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Abstract

Halo formation under non-equilibrium state for a 2D
Gaussian beam in a FODO lattice was examined.
Nonlinear resonant-interactions between individual
particles and intrinsic beam-core oscillations result in
beam halo. Location of halo is analytically tractable
using canonical equations derived from an isolated
resonance Hamiltonian. Halo formation and
achievement to equilibrium can be explained by
transition of time-varying nonlinear resonances.

1  INTRODUCTION
One of major issues in high-power accelerators is

activation of the environment surrounding accelerator
due to beam loss. The beam loss must be reduced to a
sufficiently low level to allow hands-on-maintenance. In
order to produce an acceptable design, it is important to
understand the mechanisms of emittance growth and halo
formation that result in beam loss.

From this point of view, halo formation has been
studied by simulation and theoretical analysis.
Especially, particle-in-cell (PIC) simulation codes [1]
and analysis using particle-core-models (PCM) [2] have
greatly facilitated the understanding of space-charge
effects for particle beams. In these studies, a resonant
interaction between the individual particles and
intrinsic beam-core oscillations is found as the driving
mechanism of halo formation. However, the analysis
using PCM has been made on an equilibrium state,
where rms emittance is constant. Beam-property such as
rms beam size in non-equilibrium seems to be different
with that in equilibrium and to take a key role in the
resonant interaction of injected beam. In non-
equilibrium, PCM can not be adopted because rms
emiitance grows. Furthermore, simulation analyses,
such as FFT analysis and Poincaré map analysis, are not
able to apply in non-equilibrium because these analyses
need to track more than 100 turns but the non-
equilibrium state finishes generally less than 50 turns.

The purpose of this paper is to examine halo formation
for beam of a 2D Gaussian distribution under non-
equilibrium in a circular accelerator. In this context, we
have been developing a useful analytic model, which is
based on Isolated Resonance Hamiltonian (IRH),
capable of predicting the position of the halo as a
function of the beam and machine parameters in even
non-equilibrium. The theory has shown that halo

formation and achievement to an equilibrium state can
be explained by time-varying nonlinear resonances.

In this paper, the calculations were carried out for 2-
D mismatched beams with Gaussian distribution in a
typical FODO lattice. Most of the calculation
parameters were taken from the 12GeV proton
synchrotron in High Energy Accelerator Research
Organization (KEK-PS) because of high tune shifts in
contrast to low beam intensity, where the injection
energy is 500MeV and C0 =  340m is the circumference.
In order to manifest the key role of the space-charge
effects in halo formation, the acceleration was not taken
account of and the momentum spread was assumed to be
0%. As the momentum spread is concerned, application
of the developed analytic tool is straightforward for on-
momentum. Furthermore, the bare tunes (ν x, ν y) were
chosen from the operational parameter as (7.123,5.229)
and (7.250,5.229). In the case of (7.123,5.229), a
structure resonance in horizontal direction was shown
by past simulation results, but any resonance was not in
the case of (7.250,5.229) [3].

2   FORMALISM OF ISOLATED
RESONANCE HAMILTONIAN FOR

GAUSSIAN BEAM
Space charge potential originating from a beam with

Gaussian distribution is written in the form of a Taylor
expansion as
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where N is the total number of particles per unit length,
σx and σy are the rms beam size. The Hamiltonian
equivalent to the betatron oscillation perturbed by the
space charge effect is given as
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where H0 is the unperturbed Hamiltonian, γ , p and v is
the relativistic mass factor, the momentum and the
velocity of the design particle, respectively. Here,



action-angle variables (ψx, ψy, Ix, Iy) and a dependent
variable θ = s / R0 are introduced [4], where

x Ix x x x= +( )2 0β ψ ψcos , ,

y Iy y y y= +( )2 0β ψ ψcos , ,

R0 =  C0 /  2π is the averaged orbit radius, βx and βy are
Twiss parameter, ψ0,x and ψ0,y are the flutter of the phase
with respect to the average phase advance of the
unperturbed Betatron oscillation.

ϕ (ψx, ψy, Ix, Iy ; θ) expanded by Fourier series can be
separated into the oscillating terms with angle variable
and the other oscillating term because of the flutter, rms
beam size and Twiss parameter. The nonlinear
resonances between the individual particles and
intrinsic beam-core oscillations are excited in the case
that the phase of ϕ slowly varies with θ. Because the past
simulation results showed the nonlinear resonances in x
direction [3], we chose the smallest slowly oscillating
phase of ϕ as 2δψx - κθ, where δ and κ  are integer. So,
the slowly oscillating phase can be given by i(2δψx - κθ),
where i is integer.  The IRH can be given by averaging
the Hamiltonian over many turns [5] because the rapidly
oscillating terms disappear. Furthermore, a canonical
transformation to (Ψx =  ψx - κθ /  2δ, ψy, Ix, Iy ; θ) is made
to remove any time-dependence from the IRH. Finally,
the IRH for nonlinear resonance between the Betatron
oscillation and the oscillating space charge forces of 2D
Gaussian beam is written as

H I I I
eR

pv
I Iiso x x y x x x x yΨ Ψ, , , ,( ) = −



 + ( )ν κ

δ γ
ϕ

2
0

2 , (2)

where <ϕ(Ψx, Ix, Iy)> is the time-averaged space charge
potential. Hiso and Iy of Eq. (2) become constant of motion.
The detail of Eq. (2) is given in Ref. [6].

In this paper, the position of the resonance islands was
chosen as the measure of the relative strength of
nonlinear resonances. The position of the resonance
island for a structure resonance is given by Ixmax and Ixmin,
which are the maximum and minimum values of the
action variable along the trajectory through the unstable
fixed point. The stable and the unstable fixed point can
be analytically evaluated from the canonical equations.

For numerical evaluation of Eq. (2), nmax, which is the
limitation of the summation about n of Eq. (1), and Iy

were optimized by calculating Ixmax and Ixmin as functions
of nmax and Iy, when a combination of (7.123,5.229) was
chosen as the bare tune and the peak intensity of 8.5e11
particle per bunch (ppb) beam was assumed. nmax =  20
that gives a saturation in the calculation result has been
applied. A larger Iy indicated the smaller resonance
islands because the depressed tune becomes closer to
the bare tune. In order to manifest the key role of the

space-charge effects in halo formation, the case of Iy =  0
has been considered. The result of the numerical
calculation of Hiso using above parameters is shown in
Fig. 1 for comparison with the simulation result in the
case of (7.123, 5.22).
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Fig. 1  The comparison of phase space map between
(a) Hiso  and (b) simulation. (10th turn)

In order to justify Hiso, the results of Hiso are compared
with the simulation results by changing the intensity and
measuring Ixmax and Ixmin in the case of (7.123, 5.229). As
shown in Fig. 2, the results of Hiso are good agreement
with the simulation results. Thus, Hiso of Eq. (2) has been
confirmed to give a reasonable result.
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Fig. 2  Intensity dependence of
the position of the resonance island.

(10th turn)

3  NONLINEAR RESONANCE
ANALYSIS FOR HALO FORMATION
In order to understand halo formation under a non-

equilibrium state, the time varying Hiso for the Gaussian
beam with (7.123,5.229) and (7.250,5.229) was
examined.

The phase space structures in the case of
(7.123,5.229) are shown in Fig. 3. The resonance caused
by mismatching, where 2 resonance islands were made,



was dominant at a few turns because the mismatching
strongly remained. Furthermore, the nonlinear
resonance was switched to the structure resonance,
where the depressed tune in the horizontal plane is 7 and
the beam core oscillates 28 times per 1 turn because of
the lattice consisting of 28 cells at KEK-PS, after
decaying of the mismatching due to the growth of the
filamentation. It is understood that the particles moving
to outer edge of the resonance island become halo. Thus
the halo tends to grow in the tune pair of (7.123,5.229).
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Fig. 3  Time varying of Hiso . (7.123, 5.229)
(a) 1st  turn, (b) 3rd turn, (c) 5th turn and (d) 7th turn

The phase space structures in the case of
(7.123,5.229) are shown in Fig. 4. The resonance caused
by mismatching was dominant similar to the case of
(7.123,5.229). However, the condition of the structure
resonance was not satisfied because the depressed tune
is far from 7, so the nonlinear resonance was lost after
decaying of the mismatching. The particles moving to the
resonance island caused by the mismatching are thought
to be smeared out due to the nonlinear space charge
fields. Therefore, the beam distribution seems to
achieve an equilibrium state.
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Fig. 4  Time varying of Hiso . (7.203, 5.229)
(a) 1st  turn, (b) 3rd turn, (c) 5th turn and (d) 7th turn

4  CONCLUSION
The isolated resonance Hamiltonian theory which is

capable of treating the intrinsic beam core oscillation
has been established. The isolated resonance
Hamiltonian is proved to be a useful tool to estimate the
position and size of halo. It has been concluded that halo
is driven by nonlinear resonances excited by the
intrinsic beam core oscillation at the non-equilibrium
state. The beam distribution seems to achieve the
equilibrium state through the decay process of the
nonlinear resonances.
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