arising from the tag-and-probe sample used to measure

the muon identification efficiencies, labelled Identification (TP), are related to the un-

certainties on the W and Z cross-sections in a similar way to what was described above

for the trigger efficiency. The obvious difference is the size of the uncertainties, which are

smaller due to the fact that muon identification efficiencies are higher. The component of

the uncertainty that is correlated between bins, labelled Identification (Sys.), is 0.1% for
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ratios involving the Z boson cross-section, and cancels completely for RW . This may be

understood by first noticing that the uncertainties on the W and Z boson cross-sections

are 0.1 and 0.2%, respectively. Since the uncertainties are fully correlated, taking the

ratio of two cross-sections amounts to cancelling the uncertainty from one muon, which

is 0.1%. For the ratio of W boson cross-sections the uncertainty is cancelled completely,

while for ratios involving W and Z boson cross-sections, 0.1% remains.

The first three components of uncertainty arising from the determination of muon track-

ing efficiencies, labelled Tracking (TP), Tracking (TM) and Tracking (Bias1), are all

uncorrelated between muon η bins. The uncertainties on the ratios arising from these

are related to the uncertainties on the W and Z cross-sections in a similar way to what

was described above for the trigger efficiency. The final uncertainty, labelled Tracking

(Bias2), is correlated between muon η bins. The correlated uncertainty varies between

0.1 and 1.1% of the efficiency, depending on the bin. For this reason, the related un-

certainty on the ratios is not simply the difference of the uncertainties on the W and Z

boson cross-sections, as was the case with the uncertainty labelled Identification (Sys.).

5.3.2 Final-state radiation and kinematic acceptance

The QED final-state radiation factors are evaluated as functions of ηµ, φ∗Z , yZ and

pT,Z . As explained in Section 4.4.5, the uncertainties are composed of two parts. One

is purely statistical, reflecting the size of the generated samples used to determine the

correction. Since the FSR correction is taken as the average of the corrections determined

with Herwig++ or Pythia8 separately, the second uncertainty is taken as half of the

difference between the two estimates. The values of the FSR corrections and their

uncertainties are given in Tables 4.12 - 4.19 and 5.2 - 5.3. The uncertainties on the

W boson cross-sections due to kinematic acceptance (accounting for the upper limit on

muon pT of 70 GeV/c) are combined with the final-state radiation uncertainties; for the

purposes of error propagation, the uncertainties are treated similarly.

The relative uncertainty on the Z boson cross-section is 0.11%, while on W+(W−) cross-

sections it is 0.18(0.12)% (see Tables 4.11 and 5.4). These give rise to the uncertainties on

the ratios, shown in Table 5.5, upon application of standard propagation of uncorrelated

uncertainties.
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5.3.3 Purity

All ratios involving the Z boson cross-section have a 0.2% uncertainty that arises from

the purity of the Z boson sample, which was discussed in Section 4.3. Similarly, the

W+ and W− cross-sections have uncertainties due to purity (see Table 5.4) of 0.30% and

0.40%. These uncertainties propagate directly onto RW +Z and RW−Z . For the RWZ and

RW ratios, correlations between these uncertainties are important and result in 0.18%

and 0.60% uncertainties, respectively. To understand why the relative uncertainty is

smaller for RWZ , and larger for RW , consider two aspects to the fitting procedure of

Section 5.1. The first is that the entire sample of W muons, including both positively

and negatively charged muons, is fit with two signal templates (one for each charge).

The second is that the ratio of positive- and negative-muon hadron misidentification

background is fixed. As a result, if the fit chooses to increase the W− signal in one

bin, then this is compensated by a decrease of the W+ signal in the same bin, and the

purities are anti-correlated. This anti-correlation leads to a large uncertainty on the

ratio of W boson cross-sections, as in RW , and a reduced uncertainty on their sum, as

in RWZ . See Appendix C for more details on the effects of correlated uncertainties.

5.3.4 Selection

The selection criteria (Econe
T , pcone

T , pextraT , IP, and (EECAL + EHCAL)/pc) for W boson

candidate samples are detailed in Table 5.1. The uncertainties due to the efficiencies of

these requirements are composed of two parts. The first is due to size of the Pseudo-W

sample. The second is due to the statistical precision on the correction that is applied

to account for the different pT distributions of muons from W and Z bosons, and the

fact that the Pseudo-W sample requires two muons inside the LHCb acceptance. These

uncertainties are fully correlated between measurements in identical η bins, i.e., there is

full correlation between the W+ and W− cross-sections measured in the same bin, but

no correlation between measurements in different bins.

The total selection uncertainties on the W+ and W− cross-sections are 0.33% and

0.32% respectively (see Table 5.4). These uncertainties transfer directly onto RW +Z

and RW−Z . A similar uncertainty of 0.31% appears on RWZ . The correlated uncer-

tainty mentioned above cancels in the measurement of RW , but the cancellation is not

complete. The residual uncertainty (0.20%) is due to the fact that the selection uncer-

tainty is uncorrelated between measurements in different bins.
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5.3.5 Luminosity

Each cross-section measurement contains the luminosity in the denominator, so ratios

of cross-sections are independent of the luminosity.

5.3.6 GEC efficiency for electroweak bosons

The connection between the GEC efficiency and SPD hits has already been discussed

in Section 4.4.3. SPD hits are correlated with the charged particle multiplicity of the

event, and since production of W and Z are similar in terms of the hard scale at which

they are produced, it is expected that the differences between the GEC efficiencies for

these processes are very small.

This assumption is investigated in three ways. Firstly, charged particle multiplicities in

the LHCb acceptance are studied using the Pythia and Herwig MC generators with

both LO and NLO matrix elements and a variety of PDF sets. The multiplicity distri-

butions are shown in Figure 5.4. One concludes that the charged particle multiplicities

of events containing different electroweak bosons are very similar. These studies also

indicate that W− (W+) events have slightly higher (lower) multiplicities than Z events.

In addition, particle multiplicities at generator-level are much lower than detector oc-

cupancies in data. This is because the parameters of the parton shower have not been

tuned [110] to replicate the particle multiplicities in data.
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Figure 5.4: Charged particle multiplicities in events generated by Herwig++.
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Secondly, fully simulated MC (Pythia6 and Pythia8) is used to understand how

charged particle multiplicities translate into detector occupancies (SPD hits, see Sec-

tion 3.2.8). One expects detector occupancies to be slightly less than generated charged

particle multiplicities due to the spatial resolution of the detector. Similar to the

generator-level tests, the detector occupancies of events containing different electroweak

bosons are very similar. The W events have a slightly larger occupancy than Z events,

where a difference of (0.32± 0.03± 0.07)% in the equivalent GEC efficiency is observed.

The first uncertainty here is statistical and the second reflects the difference between

Pythia6 and Pythia8. The average detector occupancy in simulation is a factor of 0.7

smaller than the average detector occupancy in data, so an equivalent efficiency must

be determined. The equivalent efficiency gives the same efficiency on simulated Z boson

events as the 600 SPD hit threshold does on Z boson events in data. This is achieved

with an SPD hit threshold of 428 in simulation.

Thirdly, differences between the W and Z boson GEC efficiency are studied in data

using a background subtracted W sample. As can be seen from Figure 5.1, the W boson

sample is purest at high muon pT . A pure sample of W bosons is obtained by requiring

the muon pT to be larger than 35 GeV/c. The resulting selection is ∼88% signal, and

as can be seen from Figure 5.1, the residual background is largely due to Z bosons

with one muon in the acceptance. Using the known SPD multiplicity distribution of

Z boson events in data and simulation, the shape of the SPD multiplicity distribution

of W boson events can be obtained, which can give an estimate of the W boson GEC

efficiency. The SPD multiplicity distributions of W boson events are fitted up to 600

SPD hits, similar to what is done in Section 4.4.3. The function is extrapolated beyond

600 hits and the efficiency is determined. Statistical and fit uncertainties on the W+

and W− GEC efficiencies are determined to be 0.13% and 0.15%. The corresponding

precision on the efficiency determined from Z candidates is 0.27%, and this is the degree

to which one may say that the efficiencies for W and Z bosons are the same. As with

the first two checks, this data-driven method also suggests higher detector occupancies

for events containing W bosons.

From the studies above, the difference between the efficiency for W and Z events is

clearly small. Consequently, the difference between the W and Z boson GEC efficien-

cies is accounted for with additional systematic uncertainties instead of introducing a

correction to the central value. Since the SPD multiplicity is not well-modelled by the

simulation, the data-driven studies are used to set these additional uncertainties. The

nominal GEC efficiency is given by εZGEC =(94.00± 0.20)%, as quoted in Section 4.4.3.

The uncertainties that are added to this are mentioned in the preceding paragraph. The

results are εW
+

GEC =(94.00±0.20±0.13±0.27)% and εW
−

GEC =(94.00±0.20±0.15±0.27)%.
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The first uncertainty is fully correlated between all electroweak boson cross-sections, the

second is fully uncorrelated between W+ and W− cross-sections and the third is fully

correlated between W+ and W− cross-sections.

In the cross-section ratios, the first uncertainty, labelled GEC Eff. in Table 5.5, cancels

as it is fully correlated between all electroweak boson cross-section measurements. The

second uncertainty, labelled GEC Eff. (∆W+W−) in Table 5.5, is uncorrelated between

W+ and W− cross-sections, and is not applicable to Z cross-sections. Consequently,

the uncertainty translates directly onto the RW±Z ratios, is relatively smaller on the

RWZ ratio, and is relatively larger on the RW ratio. The third uncertainty is labelled

as GEC Eff. (∆WZ) in Table 5.5. It is fully correlated between W boson cross-section

measurements and, as such, passes directly to the ratios involving the Z boson, and

cancels in the RW ratio.

5.3.7 Proton beam energy

Measurements in this thesis are specified at centre-of-mass energies of
√
s = 7 TeV or

√
s = 8 TeV. The beam energy, and consequently the centre-of-mass energy, is known to

0.65% [64]. This uncertainty is fully correlated between different centre-of-mass energies,

as explained in Section 3.1.3. The sensitivity of the cross-section to the centre-of-mass

energy is studied using DYNNLO [42] with the MSTW08 [25] PDF set. A cubic spline

is used to interpolate between predictions at integer centre-of-mass energies between

1–20 TeV as in Figure 5.5. At
√
s = 7 TeV (

√
s = 8 TeV) a 0.65% variation of the

beam energy corresponds to a 1.06% (1.00%) variation in the W+ cross-section, a 0.91%

(0.86%) variation in the W− cross-section, and as mentioned in Section 4.5.7, a 1.25%

(1.15%) variation in the Z cross-section, which is shown in Figure 4.32. Since these

uncertainties are fully correlated between measurements, uncertainties cancel in the

ratios. The residual uncertainty is the difference of the relative uncertainties. For

example, the uncertainty on the ratio RW +Z at
√
s = 7 TeV is 0.19%, which is the

difference between 1.25% for the Z boson cross-section and 1.06% for the W+ boson

cross-section.

5.3.8 Ratios at different centre-of-mass energy

The following assumptions are made when evaluating cross-section ratios at different

centre-of-mass energies. The uncertainties due to statistically independent samples are

uncorrelated. These include uncertainties due to: the number of candidates in each
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Figure 5.5: The DYNNLO prediction of the W+ (upper curve) and W− (lower curve)
boson cross-section as a function of centre-of-mass energy. The vertical grey bands
indicate the uncertainty on the centre-of-mass energy and the horizontal grey bands
indicate the resulting uncertainty on the cross-section.

measurement bin; the uncertainties on the muon reconstruction efficiencies that are un-

correlated between η bins; the uncertainty that arises when correcting for having two

muons inside the acceptance when measuring the selection efficiencies of W bosons; and

the W boson purity estimation. The uncertainties reflecting common methods are cor-

related. These include: the Z candidate sample purity estimation; the components of

the muon reconstruction efficiencies that are correlated between muon η bins; the uncer-

tainty that arises when measuring selection efficiencies for W bosons; and all aspects of

the GEC efficiency determination. The uncertainty due to FSR is taken to be correlated

in identical measurement bins and uncorrelated between different measurement bins.

The beam energy uncertainty is correlated, as explained in Section 3.1.3.

The uncertainties entering the luminosity estimates are given in Ref. [62]. For many

of these uncertainties, the degree of correlation between the luminosity measurements

at different centre-of-mass energies cannot be known exactly. Instead, each source of

uncertainty is assigned a correlation coefficient of 0, 1, [0,0.5], [0.5,1] or [0,1], where the

latter three represent intervals of ignorance. Correlation coefficients are sampled from

both uniform and arcsin distributions across these intervals. With this prescription, the

total correlation is estimated to be 0.55 ± 0.06 [117]. For the purposes of the analysis

presented here, a correlation coefficient of 0.55 is used.

A summary of the uncertainties on ratios of quantities at different centre-of-mass energies

is given in Table 5.6.
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Source Uncertainty (%)

R
8/7
W+ R

8/7
W− R

8/7
Z R

8/7
RWZ

R
8/7
RW+Z

R
8/7
RW−Z

R
8/7
RW

Statistical 0.30 0.37 0.49 0.55 0.58 0.62 0.48
Muon Eff.
Trigger (TP) 0.27 0.25 0.09 0.17 0.19 0.16 0.08
Identification (TP) 0.07 0.07 0.13 0.07 0.07 0.06 0.03
Identification (Sys.) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Tracking (TP) 0.28 0.23 0.45 0.20 0.19 0.22 0.08
Tracking (TM) 0.16 0.13 0.25 0.11 0.11 0.13 0.04
Tracking (Bias1) 0.08 0.07 0.13 0.06 0.06 0.07 0.02
Tracking (Bias2) 0.02 0.01 0.02 0.03 0.03 0.03 0.00
Acceptance/FSR 0.05 0.06 0.04 0.06 0.07 0.07 0.08
Purity (Z) – – 0.00 0.00 0.00 0.00 –
Purity (W ) 0.41 0.45 – 0.29 0.41 0.45 0.65
Selection 0.17 0.17 – 0.16 0.17 0.17 0.04
GEC Eff. 0.09 0.09 0.09 0.00 0.00 0.00 0.00
GEC Eff. (∆WZ) 0.07 0.07 – 0.07 0.07 0.07 0.00
GEC Eff. (∆W+W−) 0.06 0.05 – 0.04 0.06 0.05 0.07
Systematic 0.64 0.63 0.56 0.46 0.55 0.59 0.67
Beam energy 0.06 0.05 0.10 0.05 0.04 0.05 0.00
Luminosity 1.45 1.45 1.45 0.00 0.00 0.00 0.00
Total 1.61 1.62 1.63 0.72 0.80 0.86 0.82

Table 5.6: Contributions to the relative uncertainty on the electroweak boson cross-
section ratios at different centre-of-mass energies.
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5.4 Results

5.4.1 Sample-I error ellipses

Another way to visualise the cross-section measurements of Chapter 4 and Section 5.1

is with error ellipses. In Figure 5.6, the values of the measured W and Z boson cross-

sections from Sample-I are indicated by black crosses. The purple and yellow ellipses

represent two dimensional uncertainty intervals about the measurements. Similarly, open

markers and ellipses, representing PDF uncertainty intervals, denote the predictions of

NNLO perturbative QCD.
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Figure 5.6: Two dimensional plots of electroweak boson cross-sections compared to
NNLO predictions for various parameterisations of the PDFs. The outer, shaded (yel-
low) ellipse corresponds to the total uncertainty on the measurements. The inner,
shaded (purple) ellipse excludes the beam energy and luminosity uncertainties. The
uncertainty on the theoretical predictions corresponds to the PDF uncertainty only.
All ellipses correspond to uncertainties at 68.3% confidence level.

To define these ellipses, first consider the covariance matrix, A, of two cross-section

measurements, σ1 and σ2.2 The eigenvectors, v1,2, and eigenvalues, λ1,2, of this matrix

2The covariance matrix may be constructed using the uncertainties on the cross-sections and the
correlation between the cross-sections, which is given in Appendix E.
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are defined by

Av1 = λ1v1 Av2 = λ2v2. (5.18)

The equation of each ellipse is then given by(σ1

λ1

)2
+
(σ2

λ2

)2
= s. (5.19)

The lengths of the axes of the ellipse are 2
√
sλ1 and 2

√
sλ2.

The value of s is chosen to represent a certain confidence interval. Here, the 68.3%

confidence level is used. Since the left-hand side of Equation 5.19 is a sum of squares of

two independent, and normally distributed random variables, it is distributed as a χ2

distribution with two degrees of freedom [99]. The value of s is determined by setting

the integral of the χ2 distribution with two degrees of freedom (χ2
k=2) to the desired

confidence level, in this case 68.3%. One has∫ s

0
dx χ2

k=2 = 0.683, (5.20)

and the corresponding value of s is 2.2977.

The orientation of the ellipses with respect to the co-ordinate axes indicate the degree

of correlation between the cross-sections. The angle, α, is defined as the angle that the

eigenvector with the largest eigenvalue makes with the x-axis. Suppose λ1 > λ2, the

relevant eigenvector is v1, and it has components vx1 and vy1 . Then,

α = tan−1 v
y
1

vx1
. (5.21)

The inclinations of the yellow error ellipses indicate a high degree of correlation between

measurements, suggesting that that the relative uncertainties on ratios of these quantities

will be very much reduced.

Superimposed on the measurements in Figure 5.6, are the NNLO FEWZ predictions,

configured with different choices of PDF set. Error ellipses for these theoretical pre-

dictions are computed in the same way as explained above. Again, the inclinations

of the error ellipses indicate a high degree of correlation between these predictions,

suggesting that ratios of these quantities will be better determined. While these ob-

servations demonstrate the advantages of cross-section ratios, it is also clear from these

two-dimensional plots that cross-section measurements, when considered as pairs, are
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sensitive to the choice of PDF set, even when luminosity and beam energy uncertain-

ties are considered. This is not apparent from cross-section measurements considered

individually, as in Figure 5.2.

5.4.2 Sample-II error ellipses

The error ellipses corresponding to the cross-section measurements on Sample-II are

shown in Figure 5.7.
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Figure 5.7: Two dimensional plots of electroweak boson cross-sections compared to
NNLO predictions for various parameterisations of the PDFs. The outer, shaded (yel-
low) ellipse corresponds to the total uncertainty on the measurements. The inner,
shaded (purple) ellipse excludes the beam energy and luminosity uncertainties. The
uncertainty on the theoretical predictions corresponds to the PDF uncertainty only.
All ellipses correspond to uncertainties at 68.3% confidence level.

5.4.3 Sample-I W/Z ratio

The W to Z boson cross-section ratio at
√
s = 7 TeV is measured as

RWZ = 20.63± 0.09± 0.12± 0.05,
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where the first uncertainty is statistical, the second is systematic and the third is due

to the beam energy. The total precision is 0.8%, while the statistical precision is 0.5%.

The largest systematic uncertainty is due to the uncertainties arising from the W boson

sample selection, which is 0.3% as in Table 5.5. The charged W to Z boson cross-section

ratios are measured as

RW +Z = 11.56± 0.06± 0.08± 0.02,

RW−Z = 9.07± 0.05± 0.07± 0.03,

while the W boson cross-section ratio is measured as

RW = 1.274± 0.005± 0.009± 0.002.

These are 0.9%, 0.9% and 0.8% measurements respectively. The largest systematic

uncertainties on the RW +Z and RW−Z ratios are due to the W+ boson selection (0.3%)

and the W− boson purity estimation (0.4%), respectively. The largest uncertainty on the

measurement of RW is due to the template shapes and normalisations used to extract

the W boson signal from the W event sample, which is 0.6% (this source only contributes

0.2% to RWZ due to the anti-correlation between W+ and W−; see Section 5.3.3 and

Table 5.5).

The ratio measurements, as well as their predictions, are displayed in Figure 5.8. For the

ratios involving the Z boson cross-sections, the general trend is that the predicted ratios

are larger than the measured ratios. The behaviour of the different PDF sets with respect

to the measurements is worthy of comment. The central values from HERAPDF1.5 [21]

and JR09 [39] sit on top of the measurements in all cases. Both of these PDF sets use

data that largely come from ep collisions at HERA, and do not use the νN → µ+µ−X

dimuon data (see Table 2.2). Those from CT10, MSTW08 and NNPDF23 lie slightly

above the measurements. ABM12 differs more significantly for RWZ and RW+Z , though

the RW−Z prediction sits on the data. For the ratio of W boson cross-sections, RW , all

predictions align very well with the measurement except for ABM12, which is about 2σ

above.

The ratios RW+Z and RW−Z are also measured differentially as a function of muon η.

These measurements are displayed in Figure 5.9. Good agreement between measured

and predicted values is observed. It is noted that the measured RW−Z ratio is a more

constant function of ηµ than predicted.
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Data MSTW08 CT10  = 7 TeVsLHCb, 

statData NNPDF23 HERAPDF1.5  > 20 GeV/cµ
T

p

totData ABM12 JR09  < 4.5µη2.0 < 
   2 < 120 GeV/c-µ+µZ: 60 < M
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Figure 5.8: Sample-I measurements (
√
s = 7 TeV) of electroweak boson cross-section

ratios RW+Z , RW−Z , RWZ , RW compared to NNLO perturbative QCD, as imple-
mented by the Fewz generator using various PDF sets. The shaded (yellow) bands
indicate the statistical and total uncertainties on the measurements, which are sym-
metric about the central value. The uncertainties on the theoretical predictions are due
to the PDFs, scale and αs uncertainties.

Discussion

The cross-sections in Figure 5.2 show excellent agreement with predictions. The cross-

section ratios in Figure 5.8 also show agreement, but with the increased relative precision

in the ratios, there is more sensitivity to the choice of PDF set. It is important to stress

that the precision of the SM prediction is represented by the spread of the NNLO

predictions, which arises due to the many PDFs. With this in mind, the measurements

are still in agreement with the SM.

In the forward region of LHCb, the W+/W− ratio is an approximate measure of the

u/d quark ratio at high-x [118]. As is clear from Figure 5.8, measurement and predic-

tion agree very well. The W/Z ratio, by the same approximation, is insensitive to u-

and d-quark PDF uncertainties [83, 105, 118]. While the measurement of this ratio is

in agreement with the predictions, this agreement is not as good as observed for the

W+/W− ratio. The best agreement here is achieved with the HERAPDF1.5 and JR09

PDF sets. As evident from Table 2.2, these PDF sets do not use the νN → µ+µ−X
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Figure 5.9: Differential W+ (W−) to Z cross-section ratio in bins of µ+ (µ−) pseudora-
pidity, as measured on Sample-I. Measurements, represented as bands corresponding
to the statistical (orange (blue) for RW+Z (RW−Z)) and total (yellow (light blue) for
RW+Z (RW−Z)) uncertainty, are compared to NNLO predictions with different param-
eterisations of the PDFs.

dimuon data in their fit. This data is obtained by colliding a neutrino with a fixed target

of Fe. A Feynman diagram representing the process is shown in Figure 5.10. These data

are very interesting because they have also been used to motivate the suppression of the

s-quark sea with respect to the u- and d-quark sea in PDF fits [25]. This is at odds with

the ATLAS observation that suggests that the quark sea has no preference for any of the

light quark flavours [40]. Furthermore, it has been shown that the s-quark PDF at low-x

is particularly sensitive to nuclear modification factors, which are required to extract the

proton PDFs from the nuclear PDFs obtained from the νN dimuon data [119].

Since production of Z bosons is more sensitive to the strange content of the proton than

W bosons [120], it could be possible to attribute differences between measurements and

predictions of the W/Z ratios to the s-quark parameterisation in PDFs. It is clear that

the W/Z measurements presented above are an interesting prospect for further study

and analysis.
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Figure 5.10: Feynman diagram representing neutrino-nucleon dimuon production
(νN → µ+µ−X). In this example, the down-type (d, s) content of the nucleon is
probed. The red ellipse represents the nucleon N , which is typically Fe.

5.4.4 Sample-II W/Z ratio

The W to Z boson cross-section ratio at
√
s = 8 TeV is measured as

RWZ = 20.13± 0.06± 0.11± 0.04.

As before, the first uncertainty is statistical, the second is systematic and the third is

due to the beam energy. The total precision is 0.7%, while the statistical precision is

0.3%. The largest systematic uncertainty is due to the determination of the W boson

sample selection efficiency, which is 0.2%. The charged W to Z boson cross-section

ratios are measured as

RW +Z = 11.51± 0.04± 0.07± 0.02,

RW−Z = 8.62± 0.03± 0.05± 0.02,

while the W boson cross-section ratio is measured as

RW = 1.336± 0.004± 0.005± 0.002.

These are 0.7%, 0.7% and 0.5% measurements respectively. The largest systematic

uncertainty on the RW +Z ratio is due to the purity of the W boson sample (0.3%),
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while the largest systematic uncertainty on the RW−Z ratio is due to the selection

(0.2%). As with Sample-I, the largest uncertainty on the measurement of RW is due to

the template shapes and normalisations used to extract the W boson signal from the W

event sample, which is 0.3%. The breakdown of the uncertainties on the cross-section

ratios is given in Table 5.5.

The ratio measurements, as well as their predictions, are displayed in Figure 5.11. The
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Figure 5.11: Sample-II measurements (
√
s = 8 TeV) of electroweak boson cross-

section ratios RW+Z , RW−Z , RWZ , RW compared to NNLO perturbative QCD, as
implemented by the Fewz generator using various PDF sets. The shaded (yellow)
bands indicate the statistical and total uncertainties on the measurements, which are
symmetric about the central value. The uncertainties on the theoretical predictions are
due to the PDFs, scale and αs uncertainties.

agreement between measurement and prediction is excellent.

The ratios RW+Z and RW−Z are also measured differentially as a function of muon η.

These measurements are displayed in Figure 5.12. Good agreement between measured

and predicted values is observed, and as with Sample-I, it is noted that the measured

RW−Z ratio is a more constant function of ηµ than predicted.

Electroweak boson cross-section ratios have also been measured by the ATLAS [105]

and CMS [106], [107] collaborations in their respective fiducial volumes. The results are

summarised in Table 5.7. The relative precision of the measurements is expressed in
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Figure 5.12: Differential W+ (W−) to Z cross-section ratio in bins of µ+ (µ−) pseudora-
pidity, as measured on sample-II. Measurements, represented as bands corresponding
to the statistical (orange (blue) for RW+Z (RW−Z)) and total (yellow (light blue) for
RW+Z (RW−Z)) uncertainty, are compared to NNLO predictions with different param-
eterisations of the PDFs.

terms of the ratios of fiducial cross-sections Rfid.
WZ and their total uncertainties δRfid.

WZ .

The integrated luminosities (L) and centre-of-mass energies of the samples are also

indicated.
√
s = 7 TeV

√
s = 8 TeV

Collaboration L [pb−1] δRfid.
WZ

Rfid.
WZ

x 100 [%] L [pb−1] δRfid.
WZ

Rfid.
WZ

x 100 [%]

ATLAS 36 1.3 – –
CMS 36 2.1 18 3.0
LHCb 1000 0.8 2000 0.7

Table 5.7: Relative precision on electroweak boson cross-section ratio measurements
from different LHC experiments. The ATLAS and CMS results do not include uncer-
tainties due to proton beam energy.
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5.4.5 Ratios at different centre-of-mass energy

As explained in Ref. [112], the large degree of correlation between cross-sections (and

cross-section ratios) at different centre-of-mass energies, both theoretically and experi-

mentally, makes them an interesting set of observables. From the theoretical side, the

PDF uncertainty cancellation is particularly large if similar cross-sections are analysed;

the PDFs are probed at the exact same Q2, which is set by the boson mass. However,

at higher beam energies the proportion of quark pairs from the sea is increased and the

required x value to produce a boson in the rapidity range is reduced.

The cross-section ratios at different centre-of-mass energies are measured as

R
8/7
W+ =

σ8 TeV
W+

σ7 TeV
W+

= 1.245± 0.004± 0.008± 0.001± 0.018,

R
8/7
W− =

σ8 TeV
W−

σ7 TeV
W−

= 1.187± 0.004± 0.007± 0.001± 0.017,

R
8/7
Z =

σ8 TeV
Z

σ7 TeV
Z

= 1.250± 0.006± 0.007± 0.001± 0.018.

The first uncertainty is statistical, the second is systematic, the third is due to the beam

energy and the fourth is due to the luminosity. The treatment of uncertainty is explained

in Section 5.3.8 and the breakdown is given in Table 5.6. The precision is about 1.6% in

all cases, where this is dominated by the uncertainty due to the luminosity determination

(1.45%). It is estimated that about 50% of the uncertainty due to luminosity in Sample-

I and Sample-II is correlated, as mentioned in Section 5.3.8. These measurements are

shown in Figure 5.13, along with their predictions.

The measurements and predictions are in agreement. Compared to Figures 5.2, 5.3, 5.8

and 5.11, the degree to which the predictions line up is striking. The fact that there

is very little spread in their central value indicates that the uncertainty due to the

PDF is very much reduced, which is also reflected in the calculated uncertainties on the

individual PDF predictions. The theoretical uncertainties shown here are due to PDF,

scale, αs and numerical integration. These are similar in size.

According to Ref. [112], these measurements may be used in two ways. The first takes

advantage of the fact that the PDF predictions give the same value at the per mille

level. Assuming that the SM is correct, the differences between the predictions and

the measured ratio can be used to measure a miscalibration of the ratio of luminosities

in Sample-I and Sample-II, also at the per mille level. The second infers the exis-

tence of BSM physics due to discrepancies in the scaling of the predicted and measured
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Figure 5.13: Ratios of electroweak boson production cross-sections measured in
Sample-I and Sample-II compared to NNLO perturbative QCD, as implemented by
the Fewz generator using various PDF sets. The shaded (yellow) bands indicate the
statistical and total uncertainties on the measurements, which are symmetric about the
central value. The uncertainties on the theoretical predictions are due to PDFs, scale,
αs and numerical integration, all of which are similar in size.

cross-sections with centre-of-mass energy. In particular, this can occur if a BSM sig-

nal evolves differently with centre-of-mass energy to electroweak boson production (see

Appendix F).

To be confident that the data suggest a miscalibration in the ratio of luminosities, the

central values of all three measurements should be either consistently higher or lower

than the corresponding sets of theoretical predictions. As can be seen from Figure 5.13,

this is not the case. As a consequence, no correction is measured. In addition, since the

measurements and predictions are in agreement, there is no evidence of BSM physics.

More precise measurements are obtained through ratios-of-ratios of cross-sections. In

this case, the luminosity uncertainty cancels, and there is more sensitivity to a BSM
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signal. The ratios-of-ratios of cross-sections at different centre-of-mass energies are mea-

sured as

R
8/7
RW

=
R8 TeV
W

R7 TeV
W

= 1.049± 0.005± 0.007,

R
8/7
RW+Z

=
R8 TeV
W+Z

R7 TeV
W+Z

= 0.996± 0.006± 0.005,

R
8/7
RW−Z

=
R8 TeV
W−Z

R7 TeV
W−Z

= 0.950± 0.006± 0.006,

R
8/7
RWZ

=
R8 TeV
WZ

R7 TeV
WZ

= 0.976± 0.005± 0.004,

where the first uncertainty is statistical, the second is systematic and the third is due to

the beam energy. The precision of these ratios could be greatly improved with a larger

data set since the statistical uncertainty is one of the dominating uncertainties, ranging

between 0.5–0.6%. The largest source of systematic uncertainty on these ratios is due

to the evaluation of the purity of the W boson sample, which ranges between 0.3–0.7%.

The breakdown of all relevant uncertainties is given in Table 5.6.

These ratio measurements are shown in Figure 5.14, along with their predictions. As

in Figure 5.13, the scatter of the predictions is small suggesting the uncertainty due to

PDFs is small. Since they are of similar magnitude, the scale, αs and numerical integra-

tion uncertainties are included. The ratios R8/7
RW−Z

and R
8/7
RWZ

agree theoretically and

experimentally, but there is some discrepancy in the R8/7
RW

and R8/7
RW+Z

ratios. However,

at the current level of precision, the discrepancies are not large enough to claim deviation

from the SM.

It is not immediately obvious why the theoretical values for the ratios R8/7
RW

, R8/7
RW+Z

,

R
8/7
RW−Z

and R
8/7
RWZ

, should have values slightly above and below unity. The answer lies

in the rates at which the W and Z boson cross-sections increase with centre-of-mass

energy. The cross-section rises approximately logarithmically as evident in Figures 4.32

and 5.5. The partonic cross-section (see Section 2.3) goes as the inverse square of the

centre-of-mass energy for all three bosons [121]. Thus, it is the PDFs that account

for the logarithmic growth of the hadronic cross-section. The rate of increase in the Z

boson cross-section is greatest, followed closely by that of the W+ cross-section. The

W− cross-section grows less rapidly.

The ratios R8/7
RW+Z

, R8/7
RW−Z

are also measured differentially as a function of muon η.

These measurements are displayed in Figure 5.15. Only uncertainties due to PDFs are

included on the predictions. Good agreement between measurement and prediction is

observed, especially for the R8/7
RW−Z

ratio. The measurement of the R8/7
RW+Z

ratio is larger
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Figure 5.14: Ratios-of-ratios of electroweak boson production cross-sections measured
in Sample-I and Sample-II compared to NNLO perturbative QCD, as implemented
by the Fewz generator using various PDF sets. The shaded (yellow) bands indicate
the statistical and total uncertainties on the measurements, which are symmetric about
the central value. The uncertainties on the theoretical predictions are due to PDFs,
scale, αs and numerical integration, all of which are similar in size.

than the predicted values in the range 2 < ηµ < 3. The individual cross-sections are

large in this region (see Figures 4.43 - 4.44 and Tables 5.2 - 5.3), and have the greatest

weight in the integrated ratio shown in Figure 5.14.

The R8/7
RW+Z

ratio increases as a function of ηµ, while the R8/7
RW+Z

ratio decreases as a

function of ηµ. The PDF uncertainties are largest for the R8/7
RW+Z

ratio at high pseu-

dorapidity, suggesting that these measurements can improve the determination of the

PDFs in this region.
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Figure 5.15: Cross-section ratios-of-ratios at different centre-of-mass energies as a func-
tion of muon η. Measurements, represented as bands corresponding to the statistical
(orange (blue) for η+ (η−)) and total (yellow (light blue) for η+ (η−)) uncertainty, are
compared to NNLO predictions with different parameterisations of the PDFs.



Chapter 6

Conclusions

This thesis describes a number of measurements involving electroweak boson cross-

sections that were performed using data collected by the LHCb detector during Run-I

of LHC operation. The measurements were undertaken with two primary objectives in

mind; the first, measure the Z boson cross-section at different centre-of-mass energies;

the second, use these cross-sections, in conjunction with W boson cross-sections, to make

precision tests of the Standard Model. A synopsis of the measurements is provided in

the following paragraphs, where comments are given on the agreement of measurements

with predictions, the precision achieved, and thoughts for future development of similar

analyses.

The first objective is addressed in Chapter 4, where measurements of Z boson production

cross-sections at centre-of-mass energies of 7 and 8 TeV are presented with relative

precision of about 2%. Most of the uncertainty is due to the determination of the

integrated luminosity and proton beam energy. This precision is at a similar level to the

theoretical precision of the NNLO QCD predictions. Despite the potential sensitivity

to new physics, the measurements are in excellent agreement with these predictions and

the SM in general. Although it is not the first time the Z boson cross-section has been

measured, the overall precision is almost halved with respect to previous measurements,

which have 3.5–4.2% relative precision.

The second objective is addressed in Chapter 5, where measurements of electroweak

boson cross-section ratios at centre-of-mass energies of either 7 or 8 TeV are presented,

with relative precision varying between 0.5–0.9%. The dominant uncertainties on these

ratio measurements are due to the sizes of the samples of Z bosons (0.3–0.5%) and

the determinations of W boson sample purities (0.2–0.6%). As with the cross-section

measurements mentioned above, the ratio measurements are in agreement with the SM
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and NNLO QCD predictions, with some PDF sets favoured over others. Previous mea-

surements of similar quantities, at 1.3–3.0% relative precision, are improved by more

than a factor of two. In addition, measurements of the charged W to Z boson ratio,

differential in muon η, are performed for the first time at the LHC. Good agreement

with predictions is observed, although the negatively charged ratio is flatter in η than

predicted.

Chapter 5 also includes measurements of cross-section ratios at different centre-of-mass

energies, which are determined with a relative precision of about 1.6%. The dominant

uncertainty is due to the luminosity, which contributes 1.45%. These measurements are

the first of their kind to be performed at the LHC, and are performed for two specific

reasons. The first is to investigate contributions to the cross-section due to sources other

then the SM. No evidence of this is observed. The second is to use the measurements

to calibrate the ratio of luminosities on two different data sets. No evidence of a need

for such a calibration is observed either.

The ratios-of-ratios of cross-sections at different centre-of-mass energies constitute the

final set of measurements. These are presented in Chapter 5, and the relative precision

achieved varies between 0.7–0.9%. The dominant uncertainties are again due to the sizes

of the samples of Z bosons (0.5–0.6%) and the determinations of the W boson sample

purities (0.3–0.7%). A sensitivity to individual PDF sets is displayed by some of these

ratio measurements. These measurements are also the first of their kind to be performed

at the LHC.

Measurements of the quantities mentioned above using Run-II data at centre-of-mass

energies of 13 and 14 TeV will test the SM at the highest energies and have increased

sensitivity to BSM effects. It is not sufficient to repeat the analysis presented here with

Run-II data alone. Comparisons must be made between Run-I and Run-II data. Tak-

ing the ratio of Z boson cross-sections as the example to demonstrate the permutations,

each of R14/13
Z , R14/8

Z , R14/7
Z , R13/8

Z and R
13/7
Z have the potential to reveal new physics.

The larger samples sizes will reduce the statistical uncertainties, which dominate the

precision at which the electroweak boson cross-section ratios are measured here.

This thesis has presented the measurements of cross-sections, cross-sections ratios, ratios

of cross-sections at different centre-of-mass energies, and ratios-of-ratios of cross-sections

at different centre-of-mass energies. Measurements from the latter two categories are

presented for the first time. The precision on all measurements is the best obtained at

the LHC to date. In general, the measurements agree with SM predictions, and the

high level of experimental precision provides a sensitive test of the SM, as well as giving

results that can be used to improve the PDFs.



Appendix A

Heavy flavour systematics

pT [GeV/c] Cand-Mod HF-VTX HF-ISO HF-VTX-ISO

10 72445 908 977 277
11 72078 858 912 264
12 71586 795 834 248
13 70985 710 748 228
14 70308 643 650 208
15 69569 572 555 177
16 68718 491 470 151
17 67774 411 381 122
18 66707 336 311 99
19 65539 282 263 91
20 64248 227 196 66

Table A.1: Shown are the number of events in a modified Sample-I candidate sample
(Cand-Mod), where the mass cut is loosened to Mµ+µ− > 40 GeV/c2, and the pT
cut on the muons is relaxed to various different thresholds. The number of events
in the corresponding heavy flavour enriched samples (HF-VTX, HF-ISO and HF-
VTX-ISO) are also shown. The column HF-VTX-ISO shows the overlap between the
HF-VTX and HF-ISO samples.
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pT [GeV/c] MC-MOD MC-VTX MC-ISO MC-VTX-ISO

10 161902 21 8 0
11 161638 21 8 0
12 161216 21 8 0
13 160638 21 8 0
14 159780 20 8 0
15 158669 20 8 0
16 157235 20 8 0
17 155576 19 7 0
18 153570 19 7 0
19 151237 17 7 0
20 148603 17 6 0

Table A.2: Shown are the number of events in the
√
s = 7 TeV MC simulated sample

(MC-MOD), where the pT cut on the muons is relaxed to various different thresh-
olds. The number of events in the heavy flavour enriched samples (MC-VTX, MC-
ISO and MC-VTX-ISO) are also shown. The column MC-VTX-ISO shows the
overlap between the MC-VTX and MC-ISO samples. The mass window remains
60 < Mµ+µ− < 120 GeV/c2.

pT [GeV/c]
∫ 120

60 ex εvtx Bkg.
10 77.9 0.28 274
11 78.3 0.29 269
12 78.8 0.30 263
13 78.5 0.31 255
14 78.0 0.32 243
15 78.0 0.32 244
16 69.2 0.32 215
17 67.1 0.32 209
18 67.8 0.32 214
19 66.1 0.35 191
20 62.1 0.34 184

Table A.3: Numbers relating to the heavy flavour background estimate for Sample-I
when all events in the HF-VTX sample with masses above 40 GeV/c2 are considered
in the fit. The first column indicates the pT threshold on the muons. The second
column shows the integral of the fitted exponential function in the mass region of the
measurement. The third column is the efficiency of the HF-VTX cut on heavy flavour
events. The final column is the estimated background.
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pT [GeV/c]
∫ 120

60 ex εiso Bkg.
10 83.6 0.31 273
11 83.8 0.31 271
12 84.3 0.31 269
13 78.1 0.32 242
14 76.7 0.33 236
15 72.4 0.31 233
16 66.3 0.31 213
17 63.6 0.30 212
18 59.3 0.30 201
19 55.1 0.33 169
20 47.5 0.29 162

Table A.4: Numbers relating to the heavy flavour background estimate for Sample-I
when all events in the HF-ISO sample with masses above 40 GeV/c2 are considered
in the fit. The first column indicates the pT threshold on the muons. The second
column shows the integral of the fitted exponential function in the mass region of the
measurement. The third column is the efficiency of the HF-ISO cut on heavy flavour
events. The final column is the estimated background.

pT [GeV/c]
∫ 120

60 ex εvtx Bkg.
10 56.9 0.28 200
11 57.5 0.29 198
12 59.5 0.30 198
13 61.7 0.31 201
14 63.2 0.32 197
15 66.5 0.32 208
16 71.0 0.32 221
17 82.0 0.32 256
18 80.1 0.32 253
19 90.9 0.35 263
20 112.4 0.34 334

Table A.5: Numbers relating to the heavy flavour background estimate for Sample-I
when all events in the HF-VTX sample with masses between 40 and 60 GeV/c2 are
considered in the fit. The first column indicates the pT threshold on the muons. The
second column shows the integral of the fitted exponential function in the mass region
of the measurement. The third column is the efficiency of the HF-VTX cut on heavy
flavour events. The final column is the estimated background.
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pT [GeV/c]
∫ 120

60 ex εiso Bkg.
10 59.7 0.31 195
11 63.2 0.31 204
12 68.3 0.31 218
13 74.9 0.32 232
14 80.4 0.33 247
15 76.1 0.31 244
16 77.1 0.31 248
17 93.3 0.30 311
18 111.7 0.30 378
19 171.3 0.33 525
20 296.0 0.29 1011

Table A.6: Numbers relating to the heavy flavour background estimate for Sample-I
when all events in the HF-ISO sample with masses between 40 and 60 GeV/c2 are
considered in the fit. The first column indicates the pT threshold on the muons. The
second column shows the integral of the fitted exponential function in the mass region
of the measurement. The third column is the efficiency of the HF-ISO cut on heavy
flavour events. The final column is the estimated background.
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Reconstruction efficiencies
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η εtrg δεtrg
2.000-2.080 0.731 0.005
2.080-2.165 0.773 0.005
2.165-2.250 0.782 0.005
2.250-2.375 0.791 0.004
2.375-2.500 0.798 0.004
2.500-2.750 0.796 0.003
2.750-3.000 0.779 0.003
3.000-3.250 0.785 0.003
3.250-3.500 0.799 0.003
3.500-3.750 0.795 0.004
3.750-4.000 0.790 0.004
4.000-4.250 0.808 0.005
4.250-4.500 0.799 0.006

Table B.1: Single muon trigger efficiencies and their uncertainties as a function of
pseudorapidity. These numbers correspond to Sample-II.

η εID δεTPID δεsys.ID δεID
2.000-2.080 0.970 0.002 0.001 0.003
2.080-2.165 0.987 0.002 0.001 0.002
2.165-2.250 0.988 0.002 0.001 0.002
2.250-2.375 0.989 0.001 0.001 0.002
2.375-2.500 0.989 0.002 0.001 0.002
2.500-2.750 0.990 0.001 0.001 0.002
2.750-3.000 0.988 0.001 0.001 0.002
3.000-3.250 0.986 0.001 0.001 0.002
3.250-3.500 0.988 0.001 0.001 0.002
3.500-3.750 0.972 0.002 0.001 0.002
3.750-4.000 0.984 0.002 0.001 0.002
4.000-4.250 0.990 0.002 0.001 0.002
4.250-4.500 0.913 0.005 0.001 0.005

Table B.2: Single muon identification efficiencies and their uncertainties as a function
of pseudorapidity. These numbers correspond to Sample-II.
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η εtrk δεTPtrk δεTMtrk δεBias1trk δεBias2trk δεtrk
2.000-2.080 0.818 0.014 0.004 0.004 0.009 0.015
2.080-2.165 0.872 0.010 0.004 0.003 0.001 0.012
2.165-2.250 0.865 0.010 0.003 0.003 0.001 0.011
2.250-2.375 0.870 0.008 0.003 0.002 0.001 0.009
2.375-2.500 0.932 0.006 0.002 0.002 0.001 0.006
2.500-2.750 0.937 0.003 0.001 0.001 0.001 0.004
2.750-3.000 0.940 0.003 0.001 0.001 0.001 0.004
3.000-3.250 0.946 0.003 0.001 0.001 0.002 0.004
3.250-3.500 0.967 0.003 0.001 0.001 0.001 0.003
3.500-3.750 0.968 0.004 0.002 0.001 0.001 0.004
3.750-4.000 0.963 0.004 0.002 0.002 0.001 0.005
4.000-4.250 0.942 0.005 0.002 0.002 0.002 0.006
4.250-4.500 0.921 0.009 0.003 0.003 0.002 0.010

Table B.3: Single muon tracking efficiencies and their uncertainties as a function of
pseudorapidity. These numbers correspond to Sample-II.



Appendix C

Analysis of uncertainty

In this appendix, the formalism used to derive correlation coefficients is given. A num-

ber of concepts are defined before defining the correlation. Much of the notation and

discussion is taken from Ref. [122].

C.1 Variance

The spread of data is measured using a function called the variance. Suppose there is

some function f of one variable x. The variance of f , V (f), is given by

V (f) =
1
N

∑
i

(f(xi)− f̄)2. (C.1)

The variance is essentially the average squared deviation from the mean. The square-

root of the variance gives the standard deviation δf , which is the uncertainty on f . If g

is another function of x, one may define the covariance of f and g

cov(f(x), g(x)) =
1
N

∑
i

(f(xi)− f̄)(g(xi)− ḡ). (C.2)

If g = f , one obtains the formula for the variance of f , given in Equation C.1.

C.2 Expectation value

Given a probability density P (x) of some variable x, the expected value of a function of

x is given by

< f > =
∫
dx f(x) P (x), (C.3)
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which is also known as the expectation value of f . The variance of f and the expectation

value of f are related by the formula

V (f) = < f2 > − < f >2 . (C.4)

C.3 Ratios of correlated quantites

Consider a function f(x, y) of two variables x and y. The function f may be expanded

in a Taylor series about some point x0, y0.

f(x, y) ≈ f(x0, y0) + (x− x0)
df

dx

∣∣∣∣
x=x0

+ (y − y0)
df

dy

∣∣∣∣
y=y0

(C.5)

Using the expression in Equation C.5, it can be shown that

V (f) =
( df
dx

)2
V (x) +

( df
dy

)2
V (y) + 2

( df
dx

)( df
dy

)
(< xy > − < x >< y >). (C.6)

The < xy > − < x >< y > part is the covariance between x and y. The correlation

coefficient ρ is defined by

< xy > − < x >< y > = ρ
√
V (x)V (y) = ρ σxσy. (C.7)

If f = x/y, the derivative with respect to y in the third term of Equation C.6 is negative.

If x and y are correlated (0 < ρ ≤ 1) then the uncertainty on f will be less than if they are

uncorrelated (ρ = 0). If x and y are anti-correlated (−1 ≤ ρ < 0) then the uncertainty

on f will be greater than if they are uncorrelated (ρ = 0).

C.4 Covariance and correlation matrices

The analysis above may be extended to m functions f1, f2, ...., fm in n variables x1, x2, ...., xn.

In this thesis, the fk are differential cross-sections and the xi are measurements that they

depend on, such as muon reconstruction efficiencies. The result for the covariance be-

tween these functions is

< fkfl > − < fk >< fl > =
n∑
i

n∑
j

(∂fk
∂xi

)( ∂fl
∂xj

)
(< xixj > − < xi >< xj >). (C.8)
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This equation can be written in matrix notation as

Vf = GVxGT, (C.9)

where Vf is the covariance between the fk and Vx is the covariance between the xi.

The elements of the matrix G are identified with the partial derivatives, Gki = ∂fk
∂xi

.

Elements of the matrix Vf are related to elements of the correlation matrix C (the

correlation coefficients) by

Cij =
(Vf )ij√

(Vf )ii(Vf )jj
. (C.10)

C.5 Evaluation of covariance matrices for measured quan-

tities in this thesis

In this section, details are given on how the covariance matrix is evaluated for each

source of uncertainty relevant to this thesis. For each source, the covariance matrix, Vf ,

is determined by calculating a matrix G and a matrix Vx.

C.5.1 Muon reconstruction efficiencies

As the first example, consider muon reconstruction efficiencies. There are three different

types of efficiency, trigger, tracking and identification; there are thirteen muon η bins;

and uncertainties are either correlated or uncorrelated between these bins.

In the case of uncorrelated uncertainties between η bins, the matrix Vx in Equation C.9

is diagonal, the entries being the squares of the uncertainties on the efficiencies.

Vx =


δ2
ε1 · · · 0
...

. . .
...

0 · · · δ2
ε13

 (C.11)

In the case of correlated uncertainties between η bins, the matrix Vx is not diagonal.

Vx =


δ2
ε1 δε1δε2 · · · δε1δε13

δε2δε1 δ2
ε2 · · · δε2δε13

...
...

. . .
...

δε13δε1 δε13δε2 · · · δ2
ε13

 (C.12)
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The method for evaluating the partial derivatives, Gki, is identical, whether the uncer-

tainties between η bins are correlated or not. The k indexes cross-section measurements

and the i indexes efficiencies. The numerator of the Gki is the difference between the

differential cross-section measured in bin k and a hypothetical measurement of this

cross-section when a component of the muon reconstruction efficiency is changed by its

uncertainty. The denominator is the estimated uncertainty on the efficiency. This has

been expressed mathematically in Equation 4.13.

Since there are 34 cross-section measurements (18 measurements in Z boson rapidity

and 16 measurements in W boson muon η) and 13 muon reconstruction efficiencies, the

matrix G has dimension 34 x 13.

C.5.2 Selection

The uncertainties on the W+ and W− cross-sections due to selection requirements

(Econe
T , pcone

T , pextraT , IP, and (EECAL + EHCAL)/pc) are fully correlated between mea-

surements in the same muon η bin. The correlation matrix between W+ and W−

measurements is thus block diagonal, the block being given by Equation C.13.

BSEL =

[
1 1

1 1

]
(C.13)

The correlation matrix can then be written neatly as in Equation C.14.

CSEL =


BSEL · · · 0

...
. . .

...

0 · · · BSEL

 (C.14)

C.5.3 Luminosity (fully correlated uncertainty)

In the case of luminosity, and indeed for any source giving rise to fully correlated uncer-

tainties, the correlation matrix can be written down immediately. It is a 34 x 34 matrix

and the value of each element is unity.

The covariance matrix is calculated by multiplying each element by the corresponding

uncertainties. This can be implemented easily using matrix multiplication. First define

a vector of uncertainties as

v = [δW+
1
, δW−1

, ....., δW+
8
, δW−8

, δZ1 , ......, δZ18 ], (C.15)
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where the ordering of the uncertainties is a convention adopted for this analysis. Then

define the matrices D and R, which are determined by v.

D =



δW+
1

0 0 0 0 0 0 0

0 δW−1
0 0 0 0 0 0

0 0
. . . 0 0 0 0 0

0 0 0 δW+
8

0 0 0 0

0 0 0 0 δW−8
0 0 0

0 0 0 0 0 δZ1 0 0

0 0 0 0 0 0
. . . 0

0 0 0 0 0 0 0 δZ18



(C.16)

R =


δW+

1
δW−1

· · · δW+
8

δW−8
δZ1 · · · δZ18

δW+
1

δW−1
· · · δW+

8
δW−8

δZ1 · · · δZ18

...
...

...
...

...
...

...
...

δW+
1

δW−1
· · · δW+

8
δW−8

δZ1 · · · δZ18

 (C.17)

With these definitions, the covariance matrix between measurements with correlated

uncertainties is given by Vf = DR.



Appendix D

Magnet polarity
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Figure D.1: Differerntial cross-sections as functions of Z boson rapidity for different
magnet polarities in Sample-I in (a) and Sample-II in (b). No discrepancy is observed
between the different magnet polarities so no systematic uncertainty is considered.
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Figure D.2: Differerntial cross-sections as functions of Z boson pT for different magnet
polarities in Sample-I in (a) and Sample-II in (b). No discrepancy is observed between
the different magnet polarities so no systematic uncertainty is considered.
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Figure D.3: Differerntial cross-sections as functions of Z boson φ∗ for different magnet
polarities in Sample-I in (a) and Sample-II in (b). No discrepancy is observed between
the different magnet polarities so no systematic uncertainty is considered.



Appendix E

Correlation coefficients

E.1 Correlation coefficients for the integrated cross-sections

Uncertainty ρW+W− ρW+Z ρW−Z ρWZ

stat ⊕ syst 0.496 0.431 0.384 0.472
stat ⊕ syst ⊕ beam ⊕ lumi 0.928 0.925 0.908 0.934

Table E.1: Correlation coefficients between the integrated W+, W− and Z cross-
sections measured with Sample-I.

Uncertainty ρW+W− ρW+Z ρW−Z ρWZ

stat ⊕ syst 0.748 0.538 0.535 0.573
stat ⊕ syst ⊕ beam ⊕ lumi 0.956 0.922 0.914 0.929

Table E.2: Correlation coefficients between the integrated W+, W− and Z cross-
sections measured with Sample-II.
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E.2 Correlation coefficients for the differential measure-

ments
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yZ 2–2.125 2.125–2.25 2.25–2.375 2.375–2.5 2.5–2.625 2.625–2.75 2.75–2.875 2.875–3 3–3.125 3.125–3.25 3.25–3.375 3.375–3.5 3.5–3.625 3.625–3.75 3.75–3.875 3.875–4 4–4.25 4.25–4.5

2–2.125 1
2.125–2.25 0.18 1
2.25–2.375 0.14 0.19 1
2.375–2.5 0.14 0.19 0.18 1
2.5–2.625 0.13 0.18 0.16 0.19 1
2.625–2.75 0.12 0.16 0.15 0.18 0.18 1
2.75–2.875 0.11 0.15 0.14 0.17 0.17 0.18 1

2.875–3 0.10 0.13 0.13 0.16 0.16 0.17 0.17 1
3–3.125 0.09 0.12 0.12 0.14 0.15 0.15 0.16 0.16 1

3.125–3.25 0.08 0.1 0.10 0.12 0.13 0.14 0.14 0.14 0.14 1
3.25–3.375 0.06 0.08 0.08 0.11 0.11 0.12 0.12 0.13 0.13 0.13 1
3.375–3.5 0.05 0.06 0.06 0.08 0.09 0.09 0.10 0.10 0.11 0.11 0.11 1
3.5–3.625 0.04 0.05 0.05 0.06 0.07 0.08 0.08 0.09 0.09 0.10 0.10 0.10 1
3.625–3.75 0.03 0.04 0.03 0.04 0.05 0.06 0.06 0.07 0.07 0.08 0.09 0.08 0.08 1
3.75–3.875 0.02 0.03 0.02 0.03 0.03 0.04 0.04 0.05 0.05 0.06 0.06 0.06 0.06 0.06 1

3.875–4 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.03 1
4–4.25 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.02 0.02 1

4.25–4.5 − − − − − − − − − − − − − − − − − −

Table E.3: Correlation coefficients between differential cross-section measurements as a function of yZ in Sample-I. The beam energy and
luminosity uncertainties, which are fully correlated between cross-section measurements, are excluded.
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yZ 2–2.125 2.125–2.25 2.25–2.375 2.375–2.5 2.5–2.625 2.625–2.75 2.75–2.875 2.875–3 3–3.125 3.125–3.25 3.25–3.375 3.375–3.5 3.5–3.625 3.625–3.75 3.75–3.875 3.875–4 4–4.25 4.25–4.5

2–2.125 1
2.125–2.25 0.19 1
2.25–2.375 0.17 0.27 1
2.375–2.5 0.16 0.26 0.28 1
2.5–2.625 0.16 0.25 0.28 0.29 1
2.625–2.75 0.15 0.24 0.27 0.29 0.30 1
2.75–2.875 0.14 0.23 0.26 0.28 0.29 0.30 1

2.875–3 0.14 0.21 0.25 0.27 0.29 0.30 0.30 1
3–3.125 0.13 0.20 0.23 0.25 0.27 0.28 0.29 0.29 1

3.125–3.25 0.11 0.17 0.20 0.23 0.25 0.26 0.27 0.28 0.27 1
3.25–3.375 0.09 0.14 0.16 0.18 0.20 0.22 0.22 0.23 0.23 0.23 1
3.375–3.5 0.08 0.12 0.15 0.17 0.19 0.20 0.21 0.22 0.22 0.22 0.20 1
3.5–3.625 0.07 0.10 0.12 0.14 0.16 0.17 0.18 0.19 0.19 0.20 0.18 0.19 1
3.625–3.75 0.06 0.08 0.10 0.11 0.13 0.14 0.15 0.16 0.16 0.17 0.16 0.16 0.15 1
3.75–3.875 0.05 0.07 0.08 0.09 0.10 0.11 0.11 0.12 0.13 0.13 0.12 0.13 0.12 0.11 1

3.875–4 0.03 0.05 0.06 0.06 0.07 0.08 0.08 0.09 0.09 0.10 0.09 0.10 0.09 0.08 0.07 1
4–4.25 0.03 0.04 0.04 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.08 0.07 0.07 0.06 0.05 1

4.25–4.5 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 1

Table E.4: Correlation coefficients between differential cross-section measurements as a function of yZ in Sample-II. The beam energy and
luminosity uncertainties, which are fully correlated between cross-section measurements, are excluded.
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pT,Z [GeV/c] 0.0–2.2 2.2–3.4 3.4–4.6 4.6–5.8 5.8–7.2 7.2–8.7 8.7–10.5 10.5–12.8 12.8–15.4 15.4–19 19–24.5 24.5–34 34–63 63–270

0.0–2.2 1
2.2–3.4 -0.01 1
3.4–4.6 0.00 0.03 1
4.6–5.8 0.04 0.00 0.02 1
5.8–7.2 0.05 0.05 0.00 0.03 1
7.2–8.7 0.07 0.07 0.05 0.00 0.03 1
8.7–10.5 0.08 0.08 0.06 0.06 0.02 0.02 1
10.5–12.8 0.07 0.06 0.05 0.05 0.07 0.04 0.00 1
12.8–15.4 0.07 0.07 0.05 0.05 0.06 0.09 0.07 -0.01 1
15.4–19 0.08 0.08 0.05 0.06 0.07 0.10 0.12 0.08 -0.01 1
19–24.5 0.08 0.08 0.06 0.06 0.07 0.10 0.12 0.10 0.10 0.02 1
24.5–34 0.08 0.07 0.05 0.06 0.07 0.10 0.11 0.09 0.10 0.11 0.05 1
34–63 0.07 0.06 0.05 0.05 0.06 0.08 0.09 0.08 0.08 0.09 0.10 0.06 1
63–270 0.20 0.20 0.15 0.15 0.19 0.26 0.30 0.26 0.27 0.30 0.32 0.31 0.30 1

Table E.5: Correlation coefficients between differential cross-section measurements as a function of pT,Z in Sample-I. The beam energy and
luminosity uncertainties, which are fully correlated between cross-section measurements, are excluded.
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pT,Z [GeV/c] 0.0–2.2 2.2–3.4 3.4–4.6 4.6–5.8 5.8–7.2 7.2–8.7 8.7–10.5 10.5–12.8 12.8–15.4 15.4–19 19–24.5 24.5–34 34–63 63–270

0.0–2.2 1
2.2–3.4 0.06 1
3.4–4.6 0.08 0.16 1
4.6–5.8 0.13 0.09 0.20 1
5.8–7.2 0.15 0.16 0.12 0.19 1
7.2–8.7 0.14 0.16 0.18 0.11 0.17 1
8.7–10.5 0.14 0.16 0.20 0.19 0.14 0.15 1
10.5–12.8 0.14 0.16 0.19 0.19 0.21 0.14 0.12 1
12.8–15.4 0.15 0.17 0.20 0.19 0.22 0.20 0.17 0.11 1
15.4–19 0.14 0.16 0.20 0.19 0.21 0.19 0.21 0.18 0.11 1
19–24.5 0.15 0.17 0.21 0.20 0.22 0.20 0.21 0.21 0.21 0.13 1
24.5–34 0.16 0.18 0.22 0.21 0.23 0.21 0.22 0.22 0.23 0.22 0.17 1
34–63 0.16 0.18 0.22 0.21 0.23 0.21 0.22 0.22 0.23 0.22 0.23 0.21 1
63–270 0.11 0.12 0.15 0.14 0.16 0.15 0.15 0.15 0.16 0.15 0.16 0.17 0.15 1

Table E.6: Correlation coefficients between differential cross-section measurements as a function of pT,Z in Sample-II. The beam energy and
luminosity uncertainties, which are fully correlated between cross-section measurements, are excluded.
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φ∗Z 0.00–0.01 0.01–0.02 0.02–0.03 0.03–0.05 0.05–0.07 0.07–0.10 0.10–0.15 0.15–0.20 0.20–0.30 0.30–0.40 0.40–0.60 0.60–0.80 0.80–1.20 1.20–2.00 2.00–4.00

0.00–0.01 1
0.01–0.02 0.14 1
0.02–0.03 0.16 0.12 1
0.03–0.05 0.20 0.17 0.17 1
0.05–0.07 0.15 0.12 0.13 0.16 1
0.07–0.10 0.19 0.16 0.17 0.21 0.15 1
0.10–0.15 0.14 0.12 0.13 0.16 0.12 0.15 1
0.15–0.20 0.11 0.10 0.10 0.13 0.10 0.12 0.09 1
0.20–0.30 0.15 0.13 0.13 0.17 0.13 0.16 0.13 0.10 1
0.30–0.40 0.10 0.08 0.09 0.11 0.08 0.10 0.08 0.06 0.08 1
0.40–0.60 0.07 0.06 0.07 0.08 0.06 0.08 0.06 0.05 0.07 0.04 1
0.60–0.80 0.05 0.04 0.04 0.05 0.04 0.05 0.04 0.03 0.04 0.03 0.02 1
0.80–1.20 0.05 0.04 0.04 0.05 0.04 0.05 0.04 0.03 0.04 0.03 0.02 0.01 1
1.20–2.00 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.00 1
2.00–4.00 0.005 0.004 0.005 0.006 0.004 0.005 0.004 0.004 0.004 0.002 0.002 0.002 0.002 0.001 1

Table E.7: Correlation coefficients between differential cross-section measurements as a function of φ∗Z in Sample-I. The beam energy and
luminosity uncertainties, which are fully correlated between cross-section measurements, are excluded.
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φ∗Z 0.00–0.01 0.01–0.02 0.02–0.03 0.03–0.05 0.05–0.07 0.07–0.10 0.10–0.15 0.15–0.20 0.20–0.30 0.30–0.40 0.40–0.60 0.60–0.80 0.80–1.20 1.20–2.00 2.00–4.00

0.00–0.01 1
0.01–0.02 0.50 1
0.02–0.03 0.42 0.39 1
0.03–0.05 0.57 0.55 0.44 1
0.05–0.07 0.52 0.50 0.41 0.55 1
0.07–0.10 0.44 0.42 0.34 0.47 0.42 1
0.10–0.15 0.50 0.48 0.40 0.54 0.49 0.41 1
0.15–0.20 0.49 0.47 0.38 0.52 0.48 0.40 0.46 1
0.20–0.30 0.47 0.45 0.37 0.50 0.45 0.39 0.44 0.43 1
0.30–0.40 0.31 0.30 0.24 0.33 0.30 0.26 0.29 0.29 0.27 1
0.40–0.60 0.31 0.29 0.24 0.33 0.30 0.25 0.29 0.28 0.27 0.18 1
0.60–0.80 0.21 0.20 0.16 0.23 0.20 0.17 0.20 0.19 0.19 0.12 0.12 1
0.80–1.20 0.13 0.13 0.10 0.14 0.13 0.11 0.13 0.12 0.12 0.08 0.08 0.05 1
1.20–2.00 0.07 0.07 0.06 0.08 0.07 0.06 0.07 0.07 0.06 0.04 0.04 0.03 0.02 1
2.00–4.00 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.00 1

Table E.8: Correlation coefficients between differential cross-section measurements as a function of φ∗Z in Sample-II. The beam energy and
luminosity uncertainties, which are fully correlated between cross-section measurements, are excluded.
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ηµ 2–2.25 2.25–2.5 2.5–2.75 2.75–3 3–3.25 3.25–3.5 3.5–4 4–4.5

2–2.25
1 W+

0.46 1 W−

2.25–2.5
-0.15 0.34 1 W+

0.30 -0.24 0.09 1 W−

2.5–2.75
-0.03 0.23 0.27 -0.13 1 W+

0.24 -0.14 -0.21 0.35 0.41 1 W−

2.75–3
0.20 -0.07 -0.10 0.25 -0.00 0.21 1 W+

-0.19 0.39 0.46 -0.37 0.27 -0.24 0.28 1 W−

3–3.25
-0.03 0.24 0.28 -0.16 0.20 -0.08 -0.01 0.29 1 W+

0.31 -0.23 -0.32 0.46 -0.13 0.35 0.25 -0.37 0.27 1 W−

3.25–3.5
-0.12 0.29 0.36 -0.27 0.22 -0.17 -0.07 0.40 0.24 -0.27 1 W+

0.33 -0.32 -0.41 0.52 -0.19 0.40 0.28 -0.47 -0.21 0.53 -0.07 1 W−

3.5–4
0.02 0.15 0.18 -0.05 0.15 -0.01 0.04 0.17 0.14 -0.04 0.15 -0.08 1 W+

0.21 -0.09 -0.14 0.30 -0.02 0.25 0.19 -0.17 -0.04 0.30 -0.12 0.33 0.45 1 W−

4–4.5
-0.01 0.13 0.17 -0.08 0.14 -0.05 -0.01 0.15 0.11 -0.07 0.11 -0.12 0.09 0.02 1 W+

0.08 0.01 -0.01 0.09 0.03 0.08 0.07 -0.02 0.02 0.10 -0.02 0.09 0.03 0.10 0.11 1 W−

W+ W− W+ W− W+ W− W+ W− W+ W− W+ W− W+ W− W+ W−

Table E.9: Correlation coefficients between differential cross-section measurements as a function of W boson muon η in Sample-I. The beam
energy and luminosity uncertainties, which are fully correlated between cross-section measurements, are excluded.
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ηµ 2–2.25 2.25–2.5 2.5–2.75 2.75–3 3–3.25 3.25–3.5 3.5–4 4–4.5

2–2.25
1 W+

0.67 1 W−

2.25–2.5
0.20 0.10 1 W+

0.07 0.21 0.54 1 W−

2.5–2.75
0.13 0.24 0.12 0.23 1 W+

0.05 0.18 0.03 0.22 0.64 1 W−

2.75–3
0.06 0.22 0.03 0.28 0.26 0.27 1 W+

0.04 0.21 0.00 0.25 0.25 0.31 0.70 1 W−

3–3.25
0.07 0.22 0.03 0.28 0.25 0.26 0.33 0.30 1 W+

0.06 0.22 0.03 0.28 0.26 0.27 0.32 0.32 0.68 1 W−

3.25–3.5
0.03 0.23 -0.01 0.28 0.28 0.27 0.35 0.33 0.34 0.32 1 W+

0.07 0.23 0.04 0.23 0.30 0.29 0.28 0.32 0.27 0.28 0.63 1 W−

3.5–4
-0.00 0.26 -0.06 0.33 0.31 0.32 0.41 0.39 0.40 0.38 0.45 0.36 1 W+

0.14 -0.06 0.20 -0.04 -0.13 -0.04 -0.08 -0.11 -0.07 -0.07 -0.17 -0.19 -0.04 1 W−

4–4.5
-0.07 0.14 -0.14 0.24 0.14 0.23 0.32 0.29 0.32 0.26 0.35 0.22 0.45 -0.15 1 W+

0.12 -0.09 0.17 -0.11 -0.18 -0.14 -0.17 -0.19 -0.15 -0.18 -0.23 -0.24 -0.31 0.48 0.05 1 W−

W+ W− W+ W− W+ W− W+ W− W+ W− W+ W− W+ W− W+ W−

Table E.10: Correlation coefficients between differential cross-section measurements as a function of W boson muon η in Sample-II. The beam
energy and luminosity uncertainties, which are fully correlated between cross-section measurements, are excluded.
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yZ
2–2.125 2.125–2.25 2.25–2.375 2.375–2.5 2.5–2.625 2.625–2.75 2.75–2.875 2.875–3 3–3.125 3.125–3.25 3.25–3.375 3.375–3.5 3.5–3.625 3.625–3.75 3.75–3.875 3.875–4 4–4.25 4.25–4.5

ηµ

2–2.25
0.24 0.25 0.19 0.19 0.17 0.16 0.15 0.13 0.12 0.10 0.08 0.06 0.05 0.04 0.03 0.02 0.01 − W+

0.22 0.23 0.17 0.17 0.16 0.15 0.13 0.12 0.11 0.09 0.07 0.05 0.04 0.04 0.03 0.02 0.01 − W−

2.25–2.5
0.03 0.11 0.13 0.14 0.12 0.11 0.10 0.10 0.09 0.07 0.06 0.04 0.03 0.02 0.01 0.01 0.01 − W+

0.03 0.10 0.12 0.13 0.11 0.10 0.10 0.09 0.08 0.07 0.06 0.04 0.03 0.02 0.01 0.01 0.00 − W−

2.5–2.75
0.03 0.04 0.06 0.10 0.10 0.10 0.09 0.09 0.08 0.07 0.07 0.05 0.04 0.03 0.02 0.01 0.01 − W+

0.03 0.03 0.06 0.10 0.09 0.09 0.08 0.08 0.08 0.07 0.06 0.05 0.04 0.02 0.02 0.01 0.01 − W−

2.75–3
0.03 0.04 0.04 0.07 0.09 0.10 0.09 0.09 0.09 0.08 0.07 0.06 0.05 0.04 0.02 0.01 0.01 − W+

0.02 0.03 0.03 0.05 0.07 0.07 0.07 0.07 0.06 0.06 0.05 0.04 0.04 0.03 0.01 0.01 0.01 − W−

3–3.25
0.04 0.04 0.04 0.06 0.08 0.10 0.10 0.10 0.09 0.09 0.08 0.07 0.06 0.05 0.03 0.01 0.01 − W+

0.03 0.04 0.03 0.05 0.06 0.08 0.08 0.08 0.08 0.07 0.07 0.06 0.05 0.04 0.02 0.01 0.01 − W−

3.25–3.5
0.02 0.03 0.03 0.04 0.04 0.05 0.06 0.06 0.06 0.06 0.05 0.05 0.04 0.03 0.02 0.01 0.01 − W+

0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.05 0.05 0.04 0.04 0.03 0.03 0.02 0.02 0.01 0.00 − W−

3.5–4
0.03 0.03 0.03 0.04 0.04 0.05 0.06 0.08 0.09 0.08 0.08 0.07 0.07 0.05 0.04 0.03 0.02 − W+

0.03 0.03 0.03 0.04 0.04 0.05 0.06 0.08 0.09 0.09 0.08 0.07 0.07 0.05 0.04 0.03 0.02 − W−

4–4.5
0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.05 0.05 0.06 0.06 0.04 0.03 0.03 − W+

0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.04 0.05 0.07 0.07 0.07 0.07 0.05 0.04 0.03 − W−

Table E.11: Correlation coefficients between differential cross-section measurements as a function of yZ and W boson muon η in Sample-I. The
LHC beam energy and luminosity uncertainties, which are fully correlated between cross-section measurements, are excluded.
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yZ
2–2.125 2.125–2.25 2.25–2.375 2.375–2.5 2.5–2.625 2.625–2.75 2.75–2.875 2.875–3 3–3.125 3.125–3.25 3.25–3.375 3.375–3.5 3.5–3.625 3.625–3.75 3.75–3.875 3.875–4 4–4.25 4.25–4.5

ηµ

2–2.25
0.23 0.30 0.28 0.27 0.26 0.25 0.24 0.23 0.21 0.18 0.15 0.13 0.11 0.10 0.07 0.05 0.04 0.01 W+

0.21 0.28 0.26 0.25 0.24 0.24 0.22 0.21 0.20 0.17 0.14 0.12 0.11 0.09 0.07 0.05 0.04 0.01 W−

2.25–2.5
0.05 0.15 0.21 0.20 0.20 0.20 0.20 0.19 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.03 0.01 W+

0.04 0.14 0.19 0.18 0.18 0.18 0.18 0.17 0.16 0.15 0.12 0.11 0.09 0.07 0.05 0.04 0.03 0.00 W−

2.5–2.75
0.04 0.07 0.12 0.15 0.16 0.17 0.17 0.17 0.16 0.15 0.13 0.13 0.11 0.08 0.06 0.05 0.03 0.01 W+

0.04 0.07 0.11 0.14 0.15 0.15 0.15 0.15 0.15 0.14 0.12 0.12 0.10 0.08 0.06 0.04 0.03 0.01 W−

2.75–3
0.05 0.08 0.10 0.13 0.16 0.17 0.17 0.17 0.16 0.16 0.14 0.13 0.12 0.09 0.07 0.05 0.03 0.01 W+

0.05 0.07 0.09 0.12 0.14 0.15 0.15 0.16 0.15 0.14 0.12 0.12 0.11 0.08 0.06 0.04 0.03 0.01 W−

3–3.25
0.06 0.08 0.10 0.11 0.14 0.16 0.17 0.17 0.16 0.16 0.14 0.14 0.12 0.10 0.07 0.05 0.03 0.01 W+

0.05 0.08 0.09 0.10 0.13 0.15 0.15 0.16 0.15 0.15 0.13 0.13 0.11 0.09 0.07 0.05 0.03 0.01 W−

3.25–3.5
0.04 0.06 0.07 0.09 0.10 0.11 0.12 0.13 0.13 0.12 0.11 0.11 0.09 0.08 0.06 0.04 0.03 0.00 W+

0.04 0.06 0.08 0.09 0.10 0.12 0.13 0.13 0.13 0.13 0.11 0.11 0.10 0.08 0.06 0.04 0.03 0.00 W−

3.5–4
0.04 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.12 0.12 0.11 0.11 0.10 0.09 0.07 0.05 0.04 0.00 W+

0.04 0.06 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.14 0.12 0.12 0.11 0.10 0.08 0.06 0.04 0.01 W−

4–4.5
0.02 0.03 0.04 0.04 0.04 0.04 0.05 0.05 0.06 0.06 0.06 0.07 0.06 0.06 0.05 0.04 0.04 0.01 W+

0.03 0.04 0.04 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.08 0.08 0.07 0.06 0.05 0.04 0.01 W−

Table E.12: Correlation coefficients between differential cross-section measurements as a function of yZ and W boson muon η in Sample-II. The
LHC beam energy and luminosity uncertainties, which are fully correlated between cross-section measurements, are excluded.
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Z

ηµ
+

2.00–2.25 2.25–2.50 2.50–2.75 2.75–3.00 3.00–3.25 3.25–3.50 3.50–4.00 4.00–4.50

Z

2.00–2.25 1
2.25–2.50 0.20 1
2.50–2.75 0.20 0.17 1
2.75–3.00 0.19 0.16 0.15 1
3.00–3.25 0.20 0.16 0.15 0.15 1
3.25–3.50 0.17 0.14 0.13 0.12 0.13 1
3.50–4.00 0.21 0.17 0.16 0.15 0.15 0.13 1
4.00–4.50 0.17 0.14 0.13 0.12 0.12 0.10 0.11 1

Z

ηµ
−

2.00–2.25 2.25–2.50 2.50–2.75 2.75–3.00 3.00–3.25 3.25–3.50 3.50–4.00 4.00–4.50

Z

2.00–2.25 1
2.25–2.50 0.20 1
2.50–2.75 0.19 0.17 1
2.75–3.00 0.19 0.17 0.15 1
3.00–3.25 0.19 0.16 0.15 0.15 1
3.25–3.50 0.18 0.15 0.13 0.13 0.13 1
3.50–4.00 0.20 0.18 0.16 0.15 0.14 0.13 1
4.00–4.50 0.17 0.15 0.13 0.13 0.12 0.10 0.11 1

Table E.13: Correlation coefficients between the differential Z cross-sections in bins
of (top) ηµ

+
and (bottom) ηµ

−
in Sample-I. The LHC beam energy and luminos-

ity uncertainties, which are fully correlated between cross-section measurements, are
excluded.
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Z

ηµ
+

2.00–2.25 2.25–2.50 2.50–2.75 2.75–3.00 3.00–3.25 3.25–3.50 3.50–4.00 4.00–4.50

W

2.00–2.25 0.39 0.11 0.12 0.12 0.12 0.11 0.13 0.10
2.25–2.50 0.08 0.28 0.07 0.07 0.07 0.07 0.08 0.06
2.50–2.75 0.07 0.07 0.20 0.07 0.07 0.06 0.07 0.05
2.75–3.00 0.08 0.07 0.07 0.19 0.07 0.06 0.07 0.05
3.00–3.25 0.09 0.07 0.07 0.07 0.20 0.06 0.07 0.06
3.25–3.50 0.05 0.05 0.05 0.05 0.05 0.12 0.05 0.03
3.50–4.00 0.07 0.06 0.06 0.06 0.06 0.05 0.16 0.04
4.00–4.50 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.11

Z

ηµ
−

2.00–2.25 2.25–2.50 2.50–2.75 2.75–3.00 3.00–3.25 3.25–3.50 3.50–4.00 4.00–4.50

W

2.00–2.25 0.35 0.10 0.11 0.11 0.11 0.10 0.12 0.10
2.25–2.50 0.08 0.27 0.07 0.07 0.07 0.06 0.08 0.06
2.50–2.75 0.07 0.06 0.19 0.07 0.06 0.06 0.07 0.05
2.75–3.00 0.06 0.05 0.05 0.15 0.05 0.05 0.05 0.04
3.00–3.25 0.07 0.06 0.06 0.06 0.16 0.05 0.06 0.05
3.25–3.50 0.04 0.04 0.04 0.04 0.03 0.09 0.07 0.03
3.50–4.00 0.07 0.06 0.06 0.06 0.06 0.05 0.16 0.04
4.00–4.50 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.13

Table E.14: Correlation coefficients between the differential W and Z cross-sections in
bins of (top) ηµ

+
and (bottom) ηµ

−
in Sample-I. The LHC beam energy and luminos-

ity uncertainties, which are fully correlated between cross-section measurements, are
excluded.



Appendix E. Correlation coefficients 192

Z

ηµ
+

2.00–2.25 2.25–2.50 2.50–2.75 2.75–3.00 3.00–3.25 3.25–3.50 3.50–4.00 4.00–4.50

Z

2.00–2.25 1
2.25–2.50 0.31 1
2.50–2.75 0.30 0.27 1
2.75–3.00 0.31 0.28 0.26 1
3.00–3.25 0.32 0.28 0.26 0.27 1
3.25–3.50 0.27 0.25 0.23 0.23 0.23 1
3.50–4.00 0.33 0.30 0.28 0.28 0.28 0.25 1
4.00–4.50 0.28 0.25 0.23 0.24 0.23 0.20 0.23 1

Z

ηµ
−

2.00–2.25 2.25–2.50 2.50–2.75 2.75–3.00 3.00–3.25 3.25–3.50 3.50–4.00 4.00–4.50

Z

2.00–2.25 1
2.25–2.50 0.29 1
2.50–2.75 0.30 0.29 1
2.75–3.00 0.30 0.28 0.28 1
3.00–3.25 0.30 0.27 0.27 0.27 1
3.25–3.50 0.27 0.25 0.25 0.24 0.24 1
3.50–4.00 0.31 0.29 0.29 0.28 0.28 0.25 1
4.00–4.50 0.28 0.25 0.25 0.24 0.24 0.21 0.24 1

Table E.15: Correlation coefficients between the differential Z cross-sections in bins
of (top) ηµ

+
and (bottom) ηµ

−
in Sample-II. The LHC beam energy and luminos-

ity uncertainties, which are fully correlated between cross-section measurements, are
excluded.
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Z

ηµ
+

2.00–2.25 2.25–2.50 2.50–2.75 2.75–3.00 3.00–3.25 3.25–3.50 3.50–4.00 4.00–4.50

W

2.00–2.25 0.48 0.19 0.19 0.20 0.20 0.18 0.22 0.18
2.25–2.50 0.15 0.38 0.16 0.16 0.16 0.14 0.17 0.14
2.50–2.75 0.14 0.14 0.26 0.14 0.14 0.13 0.16 0.12
2.75–3.00 0.14 0.14 0.14 0.26 0.15 0.13 0.16 0.12
3.00–3.25 0.15 0.14 0.14 0.15 0.25 0.13 0.15 0.12
3.25–3.50 0.11 0.11 0.11 0.11 0.11 0.17 0.12 0.09
3.50–4.00 0.10 0.10 0.11 0.11 0.11 0.10 0.18 0.08
4.00–4.50 0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.11

Z

ηµ
−

2.00–2.25 2.25–2.50 2.50–2.75 2.75–3.00 3.00–3.25 3.25–3.50 3.50–4.00 4.00–4.50

W

2.00–2.25 0.43 0.18 0.19 0.19 0.19 0.18 0.21 0.18
2.25–2.50 0.13 0.35 0.15 0.15 0.14 0.14 0.16 0.13
2.50–2.75 0.12 0.13 0.25 0.13 0.13 0.12 0.14 0.12
2.75–3.00 0.12 0.13 0.14 0.24 0.13 0.12 0.14 0.12
3.00–3.25 0.13 0.13 0.14 0.14 0.23 0.13 0.15 0.12
3.25–3.50 0.11 0.11 0.12 0.12 0.12 0.18 0.12 0.10
3.50–4.00 0.11 0.12 0.12 0.12 0.12 0.11 0.20 0.10
4.00–4.50 0.07 0.06 0.07 0.07 0.07 0.06 0.07 0.13

Table E.16: Correlation coefficients between the differential W and Z cross-sections
in bins of (top) ηµ

+
and (bottom) ηµ

−
in Sample-II. The LHC beam energy and lu-

minosity uncertainties, which are fully correlated between cross-section measurements,
are excluded.
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BSM through
√

s evolution

The measurement of electroweak boson cross-sections and cross-section ratios at different

centre-of-mass energies presents an opportunity to search for Beyond Standard Model

(BSM) physics. An explanation is given in this appendix. The discussion closely follows

Ref. [112].

Consider a cross-section for electroweak boson production, σX , where X = W+,W−, Z.1

Suppose that σX obtains contributions from Standard Model (SM) and BSM processes,

as represented by Equation F.1.

σX = σSMX + σBSMX (F.1)

Suppose also that this cross-section is evaluated at two centre-of-mass energies E1 and

E2. The ratio of cross-sections at different centre-of-mass energies can be written as

RXE1/E2
=
σX(E1)
σX(E2)

=
σSMX (E1) + σBSMX (E1)
σSMX (E2) + σBSMX (E2)

=
σSMX (E1)
σSMX (E2)

[
σSMX (E2) + σBSMX (E1)σSMX (E2)

σSMX (E1)

σSMX (E2) + σBSMX (E2)

]

=
σSMX (E1)
σSMX (E2)

[(
1 + σBSMX (E1)

σSMX (E1)

)
σSMX (E2)

σSMX (E2) + σBSMX (E2)

]

=
σSMX (E1)
σSMX (E2)

[
1 + σBSMX (E1)

σSMX (E1)

1 + σBSMX (E2)

σSMX (E2)

]
(F.2)

1The argument applies to any cross-section or ratio of cross-sections.
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where the steps amount to the rearrangement of the SM and BSM contributions. If the

BSM contribution to the cross-section is small, then one can perform a Taylor expansion

on the denominator inside the square brackets of Equation F.2 to obtain(
1 +

σBSMX (E2)
σSMX (E2)

)−1

∼ 1−
σBSMX (E2)
σSMX (E2)

. (F.3)

Neglecting terms that are second order in BSM cross-sections gives

RXE1/E2
≈
σSMX (E1)
σSMX (E2)

[
1 +

σBSMX (E1)
σSMX (E1)

−
σBSMX (E2)
σSMX (E2)

]
. (F.4)

The value of the square bracket in Equation F.4 is unity in the SM. The measured

value of the square bracket is not necessarily unity and this is how the presence of BSM

physics may be detected. For BSM physics to be detected in this way, it must scale with

centre-of-mass energy at a different rate to the SM prediction, otherwise the bracket in

Equation F.4 would still be unity. The condition can be expressed as

σBSMX (E2)
σBSMX (E1)

6=
σSMX (E2)
σSMX (E1)

. (F.5)



Appendix G

Uncertainty propagation

In this appendix, formulae for the propagation of uncertainties onto the ratios RWZ ,

RW+Z and RW−Z are given. Each ratio is expressed in terms of the differential cross-

sections measured as functions of Z boson y and W boson muon η. Formulae for the

partial derivatives that enter the standard error propagation formula are also provided.

At the end of each section, the uncertainty (represented by δ) on the cross-section

ratios due to a particular source is expressed in terms of the partial derivatives, the

uncertainties on differential measurements, and the correlation between measurements

ρ.

G.1 RWZ

RWZ =

8∑
i=1

W+
i +

8∑
j=1

W−j

18∑
k=1

Zk

(G.1)

∂RWZ

∂W+
i

=
1

18∑
k=1

Zk

(G.2)

∂RWZ

∂W−j
=

1
18∑
k=1

Zk

(G.3)
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∂RWZ

∂Zk
= −

8∑
i=1

W+
i +

8∑
j=1

W−j(
18∑
k=1

Zk

)2 (G.4)

δ2
RWZ

=
8∑
i=1

8∑
j=1

(
∂RWZ

∂W+
i

)(
∂RWZ

∂W+
j

)
δW+

i
δW+

j
ρW+

i W
+
j

+
8∑
i=1

8∑
j=1

(
∂RWZ

∂W−i

)(
∂RWZ

∂W−j

)
δW−i

δW−j
ρW−i W

−
j

+ 2
8∑
i=1

8∑
j=1

(
∂RWZ

∂W+
i

)(
∂RWZ

∂W−j

)
δW+

i
δW−j

ρW+
i W

−
j

+ 2
8∑
i=1

18∑
k=1

(
∂RWZ

∂W+
i

)(
∂RWZ

∂Zk

)
δW+

i
δZkρW+

i Zk

+ 2
8∑
j=1

18∑
k=1

(
∂RWZ

∂W−j

)(
∂RWZ

∂Zk

)
δW−j

δZkρW−j Zk

+
18∑
k=1

18∑
l=1

(
∂RWZ

∂Zk

)(
∂RWZ

∂Zl

)
δZkδZlρZkZl (G.5)

G.2 RW+Z

RW+Z =

8∑
i=1

W+
i

18∑
k=1

Zk

(G.6)

∂RW+Z

∂Zk
= −

8∑
i=1

W+
i(

18∑
k=1

Zk

)2 (G.7)

∂RW+Z

∂W+
i

=
∂RWZ

∂W+
i

(G.8)
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δ2
RW+Z

=
8∑
i=1

8∑
j=1

(
∂RW+Z

∂W+
i

)(
∂RW+Z

∂W+
j

)
δW+

i
δW+

j
ρW+

i W
+
j

+ 2
8∑
i=1

18∑
k=1

(
∂RW+Z

∂W+
i

)(
∂RW+Z

∂Zk

)
δW+

i
δZkρW+

i Zk

+
18∑
k=1

18∑
l=1

(
∂RW+Z

∂Zk

)(
∂RW+Z

∂Zl

)
δZkδZlρZkZl (G.9)

G.3 RW−Z

RW−Z =

8∑
j=1

W−j

18∑
k=1

Zk

(G.10)

∂RW−Z
∂Zk

= −

8∑
j=1

W−j(
18∑
k=1

Zk

)2 (G.11)

∂RW−Z
∂W−j

=
∂RWZ

∂W−j
(G.12)

δ2
RW−Z

=
8∑
i=1

8∑
j=1

(
∂RW−Z
∂W−i

)(
∂RW−Z
∂W−j

)
δW−i

δW−j
ρW−i W

−
j

+ 2
8∑
j=1

18∑
k=1

(
∂RW−Z
∂W−j

)(
∂RW−Z
∂Zk

)
δW−j

δZkρW−j Zk

+
18∑
k=1

18∑
l=1

(
∂RW−Z
∂Zk

)(
∂RW−Z
∂Zl

)
δZkδZlρZkZl (G.13)
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