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Abstract

The concept of ‘mass’ has a quite obscure status in de Sitter space. For
example, in Minkowski spacetime the absence of a mass term, conformal in-
variance and light cone propagation are all synonymous, while in de Sitter
space this is not the case. In this thesis we investigate whether a group
theoretical approach might bring resolvement to this issue. It will be similar
to what is done in Minkowski spacetime; the unitary irreducible representa-
tion (UIR) spaces of the isometry group are associated with complete sets of
one-particle states (elementary systems), and the Casimir operators of the
group are associated with the invariants of the quantum-mechanical system
(rest mass and spin in Minkowski spacetime). Since the notion ‘mass’ is not
well defined in de Sitter space, we will consider it in reference to Minkowski
spacetime. This reference is inferred by using group contractions. We review
a particular (Garidi) mass definition, given in terms of the parameters la-
beling the UIRs of the de Sitter isometry group SO(4, 1), and for the scalar
field we compare this mass with an alternative definition.

Titlepage artwork by the author.

University of Groningen
Faculty of Mathematics and Natural Sciences

Theoretical High-Energy Physics



Contents

Introduction 1

1 Basics of Group Theory 4
1.1 What is a group? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Linear Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Definition of Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Connection between Lie groups and algebras . . . . . . . . . . . . . . . . 8
1.3.3 Isometries and Killing vectors . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.4 Killing form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Basics of Representation Theory 11
2.1 Definition of a representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Irreducible representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Schur’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Direct product representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Decomposition of direct product representations . . . . . . . . . . . . . . . . . . 13
2.6 Irreducible operators and the Wigner-Eckart theorem . . . . . . . . . . . . . . . . 14
2.7 Representations of Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Representations of Specific Groups 16
3.1 SO(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Direct product representations of SO(3) . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 SU(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 The Lorentz Group SO(3, 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
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Introduction

Soon after Einstein famously added the cosmological constant term to his theory of general
relativity, de Sitter described the vacuum solution with constant positive curvature [1], and the
geometric space it gave rise to was readily named after him. The amount of symmetry of this
space, the same as Minkowski spacetime, didn’t go unnoticed, and in the years that followed the
discovery of relativistic quantum mechanics, Dirac made the first effort to formulate a quantum
mechanical theory in such a space [2]. However, issues associated with e.g. the absence of a
lower bound on the energy operator drove most researchers in the field towards studying the
just as symmetric constant negatively curved anti-de Sitter space, or to turn away from the
subject completely.

Things changed in the 1980’s, when Guth proposed his theory of inflation in an attempt to
resolve the cosmological horizon and flatness problems [3]. During the inflationary epoch the
universe would exponentially expand and thus be described by the de Sitter geometry. This
led to a revival of interest in the subject of quantum field theory in such a space. The quite
recent discovery that the universe is not only expanding, but actually undergoing an accelerated
expansion [4, 5] again raised interest in the formulation of a consistent quantum field theory in
de Sitter space. Another reason researchers got interested in studing field theory in this space
is the fact that the curvature parameter might serve as a natural cutoff for infrared and other
divergences in the process of regularization in flat spacetime.

A large amount of work has been carried out in trying to formulate a consistent field theory
in de Sitter space, and many advances have been made. However, the non-trivial problems
already arising in the quantization of fields satisfying the simple Klein-Gordon type equation,
for example the non-uniqueness of the vacuum state [6], can be seen as a portent for the technical
and interpretive difficulties that arise when working in this constantly curved space. One such
interpretation issue concerns the notion of ‘mass’.

At the present, it seems that the free fields have been succesfully quantized, for example by
translating the Wightman approach to quantum field theory in Minkowski spacetime [7] (also
known as constructive or axiomatic QFT) to de Sitter space (see [8] and references therein).
Research is now being done on including interactions and finding out what their implications
are, which turn out to be quite peculiar. For example, it is found that ‘massive’ particles are
inherently unstable in first order perturbation theory [9, 10], which should arouse one’s suspicion
with regard to a Minkowskian interpretation of the concept of mass. Another interesting recent
discovery with regard to this notion is the fact that de Sitter space allows the existence of local,
covariant tachyonic fields that admit a de Sitter invariant physical space, in contrast to quantum
field theory in Minkowski space [11, 12].

In e.g. [13] it is argued that de Sitter space itself is in fact unstable when interactions
are included. The central point of the argument is that an inertially moving charged particle
accelerates with respect to another inertial observer in that space, and thus emits radiation.
This radiation happens at the cost of the decrease of the curvature, and one asymptotically
finds him- or herself in a universe with non-accelerating expansion (see also [14, 15, 16]). Such a

1



theory with a dynamical cosmological ‘constant’ might shed some light on the flatness problem.
However, we will not discuss these theories in this work, but restrict ourselves to free fields in
a constant positively curved background.

The (still open) question of the interpretation of the notion of mass in de Sitter space will
be the main focus of this thesis. We will investigate how group theory might add to this dis-
cussion; in any curved spacetime it is always possible to consider the mass of a particle as its
rest mass as it should locally hold in the tangent Minkowski spacetime, but in the de Sitter
case we are dealing with a maximally symmetric space, which allows for a different approach.
This ‘different approach’ will be a generalization of the method introduced by Wigner in [17],
which focusses on the unitary irreducible representations (UIRs) of the isometry group of the
spacetime in which the field theory is formulated. In Minkowski spacetime this is the Poincaré
group; the group of translations and Lorentz transformations. The representation spaces of
these UIRs form so called elementary systems, which are identified as the Hilbert spaces of the
quantum mechanical one-particle states. Invariants of the Poincaré group can then be linked
to invariants of the quantum mechanical systems. These group theoretical invariants are the
Casimir operators, and they are linked to the physical notions ‘rest mass’ and ‘spin’. Our main
objective is to investigate if we can extrapolate this method to de Sitter space in order to get
a better understanding of the notion of mass in this space, which brings us to our research
question:

In how far does the group theoretical approach to quantum field theory, in terms of associ-
ating UIRs of the spacetime isometry group to quantum mechanical elementary systems, lead
to a better understanding of the concept of ‘mass’ in de Sitter spacetime?

In order to answer this question we will first have to review the basics of groups and representa-
tion theory, after which we will look at the state of affairs in flat spacetime in detail. The general
idea is that one should start with the classification of the unitary irreducible representations,
and then link these representations to the field equations. As we will see, this linking-process
is not quite as straightforward in de Sitter space compared to Minkowski spacetime.

We will follow the argumentation of Garidi [18] (see also [19]) leading to a particular mass
definition. The main axiomatic point is that in de Sitter space, ‘mass’ has meaning only in
reference to Minkowski space. This reference is established by considering how the different
representations behave under group contraction as the curvature of the space tends to zero;
de Sitter representations that have as limit the Poincaré representations associated to massive
particles will be called massive.

The concept of ‘masslessness’ is somewhat more involved. In Minkowski space, m = 0,
conformal invariance, light cone propagation, gauge invariance and the presence of two helic-
ity states (for s 6= 0) are basically all synonymous. In curved space this is not the case. For
example, as was shown in [20], fields associated to the wave equation with no mass term do in
fact propagate inside the light cone. A particular choice for calling de Sitter fields ‘massless’
is considered, namely when their unitary irreducible representations can be extended to the
conformal group, since those contract to the Poincaré representations associated to massless
particles. However, for scalar fields this leads to some peculiar results, and we propose a for-
mula different from Garidi’s for the mass of the scalar field, which seems to be more in line with
the mass parameter used in certain inflationary theories (see e.g. [21]).

The organization of this thesis is as follows: in chapter 1 we review the basic properties of
groups and algebras that will be important throughout the rest of this work. Chapter 2 is
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devoted to the basics of representation theory. Next, chapter 3 deals with the representations of
specific groups, where we conclude with the classification of the unitary irreducible representa-
tions of the Poincaré and de Sitter isometry group. Chapter 4 is devoted to group contractions,
in order to establish how the de Sitter and Poincaré unitary irreducible representations are
related. The final chapter’s purpose is to link the group theoretical content described in the
previous chapters to quantum field theory. We first cover the Minkowski case and then make an
effort to generalize to de Sitter space. The link between the unitary irreducible representations
and the field equations will be established using the ambient space formalism, after which we
will review the arguments leading to Garidi’s mass definition. We conclude with proposing a
different mass definition for the scalar field, and a review of the application of Garidi’s formula
to higher-spin fields.
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Chapter 1

Basics of Group Theory

We start by giving a brief overview of the basic notions from group theory that will be important
throughout this thesis. The sections are based on the information given in [22] and [23], but
any other standard work on basic (Lie) group theory could in principle have been used.

1.1 What is a group?

Since the aim of this thesis is to investigate the connection between quantum theory and group
theory, it is important to establish precisely what we mean when we talk about these mathe-
matical entities called groups. The definition is as follows:

Definition 1.1.1. A set G with an operation ∗ forms a group if it satisfies the following axioms:

1. closure: ∀g1, g2 ∈ G, g1 ∗ g2 ∈ G,

2. associativity: (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3),

3. identity: ∃e ∈ G, such that g ∗ e = e ∗ g = g, ∀g ∈ G,

4. inverse: ∀g ∈ G,∃ĝ ∈ G such that g ∗ ĝ = ĝ ∗ g = e.

The group operation ∗ is often called multiplication. From hereon we will omit the symbol ∗ for
brevity, so g1 ∗ g2 ≡ g1g2. G is said to be Abelian if ∀g1, g2 ∈ G we have g1g2 = g2g1, i.e. if the
multiplication law is commutative. Most groups we will encounter do not have this property,
for example, the quite basic group of rotations in three dimensions is clearly non-Abelian (see
section 3.1).

Let us consider mappings between groups. A homomorphism is a mapping f of a group
G1 into G2, such that ∀g, h ∈ G1 we have f(gh) = f(g)f(h). When the homomorphism is
one-to-one it is called an isomorphism. If there exists an isomorphism between two groups,
then they are called isomorphic, which basically means that they have the same properties and
no group theoretical distinction need be made. The notation for indicating that two groups G1

and G2 are isomorphic is G1 ∼ G2.

Groups often possess sets of elements which again form groups. These sets are known as
subgroups. To be more mathematically precise: a subset H of the group G is said to be a
subgroup of G if it satisfies the group axioms under the multiplication law ∗ of G. A subgroup
is called invariant if for ∀g ∈ G and ∀h ∈ H we have ghĝ ∈ H. Every group G has at least two
invariant subgroups, namely the trivial one: {e} and G itself. When a group does not contain
any non-trivial invariant subgroup it is called simple. The term semi-simple is used for groups
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that do not contain any Abelian invariant subgroup.

Let us now introduce the direct product of two groups. This is most easily done if we con-
sider two subgroups H1 and H2 of a group G, satisfying the following:

1. h1h2 = h2h1 ∀h1 ∈ H1, h2 ∈ H2

2. every element of G can be written uniquely as g = h1h2 where h1 ∈ H1 and h2 ∈ H2

Then G is said to be a direct product group and can be written as G = H1 ⊗ H2. It is clear
that H1 and H2 are in fact invariant subgroups of G.

Related to direct product grous are factor groups, but in order to define them, we must first
define cosets. Let H = {h1, h2, ...} be a subgroup of G and let p be an element of G which is not
in H. The set of elements pH = {ph1, ph2, ...} is called a left coset of H. Hp = {h1p, h2p, ...}
is called a right coset. Now, if H is an invariant subgroup of G, the factor (or quotient) group
is defined by the set of cosets endowed with the law of multiplication pH · qH = (pq)H where
p, q ∈ G and p, q /∈ H. It is denoted by G/H.

1.2 Lie groups

So far we have kept the concept of a group very general, however it is not hard to see that it is
possible to identify different classes of groups, for example, one can discriminate between discrete
and continuous groups. Consider three dimensional Euclidean space. The set of reflections in
the three orthogonal planes is obviously a discrete group, while the set of rotations around the
axes is a continuous group. Our focus will be on groups of the latter kind, or to be more specific,
on Lie groups. We will not give the precice definition, since it involves elements of topology and
differential geometry.

Loosly speaking, a Lie group is an infinite group for which the operations of multiplication
and inversion are smooth. The elements can be labeled by a set of continuous parameters, and
the number of linearly independent parameters used to label them is the dimension of the Lie
group. These groups are used (among other things) for describing continuous symmetries of
mathematical objects and structures, and that is what we will be doing in this thesis. More
specific, we will use Lie groups for describing the continuous symmetries of the particular
spacetime in which we are formulating our quantum field theory (e.g in section 3.5 we consider
the symmetry group for Minkowski spacetime; the Poincaré group).

Any n-dimensional Lie group G can be parametrized in such a way that it can be described
in terms of n subgroups, each of which is labeled by one parameter. Let us write this explic-
itly. Stating that G is n-dimensional is stating that the elements g ∈ G can be labeled by n
parameters:

g = g(α1, ..., αn) (1.2.1)

We can choose the parametrization such that the sets of elements of the form

gk(t) = g(0, ..., 0, t, 0, ..., 0) (1.2.2)

are one-parameter subgroups of G, where t is in the kth position and 1 ≤ k ≤ n. The condition
that {gk(t); t ∈ R} forms a subgroup of G can be stated as follows:

gk(t)gk(s) = gk(t+ s) (1.2.3)

We will now briefly discuss some topological properties of Lie groups, namely connectedness
and compactness. Since Lie groups carry the structure of real- or complex-analytic manifolds,
we can talk about such topological notions.
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A Lie group is said to be connected if it is not the union of two disjoint nonempty open sets
of elements. If a line connecting any two elements can be continuously transformed into every
other possible line between those two elements (while staying within the group), then the group
is said to be simply connected.

Roughly speaking, a Lie group is said to be (non-)compact if the set of parameters used
to label the group elements is (non-)compact. A more general method of establishing whether
a group is (non-)compact is discussed in section 1.3.4. Compactness of a group becomes very
important when we will consider representations. For example, it can be shown that for non-
compact groups, all unitary irreducible representations are infinite dimensional. The fact that
the symmetry groups of the spacetimes we are going to study are indeed non-compact should
stress this importance (see e.g. section 3.6).

1.2.1 Linear Lie groups

Making the distinction between discrete and continuous is certainly not the only discrimination
possible for groups, and to state that we are focussing on Lie groups in this thesis is not
quite specific enough. We will restrict ourselves to linear Lie groups, i.e. specific subgroups
of the real (or complex) General Linear group GL(n,R), the group of all non-singular linear
transformations of some n-dimensional real (or complex) space, whose elements are non-singular
matrices.

There are a number of subgroups of GL(n,R) which have extremely important applications
in modern physics. We will give a few examples which we will encounter several times throughout
this work.

SL(n,R)

The set of matrices g ∈ GL(n,R) with det g = 1 forms an invariant subgroup which is denoted
by SL(n,R). A physically important example is the group SL(2,C): it is associated with a
particular manifestation of the group of Lorentz transformations and is used to construct the
Dirac spinors.

O(n,R) and SO(n,R)

The group of all real orthogonal matrices acting on Rn is denoted by O(n,R) (the entry R
is usually dropped for brevity). We can easily see that O(n) consists of two components.
Consider a ∈ O(n), meaning aaT = In, which implies (det a)2 = 1, so there is one component
with det a = 1 and one with det a = −1. The former coincides with the group SO(n). The
group SO(3) has an important role in almost all of physics, since it is the group of rotations in
three spatial dimensions. Another example of its application can be found in atomic physics; it
is closely connected to the spherical harmonics used to describe the orbitals of electrons.

U(n) and SU(n)

The group of all unitary matrices is denoted by U(n). The subgroup {u ∈ U(n)|detu = 1} =
U(n) ∩ SL(n,C) is denoted by SU(n). The (special) unitary groups are of huge importance
in modern physics. For example, the gauge group of the standard model is given by SU(3) ×
SU(2)× U(1).
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Pseudo- groups

Consider in Rn the following form:

[x,y]p,q = x1y1 + ...+ xpyp − xp+1yp+1 − ...− xp+qyp+q (1.2.4)

where x,y ∈ Rn and p+ q = n. The group of linear transformations leaving this form invariant
is denoted by O(p, q). SO(p, q) is defined by O(p, q) ∩ SL(p + q,R). We call these groups
pseudo-orthogonal. The main part of this thesis is concerned with pseudo-orthogonal groups,
for example SO(3, 1): the group of Lorentz transformations, and SO(4, 1): the group associated
with de Sitter space.

Pseudo-unitary groups can be defined in the same way as above, but now considering in Cn
the form

[z,w]p,q = z1w1 + ...+ zpwp − zp+1wp+1 − ...− zp+qwp+q (1.2.5)

where the bar implies Hermitian conjugation.

This concludes our introduction to the beautiful subject of Lie groups. However, for the most
part we will not work with the groups, but rather with the so-called Lie algebras. The remainder
of this chapter will be devoted to these structures and their relation to the groups.

1.3 Lie algebras

Lie algebras are probably the favorite group theoretical tool for physicists, since they are much
easier to work with than the groups themselves. When we come to the classification of the
unitary irreducible representations of specific groups in chapter 3, we will mainly be working
with the corresponding Lie algebras. Section 1.3.1 is based on [24] and section 1.3.2 on [25],
but just as for the first part of this chapter, we could have used any other standard work.

1.3.1 Definition of Lie algebras

Before we come to discussing the connection between the groups and algebras, it is convenient
to give the precise mathematical definition of the Lie algebra structure.

Definition 1.3.1. Let V be some finite-dimensional vector space over C (or R). Let X,Y ∈ V .
V is said to be a Lie algebra over C (or R) if there is a composition rule [X,Y ] in V , satisfying
∀X,Y, Z ∈ V :

1. linearity: [αX + βY, Z] = α[X,Z] + β[Y,Z] for α, β ∈ C (or R),

2. antisymmetry: [X,Y ] = −[Y,X],

3. Jacobi identity: [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

The operation [ , ] is called Lie multiplication.

We say that a Lie algebra is Abelian or commutative if ∀X,Y ∈ V we have [X,Y ] = 0. Upon
inspecting section 1.3.2 it will become apparent that this notion of ‘being Abelian’ is equivalent
to the one for groups introduced earlier in this chapter.

Some more definitions are needed here. A subspace N of V is called a subalgebra if1

[N,N ] ⊂ N . N is an ideal if [V,N ] ⊂ N . The ideal N for which we have [V,N ] = 0 is called
the center of V .

1A note on notation: let A and B be algebras, then by [A,B] we mean all possible combinations [a, b] where
a ∈ A and b ∈ B.
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If an operator C commutes with all elements of V , i.e. [C, V ] = 0, then it is called a Casimir
operator. These special operators turn out to be of great importance for the physical applica-
tions of the algebras: they will be associated with invariants of the theory. For example, rest
mass is invariant under spacetime transformations in Minkowski space, i.e. under transforma-
tions of the Poincaré group, and we shall see in section 3.5 how it is related (or equated) to the
Casimir operator of this group.

When reading this last sentence, one might have noted that the Lie algebraic ‘Casmir
operator’-notion is used in reference to the group, not to the algebra. This might seem wrong,
but it is extremely common. It turns out that in most cases there is no reason to make a fuss
about this, since from a physicist’s point of view there is no important difference between groups
and algebras (in relation to this, see section 2.7). But let us first review how particular groups
are linked to particular algebras.

1.3.2 Connection between Lie groups and algebras

In order to make clear the connection between Lie groups and algebras we will use the concept
of matrix representations, which we will properly define in section 2.1. Let us consider an n-
dimensional Lie group G whose elements g are labeled by a set of parameters α = {α1, ..., αn},
i.e. g = g(α), such that g(0) = e. We assume that the group actions can be represented by d×d
matrices denoted by D (this is always possible for linear groups), such that D(g(α)) = D(α)
and D(0) = 1. We can expand D around 1:

D(δα) = 1 + iδαaX
a + ... (1.3.1)

where δα is an infinitesimal α and a runs over the number of parameters. Xa are called the
generators of the group2 and are defined as:

Xa ≡ −i ∂

∂αa
D(α)

∣∣∣∣
α=0

(1.3.2)

so the generators are in fact tangent vectors at the identity element of the group.
For a compact group one can write all group actions in terms of the generators and group
parameters, even far away from the identity. In order to show this we write δαa as αa/k and
we raise D(δα) to some large power k:

D(α) = lim
k→∞

(
1 + i

αaX
a

k

)k
= exp(iαaX

a). (1.3.3)

When we assume that there are no superfluous parameters α then the Xa are linearly inde-
pendent and span a vector space. This vector space, together with a Lie multiplication defined
above, is called the Lie algebra g of G. The dimension n of g is equal to the number of gener-
ators, i.e. the number of parameters used to label the elements of G. Since {X1, ..., Xn} is a
basis for g we can write every element of g as a linear combination of the Xa. In particular, we
can write every Lie product of two generators as a linear combination of generators:

[Xi, Xj ] = cijk X
k (1.3.4)

2Some authors prefer to use the terms ‘infinitesimal generators’ or ‘infinitesimal operators’. The mathematical
definitions also differ throughout the literature; some choose to exclude the factor i, some choose to exclude the
minus sign, others choose to exclude both. It should be clear that this does not change the theory, but one must
take notice! For example, Hermiticity in one convention is translated into anti-Hermiticity in the other.
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where i, j, k = 1, .., n. The cijk ’s are called structure constants and they carry all information
about the algebra-, and thus group structure.

As mentioned before, we will be interested in groups and algebras associated with spacetime
symmetries. There is a very elegant link between the generators of these groups and the struc-
ture of the particular spacetime, which is made explicit with the Killing vector formalism.

1.3.3 Isometries and Killing vectors

Up until now we have not given a definition of the term ‘spacetime symmetry’, and thus we
intend to give one now. Consider Rn endowed with a particular metric, specifying the spacetime,
e.g. diag(1,−1,−1,−1) for 4-dimensional Minkowski spacetime. Now consider a distance-
preserving bijective map from this metric space to itself; it is called an isometry3 (in terms of
4-dimensional Minkowski spacetime, this is a map which preserves the length of any 4-vector).
Now, the group of spacetime symmetries is defined as the group of all isometries of the spacetime
in question.

To find an explicit form for the generators of these isometry groups we can use the Killing
vector formalism, where ‘Killing vector’ is basically synonymous to ‘generator of the isometry
group’. The following rigorous definition is given in [26]:

Definition 1.3.2. Let φt be a C∞ map, forming a one-parameter group of diffeomorphisms
from R ×M → M such that for some fixed t ∈ R we have φt : M → M , and for all t, s ∈ R
we have φt ◦ φs = φt+s. Note that this last statement implies that φt=0 is the identity map. We
now associate a vector field v to φt in the following way: for any fixed x ∈ M , φt(x) : R → M
is a curve passing through x at t = 0. This curve is called an orbit of φt. We define v|x as the
tangent to this curve at t = 0. So we see that associated to every one-parameter (sub)group of
isometry transformations of M is a vector field v, and the so-called Killing vector v|x can be
viewed as the infinitesimal generator of these transformations.

One can find the explicit coordinate form of the Killing vectors, and thus the generators of
the isometry group, by using the following formula:

Kαβ = i

(
xα

∂

∂xβ
− xβ

∂

∂xα

)
, (1.3.5)

which can be quite helpful in explicit calculations. Let us now turn our attention to another
helpful tool, which again carries the name of Wilhelm Killing. This tool can be used to establish
the (non-)compactness of Lie groups.

1.3.4 Killing form

Let us define, on the Lie algebra g, the linear map adX : g→ g by:

adX(Y ) ≡ [X,Y ], (1.3.6)

and next define a bilinear form on g by:

B(X,Y ) ≡ Tr(adXadY ) (1.3.7)

which has the following properties:

3Actually, it is a global isometry, where the prefix points to the bijective character of the mapping.
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1. symmetry: B(X,Y ) = B(Y,X),

2. bilinearity: B(αX + βY, Z) = αB(X,Z) + βB(Y, Z) for all X,Y, Z ∈ g and α, β ∈ C,

3. B(adX(Y ), Z) +B(Y, adX(Z)) = 0.

The bilinear form defined in (1.3.7) is called the Killing form. It is closely related to the structure
constants of (1.3.4) (for details, see [23]):

B(Xi, Xj) = Tr(adXiadXj) = ckimc
m
jk ≡ bij . (1.3.8)

The Killing form is a great tool for establishing if a group is (non-)compact. A Lie algebra (and
its corresponding group) is said to be semisimple if ∀Y ∈ g, B(X,Y ) = 0 implies X = 0. If a
group is semisimple we can use the form to find out if the group in question is compact. We
state, without proof, Cartan’s compactness criterion: if the Killing form of a semisimple Lie
algebra g is strictly negative and G is the associated connected Lie group with finite center,
then G is compact.

Again, we stress the importance of compactness of groups. As one will read in the following
chapter, if a group is compact, then one automatically knows that all irreducible representations
are finite dimensional and unitary, while non-compact groups have no finite dimensional unitary
irreducible representations at all!

With this we conclude this introductory chapter containing the required basics of group theory.
Again, it is based on other introductions to this subject found in [22, 23, 24, 25]. The next
chapter will cover the fundamentals of representation theory, which is the basis for the physical
applications of the mathematical structures described above.
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Chapter 2

Basics of Representation Theory

One can argue that representations of groups (and algebras) are the mathematical objects that
make group theory relevant for, and applicable to physics. They are concrete manifestations of
the more abstract notion of ‘a group’. In this chapter we review the basic notions of represen-
tation theory that will be used throughout the rest of this thesis.

2.1 Definition of a representation

A representation T of a group G in a linear space L over a field κ = R,C, ... (the space of the
representation) is the homomorphism T : G→ GL(L, κ). GL(L, κ) is the group of non-singular
linear transformations of L. It satisfies

1. T (g1g2) = T (g1)T (g2),

2. T (e) = E,

where E is the identity operator in L. The dimension of a representation is equal to the
dimension of L. We shall mainly deal with matrix representations, in that case L = Rn and the
dimension of T is n. We say that a representation is faithful if the homomorphism is also an
isomorphism.
Every group has a trivial representations, namely

T (g) = E, ∀g ∈ G. (2.1.1)

Next we take a closer look at matrix representations. Consider a n-dimensional vector space
with a basis {êi, i = 1, ..., n}. The operators T (g) will be n × n matrices working on the basis
vectors as follows:

T (g) |ei〉 = |ej〉D(g)ji. (2.1.2)

We can show that the matrices D(g) obey the same rules of multiplication as the operators
T (g):

T (g1)T (g2) |ei〉 = T (g1) |ej〉D(g2)ji = |ek〉D(g1)kjD(g2)ji

= T (g1g2) |ei〉 = |ek〉D(g1g2)ki
(2.1.3)

so we see that
D(g1)D(g2) = D(g1g2) (2.1.4)

where we implicitly use matrix multiplication.
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Let T (G) be a representation of a group G on a vector space L. Let S be some non-singular
operator on L, then

T ′(G) = ST (g)S−1 (2.1.5)

also is a representation of G on L. T (G) and T ′(G) are said to be connected by a similarity
transformation S. Representations that can be connected by a similarity transformation are
called equivalent.

2.2 Irreducible representations

We will now introduce the concept of (ir)reducibility. In order to do so, we first define an invari-
ant subspace. Let T (G) be a representation of G on L, and let L1 ⊂ L such that T (g) |x〉 ∈ L1

for all x ∈ L1 and g ∈ G. Then L1 is called an invariant subspace of L with respect to T (G).
It is called trivial when it consists of the whole space or if it only contains the null vector and
it is said to be minimal or proper if it does not contain any non-trivial invariant subspace with
respect to T (G).
When the space L has no invariant subspaces with respect to the representation T (G), the latter
is said to be irreducible. If there is at least one invariant subspace L1, the representation is said
to be reducible. When the orthogonal complement1 of L1, say L2, is also invariant with respect
to T (G), then T (G) is called decomposable or fully reducible.

We will see that irreducible representations (irreps from now on) are physically of most in-
terest. Another (physically important) property that a representation can have is unitarity. We
say that a representation is unitary if the representation space L is a Hilbert space (or inner
product space), and the operators T (g) are unitary2 for all g ∈ G.

2.3 Schur’s lemma

For later use we will state without proof Schur’s lemma.

Let T (G) be an irrep of the groupG on the space L and A some operator on L. If AT (g) = T (g)A
for all g ∈ G, then A = λE where λ ∈ R and E the identity operator on L.

Another later important statement is the following: for compact groups, all irreps are finite
dimensional and unitary.

2.4 Direct product representations

Next we will focus on direct product representations. Analogous to defining irreps, we first
define the space on which the representation will work: the direct product space. Let U and V
be Hilbert spaces with orthonormal bases {ûi; i = 1, ..., nu} and {v̂j ; j = 1, ..., nv} respectively.
Then the direct product space W = U × V is made out of all linear combinations of the
orthonormal basis vectors {ŵk; k = (i, j); i = 1, ..., nu; j = 1, ..., nv} where ŵk can be regarded

1The orthogonal complement of a space L1 ⊂ L is defined as L2 = {x | 〈x|y〉 = 0 ∀y ∈ L1}. If L is finite-
dimensional, L2 is a subspace of L, and we write L = L1 ⊕ L2.

2The operators T (g) are said to be unitary if T (g)T (g)† = T (g)†T (g) = E. The most important property
of unitary operators is that they leave the inner product invariant, and as a consequence they leave lengths of
vectors and angles between vectors invariant.
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as the formal product ŵk = ûi · v̂j . The dimension of W is obviously nu×nv. By definition we
have

1. 〈wk′ |wk〉 = δk
′
k = δi

′
iδ
j′

j ,

2. W = {x; |x〉 = |wk〉xk} with xk ∈ C the components of x,

3. 〈x|y〉 ≡ x†ky
k.

Let us now consider the operators A on U and B on V, whose product D = A × B is defined
on W = U×V by the action on the basis vectors {ŵk}:

D |wk〉 = |wk′〉Dk′
k, Dk′

k ≡ Ai
′
iB

j′

j (2.4.1)

where Ai
′
i is the matrix element of A on the subspace U with respect to the basis {ûi} and Bj′

j

is the matrix element of B on the subspace V with respect to the basis {v̂j}, and k = (i, j),
k′ = (i′, j′).
We now have the tools to define direct product representations. Let Dµ(G) be a representation3

of G on U and Dν(G) a representation of G on V. Then the operators Dµ×ν(g) = Dµ(g)⊗Dν(g)
form a representation of G on W. Dµ×ν(G) is called a direct product representation.

2.5 Decomposition of direct product representations

Dµ×ν(G) is in general reducible, and it can be decomposed as a direct sum of irreps on W:

Dµ ⊗Dν = S

(⊕
λ

aµνλ Dλ

)
S−1 (2.5.1)

where Dµ, Dν and Dλ are irreps of G on respectively U, V and W = U×V. S is a non-singular
operator providing the similarity transformation.
This means that the space W consists of invariant subspaces Wλ

α, where λ is the label of the
irrep and α = 1, ..., aµνλ labels the different spaces correpsonding to the same λ, i.e.

W =
⊕
λ,α

Wλ
α. (2.5.2)

We can choose a new basis {ŵλ
αl; l = 1, ..., nλ} for W such that the first n1 basis vectors span

W1
1, the next n1 basis vectors span W1

2, and so on, until we have a complete orthonormal basis.
This basis is linked to the old basis {ŵ(i,j)} by a unitary transformation. We write

|wλαl〉 =
∑
i,j

|w(i,j)〉 〈i, j(µ, ν)α, λ, l〉 (2.5.3)

where 〈i, j(µ, ν)α, λ, l〉 are the matrix elements of the transformation matrix, with (i, j) labeling
the rows and (α, λ, l) the columns. They are called Clebsch-Gordan coefficients.
The inverse relation is given by

|w(i,j)〉 =
∑
α,λ,l

|wλαl〉 〈α, λ, l(µ, ν)i, j〉 . (2.5.4)

3Note that these greek indices label the irreps; they do not represent matrix- or vector entries.
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We now apply an operator from the representation to the two different bases, according to
(2.4.1) we have:

Dµ×ν(g) |w(i,j)〉 = |w(i′,j′)〉Dµ(g)i
′
iD

ν(g)j
′

j (2.5.5)

and
Dµ×ν(g) |wλαl〉 = |wλαl′〉Dλ(g)l

′
l (2.5.6)

where summation over repeated indices is understood.
For brevity, in the following we will denote the different basis vectors as |i, j〉 and |α, λ, l〉, and
we will replace the (µ, ν) label in the Clebsch-Gordan coefficients by |. We now combine (2.5.4),
(2.5.5) and (2.5.6) to write

Dµ×ν(g) |i, j〉 = Dµ×ν(g) |α, λ, l〉 〈α, λ, l|i, j〉

= |α, λ, l′〉Dλ(g)l
′
l 〈α, λ, l|i, j〉

= |i′, j′〉 〈i′, j′|α, λ, l′〉Dλ(g)l
′
l 〈α, λ, l|i, j〉 .

(2.5.7)

We now have all the tools to explicitly write the similarity transformation of (2.5.1) composed
of Clebsch-Gordan coefficients. The following matrix relations hold:

Dµ(g)i
′

ı D
ν(g)j

′

j = 〈i′, j′|α, λ, l′〉Dλ(g)l
′
l 〈α, λ, l|i, j〉 (2.5.8a)

δα
′

α δ
λ
λ′D

λ(g)l
′
l = 〈α′, λ′, l′|i′, j′〉Dµ(g)i

′
iD

ν(g)j
′

j 〈i, j|α, λ, l〉 (2.5.8b)

The first of the above equations is basically (2.5.1). The second equation is the reciprocal of
the first, and it makes explicit the block-diagonal form of the direct product representation in
the new basis.

2.6 Irreducible operators and the Wigner-Eckart theorem

We begin by defining irreducible vectors on a vector space L. Let Lµ be an invariant subspace of
L with respect to some representation T (G) of the group G. Any set of vectors {êµi ; i = 1, ..., nµ}
transforming under T (G) as

T (g) |eµi 〉 = |eµj 〉D
µ(g)ji (2.6.1)

where Dµ(G) is an irreducible matrix representation of G, is said to be an irreducible set trans-
forming under the µ-representation.
Next we will define irreducible operators. They, together with the theorem following the defi-
nition, will be of great importance later.
Consider a set of operators {Oµi ; i = 1, ..., nµ} on a vector space L. They are said to be irre-
ducible operators if they transform under actions of the group G as follows:

T (g)Oµi T (g)−1 = OµjD
µ(g)ji (2.6.2)

where T (G) is some unitary representation of G on L and Dµ(G) an irreducible matrix repre-
sentation.
Now we are interested in how the combination of irreducible operators and vectors will transform
under the action of G. It is easy to show, using (2.6.1) and (2.6.2), that we have:

T (g)Oµi |e
ν
j 〉 = T (g)Oµi T (g)−1T (g) |eνj 〉

= Oµk |e
ν
l 〉Dµ(g)kiD

ν(g)l j
(2.6.3)
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so we see that the combination transforms according to the direct product representation Dµ×ν .
This means that, by using (2.5.4), we can express it as:

Oµi |e
ν
j 〉 =

∑
α,λ,l

|wλαl〉 〈α, λ, l(µ, ν)i, j〉 . (2.6.4)

We can now compute the matrix element 〈elλ|O
µ
i |eνj 〉 and state the Wigner-Eckhart theorem:

let {Oµi } be a set of irreducible operators as defined in (2.6.2). We then have:

〈elλ|O
µ
i |e

ν
j 〉 =

∑
α

〈α, λ, l(µ, ν)i, j〉 〈λ|Oµ|ν〉α (2.6.5)

where

〈λ|Oµ|ν〉α ≡
1

nλ

∑
k

〈ekλ|wλαk〉 (2.6.6)

is called the reduced matrix element. All the i, j and l dependence is now in the Clebsch-Gordan
coefficients. The result of (2.6.5) will be of great importance later, in section 3.4.

2.7 Representations of Lie algebras

So far we only discussed representations of groups. We will now focus on representations of Lie
algebras. They tend to be much easier to classify.
Let TG be a representation4 of the n-dimensional group G. The corresponding representation of
the algebra g can be obtained by taking the differential of TG (along the same line as (1.3.2)).
Let X ∈ g correspond to some one-parameter subgroup g(t), then the representation Tg of g is
given by:

Tg(X) =
dTG(g(t))

dt

∣∣∣∣
t=0

= lim
t→0

TG(g(t))− E
t

. (2.7.1)

The Tg operators are called infinitesimal operators. In total we can define n of such operators,
one for every one-parameter subgroup, who together define a representation for g. For all
Xi ∈ g, where i = 1, ..., n we have:

TG
(
expαiX

i
)

= exp
(
αiTg(X

i)
)
. (2.7.2)

There are two more important statements that we shall not prove here. Firstly, if two represen-
tations of G are equivalent, then the corresponding representations of g are equivalent as well.
Secondly, if Tg is irreducible, then so is TG. The converse of both statements holds only when
G is (simply) connected.

4In the following we implicitly assume that TG is finite dimensional. It becomes more complex if we con-
sider infinite dimensional representations, because then the limit in (2.7.1) can not exist on all vectors of the
representation space on which Tg acts. However, it can be done, and the results will be the same.
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Chapter 3

Representations of Specific Groups

In this chapter we consider representations (and their representation spaces) of specific groups,
namely: SO(3), SU(2), the Lorentz group SO(3, 1), the Poincaré group, and finally the group of
isometries of de Sitter space SO(4, 1). For the last three of these groups we give the classification
of the unitary irreducible representations (UIRs). The classification for the Poincaré group is
of great interest for physicists, since the representation spaces of the UIRs can be linked to
the Hilbert spaces of the quantum mechanical particle states. We explicitly carry out the
classification of the (physically less interesting) UIRs of the Lorentz group, since it is analogous
to the SO(4, 1) case, but less tedious. All sections are based on [22], except for section 3.6.

3.1 SO(3)

We will firstly take a look at the group of rotations in 3-dimensions. It is the group of linear
transformations in 3-dimensional Euclidean space which leave the length of any vector invariant.
Let x be such a vector. With use of an orthonormal basis {êi; i = 1, 2, 3} we can write the vector
as x = êix

i. A rotation will be represented by the matrix R. When applied to x, the components
change as

x′i = Rijx
j (3.1.1)

We require that the length of the vector is invariant; xix
i = x′ix

′i. This leads to the constraint
on R:

RRT = RTR = 1 (3.1.2)

so we can conclude that R ∈ O(3); the 3-dimensional version of the orthogonal group first
introduced in section 1.2.1. We already mentioned that O(N) consists of two components,
distinguished by the sign of the determinant of its elements. Since all physical rotations can
be reached continuously from the ‘identity rotation’ (R = 1, which has detR = det1 = 1) we
conclude that the group of rotations in 3-dimensions is in fact SO(3).

The continuous parameters which label the group elements R of SO(3) can be chosen in an
infinite number of different ways. We will use the angles of rotation around the three orthogonal
axes. We can readily distinguish the three one-parameter subgroups Rn(α) where n = 1, 2, 3.
They are rotations in the plane orthogonal to the axis of rotation, i.e. SO(2) subgroups. A
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matrix representation is given by

R1(α) =

1 0 0
0 cosα − sinα
0 sinα cosα

 , (3.1.3a)

R2(α) =

 cosα 0 sinα
0 1 0

− sinα 0 cosα

 , (3.1.3b)

R3(α) =

cosα − sinα 0
sinα cosα 0

0 0 1

 . (3.1.3c)

With every one-parameter subgroup we can associate a generator of the corresponding algebra.
We write

Rn(α) = exp(−iαJn) (3.1.4)

where Jn are the three generators. A representation for the generators can be found by using
(1.3.2) or (2.7.1). We find:

J1 =

0 0 0
0 0 −i
0 i 0

 , J2 =

 0 0 i
0 0 0
−i 0 0

 , J3 =

0 −i 0
i 0 0
0 0 0

 . (3.1.5)

One can prove that the generators satisfy the following Lie algebra:

[Jk, Jl] = iεklmJ
m (3.1.6)

where εklm is the Levi-Civita symbol; it is +1 if (k, l,m) is an even permutation of (1, 2, 3), −1
when the permutation is odd, and it is 0 if indices are repeated.

Next we will build irreps for the algebra so(3) defined by (3.1.6). In section 2.2 we stated
that the representation space L of an irrep T is a proper invariant space under the group
action. The strategy we will use is to construct this proper invariant space by starting out with
a convenient vector and generate the rest of the vectors in an irreducible basis by repeatedly
applying certain selected operators.
The basis vectors of L will be chosen such that they are eigenvectors of a commuting set of
operators, since only commuting operators can have complete sets of eigenvectors. We already
encountered operators that commute with all elements of a Lie algebra; Casimir operators. It
is straightforward to check that the operator J2 = (J1)2 + (J2)2 + (J3)2 commutes with all Jk’s.
In short:

[Jk, J
2] = 0, k = 1, 2, 3 (3.1.7)

Due to Schur’s lemma (see section 2.3), when the Jk’s form an irrep, J2 will be a multiple of
the unit matrix. This means that all vectors of the irrep space are eigenvectors of J2, all with
the same eigenvalue.

Conventionally, the basis vectors of L are chosen to be simultaneous eigenvectors of J2 and
J3. We will use the so called raising and lowering operators to construct the basis vectors from
the starting vector. They are given by

J+ = J1 + iJ2 (3.1.8a)

J− = J1 − iJ2 (3.1.8b)
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which can be shown to have the following properties:

[J3, J±] = ±J± (3.1.9a)

[J+, J−] = 2J3 (3.1.9b)

J2 = J3
2 − J3 + J+J− = J3

2 + J3 + J−J+ (3.1.9c)

J±
† = J∓ (3.1.9d)

We will denote our starting vector for the representation space L by |m〉. It is an eigenvector
of J3 (and J2) with eigenvalue m:

J3 |m〉 = |m〉m (3.1.10)

By using (3.1.9a) we can show that:

J3J+ |m〉 = [J3, J+] |m〉+ J+J3 |m〉 = J+ |m〉 (m+ 1) (3.1.11)

This means that J+ |m〉 is again an eigenvector of J3, now with eigenvalue (m + 1). We will
denote J+ |m〉 by |m+ 1〉 (after normalizing it to unity). By repeatedly applying J+ to the
vectors we can generate new eigenvectors of J3. Due to the fact that the representation space
is finite dimensional (the group is compact) the process must terminate at some vector. Let’s
call this vector |j〉:

J3 |j〉 = j (3.1.12a)

J+ |j〉 = 0 (3.1.12b)

so, by using (3.1.9c) we know that

J2 |j〉 = |j〉 j(j + 1) (3.1.12c)

Next we reverse the process: we start out with |j〉 and apply J− to it, again using (3.1.9a):

J3J− |j〉 = J− |j〉 (j − 1) (3.1.13)

Again, after normalizing, the vector J− |j〉 is written as |j − 1〉. All vectors produced in this
manner will have the same eigenvalue for J2, namely j(j + 1). Again, because the irrep space
will be finite dimensional, the process must terminate at some vector |l〉:

J− |l〉 = 0 (3.1.14)

Let us write:
0 = 〈l|J−†J−|l〉 = 〈l|J+J−|l〉 = 〈l|J2 − J3

2 + J3|l〉
= j(j + 1)− l(l − 1)

(3.1.15)

which means that we must have l = −j. We applied J− an integer number of times to get
from |j〉 to |−j〉, so 2j must be an integer. This leads to the conclusion that j can take on the
following values:

j = 0,
1

2
, 1,

3

2
, 2, ... (3.1.16)

By construction, the dimension of L is 2j + 1.
Let us summarize the results derived above. The orthonormal basis vectors of the irreducible

representation space L for the irreps J of the Lie algebra so(3) are specified by the following
equations:

J2 |jm〉 = |jm〉 j(j + 1) (3.1.17a)
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J3 |jm〉 = |jm〉m (3.1.17b)

J± |jm〉 = |jm± 1〉 [j(j + 1)−m(m± 1)]1/2 (3.1.17c)

where the normalization factor in the last equation can be derived along the same line as (3.1.15).
This basis is often refered to as the canonical basis.

Next we extend the result from the algebra so(3) to the group SO(3). We first note that,
with use of the one-parameter subgroups, every group element can be written as

R(α, β, γ) = R3(α)R2(β)R3(γ)

= e−iαJ3e−iβJ2e−iγJ3
(3.1.18)

Now consider an operator T representing the rotation R(α, β, γ), acting on L:

T (α, β, γ) |jm〉 = |jm′〉Dj(α, β, γ)m
′
m (3.1.19)

where
Dj(α, β, γ)m

′
m = e−iαm

′
dj(β)m

′
me
−iγm (3.1.20)

and
dj(β)m

′
m = 〈jm′|e−iβJ2 |jm〉 (3.1.21)

Note that J2 will change the value of m; it can be written in terms of J+ and J−. It can be
shown that for half integer values of j, rotations of an odd number of complete revolutions are
not mapped to E, but to −E (for example a rotation of 2π around a certain axis). When the
number of complete revolutions is even, they are indeed mapped to E. For integer values of j
this behavior is absent; all number of complete revolutions are mapped to E. We can make this
explicit by plugging in a 2π rotation around the 3-axis into (3.1.20):

Dj [R3(2π)]m
′
m = Dj [e−i2πJ3 ]m

′
m = δm′me

−i2mπ = δm′me
−i(2jπ) = (−1)2jδm′m (3.1.22)

where in the second to last equality we used the fact that (j − m) is an integer. This result
can be generalized to 2π rotations in any direction. We say that irreps with half integer j are
double-valued.

3.2 Direct product representations of SO(3)

In this section we will discuss the direct product representations of SO(3) and their decompo-
sition into irreps. This will be of importance when we come to the Lorentz group.

We start with two irreps Dj and Dj′ of SO(3). They act on the spaces L and L′ respec-
tively. The direct product representation Dj×j′ acts on the direct product space L× L′ which
has dimension (2j + 1)(2j′ + 1). As a basis we take:

|m,m′〉 = |jm〉 × |j′m′〉 (3.2.1)

on which the group action is by definition

T (R) |m,m′〉 = |n, n′〉Dj(R)nmD
j′(R)n

′
m′ (3.2.2)

This representation T is in general reducible. We now turn our attention to the generators; we
want to know how the representations of the generators on L× L′ are linked to the ones on L
and L′. We differentiate, just as in (1.3.1), both the left- and right-hand side of

Dj [Rn(dα)]Dj′ [Rn(dα)] = Dj×j′ [Rn(dα)] (3.2.3)
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where Rn is defined by (3.1.4). We find, up to first order in dα:

Ej × Ej′ − idα[Jn
j × Ej′ + Ej × Jnj

′
] = Ej×j

′ − idαJnj×j
′

(3.2.4)

leading to
Jn

j×j′ = Jn
j × Ej′ + Ej × Jnj

′
(3.2.5)

(or in short Jn
j+Jn

j′) and we conclude that the generators of the direct product representation
are given by the sum of the corresponding generators of the two irreps we started out with. In
the following we will omit the superscript representation labels, since we will only be concerned
with the Jn

j×j′ generators.
It is obvious that |m,m′〉 is an eigenvector of J3:

J3 |m,m′〉 = |m,m′〉 (m+m′) (3.2.6)

We know that the maximum values for m and m′ are j and j′ respectively, so the highest
eigenvalue of J3 is (j + j′), corresponding to the eigenvector |j, j′〉. Note that there are two
eigenvectors corresponding to (j+j′−1), namely |j − 1, j′〉 and |j, j′ − 1〉. In the same way there
are three vectors corresponding to (j+ j′− 2), four for (j+ j′− 3), and so on. When continuing
this process, we will at some point encounter the maximal number of eigenvectors with the
same eigenvalue. This will be the case for all eigenvalues between (j − j′) and (−j + j′). Still
continuing, we find that the opposite of the first scenario happens; the number of eigenvectors
goes down as the eigenvalues go down, until we reach the lowest value: (−j − j′), which again
corresponds to only one vector.

Next we will (implicitly) go through the same procedure as the one leading to (3.1.17), and
by doing so we construct an invariant subspace of L×L′ spanned by simultaneous eigenvectors
of J2 and J3, with eigenvalues J(J + 1) and M respectively. We already noted that there is
only one vector with eigenvalue M = j+ j′, and that it is the highest member of the irreducible
basis, labeled by J = j + j′. We write:

|J = j + j′,M = j + j′〉new = |j, j′〉old (3.2.7)

where the subscript indicates if the vector belongs to the ‘new’ |J,M〉 or ‘old’ |m,m′〉 basis.
Next we construct the rest of the new basis vectors by repeated application of J−. Applying it
once gives:

J− |J = j + j′,M = j + j′〉new = |J = j + j′,M = j + j′ − 1〉new

= J− |j, j′〉old

= |j − 1, j′〉old + |j, j′ − 1〉old

(3.2.8)

where we have left out all normalization factors for brevity. The process will terminate when
M = −j − j′. At that point we have constructed 2J + 1 basis vectors which span an invariant
subspace of L× L′ corresponding to J = j + j′.

As noted before, there are two linearly independent eigenvectors of J3 corresponding to
M = j + j′ − 1. One of those two is in the invariant subspace we just constructed, see (3.2.8).
The other one will now be the new starting point for the same procedure; we construct another
invariant subspace, now associated with J = j + j′ − 1.

This process is repeated, until we end up with an invariant subspace corresponding to J =
|j−j′|. Then, the whole space L×L′ is spanned by the vectors |J,M〉 where |j−j′| ≤ J ≤ j+j′

and −J ≤M ≤ J .
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We can write the new basis vectors in terms of the old ones, and vice versa, using the
methods described in section 2.5:

|J,M〉 = |m,m′〉 〈mm′(jj′)JM〉 (3.2.9)

|m,m′〉 = |J,M〉 〈JM(jj′)mm′〉 (3.2.10)

where summation over repeated indices is implied. The values of the Clebsch-Gordan coefficients
are known and can be easily looked up. We state here without proof two useful general properties
of these coefficients. Firstly

〈mm′(jj′)JM〉 = 0 (3.2.11)

except for the case when m+m′ = M and |j − j′| ≤ J ≤ j + j′. And secondly

〈JM(jj′)mm′〉 〈mm′(jj′)J ′M ′〉 = δJJ ′δ
M
M ′ (3.2.12)

Finally, for completeness, we write the equation that links the irreps Dj and Dj′ of SO(3)
on L and L′ respectively, to the irreps DJ on invariant subspaces of L×L′. It is a specific case
of the general result (2.5.8a).

Dj(R)mnD
j′(R)m

′
n′ =

∑
J,M,N

〈mm′(jj′)JM〉DJ(R)MN 〈JN(jj′)nn′〉 (3.2.13)

3.3 SU(2)

The next group we will consider is SU(2). It is locally isomorphic to SO(3), so they share
the same Lie algebra. SU(2) is compact and simply connected, and all irreps of the algebra
are single-valued irreps of the group (in contrast to SO(3)). SU(2) is in fact the universal
covering group of SO(3). We will make clear the connection between SU(2) and rotations in 3
dimensions by using the Hermitian traceless Pauli matrices σi:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.3.1)

Every element of the vector x = (x1, x2, x3) is combined with a Pauli matrix, and we define the
new coordinates

X = σix
i (3.3.2)

for which we have
detX = −|x|2. (3.3.3)

Let U ∈ SU(2). It induces a linear transformation on X:

X → X ′ = UXU−1 (3.3.4)

X ′ again is traceless and Hermitian, thus it can be associated with a coordinate vector x′ as
in (3.3.2). Note that detX ′ = detX, from which it follows that |x| = |x′|. So we see that the
SU(2) transformation in (3.3.4) induces an SO(3) transformation in 3 dimensional Euclidian
space.

Note that the correspondence between an element U of SU(2) and an element R of SO(3)
is two-to-one; −U obviously corresponds to the same rotation as U . This is very closely related
to the double-valuedness of the j-half-integer irreps of SO(3).
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3.4 The Lorentz Group SO(3, 1)

In this section we will classify the irreducible representations of the Lorentz group1 SO(3, 1);
the group of 4 × 4 matrices, orthogonal with respect to the metric ηµν = diag(1,−1,−1,−1)
and with det = 1. It is the group of continuous linear transformations Λ that leave the length
of 4-vectors invariant (we presume that the reader is familiar with Lorentz transformations). It
is the first group we consider that is non-compact; the parameters labeling the group elements
corresponding to Lorentz boosts are not bounded. The most important consequence of the
non-compactness is that all unitary representations will be infinite dimensional. We begin by
taking a look at the Lie algebra of the Lorentz group.

The generators for a transformation Λ ∈ SO(3, 1) parametrized by ω can be defined along
the same line as (1.3.1). We write:

Λ(δω) = 1− i

2
δωµνJµν (3.4.1)

where δωµν = −δωµν are anti-symmetrical infinitesimal parameters, and Jµν are the covariant
generators of the group. The contravariant generators are found by raising the indices with the
metric tensor:

Jµν = ηµλJλση
σν (3.4.2)

so we see that Jmn = Jmn and J0m = −J0m = Jm0 for m = 1, 2, 3. The generators Jmn

generate rotations in the (m,n) plane. Because there are only 3 spatial dimensions, this can
also be interpreted as a rotation around the k-axis, where (k,m, n) is some permutation of
(1, 2, 3). We can write:

Jk =
1

2
εkmnJmn (3.4.3a)

and inversely
Jmn = εmnkJk (3.4.3b)

Lorentz boosts are generated by
Km ≡ Jm0 (3.4.4)

Now, we can summarize the Lie algebra of the Lorentz group in one equation:

[Jµν , Jλσ] = i(ηµσJλν − ηµλJσν + ηνσJµλ − ηνλJµσ) (3.4.5)

or, in terms of the rotation Jm and boost Km operators:

[Jm, Jn] = iεmnlJl (3.4.6a)

[Km, Jn] = iεmnlKl (3.4.6b)

[Km,Kn] = −iεmnlJl (3.4.6c)

Consider the following basis transformation (m = 1, 2, 3):

Mm = (Jm + iKm)/2 (3.4.7a)

Nm = (Jm − iKm)/2 (3.4.7b)

1Actually, we are only interested in Lorentz transformations which preserve the direction of time. This
subgroup is usually denoted by SO0(3, 1). But since this abuse of notation is quite common, we will omit the
subscript for brevity.
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This transformation reduces the algebra of the Lorentz group to a product of two subalgebras.
In fact, these subalgebras are su(2) (= so(3)) algebras:

[Mm,Mn] = iεmnkMk (3.4.8a)

[Nm, Nn] = iεmnkNk (3.4.8b)

[Mm, Nn] = 0 (3.4.8c)

and we say that the Lorentz algebra is identical to the su(2)M × su(2)N algebra. Finite di-
mensional irreps of this algebra are obtained from those of su(2) = so(3) by using the methods
described in sections 2.5 and 3.2. Note that the SU(2)M ×SU(2)N group is compact, while the
SO(3, 1) group is not, in spite of the fact that they share the same Lie algebra (if complexified).
The first group corresponds to the exponentiation (see (1.3.3)) of {iMm, iNm}, and the second
one to the exponentiation of {iJm, iKm}. We note that in order for the representations to be
unitary, we need the generators to be Hermitian:

T (g)T (g)† = e−iω
µνJµν (e−iω

µνJµν )†

= e−iω
µνJµνeiω

µνJ†µν

= e−iω
µν(Jµν−J†µν)

= 1, if Jµν = J†µν .

(3.4.9)

Due to the factors i in (3.4.7), the two different sets of generators can not simultaneously be
Hermitian, and the finite dimensional representations of the Lorentz group will not be unitary.

Next we will construct the finite dimensional irreps of the Lorentz group and see that they
are non-unitary. We know from the earlier sections that the representations of the direct prod-
uct algebra are labeled by the two numbers (u, v; 2u, 2v = 0, 1, 2, ...) such that u(u + 1) and
v(v + 1) are eigenvalues of the Casimir operators M2 and N2 respectively. The natural choice
of basis for the representation space is {|kl〉 ;−v ≤ k ≤ v;−u ≤ l ≤ u} (corresponding to (3.2.1)
in section 3.2), on which the generators act as follows:

J3 |kl〉 = (M3 +N3) |kl〉 = |kl〉 (k + l) (3.4.10a)

J± |kl〉 = (M± +N±) |kl〉 = |k ± 1l〉 [u(u+ 1)− k(k ± 1)]1/2

+ |kl ± 1〉 [v(v + 1)− l(l ± 1)]1/2
(3.4.10b)

K3 |kl〉 = i(N3 −M3) |kl〉 = |kl〉 i(l − k) (3.4.10c)

K± |kl〉 = i(N± −M±) |kl〉 = |kl ± 1〉 i[v(v + 1)− l(l ± 1)]1/2

− |k ± 1l〉 i[u(u+ 1)− k(k ± 1)]1/2
(3.4.10d)

where we have kept the normalization factors explicitly in the formulas. We can now diagonalize
with respect to J2 and J3, and the representation space will become a direct sum of invariant
subspaces labeled by j = |u − v|, |u − v + 1|, ..., u + v with bases {|j,m〉 ; −j ≤ m ≤ j}
(corresponding to (3.2.9) from section 3.2).

It is easy to see that the boost generators are non-Hermitian in the |kl〉 basis; (3.4.10c) and
(3.4.10d) show that they have imaginary eigenvalues. K3 is in fact anti-Hermitian. We conclude
that the finite dimensional irreps of the Lorentz group are non-unitary, as expected.

We now turn our attention to the unitary irreps of the Lorentz group. Since the group is
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non-compact they will be infinite dimensional. The irreps defined above were labeled by (u, v);
we will now label them by (j0, j1), where j0 = |u − v| and j1 = u + v. We shall find out what
the constraint of unitarity implies by using the canonical basis {|j0, j1; j,m〉}.

The action of the rotational generators {Jm} on the basis vectors |j,m〉 is the same as de-
scribed in section 3.1 and they do not change the value of j. To find the action of the boost
generators {Km} we will use the Wigner-Eckart theorem (see section 2.6). When we express
the Wigner-Eckart theorem (2.6.5) in terms of symbols used in this section, it reads:

〈j′m′|Osλ|jm〉 = 〈j′m′(s, j)λm〉 〈j′||Os||j〉 (3.4.11)

where s is the ‘angular momentum’ of the operators Osλ, determining under which irrep they
transform (corresponding to µ in section 2.6) and λ = −s, ..., s. The matrix elements vanish
unless:

1. |j − s| ≤ j′ ≤ j + s,

2. m′ = λ+m.

We will be interested in the reduced matrix elements 〈j′||Os||j〉; the Clebsch-Gordan coefficients
can be looked up in the literature.
{Km} is a set of irreducible operators transforming as a 3-vector under rotations of SO(3),

see (3.4.6b). From (3.4.11) it follows that

〈j′m′|K3|jm〉 = Aj
′

j 〈j
′m′(1, j)0m〉 (3.4.12a)

〈j′m′|K±|jm〉 = ∓
√

2Aj
′

j 〈j
′m′(1, j)± 1m〉 (3.4.12b)

where the factor ∓
√

2 is included, because {K3,−2−1/2K+, 2
−1/2K−} forms a normalized set

of irreducible operators. We can find the constraints on Aj
′

j by requiring that the commutation
relations for the K’s are satisfied, in particular:

[K±,K3] = ±J± (3.4.13a)

and
[K+,K−] = −2J3 (3.4.13b)

We will explicitly show how this goes, since for (for example) SO(4, 1) the procedure is com-

pletely analogous, but far more tedious. We start with a redefinition of the Aj
′

j ’s:

A+
j = Aj+1

j /[(j + 1)(2j + 1)]1/2 (3.4.14a)

Aj = Ajj/[j(j + 1)]1/2 (3.4.14b)

A−j = Aj−1
j /[j(2j + 1)]1/2 (3.4.14c)

Next, we rewrite (3.4.12) by using the above redefinitions and the Clebsch-Gordan coefficients
from the literature:

K3 |jm〉 = |j − 1m〉 [(j +m)(j −m)]1/2A−j

+ |jm〉mAj
+ |j + 1m〉 [(j +m+ 1)(j −m+ 1)]1/2A+

j

(3.4.15a)

24



K± |jm〉 =∓ |j − 1m± 1〉 [(j ∓m)(j ∓m+ 1)]1/2A−j

+ |jm± 1〉 [(j ∓m)(j ±m+ 1)]1/2Aj

± |j + 1m± 1〉 [(j ±m+ 1)(j ±m+ 2)]1/2A+
j

(3.4.15b)

If we plug the above results into (3.4.13), we will find the following conditions:

[(j − 1)Aj−1 − (j + 1)Aj ]A
−
j = 0

[(j + 2)AJ+1 − jAj ]A+
j = 0

(2j − 1)A−j A
+
j−1 −Aj

2 − (2j + 3)A−j+1A
+
j = 1

(3.4.16)

Remember we denoted the lowest value of j by j0. We deduce from (3.4.15) that A−j0 = 0. In

general A±j 6= 0, and we can deduce the following recursion formula from (3.4.16):

Aj+1 =
jAj
j + 2

(3.4.17)

with solution

Aj = i
νj0

j(j + 1)
(3.4.18)

where ν ∈ C is an arbitrary constant. We substitute (3.4.18) into the last equation of (3.4.16)
to find for Bj

2 ≡ −A−j = −A+
j−1:

(2j + 3)B2
j+1 = (2j − 1)Bj

2 + 1−
[

νj0
j(j + 1)

]2

(3.4.19)

We know that Bj0 = 0, and we can solve the above equation and find:

Bj
2 =

(j2 − j02)(j2 − ν2)

j2(4j2 − 1)
(3.4.20)

and
A−j = Bjξj A+

j−1 = −Bjξ−1
j (3.4.21)

with ξj arbitrary for the moment. Next we must see what the allowed values are for ν and ξj .
They are restricted by demanding unitarity, from which follows that K3 must be Hermitian and
that K+ = K†−. Using (3.4.15) we find that these conditions translate into:

Aj = Aj
∗ (3.4.22a)

A−j = −A+
j−1
∗

(3.4.22b)

We now plug in (3.4.18) and (3.4.21) into the above, and find:

j0(ν + ν∗) = 0 (3.4.23a)

|Bj |(|ξj |2 − e−2iβj ) = 0 (3.4.23b)

where we used the fact that Bj = |Bj |eiβj . Assuming that |Bj | 6= 0, (3.4.23b) implies that
|ξj |2 = 1 and βj = 0 (so that Bj

2 > 0). We choose, by convention, ξj = 1 for all j. The
condition in (3.4.23a) implies that there are two distinct classes of irreps:
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1. Principal series: ν = −ν∗. In this case we shall write ν = −iw, where w ∈ R. We have:

Aj =
wj0

j(j + 1)
(3.4.24a)

Bj
2 =

(j2 − j2
0)(j2 + w2)

j2(4j2 − 1)
(3.4.24b)

2. Complementary series: j0 = 0. We then have:

Aj = 0 (3.4.25a)

Bj
2 =

j2 − ν
4j2 − 1

(3.4.25b)

where B0 = Bj0 = 0. The condition that Bj
2 is real and positive leads to the following

condition: −1 ≤ ν ≤ 1.

To summerize the above, we state the following: the irreps in the principal series are labeled
by ν = −iw where w ∈ R and j0 = 0, 1/2, 1, ...; the irreps in the complementary series are
labeled by j0 = 0 and −1 ≤ ν ≤ 1. These two series of irreps classify all unitary irreducible
representations of SO(3, 1). The matrix elements of the rotational generators {Jm} are given by
the canonical form of section 3.1, and those of the boost generators {Km} are given by (3.4.12),
where the Akj ’s (with k = j, j ± 1) are given by:

Ajj = i
νj0

[j(j + 1)]1/2

Ajj−1 = −[j(2j − 1)]1/2Bj

Aj−1
j = [j(2j + 1)]1/2Bj

(3.4.26)

with

Bj
2 =

(j2 − j02)(j2 − ν2)

j2(4j2 − 1)
(3.4.27)

This concludes our classification of the UIRs of the Lorentz group. The results are conveniently
summarized in the following diagram:

1 2 30-1 1 2 3

1

2

3

1

2

3

j

Re(n) Im(n)

0
j
0

0

Figure 3.1: This diagram summarizes the classification of the UIRs of the Lorentz group. The
dashed lines represent the principal series UIRs, and the fat line represents the complementary
series UIRs.
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3.5 The Poincaré Group

We now come to the Poincaré group; it is the group of all translations and Lorentz transforma-
tions in Minkowski spacetime. It is sometimes referred to as the inhomogeneous Lorentz group.
We will again be interested in the irreps of this group, which we will construct by using the
method of induced representations. We start by examining the Lie algebra of the group.

3.5.1 Lie algebra

We already know the algebra of the Lorentz group (which is obviously a subgroup of the Poincaré
group), so we only have to find the generators for the translations, and see how they commute
with the boosts and rotations. This is again done by taking an infinitesimal translation:

T (δb) = E + iδbµPµ (3.5.1)

It is obvious that translations commute; the space is flat, so we have [Pµ, Pν ] = 0. One can
show that the generators Pµ transform as unit 4-vectors under the action of the Lorentz group,
and we have:

[Pµ, Jλσ] = i(Pληµσ − Pσηµλ) (3.5.2)

Writing this in terms of the Jm’s and Km’s introduced in section 3.4 we find:

[P 0, Jn] = 0 (3.5.3a)

[Pm, Jn] = iεmnlPl (3.5.3b)

[Pm,Kn] = iδmnP
0 (3.5.3c)

[P 0,Kn] = iPn (3.5.3d)

where m,n, l = 1, 2, 3. Together with (3.4.6) these equations form the algebra of the Poincaré
group.

3.5.2 Induced representation method

The induced representation method that we will be using for constructing the irreps is only
applicible when the group G has an Abelian invariant subgroup A. In the case of the Poincaré
group this is the group of translations T4. The method relies on constructing a basis for the
representation space consisting of simultaneous eigenvectors of the generators of the Abelian
invariant subgroup and of some other specific operators.

Let us define a vector space A consisting of eigenvectors of the generators of A. Let us take
some ‘standard vector’ p̄, which consists of the eigenvalues of the different generators. The
basis vectors of A which have as eigenvalue this standard vector form a subspace A′ ⊂ A. We
define the so called little group by all group elements in the factor group G/A which leave the
subspace A′ corresponding to the standard vector p̄ invariant. The irreps of the little group
will induce irreps of G. We will not prove this result, but we will see that it works in the case
of the Poincaré group.

We can readily identify the factor group of Poincaré/T4; it is the Lorentz group. So all lit-
tle groups we will encounter in the following will be subgroups of SO(3, 1). The basis vectors of
the representation space will be eigenvectors of Pµ and of commuting operators from the little
group.
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3.5.3 Casimir operators

One can show that the quadratic combination of the translation generators commutes with all
generators; it is a Casimir operator:

C1 ≡ PµPµ = P0
2 −P2 (3.5.4)

The eigenvalues c1 = pµp
µ of C1 are not positive definite, so we will consider the three cases

(the reason for these names will become clear later):

1. Time-like p: c1 > 0

2. Light-like p: c1 = 0 and p 6= 0

3. Space-like p: c1 < 0

We will construct unitary irreducible representations for all three cases, but before we go into
that, we will define a second Casimir operator. Let

W λ ≡ ελµνσ JµνPσ
2

(3.5.5)

be the so called Pauli-Lubanski vector2. The second Casimir operator is defined as:

C2 = WλW
λ (3.5.6)

One can show that C2 commutes with all generators.

3.5.4 Time-like case

We start with the standard vector pµt = (p0,p) = (m,0), so that c1 = m2. The maximal
subgroup of SO(3, 1) which leaves pµt invariant is obviously the group acting only on the 3-
vector part of pµt ; the group of rotations in three spacial dimensions SO(3).

Let {|0λ〉} be the basis vectors corresponding to the eigenvalues pµt of Pµ, such that:

Pµ |0λ〉 = |0λ〉 pµt (3.5.7a)

J2 |0λ〉 = |0λ〉 s(s+ 1) (3.5.7b)

J3 |0λ〉 = |0λ〉λ (3.5.7c)

The SO(3) invariant space spanned by this (canonical) basis is a subspace3 of the complete
representation space that we are constructing. In order to build the remaining basis vectors of
the complete space, we have to operate on |0λ〉 with the remaining transformations of the factor
group. In this case, those are the Lorentz boosts. Consider such a boost in the 3-direction,
parametrized by ξ. We define the action by:

|pê3 λ〉 ≡ L3(ξ) |0λ〉 (3.5.8)

with p = m sinh ξ. In order to get a general result we follow this boost by a rotation:

|pλ〉 ≡ R(α, β, 0) |pê3 λ〉 ≡ H(p) |0λ〉 (3.5.9)

2This vector is quite special; it can be shown that the independent components of {Wλ} are in fact the
generators of the little group corresponding to the standard vector p̄.

3It is the space A′ defined in section 3.5.2.
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The Lorentz transformation H(p) is the general transformation that takes the vector pµt to any
vector pµ. The space spanned by {|pλ〉} is invariant under the action of the whole Poincaré
group, that is to say:

T (b) |pλ〉 = |pλ〉 eibµpµ (3.5.10a)

Λ |pλ〉 = |p′λ′〉Ds[R(Λ, p)]λ
′
λ (3.5.10b)

where p′µ = Λµνp
ν and Ds[R] is the representation matrix of SO(3). We will now explicitly

show that we can represent every Lorentz transformation on |pλ〉 by a rotation. We have:

Λ |pλ〉 = ΛH(p) |0λ〉 = H(p′)[H−1(p′)ΛH(p)] |0λ〉 (3.5.11)

Now consider the action of the term in brackets on the standard vector:

H−1(p′)ΛH(p)pµt = H−1(p′)Λpµ

= H−1(p′)p′
µ

= pµt

(3.5.12)

so we can conclude that [H−1(p′)ΛH(p)pµt ] ≡ R(Λ, p) ∈ SO(3) and we see that (3.5.11) indeed
leads to (3.5.10b).

We know that the space spanned by {|pλ〉} is irreducible, because all vectors are generated
from one starting vector |0λ = s〉 by repeatedly applying J± and H(p); by construction there
are no nontrivial invariant subspaces.

Since all generators are Hermitian on this basis, and the representation matrices on the
right-hand side of (3.5.10) are unitary, we know that the representations constructed in this
way are not only irreducible, but also unitary.

Note that we can do exactly the same for pµt = (p0,p) = (−m,0). The unitary irreps con-
structed in that way are called ‘negative energy’ irreps, and they have the same defining prop-
erties as the ‘positive energy’ irreps constructed above. We shall collectively denote the positive
energy unitary irreps by P+(m, s) and the negative energy ones by P−(m, s).

Before we move on to the next case, we want to draw the attention to the second Casimir
operator. The action of the Pauli-Lubanski vector on the subspace corresponding to the stan-
dard vector pµt is given by:

W λ = ελµνσ
Jµνp

σ
t

2
(3.5.13a)

so that
W 0 = 0 (3.5.13b)

and
W i =

m

2
εijkJjk = mJ i (3.5.13c)

so we see in fact that the Casimir operator C2/m
2 has eigenvalues s(s + 1) and we can use

it, together with C1, to label the irreps: (m, s) labels the irrep, while p and λ label the basis
vectors of the representation space.
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3.5.5 Light-like case

Next we turn our attention to the so called light-like case (c1 = 0 while p 6= 0). For the standard
vector we will use

pµl = (ω0, 0, 0, ω0) (3.5.14)

We transform this vector into any vector pµ = (ω,p), where p = ωp̂, by applying the group
action H(p) = R(α, β, 0)L3(ξ). One can show that the little group is the group of translations
and rotations in two dimensions, i.e. the Euclidean group E2. One way of showing this is by
using the theorem that the components of the Pauli-Lubanski vector are the generators of the
little group. Let us check:

W λ = ελµνσ
Jµνplσ

2
(3.5.15)

so that
W 0 = W 3 = ω0J12 = ω0J3

W 1 = ω0(J23 + J20) = ω0(J1 +K2)

W 2 = ω0(J31 − J10) = ω0(J − 2−K1)

(3.5.16)

and the Lie algebra is given by: [
W 1,W 2

]
= 0

[W 2, J3] = iW 1

[W 1, J3] = −iW 2

(3.5.17)

which is indeed the algebra of the Euclidean group in two dimensions, where W 1 and W 2

generate the translations, while J3 generates the rotation. The Casimir operator C2 is given by
WµW

µ = (W 1)2 + (W 2)2, and it has the eigenvalue w2 ≥ 0. We will give a short description
of the unitary irreps of E2. Consider the canonical basis {|wλ〉} which consist of simultaneous
eigenvectors of C2 and J3, such that:

C2 |wλ〉 = |wλ〉w2 (3.5.18)

J3 |wλ〉 = |wλ〉λ (3.5.19)

where λ = 0,±1,±2, ..., and we have:

〈wλ|W †±W±|wλ〉 = 〈wλ|W∓W±|wλ〉
= 〈wλ|WµW

µ|wλ〉
= w2 〈wλ|wλ〉
= w2

(3.5.20)

Now we see that the representation space for w = 0 is one-dimensional since W± |0λ〉 = 0, and
we have (denoting |0λ〉 by |λ〉):

J3 |λ〉 = |λ〉λ
R(θ) |λ〉 = |λ〉 e−iλθ

T (b) |λ〉 = |λ〉
(3.5.21)

where R(θ) represents a rotation over an angle θ, and T (b) a translation by an amount b.
This one dimensional irrep is degenerate, as opposed to faithful; it maps E2 to the subgroup of
rotations SO(2).

Now consider the case where w2 > 0. The representation space is now infinite dimen-
sional and has the basis {|wλ〉 ; λ = 0,±1,±2, ...}, which can be constructed by applying W±
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to some starting vector. These representations labeled by w are faithful, unitary and irreducible.

We now return to the light-like irreps of the Poincaré group. Starting out from any of the
irreps of E2 we can generate a basis that forms an invariant space under the full Poincaré group
by applying the Lorentz transformations H(p) to the basis vectors of the E2-irrep space. These
Poincaré irreps will be labeled by m(= 0) and w.

Let us focus on the degenerate E2 irrep. The subspace of eigenvectors with as eigenvalue
the standard vector pµl is one dimensional, and for the one basis vector |plλ〉 we have:

Pµ |plλ〉 = |plλ〉 pµl
J3 |plλ〉 = |plλ〉λ
W i |plλ〉 = 0 where i = 1, 2

(3.5.22)

It turns out that all integer-λ irreps are single-valued, while the half-integer-λ irreps are double-
valued. The basis vectors of the full representation space are defined by:

|pλ〉 = H(p) |plλ〉 (3.5.23)

and the action of the Poincaré group on them is given by:

T (b) |pλ〉 = |pλ〉 eibµpµ (3.5.24a)

Λ |pλ〉 = |Λpλ〉 e−iλθ(Λ,p) (3.5.24b)

where θ(Λ, p) can be obtained in a similar way as was used for R(Λ, p) in the time-like case.
The irreps are labeled by (m = 0, λ)

Since the irreps of the Poincaré group induced by the w > 0 irreps of E2 have less physi-
cal significance for us we will omit them here.

Similar to the time-like case, we can construct negative energy light-like irreps by starting
with the standard vector pµl = (−ω0, 0, 0,−ω0).

3.5.6 Space-like case

We will complete the discussion of the Poincaré irreps by building the space-like irreps (c1 < 0).
We start again by choosing a standard vector: pµs = (0, 0, 0, Q). We find the generators of the
little group associated with this vector by using the Pauli-Lubanski vector:

W0 = QJ3

W1 = QJ20 = QK2

W2 = QJ01 = −QK1

(3.5.25)

who form the following Lie algebra:

[K2, J3] = iK1

[J3,K1] = iK2

[K1,K2] = −iJ3

(3.5.26)

and the second Casimir operator is given by

C2 = Q2(K1
2 +K2

2 − J3
2) (3.5.27)
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Note that the Lie algebra is very similar to the one associated with SO(3) if we make the
substitution K1 → J1 and K2 → J2. The only difference is in the minus sign in the last
equation. The corresponding group in this case is SO(2, 1) and is non-compact.

We state here the unitary irreducible representations of SO(2, 1). They consist of two classes:

1. c2 > 0; in this case c2 can take on continuous values, and the infinite basis vectors of the
representation space are labeled by |psλ〉c2 , where λ = 0,±1, ....

2. c2 ≤ 0; in this case c2 can only take on the discrete values −j(j+1), where j = 0, 1/2, 1, ...
(the half integer j irreps are double-valued). The basis vectors of this representation space
are again labeled by |psλ〉c2 , but now λ = j + 1, j + 2, ... or λ = −j − 1,−j − 2, ....

Given one of these irreps of SO(2, 1) one can generate the irreducible representation space of
the full Poincaré group by applying Lorentz transformations (that are not from the little group)
to the basis vectors of the irrep of SO(2, 1):

|pλ〉 = H(p) |psλ〉 (3.5.28)

where in the space-like case we can take H(p) = R3(α)L1(ζ)L3(ξ). The group acts on these
vectors in the now familiar way:

T (b) |pλ〉 = |pλ〉 eibµpµ

Λ |pλ〉 = |Λpλ′〉Dc2 [H−1(Λp)ΛH(p)]λ
′
λ

(3.5.29)

where Dc2 is the representation matrix for the SO(2, 1).

It is a common misunderstanding that the Poincaré group has no space-like (i.e. imaginary
mass) unitary irreducible representations. The above construction shows that they in fact do
exist.

3.6 SO(4, 1)

We now turn our attention to the unitary irreducible representations of the group of isometries
of de Sitter space; SO(4, 1). It is a non-compact semisimple group, so all its unitary irreps
will be infinite dimensional. A first attempt to classify these irreps dates back to the 1940’s
[27, 28], and it was completed in a rigorous way in the 60’s [29, 30]. Some later papers use
other manifestations of the group [31] and one can argue about the accessiblity of the different
methods used. A general method for finding all unitary irreps for SO(N, 1) can be found in [32].

Let us first of all give a definition of the de Sitter space. It can be viewed as the surface
of a hyberboloid embedded in 5-dimensional Minkowski space:

MdS = {x ∈ R5| x2 = ηαβx
αxβ = −H−2} (3.6.1)

where α, β = 0, 1, 2, 3, 4 and ηαβ = diag(1,−1,−1,−1,−1). This Minkowskian metric induces a
metric gdSµµ on the intrinsic 4-dimensional coordinates Xµ:

ds = ηαβdx
αdxβ = gdSµνdX

µdXν (3.6.2)

where µ, ν = 0, 1, 2, 3.
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The generators of the Lie algebra of SO(4, 1) obey the general commutation rules for (spe-
cial) orthogonal groups (compare with (3.4.5)):

[Kαβ,Kγδ] = i (ηαδKβγ − ηαγKβδ + ηβγKαδ − ηβδKαγ) (3.6.3)

We can define two Casimir operators in the following way (see e.g. [27]):

Q(1) = −1

2
KαβK

αβ (3.6.4)

Q(2) = −WαW
α (3.6.5)

where

Wα =
1

8
εαβγδζKβγKδζ (3.6.6)

and εαβγδζ is the Levi-Civita symbol in five dimensions: it equals +1/ − 1 if (α, β, γ, δ, ζ) is
an even/odd permutation of (0, 1, 2, 3, 4), and is zero when indices are repeated. Because these
Casimirs (by definition) commute with all generators, they are constant on each unitary irrep,
and they will be used to label these irreps. This is analogous to the way we labeled the irreps
of the Poincaré group in section 3.5.

For the Lorentz group we found that there are two series of unitary irreps, and we expect
something similar for SO(4, 1). It was shown by Dixmier in 1961 [29] that there are in fact
three series for this group. We will not repeat the calculation here, since it is analogous to
the SO(3, 1) case of section 3.4, but more tedious. Every unitary irrep is labeled by a pair of
parameters (p, q) with 2p ∈ N and q ∈ C. The eigenvalues of the Casimirs are linked to these
parameters in the following way:

Q(1) = [−p(p+ 1)− (q + 1)(q − 2)]1

Q(2) = [−p(p+ 1)q(q − 1)]1
(3.6.7)

The three series that can be distinghuised are the following:

1. Principle series. Also known as ‘massive’ representations, for reasons that will become
clear later. They are labeled by (p, q) = (p, 1

2 + iν) with ν ∈ R, and we will denote the
unitary irreps from this series by Up,ν . We have

p = 0, 1, 2, ... and ν ≥ 0 or,

p =
1

2
,
3

2
, ... and ν > 0

(3.6.8)

The eigenvalues of the Casimir operators take on the form:

Q(1) =

[(
9

4
+ ν2

)
− p(p+ 1)

]
1

Q(2) =

[(
1

4
+ ν2

)
p(p+ 1)

]
1

(3.6.9)

2. Complementary series. The representations of this series are labeled by (p, q) = (p, 1
2 + ν)

with ν ∈ R and are denoted by Vp,ν . We have

p = 0 and 0 < |ν| < 3

2
or,

p = 1, 2, 3, ... and 0 < |ν| < 1

2

(3.6.10)
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The eigenvalues of the Casimir operators take on the form:

Q(1) =

[(
9

4
− ν2

)
− p(p+ 1)

]
1

Q(2) =

[(
1

4
− ν2

)
p(p+ 1)

]
1

(3.6.11)

3. Discrete series. The representations of this series are labeled by (p, q) and are denoted by

Πp,0 and Π
(±)
p,q (the ± will be discussed later; it is linked to helicity). We have

p = 1, 2, 3, ... and q = p, p− 1, ..., 0 or,

p =
1

2
,
3

2
, ... and q = p, p− 1, ...,

1

2

(3.6.12)

and the Casimir eigenvalues remain of the form (3.6.7).

This completes the general classification of the unitary irreps of SO(4, 1). The results are
conveniently summarized in the following diagram:

1 2 30-1 1 2 3

1

2

3

1

2

3

p p

Re(q) Im(q)

Figure 3.2: This diagram summarizes the classification of the UIRs of SO(4, 1) (based on [18]).
The dashed lines represent the principal series UIRs, and the fat lines represents the comple-
mentary series UIRs. The discrete series UIRs with p integer and half-integer are represented
by the squares and circles respectively. Note that the p-axis of the right diagram coincides with
the Re(q) = 1/2 vertical of the left diagram.

For later purposes we give an explicit form for the generators, using the Killing vector
formalism (see section 1.3.3). Since the group SO(4, 1) is 10-dimensional there will be ten
independent Killing vectors, and they are given by:

Kαβ = i

(
xα

∂

∂xβ
− xβ

∂

∂xα

)
(3.6.13)

Note that there are indeed ten vectors: Kαβ is anti-symmetric, thus it contains n(n − 1)/2
independent elements.
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Chapter 4

Group Contractions

In this chapter we will describe the process of group contraction; starting out with some group,
one obtains a new group by ‘contracting’ the former to the latter. It was first described by
Inönü and Wigner in 1953 [33, 34], and it will be of great importance for the rest of this
thesis. We will review two distinct ways of defining a contraction; one that refers to the
infinitesimal operators, and one that refers to the elements of the group. Thereafter we will
briefly discuss the contraction of representations. The final section of this chapter is devoted to
two examples of group contractions: SO(3) → E2 for getting a feeling for the procedure, and
Poincaré → SO(4, 1) which is relevant for the rest of this thesis.

4.1 General procedure

Let us begin with the mathematical description of the first method. It states that a contrac-
tion is the operation of obtaining a new group by a singular transformation of the infinitesimal
elements of the old group, and the former is said to be a contraction of the latter.

Consider a Lie group G with n parameters αi and infinitesimal operators Xi. The Lie algebra
is given by these operators and the structure constants, linked by the following relation1:

[Xi, Xj ] = cij
kXk (4.1.1)

We can apply a linear non-singular transformation U to the infinitesimal operators. We write:

Yi = XjU
j
i (4.1.2)

which corresponds to the transformation of the group parameters:

αi = U ijβ
j (4.1.3)

The structure of the group will remain the same, but the structure constants do change. The
new structure constants Cij

k are defined by:

[Yi, Yj ] = Cij
kYk (4.1.4)

and can be expressed in terms of the old ones:

Cij
k = Ui

lUj
mclm

n(U−1)n
k

(4.1.5)

1Summation over repeated indices, when not explicit, is implied everywhere in this section.
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In order to make this transformation a contraction, we have to make U singular. This is done
by a limiting process. We write U as a sum of an ε-independent singular and an ε-dependent
(non-)singular part:

U ij = uij + εwij (4.1.6)

By definition:

detU

{
6= 0 for 0 < ε < ε0

= 0 for ε = 0

It is possible2 to get the n× n matrices u and w of the following form:

u =

(
1r 0
0 0

)
, w =

(
v 0
0 1n−r

)
(4.1.7)

We can split the infinitesimal operators up into two parts:

Y1µ = X1µ + εvνµX1ν

Y2λ = εX2λ

(4.1.8a)

where µ = 1, 2, ..., r and λ = 1, 2, ..., n− r. The corresponding group parameter transformations
are:

α1µ = β1µ + εvνµβ1ν

α2λ = εβ2λ

(4.1.8b)

By bringing u and w to this particular diagonal form, we have transformed the infinitesimal
elements, and therefore also the structure constants. With explicit summation, we have:

[Xaµ, Xbν ] =
r∑

σ=1

caµ,bν
1σX1σ +

n−r∑
σ=1

caµ,bν
2σX2σ (4.1.9)

with a, b = 1, 2. For the operators Y1µ we find:

[Y1µ, Y1ν ] = [X1µ, X1ν ] + ε(vρµδ
σ
ν + δρµv

σ
ν + εvρµv

σ
ν )[X1ρ, X1σ]

= c1µ,1ν
1κY1κ +

1

ε
c1µ,1ν

2κY2κ +O(ε)
(4.1.10)

so we see that the commutator will only converge in the ε→ 0 limit if we have:

c1µ,1ν
2κ = 0 (4.1.11)

which means that the X1µ form a subalgebra. If we assume that (4.1.11) is satisfied, then we
can immediately derive that we must have:

C1µ,1ν
1κ = c1µ,1ν

1κ

C1µ,2λ
2ρ = c1µ,2λ

2ρ

C1µ,1ν
2λ = c1µ,1ν

2λ = 0

C1µ,2λ
1κ = 0

C2λ,2ρ
1κ = C2λ,2ρ

2σ = 0

(4.1.12)

2In some special cases, which we will not encounter, it is not possible. The condition to ensure that it’s
possible can be found in [35].
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where µ, ν, κ = 1, ..., r and λ, ρ, σ = 1, ..., n− r. One can explicitly check that the new structure
constants satisfy

Cij
kCkl

m + Cjk
lCil

m + Cki
lCjl

m = 0 (4.1.13)

for all values of i, j, k,m = 1, ..., n, so that we have a new n-dimensional group G′ with structure
constants Cij

k which is not isomorphic to G.

In [33], Inönü and Wigner summerized this by stating the following theorem:

Every Lie group can be contracted with respect to any of its continuous subgroups and only
with respect to these. The subgroup with respect to which the contraction is undertaken will
be called S. The contracted infinitesimal elements form an Abelian invariant subgroup A of
the contracted group G′. The subgroup S with respect to which the contraction was under-
taken is isomorphic with the factor group of this invariant subgroup in G′, i.e. S ∼ G′/A.
Conversely, the existence of an Abelian invariant subgroup in G′ and the possibility to choose
from each of its cosets an element so that these form a subgroup S, is a necessary condition
for the possibility to obtain the group G′ from another group G by contraction.

Let us now review the second method of defining a contraction. It was first stated by Mickels-
son and Niederle in 1972 [36], and it makes no use of the infinitesimal operators. We will see
that this definition is mathematically more precise, but some will find it less insightful. All the
groups involved are Lie groups.

Let V be a neighbourhood of the identity e of G, such that V 2 = {g1g2|g1, g2 ∈ V } is de-
fined. Let there be a family of mappings fε : V 2 → Gc where ε ∈ (0, 1]. We say that the group
Gc is a contraction of G, if the following conditions are satisfied:

1. fε is a homeomorphism from V 2 onto fε(V
2) for ∀ε ∈ (0, 1],

2. if gc ∈ Gc, then ∃ε0 ∈ (0, 1] such that gc ∈ fε(V ) if ε < ε0. In other words, f−1
ε (gc) is

defined and belongs to V when ε < ε0,

3. fε(e) is the identity in Gc for ∀ε ∈ (0, 1],

4. if gc1, g
c
2 ∈ Gc, then gc1g

c
2 = lim

ε→0
fε
(
f−1
ε (gc1) · f−1

ε (gc2)
)
.

This defines the contraction Gc of the group G.

In the next section we will look at how representations behave under group contraction.

4.2 Representations under contraction

From the results of the previous section we can immediately deduce that there will be some
problems with the representations of the group that is contracted by using the first method.
Look at equation (4.1.8a), and consider the infinitesimal operators X to be the generators for
some representation of G. When ε → 0, we have that Y2µ → 0, so the resulting representation
of G′ cannot be faithful. In fact, the resulting space spanned by the Y ’s will be a representation
for the factor group G′/A. There are (at least) two methods for obtaining faithful represen-
tations. The first one is to apply an ε-dependent similarity transformation before contracting.
The second method is to consider a sequence of representations which converges to a faithful
representation, and for which the infinitesimal elements converge to finite values. In the next
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section we will encounter an example of the second method.

Mickelsson and Niederle do not encounter this problem, due to the fact that they do not work
with infinitesimal operators. Let us give their definition of a contraction of a representation.

Consider a one-parameter family of continuous unitary representations Dε(g) of G in repre-
sentation spaces Hε, with ε ∈ (0, 1]. Let Aε be a continuous linear mapping from Hε to H,
such that Aε : Hε → Aε(H

ε) is unitary, and for ∀ψ ∈ H, ∃εψ such that when ε < εψ we have
ψ ∈ Aε(Hε). If the limit of AεD

ε(f−1
ε (gc))A−1

ε ψ exists for ∀ψ ∈ H,∀gc ∈ Gc as ε→ 0 and is
continuous in gc, and the homomorphism gc → D(gc) defined by

D(gc)ψ = lim
ε→0

AεD
ε(f−1

ε (gc))A−1
ε ψ (4.2.1)

is a unitary representation of Gc, then the representation gc → D(gc) of Gc is said to be a
contraction of the representation g → D1(g) of G.

Next we will look at some examples of contraction of groups and representations.

4.3 Examples of contractions

We will consider two examples: the first one is to get a feeling for the contraction procedure, and
the second one we will use for the field theory in de Sitter space. We start with the contraction
that we are able to visualize.

4.3.1 SO(3)→ E2

By now we have seen quite a bit of SO(3); the group of rotations in three spacial dimensions.
Before we start calculating, it is easy to see that this group will contract to the symmetry group
of the plane. Just imagine a sphere whose radius R→∞. In this limit the surface of the sphere
becomes a flat surface. Symmetry transformations of the sphere then become translations and
rotations in the plane.
Let us now do the contraction explicitly. SO(3) has three group generators which obey the
following commutation relations:

[J1, J2] = iJ3

[J2, J3] = iJ1

[J3, J1] = iJ2

(4.3.1)

We will contract with respect to the one-parameter subgroup spanned by J3. We make the
following substitution [22]:

Y1 = εJ2

Y2 = −εJ1

Y3 = J3

(4.3.2)

As we take the limit ε→ 0, we obtain:

[Y1, Y2] = −ε2[J2, J1] = iε2J3 = iε2Y3 → 0

[Y2, Y3] = −ε[J1, J3] = iεJ2 = iY1

[Y3, Y1] = ε[J3, J2] = −iεJ1 = iY2

(4.3.3)

We can now easily identify these commutation relations with those of E2, where Y1,2 are trans-
lations and Y3 is the rotation. Instead of ε → 0 we could have taken the radius of the sphere
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R = 1/ε→∞. We see that the mathematical description yields the intuitive result.

Let us now consider the contraction of the unitary representations of SO(3). We will use the
converging sequence method. Recall the Dj representations from section 3.1. The generators
(−i× infinitesimal operators) will have eigenvalues (omitting the j label):

〈m′|J3|m〉 = mδmm′

〈m′|J2|m〉 = − i
2

[j(j + 1)−m(m+ 1)]1/2δm′m+1 +
i

2
[j(j + 1)−m(m− 1)]1/2δm′m−1

〈m′|J1|m〉 =
1

2
[j(j + 1)−m(m+ 1)]1/2δm′m+1 +

1

2
[j(j + 1)−m(m− 1)]1/2δm′m−1

(4.3.4)

where m,m′ take on integer values between −j and j. Now we take the same contraction as
above, but at the same time we let j →∞, such that

lim
ε→0
j→∞

εj = K (4.3.5)

where K is a finite constant. In this limit we get for the eigenvalues of the new generators:

〈m′|Y3|m〉 = mδmm′

〈m′|Y2|m〉 = −K
2

(δm′m+1 + δm′m−1)

〈m′|Y1|m〉 = − iK
2

(δm′m+1 − δm′m−1)

(4.3.6)

where m,m′ now take on integer values between −∞ and +∞. By checking the commutation
relations one can show that these elements form a faithful unitary representation of E2. In the
limit, the squared operator J2 eigenvalue equation

〈m′|J2|m〉 = j(j + 1) (4.3.7)

takes on the following form:
〈m′|(Y1

2 + Y2
2)|m〉 = K2 (4.3.8)

This completes the analysis of the contraction of the unitary representations of SO(3) to the
faithful unitary representations of E2. Let us take a look at another example.

4.3.2 SO(4, 1) → Poincaré

We shall now look at the contraction of the group of isometries of de Sitter space. As we take
the limit H → 0 in the definition (3.6.1) of this space, we end up with flat 3+1 spacetime.
Therefore we expect this group to contract to the group of isometries of flat spacetime; the
Poincaré group. First we will use the Wigner-Inönü method to make it plausible, then we will
proof it by using the second method.

The generators of the SO(4, 1) group are given by (3.6.3). Consider the generators of the
one-parameter subgroup of hyperbolic rotations in the (i, 4) plane: Ki4, where i = 0, 1, 2, 3.
The remaining six generators span the Lorentz group SO(3, 1) which corresponds to the sub-
group S in the theorem of Wigner and Inönü. We can contract the four Ki4 generators and they
will form an Abelian invariant subgroup A of the contracted group G′. We can identify A with
the subgroup of translations due to its Abelian nature. Now, since we know that S ∼ G′/A, it
is clear that G′ is the group of translations and Lorentz transformations, i.e. the Poincaré group.
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Next we follow the proof given in [36] that the Poincaré group is indeed a contraction of
SO(4, 1). The structure is as follows: firstly we construct a neighbourhood V of the iden-
tity e, then we define a family of mappings fε, and finally we show that these mappings satisfy
the four conditions given in the definition of a contraction. Let

A′ =
{
p|p ∈ G, p = eiα

jKj4
}

(4.3.9)

where j = 0, 1, 2, 3. Kj4 again are the non-compact generators of the hyperbolic rotations in
the (j, 4) plane. Let

V ′ =
{
g|g ∈ G, g = k · p, k ∈ SO0(3, 1), p ∈ A′

}
(4.3.10)

then there exists ∆ > 0 such that if

V =
{
g|g ∈ V ′, g = k · p(α), −∆ < αj < ∆

}
⊂ V ′ (4.3.11)

then
V 2 ⊂ V ′ (4.3.12)

As a family of functions we take

fε(k · p(α)) = k · r
(

1

ε
α

)
(4.3.13)

where r(α) is a translation. Condition 1), 2) and 3) are clearly satisfied. Checking condition 4)
requires some more work:

lim
ε→0

fε(f
−1
ε (k(1) · r(α(1))) · f−1

ε (k(2) · r(α(2))))

= lim
ε→0

fε(k
(1) · p(εα(1)) · k(2) · p(εα(2)))

= lim
ε→0

fε(k
(1) · k(2) · (k(2))−1 · p(εα(1)) · k(2) · p(εα(2)))

(4.3.14)

Let us denote the algebra of SO(3, 1) by K and {Mj4, j = 0, 1, 2, 3} by P . We know that
[P,K] ⊂ P and [P, P ] ⊂ K. This means that we can make the approximation, up to first order
in ε:

(k(2))−1 · p(εα(1)) · k(2) · p(εα(2)) ≈ p(εk(2)
ji α

(1)
j ) · p(εα(2))

≈ p(εk(2)
ji α

(1)
j + εα

(2)
i )

(4.3.15)

where
εk

(2)
ji α

(1)
j ≡ (εk

(2)
j0 α

(1)
j , εk

(2)
j1 α

(1)
j , ..., εk

(2)
j3 α

(1)
j ) (4.3.16)

We can now combine (4.3.14) and (4.3.15) to arrive at

lim
ε→0

fε(f
−1
ε (k(1) · r(α(1))) · f−1

ε (k(2) · r(α(2)))) = k(1) · k(2) · r(k(2)
ji α

(1)
j + α

(2)
i )

= k(1) · r(α(1)) · k(2) · r(α(2))
(4.3.17)

which completes the proof that the Poincaré group is a contraction of the de Sitter group
SO(4, 1).

The procedure of contracting the representations of SO(4, 1) is more involved. We will not
give the calculations here; we will just state the results for the different series, and where the
derivations can be found.
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Massive limits

In general, the unitary irreps Up,ν from the principal series contract to the direct sum of positive
and negative energy time-like unitary irreps of the Poincaré group [36]:

Up,ν → c+P+(m, s)⊕ c−P−(m, s) (4.3.18)

as H → 0 and ν → ∞, while νH = m, the Poincaré mass, is kept constant. It can be shown
that for certain manifestations of these UIRs one of the constants c+ and c− can be set to unity,
while the other one vanishes (see e.g. [37]).

Massless limits

Next we consider the irreps which contract to light-like, i.e. massless, Poincaré UIRs. These
light-like UIRs have the property that they can be uniquely extended (we will explain this
point) to UIRs of the so called conformal group: SO(4, 2) [38], whose double-covering group
can be shown to be SU(2, 2). Let us first review some properties of these groups.

The generators of SO(4, 2) are given by:

KAB, A,B = 0, 1, 2, 3, 4, 5. (4.3.19)

They obey the by now familiar commutation relations:

[KAB,KCD] = i (ηADKBC − ηACKBD + ηBCKAD − ηBDKAC) (4.3.20)

where ηAB = diag(1,−1,−1,−1,−1, 1). The group has two SO(4, 1) subgroups; one with
generators

Kab, a, b = 1, 2, 3, 4, 5, (4.3.21)

and one with generators
Kαβ, α, β = 0, 1, 2, 3, 4. (4.3.22)

The Poincaré group too is a subgroup of SO(4, 2). Its algebra is spanned by the generators

Kµν , Pµ ≡ Kµ4 +Kµ5, (4.3.23)

where µ, ν = 0, 1, 2, 3. The operator K45 is called the dilation operator.

We will not give the complete classification of the UIRs of the conformal group, since it is
more involved than for SO(4, 1), and we will not need it. For our purposes it is sufficient to
know that the UIRs are constructed in a similar way as we did for the Poincaré group; by
using the method of induced representations. For the conformal group we can use the maximal
compact subgroup SU(2) × SU(2) × U(1) for inducing the representations. This means that
the UIRs can be labeled by (E0, j1, j2), where j1, j2 ∈ N/2 label the SU(2) parts, and E0 ∈ R
(the conformal energy) labels the U(1) part. The UIRs will be denoted by C(E0, j1, j2). For a
complete classification see [39, 40, 41].

Now, let D be some representation of SU(2, 2), such that the restriction D|P of D to the
Poincaré group is unitary and irreducible. It can be shown [42, 43] that in that case D is in fact
unitary and irreducible, and its form is uniquely determined by D|P. This is what is meant
by saying that a UIR D|P of the Poincaré group can be uniquely extended to a UIR D of the
conformal group. It has been shown that only the light-like UIRs of the Poincaré group can be
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uniquely extended to UIRs of the conformal group (see [42] and references therein).

It turns out that the extension of the light-like Poincaré UIRs can be restricted to the de Sitter
group SO(4, 1), and that the obtained UIRs of SO(4, 1) can then be contracted to the Poincaré
group, yielding the same UIRs that we started out with [38]. Not all de Sitter UIRs are taking
part in this process; only one particular UIR of the complementary series with (p, q) = (0, 1),
and a certain class of UIRs from the discrete series; namely the ones for which p = q. We will
call these the massless de Sitter UIRs, and we summerize the results in the following scheme,
where ‘↪→’ indicates unique extendability:

C(1, 0, 0) C(1, 0, 0) ←↩ P+(0, 0)

V0,1/2 ↪→ ⊕ H→0−−−→ ⊕ ⊕
C(−1, 0, 0) C(−1, 0, 0) ←↩ P−(0, 0)

C(s+ 1, s, 0) C(s+ 1, s, 0) ←↩ P+(0, s)

Π
(+)
s,s ↪→ ⊕ H→0−−−→ ⊕ ⊕

C(−s− 1, s, 0) C(−s− 1, s, 0) ←↩ P−(0, s)

C(s+ 1, 0, s) C(s+ 1, 0, s) ←↩ P+(0,−s)
Π

(−)
s,s ↪→ ⊕ H→0−−−→ ⊕ ⊕

C(−s− 1, 0, s) C(−s− 1, 0, s) ←↩ P−(0,−s)

The explanation for the fact that the de Sitter UIRs extend to two conformal group UIRs, while
the Poincaré UIRs extend to only one can be found in [44, 43]. Note that the (±) label on the
discrete series of SO(4, 1) indicates the sign of the ‘helicity’, while the ± label on the Poincaré
UIRs indicates the sign of the energy.
All other SO(4, 1) UIRs either contract to the space-like Poincaré UIRs, or have no contraction
limit at all. We will not discuss them here.
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Chapter 5

Link between Quantum Field
Theory and Group Theory

In this chapter we will investigate the connection between group theory and quantum field
theory. We are assuming that the reader is familiar with (relativistic) quantum mechanics
and the basics of quantum field theory. Nevertheless, in the first section we will recapitulate
the basics of the quantization of the scalar field in flat 3+1 Minkowski spacetime in order to
make the generalization to (constantly) curved spacetime more insightful. Next we will link
the different notions of quantum theory (such as wave functions, field operators, particle states,
wave equations, etc.) to group theoretical concepts (such as invariance, UIRs, etc.). In this way
we hope to make clear how very important physical notions such as mass and spin, which often
seem to be ‘axiomatic’ starting points in field theory, are actually very closely linked (emergent
almost) to properties of the isometry group of the spacetime the field is described in. However,
this link between properties of the isometry group and physical notions gets obscured when one
is trying go make the generalization to field theory in curved spacetime. One problem is that
due to the absence of a global time-like Killing vector it is not possible to define a state which
is interpreted as ‘the vacuum’ for all inertial observers, which might undermine the concept of
a particle. Another problem is that there is an ambiguity in introducing the mass in the field
theory: the field can have an arbitrary coupling to the gravitational field (i.e. curvature) and
this coupling term has the same dimensions as the mass term, which makes them hard (if not
impossible) to distinguish. We will look at some possible resolutions, or circumventions to these
problems, in which group theory will play an important role.

5.1 Flat spacetime

5.1.1 Quantization of the scalar field

We begin with a short recapitulation of the basics of the (second/canonical) quantization of the
scalar field. We follow the book by Birrell and Davies [45] which gives a nice summary. More
details can be found in [46] or any other standard text on quantum field theory.
We start with the Lagrangian density for a free scalar field φ(x):

L(x) =
1

2

(
∂µφ∂µφ−m2φ2

)
(5.1.1)

We then construct the action

S =

∫
d4xL(x) (5.1.2)
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and demand that the variation in the action with respect to small variations in φ vanishes:

δS = 0. (5.1.3)

This leads to the Klein-Gordon equation:

(� +m2)φ = 0 (5.1.4)

where � = ηµν∂µ∂ν and m will be the mass of the field quanta when the theory is quantized.
One set of solutions to this equation is given by the plane wave solutions, or modes (we left out
the normalization factor; it is a matter of convention):

up(x) ∝ e−ipx (5.1.5)

where
p0 =

√
p2 +m2 (5.1.6)

We call these modes positive frequency or positive energy with respect to time. They are
eigenfunctions of the operator i∂0:

i∂0up(x) = p0up(x) (5.1.7)

where p0 > 0. Note that the operator i∂0 is in fact the time-like Killing vector, associated with
infinitesimal translations in the time direction. Negative energy modes are also solutions to
(5.1.4). They are the complex conjugates of the positive energy modes and can be distinguished
from them by inspecting the eigenvalue of the time-like Killing vector.

Let us define a scalar product:

(φ1, φ2) = −i
∫
d3x{φ1(x)∂0φ

∗
2(x)− [∂0φ1(x)]φ∗2(x)}

= −i
∫
d3xφ1(x)

←→
∂0φ

∗
2(x)

(5.1.8)

where the integration is performed over a spacelike hyperplane of constant time t. With the
proper normalization the modes (5.1.5) satisfy:

(up, up′) = δ3(p− p′) (5.1.9)

We can now start with the actual quantization. We interpret the field φ(x) and its canonical
conjugate π = ∂0φ as operators and impose the equal time commutation relations:

[φ(x), φ(y)] = 0

[π(x), π(y)] = 0

[φ(x), π(y)] = iδ3(x− y)

(5.1.10)

Since the positive and negative energy modes together form a complete orthonormal basis with
respect to the scalar product (5.1.8), we can expand the field operator as a linear combination
of the modes:

φ(x) =
∑
p

[apup(x) + a†pu
∗
p(x)] (5.1.11)

Then the equal time commutation relations for φ and π reduce to:

[ap, ap′ ] = 0

[a†p, a
†
p′ ] = 0

[ap, a
†
p′ ] = δpp′

(5.1.12)
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We can construct the Hilbert space of quantum states by starting with the vacuum state, which
has the defining property:

ap |0〉 = 0, ∀p (5.1.13)

(where ap is called the annihilation operator) and repeatedly acting on it with the so called
creation operator:

|p〉 = a†p |0〉 (5.1.14)

5.1.2 Interpretation of the particle states

Next, let us investigate how these particle states |p〉 are linked to group theory. The notation
of section 3.5.4 already implied that there might be a link between these states and UIRs of the
Poincaré group, and it turns out that they are exactly the basis vectors of the representation
space of the time-like Poincaré UIRs with spin 0. The following paragraphs are meant to make
this plausible, by showing what happens when we apply a translation T (b) (that is: xµ → xµ+bµ)
to a wave function Φ(x) of a particle state |Φ〉. The wave function can be expressed as a matrix
element of the field operator:

Φ(x) = 〈0|φ(x)|Φ〉 (5.1.15)

We know that for some definite momentum p the wave function will be of the form of up(x),
as we can derive using the formula’s given above1:

〈0|φ(x)|p〉 =
∑
p′

〈0|[ap′up′(x) + a†p′u
∗
p′(x)]a†p|0〉

=
∑
p′

(
〈0|ap′up′a†p|0〉+ 〈a†p′u

∗
p′a
†
p|0〉

)
=
∑
p′

(
〈0|up′δpp′ |0〉 − 〈0|up′a†pap′ |0〉+ 0

)
= up(x)

(5.1.16)

Now let’s apply the translation. Assuming that |p〉 is indeed a basis vector for the representation
space of section 3.5.4, we know how it will transfrom, namely as:

T (b) |p〉 = eibp |p〉 (5.1.17)

The field operator will simply have a shift in the coordinate. Let’s see what happens:

Φ′(x+ b) = 〈0|φ(x+ b)|Φ′〉
= 〈0|φ(x+ b)eibp|p〉

=
∑
p′

〈0|up′(x+ b)δpp′e
ibp|0〉

= up(x+ b)eibp

(5.1.18)

where we have left out some steps we did explicitly in (5.1.16). Recall that

up(x+ b) ∝ e−ip(x+b) (5.1.19)

so we can conclude:
Φ′(x+ b) = up(x) = Φ(x). (5.1.20)

i.e. that the wave function is invariant under translations, as we expected. Note that this is
due to the fact that the particle state |p〉 is a basis vector of the representation space of the
time-like UIR of the Poincaré group.

1We implicity assume that the vacuum state is normalized, i.e. 〈0|0〉 = 1.
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5.1.3 Relativistic wave functions, field operators and wave equations

In this section, following [22], we will give a more general description of the group theoretical
aspects of the different mathematical objects we encountered when we were dealing with the
free scalar field. The wave function we encountered there is the simplest example of this class
of mathematical objects. Let us give a general, group theoretical definition here, followed by
some examples. A wave function {Ψα(x)} is a set of n complex-valued functions of spacetime
which transform under a Lorentz transformation Λ as follows:

Ψ′
α
(x′) = D[Λ]αβΨβ(x) (5.1.21)

where D[Λ] is an n-dimensional matrix representation of SO(3, 1) and x′ = Λx. Let us review
some examples of the relativistic wave function:

• The Klein-Gordon wave function. This is the one from the previous section. Again,
it’s the simplest example; it has one component, and it transforms as the (u, v) = (0, 0)
irreducible representation of SO(3, 1).

• The electromagnetic field tensor Fµν(x). It transforms as the (1, 0)⊕ (0, 1) representation
of SO(3, 1).

• The vector potential Aµ(x). It describes a spin-1 particle; the vector boson. This function
transforms as the (1/2, 1/2) representation.

• The Dirac wave function. It has four components and is a solution to the Dirac equation.
It transforms as the (0, 1/2)⊕ (1/2, 0) representation.

Next, consider the relativistic field operator {ψα(x)}. It is a set of n operator valued functions
of spacetime, transforming under a Lorentz transformation Λ as follows:

T [Λ]ψα(x)T [Λ−1] = D[Λ−1]αβψ
β(Λx) (5.1.22)

where D[Λ] again is an n-dimensional matrix representation of SO(3, 1), and T [Λ] is an oper-
ator representing the transformation Λ, and it is acting on the same Hilbert space as ψ. The
second-quantized versions of the wave functions given above are examples of relativistic field
operators.

In order for the field operator ψ to represent a particle with mass m and spin s, it must
satisfy a wave equation. We already encountered one example: the Klein-Gordon equation for
spin-0 particles:

(� +m2)φ(x) = 0, (5.1.23)

where � = ηµν∂µ∂ν , and we assume that the reader is familiar with the famous equation for
spin-1/2 particles, the Dirac equation:

(iγµ∂µ −m)ψ(x) = 0. (5.1.24)

Note that we have omitted the Lorentz indices of the γµ’s and ψ. More general, we can write
the differential equation as

Π(m, ∂)αβψ
β(x) = 0 (5.1.25)

where Π is a linear differential operator, and a matrix with respect to the Lorentz indices. We
can take the Fourier tranform of ψ(x): ψ̃(p), and convert (5.1.25) into an algebraic equation:

Π(m, p)ψ̃(p) = 0 (5.1.26)
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where we have ommited the Lorentz indices. One can check that ψ̃(p) has the same transforma-
tion properties as ψ(x). We have to put some restrictions on Π(m, p) in order for it to represent
a suitable relativistic wave equation for particles of mass m and spin s. First of all, it must be
relativistically covariant, i.e. we want

Π(m,Λp)ψ̃(Λp) = 0 (5.1.27)

to hold. This implies that Π(m, p) must transform under a Lorentz transformation as

T [Λ]Π(m, p)T [Λ−1] = Π[m,Λp] (5.1.28)

Secondly, we want the mass-shell condition p2 = m2 to hold. Thirdly and finally, if ψ(p) trans-
forms as the (u, v) representation of SO(3, 1), then its spin content is |u− v| ≤ j ≤ u+ v.

We will now consider the plane wave expansion of the field operator ψ. For brevity we will
only focus on the positive energy part. Consider the rest frame of a particle of mass m. In that
case p = pt = (m,0). For a spin-s particle, we want the positive energy part of equation (5.1.26)
to have 2(s+ 1) independent solutions, corresponding to the λ = −s,−s+ 1, ..., s distinct spin
states of the particle in rest. Let us denote these solutions2 by u(0λ):

Π(m, pt)
α
βu

β(0λ) = 0 (5.1.29)

for λ = −s, ..., s. The elementary solutions can now be given by boosting the frame, just as we
did for pt in section 3.5.4:

uα(pλ) = D[H(p)]αβu
β(0λ) (5.1.30)

and by using (5.1.28) we can easily check that these are indeed solutions. We call them plane
wave solutions, and they are concrete realizations of the basis states {|pλ〉} of the time-like
Poincaré UIRs from section 3.5.4. Note that these plane wave solutions are labeled by a Lorentz
index α (whose range is determined by the Lorentz representation label (u, v)), and the Poincaré
label (p, λ) (where m from the Poincaré UIR label (m, s) is used to define the mass-shell
condition for pt, and s determines the range of λ). The plane wave expansion of the field
operator is given by:

ψα(x) =
∑
λ

∫
d̃p[a(pλ)uα(pλ)e−ipx + negative energy term] (5.1.31)

where d̃p is an invariant measure on the mass-shell, the e−ipx factor is present due to the Fourier
transform and a(pλ) is an operator-valued expansion coefficient, readily identified as the anni-
hilation operator.

The plane wave expansion provides a link between representations of the Lorentz and the
Poincaré group. The field operator ψα(x) transforms as a certain finite dimensional non-unitary
representation of the Lorentz group. The annihilation operators a(pλ) transform as a UIR of
the Poincaré group, labeled by (m, s). The connection between these two is provided by the
plane wave solutions (modes) uα(pλ)e−ipx, which carry both Lorentz and Poincaré labels.
The fact that the field operators are in a non-unitary representation is not a problem; generaly
they do not correspond to physical observables. The particle states however do correspond to
physical states, and we see that they are indeed in unitary representations.

We will now try to generalize these results to a field theory in curved spacetime.

2Note that here we are working in momentum space, in contrast to the modes in section 5.1.1.
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5.2 Curved spacetime

Just as in the flat case, let us first look at the free scalar field quantization, and see where the
differences are.

5.2.1 Quantization of the scalar field

Again, we follow [45]. For now, we do not specify which curved spacetime we are dealing with,
since there are certain issues that are inherent to field theories in all curved spacetimes.

Let us start with the Lagrangian density:

L(x) =
1

2

√
−g(x){gµν(x)∂µφ(x)∂νφ(x)− [m2 + ξR(x)]φ2(x)} (5.2.1)

where g ≡ | det gµν |, φ is the scalar field, m is the mass of the field quanta, R is the Ricci
scalar and ξ is a numerical factor. Note that the main difference with (5.1.1) is the coupling
to the gravitational field; the term ξRφ2. It is the only possible term of this kind that has the
correct dimensions. We define an action, apply the variational principle, and arrive at the field
equation:

(�x +m2 + ξR)φ = 0 (5.2.2)

where
�xφ = gµν∇µ∇νφ = (−g)−

1
2∂µ

[
(−g)

1
2 gµν∂νφ

]
(5.2.3)

We want to draw some attention to the coupling constant ξ. Usually, two distinct values are
said to be of particular interest. The first one is where ξ = 0; it is called the minimally coupled
case. The other one is where:

ξ =
1

4

(
n− 2

n− 1

)
(5.2.4)

where n is the dimension of the spacetime; it is called the conformally coupled case. The name
stems from the fact that if ξ has this value and m = 0 in (5.2.2), then the wave equation is
invariant under conformal transformations3. Note though that there is an ambiguity here; it is
not clear how to distinguish between m2φ and ξRφ. For that reason some authors choose to
work with an ‘effective’ mass: m̃2 ≡ m2 + ξR, but then the notions of ‘minimally coupled’ and
‘conformally coupled’ become somewhat obscured. We will come back to this important point
in section 5.4.2.

It is possible to define a generalization of the scalar product (5.1.8). It uses the notion of
a Cauchy surface. Intuitively, it is a hyperplane in spacetime which can be viewed as an instant
of time. The product is defined as:

(φ1, φ2) = −i
∫
φ1(x)

←→
∂µφ

∗
2(x)[−gΣ(x)]

1
2dΣµ (5.2.5)

where dΣµ = nµdΣ with nµ being the future-directed unit vector orthogonal to the spacelike
(Cauchy) hypersurface Σ and dΣ is the volume element in Σ. It can be shown that the value
of the scalar product is independent of Σ [45].

Consider a complete set of elementary solutions to (5.2.2) that is orthonormal with respect
to (5.2.5):

(ui, uj) = δij , (u∗i , u
∗
j ) = −δij , (ui, u

∗
j ) = 0 (5.2.6)

3A conformal transformation is a rescaling of the metric by some continuous, non-vanishing, finite, real function
Ω(x): gµν → ḡµν = Ω2gµν .
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where the indices schematically represent the labels that must be used to characterize these
modes. Since the set is complete, we can use it to make an expansion of the field operator φ(x),
just as in (5.1.11):

φ(x) =
∑
i

[aiui(x) + a†iu
∗
i ] (5.2.7)

We quantize the theory by implementing the familiar commutation relations:

[ai, aj ] = 0, [a†i , a
†
j ] = 0, [ai, a

†
j ] = δij (5.2.8)

Then the vacuum and particle states are constructed in the same way as before: ai |0〉 = 0 and

|1i〉 = a†i |0〉, where |1i〉 represents a one-particle state characterized by whatever the label i
stands for. This completes the quantization of the field. However, there is a inherent ambiguity
in choosing the modes in (5.2.6).

5.2.2 Bogoliubov transformations and different vacua

Consider another complete set of orthonormal solutions to (5.2.2): ūj(x). Again, we may expand
the field operator:

φ(x) =
∑
j

[āj ūj(x) + ā†j ū
∗
j (x)] (5.2.9)

In this way we can define a new vacuum state:

āj |0̄〉 , ∀j (5.2.10)

Since both sets are complete orthonormal sets, we can expand the new modes in terms of the
old ones, and the other way around:

ūj =
∑
i

(αjiui + βjiu
∗
i ) (5.2.11a)

ui =
∑
j

(α∗jiūj − βjiū∗j ) (5.2.11b)

These relations are called Bogoliubov transformations, and αij , βij are the Bogoliubov coeffi-
cients. From the transformation relations we can deduce that:

αij = (ūi, uj), βij = −(ūi, u
∗
j ) (5.2.12)

We will state some more relations connected to the Bogoliubov transformations, which can be
derived by equating the different expansions of the field operators and using the properties of
the different modes given above. For the annihilation operators one finds:

ai =
∑
j

(αjiāj + β∗jiā
†
j) (5.2.13a)

āj =
∑
i

(α∗jiai − β∗jia
†
i ) (5.2.13b)

and for the coefficients: ∑
k

(αikα
∗
jk − βikβ∗jk) = δij (5.2.14a)

∑
k

(αikβjk − βikαjk) = 0 (5.2.14b)
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Now, note that the two different Hilbert spaces based on the two diffent choices of modes are
distinct whenever βji 6= 0; for example the annihilation operator of (5.2.13a) does not annihilate
the ‘barred’ vacuum:

ai |0̄〉 =
∑
j

β∗ji |1̄j〉 6= 0 (5.2.15)

or, to take this one step further, consider the expectation value of the operator Ni = a†iai
indicating the number of ui modes in the state |0̄〉:

〈0̄|Ni|0̄〉 =
∑
j

|βji|2 (5.2.16)

which means that the vacuum of the ūj modes contains
∑

j |βji|2 particles in the ui mode.

The absence of a unique vacuum is not only the case in curved spacetime: the same story
is applicable to the Minkowski case. However, there we have a natural set of modes which
are closely related to the natural rectangular coordinate system (t, x, y, z), which in turn is
associated with the Poincaré group. Minkowski vacua that are defined by ūj modes which mix
positive en negative energy natural ui modes are not Poincaré invariant. Bogolubov transfor-
mations that do not mix positive and negative energy modes (i.e. βji = 0) are called trivial or
non-mixing.

The natural modes can be identified because of the presence of a time-like Killing vector; it
is orthogonal to the spacelike hypersurfaces used to define the scalar product, which in turn is
used to establish the orthonormality of the modes. These modes are also eigenfunctions of this
Killing vector, which is closely related to the positivity of the energy of the modes.

On the contrary, in curved spacetime one usually does not have a time-like Killing vector,
leading to a more pressing ambiguity in choosing the modes for defining the vacuum.

5.2.3 De Sitter space and α-vacua

Let us now see how this works in de Sitter space. It is one of the maximally symmetric curved
spacetimes; there are 10 Killing vectors. The only other spacetimes which have this level of
symmetry are the anti-de Sitter space (AdS) and our familiar Minkowski spacetime (note that
the Poincaré group has 10 generators). However, among the Killing vectors of de Sitter space
there is no global time-like Killing vector, so we have to deal with some of the complications
discussed in the previous section. Fortunately, due to the large amount of symmetry, the choice
of modes (and thus vacuum) will not be as ambiguous as in the general curved case.

In the following, we will not give complete mathematical descriptions of all the steps that
are being taken, since they tend to be quite tedious. As concise as we can, we will try to give
the references to where the calculations can be found in detail. Another note: we will only be
concerned with de Sitter invariant vacua, i.e. vacua that are invariant under the transformations
of SO(4, 1).

For convenience, let us again state the definition of de Sitter space as an embedded hyper-
boloid:

MdS = {x ∈ R5| x2 = ηαβx
αxβ = −H−2} (5.2.17)

where α, β = 0, 1, 2, 3, 4 and ηαβ = diag(1,−1,−1,−1,−1). The conventional choice for the
natural modes is the one defining the Euclidean vacuum (sometimes referred to as the Bunch-
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Davies vacuum). The modes are found by first making the analytical continuation4 from de
Sitter space dS4 to the 4-sphere S4, then the two-point function5 is found on the sphere and
the final step is to analytically continue this function back to de Sitter space (see e.g. [47]).

Starting from the modes, one can define a set of de Sitter invariant vacua with the use of
Bogolubov transformations. This was carried out in [48], and later described in e.g. [6]. Let ui
be the modes corresponding to the Euclidean vacuum. The new modes are defined by a specific
Bogolubov transformation:

ūi = Aui +Bu∗i (5.2.18)

The first property of this transformation is that the complex Bogolubov coefficients A and B are
independent of the specific modes in a set (compare with (5.2.11a), but then j = i ∀j and the
sum disappears). It assures that the new vacuum will be de Sitter invariant [48]. The second
property is that it preserves orthonormality of the modes, so that it will define a new vacuum.
We have

(ūi, ūj) = (|A|2 − |B|2)(ui, uj)

= (|A|2 − |B|2)δij
(5.2.19)

so that we find the condition for A and B:

|A|2 − |B|2 = 1 (5.2.20)

The most general solution for complex A and B gives for the new modes (an overall phase factor
is discarded, since it is of no physical interest):

ūi = (coshα)ui + (eiβ sinhα)u∗i (5.2.21)

where the range of the real parameters is given by α ∈ [0,∞), β ∈ (−π, π). The Euclidean
vacuum corresponds to α = 0. It can be shown [6] that all vacuum states with β 6= 0 are not
time-reversal invariant. For that reason the de Sitter vacuum states are usually said to be a
one-real-parameter set of vacua, known as α-vacua.

Let us now focus our attention on some more group theoretical issues.

5.2.4 The role of group theory

Recall that in the flat spacetime case the particle states are labeled by the Poincaré label (p, λ),
whose values are closely related to the UIR label (m, s); m is used to define the mass-shell
condition and s determines the range of λ. We identified m with the mass of the field quanta,
and s with the spin. In a group theoretical sense, we associate these parameters with the
eigenvalues of the Casimir operators (see section 3.5). Since the notion of mass is not as clear
in de Sitter space as in Minkowski space in a field theoretical sense, we may ask ourselves
if the Casimir operators of SO(4, 1) might bring resolvement to the issue. There is a very
straightforward link between the Casimir operators and the wave equation, which we shall
investigate by using the ambient space formalism in the next section. That is also where we will
consider fields with spin content in de Sitter space; something that we did not bother ourselves
with yet.

4This is done by making the coordinate x0 purely imaginary; it is clear that (5.2.17) then defines a sphere
with radius R.

5The two-point correlation function, i.e. Green’s function, contains all information regarding the free field
and its modes.
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5.3 Ambient space formalism

The ambient space formalism is a very useful tool for making the link between quantum field
theory in (anti-)de Sitter space and the group theoretical approach. The general idea is that we
can reduce the wave equation to a Casimir eigenvalue equation. This connection was established
for field theory in flat space in e.g. [49, 50], and it lead to the so called canonical form of the
covariant particle equations. In this way, the connection between the Wigner UIRs of the
Poincaré group and the solutions to the wave equation was made very explicit. It seems that
the ambient space formalism approach has its roots in these papers and the references therein.

One of the differences between Minkowski and de Sitter space is that the isometry group of
the former, Poincaré, has a clear description in 4 dimensions, while the isometry group of the
latter, SO(4, 1), is described in 5 dimensions. For this reason we must have a mathematical
framework allowing us to go from the Casimir eigenvalue equation in 5-dimensional ambient
space coordinates xα to the wave equation in 4-dimensional intrinsic de Sitter coordinates Xµ,
and vice versa.

Consider a tensor field6 Kη1...ηr(x) on R5 endowed with the metric ηαβ = diag(1,−1,−1,−1,−1).
It can be viewed as a homogeneous7 function of arbitrary degree n. In order to make sure that
K(x) is on MdS we require transversality:

x · K = 0, x ∈MdS (5.3.1)

Our goal is to link K(x) to the fields defined in de Sitter space, which shall be indicated by
hµ1...µr(X) and we want these fields h to carry a specific SO(4, 1) UIR. Consequently, we want
the fields K to carry this specific UIR. We will see how we can make sure that K is in a particular
UIR of choice. Let us start by looking into a particular description of the generators of SO(4, 1),
and their action of the field K(x).

5.3.1 Action of the generators

The generators of SO(4, 1) where already described in section 3.6. Here we will modify them
slightly by adding an operator to each generator. This operator is dealing with the spin8 aspect
of the field K [51, 52]. This is closely related to its rank, which one could compare to the
Minkowski case, where objects with integer spin s are described by tensors of rank r = s, take
for example the quanta of the gravitational field Gµν : gravitons have spin 2.

Half-integer spin s objects are described by spinor-tensors of tensor-rank r = s − 1
2 and

with an additional spinorial index i. In these fermionic cases one usually deals with gamma
matrices (more general; the Clifford algebra), and we will shortly see where they enter the story.

Let us state the form of the slightly modified generators:

L
(s)
αβ = Mαβ + S

(s)
αβ (5.3.2)

6We will often omit the tensorial indices, for brevity.
7A homogeneous function f of degree n has the following property: f(ax) = anf(x). It is assumed that K(x)

is homogeneous in order to extend the domain of definition of the physical field, so that we can give meaning to
the operation ∂α in the ambient space [2].

8The usage of the word ‘spin’ is not really justifiable, since it is not always clear how to extrapolate the
Minkowskian notion of spin to curved spacetime. However, we will use the word from time to time in relation to
de Sitter space, since it is conventional.
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where Mαβ stands for the ‘orbital’ part9 and S
(s)
αβ for the ‘spinorial’ part. The orbital part is of

the usual form:
Mαβ = i(xα∂β − xβ∂α) (5.3.3)

The second order Casimir operator is of the usual form:

Q(1) = −1

2
LαβL

αβ (5.3.4)

where we can isolate the purely scalar part:

Q
(1)
0 = −1

2
MαβM

αβ (5.3.5)

In order to specify the spinoral part we must distinguish between integer and half-integer spin
fields. Integer spin-r fields will be represented by tensors of rank r, and the action of Sαβ is
(see e.g. [53]):

SαβKη1...ηr = −i
∑
i

(
ηαηiKη1...(ηi↔β)...ηr − ηβηiKη1...(ηi↔α)...ηr

)
(5.3.6)

where the notation (ηi ↔ β) indicates that the ith index must be replaced by β. Now consider
half-integer spin fields with spin s = r + 1

2 . The fields are represented by a four component
spinor-tensor Kiη1...ηr where i = 1, 2, 3, 4. The spinorial action splits up into two parts;

S
(s)
αβ = Sαβ + S

( 1
2

)

αβ (5.3.7)

where the first part is just (5.3.6) which acts on the tensorial indices. The second part is acting
on the spinor index of the field, and it is defined as (see e.g. [54, 55]):

S
( 1
2

)

αβ = − i
4

[γα, γβ] (5.3.8)

where the five gamma matrices are determined by the standard relations:

γαγβ + γβγα = 2ηαβ, γα† = γ0γαγ0 (5.3.9)

5.3.2 Representation of K(x)

We will now explain how we can make sure that K(x) is in some particular UIR. In order to
make this more insightful we briefly switch to anti-de Sitter space, but the conclusion will be
equally valid for de Sitter space. The reason for this switch is that most detailed literature on
this subject deals with AdS (see for example [51, 56, 57, 58, 54, 53, 59]). Note that the only
difference between AdS and dS in the description above is the metric of the ambient space10,
and a + sign in front of ‘inverse radius’ H of the space. An additional important difference is
in the classification of the UIRs. In the AdS case the isometry group is SO(3, 2) and a UIR is
denoted by D(E0, s), where s is interpreted as the spin.

Now, we want to describe a field that carries the particular UIR D(E0, s). In the ambient
space formalism we do this by starting with the tensor field Kµ1...µs(x). But we note something
very important: the generators belong to a non-compact group and the representation space is
finite dimensional (note that every tensorial index represents a 5-dimensional space). Hence, the

9‘Orbital’ as in the orbits used to define the Killing vectors, see section 1.3.3.
10For AdS one uses ηαβ = diag(1,−1,−1,−1, 1).
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representation of the space that the spinorial operators (5.3.6) are acting on cannot be unitary.
This means that Kµ1...µs(x) is not in a UIR. In fact, it is in the direct product representation:

D(E0, 0)⊗D(s) (5.3.10)

where the orbital part Mαβ of the generators is associated with D(E0, 0) and the spinoral

part S
(s)
αβ is associated with D(s). Here D(s) is a suitably chosen finite-dimensional irreducible

component with highest weight (0, s) contained in ⊗sD(1), where D(1) is the 5-dimensional

irrep of SO(3, 2) [58]. Take for example a spin-1 field Kα(x). The operator S
(1)
αβ clearly acts on

a 5-dimensional space spanned by {Kα(x)|α = 0, 1, 2, 3, 4}, i.e. Kα(x) is in the representation
D(1).

The point is that we can reduce the direct product (5.3.10) to a sum of irreps (see section
2.5) in the following recursive way [53]:

D(E0, s− 1)⊗D(1) =D(E0, s)⊕D(E0, s− 1)⊕D(E0, s− 2)

⊕D(E0 − 1, s− 1)⊕D(E0 + 1, s− 1)
(5.3.11)

We can now write the Casimir eigenvalue equation in ambient space that will be linked to
the field equation in intrinsic coordinates. What it essentially does is select the UIR D(E0, s)
appearing in the decomposition of the direct product. It is given by:(

Q(1) − 〈Q(1)〉
)
K(x) = 0 (5.3.12)

where 〈Q(1)〉 is the eigenvalue of the Casimir operator Q(1) for the specific UIR D(E0, s).
It may be clear that this will work in exactly the same way in de Sitter space. The eigenvalues

of Q(1) that we will be using are given in section 3.6. The next section will be devoted to finding
a concrete form for the operator Q(1) acting on K in the direct product representation.

5.3.3 Action of the Casimir operator

Before we can state the concrete form of Q(1), we must give a couple of definitions. The trace
K′ of the tensor K of rank r is defined as:

K′ ≡ Kµ1...µr−2 = ηµr−1µrKµ1...µr (5.3.13)

and we note that K′ is of rank r−2. Next we define the non-normalized symmetrization operator
Sp. It acts on a tensor product of two symmetric tensors ζ and ω (of rank p and s− p resp.) in
the following way:

(Spζω)α1...αs
=

∑
i1<i2<...<ip

ζαi1αi2 ...αipωα1... 6αi1 ... 6αi2 ... 6αip ...αs (5.3.14)

where the slash through an index means that it must be removed.
Now, writing out the formula (5.3.4) for Q(1), acting on a rank-r tensor field Kµ1...µr(x):

Q(1)K(x) = −1

2
MαβM

αβK(x)− 1

2
S

(r)
αβS

αβ(r)K(x)−MαβS
αβ(r)K(x) (5.3.15)

For integer spin one can show [53, 18]:

1

2
S

(r)
αβS

αβ(r)K(x) = r(r + 3)K(x)− 2S2ηK′(x) (5.3.16a)
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MαβS
αβ(r)K(x) = 2S1∂x · K(x)− 2S1x∂ · K(x)− 2rK(x) (5.3.16b)

so we arrive at the form for the second order Casimir for integer spin:

Q(1)K(x) =
(
Q

(1)
0 − r(r + 1)

)
K(x) + 2S2ηK′(x) + 2S1x∂ · K(x)− 2S1∂x · K(x) (5.3.17)

and for half-integer spin we must add the following term to this expression [55, 18]:(
i

2
γαγβM

αβ − 5

2

)
K(x) + S1γ(γ · K(x)) (5.3.18)

We now know the action Q(1) on the (spinor-)tensor field K(x). The next step is to determine
how K(x) is linked to the field h(X) in intrinsic coordinates.

5.3.4 Link between K(x) and h(X)

To be able to make this link, we must first give some more definitions. Let us start by defining
the transverse projection operator θαβ:

θαβ ≡ ηαβ +H2xαxβ (5.3.19)

satisfying
θαβx

α = θαβx
β = 0 (5.3.20)

With the use of the transverse projection operator we define the tangential/transverse derivative
∂̄ on the de Sitter space:

∂̄α ≡ θαβ∂β = ∂α +H2xαx · ∂ (5.3.21)

and we can easily see that indeed x · ∂̄ = 0.

Next we will provide the framework for establishing the link between tensor fields in ambi-
ent space notation and intrinsic notation. The transformation law is the usual tensorial one:

hµ1...µr(X) =
∂xα1

∂Xµ1
...
∂xαr

∂Xµr
Kα1...αr(x) (5.3.22)

The covariant derivatives acting on the intrinsic tensor field are transformed in the following
way:

∇µ...∇νhλ1...λr(X) =
∂xα

∂Xµ
...
∂xβ

∂Xν

∂xη1

∂Xλ1
...
∂xηr

∂Xλr
Trpr∂̄α...Trpr∂̄βKη1...ηr(x) (5.3.23)

where the Trpr is the generalization of the transverse projection operator:

(TrprK)λ1...λr = θη1λ1 ...θ
ηr
λr
Kη1...ηr (5.3.24)

Let us first of all note that for a scalar field K(x) = φ(x) we can express the Casimir operator
in terms of the tangential derivative:

Q
(1)
0 φ(x) = −H−2∂̄2φ(x) (5.3.25)

and we can easily see that we can express the intrinsic d’Alembertian operator �H = ∇µ∇µ in

terms of Q
(1)
0 :

�Hφ(X) = ∂̄2φ(x) = −H2Q
(1)
0 φ(x) (5.3.26)

55



where the subscript H on �H is there to remind us that the d’Alembertian is curvature depen-
dent.

Now, it is proven in [18] that the general expression for the d’Alembertian for rank-r tensor
fields is given by:

�Hhµ1...µr(X) =
∂xβ1

∂Xµ1
...
∂xβr

∂Xµr

[
−H2

(
Q

(1)
0 + r

)
Kβ1...βr

+ 2H4
r∑
j=1

xβj
∑
i<j

xβiK
′
β1... 6βi 6βj ...βr

− 2H2
r∑
i=1

xβi
(
∂̄ · Kβ1... 6βi...βr −H

2x · Kβ1... 6βi...βr
) ]

(5.3.27)

In the next section we will see how we can explicitly make the link between the wave equation
in intrinsic coordinates and the Casimir eigenvalue equation in ambient space coordinates using
the expressions we have given in the sections above.

5.3.5 Explicit link between intrinsic wave equation and ambient space Casimir
equation

Let us start with the most simple case: the scalar field. Then, (5.3.12) reduces to:(
Q

(1)
0 − 〈Q

(1)
0 〉
)
K(x) = 0 (5.3.28)

and the expression for the d’Alembertian in terms of Q
(1)
0 was already given by (5.3.25). Thus

we can conclude: (
�H +H2〈Q(1)

0 〉
)
h(X) = 0 (5.3.29)

This equation gives the explicit link between the field theory wave equation and the UIR the
field carries.

It should be obvious from the general expressions for Q(1) and �H that this link is not quite as
trivial in the spinorial case as it is for scalar fields. However, there are cases where we can put
certain conditions on the fields such that the expressions simplify greatly.

The case where this is most explicit is when we are dealing with massive fields with integer
spin. By massive we mean fields that carry a de Sitter UIR that contracts to a massive Poincaré
UIR; fields whose UIR belongs to the principal series (see sections 3.6 and 4.3.2 for details).
Let us consider such a massive rank-r tensor field Kµ1...µr(x). Physical arguments lead to the
condition that K must be divergenceless, i.e. ∂ · K = 0 (see e.g. [60, 61]). Together with the
transverse condition x · K = 0 this implies that K is traceless: K′ = 0. These conditions allow
one to constrain the number of propagating degrees of freedom to 2r + 1.
The Casimir eigenvalue equation then reduces to:(

Q
(1)
0 − r(r + 1)− 〈Q(1)〉

)
Kµ1...µr(x) = 0 (5.3.30)

The expression (5.3.27) for the d’Alembertian takes on the simple form:

�Hhµ1...µr(X) = − ∂x
α1

∂Xµ1
...
∂xαr

∂Xµr

(
H2Q

(1)
0 +H2r

)
Kα1...αr(x) (5.3.31)
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Now we can give the expression that links the eigenvalue of the second order Casimir operator
directly to the field equation in intrinsic coordinates:(

�H +H2r(r + 2) +H2〈Q(1)〉
)
hµ1...µr(X) = 0 (5.3.32)

where 〈Q(1)〉 is the eigenvalue belonging to a principal series UIR.

For fields that carry UIRs different from the principal series, it is in general not possible to
impose the traceless and divergenceless conditions. In those cases the strategy is again to write
the field equation in terms of Q(1), and then search for the relevant physical subspace corre-
sponding to a massless UIR of SO(4, 1). From section 4.3.2 we know that the UIRs that have
a massless limit are given by the discrete series UIRs with p = q = s. Their Casimir eigenvalue

is 〈Q(1)
p=q〉 = −2(s2 − 1), so the field equation takes on the form:(

�H +H2r(r + 2)− 2H2(s2 − 1)
)
hµ1...µr(X) +G(x) = 0 (5.3.33)

where G(x) depends on traces and divergences of h. In [61] it was found that for massless spin-1
fields this physical subspace is given by:(

�H + 3H2
)
hµ1(X) = 0 (5.3.34)

and in [62] it was shown that for massless spin-2 fields it is determined by:(
�H + 2H2

)
hµ1µ2(X) = 0 (5.3.35)

In the next section we will be focussing on the interpretation of the mass parameter in de Sitter
space, with the use of the ambient space formalism.

5.4 Mass in de Sitter space

As we mentioned a few times before: the concept of mass, and consequently masslessness, is
quite obscure in field theory in de Sitter space. One way this problem reveals itself is when
we consider massless fields. In flat spacetime, the properties that characterize massless m = 0
fields are gauge invariance, light cone propagation, conformal invariance and the presence of
two helicity states (for s > 0); these things are essentially synonymous. This is not the case
in curved spacetime. For example, consider the wave equation for a scalar field with no mass
term:

�Hφ(X) = 0 (5.4.1)

It was shown in [20] that in a gravitational background such a field does not only propagate on,
but also inside the light cone; a property usually associated with massive fields.

Another way in which the obscurity of the mass concept in (A)dS establishes itself is in the
partially massless fields; for these fields a certain gauge invariance allows one to reduce the
number of propagating degrees of freedom (pdof), but not all the way to two. They were first
discovered by Deser and Nepomechie in 1984 [63], and they occur for spin s ≥ 3/2.

Closely related to the partially massless fields are the forbidden mass ranges. The masses
in this range lead to negative norm states, i.e. non-unitarity. For example, it is shown in [64]
that for spin-2 fields the forbidden mass range is 0 < m2 < 2H2.
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Our goal in the next section is to review the approach of Garidi [18] to this state of affairs. In
an attempt to reconcile group and field theoretical notions, he proposes a mass definition in
terms of the parameters labeling the SO(4, 1) UIRs.

5.4.1 Garidi’s mass definition

Garidi’s most important axiom is that the notion of mass in de Sitter space is only defined
in reference to mass in Minkowski space. This reference is inferred by following the dS UIRs
under group contraction, and deciding whether a dS UIR is massive or massless by examining
the Poincaré UIR it contracts to. This implies that the only dS UIRs to which the notion of
mass applies are the ones belonging to the principal series, and the ones extendable to UIRs
of the conformal group (see section 4.3.2). Another axiom is that the mass parameter must
be real-valued for the fields carrying these UIRs. The mass definition he provides can also be
used for fields carrying a dS UIR with no contraction limit, but he insists that in that case the
proposed parameter cannot be interpreted as a mass. We will repeat the arguments given in
his article [18], and define the mass parameter.

We first consider fields with spin s 6= 0. We would like to associate the mass to the Casimir
eigenvalue 〈Q(1)〉. The lowest value for the mass (m = 0) will be taken in reference to the dS
UIR that contracts to the massless Poincaré UIR for a given value of s. The UIRs that contract
to the massless Poincaré UIRs are those belonging to the discrete series with p = q = s, and we

can check that the eigenvalues 〈Q(1)
p=q〉 are indeed the lowest possible ones11. The masses for the

fields carrying other UIRs are then constructed in reference to this lowest value. The definition
of the mass for a given value of s = p is then given by:

m2
H ≡ H2

(
〈Q(1)〉 − 〈Q(1)

p=q〉
)

= 〈Q(1)〉H2 + 2(p2 − 1)H2 = [(p− q)(p+ q − 1)]H2 (5.4.2)

Note that m2
H ≥ 0, by construction. In the contraction limit, we let H → 0 and ν → ∞ while

νH = m, where m is the Poincaré mass. This means that in the limit, q scales as q ∼ im
H , and

we see that m2
H → m2 as H → 0.

With the use of this mass parameter we can write the wave equation for massive integer spin
fields (5.3.32) in the following way:(

�H + [2− s(s− 2)]H2 +m2
H

)
hµ1...µs(X) = 0 (5.4.3)

One can easily check that for s = 1, 2 and m2
H = 0, this equation indeed leads to the ‘field-

theoretical correct’ massless equations given in (5.3.34) and (5.3.35).

Next we consider the scalar fields. In section 4.3.2 we stated that the de Sitter UIR contracting
to the massless scalar Poincaré UIR belongs to the complementary series, and is labeled by
(p, q) = (0, 1). But now we must draw the attention to the concept of Weyl equivalence. Two
UIRs are said to be Weyl equivalent if the two different labels lead to the same eigenvalues of the
Casimir operators. Note that this is the case for (p, 1− q). So we see that the complementary
UIR labeled by (0, 1) is Weyl equivalent to (0, 0). Therefore, Garidi argues, again we can use

〈Q(1)
p=q〉 as the lowest value for the mass, so that the definition (5.4.2) also holds for the scalar

fields. There are however a few points that need some more attention.

11In fact, this is the condition we need for the mass to be real-valued, and unfortunately we will see that this
is not the case for scalar fields, which complicates matters.
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Consider the massless scalar UIR with (p, q) = (0, 1), which is extendable to the conformal
group. The Casimir eigenvalue equation reduces to:(

Q
(1)
0 − 2

)
φ(x) = 0 (5.4.4)

which, by using (5.3.26), gives rise to the wave equation in intrinsic coordinates:(
�H + 2H2

)
φ(X) = 0 (5.4.5)

At this point we have not made any field theoretical assumptions: we started with the Casimir
eigenvalue equation, then used the ambient space formalism to change to intrinsic coordinates,
and ended up with this equation. Now let us compare it to the field theoretical equation for
the scalar field:

(�H +m2
H + ξR)φ(X) = 0 (5.4.6)

Note that we must implicitly set ξ = 1
6 to recover (5.4.5) (the Ricci scalar has the value

R = 12H2 in de Sitter space [45]), which is known as the conformally coupled case, and indeed,
the equation is invariant under conformal transformations (see section 5.2.1 and [45]).

Let us now consider the following scalar field equation:

�Hφ(X) = 0 (5.4.7)

This field has been shown to carry the discrete series UIR with label (1, 0) [65]. Note that for
these values of p and q we again find m2

H = 0. Therefore we must set ξ = 0, which is known
as the minimally coupled case. However, also note that this UIR does not have a contraction
limit, and therefore we cannot interpret mH as a mass and p = 1 (!) as spin.

We already briefly mentioned that the reference Casimir value 〈Q(1)
p=q=0〉 = 2 is not the lowest

possible eigenvalue for p = 0; the eigenvalues for p = 0 and −1 < q < 0 (and their Weyl
equivalent 1 < q < 2 UIRs) are smaller. This implies imaginary values for mH . Garidi argues
that this is not a problem, since the UIRs with these values do not have a contraction limit.

These last paragraphs might be somewhat confusing to the reader, and arouse questions like:
‘Are we allowed to change the value of ξ and still work with the same mass formula?’ or ‘Isn’t it
a problem that there still are allowed imaginary values for mH?’. For this reason we will devote
the following section solely to scalar fields and elaborate on these points.

5.4.2 Scalar fields

A large amount of literature on dS fields is restricted to scalars. For example, in most inflation-
ary theories, the fields involved (e.g. the inflaton and isocurvaton) do not have spin. For a given
theory, the masses of these fields have a large influence on the results it produces. In slow-roll
models the mass parameter of the inflaton must be small (m� H), just as in quasi-single field
models where there is an aditional field, the isocurvaton, with a mass parameter m ∼ H (see
e.g. [21]). The fact that the theories depend heavily on this parameter, and that the concept of
mass for scalars in dS is still somewhat obscure12 motivates us to write this following section.
We will begin with critically recapitulating Garidi’s views on the scalar field, and after that we
propose a different mass formula for the scalars.

12Especially for the fields with no Minkowskian limit.
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We first note that Garidi explicitly only wants to use the term ‘mass’ in reference to Minkowski
space, where the notion is properly defined. However, the fields with a small mass compared to
H used in inflationary theories are in the complementary series, which does not have a limit in
Minkowski space. Nevertheless, Garidi feels that his mass parameter can be used, even when it
can not be interpreted as a ‘mass’.

Secondly, recall that there is an ambiguity in the definition of the mass parameter in the
Klein-Gordon equation, due to the coupling of the field to the background curvature:

(�H +m2
H + ξR)φ = 0 (5.4.8)

Garidi implicitly puts ξ = 1/6, so that m2
H = 0 leads to conformal invariance. He points out

that his mass formula also yields m2
H = 0 for the UIR corresponding to the massless minimally

coupled field, where ξ = 0, which has no Minkowski limit. It seems somewhat arbitrary to
use different values of ξ in the same mass definition, since in principle we cannot differentiate
between m2

H and an effective mass m2
H + ξR.

Thirdly, we note that Garidi chooses to define the mass in reference to the complementary
series UIR with (p, q) = (0, 1) = (0, 0), corresponding to the massless conformally coupled field
(recall that UIRs with (p, q) are Weyl equivalent to (p, 1 − q)), which does have a Minkowski
limit. This allows for imaginary values for the mass, which is conveniently displayed in the
following figure:

-2H
2

0 H /4
2 m

2
H

Complementary

series

Principle

series

Figure 5.1: Scalar field mass relation for Garidi’s definition. The square indicates the massless
minimally coupled discrete series UIR. Located at the same spot is the massless conformally
coupled complementary series UIR. One might note that in [18] the part of the complementary
series left of zero is not displayed, but we feel that it should be included.

We argue that in the case of the scalar field there is a different possibility for a mass formula,
at least equally convenient. It does not define the mass parameter in reference to the conformally
coupled case, but to the minimally coupled case. In a way, this means that we are working with
the effective mass, and it might be a more natural choice if one does not put the emphasis on
the (non)existence of a Minkowski limit. The field equation for the minimally coupled case is

�Hφ = 0 (5.4.9)

while the field equation for the conformally coupled case is

(�H + 2H2)φ = 0 (5.4.10)

from which is seems more natural to take the minimally coupled case as the reference point
for a mass parameter definition. On the contrary, the massless minimally coupled field does
propagate inside the lightcone [20] and is not conformally invariant, in contrast to the massless
conformally coupled field.
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Let us give the definition of the new mass parameter:

m̃2
H ≡ H2

(
〈Q(1)〉 − 〈Q(1)

p=1,q=0〉
)

= H2〈Q(1)〉 = [−p(p+ 1)− (q + 1)(q − 2)]H2 (5.4.11)

and repeat Garidi’s mass formula:

m2
H ≡ H2

(
〈Q(1)〉 − 〈Q(1)

p=q〉
)

= 〈Q(1)〉H2 + 2(p2 − 1)H2 = [(p− q)(p+ q − 1)]H2 (5.4.12)

We will now review the different series and particular UIRs, and compare the values for the
different mass definitions.

• Massless minimally coupled case
This UIR belongs to the discrete series with13 (p, q) = (1, 0) and is denoted by Π1,0. It
has no Minkowski limit.

m2
H = m̃2

H = 0.

• Massless conformally coupled case
This UIR belongs to the complementary series with (p, q) = (0, 1) and is denoted by V0,1.
It contracts to the massless Poincaré UIR as H → 0.

m2
H = 0, while m̃2

H = 2H2.

• Principle series
The UIRs from the principal series contract to the massive Poincaré UIRs and they are
denoted by Up,q, where p = 0 and q = 1

2 + iν, with ν ≥ 0.

m2
H = (1

4 + ν2)H2, while m̃2
H = (9

4 + ν2)H2.

• Complementary series
The UIRs from the complementary series do not have a Minkowski limit, except for
(p, q) = (0, 1). They are denoted by Vp,q, where p = 0 and q = 1

2 + ν, with 0 < |ν| < 3
2 .

m2
H = (1

4 − ν
2)H2, while m̃2

H = (9
4 − ν

2)H2.

Note that −2H2 < m2
H < 1

4H
2, while 0 < m̃2

H < 9
4H

2.

• Discrete series
The UIRs from the discrete series do not have a Minkowski limit. They are denoted by
Πp,q, where p = 1, 2, ... and q = 0.

m2
H = p(p− 1)H2, while m̃2

H = (−p(p+ 1) + 2)H2.

The difference between the two formulas is most striking if we compare figure 5.1 and 5.2. We
see that the principal and complementary series are simply shifted by 2H2, while the relative
position of the massless minimally coupled field has changed. This is also easily seen in formulas
(5.4.11) and (5.4.12): for p = 0 there is a difference of 2H2, while for p = 1 they coincide. One
might argue that m̃H is favorable over mH , since the latter has the same mass value for two
distinct14 UIRs. On the contrary, m̃H 6= 0 for the UIR that can be extended to the conformal
group.

13We will not point out the Weyl equivalent UIRs for brevity.
14Distinct in the sense that they have different values for (p, q), and are not Weyl equivalent.
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Figure 5.2: Scalar field mass relation for the alternative definition.

We conclude this section with the observation that, since the interpretation of the concept
of mass in de Sitter spacetime is still very much an open question, the mass parameter is merely
a tool for keeping track of the group theoretical content of our field theoretical equations. The
vagueness of the interpretation of the concept reveals itself upon going through the recent
literature. For example, it is shown in [9, 10] that when interactions are included, de Sitter
symmetry does not prevent massive scalars from the principal series from decaying into pairs of
heavier particles. Another example is the discovery of tachyonic fields which are local and allow
for a de Sitter invariant physical space [11]. They carry UIRs from the discrete series, and are
tachyonic in the sense that they have a negative squared mass.

The obscurity of the mass concept is not restricted to scalar fields; next we will review
an example for non-zero spin fields. In a series of papers on gauge invariance and partially
massless higher spin fields Deser and Waldron concluded that for half-integer spin (s ≥ 3/2),
the strictly massless fields actually are anti-de Sitter instead of de Sitter fields [66, 67, 68, 69].
The following section is devoted to this claim, and how the application of Garidi’s mass formula
leads to a different result. Our discussion will be largely based on [18]; there Garidi explains
the inconsistency between his mass definition and the one used by Deser and Waldron.

5.4.3 Gauge invariant fields

In Minkowski field theory, massive fields with spin s have 2s+1 propagating degrees of freedom,
while massless fields (with s > 0) have two: the helicity states ±s. The reduction of propagating
degrees of freedom is established by introducing gauge invariance. As was mentioned at the
beginning of section 5.4, it turns out that for massive fields in de Sitter space with s > 1 a
certain gauge invariance allows us to reduce the number of pdof to intermediate values, giving
rise to the so called partially massless fields. Closely related to these fields are the forbidden
mass ranges; these masses lead to negative norm states, i.e. non-unitarity. Forbidden mass
ranges and (partially) massless fields are usually depicted in the plane spanned by m2 and Λ,
resulting in a phase diagram (here Λ = 3H2 is the cosmological constant). For example, we
already stated that for spin-2 fields the forbidden mass range is 0 < m2 < 2H2, and they become
partially massless at m2 = 2H2. The corresponding phase diagram is given in figure 5.3.
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Figure 5.3: Phase diagram for spin-2 fields, based on [18].

A different kind of diagram is given in figure 5.4; by using Garidi’s mass definition we can
deduce which UIR series the different masses belong to, and in that way it complements figure
5.3. Similar figures can be made for s = 3 fields, only there we have an additional partially
massless field (see [18] and [66]).

Forbidden mass 

region

2H

m
2
H

20 9H /4
2

Complementary

series

Principle

series

Figure 5.4: Mass relation for spin-2 fields, based on [18].

For these integer spin values Garidi agrees with Deser and Waldron. This changes when we
consider half-integer spins s ≥ 3/2. In [66] it was found that for s = 3/2 fields, gauge invariance
allows one to reduce the number of pdof to 2 at the mass value m2 = −Λ/3, which corresponds
to the discrete series UIR with p = q = 3/2 uniquely extendable to UIRs of the conformal
group. The minus sign lead the authors to the conclusion that these fields are actually anti-de
Sitter fields (where Λ < 0, so that m2 > 0), i.e. that there are no strictly massless fields in de
Sitter with s = 3/2. However, in [18] it was noted that, for a given spin, this mass parameter
is defined relatively to the first terms of the discrete series with q = 1/2, i.e.

m2
DW = H2

(
〈Q(1)〉 − 〈Q(1)

p,q=1/2〉
)

=
Λ

3

[
−q(q − 1)− 1

4

]
(5.4.13)

rather than with respect to the p = q UIRs contracting to the Minkowski massless fields. This
has as a consequence that, even though the strictly massless fields (those with only two helicity
states) are still located at s = p = q, they do not have m2

DW = 0, but instead m2
DW = −Λ/3

for s = 3/2.
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Figure 5.5: Phase diagram for spin-3/2 fields, based on [18].

Garidi claims that it is not right to say that the strictly massless field is an anti-de Sitter
field, but rather that the mass is not correctly defined. If we use his mass definition (5.4.2), we
see that the strictly massless case p = q does yield m2

H = 0, leading to the phase diagram and
mass relation shown in figure 5.5 and 5.6. We note that Garidi’s mass formula gives m2

H = Λ/3
for (p, q) = (3/2, 1/2), which are the values used by Deser and Waldron to define their masses
relative to. In a similar way, it is easy to check that for s = 5/2, the strictly massless field with
p = q = 5/2 has m2

DW = −4Λ/3 and m2
H = 0.

Forbidden mass 

region

H

m
2
H

20

Principle

series

Figure 5.6: Mass diagram for spin-3/2 fields. A circle represents a particular discrete series
UIR, based on [18].

We conclude with the following remarks. It seems more consistent to use the same mass
formula for integer and half-integer spin fields. Moreover, the fact that Garidi’s mass formula
yields m2

H = 0 for the strictly massless fields, whose UIR contract to the massless Minkowski
UIR in the H → 0 limit, pleads in favour of using this formula.

Mass relation diagrams like 5.4 and 5.6 can be easily deduced from the SO(4, 1) UIR classifi-
cation diagram given at the end of section 3.6. Let us present the diagram in a slightly different
form:
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Figure 5.7: This diagram summarizes the classification of the UIRs of SO(4, 1). The dashed
lines represent the principal series UIRs, and the fat lines represents the complementary series
UIRs. The discrete series UIRs with p integer and half-integer are represented by the squares
and circles respectively.

Now consider the spin-2 case; we have p = 2. The massless UIR is located on the diagonal
where p = q, since that is the reference value for the Casimir operator in the mass definition.
If we start in the point (2, 2) and move to the left in the diagram, we note that there are no
UIRs there; this is the forbidden mass region (compare with figure 5.4). Moving further left,
we find another discrete series UIR, and after that we come upon the complementary series.
Continuing going left, we arrive at the principal series, and as the mass increases we move along
the dashed line. In this way we can easily deduce the mass relation diagram for any non-zero
spin field.
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Conclusion

In this thesis we examined the question: “In how far does the group theoretical approach to
quantum field theory, in terms of associating UIRs of the spacetime isometry group to quantum
mechanical elementary systems, lead to a better understanding of the concept of ‘mass’ in
de Sitter spacetime?” In order to answer this question we started by looking at the state of
affairs in flat 3+1 Minkowski spacetime, whose isometry group is the Poincaré group, consisting
of translations and Lorentz transformations. Due to the presence of the Abelian invariant
subgroup of translations, we are able to use the induced representation method for constructing
the UIRs of the group. There turn out to be three distinct classes of UIRs, known as the
time-like (or massive), light-like (or massless) and space-like cases, which can be distinguished
by looking at the eigenvalue of the first Casimir operator (positive, zero, and negative resp.),
which is associated with the rest mass of the field carrying such a particular UIR.

Since the concept of mass in de Sitter space is quite obscure from the field theoretical
perspective, we have looked at the possibility of resolving this issue by considering the Casimir
operator of its isometry group, SO(4, 1), in conformity to the link between Minkowskian rest
mass and the Poincaré Casimir. However, it is not possible to make the direct conceptual
analogy between the SO(4, 1) and Poincaré Casimir; the latter is the square of the translation
generators (i.e. momentum operators) and is used to define the mass-shell condition, while
there are no analogous symmetries to translations in de Sitter space, since SO(4, 1) does not
possess such an Abelian invariant subgroup.

In order to be able to make a connection between the Casimir operator of SO(4, 1) and
the mass parameter in the field theoretical equations we followed the argumentation presented
by Garidi in [18]. The basis of the idea is that the concept of mass is only applicable to de
Sitter field theory in reference to Minkowski spacetime. This reference is inferred by using group
contractions; we find out which dS UIRs contract to which Poincaré UIRs as the curvature tends
to zero. Together with this, we use the ambient space formalism to convey the group theoretical
information to the field theoretical equations in de Sitter spacetime. This is necessary, since
the symmetries are most conveniently described in the 5-dimensional ambient space, while
the intrinsic 4-dimensional coordinates are more suited for the field theory, in contrast to the
Poincaré group, which has a clear 4-dimensional description. With the use of this formalism
we have obtained wave equations in 4-dimensions containing parameters used for labeling the
UIRs, by starting from the simple Casimir eigenvalue equation in 5-dimensions (see section 5.3).

The classification of SO(4, 1) UIRs reveals that there are three types, belonging either
to the so-called principal, complementary or discrete series. In the zero curvature limit the
principal series contracts to the massive Poincaré UIRs, one particular complementary series
UIR contracts to the massless scalar Poincaré UIR, and a certain class of the discrete series
contracts to the massless nonzero-spin Poincaré UIRs (see section 4.3.2 for details). These UIRs
contracting to the massless Poincaré UIRs are uniquely extendable to UIRs of the conformal
group SO(4, 2). All other SO(4, 1) UIRs have no (or no physically interesting) link to the
Poincaré group in the zero curvature limit. This last observation excludes a range of de Sitter
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fields from having a Minkowskian interpretation of their mass parameter in this sense.
An interesting explicit formula for the mass parameter was proposed in [18]; for a given spin,

we define the mass as the eigenvalue of the Casimir operator, in reference to the eigenvalue
of the UIR contracting to the massless Poincaré UIR for that given spin. That is to say:
m2
H ∼ (〈Q〉 − 〈Qmassless〉). This parameter has the property that for all nonzero spin fields it is

real and vanishes only for the fields carrying the UIR contracting to the massless Poincaré UIR.
However, it turned out that for part of the complementary series of the scalar field, this mass
formula can take on imaginary values. It was also noted that the mass formula not only gives
zero for the UIR contracting to the massless Poincaré UIR (the massless conformally coupled
case), but again gives zero for the massless minimally coupled case (see section 5.4.2). These
points might be considered as posing a threat to attractiveness of this definition, though Garidi
argues that it must only be interpreted as a mass when applied to fields carrying UIRs that
have a Minkowskian limit.

If we abandon the view that we need to have a Minkowskian interpretation of the de Sitter
mass, and embrace the view that the mass parameter can (only) be used as a tool for keeping
track of the group theoretical content of the field theoretical wave equations, then there are
more possibilities for defining the mass. We considered a different formula for the scalar fields.
Instead of using the Casimir eigenvalue of the massless conformally coupled case, we used
the eigenvalue of the massless minimally coupled case as the reference value. This leads to a
mass parameter which is real for all scalar UIRs, and zero only for the minimally coupled case
(see section 5.4.2). This particular definition seems to be more in accordance with the mass
parameter used in literature on inflationary models, which depend heavily on this parameter.

We conclude by noting that the status of the notion of mass in de Sitter spacetime is still a
point of debate. For example, it has recently been shown that when interactions are included,
SO(4, 1) symmetry does not prevent particles carrying a principal series UIR from decaying into
pairs of heavier particles. With regard to the question posed at the beginning of this section
we can conclude that, even though the isometry group does not provide us with a comparably
clear notion of mass as it does in Minkowski spacetime, the ambient space formalism, together
with group contractions, allows us to keep track of the group theoretical content of the field
theoretical equations, and in particular allows us to link the mass parameter to the parameters
labeling the de Sitter UIRs.
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