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Abstract
Betatron radiation is a form of synchrotron radiation emit-

ted by relativistic electron or positron-like charged particles,
due to their transverse oscillation in a nonlinear plasma ion
column. As a valuable tool it can provide useful informa-
tion about their trajectories, momentum and acceleration.
Information about the properties of the beam is encoded in
the betatron radiation, measurements of which can provide a
non-invasive means to reconstruct beam parameters (energy,
emittance, and divergence), offering insights into the dynam-
ics of the plasma wakefield and facilitating advancements in
particle accelerator technology.
One method of extracting this rich information about beam
parameters from measurements of BR is- maximum Likeli-
hood Estimation (MLE) technique, while machine learning
(ML) approaches can then be applied to improve the accuracy
of these measurements. Furthermore, a hybrid ML-MLE
simulation approach was attempted in this work to obtain
a finer insight, where ML and MLE individually have their
limitations.

INTRODUCTION
Particle accelerators play a vital role in various scientific

fields, from high-energy physics to medical applications.
However, conventional accelerators suffer from limitations in
size and achievable energies due to technological constraints.
In recent time, Plasma Wakefield Acceleration (PWFA) has
emerged as a promising alternative, offering the potential
for compact and high-gradient accelerators [1, 2].

In plasma wakefield acceleration (PWFA), a dense drive
beam is used to repel the plasma electrons, thus creating a
linear focusing field, which is exactly what’s needed to ac-
celerate charged particles. Hence, a precisely timed injected
secondary beam (e.g. of electrons), known as the witness
beam, is accelerated to a very high energies over a very short
distance, while also preserving the quality of the acceler-
ated bunch [2]. As a consequence, electrons within the
witness beam, experience transverse betatron oscillations at
the plasma frequency. These oscillations, akin to a harmonic
motion induced by the focusing force, result in the emission
of betatron radiation. Intriguingly, betatron radiation (BR)
encapsulates valuable information about the properties of the
witness beam, effectively encoding details such as its energy,
emittance, and divergence [3]. Hence, measurements of this
radiation can provide a non-invasive means to reconstruct
beam parameters, offering insights into the dynamics of the
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plasma wakefield and facilitating advancements in particle
accelerator technology.

The goal of this work is to assess the ability of a hybrid
ML-MLE simulation approach to test its superiority in ac-
curately extracting one of the beam parameters, where ML
and MLE individually might have their limitations [4].

ANALYTICAL APPROACH
In order to test the simulation models in beam spot size

measurement using the info out of the radiation spectra, first
we needed to have the BR profile. PyWarpx is a popular
Particle-in-Cell (PIC) code [5,6] used for simulating charged
particle behavior in plasmas.

With PyWarpx, the motion of the particle beam was sim-
ulated for a wakefield scenario (i.e. a case, where a pro-
ton beam drives the wakefield in a plasma, and an elec-
tron beam is injected into the wakefield to undergo betatron
oscillations). From the output (of the 3D PyWarpx simu-
lation) consisting of field and particle data of trajectories
and momentum, the corresponding BR for different chosen
beam spot sizes were calculated without the explicit need of
Liénard-Wiechert potential [6] method. The spectra from
the electron witness beam with a proton driver beam with
specific simulation parameters is shown in Fig. 1.

Figure 1: Betatron radiation spectra for the driver proton
beam and trailing electron beam, as a function of the energy.

A comparison of the nature of radiation was tested for
the case of the trailing electron beam while having a proton
driver beam and an electron driver beam. While electrons
are typically known for emitting more intense BR due to
their lighter mass and higher achievable velocities, specific
plasma conditions and interactions with proton driver beams
can lead to unique observations of BR spectra. The higher
observed radiation spectrum from an electron witness beam
with a proton driver beam (compared to the case of electron
driver beam) can be attributed to the complex dynamics
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of plasma wakefields under specific simulation parameters
(Table 1), where the interactions between the proton beam
and the plasma generate strong non-uniform/asymmetric
wakefields that accelerate the witness electrons to energies
resulting in significant radiation.

Statistically, beam distribution profiles are helpful in quan-
titative analysis by providing info on beam homogeneity, di-
vergence and stability. The beam profile of the driver proton
beam and of the trailing electron beam are shown in Fig. 2;
initial beam distribution refers the case before acceleration
and final is after the acceleration. While the driver produces
the wakefields, it doesn’t feel the linear focusing force, there-
fore the distribution remains less affected unlike the case of
the trailing beam.

MAXIMUM LIKELIHOOD ESTIMATION
TECHNIQUE AND ITS USE

Maximum likelihood estimation (MLE) is a statistical
method [7], to estimate the parameters of a probability
distribution based on observed data. It achieves this by find-
ing the values of the parameters that make the observed
data most likely to have occurred. The probability distri-
bution function (𝑓 (𝑥|𝜃), which specifies the probability of
observing a data point 𝑥 [where, 𝑥 = (𝑥1, ..., 𝑥𝑛)], given the
unknown parameter 𝜃) is related to a likelihood function
(𝐿(𝜃|𝑥)) as the core of MLE. A maximum likelihood esti-
mator is an extremum estimator obtained by maximizing, as
a function of 𝜃, the objective function 𝐿̂(𝜃 ; 𝑥). If the data
are independent and identically distributed, then we have-

𝐿̂(𝜃 ; 𝑥) = 1
𝑛

𝑛
∑
𝑖=1

ln 𝑓 (𝑥𝑖 ∣ 𝜃) (1)

this being the sample analogue of the expected log-
likelihood 𝐿(𝜃) = 𝔼[ ln 𝑓 (𝑥𝑖 ∣ 𝜃) ], where this expectation
is taken with respect to the true density.

Spot Size Identification using MLE
As mentioned before, primarily a beam’s spot size from

its radiation spectrum was correctly identified using MLE.
Intensity spectra are then converted into a probability dis-
tribution dividing by sum of the counts, together forming a
probability distribution function 𝑓 (𝑥|𝜃), where 𝑥 here is the
photon energy and 𝜃 represents beam spot-size.

Now, Eq. (1) helps us determining the likelihood of ef-
fective modelling of the test spectrum 𝑓𝑡𝑒𝑠𝑡(𝑥) for different
values of 𝜃 by the probability distribution.

MLE algorithm was tested with a total of 400 training
simulations and 100 test simulation runs, each with a spot
size chosen randomly from a uniform distribution again be-
tween the values 0.5 µm and 10 µm. The overall results are
displayed in the left most plot of Fig. 3, where “expected”
green line represents perfect predictions. At a mean-squared
error (MSE) of 0.232 µm2, the prediction results appear rea-
sonably fine, except in the regions around 4 µm and below
1.5 µm, where a few predictions are significantly off the ac-
tual spot sizes.

BEAM PARAMETER RECONSTRUCTION
USING ML

While MLE is a powerful and widely used method for
parameter estimation, its prediction ability can be limited
under certain conditions, especially when extrapolating be-
yond the observed data range or when model assumptions
are violated. Potentially using techniques like Bayesian in-
ference, machine learning approaches can help improve the
reliability of predictions made using MLE [8]. Here also
despite the fact that the MLE method of beam parameter
reconstruction was able to identify beam spot sizes at a basic
level, it cannot predict parameter values outside the training
data. Therefore, machine learning (ML) has also been ex-
plored as another alternative.
A Multilayer perception (MLP) method was attempted us-
ing the scikit-learn (sklearn) library with Tanh activation
function and the Adam solver accompanied by hidden layer
sizes: 500,100. Initially just like the MLE approach, 25 sim-
ulations were run for simplicity for limitation of computing
power, which further extended to generate 400 training data
sets and 100 test cases for different spot sizes ranging from
0.5 µm and 10 µm.

As can be seen in the middle plot of Fig. 3, the results for
ML predictions indicate a slightly better predicted agreement
than the MLE case, having a less prominent ”tail” around
∼ 1 µm; although, the overall predictions of the spot sizes for
both the MLE and ML methods suggest that the simulations
might not be highly sensitive for extremely small spot sizes.

BEAM PARAMETER RECONSTRUCTION
USING A HYBRID ML-MLE APPROACH
A hybrid model was thus finally opted to capture the un-

derlying statistical properties of the data for a better mod-
elling and prediction results. Hybrid MLE-ML methods
aim to combine the strengths of statistical estimation and
machine learning to develop more effective and versatile
models. Same method was used here as in the case for pure
ML case, this time an extra incorporation of MLE to find
maximum log likelihood estimation as true spot size value.
The simulation with hybrid approach took less time than the
pure ML case indicating that it is faster as the ML on the
reduced array (for involving the MLE) is quicker.

However, this might be true only for large data sets be-
cause of the slowed algorithm by the reduced arrays, as data
is harder to find patterns in; so there should be an optimal
amount of data for ML in this case.

Rightmost plot in Fig. 3 shows a further improved pre-
dictions than the last two ones, with a better MSE value of
0.156 µm2.

DIAGNOSTICS ASPECT: RADIATION
DETECTION

On the other hand regarding diagnostic side, investigation
is under way to incorporate BR aspect in case of the proton
driven PWFA experiments [9]. The primary radiation of the
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Figure 2: Beam distribution profile for proton driver beam and electron trailing beam.

Figure 3: Comparison of spot-size prediction results with different simulation approaches.

Table 1: Simulation Parameters

Parameter for driver beam for trailing beam

𝜎(𝑥, 𝑦) (µm) 2 0.5 to 10
𝜎(𝑧) (µm) 4 1
Q (C) 1 × 10−9 −5 × 10−10

Density (𝑚−3) 1 × 1023 1 × 1022

Energy (GeV) 1 0.01

witness beam has been identified to be in the X-ray region of
the electromagnetic spectrum [10]. Based on various factors
(listed in Table 2), a suitable X-ray detector needs to be
finalized for procurement in the future.

CONCLUSION
Betatron diagnostics has the potential to be applied for

the case of beam-driven PWFA experiments. Factors such
as spectral coverage, energy resolution, spatial resolution,
sensitivity will play a crucial role in selecting a suitable X-
ray detector for the BR detection.
This work attempts to demonstrate the effectiveness of an
hybrid model over the individual ML and MLE techniques
to use BR as a tool for beam diagnostics. Here although the
beam spot size was mainly tested, but the same technique
can be applied and will be tested further to check accuracy
in identifying other beam parameters.

Table 2: Specs. of the Chosen Detectors

Feature Scintillator Gas Solid-State
Detector Detector

Energy Moderate Moderate High
resolution to low

Efficiency High for varies Decently
a wide range with the High

of X-rays gas types

Cost Moderate Low High

Durability Moderate Can High
be fragile

Sensitivity High Moderate High

Time Moderate Fast Fast
resolution
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