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ABSTRACT

An exact analytical expression for the bending angle of light due to a non-rotating massive object, considering the actual distances
from source and observer to the gravitational mass, is derived. Our novel formula generalizes Darwin’s well-known equation for
gravitational light bending, where both source and observer are placed at infinite distance from the lensing mass, and provides
excellent results in comparison with the post-Newtonian (PPN) formalism up to first order. As a result, the discrepancy between
our recent expression and the PPN approach is 6.6 mas for sun-grazing beams coming from planet Mercury, with significant
differences up to 2 mas for distant starlight. Our findings suggest that these considerations should not be dismissed for both solar
system objects and extragalactic sources, where non-negligible errors might be present in ultraprecise astrometry calculations.

Key words: gravitational lensing: weak —relativistic processes —astrometry.

1 INTRODUCTION

The gravitational deflection of light by a massive body has been
a subject of intense research for over three centuries. According
to Newton (1730), if a light ray from a distant star passes near
a massive body, it would be bent a very small amount due to
the object’s gravity. However, it was not until 1804 when this
bending angle was first calculated by Soldner (1804), resulting in
a value of 0.87 arcsec for sun-grazing starlight. A century later,
Einstein (1916) reported a deflection angle of 1.75 arcsec within the
framework of the general relativity (GR) theory, twice the value as
obtained by Newtonian mechanics. This result was experimentally
confirmed by Eddington from the May 1919 solar eclipse expeditions
(Dyson, Eddington & Davidson 1920; Will 2015) and subsequent
measurements via Very Long Baseline Interferometry (VLBI), a
technique capable of measuring bending angles from distant radio
sources with high accuracy (Shapiro 1967; Lebach et al. 1995; Li
et al. 2022a, b).

Apart from providing a means to test GR, gravitational deflection
of light has been widely employed to observe the properties of
very distant galaxies, as well as to infer the mass of astrophysical
objects, since the massive body acts as a gravitational lens with a
characteristic magnifying effect (Schneider, Ehlers & Falco 1992;
Frittelli 2003; Ye & Lin 2008). Accordingly, gravitational lensing
is indeed a milestone of astronomy with wide-ranging applications,
covering extra-solar planets (Turyshev & Toth 2022), black hole
lensing (Iyer & Petters 2007; Virbhadra 2009), or string theory
(He et al. 2022; Kong, Yang & Yu 2024). In order to calculate
the light deflection angle for static massive objects, the prevalent
GR formalism considers that the path of a light ray is a null
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geodesic in different manifolds (Misner, Thorne & Wheeler 1973;
Chandrasekhar 1983; Wald 1984; Bozza et al. 2005).

An alternative method to study the effect of gravity on light is
the so-called material medium approach (hereafter MMA), based on
the idea of representing the gravitational field as an optical medium
with an effective refractive index. In fact, this different conception
of light bending has a long history since the early days of GR
(Dyson et al. 1920; Whitehead 1922). Eddington himself admitted
that the gravitational deflection effect on light could be imitated
by a refractive medium filling the space round the Sun, giving an
appropriate velocity of light. Specifically, this refractive index at
a distance r from the centre of the Sun should be [1 — (r;/r)] ",
where rg corresponds to the Sun’s Schwarzschild radius (Dyson
et al. 1920). Therefore, a light ray passing through a material
medium will be deviated due to the refractive index variation of
the associated media, in accordance with the well-established GR
explanation.

Apart from the Eddington’s analysis on gravitational light bending,
the MMA was first developed by Tamm during the 1920s (Tamm
1924, 1925). This innovative idea was used by several authors to
discuss the optical phenomena for the deflection of electromagnetic
waves by a gravitational field (Balazs 1958; Plebanski 1960; De
Felice 1971), mainly for non-rotating masses in the Schwarschild
geometry (Fischbach & Freeman 1980; Nandi & Islam 1995; Evans,
Nandi & Islam 1996a, b; Sen 2010; Feng & Huang 2019, 2020),
where the medium refractive index could be expressed as an infinite
power series of (r5/r) terms (Schneider et al. 1992; Petters, Levine &
Wambsganss 2002; Roy & Sen 2019; Meneghetti 2021; Hwang &
Noh 2024). Moreover, the same method was also applied to estimate
the light deflection angle caused by the rotation of gravitating bodies
(Roy & Sen 2015) or charged massive objects (Roy & Sen 2017).

In both theoretical frameworks (i.e. the MMA and GR) some
authors consider an asymptotic scenario where source and observer
are placed at infinite distance from the lensing mass, which is actually
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Figure 1. (a) Schematic representation of our spherical-stratified medium in a non-flat spacetime (i.e. the Schwarschild spacetime in our case). The gravitational
mass M is located at point O and each concentric sphere presents the same refractive index value, according to equation (6). The light source and observer are
placed at coordinates r; and r, respectively, and a light ray propagates between both positions. The closest approach distance to the static mass is ro, whereas the
rotation angle is given by ¢;;. Without loss of generality, we restrict ourselves to the equatorial plane where the polar angle is 7 /2 (b) top view of the equatorial
plane with the elements required to compute the propagation trajectory of a light ray in this graded medium.

areasonable approach given the large distances involved. On the other
hand, some researchers have studied a finite-distance scheme with
specific light paths, addressing the problem numerically (Feng &
Huang 2019, 2020) or via approximate deflection angle equations
(Zschocke 2011; Ishihara et al. 2017; Takizawa & Asada 2023). In
this regard, the formalism provides a means to analytically calculate
the bending angle to any desired order of accuracy by expanding
a general formula in M /r terms (Cowling 1984), where M is the
mass of the gravitational body. In particular, an approximate first
order PPN equation has been widely used throughout the literature
to determine precise bending angle calculations (Will 1993; Ni 2017;
Li et al. 2022a, b). Nevertheless, to the best of our knowledge, an
exact analytical expression for the light deflection angle due to a
stationary massive body, within a finite-distance scenario, has not
yet been reported.

In this article, we employ the MMA formalism to derive an
accurate equation for the gravitational deflection of light by a
static massive object that generalizes Darwin’s well-known formula
(Darwin 1961), where infinite distances from source and observer
to the gravitational mass are assumed. As a result, we show that
non-negligible errors in the positioning of celestial objects should
be avoided if we take into consideration our recent equation.
Furthermore, we also test the validity of our MMA via numerical
calculation of the gravitational time delay of light (commonly named
the Shapiro time delay).

The paper is organized as follows. In Section 2, we present
our MMA method to deduce an exact analytical equation for the
gravitational deflection angle of light in the Schwarschild space-
time, considering the actual distances from source and observer to
the gravitational body. Moreover, the Shapiro time delay is also
revisited within the MMA framework. In Section 3, we describe
our fundamental analytical and numerical results, where the appro-
priateness of our novel equation in ultraprecise astrometry is high-
lighted. Finally, we summarize our main results and conclusions in
Section 4.

2 THEORETICAL BASIS

In this section, we develop our MMA to derive a general equation
for the bending angle of light due to a static massive object. Then,
the Shapiro time delay is addressed theoretically for completeness.

2.1 Material medium approach

Let us first analyse Fig. 1(a), a spherical-stratified medium in a
non-flat space-time (i.e. the Schwarschild space-time in our case).
The gravitational mass M is located at point O and modifies the
refractive index of the surrounding media, in accordance with the
MMA. For our static body, this index of refraction n(r) is spherically
symmetric and depends exclusively on the radial coordinate » and
its Schwarschild radius r; = 2GM /c?, where G is the gravitational
constant and ¢ the speed of light in vacuum. In this context, a light
ray describes a specific path in this graded medium where r; and
r; indicate the positions of source and observer, respectively. The
parameter ry is the closest approach distance to our lensing mass,
whereas ¢;; stands for the angle between both locations. For the sake
of simplicity, we restrict ourselves to the equatorial plane where the
polar angle is 7 /2.

A detailed description of this plane, with the elements required to
compute the propagation trajectory of a light ray in a graded medium,
is depicted in Fig. 1(b). First, we need to pay special attention to the
relation between the radial length of the light’s infinitesimals (Misner
etal. 1973)

re\ 12 .
ar' =dr (1~ 7) = dssind, )
where dr’ corresponds to the proper distance in our curved space-
time, unlike the coordinate distance dr (not shown in this figure)
applicable to a flat space. Moreover, ds denotes the length of an
infinitesimal ray path and d/ is the lateral length.
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Considering the basic relation between the infinitesimal angle de
and ds (Feng & Huang 2019)

rde = ds cos 6, )

and the previous equation (1), we trivially obtain the following
differential equation for light propagation

d N\ —1/2
o A ( - 5) coth, 3)

dr r

which satisfies the renowned Bouguer’s law in geometric optics
n;r; cosd; =nrcosf =gq. )

Here, the impact parameter of the light ray ¢ is a constant for
a spherical-stratified material medium n = n(r), as in our case.
Accordingly, we can express equation (3) as

do _q | (1_5)_”2. ®)

d}’_;‘/nzrz—qz r
Let us now assume that the medium refractive index n(r) is just
the positive square root of Eddington’s proposal (Dyson et al. 1920)

nr = (1- 5)7”2. ©)

r

Introducing equation (6) into equation (5), the general differential
equation for light propagation in such a stratified medium can be
written in the following way

do 1 {r3 —q*(r — rs)} -2 (1 rs)fl/z

a2 q*ri(r —r)

r

@)

which depends on the mass of our central object and the impact
parameter of the light ray.

Within the scope of GR theory, a light beam in a Schwarschild
space-time obeys the following ordinary differential equation in the
equatorial plane (Misner et al. 1973)

®

dr r2 q%r3 r

dﬁ _ 1 [r3 —q*(r — rs)} ~172 (1 rs)—l/z

where, again, g corresponds to the impact parameter of the light ray.
Please, note the similarity between equations (7) and (8). In fact, a
complete equivalence is achieved for the weak-field approximation
when r >> r,. In other words, our MMA formalism reproduces
exactly the propagation of light in a gravitational field, provided that
the ray paths are sufficiently distant from the Schwarschild radius of
the non-rotating body. This requisite is fulfilled in our astronomical
scenarios provided that r; = 2.9 km for the Sun and r = 695 700 km
for sun-grazing light beams.

Hence, the angle ¢;; between positions r; and r; can be accurately
evaluated via the MMA (Feng & Huang 2019; please, see again
Fig. 1(b)

b = v = nor ), rtan@’

Substituting Bouguer’s law, equation (4), into equation (9) and
performing some elementary algebra, we obtain

" nor re\ —1/2
gj= [ dr——e—2_ (1-2 , (10)
J 2,2 2,2
v r\/n°r< —ngry r

where the refractive index n(r) is given by equation (6). It is worth
mentioning that equation (10) has analytical solutions in terms of
incomplete elliptic integrals of first kind, as briefly addressed.

Once the basic formalism has been introduced, let us now study a
specific example where our new approach should be appropriate.

MNRAS 535, 2504-2510 (2024)

Figure 2. Our MMA method applied to a suitable scenario in the solar
system. A light ray coming from Mercury (M,) passes close to the Sun
and reaches the Earth (E;). Due to the gravitational light bending, a virtual
position of each planet occurs, represented by My and E, . In this situation, the
deflection angle Aa™MA) is computed as the difference between the actual
angle o, and the virtual angle oy via equations (10) and (11).

Our light source will be planet Mercury near its solar superior
conjunction, and a light ray coming from this planet passes close
to the Sun and reaches the Earth. This situation is illustrated in
Fig. 2 where our light beam travels from the actual position of
Mercury (M,) to the Earth (E, ). It should be remarked that, due to the
gravitational light bending, an observer on Earth would experience
a virtual position of Mercury (M,). The inverse scenario is fully
applicable, where now E, stands for the virtual location of the Earth.
Furthermore, the average distances from the Sun to each planet are
denoted by rv and rg, ry stands for the closest approach of the ray
path to the Sun, and B is the angle between Mercury (in the absence
of gravitational bending) and the Sun as seen by an Earth’s observer
(Li et al. 2022a, b).

Therefore, the deflection angle Aa™MA is calculated as the
difference between the actual angle o, and the virtual angle o,
(Feng & Huang 2019)

Aa™MY = o — o, = (pom + Por)

pron(5) oeen ()]
— |arccos | — ) +arccos { — )|, (11)
™ TE

where @gm and ¢og correspond to the angle between ry and each
planet’s actual position, evaluated via equation (10). As the difference
between the angles o, and «, is very small, we can consider that 8 =~
B in order to determine a practical expression for the observation
angle .

Additionally, the deflection angle under the PPN formalism up to
first-order reads (Li et al. 2022a, b)

G M,

AN = (1 +y)—
FoC

(cos B —cos ), (12)

where M is the solar mass, sin 8 = ry/rg, siné = ro/ry, and y
stands for the dimensionless PPN parameter used to characterize
the contribution of the space-time curvature to the gravitational
deflection. In this regard, we will assume that y = 1 (as theoretically
established in GR) since this choice does not influence significatively
the results of the positions of celestial bodies in the solar system (Li
et al. 2022a).

‘When ry is far less than the distance from the Sun to both the Earth
(observer) and Mercury (source), equation (12) transforms into the
celebrated Einstein’s formula up to first order (Einstein 1916; Misner
et al. 1973; Mutka & Mihonen 2002)

Ao = ZL (13)
o

where a deflection angle of 1.7518 arcsec for starlight grazing the

solar surface has been universally accepted. As shortly discussed, a
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detailed comparison between the first order PPN formula, equation
(12), and our exact MMA expression will be carried out.

2.2 Exact analytical equation for the bending angle

The analytical solution of equation (10) has been obtained via
a Wolfram Mathematica software. After a careful analysis, the
physically acceptable solution for the angle ¢;; is given by

@ij = 2n(r;) "0(':75&) F(z;, k)
2n(rj) o F(zj. k), (14)
J

where Q% = (ro — r5)(ro + 3r,) and F(z, k) is the Legendre elliptic
integral of the first kind, with the following relations for the Jacobi
amplitude z(r)

2 2rogrs +r(rs —ro+ Q)

sin s 15
R Ey) (4
and the elliptic modulus &
3rs —
K2 = LOWLQ. (16)
20

So, equation (11) can be rewritten as (please, see again Fig. 2)

“5 F (54
ro(rm — 75)

Q@

— 2n(re), | r‘)(%;) F(z(rp), k)]
— {arccos (r—o) + arccos (Q)} . (17
™ e

In the asymptotic case, that is, when both source and observer are
placed at infinite distance from the gravitational body, equation (17)
reduces to the well-known Darwin’s formula (Darwin 1961; Misner
et al. 1973; Mutka & M#honen 2002)

Aa®® — 4\/% [F (% k) ~ Flza, k)] _x, (18)

by just considering rg, rv — 00 in our generalized formula, where
now

s~

— 2n(rm) F(z(rm), k)

rs—ro+ Q
3re—ro+Q°

If only the light source distance to the lensing mass is significantly
higher than the closest approach ry, we can take the limit ry; — o0
to obtain a modified version of equation (17)

roérS e (%k)
ro(rg — rs)

reQ

ro ro b
_ 2\/2 F(zoo,k)} — {arccos (E) + E} , (20)

which constitutes an excellent tool to accurately calculate the
gravitational deflection angle for extragalactic emitters.

sinz?, = (19)

s~

— 2n(rg) F(z(rg), k)

Accurate eq. for the grav. bending of light 2507

2.3 Shapiro time delay calculation

So far, we have analysed the gravitational bending angle on the
basis of our MMA method. Let us now investigate another crucial
parameter related to the effect of gravitational bodies on light
propagation. We are referring to the Shapiro time delay At, the
relativistic time shift in the round-trip travel time for light signals
reflecting off other planets (Shapiro 1964; Shapiro et al. 1971;
Reasenberg et al. 1979). According to the astronomical scenario
described in Fig. 2, At can be easily expressed as

1
At:2|:(t0M+t0E)_g<\/r1%/[_rg+ ”1%"(%)]’ @n

where fgy and fog stand for the light propagation time between rg
and each planet’s actual position (i.e. Mercury and the Earth in our
situation).

The usual way to deduce an exact expression for the time #; that
a light ray takes to travel from from position r; to r; is through GR
considerations (Wald 1984)

2 2 2_ 2

+(GR) T + 5 R AL s [Tj—Ti

Y c c r; 2c \[rj+r’
(22)

nevertheless, we can also apply our MMA formalism to compute
these time lapses in an alternative manner.

Looking back at Fig. 1(b), the parameter #;; can be evaluated as
(Feng & Huang 2019, 2020)

(OMA) _ / onds _ / vondr 23)
i =) e T ) Jiceee

which transforms into the following expression, once the relation
between dr’ and dr, equation (1), has been considered

MMA) _ l | E)_l/z o4

Ty 2
Y c 2,2 _ p2,2 ( r
ri ner ngry

where, again, the refractive index n(r) is given by equation (6).

As in the case of the gravitational light bending, equation (24)
has analytical solutions in terms of incomplete elliptic integrals of
different kinds. However, due to the mathematical complexity of the
final expression and its limited usefulness, we have not included this
new equation in our article. As briefly discussed, we will show the
equivalence between the GR formula for the Shapiro time delay,
equation (22), and our numerical calculations via equation (24).

3 RESULTS

In this section, we present some analytical and numerical results
concerning the gravitational light bending and Shapiro time delay
via our MMA formalism. As a consequence, we want to emphasize
the advisability of using our new analytical expressions to prevent
undesired ultraprecise astrometry errors.

Hence, we represent in Fig. 3 the gravitational deflection angle
for light beams coming from Mercury (please, see again Fig. 2),
where Ao is shown as a function of the angle 8. One notices that
the numerical computation of equation (11; black solid curve) and
Einstein’s first-order formula equation (13; blue solid curve) differ
substantially for higher values of 8. This discrepancy is reduced
in the case of the first-order PPN formalism, equation (12), where
the difference between both methods reaches 15.8 percent when
Mercury is located near its greatest elongation. For completeness, the
deflection angle results derived via Darwin’s formula, equation (18),
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Figure 3. The gravitational deflection angle A« for alight beam coming from
Mercury, passing near the Sun and reaching the Earth, versus the observation
angle B (please, see again Fig. 2). The numerical computation of equation
(11) and the PPN formula up to first order, equation (12), differ for higher
values of 8. Moreover, the MMA equation (17) based on elliptical integrals
fits precisely our numerical calculations. For completeness, the deflection
angle results derived via Darwin’s formula, equation (18), are also depicted.
The inset shows the situation for a sun-grazing beam, where now the error
between both schemes reduces to 0.38 per cent.

are also depicted in Fig. 3, where a full agreement with Einstein’s
equation is attained.

It can be noticed that our MMA formula, equation (17), fits
precisely to the numerical calculation of the deflection angle equation
(11). Moreover, when Mercury is at its superior conjunction (i.e.
B =~ 0.26 deg), the difference between both methods also exists but
to a lesser extent, as appreciated in the figure inset. Accordingly, a
discrepancy of 0.38 per cent is achieved for solar grazing incidence if
we do not consider our MMA equation. Our previous results indicate
the importance of taking into consideration our exact analytical
formula when calculating the gravitational deflection angle Ac,

especially when solar system distances are involved. In fact, non-
negligible errors are also presented when extrasolar distances are
considered, as explained ahead.

Consequently, we have studied in Fig. 4 the absolute difference
between the first-order PPN formalism and our MMA method for Ao
in the case of solar system objects (left and central panels) and ex-
trasolar sources (right panel). This parameter has been computed via
equations (12) and (17) for Figs 4(a) and (b), whereas our asymptotic
formula, equation (20), has been used for distant starlight calculations
(right panel) as a function of the angle 8 and the maximum source-
Earth distance in light years (ly). For an observation angle of 40 deg,
a discrepancy between 1.76 and 1.95 mas is attained for solar system
sources within the asteroid belt distance, while a lower deviation
of 1.21 mas is also encountered for Proxima Centauri, as shown
in Fig. 4(c). Furthermore, significant differences are also reported
for sun-grazing light beams coming from solar system planets like
Jupiter (2.35 mas) and Uranus (2.11 mas), dropping to 0.20 mas for
extrasolar light emitters at larger observation angles (8 ~ 80 deg).

On the other hand, the Shapiro time delay A¢ for different source-
Earth distances is depicted in Fig. 5, where the concrete examples of
Mercury and Jupiter are illustrated. As in Fig. 4, we have assumed
the maximum distances from emitter to observer. The solid lines
represent our MMA results performed numerically via equations
(21) and (24), whereas the squares indicate the At values computed
via GR formalism, equations (21) and (22). A total agreement
between both models is observed for different 8 angles, noting the
appropriateness of our MMA to describe light propagation in the
presence of static gravitational masses.

4 DISCUSSION AND CONCLUSIONS

Summarizing, an MMA has been developed to determine an exact
analytical expression for the bending angle of light due to a static
massive body, considering the actual distances from source and
observer to the gravitational mass. The validity of our new method
has been checked throughout this article.

It is worth mentioning that a key conclusion of our work is the
desirability of taking into account our novel accurate expressions,

(PPN) (MMA)
Ao - Ao (mas)
80 - ! ' 1 | 80
! : ! Jupiter ! !
1 I o .
i - : | ] Proxima Centauri ; 35
60 4 Ml i Uranus | " 60 28
—_ ! ( J ! !
> : : : ! : 13
o [l [ 1 I 1
T [ P rererees | I TTTIIT renm—— u Lend Ve NN ettt ereorcece] s e snen ey 40 0.82
= | 1.95 mas 1 1.76 mas 11.56 mas 1.34 mas! t1.21 mas
! ! L J . 0.60
20 ; : : ! 20
1 1 1
. . ! . I 038
1 1
b) ) : i : (c) : | — 0.15
4.8x10° 6x10°  7.2x10° 1.2x10™ 2.4x10*  3.6x10" 1 2 4 6 8 10

maximum Earth-source distance (ly)

Figure 4. Absolute difference between the first-order PPN formalism and our MMA method for A« in the case of solar system objects (left and central panels)
and extrasolar sources (right panel). This parameter has been computed via equations (12) and (17) for Figs 4(a) and 4(b), whereas our asymptotic formula,
equation (20), has been used for distant starlight calculations (right panel) as a function of the angle 8 and the maximum source-Earth distance in light years. It
can be noticed that the contours in the right panel are flat due to the large distances involved (that is, the source is infinitely far away in all cases), but our results
are non-zero and depend on the angle 8 because the Earth is not at infinite distance from the Sun, compared to the impact parameter of the light ray.
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Figure 5. Shapiro time delay At versus the maximum source-Earth distance
evaluated numerically via our MMA model, equations (21) and (24), for
two different observation angles B. The red squares indicate the Ar values
computed via GR formalism, equations (21) and (22). A full agreement
between both theoretical models is observed.

equations (17) and (20), when calculating the gravitational deflection
angle of light. In fact, relevant errors in the positioning of celestial
objects may occur if our model is overlooked, as presented in Figs 3
and 4. For instance, the absolute difference between the MMA
method and the first-order PPN formalism at an observation angle
of 40 deg is 1.21 mas for starlight coming from Proxima Centauri,
while the angular diameter of this star is about 1 mas (Ségransan
et al. 2003). In this respect, a precise location of this star might help
to accurately estimate its wide-binary orbit around « Centauri A and
B (Banik & Kroupa 2019).

Moreover, this bending angle inaccuracy is also greater than A«
disagreement when modelling our gravitational mass as a static or
a rotating body. Indeed, as reported by Roy and Sen within the
framework of an asymptotic-based MMA in Kerr geometry (Roy &
Sen 2015), the deflection angle for distant starlight grazing the Sun is
1.7520 arcsec for light ray prograde orbits, whereas 1.7519 arcsec is
achieved in a retrograde scenario. Provided the bending angle value
of 1.7512 arcsec for a stationary gravitational object via the first-
order PPN formalism, the corresponding deviation if one neglects
solar rotation is roughly 0.8 mas, in comparison with an absolute
difference of 2 mas when our MMA equation is obviated.

Besides the assumption of a non-rotating central mass, it should
be stated that the principal constraint of our MMA model comes
from the aforementioned weak-field approximation, that is, when
r >> r,. This means that our new approach cannot explain the
strong deflection of light by a central mass, where the bending
angles are not small (Bisnovatyi-Kogan & Tsupko 2015). In this
situation, light beams trajectories are relatively close to rg (as in the
case of a Schwarschild black hole) and several turns near the photon
sphere are completed before reaching the observer. As a consequence,
Ao = 2mm rad for an integer m, a physical phenomenon beyond the
scope of our work.

Despite all our calculations in this article are based on light
deflection by the Sun, the gravitational light bending by massive
objects in the solar system, such as planet Jupiter, has recently
gained a great deal of attention (Crosta & Mignard 2006; Brown
2021; Li et al. 2022a, b), due to its potential applications in
microarcosecond astrometry. After a detailed comparison between
our MMA equation and the first-order PPN formalism for distant
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starlight grazing Jupiter’s limb, we conclude that the difference
between both methods is roughly 0.002 pas, far beyond the milliar-
cosecond regime described in this article. However, this discrepancy
should be significant in future sub-microarcosecond accuracy for the
gravitational bending of light (Brown 2013).

It should be emphasized that the fundamental reason for the
difference between our MMA results and previous theories is that the
source and observer are in general not infinitely far away, compared
to the impact parameter of the light ray at the deflecting massive
body, apart from the approximate character of the PPN method
discussed in this article. In essence, our exact analytical expressions
might constitute useful tools to accurately calculate the gravitational
deflection angle of light due to a static massive body, which should be
relevant to current and future research in order to prevent undesired
errors in ultraprecise astrometry.
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