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ABSTRACT

In this Dissertation, we consider three topics in the study of effective field theories derived
from orbifold compactifications of the heterotic string.

In Chapter 2 we provide a primer for those interested in building models based on
orbifold compactifications of the heterotic string.

In Chapter 3, we analyze gauge coupling unification in the context of heterotic strings
on anisotropic orbifolds. This construction is very much analogous to effective five dimen-
sional orbifold GUT field theories. Our analysis assumes three fundamental scales, the
string scale, MS, a compactification scale, MC, and a mass scale for some of the vector-like
exotics, MEX; the other exotics are assumed to get mass at MS. In the particular models an-
alyzed, we show that gauge coupling unification is not possible withMEX = MC and in fact
we require MEX �MC ∼ 3× 1016 GeV. We find that about 10% of the parameter space has
a proton lifetime (from dimension six gauge exchange) 1033 yr . τ(p → π0e+) . 1036 yr,
which is potentially observable by the next generation of proton decay experiments. 80%
of the parameter space gives proton lifetimes below Super-K bounds.

In Chapter 4, we examine the relationship between the string coupling constant, gSTRING,
and the grand unified gauge coupling constant, αGUT, in the models of Chapter 3. We find
that the requirement that the theory be perturbative provides a non-trivial constraint on
these models. Interestingly, there is a correlation between the proton decay rate (due to
dimension six operators) and the string coupling constant in this class of models. Finally,
we make some comments concerning the extension of these models to the six (and higher)
dimensional case.

In Chapter 5, we discuss the issues of supersymmetry breaking and moduli stabiliza-
tion within the context of E8⊗E8 heterotic orbifold constructions and, in particular, we fo-
cus on the class of “mini-landscape” models. These theories contain a non-Abelian hidden
gauge sector which generates a non-perturbative superpotential leading to supersymme-
try breaking and moduli stabilization. We demonstrate this effect in a simple model which
contains many of the features of the more general construction. In addition, we argue that
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once supersymmetry is broken in a restricted sector of the theory, then all moduli are sta-
bilized by supergravity effects. Finally, we obtain the low energy superparticle spectrum
resulting from this simple model.
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Let him who seeks not cease seeking until he finds; and when he finds he shall
be troubled; and having been troubled he shall marvel.

The Gospel of Thomas

I do not know what I may appear to the world; but to myself I seem to have
been only like a boy playing on the seashore, and diverting myself in now and
then finding a smoother pebble or a prettier shell than ordinary, whilst the great
ocean of truth lay all undiscovered before me.

Isaac Newton
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Chapter 1
INTRODUCTION

When you can measure what you are speaking about, and express it in num-
bers, you know something about it; but when you cannot measure it, when you
cannot express it in numbers, your knowledge is of a meagre and unsatisfac-
tory kind; it may be the beginning of knowledge, but you have scarcely in your
thoughts advanced to the state of Science, whatever the matter may be.

Lord William Thompson Kelvin

1.1 The Standard Model and the Effective Field Theory Paradigm

The twentieth century has played witness to the birth and maturation of particle phys-
ics as both a theoretical and experimental science—from Dirac’s early attempts to build a
covariant wave equation, resulting in the prediction of anti-particles [1, 2] to Anderson’s
remarkable experimental confirmation of the “positive electron” [3]; from Pauli’s “desper-
ate” invention of a new, massless fermion to reconcile beta decay with conservation of spin
[4], to the discovery of the neutrino by Reines and Cowan [5]; from the prediction of the
charm quark by Glashow, Iliopoulos and Maiani [6] to the near-simultaneous discovery of
the J/ψ by two groups [7, 8]; from Glashow [9], Weinberg [10] and Salam’s [11] description
of the electro-weak force to the experimental observation of the W and Z bosons at CERN
[12, 13], the last hundred years should be classed as nothing short of a Golden Age for high
energy physics. This theoretical and experimental triumph culminates in an elegant and
concise description of Nature called the Standard Model of particle physics.

The Standard Model consists of three forces and 58 particles, laid out in a repeating
“generation” structure: three families consisting of two quarks and two leptons, with each
quark coming in three colors. There are six anti-quarks (coming in three “anti-colors”)
and three anti-leptons. The strong nuclear (or “color”) force is mediated by 8 gluons,
and the electro-weak force is mediated by four vector bosons: three W ’s and a B. The
fundamental Higgs scalar breaks the electro-weak force to electromagnetism and the weak
nuclear force by giving mass to three of these four vector bosons—the W±(∼ W1 ± iW2)

1



Q Matter Forces

Fe
rm

io
ns Quarks

+2/3 u c t g(×8)

Bosons

−1/3 d s b EW WN + EM

Leptons
−1 e µ τ W1

W2

W3

B

W+

W−

Z0

γ

0 νe νµ ντ

Higgs 0 h

Table 1.1: The matter content and force carriers of the Standard Model. The six varieties of
quarks (called “flavors”) are the (u)p, (d)own, (c)harm, (s)trange, (t)op and (b)ottom, each
of which comes in three different “colors”. The “up-type” quarks all have electric charge
+2/3, while the “down-type” quarks all have electric charge −1/3. The six leptons are the
(e)lectron, the muon (µ), the tau (τ ), and their associated neutrinos—the electron, µ and τ
have charge −1, while all three neutrinos are neutral. The strong nuclear (or color) force is
mediated by the gluon (of which there are eight). The electro-weak force is mediated by the
W1,2,3 and B bosons, but is broken to the weak nuclear (WN) force and electromagnetism
(EM) by the Higgs. The WN force is mediated by W± and Z0, while EM is mediated by
the photon, γ. We have highlighted the Higgs boson, in the last row, as the only piece of
the Standard Model which has not been confirmed by experiment.

and Z0(∼ W3 − B) carry the (short range) weak nuclear force, and a massless, chargeless
photon (∼W3 +B) mediates electromagnetism. The matter content of the Standard Model
is listed in Table 1.1. Ignoring neutrino mixing, there are 18 parameters which are required
by the Standard Model. The phenomenology that can be derived from these five sentences
of text cannot be summarized in 1000 pages of tables [14].

For all of its utility, however, the Standard Model is not a fundamental theory—this is
evidenced by the fact that the Standard Model does not explain the origin of any of its 18
parameters, nor does it make any attempt to describe gravity. There are a host of other
aesthetic and experimental questions for which the Standard Model offers no rejoinder:
Why three families? Why three forces? Why is the Higgs boson the only fundamental
scalar? How can we reconcile questions of cosmology, notably dark matter, dark energy,
and inflation, with the Standard Model? Why is it that some particles (like neutrinos) are
very light, yet other particles (like the top quark) are very heavy? Why are the electric
charges of the quarks and leptons rational numbers? Why should the weak nuclear force
be the only short range force, and what sets the scale?
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Today, we understand the Standard Model as an effective description of Nature above
some characteristic length scale1 `NP: the theory is an approximate description of all phys-
ics at long distances relative to that scale, but has nothing to say about physics at shorter
length scales. The Standard Model emerges from some fundamental (but unknown) phys-
ics, and one can understand all of the aesthetic and experimental issues with the Standard
Model in terms of this more fundamental theory. The modern interpretation of quantum
field theory says that questions of the type listed above are misguided: they are the relics
of short distance physics, and are of limited importance when one only cares about mea-
suring something. The fact that we have never measured a significant deviation from the
predictions of the Standard Model affirms that short distance physics plays, at most, a
very limited role in the effective theory. Conversely, non-observation of violations of the
predictions of the Standard Model will allow one to set limits on the scale of new physics,
`NP.

1.1.1 Fermi Theory: An Example

As an example of the effective theory paradigm, we will consider Enrico Fermi’s theory
of weak interactions [16]. The weak nuclear force is mediated by exchange of W± and
Z0 bosons. The force is short range because the W and Z bosons can only travel a fi-
nite distance (∼ `EW) before decaying. At distances much larger than `EW, Fermi’s theory
describes an interaction between four fermions, approximating the physics of the W and
Z bosons with a point-like interaction, which we schematically depict in Figure 1.1. The
four fermions interact with a strength characterized by GF , the Fermi coupling constant,
which is the only parameter in the effective theory, and may be derived from the under-
lying weak nuclear physics. As we probe shorter and shorter distance scales, the physics
of the W and Z bosons becomes non-negligible—the “point-like” approximation fails, as
it should, when we begin to probe distance scales of the order `EW.

In the figure, we have shown the decay of a muon into an electron and two neutrinos
in both Fermi’s theory (top) and the weak theory (bottom). Using Fermi’s theory, we can
calculate the lifetime of a muon at rest and find τµ ≈ 2.188 × 10−6 s. The experimentally
measured (average) lifetime of the muon is τ EXP

µ ≈ 2.198 × 10−6 s [14], corresponding to a
difference of less than 1%.

For simple calculations Fermi’s theory gives very accurate results, providing an empir-
ical justification for neglecting corrections due to short distance physics; however, short
distance physics does play some role in the processes which we observe in experiments.
Occasionally, the muon will decay into two neutrinos, an electron, and a photon, as in Fig-
ure 1.2. This is a decay which is unaccounted for in Fermi theory. In the weak theory, the

1We use the symbol `NP as the defining scale of the Standard Model as we typically expect New Physics—
physics not described by the Standard Model—to appear at that length scale.
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Figure 1.1: Enrico Fermi’s theory of weak interactions can be understood as the effective
field theory that one obtains by decoupling the W± and Z bosons from the weak nuclear
theory. In this case, a muon decays into a muon neutrino, an electron and an electron anti-
neutrino—in the Fermi theory, this interaction occurs at a single point in space-time. We
can “zoom in” to see the fundamental (i.e., short distance) physics which is going on: a
W− boson is being exchanged. Deviations from the prediction of Fermi theory only occur
when one can accurately measure physics near the length scale associated with the W
boson, `EW. If we only ever measure processes occurring at large distances, we will never
notice the short distance physics. All figures involving Feynman diagrams were generated
with [15].

W bosons carry electric charge, thus they may emit and absorb photons. In Fermi theory
the interaction does not couple to the photon, and processes as in Figure 1.2 give us a hint
of the physics from which Fermi theory emerges2.

We can consider other processes using Fermi’s theory. For example, we may scatter
muon neutrinos off of electrons at high energies3, producing muons and electron neutri-
nos in a process called “inverse muon decay” [17], as in Figure 1.3. Using Fermi theory, we

2We note that a much more common process is for the muon or electron to emit an additional photon.
3Historically, measuring this interaction was crucial to establishing the V − A nature of charged weak

interactions in the Standard Model.
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Figure 1.2: Fermi’s theory fails to account for some processes, such as this one. About
1% of the time, the muon emits a neutrino and a W− boson, and the W boson emits a
photon (γ), before decaying into an electron and an electron neutrino. This process is
highly suppressed relative to the process in Figure 1.1—a much more common process is
for the incoming muon or the outgoing electron to emit a photon.

can estimate the cross section (σ, which has units of area) for this process on dimensional
grounds, and find σ ∼ sG2

F , where
√
s is the center of mass energy of the collision and GF

is the strength of the Fermi interaction. If we perform this experiment using incident neu-
trinos with arbitrarily large energies (that is, we consider taking s→∞), the cross section
clearly diverges (σ → ∞). Cross sections which diverge indicate an interaction which oc-
curs with probability greater than one—the prediction from Fermi’s theory breaks down,
as it should, when

√
s ∼ 1/`EW. Physically, the electro-weak theory becomes important,

and Fermi theory fails, when we probe the length scale associated with the W boson.
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Figure 1.3: The scattering of muon neutrinos off of electrons in Fermi theory and in the
electro-weak theory, a process called inverse muon decay.

Because we understand both the effective description and the physics from which it
emerges, Fermi theory provides a complete example of how an effective theory works. For
example, the coupling constant in the Fermi theory may be derived from the parameters of
the underlying weak nuclear physics—likewise, we might expect any theory which gives
rise to the Standard Model to explain why the coupling constants take the values that they
do. This theory could explain the scale of the weak force, and it might explain the differences
in particle masses. We might also hope that this fundamental theory would explain the
reason that we have the forces that we do, and it may explain why we have three families
of quarks and leptons.

Moreover, Fermi theory gives us some intuition about how we might observe the phys-
ics underlying the Standard Model: we may either increase the energy of our experiements
or we may increase the precision of our results. In the former case, the inverse muon decay
in Figure 1.3 has a cross section which grows as the center of mass energy of the collision,
which implies a breakdown of probabilities. Because this is a clearly unphysical situation,
it must be that the predictions of the Fermi theory are wrong in that regime, and indeed
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Figure 1.4: Of all the particles in the Standard Model, the Higgs couples most strongly
to the top quark (t and t̄), which are fermions. This is the dominant contribution to the
correction to the Higgs mass, and is proportional to MNP

2.

they are. Increasing the energy of the incident neutrino allows us to directly probe the
physics of the underlying weak theory. Conversely, we can work to increase the precision
of our experiments. Most of the allowed interactions in the Standard Model are known
very precisely, and there are many experiments performing precision measurements of
Standard Model processes. Deviations from the expected results, or the observation of for-
bidden processes (in analogy to Figure 1.2) gives us another window into the physics from
which the Standard Model emerges.

1.2 Supersymmetry: A First Step

Once we view the Standard Model as an effective field theory, we expect that many of
its apparent shortcomings may be understood as manifestations of short distance phys-
ics. The most dramatic of these problems is an issue with the stability of the Standard
Model, called the Hierarchy Problem. As we have already mentioned, the weak force
is a short range force whose range is set by the mass of the W boson, which in turn
is set by the mass parameter of the Higgs boson: roughly (up to a conversion factor),
mh ∼ 1/`EW ∼ 100 GeV . As with all parameters in the Standard Model, we define the
Higgs mass parameter at some scale `NP. If we are interested in physics at long distances
relative to that scale, we must compute corrections to our parameters which take into ac-
count this difference in scales. Typically, the corrections are small, but in the case of the
Higgs mass, these corrections are large and uncontrolled.

The dominant correction to the Higgs mass comes from its coupling to top quarks,
as illustrated in Figure 1.4. One can calculate this contribution, and find that it goes as
δm2

h ∼ MNP
2, where MNP ∼ 1/`NP up to some conversion factor. As the scale of new

physics becomes shorter, the correction to the Higgs mass becomes larger. Let us, for the
moment, make the naive assumption that the Standard Model emerges directly from some
quantum theory of gravity, whose characteristic length scale is the Planck length (`PL). In
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Figure 1.5: In the Minimal Supersymmetric Standard Model (MSSM), top quarks have
supersymmetric scalar partners, called top squarks (t̃ and ¯̃t). The top squarks couple in a
similar manner as the top quarks, but the top squark loop contributes to the Higgs mass
with a negative sign relative to the top quark loop. Thus, the one loop corrections to the
Higgs mass cancel in a supersymmetric gauge theory.

particular, this implies that the effective field theory will be valid at energies below the
Planck energy, which (in turn) implies the identification MNP = MPL ∼ 1019 GeV . Under
these assumptions, the corrections to the Higgs mass are 17 orders of magnitude larger
than the the initial value, and we see that the Higgs mass in the Standard Model is tuned
very precisely. Thus we arrive at the stability issue: what physics can tune the Higgs mass
so precisely?

Surely, we must ensure that MNP << MPL. In other words, we can control the correc-
tions to the Higgs mass by postulating some new physics at an energy scale smaller than
the Planck scale by requiring that the Standard Model emerge from some physics other
than quantum gravity. Of course, this new physics will come with some new effective in-
teractions, and we must ensure that those interactions do not disagree with what we have
already measured. Requiring consistency with experiments is a very tight constraint on
solutions to the stability problem.

An elegant way to assure thatMNP << MPL is to ensure that the large corrections due to
the top quark mostly vanish. Here we note a fundamental difference between bosons and
fermions: it is a curious property of quantum field theory that fermion loops (as in Figure
1.4) and boson loops (as in Figure 1.5) come with a relative minus sign. The top quarks in
Figure 1.4 are fermions (cf Table 1.1). Thus, if we suppose that a freely propagating Higgs
boson could emit and absorb a pair of bosonic particles with the same properties as the top
quark, the large corrections (∼ MNP

2) to the Higgs mass parameter would cancel against
each other.

The fact that the large corrections cancel provides motivation for supersymmetry [18–
21]. In short, all particles in the Standard Model get partners: fermions get bosonic part-
ners (called “sfermions”), gauge bosons get fermion partners (called “gauginos”), and the
Higgs gets a fermionic partner, called a “Higgsino”. Each Standard Model state gets one
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Q Matter Gaugino

Sc
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s Squarks

+2/3 ũ c̃ t̃
g̃

w̃1

w̃2

w̃3

b̃

Ferm
ions

−1/3 d̃ s̃ b̃

Sleptons
−1 ẽ µ̃ τ̃

0 ν̃e ν̃µ ν̃τ

Higgsino 0 h̃

Table 1.2: The new content of the Minimal Supersymmetric Standard Model. The
“squarks” are the supersymmetric partners of the quarks. The top quark’s partner is the
“stop” (t̃), the electron’s partner is the “selectron” (ẽ), etc. The electric charges of the new
particles are the same as their supersymmetric partners’, see Table 1.1. Note that there is
a degeneracy in the table: the partner of the B (the “bino”) has the same symbol (b̃) as the
partner for the bottom quark (the “sbottom”). In practice, context always distinguishes the
two.

superpartner and each super-particle has exactly one partner in the Standard Model—this
is called N = 1 supersymmetry. The particle content is listed in Table 1.2.

From experiments, however, we know that Nature is not supersymmetric—if super-
symmetry were a good symmetry, we would expect to see the supersymmetric partners
of the Standard Model particles. Indeed, if supersymmetry has anything to do with Na-
ture, then we should understand how the Standard Model emerges from some underly-
ing supersymmetric physics, which we call the Minimal Supersymmetric Standard Model
(MSSM). Aside from the new particles, the MSSM contains a myriad of new parameters
which tell us (indirectly) about how supersymmetry breaks down. As in the case of Fermi
Theory, we fully expect that all of these new parameters will be explained by any theory
from which the MSSM can be derived.

If the Standard Model does indeed emerge from the MSSM, then we expect to see some
traces of supersymmetry as we increase the energy of our experiments and probe shorter
length scales. Such experimental evidence might include the direct production of the su-
persymmetric partners at colliders. Conversely, we may increase the statistics of our exper-
iments: in Figure 1.6 we show a process which receives corrections from MSSM particles.
In the Standard Model, the W bosons change quark flavor and electric charge—thus, a bot-
tom quark (Q = −1/3) may turn into an up, charm, or top quark (Q = 2/3) by emitting
a W− boson, but cannot change (directly) into a strange quark. While direct transitions
between quark flavors of the same charge (called flavor changing neutral currents) are
forbidden, indirect transitions are possible. For example, the bottom quark may change
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Figure 1.6: Flavor changing neutral currents in the Standard Model (left) and the MSSM
(right). In the Standard Model, the W bosons change quark flavor and electric charge.
In this process, the bottom quark changes into an up, charm, or top quark by emitting a
W boson; the internal quark subsequently reabsorbs the W− boson and transitions into a
strange quark. In the MSSM, the bottom quark may emit a w̃ gaugino and an up, charm or
top squark. The gaugino and squark are reabsorbed by a strange quark.

into an up, charm, or top quark by emitting a W boson. If the up, charm or top quark
subsequently reabsorbs the W− boson, it may transition into a strange quark, as we have
demonstrated in Figure 1.6. We can measure the rate of transitions between bottom and
strange quarks in experiments (top), and compare this result to our expectations from the
Standard Model (bottom, left). If the Standard Model emerges from the MSSM, we expect
new contributions to the transition rate, such as those in the bottom right of Figure 1.6,
with the internal quarks replaced with their scalar partner.s Indeed, at the time of writing,
experiments [22] seem to measure a small excess in the b → sγ rate as predicted by the
Standard Model [23], in line with what is expected in the MSSM.

As we have already pointed out, the parameters in any quantum field theory receive
corrections which account for the difference between the scale at which the theory is de-
fined and the scale at which measurements are performed. This applies not only to the
Higgs mass, but also to the coupling constants which parametrize the relative strengths
of the strong and electro-weak forces [24, 25]. The coupling constants αi determine the
strength of interaction between fermions and bosons—the color force is mediated by glu-
ons, which couple to quarks with a strength set by α3. The W1,2,3 bosons couple to matter
with strength α2, and the B couples to matter with strength α1. Assuming that no new
physics occurs between the weak scale MEW and the Planck scale, we have shown how
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Figure 1.7: The strengths of the forces in the Standard Model depend on the energy at
which one measures them. Extrapolating these strengths across many decades in energy,
we see that they tend to roughly the same value. This gave an early indication that there
may be some more fundamental “grand unified theory” which gives rise the the Standard
Model.

these strengths depend on energy scale in the Standard Model in Figure 1.7. There is noth-
ing particularly noteworthy in Figure 1.7, however, if we perform the same calculation in
the MSSM, we find a very striking result. As Figure 1.8 shows, the three forces become
comparable in strength at an energy scale MGUT ≈ 3 × 1016 GeV. This is one of the most
inspiring qualitative features of the MSSM: it seems to predict that the three forces are
unified at some large energy scale.

1.3 Unification

The tendency of the gauge coupling constants in the MSSM towards a common value
motivates us to explore the possibility that the three forces are the descendants of a single
“grand” unified force [26, 27]. It is hard to imagine that this unification4 is an accident:
the couplings in the effective theory (the MSSM) have no relationship to each other. In
calculating the corrections to these values we have assumed only the matter content of the
MSSM, which mirrors the matter content in the Standard Model. We are left with three

4Unified descriptions of (seemingly) disparate phenomena are not new in physics: James Maxwell unified
electric and magnetic phenomena in 1861. In the twentieth century, Glashow, Weinberg and Salam showed
how the weak force and electromagnetism were unified in the electro-weak theory.
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Figure 1.8: In the Minimal Supersymmetric Standard Model, the unification of forces is no
longer approximate, contrary to the case in the Standard Model—in fact, we have to mag-
nify the intersection to see that the lines do not meet (inset). Note that we have assumed
that the supersymmetric particles all have the same mass in drawing this figure,MSUSY ≈ 1
TeV.
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Figure 1.9: The gauge bosons of the MSSM are unified into a representation of the grand
unified theory. There are new gauge bosons (which we call, collectively, X) in the grand
unified theory which are not present in the low energy effective field theory.

unrelated lines which (up to a small correction) meet at a single point—in the absence of a
grand unified theory, this would be a quite spectacular coincidence.

If the three forces are unified at some large scale as Figure 1.8 seems to indicate, the
force carriers in the MSSM (the eight gluons g, and the four electro-weak gauge bosons
W1,2,3 and B) must be related to the gauge bosons of the new force. Figure 1.9 shows how
this works schematically: the gauge bosons of the Standard Model can be represented
as sets of matrices. These matrices are components of the larger set of matrices which
represent the set of grand unified gauge bosons—all MSSM gauge bosons are also gauge
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Figure 1.10: One generation of 15 quarks and leptons unify completely in the SO(10) grand
unified theory. (There are two flavors of quarks (u and d) and their anti-partners (uc and
dc), each coming in three colors, an electron and its anti-partner (ec), and a neutrino.) The
one new lepton predicted by the SO(10) grand unified theory is the anti-neutrino (νc, or
“right-handed” neutrino), and may be responsible for giving the neutrinos in the Standard
Model small but non-zero masses.

bosons of the grand unified theory, however, there are some gauge bosons of the grand
unified theory which are not present in the MSSM, called collectively X .

While unification of the gauge bosons requires several extra degrees of freedom, the
MSSM quarks and leptons (and, equivalently, the squarks and sleptons) unify more eco-
nomically. In the SO(10) grand unified theory, in fact, only one extra particle (per gen-
eration) is predicted. Coincidentally, these three new particles (called “right-handed”
neutrinos—νce , ν

c
µ, ν

c
τ ) may be instrumental in explaining why we observe a small (but non-

zero) neutrino mass: the “right-handed” neutrinos are seen as more of an asset than a
liability.

We stress that Figures 1.9 and 1.10 do not represent a mathematical sleight of hand.
The statement that gauge bosons and leptons can be represented as matrices and vectors
can be made mathematically rigorous: historically, the idea that Nature can be described
by abstract algebraic structures is one of the cornerstones of modern physics [28], and
is surely one of the most beautiful results in theoretical science. The fact that a single
generation of Standard Model particles can be fully embedded into a single representation
of SO(10) (as in Figure 1.10) is nothing short of remarkable, and would represent another
astounding coincidence.

One of the generic predictions of grand unified theories is the decay of the proton:
there exist no decay channels for the proton in the Standard Model or the MSSM5, thus we
expect it to have an infinite lifetime. In a typical grand unified theory, however, quarks can
change into leptons by emitting an X boson, causing the proton to decay into a positron

5As a technical aside, we define the MSSM such that it preserves R parity.
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Figure 1.11: The proton becomes unstable in a typical grand unified theory, and can decay
when the quarks inside the proton exchange X bosons. In this process, an up quark emits
an X boson turning into an anti-up quark. The X boson is absorbed by a down quark,
turning it into a positron (anti-electron).

and a pion as in Figure 1.11. The experiments to detect proton decay rely on large statis-
tics: because it is not feasible to perform scattering experiments to directly probe GUT
scale physics, searches involve watching a lot of protons and waiting for one of them to
decay6. Observation of proton decay would be a clear signal of the physics underlying
the Standard Model, much like the process in Figure 1.2 is a clear indication of the weak
physics from which the Fermi theory emerges.

6A dedicated experiment in Japan (super-Kamiokande) has put a lower bound on the lifetime of the proton
of 8.2× 1033 years [29] using 50,000 tons of ultra-pure water.
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1.4 String Theory as a Playground

In the preceding discussion, any mention of gravity has been conspicuously absent—
gravity seems to be different from the other forces. In particular, treating gravity as “just
another gauge field” leads to terrible inconsistencies. Typically, we would assume that
gravity is mediated by a point particle (called a graviton). Quantizing a theory based on
a point-like graviton proves to be impossible: if we treat gravity in the same way that we
treat the other forces, we find that the description breaks down at energies comparable to
the Planck scale. Of course, if we view gravity as just another effective field theory, we
are not surprised at all by this result—Fermi theory gave very good results when we cal-
culated the lifetime of a muon at rest, just as Einstein’s gravity does an exceptional job in
describing the dynamics of galaxies and planets. But Fermi theory falls apart when we
probe the electro-weak scale, just as gravity falls apart when we probe the Planck scale.
If we are interested in learning about physics at very short length scales, it is abundantly
clear that the canonical approach is inadequate.

Loosely, string theory is the result of generalizing quantum theory such that the fun-
damental excitations are one dimensional, extended “string-like” objects rather than zero
dimensional “point-like” particles. In describing the quantum string, much of the intu-
ition gained from studying classical strings is retained: for example, a closed string may
have a center of mass momentum, but may also carry internal momentum in the form of
oscillations. As in the classical string, the right-moving and left-moving oscillation modes
of a closed string may be decoupled, and the wave equation can be applied to the two sets
of modes independently. Closed strings may wind around compact dimensions, and open
strings may have Dirichlet or Neumann boundary conditions.

Once the string is quantized, we can calculate all of the possible states and find one
with the exact properties of a graviton. That string theory contains a graviton candidate
is remarkable by itself: the quantum theory was derived without any reference to gravity,
thus there was no reason to expect the theory to contain a state with the same properties
as a graviton. Even more remarkable is the fact that we can calculate the amplitude for
two gravitons to scatter off of each other in string theory and recover exactly the answer
given by Einstein’s theory—this correspondence is shown schematically in Figure 1.12. We
stress that this is entirely unexpected—there is no reason that string theory should reduce
to General Relativity. Many find this result the most basic motivation for studying string
theory as a theory of quantum gravity.

One of the most beautiful implications of string theory is that it explains the dimen-
sionality of space-time. Einstein’s gravity works in an arbitrary number of space-time
dimensions, however, string theory is only consistent in one time-like and nine spatial di-
mensions. This is a unique feature of string theory: if we perform scattering experiments
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∼ ℓstring

Figure 1.12: In string theory, gravitons are closed strings: as we probe the string scale
(`STRING) in graviton-graviton scattering experiments (top), string theory postulates that
we should begin notice the extended character of the string (bottom).

to probe the string scale, it is an unambiguous prediction of the theory that we should
observe the effects of the extra dimensions.

Of course, low energy physics is not ten dimensional, so to make contact with reality
we must “compactify” six of the nine spatial dimensions. What we are left with is a four
(3+1) dimensional effective field theory, whose parameters and particle content are deter-
mined by the sizes and shapes of the six compact dimensions. The hope is that one can
choose the details of the six compact directions in such a way as to reproduce the 18 “free”
parameters in the Standard Model, or the myriad of parameters in the MSSM. In the fol-
lowing chapters, we will describe positive steps toward that end, however, at the time of
writing there exists no exact realization of the MSSM in string theory.

Obtaining a stringy completion of the MSSM seems to be the equivalent of looking for a
needle in a haystack. Even though the mathematical structures needed to describe Nature
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can be found in nearly all classes of string compactifications, there is simply no unique way
to determine the sizes or shapes of the compact dimensions. From the perspective of string
theory all solutions seem to be equally likely—there are an uncountable (and possibly
infinite) number of possible compactifications, informally called the “landscape”. We are
left to differentiate the vacua on their ability to give models consistent with observation,
with no guiding principle for our search.

In the absence of direction from string theory, we will follow the guidance that low
energy physics seems to provide us—the biggest issue with the Standard Model seems to
be the stability of the Higgs mass parameter, which is elegantly solved by supersymmetry.
Supersymmetry seems to suggest unification of forces into a grand unified theory. Thus,
our problem of finding the Standard Model in the unassailable “landscape” of vacua is
reduced to looking for some grand unified theory. In this vein, our chief interest in string
theory is as a tool for producing effective field theories which incorporate the paradigm of
supersymmetric grand unification, which also happen to be consistent theories of quantum
gravity. Addressing some issues in the effective field theory may necessitate knowledge of
the underlying “stringy” dynamics; however, if our experience with effective field theories
has taught us anything, it is that those details are largely irrelevant.

1.5 Outline with an Emphasis on Original Work

In this Dissertation, we are specifically interested in the low energy physics which emerges
from general heterotic string compactifications. Chapters 3, 4 and 5 all represent original
work to this end [30–33]. For concreteness, we will focus our attention on the so-called
“mini-landscape” models [34–38].

Chapter 2 serves as background for the mini-landscape models. We will discuss all of
the relevant details of the underlying string theory in this chapter, with an emphasis on
constructing the Z6-II orbifold models. While the prime-ordered orbifold models (T 6/Z3,
for example) have been studied extensively in the literature, there is relatively few ref-
erences available which describe the massless spectra of the non-prime ordered orbifolds,
likeZ6-II . After a breif discussion of the heterotic string, we describe the method by which
these models may be constructed.

In Chapter 3, we examine how the idea of gauge coupling unification in these models
may be addressed in a precise manner, using a “bottom-up” approach [30]. In particu-
lar, we will be interested in anisotropic compactifications, where one of the six compact
dimensions is larger than the other five [39–41], and has characteristic length 1/MC. The
gauge couplings get large corrections from the tower of Kaluza-Klein modes in the large
extra dimension [42, 43], a result which is derived in Appendix B. In addition to the cor-
rections to the gauge couplings coming from the Kaluza-Klein modes, we also introduce
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exotic matter at an intermediate scale, MEX. In the particular models analyzed, we show
that gauge coupling unification is not possible with MEX = MC and in fact we require
MEX � MC ∼ 3 × 1016 GeV. We find that about 10% of the parameter space has a proton
lifetime (from dimension 6 gauge exchange) 1033 yr . τ(p → π0e+) . 1036 yr, while 80%
of the parameter space gives proton lifetimes below Super-K bounds.

The corrections coming from the exotic matter and the “large” extra dimensions require
us to examine the consistency of our approach in Chapter 4. The idea in Chapter 3 was to
perform all of our calculations in the effective field theory, essentially ignoring the micro-
scopic details of the underlying string theory [32]. It is clear, however, that any calculation
done in the effective approach cannot be inconsistent with the requirements of the short
distance physics. One way to check this consistency is to ensure that the conclusions of
Chapter 4 are not at odds with the assumption that our string theory is weakly coupled.
We examine the relationship between the effective field theory parameters and the string
coupling gSTRING. More interestingly, perhaps, is a relationship we derive between the life-
time of the proton and the string coupling constant. This gives an experimental probe of
the parameter space of the underlying string theory.

In Chapter 5, we address the issue of moduli stabilization within the context of the
heterotic string in the effective field theory [33]. The issue of moduli stabilization has been
an open question within the context of the heterotic string models, stalling progress for
roughly 15 years. Using a simple one condensate model, we show how one may stabi-
lize the dilaton and all geometric moduli in a typical heterotic string compactification with
a near zero cosmological constant in a vacuum with spontaneously broken (local) super-
symmetry. We further show how one can stabilize the large number of non-Abelian singlet
fields (some of which correspond to blow-up modes of the orbifold) once supersymmetry
is broken. This work represents one of the last and most crucial steps towards a fully
stringy realization of the MSSM.

The moduli stabilization mechanism which we propose gives a low energy effective
field theory with broken supersymmetry. We make some general assumptions about the
details of the underlying string construction in order to get an idea about the weak scale
observables [33]. Mediation of supersymmetry breaking to the visible sector come primar-
ily form supergravity (SUGRA) effects, however, we allow for other sources of mediation
as well. The anomaly mediation effects are estimated, and (given the results of Chapter 3)
we allow for the possibility that some intermediate scale matter can play the role of mes-
senger, resulting in a hybrid gauge-gravity-anomaly mediation scheme. Assuming only
the MSSM matter content in the effective theory, we derive the spectrum of soft parame-
ters which one might measure at the Large Hadron Collider.

In Chapter 6, we offer some concluding remarks, and suggest some future directions
for investigation.
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We reserve some longer tables and calculations for the appendices. In Appendix A, we
derive (from first principles) the mode expansion of the heterotic string in the twisted sec-
tor. In particular, we show how twisted sector states may have fractional oscillator number.
In Appendix B we present some results for five dimensional field theories. We calculate
the Kaluza-Klein [44, 45] mode expansion for a gauge field in the S1/Z2×Z′2 orbifold, and
show how each mode in the tower is higgsed. Finally, we calculate the contribution of a
five dimensional fermion to the vacuum polarization, giving a power law correction to the
coupling constant renormalization. In Appendix C, we compare our SU(6) orbifold GUT
to an example appearing in the literature, noting some key differences. Specifically, we
prove that the threshold corrections coming from the Kaluza-Klein modes of the MSSM
matter do not allow for unification. Appendix D contains some constraints on the rela-
tionship between the string scale, the compactification scale and the proton lifetime for
the models described in Chapter 3. We have updated these results to reflect the current
experimental constraints [29]. Appendix E serves as an addendum to Chapter 3, in which
we demonstrate the role of holomorphic, gauge invariant monomials (HIMs) in proving
D = 0. We then use this result to show that the results of Chapter 3 are consistent with this
contraint, completing the proof that the mini-landscape models exhibit gauge coupling
unification in globally supersymmetric (F = D = 0) vacua. In Appendix G we outline
some of the tricks that we learned for dealing with the complicated potentials in Chapter
5. There is certainly nothing which could be published in this appendix, however, we hope
that it might provide some useful hints to anyone having trouble using Mathematica to
find SUGRA scalar potentials. In Appendix H contains longer tables with results from
Chapters 3, 4 and 5.
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Chapter 2
ORBIFOLD COMPACTIFICATIONS OF

THE HETEROTIC STRING: A HOW-TO
GUIDE

Aεί o Θεòς o Mέγας γεωµετρεί

Plato

In this chapter, we will demonstrate the general method for constructing the massless
spectrum of the heterotic string [46, 47], compactified on an orbifold. We will review the
details of the heterotic string mainly to set the notation—readers interested in a more rig-
orous development should consult the canonical references [48–52]. Our ultimate goal is
to describe how one may obtain the massless spectrum in both the untwisted and twisted
sectors of the Z6-II orbifold. As a final note, we have erred on the side of too many details,
which (we hope) newcomers to the field will find refreshing.

2.1 The Heterotic String

d’Alembert proved that the oscillations of a closed string may be separated into left mov-
ing modes and right moving modes. In other words, suppose Xµ(σ, τ) is a solution to the
closed string equations of motion:

�Xµ(σ, τ) = 0, (2.1)

where � ≡ ηαβ∂α∂β , and ησσ = −ηττ = −1 while ηστ = ητσ = 0. Note that µ is a label for
X , while σ, τ are world-sheet coordinates. We can define “left-moving” coordinates (σ+)
and “right-moving” coordinates (σ−) by

σ± = τ ± σ. (2.2)
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We now suppose that Xµ(σ, τ) ≡ Xµ
L(σ+) + Xµ

R(σ−), where Xµ
L,R are arbitrary functions

of their argument. If we define appropriate derivatives (∂± ≡ 1
2 (∂τ ± ∂σ)), it follows im-

mediately that
∂+∂−

(
Xµ
L(σ+) +Xµ

R(σ−)
)

= 0. (2.3)

Thus any solution to the closed string wave equation may be decomposed into left-moving
and right-moving pieces.

Equation (2.3) tells us that the left-moving modes and right-moving modes of the string
decouple, thus we are free to treat them independently. Quantum mechanically, this be-
comes a statement about the Hilbert space of physical closed string states. A physical state
(|φ〉) is composed of a state from the left-moving space of states (|p〉 ∈ HL) and a state from
the right-moving space of states (|q〉 ∈ HR):

|φ〉 = |p〉 ⊗ |q〉 . (2.4)

The important point is that HL and HR may be completely unrelated. For example, in
the heterotic string theory, the right-moving sector is composed of a superstring (in ten
dimensions), while the left-moving sector is composed of a bosonic string (in twenty-six
dimensions). We will see that the extra dimensions in the left-moving sector give rise to
internal gauge degrees of freedom, and the massless spectrum of the heterotic string is
exactly a Yang-Mills gauge theory coupled to N = 1 supergravity (SUGRA) in ten dimen-
sions.

In what follows, we will use the following notation: µ labels coordinates 0, ..., 9, and
I labels the (left-moving) coordinates 10, ..., 25. We will work in the “light-cone gauge”
where directions 0, 9 are taken along the world-sheet—in that case, we will use i which
labels coordinates 1, ..., 8. When we discuss compactification, we will always work in the
light-cone gauge, and use µ = 1, 2 for non-compact dimensions, and i = 3, ..., 8 for com-
pact dimensions.

2.1.1 The Right-moving Sector

The right-moving (superstring) sector of the heterotic string can be separated into bosonic
degrees of freedom and fermionic degrees of freedom. The right-moving bosons are de-
scribed by

Xµ
R(σ−) =

1
2
xµ +

√
α′

2
pµσ− + i

√
α′

2

∑
n6=0

αµn
n
e−inσ

−
. (2.5)

xµ and pµ are the center-of-mass coordinates of the string, and are shared between left-
movers and right-movers. α′ is a parameter with dimensions of mass squared, and serves
as the intrinsic scale in string theory. We will set α′ = 1

2 temporarily, and restore it below.
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αµn are operators which create and destroy oscillators on the string—note that (αµn)† = αµ−n
because Xµ

R must be hermitian.
The fermions in the right-moving sector are solutions to

∂+ψ
µ
R(σ−) = 0, (2.6)

and obey either periodic (Ramond) or anti-periodic (Neveu-Schwarz) boundary condi-
tions. The solutions to Equation (2.6) are given by

ψµR(σ−) =
∑
n∈Z

dµne
−inσ− (Ramond), (2.7)

ψµR(σ−) =
∑

r∈Z+ 1
2

bµr e
−irσ− (Neveu-Schwarz). (2.8)

The creation/annihilation operators obey anti-commutation relations:

{dµn, dνm} = ηµνδn,−m, (2.9)

{bµr , bνs} = ηµνδr,−s. (2.10)

Consider first the Neveu-Schwarz sector. The lowest lying state is given by

bµ−1/2 |0〉 . (2.11)

The index structure suggests that this state corresponds to a vector in 10 dimensions.
The lowest lying states in the Ramond sector are a bit more interesting. Upon proper

normalization, the lowest lying Fourier coefficients can be seen to obey the Dirac algebra:{
i
√

2dµ0 , i
√

2dν0
}

= −2ηµν . (2.12)

This implies that it is impossible to choose a unique, non-degenerate ground state in this
sector of the theory. Let us choose a basis of the Lorentz generators7 where

|s〉 =
∣∣∣∣±1

2
,±1

2
,±1

2
,±1

2
,±1

2

〉
. (2.13)

Note that this gives a 32 dimensional representation of the ten dimensional Lorentz group,
which decomposes as 32 = 16⊕ 16′. Because chirality can be defined in an even number
of dimensions, the 16,16′ may be labeled by their quantum numbers under γ11 ≡

∏
µ γ

µ.
Let us now count degrees of freedom of the lowest lying states. The NS sector furnishes

a massless ten dimensional vector, which has 10−2 = 8 degrees of freedom. Equation (2.12)

7See Appendix B of [52], for example.
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suggests that the lowest lying states in the Ramond sector are spinors. Spinors in ten di-
mensions have 210/2 = 32 complex components. In ten dimensions, one can impose simul-
taneously the Majorana and Weyl constraints—the former can be shown by constructing
a basis in which all ten of the Dirac matrices are imaginary, while the latter follows from
the fact that chirality can always be defined in an even number of dimensions, as we can
always define an analogue of γ5 which anti-commutes with all of the other γµ [48]. This
leaves us with 16 real degrees of freedom. We further note that the lowest lying state obeys
the (massless) Dirac equation: γµ∂µχ = 0, cutting the number of degrees of freedom in half
again. This gives us a total of 8 real degrees of freedom. Thus we see that the lowest ly-
ing states in the Ramond and Neveu-Schwarz sectors can be consistently paired to form a
D = 10, N = 1 vector multiplet if (and only if) we impose Majoranna and Weyl conditions
on the fermions. One can ensure that the entire spectrum, including the massive sectors,
obeys D = 10, N = 1 supersymmetry by defining the GSO projections. At the massless
level, the projections are tantamount to the Majorana-Weyl conditions.

In the light-cone gauge, the lowest lying states in the NS (R) sector correspond to the
8v (8s) representations of SO(8). We will denote the right-moving ground state by |q〉R,
and in the Cartan-Weyl basis we have

|q〉R =

{ ∣∣±1, 0, 0, 0
〉 ⇒ 8v NS∣∣±1

2 ,±1
2 ,±1

2 ,±1
2

〉 ⇒ 8s R
. (2.14)

The line beneath the Neveu-Schwarz states means that we should take all permutations,
and the GSO projection demands that we take only states in the Ramond sector with an
even number of + signs. Both NS and R states fulfill

α′M2
R = q2 − 1 = 0, (2.15)

where we have restored the units on the left hand side.

2.1.2 The Left-moving Sector

In the left-moving sector, we work with a bosonic string, living in 26 dimensions. We imag-
ine compactifying the left-moving string on a sixteen torus, T 16. This gives sixteen internal
degrees of freedom, denoted with the index I , and 10 space-time degrees of freedom, de-
noted with the index µ:

Xµ
L(σ+) =

1
2
xµ +

1
2
pµσ+ +

i

2

∑
n6=0

α̃µn
n
e−inσ

+
, (2.16)

XI
L(σ+) = xI + pIσ+ +

i

2

∑
n6=0

α̃In
n
e−inσ

+
. (2.17)
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The massless degrees of freedom satisfy

α′M2
L = p2 + 2Ñ − 2 = 0, (2.18)

where Ñ counts the number of left-moving oscillators. In the light-cone gauge, the lowest
lying states are:

α̃i−1 |0〉L i = 1, ..., 8 ; (2.19)

α̃I−1 |0〉L I = 1, ...16 ; (2.20)∣∣pI〉
L

such that p2 = 2. (2.21)

Equation (2.21), together with the one loop partition function, implies that the lattice
representing the internal sixteen torus must be even and self-dual [50]. Only two such
lattices are known: E8 ⊗ E8 and SO(32), both of which have rank 168. The weights of both
are given by

ΛE8⊗E8 ⇒ pI ∈


(±1,±1, 06

) (
08
)⊕ (08

) (±1,±1, 06
)⊕

1
2

(
[±1]8

) (
08
)⊕ (08

)
1
2

(
[±1]8

) , (2.22)

ΛSO(32) ⇒ pI ∈ (±1,±1, 014
)
. (2.23)

Again, an underline denotes permutation, and an exponent denotes a repeated entry9. The
E8 ⊗ E8 lattice vectors which are written in terms of ±1

2 conatain an even number of +1
2 .

2.1.3 The Massless Spectrum

Now that we have the lowest lying states in the left-moving and right-moving sectors,
we can construct the entire massless spectrum of the heterotic string in ten dimensions.
Physical states must obey the level matching condition:

M2
L = M2

R. (2.24)

We combine the massless right-movers in Equation (2.14) with the massless left-movers
in Equations (2.19)-(2.21) to find the following massless states (in the light-cone gauge):

• a D = 10, N = 1 supergravity (SUGRA) multiplet:

α̃j−1 |0〉L ⊗ |q〉R . (2.25)

8Note that there are 16 states in Equation (2.20), corresponding exactly to the roots (uncharged gauge
bosons) of E8 ⊗ E8 or SO(32).

9For example, the SO(32) weight lattice is sixteen dimensional. Each weight has two factors of ±1 and
fourteen zeroes.
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• the 16 roots (uncharged gauge bosons) of E8 ⊗ E8 or SO(32):

α̃I−1 |0〉L ⊗ |q〉R ; (2.26)

• and the 480 weights (charged gauge bosons) of E8 ⊗ E8 or SO(32):∣∣pI〉
L
⊗ |q〉R . (2.27)

It is worthwhile to examine this spectrum a bit more closely.

The D = 10, N = 1 SUGRA Multiplet

Let us restrict our attention to the NS right movers. In the light cone gauge, we have

|q〉R
∣∣∣
NS

= bi−1/2 |0〉R , (2.28)

where i is a space-time index. The SUGRA multiplet can then be formed by

bi−1/2 |0〉R ⊗ α̃j−1 |0〉L , (2.29)

where j is also a space-time index. Note that we can decompose any tensor into a sym-
metric piece, and anti-symmetric piece, and a trace: we symmetrize over i, j to obtain the
graviton, we anti-symmetrize over i, j to obtain Bij , and trace over the indices to see the
dilaton φ. By supersymmetry, the states in the Ramond sector should decompose in a
similar manner, furnishing the super-partners of each of these states.

The D = 10, N = 1 Vector Multiplet

As before, let us consider the NS right movers, which carry a space-time index. Clearly
the states in Equations (2.26) and (2.27) have the correct Lorentz structure to be considered
gauge bosons. Moreover, the internal degrees of freedom (

∣∣pI〉) also have the correct gauge
structure. The fact that there are 496 states, which is exactly the dimension of the adjoint
representation of both E8⊗E8 and SO(32), is suggestive of this fact. Note that the gauginos
come from the Ramond sector.

2.1.4 Toroidal Compactification

We have shown that the massless spectrum of the heterotic string furnishes D = 10, N =
1 SUGRA, coupled to either E8 ⊗ E8 or SO(32) gauge theory. In and of itself, this is a
rather remarkable feature. To this point, we have really only demanded consistency of the
underlying quantum theory: in essence, we get this D = 10, N = 1 SUGRA theory “for
free”. This can be seen as a prediction of string theory: namely, at the string scale, the
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massless spectrum is exactly that of D = 10, N = 1 SUGRA in the weakly coupled limit.
It is likely that string theory itself furnishes a consistent theory of quantum gravity, thus
we have (in some sense) a “theory of everything” in ten dimensions.

But we don’t live in ten dimensions, so we need to compactify six of the dimensions.
This amounts to manifestly breaking the ten dimensional Lorentz invariance, a process
for which very few mechanisms exist. We will ignore this technicality, and try to choose
the shapes of the internal dimensions in as simple a manner as possible. We take the
six internal degrees of freedom (along i = 3, ..., 6) to be periodic, and (recalling that two
dimensions are large by default) leave two dimensions (µ = 1, 2) large.

The problem with toroidal compactification can be seen by examining the SUGRA mul-
tiplet. Taking the right-movers from the Ramond sector, we have∣∣∣∣ ±1

2︸︷︷︸
spin

±1
2
± 1

2
± 1

2︸ ︷︷ ︸
internal

〉
⊗ α̃j−1 |0〉L (2.30)

The first entry of the |...〉 describes what is happening in the large dimensions, while the
next three entries are purely internal degrees of freedom. If we must have an even number
of plus signs, we have both polarizations of four gravitino. This corresponds to N = 4 su-
persymmetry in four dimensions, which is non-chiral, and thus has no chance of modeling
Nature.

We can see the same problem in the gauge sector. If we consider the E8 ⊗ E8 or SO(32)
roots, the dimensional reduction gives us

|±1, 0, 0, 0〉 ⊗ α̃I−1 |0〉L ⇒ 2 vector d.o.f., (2.31)∣∣0,±1, 0, 0
〉⊗ α̃I−1 |0〉L ⇒ 6 real scalar d.o.f., (2.32)∣∣∣∣ ±1

2︸︷︷︸
spin

±1
2
± 1

2
± 1

2︸ ︷︷ ︸
internal

〉
⊗ α̃I−1 |0〉L ⇒ 8 real fermion d.o.f. (2.33)

In Equation (2.31), we see the two helicities (±1) of a (massless) four dimensional gauge
boson, in Equation (2.32) there are six internal degrees of freedom of a state which is a
Lorentz singlet (as the first entry is 0), and in Equation (2.33) we have eight real fermion
degrees of freedom. These states complete the D = 4, N = 4 vector multiplet.

Why N = 4?

It is important to understand why we getN = 4 supersymmetry from the toroidal compact-
ification, if we are to understand how to get N = 1 supersymmetry from some other com-
pactification. As we have remarked, compactification means that we have broken the ten
dimensional Lorentz invariance down to a subgroup. The fact that the torus is flat means
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that the internal dimensions have a trivial holonomy10. Because the holonomy group is
trivial, all spinors are invariant under group rotations, thus all of the states in Equation
(2.33) survive the projection. It is clear, then, that we need to find some manifolds with
non-trivial holonomy on which to compactify our theory.

2.2 General Aspects of Orbifold Compactification

We have seen that the heterotic string gives D = 10, N = 1 SUGRA coupled to E8 ⊗ E8

or SO(32) Yang-Mills theory, and that toroidal compactification of this theory gives D =
4, N = 4 SUGRA coupled to E8 ⊗ E8 or SO(32). In order to model our universe, however,
we must find a way to break the supersymmetries as well as the gauge symmetries in the
low energy effective field theory.

What sorts of compactifications give N = 1 SUSY in the low energy limit? Let us
suppose that we compactify on some manifold with holonomy group SO(6) ∼= SU(4). Let
the generators of SU(4) be denoted by U . The requirement of N = 1 SUSY in D = 4 is
tantamount to the requirement that one find exactly one spinor ε which obeys Uε = ε—in
other words, we need to find some ε which is invariant upon parallel transport around a
closed path in the compact space11. Without loss of generality, we can assume that ε is in
the 4 (as opposed to the 4̄) of SU(4), and by an SU(4) transformation, we may always write

ε =


0
0
0
ε0

 . (2.34)

It is clear that an SU(3) subgroup of SU(4) always leaves exactly one ε invariant, which
motivates us to consider manifolds of SU(3) holonomy. The U(1) subgroup, which acts on
ε, corresponds to the U(1)R of N = 1 SUSY in D = 4.

2.2.1 The Orbifold Action

The simplest manifolds of SU(3) holonomy are torii moded out by a discrete symmetry,
P . P is called the point group of the torus, and to ensure that the low energy spectrum
respect N = 1 SUSY, we require that P ⊂ SU(3). This is actually a surprisingly strict
requirement, and there exist only a few consistent choices of P , which can be found in
the literature [53–55]. Of this subset, we will limit our discussion to those orbifolds which

10The holonomy group of a manifold tells one how tangent vectors behave under transportation around
closed loops on the manifold.

11This requirement can be seen from the supersymmetry transformations. In order that the supersymmetry
transformations leave the vacuum invariant, we need an unbroken SUSY generator ε. For each εwe find, there
is a conserved supercharge Q. N = 1 supersymmetry implies that we want exactly one ε.
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can be factorized into a product of three two-torii: T 6 ∼= T 2 ⊗ T 2 ⊗ T 2, though this is not a
necessary requirement. The resulting orbifold may be described by a lattice in the complex
plane, which we denote Γ. We consider two classes of point groups:

• ZN : Cyclic groups of order N describe rotations of the lattice by multiples of 2π/N .
More formally:

ZN ≡
{

Θ = θk
∣∣∣k = 0, .., N − 1

}
; (2.35)

• ZN × ZM : Each factor corresponds to an independent rotation of the lattice, θ1 and
θ2.

ZN ×ZM ≡
{

Θ = θk1θ
`
2

∣∣∣k = 0, ..., N − 1; ` = 0, ...,M − 1
}
. (2.36)

Note that the orbifold is also invariant under translations along the lattice (i.e., steps
around the torus along one of its cycles), thus we define the space group, S:

S ≡
{
g = (Θ, nαeα)

∣∣∣Θ ∈P, nα ∈ Z
}
. (2.37)

Modular invariance (see Section 2.2.3) requires that we embed the space S into the
gauge degrees of freedom12:

S ↪→ G, (2.38)

where G is the analogue of the point group in the E8 ⊗ E8 or SO(32) lattice. (Recall,
the gauge degrees of freedom come from compactifying sixteen (bosonic) directions on
a torus.) Under each of the two classes of point groups, we have

• ZN : (θk1 , nαeα) 7→ (kV, nαAα), and

• ZN ×ZM : (θk1θ
`
2, nαeα) 7→ (kV1 + `V2, nαeα),

for k, `, nα ∈ Z. The V(1,2) are shifts in the E8⊗E8 or SO(32) lattice, and the Aα are (sixteen
component) Wilson lines wrapping the eα, which also act as shifts in the gauge lattice.
Under the action of the gauge twist G,

XI → XI + kV I + nαAα for ZN , (2.39)

XI → XI + kV I
1 + `V I

2 + nαAα for ZN ×ZM . (2.40)

Let us close this subsection by formally defining an orbifold as

O = R6/S ⊗ T 16/G, (2.41)

12This is the well-known requirement (for vanishing H flux) that any string compactification obey: TR R ∧
R = TR F ∧ F, where R is the Riemann curvature tensor and F is the Yang-Mills field strength, see [49].
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and the orbifold group S ⊗G as(
θk, nαeα ; kV, nαAα

)
∈ S ⊗G. (2.42)

2.2.2 Fixed Points of the Orbifold

The development thus far has been completely general. Let us now specialize to the case
where the T 6 is factorizable. Under this assumption, it is sometimes more convenient to
represent the torus in terms of complex coordinates:

Za ≡ 1√
2

(
X2a+2 + iX2a+3

)
,

Z ā ≡ 1√
2

(
X2a+2 − iX2a+3

)
. (2.43)

We will also specialize to the case of P ∼ ZN , as our ultimate goal is to describe the
massless spectrum of the Z6-II models.

We define a fixed point as a point which is left invariant by the action of the orbifold
group. Each fixed point on the orbifold can be described by that element of the orbifold
group which leaves it invariant, called the constructing element g ≡ (kv, nαeα ; kV, nαAα) ∈
S ⊗G. A fixed point z on the orbifold obeys

z = gz = θkz + nαeα. (2.44)

A string which lives at the fixed point g need only be closed up to orbifold twists and
lattice steps:

Z(σ+ + 2π) = gZ(σ+) = θkZ(σ+) + nαeα. (2.45)

Physically, this describes a string which is stuck at a fixed point z of the orbifold, with
non-zero winding number (if nα 6= 0). This can be seen, for example, by considering the
mode expansion in the twisted sector as in Appendix A—one finds that the center of mass
coordinate of the twisted string is always localized at a fixed point. We will define the
untwisted sector by those points for which k = 0. Likewise, a point with a non-zero value
of k is said to lie in the kth twisted sector.

Equation (2.45) implies (
1− θk

)
z ∈ Γ. (2.46)

In other words, the space group element g takes the fixed point back to itself, up to shifts
of the lattice Γ. The number of fixed points is given by

# of fixed points = det (1−Θ) . (2.47)
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Given the constructing element g, we can define the notion of “equivalent” and “in-
equivalent” fixed points. Two fixed points z1 and z2, described by the constructing ele-
ments g1 and g2, will be considered equivalent if g1 and g2 are in the same conjugacy class:

g1 = hg2h
−1, h ∈ S ⊗G. (2.48)

One can show that equivalence of g1 and g2 in general implies13

z1 = hz2. (2.49)

Thus, under the action of the orbifold, the points z1 and hz2 are the same point.

2.2.3 Twists and Shifts

The action (Θ) of the point group in the complexified coordinates (2.43) is specified by a
four component vector, v, which acts on the three (complex) compact directions:

Za → e2πikvaZa, a = 1, 2, 3. (2.50)

As we have remarked previously, it is clear that Θ corresponds to a rotation in the complex
plain. Under the full space group we have

Za → ΘZa = e2πikvaZa + naêa, a = 1, 2, 3 (2.51)

where na ∈ Z and the êa are related to the eα as in Equations (2.43)14. The requirement of
SU(3) holonomy is ensured by

3∑
a=1

va = 0 mod 2. (2.52)

Below, we will show that this condition projects out exactly three of the gravitino states in
Equation (2.30), leading to a massless spectrum which respects N = 1 SUSY in D = 4.

The embedding of the spatial degrees of freedom into the gauge degrees of freedom
implies a set of constraints on v, V , and Aα. These constraints can be obtained from the
one loop partition function of the heterotic string, and we will state (without proof) the

13A simple case to prove is the case where h is a pure shift: h = (1, nαeα). Note that if h = (θ, nαeα),
h−1 =

`
θ−1,−θ−1nαeα

´
. See [56], for example.

14Note that we will switch between the êa and eα when it is convenient.
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result [53, 57]:

N
(
V 2 − v2

)
= 0 mod 2, (2.53)

NV ·Aα = 0 mod 1, (2.54)

NAα ·Aβ = 0 mod 1, (α 6= β), (2.55)

NA2
α = 0 mod 2, (2.56)

where N is the order of the orbifold. These conditions are called the weak modular invari-
ance constraints, and are sufficient when working with the generalized GSO projectors,
see Appendix A of [39]. The advantage of the generalized GSO projectors seems to be
that they are easier to automate, but are conceptually more difficult to understand. Below
we will describe the “centralizer” method of constructing orbifold states. The advantage
of this approach is that it is somewhat easier to understand, but more difficult to auto-
mate. In this case, one must require that v, V and A satisfy the strong modular invariance
constraints: (

V 2 − v2
)

= 0 mod 2, (2.57)

V ·Aα = 0 mod 1, (2.58)

Aα ·Aβ = 0 mod 1, (α 6= β), (2.59)

A2
α = 0 mod 2. (2.60)

Note that we can bring any v, V,A satisfying Equations (2.53)-(2.56) into strong modular
invariant form by simply adding SO(8), E8 ⊗ E8 or SO(32) lattice vectors, as appropriate.

2.3 Building Orbifold-Invariant States

In order to motivate the following, consider the Hilbert space of states of a free particle
living in R, HR. We mod R by the translation group Z, obtaining S1. Now consider trans-
lations v in Z, which are generated by eip·v. Clearly, all states in HR do not survive the
compactification—the geometry imposes the requirement that the wave-function of the
free particle be periodic. States which do survive the compactification obey Φ (x+ 2π) =
Φ (x). Thus, in order to construct the massless spectrum of this theory, we must project
onto states which are invariant under the action of the translation operator.

This example can be extended to a closed string living on the D torus, TD = RD/ZD

[57]. In that case we project onto those states for which the translation operator acts triv-
ially on the string’s wave-function. But the string can also wrap one of the cycles of the
torus, so we must also take into account those states which come back to themselves up
to a lattice shift, which define new sectors of the theory Hv. When we have an orbifold
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(or more generally, fixed points), we must further consider only those strings which come
back to themselves up to an element of the space group.

After constructing the spectrum of the heterotic string, we were left with some Hilbert
space of physical states |φ〉 = |p〉L⊗|q〉R ∈ H. As in the examples above, we want to know
how these states transform under the orbifold group S ⊗ G, and what subset of states in
H appear in the massless spectrum. As we discovered in the example above, we must be
careful to include all massless states—the presence of stringy degrees of freedom above led
to additional states in the physical spectrum. We will find that this is indeed the case in
the twisted sector of the theory.

2.3.1 Invariant States in the Untwisted Sector

In the untwisted sector, states must be invariant under the entire orbifold group S⊗G. We
first consider the generators of translation, and their action on the states in the untwisted
sector. Under some element h ∈ S ⊗G, we have

|p〉L h−→ e−2πip·X |p〉L , p ·X ≡ pIXI , (2.61)

where we explain the sign in the exponent below. Under the action of S ⊗G we have

XI h−→ XI + kV + nαAα, (2.62)

which implies that states in the left-moving sector transform as

|p〉L h−→ e−2πip·(kV+nαAα) |p〉L . (2.63)

Similarly, the right-movers transform as

|q〉R h−→ e2πiq·(kv) |q〉R . (2.64)

We note the minus sign difference between the transformation of the left movers and the
right movers. This minus sign comes from the fact that the momentum lattice is Lorentzian
[58, 59]15. The oscillators with indices (µ, i) transform as follows:

α̃I,µ−1
h−→ α̃I,µ−1 , µ = 1, 2 I = 1, ..., 16 (2.65)

α̃a−1
h−→ e2πikvaα̃a−1, a = 1, 2, 3, (2.66)

α̃ā−1
h−→ e−2πikvaα̃ā−1, ā = 1, 2, 3. (2.67)

15We have chosen to take the left movers to transform with a minus sign, but one could equally take the
right movers to transform with a minus sign. The effect of changing this convention in the massless spectrum
is superficial: the kth and (N − k)th twisted sectors will be exchanged.
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Equations (2.63), (2.64) and (2.65)-(2.67), a physical state transforms as

|φ〉 h−→ e2πi[R·kv−p·(kV+nαAα)] |φ〉 . (2.68)

We have defined the R charge to take into account both the right moving momentum and
the oscillator number:

Ra ≡ qa +Na − N̄ ā. (2.69)

Clearly, invariant states in the untwisted sector must obey

R · kv − p · (kV + nαAα) = 0 mod 1, (2.70)

for all k, nα.

2.3.2 Invariant States in the Twisted Sector

Constructing states invariant under S ⊗ G in the twisted sector is a bit more subtle than
in the untwisted case—this stems from the presence of additional states, localized at fixed
points, which appear in the massless spectrum. We would like to understand what condi-
tions these states must obey.

In general, there are N − 1 twisted sectors, labeled by k. In Appendix A, we derive
the mode expansion of the twisted sector states, and address some subtleties regarding the
(fractionally moded) oscillators. The mode expansions are qualitatively different, which
results in a deformation of both the SO(8) and E8 ⊗ E8 weight lattices. One can show that
the right-movers in the kth twisted sector come from a shifted SO(8) lattice:

q̂a ≡ qa + kva, (2.71)

where k is determined by the constructing element, g, of the fixed point. The mass equation
also changes:

α′M2
R = q̂2 − 1− 2δ, (2.72)

where δ is the new zero point energy, and is defined as

δ =
1
2

3∑
a=1

ηa (1− ηa) , (2.73)

where ηa = kva mod 1 such that 0 ≤ ηa < 1. Note that this contribution to the massless
condition is clearly different for each twisted sector k.

Likewise, in the left-moving sector, the E8 ⊗ E8 lattice is shifted at each fixed point:

p̂I = pI + kV I + nαA
I
α, (2.74)
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where k and nα are determined by the constructing element. The new mass equation for
the left-movers is given by

α′M2
L = p̂2 + 2Ñ − 2 + 2δ. (2.75)

Solving Equations (2.72) and (2.75) is a non-trivial problem, however, a clever algorithm to
do so is presented in [60].

At each fixed point g, Equations (2.72) and (2.75) define a Hilbert space of states Hg.
But we are not guaranteed that all of the states in Hg will be invariant under the orbifold
group S ⊗G. The states Hg are confined at g, and only “know about” the orbifold in their
neighborhood. But the orbifold itself is invariant under a larger set of orbifold operations.
To construct the subset ofHg which survives into the massless spectrum, we consider some
element of the orbifold group h ≡ (κv,mαeα ; κV,mαAα) ∈ S ⊗ G. We have one of two
possibilities: either [h, g] = 0 or [h, g] 6= 0.

If [h, g] = 0, then one may write

hZ(σ+ + 2π) = hgZ(σ+) = ghZ(σ+). (2.76)

Thus the state hZ is periodic up to the action of g, and must be a state in the Hilbert space
Hg. The crucial point is that the action of the orbifold identifies the points Z and hZ because
[g, h] = 0 ⇒ g = hgh−1. Equation (2.49) then implies that h acts trivially on the state Z,
and thus must act trivially on the entire Hilbert space Hg. Moreover, any element of Hg
which is not invariant under the action of any h which commutes with g must be projected
out from the space of physical states.

In principle, the number of possible hs is infinite, as we can always find another equiv-
alent h at another place on the lattice by taking a few steps16. In practice, we can simply
generate a large set of states h which commute with g (which is known). The set of hs
which satisfy [h, g] = 0 is known as the “centralizer”, and is denoted with Z(g).

Practically, this means that physical states in the twisted sector transform as

α̃ |p̂〉L ⊗ |q̂〉R h−→ e2πi[κR·v−p̂·(κV+mαAα)]α̃ |p̂〉L ⊗ |q̂〉R . (2.77)

Note that we have included the possibility of oscillator states, which transform as

α̃an−ηa → e2πiκvaα̃an−ηa ,

α̃ān+ηa → e−2πiκvaα̃ān+ηa . (2.78)

We define R in terms of the integer oscillator number and q̂:

Ra ≡ q̂q +Na − N̄ ā. (2.79)
16If [h, g] = 0, then

ˆ
h2, g

˜
= 0. It is clear, though, that any state invariant under h should also be invariant

under h2, thus h2 can imply no new projection conditions.
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The state is invariant under the action of h if and only if

R · κv − p̂ · (κV +mαAα) = 0 mod 1. (2.80)

Alternatively, it could be that [h, g] 6= 0. In this case

hZ(σ+ + 2π) = hgZ(σ+) = hgh−1hZ(σ+), (2.81)

where the action of hmaps a state inHg toHhgh−1 . Likewise, the action of hmaps a state in
Hhgh−1 toHh2gh−2 , etc. In order to construct a physical state, then, one must combine states
in each of the Hhngh−n . We emphasize that no states are projected out by this condition,
rather, this tells us how to build interaction eigenstates (in the sense of four dimensional
physics) from “orbifold eigenstates” [38].

This last case is important when counting the states on the orbifold. For example, if
three fixed points (g1, g2, and g3) are in the same conjugacy class, the massless spectrum
will not include all of the states which are invariant under Z(g1), Z(g2), and Z(g3) inde-
pendently. Rather, invariant states from Hg1 , Hg2 , and Hg3 must be combined (with the
appropriate phases) to form interaction eigenstates. The phases are determined by the
action of h on the states at the g1, g2, and g3. Each linear combination of states will be com-
prised of a state from each ofHg1 ,Hg2 , andHg3 , giving an overall reduction in the number
of states in the massless spectrum. We will encounter an explicit example of this point in
Chapter 2.6.3.

2.4 The Z6-II Orbifold Geometry

For the remainder of this Chapter, we will specialize our discussion to the case of the
Z6-II orbifold. The Z6-II orbifold is defined by the twist vector

v ≡ 1
6

(0, 1, 2,−3) , (2.82)

corresponding to a rotation by 2π × 1/6 in the first torus, a rotation by 2π × 1/3 in the
second torus, and a rotation by 2π × (−1/2) in the third torus. We choose the compact
dimensions (consistent with v) to be the root lattice (Γ) of

Γ ≡ G2 ⊗ SU(3)⊗ SO(4). (2.83)

We note that this choice is not unique, however, it is the only lattice which factorizes as
T 6 ∼= T 2 ⊗ T 2 ⊗ T 2.

We note a peculiar feature of this particular orbifold. If we consider k = 1, ..., 5, then

2 · v =
1
3

(0, 1, 2, 0) , 4 · v =
1
3

(0, 2, 1, 0) 3 · v =
1
2

(0, 1, 0,−1) . (2.84)
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e1 e2 e3 e4 e5 e6

θ1 −e1 + e2 −3e1 + 2e2 e4 −e3 − e4 −e5 −e6

θ2 −2e1 + e2 −3e1 + e2 −e3 − e4 e3 e5 e6

θ3 −e1 −e2 e3 e4 −e5 −e6

θ4 e1 − e2 3e1 − 2e2 e4 −e3 − e4 e5 e6

θ5 2e1 − e2 3e1 − e2 −e3 − e4 e3 −e5 −e6

Table 2.1: The action of the orbifold twists on Γ. Note that θ2 and θ4 leave the third torus
fixed, while θ3 leaves the second torus fixed. The first torus is rotated by θk for 1 ≤ k ≤ 5.

Notice that the third torus is left invariant by 2 · v and 4 · v, while the second torus is left
invariant by 3 · v. In the second/fourth twisted sector, the third torus is “fixed”, while the
second torus is fixed in the third twisted sector. The implication is that strings living in the
second/fourth or third twisted sectors are free to move in six dimensions, while strings
in the first and fifth twisted sector are confined to move only in the four large space-time
dimensions17.

In the case where no torii are left un-rotated by the action of some particular g, it is
straightforward to evaluate Equation (2.46) directly, however, when dealing with the non-
prime orbifolds, subtleties arise. To demonstrate these subtleties directly, we offer an ex-
ample. Without loss of generality, let us consider the second twisted sector. If we solve
Equation (2.47) directly, we find that there should be nine fixed points in the second twisted
sector: three in the first torus, three in the second torus, and none in the third torus. How-
ever, the three fixed points in the first twisted sector (g1, g2, and g3) are not independent.
They are given by

g1 =
(
θ2, 0

)
,

g2 =
(
θ2, e1

)
,

g3 =
(
θ2, 2e1

)
. (2.85)

If we define
h ≡ (θ, e1) , (2.86)

then using Table 2.1 one can check that g3 = hg2h
−1, and g2 and g3 are in the same conju-

gacy class, see Equation (2.81). One can check that the same behavior occurs in the fourth
twisted sector. The third twisted sector also exhibits similar behavior.

17If we imagine “blowing up” one of the fixed torii, we are left with a six dimensional model, with some
matter confined to four dimensional hypersurfaces in the six dimensional space, and some matter free to
propagate in all six dimensions. See Chapter 3.
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T1,T5

T2,T4

T3

Figure 2.1: The geometry of the compact dimensions. In the first (fifth) twisted sector, there
are 12 fixed points. The second (fourth) twisted sector has six fixed points, and in the third
twisted sector there are 8 fixed points. We denote this lattice by Γ.

The geometry of the Z6-II orbifold is pictured in Figure 2.1. The first twisted sector has
12 = 1× 3× 4 fixed points and no fixed torii, while the second (fourth) twisted sector has
6 = 2× 3 fixed points and the third twisted sector has 16 = 4× 4 fixed points.

2.5 Orbifold Compactification: The Untwisted Sector of Z6-II

We will choose the gauge lattice to be E8 ⊗ E8, and work with the so-called “standard
embedding”:

v ≡ 1
6

(0, 1, 2,−3) ,

V ≡ 1
6
(
1, 2,−3, 013

) (
016
)
, (2.87)

Aα ≡ 0.

This choice of V corresponds to a direct embedding of the space degrees of freedom v into
the gauge degrees of freedom V , and is a common starting point for string model builders
from every corner of the landscape.

The untwisted sector of any orbifold model is straightforward to compute. First, con-
sider the transformation of the SUGRA multiplet. For oscillators with indices labeled by µ
we have:

α̃µ−1 |0〉L ⊗ |q〉R → e2πik(R·v−0·V )α̃µ−1 |0〉L ⊗ |q〉R (2.88)
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The left mover transforms trivially, thus it must be that k(R · v) = 0 mod 1 for every value
of k. Note that this can be ensured only for

|q〉R =

{
|±1, 0, 0, 0〉 NS
± ∣∣12 1

2
1
2

1
2

〉
R

(2.89)

The two states in the NS sector correspond to the two polarizations of a (massless) gravi-
ton in four dimensions, while the two states in the R sector give the two chiralities of a
gravitino. Thus we conclude that the low energy spectrum should exhibit N = 1 super-
symmetry.

There are also states in the SUGRA multiplet which have indices in the internal direc-
tions:

α̃a−1 |0〉L ⊗ |q〉R → e2πik(R·v−0·V )+2πivaα̃a−1 |0〉L ⊗ |q〉R . (2.90)

These correspond to former gravitons, which (after compactification) live in chiral multi-
plets and are (of course) gauge singlets: these states are the chiral singlet moduli which
parametrize the sizes and shapes of the internal dimensions. In terms of the NS right
movers, we have: 

α̃1
−1 |0〉L ⊗ |0,−1, 0, 0〉 ,
α̃2
−1 |0〉L ⊗ |0, 0,−1, 0〉 ,
α̃3
−1 |0〉L ⊗ |0, 0, 0, 1〉 ,

(2.91)

with similar expressions for the α̃ā−1. Their fermionic partners come from the NS sector:
α̃1
−1 |0〉L ⊗

∣∣−1
2 − 1

2 + 1
2 + 1

2

〉
,

α̃2
−1 |0〉L ⊗

∣∣−1
2 + 1

2 − 1
2 + 1

2

〉
,

α̃3
−1 |0〉L ⊗

∣∣−1
2 + 1

2 + 1
2 − 1

2

〉
,

(2.92)

We can symmetrize their indices, for example, and get the metric of the internal dimen-
sions:

Gij = ei · ej , (2.93)

where i, j are internal indices, and the ei,j are the basis vectors of the internal torii. One
may write the T and U moduli in terms of the components of Gij , see Chapter 5.

Next, we consider the adjoint (248, 1) ⊕ (1,248) representation of E8 ⊗ E8. All of the
states in the untwisted sector are subsets of this representation. The uncharged gauge
bosons transform as

α̃I−1 |0〉L ⊗ |q〉R → e2πik(R·v−0·V )α̃I−1 |0〉L ⊗ |q〉R . (2.94)
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As before, the right-movers consistent with this transformation are

|q〉R =

{
|±1, 0, 0, 0〉 NS
± ∣∣12 1

2
1
2

1
2

〉
R

(2.95)

These correspond to sixteen massless vector bosons (in four dimensions) and their super-
symmetric partners (gauginos). Because we end up with sixteen uncharged gauge bosons,
the rank of the resulting gauge group will be sixteen, as will always be the case when
breaking the gauge symmetry using discrete shifts (V or A) in the E8 ⊗ E8 lattice.

Finally, we consider the charged E8 ⊗ E8 gauge bosons. These states will give the
charged gauge bosons of the surviving gauge symmetry in the low energy theory, as well
as the charged matter present after compactification. We note that the charged gauge
bosons in the low energy theory should have the same right-movers as the uncharged gauge
bosons, Equation (2.95). Clearly, we wish to find all p consistent with

k(p · V ) = 0 mod 1. (2.96)

We find 72+240 states consistent with this condition (72 from the first E8 factor and 240
from the second). As it turns out, the representation of the gauge bosons is

(78, 1)⊕ (1,248)⊕ (1, 1)⊕ (1, 1). (2.97)

The unbroken gauge symmetry can only be

E6 ⊗U(1)2 ⊗ E8. (2.98)

To determine the charged matter content of the model, we first realize that the right-
movers from the NS sector should be given by

|q〉R =
∣∣0,±1, 0, 0

〉
. (2.99)

These states correspond to the scalar degrees of freedom living in the chiral multiplets. As
an example, let us consider |q〉R = |0,−1, 0, 0〉. We find

k = 1 2 3 4 5

⇒ R · kv = −1
6 −1

3 −1
2 −2

3 −5
6

. (2.100)

In order to form a chiral multiplet, however, we must find the state from the Ramond
sector with the same transformation properties. One can check that the left chiral |q〉R =∣∣−1

2 ,−1
2 ,+

1
2 ,+

1
2

〉
transforms appropriately. Next, we find the subset of lattice vectors |p〉L

which give us invariant states. We find a total of 29 states |p〉L which transform correctly.
We know that the smallest representation of E6 is 27 dimensional, thus we must have that
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these states correspond to a 27 ⊕ 1 ⊕ 1 under18 E6 ⊗ U(1)2. Note that no charged matter
remains in the second E8. The entire charged matter spectrum of the untwisted sector
contains

3× [(27, 1
)

+ (1, 1)
]

+ (27, 1) . (2.101)

Dealing with U(1) Charges

In what follows, we will neglect the two U(1) factors, simply noting that every state has
some charge under both of the U(1) factors. The task of calculating the charges under the
U(1) factors is straightforward but tedious: we know that E6 ⊗ E8 has 14 simple roots and
we know what those simple roots are. We can project these 14 simple roots (αi) onto the 16
simple roots of E8⊗E8 (εj), giving us a matrix [B]ij = αi · εj . If we multiply every entry in
B by 4, we can be assured that [B]ij ∈ Z. We then seek solutions ξ such that

Bξ = 0, (2.102)

where the elements of ξ are integers19. This is a system of Diophantine equations, and
algorithms can be found in the mathematical literature for solving them [62]. The U(1)
charges can then be determined by taking the dot product of ξ with the highest weight of
each representation.

We are interested in the U(1) charges for several reasons. First, we must be able to con-
struct hypercharge in order to be able to claim that we can construct the standrad model.
Other U(1) charges, like U(1)B−L are also of interest to model builders, and we would like
to be able to incorporate such features into our string models. From the stringy perspec-
tive, the Green-Schwarz [63, 64] mechanism implies that one or both of these U(1) factors
is anomalous20. Determining the anomalies, then, just amounts to tracing over the U(1)
charges of all of the states in the spectrum. Some methods for dealing with these issues are
described in [56].

2.5.1 Identifying Gauge Groups and Matter Representations

When working with more complicated shift vectors V and non-trivial Wilson lines, the
gauge symmetries obtained are much smaller than E6 and E8. In these cases, it is much
more difficult, if not impossible, to uniquely determine the charged matter representations
by inspection. In this subsection, we wish to describe how one may unambiguously deter-
mine the representations of the charged matter.

In order to calculate the gauge group, the process goes as follows:

18Generally, determining the U(1) charges of the states on the orbifold is non-trivial, however, in the un-
twisted sector, one can simply look up the branching rules in [61], for example.

19Requiring ξ ∈ Z ensures that the U(1) charges will be rational.
20We can always “rotate” to a basis where only a single U(1) factor is anomalous.
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• Determine the E8 ⊗ E8 roots which transform as k(p · V ) = 0 mod 1, and find a set
of basis vectors.

• Identify the positive roots. A positive root as a root whose first entry is positive.

• Identify the simple roots, αi. A simple root may not be expressed as the sum of two
other positive roots.

• Count U(1) factors. The number of U(1) factors is sixteen minus the number of sim-
ple roots. This gives the dimension of the Cartan matrix.

• Calculate the Cartan matrix:
[A]ij =

2αi · αj
α2
j

. (2.103)

The Cartan matrix for each gauge group is unique (see [61]), and thus allows one to
(uniquely) determine the resulting gauge group.

In order to identify the surviving gauge group, it is advantageous to reorder the roots so
that the Cartan matrix has factors of 2 along the main diagonal.

Once one has a set of simple roots, it is then easy to determine the representations of
the surviving charged matter:

• Determine the Dynkin labels of each weight. The ith Dynkin label of a weight is the
dot product of the weight with the ith simple root.

• Identify the highest weights. The highest weights are those whose entries are all
positive or zero. Each charged matter representation has a highest weight, thus it is
sufficient to keep only the highest weights from this point forward.

• The dimensions of the representations can be identified using the tables in [61], or
one can compute them directly: see Equation (5.5) of [61], for example.

2.6 Orbifold Compactification: The Twisted Sectors of Z6-II

In this section, we will construct the twisted sector the the standard embedding in great
detail. In addition to listing the centralizers for several fixed points, we will also list several
of the solutions to the mass equations. The hope is that this will provide those who wish
to automate this procedure an important sanity check in their calculations. At the time of
writing, no publicly available code to perform these calculations exists, however, at least
one collaboration (see [56, 65]) is working to this end.
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2.6.1 Constructing the Centralizer

The development in Section 2.3.2 was rather formal. We will pause here and demonstrate
how one actually might go about constructing the centralizer. We first note, that without
doing any calculation, we can find two elements of the centralizer right out. Clearly, g1 =
1g. Moreover, g commutes with itself. Thus Z(g) must contain at least 1 and g itself.

Consider the fixed pointF in the SO(4) torus, but at the origin of the other two torii of
the Z6-II orbifold (see Figure 2.1. The constructing element for this fixed point is

g••F = (θ, e6) . (2.104)

In other words,F transforms into itself if we rotate the lattice by π radians and step back
along e6. In order to construct the centralizer for this fixed point, we need to find some
set of h such that [g, h] = 0. Consider h =

(
θ3, e6

)
. This corresponds to a rotation of the

lattice by 3π radians, and a translation along e6. Because a rotation by 3π is equivalent to a
rotation by π, clearly

[
(θ, e6) ,

(
θ3, e6

)]
= 0.

Let’s try a less trivial example. Consider the fixed point � in the second (SU(3)) torus,
and at the origin of the other two torii, whose constructing element is

g•�• = (θ, e3) . (2.105)

Consider h =
(
θ2, e3 + e4

)
. Then, for some point x, we have (using Table 2.1)

(θ, e3)
(
θ2, e3 + e4

)
x = (θ, e3)

(
θ2x+ e3 + e4

)
= θ3x+ e4 − e3 − e4 + e3 = θ3x. (2.106)

Similarly,(
θ2, e3 + e4

)
(θ, e3)x =

(
θ2x+ e3 + e4

)
(θx+ e3) = θ3x+ θ2e3 + e3 + e4 = θ3x. (2.107)

As a final example, consider the fixed point at � in the second (SU(3)) torus and atF
in the SO(4) torus. The constructing element for this fixed point is given by

g•�F = (θ, e3 + e6) . (2.108)

One can check using Table 2.1 that the following choices of h all commute with g:

h =



(θ, e3, e6) ,(
θ2, e3, e4

)
,(

θ3, e6

)
,(

θ4, e3

)
,(

θ5, e3, e4, e6

)
(2.109)
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Given the multiplication rules in Table 2.1, one can then either construct the centralizers
for each fixed point by hand, or automate the process to generate the centralizers.

2.6.2 The First and Fifth Twisted Sectors

In the first twisted sector, the (right-moving) massless condition is satisfied by

η =
(

0,
1
6
,
1
3
,
1
2

)
. (2.110)

Two right-movers satisfy the massless condition (2.72):

|q̂〉R =

{ ∣∣0, 1
6 ,

1
3 ,

1
2

〉
,∣∣1

2 ,−1
3 ,−1

6 , 0
〉 . (2.111)

Note that these two states correspond to half of an N = 1 chiral multiplet in four dimen-
sions. The other real scalar and real fermion degree of freedom are in the fifth twisted
sector. This is a general feature of orbifold models: the conjugate partners of the states in
the kth twisted sector are always found in the (N − k)th twisted sector. Under the action
of the twist, the right movers transform as

|q̂〉R → e2πiR·v |q̂〉 = e2πi(−1
9 ) |q̂〉 . (2.112)

The massless condition (2.75) yields 27 solutions at each of the (12) fixed points, all of
which transform as (recall the relative minus sign in the transformation between the left
movers and the right movers)

|p̂〉 → e−2πikp̂·V |p̂〉 = e−2πi(− 1
9) |p̂〉 . (2.113)

For example, at g•�N we find(
1
6
,
1
3
,
1
2
,±1, 0, 0, 0, 0

)(
08
) × 10,(

−1
3
,−1

6
, 0,
[

odd # +
1
2

]) (
08
) × 16,(

−5
6
,−2

3
,−1

2
, 05

)(
08
) × 1. (2.114)

In general, if there are no Wilson lines, the centralizer implies no new projection conditions.
We will list here the centralizers for three fixed points, and one can check explicitly that
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this is indeed the case.

Z (g•••) = {1, (θκ, 0)} , κ = 1, 2, 3, 4, 5

Z (g••F) =
{
1, (θ, e6), (θ2, 0), (θ3, e6), (θ4, 0), (θ5, e6)

}
,

Z (g•�F) =
{
1, (θ, e3 + e6), (θ2, e2 + e3), (θ3, e6), (θ4, e3), (θ5, e3 + e4 + e6)

}
.(2.115)

The easy way to see that all Z in Equation (2.115) imply the same projection condition is
to note that, for Aα = 0, the phase of the left movers under translations becomes

p̂ · (κV +mαAα)→ p̂ · κV. (2.116)

Because there is no dependence on mα, all of the centralizers imply the same projection
conditions—from Equation (2.115) we see that all three centralizers imply κ = 1, 2, 3, 4, 5.
One can then check by hand that all of the solutions in Equation (2.114) survive.

Counting oscillator states (see Appendix A for the explicit calculation) gives an addi-
tional 4 singlets at each fixed point. The left-chiral pieces (which complete the supermulti-
plets) are found in the fifth twisted sector. In summary, in the first twisted sector, we find

12× (27, 1)r + 12× 4× (1, 1)r , (2.117)

where r denotes the chirality of the state.
We close this section by noting that the spectrum at each of the fixed points is identical.

The reason for this stems from the fact that we have turned all of the Wilson lines off.
This is a common occurrence in the orbifold models in this limit: the Wilson lines serve
not only to break the gauge group and representations to smaller sizes, but can also serve
to distinguish between otherwise identical points on the orbifold, see Equation (??) for
example. This idea of using Wilson lines to split the spectra at various fixed points is
the cornerstone of the “local GUT” picture that emerges from the heterotic string models,
and provides a successful embedding of the orbifold GUT picture into string theory, see
Chapter 3.

2.6.3 The Second and Fourth Twisted Sector

In the second and fourth twisted sectors, there are nine fixed points. Six of the fixed points
are related by a symmetry of the orbifold, and the third torus is left unaffected by the action
of the twist vector:

2v =
1
3

(0, 1, 2, 0) , 4v =
1
3

(0, 2, 1, 0) . (2.118)
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θ1 θ2 θ3 θ4 θ5

(|27〉+ |1〉)⊗ ∣∣12 , · · ·〉 0 0 0 0 0
(|27〉+ |1〉)⊗ ∣∣−1

2 , · · ·
〉 −1

2 0 1
2 0 −1

2(∣∣27
〉

+ |1〉)⊗ ∣∣12 , · · ·〉 1
2 0 −1

2 0 1
2(∣∣27

〉
+ |1〉)⊗ ∣∣−1

2 , · · ·
〉

0 0 0 0 0

Table 2.2: The transformation of the states in the second twisted sector.

There are two solutions to the (right-moving) massless condition for the R states in the
second twisted sector. They are given by

|q̂〉 =

{ ∣∣−1
2 ,−1

6 ,
1
6 ,

1
2

〉
,∣∣1

2 ,−1
6 ,

1
6 ,−1

2

〉 , (2.119)

with corresponding states in the NS sector:

|q̂〉 =

{ ∣∣0,−2
3 ,−1

3 , 0
〉
,∣∣0, 1

3 ,
2
3 , 0
〉 , (2.120)

First, we concentrate on the three fixed points at the origin of the G2 torus:
(•, •, T 2

)
,(•,�, T 2

)
, and

(•,N, T 2
)
. The constructing element of the latter point is

g(•,N,T 2) =
(
θ2, e3 + e4

)
. (2.121)

The centralizer for g(•,N,T 2) is

Z (g(•,N,T 2)

)
=
{(
θ0 or 3, ae5 + be6

)
,
(
θ1 or 4, e3 + ae5 + be6

)
,
(
θ2 or 5, e3 + e4 + ae5 + be6

)}
,

(2.122)
where a, b = 0, 1. The centralizers for the other two fixed points are similar, and we will
not list them here. The massless conditions (2.75) have 28 solutions at each fixed point. We
find (at g(•,N,T 2)): (

1
3
,
2
3
, 0,±1, 0, 0, 0, 0

)(
08
) × 10,(

1
6
,−1

6
, 0,
[

odd # +
1
2

]) (
08
) × 16,(

−2
3
,−1

3
,±1, 05

)(
08
) × 2. (2.123)

After constructing the invariant states, we find

3× [(27, 1)r +
(
27, 1

)
l
+ (1, 1)r + (1, 1)l

]
(2.124)
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where l and r denote the chirality of the state, defined by the first entry in the Ramond
right-movers in Equation (2.119). The conjugate states come from the fourth twisted sector.

The remaining six fixed points are related in the sense of Equation (2.81), thus we must
build interaction eigenstates by taking appropriate linear combinations of states at each
fixed point. To see how this works, first note that the Z2 subgroup is generated by θ3,
so we expect that any linear combinations of states should also be invariant under this
operation. Moreover, g�·· and gN·· are in the same conjugacy class (see Equation (2.81) ).
Under the action of h ≡ (θ, e1)

Hg�
h−→ HgN h−→ Hg� . (2.125)

That is, h maps a state in the Hilbert space at the fixed point g�·· to a state in the Hilbert
space at the fixed point gN··. Thus we must form linear combinations of the two states.

Let us concentrate on the fixed point whose constructing element is g�NT 2 , which is
given by

g�NT 2 =
(
θ2 + e4

)
. (2.126)

The centralizer is given by

Z (g�NT 2) =
{

(1, aeb + be6)
(
θ2, aeb + be6

)}
, (2.127)

where (as before), a, b = 0, 1. Note, in contrast to Equation (2.122), the centralizer only
depends on even powers of θ. There are 28 solutions to the mass equation (2.75), which
are the same as in Equation (2.114). As before, however, the centralizer implies no new
projection conditions. The Hilbert space of states is the same at every fixed point because
there are no Wilson lines to distinguish the points.

Next, we must build invariant states. The transformation properties of the states in the
second twisted sector are given in Table 2.2. We then have

(27)�l
h−→ − (27)Nl

h−→ (27)�l . (2.128)

where (as before) 27l ≡ |27〉 ⊗ ∣∣−1
2 , · · ·

〉
, and we have labeled the state with its fixed point

in the first (G2) torus. We can now build the invariant states:

(27)�r + (27)Nr ∼ 27r,

(27)�l − (27)Nl ∼ 27l,(
27
)�
r
− (

27
)N
r
∼ 27r,(

27
)�
l

+
(
27
)N
l
∼ 27l, (2.129)
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θ1 θ2 θ3 θ4 θ5

|27〉 ⊗ ∣∣12 , · · ·〉 0 0 0 0 0
|27〉 ⊗ ∣∣−1

2 , · · ·
〉

2
3

1
3 0 −1

3 −2
3∣∣27

〉⊗ ∣∣12 , · · ·〉 −2
3 −1

3 0 1
3

2
3∣∣27

〉⊗ ∣∣−1
2 , · · ·

〉
0 0 0 0 0

Table 2.3: The transformation of the states in the third twisted sector.

with similar linear combinations for the singlet fields. The total matter content at these six
fixed points, not counting oscillators, is then

3× [(27, 1)l + (27, 1)r +
(
27, 1

)
l
+
(
27, 1

)
r

]
+ 6× ((1, 1)l + (1, 1)r) . (2.130)

The additional singlets come from the oscillator states. In closing, we note that the states
conjugate to those in Equation (2.130) come from the fourth twisted sector.

2.6.4 The Third Twisted Sector

In the third twisted sector, we find 16 fixed points with 12 related by an orbifold symmetry.
We note that the second (SU(3)) torus is invariant under the action of the twist vector:

3v =
1
2

(0, 1, 0,−1) . (2.131)

The massless right-movers are given by

|q̂〉 =

{ ∣∣−1
2 , 0,

1
2 , 0
〉
,∣∣1

2 , 0,−1
2 , 0
〉 , (2.132)

with corresponding states in the NS sector:

|q̂〉 =

{ ∣∣0,−1
2 , 0,−1

2

〉
,∣∣0, 1

2 , 0,
1
2

〉 . (2.133)

The centralizer for g�T 2• is given by

Zg�T2•
=
{

(1, ae3 + be4), (θ3, a33 + be4)
}
, (2.134)
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where a, b = 0, 1. The left movers at g�T 2• are given by(
−1

2
, 0,−1

2
,±1, 0, 0, 0, 0

)(
08
) × 10,(

0,
1
2
, 0,
[

odd #− 1
2

]) (
08
) × 16,(

1
2
, 1,

1
2
, 05

)(
08
) × 1. (2.135)

There is one slight difference between the results in the second twisted sector, and those
in the third twisted sector. In the third twisted sector, the points g�··, gN·· and gF·· are all in
the same conjugacy class. This means, for example, that

(27)�l
h−→ e2πi(1/3) (27)Nl

h−→ e2πi(2×1/3) (27)Fl
h−→ (27)�l . (2.136)

To build invariant states, then, Table 2.3 tells us that we should take the following linear
combinations:

(27)�l + e2πi(1/3) (27)Nl + e2πi(2/3) (27)Fl ∼ 27l,(
27
)�
r

+ e2πi(2/3)
(
27
)N
r

+ e2πi(1/3)
(
27
)F
r
∼ 27r,

(27)�r + (27)Nr + (27)Fr ∼ 27r,(
27
)�
l

+
(
27
)N
l

+
(
27
)F
l
∼ 27l. (2.137)

There are four groups of fixed points (which can be labeled by their location in the third
torus), which gives us a total spectrum about the four sets of three equivalent fixed points
as

4× (27l + 27r + 27l + 27r
)
. (2.138)

After constructing the invariant states, including oscillators, we find a complete spectrum
in the third twisted sector:

4× 27l + 8× 27l + 8× 27r + 4× 27r + 52× (1l + 1r). (2.139)

Note that the third twisted sector is self conjugate.
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2.6.5 The Complete Spectrum

To simplify the notation, we list only the left-chiral states. We find

U : 3× 27 + 1× 27 + 3× 1;

T1 + T5 : 12× 27 + 48× 1;

T2 + T4 : 12× 27 + 6× 27 + 18× 1;

T3 : 8× 27 + 4× 27 + 52× 1. (2.140)

Note that this model has 35 anti-generations (27) and 11 generations (27), giving a net 24
anti-generations of standard model fermions. As is typical of the orbifold compactifica-
tions, there are a large number (121) of gauge singlets—these singlets include the “blow-
up” modes, which are states with non-zero oscillator number that are localized at fixed
points.
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Chapter 3
GAUGE COUPLING UNIFICATION IN A
CLASS OF STRINGY ORBIFOLD GUTS

The agreement of the results seems to show that light and magnetism are af-
fections of the same substance, and that light is an electromagnetic disturbance
propagated through the field according to electromagnetic laws.

James Clerk Maxwell

3.1 Motivation

Supersymmetric grand unification [66–71] is one of the most attractive scenarios for be-
yond the Standard Model physics. One can simultaneously explain the apparent uni-
fication of the electroweak and strong coupling constants around 3 × 1016 GeV, charge
quantization, the conservation of B-L, and why quarks and leptons come in families. Nev-
ertheless the simplest four dimensional SUSY GUTs have some notable problems. Sponta-
neously breaking the GUT symmetry requires scalars in adjoint representations and com-
plicated symmetry breaking potentials. In addition, Higgs doublet-triplet splitting de-
mands special treatment. Neither of these problems is insurmountable but it is difficult
to imagine that these special sectors can be derived from a more fundamental theory. In
addition, Super-K bounds on the proton lifetime place 4-dimensional SUSY GUTs “under
siege” [72, 73]. Finally, in order to understand fermion masses and mixing angles it is likely
that additional family symmetries may be needed.

In the early work within the framework of the weakly coupled heterotic string it was
argued for string unification, as opposed to grand unification with an independent lower
energy GUT breaking scale.21 Gauge couplings naturally unify at the string scale with
a unification scale22 of around 5 × 1017 GeV [74–76]. Unfortunately the precision low

21In fact, it is difficult to get massless adjoints in the string spectrum, needed for GUT symmetry breaking.
22Assuming SU(2) and SU(3) are represented at Kač-Moody level k2 = k3 = 1 and the U(1) of hypercharge

is normalized with k1 = 5/3.
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energy data prefers a lower unification scale, MGUT ∼ 3 × 1016 GeV. This tension between
gravity and gauge coupling unification has been termed the “factor of 20” problem with
string unification [77]. Nevertheless string theory has some very nice features, i.e. the
E8 × E8 (or SO(32)) symmetry of the weakly coupled heterotic string is easily broken via
an orbifold compactification of the extra 6 spatial dimensions [53, 57]. In addition, Higgs
doublet-triplet splitting is also easily accomplished by the same means [78, 79]. Significant
progress was made early on in obtaining standard-model-like theories using orbifolding
and Wilson lines to break the gauge symmetry [79–83].

More recently, it was realized that some of the problems with SUSY GUTS could be
solved by understanding our low energy physics in terms of an effective five or six dimen-
sional field theory in which one or two of the directions is compactified [42, 43, 84–91].
Typically one takes a five (six) dimensional gauge theory, and compactifies one (two) of
the directions on an orbifold. The geometry of the orbifold admits solutions for higher
dimensional fields which are localized on two or more branes, and fields which are free
to propagate in the bulk. The former are called “brane” fields, the latter “bulk” fields. By
assigning the bulk fields boundary conditions along the fifth (and sixth) direction(s), one
can achieve GUT/SUSY breaking without the large representations and complicated GUT
breaking potentials encountered in 4 dimensional constructions. In addition, placing the
electroweak Higgs multiplet in the bulk, Higgs doublet-triplet splitting can also be affected
via a judicious choice of boundary conditions. Generally, the placement of the matter and
the assignment of orbifold parities is done in a bottom up manner; one identifies certain
phenomenological features (eg. suppressing dangerous proton decay operators) and then
chooses mass scales, matter localization, and orbifold parities accordingly. For example,
one can keep b − τ Yukawa unification by placing the third family on an SU(5) brane or
suppress proton decay by placing the first two families in the bulk [85]. Finally, four di-
mensional SUSY GUTs require of order 3% threshold correction at the GUT scale in order
to precisely fit the low energy data [29]. Given a GUT breaking sector, this correction must
come from the spectrum of massive states with mass of order MGUT. In orbifold GUTs
this correction comes from the Kaluza-Klein modes between the compactification scale,
MC, and the cut-off scale, M∗, with unification occurring at the cut-off. In fact, the ratio
M∗/MC ∼ 100 is determined by gauge coupling unification. The problem with orbifold
GUT field theories, however, is the necessity for a cut-off.

In Refs. [39–41], it was shown that effective orbifold SUSY GUT field theories can be
obtained by orbifold compactifications of the heterotic string. These theories provide an
ultraviolet completion of orbifold GUT field theories with a physical cut-off at the string
scale. These are so-called anisotropic orbifold theories with one or two large extra dimen-
sions (R = MC

−1 � lS = M−1
S ). At lowest order the gauge couplings unify at MS. Further,

when working within the framework of the weakly coupled heterotic string, there is a
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very specific relationship between the strength of the GUT coupling and the strength of
gravity (see Equation (3.2)). Viewed in this manner, the factor of 20 turns into a factor of
400 when comparing to the (experimentally measured) value of Newton’s constant. This
makes it clear that there needs to be significant threshold corrections (both logarithmic and
power law) in order to match the low energy data. In fact, important threshold corrections
are provided by Kaluza-Klein modes running in loops. Their spectrum is calculable, and
often gives non-trivial corrections to the running of the couplings [42, 43].

In this paper, we investigate ways to solve the “factor of 20” problem with heterotic
string unification, within the context of the orbifold GUT picture proposed in references
[39–41] 23. In order to make unification work, we find that we generally need to introduce
an intermediate scale, MEX, which is typically two or three orders of magnitude below the
compactification scale. When we impose the conditions that MS > MC & MEX, we find
a large number of solutions for which unification works. Note the proton lifetime (from
dimension six operators) scales as the fourth power of MC. Most solutions are excluded
by proton decay, however a small number predict proton lifetimes (from dimension six
operators) that can be measured in future experiments.

We begin with a brief review of the stringy embedding of orbifold GUTs [39–41], and
a presentation of the models in the “mini-landscape” search [34–38] in Section 3.2. We
focus on two “benchmark” models from the mini-landscape search in this analysis, called
“Model 1A” and “Model 2” in Reference [38]. Specific details of these models (the full
spectrum in four dimensions, etc.) can be found in Appendix H. The main result of our
analysis is a detailed examination of the parameter space which allows for unification,
and how this parameter space relates to proton decay constraints from dimension six (and
possibly dimension five) operators. This work is summarized in Section 3.3. Solutions
consistent with gauge coupling unification are found in Tables H.7 - H.10 on pages 156 -
159. In Section 3.4 we check whether any of our solutions are consistent with decoupling
of exotics in supersymmetric vacua.

3.2 Orbifold GUTs from String Theory

In exploring gauge coupling unification in orbifold constructions, we focus on a class of
models [34–38] that are based on SU(6) gauge-Higgs unification in five dimensions, and
whose low-energy spectrum is exactly that of the MSSM. Similar theories have also been
considered in the context of orbifold GUT field theory [93]. We shall comment on the
differences in Appendix C.

23A recent analysis of gauge coupling unification can also be found in Reference [92].
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3.2.1 The Mini-Landscape in a Nutshell

We compactify the 6 extra dimensions of the heterotic string on the product of three 2-tori
as shown in Figure 2.1. Moding out the discrete Z6-II symmetry given as a 60◦, 120◦, 180◦

rotation (“twist” v) in the first, second, and third torus, respectively, defines the orbifold
[53, 57]. The geometry of the orbifold allows for no Wilson lines in the first torus, one order-
3 Wilson line A3 in the second torus (e3 and e4 are the same direction on the orbifold) and
two order-2 Wilson lines A2, A′2 along e5, e6, respectively [55]. We take A′2 ≡ 0 to localize
2 identical copies of 16’s at the fixed points • andF that will eventually sport a D4 family
symmetry [39, 94, 95].

Modular invariance allows for 61 different gauge embeddings (“shift” V ) of the twist.
Only 15 of these shifts break E8×E′8 to a gauge group containing SO(10), and only 2 shifts
allow for 16’s in the first/fifth twisted sector (T1, T5, respectively) that are not projected
out by the Wilson lines.

The models that come closest to the real world all stem from one shift [34, 35], termed
V SO(10),1 in Refs. [36, 38]. Switching on all possible Wilson lines consistent with this shift
and modular invariance, we obtain ∼ 22, 000 models with different particle spectra. Suc-
cessively, we impose our phenomenological priors to get as close to the MSSM as we pos-
sibly can: (i) Standard Model gauge group, (ii) non-anomalous hypercharge that lies in
SU(5) ⊂ SO(10), (iii) 3 generations of quarks and leptons, 1 pair of Higgs doublets, (iv) all
exotic (i.e. non-standard-model) particles are vector-like, (v) trilinear Yukawa coupling for
a heavy top, (vi) generalized B-L generator that is eventually broken down to R-parity,
(vii) all spurious abelian gauge group factors are broken, (viii) string selection rules allow
for all exotics to decouple consistent with the “choice of vacuum” (singlet VEVs must not
break SM gauge symmetries and R-parity, and must satisfy F = D = 0).

This leaves us with 15 models with promising phenomenology. We use this sample
to investigate whether the unification picture in orbifolds is consistent with the measured
values of the coupling constants at low energies, or in other words, whether we can fit α1,
α2 and α3 at the electroweak scale with a single coupling constant αSTRING at MS. Specif-
ically, the set of exotics in both Models 1 and 2 of Reference [38] are similar enough to
warrant parallel treatment, and are listed in Table H.4 on page 155. As can be seen, the
exotic matter which is charged under the MSSM in Model 1 overlaps with the exotic mat-
ter in Model 2. Note that we have labeled states with their hypercharge and B-L quantum
numbers as subscripts.
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e6

A2
e5

SU(5)

SU(5)
10 + 5 + 1

2× (4,1) + 2× (4,1) + 4× (1,2)

SU(4)×SU(2)

SU(4)×SU(2)
2× (4,1) + 2× (4,1) + 4× (1,2)

SU(6)

from U , T2, T4

35 + 20 + 9× (6 + 6)××
10 + 5 + 1

from T1, T3, T5

from T1, T3, T5

from T1, T3, T5

⋆from T1, T3 T5

Figure 3.1: Setup of the 5d orbifold GUT, where the 5th dimension (e5) is large compared
to the other compact dimensions.

3.2.2 The Orbifold GUT Picture

The 15 models described in Section 3.2.1 are naturally embedded into a grand unified the-
ory in 5 or 6 dimensions [41]. Consider Model 2 of Section 5.2 of the mini-landscape search
[38]. For completeness, the full details of the model have been reproduced in Appendix H.

Instead of moding out the full Z6-II ' Z2 × Z3 symmetry (generated by the twist v)
to get the 4-dimensional spectrum, we can mod out the Z3 subgroup (generated by 2v)
alone, leaving the SO(4) torus invariant. The particles from the U , T2, T4 sectors are free
to move around in the SO(4) torus and can thus be considered to be the “bulk states” of a
6-dimensional Z3 orbifold with twist 2v, shift 2V and Wilson line A3.

In this picture, moding out the residual Z2 symmetry (generated by 3v) corresponds to
adding “brane states” to the theory. The gauge group at the fixed points is obtained from
the bulk symmetry by moding out V2 = 3V for • and F and V2 + A2 for � and N. The
matter representations follow from the mass equation at the respective fixed points (given
in terms of V2 and A2), subject to projection conditions from V3 = 2V and A3.

The gauge symmetry in 4 dimensions is the intersection of all gauge groups, and the
brane GUT states branch to SM representations of the T1, T3, T5 sectors. This can be under-
stood from an orbifold GUT viewpoint by assigning parities to the brane modes given by

P ∼ e2πip·V2 , P ′ ∼ e2πip·(V2+W2),

where p (the highest weight associated with the state) is a sixteen dimensional vector from
the E8 × E8 lattice. Then, the setup of Figure 3.1 describes an orbifold S1/Z2 × Z′2 where
1 extra dimension is compactified on a circle. The discrete symmetries are realized as a
reflection P : x5 → −x5 and a translation T : x5 → x5 + 2πR. Only the states that are
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invariant under

P : Φ(x5) → Φ(−x5) = PΦ(x5),

PT : Φ(x5) → Φ(−x5 + 2πR) = P ′Φ(x5) (3.1)

will be present in the low energy spectrum.24

Orbifold GUTs, when generated from an underlying string theory, are significantly
more constrained than orbifold GUT field theories. Whereas the only real constraint in an
orbifold GUT field theory is that the low energy effective field theory be anomaly free, all
anomalies in the string theory are canceled at the string scale by the generalized Green-
Schwarz mechanism [63, 64, 96–98], so this condition is automatically satisfied. In string
orbifolds, the parities are realized in terms of Wilson lines that must satisfy stringent mod-
ular invariance constraints, so we cannot simply assign parities at will. Further, the place-
ment of matter is not an independent degree of freedom in string models. Finally, we are
given a value for the coupling constant at the cut-off, see Equation (3.2) on page 55. In a
typical orbifold GUT, this is a free parameter. In addition, there may be some assumptions
about strong coupling, but the details of the ultraviolet completion are not addressed.

3.3 Gauge Coupling Unification in Orbifolds

3.3.1 Unification in Heterotic String Theory in 10 Dimensions

As a unified framework for particle physics and gravity, string theory predicts Newton’s
constant GN and relates it to the gauge coupling constants. Unfortunately, the predicted
value for GN , in the weakly coupled heterotic string, turns out to be too large and needs
to be reconciled with the extrapolated running gauge coupling constants at the unification
scale.

Throughout this paper we assume that we are in the weakly-coupled regime of the
heterotic string. After compactifying the 10-dimensional low-energy effective action on a
6-dimensional manifold, one obtains [74]

GN =
1
8
αSTRING α

′. (3.2)

Here, αSTRING denotes the common value of the gauge coupling constants at the string scale,
MS = 1/

√
α′.25 Low-energy data suggests α−1

STRING ' α−1
GUT ' 24 and MS ' MGUT ' 1016

GeV, so the predicted value for Newton’s constant is off by a factor of about 400. Putting
it another way, if we use the measured value of the gravitational constant GN = 1/(M2

PL)
with MPL ' 1.2 × 1019 GeV , the string scale is predicted to be MS ' 5 × 1017 GeV [74], in

24P ′ ≡ P T where T corresponds the discrete gauge transformation due to a Wilson line.
25The string scale MS defined here corresponds to the effective cut-off scale in our field theory calculation.

This is discussed in more detail in footnote 8, Section 3.3.2.
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disagreement with MGUT. These conclusions are based on the assumptions that (i) we are
in the weak coupling limit, (ii) there are no new states between the electroweak and the
GUT scale that could contribute to the renormalization group equations (RGEs), (iii) the
compactification is isotropic, i.e. all compactified dimensions are comparable in size.

In the following, we explore anisotropic orbifold compactifications to fit low-energy data
with a single coupling constant at MS.26 Other proposals that have been considered in
the literature include exotic matter representations at intermediate scales, large threshold
corrections, non-standard hypercharge normalizations from higher-level Kač-Moody alge-
bras, strings without supersymmetry, or the strong coupling regime of the heterotic string
[74–76, 92, 102–111]. For a review of grand unification in the context of string theory, see
Reference [77].

3.3.2 The RGEs for Anisotropic Orbifold Compactifications

We study gauge coupling unification for the “benchmark” models presented in the mini-
landscape search [38]. As has been emphasized in Section 3.2.1, these models are two
out of 15 that already satisfy quite a few non-trivial criteria on the road to the MSSM.
We are working in the the orbifold GUT limit as outlined in Section 3.2.2. The gauge
group geography and the relevant part of its 5-dimensional spectrum for Model 2 are given
in Figure 3.1 on page 54. For the full details of the 4-dimensional spectrum, see Tables
H.1 and H.2 on pages 153 and 154. The anisotropic compactification singles out the fifth
dimension that is assumed to be large and thus introduces a new scale into the theory,
the compactification scale MC. The other 5 compactified dimensions are assumed to be of
order the string scale, MS.

We want to compare our models with low energy data. At the string scale,MS, we have
a unified gauge coupling, αSTRING. Below the string scale we have three gauge couplings
which renormalize independently down to the weak scale. In general, there are additional
small (stringy) corrections to the relationship in Equation (3.2) at the string scale, MS [74–
76]. Because these contributions are expected to be small, we will neglect them in this
analysis. In principle we should integrate the three gauge couplings down to the SUSY
breaking scale using the two-loop RGEs, including one-loop threshold corrections at the
string scale, the compactification scale, the exotic scale, MEX, and the SUSY scale, finally
fitting αi, i = 1, 2, 3 at MZ [112, 113]. However, it is sufficient to compare the orbifold GUT
to the four dimensional SUSY GUT running equations, which approximately (and implic-
itly) correct for SUSY threshold corrections at the weak scale and two-loop renormalization

26For earlier work along this line see, [39, 99–101].
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group running from the weak scale to the GUT scale. These are given by the equations:

α−1
i (µ) = α−1

GUT +
bi
2π

log
MGUT

µ
+

6
2π
δi3, (3.3)

The indices i = 3, 2, 1 refer to SU(3)c, SU(2)L, U(1)Y , respectively. The bi are the so-called
β-function coefficients and are most conveniently expressed in terms of the Dynkin index27

[61]
bi = −3`(vector multiplets) + `(chiral multiplets). (3.4)

For the MSSM we have bi = (−3, 1, 33/5). Finally, the last term in Equation (3.3) is a 3%
threshold correction to α−1

3 at the GUT scale that we need to match the precision elec-
troweak data.

The minimal and most elegant way to fit the low-energy data is to arrange for all ex-
otics (i.e. non-standard-model particles) to obtain mass around MS. Up to the scale MC,
assumed to be not much below MGUT, the evolution of the gauge coupling constants is
then governed by the same renormalization group equations as in the usual GUT picture.
For energies above MC, the RGEs receive additional contributions from the Kaluza-Klein
tower of those Standard Model particles that live in the bulk, thus giving rise to both log-
arithmic and power-law running [42, 43]. Unfortunately, this simple setup does not work.
Varying the values of αSTRING at MS and of the compactification scale MC, we cannot fit
the gauge coupling constants at the electroweak scale. We elaborate on this point in Ap-
pendix C, where we show the difficulties involved with gauge-Higgs unification in five
dimensions.

The remaining possibility is to assume that not all exotics obtain mass at MS, but
some are light enough to be relevant for the evolution of the coupling constants. At
the same time, of course, the exotics must still be massive enough to decouple from the
low-energy theory. We will call this intermediate scale MEX and assume in the following
MS > MC & MEX. Now we can try to fit the low-energy data by varying MEX, MC, MS and
the multiplicities and quantum numbers of the light exotics. Note that the running of the
coupling constants below MEX will be given by the same Equation (3.3) as in the MSSM,
since all the exotics are assumed to be heavier than MEX and the first excitation of the
Kaluza-Klein tower is of order MC. Near µ ' MEX, the renormalization group equations

27For hypercharge, we define the Dynkin index to be ` = (3/5)Y 2/4.
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read:

α−1
i (µ) = α−1

STRING +
bMSSM,++
i + bMSSM,brane

i

2π
log

MS

µ

+
bEX,++
i + bEX,brane

i

2π
log

MS

MEX

− 1
4π

(
bMSSM,++
i + bMSSM,−−

i + bEX,++
i + bEX,−−

i

)
log

MS

MC

+
∑

P=±,P ′=±

bMSSM,PP ′

i + bEX,PP ′

i

2π

(
MS

MC
− 1
)

(3.5)

These equations are obtained by starting at the highest scale in the theory,MS, and evolving
the gauge couplings αi down to MC, taking into account all the particles with mass less
than MS. In the next step, one takes the values obtained for αi as boundary conditions for
the renormalization group equations at MC and calculates αi at MEX. In order to compare
to experimental values of the coupling constants atMZ, we apply the two loop RGEs [114].
Note that this involves integrating out SUSY particles at MSUSY. Technically, because the
two loop RGEs are good near the GUT scale, our approach will be to compare the two
equations (Equations (3.3) and (3.5)) at the scale MEX. Provided that MEX is near the GUT
scale, the error introduced in the analysis should be negligible. In principle, the exotic
scale MEX can be small, perhaps a TeV. In all cases we find, however, the exotic scale is
larger than 109 GeV , and in most cases it is greater than 1012 GeV . The error we make by
matching Equations (3.3) and (3.5) at MEX ∼ 109 GeV comes from the difference in the two
loop corrections to the RG running from MEX to the GUT scale. This correction is expected
to be less than a percent.

Let us look at Equation (3.5) in some more detail. The first term is the tree level bound-
ary condition from the heterotic string. The second and third terms contain loop contribu-
tions from MSSM fields and exotic matter, respectively—the zero KK modes and the brane
states are kept separate for clarity. The last two terms are due to the massive KK states in
the bulk. The logarithmic (∼ log MS

MC
) and linear terms (∼ MS

MC
) are a consequence of the ge-

ometry, i.e. in an equivalent string calculation the factor of MS
MC

arises from the dependence
on the T (volume) and U (shape) moduli of the torus.28 Note, the last term is a universal

28Note, our one loop calculations are performed using an effective field theory approach. In particular the
sum over the infinite tower of KK modes follows the regularization scheme of Dienes et al. [42, 43]. Moreover,
in the work of Ghilencea and Nibbelink [115] it is shown that if the field theory cut-off Λ2 is chosen to satisfy
the relation Λ2 = 2e

3
√

3

1
α′ ≈ 1.05/α′ then the heterotic string loop calculation is approximately equal to the

field theory results. Thus we identify the string scale MS = Λ ≈ 1√
α′ . We should note that the analysis of

[115] was done in the context of toroidal compactification. A more relevant comparison should be done in an
orbifold compactification with Wilson lines. The latter approach was taken by the authors of Reference [92] in
a T 2/Z3 orbifold. Their results, however, are not directly applicable to our situation.
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correction due to the SU(6) fields in the bulk. We introduce the following definitions:

bMSSM
i ≡ bMSSM,++

i + bMSSM,brane
i , bEX

i ≡ bEX,++
i + bEX,brane

i , b++
i ≡ bMSSM,++

i + bEX,++
i

b−−i ≡ bMSSM,−−
i + bEX,−−

i , bG ≡
∑

P=±,P ′=±
bMSSM,PP ′

i + bEX,PP ′

i

This simplifies Equation (3.5) a bit:

α−1
i (µ) = α−1

STRING +
bMSSM
i

2π
log

MS

µ
+
bEX
i

2π
log

MS

MEX

− 1
4π
(
b++
i + b−−i

)
log

MS

MC
+
bG

2π

(
MS

MC
− 1
)

(3.6)

3.3.3 Gauge Coupling Unification: An Effective Field Theory Calculation

Before we proceed, we will clear up some notational issues. We will always talk about
fields in the language of N = 1 SUSY in four dimensions. The N = 1, 5-dimensional
hyper multiplet contains two 4-dimensional chiral multiplets, and a 5-dimensional vector
multiplet contains a 4-dimensional vector multiplet and a 4-dimensional chiral multiplet.
The 5-dimensional N = 1 theory can thus be described in terms of 4-dimensional N = 1
fields (or in terms of 4-dimensional N=2 hyper multiplets).

In order to check gauge coupling unification, we will equate the values of (i) 1/α3 −
1/α2, (ii) 1/α2 − 1/α1, (iii) α3 as obtained from Equation (3.3) and Equation (3.6), respec-
tively, at the scale MEX, where both equations are valid. We find:

log
MS

MGUT
=

n3 − n2

4
log

MS

MEX
− 3

2
, (3.7a)

log
MS

MGUT
=

10n2 − n3 − 3n1

56
log

MS

MEX
+

3
7

log
MS

MC
, (3.7b)

48π =
π

4

(
MPL

MS

)2

− 6− 3 log
MS

MGUT
+ n3 log

MS

MEX

+ log
MS

MC
− 4

(
MS

MC
− 1
)
, (3.7c)

where the ni are beta function contributions from the brane localized exotics, as defined be-
low. The first two equations describe the relative running of the couplings (i.e. their slopes),
and the last one gives us information about the absolute running (i.e. their intercepts). The
coefficients ni are defined in terms of the set of exotics with mass of order MEX as follows:

n3×
[
(3, 1)1/3,∗ + (3, 1)−1/3,∗

]
+n2× [(1,2)0,∗ + (1,2)0,∗]+n1× [(1, 1)1,∗ + (1, 1)−1,∗] , (3.8)
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where “∗” for the B-L charge denotes anything. The necessary β-function coefficients bi,
using the numbers in Tables H.5 on page 155 are found to be

~bEX = (n3, n2,
n3 + 3n1

10
). (3.9)

Let us now consider those MSSM states located in the bulk. In general, we can find two
pairs of N = 1 chiral multiplets 6 + 6c which decompose as

2× (6 + 6c) ⊃
[
(1,2)−−1,1 + (3, 1)−+

−2/3,1/3

]
+
[
(1,2)++

−1,−1 + (3, 1)−−2/3,−1/3

]
+
[
(1,2)−+

1,1 + (3, 1)−−−2/3,1/3

]
+
[
(1,2)+−

−1,−1 + (3, 1)++
2/3,−1/3

]
. (3.10)

This gives us the the third family b̄ and L—the rest of the third family comes from the
10 + 10c of SU(5) contained in the 20 + 20c of SU(6), which lives in the untwisted sector.
An interesting point is the genesis of the Higgs bosons. We have remarked earlier that the
models we look at come from a broader class of models satisfying “gauge-Higgs unifica-
tion”. Our bulk gauge symmetry is SU(6), so the SU(6) gauge bosons (and thus the adjoint
representation) necessarily live in the bulk. Under SU(5) × U(1), the adjoint decomposes
as

35→ 240 + 5+1 + 5c−1 + 10. (3.11)

Thus the MSSM Higgs sector emerges from the breaking of the SU(6) adjoint by the or-
bifold. Including the contributions from the third family and the Higgses, we find using
Table H on page 156

~b++ = (−7,−3, 13/5), ~b−− = (5, 1, 1/5), bG = −4. (3.12)

3.3.4 Results

We find it necessary to introduce an intermediate mass scale MEX, perhaps near the com-
pactification scale, and identify a set of exotics with mass MEX consistent with gauge cou-
pling unification. Solving the RG equations numerically, we find 252 versions of Model 2
(of which 82 are also versions of Model 1), where by “versions” we mean inequivalent sets
of “light” exotics satisfying gauge coupling unification. Of these 252 (82), only 48 (9) are
consistent with the Super-K bounds on the proton lifetime [29] (see Section 3.5). These are
found in Tables H.7 and H.8 on pages 156 and 157, where we also calculate the lifetime of
the proton due to dimension six operators, see Appendix D and Figure 4.1. The solutions
which are applicable to Model 1 are listed in bold in both tables. Note that the GUT cou-
pling constant, αSTRING, (evaluated at MS) varies depending on MS and MEX. For example,
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Figure 3.2: Histogram of solutions with MS > MC & MEX, showing the models which are
excluded by Super-K bounds (darker green) and those which are potentially accessible in
a next generation proton decay experiment (lighter green). Of 252 total solutions, 48 are
not experimentally ruled out by the current experimental bound, and most of the remain-
ing parameter space can be eliminated in the next generation of proposed proton decay
searches.

in the last row of Table H.7 on page 156, we find

α−1
STRING =

1
8

(
MPL

MS

)2

' 1
8

(
1.22× 1019 GeV
5.47× 1017 GeV

)2

' 62. (3.13)

Near the exotic scale where we match onto the low energy physics, we expect the (inverse)
coupling constants to be of order 30-40. Likewise, α−1

STRING is typically larger than this, of
order 50-60 or so (but sometimes as big as O(1000)). Thus, we must have a large and
negative contribution from the power-law running, which translates into the requirement
that bG < 0. This is evident in Equation (3.6), for example. If bG > 0, we would need a large
negative contribution from the other terms, which is hard to reconcile with the logarithmic
suppression. For completeness, we plot the β-functions of the last solution in Table H.7 in
Figure 3.3. The evolution of the gauge couplings is typical in this class of models, i.e. the
power law running between the compactification scale is rather pronounced.

For the 11 models in Table H.7, we keep only the minimum amount of matter in the
bulk, i.e. in order to get the MSSM spectrum, it is sufficient to keep 2 × (6 + 6c) massless
below the string scale. Given the constraint that we want bG < 0, however, we are in
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Figure 3.3: An example of the type of gauge coupling evolution we see in these models,
versus the typical behavior in the MSSM. The “tail” is due to the power law running of
the couplings when towers of Kaluza-Klein modes are involved. Unification in this model
occurs at MS ' 5.5×1017 GeV , with a compactification scale of MC ' 8.2×1015 GeV , and
an exotic mass scale of MEX ' 8.2× 1013 GeV .

principle able to leave 4× (6+6c) massless below the string scale. This gives bG = −2, and
leads to 37 new solutions. These are listed in Table H.8 on page 157. Of the 48 solutions
(included in both Models 1 and 2), 22 have proton lifetimes which can potentially be tested
by the next generation of proton decay experiments, see Appendix D and Figure 4.1 for
more details.

We stress that this analysis is quite general. Of the fifteen models which fit the criteria in
the mini-landscape search, all come from a five dimensional SU(6) orbifold, and all of them
have the same types of exotics. This means that the analysis preformed here generalizes in
a straightforward manner to the other min-landscape models, whose spectra are listed in
Reference [116].

In order to try and get a feel for the tunings involved in the above conclusions, we can
compare the GUT coupling constant (at the string scale) with the ratio between the string
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scale and the compactification scale.29 Further, we will separate the solutions based on
the hierarchy between the compactification scale and the exotic scale. We plot the result in
Figure 3.4. What we see is the correlation between a long lived proton and a moderate hier-
archy between the compactification scale and the string scale, and between the string scale
and the Planck scale. However, these moderate hierarchies come at the cost of introducing
a smaller and smaller exotic scale, MEX. This means that a long lived proton favors a large
hierarchy between the compactification scale and the exotic scale. The black diamonds
represent those models with a moderate (< O(350)) hierarchy between the compactifica-
tion scale and the exotic scale. Most of these solutions are already ruled out by proton
decay constraints. The gray shaded circles represent those solutions for which there is a
large difference between the exotic scale and the compactification scale.

We would also like to point out the small set of solutions in the large red box, for which
there are only moderate hierarchies, and which are consistent with the current bounds
on dimension six operators30. Specifically, there seems to be a “sweet spot” where all of
the hierarchies in the problem are of O(100) or so. These models are highlighted in Table
H.10. In particular, these models can all be eliminated by improving the current bounds
on proton decay from dimension 6 operators by a factor of 50-100.

The fact that the data falls approximately on two straight lines is not surprising, and
is evidence of a power-law relationship between α−1

STRING and MS
MC

. One can see this rela-
tionship as by eliminating log MS

MEX
between Equations (3.7a) and (3.7b). We eventually find

logα−1
STRING = A log

MS

MC
+B, (3.14)

where A and B are given in terms of the beta function coefficients and log MPL
MGUT

. It is not
surprising to find that the actual values for A and B are roughly the same for all of the
solutions, and that many solutions give identical values for A and B.

3.4 Unification, Decoupling of Exotics and Supersymmetry

Now that we understand what exotic matter we need to accommodate unification, we
can ask if an intermediate scale, MEX, is consistent with decoupling of the other exotics.
The potential difficulty can be summarized as follows: all of the (200,000+) mass terms
in the superpotential come from giving various MSSM singlets VEVs. Above, we have
shown that unification depends on some exotics receiving mass at the string scale, and
some exotics receiving mass at an intermediate scale. This means that some singlets need
to have VEVs on the order of the string scale, MS, while other singlets need to have VEVs

29The proton decay rate Γ(p→ π0e+) is proportional to the fourth power of the GUT coupling constant, see
Appendix D.

30See Appendix D for more details.
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Figure 3.4: Here we show the correlation between the hierarchies in the problem. Quite
generally, a small value of α−1

STRING requires a large hierarchy between the compactifica-
tion scale and the exotic scale. Again we show the excluded (darker green) and possibly
testable (lighter green) models. The exact relationship between the ratio of MS/MC and
the proton lifetime is given in Appendix D. In particular, note the “nice” models (black
diamonds) in the large red box, characterized by moderate hierarchies between all scales.
These models are collected in Table H.10. Finally, note the one point in the small red box—
this model is described in Section 3.4.

on the order of the exotic mass scale, MEX. It is not obvious, a priori, that we can do this in
a consistent way. That is, decoupling with D = F = 0 was checked in Reference [38], but
only for the case where all of the singlet VEVs were of order the string scale. In light of
gauge coupling unification, we are motivated to revisit the previous conclusions.

As we will show, there is a very nice way to accommodate unification in Model 1A,
which relies only on moderate tunings. The tunings will be apparent when we address the
question of F = 0 in Section 3.4.1. In that section we will see how some numbers of order
the string scale must conspire to cancel some numbers of order the exotic scale.

While Model 1A and Model 2 have similar sets of exotics, they have different super po-
tentials. So while it is possible to find nice ways to accommodate unification within Model
1A, we find that there does not seem to be an easy way to assign singlet VEVs in Model 2
such that we can accommodate unification. This does not mean that it is impossible to ac-
commodate unification in Model 2, but it does make the process of assigning singlet VEVs
an exercise in fine tuning.
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In what follows, we use the notation defined in Reference [38] concerning the MSSM
singlets. In short, the states labeled si are singlets under the hidden sector and visible sec-
tor gauge groups, while the states labeled hi transform as (hidden sector) SU(2) doublets.
Some subset of the si and hi are expected to get non-zero VEVs, which defines a vacuum
configuration. Again, we refer the reader to Reference [38] for more details.

3.4.1 Model 1A

Let us first consider the issue of unification in Model 1A, where we can solve the Fi = 0
equations exactly, giving us conditions on the singlet VEVs to ensure that mass terms for
the exotics do not break supersymmetry at some high scale. We must check that we can
consistently give some exotics intermediate scale mass, while maintaining supersymmetry.

It turns out that giving only brane localized exotic matter intermediate scale mass will
not give gauge coupling unification in this model. This can be seen as follows: in order
to get unification, we need bEX

3 − bEX
2 > 0, otherwise the prediction for the string scale

is MS . 1015 GeV . The states which contribute to this difference are (see Table H.4, for
example)

v ≡ (3, 1)1/3,−2/3,m ≡ (1,2)0,∗ and y ≡ (1,2)0,0. (3.15)

The mass matrices for the y and v turn out to be the same, which means that we always
get an equal number v + v̄ and y + y with the same mass. One can check in Table H.7 that
there are no solutions in which the number of v + v̄ is less than or equal to the number of
y+y. Conversely, one can see this from Equation (3.7a). If n2 ≥ n3, the string scale must be
smaller than the GUT scale (assuming MS > MEX), which (as we have previously argued)
is not physical. Thus we must give some bulk exotic matter intermediate scale mass as
well.

In giving bulk matter mass, we are severely limited in our options. For one, the require-
ment that bG < 0 means that we can only keep two extra pair of 6 + 6c light. Further, there
is only one pair of extra down quarks and the states δ + δ̄. In the first case, the extra d+ d̄

pair comes in an SU(6) multiplet with an extra ` + ¯̀, both of which have (++) boundary
conditions, and both of which couple in the same way to the singlet fields (to sixth order,
and likely to all orders). This means that they must get the same mass, and we cannot get
bEX
3 − bEX

2 > 0 in this manner. The remaining option is that we find an assignment of singlet
VEVs to give one pair of δ + δ̄ intermediate scale mass.
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Let us be a bit more explicit about how one would accomplish this, starting with a brief
examination of the δs. The mass matrix for the δs looks like

Mδδ̄ =



0 B1 B2 0 0 0
B3 A1 A2 0 0 0
B4 A3 A4 0 0 0
0 0 0 C1 C2 D1

0 0 0 C3 C4 D2

0 0 0 D3 D4 0


, (3.16)

where Ai, Bi, Ci and Di are functions of singlet fields. Let us concentrate on the upper left
block of this matrix, which involves only Ai and Bi. (The expressions for Ci and Di are
long and unenlightening, and not essential for the discussion here.) In general, the entries
in the matrix have the following form:

Ai ∼ 1
M5

S

s1 · s5 · s6 · s18 · (h1 · h10 + h2 · h9) , (3.17)

Bi ∼ 1
M5

S

s5 · s6 (h10 · h1 + h9 · h2) · (h1 · h2 + s17 · s18) . (3.18)

Naively, diagonalizing this block gives one zero eigenvalue, which means that there are
two linear combinations of the δs that are massless. However, one must remember that the
string selection rules only give us the form of the Yukawa couplings, and not their exact
magnitudes. In general, this means that we should be calculating N point correlation
functions on the orbifold in order to get the exact Yukawa couplings in the theory. In
particular, it is important to remember that the δs live at different orbifold fixed points,
and the interaction eigenstates are a linear superposition of these “orbifold eigenstates”.
Returning to Equation (3.17), we see that if we require

〈s1〉 ∼ MEX,

All other singlets ∼ MS, (3.19)

we naturally get one eigenstate with mass of orderMEX, and five heavy (∼MS) eigenstates.
We note that there is some dependence on 〈s1〉 in theCi andDi at fifth order in the singlets,
however, there is no dependence at sixth order, suggesting that these terms (in general)
dominate the much smaller fifth order terms.
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Next we consider the the v + v̄ and y + y. The mass matrices for these states are 2 × 2
and identical, and after they are diagonalized we find (ignoring constants of order one)

m ∼ s25

{
1 +

1
M2

S

(s26 · s15 + s26 · s16) +
1
M4

S

(
s2

26 · s15 · s16 + s2
26 · s2

16 + s2
26 · s2

15

)
+

+
1
M5

S

(s4 · s6 · s9 · s30 · s18)
(
s11 ± s5

s25

)}
. (3.20)

It is clear that the following set of singlet VEVs is consistent with giving 2× (v + v̄) + 2×
(y + y) a mass at MEX:

〈s1〉 ∼ 〈s25〉 ∼ MEX,

All other singlets ∼ MS. (3.21)

Note that we do rely here on some suppression in the sixth order term, so that it does not
give an overwhelming (i.e., O(MS)) contribution to the mass term. This may be viewed as
an additional tuning in the singlet VEVs, on the order of one part in ten or twenty.

Finally we check whether the VEV assignment (3.21) is consistent with having some
number of (1, 1)1,∗ + (1, 1)−1,∗ pairs with mass ∼ MEX. In general, the charged singlet
mass matrix (if we ignore the possibility of intermediate scale mass for the f̄+ + f−) is
14 × 14 with equally complicated eigenvalues, so we will omit the details of this analysis.
Nevertheless, if we proceed in the same manner, we do find two linear combinations of
singlets (s+ and s−) whose mass terms depend explicitly on the VEV 〈s25〉, giving them
naturally small mass terms.

We conclude that unification is possible in principle in Model 1A. Specifically, in the
absence of accidental cancellations, and assuming that higher order terms in the superpo-
tential are negligible (such that the light linear combination of the δs remains light), we
have found one version of Model 1A that gives us gauge coupling unification. Namely, if
we assume order one coefficients in the mass matrices, and that

〈s1〉 ∼ 〈s25〉 ∼MEX, All other singlets ∼MS, (3.22)

we have exactly the following matter content in the theory with mass on the order of MEX:

2× [v + v̄] + 1× [y + y] + 2× [s+ + s−
]

+
[
δ + δ̄

]
.

This corresponds to the solution marked with an arrow (⇒) in Table H.8 on page 15731.
This gives us a prediction for the intermediate scale, the compactification scale, the string

31Note that the states y are doublets under a hidden sector SU(2), so that 1 × [y + y] ∼ 2 ×
[(1,2)0,∗ + (1,2)0,∗]
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scale, and proton decay coming from dimension six operators:

MEX ∼ 1.9× 109 GeV ,

MC ∼ 2.2× 1017 GeV ,

MS ∼ 1.0× 1018 GeV ,

τ(p→ e+π0) ∼ 1.2× 1038 y. (3.23)

It is worth pointing out that this solution is not yet ruled out by the current bounds on
proton decay, a fact which was not guaranteed. This model is pictured in the small red box
in Figure 3.4 on page 64.

We note that the other option that one may try is, for example

〈s11〉+ 〈s5〉 ∼MS, 〈s11〉 − 〈s5〉 ∼MEX, 〈s25〉 ∼ 〈s1〉 ∼MEX. (3.24)

This is a tuning to one part in MS/MEX, and is consistent with F = 0, which is discussed
below. This gives us one pair of v + v̄ and one y, and one pair of δ + δ̄ with exotic scale
mass, assuming that we can’t neglect the sixth order term in Equation (3.20). The problem
that one may encounter is with the charged singlets. Taking 〈s25〉 ∼ MEX generally gives
one at least two charged singlets with mass at the intermediate scale, so one may need an
additional tuning in that sector of the theory in order to realize one of the solutions in Table
H.8.

F = 0

Let us now comment on the compatibility of these solutions with the constraint of F = 0
in the case of Model 1A. If we set all of the coefficients in the superpotential to one, the F
flatness conditions can be solved exactly in this model. In units where MS ≡ 1, we find the
following relationships among the singlet VEVs:

s22 = − 1
s20 + s21

(h1h2 + s17s18)− s23, (3.25)

s26 = − 1
s15 + s16

, (3.26)

s1 =
s15 + s16

s18

{
h1h10 + h2h9 + s17s25 + s18s27

+ (s15 + s16) s30 + (s20 + s21) s31

}
. (3.27)

The task is to now assign arbitrary VEVs to everything except s22, s26, and s1, and look for
solutions where s1 ∼ s25 ∼ MEX. The tuning in this model is evident in Equation (3.27). It
is clear that there must be a cancellation on the right hand side of the equation to one part
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in MS/MEX. In general, one has no trouble finding numerical solutions to these equations
such that s1 ∼ s25 ∼MEX, while all other singlets have VEVs near the string scale.

One may object to the fact that we did not include superpotential coefficients in Equa-
tion (3.25) - (3.27), as it is clear that decoupling depends on these coefficients not being
set to one. Solving the F flatness conditions with arbitrary superpotential coefficients is a
computationally intensive problem. However, we expect that the inclusion of such coeffi-
cients will not significantly alter our conclusions.

3.4.2 Model 2

The exotic matter content of Model 2 is listed in Table H.4. The brane localized states which
contribute to the differential running α−1

3 − α−1
2 are

v ≡ (3, 1)1/3,−4/3,m ≡ (1,2)0,∗ and y ≡ (1,2)0,0. (3.28)

In Model 2 we have

4× (v + v̄) + 2× (y + y) + 2× (m+m) + 20× (s+ + s−) + 2× (x+ + x−), (3.29)

where x± are defined in Table H.4.
The mass matrix for the v is a 4 × 4 block diagonal matrix. The blocks are both 2 × 2,

and the upper block turns out to be equivalent to the (2 × 2) mass matrix for the ys. By
choosing

〈h2〉 ∼ 〈s43〉 ∼MEX, All other singlets ∼MS, (3.30)

we find 4 × (v + v̄) + 2 × (y + y). The problem with the VEV assignment in Equation
(3.30) is that we get too many charged singlets, so we will need to rely (heavily) on tuning
arguments. Thus we conclude that for Model 2 to be consistent with gauge coupling uni-
fication, we must arrange a conspiracy among the singlet VEVs, such that we get intricate
cancellations in the charged singlet sector.

3.5 Conclusions

We have addressed the question of gauge coupling unification in a class of 15 “mini-
landscape” models [38] with properties very similar to the MSSM. We analyze these E8×E8

weakly coupled heterotic string models compactified on an anisotropic orbifold with one
large (R) and five small (lS) extra dimensions, where R � lS and lS is the string length.
All of these theories can then be described in terms of an effective 5D SU(6) orbifold GUT
field theory with compactification scale MC = 1/R and cut-off scale MS = 1/lS. SU(6) is
broken to the MSSM gauge group by orbifold boundary conditions at MC and gauge cou-
plings must unify at the cut-off scale, MS. Moreover, in an orbifold GUT field theory, this
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is accomplished with the aid of Kaluza-Klein modes which contribute to the RG running
above the compactification scale, MC.

In all 15 models the electroweak Higgs doublets reside in the (effective 4D, N = 2)
vector multiplet, hence the models satisfy “gauge-Higgs unification.” In addition the third
family of quarks and leptons are “bulk” modes, while the two lighter families are “brane”
states. Although “gauge-Higgs unification” may be well-motivated by aesthetics, we prove
in Appendix C that gauge coupling unification is not possible if one only includes MSSM
states and their KK towers. Thus it is necessary to also include the possible contribution
of vector-like exotics to the RG running. To simplify the analysis, we assume a small set of
exotics obtain mass at a scale MEX < MC with the remainder obtaining mass at MS. Using
an effective field theory analysis, we find many solutions to gauge coupling unification
labeled by the different inequivalent sets of exotics with mass at MEX. These solutions are
found in Tables H.7 - H.10, on pages 156 - 159.

We have analyzed two models in more detail (Models 1A and 2 [38]), since for these
models we have the superpotential up to order 6 in MSSM singlets. In this case, we have
shown that one of our solutions (in Model 1A) is consistent with string theory in a super-
symmetric vacuum with F = 0, if we tune the singlet VEVs appropriately in Equation
(3.27). On the other hand, for the case of Model 2, although there are many effective field
theory solutions, we have not been able to demonstrate the existence of a simple string
vacuum solution with F = 0. In this case, a solution may still be possible, however, it
would require more fine-tuning.

Since quarks and leptons of the first two families are located on an effective SU(5)
brane, they are subject to proton decay processes mediated by gauge exchange at the com-
pactification scale MC. Moreover, since MC is generically less than the 4D GUT scale, the
proton decay rate for the process p→ e+π0 is enhanced. Thus 80% of the models satisfying
gauge coupling unification are excluded by Super-K bounds on proton decay. Most of the
other models can be tested at a future proton decay detector.

All of the “mini-landscape” models have an exact R parity, so they do not suffer from
dimension 3 or 4 baryon and/or lepton number violating processes. Moreover, the LSP
is stable and a possible dark matter candidate. However, unlike 5D or 6D orbifold GUT
field theories studied in the literature, these models suffer from uncontrolled dimension 5
operator contributions to proton decay. In particular, some of the vector-like exotics have
quantum numbers of color triplet Higgs multiplets. When given mass at MS or MEX they
induce dimension 5 proton decay operators. Although it may be possible to fine-tune
the coefficients of these operators to be small, it would be preferable to have a symmetry
argument. This problem needs to be addressed in any future string model building.

As noted, all of the models studied in this analysis have a 5D (or 6D) SU(6) orbifold
GUT limit. The complete spectrum of the 6D model (prior to the final Z2 orbifold and
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Wilson line, A2) is given in Table H.3. It is very interesting to note that the spectrum is
identical with the spectrum found in an E8×E′8 heterotic string compactified on a smooth
K3 × T 2 manifold with instantons embedded in the E8 × E′8 gauge groups [117]. This
suggests that these models may be obtained by the final Z2 orbifolding of these smooth
manifolds.

In conclusion, we have shown that gauge coupling unification may be accommodated
in the present class of string models. However, a simple solution, without including
vector-like exotics below the string scale, was not possible. This appears to be a general
conclusion stemming from the particular implementation of “gauge-Higgs unification” in
these models. Finally, any future string model building needs to address the general prob-
lem of uncontrolled dimension 5 baryon and lepton number violating operators.
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Chapter 4
THE STRING COUPLING IN A CLASS OF

STRINGY ORBIFOLD GUTS

4.1 Motivation

In Chapter 3 it was shown how the mini-landscape models [34–38] could accommodate
gauge coupling unification in the 5D orbifold GUT limit. Given the exotic matter content
of the two benchmark models outlined in Reference [38], we found (using an effective field
theory analysis) 252 ways to achieve unification by varying the cutoff MS in the effective
field theory, the compactification scale MC, and (most importantly) the spectrum of “light”
exotics with mass MEX. Of the 252 different solutions found, 48 were not already ruled out
by current (dimension six) proton decay bounds. By assigning VEVs to MSSM singlets,
we were able to show how one could realize one of these solutions in the “Model 1A”
of Reference [38]. In addition, the solution described in [30] satisfies the constraints for
unbroken low energy supersymmetry: F = D = 0. This latter feature is essential if we are
to understand the origin of the hierarchy between the electroweak and Planck scales.

In this Chapter we address the important question of whether any of these construc-
tions are consistent with a perturbative string expansion. We find a simple formula for
the 10D string coupling gSTRING (see Eqn. 4.6) and show that the constraint gSTRING < 1 is
correlated with the longevity of the proton. Of course, this result applies only to a very
small, even minuscule, portion of the string landscape; however, the relevant question is
whether or not it is applicable to those very constrained portions of the string landscape
where the minimal supersymmetric standard model can be shown to reside.

4.2 The Starting Point

The models of Reference [38] are derived from an orbifold compactification of the weakly
coupled heterotic string: formally T 6/Z6-II, which can be parameterized by the root lattice
G2 × SU(3)× SO(4). By varying the VEVs of the T (size) and U (shape) moduli associated
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with the SO(4) lattice, it was shown in References [39–41] that one can achieve a stringy
embedding of the highly successful orbifold GUT picture [84–86, 90]. In the literature, this
has been called “anisotropic” string compactification [39, 41, 99–101, 118]. The problem, of
course, is that the GUT coupling constant in the effective four dimensional theory is pro-
portional to the ten dimensional Yang-Mills coupling (and thus the string coupling, gSTRING)
by a factor of one over the volume of the six-dimensional compactification. The require-
ment of acceptable unification in the low energy effective field theory may be inconsistent
with the requirement that the underlying string theory be weakly coupled (gSTRING . 1),
depending on the precise relationship between the two parameters.

By demanding that the underlying heterotic string theory still be perturbative (i.e.,
weakly coupled), we show how one can further constrain the parameter space of our
models—in fact, of the 252 solutions which were found in Reference [30], only 28 of them
turn out to have gSTRING < 1, see Table H.10 on page 159. Moreover, all of these 28 mod-
els have a long lived proton, with τ(p → π0 e+) & 1034 y. Because the proton lifetime
is proportional to the fourth power of the compactification scale, and the string coupling
gSTRING is inversely proportional to the volume of the compact space, there is a correlation
between MC, gSTRING and MS, which we make explicit. This means that the question of
weak string coupling is not entirely decoupled from the low energy phenomenology in
these models. In fact, for a reasonable choice of parameters, a long lived proton seems to
be synonymous with weak string coupling. A particularly interesting detail is that the same
example which we constructed in Section 4 of Reference [30] will survive this round of
scrutiny, with gSTRING ∼ 0.5. In addition, all but one of the nine models which were cate-
gorized as “interesting” (see Table 9 in Reference [30]) are eliminated when we require the
string coupling to be small. Thus the requirement that we be in a perturbative regime of
the underlying string theory gives a new, non-trivial constraint on the “mini-landscape”
models. In light of this requirement, we comment on the ability to interpret the models of
References [34–38] as six (and higher) dimensional orbifold GUTs.

4.3 The String Coupling

In a given string compactification, the string coupling is set by the VEV of a scalar field,
called the dilaton. In general, one has g2

STRING ∼ e2φ. In order to find the exact relationship,
one must start from the ten dimensional effective action for the weakly coupled heterotic
string and compactify on some six dimensional manifold. The four dimensional effective
action is [119]

Seff = −
∫
d4x
√
ge−2φV6

{
4
α′4

R+
1
α′3

TR F 2 + · · ·
}
. (4.1)
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where φ is the (ten dimensional) dilaton, V6 is the volume of the compactification, and α′ is
the parameter which sets the string tension. We can identify the coefficient of the gravity
term with Newton’s constant:

4e−2φV6

α′4
≡ 1

16πGN
⇒ GN ≡ α′4e2φ

64πV6
, (4.2)

and the coefficient of the gauge kinetic term with the (four dimensional) Yang-Mills cou-
pling constant32:

e−2φV6

α′3
≡ 1

2g2
GUT

⇒ αGUT ≡ α′3e2φ

8πV6
. (4.3)

The parameter α′ is related to the cutoff in the effective field theory [30, 120]: Λ−2 ≡M−2
S ≈

α′. Note that this parameter was chosen in such a way as to capture the maximum amount
of stringy (threshold) effects in the low energy effective field theory without actually cal-
culating them [120]. Of course, the exact relationship between α′ and MS depends on
the regularization scheme (see for example [74]). In particular, we will take the standard
definition of the string length `S, such that it is related to the cutoff by `S ≡

√
α′

2 ≈ 1
2MS

.
Finally, the compactification scale is given in terms of the radius of the fifth dimension:
`C = R ≡ 1

MC
.

By exploiting the duality between the E8 ⊗ E8 heterotic theory and heterotic-M theory,
Hebecker and Trapletti argued [101] that the proper relationship between the 10D dilaton
and the string coupling constant is given by33

g2
STRING ≡

8e2φ

(2π)7 . (4.4)

This gives us a relationship between the (four dimensional) GUT coupling constant at
the string scale and the string coupling. By eliminating the dilaton dependence between
Equations (4.3) and (4.4) we find

αGUT =
α′3 (2π)6

25V6
g2

STRING (4.5)

Taking five directions compactified at the string length, `S, and one direction compactified
at `C, we find

g2
STRING = αGUT

MS

MC
. (4.6)

32Note that we have normalized the gauge fields such that in the fundamental representation of SU(N) we
have TR (TaTb) = 1

2
δab, which is the standard normalization used for phenomenology. In addition the GUT

coupling αGUT is evaluated at the string scale MS.
33They showed that for gSTRING < 1, the lowest lying massive state is a perturbative heterotic string state,

while for gSTRING > 1 it is a Kaluza-Klein mode of M theory. At the present time, this is the best estimate we
know of for defining the perturbative heterotic string regime.
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Figure 4.1: Histogram of the string coupling of the 252 solutions of Reference [30]. Of the
48 models which were not eliminated previously because of dimension six proton decay,
28 have gSTRING . 1.

Note that it is entirely possible that the effective field theory be weakly coupled, but that
the underlying string theory be strongly coupled.

4.4 Are We Perturbative?

Using the relationship in Equation (4.6), we can examine the 252 different solutions found
in Reference [30]. The results of this analysis are shown in Figure 4.1. Of the 48 models
which were not eliminated previously because of dimension six proton decay, 28 have
gSTRING . 1. There is certainly a preference for strong coupling in these models: this is a
competing effect between the ratio of the string scale to the Planck scale (which sets αGUT)
and the ratio of the string scale to the compactification scale (which sets gSTRING).

In general, however, it is significant that only the models with long lived protons have
small string coupling. As discussed in [30] the proton lifetime scales as (MC

4/α2
GUT). Then

using the relation between αGUT and the Planck scale

α−1
GUT =

1
8

(
MPL

MS

)2

(4.7)
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obtained by combining Equations (4.2) and (4.3), and the dimension 6 operator contribu-
tion to the proton decay rate (see Reference [30]), we obtain the following useful formula
for the proton lifetime:

τ(p→ π0e+) ∼= 5.21× 1040

(
MC

MS

)4

yr. (4.8)

We can then re-write Equation (4.6) as

g2
STRING = αGUT

(
5.21× 1040 yr
τ(p→ π0e+)

)1/4

. (4.9)

The current (published) limit on the proton lifetime [? ]

τ(p→ e+ + π0) > 1.6× 1033 yr (4.10)

implies that

g2
STRING . 600

M2
S

M2
PL

, (4.11)

where we have inserted the definition of αGUT in terms of the Planck scale, Equation (4.7).
If we take a typical value for the string scale ∼ 5.0 × 1017 GeV and the Planck scale ∼
1.2× 1019 GeV , we find that

g2
STRING . 1. (4.12)

Another interesting point is that the model described in Section 4 of Reference [30] has
a small string coupling. There, we found MC ∼ 2.2× 1017 GeV and MS ∼ 1.0× 1018 GeV .
We find gSTRING ∼ 0.5. This is encouraging because we were able to show that that model is
consistent with F = D = 0 and the decoupling of unwanted exotics from the low energy
spectrum.

Of the 48 solutions which we found in Reference [30], we isolated a handful (9) which
exhibited only moderate hierarchies between the scales in the problem. When we look at
the string coupling using Equation (4.6), however, we see that only one of them can be
derived from a model at weak coupling. Unsurprisingly, this is also the model with the
largest value of MC and thus the longest lived proton.

Note that in all of the models with gSTRING < 1, the compactification scale MC is above
or equal the 4D GUT scale: see Table H.10 on page 159. Hence the threshold corrections
in these models, which focus the 3 low energy couplings, come predominantly from the
contribution of the exotics with mass MEX. This result is particularly model dependent.
While the KK modes contribute the universal power law running which allows the the-
ory to satisfy the weakly coupled heterotic string boundary condition, Equation (4.7), they
also contribute to the differential running in a way which does not focus the 3 gauge cou-
plings. It is the exotic matter at the intermediate scale which furnishes a contribution to
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the differential running, allowing for MC & MGUT. However, it is possible that in other
string models the KK modes alone would be sufficient to both satisfy the weakly coupled
heterotic string boundary condition and focus the 3 gauge couplings.

Finally, we note that the models described in Reference [38] can be interpreted as six
dimensional orbifold GUTs. If this is the case, then the relationship in Equation (4.6) will
be amended:

g2
STRING = 2

M2
S

M5M6
αGUT = 16

M4
S

M5M6M2
PL

, (4.13)

where `5(6) ≡ M−1
5(6) is the radius of the fifth (sixth) direction. In this case, it seems equally

likely that a weakly coupled model can be constructed. If we take, for example, M5 ∼
M6 ∼ MC, and the typical value of MS ∼ 5 × 1017 GeV , we find gSTRING . 1 requires
MC & 8× 1016 GeV .

Taking more directions larger than the string length pushes us toward stronger and
stronger coupling, and it seems likely that if this is the case then some other directions
would have to be smaller than the string length. This can be seen by looking at the gen-
eral relationship between gSTRING and the other scales in the problem. If we take n extra
dimensions to be large, we find

g2
STRING = 2n+2 Mn+2

S

MC
nM2

PL

. (4.14)

If we take n = 3, and a typical string scale, we find that MC & 3× 1017 GeV .

4.5 Conclusion

In this Chapter, we have analyzed the string coupling in a class of highly successful models
based on anisotropic compactifications of the weakly coupled heterotic string. Of the 252
different solutions consistent with gauge coupling unification found in Reference [30], 48
were not already ruled out by current (dimension six) proton decay bounds. In this paper,
out of the 48 solutions (not eliminated by the non-observation of proton decay) we find 28
which are consistent with a weakly coupled heterotic string, gSTRING < 1 (see Figure 4.1).

We also pointed out an interesting correlation between the string scale, the Planck scale,
and the compactification scale (which sets the proton lifetime). Specifically, a proton life-
time consistent with current bounds on dimension six operators seems to require weak
coupling, for a reasonable choice of parameters. Moreover, we were able to show that one
specific (and very well-motivated) example does require gSTRING ∼ 0.5.

For all cases with gSTRING < 1, the compactification scale MC is above or equal the
4D GUT scale, MGUT ∼ 3 × 1016 GeV. Hence the threshold corrections in these models,
which focus the 3 low energy couplings, come predominantly from the contribution of the
exotics with mass MEX. While the KK modes contribute the universal power law running
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which allows the theory to satisfy the weakly coupled heterotic string boundary condition,
Equation (4.7), they also contribute to the differential running in a way which does not
focus the 3 gauge couplings. It is the exotic matter at the intermediate scale which furnishes
a contribution to the differential running, allowing for MC & MGUT. This result is model
dependent and it is possible that in other string models the KK modes alone would be
sufficient to both satisfy the weakly coupled heterotic string boundary condition and focus
the 3 gauge couplings.

Finally, we commented on extensions of this work to six (and higher) dimensional or-
bifold GUTs—barring large threshold corrections from somewhere else (i.e., higher dimen-
sional operators), it seems possible to construct models which are consistent with the weak
coupling ansatz in six dimensions. However, in going to higher dimensions, it seems likely
that one would have to look for models in which some of the compact directions had radii
smaller than the string length.
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Chapter 5
MODULI STABILIZATION IN ORBIFOLD

COMPACTIFICATIONS OF THE
HETEROTIC STRING

5.1 Motivation

In a supersymmetric gauge theory, moduli are scalar fields that have no potentials at tree
level. Furthermore, the supersymmetric non-renormalization theorem prevents a potential
from being generated for the moduli by radiative corrections. Thus, a modulus can have
no potential in a gauge theory with unbroken supersymmetry.

The low energy limit of heterotic string theory compactified on an orbifold is D =
4,N = 1 supergravity (SUGRA) coupled to E8 ⊗ E8 or SO(32) gauge theory. Aside from
the gauge bosons, the low energy effective field theory also contains several moduli which
parametrize the coupling constant of the gauge theory and the details of the compact di-
mensions. For example, the Yang-Mills action in the low energy theory actually comes
from a dimension five operator:

LYM ⊃ S + S̄

MPL
FµνFµν . (5.1)

S is a modulus, thus it can have no potential if SUSY is unbroken. This corresponds to
a gauge theory without a coupling constant, which is clearly unphysical. In order to get
realistic phenomenology from our heterotic string compactifications, we must address the
issue of moduli stabilization.

One option for stabilizing moduli is to rely on radiative corrections to generate a poten-
tial [121], which can (in principle) occur if supersymmetry is broken by some other sector
of the theory. If this were possible, one would expect 〈S〉 to be of order the SUSY breaking
scale:

〈S〉 ∼ ΛSUSY. (5.2)
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Low energy data (see Figure 1.8), together with Equation (5.1) seem to imply that 〈S〉 ∼
O (MPL). Thus we are left to accept either non-perturbative unification (gGUT >> 1) or
Planck scale supersymmetry breaking, both of which are phenomenologically undesir-
able.34

There is hope: the SUSY non-renormalization theorems make concrete statements about
perturbative physics, and do not apply to non-perturbative effects. Past work to stabilize
the dialton in the heterotic string orbifold compactifications [122, 123] has relied on the
“Racetrack” mechanism [124]. Because the Yang-Mills coupling is (inversely) proportional
to the VEV of S, the competing non-perturbative effects (which always go like e1/g2

) caused
when two non-Abelian groups of become strongly coupled at roughly the same scale can
generate a potential for S once gravitational corrections are included.35 Multiple gauge
groups of “large” rank are common features of the heterotic constructions, however, it was
generically found that the moduli either ended up in anti-de Sitter vacua, or that the ranks
of the condensing gauge groups needed were too large. While the latter problem suggests
that E8 ⊗ E8 or SO(32) are just too small, the former problem requires that one find an
additional source of “up-lifting” in the scalar potential.

The problem of stabilizing moduli in anti-de Sitter minima is a generic one in string-
derived SUGRA theories, and there have been several attractive mechanisms in the liter-
ature which suggest various sources for up-lifting a generic SUGRA scalar potential. In
Reference [127], for example, up-lifting was achieved when a D3 brane was introduced
into a IIB background, explicitly breaking SUSY at the Planck scale. A dynamical solution
was presented in Reference [128], where the up-lifting came from a dynamically gener-
ated mass term, which arose because F = 0 and D = 0 could not be mutually satisfied.
Other examples include Kähler up-lifting, where the leading α′ corrections to the IIB [129]
and heterotic [130] Kähler potentials were considered, and D Term up-lifting [131, 132],
where non-zero D terms provide a positive definite contribution to the scalar potential.
In fact, the common theme is that up-lifting and SUSY breaking are always tied together:
whatever dynamics gives a positive definite contribution to the vacuum energy must nec-
essarily break supersymmetry.

Thus, aside from the highly non-trivial goals of producing something that has the cor-
rect gauge groups, particle content, and Yukawa interactions to be called a proper UV
completion of the Standard Model, the aim of the string phenomenologist is two-fold. On
the one hand, we would like to understand moduli stabilization within the context of any
(semi-) realistic string model. On the other hand, any such model must also contain some
interesting dynamics which drive SUSY breaking at an acceptable scale, and provide a

34We expect that the T andU moduli (which are related to the volume and shape of the compact dimensions)
are stabilized at O (1) values as well.

35The size and shape moduli (T and U , respectively) may be stablized by considering the modular invari-
ance of the underlying string theory, a fact which we will use later [125, 126].
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source of up-lifting in the scalar potential to avoid anti-de Sitter vacua. Both issues are
vitally important when it comes to understanding what is going on at energy scales that
are practically accessible: the moduli fix the coupling constants (among other things) in
the low energy theory, and the up-lifting sector breaks SUSY and generates the terms in
the soft SUSY breaking lagrangian.

The crucial progress in this work is to demonstrate that this can all be accomplished
with ingredients that one can find in a generic heterotic string orbifold compactification,
without relying on uncalculable non-perturbative corrections to the Kähler potential. In
Section 5.2 we summarize the general structure of the Kähler and superpotential in het-
erotic orbifold models. The models have a perturbative superpotential satisfying modular
invariance constraints, an anomalous U(1)A gauge symmetry with a dynamically gener-
ated Fayet-Iliopoulos D- term and a hidden QCD-like non-Abelian gauge sector generat-
ing a non-perturbative superpotential. In Section 5.3 we consider a simple model with a
dilaton, S, one volume modulus, T , and three standard model singlets. We obtain a ‘hy-
brid KKLT’ kind of superpotential that behaves like a single-condensate for the dilaton S,
but as a racetrack for the T and, by extension, also for the U moduli. An additional matter
F term, driven by the cancelation of an anomalous U(1)A D-term, is the seed for success-
ful up-lifting. Whereas previous work required multiple condensates, or relied on explicit
mass scales [131–140], we find that we can dynamically stabilize all of our moduli with a
single non-Abelian hidden sector.36 In Section 5.4 we discuss the other moduli and their
stabilization. We conclude that a single gaugino condensate is sufficient to break super-
symmetry, stabilize all the moduli and generate a de Sitter vacuum. Finally in Section 5.5
we evaluate the SUSY particle spectrum relevant for the LHC. The main results from this
analysis are listed in Tables H.15 and H.16 in Appendix H.

5.2 General structure

In this section we consider the supergravity limit of heterotic orbifold models, focus-
ing on the “mini-landscape” models for definiteness. We discuss the general structure
of the Kähler potential, K , the superpotential, W , and gauge kinetic function, fa for
generic heterotic orbifold models. The “mini-landscape” models are defined in terms of a
Z6-II orbifold of the six internal dimensions of the ten dimensional heterotic string. The
orbifold is described by a three dimensional “twist” vector v, which acts on the compact

36It was found that 90% of the models in the mini-landscape survey had a hidden sector gauge group with
rank larger than four [38]. A survey of realistic free fermionic models found that roughly 65% had hidden
sector gauge groups with rank four or larger [141].
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directions. We define the compact directions in terms of complex coordinates:

Z1 ≡ X4 + iX5,

Z2 ≡ X6 + iX7, (5.3)

Z3 ≡ X8 + iX9.

The twist is defined by the action Zi → e2πiviZi for i = 1, 2, 3, and for Z6-II we have
v = 1

6(1, 2,−3) or a (60◦, 120◦, 180◦) rotation about the first, second and third torus, re-
spectively. This defines the first twisted sector. The second and fourth twisted sectors are
defined by twist vectors 2v and 4v, respectively. Note, the third torus is unaffected by this
twist. In addition, for the third twisted sector, generated by the twist vector 3v, the second
torus is unaffected. The fifth twisted sector, given by 5v contains the CP conjugate states
from the first twisted sector. Twisted sectors with un-rotated tori containN = 2 supersym-
metric spectra, which has consequences for the non-perturbative superpotential discussed
in Section 5.2.3. Finally, these models have three bulk volume moduli, Ti, i = 1, 2, 3 and
one bulk complex structure modulus, U , for the third torus.

5.2.1 Anomalous U(1)A and Fayet-Illiopoulos D-term

The orbifold limit of the heterotic string has one anomalous U(1)A symmetry. The dilaton
superfield S, in fact, transforms non-trivially under this symmetry. Let VA, Va be the gauge
superfields with gauge covariant field strengths, Wα

A ,W
α
a , of gauge groups, U(1)A, Ga,

respectively. The Lagrangian in the global limit is given in terms of a Kähler potential
[63, 64, 142–144]

K = − log
(
S + S − δGSVA

)
+
∑
a

(
Qae

Va+2qaVAQa + Q̃ae
−Va+2q̃aVAQ̃a

)
(5.4)

and a gauge kinetic superpotential

W =
1
2

[
S

4

(∑
a

kaTR Wα
aWαa + kATR Wα

AWαA

)
+ h.c.

]
. (5.5)

Note qa, q̃a are the U(1)A charges of the ‘quark’, Qa, and ‘anti-quark’, Q̃a, supermultiplets
transforming under Ga.

Under a U(1)A super-gauge transformation with parameter Λ, one has

δAVA = −i (Λ− Λ̄
)
/2,

δAS = −iδGS
2

Λ, (5.6)
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and
δAΦ = iqΦΛΦ (5.7)

for any charged multiplet Φ. The combination

S + S − δGSVA (5.8)

is U(1)A invariant. δGS is the Green-Schwarz coefficient given by

δGS = 4
TR QA
192π2

=
(qa + q̃a)Nfa

4π2
(5.9)

where the middle term is for the U(1)A gravity anomaly and the last term is for the U(1)A×
(Ga)

2 mixed anomaly.
The existence of an anomalous U(1)A has several interesting consequences. Due to the

form of the Kähler potential (Equation (5.4)) we obtain a Fayet-Illiopoulos D-term given
by

ξA =
δGS

2
(
S + S

) = −1
2
δGS ∂SK (5.10)

with the D-term contribution to the scalar potential given by

VD =
1

S + S

(∑
a

XA
a ∂aK φa + ξA

)2

(5.11)

whereXA
a are Killing vectors for U(1)A. Clearly the perturbative part of the superpotential

must be U(1)A invariant, but U(1)A invariance constrains the non-perturbative superpo-
tential. In particular, if the dilaton appears in the exponent, the product eqΦSΦδGS/2 is
U(1)A invariant, as it must be.

5.2.2 Target space modular invariance

In this section, we wish to present the modular dependence of the gauge kinetic function,
the Kähler potential, and of the superpotential in as general a form as possible. Most stud-
ies in the past have worked with a universal T modulus, and neglected the effects of the U
moduli altogether. Such a treatment is warranted, for example, in the Z3 orbifolds where
there are no U moduli. If we want to work in the limit of a stringy orbifold GUT [39] which
requires one of the T moduli to be much larger than the others, or in the Z6-II orbifolds,
however, it is impossible to treat all of the T and U moduli on the same footing.

Consider the SL(2,Z) modular transformations of T and U given by [145–156]37

T → aT − ib
icT + d

, ad− bc = 1, a, b, c, d ∈ Z, (5.12)

37For an excellent review with many references, see [157].

83



and

log
(
T + T̄

)→ log
(

T + T̄

(icT + d)(−icT̄ + d)

)
. (5.13)

The Kähler potential for moduli to zeroth order is given by:

K = −
h(1,1)∑
i=1

log
(
T i + T̄ i

)− h(2,1)∑
j=1

log
(
U j + Ū j

)
= −

3∑
i=1

log
(
T i + T̄ i

)− log
(
U + Ū

)
(5.14)

where the last line applies to the “mini-landscape” models, since in this case h(1,1) =
3, h(2,1) = 1. Under the modular group, the Kähler potential transforms as

K → K +
h(1,1)∑
i=1

log |iciT i + di|2 +
h(2,1)∑
j=1

log |icjU j + dj |2. (5.15)

The scalar potential V is necessarily modular invariant. We have

V = eG
(
GIG

IJ̄GJ̄ − 3
)

(5.16)

where G = K + log |W |2. Hence for the scalar potential to be invariant under the modular
transformations, the superpotential must also transform as follows:

W →
h(1,1)∏
i=1

h(2,1)∏
j=1

(iciT i + di)−1(icjU j + dj)−1W ,

W̄ →
h(1,1)∏
i=1

h(2,1)∏
j=1

(−iciT̄ i + di)−1(−icjŪ j + dj)−1W̄ . (5.17)

This can be guaranteed by appropriate powers of the Dedekind η function multiplying
terms in the superpotential.38 This is due to the fact that under a modular transformation,
we have

η(T )→ (icT + d)1/2η(T ), (5.18)

up to a phase, where

η(T ) = exp(−πT/12)
∞∏
n=1

(
1− e−2πnT

)
. (5.19)

38These terms arise as a consequence of world-sheet instantons in a string calculation. In fact, world sheet
instantons typically result in more general modular functions [150–156].
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The transformation of both the matter fields and the superpotential under the modular
group fixes the modular dependence of the interactions. A field in the superpotential
transforms as

ΦI → ΦI

h(1,1)∏
i=1

h(2,1)∏
j=1

(
iciT

i + di
)−niI (icjU j + dj

)−`jI . (5.20)

The modular weights niI and `jI [75, 100] depend on the localization of the matter fields
on the orbifold. For states I in the ith untwisted sector, i.e., those states with internal
momentum in the ith torus, we have niI = `iI = 1, otherwise the weights are 0. For twisted
sector states, we first define ~η(k), which is related to the twisted sector k(= 1, . . . , N − 1)
and the orbifold twist vector v by

ηi(k) ≡ kvi mod 1. (5.21)

Further, we require ∑
i

ηi(k) ≡ 1. (5.22)

Then the modular weight of a state in the kth twisted sector is given by

niI ≡ (1− ηi(k)) +N i − N̄ i for ηi(k) 6= 0 (5.23)

niI ≡ N i − N̄ i for ηi(k) = 0.

The N i (N̄ i) are integer oscillator numbers for left-moving oscillators α̃i ( ¯̃αī), respectively.
Similarly,

`iI ≡ (1− ηi(k))−N i + N̄ i for ηi(k) 6= 0 (5.24)

`iI ≡ −N i + N̄ i for ηi(k) = 0.

In general, one can compute the superpotential to arbitrary order in powers of su-
perfields by a straightforward application of the string selection rules [56, 158–160]. One
assumes that any term not forbidden by the string selection rules appears with order one
coefficient. In practice, even this becomes intractable quickly, and we must cut off the
procedure at some low, finite order. More detailed calculations of individual terms give
coefficients dependent on volume moduli due to string world sheet instantons. In general
the moduli dependence can be obtained using the constraint of target space modular in-
variance. Consider a superpotential term for the “mini-landscape” models, with three T
moduli and one U modulus, of the form:

W3 = wIJKΦIΦJΦK . (5.25)
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We assume that the fields ΦI,J,K transform with modular weights niI,J,K and `3I,J,K under
Ti, i = 1, 2, 3 and U , respectively. Using the (net) transformation property of the superpo-
tential, and the transformation property of η(T ) under the modular group, we have (for
non-universal moduli):

wIJK ∼ hIJK
3∏
i=1

η(Ti)γTiη(U)γU

where γTi = −2(1−niI−niJ−niK), γU = −2(1−`3I−`3J−`3K).39 This is easily generalized for
higher order interaction terms in the superpotential. We see that the modular dependence
of the superpotential is rarely symmetric under interchange of the Ti or U . Note, when
minimizing the scalar potential we shall use the approximation η(T )γT ≈ e−bT with b =
πγT /12. (Recall, at large T , we have log(η(T )) ≈ −πT/12.) This approximation misses
the physics near the self-dual point in the potential, nevertheless, it is typically a good
approximation.

As a final note, Wilson lines break the SL(2,Z) modular group down to a subgroup
[161] (see Appendix F). This has the effect of an additional differentiation of the moduli as
they appear in the superpotential. In particular, factors of η(Ti) are replaced by factors of
η(NTi) or η(Ti/N) for Wilson lines in ZN . In summary, the different modular dependence
of twisted sector fields and the presence of Wilson lines leads quite generally to anisotropic
orbifolds [162].

5.2.3 Gauge kinetic function and sigma model anomaly

To one loop, the string-derived gauge kinetic function is given by [76, 99, 100, 163–165]

fa(S, T ) = kaS +
1

8π2

h(1,1)∑
i=1

(
αia − kaδiσ

)
log
(
η(T i)

)2
+

1
8π2

h(2,1)∑
j=1

(
αja − kaδjσ

)
log
(
η(U j)

)2 (5.26)

where ka is the Kač-Moody level of the group, which we will normally take to be 1. The
constants αia are model dependent, and are defined as

αia ≡ `(adj)−
∑
repI

`a(repI)(1 + 2niI).

`(adj) and `a(repI) are the Dynkin indices of the adjoint representation and of the matter
representation I of the group Ga, respectively [61] and niI are modular weights.40 The δiσ

39Note, the constants γTi , γU can quite generally have either sign, depending upon the modular weights of
the fields at the particular vertex.

40If T ra are the generators of the group Ga in the representation r, then we have Tr(T raT rb ) = `a(rep
r
)δab.
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terms are necessary to cancel an anomaly in the underlying σ-model, which induces a
transformation in the dilaton field under the modular group:

S → S +
1

8π2

h(1,1)∑
i=1

δiσ log (iciTi + di) +
1

8π2

h(2,1)∑
j=1

δiσ log
(
icjU

j + dj
)
. (5.27)

It is important to note that the factor

(
αia − kaδiσ

) ≡ b
(N=2)
a (i)
|D|/|Di| (5.28)

where b(N=2)
a (i) is the beta function coefficient for the ith torus. It is non-zero if and only

if the k-th twisted sector has an effective N = 2 supersymmetry. Moreover this occurs
only when, in the k-th twisted sector, the ith torus is not rotated. The factors |D|, |Di|
are the degree of the twist group D and the little group Di, which does not rotate the ith
torus. For example, for the “mini-landscape” models with D = Z6-II we have |D| = 6 and
|D2| = 2, |D3| = 3 since the little group keeping the second (third) torus fixed is Z2 (Z3).
The first torus is rotated in all twisted sectors. Hence, the gauge kinetic function for the
“mini-landscape” models is only a function of T2 and T3.

Taking into account the sigma model anomalies, the heterotic string Kähler potential
has the following form, where we have included the loop corrections to the dilaton [76, 163]

K = − log

S + S̄ +
1

8π2

h(1,1)∑
i=1

δiσ log
(
T i + T̄ i

)
+

1
8π2

h(2,1)∑
j=1

δjσ log
(
U j + Ū j

)
−
h(1,1)∑
i=1

log
(
T i + T̄ i

)− h(2,1)∑
j=1

log
(
U j + Ū j

)
. (5.29)

The first line of Equation (5.29) is modular invariant by itself, and one can redefine the
dilaton, Y , such that

Y ≡ S + S̄ +
1

8π2

h(1,1)∑
i=1

δiσ log
(
T i + T̄ i

)
+

1
8π2

h(1,2)∑
j=1

δjσ log
(
U j + Ū j

)
, (5.30)

where Y is invariant under the modular transformations.

5.2.4 Non-perturbative superpotential

In all “mini-landscape” models [37], and most orbifold heterotic string constructions, there
exists a hidden sector with non-Abelian gauge interactions and vector-like matter carrying
hidden sector charge. In the “benchmark” models [38] the hidden sector gauge group is
SU(4) with chiral matter in the 4 + 4̄ representation.
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φ χ Q1 Q2 Q̃1 Q̃2

U(1)A −1 qχ q1 q2 q̃1 q̃2

SU(N1) 1 1 � 1 �̄ 1
SU(N2) 1 1 1 � 1 �̄

Table 5.1: Charge assignments for the fields in a generic hidden sector. Flavor indices are
suppressed.

In this section let us consider a generic hidden sector with gauge group SU(N1) ⊗
SU(N2)⊗U(1)A, where ‘A’ stands for anomalous. There are Nf1 and Nf2 flavors of quarks
Q1 and Q2 in the fundamental representation (along with anti-quarks Q̃1 and Q̃2, in the
anti-fundamental representations), as well as two singlet fields, called φ and χ. The charge
assignments are listed in Table 5.1. We assume the existence of two moduli, S and T , which
enter the non-perturbative superpotential through the gauge kinetic function, namely f =
f(S, T ). The model also allows for T dependence in the Yukawa sector.

Non-perturbative effects generate a potential for the S and T moduli. Gaugino con-
densation will generate a scale ΛSQCD, which is determined purely by the symmetries of
the low energy theory:

Λa(S, T ) = e
− 8π2

βa
fa(S,T )

, (5.31)

where β = 3`(adj) −∑I `(repI) is the one loop beta function coefficient of the theory. At
tree level fa(S, T ) = S, however, we include the possibility of threshold corrections which
introduce a dependence on the T modulus [76, 163]. We also find that U(1)A and modular
invariance together dictate a very specific form for the non-perturbative superpotential.

In the “mini-landscape” analysis the effective mass terms for the vector-like exotics
were evaluated. They were given as a polynomial in products of chiral MSSM singlet fields
(chiral moduli). It was shown that all vector-like exotics (which carry MSSM quantum
numbers) obtain mass 41 when the chiral moduli obtain VEVs at supersymmetric points in
moduli space. In our example let us, for simplicity, take couplings between the quarks and
the field φ to be diagonal in flavor space. Mass terms of the form

M1(φ, T )Q1Q̃1 +M2(φ, T )Q2Q̃2 (5.32)

41In fact, one of the SU(4) quark- anti-quark pairs remained massless in the two “benchmark” models.
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are dynamically generated when φ receives a non-zero VEV, which we will discuss below.
A key assumption is that those mass terms are larger than the scale of gaugino condensa-
tion, so that the quarks and anti-quarks may be consistently integrated out. If this can be
accomplished, then one can work in the pure gauge limit [166].42

Before we integrate out the meson fields, the non-perturbative superpotential (plus
quark masses) for Nfa < Na is of the form [167]

WNP =
∑
a=1,2

Ma(φ, T )QaQ̃a + (Na −Nfa)

(
Λ3Na−Nfa
a

detQaQ̃a

) 1
Na−Nfa

 , (5.33)

with Ma(φ, T ) = cae
−baTφqa+q̃a where ca is a constant. Note, given the charges for the

fields in Table 5.1 and using Equations (5.6), (5.9) and (5.31), one sees that WNP is U(1)A
invariant. The Kähler potential for the hidden sector is assumed to be of the form

K = − log(S + S)− 3 log(T + T ) + αφφe
−2VAφ+ αχχe

2qχVAχ

+
∑
a=1,2

αa

(
Qae

Va+2qaVAQa + Q̃ae
−Va+2q̃aVAQ̃a

)
. (5.34)

The quantities αφ, αχ, αi are generally functions of the modulus T , where the precise func-
tional dependence is fixed by the modular weights of the fields (see Section 5.2.2). Vi and
VA denote the vector superfields associated with the gauge groups Gi = SU(Ni) and U(1)A.

The determinant of the quark mass matrix is given by

detMa(φ, T ) =
(
cae
−baTφqa+q̃a

)Nfa
. (5.35)

We have taken the couplings between φ and the quarks to have exponential dependence
on the T modulus, an ansatz which is justified by modular invariance (see Section 5.2.2).
Inserting the meson equations of motion and Equation (5.35) into Equation (5.33), we have

WNP =
∑
a=1,2

[
Na

(
cae
−baTφqa+q̃a

)Nfa
Na (Λa(S, T ))

3Na−Nfa
Na

]
.

Note that the transformation of the superpotential under the modular group in Equa-
tion (5.17) also requires that the (non-perturbative) superpotential obey

WNP →
h(1,1)∏
i=1

h(2,1)∏
j=1

(iciT i + di)−1(icjU j + dj)−1WNP. (5.36)

42There is a check on the consistency of this approach: at the end of the day, after calculating the VEVs of
the scalars, we can verify that the mass terms for the quarks are indeed of the correct magnitude.
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Because the non-perturbative lagrangian must be invariant under all of the symmetries of
the underlying string theory, it must be that [122, 123, 125, 164, 168, 169]:

WNP ≡ A× e−aS
h(1,1)∏
i=1

h(2,1)∏
j=1

(
η(T i)

)−2+ 3
4π2β

δiσ
(
η(U j)

)−2+ 3
4π2β

δjσ (5.37)

where a ≡ 24π2

β and β = 3`(adj)−∑I `(repI) is the one-loop beta function coefficient, and
A is generally a function of the chiral matter fields appearing in M. This, coupled with the
one loop gauge kinetic function in Equation (5.26), gives the heterotic generalization of the
Racetrack superpotential.

In the following Section 5.3, we construct a simple model using the qualitative features
outlined in this section. This model is novel because it requires only one non-Abelian
gauge group to stabilize moduli and give a de Sitter vacuum. We have also constructed two
condensate models, however, the literature already contains several examples of the “race-
track” in regards to stabilization of S and T moduli. Moreover in the “mini-landscape”
models, whose features we are seeking to reproduce, there are many examples of hidden
sectors containing a single non-Abelian gauge group [37], while there are no examples
with multiple hidden sectors.

5.3 Moduli stabilization and supersymmetry breaking in the bulk

In this section we construct a simple, generic heterotic orbifold model which captures
many of the features discussed in Section 5.2. In particular, it is a single gaugino con-
densate model with the following fields - dilaton (S), modulus (T ) and MSSM singlets
(φ1, φ2, χ). The model has one anomalous U(1)A with the singlet charges given by (qφ1 =
−2, qφ2 = −9, qχ = 20). The Kähler and superpotential are given by 43

K = − log
(
S + S̄

)− 3 log
(
T + T

)
+ φ1φ1 + φ2φ2 + χχ (5.38)

W = e−bT
(
w0 + χ

(
φ10

1 + λφ1φ
2
2

))
+A φp2 e

−aS−b2T . (5.39)

In addition, there is an anomalous U(1)A D-term given by

DA = 20χχ− 2φ1φ1 − 9φ2φ2 − 1
2
δGS ∂SK (5.40)

with δGS = (q+q̃)Nf
4π2 = Nf/(4π2).

43The coefficient A (Equation (5.39)) is an implicit function of all other non-vanishing chiral singlet VEVs
which would be necessary to satisfy the modular invariance constraints, i.e., A = A(〈φI〉). If one re-scales
the U(1)A charges, qφi , qχ → qφi/r, qχ/r, then the U(1)A constraint is satisfied with r = 15p (assuming no
additional singlets in A). Otherwise we may let r and p be independent. This re-scaling does not affect our
analysis, since the vacuum value of the φi, χ term in the superpotential vanishes.
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In the absence of the non-perturbative term (with coefficient A) the theory has a super-
symmetric minimum with 〈χ〉 = 〈φ1〉 = 0 and 〈φ2〉 6= 0 and arbitrary. This property mir-
rors the situation in the “mini-landscape” models where supersymmetric vacua have been
found in the limit that all non-perturbative effects are neglected. We have also added a con-
stant w0 = w0(〈φI〉) which is expected to be generated (in the “mini-landscape” models)
at high order in the product of chiral moduli due to the explicit breaking of an accidental
R symmetry which exists at lower orders [170].44 The T dependence in the superpotential
is designed to take into account, in a qualitative way, the modular invariance constraints
of Section 5.2.2. We have included only one T modulus, assuming that the others can
be stabilized near the self-dual point [125, 126]. Moreover, as argued earlier, the Ti and U

moduli enter the superpotential in different ways (see Section 5.2.2). This leads to modular
invariant solutions which are typically anisotropic [162].45

Note, that the structure, W ∼ w0e
−bT + φ2 e

−aS−b2T gives us the crucial progress46

i.) a ‘hybrid KKLT’ kind of superpotential that behaves like a single-condensate for the
dilaton S, but as a racetrack for the T and, by extension, also for the U moduli; and

ii.) an additional matter Fφ2 term driven by the cancelation of the anomalous U(1)A D-
term seeds SUSY breaking with successful uplifing.

The constant b is fixed by modular invariance constraints. In general the two terms
in the perturbative superpotential would have different T dependence. We have found
solutions for this case as well. This is possible since the VEV of the χ term in the super-
potential vanishes. The second term (proportional to A) represents the non-perturbative
contribution of one gaugino condensate. The constants a = 24π2/β, b2 and p depend on
the size of the gauge group, the number of flavors and the coefficient of the one-loop beta
function for the effective N = 2 supersymmetry of the torus parameterized by T . For the
“mini-landscape” models, this would be either T2 or T3. Finally, the coefficient of the ex-
ponential factor of the dilaton S is taken to be A φp2. This represents the effective hidden
sector quark mass term, which in this case is proportional to a power of the chiral singlet
φ2. In a more general case, it would be a polynomial in powers of chiral moduli.47 The
exponent p depends in general on the size of the gauge group, the number of flavors and
the power that the field φ2 appears in the effective quark mass term.

44The fields entering w0 have string scale mass.
45Note, we have chosen to keep the form of the Kähler potential for this single T modulus with the factor of

3, so as to maintain the approximate no-scale behavior.
46Note, the constants b, b2 can have either sign. For the case with b, b2 > 0 the superpotential for T is

racetrack-like. However for b, b2 < 0 the scalar potential for T diverges as T goes to zero or infinity and
compactification is guaranteed [125, 126].

47Holomorphic gauge invariant monomials span the moduli space of supersymmetric vacua. One such
monomial is necessary to cancel the Fayet-Illiopoulos D-term (see Appendix E).
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We have performed a numerical evaluation of the scalar potential with the following
input parameters. We take hidden sector gauge group SU(N) withN = 5, Nf = 3 and a =
8π2/N .48 For the other input values we have considered five different possibilities given
in Table H.11 on page 160.49 We find that supersymmetry breaking, moduli stabilization
and up-lifting is a direct consequence of adding the non-perturbative superpotential term.

In our analysis we use the scalar potential V given by

V = eK

 5∑
i=1

5∑
j=1

(
FΦi FΦj K −1

i,j − 3|W |2
)+

D2
A

(S + S̄)
+ ∆VCW

(
Φi,Φi

)
, (5.41)

where Φi,j = {S, T, χ, φ1, φ2} and FΦi ≡ ∂ΦiW + (∂ΦiK )W . The first two terms are the
tree level supergravity potential. The last term is a one loop correction which affects the
vacuum energy and D term contribution.

The one loop Coleman-Weinberg [121] potential is in general given by

∆VCW =
Λ2

32π2
STR

(
M2
)

+
1

64π2
STR

(
M4 log

M2

Λ2

)
(5.42)

with the mass matrix M given by M = M(Φi) and Λ is the relevant cut-off in the problem.
We take Λ = MS ∼ 1017 GeV.

We have not evaluated the full one loop correction. Instead we use the approximate
formula

∆VCW
(
φ2, φ2

)
=
λ2 F 2

2 |φ2|2
8π2

(
log
[
R
(
λ|φ2|2

)2]+ 3/2
)

+ O
(
Λ2
)

(5.43)

where F2 = 〈Fφ2〉 is obtained self-consistently and all dimensionful quantities are ex-
pressed in Planck units. This one loop expression results from the χ, φ1 contributions
to the Coleman-Weinberg formula. The term quadratic in the cut-off is naturally propor-
tional to the number of chiral multiplets in the theory and could be expected to contribute a
small amount to the vacuum energy, of order a few percent timesm2

3/2M
2
PL. We will discuss

this contribution later, after finding the minima of the potential. Finally, note that the pa-
rameters λ, R in Table H.11 on page 160 might both be expected to be significantly greater
than one when written in Planck units. This is because the scale of the effective higher
dimensional operator with coefficient λ in Equation (5.39) is most likely set by some value
between MPL and MS and the cut-off scale for the one loop calculation (which determines
the constant R) is the string scale and not MPL.

48We have also found solutions for the case with N = 4, Nf = 7 which is closer to the “mini-landscape”
benchmark models. Note, when Nf > N we may still use the same formalism, since we assume that all the
Q, Q̃s get mass much above the effective QCD scale.

49Note the parameter relation r = 15p in Table H.11 is derived using U(1)A invariance and the assumption
that no other fields with non-vanishing U(1)A charge enter into the effective mass matrix for hidden sector
quarks. We have also allowed for two cases where this relation is not satisfied.

92



In all cases we find a meta-stable minimum with all (except for two massless modes)
fields massive of O (TeV) or larger. Supersymmetry is broken at the minimum with values
given in Table H.12 on page 160. Note RE [S] ∼ 2.2 and RE [T ] ranges between 1.1 and 1.6.
The moduli χ, φ1 are stabilized at their global minima φ1 = χ = 0 with Fχ = Fφ1 = 0
in all cases. The modulus σ = IM [S] is stabilized at σ ≈ 1 in the racetrack cases 1, 2,
and 3. This value enforces a relative negative sign between the two terms dependent on
RE [T ]. We plot the scalar potential V in the RE [T ] direction for case 2 (b, b2 > 0) (Figure
5.1(a)) and for case 4 (b, b2 < 0) (Figure 5.1(b)). Note the potential as a function of RE [S] is
qualitatively the same for both cases (Figure 5.2).

At the meta-stable minimum of the scalar potential we find a vacuum energy which
is slightly negative, i.e., of order (−0.03 to − 0.01) × 3m2

3/2M
2
PL (see Table H.12 on page

160). Note, however, one loop radiative corrections to the vacuum energy are of order
(NT m

2
3/2M

2
S /16π2) ,where NT is the total number of chiral multiplets [171] and we have

assumed a cut-off at the string scale MS. With typical values NT ∼ O (300) and MS/MPL ∼
0.1, this can easily lift the vacuum energy the rest of the way to give a small positive
effective cosmological constant which is thus a meta-stable local dS minimum. Note that
the constants λ, R have also been used to adjust the value of the cosmological constant as
well as, and more importantly for LHC phenomenology, the value of DA (see Figure 5.3).

The two massless fields can be seen as the result of two U(1) symmetries; the first is
a U(1)R symmetry and the second is associated with the anomalous U(1)A. The U(1)R
is likely generic (but approximate), since even the “constant” superpotential term needed
to obtain a small cosmological constant necessarily comes with η(T ) moduli dependence.
Since we have approximated η(T ) ∼ exp(−πT/12) by the first term in the series expansion
(Equation (5.19)), the symmetry is exact, however, higher order terms in the expansion
necessarily break the U(1)R symmetry. The U(1)A symmetry is gauged.

One can express the fields S, T, and φ2 in the following basis50:

S ≡ s+ iσ,

T ≡ t+ iτ, (5.44)

φ2 ≡ ϕ2 e
iθ2 .

The transformation properties of the fields σ, τ and θ2 under the two U(1)’s are given by

U(1)R :

{
τ → τ + c

σ → σ + −b2+b
a c

,

U(1)A :

{
θ → θ − 9

r c
′

σ → σ − 9p
a·r c
′ , (5.45)

50The fields χ and φ1 cannot be expressed in polar coordinates as they receive zero VEV, and cannot be
canonically normalized in this basis.
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where c, c′ are arbitrary constants and for the definition of r see footnote 43. The corre-
sponding Nambu-Goldstone (NG) bosons are given by

χ1
NG =

a

−b2 + b
σ + τ,

χ2
NG = Ñ

(
−σ +

−b2 + b

a
τ

)
+

1
p
θ2, (5.46)

where Ñ is a normalization factor. One can then calculate the mass matrix in the σ− τ − θ2

basis and find two zero eigenvalues (as expected) and one non-zero eigenvalue. The two
NG modes, in all cases, can be shown to be linear combinations of the two eigenvectors of
the two massless states. The U(1)A NG boson is eaten by the U(1)A gauge boson, while
the U(1)R pseudo-NG boson remains as an “invisible axion” [172]. The U(1)R symmetry
is non-perturbatively broken (by world-sheet instantons) at a scale of order

〈eK /2W e−πT 〉 ≈ m3/2〈e−πT 〉 ∼ 0.02 m3/2 (5.47)

in Planck units, resulting in an “axion” mass of order 10 GeV and decay constant of order
MPL.51

Before we procede to discussing the stabilization rest of the (chiral singlet) moduli in a
more complete string model, or the LHC phenomenology ofthe mini-version of the mini-
landscape models, it is worth comparing our analysis with some previous discussions in
the literature.

In a series of two papers by Dvali and Pomarol [134, 174], the authors consider an
anomalous U(1) with two charged singlet fields. The D term is given by52

DA = q|φ+|2 − |q−|2 + ξ (5.48)

The gauge invariant superpotential is

W = mφ+φ−, (5.49)

where m has some charge under U(1)A. They suggest a few different ways to generate m.
The first is with some high power of one of the φ fields:

W ∼ φq−φ+ ⇒ m ≡ 〈φ−〉q−1 (5.50)

51In addition, the heterotic orbifold models might very well have the standard invisible axion [173].
52We refer to the anomalous U(1) as U(1)A and not U(1)X , as in the papers referenced below.
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The second is by giving the φ+,− a coupling to some quarks from a SUSY QCD theory that
becomes strongly coupled. The scale, ΛSQCD then serves as the mass term in the superpo-
tential. They do not, however, consider dilaton dependence, and their D term is static, not
dynamic. They also work in the global SUSY limit, so they do not consider up-lifting.

In a paper by Binetruy and Dudas [133], the authors assume that S can be stabilized at
some finite value S0, possibly through some extra S dependent term in the superpotential
and they assume that FS(S0) = 0. In their setup, they have an anomalous U(1), some
charged singlets, and some hidden sector SQCD with matter. The singlets couple to matter,
and SQCD becomes strongly coupled, generating a scale, just as in our analysis. Since they
are working in the global SUSY limit, they are not concerned with up-lifting.

Lalak [135] considers several types of models with an anomalous U(1), some charged
singlets, and some coupling to the dilaton S. In the last section, he considers superpo-
tentials with an exponential dependence on S. He then assumes that S0 is a (globally)
supersymmetric minimum of the potential. Also, working in global SUSY, he does not
address up-lifting.

In a paper by Dudas and Mambrini [131], the authors consider one modulus, one sin-
glet field, and an SU(N) with one flavor of quarks. The SU(N) becomes strongly coupled,
and the superpotential and Kähler potential look like:

W = w0 +
(
c/X2

)
e−aT +mφqX (5.51)

K = −3 log
(
T + T̄ − |X|2 − |φ|2) , (5.52)

where X is the meson field and φ is the singlet. Note, the modulus appearing in the
exponent is T , not S. They find that the only consistent minimum with approximately
zero cosmological constant requires m3/2 ∼ ξ. So either the gravitino mass is of order the
GUT scale or for the gravitino mass of order a TeV, the meson charge must satisfy q ∼ 10−8.

In a paper by Dudas et al. [138], the authors consider a single modulus and two singlet
fields:

DA = |φ+|2 − |φ−|2 + ξ, (5.53)

W = w0 +mφ+φ− + aφq−e
−bT . (5.54)

They do not discuss the origin of the constant w0, and they use an explicit mass scale m,
which they suggest might come from non-perturbative effects. Note the latter is crucial,
since m affects the up-lifting of the scalar potential. They are also interested in large vol-
ume compactifications, as t ≡ RE [T ] ≈ 60. Given their SUSY breaking scheme, they go on
to look at the low energy spectrum, however, they neglect the D term contributions to the
soft masses, claiming that there are only two possibilities for the low energy physics:
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• Because ξ > 0, some SM quarks and leptons carry positive U(1)A charges. This leads
to scalar masses (for them) of around 100 TeV, and may give an unstable low energy
spectrum.

• All SM quarks and leptons are neutral under U(1)X . This implies that there should
be more matter that is charged under the MSSM and U(1)A, which motivate them to
consider gauge mediation.

It seems that they have missed an important possibility, namely that matter in the MSSM
appears with U(1)A charges of both signs. This actually seems to be the generic case, at
least in the mini-landscape models (see Table5.2.

The last paper we consider, by Gallego and Serone [139], contains an analysis which
is possibly most similar to that in this paper, however, there are two major differences.
If one neglects all non-perturbative dependence on the dilaton and Kähler moduli, then
their superpotential is of the form W ⊃ φqχ and the D term is given by DA = q|χ|2 −
|φ|2 + ξ. Thus the model does not have a supersymmetric minimum in the global limit
due to a conflict between Fχ = 0 and DA = 0. In our model (Equation 5.39), as in the
mini-landscape models, there is a supersymmetric solution when non-perturbative effects
are ignored. Finally, the authors were not able to find a supersymmetry breaking solution,
like ours, with just one hidden non-Abelian gauge sector.

As an aside, we note that Casas et al. [122] study a similar problem of moduli stabiliza-
tion and SUSY breaking, but without the anomalous U(1). Their model is very different
from ours, but they do include the one loop Coleman-Weinberg corrections.

5.4 Moduli stabilization continued - the twisted sector and blow-
up moduli

In our discussion above we considered a simple model which is representative of heterotic
orbifold models. Our simple model had only a few moduli, i.e., the dilaton, S, a volume
modulus, T , and three chiral singlet ‘moduli’, χ, φ1, φ2. Any heterotic orbifold construc-
tion, on the other hand, will have several volume and complex structure moduli and of
order 50 to 100 chiral singlet moduli. The superpotential for the chiral singlet moduli is
obtained as a polynomial product of holomorphic gauge invariant monomials which typ-
ically contain hundreds of terms at each order (with the number of terms increasing with
the order). In the “mini-landscape” analysis, supersymmetric vacua satisfying F = D = 0
constraints to sixth order in chiral singlet moduli could be found. Although there are many
flat directions in moduli space, the anomalousD-term fixes at least one holomorphic gauge
invariant monomial to have a large value. Our simple model expressed this fact with the
chiral singlets χ, φ1, φ2, where the VEVs were fixed by the global SUSY minimum with
〈φ2〉 fixed by the U(1)A D-term.
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In addition to the non-Abelian hidden gauge sector considered in the simple model,
a generic orbifold vacuum also has additional U(1) gauge interactions and vector-like ex-
otics which obtain mass proportional to chiral singlet VEVs. Some of these singlets are
assumed to get large VEVs (of order the string scale). These are the ones giving mass to
the extra U(1) gauge sector and vector-like exotics. These same VEVs generate non-trivial
Yukawa couplings for quarks and leptons. Moreover, there are chiral singlets which get
zero VEVs, such as χ and φ1. For example, in the “mini-landscape” benchmark model 1,
the electroweak Higgs µ term is zero in the supersymmetric limit. The question arises as
to what happens to all these VEVs once supersymmetry is broken.

We now sketch the fact that the supersymmetry breaking discussed above, ensuing
from F -terms, FS , FT , Fφ2 6= 0 and driven by the non-perturbative superpotential, in-
evitably leads to a stabilization of the many singlet ‘moduli’ of the heterotic orbifold vac-
uum. We shall consider here 3 classes of heterotic MSSM singlets.

5.4.1 Singlets with polynomial Yukawa couplings

Let us first consider singlets having polynomial Yukawa couplings in the superpotential,
which in case of a coupling arising among purely untwisted sector fields φ(U)

i are pertur-
batively generated, and in the other case involving at least one twisted sector field φ(T )

i are
non-perturbatively generated by world-sheet instantons (see Section 5.2.2). The latter case
is actually the most common situation. Restricting again for reasons of simplicity to the
case of a single scalar field of the type under consideration, we can describe the two cases
as follows:

• i)

K = −3 log
(
T + T̄ − φ̄(U)φ(U)

)
, W ⊃ λ ·

(
φ(U)

)N
, N ≥ 3

Note that the untwisted sector scalar fields φ(U), being inherited from the bulk 248

in 10d, appear this way in the Kähler potential.

• ii)

K = −3 log(T + T̄ ) + cφ̄(T )φ(T ) , W ⊃ e−bT
(
φ(T )

)N
, N ≥ 3

Here the exponential dependence on T arises from the η-function, which a non-
perturbatively generated Yukawa coupling must have for reasons of modular invari-
ance (see Section 5.2.2).

• iii)
K = −3 log

(
T + T̄ − φ̄(U)φ(U)

)
+ c φ̄(T )φ(T )
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W ⊃ λe−bT
(
φ(T )

)N
+ λ̃e−b̃T

(
φ(T )

)Ñ (
φ(U)

)M
with M,N, Ñ ≥ 2

Here, too, the exponential dependence on T from the η-function dependence of a
non-perturbatively generated Yukawa coupling.

The calculation in case i) simplifies by the fact that there K fulfills an extended no-scale
relation

KiK
ij̄Kj̄ = 3 ∀ i, j = T, φ(U)

K i = K ij̄Kj̄ = −V · δiT , V ≡
(
T + T̄ − φ̄(U)φ(U)

)
(5.55)

which implies for the F-term scalar potential a result

VF = eK
[
K φ(U)φ̄(U)

(
|∂φ(U)W |2 +

(
∂φ(U)W ·Kφ(U)W + c.c.

))
+
V
3

(T + T̄ )|∂TW |2 + (V∂TW + c.c.)
]

. (5.56)

It is clear then that one solution to ∂φ(U)VF = 0 is given by

∂φ(U)W = ∂φ(U)V = 0 ⇒ 〈φ(U)〉 = 0 (5.57)

because ∂φ(U)∂TW ≡ 0 ∀φ(U). This implies that those untwisted sector singlets that were
stabilized at the origin in global supersymmetry by a purely untwisted sector Yukawa
coupling remain so even in supergravity.

For the twisted sector case ii) we find the scalar potential to be

VF = eK

K φ(T )φ̄(T ) |Dφ(T )W |2 + K T T̄

|∂TW |2 + ∂TW︸ ︷︷ ︸
∼FT

KTW + c.c.


∼ e−2bT

(
φ̄(T )φ(T )

)N−1 − FT (T + T̄ )e−bT
(
φ(T )

)N
+ c.c. (5.58)

which gives two solutions to ∂φ(T )VF = 0 as

〈φ(T )〉 = 0
∨

〈φ(T )〉 ∼
(
FT (T + T̄ )

e−bT

) 1
N−2

∼
(m3/2

e−bT

) 1
N−2

. (5.59)

This implies that the φ(T ) get stabilized either at the origin, or at non-zero but small VEVs
� 1. Their value in the latter case approaches φ(T ) ∼ MGUT for non-perturbative Yukawa
couplings of orderN & 5 andm3/2 ∼ TeV (which can be interesting for phenomenological
reasons involving heavy vector-like non-MSSM matter).
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Finally, we note that case iii) reduces to case ii). To see this, note, that the structure
of K and W given in case iii) does not the change the arguments given for case i) which
implies that in case iii) we still find 〈φ(U)〉 = 0. This, however, immediately gives us

W |〈φ(U)〉=0 ⊃ λe−bT
(
φ(T )

)N
(5.60)

which is case ii).

5.4.2 Singlet directions which are F - and D-flat in global supersymmetry

There are many directions in singlet field space in our heterotic constructions which are F -
andD-flat in global supersymmetry. Let us denote these fields by - φ(f)

i , and the remaining
set of non-flat directions in field space by χi. D-flatness entails that the D-terms do not
depend on the φ(f)

i . F -flatness implies that F
φ

(f)
i

= ∂
φ

(f)
i

W (φ(f)
i , χi) = const. for all values

of 〈φ(f)
i 〉. Generically this implies that 〈χi〉 = 0.

Simplifying to the case of a single χ, this leads to a consideration of 2 cases

• i)

F
φ

(f)
i

= 0 ∀φ(f)
i

⇒ W ⊃ e−bT χ f(φi)
∨

W ⊃ e−bTχp f(φi) , p ≥ 2 (5.61)

• ii)

F
φ

(f)
i

= const. 6= 0 ∀φ(f)
i

⇒ W ⊃ λe−bT f(φ̃j)φ
(f)
i (5.62)

where the φ̃j VEVs are assumed fixed by other terms in the superpotential and f is an
arbitrary function of its argument.

We consider first case i). At the supersymmetric minimum satisfying ∂χW = ∂φiW = 0,
we have 〈χ〉 = 0 with 〈φi〉 arbitrary (subject, for the first case only, to the condition f(φi) =
0). In this example we have χ ∈ {χi} and φi ∈ {φ(f)

i }. Note the fields φ(f)
i effectively do

not appear in the superpotential at its minimum.
We now argue that the fields φ(f)

i are stabilized by the corrections from supergravity
in the F -term scalar potential. Namely, consider for sake of simplicity the case of a single
such field φ(f) and χ with

K = −3 log(T + T̄ ) + cφ
(f)
φ(f) + c′χχ

∂χW = ∂φ(f)W ≡ 0 for 〈χ〉 = 0 (5.63)
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we get the F-term scalar potential in supergravity to be (for the twisted sector case ii) we
find the scalar potential to be

VF = eK
(
K φ(f)φ̄(f) |Dφ(f)W |2 + K χχ̄|DχW |2 + K T T̄ |DTW |2 − 3|W |2

)
= eK

(
cφ

(f)
φ(f) − κ

)
· |W |2

≈ |W |2 ·
[
−c(κ− 1)φ(f)

φ(f) − c2(κ− 2)
2

(
φ

(f)
φ(f)

)2
+

−c
3(κ− 3)

6

(
φ

(f)
φ(f)

)3
+
c4(4− κ)

24

(
φ

(f)
φ(f)

)4
+ . . .

]
(5.64)

Note, we maintain 〈χ〉 = 0, W 6= 0 is due to other sectors of the theory and κ = (3 −
K T T̄ |DTW |2/|W |2) ≤ 3 is a positive semi-definite number of order 3. This scalar potential
is unbounded from above at large field values, φ(f), thus driving the VEV to large-field
value. To this order in VF we find

〈φ(f)〉 ∼ 1√
c

. (5.65)

This implies that supergravity effects will serve to stabilize all the globally supersymmet-
ric and F - and D-flat singlet fields generically at large values of O (1). Note, that the non-
perturbative effects coming from gaugino-condensation in the hidden sector will add de-
pendence of W on φ(f) beyond the global mini-landscape analysis. This may render κ a
weak function of φf such that we may for some of the globally supersymmetric and F -
and D-flat fields φ(f) have κ < 1 at small φ(f) while 1 < κ < 3 at larger values of φ(f).
In this situation the involved φ(f)-type singlets will acquire vacua at both 〈φ(f)〉 = 0 and
〈φ(f)〉 ∼ 1/

√
c. The χ-like fields will have their VEVs near the origin, i.e., they may be

shifted from the origin by small SUSY breaking effects.
Let us now turn to case ii) of F -flat but non-supersymmetric singlet directions and look

for vacua stabilizing φ(f) � 1 using again

K = −3 log(T + T̄ ) + φ
(f)
φ(f) + χχ . (5.66)

The scalar potential is

VF = eK

K T T̄ 〈DTW 〉︸ ︷︷ ︸
=FT

∂TW + c.c.+ K φ(f)φ̄(f) |Dφ(f)W |2


∼
{

K T T̄FT · bλe−bT f(χ)φ(f) + c.c.

+K φ(f)φ̄(f)
[
λe−bT f(χ)(1 + φ̄(f)φ(f)) + φ̄(f)〈W 〉

]2
}

. (5.67)
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In the desired regime of φ(f) � 1 this gives us two sub-cases:

• iia)
K φ(f)φ̄(f)

Fφ(f) � K T T̄FT

• iib)
K φ(f)φ̄(f)

Fφ(f) � K T T̄FT

In case iia) φ(f) � 1 implies that Fφ(f) ≡ λe−bT f(〈χ〉) � 〈W 〉 and thus ∂φ(f)VF = 0 gives
us

〈φ(f)〉 ∼ 〈Fφ(f)〉
〈W 〉 � 1 (5.68)

which is thus a self-consistent vacuum.
In the opposite situation we get Fφ(f) ≡ λe−bT f(〈χ〉)� 〈W 〉, 〈FT 〉. Using again φ(f) �

1 this leads to
〈φ(f)〉 ∼ 〈FT 〉

〈Fφ(f)〉 � 1 . (5.69)

Thus, even the F -flat but non-supersymmetric singlet directions of case ii) get stabilized
by supersymmetry breaking effects from the bulk moduli stabilization at generically small
but non-zero VEVs.

This property, of all F - and D-flat singlet fields generically acquiring non-zero VEVs
from supersymmetry breaking in the bulk moduli stabilizing sector through supergravity,
dynamically ensures the decoupling of all vector-like non-MSSM matter at low-energies
as checked in global supersymmetry for the mini-landscape setup.

Note, that the overall vacuum structure of the F -flat singlet fields implicates a choice of
initial conditions. The amount of non-MSSM vector-like extra matter in the mini-landscape
constructions which decouples from low energies depends on the choice of the globally F -
flat singlets φ(f)

i placed at their non-zero VEV vacuum instead of their zero VEV vacuum.
Thus, the choice of initial conditions in the vacuum distribution among the set of globally
F -flat singlet fields characterizes how close to the MSSM one can get when starting from
one of the mini-landscape models.

Assuming now that one finds successful eternal inflation occurring somewhere in the
mini-landscape, this choice of initial conditions turns into a question of cosmological dy-
namics. In this situation, all possible initial conditions of the set of globally F -flat singlets
were potentially realized in a larger multiverse. The choice of initial conditions on the
singlets in the globally F -flat sector would then be amenable to anthropic arguments and
might be eventually determined by selection effects.
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5.5 SUSY spectrum

Now that we understand how SUSY is broken, we can calculate the spectrum of soft
masses. The messenger of SUSY breaking is mostly gravity, however, there are other con-
tributions from gauge and anomaly mediation.

5.5.1 Contributions to the soft terms

At tree level, the general soft terms for gravity mediation are given in References [175–179].
The models described in this paper contain an additional contribution from the F -term of
a scalar field φ2. Following References [175, 176, 179], we define

F I ≡ eK /2K IJ̄
(
W̄J̄ + W̄ KJ̄

)
. (5.70)

SUGRA effects

The tree level gaugino masses are given by

M (0)
a =

g2
a

2
Fn∂nfa(S) =

g2
a

2
FS . (5.71)

At tree level, the gauge kinetic function in heterotic string theory is linear in the dilaton
superfield S, and only dependent on the T modulus at one loop. It is important to note
the enhancement of FS relative to FS : naively, one might guess that loop corrections to the
gaugino masses might be important, however

FS >>
F T

16π2
, (5.72)

thus loop corrections will be neglected.
At tree level, the A terms are given by

A
(0)
IJK = Fn∂nK + Fn∂n log

WIJK

κIκJκK
, (5.73)

where

WIJK ≡ ∂3W

∂ΦI∂ΦJ∂ΦK
(5.74)

and K is the Kähler potential. Neglecting U dependence, we have

K ⊃ ΦIΦ̄I
∏
i

(
Ti + T̄i

)−niI ⇒ κI ≡
∏
i

(
Ti + T̄i

)−niI . (5.75)

The κI are the Kähler metrics for the chiral multiplets, ΦI , where theA terms are expressed
in terms of canonically normalized fields. As before, the modular weights of the matter
field are given by niI .
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In general, there are also tree level contributions to A terms proportional to

− Fφ2

〈φ2〉
∂ log WIJK

∂ log φ2
. (5.76)

These terms may be dominant, but unfortunately they are highly model dependent. They
may give a significant contribution to Ab and Aτ , but in fact we find that the details of the
low energy spectrum are not significantly effected.

The tree level scalar masses are given by(
M

(0)
I

)2
= m2

3/2 − FnF̄ m̄∂n∂m̄ log κI + g2
GUT f q

I
A 〈DA〉 κI , (5.77)

where g2
GUT = 1/RE [〈S〉] and we have implicitly assumed that the Kähler metric is diagonal

in the matter fields. The factor f re-scales the U(1)A charges qA from the mini-landscape
“benchmark” model 1 [38], so they are consistent with the charges q′A in our mini-version
of the mini-landscape model. We have q′A = qA f = qA

48π2

TR QδGS with δGS = Nf
4π2 (Equation

(5.9)) and TR Q = 296
3 (Equation E.5, [38]) such that TR (q′)

4π2 = δGS .
Again neglecting U dependence, the Kähler metric for the matter fields depends only

on the T moduli, and we find

(
M

(0)
I

)2
= m2

3/2 −
∑
i

niI
∣∣F Ti∣∣2(

Ti + T̄i
)2 + g2

GUT

f qIA 〈DA〉
(T + T̄ )n

3
I

. (5.78)

The µ term can come from two different sources:

K ⊃ Z(Ti + T̄i, Uj + Ūj , ...)HuHd, W ⊃ µ̃(sI , Ti, Uj , ...)HuHd. (5.79)

In the orbifold models, Kähler corrections have not been computed, so the function Z is
a priori unknown. Such a term could contribute to the Giudice-Masiero mechanism [180].
When both µ̃ and Z vanish, the SUGRA contribution to the µ/Bµ terms vanish. On the
other hand, in the class of models which we consider, we know that vacuum configurations
exist such that µ̃ = 0 to a very high order in singlet fields. Moreover µ̃ ∝ 〈W 〉 which
vanishes in the supersymmetric limit, but obtains a value w0 at higher order in powers of
chiral singlets. If µ is generated in this way, there is also likely to be a Peccei-Quinn axion
[181, 182]. Finally, supergravity effects will also generate a Bµ term.

Finally, one can consider loop corrections to the tree level expressions in [175, 176, 179].
This was done in References [183, 184], where the complete structure of the soft terms (at
one loop) for a generic (heterotic) string model were computed in the effective supergravity
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limit. We have applied the results of [183, 184] to our models and find, at most, around a
10% correction to the tree level results of [175, 176, 179].53

Gauge mediation

The “mini-landscape” models generically contain vector-like exotics in the spectrum. More-
over it was shown that such states were necessary for gauge coupling unification [30]. The
vector-like exotics obtain mass in the supersymmetric limit by coupling to scalar moduli,
thus they may couple to the SUSY breaking field φ2. We will consider the following light
exotics to have couplings linear in the field φ2:

n3 × (3, 1)1/3 + n2 × (1,2)0 + n1 × (1, 1)−1 + h.c. (5.80)

where the constants ni denote the multiplicity of states and (see Tables H.7 and H.8 in
Appendix H)

n3 ≤ 4 and n2 ≤ 3 and n1 ≤ 7. (5.81)

The gauge mediated contributions split the gaugino masses by an amount proportional
to the gauge coupling:

M
(1)
3 |gmsb = n3

g2
3

16π2

F φ2

〈φ2〉 , (5.82)

M
(1)
2 |gmsb = n2

g2
2

16π2

F φ2

〈φ2〉 , (5.83)

M
(1)
1 |gmsb =

n3 + 3n1

10
g2

1

16π2

F φ2

〈φ2〉 . (5.84)

It is interesting to note that this becomes more important as 〈φ2〉 decreases/F φ2 increases,
or if there are a large number of exotics present.

The scalar masses in gauge mediation come in at two loops, and receive corrections
proportional to

(MI)
2 |gmsb ∼

(
1

16π2

)2(Fφ2

φ2

)2

. (5.85)

Unlike in the case of the gaugino masses, however, the tree level scalar masses are set by
the gravitino mass. Typically

16π2m3/2 >>
Fφ2

φ2
, (5.86)

and the gauge mediation contribution gives about a 10% correction to the scalar masses,
in our case. We will neglect their contributions in the calculation of the soft masses below.

53In estimating this result, we have assumed that the mass terms of the Pauli-Villars fields do not depend
on the SUSY breaking singlet field φ2, and that the modular weights of the Pauli-Villars fields obey specific
properties.
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5.5.2 Relevant details from the “mini-landscape”

Given the relative sizes of the F -terms in the SUSY breaking sectors described in this paper,
it is very difficult to make model-independent statements. This stems from the fact that
F T plays a dominant role in the SUSY breaking. Because the Kähler metrics for the matter
fields have generally different dependences on the T modulus, the dependence of the soft
terms on F T is typically non-universal. Moreover, the couplings of the SUSY breaking
singlet field φ2 will necessarily depend on the details of a specific model. Thus, in order
to make any statements about the phenomenology of these models, we will have to make
some assumptions. With the general features of the “mini-landscape” models in mind, we
will make the following assumptions:

1. SUSY breaking is dominated by Fφ2 6= 0, FT3 6= 0, FS 6= 0. All other F terms,
including those due to the other T and U moduli, are subdominant;

2. the massless spectrum below MS contains some vector-like exotics;

3. the untwisted sector contains the following Higgs and (3rd generation) matter mul-
tiplets: Hu,Hd,Q3,Uc

3,E
c
3;

4. the first two families have the same modular weights, see Table 5.2 on page 106;

5. the SUSY breaking field, φ2, lives in the untwisted, or second or fourth twisted sector,
with a modular weight given by n3 = 0; and

6. we neglect possible φ2 dependence of the effective Yukawa terms.

Let us examine these assumptions in some more detail.
In general, gauge coupling unification in the “mini-landscape” models seems to require

the existence of light vector-like exotics [30], whose masses can be as small as O
(
109 GeV

)
.

We further assume that these exotics couple to the SUSY breaking field φ2, giving a gauge
mediated contribution to the gaugino masses above. We will make this contribution to the
soft terms explicit in what follows. In assumption 2 we have specialized to the case where
only “brane-localized” exotics are present in the model. These are states which come from
the first and third twisted sectors of the model, and we refer the reader to [30, 38] for more
details.

The top quarks and the up Higgses live in the bulk and the string selection rules allow
for the following coupling in the superpotential:

W ⊃ cQ3HuUc
3. (5.87)

The coupling c is a pure number of O (1), and is free of any dependence on the moduli.
The down and lepton Yukawas are a bit more involved, as they arise at a higher order in
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MSSM particle Modular Weight ~n U(1)A charge
Q3 (0, 1, 0) 4/3
Uc

3 (1, 0, 0) 2/3
Dc

3

(
1
3 ,

2
3 , 0
)

8/9
L3

(
2
3 ,

1
3 , 0
)

4/9
Ec

3 (1, 0, 0) 2/3

first two gen.
(

5
6 ,

2
3 ,

1
2

) 7/18 (10)
−5/18 (5̄)

Hu (0, 0, 1) −2
Hd (0, 0, 1) +2

Table 5.2: Modular weights of the MSSM states in the “mini-landscape” benchmark model
1A. For the first two generations, the U(1)A charges differ depending on whether the par-
ticle is in the 10 or 5̄ of SU(5). See [38] for details.

the stringy superpotential. We will take them to be of the following form:

W ⊃ η(T1)p1η(T2)p2η(T3)p3
(
f1(〈s5

I〉)Q3HdDc
3 + f2(〈s5

I〉)L3HdEc
3

)
. (5.88)

The sI are other singlet fields in the model (excluding the SUSY breaking singlet field, φ2,
as per our assumptions), and the numbers p1, p2 and p3 are calculable in principle, given
knowledge of the modular weights of the sI . As one might expect, the expressions for
the A terms explicitly depend on the value of p3 in such a way that changing its value
may result in a significant change in Ab and Aτ at the string scale. The impact on the
weak scale observables is much less severe, however, giving a correction of a few percent
to the gaugino masses, and leaving the squark and slepton masses virtually unchanged.
Motivated by the modular weight assignments in Table 5.2 on page 106, we will choose
p3 = 0. Note this choice gives us universal A terms for the third generation.

One of the nice features of the “mini-landscape” models is the incorporation of a dis-
crete (D4) symmetry between the first two families in the low energy effective field theory.
Because of this symmetry, we expect the modular weights of these matter states to be the
same [95], see Table 5.2 on page 106. This will turn out to be very beneficial in alleviat-
ing the flavor problems that are generic in gravity mediated models of SUSY breaking:
the scalar masses (at tree level) are given by a universal contribution (the gravitino mass
squared) plus a contribution proportional to the modular weight. If the modular weights
are the same between the first two generations, then the leading order prediction is for
degenerate squark and slepton masses in the two light generations. Other contributions
to the scalar masses come from gauge mediation and anomaly mediation, which do not
introduce any new flavor problems into the low energy physics.
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5.5.3 Hierarchy of F -terms

Note, in Section 5.3, we find (roughly)

FT >> FS & Fφ2 , (5.89)

for Cases 1, 2 and 3; and
FT & Fφ2 >> FS , (5.90)

for Cases 4 and 5, where
FI ≡ WI + W KI . (5.91)

When one includes the relevant factors of the Kähler metric, we have (Table H.13on page
161)

F T > FS >> F φ2 (5.92)

for Cases 1, 2 and 3; and
F T >> FS ∼ F φ2 (5.93)

for Cases 4 and 5. FS is enhanced by a factor of K SS̄ ∼ (2+2)2, while F φ2 is decreased by a
factor of K φ2φ̄2 ∼ (2)−1/2.54 This means that although the singlet field φ2 was a dominant
source of SUSY breaking, it is the least important when computing the soft terms, given the
one condensate hidden sector of the known “mini-landscape” models studied in Section
5.3.55 Taking the details of the “mini-landscape” models into account, the soft terms at the
string scale are given in Table H.14 on page 161.

In the five chosen Cases, 2, 3 and 4 have a gravitino mass less than 2 TeV. The value of
the gravitino mass can be adjusted by varying w0. For Cases, 1, 3 (4) the Higgs up (down)
mass squared is negative. This is a direct result of the sign of DA and the U(1)A charge of
the Higgs’ (see Table 5.2 on page 106 for the U(1)A charges of all the MSSM states).56 Note,
the first and second generation squarks and sleptons are lighter than the third generation
states at the string scale. This is a consequence of the significant T modulus contribution to
the first and second generation squark and slepton masses, due to their modular weights,

54This is due to the assumed modular weight of the field φ2 (assumption 5 in Section 5.5.2).
55In racetrack models FS is suppressed by more than an order of magnitude. In these cases Fφ2 is dominant

[139].
56Note, it is well known that the D-term VEV in supergravity is of order 〈F i〉2 [178, 185]. It is given by the

relation
〈DA〉 = 2M−2

A 〈F i〉〈F ∗j 〉〈∂i∂jDA〉. (5.94)

Thus the D-term contribution to the vacuum energy is negligible, but its contribution to scalar masses can be
significant. Since |FS |2 < |FT |2, FT is dominant in the above relation. However, the Kähler metric of φ2 which
spontaneously breaks U(1)A, in our case, does not include T , i.e., 〈(∂T ∂TDA)〉 = 0. Hence 〈DA〉 is suppressed
compared with |FT |2/M2

PL, i.e., 〈DA〉 : |FT |2/M2
PL = |FS |2 : |FT |2 where we used 〈(∂S∂SDA)〉 = (MA/MPL)2,

because of the S-dependent FI term. We thank T. Kobayashi, private communication, for this analysis.
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Table 5.2 on page 106. Finally we have included the possible gauge mediated SUSY break-
ing contribution to the gaugino masses, Table H.14 on page 161. This contribution is only
significant for Cases 4 and 5, due to the larger value of Fφ2 in these cases.

5.5.4 Weak scale observables

We do not intend this work to be a comprehensive study of the parameter space of these
models, so we will limit our weak scale analysis to the five cases studied in the single
condensate model presented in this paper. The points are chosen subject to the following
constraints:

• mh0

∣∣∣
LEP
& 114.4 GeV ,

• successful electroweak symmetry breaking,

• mχ̃± & 94 GeV , and

• the low energy spectrum is free of tachyons.

Note that we take sgn(µ) > 0 and vary tanβ, and the number, ni, of “messenger” exotics.
We stay in the region of small to moderate tanβ as the “mini-landscape” models do not
tend to predict unification of the third family Yukawas. This can be seen from Equations
(5.87) and (5.88), for example.

Using SoftSUSY (v3.1) [186], we preformed the RGE running from the string scale to
the weak scale. We use the current value of the top quark mass [187]

mtop

∣∣∣
world avg.

= 173.1 GeV (5.95)

and the strong coupling constant at MZ [14]

αs(MZ) = 0.1176. (5.96)

The µ parameter is obtained under the requirement of radiative electroweak symmetry
breaking, and is of order the gravitino mass, as expected. This implies a fine tuning of
order

M2
Z

m2
3/2

∼ O
(
10−2

)
to O

(
10−4

)
. (5.97)

The results obtained from SoftSUSY are presented in Table H.15 on page 162. In this
analysis, we have not included any possible gauge mediated SUSY breaking contributions.
This assumes that all the vector-like exotics have mass at the string scale. In Case 2 and 3
we have the smallest gravitino masses, so the lightest SUSY partners. tanβ = 25 in order
for the light Higgs mass to be above the LEP bound. Note we assume a±2 GeV theoretical
uncertainty in the Higgs mass. In all 5 cases the Higgs mass is between the LEP bound
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and 121 GeV. All other Higgs masses are of order the gravitino mass. In all 5 cases the
gluino mass is less than 1 TeV and of order 600 GeV or less in Cases 2, .. , 5. Thus the
gluino is very observable at the LHC. In all cases, the lightest MSSM particle is the lightest
neutralino. The next-to-lightest neutralino and the lightest chargino are approximately
degenerate with mass of order twice the lightest neutralino mass. In Cases 2, 3 and 4 the
lightest stop has mass less than 1 TeV. In Cases 2 and 4, the lightest stop is also the lightest
squark. Thus in these cases the gluino will predominantly decay into a top - anti-top pair
with missing energy (and possibly two energetic leptons). In Case 3, the lightest down
squarks of the first two families are lighter than the lightest stop. In these cases gluinos
will decay significantly into two light quark jets plus missing energy (and possibly two
energetic leptons).

In all cases the lightest MSSM particle is mostly (& 99%) bino (see Table H.16 on page
163). We note that this is generically true in the models, even when there are contributions
from gauge mediation. The gauge mediated contributions in Equation (5.80) do not appre-
ciably change the composition of the LSP, which one can check with the solutions in Tables
H.7 and H.8 in Appendix H.

We have evaluated other low energy observables using micrOMEGAs [188]. As ex-
pected, the bino LSP overcloses the universe, giving ΩDM >> ΩOBS

DM ≈ 0.2. The calculated
values for the following observables are given in the last few rows of Table H.15 on page
162. Corrections to the ρ parameter are very small. Corrections to (g−2)µ are significant in
Cases 2 and 3 which is not surprising since these are the two cases with the lightest sleptons
for the first two families. We also display the results forBR(b→ sγ) andBR(Bs → µ+µ−).
The result for BR(b → sγ) is within the 2σ experimental bound (see [23] and references
therein). Given the small chargino masses and the large values of µ and the squark and
CP odd Higgs masses, we obtain a branching ratio BR(Bs → µ+µ−) consistent with the
standard model.

We are not overly concerned about the fact that binos seem to overclose the universe.
In some of the heterotic orbifold models the Higgs µ term vanishes in the supersymmet-
ric limit. Hence there is a Peccei-Quinn symmetry. Supersymmetry breaking effects are
expected to shift the moduli VEVs and generate a non-vanishing µ term; spontaneously
breaking the PQ symmetry and producing the standard invisible axion. In fact, it has been
shown that PQ axions may be obtained in heterotic orbifold contructions [173]. In such
cases it is possible that the bino decays to an axino + photon leaving an axino dark matter
candidate [189–191].

However another, perhaps more important, cosmological effect must be considered.
All 5 cases have a gravitino with mass less than 3 TeV. Thus there is most likely a gravitino
problem. In addition the lightest moduli mass is of order (Table H.15 on page 162) sev-
eral 100s GeV. Thus there is also a cosmological moduli problem. But there is hope. The
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next lightest massive modulus [nLMM] has, in all cases, a mass above 20 TeV. A detailed
cosmological analysis is beyond the scope of this paper. However, it is possible that when
cosmological temperatures are of order MnLMM, the universe becomes nLMM dominated.
By the time the nLMM decays all matter is diluted and then the universe reheats to tem-
peratures above the scale of big bang nucleosynthesis (for example, see [192]). Thus it is
possible that the nLMM solves both the gravitino and light moduli problems. Of course,
then the issue of obtaining the correct baryon asymmetry of the universe and the dark
matter abundance must be addressed. Both can in principle be obtained via non-thermal
processes at low temperature.

In Table H.16 on page 163 we analyze the dependence of our results on the value of
tanβ and sgn(µ) with all other input parameters fixed. We find that only the value of the
light Higgs mass is sensitive to varying tanβ. Note the lowest value of tanβ is obtained
by the Higgs mass bound, while the largest value of the light Higgs mass is obtained with
the largest value of tanβ (for both signs of µ). Additionally, at large tanβ for µ < 0 the
Higgs potential becomes unbounded from below. For µ > 0 we limited the analysis to
tanβ ≤ 50. The light Higgs mass does not go above 122 GeV for tanβ ≤ 50.

5.6 Conclusions

As a candidate theory of all fundamental interactions, string theory should admit at least
one example of a four-dimensional vacuum which contains particle physics and early uni-
verse cosmology consistent with the two standard models. In this context, the recently
found “mini-landscape” of heterotic orbifold constructions [34–36, 38, 193] provide us with
very promising four-dimensional perturbative heterotic string vacua. Their low-energy ef-
fective field theory was shown to resemble that of the MSSM, assuming non-zero VEVs for
certain blow-up moduli fields which parametrize resolutions of the orbifold fixed points
along F - and D-flat directions in global supersymmetry.

In this paper we have dealt with the task of embedding the globally supersymmet-
ric constructions of the heterotic “mini-landscape” into supergravity and then stabilizing
the moduli of these compactifications, including their orbifold fixed point blow-up mod-
uli. The blow-up moduli appear as chiral superfields contained in the twisted sectors of
the orbifolded heterotic string theory. They are singlets under all standard model gauge
groups, but are charged under several unwanted U(1) gauge symmetries, including the
universal anomalous U(1)A gauge symmetry of the heterotic string. Note, moduli stabi-
lization of string compactifications is a crucial precondition for comparing to low energy
data, as well as for analyzing any early universe cosmology, such as inflation, in a given
construction.
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Section 5.2 served the purpose of reviewing the ingredients and structure of the het-
erotic 4d N = 1 supergravity inherited from orbifold compactifications of the 10d pertur-
bative E8 ⊗ E8 heterotic string theory. The general structure of these compactifications
results in:

i) a standard no-scale Kähler potential for the bulk volume and complex structure mod-
uli, as well as the dilaton, together with

ii) gaugino condensation in the unbroken sub-group of the hidden E8, and

iii) the fact that the non-perturbative (in the world-sheet instanton sense) Yukawa cou-
plings among the twisted sector singlet fields contain terms explicitly breaking the
low-energy U(1)R-symmetry.

We have shown in Section 5.3 that these three general ingredients, present in all of the
“mini-landscape” constructions, effectively realize a KKLT-like setup for moduli stabiliza-
tion. Here, the existence of terms explicitly breaking the low-energy U(1)R-symmetry at
high order in the twisted sector singlet fields is the source of the effective small term w0

in the superpotential, which behaves like a constant with respect to the heterotic dilaton
[170]. Utilizing this, the presence of just a single condensing gauge group in the hidden
sector (in contrast to the racetrack setups in the heterotic literature) suffices to stabilize the
bulk volume T (and, by extension, also the bulk complex structure moduli U ), as well as
the dilaton S at values 〈Re T 〉 ∼ 1.1− 1.6 and 〈Re S〉 ∼ 2. These are the values suitable for
perturbative gauge coupling unification into SU(5)- and SO(10)-type GUTs distributed
among the orbifold fixed points. Note, we have shown this explicitly for the case one T
modulus and a dilaton, however, we believe that all bulk moduli will be stabilized near
their self-dual points [125, 126].

At the same time, the near-cancelation of theD-term of the universal anomalous U(1)A-
symmetry stabilizes non-zero VEVs for certain gauge invariant combinations of twisted
sector singlet fields charged under the U(1)A. This feature in turn drives non-vanishing
F -terms for some of the twisted sector singlet fields. Thus, together with the F -terms of
the bulk volume moduli inherited from modular invariance, it is sufficient to uplift the
AdS vacuum to near-vanishing cosmological constant.

The structure of the superpotential discussed in this paper, W ∼ w0e
−bT +φ2 e

−aS−b2T ,
behaves like a ‘hybrid KKLT’ with a single-condensate for the dilaton S, but as a racetrack
for the T and, by extension, also for U moduli. An additional matter Fφ2 term driven by
the cancelation of the anomalous U(1)A D-term seeds successful up-lifting.

We note the fact that the effective constant term in the superpotential, w0, does not arise
from a flux superpotential akin to the type IIB case. This leaves open (for the time being)
the question of how to eventually fine-tune the vacuum energy to the 10−120-cancelation
necessary.
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Section 5.4 then serves to demonstrate how the success of stabilizing the bulk moduli
and breaking supersymmetry in the F -term sector, driven by the U(1)A D-term cancela-
tion, transmits itself to the chiral singlet fields from the untwisted and twisted sectors of
the orbifold compactification which contain, among others, the blow-up moduli associated
with the orbifold fixed points. The effects from the bulk moduli stabilization and super-
symmetry breaking, transmitted through supergravity, generically suffice to stabilize all of
the twisted sector singlet fields at non-zero VEVs. This property was assumed in the orig-
inal “mini-landscape” construction in order to decouple the non-MSSM vector-like exotic
matter, and our arguments provide the first step towards a self-consistent justification for
these assumptions.

In Section 5.5 we estimate the structure of the soft terms from the moduli sector su-
persymmetry breaking at the high scale. We find that the contributions from high-scale
gauge mediation are subdominant (although not parametrically suppressed) compared
to the gravity mediated contributions. Upon RGE running the high-scale soft terms to
the weak scale using softSUSY, we obtain several benchmark patterns of sparticle and
Higgs masses (see Table H.15 162). The low-energy spectrum features an allowed win-
dow of tanβ values for m3/2 < 5 TeV. It generically contains a light chargino/ neutralino
spectrum and heavy squarks and sleptons. The lightest MSSM partner, in the 5 bench-
mark cases studied, is given by a bino (> 99%) with mass & 52 GeV. If this were the
LSP, it would yield a dark matter abundance which over closes the universe, however,
the “mini-landscape” models offer some possible resolutions. One possibility is that the
bino decays into an axino, the partner of the invisible axion responsible for canceling the
θ-angle of QCD, which is present in many of the “mini-landscape” setups [173]. We have
also considered an alternative possibility that the late decay of the next to lightest massive
modulus might ameliorate or solve the cosmological gravitino and moduli problem. This
would then dilute the above mentioned cosmological abundance of binos. Of course, the
non-thermal production of dark matter and a baryon asymmetry must then be addressed.
Note, however, the resolution of these cosmological questions are beyond the scope of the
present paper.

Summarizing, we have given a mechanism for moduli stabilization and supersym-
metry breaking for the perturbative heterotic orbifold compactifications. It relies on the
same variety and number of effective ingredients as the KKLT construction of type IIB flux
vacua and thus represents a significant reduction in necessary complexity, compared to
the multi-condensate racetrack setups utilized so far. When applied to a simplified analog
of the “mini-landscape” heterotic orbifold compactifications, which give the MSSM at low
energies, it leads to fully stabilized 4d heterotic vacua with broken supersymmetry and a
small positive cosmological constant. Moreover, most of the low energy spectrum could
be visible at the LHC.
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We leave some important questions like the problem of the full fine-tuning of the vac-
uum energy to near-vanishing, or the existence of an inflationary cosmology within these
stabilized “mini-landscape” constructions for future work. Further study is also warranted
with respect to potential cosmological moduli and gravitino problems that may be asso-
ciated with sub-100 TeV moduli and gravitino mass values (see e.g. [194, 195]). Finally,
the numerical evaluation of any particular “mini-landscape” vacuum requires analyzing
the supergravity limit with three bulk moduli, T , one bulk complex structure modulus,
U , and of order 50 blow-up moduli. A detailed analysis of this more realistic situation
would require a much better handle on the moduli space of heterotic orbifold models than
is presently available.
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(b) The scalar potential in Case 4 for ReT , with bi < 0.

Figure 5.1: As RE [T ]→∞, the potential for bi > 0 mimics a Racetrack, which can be seen
from Equation (5.39), for example. In the case where bi < 0, however, the potential exhibits
a different asymptotic behavior. As RE [T ] → ∞ the potential diverges, which means that
theory is forced to be compactified [125, 126].
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Figure 5.3: The one loop Coleman-Weinberg potential (Case 4) for φ2. The dashed line
represents the VEV of φ2 in the minimum of the full potential.
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Chapter 6
CONCLUSION

I wonder why. I wonder why.
I wonder why I wonder.

I wonder WHY I wonder why.
I wonder why I wonder!

Richard Feynman

In this Dissertation, we have presented original research in the study of the effective
field theories derived from compactifications of the heterotic string on orbifolds, focusing
on the “mini-landscape” models [34–38] as an example.

In Chapter 2, we attempted to provide a “How-To” guide for orbifold compactifications
of the heterotic string. After a brief discussion of the heterotic string itself, we presented
the steps involved in constructing the massless spectrum in theZ6-II compactifications, on
which the mini-landscape models are based. The method we use to construct the models
is known as the “centralizer” (see [56, 60, 196], for example). Another (equivalent) way
to construct the massless spectrum involves the use of generalized GSO projectors, and
is outlined in Appendix A of [39]. It is still an open question as to how the two different
constructions are related.

In Chapter 3, we addressed the issue of gauge coupling unification in the mini-landscape
models. The models admit a “large volume” limit, which gives an effective five dimen-
sional orbifold GUT—of the six compact dimensions, one is slightly larger. The Kaluza-
Klein modes of the larger dimension can appear in loops, and furnish a threshold cor-
rection to the gauge coupling. We calculate these contributions explicitly in Appendix B.
We also include a small set of vector-like exotic matter at an intermediate scale, as the
Kaluza-Klein modes of the MSSM states alone do not allow for unifiction, which we prove
in Appendix C. Aside from unification, the structure of the models allow us to place some
constraints on the parameter space. In particular, current limits on dimension six pro-
ton decay operators constrain the compactification radius, which we show in Appendix
D. Chapter 3 concludes with a more detailed analysis of two different vacua, where we
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demonstrate that the appearance of an intermediate scale can be made consistent with the
requirement that SUSY is not broken by F terms. This is a necessary (but not sufficient)
condition: in order to show that SUSY is unbroken in the vacuum, we must also show
that D = 0 can be satisfied. This proof is completed in Appendix E, where we show the
relationship between the holomorphic, gauge invariant monomials and D = 0.

Given the “bottom up” approach of Chapter 3, one might wonder about the consis-
tency of our results in regards to the underlying string theory. In Chapter 4, we showed
that “top down” constraints limit (but do not invalidate) the results of the previous chap-
ter. We showed that the coupling constant of the underlying string theory, gSTRING, is equal
to the coupling constant of the gauge theory (αGUT) times the ratio of the string scale to the
compactification scale. This allows us to calculate gSTRING (which characterizes the under-
lying string theory) given the parameters of the effective field theory, derived in Chapter
3. Perturbativity of the underlying string theory requires that gSTRING . 1, which proves
to be a strict bound, eliminating about half of the models which survived proton decay
constraints in Chapter 3. In addition, the dimension six proton decay operator can be
written in terms of gSTRING, providing an interesting relationship between a macroscopic
observable and the microscopic details of the theory. We also commented on the effects of
multiple “large” extra dimensions, which tend to require that the underlying string theory
be more strongly coupled.

A more fundamental issue to the “top down” consistency of the heterotic string models
is that of moduli stabilization, a problem which had stalled progress in the field since the
mid 1990’s. We showed how this issue could be addressed in the effective supergravity
theory in Chapter 5, which represents the first success in stabilizing all of the moduli of the
heterotic orbifold compactifications in Minkowski vacua, without relying on uncalculable
non-perturbative corrections to the Kähler potential [130]. To show how this might be
accomplished, we wrote down a toy model which satisfied F = D = 0 globally, without
considering non-perturbative effects. This is the same level at which the mini-landscape
models were analyzed in [38]. We then couple the model to a SUSY QCD-like theory
(which is a general feature of the mini-landscape models [37]), which generates a (moduli
dependent) scale, and embed the model in to supergravity. In addition, we consider the
moduli dependence in the superpotential implied by modular invariance of the underlying
string theory. For several different sets of parameters, we showed that all the moduli in
our model could be stabilized. We concluded the chapter by arguing that all other moduli
in the heterotic compactification, including twisted sector states called “blow-up modes”,
are stabilized once SUSY is broken.

We motivated dependence on the Kähler and complex structure moduli in the super-
potential by modular invariance, inserting appropriate factors of the Dedekind η function
to ensure SL(2,Z) invariance. We know, however, that Wilson lines and even the orbifold

117



itself may only respect a subgroup of SL(2,Z) [161]. In some cases, for example, the correct
transformation properties of the superpotential are ensured by multiplying each term by a
linear combination of η functions [197], see Appendix F. Moreover, it has been shown that
more generic modular invariant functions (other than η) can appear [126]. Studying the
behavior of the superpotential in these cases may give interesting new dynamics, which
may include different ratios of F terms, for example.

Given the moduli stabilization mechanism, we showed the types of phenomenology
one might expect for LHC physics. While the main contributions to the soft terms come
from gravity mediation, we also considered gauge mediation and anomaly mediation con-
tributions. We investigated only a small corner of the parameter space of these models,
though some interesting features emerged. For example, at negative µ, an upper limit
on tanβ exists, beyond which the higgs potential becomes unstable. The models exam-
ined tended to prefer a small higgs mass (. 115 GeV), though this bound is not strict. In
particular, if the gravitino mass (which is controlled in the microscopic theory by w0) is
much larger, the higgs mass can be pushed higher. This comes at the cost of interesting
LHC physics, because the gravitino mass controls all of the soft masses in gravity medi-
ation. The LSP in these models is always the bino, which provides a poor dark matter
candidate—in order to evade the WMAP bounds on relic densities, then, we must rely on
an axion to fill the role.

One particularly interesting aspect of our SUSY breaking scheme is the appearance of
tachyonic masses at the string scale in the soft SUSY breaking lagrangian, LSOFT [198, 199].
These tachyons resulted from the contribution of the FI D term to the scalar masses, which
was generated after SUSY was broken. It seems that this may be a generic situation in
the heterotic compactifications: the literature typically assumes that D = 0 can always
be satisfied, and this is true, until SUSY is broken. When SUSY is broken, D terms are
typically generated and obey D ∼ F 2. Assuming gravity mediation, the soft masses are
roughly m2

i ∼ m2
3/2 + F 2 + g2

GUTq
A
i DA, where the ith scalar carries charge qAi under U(1)A.

Because the MSSM matter in heterotic string models generically have qAi of both signs,
we are left with a situation where one or more scalar masses may be tachyonic at the
high scale. While renormalization group evolution can give positive contributions to the
masses-squared in the IR, this is not always the case. It would be interesting to understand
what the parameter space of these models looks like, with a goal of understanding general
patterns of (IR) soft masses. This would be another example of a “bottom up” constraint
on the underlying string model.
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Appendix A
THE MODE EXPANSION IN THE

TWISTED SECTOR

A.1 The Mode Expansion in the Twisted Sector

In the twisted sectors, the states obey different boundary conditions, the equations of mo-
tion should be invariant under the symmetries of the orbifold. As before, under the action
of the space group S, one has

Za(σ+)→ Za(τ, σ + 2π) = e2πikvaZa(τ, σ) + nαeα,

Z ā(σ+)→ Z ā(τ, σ + 2π) = e−2πikvaZ ā(τ, σ) + nαeα. (A.1)

As a function of left-moving coordinates, the Za(σ+) are given by

Za(σ+) =
1√
2

{[
x2a+2 + ix2a+3

]
+ τ

[
p2a+2 + ip2a+3

]
+

i√
2

∑
n

1
n

[
α̃2a+2
n + iα̃2a+3

n

]}
.

with an analogous expression for the right-movers. We define

za ≡ x2a+2 + ix2a+3, (A.2)

pa ≡ p2a+2 + ip2a+3, (A.3)

β̃an ≡ α̃2a+2
n + iα̃2a+3

n . (A.4)

Under these definitions, we have

Za(σ+) = za + τpa +
∑
m∈?

1
m
β̃ame

−imσ+ (A.5)

Note that we have replaced ∑
n∈Z 6=0

→
∑
m∈?

. (A.6)
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For now, we will put no requirement on m—it will turn out that m is not integral, a fact
implied by the boundary conditions on the orbifold.

Now, the boundary conditions (A.1) impose

za → z′a = e2πikvaza + nαeα = za. (A.7)

In other words, za is invariant under the action of the orbifold, which is exactly the defini-
tion of a fixed point. Next, the momentum transforms as:

pa → p′a = e2πikvapa = pa. (A.8)

The only possible solution to this equation (for generic values of kva) must be that pa =
0. Physically, za is the coordinate of the center of the string, while pa represents the net
momentum of the string. Thus, the strings in the closed sector are localized at various
fixed points on the orbifold.

Next, consider the twisted oscillators:∑
m∈?

1
m
β̃ame

−imσ+ →
∑
m∈?

1
m
β̃ame

−imσ+−2πim =
∑
m∈?

1
m
β̃ame

−imσ+−2πikva . (A.9)

Equating each term, we see that invariance under the action of the twist implies

−imσ+ − 2πim = −imσ+ + 2πikva, ⇒ m = −kva (mod 1).

The “mod 1” appears because of the fact that the above formulae hold in a more general
case where we have factors of 1 = e2πin floating around. Thus we find that the oscillators
are fractionally moded. We can now replace the question mark write (A.5):

Za(σ+) = za +
∑
n∈Z

1
(n− kva) β̃

a
n−kvae

−i(n−kva)σ+ . (A.10)

Similarly, one can calculate an expression for Z ā, following the same steps. You should see
that

Z ā(σ+) = zā +
∑
n∈Z

1
(n+ kva)

β̃ān+kvae
−i(n+kva)σ+ (A.11)

A.2 Fractionally Moded Oscillators

Equations (A.10) and (A.11) imply that oscillators of twisted sector states may be fraction-
ally moded. When constructing the heterotic string models, it is important to remember
that such states are present in the massless spectrum.

Counting the oscillators requires that one know the eigenvalues of the number opera-
tor, which requires us to actually construct the number operator.
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We now First, consider:[
β̃an−kva , β̃

b̄
m+kva

]
=

1
2

[
α̃2a+2
n−kva + iα̃2a+3

n−kva , α̃
2b+2
m+kva

− iα̃2b+3
m+kva

]
,

=
1
2

{[
α̃2a+2
n−kva , α̃

2b+2
m+kva

]
− i
([
α̃2a+3
n−kva , α̃

2b+2
m+kva

]
−
[
α̃2a+3
n−kva , α̃

2b+2
m+kva

])
+
[
α̃2a+3
n−kva , α̃

2b+3
m+kva

]}
,

=
1
2

{
(n− kva) δm+nδ

ab − i(0− 0) + (n− kva) δm+nδ
ab
}
,

⇒
[
β̃an−kva , β̃

b̄
m+kva

]
= (n− kva) δm+nδ

ab. (A.12)

In the third line above, we get zeros because 2a+ 2 6= 2b+ 3 for a, b ∈ Z. Also, we have:[
β̃an−kva , β̃

b
m−kva

]
=

1
2

[
α̃2a+2
n−kva + iα̃2a+3

n−kva , α̃
2b+2
m+kva

+ iα̃2b+3
m+kva

]
,

=
1
2

{
(n− kva) δn+m−2kva + i(0 + 0)− (n− kva) δn+m−2kva

}
,

⇒
[
β̃an−kva , β̃

b
m−kva

]
= 0. (A.13)

We know enough to build the number operator now. In general, we want something
like this:

Ñ ≡
∑
n

: β̃an−kva β̃
ā
−(n−kva) : . (A.14)

Our old friend, the normal ordering operator, is telling us that we have to be careful about
writing down an expression for Ñ that we can actually use. There are two cases to worry
about.

• n − kva > 0. In this case, the positively moded operator is β̃an−kva , making it the
annihilation operator, so it should act first. Thus

Ñ =
∑

n−kva>0

β̃ā−(n−kva)β̃
a
n−kva (A.15)

• n − kva < 0. In this case, the annihilation operator is β̃ā−(n−kva). This means the
number operator should be

Ñ =
∑

n−kva<0

β̃an−kva β̃
ā
−(n−kva). (A.16)

The total number operator is then defined as

⇒ Ñ ≡
∑

n−kva>0

β̃ā−(n−kva)β̃
a
n−kva +

∑
n−kva<0

β̃an−kva β̃
ā
−(n−kva). (A.17)
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Finally, one can preform the same calculation for the right movers. I will only state the
results below, because the derivations follow the same steps as above, with appropriate
switching of minus signs and tildes. In general, one has:

Z̄a(σ−) = za + τqa +
∑
n

1
n+ kva

βan+kvae
−inσ− , (A.18)[

βan+kva , β
b̄
m−kva

]
= (n+ kva)δabδm+n, (A.19)

⇒ N =
∑

n+kva>0

βā−(n+kva)β
a
n+kva +

∑
n+kva<0

βan+kvaβ
ā
−(n+kva). (A.20)

A.3 An Explicit Example

Perhaps the best way to see how the calcualtion procedes is to work out an example, using
the explicit example of the Z6-II orbifold. The goal is to calculate which oscillators are
allowed in each of the directions, using our definition of the number operator in Equation
(A.17), and the commutators that we derived in Equation (A.12). The main idea here is
that consistent states are always eigenvalues of the number operator.

In this case, we will limit ourselves to the first twisted sector (k = 1) in theZ6-II orbifold.
Let us build two states: β̃1

−1/6 |φ〉 and β̃1̄
1/6 |φ〉, where |φ〉 is the state with zero momentum

and zero oscillators (“vacuum”, if you like). We wish to check if these states are both
eigenvalues of the number operator in the first twisted sector. Then

Ñ β̃1
−1/6 |φ〉 =

 ∑
n−kva>0

β̃ā−(n−kva)β̃
a
n−kva +

∑
n−kva<0

β̃an−kva β̃
ā
−(n−kva)

 β̃1
−1/6 |φ〉 ,

=

 ∑
n−1/6>0

β̃1̄
−(n−1/6)β̃

1
n−1/6 +

∑
n−1/6<0

β̃1
n−1/6β̃

1̄
−(n−1/6)

 β̃1
−1/6 |φ〉 (A.21)

Here, we’ve replaced a with 1, because of the Kronecker deltas in Equation (A.12), and kva
with 1/6.

Now consider the first term. We have worked out that
[
β̃1
n−1/6, β̃

1
−1/6

]
= 0 above, so

we are free to change the order of operation. Further, we know that n− 1/6 > 0 in the first
term, which means that we have an annihilation operator acting on the vacuum. So we are
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left only to consider the second term. Then,

Ñ β̃1
−1/6 |φ〉 =

∑
n−1/6<0

β̃1
n−1/6β̃

1̄
−(n−1/6)β̃

1
−1/6 |φ〉 ,

=
∑

n−1/6<0

β̃1
n−1/6

{[
β̃1̄
−(n−1/6), β̃

1
−1/6

]
+ β̃1

−1/6β̃
1̄
−(n−1/6)

}
|φ〉 ,

=
∑

n−1/6<0

β̃1
n−1/6

{
−
[
β̃1
−1/6, β̃

1̄
−(n−1/6)

]
+ β̃1

−1/6β̃
1̄
−(n−1/6)

}
|φ〉 ,

=
∑

n−1/6<0

β̃1
n−1/6

{
−
[
β̃1
−1/6, β̃

1̄
−n+1/6

]
+ β̃1

−1/6β̃
1̄
−(n−1/6)

}
|φ〉 . (A.22)

First of all, notice that in the last line I have made a subtle (but crucial!!!) change—−(n −
1/6) → −n + 1/6. In order to use our commutation relations that we derived in Equation
(A.12), we must write the ladder operator in the barred coordinate in this way. We will
see shortly that this isn’t always possible. Second of all, the last term here is again an
annihilation operator acting on the vacuum, so it disappears. Inserting our definition of
the commutator, we have, then

Ñ β̃1
−1/6 |φ〉 =

∑
n−1/6<0

β̃1
n−1/6

{
−
[
β̃1
−1/6, β̃

1̄
−n+1/6

]}
|φ〉 ,

=
∑

n−1/6<0

β̃1
n−1/6

{− (−1/6) δ−1/6−n+1/6

} |φ〉 ,
⇒ Ñ β̃1

−1/6 |φ〉 =
1
6
β̃1
−1/6 |φ〉 (A.23)

We can follow the same set of steps with the second state:

Ñ β̃1̄
−1/6 |φ〉 =

 ∑
n−kva>0

β̃ā−(n−kva)β̃
a
n−kva +

∑
n−kva<0

β̃an−kva β̃
ā
−(n−kva)

 β̃1̄
−1/6 |φ〉 ,

=

 ∑
n−1/6>0

β̃1̄
−(n−1/6)β̃

1
n−1/6 +

∑
n−1/6<0

β̃1
n−1/6β̃

1̄
−(n−1/6)

 β̃1̄
−1/6 |φ〉 .(A.24)

This time, it is the second term which vanishes. Next,

Ñ β̃1̄
−1/6 |φ〉 =

 ∑
n−1/6>0

β̃1̄
−(n−1/6)β̃

1
n−1/6

 β̃1̄
−1/6 |φ〉 ,

=
∑

n−1/6>0

β̃1̄
−n+1/6β̃

1
n−1/6β̃

1̄
−1/6 |φ〉 ,

=
∑

n−1/6>0

β̃1̄
−n+1/6

{[
β̃1
n−1/6, β̃

1̄
−1/6

]
+ β̃1̄

−1/6β̃
1
n−1/6

}
|φ〉 . (A.25)
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Notice that there is no way to put this in a form where we can use Equation (A.12)—that
is, there is no solution to

n+
1
6

= −1
6
, (A.26)

for n ∈ Z. The conclusion that one draws is that the state β̃1̄
−1/6 |φ〉 is not an eigenstate of

the number operator in the first twisted sector. Stated another way, there is no guarantee that
all of the states one possible could make should appear in the Hilbert Space of physical
states. This means that any oscillator moded states coming from the first twisted sector of
Z6-II cannot contain states which contain β̃1̄

−1/6.
Let’s check another case, just for fun. We will work out another example. Consider the

fifth twisted sector (k = 5) of the Z6-II orbifold. After you calculate a few of these models,
you quickly learn that the first and fifth twisted sectors are generally conjugate to each
other. One would generally expect, then, that we find the complete opposite results in this
calculation.

We will start again with the same states, β̃1
−1/6 |φ〉 and β̃1̄

1/6 |φ〉. First,

Ñ β̃1
−1/6 |φ〉 =

 ∑
n−5/6>0

β̃1̄
−(n−5/6)β̃

1
n−5/6 +

∑
n−5/6<0

β̃1
n−5/6β̃

1̄
−(n−5/6)

 β̃1
−1/6 |φ〉 ,

=
∑

n−5/6<0

β̃1
n−5/6

[
β̃1̄
−(n−5/6), β̃

1
−1/6

]
|φ〉 . (A.27)

Notice, now, that the commutator cannot be put in the proper form, which we derived in
Equation (A.12). But even if one didn’t realize this (as I surely didn’t the first time I derived
it), this is what happens:

Ñ β̃1
−1/6 |φ〉 =

∑
n−5/6<0

β̃1
n−5/6

(
1
6

)
δ−1/6−n+5/6 |φ〉 . (A.28)

Again, we see that n is forced into an unphysical region (n = 1/3), so it must be that these
states cannot live in our Hilbert space.

Finally we will check the other case.

Ñ β̃1̄
−1/6 |φ〉 =

∑
n−5/6>0

β̃1̄
−(n−5/6)β̃

1
n−5/6β̃

1̄
−1/6 |φ〉 ,

=
∑

n−5/6>0

β̃1̄
−(n−5/6)

[
β̃1
n−5/6, β̃

1̄
−1/6

]
|φ〉 ,

=
∑

n−5/6>0

β̃1̄
−(n−5/6)(n−

5
6

)δn−5/6−1/6 |φ〉 ,

⇒ Ñ β̃1̄
−1/6 |φ〉 =

1
6
β̃1̄
−1/6 |φ〉 . (A.29)
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Appendix B
SOME RESULTS FROM 5D FIELD

THEORY

This morning I visited the place where the street-cleaners dump the rubbish.
My God, it was beautiful!

Vincent Van Gogh

In this Appendix, we collect some results obtained by studying the compactification of
five dimensional field theories. We adhere to the notation that XM = (xµ, x5), with metric
signature (+−−−−). We will compactify our theory on an orbifold, which is defined by
two operations: a parity P : y → −y and a translation T : y → y + 2πR. From these two
operations, we define P ≡ P and P ′ ≡ PT . Formally, this corresponds to S1/Z2 ×Z′2. We
demand that the action be invariant under P and P ′.

B.1 The Kaluza-Klein Mode Expansion of a Gauge Field

Consider the five dimensional action of U(1) Yang-Mills theory:

S =
−1
4g2

∫
d5xFMNF

MN . (B.1)

As usual, the equations of motion can be found by integrating by parts:

S =
−1
4g2

∫
d5x (∂MAN − ∂NAM )

(
∂MAN − ∂NAM) ,

⇒ =
1

4g2

∫
d5x

{
AN∂M

(
∂MAN − ∂NAM)−AM∂N (∂MAN − ∂NAM)} , (B.2)

which (after varying the action) gives the familiar Yang-Mills equations of motion:

∂MF
MN = 0. (B.3)
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This gives us a five dimensional equation of motion for the gauge field A:

∂M∂
MAN = 0. (B.4)

We should look at how the five dimensional action decomposes: invariance of the ac-
tion under the orbifold will dictate how the different components of AM behave under the
parity and translation operations. The five dimensional action decomposes as

S =
−1
4g2

∫
d5xFMNF

MN =
−1
4g2

∫
d5x

{
FµνF

µν + Fµ5F
µ5 + F5νF

5ν + F55F
55
}
, (B.5)

where µ = 0, 1, 2, 3. The second two terms are identical and the last term vanishes—both
of these facts follow from the anti-symmetry of FMN . We are then left with

S =
−1
4g2

∫
d5x

{
FµνF

µν + 2Fµ5F
µ5
}
. (B.6)

The first term says that Aµ(x, y) can have any of the four boundary conditions. While the
first term gives no requirements on the transformation properties of Aµ(x, y) and A5(x, y),
the second term does.

Fµ5F
µ5 = ∂µA5(∂µA5 − ∂5Aµ) + ∂5Aµ(∂5Aµ − ∂µA5). (B.7)

Notice that under the parity transformation P , y → −y, ∂µ → −∂µ and ∂5 → −∂5. Under
the translation transformation T , y → y + 2πR, ∂µ → ∂µ and ∂5 → ∂5. By construction,
we require that our action be invariant under P ≡ P and P ′ ≡ PT , thus it must be that
under P we have Aµ(x,−y) → Aµ(x, y) and A5(x,−y) → −A5(x, y). Similarly, under the
translation T , Aµ(x, y+2πR)→ Aµ(x, y) andA5(x, y+2πR)→ A5(x, y). Thus theAµ(x, y)
component of AM (x, y) always has (++) boundary conditions and the A5(x, y) component of
AM (x, y) always has (−−) boundary conditions. This means that the field A5(x, y) does not
have a zero mode, while the field Aµ(x, y) always does.

This all suggests that we use the following Kaluza-Klein mode expansion:

Aµ(x, y) =
∞∑
n=0

A(n)
µ (x)a(n)(y),

A5(x, y) =
∞∑
n=1

A
(n)
5 (x)b(n)(y) (B.8)
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Inserting the mode expansion into the equations of motion, we see

∂µ∂
µAν = ∂µ∂

µ
∞∑
n=0

A(n)
ν (x)a(n)(y) = 0,

⇒ =
∑
n

{
a(n)(y)�A(n)

ν (x) +A(n)
ν (x)∂5∂

5a(n)(y)
}

= 0. (B.9)

Also,

∂µ∂
µA5 = ∂µ∂

µ
∞∑
n=0

A
(n)
5 (x)b(n)(y) = 0,

⇒ =
∑
n

{
b(n)(y)�A(n)

5 (x) +A
(n)
5 (x)∂5∂

5b(n)(y)
}

= 0. (B.10)

This gives us the familiar solutions for a(n)(y) and a(n)(y) as before:

a(n)(y) = cos
(ny
R

)
,

b(n+1)(y) = sin
(

(n+ 1)y
R

)
. (B.11)

Note that we can break the gauge symmetry by introducing a parity operator. In this
case, we are explicitly breaking the gauge symmetry in the action by endowing the field
Aµ(x, y) with specific transformation properties. This can be done by writing down an
operator which gives Aµ(x, y) boundary conditions other than (++). If this is the case, then
we will clearly need a new mode expansion, and one can repeat the calculation in a similar
manner and find that

a(n)(y) =



cos
(ny
R

)
(++)

cos
(

(n+ 1
2

)y

R

)
(+−)

sin
(

(n+ 1
2

)y

R

)
(−+)

sin
(

(n+1)y
R

)
(−−)


. (B.12)

B.2 Something Like the Higgs Mechanism

We now examine Equation (B.6) term by term. First, in terms of the five dimensional
fields...

FµνF
µν = (∂µAν − ∂νAµ)(∂µAν − ∂νAµ),

= 2(∂µAν∂µAν − ∂νAµ∂µAν). (B.13)

127



Substituting into the first term,

∂µAν(x, y)∂µAν(x, y) =
∑
n,m

cos
(ny
R

)
cos
(my
R

)
∂µA

(n)
ν (x)∂µAν(m)(x). (B.14)

Now we can integrate over the fifth dimension, and see∫ 2πR

0
dy∂µAν(x, y)∂µAν(x, y) =

∑
n=0

(
2δn,0πR

)
∂µA

(n)
ν (x)∂µAν(n)(x). (B.15)

Renaming the indices gives us the other term in Equation (B.13). Finally, we find∫ 2πR

0
dyFµνF

µν = 2πR
{
F (0)
µν F

µν(0) +
1
2

∑
n=1

F (n)
µν F

µν(n)
}
. (B.16)

Next, we can look at the Fµ5F
µ5 term. One must be careful in computing the terms

here and take care that the metric is inserted properly. For instance

∂5 = −∂5 ≡ ∂

∂y
, (B.17)

A5 = −A5. (B.18)

To make the transformation properties explicit, we write things in terms of A5:

Fµ5F
µ5 = ∂µA5∂

µA5 − ∂µA5∂
5Aµ − ∂5Aµ∂

µA5 + ∂5Aµ∂
5Aµ,

⇒ Fµ5F
µ5 = −∂µA5∂

µA5 + ∂µA5∂5A
µ + ∂5Aµ∂

µA5 − ∂5Aµ∂5A
µ. (B.19)

Substituting in the Kaluza-Klein mode expansion, we find

Fµ5F
µ5 = −

∑
n,m=1

sin
(ny
R

)
sin
(my
R

)
∂µA

(n)
5 (x)∂µA(m)

5 (x)

−
∑
n,m=1

m

R
sin
(ny
R

)
sin
(my
R

)
∂µA

(n)
5 (x)Aµ(m)(x)

−
∑
n,m=1

n

R
sin
(ny
R

)
sin
(my
R

)
A(n)
µ (x)∂µA(m)

5 (x)

−
∑
n,m=1

nm

R2
sin
(ny
R

)
sin
(my
R

)
A(n)
µ (x)Aµ(m)(x) (B.20)

As before, we integrate out the fifth dimension:∫ 2πR

0
dyFµ5F

µ5 = −
∑
n=1

πR

{
∂µA

(n)
5 (x)∂µA(n)

5 (x) +
n2

R2
A(n)
µ (x)Aµ(n)(x)

+
n

R

(
A(n)
µ (x)∂µA(n)

5 (x) + ∂µA
(n)
5 (x)Aµ(n)(x)

)}
. (B.21)
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Putting everything together, we see that

Seff =
−2πR

4g2

∫
d4x

{
F (0)
µν (x)Fµν(0)(x) +

1
2

∑
n=1

F (n)
µν (x)Fµν(n)(x)

−
∑
n=1

[
∂µA

(n)
5 (x)∂µA(n)

5 (x) +
n2

R2
A(n)
µ (x)Aµ(n)(x)

+
n

R

(
A(n)
µ (x)∂µA(n)

5 (x) + ∂µA
(n)
5 (x)Aµ(n)(x)

)]}
. (B.22)

where the effective four dimensional coupling constant is identified:

g2
eff ≡

g2

2πR
. (B.23)

An interesting point is that the effective coupling constant for the Kaluza-Klein modes
is now larger by a factor of

√
2. This means that the KK modes couple more strongly to the

other states in the theory. Other than that, however, Equation (B.22) is exactly what we
hoped to get— the action of a tower four dimensional vector fields with mass m2

n = n2

R2 :

SKK =
−1

4g2
eff

∫
d4x

1
2

∑
n=1

{
F (n)
µν F

µν(n) − 2n2

R2
A(n)
µ Aµ(n)

}
, (B.24)

where we have taken a factor of two from the last term. Redefining the fields, we see that

SKK =
∑
n=1

∫
d4x

{−1
4
F (n)
µν F

µν(n) +
1
2
n2

R2
A(n)
µ Aµ(n)

}
, (B.25)

which is indeed the action for a massive gauge boson.
Finally, note that the third polarization of the massive gauge boson is exactly the com-

ponent along the fifth direction, A5—the higgs mechanism happens for each Kaluza-Klein
mode. This can be made more explicit by showing that the scalar field A5 is a gauge arti-
fact, and that it does not appear in the (gauge fixed) theory. First, we will choose to add a
gauge-fixing term (for each KK mode) to the lagrangian in Equation (B.22)

Sg.f. = −1
2

∫
d4xξ−1

[
∂µA

µ + 2ξ
2πR
4g2

n

R
A5

]2

. (B.26)

Note that if we take n = 0, note that we are left with the typical Rξ gauge. Multiplying the
terms in Equation (B.26), we find

Sg.f. = −1
2

∫
d4xξ−1

[
∂µA

µ∂νA
ν + 4ξ2 (2πR)2

16g4

n2

R2
(A5)2 + 4ξ

n

R

2πR
4g2

∂µA
µA5

]
. (B.27)
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The last term can be integrated by parts to give

Sg.f. = −1
2

∫
d4x

[
ξ−1∂µA

µ∂νA
ν + ξ

(2πR)2

16g4

n2

R2
(A5)2 − 4

n

R

2πR
4g2

Aµ∂µA5

]
. (B.28)

If we add this gauge fixing action to Equation (B.22), we see that the cross term relating the
derivative of A(n)

µ and A5 cancels. Furthermore, one can choose ξ →∞, the so-called “uni-
tary gauge”, and decouple the scalar degree of freedom from the theory—the second term
in Equation (B.28) tells us that the scalar degree of freedom gets a mass term proportional
to
√
ξ. The analogy with the higgs mechanism is now complete.

B.3 A New Contribution to the Beta Functions

We have shown, in Equation (B.22), that the pure gauge theory in 5 dimensions becomes
something much more interesting in four dimensions: a four dimensional (pure gauge)
theory coupled to a tower of massive bosons, each of which undergo the higgs mechanism.
If we add matter to the theory, a similar story unfolds: the quantization of the fermion field
gives a tower of (massive) KK fermions. We know consider corrections to the vacuum
polarization of the photon due to this infinite tower of KK fermions. In a straightforward
generalization, we may write

Πµν(p2) =
∑
n

−e2

∫
d4k

(2π)4
TR

γµ (k · γ +mn) γν ((k + p) · γ +mn)

(k2 −m2
n)
(

(k + p)2 −m2
n

)
 . (B.29)

One then expects, by the Ward Identities, to write

Πµν(p2) = Π(p2)
(
p2gµν − pµpν

)⇒ Π(p2) =
1

3p2
gµνΠµν(p2). (B.30)

In the normal manner (by introducing a Feynman x and changing the integration variables,
one finds

Π(p2) =
−8e2

3p2

∑
n

∫ 1

0
dx

∫
d4`

(2π)4

−`2 + x(1− x)p2 + 2m2
n

[`2 + p2x(1− x)−m2
n]2

. (B.31)

Working with Euclidean momenta, this becomes

Π(p2) =
−8e2

3p2

∑
n

∫ 1

0
dx

∫
d4`

(2π)4

`2 − x(1− x)p2 + 2m2
n

[`2 + p2x(1− x) +m2
n]2

. (B.32)

If we were working with QED (or, only the zero mode fermion running around the
loop), one would now proceed with dimensional regularization as usual. One could pro-
ceed in the same manner here, by shifting to 4−ε dimensions and evaluating the Euclidean
integral. If one does that, then we end up with a nasty expression, involving an infinite
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series of logs. Instead, we can introduce a Schwinger parameter t:

1
x2

=
∫ ∞

0
dt te−xt. (B.33)

Then Equation (B.32) can be written as

Π(p2) =
−8e2

3p2

∑
n

∫ 1

0
dx

∫ ∞
0

dt te−t{p2x(1−x)+m2
n}

×
∫

d4`

(2π)4
e−t`

2 {
`2 − x(1− x)p2 + 2m2

n

}
, (B.34)

The momentum integrals are now straightforward to evaluate, for example:∫
d4`

(2π)4
e−t`

2
=

1
(2π)4

∫ ∞
0

d``3e−t`
2

∫
dΩ4 =

2π2

(2π)4

Γ(2)
2t2

=
1

16π2t2
, (B.35)

and one finds

Π(p2) =
−e2

6π2p2

∑
n

∫ 1

0
dx

∫ ∞
0

dt

t
e−t{p2x(1−x)+m2

n}
{

2
t

+ 2m2
n − x(1− x)p2

}
. (B.36)

The first term can be integrated to give∫ ∞
0

dt

t2
e−t{p2x(1−x)+m2

n} = (−1)3

∫ ∞
0

dt

t

{
p2x(1− x) +m2

n

}
e−t{p2x(1−x)+m2

n}. (B.37)

This gives

Π(p2) =
e2

2π2

∑
n

∫ 1

0
dxx(1− x)

∫ ∞
0

dt

t
e−t{p2x(1−x)+m2

n},

⇒ Π(0) =
e2

12π2

∑
n

∫ ∞
0

dt

t
e−tm

2
n (B.38)

Luckily for us, we can go a bit further. The Jacobi θ function is defined as

θ3(t) ≡
∑
n

eiπn
2t. (B.39)

Equation (B.38) can be written in terms of the Jacobi θ functions:

Π(0) =
e2

12π2

∫ ∞
0

dt

t
θ3

(
it

πR2

)
(B.40)

In general, this integral gives both UV and IR divergences. In practice, however, this ex-
pression is only applicable between the compactification scale, MC, and the cutoff, MS—
motivated by this, then, we introduce hard UV and IR cutoffs of t, which has units of
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energy squared:

Π(0) =
e2

12π2

∫ MC
−2

M−2
S

dt

t
θ3

(
it

πR2

)
. (B.41)

Notice that this expression reduces to the familiar result from QED (coupling renormaliza-
tion) when we set n = 0 in Equation (B.38). This makes the θ3 function equal to unity, and
the integral in Equation (B.41) evaluates to a logarithm of the ratio of UV to IR scales.

Using the approximation

θ3

(
it

πR2

)
∼=
√
π

t
R, (B.42)

we find after integrating

Π(0) ∼ Rt−1/2

∣∣∣∣∣
MC
−2

M−2
S

, (B.43)

where we identify R = MC
−1. Finally,

⇒ Π(0) ∼
(
MS

MC
− 1
)
. (B.44)

This implies that the KK tower gives a new contribution to the running of the coupling
constant, for µ < MC:

α−1(µ) ∼
(
MS

MC
− 1
)

+ log
MS

µ
, (B.45)

where the log term is due to the states that contribute to the gauge coupling evolution
below the compactification scale. Thus, the prediction is that the gauge couplings receive
power law corrections between the compactification scale and the cutoff due to the pres-
ence of virtual Kaluza-Klein fermions.

Thusfar, this treatment has been similar to that of [43], with Kaluza-Klein states there
were taken to have mass mn = n/R as is the case when the fifth dimesion is compactified
on a circle. In our orbifold case, we found four sets of Kaluza-Klein modes in Equation
(B.12): (±±) and (±∓). The masses of these modes are given by

(++) m2
n = n2

R2

(±∓) m2
n = (n+1/2)2

R2

(−−) m2
n = (n+1)2

R2 .

(B.46)

We must now modify the above expressions to take into account the new spectrum of
Kaluza-Klein modes. To do this, we start with Equation (B.38), except substitute our new
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Kaluza-Klein masses:

Π(0) =
e2

12π2

∑
n

∫ ∞
0

dt

t
e−tm

2
n ,

⇒ Π(0) =
α

4π

∑
n=1

{
(b++ + b−−)

∫
dt

t
e−t

n2

R2 + (b+− + b−+)
∫
dt

t
e−t

(n+1/2)2

R2

}

+
α

4π
b++

∫
dt

t
, (B.47)

where the last line is the zero mode contribution. We can define another theta function as

θ2(t) ≡
∞∑

n=−∞
eiπt(n+1/2)2

. (B.48)

Substituting this definiton, along with the definition (B.39) into Equation (B.47), we find

Π(0) =
α

4π

{
(b++ + b−−)

∫ rMC
−2

rM−2
S

dt

t

1
2

[
θ3

(
it

πR2

)
− 1
]

+ (b+− + b−+)
∫ rMC

−2

rM−2
S

dt

t

1
2
θ2

(
it

πR2

)}
+

α

4π
b++

∫ rMC
−2

rM−2
S

dt

t
. (B.49)

This result is exact, however, we can make an approximation to the theta functions in the
limit where t/R2 << 1:

θ3

(
it

πR2

)
∼= θ2

(
it

πR2

)
∼=
√
π

t
R. (B.50)

This gives us, finally,

Π(0) =
α

4π

{
bG
∫ rMC

−2

rM−2
S

dt

t

√
π

t
R− 1

2
(b++ + b−−)

∫ rMC
−2

rM−2
S

dt

t

+b++

∫ rMC
−2

rM−2
S

dt

t

}
, (B.51)

where bG ≡ b++ + b+− + b−+ + b−−. We can preform the integrals and find

Π(0) =
α

4π

{
bG
(
MS

MC
− 1
)
− 1

2
(b++ + b−−) log

MS

MC
+ b++ log

MS

MC

}
. (B.52)

As before, the zero modes (given only by states with ++ boundary conditions) contribute
logarithmically between the compactification scale and the cutoff, and the full set of Kaluza-
Klein fermions furnish a power law correction. What was lacking before is the contribu-
tions of the ++ and −−modes to an additional logarithmic correction.
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One may argue that the approximation we have used is not valid. This is a legitimate
concern, but it was shown in [42, 43] that the approximation is reasonably good even for
moderate t/R2. Further, asMC →MS, we recover a pure logarithmic running, as we would
expect from no large extra dimensions. So, if the ratio between the compactification scale
and string scale is nearly one, then the effect due to extra dimensions is small. As the ratio
between the two scales increases, the approximation becomes better and bettter.
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Appendix C
COMPARING TWO SU(6) ORBIFOLD

GUTS

The SU(6) orbifold GUTs considered in this paper satisfy the special property of gauge-
Higgs unification. This is also a property of the 5D SU(6) orbifold GUT discussed in Ref-
erence [93]. It is instructive to compare this SU(6) model to one without gauge-Higgs
unification, in particular the 5D SU(5) orbifold GUT discussed in Reference [85].

In the models with gauge-Higgs unification, the Higgs multiplets come from the 5D
vector multiplet (V,Φ), both in the adjoint representation of SU(6). V is the 4D gauge mul-
tiplet and the 4D chiral multiplet Φ contains the Higgs doublets. These states transform as
follows under the orbifold parities (P P ′):

V :



(++) (++) (++) (+−) (+−) (−+)
(++) (++) (++) (+−) (+−) (−+)
(++) (++) (++) (+−) (+−) (−+)

(+−) (+−) (+−) (++) (++) (−−)
(+−) (+−) (+−) (++) (++) (−−)

(−+) (−+) (−+) (−−) (−−) (++)


(C.1)

Φ :



(−−) (−−) (−−) (−+) (−+) (+−)
(−−) (−−) (−−) (−+) (−+) (+−)
(−−) (−−) (−−) (−+) (−+) (+−)

(−+) (−+) (−+) (−−) (−−) (++)
(−+) (−+) (−+) (−−) (−−) (++)

(+−) (+−) (+−) (++) (++) (−−)


. (C.2)

Note the appearance of the MSSM Higgs multiplets in Φ with (++) boundary conditions,
and it’s partner in V with (−−) boundary conditions. These massive KK states contribute
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to a logarithmic running of the gauge couplings with a term of the form

α−1
i ⊃ −

1
4π

(b++
i + b−−i ) log

MS

MC
. (C.3)

We find for the model of Reference [93] (including just V,Φ above)

~b++ = (−9,−5, 3/5), ~b−− = (3,−1,−9/5), ~b++ +~b−− = (−6,−6,−6/5). (C.4)

(These numbers can be calculated using the values in Table H.) Again we stress that the
only difference between the models presented in this paper and that of Reference [93] is
that the third family lives in the bulk in our constructions, which will only change these
numbers by a universal contribution. Indeed, one can check by comparing Equation (C.4)
with (3.9) that the only difference is a family universal contribution.

This can then be compared to an SU(5) model without gauge-Higgs unification [85]. In
this case the 5D gauge multiplet includes the states, with their transformation under the
orbifold parities (P P ′):

V :


(++) (++) (++) (+−) (+−)
(++) (++) (++) (+−) (+−)
(++) (++) (++) (+−) (+−)

(+−) (+−) (+−) (++) (++)
(+−) (+−) (+−) (++) (++)

 (C.5)

Φ :


(−−) (−−) (−−) (−+) (−+)
(−−) (−−) (−−) (−+) (−+)
(−−) (−−) (−−) (−+) (−+)

(−+) (−+) (−+) (−−) (−−)
(−+) (−+) (−+) (−−) (−−)

 . (C.6)

The Higgs multiplets are contained in the chiral multiplets, H5 + Hc
5 and H5̄ + Hc

5̄
, with

parities

H5, H5̄ :


(+−)
(+−)
(+−)

(++)
(++)

 . (C.7)
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Hc
5, H

c
5̄ :


(−+)
(−+)
(−+)

(−−)
(−−)

 . (C.8)

In this case, the (−−) partners of the Higgs doublets appear in chiral multiplets not the
gauge multiplet as before. Thus we now find the beta function coefficients given by

~b++ = (−9,−5, 3/5), ~b−− = (3, 3, 3/5), ~b++ +~b−− = (−6,−2, 6/5). (C.9)

To get relationships between the cutoff (MS) and the compactification scale (MC), we
can compare 5α−1

1 (MC) − 3α−1
2 (MC) − 2α−1

3 (MC) and α−1
3 (MC) − α−1

2 (MC) in the orbifold
GUT and in the MSSM. Including the threshold correction in Equation (3.3) we find (for
gauge-Higgs unification)

log
MGUT

MC
=

2
3

log
MS

MC
+

1
3
,

log
MS

MGUT
= −3

2
(C.10)

The factors of 1
3 and −3

2 come from the threshold correction applied at MGUT. These equa-
tions implicitly assume the relation MC ≤MGUT,MS, however, the solution to the equation
gives the unphysical relation MC > MGUT > MS. This is the main reason we need to rely
on “light” exotics. On the other hand, for the SU(5) orbifold GUT we find

log
MGUT

MC
=

2
3

log
MS

MC
+

1
3
,

log
MGUT

MC
=

1
2

log
MS

MC
+

3
2

(C.11)

which gives the physically acceptable solution log MS
MGUT

= 2 and log MGUT
MC

= 5. We thus
conclude that simple gauge-Higgs unification in 5D SU(6) is not viable.

In Reference [93] an N = 2 model with gauge-Higgs unification in 6D (or N = 4 in 4D)
was also considered. In this case the Higgs multiplet and its (−−) partners are contained
in chiral adjoints. Gauge coupling unification works in this model. Unfortunately, we do
not know how to obtain such a model from the heterotic string.

Of course, the additional problem concerning gauge coupling unification in the context
of the heterotic string is the need to match the low energy values of the coupling constants
given values of MC and MS. In particular, we must satisfy the relation

α−1
STRING =

1
8

(
MPL

MS

)2

. (C.12)
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In most cases, with MC ≤ MGUT < MS, the power law running due to the KK modes is
required, i.e.

α−1
i (MC) ⊃ α−1

STRING +
bG

2π

(
MS

MC
− 1
)

+ Log terms ∼ O(10). (C.13)
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Appendix D
SOME (UPDATED) CONSTRAINTS ON
PROTON DECAY IN ORBIFOLD GUTS

D.1 Dimension 6 Operators

The gauge bosons in GUTs can mediate proton decay via effective dimension 6 operators.
The best bounds on proton decay come from the channel p → e+ + π0, and current (pub-
lished) experimental limits are[29]

τ(p→ e+ + π0) > 8.2× 1033 yr. (D.1)

In this paper, we are looking at an SU(6) GUT in five dimensions, which is broken to either
SU(5) or SU(4) × SU(2) on the branes. The dangerous operators come from SU(5) gauge
boson (X) exchange and have been calculated in Reference [200]. In a 4-d SU(5) GUT, the
effective lagrangian leading to proton decay from X boson exchange is given by

Leff =
g2

GUT

2M2
X

JµJ∗µ, (D.2)

where
Jµ = −(l)∗σ̄µdc + (uc)∗σ̄µq + (q)∗σ̄µec + h.c. (D.3)

The operators which lead to proton decay are given by

Leff = − g
2
GUT

2M2
X

∑
i,j

[
(q∗i σ̄

µuci )(`
∗σ̄µd

c
j) + (q∗i σ̄

µeci )(q
∗
j σ̄µu

c
j)
]
. (D.4)

The decay rate of p→ π0e+ in the 4-d theory is given by

Γ(p→ π0e+) =

(
m2
p −m2

π

)2
64πm3

pf
2
π

β2
LATA

2 g
4
GUT

M4
X

(1 +D + F )2
[(

1 + |Vud|2
)2 + 1

]
. (D.5)
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These formulae will receive modifications in our model, based on the fact that there is
a relationship between the string scale, the Planck scale and the coupling constant (see
Equation (3.2) ), and that the whole tower of KK modes associated with the SU(5) gauge
bosons will contribute to the decay rate.

Explicitly, the decay rate goes like g4
GUT. We replace this by

g4
GUT → (4π)2α2

STRING = 64× (4π)2 ×
(
MS

MPL

)4

. (D.6)

Next, we should consider the relationship between the compactification scale and the X

boson mass. The SU(5) gauge bosons have (+−) boundary conditions, and masses of
mn =

(
n+ 1

2

)
MC. Proton decay can proceed by exchange of any of the tower of KK

modes, which suggests we take

1
M2

X

→ 2× 1
MC

2

∞∑
n=0

1(
n+ 1

2

)2 =
π2

MC
2 . (D.7)

The factor of two comes from the fact that the KK modes of the gauge bosons are nor-
malized differently than the zero modes [85].57 Including all corrections, we make the
replacement

g4
GUT

M4
X

→ 64× (4π)2 ×
(
MS

MPL

)4

× π4

MC
4 (D.8)

In our 5-d orbifold GUT, we find

Γ(p→ π0e+) ∼= 4.00× 10−73

(
MS

MC

)4

GeV . (D.9)

where we have used A = 3.4, D = 0.80 and F = 0.44, and βLAT ' 0.011 GeV 3 [201]. For
the proton lifetime, we find

τ(p→ π0e+) ∼= 5.21× 1040

(
MC

MS

)4

yr. (D.10)

This corresponds to an upper limit on the ratio between the string scale and the compacti-
fication scale of

MS

MC
. 64. (D.11)

Alternatively, given a (typical) string scale of about 5× 1017 GeV , this corresponds to

MC & 7.8× 1015 GeV . (D.12)
57Equivalently, one can understand this factor as the Kaluza-Klein tower of gauge bosons coupling more

strongly to the fermions by a factor of
√

2, which corresponds to rescaling gGUT →
√

2gGUT.
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An interesting difference between this result and the result one typically finds in an orbi-
fold GUT (see for example Reference [202]) is that the proton lifetime no longer scales like
the compactification scale directly, but as a ratio of scales. This means that the compact-
ification scale can be smaller than MC ∼ 7.8 × 1015 GeV if the string scale is sufficiently
small, which means that the underlying GUT is very weakly coupled (αGUT << 1).58 We
note that this is an additional constraint that has no analogy in typical orbifold GUT model
building, imposed by the relationship between the coupling constant, Newton’s constant,
and α′. Finally, in the interesting limit that MC →MS, we find the upper bound on proton
lifetime in this class of models: τ(p→ π0e+) . 5.21× 1040 yr.

D.2 Dimension 5 Operators

In supersymmetric theories, the proton may decay via dimension five operators as well. In
the mini-landscape models [38], the (3, 1)−2/3,−2/3 + (3, 1)2/3,2/3 states, called δ and δ, can
mediate proton decay via dimension five operators—they have the same gauge quantum
numbers as color triplet Higgses. It was shown in Reference [72] that the effective mass
of the color triplet Higgsino MH̃ ∼ 1018 − 1021 GeV has to be much larger than the (four
dimensional) GUT scale in order to evade bounds on p → K+ν̄, depending on the soft
SUSY breaking parameters.

The δ particles have the same quantum numbers as color triplet Higgses, thus we ex-
pect similar bounds for them (assuming they couple to quarks and leptons with small
effective Yukawa couplings). Unfortunately, to make matters worse, it was found in Ref-
erence [38] that the δ states have tree level coupling to the quarks in the superpotential,
and so the coupling is naturally of order one, i.e. not suppressed by Yukawa factors as they
are in the typical dimension five proton decay operator. However, by carefully adjusting
the singlet VEVs that describe the δ, δ̄, interactions, this problem can be avoided, but cur-
rently, we are lacking a mechanism that would naturally suppress this decay channel for
the proton.

58This may correspond to a region where the string coupling constant gSTRING ∼ eφ (where φ is the dilaton
field) is no longer small. This is undesirable, as we wish to embed these models in the weakly coupled heterotic
string.
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Appendix E
THE ROLE OF HOLOMORPHIC GAUGE

INVARIANT MONOMIALS

In Chapter 3, we showed, by working in the orbifold GUT limit of the Heterotic string,
how one could accommodate gauge coupling unification in the “mini-landscape” models
of References [34–38]. Furthermore, we showed how one of the solutions we found was
consistent with the decoupling of other exotics and F = 0. In this appendix, we will show
that this solution is also consistent with D = 0.

For simplicity, and without loss of generality, we will consider a U(1)A × U(1)B gauge
theory. We will further consider N fields Φi charged under both U(1)s, where each Φi

has charge qAi under the first U(1), and charge qBi under the second U(1). If we turn the
superpotential off, unbroken supersymmetry (SUSY) requires

DA ≡
N∑
i=1

qAi |Φi|2 = 0 (E.1)

DB ≡
N∑
i=1

qBi |Φi|2 = 0. (E.2)

It is well known that the moduli space of D = 0 is spanned by a basis of holomorphic,
gauge invariant monomials (HIMs) [203]. Quite generally, the dimension of the moduli
spaceM of some gauge group G is given by the number of fields charged under G minus
the number of constraints coming from VD = 0:

dimM = N − dim G. (E.3)

The HIMs can be represented as vectors ~x in the U(1)A × U(1)B charge space. That is,
if we define the charge matrix Q as

Q ≡
(
qA1 qA2 · · · qAN
qB1 qB2 · · · qBN

)
, (E.4)
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then the set of HIMs are defined as the solutions to

Q · ~x = 0. (E.5)

The requirement that the monomials be holomorphic is a non-trivial constraint—effectively,
this means that the entries in ~x be positive semi-definite integers.59

In general, a HIM is given by

Mα = Φxα1
1 Φxα2

2 · · ·Φ
xαN
N , (E.6)

where Q · ~xα = 0. We can guarantee solutions to VD = 0 if we demand that

|Φi|2 = Φi
∂

∂Φi

dim M∑
α

aαMα. (E.7)

In general, one must choose the constants aα such that all of the phases on the right hand
side of Equation (E.7) cancel. A substitution into Equations (E.1) and (E.2) shows that we
do indeed satisfy D = 0.

Next, consider the case where we turn on a superpotential,W . The superpotential is an
arbitrary function of the holomorphic, gauge invariant monomials. The requirement that
F = 0 can be stated as follows:

Φi
∂

∂Φi
W(Mα) = 0. (E.8)

ExpandingW in powers of Mα, one has:

Φi
∂

∂Φi
W(Mα) =

∑
α

bαx
i
αMα +

∑
αβ

cαβ(xiα + xiβ)MαMβ + · · · = 0, (E.9)

This only tells us something that we already knew—the superpotential only constrains
combinations of the holomorphic, gauge invariant monomials Mα, not the fields them-
selves.60 We can solve these constraints explicitly for the Mα, and then express |Φi|2 in
terms of a linear combination of the Mα (as before), with arbitrary aα. Thus we see that it
is always possible to satisfy D = 0 when given a solution to F = 0.61

Finally we consider the (relevant) case where the “A” in U(1)A × U(1)B stands for
“anomalous”. In this case, Equation (E.1) is modified slightly. We must now cancel a

59Here we will note that it is entirely possible that the null space of the charge matrix Q is empty—that
is, it could very well be that there exists no holomorphic, gauge invariant monomials. This corresponds to a
situation where SUSY is broken spontaneously everywhere in moduli space by D terms, except possibly at the
origin where one would expect an enhanced gauge symmetry.

60See Chapter VIII in Reference [204], for example.
61A different argument was made by Luty and Taylor [205].
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Fayet-Iliopolous (FI) term if we wish to keep SUSY unbroken:

DA =
∑
i

|Φi|2 + |ξ| = 0. (E.10)

In order to ensure that there exists a direction in moduli space along which this constraint
can be satisfied, we seek at least one HIM which has a net negative charge under U(1)A.
This will ensure that we can cancel the (negative) FI term.

We now turn to the issue which we would like to address, namely proving D = 0 for
the solution presented in Section 4 of Reference [30], wherein we showed F = 0 for one
of the models, and neglected the issue of D = 0. We consider Model 1A in Reference [38],
where it was shown that solutions to F = D = 0 existed for arbitrary (string scale) vevs
for some subset of the non-Abelian singlet fields—see Equation (5.3) of [38]. We require
two fields, called s1 and s25, to have intermediate scale (MEX) vevs, while several other
fields are required to have vevs of order the string scale. There are also several other non-
Abelian singlet fields which we require to get zero vevs. (The complete list of fields, along
with their charges are listed in Appendix E of Reference [38].)

Using the arguments above, we note that the proof ofD = 0 for our solution is straight-
forward. One only need check that there are enough HIMs to saturate the dimension of
the moduli space, and that there exists at least one holomorphic monomial which has a
negative charge under the U(1)A. We have verified that this is the case.

In closing, we will note that simply taking s1 and s25 out of the charge matrix Q pro-
duces a null result forQ ·~x = 0, meaning that there are no vectors ~xwhich satisfy the above
equation if we set the vevs of s1 = s25 = 0. In other words, SUSY is broken by D terms at
the string scale at a generic point in moduli space.62

Doing this, however, puts one in a different vacuum of the theory entirely. That is,
one cannot scale a zero vev to a non-zero quantity, no matter how clever the choice of aα!
We point out that the solution to F = 0 does require one engineer a cancellation on the
order MEX/MS ∼ 10−8 among the other vevs. We should expect, then, that a tuning in the
coefficients aα is required to this order as well. While this is aesthetically unappealing, it
is nonetheless possible, as the relationship in Equation (E.7) only constrains the phases of
the aαs and not their magnitudes.

62The trivial result, with all fields having zero vevs, remains, and is a point of enhanced symmetry in moduli
space. This point in moduli space is interesting in it’s own right, but is not useful for getting good phenomenol-
ogy.
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Appendix F
A DIFFERENT RACETRACK

The form of the gaugino condensate, given in Eqn. (5.37), ensures that the non-perturbative
part of the superpotential is invariant under the modular group SL(2,Z). In deriving the
form of WNP, however, we have neglected the fact that the presence of discrete Wilson lines
often break the modular group SL(2,Z)to one of its subgroups. It has been noted [161]
that turning on one or more Wilson lines breaks the modular group SL(2,Z) down to one
of its subgroups. Define the subgroup Γ0(p) ⊂ SL(2,Z). The subgroup is defined as the
set of 2× 2 matrices such that63

M ≡
(
a b

c d

)
, (F.1)

ad− cb = 1, (F.2)

a, b, c, d ∈ Z, (F.3)

c ≡ 0 mod p, p ∈ P, (F.4)

where P is the set of prime integers. Under this subgroup, then, the invariant function is a
linear combination of Dedekind η functions:

fp(τ) =
1
p

p−1∑
λ=0

η

(
τ + λ

p

)
. (F.5)

63A detailed mathematical treatment of the modular functions can be found in Reference [197].
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Appendix G
SOME TRICKS FOR MINIMIZING

POTENTIALS USING MATHEMATICA

I can see you’re really upset about this. I honestly think you ought to sit
down calmly, take a stress pill and think things over. I know I’ve made some
very poor decisions recently, but I can give you my complete assurance that
my work will be back to normal. I’ve still got the greatest enthusiasm and
confidence in the mission. And I want to help you.

H.A.L.

Mathematica can be infuriating. But it is also one of the most useful pieces of soft-
ware that a physicist (that isn’t interested in building everything from scratch using C++)
can master. In all parts of this Dissertation, we have relied heavily on Mathematica to
do numerical work, especially in Chapter 5 to minimize complicated potentials. In this
Appendix, we endeavor to provide a few of the tricks which were developed to deal with
Mathematica and it’s results. We list this “bag of tricks” here in the hopes that someone
will find something useful. Finally, appropriate credit must be given where it is due: some
of these ideas were developed originally by Alex Westphal and Konstantin Bobkov.

G.1 My Potential has Spurious Imaginary Parts

Let’s consider a simple problem: given some superpotential W and some Kähler potential
K , we want to calculate the scalar potential as a function of real fields. The algorithm
seems straightforward: calculate the Kähler metric, calculate the F terms, write down the
scalar potential, then express everything in terms of (canonically normalized) real fields.
The scalar potential will be a manifestly real function of the real-valued fields, which can
then be minimized.

The trouble comes in because Mathematica is not this smart. Mathematica will
make no a priori assumptions, and we have to trick it into believing that the potential
(which is, after all, a complicated function of complex variables) is indeed real valued.
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There are several ways to do this, here we describe a fool-proof method that should work
every time. This comes at the cost of performance, though below we will give one way to
deal with these issues.

We will assume a theory of the following form:

W = W (S,Φ) , K = K
(
S, S̄,Φ, Φ̄

)
. (G.1)

The first step is to calculate the F terms and the scalar potential in terms of the complex
fields. The trick here is to treat S and S̄ as different fields. This can all be done symbolically,
and all parameters in W can be left arbitrary, for now.

The next step is to define real fields. We define

S ≡ s+ iσ,

S̄ ≡ s− iσ,
Φ ≡ ϕeiθ,

Φ̄ ≡ ϕe−iθ. (G.2)

Here, one can also use $Assumptions to define all of the parameters to be real:

$Assumptions = s > 0 ∧ σ > 0 ∧ σ ≤ 2π ∧ Arg [s] == 0 ∧ Arg [σ] == 0

∧s ∈ Reals ∧ σ ∈ Reals ∧ . . . (G.3)

Keep in mind that the more rules you give Mathematica the more likely it is that it will
perform as expected.

Next, we use the ComplexExpand command to expand theF terms, explicitly defining
the arguments of the complex phases. For example:

FSsimp = Simplify[ComplexExpand[FS]]/.Arg
[
eiθ
]
→ θ;

FSBsimp = Simplify[ComplexExpand[FSbar]]/.Arg
[
e−iθ

]
→ −θ; (G.4)

The complex phases give Mathematica some trouble, and explicitly defining a rule for
their replacement ensures that the result does not depend on Arg

[
eiθ
]
. We should note,

however, that each rule increases the time it takes to execute the above commands, so some
experimentation is required if there are many fields Φi—rules may not be needed for all
fields θ, but rules will probably needed for some fields θi

We can now explicitly separate the F terms into their real and imaginary parts in the
usual manner:

ReFS = Simplify

[
ComplexExpand

[
FSsimp + FSBsimp

2

]]
, (G.5)
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with a similar expression for the imaginary part of FS . Finally, the scalar potential can be
expressed in terms of the real fields:

V (s, σ, ϕ, θ) = |FS |2 K SS̄ + · · · , (G.6)

Note that Mathematica will automatically use the definitions above, in Equation (G.2).
Performance-wise, this entire procedure took 15-20 minutes to complete on a MacBook

Pro, running a 2 GHz Intel Core 2 Duo processor with 4 GB of RAM, using the potentials
from Chapter 5. In order to limit the number of times the full notebook must be run, it is
convenient to use the Save command. The files only need to be built when the functional
form of W or K is altered, not when the parameters are changed. Loading the saved files
can be accomplished with <<’’Filename’’.

G.2 Mathematica Fails to Find a Minimum

In our models, an anomalous D term was generated at the string scale, and was canceled
when some singlet fields took on VEVs, breaking the anomalous U(1) symmetry. The F
terms, on the other hand, were generated by gaugino condensates well below the string
scale, leading to a mis-match in scales by several orders of magnitude. This leads to a
potential which is computationally very tricky to handle: the D term potential dominates
the full scalar potential, however, the true minimum requires us to consider the F term
potential as well.

A common approach in the literature is to simply assume that DA = 0 is satisfied, and
surely it is, to leading order. But as the results of Chapter 5 indicate, a very tiny shift in
the VEV of the field which cancels the DA can result in disastrous consequences for the
soft masses—this is indeed the generic case in the heterotic string models. Thus, in order
to understand low energy physics, we should have a very good understanding of how to
minimize the full potential.

In the following, all of the root finding routines require an initial guess. One can get a
reasonably good initial guess by simply assuming DA = 0, which will set the initial value
of some of the fields. One can then substitute this into the full potential, and minimize VF .
The resulting set of field VEVs provides a suitable initial guess for the true minimum of
the potential in most cases. In our analysis, the T modulus sometimes received large shifts
from very tiny shifts in the other field VEVs.

G.2.1 The Konstantin Trick: Invent Something Small

Let us consider a potential of the following form:

V (φ) = VF (φ) + VD (φ) . (G.7)
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where φ are just some real fields. Numerically, we can minimize VF and VD rather easily
if we do it independently. The trouble is that the characteristic scales of the two potentials
are wildly different:

VF (φ0 + ε) ∼ O
(
10−30

)
, (G.8)

VD (φ0 + ε) ∼ O
(
10−6

)
. (G.9)

φ0 is the location of the true minimum, and ε is some small shift away from the minimum:
one potential is very steep, while the other is very smooth.

One way to deal with this is to define

VK (φ, δK) = VF (φ) + δKVD (φ) . (G.10)

One can then set δK to something tiny (O
(
10−20

)
, or so), and use Mathematica ’s min-

imization routines. Once a minimum is found, one can then increment δK and minimize
again, using the previous result as an initial guess. Typically, the more accurate the initial
guess in the numerical minimization routines, the better the performance. We have listed
an excerpt from our Mathematica notebook, suitably modified, in Equation (G.11) to
demonstrate our point.

While
[
k > 0,{

For
[
j = 1,j < 10,j++,{

∆ = j10−k,

loopSoln = FindRoot [∂φV[φ,∆] == 0, {φ, φtemp}] ,
φtemp = Rationalize

[
φ/.loopSoln, 10−1000

] }]
,

k = k− 1
}]

(G.11)

We would like to point out a few features of the above code. First, we have used
the FindRoot routine. This does not guarantee a minimum, and the mass matrix needs
to be checked to ensure that we are not sitting at a local maximum. It is possible that
NMinimize will work better in some cases. Indeed, sometimes it is much faster. Secondly,
we have used the Rationalize command to ensure that we have 1000 digits of accu-
racy64. This is overkill to be sure, but it is best to work with many more digits of precision
than are needed—on most processors, the user will not notice the performance loss due to

64We thank Steve Avery for pointing out that the SetPrecision command also works for this.
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additional overhead. If speed does become an issue, one can always define global options:

PRES = 250;

MAXIT = 500;

SetOptions[FindRoot, WorkingPrecision -> 2*PRES,

Compiled -> False, MaxIterations -> MAXIT]; (G.12)

G.2.2 The Alex Trick: Step, Step, Decrease, Repeat

When the above trick work, it works very well. Convergence is quick, and we have control
over how many times the loops are evaluated. However, this method does not always
work, and it is nice to have some other tricks to rely on in this case.

The “trick of last resort” is basically a steepest descent method in one dimension. We
will shift notation slightly in what follows: our full potential is given by V (s, φ1, . . . , φN ).
We do not provide a code example for this trick, as the actual implementation is a bit long
(but still manageable). The algorithm is loosely as follows:

1. Set VD = 0 and minimize VF . This provides the initial guess: {〈s〉0, 〈φ1〉0, . . . , 〈φN 〉0}.

2. Pick a field, which we denote with s. Check the derivative of the full potential with
respect to s at {〈s〉0, 〈φ1〉0, . . . , 〈φN 〉0}.

3. Define a small parameter ε. If the derivative was positive, then ε < 0, if it was
negative, ε > 0. ε is the stepping parameter.

4. Define 〈s〉1 ≡ 〈s〉0 + ε

5. Eliminate the field’s dependence in V : V (〈s〉1, φ1, . . . , φN ).

6. Minimize the full potential using NMinimize, FindRoot, or FindMinimum. This
defines a new set of field VEVs, {〈s〉1, 〈φ1〉1, . . . , 〈φN 〉1}.

7. Check the derivative again with respect to s at the new set of VEVS. If the derivative
changes sign, step back and decrease ε. Then repeat.

8. If the derivative does not change sign, step again in the same direction.

One can continue in this manner until the desired tolerance (which can be made arbitrarily
small) in the derivative with respect to s is achieved.

G.3 Using the UNIX Terminal from Mathematica

The final trick we have come across is using Mathematica to access the UNIX termi-
nal. For readers familiar with C++, this is the equivalent of the system() function in
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the standard C library, stdlib.h. For example, if one wanted to run SoftSUSY, the
Mathematica code looks like:

<< "!/.../softpoint.x leshouches < /.../input.dat >

/.../output.dat" (G.13)

Note the !. This command runs a single point in parameter space (softpoint.x) using
the boundary conditions in input.dat, and storing the result in output.dat. We refer
the reader to the SoftSUSY documentation for more information [186].
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Appendix H
MISCELLANY
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U T3 T5

1× (3,2) 1/3, 1/3 bulk 4× (1,1) 1, 3 N 1× (3,2) 1/3, 1/3 F 1× (1,1)-1,-3 �
1× (3,1)-4/3,-1/3 bulk 4× (1,1)-1,-3 N 1× (3,2) 1/3, 1/3 • 1× (1,1) 1,-3 N
1× (1,2) 1, 0 bulk 4× (1,1) 1, 3 � 1× (3,1)-4/3,-1/3 F 1× (1,1) 1, 3 N
1× (1,2)-1, 0 bulk 4× (1,1)-1,-3 � 1× (3,1)-4/3,-1/3 • 1× (1,1) 1, 3 �
1× (1,1) 2, 1 bulk 2× (1,1) 1, 2 N 1× (3,1) 2/3,-1/3 F 1× (1,1) 1,-3 �
4× (1,1) 0,-1 bulk 2× (1,1)-1,-2 N 1× (3,1) 2/3,-1/3 • 2× (1,1) 1,-2 N
5× (1,1) 0, 1 bulk 2× (1,1) 1, 2 � 1× (3,1)-1/3, 8/3 N 2× (1,1)-1, 2 N
2× (1,1) 0, 0 bulk 2× (1,1)-1,-2 � 1× (3,1) 1/3,-8/3 N 2× (1,1) 1,-2 �

T2 1× (1,1) 1, 2 N 1× (3,1)-1/3, 8/3 � 2× (1,1)-1, 2 �
3× (3,1) 2/3, 2/3 bulk 1× (1,1) 1,-2 N 1× (3,1) 1/3,-8/3 � 1× (1,1) 0, 5 F
3× (3,1)-2/3,-2/3 bulk 1× (1,1) 1,-2 � 1× (1,2)-1,-1 F 1× (1,1) 0,-5 F
2× (3,1) 2/3,-1/3 bulk 1× (1,1)-1, 2 � 1× (1,2)-1,-1 • 1× (1,1) 0, 5 •
1× (1,2) 1, 1 bulk 1× (1,1) 0, 6 F 1× (1,2) 0,-3 N 1× (1,1) 0,-5 •
3× (1,1) 0, 5 bulk 1× (1,1) 0,-6 F 1× (1,2) 0, 3 N 2× (1,1) 0, 3 F
6× (1,1) 0, 3 bulk 1× (1,1) 0, 6 • 1× (1,2) 0, 3 � 2× (1,1) 0,-3 F
4× (1,1) 0, 2 bulk 1× (1,1) 0,-6 • 1× (1,2) 0,-3 � 2× (1,1) 0, 3 •
4× (1,1) 0,-2 bulk 2× (1,1) 0,-2 F 1× (1,2) 0, 2 N 2× (1,1) 0,-3 •
5× (1,1) 0, 1 bulk 2× (1,1) 0, 2 F 1× (1,2) 0,-2 N 1× (1,1) 0,-1 F
2× (1,1) 0,-1 bulk 2× (1,1) 0,-2 • 1× (1,2) 0, 2 � 1× (1,1) 0,-1 •
21× (1,1) 0, 0 bulk 2× (1,1) 0, 2 • 1× (1,2) 0,-2 � 1× (1,1) 0, 1 F

T4 2× (1,2) 0, 0 N 1× (1,1) 0, 1 F
3× (3,1) 2/3, 2/3 bulk 2× (1,2) 0, 0 � 1× (1,1) 0, 1 •
3× (3,1)-2/3,-2/3 bulk 1× (1,1) 2, 1 F 1× (1,1) 0, 1 •
1× (3,1)-2/3, 1/3 bulk 1× (1,1) 2, 1 • 8× (1,1) 0, 0 F
2× (1,2)-1,-1 bulk 1× (1,1)-1,-3 N 8× (1,1) 0, 0 F
3× (1,1) 0,-5 bulk 1× (1,1)-1, 3 N 6× (1,1) 0, 0 •
6× (1,1) 0,-3 bulk 1× (1,1)-1, 3 � 6× (1,1) 0, 0 •
2× (1,1) 0,-2 bulk

2× (1,1) 0, 2 bulk

1× (1,1) 0, 1 bulk

4× (1,1) 0,-1 bulk

21× (1,1) 0, 0 bulk

Table H.1: Spectrum of Model 1 of the mini-landscape search [38]. From the viewpoint of
the 5-dimensional theory, all states that are not localize in the SO(4) torus (U , T2, T4) are
bulk modes. The symbols •, F, �, N indicate the localization of the brane modes in the
SO(4) torus, compare Figure 3.1 on page 54.
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U T3 T5

1× (3,2) 1/3, 1/3 bulk 1× (3,1) 1/3,-8/3 N 1× (3,2) 1/3, 1/3 F 2× (1,1)-1,-2 �
1× (3,1)-4/3,-1/3 bulk 1× (3,1)-1/3, 8/3 N 1× (3,2) 1/3, 1/3 • 2× (1,1) 1, 1 N
1× (1,2) 1, 0 bulk 1× (3,1) 1/3,-8/3 � 1× (3,1)-4/3,-1/3 F 2× (1,1) 1,-1 N
1× (1,2)-1, 0 bulk 1× (3,1)-1/3, 8/3 � 1× (3,1)-4/3,-1/3 • 2× (1,1)-1, 1 N
1× (1,1) 2, 1 bulk 3× (1,1) 1, 3 N 1× (3,1) 2/3,-1/3 F 2× (1,1)-1,-1 N
1× (1,1) 0,-2 bulk 3× (1,1)-1,-3 N 1× (3,1) 2/3,-1/3 • 2× (1,1) 1,-1 �
1× (1,1) 0, 2 bulk 3× (1,1) 1, 3 � 1× (3,1)-1/3, 5/3 N 2× (1,1) 1, 1 �
8× (1,1) 0, 1/2 bulk 3× (1,1)-1,-3 � 1× (3,1) 1/3,-5/3 N 2× (1,1)-1, 1 �
1× (1,1) 0, 0 bulk 1× (1,1) 1,-2 N 1× (3,1)-1/3, 5/3 � 2× (1,1)-1,-1 �

T2 1× (1,1)-1, 2 N 1× (3,1) 1/3,-5/3 � 1× (1,1) 1, 0 N
3× (3,1)-2/3,-2/3 bulk 1× (1,1) 1,-2 � 1× (1,2)-1,-1 F 1× (1,1)-1, 0 N
1× (3,1)-2/3, 1/3 bulk 1× (1,1)-1, 2 � 1× (1,2)-1,-1 • 1× (1,1) 1, 0 �
2× (1,2)-1,-1 bulk 1× (1,1) 0, 3 F 1× (1,2) 0,-1 N 1× (1,1)-1, 0 �
3× (1,2)-1, 0 bulk 1× (1,1) 0,-3 F 1× (1,2) 0, 1 N 1× (1,1) 0, 3 F
6× (1,1) 0, 2 bulk 1× (1,1) 0, 3 • 1× (1,2) 0, 1 � 1× (1,1) 0,-3 F
6× (1,1) 0,-2 bulk 1× (1,1) 0,-3 • 1× (1,2) 0,-1 � 1× (1,1) 0,-3 •
6× (1,1) 0,-1 bulk 2× (1,1) 0,-2 F 2× (1,2) 0, 0 N 1× (1,1) 0, 3 •
5× (1,1) 0, 1 bulk 2× (1,1) 0, 2 F 2× (1,2) 0, 0 � 2× (1,1) 0,-2 F
16× (1,1) 0,-1/2 bulk 2× (1,1) 0,-2 • 1× (1,1) 2, 1 F 2× (1,1) 0, 2 F
21× (1,1) 0, 0 bulk 2× (1,1) 0, 2 • 1× (1,1) 2, 1 • 2× (1,1) 0, 2 •

T4 1× (1,1) 1,-2 N 2× (1,1) 0,-2 •
3× (3,1) 2/3, 2/3 bulk 2× (1,1) 1, 2 N 3× (1,1) 0, 1 F
2× (3,1) 2/3,-1/3 bulk 2× (1,1)-1,-2 N 2× (1,1) 0,-1 F
1× (1,2) 1, 1 bulk 1× (1,1)-1, 2 N 2× (1,1) 0,-1 •
3× (1,2) 1, 0 bulk 2× (1,1) 1, 2 � 3× (1,1) 0, 1 •
6× (1,1) 0, 2 bulk 1× (1,1) 1,-2 � 12× (1,1) 0, 0 F
6× (1,1) 0,-2 bulk 1× (1,1)-1, 2 � 12× (1,1) 0, 0 •
4× (1,1) 0,-1 bulk

6× (1,1) 0, 1 bulk

8× (1,1) 0, 1/2 bulk

12× (1,1) 0, 0 bulk

Table H.2: Spectrum of Model 2 of the mini-landscape search [38]. From the viewpoint of
the 5-dimensional theory, all states that are not localize in the SO(4) torus (U , T2, T4) are
bulk modes. The symbols •, F, �, N indicate the localization of the brane modes in the
SO(4) torus, compare Figure 3.1 on page 54.
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Multiplet Type Representation Number
tensor singlet 1
vector (35, 1, 1)⊕ (1,28, 1) 35 + 28

⊕(1, 1,8)⊕ 5× (1, 1, 1) 8 + 5
hyper (20, 1, 1)⊕ (1,8v+c+s, 1)⊕ 4× (1, 1, 1) 20+24+4

⊕9× {(6, 1, 1)⊕ (6, 1, 1)
}

108
⊕9× {(1, 1,3)⊕ (1, 1,3)

}
54

⊕3× (1,8v+c+s, 1) 72
⊕36× (1, 1, 1) 36

SUGRA singlets 2

Table H.3: The full (five dimensional) spectrum of the models that we analyze [36]. Note
that 8v+c+s ≡ 8v + 8c + 8s. In five dimensions, both Model 1 and Model 2 have the
gauge group SU(6) × [SO(8)× SU(3)]′. Note that states are written in the language of
D = 5, N = 1, and that the spectrum of these models are identical to those examined by
Reference [206].

Model Hidden Sector Exotic Matter Irrep Name

1 A/B SU(4)× SU(2) brane 2× [(3, 1; 1, 1)1/3,2/3 + (3, 1; 1, 1)−1/3,−2/3

]
v + v̄

exotics 4× [(1,2; 1, 1)0,∗ + (1,2; 1, 1)0,∗] m+m

1× [(1,2; 1,2)0,0 + (1,2; 1,2)0,0] y + y

2× [(1, 1; 4, 1)1,1 + (1, 1; 4, 1)−1,−1

]
f+ + f̄−

14× [(1, 1; 1, 1)1,∗ + (1, 1; 1, 1)−1,∗] s+ + s−

bulk 6× [(3, 1; 1, 1)−2/3,−2/3 + (3, 1; 1, 1)2/3,2/3

]
δ + δ̄

exotics 1× [(3, 1; 1, 1)−2/3,−1/3 + (3, 1; 1, 1)2/3,1/3

]
d+ d̄

1× [(1,2; 1, 1)−1,−1 + (1,2; 1, 1)1,1] `+ ¯̀

2 SO(8)× SU(2) brane 4× [(3, 1; 1, 1)1/3,∗ + (3, 1; 1, 1)−1/3,∗
]

v + v̄

exotics 2× [(1,2; 1, 1)0,∗ + (1,2; 1, 1)0,∗] m+m

1× [(1,2; 1,2)0,0 + (1,2; 1,2)0,0] y + y

2× [(1, 1; 1,2)1,1 + (1, 1; 1,2)−1,−1] x+ + x−

20× [(1, 1; 1, 1)1,∗ + (1, 1; 1, 1)−1,∗] s+ + s−

bulk 3× [(3, 1; 1, 1)−2/3−2/3 + (3, 1; 1, 1)2/3,2/3

]
δ + δ̄

exotics 1× [(3, 1; 1, 1)−2/3,2/3 + (3, 1; 1, 1)2/3,−2/3

]
d+ d̄

1× [(1,2; 1, 1)−1,−1 + (1,2; 1, 1)1,1] `+ ¯̀

3× [(1,2; 1, 1)−1,0 + (1,2; 1, 1)1,0] φ+ φ̄

Table H.4: Exotic matter content in Models 1A/B and 2 from [38]. Listed are the states’
quantum numbers under the MSSM and hidden sector gauge groups, with the hyper-
charge denoted in the subscript. The brane localized exotic matter in Model 1 is a subset
of that in Model 2.
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irrep Mult (Model 2) b3 b2 bY

(3, 1)1/3 + (3, 1)−1/3 4 1 0 1/10
(1,2)0 + (1,2)0 4 0 1 0
(1, 1)1 + (1, 1)−1 24 0 0 3/10

Table H.5: Values of the β-function coefficients for the brane-localized exotic matter. These
states do not have zero modes, and come from the T 3 and T 1/T 5 sectors of the theory.

SU(6) rep irrep b++
3 b++

2 b++
Y irrep b−−3 b−−2 b−−Y

V (8, 1)0 -9 0 0 C (8, 1)0 3 0 0
35 V (1,3)0 0 -6 0 C (1,3)0 0 2 0

C (1,2)1 0 1/2 3/10 V (1,2)−1 0 -3/2 -9/10
C (1,2)−1 0 1/2 3/10 V (1,2)1 0 -3/2 -9/10
C (3,2)1/3 1 3/2 1/10 C (3,2)−1/3 1 3/2 1/10

20 C (3, 1)−4/3 1/2 0 4/5 C (3, 1)4/3 1/2 0 4/5
C (1, 1)2 0 0 3/5 C (1, 1)−2 0 0 3/5

6 + 6 C (1,2)−1 0 1/2 3/10 C (1,2)1 0 1/2 3/10
C (3, 1)2/3 1/2 0 1/5 C (3, 1)−2/3 1/2 0 1/5

Table H.6: Values of the β-function coefficients for matter living in the bulk, along with
their embeddings into SU(6). (The group branching rules for SU(6) → SU(5) × U(1)can
be found in Reference [61].) It is important to distinguish whether these are vector (V) or
chiral (C) multiplets.

~n MSTRING in GeV MC in GeV MEX in GeV τ(p→ e+π0) in yr

(2,1,0) 9.18× 1017 2.22× 1017 2.60× 109 1.77× 1038

(4, 2, 0) 9.18× 1017 2.22× 1017 4.88× 1013 1.77× 1038

(3, 2, 3) 9.88× 1017 2.22× 1017 2.08× 109 1.32× 1038

(4, 3, 6) 1.08× 1018 2.22× 1017 1.59× 109 9.23× 1037

(4, 2, 1) 8.26× 1017 6.65× 1016 5.43× 1013 2.19× 1036

(4, 2, 2) 6.87× 1017 2.19× 1016 6.52× 1013 5.34× 1034

(2,1,1) 6.87× 1017 2.19× 1016 6.18× 109 5.34× 1034

(3, 2, 4) 7.07× 1017 2.16× 1016 5.68× 109 4.52× 1034

(4, 3, 7) 7.28× 1017 2.13× 1016 5.21× 109 3.79× 1034

(3, 1, 0) 5.43× 1017 8.20× 1015 8.25× 1013 2.70× 1033

(4, 2, 3) 5.47× 1017 8.15× 1015 8.19× 1013 2.57× 1033

Table H.7: Comparison of proton lifetime to MS, MC, and MEX, in the case where no exotic
matter lives in the bulk. In general, an intermediate scale is needed to fit the low energy
data and the proton decay constraints. We have used βLATTICE ' 0.011 [201]. We note the
solutions which will also work for Model 1A in bold. Note that ~n refers to brane localized
exotics only, and is defined in Equation (3.8).
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Bulk Exotics ~n MSTRING in GeV MC in GeV MEX in GeV τ(p→ e+π0) in yr[
(3, 1)2/3,∗ + (3, 1)−2/3,∗)

]++ + (4, 3, 1) 9.96× 1017 7.74× 1017 4.50× 1013 1.90× 1040

[(1,2)1,∗ + (1,2)−1,∗)]
−− (4, 3, 2) 9.73× 1017 2.22× 1017 4.61× 1013 1.40× 1038

⇒ (2,2,2) 1.01× 1018 2.22× 1017 1.92× 109 1.19× 1038

(3, 3, 5) 1.12× 1018 2.22× 1017 1.43× 109 7.97× 1037

(4, 4, 8) 1.28× 1018 2.22× 1017 9.64× 108 4.73× 1037

(3, 2, 0) 8.79× 1017 6.55× 1016 5.10× 1013 1.61× 1036

(4, 3, 3) 9.06× 1017 6.50× 1016 4.95× 1013 1.38× 1036

(3, 2, 1) 7.67× 1017 2.07× 1016 5.84× 1013 2.77× 1034

(1,1,0) 7.67× 1017 2.07× 1016 4.45× 109 2.77× 1034

(4, 3, 4) 7.82× 1017 2.05× 1016 5.73× 1013 2.47× 1034

(2,2,3) 7.97× 1017 2.03× 1016 3.96× 109 2.20× 1034

(3, 3, 6) 8.31× 1017 1.99× 1016 3.50× 109 1.71× 1034

(4, 4, 9) 8.69× 1017 1.95× 1016 3.06× 109 1.31× 1034

(4, 2, 0) 6.69× 1017 1.03× 1016 1.44× 1015 2.92× 1033[
(3, 1)2/3,∗ + (3, 1)−2/3,∗)

]−− + (3, 1, 1) 1.01× 1018 2.22× 1017 1.92× 109 1.19× 1038

[(1,2)1,∗ + (1,2)−1,∗)]
++ (4, 2, 4) 1.12× 1018 2.22× 1017 1.43× 109 7.97× 1037

(4, 1, 0) 7.67× 1017 2.07× 1016 5.84× 1013 2.77× 1034

(3, 1, 2) 7.97× 1017 2.03× 1016 3.96× 109 2.20× 1034

(4, 2, 5) 8.31× 1017 1.99× 1016 3.50× 109 1.71× 1034[
(3, 1)2/3,∗ + (3, 1)−2/3,∗)

]++ + (2,1,0) 1.01× 1018 2.22× 1017 1.92× 109 1.19× 1038

[(1,2)1,∗ + (1,2)−1,∗)]
++ (3, 2, 3) 1.12× 1018 2.22× 1017 1.43× 109 7.97× 1037

(4, 2, 0) 9.73× 1017 2.22× 1017 4.61× 1013 1.40× 1038

(4, 3, 6) 1.28× 1018 2.22× 1017 9.64× 108 4.73× 1037

(4, 2, 1) 9.06× 1017 6.50× 1016 4.95× 1013 1.38× 1036

(4, 2, 2) 7.82× 1017 2.05× 1016 5.73× 1013 2.47× 1034

(2,1,1) 7.97× 1017 2.03× 1016 3.96× 109 2.20× 1034

(3, 2, 4) 8.31× 1017 1.99× 1016 3.50× 109 1.71× 1034

(4, 3, 7) 8.69× 1017 1.95× 1016 3.06× 109 1.31× 1034[
(3, 1)2/3,∗ + (3, 1)−2/3,∗)

]−− + (2,1,0) 9.36× 1017 2.22× 1017 2.45× 109 1.64× 1038

[(1,2)1,∗ + (1,2)−1,∗)]
−− (4, 2, 0) 9.36× 1017 2.22× 1017 4.79× 1013 1.64× 1038

(3, 2, 3) 1.01× 1018 2.22× 1017 1.92× 109 1.19× 1038

(4, 3, 6) 1.12× 1018 2.22× 1017 1.43× 109 7.97× 1037

(4, 2, 1) 8.79× 1017 6.55× 1016 5.10× 1013 1.61× 1036

(2,1,1) 7.67× 1017 2.07× 1016 4.45× 109 2.77× 1034

(4, 2, 2) 7.67× 1017 2.07× 1016 5.84× 1013 2.77× 1034

(3, 2, 4) 7.97× 1017 2.03× 1016 3.96× 109 2.20× 1034

(4, 3, 7) 8.31× 1017 1.99× 1016 3.50× 109 1.71× 1034

Table H.8: Comparison of proton lifetime to MS, MC, and MEX. In general, an intermediate
scale is needed to fit the low energy data and the proton decay constraints. We have used
βLATTICE ' 0.011 [201]. Note that ~n refers to brane localized exotics only, and is defined in
Equation (3.8). For details on the solution marked with an arrow (⇒), see Section 3.4. We
note the solutions which will also work for Model 1A in bold.
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Bulk Exotics ~n MSTRING in GeV MC in GeV MEX in GeV τ(p→ e+π0) in yr

None (4, 2, 3) 5.47× 1017 8.15× 1015 8.19× 1013 2.57× 1033

(3, 1, 0) 5.43× 1017 8.20× 1015 8.25× 1013 2.70× 1033

(4, 2, 2) 6.87× 1017 2.19× 1016 6.52× 1013 5.34× 1034ˆ
(3, 1)2/3,∗ + (3, 1)−2/3,∗)

˜++ + (4, 2, 0) 6.69× 1017 1.03× 1016 1.44× 1015 2.92× 1033

[(1,2)1,∗ + (1,2)−1,∗)]
−− (4, 3, 4) 7.82× 1017 2.05× 1016 5.73× 1013 2.47× 1034

(3, 2, 1) 7.67× 1017 2.07× 1016 5.84× 1013 2.77× 1034ˆ
(3, 1)2/3,∗ + (3, 1)−2/3,∗)

˜−− + (4, 1, 0) 7.67× 1017 2.07× 1016 5.84× 1013 2.77× 1034

[(1,2)1,∗ + (1,2)−1,∗)]
++ˆ

(3, 1)2/3,∗ + (3, 1)−2/3,∗)
˜++ + (4, 2, 2) 7.82× 1017 2.05× 1016 5.73× 1013 2.47× 1034

[(1,2)1 + (1,2)−1)]++ˆ
(3, 1)2/3,∗ + (3, 1)−2/3,∗)

˜−− + (4, 2, 2) 7.67× 1017 2.07× 1016 5.84× 1013 2.77× 1034

[(1,2)1 + (1,2)−1)]−−

Table H.9: Subset of models listed in Tables H.7 and H.8 which exhibit moderate hierar-
chies between all of the scales in the problem, as pictured in Figure 3.4, in the red box.
Note that none of these results can be accommodated in Model 1A.
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Case b b2 λ R p r A w0

1 π/50 3π/2 33 10 2/5 15p 160 8× 10−15

2 8/125 3π/2 0 5 2/5 15p 30 42× 10−16

3 1/16 29π/20 38 10 2/5 15p 90 6× 10−15

4 −π/120 −π/40 40 64 2/3 1 1/10 −5× 10−15

5 −π/250 −π/100 25 16 1 10/3 7/5 −7× 10−15

Table H.11: Input values for the superpotential parameters for three different cases. Case
2 has a vanishing one loop correction for φ2.

Case 1 Case 2 Case 3 Case 4 Case 5

〈s〉 2.2 2.2 2.1 2.1 2.2

〈t〉 1.2 1.1 1.6 1.1 1.1

〈σ〉 1.0 1.0 1.0 0.0 0.0

〈φ2〉 0.08 0.08 0.08 0.03 0.06

FS 2.8× 10−16 1.3× 10−16 2.7× 10−16 1.1× 10−16 8.0× 10−17

FT −8.7× 10−15 −5.1× 10−15 −5.0× 10−15 6.7× 10−15 9.1× 10−15

Fφ2 −9.2× 10−17 −4.5× 10−17 −8.9× 10−17 1.3× 10−15 1.3× 10−15

DA 4.4× 10−31 1.0× 10−32 5.9× 10−31 −3.8× 10−31 −4.8× 10−32

DA/m
2
3/2 0.6 0.03 2.7 −0.7 −0.05

V0/(3m2
3/2) −0.02 −0.01 −0.02 −0.03 −0.02

m3/2 2.2 TeV 1.4 TeV 1.1 TeV 1.8 TeV 2.4 TeV

Table H.12: The values for field VEVs and soft SUSY breaking parameters at the minimum
of the scalar potential. Note FΦ ≡ ∂ΦW + (∂ΦK )W .

160



Case 1 Case 2 Case 3 Case 4 Case 5

FS 6.6× 10−16 3.7× 10−16 4.2× 10−16 2.7× 10−16 2.1× 10−16

F T −2.2× 10−15 −1.2× 10−15 −1.4× 10−15 1.6× 10−15 2.2× 10−15

F φ2 −1.1× 10−17 −6.5× 10−18 −7.7× 10−18 1.9× 10−16 1.8× 10−16

Table H.13: The hierarchy of F terms in the five examples of the single condensate model
we studied. Note that FΦ is defined in Eqn. (5.70). All of the F terms contribute to the soft
masses, as they are all within an order of magnitude.

All Masses in GeV
Parameter Case S2 Case A3 Case A4 Case A5b Case A6

m3/2 2159 1350 1133 1808 2375
mHu 238i 181 372i 546 355
mHd 537 205 495 228i 290
M1 362− 0.3n1 − 0.1n3 206− 0.2n1 − 0.1n3 243− 0.2n1 − 0.1n3 158 + 13n1 + 4n3 118 + 7n1 + 2n3

M2 362− 1n2 206 + 1n2 243− 1n2 158 + 45n2 118 + 23n2

M3 362− 1n3 206 + 1n3 243− 1n3 158 + 45n3 118 + 23n3

At 3901 2466 1974 -3690 -4798
Ab 3901 2466 1974 -3690 -4798
Aτ 3901 2466 1974 -3690 -4798

Gen. 1,2 Gen. 3 Gen. 1,2 Gen. 3 Gen. 1,2 Gen. 3 Gen. 1,2 Gen. 3 Gen. 1,2 Gen. 3
mq̃ 1580 2225 966 1353 895 1299 1262 1734 1691 2368
mũc 1580 2192 966 1352 895 1219 1262 1771 1691 2371
md̃c 1521 2203 964 1352 757 1246 1330 1759 1697 2370
m˜̀ 1580 2181 964 1351 757 1191 1330 1784 1697 2372
mẽc 1580 2192 966 1352 895 1219 1262 1771 1691 2371

Table H.14: Boundary conditions at the string scale. n3, n2, n1 refer to possible intermediate
mass vector-like exotics which couple to the SUSY breaking field φ2, see Eqn. (5.80).
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All Masses in GeV (defined at MW ≈ 80 GeV , unless otherwise noted.)
Observable Case 1 Case 2 Case 3 Case 4 Case 5

In
pu

ts

m3/2 2159 1350 1133 1808 2375
tanβ 10 25 25 10 4

sgn(µ) + + + + +
n1, n2, n3 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0

EW
SB

µ(MSUSY) 2163 1315 1216 1913 2642
mh0 115.7 113.3 112.9 121.0 116.7
mH0 2205 1157 1185 1848 2728
mA0 2209 1169 1193 1844 2725
mH+ 2211 1172 1196 1846 2726

M
a
(M

SU
SY

)

M1 151 83 99 69 53
M2 277 155 184 128 100
M3 774 457 540 368 279

g̃ mg̃ 914 545 630 456 365

N
eu

t./
C

ha
rg

. mχ̃0
1

150 83 99 68 52

mχ̃0
2

293 164 194 136 104

mχ̃0
3

-2146 -1303 -1209 -1899 -2622

mχ̃0
4

2148 1305 1210 1901 2624

mχ̃±1
293 164 194 137 104

mχ̃±2
2156 1310 1216 1904 2628

Sq
ua

rk
s/

Sl
ep

to
ns

Gen. 1,2 Gen. 3 Gen. 1,2 Gen. 3 Gen. 1,2 Gen. 3 Gen. 1,2 Gen. 3 Gen. 1,2 Gen. 3
mũ1 1713 1512 1040 920 1015 925 1282 779 1677 1112
mũ2 1706 1977 1038 1161 1009 1198 1286 1350 1683 1868
md̃1

1715 1972 1043 1147 1018 1183 1284 1318 1678 1846
md̃2

1652 2280 1036 1340 890 1281 1351 1752 1688 2368
mẽ1 1533 2163 970 1226 770 1113 1332 1734 1694 2360
mẽ2 1584 2181 968 1304 900 1164 1259 1775 1688 2373
mν̃ 1531 2175 967 1295 766 1149 1330 1769 1692 2368

O
th

er
O

bs
.

δρ 9.0× 10−6 3.0× 10−5 2.9× 10−5 1.4× 10−5 7.0× 10−6

δ(g − 2)µ 6.1× 10−11 4.0× 10−10 5.9× 10−10 6.8× 10−11 1.2× 10−11

BR(b→ sγ) 3.7× 10−4 3.9× 10−4 3.9× 10−4 3.6× 10−4 3.7× 10−4

BR(Bs → µ+µ−) 3.1× 10−9 2.7× 10−9 2.8× 10−9 3.1× 10−9 3.1× 10−9

mLMM 272 175 138 531 487
mnLMM 41659 25694 22745 27231 36795

Table H.15: Weak scale observables, with no contribution from gauge mediation: n3 =
n2 = n1 = 0 , see Eqn. 5.80. We have listed the mass eigenstates of the squarks and
sleptons. Note that for light generations, mũ1 ≈ mũL , etc. The last two rows give the
lightest massive modulus (mLMM )[mostly Kähler modulus (RE [T ])] and the next to lightest
massive modulus (mnLMM ) [mostly the dilaton (RE [S])]. All other moduli have mass &
100 TeV.
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Case
1 2 3 4 5

µ < 0 µ > 0 µ < 0 µ > 0 µ < 0 µ > 0 µ < 0 µ > 0 µ < 0 µ > 0

tanβ
lo 5 6 8 12 12 15 6 4 5 3
hi 37 50 36 50 36 50 34 50 39 50

mh0

lo 113.4 113.0 112.4 112.4 112.4 112.4 114.5 116.0 113.5 112.4
hi 117.3 117.1 113.7 113.4 113.0 113.0 120.1 121.4 120.8 121.9

Neut. bino bino bino bino bino bino bino bino bino bino
comp. & 99% & 99% & 99% & 99% & 99% & 99% & 99% & 99% & 99% & 99%

mχ̃0
1

lo 149.1 148.4 82.5 82.0 98.5 98.0 69.0 67.3 53.6 51.5

(GeV) hi 151.0 149.8 84.0 82.9 99.4 98.5 69.8 70.6 55.1 55.9
mχ̃±1

lo 290.5 291.1 162.3 162.3 193.5 193.0 139.6 134.4 110.3 103.3

(GeV) hi 298.5 293.5 167.1 163.7 196.5 193.9 141.7 142.1 113.9 114.6

Table H.16: Scan over tanβ and sgn(µ).
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