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A B S T R A C T 

An exact analytical expression for the bending angle of light due to a non-rotating massive object, considering the actual distances 
from source and observer to the gravitational mass, is derived. Our novel formula generalizes Darwin’s well-known equation for 
gravitational light bending, where both source and observer are placed at infinite distance from the lensing mass, and provides 
excellent results in comparison with the post-Newtonian (PPN) formalism up to first order. As a result, the discrepancy between 

our recent expression and the PPN approach is 6.6 mas for sun-grazing beams coming from planet Mercury, with significant 
differences up to 2 mas for distant starlight. Our findings suggest that these considerations should not be dismissed for both solar 
system objects and extragalactic sources, where non-negligible errors might be present in ultraprecise astrometry calculations. 

Key words: gravitational lensing: weak – relativistic processes – astrometry. 
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 I N T RO D U C T I O N  

he gravitational deflection of light by a massive body has been
 subject of intense research for o v er three centuries. According
o Newton ( 1730 ), if a light ray from a distant star passes near
 massive body, it would be bent a very small amount due to
he object’s gravity. Ho we ver, it was not until 1804 when this
ending angle was first calculated by Soldner ( 1804 ), resulting in
 value of 0.87 arcsec for sun-grazing starlight. A century later,
instein ( 1916 ) reported a deflection angle of 1.75 arcsec within the

ramework of the general relativity (GR) theory, twice the value as
btained by Newtonian mechanics. This result was experimentally
onfirmed by Eddington from the May 1919 solar eclipse expeditions
Dyson, Eddington & Davidson 1920 ; Will 2015 ) and subsequent
easurements via Very Long Baseline Interferometry (VLBI), a

echnique capable of measuring bending angles from distant radio
ources with high accuracy (Shapiro 1967 ; Lebach et al. 1995 ; Li
t al. 2022a , b ). 

Apart from providing a means to test GR, gravitational deflection
f light has been widely employed to observe the properties of
ery distant galaxies, as well as to infer the mass of astrophysical
bjects, since the massive body acts as a gravitational lens with a
haracteristic magnifying effect (Schneider, Ehlers & Falco 1992 ;
rittelli 2003 ; Ye & Lin 2008 ). Accordingly, gravitational lensing

s indeed a milestone of astronomy with wide-ranging applications,
o v ering e xtra-solar planets (Turyshev & Toth 2022 ), black hole
ensing (Iyer & Petters 2007 ; Virbhadra 2009 ), or string theory
He et al. 2022 ; Kong, Yang & Yu 2024 ). In order to calculate
he light deflection angle for static massive objects, the prevalent
R formalism considers that the path of a light ray is a null
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eodesic in different manifolds (Misner, Thorne & Wheeler 1973 ;
handrasekhar 1983 ; Wald 1984 ; Bozza et al. 2005 ). 
An alternative method to study the effect of gravity on light is

he so-called material medium approach (hereafter MMA), based on
he idea of representing the gravitational field as an optical medium
ith an ef fecti ve refracti ve index. In fact, this different conception
f light bending has a long history since the early days of GR
Dyson et al. 1920 ; Whitehead 1922 ). Eddington himself admitted
hat the gravitational deflection effect on light could be imitated
y a refractive medium filling the space round the Sun, giving an
ppropriate velocity of light. Specifically, this refractive index at
 distance r from the centre of the Sun should be [1 − ( r s /r)] −1 ,
here r s corresponds to the Sun’s Schwarzschild radius (Dyson

t al. 1920 ). Therefore, a light ray passing through a material
edium will be deviated due to the refractive index variation of

he associated media, in accordance with the well-established GR
xplanation. 

Apart from the Eddington’s analysis on gravitational light bending,
he MMA was first developed by Tamm during the 1920s (Tamm
924 , 1925 ). This innov ati ve idea was used by several authors to
iscuss the optical phenomena for the deflection of electromagnetic
aves by a gravitational field (Balazs 1958 ; Plebanski 1960 ; De
elice 1971 ), mainly for non-rotating masses in the Schwarschild
eometry (Fischbach & Freeman 1980 ; Nandi & Islam 1995 ; Evans,
andi & Islam 1996a , b ; Sen 2010 ; Feng & Huang 2019 , 2020 ),
here the medium refractiv e inde x could be expressed as an infinite
ower series of ( r s /r) terms (Schneider et al. 1992 ; Petters, Levine &
ambsganss 2002 ; Roy & Sen 2019 ; Meneghetti 2021 ; Hwang &
oh 2024 ). Moreo v er, the same method was also applied to estimate

he light deflection angle caused by the rotation of gravitating bodies
Roy & Sen 2015 ) or charged massive objects (Roy & Sen 2017 ). 

In both theoretical frameworks (i.e. the MMA and GR) some
uthors consider an asymptotic scenario where source and observer
re placed at infinite distance from the lensing mass, which is actually
© 2024 The Author(s). 
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Figure 1. (a) Schematic representation of our spherical-stratified medium in a non-flat spacetime (i.e. the Schwarschild spacetime in our case). The gravitational 
mass M is located at point O and each concentric sphere presents the same refractive index value, according to equation ( 6 ). The light source and observer are 
placed at coordinates r i and r j , respectively, and a light ray propagates between both positions. The closest approach distance to the static mass is r 0 , whereas the 
rotation angle is given by ϕ ij . Without loss of generality, we restrict ourselves to the equatorial plane where the polar angle is π/ 2 (b) top view of the equatorial 
plane with the elements required to compute the propagation trajectory of a light ray in this graded medium. 
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 reasonable approach given the large distances involved. On the other 
and, some researchers have studied a finite-distance scheme with 
pecific light paths, addressing the problem numerically (Feng & 

uang 2019 , 2020 ) or via approximate deflection angle equations 
Zschocke 2011 ; Ishihara et al. 2017 ; Takizawa & Asada 2023 ). In
his regard, the formalism provides a means to analytically calculate 
he bending angle to any desired order of accuracy by expanding 
 general formula in M/r terms (Cowling 1984 ), where M is the
ass of the gravitational body. In particular, an approximate first 

rder PPN equation has been widely used throughout the literature 
o determine precise bending angle calculations (Will 1993 ; Ni 2017 ;
i et al. 2022a , b ). Nevertheless, to the best of our knowledge, an
 xact analytical e xpression for the light deflection angle due to a
tationary massive body, within a finite-distance scenario, has not 
et been reported. 

In this article, we employ the MMA formalism to derive an 
ccurate equation for the gravitational deflection of light by a 
tatic massive object that generalizes Darwin’s well-known formula 
Darwin 1961 ), where infinite distances from source and observer 
o the gravitational mass are assumed. As a result, we show that
on-negligible errors in the positioning of celestial objects should 
e a v oided if we take into consideration our recent equation.
urthermore, we also test the validity of our MMA via numerical 
alculation of the gravitational time delay of light (commonly named 
he Shapiro time delay). 

The paper is organized as follows. In Section 2 , we present
ur MMA method to deduce an exact analytical equation for the 
ravitational deflection angle of light in the Schwarschild space- 
ime, considering the actual distances from source and observer to 
he gravitational body. Moreo v er, the Shapiro time delay is also
evisited within the MMA framework. In Section 3 , we describe 
ur fundamental analytical and numerical results, where the appro- 
riateness of our no v el equation in ultraprecise astrometry is high-
ighted. Finally, we summarize our main results and conclusions in 
ection 4 . 
 T H E O R E T I C A L  BA SIS  

n this section, we develop our MMA to derive a general equation
or the bending angle of light due to a static massive object. Then,
he Shapiro time delay is addressed theoretically for completeness. 

.1 Material medium approach 

et us first analyse Fig. 1 (a), a spherical-stratified medium in a
on-flat space-time (i.e. the Schwarschild space-time in our case). 
he gravitational mass M is located at point O and modifies the

efractiv e inde x of the surrounding media, in accordance with the
MA. For our static body, this index of refraction n ( r) is spherically

ymmetric and depends e xclusiv ely on the radial coordinate r and
ts Schwarschild radius r s = 2 GM/c 2 , where G is the gravitational
onstant and c the speed of light in vacuum. In this context, a light
ay describes a specific path in this graded medium where r i and
 j indicate the positions of source and observ er, respectiv ely. The
arameter r 0 is the closest approach distance to our lensing mass,
hereas ϕ ij stands for the angle between both locations. For the sake
f simplicity, we restrict ourselves to the equatorial plane where the
olar angle is π/ 2. 
A detailed description of this plane, with the elements required to

ompute the propagation trajectory of a light ray in a graded medium,
s depicted in Fig. 1 (b). First, we need to pay special attention to the
elation between the radial length of the light’s infinitesimals (Misner 
t al. 1973 ) 

 r ′ = d r 
(

1 − r s 

r 

)−1 / 2 
= d s sin θ, (1) 

here d r ′ corresponds to the proper distance in our curved space-
ime, unlike the coordinate distance d r (not shown in this figure)
pplicable to a flat space. Moreo v er, d s denotes the length of an
nfinitesimal ray path and d l is the lateral length. 
MNRAS 535, 2504–2510 (2024) 
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Figure 2. Our MMA method applied to a suitable scenario in the solar 
system. A light ray coming from Mercury ( M a ) passes close to the Sun 
and reaches the Earth ( E a ). Due to the gravitational light bending, a virtual 
position of each planet occurs, represented by M v and E v . In this situation, the 
deflection angle �α(MMA) is computed as the difference between the actual 
angle αa and the virtual angle αv via equations ( 10 ) and ( 11 ). 
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Considering the basic relation between the infinitesimal angle d ϕ 

nd d s (Feng & Huang 2019 ) 

d ϕ = d s cos θ, (2) 

nd the previous equation ( 1 ), we trivially obtain the following
ifferential equation for light propagation 

 

d ϕ 

d r 
= 

(
1 − r s 

r 

)−1 / 2 
cot θ, (3) 

hich satisfies the renowned Bouguer’s law in geometric optics 

 i r i cos θi = nr cos θ = q. (4) 

ere, the impact parameter of the light ray q is a constant for
 spherical-stratified material medium n = n ( r), as in our case.
ccordingly, we can express equation ( 3 ) as 

d ϕ 

d r 
= 

q 

r 

1 √ 

n 2 r 2 − q 2 

(
1 − r s 

r 

)−1 / 2 
. (5) 

Let us now assume that the medium refractive index n ( r) is just
he positive square root of Eddington’s proposal (Dyson et al. 1920 ) 

 ( r) = 

(
1 − r s 

r 

)−1 / 2 
. (6) 

ntroducing equation ( 6 ) into equation ( 5 ), the general differential
quation for light propagation in such a stratified medium can be
ritten in the following way 

d ϕ 

d r 
= 

1 

r 2 

[
r 3 − q 2 ( r − r s ) 

q 2 r 2 ( r − r s ) 

]−1 / 2 (
1 − r s 

r 

)−1 / 2 
, (7) 

hich depends on the mass of our central object and the impact
arameter of the light ray. 
Within the scope of GR theory, a light beam in a Schwarschild

pace-time obeys the following ordinary differential equation in the
quatorial plane (Misner et al. 1973 ) 

d ϕ 

d r 
= 

1 

r 2 

[
r 3 − q 2 ( r − r s ) 

q 2 r 3 

]−1 / 2 (
1 − r s 

r 

)−1 / 2 
, (8) 

here, again, q corresponds to the impact parameter of the light ray.
lease, note the similarity between equations ( 7 ) and ( 8 ). In fact, a
omplete equi v alence is achie ved for the weak-field approximation
hen r >> r s . In other words, our MMA formalism reproduces

xactly the propagation of light in a gravitational field, provided that
he ray paths are sufficiently distant from the Schwarschild radius of
he non-rotating body. This requisite is fulfilled in our astronomical
cenarios provided that r s = 2 . 9 km for the Sun and r = 695 700 km
or sun-grazing light beams. 

Hence, the angle ϕ ij between positions r i and r j can be accurately
 v aluated via the MMA (Feng & Huang 2019 ; please, see again
ig. 1 (b) 

 ij = 

∫ r j 

r i 

d ϕ = 

∫ r j 

r i 

d l 

r 
= 

∫ r j 

r i 

d r ′ 

r tan θ
. (9) 

ubstituting Bouguer’s law, equation ( 4 ), into equation ( 9 ) and
erforming some elementary algebra, we obtain 

 ij = 

∫ r j 

r i 

d r 
n 0 r 0 

r 
√ 

n 2 r 2 − n 2 0 r 
2 
0 

(
1 − r s 

r 

)−1 / 2 
, (10) 

here the refractive index n ( r) is given by equation ( 6 ). It is worth
entioning that equation ( 10 ) has analytical solutions in terms of

ncomplete elliptic integrals of first kind, as briefly addressed. 
Once the basic formalism has been introduced, let us now study a

pecific example where our new approach should be appropriate.
NRAS 535, 2504–2510 (2024) 
ur light source will be planet Mercury near its solar superior
onjunction, and a light ray coming from this planet passes close
o the Sun and reaches the Earth. This situation is illustrated in
ig. 2 where our light beam travels from the actual position of
ercury ( M a ) to the Earth ( E a ). It should be remarked that, due to the

ravitational light bending, an observer on Earth would experience
 virtual position of Mercury ( M v ). The inverse scenario is fully
pplicable, where now E v stands for the virtual location of the Earth.
urthermore, the average distances from the Sun to each planet are
enoted by r M 

and r E , r 0 stands for the closest approach of the ray
ath to the Sun, and β is the angle between Mercury (in the absence
f gravitational bending) and the Sun as seen by an Earth’s observer
Li et al. 2022a , b ). 

Therefore, the deflection angle �α(MMA) is calculated as the
ifference between the actual angle αa and the virtual angle αv 

Feng & Huang 2019 ) 

α(MMA) = αa − αv = ( ϕ 0M 

+ ϕ 0E ) 

−
[

arccos 

(
r 0 

r M 

)
+ arccos 

(
r 0 

r E 

)]
, (11) 

here ϕ 0M 

and ϕ 0E correspond to the angle between r 0 and each
lanet’s actual position, e v aluated via equation ( 10 ). As the difference
etween the angles αa and αv is very small, we can consider that β �
1 in order to determine a practical expression for the observation
ngle β. 

Additionally, the deflection angle under the PPN formalism up to
rst-order reads (Li et al. 2022a , b ) 

α(PPN) = (1 + γ ) 
GM s 

r 0 c 2 
( cos β − cos δ) , (12) 

here M s is the solar mass, sin β = r 0 /r E , sin δ = r 0 /r M 

, and γ
tands for the dimensionless PPN parameter used to characterize
he contribution of the space-time curvature to the gravitational
eflection. In this regard, we will assume that γ = 1 (as theoretically
stablished in GR) since this choice does not influence significatively
he results of the positions of celestial bodies in the solar system (Li
t al. 2022a ). 

When r 0 is far less than the distance from the Sun to both the Earth
observer) and Mercury (source), equation ( 12 ) transforms into the
elebrated Einstein’s formula up to first order (Einstein 1916 ; Misner
t al. 1973 ; Mutka & M ̈ah ̈onen 2002 ) 

α(Ein) = 

2 r s 
r 0 

, (13) 

here a deflection angle of 1.7518 arcsec for starlight grazing the
olar surface has been universally accepted. As shortly discussed, a
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etailed comparison between the first order PPN formula, equation 
 12 ), and our exact MMA expression will be carried out. 

.2 Exact analytical equation for the bending angle 

he analytical solution of equation ( 10 ) has been obtained via
 Wolfram Mathematica software. After a careful analysis, the 
hysically acceptable solution for the angle ϕ ij is given by 

 ij = 2 n ( r i ) 

√ 

r 0 ( r i − r s ) 

r i Q 

F ( z i , k) 

−2 n ( r j ) 

√ 

r 0 ( r j − r s ) 

r j Q 

F ( z j , k) , (14) 

here Q 

2 = ( r 0 − r s )( r 0 + 3 r s ) and F ( z, k) is the Legendre elliptic
ntegral of the first kind, with the following relations for the Jacobi
mplitude z( r) 

sin 2 z = 

2 r 0 r s + r( r s − r 0 + Q ) 

r(3 r s − r 0 + Q ) 
, (15) 

nd the elliptic modulus k 

 

2 = 

3 r s − r 0 + Q 

2 Q 

. (16) 

So, equation ( 11 ) can be rewritten as (please, see again Fig. 2 ) 

α(MMA) = 

[
4 n 0 

√ 

r 0 − r s 

Q 

F 

(π

2 
, k 

)

− 2 n ( r M 

) 

√ 

r 0 ( r M 

− r s ) 

r M 

Q 

F ( z( r M 

) , k) 

− 2 n ( r E ) 

√ 

r 0 ( r E − r s ) 

r E Q 

F ( z( r E ) , k) 

] 

−
[

arccos 

(
r 0 

r M 

)
+ arccos 

(
r 0 

r E 

)]
. (17) 

n the asymptotic case, that is, when both source and observer are
laced at infinite distance from the gravitational body, equation ( 17 )
educes to the well-known Darwin’s formula (Darwin 1961 ; Misner 
t al. 1973 ; Mutka & M ̈ah ̈onen 2002 ) 

α(Dar) = 4 
√ 

r 0 

Q 

[ 
F 

(π

2 
, k 

)
− F ( z ∞ 

, k) 
] 

− π, (18) 

y just considering r E , r M 

→ ∞ in our generalized formula, where
ow 

sin z 2 ∞ 

= 

r s − r 0 + Q 

3 r s − r 0 + Q 

. (19) 

If only the light source distance to the lensing mass is significantly
igher than the closest approach r 0 , we can take the limit r M 

→ ∞
o obtain a modified version of equation ( 17 ) 

α(MMA) = 

[
4 n 0 

√ 

r 0 − r s 

Q 

F 

(π

2 
, k 

)

− 2 n ( r E ) 

√ 

r 0 ( r E − r s ) 

r E Q 

F ( z( r E ) , k) 

− 2 
√ 

r 0 

Q 

F ( z ∞ 

, k) 

]
−

[
arccos 

(
r 0 

r E 

)
+ 

π

2 

]
, (20) 

hich constitutes an excellent tool to accurately calculate the 
ravitational deflection angle for extragalactic emitters. 
.3 Shapiro time delay calculation 

o far, we have analysed the gravitational bending angle on the
asis of our MMA method. Let us now investigate another crucial
arameter related to the effect of gravitational bodies on light 
ropagation. We are referring to the Shapiro time delay �t , the
elativistic time shift in the round-trip travel time for light signals
eflecting off other planets (Shapiro 1964 ; Shapiro et al. 1971 ;
easenberg et al. 1979 ). According to the astronomical scenario 
escribed in Fig. 2 , �t can be easily expressed as 

t = 2 

[
( t 0M 

+ t 0E ) − 1 

c 

(√ 

r 2 M 

− r 2 0 + 

√ 

r 2 E − r 2 0 

)]
, (21) 

here t 0M 

and t 0E stand for the light propagation time between r 0 
nd each planet’s actual position (i.e. Mercury and the Earth in our
ituation). 

The usual way to deduce an e xact e xpression for the time t ij that
 light ray takes to travel from from position r i to r j is through GR
onsiderations (Wald 1984 ) 

 

( GR ) 
ij = 

√ 

r 2 j − r 2 i 

c 
+ 

r s 

c 
log 

⎛ 

⎝ 

r j + 

√ 

r 2 j − r 2 i 

r i 

⎞ 

⎠ + 

r s 

2 c 

√ 

r j − r i 

r j + r i 
, 

(22)

evertheless, we can also apply our MMA formalism to compute 
hese time lapses in an alternative manner. 

Looking back at Fig. 1 (b), the parameter t ij can be e v aluated as
Feng & Huang 2019 , 2020 ) 

 

( MMA ) 
ij = 

∫ r j 

r i 

n d s 

c 
= 

∫ r j 

r i 

n d r ′ 

c 
√ 

1 − cos 2 θ
, (23) 

hich transforms into the following expression, once the relation 
etween d r ′ and d r , equation ( 1 ), has been considered 

 

( MMA ) 
ij = 

1 

c 

∫ r j 

r i 

d r 
n 2 r √ 

n 2 r 2 − n 2 0 r 
2 
0 

(
1 − r s 

r 

)−1 / 2 
, (24) 

here, again, the refractive index n ( r) is given by equation ( 6 ). 
As in the case of the gravitational light bending, equation ( 24 )

as analytical solutions in terms of incomplete elliptic integrals of 
if ferent kinds. Ho we v er, due to the mathematical comple xity of the
nal expression and its limited usefulness, we have not included this
ew equation in our article. As briefly discussed, we will show the
qui v alence between the GR formula for the Shapiro time delay,
quation ( 22 ), and our numerical calculations via equation ( 24 ). 

 RESULTS  

n this section, we present some analytical and numerical results 
oncerning the gravitational light bending and Shapiro time delay 
ia our MMA formalism. As a consequence, we want to emphasize
he advisability of using our new analytical expressions to prevent 
ndesired ultraprecise astrometry errors. 
Hence, we represent in Fig. 3 the gravitational deflection angle 

or light beams coming from Mercury (please, see again Fig. 2 ),
here �α is shown as a function of the angle β. One notices that

he numerical computation of equation ( 11 ; black solid curve) and
instein’s first-order formula equation ( 13 ; blue solid curve) differ
ubstantially for higher values of β. This discrepancy is reduced 
n the case of the first-order PPN formalism, equation ( 12 ), where
he difference between both methods reaches 15.8 per cent when 

ercury is located near its greatest elongation. For completeness, the 
eflection angle results derived via Darwin’s formula, equation ( 18 ),
MNRAS 535, 2504–2510 (2024) 



2508 O. del Barco 

M

Figure 3. The gravitational deflection angle �α for a light beam coming from 

Mercury, passing near the Sun and reaching the Earth, versus the observation 
angle β (please, see again Fig. 2 ). The numerical computation of equation 
( 11 ) and the PPN formula up to first order, equation ( 12 ), differ for higher 
values of β. Moreo v er, the MMA equation ( 17 ) based on elliptical integrals 
fits precisely our numerical calculations. For completeness, the deflection 
angle results derived via Darwin’s formula, equation ( 18 ), are also depicted. 
The inset shows the situation for a sun-grazing beam, where now the error 
between both schemes reduces to 0.38 per cent. 
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re also depicted in Fig. 3 , where a full agreement with Einstein’s
quation is attained. 

It can be noticed that our MMA formula, equation ( 17 ), fits
recisely to the numerical calculation of the deflection angle equation
 11 ). Moreo v er, when Mercury is at its superior conjunction (i.e.
� 0 . 26 deg), the difference between both methods also exists but

o a lesser extent, as appreciated in the figure inset. Accordingly, a
iscrepancy of 0.38 per cent is achieved for solar grazing incidence if
e do not consider our MMA equation. Our previous results indicate

he importance of taking into consideration our exact analytical
ormula when calculating the gravitational deflection angle �α,
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igure 4. Absolute difference between the first-order PPN formalism and our MM
nd extrasolar sources (right panel). This parameter has been computed via equat
quation ( 20 ), has been used for distant starlight calculations (right panel) as a func
an be noticed that the contours in the right panel are flat due to the large distances 
re non-zero and depend on the angle β because the Earth is not at infinite distance
specially when solar system distances are involved. In fact, non-
egligible errors are also presented when extrasolar distances are
onsidered, as explained ahead. 

Consequently, we have studied in Fig. 4 the absolute difference
etween the first-order PPN formalism and our MMA method for �α

n the case of solar system objects (left and central panels) and ex-
rasolar sources (right panel). This parameter has been computed via
quations ( 12 ) and ( 17 ) for Figs 4 (a) and (b), whereas our asymptotic
ormula, equation ( 20 ), has been used for distant starlight calculations
right panel) as a function of the angle β and the maximum source-
arth distance in light years (ly). For an observation angle of 40 deg,
 discrepancy between 1.76 and 1.95 mas is attained for solar system
ources within the asteroid belt distance, while a lower deviation
f 1.21 mas is also encountered for Proxima Centauri, as shown
n Fig. 4 (c). Furthermore, significant differences are also reported
or sun-grazing light beams coming from solar system planets like
upiter (2.35 mas) and Uranus (2.11 mas), dropping to 0.20 mas for
xtrasolar light emitters at larger observation angles ( β � 80 deg). 

On the other hand, the Shapiro time delay �t for different source-
arth distances is depicted in Fig. 5 , where the concrete examples of
ercury and Jupiter are illustrated. As in Fig. 4 , we have assumed

he maximum distances from emitter to observer. The solid lines
epresent our MMA results performed numerically via equations
 21 ) and ( 24 ), whereas the squares indicate the �t values computed
ia GR formalism, equations ( 21 ) and ( 22 ). A total agreement
etween both models is observed for different β angles, noting the
ppropriateness of our MMA to describe light propagation in the
resence of static gravitational masses. 

 DI SCUSSI ON  A N D  C O N C L U S I O N S  

ummarizing, an MMA has been developed to determine an exact
nalytical expression for the bending angle of light due to a static
assive body, considering the actual distances from source and

bserver to the gravitational mass. The validity of our new method
as been checked throughout this article. 

It is worth mentioning that a key conclusion of our work is the
esirability of taking into account our no v el accurate expressions,
A method for �α in the case of solar system objects (left and central panels) 
ions ( 12 ) and ( 17 ) for Figs 4 (a) and 4 (b), whereas our asymptotic formula, 
tion of the angle β and the maximum source-Earth distance in light years. It 
involved (that is, the source is infinitely far away in all cases), but our results 
 from the Sun, compared to the impact parameter of the light ray. 
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Figure 5. Shapiro time delay �t versus the maximum source-Earth distance 
e v aluated numerically via our MMA model, equations ( 21 ) and ( 24 ), for 
two different observation angles β. The red squares indicate the �t values 
computed via GR formalism, equations ( 21 ) and ( 22 ). A full agreement 
between both theoretical models is observed. 
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quations ( 17 ) and ( 20 ), when calculating the gravitational deflection
ngle of light. In fact, rele v ant errors in the positioning of celestial
bjects may occur if our model is o v erlooked, as presented in Figs 3
nd 4 . For instance, the absolute difference between the MMA
ethod and the first-order PPN formalism at an observation angle 

f 40 deg is 1.21 mas for starlight coming from Proxima Centauri,
hile the angular diameter of this star is about 1 mas (S ́egransan

t al. 2003 ). In this respect, a precise location of this star might help
o accurately estimate its wide-binary orbit around α Centauri A and 
 (Banik & Kroupa 2019 ). 
Moreo v er, this bending angle inaccuracy is also greater than �α

isagreement when modelling our gravitational mass as a static or 
 rotating body. Indeed, as reported by Roy and Sen within the
ramework of an asymptotic-based MMA in Kerr geometry (Roy & 

en 2015 ), the deflection angle for distant starlight grazing the Sun is
.7520 arcsec for light ray prograde orbits, whereas 1.7519 arcsec is
chieved in a retrograde scenario. Provided the bending angle value 
f 1.7512 arcsec for a stationary gravitational object via the first-
rder PPN formalism, the corresponding deviation if one neglects 
olar rotation is roughly 0.8 mas, in comparison with an absolute 
ifference of 2 mas when our MMA equation is obviated. 
Besides the assumption of a non-rotating central mass, it should 

e stated that the principal constraint of our MMA model comes 
rom the aforementioned weak-field approximation, that is, when 
 >> r s . This means that our new approach cannot explain the
trong deflection of light by a central mass, where the bending 
ngles are not small (Bisnovatyi-Kogan & Tsupko 2015 ). In this
ituation, light beams trajectories are relatively close to r s (as in the
ase of a Schwarschild black hole) and several turns near the photon
phere are completed before reaching the observer. As a consequence, 
α = 2 mπ rad for an integer m , a physical phenomenon beyond the

cope of our work. 
Despite all our calculations in this article are based on light 

eflection by the Sun, the gravitational light bending by massive 
bjects in the solar system, such as planet Jupiter, has recently 
ained a great deal of attention (Crosta & Mignard 2006 ; Brown
021 ; Li et al. 2022a , b ), due to its potential applications in
icroarcosecond astrometry. After a detailed comparison between 

ur MMA equation and the first-order PPN formalism for distant 
tarlight grazing Jupiter’s limb, we conclude that the difference 
etween both methods is roughly 0.002 μas, far beyond the milliar-
osecond regime described in this article. Ho we ver, this discrepancy
hould be significant in future sub-microarcosecond accuracy for the 
ravitational bending of light (Brown 2013 ). 
It should be emphasized that the fundamental reason for the 

ifference between our MMA results and previous theories is that the
ource and observer are in general not infinitely f ar aw ay, compared
o the impact parameter of the light ray at the deflecting massive
ody, apart from the approximate character of the PPN method 
iscussed in this article. In essence, our exact analytical expressions 
ight constitute useful tools to accurately calculate the gravitational 

eflection angle of light due to a static massive body, which should be
ele v ant to current and future research in order to prevent undesired
rrors in ultraprecise astrometry. 
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