International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072067 doi:10.1088/1742-6596/331/7/072067

A policy system for Grid Management and
Monitoring

Federico Stagni
PH Department, CH-1211 Geneva 23 Switzerland

E-mail: federico.stagni@cern.ch

Roberto Santinelli
IT Department, CH-1211 Geneva 23 Switzerland

E-mail: roberto.santinelli@cern.ch

On behalf of LHCb Collaboration

Abstract.

Organizations using a Grid computing model are faced with non-traditional administrative
challenges: the heterogeneous nature of the underlying resources requires professionals acting
as Grid Administrators. Members of a Virtual Organization (VO) can use a subset of available
resources and services in the grid infrastructure and in an ideal world, the more resoures are
exploited the better. In the real world, the less faulty services, the better: experienced Grid
administrators apply procedures for adding and removing services, based on their status, as
it is reported by an ever-growing set of monitoring tools. When a procedure is agreed and
well-exercised, a formal policy could be derived. For this reason, using the DIRAC framework
in the LHCb collaboration, we developed a policy system that can enforce management and
operational policies, in a VO-specific fashion. A single policy makes an assessment on the
status of a subject, relative to one or more monitoring information. Subjects of the policies are
monitored entities of an established Grid ontology. The status of a same entity is evaluated
against a number of policies, whose results are then combined by a Policy Decision Point. Such
results are enforced in a Policy Enforcing Point, which provides plug-ins for actions, like raising
alarms, sending notifications, automatic addition and removal of services and resources from the
Grid mask. Policy results are shown in the web portal, and site-specific views are provided also.
This innovative system provides advantages in terms of procedures automation, information
aggregation and problem solving.

1. Introduction

This paper presents an innovative, policy based system for the monitoring, management and
usage optimization of Grid resources. We called it Resource Status System (RSS). This paper
is organized as follows: section 2 explains in detail the motivations that led to this development
and explains how some tools already in use address this use case. Section 3 formalizes section
2, providing a list of requirements. Section 4 explains the development environment while
section 5 shows the four steps that compose the RSS cycle, using UML and non-UML diagrams.
Conclusions are finally given in section 6.

Published under licence by IOP Publishing Ltd

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072067 doi:10.1088/1742-6596/331/7/072067

2. Motivation

Reliable information provided by a solid and mature monitoring system of the Grid infrastructure
is crucial for an efficient management of the resources. Grid service suppliers rely on a variety
of monitoring tools providing different perspectives on both the infrastructure and activities
running from various Virtual Organizations (VOs).

2.1. Information aggregation

The proliferation of monitoring tools brought the VO administrators to interact with a variety of
dispersed information somehow difficult to handle successfully. This is one of the main reasons to
promote initiatives for aggregating various infrastructure monitoring data, which is a commonly
recognized requirement expressed by all VOs. Monitoring information aggregation is realized
by a number of tools like GridView, MyOSG, HappyFace and Dashboard ([1]). Dashboard
in particular is extensively used by different VOs for different purposes. Dashboard offers a
toolkit for monitoring both community activities and status of resources aggregating them in
useful views. It is the firm conviction of the authors that these tools represent a very powerful
instrument for local resource administrators offering views of multi-VOs activities running on a
given site. However a more VO-centric usage is something that requires a lot of integration effort
with the experiment specific frameworks in order to fully exploit the information for automation.

2.2. Information combination

Some of the previously presented tools go further: not just information aggregation into a
single page but also, using simple algorithms, the possibility to use this information to evaluate
the effective health status of a given resource. Such a status is unique and, starting from
that, it is easy to dig down into details of the problem. Examples are the Site Status Board
(SSB) application from Dashboard or the Availability Computing Engine (ACE) (used by both
GridView and Nagios). These tools present however some limitation in terms of:

e target consumers, mostly dedicated to site administrators;

e algorithms used for the combination, very simple and not easily customizable making them
not be flexible enough for complex use cases within the HEP collaborations.

2.8. Automation

Once the Grid operations within a team are established with clear procedures in place, running
the system becomes a simple and routine job for an experienced Grid administrator. Taking
a decision or applying a procedure should be as much as possible an automatic operation.
From now on we will refer to such operations as formal policies. As of today either within the
infrastructure delivering the grid services or within the operations team of the WLCG [?] grid
main customers, a tool to evaluate and enforce such policies is missing. The lack of automation in
the management of such policies always requires a Grid operations administrator to be available
in order to react manually when changes happen in the system.

3. Requirements
The list of motivations expressed in section 2 steered the system requirements hereafter
summarized. The system must:

e collect dispersed and uncorrelated monitoring information from all possible and reliable
sources available;

e aggregate and expose this information in a simple way;

e sort a global status for each service in a top-down view. It becomes easy to dig into the
information presented as soon as one realizes there is a problem somewhere;

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072067 doi:10.1088/1742-6596/331/7/072067

e use a policy system to combine information and deliver a decision on top of them. Non-
trivial combinations must be possible to take into account the variety of resource natures
and the complexity of the systems;

e automate trivial and non-trivial tasks, by enforcing defined policies.

The purpose of the Resource Status System (RSS) is to provide this missing system fulfilling
these requirements. The architecture and the functionalities exposed within this paper have
been implemented within the LHCD [2] collaboration inside the DIRAC[3] framework.

The RSS evaluates both simple and complex policies and uses them to assess the status of
the resources for a given Virtual Organization. Each policy uses information taken from many
monitoring sources, each providing a different perspective. Once a status is computed, the RSS
can automatically trigger actions accordingly.

4. LHCb and DIRAC
DIRAC (Distributed Infrastructure with Remote Agent Control) [3] is a community Grid
solution. DIRAC, which is developed in python, offers powerful job submission functionalities,
and a developer-friendly way to create services and agents. A service exposes an XML-RPC
implementation; an agent is a stateless light-weight component (comparable to a cron-job).
DIRAC has been initially developed as a LHCb-specific project, but many efforts have been
made to re-engineering it into a generic framework, capable to serve the distributed computing
needs of a number of Virtual Organizations. After this complex reorganization, the LHCb-
specific code resides in the LHCbDIRAC extension while a core, VO-blind, DIRAC project has
been disentangled. In this way, other VOs, like Belle II [4], or ILC/LCD [5] have developed their
custom extensions to the DIRAC framework.
DIRAC is a collection of sub-systems, each constituted of services. Sub-systems are, for example,
the WMS (Workload Management System) or the DMS (Data Management System). Each
system comprises a generic part, and a VO-specific part, including the RSS. Since the RSS has
been developed within the LHCb VO, the examples that will follow in this paper refer to the
way LHCb use it.

5. A RSS cycle

At the moment, the RSS uses up to 7 DIRAC agents. These agents continuously cycle through
the list of resources, triggering the information retrieval, the policies evaluation, and eventually
the status enforcing. The policy system is the central component of the RSS, and its architecture
has been inherited from the well-accepted architecture formerly developed for the security
frameworks [6], [7]. We prefer the terminology used for the XACML [8] specification, where
a Policy Decision Point (PDP), a Policy Enforcement Point (PEP) and a Policy Information
Point (PIP) are specified and used.

The RSS cycle is explained using a logical separation into four steps.

5.1. Step 1: Resources

The resources are organized in a simple ontology which is persisted in a database. Figure 1

explains the ontology used for LHCb, that considers primarily the case of LCG [9] Grid sites.
The UML diagram of figure 2 shows in a simplified way how this step is accomplished within

the RSS implementation. First of all, a set of agents is used to get the resources that have to

be checked from those persisted in the database. A PEP object is created for each resource

selected, which in turns asks a PDP object to evaluate the status of such resource.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072067 doi:10.1088/1742-6596/331/7/072067

hasSite

isA]
LHCbSite
A
SiteType

hasService

GridSite

A
ServiceType

mayHave

GtorageElemenD

hasNode

HostedBy

NodeType

Figure 1. Grid ontology

1. Get i i 3. Evaluate :
Resources 2. Check P‘:#CY Policies for PD°|'C_Y_
Resources Resources Enforcement | Resource ecision
Resource io check Status Point Point
Status DB Agents (PEP) (PDP)

Figure 2. UML diagram of the first step of the cycle

5.2. Step 2: Policies

Figure 3 explains with a simple UML diagram the second step. The PDP contacts the PIP
to know which policies have to be evaluated for the selected resource. Once a policy object is
created it evaluates a status using monitoring information. Such information is sometimes taken
in real time from a remote source, while at other times, in order to reduce the network traffic,
an agent asynchronously caches large amounts of data in a local DB.

2. Create 3. Get
Policy 1. Get Policy Policy monitoring
Information | Policies Decision | Instance PolicyX information | cjients
Eg Point <——E§ Point [—— oY > oo
(PIP) (PDP) —

Figure 3. UML diagram of the second step of the cycle

For LHCDb, the 4 statuses of figure 4 are used: Active, Bad, Probing, Banned. It has to be
noted that these statuses are in principle only internal to the RSS. They can assume a meaning
outside the RSS during the enforcing phase.

5.8. Step 3: Decision

The status “decision” is based on the resource’s attributes, on a number of external information
items, and on the policies that can be applied for a resource with such attributes. Each policy
evaluates a status for a resource and a result is returned to the PDP. Policies use a limited

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072067 doi:10.1088/1742-6596/331/7/072067

Bad Probing

Figure 4. LHCb status and possible transitions

number of parameters, and thresholds, to evaluate a status. Together, they build up the Quality
of Service (QoS) requested. A formalization of such QoS, persisted in Service Level Agreement

DB, is envisaged and will complement the Resource Status System.
When multiple policies are evaluated, the PDP combines the results of the policies, and

returns a single status to the PEP. The example shown in figure 5 takes a conservative approach,
choosing as result the “worst” calculated.

PolicyX

PDP

PolicyZ > Bad

Figure 5. Simple example about combining multiple policies results

5.4. Step 4: Enforcing

In the last step, explained through the UML diagram of figure 6, the PDP returns to the PEP
a decision in the form of a status. The result of each status change, together with the reason
that led to that status, is persisted in the DB. The enforcing phase is specific to the Virtual
Organization, and a number of plug-ins depending from the requested action can be invoked.

2. Update
Resource
Status

Resource
Status DB

Policy 1. Return

Decision | decision
Point -——
(PDP)

Plug-ins
Box

3. Use plugins
for enforcements

Figure 6. UML diagram of the fourth step of the cycle

Figure 7 shows the enforcing phase as has been agreed in LHCDb: sites and storage elements
can be banned (and unbanned) depending on the status evaluated by the RSS.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072067 doi:10.1088/1742-6596/331/7/072067

throttle | commission

Workload

in mask || ban Management
System -

LHCbSite / 5
Bad Resource |1 Web
Status
Service /
Probing Storage
Notification f/)

System
Config SMSs
ban unban System
|

Figure 7. Example of status enforcing

6. Conclusions

In this paper we presented for the first time the Resource Status Service, used in the LHCb
collaboration to monitor, compute and enforce policies that change automatically the operational
status of an infrastructural grid resource. The RSS is not only a complex monitoring system:
we believe it is the first tool that tries to actively use monitoring information. In that respect
it is the first step towards the use of autonomic computing technologies from a VO perspective.
The RSS is an active development inside LHCb and DIRAC, and the distributed computing
working group expects to take advantage of its potentialities. The RSS is a new DIRAC system,
ready to use by the other VOs using DIRAC.

References
[1] Andreeva J, Gaidioz B, Herrala J, Maier G, Rocha R, Saiz P and Sidorova I 2009 131-139 10.1007/978-0-387-
78417-5_12 URL http://dx.doi.org/10.1007/978-0-387-78417-5_12

[2] Collaboration L Lhcb collaboration page URL http://lhcb.web.cern.ch/lhcb/

[3] Tsaregorodtsev A, Bargiotti M, Brook N, Ramo A C, Castellani G, Charpentier P, Cioffi C, Closier
J, Diaz R G, Kuznetsov G, Li Y Y, Nandakumar R, Paterson S, Santinelli R, Smith A C,
Miguelez M S and Jimenez S G 2008 Journal of Physics: Conference Series 119 062048 URL
http://stacks.iop.org/1742-6596/119/1i=6/a=062048

Abe T and Al 2010 Belle IT Technical Design Report URL http://xxx.lanl.gov/abs/1011.0352v1

Barish B and Al Global Design Effort URL http://www.linearcollider.org/GDE

ITU-T 1995 Information technology open systems interconnection security frameworks for open systems:
Access control framework Tech. rep. ITU-T

[7] Westerinen A, Schnizlein J, Strassner J, Scherling M, Quinn B, Herzog S, Huynh A, Carlson M, Perry

J and Waldbusser S 2001 Terminology for Policy-Based Management RFC 3198 (Informational) URL
http://www.ietf.org/rfc/rfc3198.txt

[8] OASIS 2005 Oasis extensible access control markup language (xacml) tc http://www.oasis-

open.org/committees/xacml

[9] Burke S, Campana S, Lanciotti E, Mendez Lorenzo P, Miccio V, Nater C, Santinelli R and Sciaba A 2009

gLite 3.2 User Guide URL https://edms.cern.ch/file/722398//gLite-3-UserGuide.pdf

NS

