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Abstract

Halo formation under non-equilibrium state for a 2D
Gaussian beam in a FODO lattice was examined.
Nonlinear resonant-interactions between individual
particles and intrinsic beam-core oscillations result in
beam halo. Location of halo is analytically tractable
using canonical equations derived from an isolated
resonance  Hamiltonian. Halo formation and
achievement to equilibrium can be explained by
transition of time-varying nonlinear resonances.

1 INTRODUCTION

One of major issues in high-power accelerators is
activation of the environment surrounding accelerator
due to beamloss. The beamloss must be reduced to a
sufficiently low level to allow hands-on-maintenance. In
order to produce an acceptable design, itis important to
under stand the mechani sms of emittance growth and halo
formation that result in beam |l oss.

From this point of view, halo formation has been
studied by simulation and theoretical analysis.
Especially, particle-in-cell (PIC) simulation codes [1]
and analysisusing particle-core-models (PCM) [2] have
geatly facilitated the understanding of space-charge
effects for particle beams. In these studies, a resonant
interaction between the individual particles and
intrinsic beam-core oscillations is found as the driving
mechanism of halo formation. However, the analysis
using PCM has been made on an equilibrium state,
where rmsemittance isconstant. Beam-property such as
rms beam size in non-equilibrium seems to be different
with that in equilibrium and to take a key role in the
resonant interaction of injected beam. In non-
equilibrium, PCM can not be adopted because rms
emitance gows. Furthermore, simulation analyses,
suchasFFT analysisand Poincaré map analysis, are not
able to apply innon-equilibrium because these analyses
need to track more than 100 turns but the non-
equilibrium state finishes generally less than 50 turns.

The purpose of thispaper is to examine halo formation
for beam of a 2D Gaussian distribution under non-
equilibriumina circular accelerator. In thiscontext, we
have been developing a useful analytic model, which is
based on Isolated Resonance Hamiltonian (IRH),
capable of predicting the position of the halo as a
function of the beam and machine parameters in even
non-equilibrium.  The theory has shown that halo

formation and achievement to an equilibrium state can
be explained by time-varying nonlinear resonances.

Inthis paper, the calculationswere carried out for 2-
D mismatched beams with Gaussian distribution in a
typical FODO lattice. Most of the calculation
parameters were taken from the 12GeV proton
synchrotron in High Energy Accelerator Research
Organization (KEK-PS) because of high tune shifts in
contrast to low beam intensity, where the injection
energy is 500M eV and C,= 340mis the circumference.
In order to manifest the key role of the space-charge
effectsin halo formation, the acceleration was not taken
account of and the momentum spread was assumed to be
0%. As the momentum spread is concerned, application
of the developed analytic tool is straightforward for on-
momentum. Furthermore, the bare tunes (v,, v,) were
chosen from the operational parameter as (7.123,5.229)
and (7.250,5.229). In the case of (7.123,5.229), a
structure resonance in horizontal direction was shown
by past simulation results, but any resonance was not in
the case of (7.250,5.229) [3].

2 FORMALISM OF ISOLATED
RESONANCE HAMILTONIAN FOR
GAUSSIAN BEAM

Soace charge potential orignating from a beam with
Gaussian distribution is written in the form of a Taylor
expansion as
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where N is the total number of particles per unit lengh,
o, and o, are the rms beam size. The Hamiltonian
equivalent to the betatron oscillation perturbed by the
space charge effect isgiven as
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where H, is the unperturbed Hamiltonian, y, pandv is
the relativistic mass factor, the momentum and the
velocity of the design particle, respectively. Here,



action-ande variables (¢, ¢, |, l,) and a dependent
variable 8= s/ R,are introduced [4], where

x=2B,1, cos{y, +,,)

y =281, oy, +4,)

Ryo= C,/ 2mis the averaged orbitradius, B, and 3, are
Twiss parameter, ,, and yj,, are the flutter of the phase
with respect to the average phase advance of the
unperturbed Betatron oscillation.

¢ (U, Yy, 15 1y 6) expanded by Fourier series can be
separated into the oscillating terms with ange variable
and the other oscillating termbecause of the flutter, rms
beam size and Twiss parameter. The nonlinear
resonances between the individual particles and
intrinsic beam-core oscillations are excited in the case
that the phase of ¢ slowly varieswith 6. Because the past
simulation results showed the nonlinear resonances in x
direction [3], we chose the smallest slowly oscillating
phase of ¢ as 20y - k6, where d and kK are integer. <0,
the slowly oscillatingphase can be gven by i (25, - k6),
wherei is integer. The IRH can be gven by averagng
the Hamiltonian over many turns[5] because the rapidly
oscillating terms disappear. Furthermore, a canonical
transformationto (W, = ¢, -k8/ 29, ¢, 1, I,; ) is made
to remove any time-dependence fromthe IRH. Finally,
the IRH for nonlinear resonance between the Betatron
oscillation and the oscillating space charge forces of 2D
Gaussian beamiswritten as
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where <¢(¥,, 1, I,)>is the time-averaged space charge
potential. H;;, and |, of Eq. (2) become constant of motion.
Thedetail of Eq. (2) isgvenin Ref. [6].

Inthis paper, the position of the resonance islands was
chosen as the measure of the relative strengh of
nonlinear resonances. The position of the resonance
island for a structure resonanceisgven by |, and L.,
which are the maximum and minimum values of the
actionvariable along the trajectory through the unstable
fixed point. The stable and the unstable fixed point can
beanalytically evaluated from the canonical equations.

For numerical evaluation of Eq. (2), N, Whichisthe
limitation of the summation about n of Eqg. (1), and I,
were optimized by calculating I, and I, as functions
of N, and l,, when a combination of (7.123,5.229) was
chosen as the bare tune and the peak intensity of 8.5el1l
particle per bunch (ppb) beam was assumed. n,,,, = 20
that gves a saturationin the calculationresult has been
applied. A larger |, indicated the smaller resonance
islands because the depressed tune becomes closer to
the bare tune. In order to manifest the key role of the

space-char ge effectsin halo formation, the case of I, = 0
has been considered. The result of the numerical
calculation of H,,, using above parameters is shown in
Fig 1 for comparison with the simulation result in the
case of (7.123, 5.22).
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Fig. 1 The comparison of phase space map between
(a) H,y, and (b) simulation. (10" turn)

Inorder tojustify Hi,,, the resultsof H;,, are compared
with the simulation results by chang ng the intensity and
measuringly.« and |, in the case of (7.123, 5.229). As
shown in Fig 2, the results of H,,, are good agreement
withthe simulationresults. Thus, H,, of Eq. (2) has been
confirmed to give areasonable result.
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Fig. 2 Intensity dependence of
the position of the resonance island.
(10" turn)

3 NONLINEAR RESONANCE
ANALYSIS FOR HALO FORMATION

In order to understand halo formation under a non-
equilibriumstate, the time varyingH,, for the Gaussian
beam with (7.123,5.229) and (7.250,5.229) was
examined.

The phase space structures in the case of
(7.123,5.229) are shownin Fig 3. The resonance caused
by mismatching, where 2 resonance islands were made,



was dominant at a few turns because the mismatching
strongy remained. Furthermore, the nonlinear
resonance was switched to the structure resonance,
where the depressed tune in the horizontal planeis7 and
the beam core oscillates 28 times per 1 turn because of
the lattice consisting of 28 cells at KEK-PS after
decaying of the mismatching due to the growth of the
filamentation. It is understood that the particles moving
toouter edge of the resonance island become halo. Thus
the halo tends to grow in the tune pair of (7.123,5.229).
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Fig. 3 Timevarying of H,g,. (7.123, 5.229)
(@ 1% turn, (b) 3 turn, (c) 5" turn and (d) 7" turn

The phase space structures in the case of
(7.123,5.229) are shownin Fig 4. The resonance caused
by mismatching was dominant similar to the case of
(7.123,5.229). However, the condition of the structure
resonance was not satisfied because the depressed tune
isfar from 7, so the nonlinear resonance was lost after
decayingof the mismatching The particles movingto the
resonance island caused by the mismatching are thought
to be smeared out due to the nonlinear space charge
fields. Therefore, the beam distribution seems to
achieve an equilibrium state.
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Fig. 4 Timevarying of H,. (7.203, 5.229)
(@ 1% turn, (b) 3 turn, (c) 5" turn and (d) 7" turn

4 CONCLUSION

The isolated resonance Hamiltonian theory which is
capable of treating the intrinsic beam core oscillation
has been established. The isolated resonance
Hamiltonianis proved to be a useful tool to estimate the
position and size of halo. It hasbeen concluded that halo
is driven by nonlinear resonances excited by the
intrinsic beam core oscillation at the non-equilibrium
state. The beam distribution seems to achieve the
equilibrium state through the decay process of the
nonlinear resonances.
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