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Abstract We study Morris–Thorne static traversable worm-
hole solutions in different modified theories of gravity. We
focus our study on the quadratic gravity f (R) = R + aR2,
power-law f (R) = f0Rn , log-corrected f (R) = R +
αR2 + βR2 ln βR theories, and finally on the exponen-

tial hybrid metric-Palatini gravity f (R̂) = ζ

(
1 + e− R̂

Φ

)
.

Wormhole fluid near the throat is adopted to be anisotropic,
and redshift factor to have a constant value. We solve numer-
ically the Einstein field equations and we derive the suitable
shape function for each MOG of our consideration by apply-
ing the equation of state pt = ωρ. Furthermore, we inves-
tigate the null energy condition, the weak energy condition,
and the strong energy condition with the suitable shape func-
tion b(r). The stability of Morris–Thorne traversable worm-
holes in different modified gravity theories is also analyzed
in our paper with a modified Tolman–Oppenheimer–Voklov
equation. Besides, we have derived general formulas for the
extra force that is present in MTOV due to the non-conserved
stress-energy tensor.

1 Introduction

A large number of papers on static traversable wormholes
have been written in the last decades [2,11,16,20,24,26,31,
52,53]. In fact, wormholes are bridges between two branes,
universes, or just connections of two points at the manifold.
Generally wormholes are asymptotically flat. There were
many proposals for the wormhole models. One of the first
models was proposed by [15], and it was called the Einstein–
Rosen bridge. Einstein–Rosen bridges are vacuum solutions
of Einstein field equations, and this type of wormholes are
just an internal part of the maximally extended Schwarzschild
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black hole metric. A maximally extended metric means that
this metric has no boundaries and the geodesic lines of the
particle can be laid infinitely far into the future. So if the
spacetime is maximally extended, then there must be present
the so-called white hole interior. The exterior of the white
hole is often called another universe. The white hole and the
second universe are needed in order to extend the trajectory
of a particle that fell beyond the event horizon of Schward-
schild’s black hole infinitely far into the future.

In Figure. 1 one can see the Penrose diagram, where i0 is
the infinitely far spacelike point, i− is the infinitely distant
past, i+ is the infinitely distant future point. Thus timelike
curves lie from i− to i+. Therefore, similarly to the light cone,
here I + and I − are lightlike infinitely distant future/past.
The upper shaded part of the figure is the interior of our
universe black hole, with a singularity at r = 0, and the bot-
tom shaded triangle is respectively the white hole interior of
another universe with a singularity at r = 0. As well, H + is
the black hole horizon andH − is the white hole antihorizon,
� is a spacelike geodesic trajectory through both universes
(Cauchy surface). Here both universes are just Minkowski
manifolds.

After the theoretical prediction of Einstein–Rosen bridges
and Schwarzschild wormholes, many astrophysicists and
cosmologists have begun to search for the possibility of the
existence of traversable wormholes. One of the first worm-
hole options, and at the moment one of the most plausible,
is the option proposed by [31]. This is the static traversable
Morris-Throne wormhole. This type of wormhole can con-
nect two points of spacetime, and its throat is located in the
bulk (with dbulk > 4). This exact solution is a good defi-
nition for a traversable wormhole, but as it turned out, this
solution implies the presence of an exotic matter at the throat.
Therefore, the Null Energy Condition (NEC) is violated in
classical GR gravity. By varying parameter values in mod-
ified theories of gravity, we could solve this problem, or at
least minimize the amount of NEC violating matter.

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-09560-4&domain=pdf
http://orcid.org/0000-0003-4503-7272
mailto:oleksii.sokoliuk@mao.kiev.ua
mailto:abaransky@ukr.net


  781 Page 2 of 15 Eur. Phys. J. C           (2021) 81:781 

Fig. 1 Penrose diagram for maximally extended Schwarzschild black
hole metric (code provided by Robert McNees)

1.1 Chosen modified theories of gravity to research

Although the general theory of relativity was and is a won-
derful theory that describes our universe well enough, it still
has its problems. General theory of relativity (further – GR)
is a non-renormalizable theory of gravity, and therefore, can
not be conventionally quantized [48]. This is just one of many
problems of classical gravity in general relativity. Moreover,
GR fails to explain the recent cosmological observations [14].
In order to overpass these problems, astrophysicists intro-
duced in the literature modified theories of gravity. The nov-
elty of the modified theories of gravity is that new geometro-
dynamic terms are introduced in the gravitational field by the
modification of the Einstein–Hilbert (EH) Action Integral. In
the following, we briefly introduce the modified theories of
gravity of our consideration.

1.2 f (R) gravity

f (R) gravity is the typical and most popular choice of mod-
ified gravity theory, which modifies Einstein–Hilbert action
and replaces Ricci scalar in the EH action with arbitrary
function of Ricci scalar f (R). The theory was originally
proposed in [6]. It has drawn the attention of cosmolo-
gists because it can provide a geometric mechanism for the
description of inflation [5,21,49] and of the dark energy prob-
lem [7,33].

1.3 Metric-Palatini gravity

Metric-Palatini is a completely different type of modified
gravity theory. In Metric-Palatini gravity in addition to Ricci
scalar in EH action function f (R̂) is introduced, which is
an arbitrary function for the Palatini scalar, which is con-
structed from the metric tensor and the Levi-Civita connec-
tion. Hybrid Metric-Palatini Gravity (further – HMPG) is a
very interesting choice as a modified gravity theory. In par-
ticular, HMPG completed some simple and classical tests in
the Solar system [9], and also, it was shown that this type

of gravity could describe an accelerated universe without
dark energy (	 term) [8]. HMPG and f (R) are fourth-order
theories of gravity and they are equivalent to two different
scalar-tensor theories. Indeed, there exists a conformal trans-
formation that connects the two theories.

2 Traversable wormholes in classical GR gravity

The static non-charged traversable wormhole proper line ele-
ment, known as Morris–Thorne wormhole is given by the
following expression [31]:

ds2 = −e2
(r)dt2 + 1

1 − b(r)

r

dr2 + r2dθ2 + r2 sin2 θdφ2.

(1)

Same as Eq. (1), but in Cartesian coordinates the line element
becomes

ds2 = −e2
(x)dt2 + 1

1 − b(x)

x

dx2 + dy2 + dz2. (2)

Function 
(x) is the redshift function and b(x) is so-called
wormhole shape function. For GR we have following Action
Integral and gravitational Lagrangian Lg

SR =
∫
M

d4x
√−g

1

2
Lg =

∫
M

d4x
√−g

1

2
R, (3)

where we have assumed for the gravitational constant κ = 1.
In the latter Action Integral, g is metric tensor determinant:
g = det gμν , and R is the Ricci scalar of g. The Einstein
field equations are (Einstein Field Equation or EFE):

Gμν + 	gμν = Tμν, (4)

where Gμν is the Einstein tensor, 	 is so-called lambda-term
or dark energy (further – DE, in our case we consider universe
without DE, so 	 = 0), Tμν is stress-energy tensor for the
additional matter source. The Einstein tensor is defined as
follows

Gμν = Rμν − 1

2
Rgμν. (5)

Here Rμν is the Ricci tensor, R is the Ricci scalar. So, now
we can derive the non-zero components of the Einstein tensor
for the line element (1):
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Gtt = −b′(r)
r2 , (6)

Grr = −

(
1 − b(r)

r

) (
2rb(r)
′(r) + b(r) − 2r2
′(r)

)

r2(r − b(r))
, (7)

Gθθ =
(
r
′(r) + 1

) (−rb′(r) + 2r(r − b(r))
′(r) + b(r)
)

2r3

+ (r − b(r))
′′(r)
r

, (8)

Gφφ =
(
r
′(r) + 1

) (−rb′(r) + 2r(r − b(r))
′(r) + b(r)
)

2r3

+ (r − b(r))
′′(r)
r

. (9)

In Eqs. (6), (7), (8) and (9) prime 
′(r), b′(r) means total
derivative with respect to the independent variable r .

3 EFE’s for Morris–Thorne wormholes in different
modified theories of gravity

3.1 f (R) modified gravity case

In f (R) theory of gravity the EH Action Integral is modified
as follows [6]:

SR = 1

2

∫
M

(R + LM )
√−gd4x

⇓
S f (R) = 1

2

∫
M

[ f (R) + LM )]√−gd4x,

(10)

where LM is the matter Lagrangian. In the [47] we already
modified general view of the EFE for symmetric metric tensor
[48]:

G(0)
μν ≡ Rμν − 1

2
gμνR = TM

μν

f ′(R)
+gμν

[ f (R)−R f ′(R)]
2 f ′(R)

+ [∇μ∇ν f ′(R) − gμν� f ′(R)]
f ′(R)

.

(11)

Clearly f ′(R) is the derivative with respect to the Ricci
scalar. Furthermore, the stress-energy tensor for the anisotropic
fluid is [45]:

TM
μν =

⎛
⎜⎜⎝

−ρ 0 0 0
0 pr 0 0
0 0 pt 0
0 0 0 pt

⎞
⎟⎟⎠ , (12)

where pr , pt are the radial and tangential pressures respec-
tively, and ρ is the energy-density. The parameter for the

equation of state (further – EoS) defines the type of matter
(ω = p

ρ
).

3.1.1 Violation of null energy condition (NEC)

In GR wormholes are supported by exotic matter, which
involves a stress-energy tensor that violates the null energy
condition (NEC) [27,31,51]. NEC violation in f (R) is given
by the following expression:

ρeff + peff
r = ρ + pr

f ′(R)
+ 1

f ′(R)[
( f ′(R))′′ − ( f ′(R))′ b′r − b

2r2(1 − b/r)

]

⇓
ρeff + peff

r = b′r − b

r3 < 0.

(13)

Also, if a wormhole exists, it should obey the following
inequalities [27]:

f ′(R)b′

r2 ≥ 0 ⇒ b′

r2 < 0 ⇒ f ′(R) ≤ 0. (14)

Theorem of wormhole non-existence in f (R) gravity is
essentially the same the one derived before in [4]:

d f (R)

dR
< 0. (15)

We continue by assuming specific functional form for the
f (R) function.

3.1.2 Derivation of the shape function

One of the necessary conditions for a wormhole to exist is
that wormhole shape function must satisfy EFE’s in modified
gravity. From Eq. (11) one could derive following EFE’s (in
general f (R) gravity with arbitrary choice of function) [27]:

ρ = fRb′

r2 , (16)

pr = −b fR
r3 + f ′

R

2r2 (b′r − b) − f ′′
R

(
1 − b

r

)
, (17)

pt = − f ′
R

r

(
1 − b

r

)
+ fR

2r3 (b − b′r). (18)

Here we already considered wormhole solution without tidal
forces, and thus with constant redshift factor. We have chosen
this case, because the tidal gravitational forces experienced
by a traveler must be bearably small (negligible) [31]. And,
therefore with applying equation of state pt = ωρ we have
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following equation [27]:

f ′
R

(
1 − b

r

)
− fR

2r2 [b − b′r(1 + 2ω)] = 0. (19)

Hence, from equation above we could find suitable shape
function which satisfies EFE’s for any kind of f (R) gravity.

3.1.3 Quadratic gravity f (R) = R + αR2

Firstly, we could rewrite Eq. (19) in terms of quadratic MOG:

(
1 − b(r)

r

)(
4αb′′(r)

r2 − 8αb′(r)
r3

)

−
(

4αb′(r)
r2 + 1

) (
b(r) − r(2ω + 1)b′(r)

)
2r2 = 0.

(20)

We solved this equation numerically (there is no possibility
to solve this equation algebraically) with initial conditions
b(10−2) = 10−3, b′(10−2) = 2 × 10−4 [22].

As well, for our MOG shape function, we have following
flaring-out condition [23]:

(b − b′r)
b2 > 0 ⇒ b′(r0) < 1. (21)

We numerically solved Eqs. (20) and (21) on the Figure.
2. The flaring-out condition was solved for only positive val-
ues of α, because, as it turned out, with α < 0 we have that
flaring-out condition is violated generally. Thus, in quadratic
MOG for positive values of MOG parameter, we have physi-
cally acceptable shape function, that satisfies EFE’s. Finally,
for almost all positive alpha values, the flaring-out condition
was satisfied with EoS parameter ω = 1 (stiff fluid, presented
by [54]) Therefore, we could proceed to the NEC, WEC, and
SEC conditions derivation for this MOG, shape function.

3.1.4 Quadratic gravity energy conditions

Because of the previously stated reasons (validation of flare-
out condition for every α ≥ 0 at the throat), we chose the
case with the stiff fluid (as numerical analysis showed, there is
no significant differences of energy conditions with different
values of EoS parameter in the limit 0 < ω ≤ 1). Firstly,
we could present energy conditions, that we consider in this
paper [1,44]:

– Null Energy Condition (NEC): ρ + pr ≥ 0 ∧ρ + pt ≥ 0
– Weak Energy Condition (WEC): ρ− pr ≥ 0∧ρ+ pt ≥ 0
– Strong Energy Condition (SEC): ρ + pr + 2pt ≥ 0

NEC is a minimal requirement of WEC and SEC conditions
and must be obeyed always (if NEC is violated, so-called

Fig. 2 Numerical solution for (20) and Flaring-out condition valida-
tion/violation for positive α parameter in quadratic gravity

exotic matter or in some cases phantom fluid will appear
[41]).

We showed numerical solutions for NEC, WEC and SEC
energy conditions at Figure. 3. As one may notice, generally
NEC is validated for each pressure if α < 1, as well WEC
is validated for both pressure types for any α > 0. Finally,
SEC is violated.
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Fig. 3 NEC, WEC and SEC conditions for quadratic gravity with ω = 1

3.1.5 Power law gravity f (R) = f0Rn for n > 1

This is another f (R) example of MOG theory, which was
described by [10,34]. For this type of gravity we have fol-
lowing EH action:

S f (R) = 1

2

∫
M

[ f0Rn]√−gd4x, (22)

where f0 is a constant to give correct dimensions to the action
and n is the slope parameter [28]. For MOG of this kind we
have following form of Eq. (19):

f02n−1(n − 1)n

(
1 − b(r)

r

) (
b′(r)
r2

)n−2 (
b′′(r)
r2 − 2b′(r)

r3

)

−
f02n−2n

(
b′(r)
r2

)n−1 (
b(r) − r(2ω + 1)b′(r)

)
r2 = 0.

(23)

On the Fig. 4 we once again plotted numerical solutions
for Eqs. (23) and (19) with varying n/constant ω and varying
ω/constant n. As it turned out, the shape function does not
depends on the f0 parameter. Now that we have decided on
the type of shape function for our power-law MOG, we can
begin to study the energy conditions of the Morris–Thorne
traversable wormhole in the MOG of our consideration.
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Fig. 4 Numerical solution for Eq. (23) and Flaring-out condition val-
idation/violation for varying n and ω in power-law gravity

In turn, in the Fig. 5 we illustrated null, weak, and strong
energy conditions for power-law gravity. We plotted only
one case with ω = 1 and n = 3, because we found that if
we will vary these parameters, nothing changes much. Also,
it is interesting that our power-law numerical solutions for
energy conditions are very similar to those, that we obtained
for quadratic MOG (see Fig. 3). In relation, NEC generally
is also validated for both pressures, but now with α < 2, for

Fig. 5 NEC, WEC and SEC conditions for power-law gravity with
ω = 1 and n = 3
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α < 4 WEC is validated for both pressure types and finally
SEC is violated.

3.1.6 Logarithmic corrected f (R) gravity

Logarithmic corrected f (R) gravity was introduced in [40]:

f (R) = R + αR2 + βR2 log βR, (24)

where β > 0 and α > 0. This type of gravity can describe
expanding universe without dark energy [34]. The modified
EH Action Integral is defined in this way:

S f (R) =
∫
M

d4x
√−g

1

2

(
R+αR2 +βR2 log βR

)
, (25)

Now, with given MOG form we as usual could rewrite Eq.
(19) as follows:

2(2ω + 1)b′(r)2
(

2α + 2β log

(
2βb′(r)

r2

)
+ β

)

+ b′(r)
(

− 8(2α + 3β) − 16β log

(
2βb′(r)

r2

)
+ r2(2ω + 1)

)

+ 4rb′′(r)
(

2α + 2β log

(
2βb′(r)

r2

)
+ 3β

)

+ b(r)

(2b′(r)
(

6α + 6β log

(
2βb′(r)

r2

)
+ 11β

)

r

− 4b′′(r)
(

2α + 2β log

(
2βb′(r)

r2

)
+ 3β

)
− r

)
= 0. (26)

Consequently, on the Fig. 6 we have numerical represen-
tation of Eq. (26) and of flare-out condition at the throat.
As numerical analysis showed, b′(r0) < 1 is obeyed for
0 < ω ≤ 1 ∧ α > 4 if we assume constant β = 1.

Routinely, for this shape function we placed NEC, WEC
and SEC numerical solutions at the Fig. 7. As we found, NEC
is violated for radial pressure and validated for tangential,
WEC is vice versa validated for radial pressure case and
violated for tangential one. Just as with the previous MOG
theories, SEC is generally violated.

3.2 Hybrid metric-Palatini gravity

The second family of modified theories of our consideration
is the HMPG theory, for which the Action Integral is given
by [8,18,37]:

S f (R̂)
= 1

2

∫
M

d4x
√−g[R + f (R̂)], (27)

Fig. 6 Numerical solution for Eq. (26) and Flaring-out condition val-
idation/violation for varying α and ω (we assumed constant β for sim-
plicity) in log-corrected gravity

where R̂ is the Palatini scalar, constructed from Palatini cur-
vature tensor, which reads [25]:

R̂μν = R̂α
μαν = �̂α

μν,α − �̂α
μα,μ + �̂α

αλ�̂
λ
μν − �̂α

μλ�̂
λ
αν. (28)

�̂α
μν is the Levi-Civita connection for metric which is confor-

mal to our wormhole background metric (hμν = φgμν)[3].
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Fig. 7 NEC, WEC and SEC conditions for log-corrected gravity with ω = β = 1

We could also rewrite Eq. (28) in form [12]:

R̂μν = Rμν + 3

2φ2 ∂μφ∂νφ − 1

φ
∇μ∇νφ − 1

2φ
gμν�φ. (29)

Thus for the Palatini scalar we find that

R̂ = R + 3

2φ2 ∂μφ∂μφ − 3

φ
�φ. (30)

But, we have as well scalar-tensor representation of hybrid
metric-Palatini gravity [19]:

S f (R̂)
= 1

2

∫
M

d4x
√−g

[
(1+φ)R+ 3

2φ
∂μφ∂μφ−V (φ)

]
,

(31)

where φ is scalar field and V (φ) is scalar potential (in metric-
Palatini gravity scalar field in dynamic [35]). By varying the
action, we could obtain following EFE form [19,25]:

Gμν = 1

1 + φ
Tμν + T (φ)

μν , (32)
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T (φ)
μν = 1

1 + φ

[
∇μ∇νφ − 3

2φ
∇μφ∇νφ

+
(

3

4φ
∇λφ∇λφ − �φ − 1

2
V (φ)

)]
, (33)

where V (φ) is [3]:

V (φ) = R̂φ − f (R̂), (34)

and scalar field is [12]:

φ = tan2
(√

3

8
φ̄

)
. (35)

If φ → ∞, then:

φ̄ =
√

8

3

[
(−1)k

π

2
+ 2kπ

]
, k = 0, 1, 2, 3 . . . (36)

On the other hand, when φ → 0,

φ̄ =
√

8

3
kπ. (37)

If (from Eqs. (47) and (36)) φ is independent of xμ, then
R̂ = R. As we did for f (R) gravity, we could derive energy
density and pressures from EFE’s:

ρ = −2b′(r) − f (R̂)r2

2r2 , (38)

pr =
[

2(b(r) − r) cot2(2πk)b′(r) − b(r)( f (R̂)r2

+2 cot2(2πk) + 2) + f (R̂)r3
]/[

2r2(r − b(r))

]
, (39)

pt = 1

2

([
csc2(2πk)

(
rb(r) − b′(r)(cos(4πk)

+r2 + 1

))]/
[r2] + f (R̂)

)
. (40)

Then, EoS pt/ρ = ω takes form:

[
csc2(2πk)

(
2b′(r)

(
cos(4πk) + r2 + 1

)
− 2rb(r)

+ f (R̂)r2(cos(4πk) − 1)
) ]/[

4b′(r) + 2 f (R̂)r2
]

= ω.

(41)

By solving this equation, we could obtain shape function
b(r) in the physically acceptable form (i.e. shape function
that satisfies EFE’s)

Fig. 8 Shape function and flare-out condition at the throat for HMPG
gravity with ω = −1 and k = π/2

3.2.1 Exponential f (R̂) = ζ

(
1 + e− R̂

Φ

)

In this study we consider the following Palatini-scalar func-
tion [17]:

f (R̂) = ζ

(
1 + e− R̂

Φ

)
. (42)

Therefore, we could rewrite EoS (41), that describe shape
function, which satisfies EFE’s as follows:

[
csc2(2πk)

(
rb(r) − b′(r)

(
cos(4πk) + r2 + 1

))

+ζr2

(
e
− 2b′(r)

r2Φ + 1

)]/[
ζr2

(
e
− 2b′(r)

r2Φ + 1

)
+ 2b′(r)

]
= ω.

(43)

Hence, on the Fig. 8 we located the numerical solution for
the equation above and proof that in this MOG for our shape
function flare-our condition is satisfied. As we saw from the
numerical analysis, shape function does not depends on the
ζ MOG free parameter. Also, it is necessary to note that
we have only one physically acceptable solution with EoS
parameter ω = −1 (dark energy like fluid).

Finally, in the Fig. 9 we illustrated energy conditions for
HMPG gravity. As one may notice, NEC is violated for both
pressure types, and thus there is always present exotic matter
at the throat. WEC condition could be satisfied by assuming
that ζ < 1, SEC is validated for every ζ > 0.
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Fig. 9 NEC, WEC and SEC conditions for hybrid metric-Palatini gravity with ω = −1, Φ = 1 and k = π/2

4 Quantization of exotic matter, that violate NEC
condition

Volume integral quantifier (further – just VIQ) could help us
with the derivation of exact exotic matter volume. With VIQ
we have the opportunity to understand with which values
of the MOG parameters the volume of matter violating the
null energy condition is the smallest in the case where exotic
matter is present [32].

Volume integral quantifier is given by [42]:

Φ =
∫ ∞

r0

∫ π

0

∫ 2π

0
[ρ + pr ]√−gdrdθdφ

⇓∮
[ρ + pr ]dV = 2

∫ ∞

r0

[ρ + pr ]4πr2dr. (44)

From Fig. 10 obviously for any choice of MOG parameter
if r → ∞ then Φ → 0. Also, for any α > 0∧ f0 > 0∧ζ > 0
we have exotic matter at the throat, but we could minimize
its amount in the first two MOG’s of our consideration if
we set α → 0 and f0 → 0. For log-corrected gravity Φ is
minimized at α = 5, for hybrid metric-Palatini gravity we
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Fig. 10 Volume integral quantifier for quadratic, power-law, log-corrected and HMPG gravities. For the f (R) MOG’s we considered case with
ω = 1 and for HMPG one with ω = −1. Also, for both kinds of theories we assumed r0 = 1

couldn’t minimize exotic matter contribution because Φ is
independent of ζ MOG parameter.

5 Wormhole stability in modified theories of gravity

Wormhole stability conditions can be examined by employ-
ing an equilibrium condition obtained from the Tolman–
Oppenheimer–Volkov equation for non-tidal traversable worm-
hole: [36,38,39,50]:

dpr
dr

+ 
(r)′(ρ + pr )︸ ︷︷ ︸
if


 = 0, 0 + 2

r
(pr − pt ) + Fex = 0

⇓
dpr
dr

+ 2

r
(pr − pt ) + Fex = 0.

(45)

One may see that in our modified TOV (further – MTOV)
present extra force Fex, which exists to hold WH stable
[13,46], even if stress-energy tensor is not conserved (in con-
sidered theories of gravity generally∇μTμν 
= 0 [29,30,43]).

Fig. 11 MTOV forces example in quadratic gravity with α = ω = 1

If the wormhole is stable, the MTOV conditions must be sat-
isfied. Hence, for each model of our analysis it follows.

Routinely, on the Fig. 11 we have located the example of
forces, that present in MTOV (45) for quadratic gravity case
with α = ω = 1.

5.1 f (R) = R + αR2 gravity

To satisfy MTOV, external force must look like:
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Fig. 12 MTOV extra force with varying α for ω = 1

Fex =
[

2α

(
2r3(r − b(r))b(4)(r) − 18rb′(r)2 + r(r(11b(r)

− 8r)b(3)(r) − b′′(r)
(
r
(
rb′′(r) − 16

) + 26b(r)
)
) + b′(r)

×
(
r
(
−3r2b(3)(r) + 14rb′′(r) − 16

)
+ 30b(r)

))]/
[r6].

(46)

On the Fig. 12 we numerically solved Eq. (46). Judging
by data from the figure above, we could say that as α → 0 ⇒
Fex → 0 (GR restored). On other hand, for non-zero MOG
parameter to keep wormhole stable there is always must be
present extra force.

5.2 f (R) = f0Rn gravity

MTOV extra force for power law gravity have following
form:

Fex =
[
f02n−2(n − 1)n

(
b′(r)
r2

)n+1

(2(n − 3)(n − 2)

×r3(r − b(r))b′′(r)3 + 6(1 − 2n)rb′(r)4

−b′(r)3
(
r
(
r
(

3rb(3)(r) + 2(5 − 6n)b′′(r)
)

+ 8n(2n − 3)
)

+2
(−8n2 + 6n + 5

)
b(r)

) + (n − 2)r2b′(r)b′′(r)

×
(

6r(r−b(r))b(3)(r)+((12n−13)b(r)+4(4−3n)r)b′′(r)
)

+rb′(r)2 (
(5 − 3n)r2b′′(r)2 + 2((4(5 − 3n)n − 5)b(r)

+2(n(6n − 13) + 6)r)b′′(r) + r(2r(r − b(r))b(4)(r)

+b(3)(r)((12n − 13)b(r) + 4(4 − 3n)r)
)
))

]
/[b′(r)5]. (47)

As usual, we depicted the solution for Eq. (47) on the Fig.
13.

Fig. 13 MTOV extra force with varying f0 for ω = 1

5.3 f (R) = R + αR2 + βR2 ln βR gravity

Analytical solution for MTOV extra force in log-corrected
gravity:

Fex =
[

4βr3(b(r) − r)b′′(r)3 − 6rb′(r)4

×
(

6α + 6β log

(
2βb′(r)

r2

)
+ 13β

)
+ b′(r)3(2b(r)

×
(

30α + 30β log

(
2βb′(r)

r2

)
+ 97β

)

+ r

(
r

(
b′′(r)

(
28α + 28β log

(
2βb′(r)

r2

)
+ 66β

)

− 3rb(3)(r)

(
2α + 2β log

(
2βb′(r)

r2

)
+ 3β

))

− 32

(
α + β log

(
2βb′(r)

r2

)
+ 4β

)))
+ 2βr2b′(r)b′′(r)

× (6r(r − b(r))b(3)(r) + (11b(r) − 8r)b′′(r)) + rb′(r)2

×
(

− r2b′′(r)2(2α + 2β log

(
2βb′(r)

r2

)
+ 9β

)
+ 2b′′(r)

×
(

2β(8r − 13b(r)) log

(
2βb′(r)

r2

)
− 26αb(r)

− 95βb(r) + 16αr + 68βr

)
+ r

(
2r(r − b(r))b(4)(r)

×
(

2α + 2β log

(
2βb′(r)

r2

)
+ 3β

)

+ b(3)(r)

(
2β(11b(r) − 8r

)
log

(
2βb′(r)

r2

)

+ (22α + 57β)b(r) − 16r(α + 3β)

)))]/[
r6b′(r)2

]
.

(48)

Therefore, as we did for other MOG’s, we placed solution
of Eq. (48) on the Fig. 14. Case with zero extra force (GR)
could be obtained by setting α = β = 0.
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Fig. 14 MTOV extra force with varying α for β = ω = 1

Fig. 15 MTOV extra force with varying ζ for Φ = 1 and ω = −1

5.4 Metric-Palatini exponential gravity

For this MOG we have following Fex:

Fex =
[[

csc2(2πk)(2rb(r)(−2r cos2(2πk)b′′(r) + 2b′(r)

× (cos(4πk)+r2+1)+r2−1)+b(r)2(r((cos(4πk)+1)b′′(r)
− 4r) − 2b′(r)(cos(4πk) + r2 + 1)) + r2(r(cos(4πk) + 1)

× b′′(r)−2b′(r)(cos(4πk)+r2))+2rb(r)3)

]/[
(r−b(r))2

]

+ 2ζe− 2b′(r)
r2Φ (rb′′(r) − 2b′(r))

Φ

]/[
2r3

]
. (49)

Finally, we numerically solved Eq. (49) for last MOG of
our consideration (HMPG) at the Fig. 15.

6 Conclusions

We presented Morris–Thorne traversable wormhole solu-
tions for different modified gravity theories, such as: f (R) =
R+aR2, f (R) = f0Rn , f (R) = R+αR2 +βR2 ln βR
and hybrid metric-Palatini gravity f (R̂). For each kind of

modified gravity we derived suitable shape function that sat-
isfies Einstein Field Equation by applying EoS pt = ωρ.
Numerical solutions for b(r) and b′(r0) are represented at
Figs. 2, 4, 6 and 8.

We probed these models via numerical solutions of the
null energy, weak energy and strong energy conditions, for
f (R) family of gravity theories results are presented at Figs.
3, 5 and 7, for metric-Palatini gravity at Fig. 9.

Moreover, we found a volume integral quantifier. The lat-
ter was used to construct plots with a volume of matter that
violates NEC condition, i.e. exotic matter, and to obtain some
parameter values and conditions, which could reduce the
amount of exotic matter near the wormhole throat. The results
of matter quantifying can be recognized in Fig. 10. As well,
we probed the stability of the non-tidal wormholes in the
modified gravities by the modified Tolman–Oppenheimer–
Volkov equation (equilibrium). Furthermore, we found the
contribution of the extra force that arises because of the non-
continuity of stress-energy tensor for each MOG w.r.t. free
parameters. For the graphical representation of MTOV extra
force solutions, see Figs. 12, 13, 14 and 15. More informa-
tion about wormhole stability and suitable parameter values
could be found in Sect. 5.

This study contributes to the subject of the existence of
wormhole solutions in modified theories of gravity. For the
two fourth-order theories of our consideration, we found that
the HMPG provides wormhole solutions with a fluid source
with value for the EoS close to the cosmological constant.
In a future study, we plan to investigate the relation of these
solutions under the action of the conformal transformation
which relates the two theories.
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