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tion fixe de I'espace-temps. Comme résultat, nous obtenons une description de 1'espace
quantique au bord de la triangulation donnée par des réseaux de spin, en établissant
ainsi une connexion entre ’approche des mousses de spin et la Gravité Quantique
a Boucles. Finalement, nous analyserons la limite semiclassique de I'amplitude pour
un 4-simplex et obtenons comme résultat que la contribution dominante est donnée
par 'exponentielle de 'action de Regge pour des données au bord décrivant bien une
géométrie Lorentzienne.
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Preface

Le travail présenté ici a eu comme principale motivation la compréhension de I’espace
de bord associé a des modeles de mousses de spin en gravité quantique. Une telle
compréhension est de grande importance pour le calcul des observables, notamment le
propagateur du graviton (Rovelli 2006). Le modele couramment utilisé pour ces calculs
a été le modele de Barrett et Crane (BC) paru dans (Barrett et Crane 1998 et 2000).
Des inconsistances dans le calcul du propagateur en utilisant le modele BC ont été
reportés dans (Alesci et Rovelli 2007). En suivant ce travail, nous nous sommes mis
a réviser la construction du modele BC et cela a donné lieu a la construction d’une
nouvelle classe de modeles. La définition et étude de ces modeles a été présentée dans
une série d’articles :

[1] Engle J., Pereira R., and Rovelli C. (2007) The Loop-quantum-gravity vertex-
amplitude Phys. Rev. Lett. 99 161301.

[2] Engle J., Pereira R., and Rovelli C. (2008) Flipped spinfoam vertex and loop gravity
Nucl. Phys. B798 251-290.

[3] Pereira R. (2008) Lorentzian LQG vertex amplitude Class. Quant. Grav. 25 085013.

[4] Engle J., Livine E., Pereira R. and Rovelli C. (2008) LQG vertex with finite Immirzi
parameter Nucl. Phys. B799 136-149.

[5] Engle J. and Pereira R. (2008) Coherent states, constraint classes, and area opera-
tors in the new spin-foam models Class. Quant. Grav. 25 105010.

[6] Engle J. and Pereira R. (2009) Regularization and finiteness of the Lorentzian LQG
vertices Phys. Rev. D 79 084034.

[7] Barrett J.W., Dowdall R.J., Fairbairn W.J., Hellmann F. and Pereira R. (2009) Lo-
rentzian spin foam amplitudes : Graphical calculus and asymptotics. arXiv:0907.2440
[gr-qc].



Les modeles ont été définis d’abord pour le cas de signature Euclidienne, dans [1] et
[2], et généralisés ensuite pour le cas de signature Lorentzienne dans [3]. Les premiers
modeles définis ont été nommés Flipped et comme on verra plus tard correspondent
au cas ou le parametre de Immirzi est fixé a zéro. Les modeles pour un parametre de
Immirzi arbitraire ont été donnés dans [4]. Dans ce manuscrit nous nous concentrerons
dans le cas de signature Lorentzienne.

L’organisation de ce manuscrit est la suivante. Dans le premier chapitre nous donne-
rons une introduction au domaine des mousses de spin. L’idée est de donner quelques
éléments essentiels pour la compréhension de la suite du texte et au méme temps
introduire le travail présenté ici dans le contexte plus large du domaine. Dans le
deuxieme chapitre nous présenterons la construction de 'amplitude pour un 4-simplexe,
en décrivant ’espace de phase classique qui lui est associé. On finira ce chapitre avec
une preuve que cette amplitude est finie, résultat qui est paru dans [6]. Les différences
entre notre construction et le modele BC seront discutées au fur et a mesure. Dans le
chapitre 3 nous construirons ’amplitude pour une triangulation arbitraire. En utilisant
la notion d’état cohérent nous présenterons cette amplitude sous la forme d'une somme
sur des histoires classiques. Des modeles de mousses de spin construits de cette facon
ont été considérés en premier par (Livine et Speziale 2007) dans le contexte de la théorie
BF SU(2) et ensuite par (Freidel et Krasnov 2008) pour des modeles de la gravité en
4 dimensions en signature Euclidienne. Voir aussi (Conrady et Freidel 2008a) pour la
construction de l'intégrale de chemin. Ce chapitre consiste donc d'une adaptation au
modele Lorentzian présenté ici de leur construction. Dans le chapitre 4 ’analyse semi-
classique de I'amplitude d'un 4-simplexe est présentée. Cela nous permettra de relier
cette amplitude a une géométrie de Regge et aussi a vérifier quelques hypotheses dans
la procédure de quantification faites au chapitre 2. Ces résultats sont parus dans [7]. Le
dernier chapitre est consacré a une conclusion ou nous discuterons quelques problemes
laissés en ouvert.



Chapitre 1

Introduction

Dans ce chapitre nous réviserons la littérature importante pour la compréhension du
travail présenté dans cette these avec le but de motiver les résultats présentés dans
les chapitres suivants. La présentation suivra un point de vue historique en essayant
de mettre en contexte le travail présenté ici. Nous essayerons d’emphatiser la pluri-
disciplinarité caractéristique au domaine et comment le concept de géométrie quantique
joue le role de point de rencontre de différentes approches. Quelques sous sections seront
plus techniques car elles contiennent des résultats qui seront importants pour la suite.

Préliminaires

Cette these appartient a un domaine caractérisé par la pluralité des influences et
I’échange d’idées parmi différents domaines de la physique et des mathématiques. L’ap-
proche dite des mousses de spin pour la gravité quantique peut étre vue comme venant
des Théories des Champs Topologiques, ot la gravité est formulée comme une théorie
BF soumise a des contraintes. Les mousses de spin peuvent étre considérées aussi comme
une version sur réseau de la Relativité Générale, dans I'esprit de la Gravité Quantique
a Boucles, et représente dans ce contexte un essai de construction de I'opérateur Ha-
miltonien pour cette théorie. Une troisieme possibilité c¢’est de considérer les mousses
de spin comme une réécriture du calcul de Regge, avec des variables différentes.

En suivant ce dernier point de vue, l'introduction historique que l'on prétend don-
ner dans ce chapitre demeure avec le papier de Regge (Regge 1961), qui a proposé
une nouvelle voie pour traiter la RG classique. L’idée essentielle était d’enlever le role
prédominant que les transformations par difféomorphismes avait dans les théories des
champs, dont le titre du papier ” General Relativity without coordinates”. Il est raison-
nable de penser que ce saut conceptuel puisse avoir des conséquences fondamentales
pour la quantification de la théorie. Le fait que les difféomorphismes doivent étre traités
différemment des autres symétries de jauge présentes dans la nature est probablement

9



10 CHAPITRE 1. INTRODUCTION

I'idée la plus remarquable de ce papier.

Le calcul de Regge a une histoire pleine de détours, en ayant expérimenté a la fois des
moments de grand enthousiasme et a la fois des moments de complet abandon. Son
importance a été remarquée par Wheeler, non seulement conceptuellement mais aussi
comme un outil pour la relativité numérique, dans son cours a 1’école aux Houches
(Wheeler 1964). Dans ce méme cours il propose 'idée de la mousse de 'espace-temps,
selon laquelle 'espace-temps parait continu a des grandes échelles mais doit avoir des
courbures importantes avec éventuellement des différentes topologies a des échelles
petites. Cela arriverait car a ces tres petites échelles on doit attendre des déviations
importantes de la platitude et donc I'occurrence de collapse gravitationnel. Ce concept
de la mousse d’espace-temps a influencé quasiment toutes les approches pour la gravité
quantique jusqu’au moment.

Ces deux idées, celle du calcul de Regge et celle de la mousse de ’espace-temps seront
reconsidérées plus tard par Hawking (Hawking 1978) comme une fagon d’implémenter
I'intégrale de chemin (Euclidienne) pour la gravité quantique. L’avantage d’utiliser le
calcul de Regge est qu’il est naturellement adapté a des extensions a des différentes
topologies.

Minisuperespace simplicial

La construction de l'intégrale de chemin pour le calcul de Regge a été décrite par Hartle
(Hartle 1985). Nous la révisons ici et cela nous permettra d’établir le programme pour
la suite quand on traitera les mousses de spin. Hartle s’est concentré sur la gravité
Fuclidienne et nous adapterons ici la construction pour la signature Lorentzienne.
Des questions importantes dans le contexte Euclidien, comme par exemple le fait que
I’action gravitationnelle n’a pas de minimum du a des transformations conformes, ne
seront pas touchées ici.

On s’intéresse principalement a l'intégrale fonctionnelle :

U (3-geometries h) = Z e (1.1)

4-geometries g

Les géométries 4-dimensionnelles g sur lesquelles on somme doivent étre restreintes aux
géométries 3-dimensionnelles A au bord de la région d’espace-temps considérée. Dans
le cas FEuclidien, la fonctionnelle W(h) peut étre interprétée comme la fonction d’onde
de I'univers (Hartle and Hawking 1983) *.

1. Une intégrale de chemin pour la gravité a été proposée en premier dans (Misner 1957) d’apres
une suggestion par Wheeler. La définition de ’expression au dessus est en fait un probleme dans les
cours de Wheeler aux Houches.
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Tout le probleme réside dans une définition précise de cette somme. La stratégie suivie
ici est de restreindre la somme a des géométries simpliciales, ce que 1'on appelle une
approximation de minisuperespace simplicial pour 'intégrale fonctionnelle. Pour bien
spécifier une configuration géométrique, considérons un réseau des simplexes ¥, c-a-d,
considere un ensemble de vertex du réseau et les combinaisons permettant de former
les autres simplexes de la triangulation : segments, triangles, tétraedres et 4-simplexes.
On les dénotera e, t, 7 et o, respectivement, en suivant la notation anglaise. On pourra
aussi utiliser la triangulation duale X*, ou les vertexes v sont duaux aux 4-simplexes, les
segments (duaux) e* sont duaux aux tétraedres et les faces f sont duales aux triangles.

Ensuite, on associe des longueurs carrées [? & chaque segment du réseau. Selon le signe
de [? le segment peut étre du type espace, temps ou nul. Ces longueurs ne sont pas toutes
indépendantes et satisfont a un certain nombre de contraintes qui garantissent que
des 4-simplexes géométriques peuvent bien étre reconstruits 2. L’intégrale fonctionnelle
s’écrit :

SR(2)

V(2 econ,) = / du(l?,e Cint¥y) e n . (1.2)
c

0¥ et intX dénotent respectivement le bord et 'intérieur du réseau simplicial 2. du(l,)
est une certaine mesure d’intégration sur les longueurs des segments a l'intérieur de la
triangulation. L’intégrale au dessus n’est pas en général bien définie et un certain choix
de contour d’intégration C doit étre fait. L’action Sg est donnée par :

Sp=>_ A(t)(t). (1.3)

tCYo

A(t) est I'aire du triangle t. £(t) est 'angle de déficit autour ce triangle et est défini

par :
e(t) =) 0(t,v), (1.4)

ou la somme est sur les 4-simplexes v partageant le triangle ¢ et 6(v,t) est I'angle
diédral entre les deux tétraedres dans v partageant ¢ (voir la figure 1 pour un exemple
en deux dimensions). L’angle dihédral sera défini au chapitre 2.

Remarque que, supposant la mesure et le contour d’intégration bien définis, I’expression
au dessus nous fournit directement une évaluation numérique de l'intégrale fonction-
nelle. Aussi, 'approximation simpliciale integre de fagon tres naturelle des topologies
différentes dans la somme, ce qui permet une discussion du role que la topologie peut

2. Une condition suffisante est que la métrique g, (v) associée au 4-simplexe v, et reconstruite
avec les 10 longueurs associées aux segments formant ce simplexe, ait une signature (—, +, +, +) (voir

Sorkin 1974)
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FIGURE 1.1 — Exemple d’une triangulation simpliciale en 2d.

jouer en gravité quantique. L’espoir est qu’une telle stratégie puisse donner des résultats
physiquement raisonnables, méme avec une approximation grossiere. L’avantage de
cette approche est que, en principe, on pourrait améliorer ’approximation autant que
I’'on veut en prenant des triangulations de plus en plus fines.

Les questions manquantes sont la mesure et le contour d’intégration. Une condition
pour le choix de la mesure est que la loi de composition pour les amplitudes quan-
tiques soit satisfaite. Le contour d’intégration doit étre choisi de facon que l'intégrale
soit convergente et t.q. elle représente correctement une somme sur des géométries
compactes.

Un choix naturel pour la mesure pourrait étre :

an(2) = (@) T az, (15)

eCintd

olt dI? est la mesure de Lebesgue et
9 1 siinégalités simpliciales satisfaites
plle) = 0 sinon (1.6)

Un bon choix de la mesure est cependant un probleme en ouvert dans le domaine. On
verra plus tard que 'approche des mousses de spin suggere naturellement une classe
de mesures. Le choix de contour est également problématique et on y reviendra plus
tard quand on essayera de définir 'intégrale de chemin avec des mousses de spin.

De l'autre coté, on pourrait envisager qu’'un choix de contour ne soit pas absolu-
ment nécessaire. En effet, éventuellement nous sommes intéressés au calcul des valeurs
moyennes d’observables au bord de la triangulation >. On s’intéresse a des observables
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au bord car, a la fin, ce n’est que des mesures faites au bord d'une région de I'espace-
temps qui seront accessibles a des expériences. La valeur moyenne d’un observable est
donnée par :

0y o e dull2.c < OZEEOM V()
T dnliE e C 0% )W) Uo(E)

(1.7)

Wy (1?) représente un certain état du vide - ou du bord - et son choix dépend de 1’ob-
servation que l'on veut faire.

Un modele pour la gravité, en utilisant le calcul de Regge - et dans le contexte de
la gravité a 3 dimensions - a été proposé par Regge lui méme en collaboration avec
Ponzano (Ponzano et Regge 1968), en suivant un chemin tout a fait inattendu. Ce
modele représente le premier exemple d’une mousse de spin pour la gravité.

Modele de Ponzano-Regge

Le point de départ pour Ponzano et Regge a été de considérer le comportement asymp-
totique du 65 symbole de Wigner :

{jl J2 jz}
Ja Js Je

A fin d’énoncer leur résultat, on représente un 65 symbole comme un tétraedre, chaque
spin j; étant associé a un segment de ce tétraedre :

Les longueurs géométriques sont données par j; + % Le comportement asymptotique
du 65 pour des spins larges peut étre séparé en deux cas différents, selon le signe du
volume carré V2 du tétraddre construit avec les 6 spins. Si V2 > 0 alors un vrai tétraedre
géométrique peut étre construit. Le cas V2 < 0 peut étre vu comme un extension a la
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signature Lorentzienne (voir Barrett et Foxon 1994). Pour V2 > 0, Ponzano et Regge
obtienne la formule suivante :

o J2 U3 1 : 1) m
ST ~ et =10.+— 1.8
{ Ji Js s } Vizay (Z (] 2 4) (18)

Pour V2 < 0, la formule asymptotique est donnée par :

jl j2 .j3 1 . 1)
SO ~——ucosDe — e+ =) Imb, 1.9
{34 Js s } 2/ 127V Xp( |Z€: (j 2 |> (1.9)

ot @ :=3Y"_ j.Ref.. L’exponentielle représente un effet tunnel vers la région V2 < 0.

Le cas d’intérét pour nous est celui ou un vrai tétraedre peut étre construit et donc
V2 > 0. Le comportement semiclassique du 65 dans ce cas est décrit par I'action de
Regge pour le tétraedre :

1
Shegge = Y (ye - 5) f.. (1.10)

e

Ce résultat surprenant a conduit les auteurs a proposer le 65 comme le point de départ
pour la construction d’'un modele pour la gravité quantique en trois dimensions. Le
modele est spécifié par une amplitude associée a chaque réseau simplicial :

Zen =y (-0 J[ @i+ D]] { o } (1.11)

Je e T

ou e et 7 sont des segments et des tétraedres de la triangulation. Il est important de
remarquer que 'amplitude ainsi définie est en général infinie et doit étre régularisée.
Ponzano et Regge proposent une procédure de régularisation et d’autres procédures
sont aussi possibles.

Le fait que la théorie des représentations du groupe SU(2) puisse étre utile pour la
gravité quantique a été remarqué par Penrose (Penrose 1971), en suivant une approche
completement indépendante. Son intuition était que ’espace-temps doit étre construit
a partir de structures completement combinatoires, données par des réseaux de spin.
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Réseaux de spin

Un réseau de spin est donné par un graphe dans le plan, chaque ligne du graphe
portant une représentation irréductible du groupe SU(2). Chaque réseau de spin en-
code un certain calcul avec des tenseurs invariants sous l'action de SU(2). On sui-
vra ici (Barrett et Naish-Guzman 2009). Considere deux représentations de SU(2) a
et b, pas nécessairement irréductibles. Un opérateur d’entrelacement entre a et b est
représenté dans un diagramme par une boite connectant deux lignes externes portant
les représentations a et b :

‘ -

Un exemple est donné par 'opérateur d’entrelacement trois-valent :

ol a = jl ®j2 et b:jg

Des opérateurs d’entrelacement peuvent étre composés, soit horizontalement, et dans
ce cas on représentera les deux diagrammes dans la méme ligne, soit verticalement,
ou les lignes doivent se rencontrer et former des nouvelles lignes continues. Tout dia-
gramme peut étre construit a partir de la représentation fondamentale 1/2 et une ligne
sans label portera toujours la représentation fondamentale. Tout diagramme peut étre
construit a partir des diagrammes de base suivants :

L
N

soit, I'identité, le max, le min et le croisement, resp. Les lois pour le calcul diagramma-
tique ont été introduites par Penrose, sous la forme de son calcul binoriel, et généralisées
plus tard par Kauffman (Kauffman 1994) pour le cas g-déformé. Kauffman introduit
un parametre de déformation A, A? = ¢. Le calcul binoriel correspond & A = —1. Les
lois de base sont les suivantes :
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()--

e

Ces lois peuvent étre comprises comme des opérations avec des tenseurs transformant
sous certaines représentations de SU(2). Le diagramme min est représenté par le tenseur
antisymétrique avec des indices en bas €, et le max avec le méme tenseur avec des
indices en haut €. La premiere identité vient donc du calcul suivant : €,,,e™" = =i, =
—2. En évaluant la partie a droite de la deuxiéme identité, pour A% = 1, on obtient :
A(€mne™ + 6k 6L) = Ad%s! . Ce qui nous apprend comment défaire un croisement dans
un diagramme. Cela définit une matrice R : a ® b — b ® a donnée par 'application qui
interchange les deux arguments fois A.

et

Cela définit un calcul pour des diagrammes dessinés dans le plan. On pourrait aussi
considérer des diagrammes dessinés librement en trois dimensions en gardant pour cela
I'ordre des arguments en chaque vertex.

L’utilisation des réseaux de spin a été proprement justifiée par l'analyse canonique
de la Gravité Quantique a Boucles (Rovelli et Smolin 1988), ou les réseaux de spins
apparaissent comme une base pour ’espace d’Hilbert cinématique invariant par ’action
des difféomorphismes. La stratégie en GQB a été d’implémenter sur un réseau les
nouvelles variables pour la RG découvertes par Ashtekar (Ashtekar 1986), qui on rendu
la gravité beaucoup plus proche des théories de jauge. Il est important de remarquer
que les similarités avec les théories de jauge regardent seulement le group de Lorentz
interne et pas les transformations par difféomorphisme. Toute la magique de la GQB est
précisement de traiter ces deux groupes de fagons completement différentes. Le groupe
de Lorentz est traité plus ou moins comme un groupe de jauge interne en Théorie de
Jauge sur Réseau. Les difféos sont traités directement par la discrétisation, ce qui nous
fait revenir a l'intuition de Regge.

La GQB nous fournit une procédure de quantification précise et générale, en établissant
une nouvelle facon de penser la quantification canonique en améliorant la procédure
standard de Dirac et autres (Dirac 1964).

Le probleme majeur de quantifier la gravité n’a cependant pas encore été résolu. La
difficulté est liée a la construction de l'opérateur Hamiltonien, plus précisement aux
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plusieurs ambiguités avec lesquelles nous sommes confrontées en essayant de le définir.
Le point est que peut étre la voie canonique pour quantifier la gravité n’est pas le choix
le plus naturel, la gravité étant en essence covariante.

Une approche plus covariante serait donc plus appropriée pour le probleme en question.
Une telle approche est donnée par I'intégrale de chemin de Feynman. Comme discuté
avant, cette approche a été suivie par Hawking et collaborateurs et la le calcul de
Regge a été utilisé pour décrire le concept de la mousse d’espace-temps. Les mousses
de spin nous fournissent un nouveau regard a l'intégrale de chemin pour la gravité.
C’est un nouveau regard parce que des variables différentes sont utilisées pour décrire
des géométries simpliciales, telles que la gravité est reformulée comme une théorie de
jauge sur réseau. Cela suggere naturelement une connexion avec la GQB. En effet
les modeles de mousses de spin en 4d ont été introduits en premier par Reisenberger
(Reisenberger 1994, voir aussi Iwasaki 1994) justement avec la motivation d’introduire
un opérateur Hamiltonien pour la GQB. Ceux ci utilisent des techniques venant des
modeles topologiques sur réseau introduits plut tot par Ooguri (Ooguri 1992, voir aussi
Boulatov 1992) dans le contexte des théories des champs topologiques. Le point de
départ pour Reisenberger a été la théorie de Plebanski (Plebanski 1997), ou la gravité
est formulée comme une théorie BF (Horowitz 1989) contrainte. Car les mousses de
spin sont dérivées a partir des théories topologiques, une mesure naturelle est suggerée.

La procédure proposée par Reisenberger a été d’abord de quantifier la partie topo-
logique, a la Ooguri, et apres d’imposer les contraintes, dans le méme esprit de la
recette de Dirac pour I'imposition de contraintes pour la quantification des systemes
canoniques.

Un modele topologique sur réseau est donné par une somme sur des représentations
irréductibles de certaines amplitudes associées a des simplexes formant le réseau en
question. Cela définit une fonction de partition associée a chaque complexe X :

Ts = Z H A, H A, H A, (1.12)

iy ot T

Les contraintes qui réduisent la théorie BF a la gravité vont donc restreindre les
repésentations sur lesquelles on somme, ce qui brise I'invariance topologique du modele
et introduit des dégrés de libertés locaux. Cette procédure générale, il faut bien le
remarquer, est encore tentative. La question qui se pose est si les dégrés de liberté
physiques de la théorie continue sont bien récupérés apres 'imposition de contraintes
et qu'une certaine limite continue soit définie.

La difficulté principale avec ’approche de Reisenberger a été 'imposition des contraintes.
Cela est du au fait que les contraintes de la théorie SU(2) qu'il était en train d’utiliser
était trop compliquées pour étre résolues exactement. Reisenberger a ainsi proposé une
imposition plus faible des contraintes, mais un modele - au sens décrit ci dessus - n’a
pas pu étre écrit (Reisenbereger 1997, voir aussi Reisenberger et Rovelli 1997).
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Un chemin différent a été suivi par Barrett et Crane (Barrett et Crane 1998). L’idée
était de commencer avec le tétrahedre quantique de Barbieri (Barbieri 1998, voir aussi
Baez et Barrett 1999) en 3 dimensions et cette idée a été utilisée pour la quantification
du 4-simplexe en quatre dimensions. Les auteurs ont été capables de définir un modele
de mousse de spin, d’abord pour signature Euclidienne et ensuite généralisé pour la
signature Lorentzienne (Barrett et Crane 2000). En focalisant sur le cas Lorentzien,
leur modele est basé sur une amplitude de vertex donnée par un symbole 107, labelé
par dix nombres réels p,p, associés a des segments duaux d’un graph avec 5 vertex

labelés par a,b=1...5 :

Il est donné explicitement par :

105 (pas) : / H dz, H (Tq, 7). (1.13)
Q

x4
1 a=1

()1 est 'hyperboloide dans 'espace de Minkowski et le propagateur K, ,(x,,xp) est
défini par

sinpr(x,y)
(#,y) = ————

K
psinhr(x,y)’

p

(1.14)

ou r(x,y) est la distance hyperbolique entre x et y.

Nous suivrons ici un chemin similaire. Dans le prochain chapitre nous commencerons
par réviser la construction de Barbieri pour le tétraedre quantique en trois dimensions
et cela motivera la discussion sur le 4-simplex. Nous identifierons I'espace de phase
associé a ce systeme classique et nous lui proposérons une certaine quantification. Le
résultat final sera une amplitude pour le 4-simplex jouant le role du symbole 105 dans
le modele BC. Cette amplitude de vertex sera utilisée comme base pour la construction
du modele de mousse de spin dans le chapitre suivant. Toujours quand approprié nous
remarquerons les différences entre notre construction et celle du modele BC.
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Preface

The main motivation of the work presented here was to understand the boundary space
related to spin foam models for gravity, this understanding being of great importance
for the computation of observables, such as the graviton propagator (Rovelli 2006).
The model used in these calculations was the Barrett-Crane (BC) model (Barrett and
Crane 1998 and 2000) and some inconsistencies in computing components of the gravi-
ton propagator using the BC model were reported in (Alesci and Rovelli 2007). This
has led to a review of the BC construction and to the proposition of a new class of
models. The definition and study of these models have been given in a series of articles
listed below:

[1] Engle J., Pereira R., and Rovelli C. (2007) The Loop-quantum-gravity vertex-
amplitude Phys. Rev. Lett. 99 161301.

[2] Engle J., Pereira R., and Rovelli C. (2008) Flipped spinfoam vertex and loop gravity
Nucl. Phys. B798 251-290.

[3] Pereira R. (2008) Lorentzian LQG vertex amplitude Class. Quant. Grav. 25
085013.

[4] Engle J., Livine E., Pereira R. and Rovelli C. (2008) LQG vertex with finite Immirzi
parameter Nucl. Phys. B799 136-149.

[5] Engle J. and Pereira R. (2008) Coherent states, constraint classes, and area opera-
tors in the new spin-foam models Class. Quant. Grav. 25 105010.

[6] Engle J. and Pereira R. (2009) Regularization and finiteness of the Lorentzian LQG
vertices Phys. Rev. D 79 084034.

[7] Barrett J.W., Dowdall R.J., Fairbairn W.J., Hellmann F. and Pereira R. (2009)
Lorentzian spin foam amplitudes: Graphical calculus and asymptotics. arXiv:0907.2440
[gr-qc].
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The models were first defined for the Euclidean signature, in [1] and [2], and later
generalized to the Lorentzian case in [3]. The first models defined for both signatures
were called Flipped, and were later generalized with the introduction of the Immirzi
parameter v in [4]. We will see that the Flipped models correspond to the limit v — 0.
We will focus here on the case of Lorentzian signature.

The outline of the manuscript is the following. In chapter 1 we give a historical in-
troduction to the spin foam field, giving the basic background material for the under-
standing of the rest of the manuscript. The aim is to put the work presented here in
the larger context of the field. In chapter 2 we give our construction for the 4-simplex
amplitude. We present the classical phase space associated to a 4-simplex and propose
a quantization procedure. We conclude the chapter with a proof of fineteness for the
amplitude, given in [6]. The differences to the BC construction are pointed out when
appropriate. In chapter 3 we construct an amplitude for a general triangulation by
gluing simplices together. With the use of coherent sates we are able to write this
amplitude as a sum over classical histories. Spin foam models using coherent states
were first considered in (Livine and Speziale 2007) in the case of SU(2) BF theory and
in (Freidel and Krasnov 2008) in the context of Euclidean gravity. See (Conrady and
Freidel 2008a) for the construction of the path integral. We adapt their construction
to the Lorentzian model presented here. In chapter 4 we perform the semiclassical
analysis of the 4-simplex amplitude presented in chapter 2, and relate it to a Regge
4-simplex geometry, testing some of the assumptions made in the construction of this
amplitude in chapter 2. The results of this chapter appeared in [7]. Finally we conclude
and point out some open problems.



Chapter 1

Introduction and overview

In this chapter, we review the literature relevant for the work of this thesis and try
to motivate the results presented in the following chapters. The presentation will be
somehow historical, in order to put in context the work presented here. We try to
emphasize the multi-disciplinary history of the field and how the concept of quantum
geometry is the meeting point of very different approaches. Some subsections will be
given a detailed technical description, as they represent important background material
for the rest of the manuscript.

Preliminaries

The work of this thesis belongs to a field known for the plurality of influences and
interchange between different domains of physics and mathematics. The spin foam
approach to gravity can be seen as coming from Topological Field Theories, gravity
being constructed as a constrained BF theory. It can be seen as well as a lattice
version of General Relativity, in the spirit of Loop Quantum Gravity, representing in
this context a tentative construction for a Hamiltonian evolution. A third possibility
is to consider spin foams as a different look at Regge calculus, written in different
variables.

From that perspective, the historical overview that we pretend to give in this chapter
starts with Regge’s paper (Regge 1961), where a conceptually new way of treating
(classical) GR was proposed. It is conceptually new because it takes away the im-
portance of continuous diffeomorphisms (diffeos) from the construction of the theory,
hence the title ”General Relativity without coordinates”. It is reasonable to believe
that this conceptual shift might have strong consequences for the quantization of the
theory. The fact that diffeos should be treated differently than other gauge symme-
tries present in nature is probably the most remarkable idea of Regge’s paper and, we
believe, should be kept in mind.

23
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Regge calculus has a long and twisted history, having followed times of great enthusiasm
and times of abandon during the years. Its importance was first advertised by Wheeler,
conceptually but also as a tool for numerical relativity, in his lecture notes at Les
Houches (Wheeler 1964). He further introduces in the same course the idea of a space-
time foam, according to which space-time appears smooth on large scales but is highly
curved with possibly different topologies on very short scales. This is because, on
these very short scales, one should expect a high deviation from flatness and therefore
the appearance of wormholes and other forms of gravitational collapse. The idea of a
space-time foam is a very influential concept and nearly every approach to quantum
gravity aims at consistently reconstruct this scenario.

Both ideas, Regge calculus and the concept of the space-time foam, were reconsidered
later by Hawking (Hawking 1978) as a way to implement a path integral for (Euclidean)
quantum gravity. The advantage of Regge calculus is that it allows very naturally an
extension to different topologies and hence fits well with the foam concept.

Simplicial minisuperspace

The construction of a path integral using Regge calculus was nicely described by Hartle
(Hartle 1985). We review it here as it sets up the program we intend to follow later
with spin foams. His construction was for Euclidean quantum gravity, and we will
make small adjustments to deal with the Lorentzian signature. Important questions in
the FEuclidean context, such as the unboundedness of the gravitational action due to
conformal transformations (Gibbons, Hawking and Perry 1978) will be sidelined.

The main object of interest is the functional integral:

:S(g9)
U (3-geometries h) = Z e (1.1)

4-geometries g

The 4-geometries g over which one sums over should agree with the 3-geometries h
on the boundary of the region of space time considered. In the Euclidean case, the
functional W(h) can be interpreted as the wave function of the universe (Hartle and
Hawking 1983) 1.

Properly defining the sum above is the main goal of any path integral approach for
gravity. The strategy here is to restrict the sum to simplicial geometries only, defining
hence what Hartle calls a simplicial minisuperspace approximation for the functional
integral. To specify a geometrical configuration, first fix a simplicial net X, that is,
specify the vertices of the net and the combinations that make up the higher simplices

!The first appearance of a path integral for gravity was in (Misner 1957) after a suggestion by
Wheeler. The definition of the expression above is actually a problem in Wheeler’s lecture notes!
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of the triangulation: edges, triangles, tetrahedra and 4-simplices. We will note them
e, t, T and o respectively. We may also work with the dual graph >*, where vertices v
are dual to 4-simplices, (dual) edges ex are dual to tetrahedra and faces f are dual to
triangles.

Next, assign (squared) lengths [2 to the edges of the net. According to the sign of /2
the edge can be spacelike, timelike or null. The edge lengths are not all independent
and satisfy a number of constraints guaranteeing that geometrical four simplices can
be reconstructed out of them?. The functional integral takes the form:

 SRp2)
U2 e C %)) = / du(l?,e Cinty) e’ n . (1.2)
c
0% and intY denote respectively the boundary and interior of the simplicial net X.
The subscript denotes the subset of 1-simplices of X. In general ¥, denotes the subset
of n-simplices of 3. We may drop the subscript when the context is clear. du(l.) is a
certain measure on the interior edge lengths. The integral above is generally not well
defined and a certain contour of integration C has to be given. The action Sg is given

by:
Sp=>_ A(t)e(t). (1.3)

tC3o

A(t) is the area of the triangle t. () is the deficit angle around this triangle and is
defined by:

e(t) =) 0(tv), (1.4)

where the sum is over 4-simplices sharing the triangle ¢ and (v, t) is the dihedral angle
between the two tetrahedra in v sharing ¢ (see figure 1 for a two dimensional example).
The dihedral angles will be defined in chapter 2.

Some remarks are in order. With the measure and the contour of integration properly
defined, the expression above leads directly to a numerical evaluation of the functional
integral. Also, the simplicial approximation integrates easily different topologies in the
sum, allowing for a discussion of the role of topology in quantum gravity. The hope
is that it may give physically correct results even with very crude approximations.
The great advantage of the simplicial minisuperspace approximation is that, in prin-
ciple, one could refine the approximation as much as needed by taking finer and finer
triangulations.

The missing points are the measure and the contour of integration. A condition for
the choice of measure is that the composition law for quantum amplitudes should

2A sufficient condition is that the metric g,, (v) associated to a 4-simplex v and constructed out
of the 10 edge lengths forming v should have signature (—, 4+, +, +) (see Sorkin 1974).
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Figure 1.1: Example of a simplicial triangulation in 2d.

be satisfied. The contour of integration should be chosen such that the integral is
convergent and s.t. it correctly represents a sum over compact geometries.

A natural choice for the measure could be:

() = (@) T e, (15)

eCintd

where di? is the Lebesgue measure and

1 if simplicial inequalities satisfied
= { plicial ineq (1.6)

0 if not

The correct choice of measure is still an open problem though. We will see that the
spin foam approach to quantum gravity suggests a natural measure, or at least reduces
considerably the ambiguities. The choice of contour is likewise problematic and we
shall not discuss this further. We will discuss a possible choice of contour when dealing
with the spin foam path integral.

The interesting thing to notice is that one might not need to define the contour com-
pletely. In fact, eventually one is interested in computing expectation values of ob-
servables. We are interested in observables defined on the boundary of . This is
because at the end only observations taken on the boundary of a region of space time
are accessible for experiences. The expectation value of an observable is then given by:

(0) = Je dp(lZ, e C 0%1)W(I2)O(I2) Vo(I2)
o Jedp(iz e COS)YE)T(12)

e

(1.7)
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Wy (1%) represents a certain vacuum - or boundary - state that should be chosen accord-
ing to the problem in hand. Hartle interprets the functional integral W(/?) itself as the
vacuum state and then, in his definition of the expectation value of an observable ¥
and U are identified. This more general definition we use here is given by the general
boundary formulation of (Oeckl 2003).

The idea of computing directly expectation values is that possible infinities that would
come out independently from the numerator and denominator of the above expression
might cancel out, given a clever choice of observable. We will come back to this after
we define the spin foam path integral.

A quantum model for gravity, using Regge calculus and in the context of 3d gravity,
was actually first proposed by Regge himself, together with Ponzano (Ponzano and
Regge 1968), following a quite unexpected route. This is the first example of a spin
foam model for gravity.

Ponzano-Regge model

The starting point for Ponzano and Regge was to consider the asymptotic behavior of
Wigner’s 65 symbol for large spins:
{ i J2 J3 }
Ja Js Js

To state their result, represent the 65 symbol as a tetrahedron, each spin j; being
associated to an edge in this tetrahedron:

The geometric edge lengths are given by j; + % The asymptotic behavior of the 67
for large spins can be separated in two different cases, depending on the sign of the
volume squared V2 of the tetrahedron constructed out of the six spins. If V2 > 0 a
true geometric tetrahedron can be constructed. The V? < 0 case can be seen as an
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extension to Lorentzian signature (see Barrett and Foxon 1994). For V2 > 0, Ponzano
and Regge obtain the following formula:

J1 o J2 Js 1 1 T
s ~ cos .+ =)0, + — 1.8
{ Ja Js Je } V12nV <§ g 2) 4) (18)
where the sum is over the edges of the tetrahedron and 6, is the dihedral angle on the
edge e. For V2 < 0, the asymptotic formula is given by:

o J2 3 1 -
SO ~——o--—cosPexp | — .+ =)Imb, 1.9
{ Ja Js Je } 2¢/127|V| p< ’ZG:O 2) |> (19)
where ® := )" j.Ref.. The exponential decrease represents a tunnel effect into the
region V2 < 0.

The interest for us is that in the geometrical case V2 > 0, the asymptotic behavior of
the 67 symbol is described by the 3d Regge action for a tetrahedron:

. 1
SRegge = Z (.]e + 5)96' (110)

e

This surprising result led Ponzano and Regge to propose the use of 67 symbols as
the building block of a quantum model for 3d gravity. The model is specified by an
amplitude associated to each simplicial geometry:

Zpr =Y (-1 [] e+ D]] { JuJz Js } (1.11)
o A - Ja Js5 Je ),
where e and 7 label edges and tetrahedra of the triangulation, and y is a certain linear
function on the spins (for a precise definition of the model, including signs, see Barrett
and Naish-Guzman 2009). It should also be noted that the amplitude as defined above
is generally infinite and should be regularized in some way. Ponzano and Regge give
a prescription for regularizing it, and other prescriptions are also possible, but we will
leave that for latter. Understanding properly the spin foam quantization of gravity
in 3d is a necessary step for understanding the physically relevant 4d case, as most
of the steps one has to go through in 3d are repeated in 4d. One crucial difference
remains. In 3d the model is independent of the triangulation while in 4d it is not.
This is a simplicial counter part of the fact that continuum 3d gravity can be described
by a topological field theory (Witten 1988) while 4d gravity can be described by a
constrained topological field theory. The constraints break the topological invariance
of the theory.
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That gravity could be approached from such an unexpected road should come as a
surprise, or maybe not. The fact that gravity may be related to the representation
theory of SU(2) was also noticed by Penrose (Penrose 1971) from a completely different
perspective. His intuition was that space-time should be constructed from purely
combinatorial structures. The inspiration was his twistor program for quantum gravity.
According to Penrose, space-time should be constructed out of spin-networks.

Spin networks

A spin network is given by a planar graph, each line of the graph carrying an irreducible
representation of SU(2). Each spin network encodes a certain calculation with invariant
tensors under the action of SU(2). We will follow closely (Barrett and Naish-Guzman
2009). Consider two, not necessarily irreducible, representations of SU(2) a and b. An
intertwining operator from a to b is represented diagrammatically by a box connecting
two external lines carrying the representations a and b:

‘ -

A basic example is given by the three-valent intertwiner:

where a = j; ®j, and b=j3. A triple of spins (j1, 2, j3) is called admissible if js is in the
Clebsch-Gordan decomposition of j; ® jo. To each triple (ji, jo, j3) there is a canonical
choice of intertwining operator (for instance, s.t. the Clebsch-Gordan coefficients are
real).

Intertwiners can be composed together, either horizontally, where one just represent
the two diagrams on the same line, or vertically, where lines have to meet to form
continuous lines. Any diagram can be built out of the fundamental representation 1/2
and a line without a label will always carry the spin 1/2 representation. The basic
building blocks in the fundamental are the following diagrams:
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denoting the identity, max, min and crossing diagrams respectively. The basic rules
for the diagrammatic calculus were first introduced by Penrose, in his binor calculus,

and generalized later by Kauffman (Kauffman 1994) to the g-deformed case. Kauffman
introduces a deformation parameter A, A% = ¢q. The basic rules are:

()--

e

The important case of interest for us here is A% = 1, to which we restrict from now
on. Note that Penrose’s binor calculus corresponds to A = —1.These rules can be un-
derstood in terms of operations with tensors transforming in certain representations of
SU(2). The min diagram is represented by the antisymmetric tensor with indices down
€mn and the max by the antisymmetric tensor with indices up €. The loop identity
then comes directly from the computation: €,,,€™" = —" = —2. By evaluating the
r.h.s. of the crossing identity: A(e,,e™ + 0% 6!) = Akl | one learns how to undo a

crossing in a diagram. This defines an R matrix : a ® b — b ® a given by the flip map
times A.

and

This defines the diagrammatic calculus represented as a diagram in the plane, keeping
track of up and down indices. One could alternatively represent it with a graph freely
drawn in three dimensions plus the ordering of legs on each vertex. The amplitude is
not a property of the graph alone.

Spin-networks have been given a proper justification via the canonical approach of Loop
Quantum Gravity (Rovelli and Smolin 1988), where spin-nets appear as a basis for the
kinematical diff-invariant Hilbert space of theory. The strategy in LQG is to implement
in a lattice way the new variables for GR discovered by Ashtekar (Ashtekar 1986), which
made gravity much closer to Gauge Theories. It should be noted that the similarities
with Gauge Theories regard the internal Lorentz group and not the diffeomorphism
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group. The magic of LQG is precisely to treat the two groups in completely different
ways. The Lorentz group is dealt with pretty much the same way as one deals with the
internal gauge groups of standard matter in Lattice Gauge Theory, while the diffeos
are taken care of through the discretization, bringing us back again to Regge’s idea.

LQG provides us with a precise and general quantization procedure. It establishes a
new way of thinking about quantization, at least in the canonical perspective, refining
the standard quantization procedure of Dirac and others (Dirac 1964).

The main problem of quantizing gravity has not yet been solved though. The main
difficulty is related to the construction of the Hamiltonian constraint, more precisely
in the many ambiguities one is faced with when trying to define it. The point is that
perhaps to quantize gravity from a canonical perspective might not be the most natural
way, gravity being in essence covariant. It does not mean it cannot be done, just that
the canonical splitting introduces far too many ambiguities, from which a physicist
cannot really choose.

A more covariant, relativistic approach should be more suitable for the task. This
is given by Feynman’s path integral approach to Quantum Mechanics. As discussed
above, this was followed by Hawking and collaborators and Regge calculus was used
to describe the idea of a space time foam. Spin foams provide a new look at the path
integral approach for gravity. It is a new look because simplicial geometry is written
with different variables, such that gravity is reformulated as a (lattice) gauge theory?.
This suggests naturally a connection with LQG. In fact, spin foam models for 4d gravity
were first introduced by Reisenberger (Reisenberger 1994, see also Iwasaki 1994) - at the
name of a lattice worldsheet formulation of gravity - with the motivation to construct
an evolution operator between initial and final spin-network states. And this was to
be used as an implementation of the Hamiltonian operator in LQG. It uses heavily the
machinery of lattice topological models introduced earlier by Ooguri (Ooguri 1992; see
also Boulatov 1992) in the context of topological field theories. The starting point for
Reisenberger was Plebanski theory (Plebanski 1977), where gravity is formulated as a
constrained BF theory (Horowitz 1989). Because spin foams are derived as constrained
lattice topological models, a natural measure for the path integral is suggested, solving
a severe problem of standard quantum Regge Calculus.

The procedure proposed by Reisenberger was to first quantize the topological piece,
a la Ooguri, and then impose the constraints, in the same spirit as Dirac’s recipe for
imposing constraints in the canonical picture.

A topological lattice model is given by a sum over (irreducible) representations of
certain amplitudes associated to simplices of which the lattice is formed. It defines a
partition function associated to a given simplicial complex X::

3Hence the name ”spin” replacing spacetime, spins being duals to group elements.
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Ts = Z H A, H A H A, (1.12)
{7} ¢ T v

The constraints that reduce BF theory to gravity should then restrict the representa-

tions over which one sums over, breaking the topological invariance of the model and

introducing local degrees of freedom. This general procedure is, one should note, still

tentative. Whether or not the local degrees of freedom on the continuum theory are

recovered is still an open question, and a difficult one.

Because it is an important tool and also because it helps setting up the program for spin

foams, let us take the time to describe Ooguri’s model and to relate it to continuum
BF theories.

Ooguri’s model

Ooguri defines a lattice statistical model on a triangulated manifold in four dimensions
associated to a group G. In the case of G = SU(2) the building block is the 155 symbol
and the model can be seen as a four dimensional version of the Ponzano-Regge model.
The model is shown to be a topological invariant and, for an orientable manifold, can
be seen as a lattice version of BF theory. Ooguri also considers the extension to the
g-deformed case, extending the Turaev-Viro (Turaev and Viro 1992) model to four
dimensions.

Let us start by defining the model. We will later prove triangulation independence and
relate it to continuous BF theory. Because of topological invariance, the continuum
limit is trivial and the lattice version is actually exact. The model can be defined for
any Lie group G as long as it is compact. For non-compact groups with a Plancherel
decomposition (for instance semi-simple Lie groups, in particular SL(2, C)) the model
can be formally defined and needs to be regularized afterwards. In order not to overload
the equations, we will restrict here to the case of G = SU(2) as the representation theory
is quite simple, but we will try to keep the discussion as general as possible, such that
the adaptation of the formulas presented to other groups should be an easy exercise.
We will be mainly interested to the G = SL(2, C) case in the manuscript.

Start with a real-valued* function of four variables in G, ¢(g1, g2, 93, 94) = ¢(g), g: € G,
t =1,..,4. The Plancherel decomposition of this function gives:

o(g)= > o2 ] Do) (1.13)

Jiy Ty i

We require invariance under the right action of G:

4This restriction is not really necessary and we could consider simply complex functions.
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(91U, 92U, 93U, aU) = @(g1, g2, g3, 94), (1.14)
with U € G. This is equivalent to

®(a) = [ dUB(0), (1.15)

dU is the normalized Haar measure on G. This expression does not really make sense
for a non compact group and should be regarded as formal in that case, as long as an
invariant measure can be defined, as is the case of semi-simple Lie groups.

Let us now define the action:

4 10
1 A
S = Q/H dgi<1>2(gl,gz,gs,g4)+5/l_[ dg: ®(g1, 92, 93, 91)
(g4, g5, 96, 97) P (g7, 93, g3, 99) (99, Y6, G2, 910) P10 98, g5, 91).  (1.16)

The motivation for this action is as follows. Each ® is associated to a tetrahedron in
a given triangulated manifold, with each group element associated to a triangle in this
tetrahedron. The kinetic term ~ ®?2 in the action dictates the gluing of tetrahedra
while the interaction term ~ ®° dictates the gluing of faces of tetrahedra to form a
4-simplex.

Some formulas for the integration of representation matrices will be useful in what
follows:

_ , 5o
/ Dﬁrlzlnl (U)quﬁQnQ(U) = ;1]2 5m1m25n1n2
SU(2) i1

/ [[ i @)=( 7 72 5 qiode s
su@ g mip ms Mg ny ny Ny

4
Di () =S gramamama mnanang (1.17)
\AU(Q) ZH1 T Z

L

mp  m2 M3

d; = 2j + 1 is the dimension of the representation j. ( g2 s > is Wigner’s 3j
symbol defined in terms of the Clebsch-Gordan coefficients by:

. . . _1 J1—j2—ms3 ] ) )
( 7‘7711 gj gj ) = L (J15 Jos M, mal j3, ms). (1.18)
1 Mg m3 d;

We have also defined intertwining operator between the irreps {j;}:

{mi} . jl j2 L mm/’ l j3 j4
Jmd Z(ml mZm)gL (m, s m4) (1.19)

mm/
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gjmm’ is generically the Killing-Cartan metric for the group G, but in the case of SU(2)
is just the delta on the j representation 57(71271 ,

Using the formulas above and invariance under the right action of the group, the
decomposition of ®(g;) can be written as:

D(g) = oi. /dUHD

mml
pm P,

N Z mans H > Diila gﬁ”’” Z A} {ni} —
Jimins i bl

= jg: Z HDJZpZ (g:) gm el (120,
gim

Reality of ®(g;) imposes the following condition on Mi":

Mt = (=1)Zildimma) ppis (1.21)

—my;

We further require ®(g;) to be invariant under cyclic permutations of any three of its
arguments, implying the following recoupling condition on MjnL

. ) ,
Jsjistjede E _1\iitietiaztia, / Ju o J2 0 J1g2;t’;9374
Mm3m1 ;moMma - ( 1) deL/ { j3 j4 L Mmlmg;m3m4 (122)

L/

After performing the group integrations the action can be written in terms of dual
variables M7i‘. The partition function is defined as:

[ darri et (1.23)

LJim;

This can be seen as a generalization of matrix models to higher rank tensors and
receives the name of Group Field Theory (GFT) in the literature (see Oriti 2001 for
a review). The partition function can be further expressed as a perturbative series on
the parameter \:

Z = Z Nsym AN©) 7. (1.24)
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where the sum is over four dimensional simplicial complexes, Ny, is the rank of sym-
metries of C' and Ny(C') is the number of 4-simplices in C'. Z is given by:

Zo = Z(_l)XH dth{6j}TH{15j}va (1'25>

{7} T v

where y is again a certain linear function on the spins. We see that the full parti-
tion function is obtained through a sum over triangulations, each triangulation being
associated with a certain amplitude. Knowing the behavior of Zo under a change of
triangulations constitute a necessary step to controlling the sum in the definition of
7. A special class of lattice models is for which Z~ depends only on the combinatorial
class of C'. We will now show that this is the case for Ooguri’s model, when suitably
regularized. We will use a powerful mathematical result by Pachner (Pachner 1991)
stating that any two simplicial complexes are combinatorially equivalent if and only if
they are connected by a sequence of certain basic moves. In four dimensions there are
five basic moves. It will then be enough to study the behavior of Z under these five
moves. The moves are the following:

1 — 5: Consider a 4-simplex and add a point at its center. Then draw five edges
connecting this points to the original vertices of the 4-simplex. This decomposes the
original 4-simplex into five 4-simplices.

2 — 4: Consider two 4-simplices sharing a tetrahedron. There are two vertices not
belonging to the common tetrahedron. Then draw an edge between these two vertices.
This decomposes the original two 4-simplices into four 4-simplices.

3 — 3: Consider three 4-simplices sharing one triangle, and three tetrahedra, each
shared by two 4-simplices. There are three edges belonging to only one of the 4-
simplices. Now, consider the triangle formed by these three edges. Then reorganize
the edges of the original triangulation such that this triangle is shared by three new
4-simplices. This move recombines the original three 4-simplices into three different
4-simplices.

5— 1 and 4 — 2 : These are obtained by reversing the moves 1 — 5 and 2 — 4.

To study the behavior of Z under these moves, first let us rewrite it as:

Ze= Y. detH/dUTDjl’T(UT)...Dj‘*’T(UT) (1.26)

Using the resolution of identity over G:
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S(U) =Y d; Tr[U], (1.27)

we see that Zo can be written for a complex C' without boundary as:

o = / H dU- H 5(Un(t) o U'Tn(t))' (1.28)
T t

When C' has a boundary there will be extra factors corresponding to triangles on the
boundary of C. Let us now see how Z¢ transforms on each move:

1 — 5: This creates ten new triangles and ten new tetrahedra, introducing ten new
spins 7j;...710 and ten new group variables U;...Ujg. Summing over these new spin vari-
ables generates ten delta functions, enforcing the group elements U; to be equal to the
identity. The set of conditions imposed by the delta functions are not all independent,
and four of them are redundant, giving an overall factor 6(0)*. Thus Zc — 6(0)*Z¢
under this move. Notice that the number of redundant delta functions is equal to the
number of new edges N;(C') minus the number of added vertices Ny(C').

2 — 4: Under this move, four triangles are added, generating four delta functions,
three of which are independent. We then have Zo — §(0)Zc. Notice that again the
number of redundant delta functions is equal to N;(C) — Ny(C).

The move 3 — 3 does not introduce any redundant delta functions and Z is invariant
under it. The moves 4 — 2 and 5 — 1 are just the inverse of the first two moves above
and the partition function goes as Z¢ — §(0)™*Z¢ and Zo — §(0)~'Zc respectively.
Combining these results, we have that:

Ze = 8(0)M =M Ox6(0), (1.29)
where N;(C) and Ny(C') are the number os edges, resp. vertices, in C' and yg(C)
depends only on the combinatorial class of C.

We would like now to come back to expression (1.28) and relate it to continuum BF
theories (Horowitz 1989). A BF theory in four dimensions for a group G is defined by
the action:

where M is a given four dimensional manifold, B € Q*(M) ® g is a Lie algebra valued
two form, A € Q'(M) ® g is a connection for the group G and F(A) is the associated
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curvature. The action is invariant under the following transformations:

§A = DA
5B = [B,\ + Duw, (1.31)

for A € Q°(M) ® g and w € Q'(M) ® g. D denotes the covariant curvature for the
connection A. The partition function for this action can be formally defined as:

Zpp = / DBDA ¢"5r, (1.32)

Formally integrating over B, one gets:

Do ~ / DAGS(F(A)) (1.33)

To relate the expression above with the expression (1.28) for Zg, we need to discretize
the action Sgp. The connection A is discretized by path ordered holonomies supported
on dual edges of the combinatorial complex C' and the two form B is integrated over
triangles of C'. The curvature F'(A) is discretized by closed holonomies around dual
faces of C', giving the identification between the Z¢ and Zgp. Because Z¢ (or better,
a regularized version of it) is invariant under a refinement of the triangulation, the
continuum limit is trivial and the discrete version (1.28) is actually exact, once enough
care is taken with the regularization procedure.

In his model Reisenberger ultimately does not impose the constraints that correspond
to Plebanski’s constraints strictly, but rather weights the histories so that the ones
violating these constraints are supressed in the partition function. The resulting model
turns out to be somewhat cumbersome to work with (Reisenberger 1997, see also
Reisenberger and Rovelli 1997).

A different route was followed by Barrett and Crane (Barrett and Crane 1998). The
idea was to start with the quantum tetrahedron of Barbieri (Barbieri 1998, see also
Baez and Barrett 1999) in three dimensions and then use it to quantize directly a
4-simplex in 4d. They were able to define a state sum model. They did it first for the
Euclidean signature case and then generalized the construction for the Lorentzian case
(Barrett and Crane 2000). Restricting to the Lorentzian case, the model is based on
a vertex amplitude given by a 105 symbol, labeled by a ten real numbers p,;, one per
edge of a complete graph with 5 vertices, a,b = 1...5 label the vertices of this graph:
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I

It is given explicitly by:

107 (pan) / ) H dz, H (T, ). (1.34)

()1 is the unit upper hyperboloid in Minkowski space and the propagator K, , (24, %)
is defined by

K

(oy) = sinpr(z,y)

1.35
psinhr(z,y)’ ( )

where r(z,y) is the hyperbolic distance between = and y.

In this thesis we will follow a similar route. In the next chapter we start by reviewing
Barbieri’s construction for the quantum tetrahedron, and this will motivate the dis-
cussion on the 4-simplex. We will identify the phase space associated to this classical
system and propose a certain quantization of it. The final result will be a quantum
amplitude for the 4-simplex, playing the role of the 105 symbol in the BC model. This
4-simplex amplitude will then be used as a building block for the construction of the
spin foam amplitude in the following chapter. Whenever appropriate we will point out
the differences between our construction and the BC model.



Chapter 2

Quantum geometry

"La filosofia é scritta in questo grandissimo libro che continuamente ci sta aperto in-
nanzi a gli occhi (io dico l'universo), ma non si puod intendere se prima non s’impara
a intender la lingua, e conoscer i caratteri, ne’ quali ¢ scritto. Fgli e scritto in lin-
gua matematica, e i caratteri son triangoli, cerchi, ed altre figure geometriche, senza 1
quali mezi e impossibile a intenderne umanamente parola; senza questi € un agqirarsi
vanamente per un oscuro labirinto.”

Galileo Galilei

2.1 The quantum tetrahedron

A classical tetrahedron in 3 dimensions is described by a set of four normals nic, f=1.4
and ¢ = 1...3. Each normal describes the embedding of a plane geometry in 3d. The
norm of each vector gives the area of the associated triangle. The condition for these
normals to describe a true tetrahedron in 3d is that they should close:

> =0 Vi (2.1)

f=1..4

A classical tetrahedron geometry can be alternatively described by its 6 edge lengths,
or 4 areas and 2 dihedral angles, tottalling 6 (classical) degrees of freedom. When
described by normals, the same degrees of freedom are recovered after the constraint
above and the rotation SO(3) gauge freedom are considered. In fact, we have 4 x 3 —
3 — 3 = 6 degrees of freedom, as it should be. The interesting remark by Barbieri is
that, after quantization, only five of these can be determined simultaneously, reflecting
the Heisenberg uncertainty relations for this system.

39
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To quantize the system we need to introduce a symplectic structure. Barbieri’s pre-
scription is to associate to each normal n} a generator of the algebra of SO(3), s.t.:

{ri ) = €y

{nf,n}} =0 Vi,j; f#[ (22)

For the moment, we have four independent classical angular momentum systems. The
constraint (2.1) will introduce the interactions and will be imposed at the quantum
level. A nice framework for quantization is given by geometric quantization (see for eg.
online review Blau 1992). Each angular momentum describes a two sphere SJ%, of radius
given by the norm of the vector nf, i.e. the area of the face f. The prequantization
condition is that the area should be quantized, that is Ay = j; € N'. For a fixed
area jr, the Hilbert space associated to the face f, H;,, is spanned by vectors of the
form [jr,ms), |mys| < js, as is usual from the theory of angular momenta. The full
kinematical Hilbert space is given by:

Ks = @ (®f ij) (2.3)
{ir}

The last step is to impose the closure constraint, the result of which is to reduce each
tensor product ®; H;, to the invariant subspace under the action of the group. Each
invariant subspace Inv(® +H; f) is in turn spanned by a base of intertwiners between
the four representations jr, each element of the base being labelled by a spin 7. We
then have that a quantum state is completely specified by the four areas j; and the
intertwiner ¢, leaving us with 5 quantum numbers, instead of the 6 original degrees
of freedom of the classical system. A simple way to state this result is the following.
Construct the operators ﬁ? and nyp = ns-np, f# f'. It is now easy to see that while
the ﬁ% commute between themselves, the operators nsp and nyp, for f' # f”, do not.
More geometrically, it means that the two dihedral angles necessary to describe the
classical geometry cannot be determined simultaneously in the quantum theory.

2.2 The quantum 4-simplex

We now move one dimension up. The starting point to construct the tetrahedron was to
embed a plane geometry in 3 dimensions. We will proceed analogously in 4d. We want
to construct a 4-simplex out of tetrahedra, the same way as a tetrahedron is constructed

'We are considering here representations of SO(3). Because the algebras are the same, we could
as well consider representations of its universal cover SU(2) in which case half integer values for the
areas would be allowed.
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out of triangles. To do that consider a 4-normal NI to the tetrahedron 7, transforming
under the four dimensional isometry group. If we want to consider Euclidean space,
the group is SO(4), while, for Minkowiski space the group is SO(3,1)%. We may also
use the notation NI, with a = 1...5 labeling one of the five tetrahedra forming the
4-simplex and / = 0...3.

The five normals N/ satisfy as well a closure condition:

> N/ =o0VI (2.4)

a=1...5

Note that with this closure condition we have the correct classical degrees of freedom
for a 4-simplex: 5 x4 —4—6 = 10. In fact a 4-simplex has 10 edges and knowing these
ten edge lengths is enough to specify the geometry of the simplex. We could organize
these degrees of freedom as the five volumes of each tetrahedron and 5 dihedral angles,
for example. The five normals N! subject to the closure condition above specifies a
4-simplex geometry completely up to isometries.

At this point we would like to follow the strategy employed in 3d and quantize this
classical system. To each normal is associated a phase space isomorphic to a 3 di-
mensional hypersurface of Minkowiski space, ., with ¢ = —1,0, 1. These correspond
resp. to the unit positive timelike hyperboloid, the positive light cone, and the single-
sheeted unit spacelike hyperboloid, depending whether NI is a timelike, spacelike or
null vector. In this thesis we will restrict ourselves to the case where the normals are
timelike, and consequently all tetrahedra will be spacelike. The other two cases are
of course interesting and should be given a proper study, but we leave this to further
investigation. In addition, each N! can be either future pointing and thus identified
with a point in ()1, or past pointing, and thus identified with a point in the negative
timelike hyperboloid.

The quantization of this classical system was described by Mukunda (Mukunda 1993).
Each point in @, is parametrized by the variables ¢, with ¢’q; = 1 and ¢° > 0. We
will consider the cotangent bundle 7*(),. This is freely parameterized by the spatial
components ¢; and conjugated momenta p;, ¢,j = 1,2, 3, subject to canonical Poisson

brackets {¢;,p;} = 0;;. The time component gy is determined by gy = /1 +¢* > 1.
We want to give a covariant description of this phase space. Define then:

Sik = 4Pk — qkD; (2.5)
Soj = qop; (2.

S Ot
~—

2Note that we could have made the same distinction in 3d and consider normals transforming for
eg. under SO(2,1). Under the embedding in 4 dimensions, the SO(3) tetrahedra constructed above
correspond to spacelike tetrahedra.
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We can now take S’ and ¢! as basic variables. The Poisson brackets in terms of these
variables are the following:

{¢".¢"} =0
(517, ¢KY = 1741
(S, SKLY = ylIlE gL, (2.7)

where n = (—, +, +, +) is the Minkowiski metric on R*!, with which indexes are lowered
and raised. Thus the S77 act on ¢’ as generators of SO(3,1).

The variables (5, ¢) are not all independent and satisfy the following constraints:

qgq—1=0

(*S)[JQJ =0

(*S)[JSIJ =0 (28)
where (xS)1; = 3¢/’ g S5F, 92 = 1. One can check that this set of constraints is

first class, that is, the Poisson bracket of any two of them vanishes on the constraint
surface.

The associated Hilbert space H; is identified with the space of square integrable func-
tions over ()1, with norm given by:

d3q
ol = [ = ot 29)
R /14 ¢?
A Lorentz transformation A is represented by a unitary operator U (A) on this Hilbert
space:

UM =4, Y (g) =v(Ag) (2.10)

This representation of the Lorentz group can be decomposed in irreducibles, and one
finds for @)1, because of the constraints (2.8) above:

L*(Q1) = @D duy (0,p), (2.11)

where (0,p), p € R, labels a certain irreducible unitary representation of the Lorentz
group (see appendix A). We see then that each tetrahedron is labeled by a real number.
To finalize the construction one needs to impose the closure condition on the normals
NI. Because the normals cannot be identified directly with generators of Lorentz
transformations, as was the case in three dimensions, the implementation of the closure
condition seems more involved in four dimensions. The strategy will be to enlarge the
classical phase space, in order to induce a more natural quantization. We will do that
in the next section.
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2.3 Bivector geometry

We have seen that a 4-simplex geometry is completely determined by five normals
NI satisfying a closure condition. The idea - and this is the fundamental idea in the
Barrett-Crane construction - is to consider bivectors B!/ describing the geometry of
the triangle ¢ (or just (ab) for short) shared by the tetrahedra a and b. We may
shift when needed to the more general notation B; or B;(7) when the orientation is
important. Thus By, = By, (7,) and By, = By, (7).

Let A?(R*!) be the space of Lorentzian bivectors. A pair of vectors N, M € R3!
determines a simple bivector N A M which can be considered as the antisymmetric
tensor

NAM=N®M—M®N. (2.12)

The above equation fixes our conventions for the wedge product of two vectors. The
norm | B| of a bivector B in A%(R?*!) is defined by

|BJ? = %B”Bu, (2.13)
where again I, J, K = 0, ..., 3 label the components of the antisymmetric tensor, and
indices are raised and lowered with the standard Minkowski metric n = (—, 4+, +,+) on
R31. A bivector is said to be space-like (resp. time-like) if |B|? > 0 (resp. |B|*> < 0).
We will use the fact that the space A*(R*!) can be identified as a vector space with the
Lie algebra s0(3, 1) of the Lorentz group using the isomorphism ¢ : A%(R3!) — s0(3, 1),
B+ Id @ n(B), with the metric regarded as a map 7 : R® — (R*!)*. Hence, if B
is viewed as an anti-symmetric four-by-four matrix, the identification with a Lorentz
algebra element yields

0 bl bQ bg 0 bl b2 b3
—bl 0 (&} T2 b1 0 T1 T2
—bg —T1 0 T3 — bg —T 0 T3 ' (214)
—b3 —T9 —T3 0 b3 —T9 —T3 0

Starting from the normals to tetrahedra N, the bivector B,, describing the geometry
of the triangle t,, is given by the following expression:

*Na VAN Nb

By =Ap —————.
b b|*Na/\Nb|

(2.15)

Agp is the area of the triangle (ab) and % is the Hodge operator acting on internal
indices: (xB)" = €/ BXL, ¥ = —1.

Barrett and Crane noticed that the four simplex geometry is in fact completely deter-
mined - up to isometries - by the bivectors, subject to a number of constraints:
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e Orientation:

Bay, = — By, (2.16)
e Closure:
> Bl =0, Va (2.17)
b#a
e Diagonal simplicity:
(*Ba)1sBL =0, V(ab) (2.18)
e Cross simplicity:
(%Bup) 7B =0, Ya,b # ¢ (2.19)

e 3d non-degeneracy: Each tetrahedron geometry is non degenerate.

e 4d non-degeneracy: The 4-simplex is non degenerate, that is, for six triangles
sharing a common vertex, the six corresponding bivectors are linearly indepen-
dent.

The fact that this set of constraints determine a 4-simplex geometry appeared first in
(Barrett and Crane 1998). The theorem was originally designed for Euclidean geometry,
but as it makes no use of the metric, it can also be applied to the Lorentzian case.

Theorem 1. (Barrett and Crane) Each geometric 4-simplex determines a set of bivec-
tors satisfying the constraints above, and each set of bivectors satisfying these con-
straints determines a geometric 4-simplex unique up to parallel translation and inver-
siton through the origin.

Proof. The diagonal simplicity constraint implies that each bivector is simple, that
is, of the form B = u A v. Each simple bivector determines a plane through the origin
in R3!. Cross simplicity implies that any two of these planes on a given tetrahedron
belong to the same three dimensional hyperplane.

Given a geometric 4-simplex, the bivectors constructed out of its triangles satisfy the
closure condition by Stoke’s theorem and the non-degeneracy conditions by assumption,
which proves the first part of the theorem.

Now consider a set of bivectors B, satisfying the constraints above. The simplicity
constraints and 4d non-degeneracy imply that the four planes of a tetrahedron lie in a
common hyperplane or share a common direction. The 3d non-degeneracy condition
rules out the case where they share a common direction.

To construct the geometric 4-simplex, shift one of the five hyperplanes away from the
origin by parallel translation. The hyperplanes now bound a geometric 4-simplex, with
bivectors B, = A\;B; proportional to the ones we started with. The closure and ori-
entation conditions imply that the \; are all equal. Moving the hyperplane scales the
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4-simplex and therefore one can fix all the \; to 1 or —1. Hence B = uB;y, for p = +1.
Because p is only determined up to a sign, the geometric 4-simplex is then only deter-
mined up to an inversion through the origin. [

A major role is played by both diagonal and cross simplicity constraints. In the Barrett-
Crane construction, the bivectors are associated to Lie algebra elements and these
constraints, being quadratic in the bivectors, translate into constraints on representa-
tions associated to triangles and tetrahedra. As we saw in the proof above, they imply
that the planes associated to faces of a given tetrahedron all lie in the same three di-

mensional hyperplane. The same condition can be restated using directly the normals
NI3.

e Simplicity:
Va, 3N, s.t. Ny B =0 #a. (2.20)

The formula (2.15) for the bivector in terms of the normals is then trivially obtained.
In fact, because of the orientation condition the bivector B,, is orthogonal to both
normals N, and Ny, thus proportional to *xN, A Nj,.

Let us further explore the 4-simplex geometry. First define the dihedral angle between
two tetrahedra (see Barrett and Foxon 1994). For a 4-simplex in Minkowski space
with all tetrahedra space-like, the dihedral angles are all boost parameters. The a-th
tetrahedron has a outward-pointing timelike normal vector Na, and the dihedral angle
at the intersection of two tetrahedra is determined up to sign by

cosh @y = |N, - Ny|, (2.21)

and can be viewed as a distance on the unit hyperboloid.

The sign of the dihedral angle is more delicate. One could define them all to be positive,
but this would lead to additional signs in the formula for the Regge action. It is much
better to take account of the nature of the triangle where the two tetrahedra meet.
The tetrahedra come in two types: the outward normals are either future-pointing or
past-pointing. The triangles are then classified into two types: thin wedge, where one
of the incident tetrahedra is future and the other one past, and thick wedge, where both
are either future or past (see figure 2.1). The dihedral angle is defined to be positive
for a thin wedge and negative for a thick wedge.

An important object in what follows is the dihedral boost. Define F,, the future pointing
normal associated to the tetrahedron a, that is, F, = &?aNa, where ¢, = +1 if N is
future pointing and ¢, = —1 if Na is past pointing. Then the dihedral boost Dy,

3Note that from this point and on we start to diverge from the work of Barrett and Crane.
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My

(a) (b)

Figure 2.1: Example of a thin wedge (a), and of a thick wedge (b).

from the tetrahedron a to the tetrahedron b is defined as the Lorentz transformation
mapping F, to F, and preserving the bivector By:

Dab Fa = Fb and Dab X Dab Bab = Bab- (222)

It is given explicitly by the following formula:

Day = €xXp <@abg(*-§ab)> ) (223)

where ¢ : A*(R*') — s0(3,1) is the map from bivectors into Lie algebra elements

defined before. B, is the normalized bivector : B, := Ba/|Bawl|, and O, is the
dihedral angle between tetrahedra a and b defined above.

This formula is proved as follows. Since By, is a simple spacelike bivector, then Dy,
is a Lorentz transformation which stabilises a space-like plane. The bivector in the
exponent is

- N, AN, F, N\ F
Ou * Bap = =B b — |@ab’| ’

| % Ny A Ny x Fy \ Fy|’

using the sign convention in the definition of a dihedral angle. This bivector acts in
the plane spanned by F, and Fj, and the boost parameter has the right magnitude. It
just remains to check that it maps F, to Fj, and not vice-versa. To first order in small
O, one has

g(Fa/\Fb)

|®ab|
oXp <|@“b|| « F, A By

—— ((Fy - F,)F, — (F, - F,)F}) ~ F.
Snh o) ((Fy - Fa) ( VFy) ~ Fy

> F,~F,+

This calculation uses the convention replacing wedge products with bivectors, and the
fact that F? = —1.
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With an eye on quantization, we would like to introduce a different parametrization of
the classical system determining the geometry of the 4-simplex. Associate then to each
tetrahedron a Lorentz transformation X, € SO'(3,1) such that X, 7 = F,, where T
is the unit timelike vector (1,0,0,0). This condition specifies X, up to a rotation, that
we keep arbitrary for the moment. Then, parallel transport the bivectors to the origin
of the hyperboloid:

bay = X, @ X, ' > By, (2.24)

We might refer to the bivectors b, as being in the reference frame of the tetrahedron ¢,
and the bivectors By, as being in the reference frame of the 4-simplex. The orientation
condition for the original bivectors By, translate into the following constraint for the
transported bivectors bgy:

bap = —Xap @ Xop > bba; (225)

where we have defined X, := X' X;. Using the expression (2.15) for the bivector By,
we have that

bap = Aay * (T AN) (2.26)

where Ny, =: (0,74,) and 7!, is given by normalizing the vector €,64(Xap)%. Further-

more we have
1

2Aab

The simplicity constraint for the bivector b,;, translates as:

ij ij ~k N E pij

W =0, Vi, (2.28)

which is equivalent to stating that there exists a vector n,, such that the bivector by, is
given by the formula (2.26). The closure condition translates into a closure condition
for the normals 7ig:
Z Aap Ny = 0. (2.29)
a#b

The normals n,, and areas A, determine completely the geometry of a tetrahedron
and the 3d non-degeneracy condition is just a condition on this tetrahedron being non
degenerate. The 4d non-degeneracy condition is more complicated and involves the
group elements X, as well.

Conversely, starting with the set of areas A,, and normals n,, determining five non-
degenerate tetrahedron geometries, construct bivectors by, through equation (2.26).
Then if there exist group elements X, € SO'(3,1) such that the bivectors satisfy the
constraints (2.25), reconstruct the original bivectors B,, = X, ® X, > by,. These bivec-
tors satisfy the Barrett-Crane constraints and then determine a 4-simplex geometry
provided it is non-degenerate, according to Theorem 1.
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Boundary data

At this point we see that the geometric data has been separated in two sets of variables
{Aup, ey} and { X, }. The first set, given by areas and normals describes the intrinsic 3d
geometry of tetrahedra on the boundary of the simplex, while the second set describes
the embedding of these 3d geometries in 4d, thus describing the extrinsic geometry of
the 4-simplex. We will refer to the set { A, qp } as the boundary data of the 4-simplex.
Note that this definition can be generalized to the boundary of any triangulation. We
will come back to this in the next chapter.

Now we may as well reverse the problem and ask ourselves under what conditions a
given boundary data determines the geometry of the 4-simplex. In different words,
which conditions normals and areas need to satisfy in order to be an admissible bound-
ary data for a geometric 4-simplex. To start understanding this question, define
gap = X, 'DypX,. Because of the definition of the dihedral boost (2.22) we have
that gu, preserves the vector 7 and then belongs to the SO(3) subgroup. Now, from
the parallel transport condition on the bivectors b, and the fact that the dihedral
boost Dy, preserves the bivector By, we have that:

Dab X Dab > Bab - _Bba = DabXa & DabXa > bab - _Xb X Xb > bba
<= Gab ® Gab > bab - _bba = Gab * ﬁab = _ﬁba- (23())

Furthermore, from the formula of the dihedral boost (2.23) and the definition of the
transported bivectors, one has:

Dab — eeabg(*gab) — Xaeeabg(*gab)Xa_l — Xaegabﬂ—(K'ﬁab)Xa_l’ (231)

where 7 : 50(3,1) — EndR*! is the vector representation of the Lorentz algebra defined
in appendix A and K are the boost generators. Finally from the definition of g,;, one
has that

Xpo = Gape Oev™ K Mab) (2.32)

which states that g, is the rotation part of the Lorentz transformation X,.

Conversely, the boundary data determines the geometry of each tetrahedron indepen-
dently, following the discussion on the quantum tetrahedron. The question now is
if these tetrahedra can be glued appropriately to reconstruct a 4-simplex geometry.
Consider a triangle t,,. The two normals ng,, 74, associated to this triangle define a
rotation

Gab * ﬁab - _ﬁbm (233)

up to a SO(2) rotation preserving the vector n,,. This SO(2) rotation is essential and
guarantees that the triangle geometries A,, and A, reconstructed independently on
each tetrahedron are mapped correctly one into the other:

Gab - Aab - Aba (234)
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A consistent choice of SO(2) rotations for all the triangles exists if and only if the
boundary data is the boundary data of a geometrical 4-simplex. This is equivalent
to stating that there exist group elements X, associated to tetrahedra such that the
rotations g, are given by g = X, "D X,. If this is the case, we call the boundary
data Regge-like. This notion will be important when discussing the asymptotics of the
4-simplex amplitude in chapter 4.

2.4 Quantization

Note. From now on we replace the part of the Lorentz group connected to the identity
SO'(3,1) by its double cover SL(2,C), to which we refer loosely as the Lorentz group.
We review the relation between these two groups in appendix A.

Our starting point for quantization will be the classical system described by the set
of variables (bap, Xap) and subject to the constraints described above, that we recollect
here:

e Parallel transport:

bab = —Xap @ Xap > bpa = —XapbpaXa (2.35)
e Closure:
> bl =0, Va (2.36)
b#a
e Simplicity:
W =0, Vi (2.37)
e Non-degeneracy: The 3d and 4d geometries are non-degenerate;
e Flatness:

X XpeXea = 1,¥(abe) < 3X, € SL(2,C)s.t. X = X, ' X, (2.38)

The flatness condition implies that the X,; are of the form X,, = X' X;. The X, are
defined up to a global Lorentz transformation. One can then use the group elements X,
to reconstruct the bivectors By, = X, ® X,>b,. That these conditions are sufficient to
reconstruct a geometric 4-simplex then follows from the theorem of Barrett and Crane
above.

The advantage of introducing group variables is that one can use standard techniques
for the quantization of group manifolds (Isham at Les Houches 1983). At each trian-
gle these variables (b, X;) parameterize the cotangent space over the Lorentz group
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T*SL(2,C). Ignoring the constraints for the moment, one needs to introduce a symplec-
tic structure for this space. A natural choice would be given by the following Poisson
brackets:

{XtaXt} = O:
X} = XLV,
(b7 by = (2.39)

L' are the generators of SL(2,C). We see that the bivectors b7 are represented by
left invariant vector fields J/7 on the copy of the group associated to the triangle t. For
each triangle, the kinematical Hilbert space is given by the space of square integrable
functions over SL(2,C), H; := L? (SL(2,C)). The unconstrained Hilbert space for the
4-simplex is given by the tensoring together ten copies of it:

Ki=Q) Hi (2.40)

The choice of a symplectic structure for a given classical phase space is in general
not unique, even though it is usually suggested by the canonical analysis of a given
classical action. We would like to consider a modification of the symplectic structure
given above. Consider the following identification between b; and J;:

1
Jt > *bt —_ — bta (241)

Y

which, after inverting, implies:
2
v 1

b — —Ji+*J ). 2.42
L~ 142 (’Y t t) ( )

The parameter v mimics the Immirzi parameter (Immirzi 1997) used in LQG, and
the symplectic structure defined by the identification above can be given a motivation
from a a certain action principle, see appendix B. The kinematical Hilbert space
associated to each triangle is still L? (SL(2, C)), but each b, is represented according to
the identification with left invariant vector fields given in the last equation.

The space L? (SL(2, C)) can be decomposed in irreducible representations of the Lorentz
group, using the Plancherel decomposition for this group (see appendix A). Irreducible
representations of SL(2,C) are labeled by a pair of numbers (k,p) € Z x R and the
Plancherel decomposition is given by:

L*(SL(2,C)) = P Hirw) © Hor) (2.43)
(k.p)
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We would like now to impose the constraints on this kinematical Hilbert space. Let us
take a look first at the simplicity constraints. Using the representation of bivectors in
terms of left invariant vector fields given by equation (2.42), the simplicity constraint
on the triangle t reads:

1o 1o . 1 . . ,
;sz + §e°ijJg’“ = ;Kg +H =0= K! = —yH,. (2.44)

We have introduced the boost/rotation decomposition of the Lorentz algebra in the
definitions: K*:= J% and H* := %EOiijjk = %eijkﬂk.

A proper implementation of the constraints taking the full algebra into account from
the start is still lacking and would constitute a valuable step in understanding better
the construction of the spin foam models we present in this manuscript. The essential
problem is that we are dealing with a second class constraint system (Henneaux and
Teitelboim 1994 and Dirac 1964) and these are usually very difficult to quantize. The
standard procedure is to define Dirac brackets and then construct the quantum space
as a representation of those. In practical, finding a representation of the Dirac brackets
is a very difficult task, as there are few systems one actually knows how to quantize
exactly. Usually the best solution for such a system is simply to find a different classical
parametrization of the phase space, such that if there are still constraints to be solved,
they are first class.

We will follow here a more general and less standard procedure based on the concept of
a Master constraint, introduced by Klauder (Klauder 1997) and developed further by
Thiemann (Thiemann 2006, see also Dittrich and Thiemann 2006). We will do so only
for the simplicity constraints. The closure, flatness and parallel transport conditions
will be treated separately.

Later in the text, we will test these assumptions by looking at the semiclassical ap-
proximation of the quantum amplitude associated to a 4-simplex. We will see that
indeed the leading order for this amplitude is consistent with a Regge geometry for
this simplex.

The idea is to consider, instead of the three constraints C} := %KZ + H}, a single
constraint given by the sum of the squares:

o 1 N\ 2
M =Y 6,00 =Y (;K,f + Hg) . (2.45)

i %

This constraint is quadratic in the generators and can therefore be written in terms of

the Casimir operators for the Lorentz group and the rotation subgroup (see appendix
A):

1

kG

1 2
M= L (K2 - m) + (1 i ?) 42K 1, (2.46)
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which imply the following equation for the representation labels associated to this
triangle:

(3 _ k>2 + (1 + %) (> —K*) =0. (2.47)

v

In the last equation we have used a classical ordering for the Casimir operator H? = 52,
for j half integer, and we have suppressed the constant term in the first Casimir for
the Lorentz group. This choice of ordering is such that it allows for a large class of
solutions to this equation. These are given by:

p=n~k and |k| =j (2.48)

To understand the second condition, consider the decomposition of H p in irreducibles
of the rotation subgroup:

Hikp) = @ H;. (2.49)

Jz k|

We see that the simplicity constraints restrict this decomposition to the lowest SU(2)
irreducible in the tower.

The implementation of these conditions is as follows. As we saw before, the uncon-
strained Hilbert space is given by the tensor product of ten copies of L? (SL(2,C)).
A state in this space is a function of ten group elements, each one associated to a
given triangle in the 4-simplex. Denote it ¢(X,,). The simplicity constraints imply
that only representations satisfying the equations (2.48) will appear in the Plancherel
decomposition of ¢, provided that each Hp) in (2.43) is further decomposed accord-
ing to (2.49). A basis for this space is given by the tensor product of representation
matrices, one for each triangle in the simplex:

Vi (Xap) = @) Dites) L (Xan). (2.50)
(ad)

Note that we have chosen k to be positive, and we will do so from now on. This is
a choice and one could in principle keep the two sectors of solutions to the simplicity
constraints. We have used the canonical basis (cf. appendix A) to write down the
representation matrices as it makes the imposition of the second condition in (2.48)
evident.

We would like next to consider the flatness condition. This will be taken care of by
projecting the amplitude 1(X,;) on the solutions of the constraint. Let us do so for
an element of the basis (2.50). This defines an amplitude in terms of the spins j,; and
the magnetic numbers mg;,. Denote it A(jap, Map):
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A(fap, Mab) /HdX HanbH(s Xo XXy )0 (Xo) (2.51)

Note that we have chosen an orientation for each triangle (ab) in the 4-simplex, for eg.
a < b. Choosing a different orientation would give a slightly different definition of the
amplitude.

We will not deal with the parallel transport and closure conditions at this point. They
will reappear later as critical point equations for the semiclassical analysis of the 4-
simplex amplitude. This means that the quantum amplitude is picked on the classical
solutions allowing at the same time for some fluctuations around them. We could in
principle try to impose these conditions strongly in the definition of the amplitude,
and this is suggested by some recent papers (Bonzom 2009, Oriti 2009). This would
complicate considerably the state sum model and we thus prefer not to impose these
constraints.

A note on the closure constraint is in order. By the identification of the bivectors with
generators, imposing the closure is equivalent to imposing invariance of the amplitude
A(jap, map) under the diagonal action of the Lorentz group in each tetrahedron. We
see though that after the implementation of the simplicity constraints the amplitude is
invariant only under the action of the rotation subgroup. In fact the tensor A(jqp, map)
with the group acting on the magnetic numbers is an invariant tensor. This comes from
the choice of a canonical reference system for the boundary data. Indeed the tetrahedra
are normal to the canonical vector T, which reduces the action of the Lorentz group
to the action of the rotation subgroup leaving this vector invariant.

Because A(jap, map) is an invariant tensor, it can be expressed inl terms of inter-
twiner states by a change of basis. Denoting [{jw}:ia) = >3 Cliny fSU(Z) dgg -

(@balab, Map)) this new basis and A(jap, iq) the transformed amplitude, we see that
we are left with 15 degrees of freedom specifying the geometry of the 4-simplex.

It is probably a good point to take some time and compare the quantization of the
4-simplex with the quantum tetrahedron described earlier. The situation is that, while
for the tetrahedron we were able to completely quantize the classical system and find
the true quantum degrees of freedom, in the 4-simplex case we are not there yet. We
have been able to impose exactly some of the constraints defining the geometric 4-
simplex, and this allowed us to get down to 15 quantum degrees of freedom. As we
have not imposed exactly the parallel transport and the closure constraints, we are not
able to tell exactly how many independent quantum numbers are necessary to specify
the state of a quantum 4-simplex. All we can do is associate a quantum amplitude to
a given state.
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2.5 Regularization

The amplitude (2.51) is not well defined as it is divergent, related to the fact that the
Lorentz group is non-compact. This divergence can be regularized in a straight forward
way. To see where it comes from let us rewrite the expression (2.51) in a more explicit
form:

Al ma) = [ T] X, T] DE, 06,1 0) (2.52)
a (ab)

where we have reintroduced the D matrices in the definition of @Z){i‘;b} and solved the
delta functions. Now, because the integrand depends on the integrataion variables only
through the combinations X, !X, it is invariant under the the change of variables
X, = X, :=GX,, where G € SL(2, C) is an arbitrary element of the group. Because
the measure, being the Haar measure, is also invariant under this transformation, one
sees that the full amplitude is invariant. Choosing G equal to any of the X,, say
G = X5, fixes )~(5 to the identity and A(jup, map) is then proportional to the infinite
factor fSL(Q,(C) dXs. The regularization procedure will be to simply drop one of the
integrations, exactly as proposed for the Barrett-Crane model (Barrett and Crane
1998). We would like to show here that the amplitude regularized like that is in fact
finite.

A nice way to see this regularization procedure is to view it as a gauge fixing of a
Lorentz symmetry acting on the center of the 4-simplex, as one would do in Lattice
Gauge Theory (Creutz 1985). In fact consider the dual graph of a 4-simplex:

The gauge symmetry acts on the central vertex and the gauge fixing procedure consists
in fixing to the identity the group elements of a maximal tree. The maximal tree for the
graph above is just one edge, and gauge fixing is thus equivalent to dropping one of the
integrations in the amplitude above. We will later come back to this when constructing
the amplitude for general triangulations.

Define then the regularized amplitude:
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A" (Jaby Mab) = / H X, 6(X5) HD](jg’;,g{fjabmba(X;le). (2.53)

The first thing to do is to decompose the group variables X, in boosts and rotations:
X, = B(xy)Ra, (2.54)
where x, denotes a point in the hyperboloid );. Now, we have the following result:

DU (X'X,) = DY) (R B(z,) ' B(xy) Ry) =

Jjm,gm/ gjm,jm/
= > DU (RNDYD, (Blaa) Blwy)) DG, (Ry) =
kn,k'n’
ZEZD DY) (Blaa) ™ B(2y) DYy (Ro) (2.55)

In the calculation above we have used the property of D matrices when restricted to
an element of the rotation subgroup:

D (R) = 835D}, (R), (2.56)
where D’ (R) is the representation matrix for SO(3) on the representation j. Because
this is an unitary representation and because the group SO(3) is compact, the matrices
D’ (R) are bounded by 1 and the sum on (n,n’) above is finite. We can then forget
the rotations R,, and finiteness of A™9(j, map) is thus equivalent to finiteness of the
corresponding expression by replacing the X, with the boosts B(z,). Because the price
to pay is minimum, we will look at a more general expression, for which the simplicity
constraints have not been imposed yet. To state our results we will use the notion
introduced in (Baez and Barrett 2001) of the integrability of a labeled graph. Given a
graph I', assign an irreducible representation in the principal series (k;;, p;;) to each link
(1), where 7, j denote nodes of the graph and thus a pair denote the link between them.
Also to each end of the link assign a couple (I;;, m;;) and (l;;, mj;) of half integers and
magnetic numbers, specifying thus an angular momentum state at that end of the link.
This labeled graph is what is called a projected spin network (Livine 2002), and we
denote it (I", ), x denoting collectively the set of labels. Given such a labelled graph
choose an arbitrary node ¢, in I', and number the nodes starting with ¢,, 1,..., N for
convenience. Then (I, x) is said to be an integrable graph if the following quantity is

finite: v
k(iy:P@j
FH(x) = [H / dxl-] [T w0, (), (2.57)
z,€Q1

i=1 ije{l,...N}
i<j

where we have defined:

kij,pij kij,pij -
Kzijﬁ;zﬁmﬂ(xiaxj) = Dli;ni;,ljimﬁ(B(xi) lB(xj)) (2.58)
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We see that the 4-simplex amplitude defined in (2.53) is a special case of the expression
(2.57) above when the labels are restricted by the simplicity constraints and the graph
' is the (dual of) the boundary of a 4-simplex. We want to prove that the expression
(2.57) is finite. To do that we will follow closely (Baez and Barrett 2001). We start by
adapting a lemma in (BB 2001) to our construction, Lemma 2 below. The importance of
Lemma 2 is two fold. In the first place, it is important in the proof of Theorem 2 below,
which states that the tetrahedron graph is integrable. Secondly, and more importantly,
it guarantees that, given an integrable graph, every other graph constructed from it by
adding a node with at least three legs will also be integrable. This is the first part of
Theorem 3, which we borrow with no changes from (BB 2001). These two conclusions
then imply that the 4-simplex graph is integrable, which we state as a corollary.

Before starting, let us take a closer look at the propagator K ”7an lj lﬂmﬂ(xi, z;). First
rewrite the composition of boosts B(x;) ' B(z;) as:
B(x;) ' B(x;) = R(xi, v;) B.(r(w, 2;)) R (24, 7), (2.59)

for some two rotations R(x;,x;) and R'(z;,z;) and a boost B,(r(x;, x;)) in the z di-
rection. r(x;,x;) denotes the rapidity of the boost. We can always choose this decom-
position such that r(x1, z2) is positive, and we do so. r(z;, z;) is in fact the hyperbolic
distance between z; and x;. To see this, we recall that the hyperbolic distance, or
hyperbolic angle, between two points z;, x; € ()1 is defined by

d(z;, z;) = cosh™ (z;, 7;) (2.60)
where (-, -) denotes the Minkowski metric. We thus have

coshd(z;, z;) (zi, ;) = (B(a:i)e,B(xj)e):(e,B(xi)_lB(xj)e)
= (e, (%%)B (r(xs, 25)) R (24, 25)e)

(R(wi, 25) " e, Bo(r (i, ;) R (w4, 25)e)

(

e, B,(r(x;, x;))e) = coshr(z;, ;) (2.61)

so that r(x;, x;) = d(x;, z;), proving r(x;, x;) is the hyperbolic distance, as claimed.
Now, let us consider the matrix elements of B,(r) in a given representation (k,p) in
the principal series. Because the generator K, := J% of z-boosts commutes with H,,
we have

Dy (Ba(r)) = Sl (1) (2.62)

for some function d);? (r). As shown in appendix A, the behavior of d};? (r) in the

r — oo limit is of the form
dih, (r) oc e e (2.63)

where
Mem = 1+ |m+ k| > 1. (2.64)
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This in particular implies that for any € > 0,
lim e=9"d)? (r) = 0. (2.65)

=00

Because e~ dP (r) is furthermore continuous, we know e('=97dl? () is bounded on
r € [0,00), so that there exists C’ﬁ;p’e € R* such that

Ondtr (1) < Chpe

= AP (r) < Chpeem(mor (2.66)
for all r € [0, 00).
We then have the following bound:

Db (Bla) ™ Blay)| < [ Dl ()i (i, 25)) Dy (R)

3:M 3:M

D] 0|

IN

d%wxi,m)\

"

< (Z Cl];/p //) 7(1 ‘ T? (267)

where we have used again that the rotation representation matrices are bounded by 1.
Defining C’ll,p =y 0C

3

”,m , which is finite because the sum is finite, we thus have

k.,p _ k.p
‘Kll’ mm” ‘Dlm U'm/

(B(z:) "' Blay)| < Clee 07 (2.68)

for all r € [0,00). To prepare Lemma 2 below, we need the following result on hyper-
bolic geometry, that we also borrow from (BB 2001):

Lemma 1. Suppose x1,xs,...,x, € Q1. Then there exists a point q s.t. for any point
x € (Q1 we have:

1
Lemma 2. Ifn > 3, the integral

J:—/ dx ’Klklll,pjnm (x,21)] ..
1

converges and for any 0 < € < 1/3 there exists C({k;, pi, l;,1'}), i = 1..n, function of
the representation labels, such that for any (x4, ..., z,),

—_9_
J < C({ki,pi, i, 1i}) exp ( L Zw) ,

1<J

‘Kk”p" (2, )

Inl) mnm

where 1;j = d(x;, ;).
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Proof. First, using (2.68) one has:

Khup ()]

Il ,;mim]

k
Bt e ()

< (H Cpi ) “amaXn o (2.70)
where r; := d(x,2;). Define C:= [, C’ll:é;p"’e, then one has
J < 4ﬂé/ sinh? rdre~ (179 2, (2.71)
0

where r is defined as the distance of = from the barycentre of the points (z1,...2,).
The fact that it exists is object of Lemma 1 above. From the same lemma, one has

Z ri > nr. (2.72)

In addition, defining

1
M := —min, (), 2.73
—man ; ri(x) (2.73)
one has
> ri=nlM. (2.74)
Both inequalities can be used to prove the following bound for J:

J < 4AnCC" e~ (nm2naM, (2.75)
for some positive constant C” depending only on € and n. From the triangle inequality,
one has )

ZTiZ n_lzﬂja (2.76)
1<)
and ]
M>— it 2.77
1<J
which then implies the lemma with C' = 47 CC". [ |

Theorem 2. The tetrahedron graph, with any labelling, is integrable.

Proof. We will show that the following quantity (for any fixed x; € @)1 and indepen-
dent of it) is finite:

I = / drodrgdry |[KX2 (21, x9) KX13 (21, x3) KX (21, 14)
3
1

KX23(IL'27ZL’3)KX24([E27ZL’4)KX34(ZL'37JZ4)| y (278)
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where x;; denotes, for short, the set of labels (kqj), pj), lij, mij, Lji, mji).  Start by
integrating over z4 using Lemma 2,

I< CC({X@']’}) /2 daydas 67%(1736)(T12+r13+T23) ‘me (Il,LEQ)KXlS (51517 J}g)KXZP’ (:L‘Q, xg)l ’

@1
(2.79)
where r;; = d(z;, ;). Next, we integrate over x3. Consider the quantity
L= / g €= $0-3013029) | K05 (31 ) KO (3, 7). (2.80)
Q1
By (2.68), one has
L<C [ dage (atr)G—5) (2.81)
Q1
Now, introduce the new coordinate system (k, [, ¢), where:
1 1
k:§(7’13+7‘23) ; l=§(7’13—7“23)7 (2.82)

and ¢ is the angle between the plane containing 1, xo, x3 and a given plane containing

x1 and . Their ranges are: k € [%2,00), [ € [-52,722] and ¢ € [0,27). The measure

dzs on )y in this coordinate system reads (see appendix of BB 2001):

inh 71 sinh
dag = 2 TSI g1 47 dgp, (2.83)

sinh 712

In terms of these new coordinates, we have:

12

Cf 2 = 00 k(230
L < — do dl dk e ™37
sinhr1s J, 12 12

2 2

271'7’120
- €

< —riz(5—%) (2.84)

sinh r{9

for e < 1/9 < 1/3. Plugging this in the evaluation of I, we get:
I < C'/dr rsinhr e "(3739)
< C’/dr r e”’(%"%), (2.85)

which is finite for 0 < € < 1/9 and some constant C’ depending on the representation
labels {x;;}- |
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Theorem 3. (Baez and Barrett) A graph obtained from an integrable graph by connect-
ing an extra vertex to the existing labeled graph by at least three edges, with arbitrary
labeling, is integrable. A graph obtained from an integrable graph by adding extra edges,
with arbitrary labeling, is integrable. A graph constructed by joining two disjoint inte-
grable graphs at a vertex is integrable.

Corollary 1. The 4-simplex graph, with any labeling, is integrable.

The BC and Flipped models

Before concluding this chapter we would like to take a look at two special values for the
Immirzi parameter: v = 0 and v = co. The case for v = 0 has originated the Flipped
model and was defined prior to the model presented here, which applies for arbitrary
values of 7. In this case the simplicity constraints (2.48) restrict the representation
labels to be of the form (k,0).

More interesting is the case where 7 is set to infinity. In this case, representations

are restricted to be of the form (0,p) and j = 0. The amplitude is a function of the
representation labels p,, which are now free parameters. It is given by the formula:

Alpay) = / H dX, 6(Xs5) H DYt (X1 X). (2.86)
SL(2,C)*

Because of the restriction to the invariant SU(2) irreducible, j,, = 0, the D matrix in
the formula above does not really depend on the rotation parts of the group elements
X,. We then have that

SN Pap (X4, Tp)

0,pq — 0,pq - ra
DGt (X1 Xy) = D) (B(xa) ™ B(ay)) = digee (r(w4, 1)) = P —

We recognize the propagator K, , (x4, ;) defined in (1.35), and the 4-simplex amplitude
in this limit is just the 10j symbol defined before:

A<pab) = 10j(pab)' (287)

This limit for v is especially singular. In fact, we see that the boundary data has a
different structure, as the amplitude does not depend anymore on magnetics numbers.
This will have an important consequence in trying to construct a path integral by
gluing simplices together. In particular it makes it difficult to extract semiclassical
information out of the boundary data. This statement will become clearer in the next
chapter.



Chapter 3

Spin foam

In the last chapter we have considered the quantization of a geometric 4-simplex,
and as a result we have associated to it a quantum amplitude depending on a set of
boundary data labeled by spins and magnetic numbers. In this chapter we would like
to consider more general triangulations and construct a quantum amplitude for these.
By gluing simplices properly we will be able to write this amplitude as a sum over
classical histories, each history being determined by a certain simplicial configuration.
In the process we will consider a different set of boundary variables, where magnetic
numbers are replaced by normals to triangles.

The procedure is to start with a canonical description of the quantum system at hand
and then reconstruct the sum over histories out of it, in the same spirit as Feynman’s
original derivation of the path integral for a non relativistic system. We will revise his
construction with a somewhat alternative point of view, following Klauder (Klauder
1997), where coherent states play a key role.

3.1 Feynman’s path integral

The idea one should have in mind is that of a Feynman path integral. There the
path integral gives a transition amplitude between initial and final states living in the
Hilbert space H; associated to a given time slice ;. The full kinematical Hilbert space
for a system defined between the times ¢; and ¢ is then given by Ky, ; ;= ﬁti ®Hy,, to
be compared with our kinematical space defined before (2.40). We will suppose later
a certain set of constraints ®; to be imposed on this kinematical Hilbert space.

For the moment suppose a free system described by a Hamiltonian H and a certain set
of variables parameterizing the phase space (p;, g;). We want to define the probability
amplitude that a initial state 1); € H;, evolves into a final state ¢y € H;,, given by the

matrix element of the evolution operator U(T) = e~iT,
K (g, 1) 1= (e 70 |y). (3.1)

61
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To construct the path integral, first choose a certain foliation of the space-time region
between X, and Y, such that the total time T" = t; —t; is subdivided in small intervals
of duration e = T'/(N + 1), for large N. On each time slice, insert a resolution of the
identity of H;. The choice of variables for writing this resolution of the identity is
in principle arbitrary, and different choices will lead to different path integrals. We
will follow Klauder (Klauder 1997) and use a coherent state basis. Coherent states
are designed to extract the classical information out of quantum systems, and this is
exactly what we are trying to do in passing from the canonical expression (3.1) to a
path integral in terms of classical trajectories.

Etf ) Hff

Te

Ztl Pl Htl

Figure 3.1: Foliation of space time in slices.

It ]f’j and Qj are canonical operators obtained from quantizing the classical variables
(pj,q;) describing our phase space, then a coherent state |p, ¢) is defined by:

p,q) == oiP(P.a) ,—ia? Py ip Q; In). (3.2)

In the definition above, the pair (p,q) labels collectively the set of variables (p;,g;).
©(p,q) is a phase that we may choose conveniently. The operators Pj, Qz satisfy the
canonical commutation relations and |n) is a certain fiducial vector. It can be given by
the ground state of the system, for example.

The definition is such that the expectation values of 15]- and Q]- are given by the cor-
responding coherent state labels p; and ¢;. The definition given above is restricted
to the case where a canonical pair of variables is available, but can be generalized to
other cases, in special when the variables describing the phase space are quantized as
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generators of a certain symmetry group, as will be the case of interest for us later. For
now, let us continue exploring this simpler system.

The crucial property of coherent states for us is that they provide a resolution of the
identity:

ﬂz/du(p&)lp,@(p,QI (3.3)

By inserting this resolution of identity at each time slice, the amplitude for initial and
final states given in the coherent state basis is given by:

K(p//, q//;p/7 q/) _ <p//7 q//’efil-AIT’p/7 q/> _ <p//, q//’efiHe L efiHe o ’p/’ q/) _
N N )
= /HdM(Pl, @) | [0 aeele™lp @)
=1 1=0
N N
= lim /Hdu(pz,qz) lll [(pm,qu\pz,qD —Z€<pl+1,QZ+1|H|Pl=CIl>] (3.4)

A formal limiting procedure allows then to write the standard path integral
N/ Dp(p, g)e'/ [ =Hal (3.5)

where N is a certain normalization factor coming from the limiting procedure. It
is important to emphasize that the expression for the path integral as a sum over
classical histories is only formal, and one should be careful when using it for practical
calculations. The proper definition is given by the expression (3.4), and uses directly
the structure of the quantum space. The passage to a classical description is taken
care of by the coherent states.

Let us now consider the case of a system subject to a set of constraints ®;. From a
classical point of view we would insert Lagrange multipliers in the action such that the
path integral becomes

We would like to recover the above expression for the path integral from canonical
methods, in parallel to what we did before in the unconstrained case. To that aim,
define projectors from the kinematical Hilbert space H; to a subspace satisfying the
constraints. A projection operator E is such that E? = E and Ef = E. As an example,
consider the case where the constraints satisfy a certain Lie algebra and in addition
form a first class system with the Hamiltonian:

[
[

K>

P ] = iCijk (i)k

J
H]=ihl®,. (3.7)

)
)
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Then the projector E can be defined by:

E.— / i 6, (3.8)

where dp(§) is the Haar invariant measure on the group, that we suppose compact for
simplicity !. Using the invariance properties of the Haar measure, one can check that
indeed E defined above squares to itself and is hermitian. One can also check that

TR = , (3.11)
which is equivalent to stating that [E projects into the subspace where d, = 0. Also,
because it is a first class system,

¢ HTE = Ee~*HT = Ee AT, (3.12)

Now, let us construct the constrained path integral. Because the constraints form a
first class system with the Hamiltonian, the constraints commute with the evolution
and it is sufficient to impose them only on the initial time slice. On the coherent state
basis, we define:

K@ q".v.d)= " dle""EP,q). (3.13)

As before, introduce a foliation of the region of space time between the initial and final
time slices. We then have:

K(p”, q//’p/’ q/) _ <p//7 q//|E67ieH]Eefz’eH]E . EeiieH]E|p/, q/>’ (3.14>

where we have used the property (3.12) of the projector operator. Now, introduce
resolutions of the identity on each time slice:

(p”aq//|6_iTHElp/’q/> - llf%/ <pN+1,qN+1|€_i€A§V¢"|PN,QN> X
N—-1

X (Di41, @y le
1=0

fieH

Q H (dp(pr; q)deNr) (3.15)
=1

In the case where the group is non compact one could introduce a smearing function in the
definition of the projector (see Klauder 1997):

E .= / eI R F(€)dp(©). (3.9)

The smearing function has to satisfy the following properties:

/du(é')f(i’)f(f'_l €)= f(&) and F(€7)du(E™") = £(€)du(8), (3.10)

as can be readily verified.
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A formal limiting procedure can then be performed, leading to the path integral

/ Dplp, q) DE(N) ' (s ~Hpa)-X'@:)dt. (3.16)

where DFE()) is a certain measure on the Lagrange multipliers induced by the limiting
procedure.

Up to now, we have been considering first class constraints, but the construction can
be readily generalized to second class systems. The essential difference in this case is
that the projectors do not commute any more with the evolution operator, and it is
not sufficient to impose the constraints only on the initial time slice. All one needs to
do is to start directly with the expression (3.14), taken now as the definition of the
amplitude. Classically, the main difference between the two cases is that for first class
systems the Lagrange multipliers \'(¢) are arbitrary functions, while for second class
systems, they are at least partially determined by the equations of motion. The role
of Lagrange multipliers is to ensure that points remain on the constraint surface, as
the Hamiltonian evolution tends to force them out of it in the case of second class
constraints. In the definition of the path integral (3.14) that is exactly what we are
doing, the projector operators on each time slice enforcing the histories to remain on
the constraint surface. As a consequence of that we have that for first class systems
the path integral (3.16) does not depend on the measure DFE(\). Any measure would
do the job, provided it is correctly normalized. This is not the case for second class
systems, where the measure is determined by the choice of projectors and the limiting
procedure.

Now, back to simplicial geometry. We want to follow an analogous procedure to the
one described above. The foliation of space time will be replaced by a simplicial
decomposition of space time, each 4-simplex playing the role of a time step € 2. We
will have a free evolution given by the unconstrained 4-simplex amplitude and the
simplicity constraints will be imposed at common boundaries of simplices. We will do
so everywhere, in parallel to the case of second class systems discussed before, thus
ensuring that the constraints are imposed in every point of space time. 4-simplices
meet on tetrahedra, and thus the equivalent of the Hilbert space H; associated to
a given time slice will be the Hilbert space K5 associated to tetrahedra. Following
Klauder’s procedure, we need to introduce coherent states describing this kinematical
Hilbert space.

2Because we are dealing with a relativistic system the Hamiltonian evolution is itself a constraining
operation. In our case, the unconstrained 4-simplex amplitude is just a projection on solutions of the
the flatness constraint X,, = X;le.
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3.2 Coherent tetrahedra

The aim of this section is to give a semiclassical description to the quantum tetrahedron
described earlier. The ideas presented here were first introduced in (Livine and Speziale
2007), where the authors used the notion of coherent states for the SU(2) group defined
earlier by Perelomov (Perelomov 1986).

We collect here the essential facts concerning Perelomov’s construction. A coherent
state for SU(2) is labeled by a unit vector 7 in §? ~ SU(2)/U(1) and a spin j. To the
normal 7 associate a group element g(n) € SU(2)/U(1) that maps the unit vector in
the z direction e, into the normal n. This rotation is defined up to a phase labeling
a rotation around the z direction. A phase ¢ € (0,27) will label the representative of
g(n) in SU(2), that we denote g(7n, p) = g(n)e’#?=, where o, is the Pauli matrix on the 2
direction. We define g(n) such that the diagonal components are real. Parameterizing
each normal by the two spherical angles (0, ¢), we have:

. —i
cosf/2  sinf/2e ) (3.17)

9(n) = g(0,¢) = ( —sinf/2e*  cosf/2

The coherent state is defined by the action of g(7,¢) on the maximum weight state
14, +4)%

17,7, ) = g(R, @) > |4, +7) = e g(i) > |5, +5). (3.18)

The phase ¢ will play an important role in the construction of boundary states. The
decomposition of this state in the usual basis |7, m) is given by:

) = Dl i(g(h, @) 14, m). (3.19)

These are coherent states in the sense that they minimize the uncertainty AH?. The
expectation value of the generators is given by:

(G, n, 0| H |, 0, 0) = jin (3.20)

A different parametrization of coherent states is given by the identification between
unit spinors and unit vectors in R?:

§®§T:%(1+a-ﬁ5). (3.21)

3 Alternatively one could define a coherent state by acting on the lowest weight state |, —j). The
difference is immaterial and we will always use the definition above.
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o = (01,09,03) are the Pauli matrices, the dot - is the scalar product in R® and {
stands for Hermitian conjugation. Also, if the vector n¢ is associated to the spinor £
then the opposite vector —n, is associated to the spinor J§, where J is the anti-linear

map:
@) — (2—9 (3.22)

Note that for a given vector n the associated spinor is only defined up to a phase, and
the phase ¢ can be absorbed into the definition of £. Explicitly, for n = (0, ¢):

6(9, ¢7 50) = eiSO (_ ;Onsg//;equ) (323)

Define the map ¢ : C* — GL(2,C)

9(&) = ( Z’ _;1 ) , (3.24)

such that the definition of £(0, ¢, ) is consistent with the definition of g(n, ¢) before.
The coherent state |, &) is defined analogously:

19:6) == g(&) > |7, +J) (3.25)

The important property of coherent states is that they provide a (over)complete basis
for the carrying space H;:

]lj = dj / d n|97n SO ]7 790| Z |ja ]>m| (326)
S2

Note that the phases coming from the bra and ket states cancel out in the expression
above and there is no point in integrating over them. The semiclassical geometry of a
tetrahedron 7 is described by the state (Livine and Speziale 2008)

) s = / dg g (@icsliv i, o) - (3.27)
SU(2)

This state belongs to the invariant subspace under the diagonal action of SU(2),
Inv(®jf7-[jf), as can be easily verified. It can in particular be decomposed in the
usual intertwiner basis for the group. The states defined above provide an over com-
plete basis to this invariant space. An interesting property is that the subset satisfying
a closure condition

> G =0 (3.28)

tCT
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is still a basis of this space. This property is a result of a theorem in (Guillemin and
Sternberg 1982) and is largely discussed in (Conrady and Freidel 2009).

Boosted tetrahedra

We would like now to understand how to embed tetrahedra in 4d such that it describes
the boundary of a four dimensional triangulation. In other words, we want to under-
stand how SL(2,C) group elements act on the coherent states describing a boundary
tetrahedron geometry. This is given by identifying states for the SU(2) group |7, m)
with the canonical basis for the Lorentz group |(k, p); j, m) discussed before when defin-
ing the vertex amplitude. A coherent state is then given by the action of a rotation
g(n, p) on the maximum weight state:

|(k,p); 4,1, ) := g(n, ) > [(k,p); J, +J)- (3.29)

We will later give an explicit expression for this state. For the moment, let us see
how this state describes the embedded geometry of a triangle. We are interested in
the expectation value of the quantized bivector b, describing the triangle ¢. Using the
identification with generators (2.42), we have that

2

1

(G, 1o, 05 (K, )| by | (K, p); 4oy ) =

Separating in boost and rotation components, we have:

) =~ (S + a9 (331)

1492\

and

() = e (Lt - (1) (332

142 v

The expectation values of the boost and rotation generators on the coherent state
|(k,p);j,n, ) are given by (see appendix A):

(H) = jn and (K) = —jB;n, (3.33)
where f3(;) is given by
kp
(4) iG+1) ( )

When the simplicity constraints (2.48) are satisfied and for a classical ordering of the
SU(2) Casimir L?, we have that /) is constant and equal to the Immirzi parameter

—

7. This implies that (K) = —~(H) on this state, which in turn implies that (h%) = 0,
as it should, and (b)) = —~e (H*) = —yje n*. Now, remembering the formula
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(2.27) relating classical bivectors and normals, we see that the boosted coherent states
describe correctly the semiclassical geometry of a triangle, with area given by:

A, = i (3.35)

Let us take a look at the boundary data for the BC model. As described at the end
of the last chapter, this can be obtained setting v to oo. The representation labels &
and j are set to zero and p is left free. Because j is set to zero the boundary states are
all set to the singlet and the boundary data is specified uniquely by the representation
labels {p;}. The area A, of a triangle is identified to p;. To see that, remark that A, is
just the norm of the bivector b;, which after quantization is identified in this limit for
v with (=% J;) by eq. (2.42). This norm is given by the Casimir C (cf. appendix A).
Dropping the constant term in this Casimir we have:

The Flipped model, obtained in the limit where ~ is set to zero has a curious geometric
content. Even though it preserves spins and normals as boundary data, the physical
areas are all zero, according to equation (3.35). This supports the claim that this
model corresponds to the degenerate sector of Plebanski theory made in (Freidel and
Krasnov 2008). A precise analysis of this relationship between continuum and discrete
theories would be very interesting but we leave this to further investigation.

Boundary state

The coherent tetrahedra defined here will have a double role in the construction of the
spin foam amplitude. In one hand they give us a suitable resolution of the identity on
intermediate Hilbert spaces associated to tetrahedra, allowing to rewrite the amplitude
as a sum over classical histories, as discussed in the last section. On the other hand,
for triangulations with boundary, they can be used to construct semiclassical states
describing the boundary geometry.

A boundary state ¥ (j,n, ) is given by the tensor product of states of the form (3.27),
one for each tetrahedron on the boundary triangulation 0X:

Q/}(ja ﬁa 90) = Orcom |T>jt,ﬁt,§0t‘ (337>

We will be interested in the case where this boundary data describes a Regge geometry
for the boundary triangulation. If the boundary data (vj,7n) is Regge like then, there
exist generically unique rotations g,, € SO(3) gluing the geometry of the triangle ¢,
seen by tetrahedra 7, and 7:

gabAab - Aba (338)
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and
gabﬁab = _ﬁba (339)

Then choose a spin lift g, for each rotation g,,. For Regge boundary data, there is a
canonical choice of phases given such that the following gluing conditions are satisfied:

gabjgab = gba- (340)

Remember that the choice of phases is hidden in the definition of the spinors &,,. We
call a state defined with Regge like boundary data (77, n) and with this canonical choice
of phases a Regge state.

3.3 Gluing 4-simplices

The coherent tetrahedra of the last section provide us with a nice semiclassical descrip-
tion for the kinematical space associated to a single tetrahedron. The key property is
given by the resolution of the identity (3.26) on the carrying space H;, associated to
a triangle and for a fixed spin j;. We would like to see this resolution of the identity
as a projector imposing the simplicity constraints on that triangle. To do so we would
need a resolution of the identity involving all quantum numbers associated to that
triangle, (k;, p;) and j;, and a prescription to restrict this sum to the solutions of the
constraints. The precise construction of this projector is not clear to us and could in
principle fix the measure of the sum over the spins. We will consider here an ansatz for
the measure consisting of a factor dj, for each triangle, where « is an arbitrary integer.
The motivation for this choice is that this is the measure that comes out for BF theory.

The same way as general Regge triangulations are constructed by gluing together dif-
ferent 4-simplices, we will construct an amplitude for an arbitrary triangulation by
gluing together amplitudes for single 4-simplices. In doing this, the gluing conditions
are essential. In classical Regge calculus, the gluing conditions are that the lengths of
the edges shared by two simplices should agree.

We see that the gluing of neighbouring simplices is taken care of by the insertion of
resolutions of the identity in terms of coherent states describing the semiclassical geom-
etry of triangles and tetrahedra. When gluing two simplices through the tetrahedron
7, we demand that areas and normals should be identified. As we saw in the discussion
on the quantum tetrahedron, the set of areas and normals specifies completely the
tetrahedron geometry, thus guaranteeing the correct gluing between simplices.

In the BC model this gluing procedure would have the following classical interpretation.
According to the discussion in the last section, the boundary data there is restricted
to the areas of the triangles. When restricted to a single 4-simplex this is not really
a problem. In fact, in this case the geometry is specified by 10 edge lenghts. As
there are also 10 triangles in a 4-simplex, the edge lenghts can be expressed in terms of
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areas, up to discrete ambiguities (see Barrett, Rocek and Williams 1999). When gluing
two simplices, the problem appears. The gluing conditions are that areas should be
identified, but because areas do not specify the tetrahedron geometry completely - one
would need two extra angles to do it - the two simplices are not glued correctly and
remain uncorrelated.

As a result of introducing coherent states we now have the 4-simplex amplitude as a
function of the boundary normals instead of the magnetic numbers. Start then with
the amplitude A(j,, myr¢) associated to a given simplex v. Let us write it in terms
of the coherent state basis defined above. The change of basis is given by the formula
(3.19). This defines an amplitude A(j,y, 7,¢) that now depends on normals and spins as
boundary variables for the 4-simplex. More concretely, remember that we have chosen
an orientation for each triangle in the 4-simplex. Then, to each triangle associate
normals —n,,,¢ and 7, if 7 is at the source of the triangle ¢ and resp. 7" at the end of
the triangle, according to the orientation chosen before. The idea behind this definition
is that the normals should represent always outward normals to tetrahedra. We have
then:

A(jvt7 ﬁvﬂ't) = / H dXT H <jvta _ﬁm't; (jvt7 ,ijt)’Xq;-leT/’(jUt7 P)/jvt);jvta ﬁm'/t>

TCv tCv
(3.41)
The gluing is given by identifying the normals in two neighbouring 4-simplices v and
V') Nyre = —Nyrre = Ny, and the spins, j,¢ = jor = Ji- In doing that we are forced

to choose compatible orientations for the two neighbouring 4-simplices, meaning that
the same triangle seen by two different simplices have opposite orientations, thus the
minus sign in the gluing condition for the normals.

As we want to sum over all possible histories, we further integrate over normals and
spins associated to interior triangles. Note that because of the resolution of the identity
(3.26), we could have kept the original definition of the amplitude in terms of magnetic
numbers m,.;, and identified the two m,.¢, M~ coming from different simplices, and
this would have been equivalent to the prescription given in terms of coherent states.
Coherent states are somehow more natural as the geometric picture is clearer. The
true advantage of using coherent states is that they allow to reconstruct a simplicial
classical action, and thus construct a path integral as a sum over classical trajectories.

We are now able to write an amplitude for a certain general triangulation X::

Zy =) dl / [T dxor [T @0ee [T TT Gt firss G 701X X Gt 75 i)
vt Tt

{je} t vt
(3.42)
7 and 7’ in the last expression denote the two tetrahedra sharing the triangle ¢, and
the product v D t is over the 4-simplices in the link of the triangle t. o € Z labels
the choice for the measure in the sum over spins, as discussed at the beginning of this
section. In the expression above only the normals associated to interior triangles are
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integrated over. For faces in the interior of ¥ the product over (v D t) goes around
t and comes back to the same normal, while for faces on the boundary of ¥, it starts
on a given tetrahedron on the boundary of the triangulation and ends on the other
tetrahedron sharing the same triangle.

The boundary data is specified by the set of spins and normals living on the boundary
tetrahedra, as discussed in the last section. We further suppose that it is Regge like
and that a canonical choice of phases has been made.

The state sum model is obtained from the following considerations. First introduce a
redundant integration over SU(2) per pair of dual vertices and tetrahedra (v7). Noting
this extra variable g,,, make the following change of variables: X,, — X,.g,,. It is
clear that the integration over g,, can be reabsorbed by using invariance under right
multiplication of the measure over X,.. Now g,, appears four times, one per face of
the tetrahedron 7. Performing this integration we get up to a sign*

/ dgvT ®tC’T (gvr > |(jt77jt);jt7m7't>) -
SU(2)

=> / dgur ®icr <D%/tm7t(gvﬂ')|<jta’Vjt);jtamg-t>) =
— Jsu(2) T

t

= S ST i @uc (G vie): e i) (3.43)
mery

i’UT

Inserting this result in the amplitude (3.42), rewriting the resolutions of the identity
(3.26) in terms of magnetic numbers and remembering the definition of the vertex
amplitude in the intertwiner basis A(jy,i,,) We can rewrite Zs, as:

ZE = Z H d;lt Him— 'gv”r H A(j’utui’u7'>

{jesior} 't T
- Z H d]at H A(jvtv iT), (344)
{jesiz} t v

where in passing to the second line we have used the orthonormality of intertwiners:

iyr * Gy = 0, i, for the two simplices v and v’ sharing 7.

Now, the definition of the partition function (3.42) above is only formal, being diver-
gent as it is stated. There are two sources of divergences. The first comes from the
integration over the Lorentz transformations, which can be dealt with in exact the same

way as we saw in the last section for one single simplex. This is because the Lorentz

4The sign depends on the choice of orientations for the faces in each 4-simplex. The following
formula is for the case where all four triangles of the tetrahedron 7 are outward or inward.
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group elements X,; integrated independently for each four simplex. We thus choose one
tetrahedron per simplex and drop the integration of the corresponding group element.
From a Lattice Gauge Theory point of view, this can be seen as a strange sort of gauge
fixing, where the gauge has been reduced in each edge to SU(2) after the simplicity
constraints have been imposed, and the original Lorentz invariance is conserved at the
dual vertices. Because of this breaking of symmetry, one cannot really fix completely
the elements on a maximal tree as in LGT® see figure 3.3.

gauge reduced to SU(2)

Figure 3.2: Gauge fixing in the dual of a triangulation.

The second source of divergence comes from the sum over spins, and this is more
delicate. In order to understand this point, we need to take a closer look at the
amplitude, with the aim of writing it as a sum over classical histories.

Rewriting the amplitude

Before constructing the path integral, we would like to write the amplitude (3.41) in a
more concrete form. This will allow in particular to rewrite it in an exponentiated form

5What one can do is to choose a maximal tree and gauge fix the rotation part of the group elements
living on that tree. This does not help us with the divergence problem, and we thus prefer to keep
the full group elements.
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and to reconstruct a simplicial action. In the next chapter we will relate this action to
the Regge action, in the case of a single simplex.

The main object we want to look at here is the propagator:

Pvt = <jt7 Jgtr; (ktapt)|Xq;—1XUT’|(ktapt); jt7 5157")7 (345)

where k; = j; and p, = ;. This is such that the 4-simplex amplitude is given by:

A(jt7£t’r) - / H dX’UT 5(Xv7'*) H Pvt- (346)

We have chosen an arbitrary tetrahedron 7% in v and gauge fixed the corresponding
group element X, ...

To study the expression (3.45), we need first to go through a bit of representation
theory for the Lorentz group. We review the representation theory in an appendix,
but give here the basic facts necessary to understand the following construction. A
representation on the principal series (k,p) is defined on the space of homogeneous
functions of two complex variables z = (2, 21):

f()\Z) — )\71+ip+k5\71+ip7kf<z>’ (347>
for A any complex number.

The inner product on this space is given by

(f.9) = fg 9, (3.48)

CP?

where we have used the standard 2-form on C? — {0}:

Q= %(Zodzl — ZleO) N (Zodél — Zldéo). (349)
To perform the integration above, one chooses a section. The standard choice is z =

(¢, 1), for which the measure reduces to the standard measure on the complex plane,
Q=1dCAd( =dx Ady, ( =2 +iy.

2
An element X € SL(2,C) acts on this space by:

(Xf)(z) = f(XT2) (3.50)

In order to understand the expression for the propagator (3.45), we need to write the
state |(k,p); 7, n) as a homogeneous function. We use the standard notation (Naimark
1962) f (2)*P) for an element of the canonical basis represented in the space of homo-
geneous functions. They can be given and explicit expression using hypergeometrical
functions. It will be more useful however to use homogeneity and scale the argument
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such that it is normalized, (z, z) = 1. Given a normalized spinor &, construct the SU(2)
matrix using the map (3.51):

o= ). (351)

The canonical basis when restricted to normalized spinors is identified with SU(2)
representation matrices:

fn(€)"7 = @ D1 (9(€))- (3:52)

The following formula for a representation matrix of GL(2,C), restricted to matrices
of the form (3.51), will be useful in what follows:

(7 +m)X

pase) = [ ()Gt )
x (&) (=6) T ()T (&) T (3.53)

The sum over is over values of n such that the binomial coefficients do not vanish.
Evaluating f7 (z)*?) on non-normalized spinors and using homogeneity, we get the
following formula:

fn(2) ) = \/% (2,277 D} (9(2)), (3.54)

One can check that the function defined above has the correct homogeneity.

A coherent state |(k,p);j,&) will then be represented by the homogeneous function
fL(z)#P)| defined by:

A E = g(€) b fL(2)*P = f1(g(e)T 2)®P = f1.((z,6), [€,2)) ", (3.55)

where the notation fij(z) = fij(zl, 29) has been used in the last step. We now restrict
to the case j = k with k positive. We have that

HOMEES @ (2,277 (7,6 (3.56)

With the machinery introduced above, the propagator (3.45) can be written as:
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P, = <er fétT(z)(kt7pt)’XUT,fktil(Z)(ktapt)>

= [ R PR (X 2 (X

d S )
= 2, (XD 2, XT 2, P R g X 2,07 %

T C]Pl

(X B, XD 2P R (X 2 €)%

dy, o
= = (X X ) TR (T, X))

T (C]P)l

% (XJT, ot ijf’zvtypt_l_kt <Xz]:f/ 2ot &) M (3.57)

Now, define
Zoir = X 21, (3.58)

such that, the propagator can be written as

P, — dkt 0O ( <th7"7 thT’> ) e ( <J§t7'7 th7'> <th’r’7 5t7”> ) 2h
vt — T vt )
T Cpt <th7'7 th7‘> <th7'7 ZUtT>1/2<thT’7 th7">1/2

and

Q
Oy = Zut 3.59
! <th’ra Z’UtT) <th7"7 thT’) ( )

is a measure on CP'.

We see that the propagator can then be written as an integral weighted by the expo-
nential of a simplicial action:

d
Pvt = / ﬁgzvt esvt, (360)
(C]Pl m

with the action given by:

<J£t‘r; Z’l}tT>2<thT/7 5157'/)2
<th‘ra th7'> <th7"> vtT’>

<th‘r’7 thT’)
<th7'a th7'> ‘

Svt [jv X7 57 Z] = kt 10g + Zpt IOg (361)

The first term is complex, defined mod 27, and the second term purely imaginary.

3.4 The path integral

The full partition function can then be rewritten as:
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Zn=)_ d / (HdXWH 6(Xor) J] dé Hw) X SulinXorinzul - (3.62)
vt v Tt vt

{7¢}

In the expression above, for each 4-simplex, we have chosen an arbitrary tetrahedron
7+ and gauge fixed the corresponding group element X, to the identity.

We see that the partition function is expressed as a path integral with classical action
given by S = )" . Sy. The important property of this action is that it is homogeneous
in the representation labels j;, S, =: jiSy:. We can now come back to the sum over
spins and the possible divergences coming out of it. By formally inverting the order of
integrations and sums, one has for each ¢ a (almost) geometric sum:

P=) " d al, (3.63)
Jt
where we have defined a; := e>w>t %, Because the divergent part of this sum is

controlled by the large spin sector, we consider the approximation d; ~ 2j. Performing
the sum, we get:

Q(at)

(1— ap)ott
(Q)(at) is a polynomial of order « in a; such that Q(1) # 0.

We would like now to make an analogy with the path integral for a scalar relativistic
particle in flat space time (see for instance Weinberg 1995). There, for a given Feynman
diagram we associate for each edge e in this diagram the propagator DI = i(p? +
m? +ig)~!. The Feynman propagator has naive poles for p> = —m?, corresponding
to a classical relativistic particle propagating freely. The prescription for adding e
defines how one should deform the integration contour to correctly take these poles
into account. Putting propagators together and the delta functions to ensure the
preservation of momenta then allows to identify the real propagating modes at a given
order of perturbation theory.

In the simplicial path integral (3.62) defined above, we associate to each triangle a
propagator P; defined in (3.64). The naive poles for this propagator are given by con-
figurations satisfying the equation a;, = 1. After taking into account the measure of
integration, we would hope that the true poles be related to classical Regge configura-
tions, satisfying the Regge equations of motion.

The analogy becomes clearer when expressing the Feynman propagator in the Schwinger
proper-time representation:

e

DI = / ds eiswetm?+ie) (3.65)
0
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This expression is to be compared with eq. (3.63), the sum over j; playing the role
of the integral over the proper time s. We see that the prescription for adding the ¢
term has the effect of regulating the sum over s. We might as well do the same for our
simplicial path integral and regulate the sum over spins:

P~ e ialt, (3.66)
Jt

This can in turn be inserted back into (3.62), providing us with a regulated expression
for the partition function ZX:

7z - / TT % I 0(Xers) T A6 TT 9w T PFIE X 2]
— / [Tax- I o) T PFIX). (3.67)

where we have defined P7[X]| =[], d& [1,, Qu Fr[§, X, 2z]. The propagator P;[X] is
of course a very complicated object but understanding its structure, in particular un-
derstanding its pole structure, is of key importance to extracting physical information
out of the amplitude defined here. We see that the prescription (3.66) corresponds to
a certain choice of contour of integration regulating the a priori ill defined expression
(3.62).

It is probably a good point to take a look back at Hartle’s simplicial minisuperspace
program, and check at which step of it we are standing. We have been able to define the
analog of the wave function ¥(I?) depending on boundary edge lengths. The difference
is on the boundary data: for us it is specified by a certain set of spins, representing the
areas of triangles and unit normals to these triangles.

Remember that two questions were left open in Hartle’s program. The first one was
the choice of the measure. We have seen that in the spin foam context, while the
arbitrariness remains, a certain class of measures is suggested by the BF path integral.

A second question was related to a proper choice of contour of integration. We have
proposed such a choice, in analogy to the theory of propagators in flat space. Of course
this is only an analogy and one needs to check if this choice is physically reasonable:
one needs to check if the poles dominating the amplitude correspond to classical sim-
plicial geometries allowed by the boundary data. We leave this analysis to further
investigation.

Let us explore the definition of observables for the spin foam model given here. We want
to define the equivalent of equation (1.7) in the context of the simplicial minisuperspace.
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To do that we need two inputs: a vacuum, or boundary, state W, and an observable
O acting on the boundary space. The boundary data can be specified by spins and
intertwiners, equivalently by spins and normals, or finally by spins and spinors, as
explained before. Any of this set of variables provides a basis for the boundary state
space. In turn, the action of an observable on the vacuum state can be decomposed
in this basis. To compute observables it is thus sufficient to compute the path integral
for a boundary state given by an element of this basis. Any basis would do the job,
and the best choice depends on the observable chosen. Note this element Uy and the
path integral with this boundary state Z5(1s). The basic observable is then given by

£

S5, = % (3.68)

£(%o)
and plays the role of the S matrix in field theories. Borrowing some intuition from
LQG, a natural choice of vacuum state would be Wy = [],d;,0 ©, which corresponds
simply to setting all the boundary areas to zero.

A discussed in chapter 1, one hopes that the expression above is better behaved than
the path integral alone, as divergences might cancel between the numerator and the
denominator. The question now is to define the limit ¢ — 0. We leave that and the
many other questions discussed earlier for further investigation. We will recollect all
these issues in the concluding chapter.

5In passing to dual variables this corresponds to the constant functional ¥(g;) = 1, see for instance
(Ashtekar and Lewandowski 2004).
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Chapter 4
Asymptotics

In the last chapter we have defined an amplitude for certain boundary data defined
on a given simplicial decomposition of space time. This is in principle a very difficult
expression to compute with and one needs to find ways to extract physical information
out of it. In this chapter we would like to explore the properties of the amplitude
defined in the last chapter using for that purpose semiclassical methods. We will
use a stationary phase approximation to the path integral, which is equivalent to the
standard WKB approximation for quantum mechanics.

Other than extracting observable information, we are also interested in testing some
of the assumptions that led us to construct the path integral. Remember that, in
discussing the implementation of the classical constraints we made a choice to leave
some of them free. The correct semiclassical behavior for the amplitude will, if not
validate, give us confidence in the choices made when quantizing the classical system.

We will restrict ourselves to the case of a single 4-simplex. This is, one might argue,
a too simple system, as a single simplex is always flat, with curvature appearing only
after gluing simplices around a given face. Understanding a triangulation with internal
faces - and controlling the potential divergences appearing there - is of course a crucial
question that we leave open.

As we saw before, the classical action is homogeneous in the spin variables. The
semiclassical regime will then be probed by a large spin limit. More precisely, scale
uniformly all the spins j; — A\j;. The semiclassical approximation is given for A large.

The discussion of this chapter follows closely (Barrett, Dowdall, Fairbairn, Gomes and
Hellmann 2009) and (Barrett, Fairbairn and Hellmann 2009) hereby denoted (BDFGH
2009) and (BFH 2009) respectively.

81
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4.1 Posing the problem

In this section we would like to state the method in its full generality (see Hormander
1983). Let then D be a closed manifold of dimension n, and S and a be smooth
complex valued functions on D such that ReS < 0. We are interested in evaluating
the following expression:

f(A):/Ddxa(:c) @), (4.1)

We call a critical point a stationary point of the action S(z) for which ReS(z) =
We assume the stationary points to be isolated and non degenerate, i.e., the Hessian
H of S has non zero determinant on these points. If S has no critical points then for
large \ the function f decreases faster than any power of A™!, that is,

fA) =o(AN), YN > 1. (4.2)

In the presence of critical points, then f is given for large A by a sum over contributions
of the form

\"?
F0 =3 aled () e 00 (4.3

Te

One can give an explicit expression for the sub leading terms hidden in O(1/)\), and
these will be important in computing observables (see Bianchi, Magliaro and Perini
2009). We restrict ourselves here to the leading order terms.

To pose the problem, let us recall the classical action associated to a single 4-simplex:

Jfaba > <Zba7§ba>2 . <Zbaa Zba>
, X, kap log + 1Py log ————. 4.4
SO X062 =) halog S ) Pz iy (Y
We have shifted back to the previous notations, a,b = 1...5 labeling the tetrahedra
of the 4-simplex and a pair (ab) labeling the triangle between the two tetrahedra.
Analogously, Z,, = ngab and Zp, = ngab. We are interested in applying the
stationary phase method described in the last section to the following function:

Ja(A) = A(Njab, Eab) = / HdX d(X5) / HdkabQ eSPIXE] (4 5)
SL(2,C)* C

Ipl)xlo

All we have to do then is to find the stationary points of the action (4.4) with vanishing
real part. We will do that in the next section. In the following of this chapter we will
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then classify the solutions to the critical point equations and relate them to geometric
configurations for the 4-simplex.

The boundary data is given by the set (ju, £up) and we suppose it is Regge like, following
the discussion on the boundary state in the last chapter. In particular the tetrahedra
constructed out of this boundary data are all non-degenerate. Also, because it does
not cost us any extra work, we will not impose the simplicity constraint fixing p to be
proportional to k. Surprisingly, we will see that the critical point equations will admit
solutions only for p proportional to k.

4.2 Critical points

In this section we look for critical points of the action (4.4), first looking at the equations
enforcing the real part to vanish and then at the stationarity of the action.
Condition on the real part of the action

The real part of the action

Zaba Jgab> |2|<£ba7 Zba> |2
(Zabs Zab)Zvas Zba)

Re S = Zkablog I

a<b

(4.6)

satisfies Re S < 0 and is hence a maximum where it vanishes. It vanishes if and only
if, on each triangle ab, a < b, the following condition holds

<Zaba Jgab> <J§aba Zab> <€baa Zba> <Zbaa Sba)
<Zab> Zab><Zba7 Zba>

~ 1. (4.7)

This equation admits solutions if the coherent states J&,, and &, are proportional to
Za and Zy, respectively. Considering the fact that the coherent states are normalized,
the most general solution to the above equation can be written

iPab i®ba
c X1z, and &, = G—Xg 2, (4.8)

Jé'ab: a”
H Zab H H Zba ||

where || Zyp, || is the norm of Z,;, induced by the Hermitian inner product, and ¢, and
¢pa are phases. Eliminating 2, and introducing the notation 6., = ¢4 — dpa, We obtain
the first of the equations for a critical point

| Zba |l

(XD_I Jgab -
| Zao |l

el (X)) &, (4.9)

for each a < b. We now turn to the variational problem for the action.
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Stationary and critical points

We now compute the critical points of the action by evaluating the first derivative of
the action of the configurations satisfying the condition (4.7). The action (4.4) is a
function of the SL(2, C) group variables X and of the spinors z. We start by considering
stationarity with respect to the spinor variables.

There is a spinor z,, for each triangle ab, a < b, and the variation of the action with
respect to these complex variables gives two spinor equations for each triangle. For
the triangle ab, the variation with respect to the corresponding z variable leads to the
following (co-)spinor equation

1 1
5zS:ia —XZQT_—XQZQ T)
Pab <<Zba7 Zba>( b ) <Zab7 Zab>( b)
2 1 1
tkap | 7 (Xad ) — ———(XaZa T_—XZaT>7
: <<Jsab,zab>( ) = G Zua) P = Gy )

while the variation with respect to z yields the spinor equation displayed below

1 1
0:5 = 1w | T X6Zba — 75— XaZa
S b ((Zba,u Zba> b <Zab7 Zab> b)

1 1

2
+k, <—X o — ————XgLapy — ————Xp 24 a) .
’ <Zba7 §ba> bé—b <Zab7 Zab> ’ <Zba7 Zba> b

Evaluating the above variations on the motion (4.8) and equating them to zero leads
to the following two equations

Z, . Za ||
(X, JEu) = | Zab ”e_’e“b(Xb &), and X, JEw = I Za Hew“bXb Eoay  (4.10)
| Zba || |l Zba |

using the assumption that (K., paw) # (0,0). The two equations above are related
by Hermitian conjugation and there is therefore only one relevant equation extracted
from the stationarity of the spinor variables. Thus, our second critical equation is the

following

Za ||
X, Jéab = MewabXb gbw (411)
| Zba ||

Finally, we consider stationarity with respect to the group variables. The right variation
of an arbitrary SL(2,C) element X and its Hermitian conjugate are given by

6X=XoL, and 6X'=LloXT, (4.12)

where L is an arbitrary element of the real Lie algebra sl(2, C)g.

Because s[(2,C) = su(2)€, there exists a vector space isomorphism s[(2, C)r = su(2) ®
isu(2). Using this isomorphism, we can decompose L into a rotational and boost part
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L = o'H; + B'K;, with o', 3" in R for all i = 1,2,3. Conventions for the spinor
representation of the rotation and boost generators respectively are such that H = o
and K = 1o (see appendix A).

The variation of the action with respect to the group variable! X,, a = 1, ..., 4, yields

. <Zab7LZab> <Zab7LJr Zab>)
0 aS - - 1Pa +
B b%é:a |: Pt ( <Zab7 Zab> <Zaba Zab>

kb<<Zab,LZab> (Zapy LY Zop) 2<J§ab7LTZab>>}

<Zab7 Zab) <Zab> Zab> <J£ab7 Zab>

Now, evaluating this first derivative on the points satisfying the condition on the real
part of the action (4.8) and equating the result to zero leads to

(4.13)

> ipab ((Jabs L TEa) + (Jabs LT TEab)) + kap ((JEab, L TEap) — (J&ap, LT JEw)) = 0.
b:b#a

Finally, we use the fact that the spinors &, determine SU(2) coherent states, that is,

0 1
<J§ab7H<]£ab> - _5 Ngp, and <‘]§ab7K<]§ab> - _5 Ngp, (414)
where n := ng € R? is the unit vector corresponding to the coherent state £. This leads

immediately to the following two equations

Z PapNgy = 0, and Z kg, = 0, (4.15)
b:b#a b:b#a

because o' and 3' are arbitrary. These two equations can only be satisfied if there
is a restriction on the representation labels. We have that p,, = ~v,kq for some arbi-
trary constant 7, at the a-th tetrahedron. However, since the equations hold for each
tetrahedron, v, = v, = ¥ and the representations are related by a global parameter
Pab = Ykap- By identifying this global parameter with the Immirzi parameter used in
the construction of the 4-simplex amplitude, we recover the full simplicity constraints
(2.48).

With this condition, the two equations collapse to a single stationary point equation

> kg = 0. (4.16)

b:b#£a

IThe variation with respect to the variable X, performed here corresponds to a vertex which is
the source of all its edges. The variation for a vertex which is the target of some, or all, of its edges
will require varying with respect to X;. This proceeds similarly to the above and leads to the same
stationary point equations.
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To summarise, we have obtained three critical point equations given by expressions
(4.9), (4.11) and (4.16). Solutions to these equations dominate the asymptotic formula
for the Lorentzian 4-simplex amplitude.

4.3 (Geometrical interpretation

In this section, we show how geometrical structures emerge from the critical point
equations.

The geometry of the critical points is based on the identification between spinors and
null vectors (see Penrose and Rindler 1986). Let I' : R® — H; z — T'(z) = 2°1 + 2’0,
be the vector space isomorphism between Minkowski space R*! and the space of two-
by-two hermitian matrices H. Through this isomorphism, the action of a Lorentz
group element X on R3! lifts to the action of an SL(2,C) element X on H as follows
['(Xz) = XT(2)X!. Using this isomorphism, we can map spinors to null vectors
through the following procedure. Let

C:C? = H, 2+ ((2)=2® 2, (4.17)

be the standard map between spin space and the space of degenerate two-by-two Her-
mitian matrices with positive trace

Hy ={heH|deth=0, and Tr h > 0}. (4.18)

Note that this non-linear map is obviously not injective and satisfies ¢ (re??z) = r2¢(z).
Finally, the space H can be identified via I' to the future pointing null cone C" in
Minkowski space and the map ¢ = I'"! o ¢ : C*> — R*! maps spinors to null vectors.

Following the above construction, we can therefore associate the null vector

(€)= 5(1,m), (4.19)

to the coherent state £ by using equation (3.21). In fact, we can associate a second
null vector to the coherent state & by using the antilinear structure J:

J(JE) = %(1, _n). (4.20)

The two spinors £ and J¢ form a spin frame because [£, J¢| = (JE, JE) = 1.

From this spin frame, we can construct bivectors in the vector representation as follows.
Define the following time-like and space-like vectors

T = (&) +u(J§) = (1,0), and N = (u(&) = (JE)) = (0, n). (4.21)



4.3. GEOMETRICAL INTERPRETATION 87
From these two vectors construct the space-like bivector

b=+T AN = —=2x1(€) A u(JE), (4.22)

where the star x is the Hodge operator acting on the space A?(R*!). In the four-by-four
matrix representation, b is given explicitly by

0 n' n® nd

~ —nt 0 0 O
b=x% 2 0 0 0 (4.23)

-n3 0 0 0

This bivector is space-like because T AN is time-like and the Hodge operator is an anti-
involution. It is also simple by construction and satisfies a cross-simplicity condition

TIBJKT]]J = 0. (424)

Following this construction for every coherent state {u; consequently leads to a collec-
tion of bivectors by, living in the hyperplane 7+, with 7 the reference point of the
future hyperboloid Q).

We now show that our critical point equations allow to reconstruct a 4-simplex geom-
etry out of these bivectors. We will check each of the conditions (2.4) leading to the
reconstruction Theorem 1. First define b,, = fykabgab. According to the discussion on
the boundary state in the last chapter, vk has the interpretation of the area A, of
the triangle t,,. The bivectors satisfy simplicity by construction. The critical equation
(4.16) implies closure. 3d non-degeneracy comes from the assumption on the bound-
ary data. It remains to check the parallel transport condition and deal with the 4d
non-degeneracy condition.

We will see that the critical equations (4.9) and (4.11) are just the expression of the
parallel transport condition on the fundamental representation. To see that, we need
to write the spinorial equations (4.9) and (4.11) in the vector representation. We use
the map ¢ defined above. Note that

U Xz)=T"(Xz@ X)) =TI (Xz®:XT) = X u(2). (4.25)
Equation (4.11) reads:
X t(J&a) = | 2 I X, (&) (4.26)
I Zea |12
and equation (4.9):
2P

Xo t(€a) Xy t(JEva)- (4.27)

1 Za [1?
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To get the last equation we have used the action of the J structure on SL(2,C):
writing an arbitrary SL(2,C) element X as X = exp o'H; + 'K, with o, 5 real, it
is immediate to see that

JXJ7t = (X (4.28)

The restriction of the above equation to the unitary subgroup states that J commutes
with SU(2) as expected.

Wedging these two vector equations leads to the bivector equation
Xa & Xa L(fab) VAN L(Jgab) = —Xb &® Xb L(&,a) N L(nga), (429)

which implies the parallel transport condition for the bivectors by, and by,.

The last condition we need to deal with is the 4d non-degeneracy. We use Lemma 3
from (BDFGH 2009). The lemma states that a bivector geometry is either fully non-
degenerate or fully contained in a 3-dimensional hyperplane. The lemma was stated in
the context of Euclidean geometry but did not use the metric at all and thus applies
unaltered to our case.

In the non-degenerate case, we can use Theorem 1 to reconstruct a 4-simplex geometry.
Solutions to the critical point equations are therefore related to geometric 4-simplices
up to inversion. In particular, for every solution that is non-degenerate, there exists
a parameter p which takes the value either 1 or —1, and an inversion-related pair
of Lorentzian 4-simplexes 0. These are such that the bivectors (of either of the two
simplexes) B, (o) satisfy

Bap(0) = 1By = 1 Xy @ X by (4.30)

A key subtlety in the geometric interpretation of our equations arises due to the fact
that SL(2,C) maps only to the connected component of SO(3,1) and takes future
pointing vectors into future pointing vectors, meaning that the inversion map is not in
SL(2,C).

If the solutions fall into the fully degenerate case this implies all F,, are pointing in the
same direction. As we have fixed X5 = 1 this means we have I, = X,7 = T, for all a.
That is the X, are in the SU(2) subgroup that stabilizes 7. As such the two distinct
critical and stationary point equations (4.9) and (4.11) reduce to the single equation:

Xa Jgab - eieabXb gba (431)

The solutions to these equations have been studied in (BDFGH 2009 and BFH 2009).
A solution determines a geometrical structure called a vector geometry. This is a set
of vectors v, € R? satisfying closure, Y ukaVay = 0, and orientation, vy, = —vg. In
this case, v, = X ngp.

In particular it was shown that for Regge like boundary data equation (4.31) admits
solutions exactly if the boundary is that of a Euclidean 3- or 4-dimensional 4-simplex.
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In the 3-dimensional case X,n,, are the normals to the faces of the 4-simplex, in
the 4-dimensional case there are two solutions corresponding to the self-dual and anti
self-dual parts of the Euclidean bivector geometry.

4.4 Symmetries and classification of the solutions

An important input for the asymptotic formula is the classification of the solutions to
the critical points. To start with, we need to consider their symmetries.

Symmetries induced by the symmetries of the action

It is straightforward to see that the amplitude (4.5), and also the action (4.4) (modulo
27i), admit three types of symmetry.

e Lorentz. A global transformation X, — Y X,, 24 — (YT) 7124, for Y in SL(2, C),
acting on all the variables simultaneously.

e Spin lift. At each vertex a, the transformation X, — —X,.

e Rescaling. At each triangle a < b, the transformation z,, — k24, for 0 # k € C

Note however that the Lorentz symmetry does not affect the asymptotic problem be-
cause the amplitude is gauge-fixed such that X5 = 1. The spin lift symmetry then only
acts at the vertices a = 1, 2, 3, 4.

These symmetries of the action map critical points to critical points, except that some
of the symmetries are broken by the gauge-fixing that is used to define the non-compact
integrals.

Parity

An additional symmetry of the critical points that is not determined by a symmetry
of the action is the parity operation, given by the inversion of the spatial coordinates
of Minkowski space. Using the SU(2) antilinear map .J, one can construct a map
acting on Minkowski vectors through their identification with two-by-two Hermitian
matrices. Most importantly, because the J map commutes with SU(2), it necessarily
anticommutes with Hermitian matrices which implies that

JT(z)J ' = 2°1 — 2’0, = T'(Pu), (4.32)

where P is the mapping (z°,x) — (2°, —x) on R*!. Now, we have seen that the J map
has a well defined action (4.28) on SL(2,C). The corresponding parity transformation
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P is of key importance since it shows that given a solution to the critical point equations
(4.9) and (4.11), the transformation

X, = P(X,) = JX,J* Va,

(4.33)
Zab —7 XaX(IZab Va < b

leaves the critical point equations unchanged, because || Zu, || / || Zba || is mapped
to (|l Zay || / | Zba |I)~', and is an involution. Therefore, P, together with the above
transformation on z is a symmetry of the critical points. It is not a symmetry of the
action, but a prescription to construct a solution out of a solution.

An important feature of the action of P is that it flips the orientation parameter p to
—u. The remainder of this section shows that this is the case.

Firstly, from the definition (2.15) of the bivectors of a 4-simplex, it follows that
PBuy(0) = —Ba(Po). (4.34)

This is because the the normal vectors N, transform as vectors under P, but xP = — Px.
Another way of saying this is that the N, are determined by the metric only but %
requires an orientation.

Secondly, the bivector b,, has only space-space components, so is unaffected by the
parity operation. This means that in the equation (4.30) defining ,

PBab<O-) - :U’P(Xa) ® P<Xa) bab (435)

and hence
lle = —[Lpg- (4.36)

Classification

Using the above results we can now classify the solutions to the critical point equations
for different types of boundary data. In this classification, solutions which are related
by the symmetries of the action are regarded as the same solution.

Regge-like boundary data. Given a Regge-like boundary geometry, a flat metric
geometry for the 4-simplex is specified completely up to rigid motion. In particular
the metric on the interior is uniquely fixed by knowing all the edge lengths, and this
is fixed by the boundary data. One way to see this is to note that there is a linear
isomorphism between the set of square edge lengths and set of interior metrics. Note
that (2, = v, 0", g,, for a 4-simplex with edge vectors v and lengths [ is indeed linear and
that choosing the edge vectors as basis vectors one can calculate their inner products
using only the other edge lengths. But knowing the inner products and the lengths
of the basis vectors is equivalent to knowing the metric. Now as the tetrahedra are
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all Euclidean and non-degenerate, the metric of the four-simplex must be of signature
(=, +,+,+)or (+,+,+,+).
The solutions can now be classified according to the boundary data.

o Lorentzian 4-simplex: 1f the boundary data is that of a non-degenerate Lorentzian
4-simplex, then two distinct critical points exist, related by the parity transfor-
mation P in section 4.4. Since the boundary data determines the metric of the
4-simplex o, there are only four possibilities which are unrelated by the action of
SL(2, C), corresponding to the four connected components of the group O(3,1).
These are o, its inversion partner —o and the parity-related Po and —Po. The
solutions correspond to inversion-related pairs, thus it is clear that the two solu-
tions given by (¢, —c) and (Po, —Po) exhaust all the possibilities.

e Fuclidean 4-simplex: If the boundary data describes a Euclidean 4-simplex, then
there will be exactly two critical points, {X} and {X,}, with all matrices
in SU(2). These can be used to reconstruct a Euclidean 4-simplex op, as in
(BDFGH 2009). These critical points can also be used to construct the parity
related 4-simplex Pog.

o J-simplex in R3: If the boundary data corresponds to a degenerate 4-simplex
in R? then there will be a single SU(2) critical point. This determines a vector
geometry. A second critical point cannot exist or we would be able to construct
a non-degenerate Euclidean 4-simplex, which is not possible with this boundary
data.

Furthermore it was established in (BFH 2009) that no other vector geometries exist
for Regge like boundary data.

Non Regge-like boundary data. If the boundary data is not Regge-like then the
remaining possibilities are to obtain exactly one critical point in SU(2) which deter-
mines a vector geometry, or no critical points at all.

Regge action

In this section, the action (4.4) at a critical point is expressed in terms of the under-
lying geometry. On all critical points, the real part vanishes and we are left with the
imaginary part

= Zp“b log H Zba H2 — 2k up Oup (4.37)
In the case where the critical points determine a non-degenerate 4-simplex, the fol-
lowing discussion shows that the argument of the logarithm is related to the dihedral
angle O, at the ab triangle.
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If F, and Fj, are the future pointing normals determining the two hyperplanes inter-
secting along the triangle ab, the corresponding dihedral angle ©,, obeys

cosh Oy = —F, - Fy — %Tr (T(F)'T(F)). (4.38)

To see how this relates to the critical points, couple equations (4.9) and (4.11) and
eliminate J&,,. This leads to the following eigenvalue equation

e |12
XXX (XD T = H T (439)
and the corresponding J transformed equation:
XXX (X)L gy = I I 4.40

The matrix X' X, X (X1)~" in this equation is Hermitian, so it follows that it has

eigenvalues
reo | Zab |I?

AR

and the inverse of this, e™"e*. Moreover, the eigenvectors are orthogonal. This trace is
the same as the trace in (4.38), and so

(4.41)

Oas| = |rasl- (4.42)

Therefore, the parameter ry;, is the dihedral angle up to a sign.

To solve this sign ambiguity, it will prove useful to obtain an exponentiated form of
this matrix. This is achieved by noting that since the spinors £, are SU(2) coherent
states, they satisfy

' 1
(Hon)¢ = %g, and  (Km)§ =3¢ (4.43)
Hence, the Hermitian matrix X ' X, X, (X])~' can be written as a pure boost

erab

XX X[ (X)) ™! = e2raKna — g(n,,) ( 0 e_(lab ) g(ng) 7, (4.44)

where g(n,;) is a unitary matrix.

Using the above expression, we can now overcome the sign ambiguity of (4.42), by
using the definition of the dihedral angle of a Lorentzian 4-simplex ¢ in terms of the
parameter of the dihedral boost:

Doy = exp (@abg(*éab(a))) , (4.45)
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Now, the expression (4.30) of the geometric bivectors in terms of the the boundary
data leads to the following equality

X = pX,m(ng - K) X (4.46)

a

where 7 : s[(2,C)g — End(R*!) is the vector representation of the Lorentz algebra
(see appendix A).

This implies that a lift of the dihedral boost to SL(2,C) is explicitly given by
Doy = X, e/OavEnar x =1 (4.47)

K being here a 2 x 2 matrix. The sign choice of the lift plays no role in what follows.

Next, we use a property of the dihedral boost just established,

['(Dg, F,) = T(F). (4.48)
This can be written
DX, XDl = X, X/, (4.49)
which implies
X, e2Oakna X1 — X, X (4.50)

Comparing the last equality and (4.44) finally gives that

62#@abK~nab — 627'a.bK~nab, (451)

which implies that ©©,, = r4,. This solves the sign ambiguity.

In this last part, we show how the action at critical point simplifies for the case of
a Regge state. The computation uses the critical point equations combined with the
definition of the boundary state (3.40), as follows

| Zav || s
Xa J ab — et X, a>
Eab Zon | b &b
| Zav || s
= abXb YJab Jgaba
| Zya |l
Zg ,
_ || b ||€19abXb Gab X;l Xa Jgaln
| Zya |l
Zg ,
_ [ Za ||e’9'1bDab X, JEa, (4.52)
| Zya |l

As D, is a pure boost, that is, has eigenvalues that are strictly positive, it follows that
Oup = 0.



94 CHAPTER 4. ASYMPTOTICS

Therefore the action on the critical points corresponding to a non-degenerate 4-simplex
yields the Regge action for the Lorentzian 4-simplex determined by the boundary data

S=—in Y VkaOu- (4.53)

a<b

4.5 Asymptotic formula

We can now state the asymptotic formula for the 4-simplex amplitude. A formula is
called asymptotic if the error term is bounded by a constant times one more power of
A~! than that stated in the asymptotic formula.

Given a set of boundary data, then in the limit A — oo and for p,, = vkap

1. If the boundary state is the Regge state of the boundary geometry of a non-
degenerate Lorentzian 4-simplex we obtain:

1\ 12
fa~ (X) [N+ exp (i/\v Z kab@ab> + N_exp <—i)\7 Z kabgab)

a<b a<b

(4.54)

N. are independent of A\ and are given below.

2. If the boundary state is the Regge state of the boundary geometry of a non-
degenerate Fuclidean 4-simplex we obtain:

1 12
i) o pge) om0

a<b a<b

(4.55)

OFL is the dihedral angle of the Euclidean 4-simplex.

3. If the boundary state is not that of the boundary of a non-degenerate 4-simplex
but allows a single vector geometry as solution, then for an appropriate phase
choice the asymptotic formula is:

12
fo ~ (?) N (4.56)

The number N is independent of .

4. For a set of boundary data that is neither a non-degenerate 4-geometry nor a
vector geometry, the amplitude is suppressed for large \.

fi=o0(A"M) VM (4.57)



4.5. ASYMPTOTIC FORMULA 95

In the Lorentzian case the two contributions to the asymptotics correspond to the
parity related reconstructions of this 4 simplex geometry. Calling N. the constants for
the sector with 1 = F1 respectively they are given by

24 2k ap

=] ="
det Hi a<h ™
1
kaanb crit (458)
\/ det Hi a<h

The factor (27)* comes from the stationary phase formula as the integral has 6 x
4 dimensions coming from the SL(2,C) integrations and 20 dimensions from the z
variables. Since the formula is asymptotic, we have used d,, ~ 2\k and cancelled the
scaling from the coefficients. The additional factor 2* comes from the fact that both
spin lifts at the critical points give the same contribution to the action. H, is the
Hessian matrix of the action (4.4) evaluated at the critical points (4) and the parity
related critical points (-), this is evaluated in appendix C. 4p|.; is the measure term
evaluated at the critical points. A choice of coordinate must be made to evaluate this,
however the ratio €, with /det Hy is invariant of this choice of coordinates.

For the Euclidean case we get contributions from the self dual and anti self dual part of
the bivector geometry which combine to give the full 4-dimensional Euclidean bivector
geometry. The phase part of the action for Euclidean boundary data is evaluated in
(BFH to appear). N. are the same as above but evaluated at the appropriate critical
points. The dihedral angle ©F of a Euclidean 4-simplex arises in the following way.
For the case of Euclidean boundary data, there are two SU(2) solutions, say X+ X~
to the critical point equations (4.31). For these solutions the boost parameter r,, = 0
but the phase term 6. remains. The interpretation of the critical points is a non-
degenerate Euclidean 4-simplex as described in (BDFGH 2009) and the Regge phase
choice implies that 0, +60_ =0 and 0, = %@ﬁj Combining this gives case 2.

N:t = (271')22

crit

2367712

The case of a single vector geometry proceeds analogously. An appropriate phase choice
and the geometry of these solutions is described in (BFH 2009). In particular it was
shown that no such vector geometries exist for Lorentzian boundary data there.

For the final case, no critical points exist and the stationary phase theorem tells us
that the amplitude is suppressed.

By the classification of critical points this concludes our asymptotic analysis of the
amplitude.
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Chapter 5

Conclusions

In this concluding chapter we will take a look back and review what we have been able
to understand while at the same time pointing out the many problems left open.

Our starting point was the classical phase space associated to a 4-simplex. We have
seen that a straightforward quantization following the strategy used in three dimensions
to construct the quantum tetrahedron looks complicated, the complication coming
apparently from an accident of dimensions: in three dimensions the normals to triangles
can be quantized as generators of the symmetry group, while in four dimensions this
is no longer the case. We have then introduced bivectors satisfying a certain number
of constraints insuring that they describe correctly the geometry of a 4-simplex. This
classical setting was the starting point of the Barrett-Crane construction.

We have further introduced different reference frames in the 4-simplex and parallel
transported bivectors to frames associated to tetrahedra. The idea behind this addi-
tional extension of the phase space was to separate the classical data into two different
sets: one corresponding to the intrinsic geometry of the boundary tetrahedra and the
other corresponding to the embedding of these tetrahedra in four dimensions to form
together a 4-simplex. The advantage of this reformulation is that it puts the classi-
cal system into a more canonical form, intrinsic geometrical data being conjugated to
extrinsic data, as is well known from canonical general relativity.

The intrinsic geometric data of triangles was described by bivectors b;(7) on the ref-
erence frame of the tetrahedra, or equivalently by areas A; and normals n;. The
extrinsic data was described by SL(2,C) group elements X, = X,,X,,». With this
parametrization, the classical phase space is identified with ten copies of the cotangent
space to the group manifold, and could be quantized by identifying bivectors with gen-
erators of the group, or more precisely to a general linear combination of generators
and their duals. This linear combination is controlled by the Immirzi parameter 7,
borrowed from the continuous theory, as explained in appendix B. The introduction of
this parameter turns out to be essential to understand the boundary state structure:
for finite v we were able to identify the boundary states of a 4-simplex with spin-
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networks for the dual graph - describing the full quantum geometry of the boundary
tetrahedra - while for the BC model the boundary data is specified only by the areas of
triangles. The situation is somehow similar to what happens in LQG, where one is able
to formulate a theory of connections only after the Immirzi parameter is introduced.

This understanding of the boundary states, other than drawing a closer connection
with the canonical theory, is crucial in defining the gluing between simplices in the
construction of the path integral. Because boundary states encode the full geometric
data of tetrahedra, these can be used to identify the geometries of two neighbouring
4-simplices. The gluing is such that the intrinsic geometry is constrained to agree as
seen from different simplices, while the extrinsic geometry is left free.

In constructing the 4-simplex amplitude a number of simplifications and choices have
been made. First, we have concentrated our efforts to the case where all tetrahedra
are space-like. The extension to time-like tetrahedra should be possible and we leave
this to further investigation. In dealing with the constraints we have not been able to
impose all of them at the quantum level. We have proposed a procedure to deal with
the simplicity constraints - based on the idea of a Master constraint - and the flatness
condition, which is taken care of by inserting delta functions in the amplitude. We
have left both the closure and the parallel transport conditions free at that point. Both
conditions are recovered later as critical point equations in the semiclassical analysis
of the 4-simplex amplitude. A proper constraint analysis of the classical phase space
associated to a 4-simplex is still lacking. We were able nevertheless to construct a
consistent picture, such that in the semiclassical regime all the constraints are recovered
and thus correctly describe the classical geometry we started with.

We have also attempted at a construction of the path integral for a fixed triangulation.
As discussed in the introduction this corresponds to the spin foam version of Hartle’s
simplicial minisuperspace program for Regge calculus. A number of issues regarding
this expression remain unsolved. We still do not have a full control over the measure of
integration. We have left a freedom in the measure for the sum over spins, allowing for
an arbitrary power of the dimension d; associated to each face in the triangulation, but
more complicated measures even for the other variables in the sum should be allowed
in principle. The reason we restrict to this class of measures is that we are able to
write this path integral as a state sum model, gravity being identified as a constrained
BF theory.

More work is needed to properly understand and even define the expression for the
path integral. The semiclassical analysis of a single 4-simplex amplitude is the starting
point for understanding larger triangulations. One needs to understand which config-
urations dominate the sum. A proper choice of contour will be essential in relating
these configurations to Regge configurations, satisfying the equations of motion in the
discrete setting. When discussing the 4-simplex asymptotics, some assumptions on the
boundary data were made. In particular we have assumed 3d non-degeneracy. Also, we
have seen that we had at first order contributions from both Lorentzian and Euclidean
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boundary data. When considering triangulations with interior faces, one would expect
to sum over all possible internal configurations, including degenerate and Euclidean
data. We leave these and the many other questions listed above to future research.
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Appendix A

Lorentz transformations

In this appendix we give an overview on the Lorentz group and its representations. We
start by defining the group and its algebra, describe the unitary representations used
in the main text to construct the spin foam amplitude and conclude the appendix with
some properties of d matrices used in the proof of finiteness of the vertex amplitude.

The group

The Lorentz group is defined as the group of linear transformations on Minkowski space
R3! preserving the scalar product

(z,y) =74 — 2"y’ = nya’y’ (A1)

for I,J = 0,..3 and 7 is the diagonal metric n = diag(—1,1,1,1). Let A be a Lorentz
transformation, then by definition one has that:

A'pA = 1. (A.2)

If A and M satisfy (A.2) then clearly also AM and A~! do, which implies that Lorentz
transformations form a group, that we note O(3,1). It has four connected components
determined by the signs of det A and sgnAj. Clearly one has det A = +1 from eq.
(A.2). Also it is a continuous function on the components of A and cannot map one
connected component into another. For the sign of A by taking the 00 component of
equation (A.2), one has

(A =D (Ap)? =1, (A.3)

)

which implies that |[AJ| > 1 and then the two components for the two different signs
of AJ cannot be mapped continuously one into another. The four components are
usually noted in the literature as Ol’i(?), 1) according to the combinations of signs. In
this conventions 1 and | correspond to sgn A = +1 and sgn A = —1 resp. and the +
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subscript to the sign of det A. We may also use the notation SO (3,1) for the compo-
nents with det A = +1. Each component contains a special transformation: 01(3, 1)
contains the identity transformation 1; O' (3,1) contains the parity transformation P
acting on vectors as P(z°, %) = (2°, —7); Oi contains the the time inversion transfor-
mation T(z°, %) = (—2°,%); and O" contains the the inversion transformation given
by —1 = PT. Using these spacial transformations one can map any component into
the other. It is thus sufficient to study the component connected to the identity and
the special transformations P, T" and PT.

In order to study the component SOT(3, 1) it is useful to go to its double cover SL(2, C).
First define the map I" : R®»!' — H from vectors in the Minkowski space to the space of
Hermitian matrices, given by I'(x) = 21 + 2%0;. Define o/ = (1, 0%). Then the inverse
map is given by (I1(X))" = L Tr(X o) for X € H.

The action of an element X € SO'(3,1) on R*! lifts to the action of X € SL(2,C) on
H following

I(Xz) = XT(z)XT (A.4)

for x a vector in Minkowski space. The map X +— X is two to one, as +X and —X
map to the same Lorentz transformation X. The fact that SL(2,C) maps only to the
connected component to the identity comes from a continuity argument. In fact in
the action defined above (A.4) one can map continuously X to the identity and the
corresponding X varies continuously to the identity as well.

The SL(2,C) group has various useful decompositions (see Ruhl). One of special in-
terest for us is given by

X =Rd(r) R, (A.5)
where R, R' € SU(2) and

r/2 0

e

an=( ) (A.6)
for r > 0. The Haar measure in this decomposition reads

1
dX = g dRAR' sinh? rdr. (A7)
m

The algebra

In this section, we summarise the conventions used throughout this paper regarding
the Lorentz algebra. The Lie algebra so0(3,1) of the Lorentz group is a real, semi-
simple Lie algebra of dimension six. A basis of s0(3,1) is provided by the generators
(Lag)a<p=o...3- The Lie algebra structure is coded in the brackets

[Lags Lys] = —Na~y Lgs + Nas Ly + Mgy Las — g5 Lavy, (A8)
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where 7 is the standard Minkowski metric with signature — + ++-.

It is convenient to decompose any (infinitesimal) Lorentz transformation into a purely
spatial rotation and a hyperbolic rotation, or boost. This is achieved by introducing
the rotation and boost generators respectively given by

Hi = — EjkLJk, and Kz = LiO? i,j, k= 1,273, <A9)

where ¢, is the three-dimensional Levi-Cevita tensor.

Using the Lie algebra structure of s0(3,1) displayed above, it is immediate to check
the following commutation relations between the rotation and boost generators

[Hi, Hj] = =€,/ Hy,  [Hi, Kj] = —¢,/ Ky, [Ki, Kj] = ¢,/ Hy. (A.10)

ij

The finite dimensional representations of the Lorentz algebra used in this paper are the
spinor and vector representations. In the spinor representation p : s0(3,1) — End C?,
the rotation and boost generators are given explicitly in terms of the Hermitian Pauli

matrices
(01 (0 — (10
1=\10) 2" \io )0 0 -1)

by the following expressions

) 1
p(Hi):%% and  p(K;) = S0 (A.11)

This is immediate to check by using the property [o;, 0;] = 2iei]-kak of the Pauli matrices.
Throughout the text, the map p is kept implicit when there is no possible confusion.

In fact, the above presentation gives the explicit isomorphism between the Lorentz
algebra s0(3, 1) and the realification sl(2, C)g of the Lie algebra of the two-dimensional
complex unimodular group SL(2, C) because

s[(2,C)p = (su(2)%)g = su(2) @ isu(2), (A.12)

where the direct sum is at the level of vector spaces.

Finally, we also used explicitly the vector representation 7 : s0(3,1) — End R*! of the
Lorentz algebra in which the matrix elements of the L,s generators are given by

w(Lag)'y = 0ngs — MasSh, 1,0 =0,..,3. (A.13)

From the above expression, it is immediate to compute the matrix elements of the
image of the rotation and boost generators in the vector representation:

W(Hi)]J = eiIJ, and W(Ki)lj = 5{77(” — niJ(Sé. (A.14)
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Therefore, an arbitrary element L in the Lorentz algebra expressed in the rotation/boost
basis as follows L =r - H + b - K is given by the four-by-four matrix

0 —b - b

b0 3 —r?
W(L): _b2 —T3 0 7"1 ) (A15)

- r2 —rt 0

in the vector representation.

Unitary representations

The principal series of irreducible unitary representations of the Lorentz group SL(2, C)
are labelled by two parameters (k, p), with k a half-integer and p a real number (Gelfand
et al. 1966, Naimark 1962 and Ruhl 1970). The representations are in a Hilbert space
H(kp), the labels (k, p) indicating the action of the group in this space. The hermitian
inner product is denoted (v, x) for vectors ¥, x € H ).

Some standard facts about these representations are as follows:

e The (k, p) representation splits into the irreducible representations V; of the SU(2)
subgroup as

Hip) = PV (A.16)

i=Ik|

with j increasing in steps of 1.

e There is a unitary intertwiner of representations

A: H(k,p) — 'H(,k,,p) (A.17)

e There is an anti-linear map
T Hikp) = Hikp) (A.18)

which commutes with the group action, and is unitary in the sense that (J, Jx) =
(x, ). It satisfies J2 = (—1)2~.

e There is an invariant bilinear form 5 on H ) defined by

B, x) = (TY, x)- (A.19)

The properties of J show immediately that (¢, x) = (=1)%*8(x, ), so that 3
is symmetric or antisymmetric as 2k is even or odd.
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Both A and J respect the decomposition into SU(2) subspaces; clearly A restricts to
a multiple of the identity operator on the j-th subspace, whilst J restricts to a phase
times the standard antilinear map J on an SU(2) representation. Explicit formulae
fixing these constants are given below.

The standard representation is to take H , to be the space of functions of two complex
variables z = (zg, z1) that are homogeneous

F(A\2) = \THFiprh\=Irip=k gy (A.20)

The inner product on this vector space is defined using the standard invariant 2-form
on C? — {0} given by

0= %(Zodzl — ZleO) VAN (Eodél - Eldzo). (A21)

For f,9 € Hrp), the form fg© has the right homogeneity to project down to CP'.
The inner product is given by integrating this 2-form.

(f,9)= ] fgQ (A.22)

CP?

Alternatively, one can do the integration on a section of the bundle C> — {0} — CP".
The standard choice is given by z = (¢, 1), for which the integration measure reduces
to the standard measure on the plane, {2 = £d¢ A d¢ = dz A dy, with ( = x +4y.

The element X € SL(2,C) acts on a homogeneous function by
(XF)(2) = f(XT2), (A.23)

which uses the transpose matrix X?. This gives the unitary representation in the
principal series.

Our standard notation for structures on C? is as follows. The Hermitian inner product
is
<Z, w> = Zowo + lel, <A24)

J (Z’) = (;?) , (A.25)

and the antisymmetric bilinear form is

the SU(2) structure map

[z, w] = zpw1 — 21wy = (Jz,w). (A.26)

The unitary isomorphism A for (k,p) # (0,0) is defined up to a scalar multiple by the
map:
—1+k—ip

Af(w) = ¢ / N e TER O (A.27)
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We fix the constant ¢ = /k? + p?/7 for convenience.
There is also an anti-unitary isomorphism #H ) — H(—x,—p) given by complex conju-
gation of functions. Combining these two gives the antilinear stucture map
Jf=Af. (A.28)
We have that:
AAS = (—1)% 7, (A.20)
mapping from H ;) to H(_r—p) and back. A short calculation shows that this implies

also J? = (—1)?*, this time both mappings being on the same space. These relations
will be verified again explicitly below, using coherent states.

Using these definitions, the bilinear form is

B, x) = ¢ / fw, 277w, 2]

CP! xCP!

TR ) x(w) Q. Q. (A.30)

These integrals are a little tricky since each power of [z, w]| does not separately exist
as a function on the whole plane; one has to combine them. Writing [w, 2] = re', the

integrand contains
7,,—2—21]76—2214397 <A31)

which is well-defined. It is also clear from this formula that 8(, x) = (=1)%*3(x, ¥).

The canonical basis

Given a carrying space H ) the canonical basis is given by the basis diagonalizing
simultaneously the the Casimir operators J - J, xJ - J, L? and L, (see below for these
operators). We note an element of this basis |(k, p); , m). We may also use the standard
notation (Naimark 1962) f7 (z)*?) for an element of the canonical basis represented
in the space of homogeneous functions. They can be given an explicit expression using
hypergeometrical functions. It will be more useful however to use homogeneity and
scale the argument such that it is normalized, (z, z) = 1. Given a normalized spinor ¢,
construct the SU(2) matrix using the map (3.51):

9(&) = ( ?1’ _51 ) . (A.32)

The canonical basis when restricted to normalized spinors is identified with SU(2)
representation matrices':

d;

(&9 == D], 1 (9(6)). (A.33)

!The definition used here is slightly different from the one used in the literature (Ruhl 1970). The
difference amounts to a change of variables z — Jz.
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Evaluating f7 (z)*?) on non-normalized spinors and using homogeneity, we get the
following formula:

o4 =% o2y D02 (430

One can check that the function defined above has the correct homogeneity.

Matrix elements of generators in the canonical basis and Casimir
operators

In this subsection we give the action of the rotation and boost generators of the Lorentz
algebra on the canonical basis. The state |(k,p);j,m) is noted simply [j,m). The
definitions are that Hy = H, £ iH, and K = K, +1iK,,.
H, |]a > = m|]7 m>
H_|j, > = VI —m+1)(j+m)jm—1)

m)

m)

K. IJ,

- j+1)\/j+m+1)(j+m+2)|j+1 m+ 1)
K_ljm) = vp)vVi+m)G+m—1)j—Lm—1)— By (G +m)(i —m+1)]j,m
+ sV —m+ DG —m+2)j+1,m—1)

kp i (]2 kQ)(jz + pz)
o= d N o= — . A.

The Casimir operators and their action on elements of the basis are given by:
G, = J-J=2H*-K*)=2(k-p"—1)
Cy, = xJ-J=—-4H - K =4kp
L = j(G+1). (A.37)

Formulas for d matrices

We complete this appendix with some explicit formulas for the matrices dﬁ’ﬁn(r), re-
ferred to in the main text. In particular, we show that the asymptotic behavior (2.63)
holds. We follow closely section (4-5) of (Ruhl 1970). We start with the following

useful expression:

dip (r) = {12 (2sinhr) " N ey, e

V?M

sinh (r(ip + v))
(ip + v)sinhr ’

(A.38)

= =)V (G2 =m?)|j = 1,m) — Bym|j, m) + vV (G + 1) = m?2|j 4+ 1,m)

= =)V —-m)G—m=1)i—Lm+1) =B/ (G —m)(i+m+1)j,m+1)—

1)+
(A.35)
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where v + [ and p + I’ are integers, and

T+ RN =R+ R — k)
L+ m)! (L —m)(I" +m)!(I" —m)! } ‘

()= {(2z +1)(20 +1) x (A.39)

To define the coefficients c¢,,,, it is useful to redefine the summation labels (v, ) —
(a,b), while introducing a new sum over integers (ny, ny):

20 = p+v+l—1l+k+2n —m (A.40)
20 = v—p+U+1l+m—Fk—2n,. (A.41)

The sum over (v, 1) can then be traded by a sum over (ny, ny,a, b):

Sento=3 () G S ) () ()

vp ni,n2

/_ — — —
xZ(—l)“+b+m_k(l+l ny—mng +m k)(n1+n2b m+k> (o)
a,b

a

where all summations extend over the domain where the binomial coefficients do not
vanish. From eq. (A.38), one sees that the asymptotic behavior for r — oo is of the
form:

dyih (1) ~ eI Gt ma) (A.42)

for (1 + v) taking its maximal value. One can check that this maximal value is given
by:
(U + V)mae =L+ — |Im + K| (A.43)

which then gives the asymptotic behavior
AP (r) ~ e m(HImtkD (A.44)

as advertised in the main text.



Appendix B

Plebanski theory

In this appendix we will show that the bivector geometry described in chapter two
can be seen as coming from discretizing continuous gravity, written in the Plebanski
formulation (Plebanski 1977). Plebanski’s paper deals with the self dual theory. Here
we will consider a generalization of the construction for the full Lorentz group (see
Reisenberger 1998, De Pietri and Freidel 1999). This will also motivate the introduction
of the Immirzi parameter v in the choice of symplectic structure.

We start with Einstein-Cartan theory with an extra term referred to as the Holst term
in the literature (Holst 1996). The action is given by:

Spon = / (e ey A Rw) — % / (e A ey A R(w)!. (B.1)

The second term in the action is the Holst term and is identically zero on solutions to
the equations of motion. w’” is the spin connection one-form and R(w)’J the curvature
two-form. e! is the (co)tetrad one form. The canonical analysis of this action leads
to the canonically conjugated pair of variables (AQ,E?), where E;’ is the densitized
triad and and the Barbero-Immirzi connection A’ := 1¢;wH +~wY, where wk and w’
are components of the pull back of the spin connection to the three dimensional slice.
The introduction of the Immirzi parameter is essential so that the canonical variable is
indeed a connection. If it is set to v = i we have the original self dual theory (Ashtekar

1936).

The idea of Plebanski is to define the bivector two-forms B = e A e and consider
them as basic variables for the theory, supplementing the action with the appropriate
constraints such that the original relation with co-tetrads can be recovered. These so
called simplicity constraints are given by
1
B A BEE = ZEUKL(B A *B). (B.2)

We have defined (B A xB) = ey B A BEL. The above constraints can be derived
from an action principle by adding a term ¢; ;5 B’/ A BEL. We demand the Lagrange
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multiplier ¢;x to be trace free: e rrd’’® Y = 0. The action is now given as a
constrained BF theory:

1
Sp = / (xB — ;B)U A R(w)" + ¢rjer B A BEE. (B.3)

As a side note, this motivates the quantization procedure used in chapter 2 (see eq.
2.41). After discretization, the unconstrained action will become ), (xB; — %Bt)Ut,
where U, is the holonomy around the face dual to ¢, cf. discussion on Ooguri’s model.
We see that the variable conjugated to Uy is (xB; — %Bt), and these ae quantized as
invariant vector fields acting on this copy of the group, as is usual from spin foam
quantization.

There are two families of solutions to the simplicity constraints (Reisenberger 1998, De
Pietri and Freidel 1999):

B =+e' nel and BY =+ % (ene)’. (B.4)

Now, given non-degenerate configurations, s.t. V := %61 JKLG“”Q‘?B%B%L # 0, one
can see that the constraints (B.2) are equivalent to the following set of constraints:

EIJKLBii(x)B(i(ﬁL($) = €uya5V($). (BB)

The usefulness of this reformulation is that now the constraints are ready to be dis-
cretized. For that, choose a simplicial decomposition of space-times and integrate on
each triangle of this simplicial complex the two-form bivector B. This defines to each
triangle the bivector B/ = [, B'/. The constraints (B.5) are discretized analogously.
There are three different cases according to the two pairs of indices (uv) and («a3) are
integrated on the same triangle, on different triangles but on the same tetrahedron,
and finally on different triangles and different tetrahedra. Because the constraint (B.5)
is localized on a point x of space time, we demand that the triangles belong to the
same 4-simplex. The three cases correspond to the following constraints:

e Diagonal simplicity:
(<Bo)1sBl =0 (B.6)

e Cross simplicity: (for ¢t and ¢ sharing an edge)

(+By)1sBY =0 (B.7)

e Volume simplicity: (for ¢ and ¢ on the same 4-simplex but on different tetrahedra)

(«By) 1Bl =V (B.8)
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In the volume simplicity condition V is proportional to the 4-volume of the 4-simplex.
This condition imposes that the volume of the 4-simplex computed from different pairs
of triangles is the same. In addition, from Stokes theorem one has the closure:

e Closure:

> Bl =o. (B.9)

tCt

Also, in defining B, one has a choice of orientation for the triangle. Different orienta-
tions are related by the condition:

e QOrientation:

By(1) = —B,(7"). (B.10)

Adding to these conditions non-degeneracy conditions, we see that we have recovered
the Barrett-Crane conditions defining a 4-simplex geometry. By using repeatedly the
orientation and the closure conditions, the volume simplicity condition is automatically
satisfied. To see that, let us come back to the notation By, a = 1...5 and consider
the pair of faces (12) and (34). Then compute the volume from this pair of faces
e Bly BEE. By using closure, orientation and the first two simplicity conditions,
one has:

GIJKLB{gBﬁL = —GIJKLB{gBéiL = —GIJKLB{ZB?{;L = - (Bll)

which is what we wanted to show.

We can now use the Theorem 1, which implies the existence of tetrads N, such that
B, < (N, A N.). To appreciate better the connection of this result with the con-
tinuum reconstruction result (B.4), it will be useful to define discrete co-tetrads (see
Conrady and Freidel 2008b).

I

Discrete co-tetrads are obtained by integrating the continuous co-tetrad e, along an
edge [ of the triangulation: E/ = [, /. To state the relation between tetrads and co-
tetrads, let us introduce some notation. First note that an edge [ in a given 4-simplex
is identified by the two tetrahedra that do not contain this edge in the 4-simplex. One
may note the discrete co-tetrad by this pair of tetrahedra E,. The tetrads N, are
associated to tetrahedra as they represent four-normals to them. The relation between
discrete tetrads and discrete co-tetrads can then be stated as follows. Given a set of
co-tetrads Efm on a given 4-simplex, associate the tetrads as the unique set of vectors
N, such that:

UT]E7I_//7_/ — 57’”7‘ - 57-/7— <B12)
In this formula, the U, is proportional to /N, such that its norm is given by

_ ()
Vil

0, (B.13)
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V3(7) /3! is the 3d volume of the tetrahedron 7 and V;/4! is the oriented volume of the
4-simplex. It is given by:
Vyi=det(Eryryy ooy Erory), (B.14)

where we have chosen an orientation for the tetrahedra in the 4-simplex (7y...75). The
relation between U’s and E's is given by the following formula:
1

U’T2 - 74 * <E7'37'1 A ET47'1 A E7'57'1>’ <B15)

and cyclically. In the last expression the dualization is defined by x(E1A...AE, ), 1., =
e 1. B Fli. Conversely:
1...14 1 e n * y.

E,

2

n =Vax (U NU, NUL). (B.16)
From these formulas we have the following identification for bivectors:
*(Enfz A Esz) = V4(UT4 N UT5)- (B-17)

The last formula implies that the bivectors By, can be expressed in terms of the cote-
trads such that, for example, Bys o< Eq1o A Ea3, and cyclically. All the constraints are
invariant under the transformation B — B, and thus all the statements are true for
bivectors replaced by their duals (the correct geometric sector in Theorem 1 is obtained
by the non-degeneracy conditions). We see that we have recovered the analogue of the
continuous result (B.4) in the discrete setting.



Appendix C

The Hessian

Here we calculate the Hessian matrix required in the stationary phase formula.

The Hessian is defined as the matrix of second derivatives of the action where the
variable X5 has been gauge fixed to the identity. We split the Hessian matrix into
derivatives with respect to the X, variables and derivatives with respect to the zu.
The Hessian will then be a 44 x 44 matrix of the form

HXX HXz

We will now describe each block of this matrix. H*X is a 24 x 24 matrix containing only
derivatives with respect to the X,. Note that due to the form of the action, derivatives
with respect to two different variables will be zero and it will be block diagonal

HXX 0 0 0
0 HX2Xe 0 0
HXX — 0 0 HX3X3 0 (CQ)
0 0 0 HXaXa

Each H***! is a 6 x 6 matrix. The variation has been performed by splitting the
SL(2,C) element into a boost and a rotation generator. This gives

HXIXE gXIXE )

HXaXa _ ( FXEXE  pXBXE (C.3)

H?** is a 20 x 20 matrix. The derivatives are with respect to the spinor variables z,
on each of the ten edges ab of the amplitude. To perform these derivatives we must
choose a section for z,,.

Next the mixed spinor and SL(2,C) derivatives. We have arranged the derivatives
in the order of the orientation a < b, ie z19, 213, 214, 215, 223, 224, 225, 234, 235, 245. Lhe
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matrix H** is a 24 x 20 matrix with the following non-zero entries

HXZ _
HX1212 HX1213 HX1214 HX1215 0 0 0 0 0 0
HX2712 0 0 0 HX2723  [JX2Zaa [y XoZas 0 0 0
0 HX3713 0 0 H X2723 0 0 HX3%Za [ X3Z3s 0
0 0 X714 0 0 X724 0  X4Z34 0 H X4Za5

These derivatives also require a choice of section for z,,.
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“De tudo, ficaram trés coisas: a certeza de que ele estava sempre comecando, a certeza
de que era preciso continuar e a certeza de que seria interrompido antes de terminar.”

Fernando Sabino



