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We show that using qutrits rather than qubits leads to a substantial reduc-
tion in the overhead cost associated with an approach to fault-tolerant quan-
tum computing known as magic state distillation. We construct a family of
[[9m — k, k, 2]]3 triorthogonal qutrit error-correcting codes for any positive in-
tegers m and k with k£ < 3m — 2 that are suitable for magic state distillation.
In magic state distillation, the number of ancillae required to produce a magic
state with target error rate € is O(log” e~!), where the yield parameter v char-
acterizes the overhead cost. For k = 3m—2, our codes have v = log,(2+ %%2),
which tends to 1 as m — oco. Moreover, the [[20,7,2]]3 qutrit code that arises
from our construction when m = 3 already has a yield parameter of 1.51 which
outperforms all known qubit triorthogonal codes of size less than a few hundred
qubits.

1 Introduction

To realize their full potential, quantum computers must achieve large-scale fault tolerance.
Magic state distillation [1, 2] is one of the leading approaches to fault-tolerant quantum
computation, in which many noisy magic states are distilled into fewer pure magic states,
which are then used to achieve quantum universality via state injection. There has been
some encouraging experimental progress in magic state distillation in recent years, e.g.,
[3-7]. However, the overhead associated with magic state distillation — i.e., the number of
noisy ancillae required to obtain an ancilla in a sufficiently pure magic state — is high, and
represents a significant portion of the cost of quantum computing (as estimated in e.g.,
[8]), though this cost has decreased over the years (e.g., [9-12]). Reducing the overhead
of magic state distillation is crucial in order to realize large-scale fault-tolerant quantum
computation within the foreseeable future. At the core of any magic state distillation
routine is a quantum error-correcting code with desirable theoretical properties that enable
it to distill a few high-fidelity magic states from many low-fidelity magic states — in this
paper, we present a new family of small error-correcting codes based on qutrits that achieve
this goal with low overhead.

A magic state distillation routine takes n noisy ancillae as input and, with probability
P, yields k pure ancillae as output with infidelity suppression €y ~ €i;, where v is the

noise-suppression exponent. To obtain an ancilla with output error rate €yt less than e,
one requires O (log”’ %) noisy ancillae [1, 13|, where

v =tog, () (1)
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v is known as the yield parameter and characterizes the overhead cost of magic state
distillation in the asymptotic limit of many rounds of distillation.

Of the two magic state distillation routines originally proposed in [1], distillation via
the 15-qubit Reed-Muller code has the lowest overhead, given by yield parameter of v =
logs 15 ~ 2.46. This code was later shown to be part of a larger family of codes known
as triorthogonal codes [13]. For distillation via triorthogonal codes, it can be shown that
the probability of successful distillation, P — 1 as €, — 0, and that v = d, where d is the
distance of the quantum error correcting code. For all other known magic state distillation
routines, Psyccess < 1 and v < d. Therefore, in order to construct distillation routines with
the lowest possible yield parameters, it is natural to focus attention on triorthogonal codes.

Triorthogonal codes have given rise to several reductions to the overhead cost of magic
state distillation. In particular, [13]| constructed a family of magic state distillation routines
with yield parameter approaching v = log, 3 ~ 1.58. Triorthogonal codes have been used
to construct qubit magic state distillation routines with even lower yield parameters — but
these all seem to require an inordinately large number of qubits. Notably, [14] showed that
one can construct qubit triorthogonal codes for which v < 1, however, the smallest of these
codes requires a block size of 2°% qubits. Other families of qubit distillation routines which
achieve a yield parameter that approaches 1 are known [15-17|, however these also seem to
require an unwieldy number of qubits.! Do there exist low-overhead magic state distillation
routines involving a reasonably small number of qubits? A recent computational search
[21] for qubit triorthogonal codes suggest that the answer is no.

An alternative approach to lower the overhead is to construct magic state distillation
routines for qudits — quantum systems of prime dimension p — rather than qubits, which
are also of purely theoretical interest due to the direct connection between distillability
and contextuality present only for qudits of odd dimension [22-25|. [26] provided the first
explicit examples of qudit magic state distillation routines, demonstrating, in particular,
that [[5, 1, 3]]s code can distill an eigenstate of the qutrit Hadamard gate. However, the
distillation routines proposed in [26] (which are based on codes that are not triorthogonal)
have the disadvantage of having noise suppression exponent ¥ = 1, and therefore infinite
yield parameter . Subsequent constructions qudit magic state distillation routines include
both triorthogonal codes [27-29] and non-triorthogonal® codes [30-32]. Of these, the lowest
known overheads arise from punctured quantum Reed-Solomon codes, which achieve a yield
parameter v = log|,41)/3)(p — 1) with a single puncture [28], and sublogarithmic yields
with multiple punctures [29] for sufficiently large p. While such codes can have modest
block sizes ~ O(p), they require qudits of rather unwieldy dimension p 2 23 to obtain
v~ 1.

Given these results, many expect that low-overhead magic distillation, i.e., v — 1,
though possible in theory, is not realizable in practice, unless one is willing to work with
qudits of large dimension, or codes with large block sizes. Here we show that this expecta-
tion is incorrect, by constructing a family of relatively small triorthogonal codes for qutrits
that gives rise to a yield parameter approaching 1.

Our paper is organized as follows. In Section 2 we review the construction of triorthog-
onal codes, which are codes that possess a transversal non-Clifford gate. In Section 3,
we present our new family of qutrit triorthogonal codes. In Section 4 (supported by the
appendix) we study the noise reduction and compute the threshold of our new family of

! After submission of this work for publication, several works[18-20] appeared which construct asymp-
totically good qubit distillation routines with v — 0.

2While distillation via non-triorthogonal codes involves higher overheads, such codes do appear to have
higher thresholds to noise.
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codes. In Section 5 we compute the yield parameter and also estimate the practical over-
head cost of our family of codes when only a few rounds of distillation are required. In
Section 6, we conclude with discussion and open questions.

2 Triorthogonal Codes

We first review the general framework for constructing triorthogonal quantum codes [13],
adapted to qudits [29] of dimension p. First, one must construct a x-dimensional self-
orthogonal linear subspace T of [y, such that, for any three vectors h@ p®) ple) e T,
the triple product

> nI I =0 mod p. 2
i=1

Such a space is known as a ternary triorthogonal space of size n and dimension .

We next puncture® the triorthogonal space at k different coordinates to form a space
generated by a k x (n — k) dimensional matrix H, known as a triorthogonal matrix. We
partition H as

where Hj consists of those rows of H that are self-orthogonal, and H; consists of those
rows of H that are not. H is called a triorthogonal matrix, and is used to construct a CSS
code, known as a triorthogonal code, with stabilizers S, spanned by Hy and S, spanned
by H', and logical operators determined by the rows of H;. Any such code possesses a
transversal gate from the third level of the Clifford hierarchy, which, for qutrits, can be

taken to be [33] ‘
T =3 ek k) (k] (4)
k

This gate and its generalizations have been studied extensively, see, e.g., [34-38].

As a consequence of this transversal non-Clifford gate, a triorthogonal code can be used
for magic state distillation of a particular qutrit magic state analogous to the |H) state of
[1], (sometimes referred to as an equatorial magic state [39]), which we denoted as:

[Mo) =3~ ™7 ). (5)

The noise suppression of the resulting routine is, schematically, €5yt ~ e{jn, where d is the
code distance? [1, 27]. Note that, because Hj is self-orthogonal, S, C S, and therefore,
S, determines the distance of the code. For this reason, it is natural to also demand that
the triorthogonal spaces 7 be maximal — i.e., no additional basis vector can be added to
T while preserving triorthogonality. The reason for this is as follows. Suppose that there
exist two triorthogonal spaces 7' and T, such that 77 C T — puncturing 7’ and 7T at the
same locations would give rise to stabilizers S, and S, that satisfy S., C S;. Therefore the
triorthogonal code obtained from 7’ would have distance d’ < d, the distance of the code

obtained from 7.

3Recall that puncturing a code at coordinate j means deleting the jth column of the generator matrix.
Each time a code is punctured, n decreases by 1.

4Let us point out, when codes that are not triorthogonal are used for magic state distillation, the noise
suppression exponent, v defined via €out = €y, is not the same as the code distance d.
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As an example, we present the well-known family of qubit triorthogonal codes were
proposed in [13]. A representative member of this family correspond to the triorthogonal
space T generated by the matrix T®) given by

11110000111 10000O0
00001111111 10000O0
T=|01 0101010101010 1 (6)
00110011 O0O011O0O0T11
0O0o0oo000O0O0OO0OT1TT1TI1T 11111
This can be punctured at coordinates 1 and 5 to give rise to a triorthogonal matrix of the
form:
11 100011110000
I ( 0001111111000 0\
H = Hl = 1011010101010 1}, (7)
0 011011001100 11
0 000O0O0O1T1111111

that defines a [[14, 2, 2]]2 triorthogonal code with yield parameter v = log, 7 &~ 2.81.

3 Our Construction

We define a triorthogonal space denoted as 7T, of size n = 9m and dimension 3m, spanned

by basis vectors w and {v(M), v@ . Bm=DY given by
w=(0, 1, 2,0, 1, 2,...) (8)
and
0 0<i<3(a—1),
1 3(e—1)<i<3a,
R S ©
0 3a<t<n-—3,
2 n—-3<t<n.
By direct computation, it is easy to check that Ty, is triorthogonal and maximal.
Explicitly, for m = 2, the generator matrix for 7T, is given by
01 201201201201 2°01 2
1110000O0O0OO0OO0O0OO0OO0O0O0Z22 2
00011 100O0O0O0ODO0DO0DO0O022 2 (10)
0000O0OO0O111O0O0O0O0O0OO0CZ22 2
0000O0OO0OO0OO0OO0OT1TT1I1O0O0O0Z22 2
0000O0OO0OO0OO0OO0OO0OO0OO0OI1I11222

The 9-qutrit triorthogonal space that arises from this construction when m = 1 coin-
cides with a linear Reed-Muller code in two variables, which can be punctured to give rise
to the [[8,1,2]]s code used for distillation in [27]. The 27-qutrit triorthogonal space that
arises from this construction when m = 3 contains the linear Reed-Muller code in three
variables as a proper subspace.

One can puncture 7T, once per block in any 3m — 2 blocks of three trits to obtain
a [[9m — k,k,2]]3 CSS code for £ < 3m — 2. Explicitly, let us choose to puncture at
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coordinates 35+ 1, for all 0 < j < 3m — 2. For m = 2, this leads to a triorthogonal matrix
H given by

1100 00O0O0O0OO0OO0Z22 2
0011 00O0O0O0O0O0Z2?22
_(Hyy _|000O011O000O0O0O0Z222
i = Hy) 100 0O0O0OT1T1O0O0O0TZ22 2 (11)
1 2121212012012
0000O0O0O0OO0OT1TT11222
For any m, the two stabilizers in S, will be of the form (1, 2, 1, 2, ..., 0, 1, 2, 0, 1, 2)
and (0,..., 0, 1, 1, 1, 2, 2, 2), which allow us to detect, but not correct, a single Z-error,

leading us to conclude that the code has distance 2.

4 Threshold

Let us first compute the threshold to noise for these distillation routines. Note that,
although the threshold does not affect the computation of the yield parameter ~, it does
have a direct impact on the actual overhead cost of distillation in the limit when only a
few rounds of distillation are used, as is discussed in the next section.

To describe a general mixed qutrit state, one requires 8 independent noise parameters.
However, after twirling, as described in [27] and [39], noisy qutrit |Mp) magic states can
be expressed in terms of only two noise parameters, €; and eg, via

pler, €2) = (1 — €1 — e2) |Mo) (Mo| + €1 [M1) (M1] + €3 | Ma) (M|, (12)

where |M;) = Z7|Mp). The performance of a qutrit magic state distillation routine is
thus characterized by two functions € (e1,€2) and €5 (e, €2), which determine a basin of
attraction in the space of all convex combinations of the |M;) (M;| that distill to the
desired magic state.

To obtain the highest thresholds (i.e., largest basins of attraction) possible using our
construction, we set k = 1. We computed both €] (€1, €2) and €)(e1, €2) for small values of
m following [27], and found that m = 2 gives the largest basin of attraction. Details of this
computation are provided in Appendix A. Explicitly, up to order, €3, we found, for m = 2,

€ (e1,63) =€ +2 (6:15 + €22 + 156%61) +O(e}) (13)
(e, €2) = €542 (e% + €163+ 156%62) + O(eh). (14)

We plot the basins of attraction of the [[17,1,2]]3 code in the two-dimensional space of
qutrit state space in Figure 1. As can be seen from this figure, the region that distills
to |Mp) extends fairly close to the Wigner polytope [40, 41] which sets the theoretical
bound for the best possible magic state distillation routine, and is tied to the onset of
(state-dependent) contextuality [22, 25].

To condense the information contained in the basin of attraction plotted in Figure 1, it
is often customary to assume depolarizing noise, by demanding that €; = e = §/3. This
allows us to characterize the distillation performance by a single function ¢’(d), and the
basin of attraction by a single inequality, § < d,, where J, is the threshold to depolarizing
noise. We found that, for m > 2 and k =1,

5 — 152+ 8+9(m—1)253+ 41 + 54(m — 1)

25% 5, 1
3 9 o7 0%+ 0(0°) (15)
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The thresholds to depolarizing noise for codes with & = 1 and m < 8 are plotted in
Figure 2. We find that the [[17,1,2]]3 code obtained from our construction when m = 2
and k£ = 1 has the highest depolarizing noise threshold, §, = 0.353, exceeding that of
the [[8,1,2]]3 punctured Reed-Muller code of [27], whose noise threshold is &, = 0.317.°
The bound for the best possible threshold to depolarizing noise determined by the Wigner
polytope is 01"®* = 0.467.

| Ma) (Mo

|Mo) (M| |My) (M|

Figure 1: Any noisy magic state can be twirled to lie in the triangle spanned by convex combinations of
| M), pictured above. The region of state space that distills to the magic state | My) via the [[17,1, 2]]3
code is shown in black. The light gray regions distill to magic states |M7) and |M3). The red and dark
gray regions distill to the maximally mixed state, at the centre of the triangle. (The red region is inside
the Wigner polytope, and cannot be distilled to a useful magic state by any code.)

Let us also discuss the case of codes with k > 1, restricting to the case of depolarizing
noise for simplicity. We find that, for the [[9m — k, k,2]]3 code, each individual output
qutrit has depolarizing noise §’ given by

§ =

A g 4o (16)

where
2k kE<3m-—2
2 = { (17)

2k24+6 k=3m-—2

is the number of logical Z or Z2 operators of weight 2 that act on any one individual
output qutrit. For the case of k = 3m — 2, As is computed in the Appendix; the case
k < 3m — 2 can be determined in a similar manner. We see that the threshold for large k
is 0, =~ A% ~ EB’Z The threshold decreases quadratically with 1/k rather than linearly, as
it does for the case of qubits [13].

5For distillation of certain other qutrit magic states, slightly higher thresholds are possible using the
11-qutrit Golay code [32] or [30], but at a cost of a much lower yield.
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Figure 2: The threshold to depolarizing noise for distillation via the [[9m — 1,1, 2]]3 codes, as a function
of code size. The [[17,1,2]]3 code has the highest threshold, J. = 0.353.

The success probability is given by

18m — 2k

Pi(k,m)=1—
(k,m) -

5+ 0(6%). (18)

5 Overhead

How should one measure the overhead of a magic state distillation protocol? For both
qubits and qudits, Magic state distillation, as proposed in [1, 26, 27|, starts from the
assumption that one already has a fault-tolerant quantum computer able to implement
Clifford unitaries and prepare/measure stabilizer states without any error®. Following
[1, 13], we define the (theoretical) overhead cost of magic state distillation simply as the
number of low-fidelity magic states needed to produce a high-fidelity magic state, assuming
free and perfect Clifford operations. Explicitly, if Ny, with noise rate di, are needed to
produce Ny, magic states with noise rate dout, following [13, 15, 45|, we define the cost of
distillation to be

N;i
Nout .

Is it possible to compare fault-tolerant schemes for qutrits to qubits? In general there
are more noise channels for qutrits, and a noisy qutrit may be harder to produce than
a noisy qubit. One might model these differences by introducing “conversion constants”
K > 1 and K’ > 1, such that nqutrit = Knqubic and equeric = K'€qubic. However, the
yield parameter v measures how the number of noisy magic states scales with the loga-
rithm of the target error rate in the asymptotic limit of many rounds of distillation, and
is clearly independent of K and K’ — therefore it appears meaningful to compare yield
parameters across qudits of different dimensionalities. In subsection 5.1 we compute the
yield parameter for our codes and compare to yield parameters from similar qubit codes.

In practice, however, only a few rounds of distillation may be needed, so the yield
parameter is not necessarily meaningful. We study the distillation cost as a function of
target noise rate in section 5.2.

C(6in, dout) = (19)

5Qudit generalizations of the color code and surface code that allow for fault-tolerant implementations
of the qudit Clifford group are discussed in [42—-44].
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The distillation cost is a very natural measure of overhead cost associated with magic
state distillation — indeed, the entire resource theory of magic (e.g., [22, 40, 41, 46-49])
seeks to place theoretical bounds on this measure. However, in practice, the cost of fault-
tolerant implementation of the Clifford group must also be taken into consideration when
estimating the total overhead cost of quantum computing via magic states, and this requires
a more careful study of the circuits used for implementing the distillation protocol. While
we expect that distillation with codes with low theoretical overhead cost may give rise
to lower overheads in practice, a detailed estimate of the total overhead cost of fault-
tolerant quantum computation via magic state distillation using the new family of qutrit
error-correcting codes proposed here is beyond the scope of the present work.”

5.1 Yield Parameter

Let us first compute the yield parameter, which, captures the overhead cost in the limit of
many rounds of distillation.

To obtain triorthogonal codes with the maximal yield parameter, we set k = 3m — 2,
which is the maximum value for which the code has distance 2. The resulting [[6m +
2,3m — 2, 2]]3 triorthogonal codes have yield parameter given by,

Y= 10g2(2 + )7 (2())

3m — 2

which approaches 1 as m — oo. The yield parameter as a function of code size n is
plotted in Figure 3. The advantages over qubit codes of comparable size is striking. Let
us explicitly list the yields for the smallest codes in our construction, obtained by setting
k=3m — 2.

e For m = 2, we obtain a [[14,4,2]]3 code with a yield parameter of 1.81, which is
better than the best known qubit triorthogonal codes of size less than 50 [13, 21].

e For m = 3, we obtain a [[20,7,2]]3 code, whose yield parameter is 1.51 < log, 3,
outperforming all the codes constructed in [13], which, to our knowledge, are the
best known qubit triorthogonal codes with block size less than a few hundred qubits.

e For m = 4, we obtain a [[26, 10, 2]]3 code, whose yield parameter is 1.38.
e For m =5, we obtain a [[32, 13, 2]]3 code, whose yield parameter is 1.30.
e For m = 6, we obtain a [[38, 16, 2]]3 code, whose yield parameter is 1.25.
e For m = 7, we obtain a [[44, 19, 2]]3 code, whose yield parameter is 1.21.

e For m = 8, we obtain a [[50, 22, 2]]3 code with yield parameter 1.18. To the best of our
knowledge, to get a comparable yield parameter, one requires a code with ~ 1000

qubits, using triorthogonal codes constructed from punctured binary Reed-Muller
codes in [14, 17].

Note also that previous constructions of qudit-based triorthogonal codes in |28, 29] require
qudits of dimension at least 17 to obtain comparable improvements in yields.

"Indeed, a variety of creative techniques and optimizations have been proposed in the literature for
magic state preparation and distillation that can greatly reduce the total overhead cost in practice. Other
techniques, such as combining magic state distillation with gate synthesis [9] can further reduce the over-
head cost for fault-tolerant implementation of a given algorithm. All these ideas can, presumably, also be
applied to qutrits, but the details have not been worked out in the literature.
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Figure 3: Yield parameters -y of the lowest overhead [[n, k,2]]s triorthogonal code produced by our
construction are shown in blue, as a function of code size n. As n — oo, v — 1, shown by the blue
line. For comparison, yield parameters for binary [[n, k, 2]]2 triorthogonal codes in [13] with the same n
are plotted in orange on the same graph — for these codes 7 — log, 3 as n — oo, shown by the orange
dashed line.

5.2 Practical Estimates

In this section, we study the cost of magic state distillation when only a few rounds
of distillation are needed, which is, perhaps, more relevant in practice than the yield
parameter 7.

To see that our codes may still offer an advantage, let us compare the distillation cost
using our family of codes to distillation using the [[15,1, 3]]2 code of [1]. Of course, it is
not clear how to fairly compare qubit noise to qudit noise — following [28] for simplicity,
we work with the depolarizing noise §. Expressed in terms of depolarizing noise, the noise
reduction of the [[15, 1, 3]]2 code for distillation is

5 = %53 + 0%, (21)

The probability of successful projection is Py =1 — 12—55 + 0(6?).

Using the [[15,1,3]]2 code, starting with a d;, = .001, a single round of distillation
would give out ~ 10_8, with a distillation cost of 15.2. Now consider distillation with the
[[32,13, 2]]3 code from our family of codes. Starting with i, = .001, after three rounds of

7
distillation with the [[32,13,2]]3 code, using Eq. (16) one finds, dout =~ (%) 68~

13
noise for qubits may not be directly comparable to depolarizing noise for qutrits, for the

same distillation cost, qutrits with § ~ 107!? are presumably preferable to qubits with
6~ 1075

One also has the freedom to choose a different code (i.e., a code with a different value
of m) during each round, as described in [13, 45]. Suppose we distill with an [[n1, k1, 2]]3
code on round 1, an [[ng, k2,2]]3 on round 2 and an [[ng, k3, 2]]s on round 3. Assuming
0in < Ag/6, we have,

3
2 x 107!2, with a distillation cost of C' ~ (Q) /Ps(.001) =~ 15.2. Although depolarizing

8

)
dout ~ A2(k3)A2(/€2)2A2(k1)4§, (22)
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Figure 4: We plot the distillation cost C' = ]ifv—“t needed to produce magic states a target depolaring

noise rate of d,,t = 10™7%, starting from &;, = 6?02 for optimal distillation sequences of from our family
of qutrit triorthogonal codes in blue. Though a comparison may not be fair, we also plot, in orange,
similar results for optimal sequences of small qubit triorthogonal codes (n < 128), taken from [13].
(These optimal sequences typically involve one round of distillation with the [[15, 1, 3]]2 code, followed
by additional rounds with other triorthogonal codes with higher rates.)

~(2)(2)(2)

Because triorthogonal codes with larger k typically have better rates, but smaller thresh-
olds, there is some optimization required in the choice of distillation sequence. Heuristi-
cally, it appears advantageous to use distillation protocols with smaller £ for early rounds
of distillation, and protocols with larger k for later rounds.

Using a randomized search we determined optimal sequences for qutrit distillation
routines using our family of codes. (The optimal sequences were computed subject to the
following simplifying assumptions: for any m, we always choose k = kp.x; we restricted
to codes with m < 12; we restricted the total rounds of distillation to be 5 or less.) The
results are shown in Figure 4, which presents the optimal cost C' as a function of target
depolarizing noise rate dtarget = 107%. For comparison, we plot distillation costs arising
from optimal sequences of distillation using small qubit triorthogonal codes (including
[[15,1,3]]2 code, the [[10,2,2]]2 code of [45] and the block [[3k + 8, k,2]]2 codes in [13]),
which were computed in [13] for d;;, = 0.02. The plot suggests an advantage in overhead
costs persists for qutrits for target noise rates better than 10710,

Do these advantages hold up in practice, when one takes into account the cost and
imperfections of Clifford operations? While we leave this for future work, let us make a
few comments about it below. The [[9m — k, k, 2]|3 qutrit triorthogonal codes constructed
in this paper offer similar noise reduction to [[3k + 8, k, 2]]2 block triorthogonal codes of
[13] but have better rates. Overhead costs of distillation with the [[3k + 8, k, 2]]2 block
codes have been compared to the [[15,1,3]]2 code, with mixed results [8, 50]. At least
in noise regimes where distillation via [[3k + 8, k, 2]]o block codes is favored, our qutrit
codes have a chance to give rise to lower overhead costs in practice, as evidenced by the
computations in this section. However, for distillation with qutrits, no small triorthogonal

with cost of distillation
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code with distance 3, analogous to the [[15, 1, 3]]2 code, is known at present. Therefore,
unless such a code is discovered, it appears that, in order to distill qutrit magic states with
low overhead, one must make do with the family of codes presented in this paper.

6 Discussion

Several authors [27-29] have noticed theoretical advantages in the overhead cost of magic
state distillation with qudits rather than qubits. However, none of these constructions pro-
vided any overhead reductions for qutrits. Indeed, prior to this work, the only practically
useful code for qutrit distillation was the [[8,1,2]]3 code of [27] — which does not appear
to offer any substantial advantage over the [[15,1,3]]2 qubit code of [1].® We provided a
simple construction of a new family of qutrit triorthogonal codes that have yield parameter
v — 1 in the limit m — oo. The yield parameters of even the smallest codes in our family,
involving as few as 20 qutrits, are substantially better than all known constructions involv-
ing hundreds of qubits or fewer. Even when only a few rounds of distillation are needed,
these codes can outperform the [[15,1, 3]]2 code, or codes of [13], in terms of overhead cost,
assuming perfect and free Clifford unitaries and stabilizer measurements.

This work indicates that the space of qutrit error-correcting codes remains relatively
unexplored. Another natural question is whether there exist other qutrit triorthogonal
codes with better yields, or higher distances? In particular, what is the smallest qutrit
triorthogonal code with distance 37 We carried out an preliminary computer search over
triorthogonal spaces of small dimension. The only non-trivial triorthogonal spaces of size
n < 21 and dimension k > [n/3] correspond to the spaces produced by our construction
with m = 1 and m = 2. We therefore believe that the codes presented in this paper are
somewhat distinguished, at least amongst very small qutrit triorthogonal codes.

The existence of the family of codes presented here demonstrates a concrete theoretical
advantage to pursuing fault-tolerant quantum computation with qutrits rather than qubits.
A number of promising experimental realizations of qutrit-based quantum computers exist
(e.g., [51-60]), and if one has already made the decision to work with qutrits, the magic
state distillation routines presented in this paper appear to be the best currently available.
However, if one wishes to assess whether or not the possible advantages for large-scale fault-
tolerance in the long term outweigh the increased complexities associated with control of
qutrits in the short-term, more work needs to be done. In particular, it is important
to know how well do these theoretical advantages hold up in practice, when the cost of
(imperfect) Clifford unitaries is taken into account.
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80ther qutrit distillation protocols, such as those of [26, 30, 32], while theoretically important, give rise
to distillation routines with impractically high overhead costs.
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A Threshold Computations

A.1 General Analysis

In this Appendix, we directly extend the analysis of section 4 of [13] to qutrits. A similar
analysis, restricted to k = 1, appears in [27].

The magic state we wish to distill is |Mg) = T |+), where |+) = %(|0) + 1) + |2))
and T is the qudit version of the 7/8 gate defined in [27, 33]. A triorthogonal code is a
CSS-code with a transversal T' gate, constructed from a triorthogonal matrix, of the form
given in Eq. (3). Let Ho = span(Hyp) and H = span(H). The X-stabilizers are given by
Sz = Ho and the Z-stabilizers are given by H+. The rows of H;, which we denote by f(@
for a € {1,...,k}, define the logical Z operators of the code as in [13] via

_ (a) (a) (a)
ZW=z""oz o..9zM . (24)
A twirled noisy magic state can be written in the form,
ple1,€2) = (1 —e1 — e2) [Mo) (Mo| + e1 |M1) (Ma| + e2 | Ma) (M|, (25)

where |M;) = Z7 |Mp). As in the case of qubits, all noise is in the form of Z errors on
input qutrits, which translate into Z errors on the output magic state. However, unlike the
case of qubits, both Z and Z? errors may occur with a priori independent probabilities —
€1 is the probability of a Z error and e is the probability of a Z2 error. For simplicity, it
is often convenient to assume depolarizing noise, in which case we can set €, = €5 = g.
The performance of the magic state distillation routine via a triorthogonal code can be
expressed in terms of weight enumerators S, and S, and their duals. However, unlike the
case of qubits, one must work with complete weight enumerators (e.g., [62]), rather than
simple weight enumerators. To this end, given a ternary vector u € F3§ we define |u|; to
be the number of entries of u equal to 1, and |u|2 to be the number of entries of u equal to
2. The Hamming weight of w is |u| = |u|1 + |u|e. For example, if u = (1,2,2,0,0,0,2,2),
luly =1, Jul2 = 4 and |u| = 5.
Projecting p(e1, €2)®™ onto the codespace of a triorthogonal code is successful with
probability,
Pi= 3 (1— e — eg)lehlulaglel iz, (26)
ue?-lé

If we restrict to depolarizing noise, we have

Jul
Py (1- ?)"—lu\ (g) = ml()’ S -, (27)

ue?—ioL

where we used the MacWilliams identity for the simple weight enumerator of a classical
ternary code [62] in the last equality.
Our code encodes k logical qutrits. After projection and decoding, the output state is

Pout = Z Pout(x) |Mx> <Mx| (28)

k
z€Fy

where |[My) = |My,) ® |[My,) ® ... ® | My, ), and

Pout($) = Z (1 e — 62)17|f\6|1f|16|2f|2. (29>
feSz+ar fM . ay fF)
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The reduced density matrix describing the ath output qutrit can be written as,

p=(1-5" &) M) (Mo| +&” M) (M| + &) |Ma) (Mol (30)
where 1
e = 5 > Poula). (31)
S g Tq=]
If we restrict to depolarizing noise, demanding that Ega) = Ega) = S(;), then one can
write,

2 . 1
§(5( ) =1- F Z Pout(l').

Sz £q=0

n—|\u |u| .
ZUE(HOEBf(a))L(]. — 2—?:5) || (g)
[ul
Yuens (L= F)nl (g)

Note that, again using the ternary MacWilliams identity, one can write

5 a1\
3 (1_%)n,|u, (3) _ W()@lf(a)' S oa-a (33)

11,€(I’Io€|9,)"<a))l uE’Ho@f(a)

(32)
—1-

Thus the performance of triorthogonal qutrit codes can be characterized in terms of the
classical weight enumerators of Hg and Ho @ f(*). Using these formulae one can reproduce
the various results given in the main text.

A.2 Our codes

S =
S N
—_ O
— =
Ll W)
N O
N =
N DN

1 2
0 0

o N

As an example, let us illustrate how the formulae from the previous subsection apply to
consists of two rows, and is of the form:
Hy = L (34)
0= 1y .
00
The success probability is expressed in terms of the simple weight enumerator of the

our codes, for the case of maximum number of punctures & = 3m — 2. For this case, Hy
1 2 .

where repeats k times.

classical ternary code generated by Hp, and is easily seen to be,

1
P== 1—4)l
gfg;lo( )
= é (1+2(1—5)6~|—6(1—5)2k+4), (35)

4 2
z1—<4+;>6+3(11+7k+2k2)52+0(63).

For any choice of a, Ho @® f(% is generated by,

111 1 11111111
Hy®f@ =112 1 2 12012012 (36)
0000 00111222
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The numerator of the fraction in Eq. (32) is determined by the simple classical weight
enumerator of the classical code determined by Hy & f(® and is seen to be,

1

il Z (1— 5)|U\
21 feHodfe
_ 2i7 (14201 6% +12(1 - 6 4 41— 8 161 — 6 1 2(1 - 5)52H).
(37)
Putting these together, we find,
. 2 R
(a) ~ o 2 o o 3 4
5 <1+3>6 +<2+2k;+3+9>6 +0 (5%). (38)
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