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Abstract
We consider the observables describing spatiotemporal properties in the context 
of two of the most popular approaches to quantum gravity (QG), namely String 
Theory and Loop QG. In both approaches these observables are described by non-
commuting operators. In analogy with recent arguments put forward in the context 
of non-relativistic quantum mechanics [see Calosi and Mariani (Philos. Compass 
16(4):e12731, 2021) for a review], we suggest that the physical quantities corre-
sponding to those observables may be interpreted as ontologically indeterminate—
i.e., indeterminate in a way that is non-epistemic and semantic-independent. This 
working hypothesis has not received enough attention in the current debate on QG, 
and yet it may prove explanatory useful in several respects. First, it provides a clear 
background for understanding how some features of QG are ontologically con-
tinuous to features of quantum mechanics. Second, it sets the stage for asking new 
interesting questions about QG, for instance concerning the status of the so-called 
Eigenstate-Eigenvalue link. Third, it indirectly shows how the debate on ontological 
indeterminacy may extend well beyond the non-relativistic case, contrary to what 
seems to be assumed. Fourth, and perhaps more importantly, it provides a promising 
alternative to the received view on QG [Wüthrich et al. (Philosophy Beyond Space-
time: Implications from Quantum Gravity, Oxford University Press, Oxford, 2021)] 
according to which spacetime is not fundamental. On the view we shall suggest, 
spacetime may be indeterminate and yet fundamental.

Keywords  Loop quantum gravity · Non-commutativity · Ontological 
indeterminacy · Quantum gravity · Quantum indeterminacy · String theory

1  Introduction

In any quantum theory there are specific pairs of physical quantities—the non-com-
muting ones—which cannot simultaneously be assigned a definite value. This fea-
ture is at the core of many discussions regarding the ontology of the theory and the 
conceptual implications of the formalism. So much so, that arguably such lack of 
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value definiteness (LVD) is one of the marks allowing to distinguish quantum from 
classical theories.

A novel approach has emerged in recent years which attempts to interpret LVD 
in a systematic way and by recognising how pervasive this feature is. The idea is 
to take LVD at face value as indicating that the physical world is in some respect 
objectively indeterminate—i.e., it is indeterminate independently from our knowl-
edge or from our representations of it. The existence of ontological indeterminacy—
sometimes also called metaphysical—has been suggested within the context of the 
orthodox interpretation of quantum mechanics [1–5], the spontaneous collapse mod-
els [6], the Many-Worlds interpretation [7], Relational Quantum Mechanics [8], and 
the Modal Hamiltonian interpretation [9]. Common to all these proposals is the idea 
that we can individuate certain physical quantities that are crucial for describing the 
ontology of the theory (such as position, spin, or mass density), and show that they 
have to be interpreted as objectively indeterminate given the formal structure of the 
theory.

Although the discussion so far only focused on examples from non-relativistic 
quantum mechanics (see [10] for a review), the mathematical and conceptual fea-
tures on which the existing arguments rely should extend to virtually every theory 
that has the right to be called quantum. In particular, the non-commutativity of the 
operator algebra appears to play a pivotal role in the whole debate [4, 11]. Based on 
this general consideration, in this paper we shall investigate the status of ontological 
indeterminacy and of LVD within two of the major approaches to quantum gravity 
(QG), namely loop quantum gravity (LQG) and string theory (ST) [12].

When it comes to LQG, the non-commutativity which interests us comes from 
attempting to reconcile the existence of a minimal area in the theory with the need 
for Lorentz invariance, which demands that all lengths vary continuously under Lor-
entz boosts. This reconciliation relies on Lorentz boosted operators not commut-
ing with their unboosted counterparts. Regarding ST, non-commutativity is a con-
sequence of the quantisation of the scalar fields living on the string’s worldsheet. 
We can then start by canonically quantising the scalar fields of the string, which 
can be treated as a type of position variable. Together with their associated conju-
gate momenta, one finds that these scalar fields form a non-commutative algebra of 
operators, satisfying non-commutativity relations essentially analogous to those of 
the well-known position/momentum case in quantum mechanics. The crucial point 
for this paper is that in both cases, the consistency of the theory relies crucially on 
the claim that certain operators cannot represent determinate quantities at the same 
time. These properties are in LQG the geometric properties encoded by the area 
operator, while in ST they are the centre of mass position, centre of mass momen-
tum, and higher harmonic modes of the string. In LQG, we have an analogy with 
angular momentum, which makes particularly explicit the connection with analyses 
of ontological indeterminacy already developed in the existing literature. In ST, too, 
the fact that we are dealing with the non-commutativity of position and momentum 
operators is strictly analogous with the standard non-relativistic case.1 The crucial, 

1  This is intended as an introductory statement, and we acknowledge that the status of spacetime in per-
turbative string theory is more nuanced than described here. A detailed discussion of the status of spa-
cetime in perturbative string theory will be provided in Sect. 3.2. In particular, we will elaborate on how 
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structural difference between the cases already studied in the literature and that of 
QG, appears to be that in QG the relevant operators are directly describing space-
time itself, rather than its occupiers. This naturally makes one wonder whether the 
resulting picture is one where spacetime is indeterminate.

Relatedly, an important difference will concern how we can attribute physical 
meaning to these observables and to the properties involved. In the case of quantum 
mechanics, the standard way of assigning definite values to a given observable is 
through the Eigenstate-Eigenvalue Link [13], which roughly establishes a one-to-
one mapping between definite properties and eigenstates. In the context of QG, how-
ever, the status of the EEL is yet to be fully understood. Even more importantly, we 
notice that the existing arguments for ontological indeterminacy based on the EEL 
show that certain properties are indeterminately instantiated against the background 
of a classical spacetime. In QG, instead, the fact that the resulting indeterminacy 
affects properties or structures of spacetime itself makes it much harder to under-
stand how to correctly individuate indeterminate states or properties.

The received view in the discussion of the philosophical consequences of QG is 
that we are forced to abandon the idea that spacetime is fundamental, and embrace 
the thesis of an emergent spacetime [14]. An alternative to this view, which we will 
suggest towards the end of this paper, may instead be based on the thought that spa-
cetime as described by QG is indeterminate (in a way that has to be specified) while 
still being considered fundamental.2

Roadmap. In Sect.  2 we introduce the standard argument for the existence of 
ontological indeterminacy in non-relativistic quantum mechanics (QM). We then 
present the cases for the existence of indeterminacy in Loop Quantum Gravity and 
String Theory respectively in Sects.  3.1 and 3.2. In Sect.  4 we draw some philo-
sophical morals, in particular about the status of the Eigenstate-Eigenvalue Link 
Sect.  4.1, the nature of location Sect.  4.2, and the possibility of a fundamentally 
indeterminate spacetime in QG Sect. 4.3.

2 � Indeterminacy in Quantum Mechanics

The lack of value-definiteness (LVD) indicates that quantum observables do not pos-
sess definite values at all times. In order to have a better grasp on LVD, following 
the existing literature [10], we shall start by stating the general principle through 
which we can assign values to physical quantities based on the quantum state. In 

2  One might suggest that there is a third option here, namely spacetime being indeterminate and non-
fundamental. This view, however, does not change our main point regarding the indeterminacy of space-
time, i.e. that the quantum properties of spacetime in QG can be recast in terms of indeterminacy rather 
than non-fundamentality. Hence, we will not discuss this option, as it would complicate our discussion 
unnecessarily by intertwining notions of quantumness, indeterminacy, and non-fundamentality that we 
prefer, for exposition purpose, to keep distinct via the two views contrasted in the main body of the paper.

position and momentum are operators defined on the worldsheet but correspond to and are interpreted as 
the position and momentum of the string’s center of mass in the target space.

Footnote 1 (continued)
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the standard formalism, this is done by the so-called Eigenstate-Eigenvalue Link 
(EEL),3 which can be stated as follows: 

EEL:	� A physical system s has a definite value v of a given observable O if and 
only if s is in an eigenstate of O.

Through the EEL, we can then give a classification of various cases where LVD 
arguably emerges. The most accurate such classification has been given by [4], who 
individuate three distinct features of the theory giving rise to LVD. These are (i) 
Incompatible Observables, (ii) Superposition, and (iii) Entanglement. As regards to 
(i), consider two observables O1 and O2 . These observables commute if and only 
if [O1,O2] = O1O2 −O2O1 = 0 . If they do not satisfy this constraint, they do not 
commute, and are called incompatible. Since incompatible observables do not share 
the same eigenstates, if the system s is in one such eigenstate of, say, O1 , it follows 
that it does not have a definite value for O2 (and viceversa). As regards to (ii), note 
that a linear combination ��⟩ = q1��1⟩ + q2��2⟩ of different eigenstates ��1⟩ and 
��2⟩ of an observable O is not always an eigenstate of O . If a system s is in ��⟩ , 
it follows that it does not have a definite value of O . Finally, take (iii), entangle-
ment. Consider a system s12 composed by s1 and s2 with corresponding Hilbert space 
H12 = H1 ⊗H2 . s12 may be in an eigenstate ��⟩ of O12 that is neither an eigenstate 
of O1 nor an eigenstate of O2—with O1 and O2 defined on H1 and on H2 respectively. 
From this it follows that s1 and s2 will lack a definite value for both corresponding 
observables. Although there are crucial conceptual differences between these three 
cases (see [4] for an extensive discussion), for what matters to us here the result of 
applying EEL to each of them is the same, namely that one or more observables do 
not always possess a definite value.

Defenders of quantum indeterminacy, such as [4], argue that LVD should be 
taken at face value as indicating that the world is ontologically indeterminate.4 Two 
distinct families of approaches have been proposed to account for this, which [22] 
calls meta-level and object-level views. According to the former, very roughly, inde-
terminacy is understood as worldly unsettledness between fully precise alternatives. 
On this view, ontological indeterminacy occurs whenever it is indeterminate which 
determinate state of affairs obtains. This view is meant to capture the phenomenon 
of indeterminacy modally, and in a way not dissimilar from how we account for 
other notions such as possibility or necessity. According to the object-level view 
instead, indeterminacy is understood as the (determinate) obtainment of an indeter-
minate state of affairs. The crucial explanatory component of this approach is then 
played by the definition of an indeterminate state of affairs, which can be given in 
various ways. The most discussed view, developed by [23], exploits the distinction 
between determinable and determinate properties. On this view, an indeterminate 

3  Though note than some, most notably [15], disagree that EEL is part of the standard formalism. See 
[16] for a defence of EEL as part of standard QM.
4  See also: [1, 3, 5, 11, 13, 17–20]. For a critique, see [21], while, for an extensive review of the debate, 
see [10].
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state of affairs is one where a given entity instantiates a determinable (e.g. red) with-
out instantiating a unique determinate (e.g. scarlet or crimson). The non-uniqueness 
requirement can, in turn, be satisfied in at least three ways [24]: gappy has it that no 
determinate is instantiated; glutty relativised has it that more than one is instanti-
ated, although each relative to something; glutty degree has it that more than one is 
instantiated, each with a certain degree n, with (n < 1).

The argument leading from LVD to the existence of quantum indeterminacy is 
not necessarily tied to the EEL. For instance, ontological indeterminacy may also 
arise in other interpretations of QM, which reject this link,5 However, it is common 
practice in the literature to start with the EEL in order to give the clearest explana-
tion of the emergence of ontological indeterminacy [13]. We shall come back later 
on, in Sect. 4, to the issue of how, and to what extent, considerations about indeter-
minacy are tied to the EEL in the context of QG.

For now, it is important to focus on one important issue which has not received 
enough attention so far, and which however will prove crucial particularly for our 
discussion. In all the cases of indeterminacy in standard, non-relativistic QM, we are 
allowed to think that some state or property is indeterminately instantiated against 
the background of a classical spacetime. In other words, we could (at least in prin-
ciple) distinguish a certain indeterminate state from another by simply locating it in 
spacetime. While it could be indeterminate where the object is located (in virtue of 
having an indeterminate position), it is always correctly assumed that the locations 
themselves, i.e. spacetime regions, behave classically and in a determinate way. It 
seems in fact plausible that the only way to grasp what it means for a microscopic 
object to have an indeterminate position, is by assuming that the locations (the posi-
tions that the object could occupy) are not themselves indeterminate,6 This situation 
will change radically in the context of QG, as we are about to see.

3 � Non‑Commutativity in Quantum Gravity

Our primary goal in this section is to explore the appearance of ontological indeter-
minacy in QG by dint of a simple model naturally arising in Loop Quantum Gravity 
[27, 28] in Sect. 3.1, and by looking at the canonical quantization of the string in 
perturbative String Theory [29] in Sect. 3.2.

In particular, we will see that the indeterminacy emerging from these construc-
tions is of the incompatible observables type, i.e. that two (or more) observables 
cannot have well-defined values simultaneously. This fact stems from a given system 
instantiating properties described by those operators that cannot be in an eigenstate 
at the same time.

5  Most prominently, in the case of spontaneous collapse models, there have been several proposals on 
how to revise the EEL, all of which retain some indeterminacy. Examples include [25]’s fuzzy link [26]’s 
vague link, and [6]’s degree link.
6  As a matter of fact, some people have argued that the notion of location if correctly modified 
to account for quantum phenomena, may be useful as a replacement for the notion of indeterminacy. 
[REDACTED] This, we contend, can only be true if the locations themselves are not indeterminate.
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3.1 � Loop Quantum Gravity

Let us first remark on one of the features that one might expect a quantum grav-
ity theory to realise: discreteness of spacetime. In particular, we might expect that 
the spacetime described by a consistent quantum gravitational model will display a 
minimal length of some kind and that this minimal length coincides with the Planck 
length. By minimal length here, we mean a length such that no observer can meas-
ure lengths shorter than that.7 Thus, if we take the Planck length to be our minimal 
length, no observer is allowed to measure lengths shorter than the Planck length. 
However, such a minimal length might, prima facie, appear to contrast with Lorentz 
invariance,8 as we will see now. This apparent conflict between minimal lengths and 
Lorentz invariance and its resolution within models of LQG will be the origin of 
ontological indeterminacy in these LQG models.9

Let us start by briefly looking at why minimal length and Lorentz invariance 
might appear to be in contrast. It is helpful to start by remembering that one of the 
symmetry transformations of the Lorentz group are boosts,10 which take an observer 
in a reference frame at rest to an observer in a reference frame moving with constant 
velocity with respect to the first. Such boosts will usually take the following form:

where � =
1√
1−

v2

c2

 , (t, x, y, z) and (t�, x�, y�, z�) are sets of coordinates in two different 

reference frames moving with relative velocity v in direction x, and c is the speed of 
light.

(1)t� =�(t −
vx

c2
)

(2)x� =�(x − vt)

(3)y� =y

(4)z� =z

7  If the reader does not like talk of measurements in this context, they can remove measurement from the 
discussion and think about there being a minimal length. The minimal length would be encoded in the 
spectrum of appropriate geometric operators, such as operators encoding lengths or areas, like the ones 
we discuss in what follows. The same disclaimer applies to all other occurrences of operational language 
in this article.
8  For discussion of this point, see [27, 30–34]. For philosophical discussion of QG theories with a mini-
mal length and Lorentz invariance, see, e.g., [35].
9  Note that one might object here that there is no real contrast between Lorentz invariance and a minimal 
length, since the Planck length at least is defined in terms of Lorentz invariant quantities. While we agree 
with the spirit of this observation, we should clarify that our goal here is to show how indeterminacy 
arises in LQG via the tool of an apparent contrast between Lorentz invariance and minimal length. We 
do not wish to claim that such contrast is inevitable, but only that thinking about it leads naturally to rec-
ognize how indeterminacy can appear in LQG.
10  Indeed, boosts are Lorentz transformations not involving spatial rotations.
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The critical feature of these transformations for this article is that they give rise to 
two of the most celebrated predictions of special relativity (which extend to any Lor-
entz invariant theory): length contraction and time dilation.11 In particular, what 
matters here is length contraction. By length contraction, we mean that, if we take a 
rod of length l in a given reference frame, upon moving to the reference frame of an 
observer moving at constant velocity v with respect to us, we find that our rod in this 
new reference frame is no more of length l, but of length l� = 1

�
l . Thus, our rod got 

shorter when moving to a boosted reference frame.
With that being said, one can immediately see why Lorentz boosts, and thus Lor-

entz invariance, are not compatible with a minimal length. Take an observer in a 
given reference frame who measures a given length. Let us also stipulate that the 
result of their measurement is the minimal length l, which we identify with the 
Planck length lPlanck for simplicity.12 Let us now move to a boosted reference frame. 
In this new reference frame, by length contraction, a boosted observer performing 
our original observer’s measurement will not get lPlanck as a result, but l� = 1

�
lPlanck , 

i.e. less than lPlanck . Thus, we have seen a way to measure a length shorter than the 
minimal length, which is, of course, incompatible with the definition itself of mini-
mal length. Thus, Lorentz invariance and minimal lengths are incompatible.

The argument, as stated, is certainly less than conclusive and can be resisted at 
various points. Let us briefly mention only one: gravity is not (globally) Lorentz 
invariant, but only locally Lorentz invariant. While this fact is undoubtedly true, let 
us observe two points in response. (i) Violations of local Lorentz invariance would 
be troubling nonetheless, and in any case, (ii) one can reformulate the above sce-
nario by taking a quantum gravitational spacetime whose classical limit is flat spa-
cetime and considering small scale quantum effects in this classical background, 
which would then display the features mentioned above.13 Moreover, besides the 
various issues with the argument presented above, what is instructive is to see how, 
concretely, we can avoid situations such as those described above in the context of a 
theory of quantum gravity such as Loop Quantum Gravity. Note that nothing in this 
article depends on the air-tightness of the argument presented above, but only on the 
features of Loop Quantum Gravity that avoid its conclusion, which are independent 
of the argument’s assumptions.

Let us briefly recast the above scenario in a way more natural for Loop Quantum 
Gravity [37, 38]. Loop Quantum Gravity is an approach to quantum gravity that starts 
by recasting General Relativity in terms of a new set of variables (Ashtekar’s variables) 
which put General Relativity in a form close to SU(2) Yang-Mills theory. From this point 
of view, one then attempts to quantise gravity in the standard way that one would quantise 
any field theory. The result of this quantisation procedure is then Loop Quantum Gravity. 

11  Note that, length contraction and time dilation are relative to a choice of clock synchrony convention. 
For a detailed discussion on this point, see [36].
12  We are bracketing potential issues regarding the practical feasibility of such measurements.
13  Indeed, this is the approach taken in [27] to analyse the apparent contradiction between Lorentz invar-
iance and minimal length and show that it does not arise in Loop Quantum Gravity.
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While we will not be concerned with the details of Loop Quantum Gravity’s formulation, 
it is essential to note that in Loop Quantum Gravity, discreteness of spacetime quantities 
is most naturally seen in the discreteness of the spectra of the area and volume operators, 
rather than in an explicit minimal length. We will thus focus on area operators, though 
note that nothing substantial changes from the discussion in terms of a minimal length. 
The spectrum of the area operator A is the following:

where ⟨A⟩ is an area eigenvalue, � is a free parameter,14 lPlanck is Planck’s length 
and j are irreducible representations of the group SU(2), which means that 
j = 0,

1

2
, 1,

3

2
, 2,… . It is immediate to see that the spectrum of the area operator A 

is discrete since the js, being representations of SU(2), are discrete. This fact also 
implies that there is a minimal area, corresponding to the smallest non-zero eigen-
value of A.

To get our minimal length problem, one can repeat the steps described above and con-
sider what a Lorentz boosted observer would observe if they were to measure the area. 
Naively, we would expect a contraction of the area and a conflict between Lorentz invari-
ance and minimal area in Loop Quantum Gravity. This description, however, is not the 
whole story. Let us be slightly more precise about what is going on in this scenario. An 
observer is measuring the area operator A , thus projecting into an eigenstate of A.15 They 
then compare their result with that of a second observer, who measures a different opera-
tor, A≃ , which is the result of applying a Lorentz boost to A . Now, this comparison is 
straightforward only if A and A≃ commute, otherwise we cannot compare the two since 
they would not have well-defined values at the same time because they would not have 
eigenstates in common. Indeed, as shown in [27], A and A≃ do not commute:

Thus, when one measures A and then tries to see if A≃ will show a contracted area 
smaller than the minimal one by length contraction, their efforts will ultimately 
crash against the fact that A≃ does not show a well-defined value for the area since 
the system is not in an eigenstate of A≃ . Thus, it does not make sense to ask what 
is the area measured by the observer measuring A≃ , as there is no definite answer 
to this question since we find a superposition of eigenstates of A≃

16 whenever we 
observe an eigenstate of A . While A and A≃ have the same spectrum, eigenstates 
of A correspond to superpositions of eigenstates of A≃ . In this way, within Loop 
Quantum Gravity, we avoid the apparent conflict between a minimal area and Lor-
entz invariance. Speaking somewhat operationally, in the boosted frame, one meas-
ures a statistical distribution of discrete eigenvalues of the area rather than a single 
contracted eigenvalue.

(5)⟨A⟩ = 8��l2
Planck

√
j(j + 1),

(6)[A,A≃] ≠ 0 .

14  Not to be confused with the � in the Lorentz boosts.
15  We follow here usual practice in treating measurements as projections and bypass worries about the 
measurement problem, as they will not be relevant to our discussion here.
16  Which has the same spectrum of A.
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Interestingly enough, as observed by [27], this result relies essentially17 on the 
same mechanism by which quantised angular momentum is compatible with invari-
ance under rotations in Quantum Mechanics. In both cases, it is the non-commu-
tativity of certain operators connected by the relevant symmetry that allows us to 
implement the symmetry and preserve their spectrum at the same time by making 
it impossible to have an eigenstate for the two operators at the same time. Without 
a single eigenstate for both operators, the symmetry-related operators (for example, 
by Lorentz boosts) will not both have meaningful information about areas at the 
same time, let alone about an area smaller than the minimal one. Since, however, 
the claim that Lorentz boosts and minimal area were in tension relied crucially on 
the comparison between what an operator at rest and one Lorentz boosted could tell 
about area, the statement of this tension is itself impossible.

It is immediate now to see the connection with ontological indeterminacy. Since 
incompatible observables are formally represented as non-commuting operators, and 
since incompatible observables are taken to be one of the main sources of ontologi-
cal indeterminacy in QM, it seems that also in this case coming from LQG we may 
speak of the existence of some ontological indeterminacy. However, before moving 
to consider the application of ontological indeterminacy to quantum gravity more in 
detail, let us consider a second example of the appearance of ontological indetermi-
nacy in quantum gravity, this time coming from string theory. We will do this in the 
next section.

3.2 � String Theory

Let us now turn our attention to String Theory. Before starting, let us make two 
technical disclaimers for the ensuing discussion. As with any quantum field the-
ory, string theory has two regimes: perturbative and non-perturbative.18 After the 
development, on one side, of holography and AdS/CFT [39], and, on the other, of 
M-theory [40] and F-theory [41], much progress has been made in the non-perturba-
tive regime of String Theory, which, however, remains far from being satisfactorily 
under control. In this section, then, we will focus on the perturbative sector of String 
Theory, the so-called perturbative String Theory, which is, by now, well-known.19 
Moreover, for ease of exposition, we will concentrate just on Bosonic String Theory. 

17  Modulo various technical subtleties which are not relevant for the argument in this section.
18  Let us briefly clarify what is meant by this point. Perturbative string theory differs from perturbative 
QFT in significant ways. While perturbative QFT deals with quantum fields spread over spacetime, per-
turbative string theory is more naturally analogous to the quantum mechanics of a worldline, generalized 
to a worldsheet. In QFT, the free theory is analytic and provides exact solutions without a perturbative 
expansion, while interactions are introduced perturbatively, often using Feynman diagrams. These expan-
sions can be understood as conceptually equivalent to defining the theory on a worldline. In string theory, 
this framework extends to a worldsheet, creating a natural geometric interpretation. Extensions such as 
string field theory aim to align more closely with traditional field-theoretic approaches but have their 
own challenges. Additionally, frameworks like M-theory aim to provide a unified and non-perturbative 
description of interactions, which remains a central goal in the broader study of string theory.
19  For a book-length treatment, see [29], on which we draw for our discussion.
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The extension of our discussion to Superstring Theory is straightforward.20 Let us 
also remind the reader that the concrete example of indeterminacy that we study in 
this section is chosen for simplicity but is far from being the only possible one in 
String Theory.21

The fundamental objects of perturbative string theory are one-dimensional 
(closed and open) strings. As the dynamics of a point particle can be represented 
via its one-dimensional world-line, the dynamics of a string can be represented via 
its two-dimensional worldsheet, which we call Σ . The action S of perturbative string 
theory, called the Polyakov action, is a generalisation of the action of a point particle 
and can be written as follows22:

where Ls is the string length, �0 = � and �1 = � are the world-sheet coordinates, h�� 
and h are respectively the inverse metric and the determinant of the world-sheet met-
ric hab , which describes the geometry of the world-sheet. X�(�) is a map between 
the string world-sheet and the target space, i.e. the spacetime in which the string 
propagates, while g��(X) is at the same time the coupling constant of the string inter-
actions and the metric of target space Here’s the revised phrase with the detailed dis-
cussion incorporated:

where Ls is the string length, �0 = � and �1 = � are the worldsheet coordinates, h�� 
and h are respectively the inverse metric and the determinant of the worldsheet met-
ric hab , which describes the geometry of the worldsheet. X�(�) is a map between the 
string worldsheet and the target space, i.e., the spacetime in which the string propa-
gates, while g��(X) serves both as the coupling constant of string interactions and as 
the metric of the target space. In this context, g�� represents the target metric, typi-
cally expressed as Minkowski plus perturbations in perturbative string theory. From 
the worldsheet perspective, this metric also acts as a coupling constant in the sigma 
model framework, determining the interactions within the theory. This dual interpre-
tation stems from the sigma model structure, where fields defined on the worldsheet 
map into the target space, and the dynamics encode information about the geometry 
of the target space. In perturbative formulations, the metric g�� is treated as a field in 

(7)SPoly[h,X] =
1

L2
s
∫

d2�
√
−h h����X

���X
�g��(X

�) ,

(8)SPoly[h,X] =
1

L2
s
∫

d2�
√
−h h����X

���X
�g��(X

�) ,

20  One needs to add fermions on the worldsheet by enforcing supersymmetry.
21  For a different approach, involving the non-perturbative sector of String Theory and with significant 
technical challenges, see [42]. These cases delve into non-commutative geometry and involve exact quan-
tities that emerge in the non-perturbative description of string geometry, which are intrinsically non-per-
turbative in nature. While these topics raise fascinating questions about the role of indeterminacy in non-
perturbative phenomena, we limit ourselves in this article to the perturbative sector for simplicity and 
clarity. We plan to explore these non-perturbative aspects in greater detail in future work.
22  The Polyakov action is chosen because it agrees with the Nambu-Goto action on-shell and has better 
behavior during quantization, making it a more convenient starting point for the quantum theory.
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the target space and (often) expanded around a simple reference configuration, such 
as flat Minkowski spacetime, with small perturbations added. As a result, g�� can be 
thought both as the spacetime geometry and as a coupling constant for interactions 
in this setup.

The Polyakov action (8) has, prima facie, two degrees of freedom, namely the 
worldsheet metric h�� and the embedding coordinates X� . Moreover, the action (8) 
has two local symmetries (diffeomorphisms and Weyl symmetry) and one global 
symmetry, inherited by target space (Poincaré invariance). In order to make sense 
of the quantum mechanical description of (8), i.e. in order to define a path integral, 
write down correlation functions and compute scattering amplitudes, we need to fix 
a gauge for the local symmetries. A complete review of the construction of the path 
integral for the Polyakov action (8) goes beyond the scope of this paper. We limit 
ourselves to the result of the quantisation procedure. In order to write down a path 
integral for theories with local symmetries, one first needs to gauge fix. Since the 
worldsheet metric can be completely gauge fixed, it does not have any propagating 
degrees of freedom, and thus it is not part of the physical content of the theory.23 
The upshot of the quantisation procedure is that one trades the path integral over 
the metric h�� with a path integral over the new (ghost) fields b, b̄, c . One can write 
correlation functions of N (gauge-invariant) operators in the following way:

where Smatter[X] is the matter action and Sghost
[
b, b̄, c

]
 is the ghost action.

Let us now review the quantisation of the space of solutions of the gauge-fixed 
Polyakov action, focusing on the matter action Smatter[X].24 By a proper choice of 
gauge, the so-called conformal gauge,25 one can write the equation of motion 
derived from S matter in the following way:

where � and 𝜕̄ are derivatives with respect to � and 𝜔̄ respectively. A general solu-
tion of (11) can be written in the form X𝜇(𝜔, 𝜔̄) = X

𝜇

L
(𝜔) + X

𝜇

R
(𝜔̄) , where X�

L
(�) and 

(9)⟨⟨V1 …VN⟩⟩ =∫

DX� Dh��

Vol ( gauge )

�
V1 …VN

�
e−SPoly[h,X]

(10)=
∫

DX𝜇
Db Db̄ Dc

(
V1 …VN

)
e−Smatter[X]−Sghost[b,b̄,c]

(11)𝜕𝜕̄X𝜇 = 0

23  This is why we do not consider the worldsheet metric below.
24  Note that, we adopt the BRST approach to quantisation, which is a precise and systematic method for 
performing covariant quantization. This approach ensures consistency with the symmetries of the theory 
and is widely used in string theory. While other approaches, such as light-cone quantization, exist, they 
are non-covariant and often less systematic mathematically, making them harder to interpret conceptu-
ally. However, all valid quantisation schemes are expected to be equivalent to the covariant approach and, 
therefore, to the BRST formalism.
25  The conformal gauge is the gauge in which the worldsheet metric h�� is flat, i.e. h�� = ��� . The 
following is also written in a new set of worldsheet coordinates: � = t + i� and 𝜔̄ = t − i𝜎 and 
(𝜏, 𝜎) → (𝜔, 𝜔̄).
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X
𝜇

R
(𝜔̄) are respectively left and right moving modes of the string, and are holomor-

phic functions of � and 𝜔̄ . There are two types of fundamental objects in perturba-
tive String Theory, open and closed strings, each requiring a solution of (11); for 
simplicity we only look at closed strings.

Closed strings (Fig.  1) are defined by asking periodicity on � and 𝜔̄ , i.e. 
X𝜇(𝜔 + 2𝜋i, 𝜔̄ − 2𝜋i) = X𝜇(𝜔, 𝜔̄).

A general solution for left and right moving modes of the string can be written in 
the following form

which are chosen in order to solve the equation of motion (11) and obey the perio-
dicity condition. As common in analytic mechanics, one can also write down the 
momentum density, i.e. the conjugate variable of X�26

Having X� and P� , one can apply the rules of canonical quantisation, i.e. demand 
that 

[
X�(t, �),P�(�, �

�)
]
= i �

�
� �

(
� − ��

)
 . Using the explicit expansions of X� and 

P� given by Eqs. (1213) and (14), one gets the following commutation relations for 
the expansion coefficients of the X�s:

The Hilbert space of the theory for closed strings is 
Span

�
𝛼
𝜇1

−n1
… 𝛼

𝜇k

−nk
𝛼̄
𝜈1
−m1

… 𝛼̄
𝜈q
−mq

�
�0, p⟩.27

(12)X
�

L
(�) =

1

2
X
�

0
−

i

2
��P�� + i

√
��

2

∑

n≠0

�n

n
en�

(13)X
𝜇

R
(𝜔) =

1

2
X
𝜇

0
−

i

2
𝛼�P𝜇𝜔̄ + i

√
𝛼�

2

∑

n≠0

𝛼̄n

n
en𝜔̄

(14)P𝜇 =
i

2𝜋𝛼�

(
𝜕X𝜇 + 𝜕̄X𝜇

)

(15)
[
X
�

0
,P�

]
=i ���

(16)
[
��
n
, ��

m

]
=n ����n+m

(17)
[
𝛼̄𝜇
n
, 𝛼̄𝜈

m

]
=n 𝜂𝜇𝜈𝛿n+m

(18)
[
𝛼𝜇
n
, 𝛼̄𝜈

m

]
=0

26  The momentum density p in analytic mechanics is defined as the functional derivative of the Lagran-
gian with respect to the temporal derivative of q, i.e. p ∶=

𝜕L

𝜕q̇
 , which generalises to our setup as 

P� ∶=
�L

��tX
�
.

27  The choice of the vacuum state �0,P⟩ and the properties of this Hilbert space go beyond the scope of 
this paper.
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We are interested in a physical interpretation of the commutation relations 
(15)–(18). For instance, in the closed string expansion (1213)28 ...X�

0
 represents the 

centre of mass position of the string, P� represents its centre of mass momentum, 
while � and 𝛼̄ represents its higher harmonic modes. The commutation relations 
(15)–(18), thus, entail that there are non-trivial commutation relations between these 
observables.

Again, as in Sect. 3.1, we see that the appearance of the non-commutativity of 
certain observables leads to non-trivial commutation relations, which can be natu-
rally understood, as we have learned in QM, as meaning that certain observables 
are incompatible. Some comments regarding the spacetime interpretation of these 
commutation relations, however, are in order. Indeed, one might worry that we 
have discussed thus far shows at most that the position of the string in spacetime in 
indeterminate, not the string itself; this observation would render the string theory 
case much different from the LQG from Sect. 3.1. This point can be strengthened 
by the fact that we are dealing with perturbative string theory, and so a field like X�

0
 

will give perturbative corrections to a classical metric, in a perturbative expansion 
around some GR background for string theory. These perturbative corrections are 
naturally identified with the dynamics of string propagating in such a background.

In response to this objection, note, first of all, that the commutation relations 
(15)–(18) are exact relations obtained by canonical quantization; as such, no per-
turbation theory entered into obtaining them, and hold exactly on the Hilbert space 
of string theory. In particular, we do not need a split between a (perturbative) back-
ground and some perturbations to obtain (15)–(18). Hence, the X�

0
 field appearing in 

them should not be understood as simply encoding the dynamics of a string propa-
gating in spacetime, but rather the whole (quantized) spacetime metric. Perturbation 
theory enters into this picture because we can evaluate the expressions presented 
in this section only perturbatively; however, this does not mean that the expression 
themselves depend substantially on perturbation theory in a problematic way for our 
arguments. Indeed, given that we have obtained them through canonical quantiza-
tion, they do not.

Relatedly, even if perturbation theory was necessary to make sense of expressions 
like (15)–(18), our discussion of spacetime indeterminacy in string theory would 
remain unaffected. Indeed, even in perturbation theory, in a theory of QG like string 
theory one is still computing spacetime properties. For example, when computing 
quantum corrections to correlation functions of gravitons, which are straightfor-
wardly computed in perturbative string theory, one is computing quantum proper-
ties of spacetime via strings, not of strings propagating in spacetime; just like in 
quantum field theory, by computing quantum corrections to scattering amplitudes, 
one is computing quantum properties of the quantum field, not of a particle propa-
gating in that field’s background.29 Since such quantum corrections are obtained by 

28  A similar interpretation of the modes of the expansion also exists for open strings.
29  Note that by this we do not wish to commit ourselves to any specific ontology for quantum field the-
ory. Our observation could easily be recast, from a field language, to the language of a particle interpre-
tion.
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a perturbative expansion of (910) in terms of the X�

0
 fields, then these fields encode 

quantum properties of spacetime also in perturbation theory. Hence, their commuta-
tion relations (15)–(18) encode indeterminacy for spacetime observables, just like 
in the case of LQG discussed in Sect.  3.1. To clarify, the operators X� and P� in 
the context of string theory play a dual role typical of sigma models. On the world-
sheet, X� represents the fields mapping the worldsheet coordinates to the target 
spacetime, while P� corresponds to their conjugate momenta. These operators are 
fundamentally defined on the worldsheet but are interpreted as encoding physical 
properties of the string in the target space. Specifically, X� describes the position of 
the string, and P� describes its momentum in the target spacetime. In sigma mod-
els, this dual perspective highlights the intricate relationship between the worldsheet 
and target spacetime: the dynamics on the worldsheet encode geometric and physi-
cal information about the target space. This interplay is particularly significant in 
string theory, where the commutation relations between X� and P� reflect a quan-
tum indeterminacy that is inherited by spacetime observables in the target space. 
This is analogous to the role of fundamental commutators in loop quantum gravity 
(LQG), where quantum operators for geometric observables encode a similar type of 
indeterminacy.

In the next section, we will look more in detail at some of the metaphysical impli-
cations of this connection.

4 � Philosophical Consequences of Spatiotemporal Indeterminacy

The two cases we presented rely on the appearance of non-commutativity to show 
that specific physical quantities cannot jointly be assigned a definite value in QG. 
These quantities, to recall, are represented by the Lorentz boosted and unboosted 
area operators to account for the relation between minimal area and Lorentz invari-
ance (in LQG), and by the position, momentum, and higher harmonic modes opera-
tors (in ST). Given the structural analogies between these cases and the standard 
case of ontological indeterminacy in QM (discussed in Sect. 2), we are now in the 
position to evaluate the status of ontological indeterminacy in QG as well.

Fig. 1   A schematic picture of 
a closed string propagating in 
spacetime. � represents the peri-
odic spatial coordinate of the 
worldsheet, while � represents 
its time coordinate
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4.1 � Indeterminacy and the EEL in Quantum Gravity

Consider that the standard quantum mechanical argument for indeterminacy heav-
ily relies on the eigenstate-eigenvalue link (EEL). So, for a similar line of reason-
ing to be applied here, we should first of all establish whether something like the 
EEL can be defended in QG. To the best of our knowledge, there is no explicit dis-
cussion of the EEL in QG.30 Nonetheless, two main considerations seem to suggest 
that the EEL is both (i) preserved and (ii) preserved in its standard form. As for (i), 
notice that the primary role of the EEL is to map the abstract formalism onto physi-
cal states so as to understand how these can be empirically detected.31 Therefore, 
it is natural to expect that empirical adequacy would require assuming something 
like the EEL.32 As for (ii), approaches to QG are usually meant to be developed in 
continuity with standard QM, at least when it comes to basic interpretative tools of 
the quantum formalism such as the EEL. To be clear, of course, many things change 
in the formalism even when we move to QFT, and so it is natural to expect things 
to get even worse in the context of QG. However, our claim here is that theories of 
QG are developed building on quantum theory as we find it in the textbooks. Hence 
there is no reason to believe (unless we have independent reasons to do so) that a 
modified link would be needed. For these reasons, we take it that the acceptance of 
the EEL is a safe assumption. Indeed, one might even argue, in the LQG case, that 
(something like) the EEL is necessary for the argument presented in Sect. 3.1, since 
the boosted and unboosted quantities cannot have determinate values at the same 
time. Indeed, [27, p. 2] are explicit in claiming that “the theory predicts that, for [a 
boosted observer], the surface does not have a sharp area”, which not only seems 
to indicate a commitment to the EEL, but even suggests that the relevant physical 
quantities are interpreted as lacking a definite value. With all this being said, we 
should be very clear that the arguments that follow must be taken as heavily condi-
tional on the assumption that the EEL is part of QG, and that no full defense of this 
assumption will be given here.33

30  As a reviewer pointed out, this could be explained by the fact that many people may agree with Wal-
lace and simply reject the EEL. This is certainly a possibility, and we won’t enter into a detailed discus-
sion of Wallace’s argument. We just notice that the EEL has been thoroughly discussed in the context 
of quantum mechanics (either to defend, or to reject it), while this hasn’t happened in QG. Either the 
status of the EEL changes in QG with respect to QM, in which case a discussion would be needed, or it 
doesn’t, in which case the overall assumption of our manuscript wouldn’t be totally justified. We thank 
the reviewer for inviting us to say more on this.
31  Once again, bracketing here concerns such as those of [15].
32  Wallace himself, who’s notoriously critical of the EEL, while discussing the bare tails problem claims 
the following: “One might be inclined to respond: so much the worse for the eigenvector-eigenvalue link, 
at least in the context of continuous observables. As we have seen [...] its motivation in modern QM is 
tenuous at best. But that simply transfers the problem: if the eigenvector-eigenvalue link is not to be the 
arbiter for which physical states count as localised, what is?” [43, p. 43]. This suggests that he himself 
agrees that something must be said, and right after this passage, in fact, he discusses Albert and Loewer 
fuzzy link as a way out. We think this shows, once again, that something like the EEL is needed to explain 
precisely how, from a delocalised wavefunction in space, we get to something close to an eigenstate of 
the position operator. We thank the reviewer for inviting us to add something here.
33  We want to thank an anonymous reviewer of this journal for inviting us to be more explicit.
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The conclusion to be drawn is that it seems quite natural to work on the assump-
tion that something like the EEL is preserved in QG. Obviously, and this has to be 
recognised, the expression something like is doing a lot of heavy lifting here. For 
one, notice that, at least prima facie, the standard EEL is written in such a way as to 
speak of quantities which can be directly measured (resolved by direct observation, 
one would say). In the cases we considered, it is unclear whether the relevant quanti-
ties can be measured even in principle. This difference entails an even more crucial 
disanalogy: the standard version of the EEL can be given a sort of operationalist 
reading, whereas the QG version (whatever it ends up being) hardly can. While we 
believe that there is much more to be said on this topic, for now we just stress that 
it is with no doubt a positive consequence of our discussion to highlight the need to 
reflect on the status of the EEL in QG.

Let us now comment on the relevance of these constructions for ontological inde-
terminacy. The crucial point for this article is that both in LQG and ST, the con-
sistency of the quantum theory of gravity relies crucially on the claim that certain 
operators cannot all represent determinate properties at the same time. This situa-
tion is the same as that of ontological indeterminacy from incompatible observables 
described in Sect. 2. We have two properties and a physical theory that forces one of 
them to be indeterminate whenever the other is determinate. As usual in any quan-
tum theory, the incompatibility of these properties is encoded in the non-zero com-
mutator between the operators representing them. Indeed, in LQG, we even have an 
explicit analogy with angular momentum, which makes particularly evident the con-
nection with analyses of ontological indeterminacy developed in quantum mechan-
ics. In ST, the fact that we are dealing with the non-commutativity of position and 
momentum operators is immediately analogous with the standard quantum mechani-
cal case. In QM, this kind of non-commutativity is precisely the type of phenom-
enon falling under the rubric of incompatible observables.

All that we need is the extension of this claim to quantum gravity, and the struc-
tural similarity between the two cases suggests that this extension should be seri-
ously considered. Indeed, in all these cases, one is relying only on the non-com-
mutativity of certain observables, coupled with EEL. Moreover, we interpret this 
non-commutativity in the same way, namely as the impossibility of instantiating 
two properties determinately at the same time. Thus, it looks like a refusal to treat 
the quantum gravity case as instantiating incompatible observables indeterminacy 
appears at best misguided, at worst inconsistent with the attitude taken towards the 
quantum mechanical case, be it that of angular momentum or that of position and 
momentum. It would appear from these considerations that refusing to accept the 
analogy between QG and QM vis á vis quantum indeterminacy would require a prin-
cipled reason as to why the two cases differ. However, such a principled reason can-
not be found within the mathematics of the two theories, since in these respects, 
they are perfectly analogous. Whence the disanalogy then? One possibility might 
be the denial of EEL in QG but not in QM. Such a move, however, would be a 
restatement of the problem of finding a principled disanalogy between QG and QM 
in this context. Indeed, in both cases, we are ultimately dealing with non-commuta-
tive algebras of operators, and EEL is just a (natural) way of associating determinate 
properties to such a structure. While the specific nature of the algebras of operators 
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involved changes from QG to QM, all that is relevant for the arguments in favor of 
the existence of ontological indeterminacy is that they are non-commutative alge-
bras of operators. For example, in QG, this algebra would presumably involve a dif-
feomorphism invariant collection of operators not carrying any global symmetry34; 
in QM, on the other hand, the relevant algebra is given by the bounded operators on 
some Hilbert space H carrying some representation of the global symmetry group 
of Galilean spacetime, the Bargmann group [47]. However, in both cases, the two 
algebras are ultimately non-commutative algebras of operators. Thus, it appears that 
absent some further (most likely extra-mathematical) principled reason for reject-
ing the analogy between QM and QG when it comes to quantum indeterminacy, we 
have to admit that QG involves metaphysical indeterminacy, at least to the extent 
that QM does.

At the end of the day, however, these considerations stand and fall with the 
acceptance of the argument from non-commutativity of observables to ontologi-
cal indeterminacy. However, our goal here was not to show that ontological inde-
terminacy is inevitable in quantum gravity but only that it is as natural as it is in 
QM. Indeed, the two cases share some crucial features that allow us to extend the 
quantum mechanical analysis of indeterminacy to quantum gravity. It is this goal 
we claim to have reached. We believe this is important in itself, at least to the extent 
that it indicates a promising way of showing how certain features of the ontology of 
QG can be interpreted in continuity with respect to features of QM (an hope recently 
expressed by [48]).

4.2 � Indeterminate Locations

Let us now look at an aspect where QM and QG, at least in the examples we have 
considered here, diverge in how they instantiate metaphysical indeterminacy. As we 
discussed in this section, and reviewed more extensively in Sect.  2, non-commu-
tativity, along with the EEL, entails that certain physical quantities are indefinite. 
In the case of QM, the relevant quantities can be given, at least to some extent, a 
clear physical meaning. This is not as straightforward for QG, for as we discussed, 
the quantities are meant to represent the geometrical structure of spacetime. While 
it could be accepted that a particular object possesses an indeterminate location, it 
seems much harder to believe that the regions themselves are indeterminate. Nev-
ertheless, despite its counterintuitive nature, both approaches to QG discussed in 
this paper support this claim (in quite different ways). This fact seems to suggest 
that the possibility of spacetime being fundamentally indeterminate has to be taken 
seriously. It is interesting, to better make sense of this connection, to compare the 
situation between QM and QG concerning location and indeterminacy. As we said 
above, there are arguments in QM that purport to show that location can sometimes 
be indeterminate [21, 49, 50]. In particular, Ref. [49] shows that if anything, what is 

34  For an example of an explicit construction of the algebra of operators for QG, see [44]. Lack of global 
symmetries has been shown explicitly, in the context of AdS/CFT, by [45]. The general case is a still-
unproven but highly plausible constraint on any consistent theory of QG [46].
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indeterminate in QM is the exact location of a given quantum system. By exact loca-
tion here, we mean the region of spacetime occupied by a specific object and only 
by it. It is to be contrasted with weak location, which is any region of spacetime that 
is occupied by a given object, even if not entirely (there might be multiple objects 
located there that do not overlap). Since quantum systems can have indeterminate 
positions (the system can fail to be in an eigenstate of the position operator), there 
can be indeterminacy in their exact location in the sense that it would be indetermi-
nate which region they exactly occupy. Equivalently, indeterminacy in QM affects 
only the properties of matter and not those of spacetime. QM speaks about space-
time at most derivatively, in the sense that certain properties of matter (such as inde-
terminacy of position) lead to certain peculiar phenomena in the relation between 
matter and spacetime (such as indeterminacy of location). On the other hand, QG 
describes spacetime directly, and not merely as a background for the representation 
of the properties of matter. Thus, indeterminacy in this context turns out to be more 
challenging to conceptualise.

Therefore, the situation in QG is more radical than it is in QM: it is not simply 
the location of a quantum system in a given region that is indeterminate, but rather 
it is the region itself which involves quantum indeterminacy. Thus, it seems that spa-
cetime too can be said to be indeterminate,35 which leads to standard theories of 
location not being well defined in the first place (a point suggested by the literature 
on spacetime emergence in QG [52]). To see this point clearly, consider that location 
is understood as a relation between systems and (determinate) spacetime regions 
[53]. In classical mechanics, this function is a 1–1 mapping between systems and 
their exact locations. In QM, exact locations are indeterminate. We can, however, 
recover a notion of location as a 1–1 mapping if we relax our definitions, and instead 
of exact location, we use weak location. In QG, however, even this generalisation 
fails, and for radical reasons: since spacetime itself is indeterminate, there cannot 
be a well-defined function from quantum systems to spacetime regions of any kind 
since its range (spacetime) is not well-defined and thus unsuitable for the task. To 
put things differently, if spacetime regions are not well-defined (because they are 
indeterminate), then standard theories of location, which assume the determinacy of 
regions spacetime,36 are not adequate anymore. Instead, to make sense of location in 
QG one would need an entirely new theory that is designed to deal with indetermi-
nate spacetime regions.37

35  Here we assume the existence of an appropriate bridge principle between regions and spacetime 
which allows transferring indeterminacy from the former to the latter. While there is debate in the lit-
erature concerning the specific form of such a principle, with, for example, some arguing that regions 
are nowhere because they are spacetime [51] and others assuming that regions are located in themselves 
[52], we take it that any possible candidate will deliver the inference made here.

37  We believe it is quite natural to expect that an explanation of what an indeterminate spacetime region 
ultimately is, will depend on the details of the theory of ontological indeterminacy we assume in the 
background, and for instance whether we adopt a meta-level or an object-level approach.

36  That regions must be determinate seems to be a standard, though maybe unsaid, assumption in the 
literature on theories of location. For an explicit argument, take for example the intuitive characterization 
of weak location of a given object x as a place R that is not completely free of x. This definition makes 
sense only if R is determinate, for otherwise there would be no fact of the matter as to whether certain 
objects, suitably located close to R’s boundary, would occupy R.
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4.3 � Indeterminate vs. Emergent Spacetime

We have seen that indeterminacy in QG immediately leads to some of the most puz-
zling aspects of QG, such as spacetime emergence.38 In a way, this fact was to be 
expected. Quantum indeterminacy is considered by its advocates to be a crucial 
feature of QM and to be at the heart of the many puzzles of the theory; given the 
similarity between QM and QG in this respect, it is only natural that indeterminacy, 
if it were to show up in QG, would show up centre-stage. As we mentioned, inde-
terminacy comes from the non-commutativity of certain quantum observables. This 
non-commutativity is controlled by the parameter ℏ , Planck’s constant. This param-
eter, however, also controls the strength of quantum effects: ℏ = 0 means classical 
physics.39 Thus, when dealing with QG, where the quantum effects concern space-
time, regimes with non-zero ℏ correspond to those where spacetime is expected to 
be quantum and to ultimately disappear. However, these are also the regimes where 
the non-commutativity of quantum operators is manifest, leading to ontological 
indeterminacy. Thus, it is quite natural to conclude that spacetime emergence and 
spacetime indeterminacy are naturally connected in QG.

We can make this point even clearer by thinking in terms of decoherence, i.e. the 
process by which, starting with a pure state in a superposition, unitary evolution 
leads to a state which is to a very good approximation a probability distribution, 
represented by a density matrix, over the configurations entering the superposition 
state.40 Decoherence, then, can be naturally thought as the physical process embod-
ying the transition from the quantum to the classical regime; hence, decoherence 
gives us the concrete physical process underlying the formal discussion of classi-
cal limits and ℏ = 0 given above. In particular, the configurations over which deco-
herence gives a probability distribution will be in general quasiclassical states, i.e. 
states for which incompatible observables are both specified to the highest precision 
possible given the uncertainty relations. In particular, then, these are states where 
indeterminacy is minimized, or better yet, states where determinacy is approxi-
mately realized. Hence, decoherence also gives us a model of how determinacy can 
emerge from indeterminacy. Moreover, given that in both cases the process is the 
same, decoherence shows even more clearly how approaching the classical limit also 

38  For the rest of this section, we will broadly speak of spacetime, without distinguishing various ways 
and features of spacetime that might or might not be emergent, along the lines of the spacetime quietism 
advocated by [54]. However, some, most notably [55], have argued that such distinctions are crucial to 
properly analyze spacetime emergence. Given the broadly exploratory character of this section, we will 
continue, for ease of exposition, to simply talk of spacetime and eschew finer distinction.
39  Here, ℏ = 0 is used to conceptually indicate the classical limit, where quantum effects become negli-
gible, rather than implying that the value of a fundamental constant can physically change. This phrasing 
identifies a regime in which quantum phenomena are suppressed, and for practical purposes, the system 
behaves classically. To formalize this, one could introduce a deformation parameter � , such that �ℏ varies 
from 0 (classical limit) to ℏ (fully quantum). This approach, which does not alter the value of ℏ , provides 
a more precise framework to describe the emergence of classical behavior.
40  For a review of decoherence, see [56]. For its use in the philosophical literature on quantum mechan-
ics, in particular in the context of the quantum-classical transition, see [57, 58]; for applications of deco-
herence to the measurement problem, see [59, 60].
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means removing indeterminacy. Since, as we remarked, in QG the classical limit 
corresponds to the limit where spacetime appears, we can see how decoherence nat-
urally underpins our claim that spacetime emergence and quantum indeterminacy 
are naturally connected, since they are mediated by the same physical process, i.e. 
decoherence.

Let us start from a straightforward observation: it appears that most arguments 
for the disappearance of spacetime in QG rely on an implicit premise that space-
time, whatever it is, must be free of indeterminacy. This premise seems operative 
in observations such as those in [14], where the appearance of non-commutativity, 
and hence fuzziness, in the description of spacetime, is heralded as one signal of the 
breakdown of spacetime itself. More generally, the common claim that the target of 
spacetime emergence is the recovery of a 4 dimensional smooth Lorentzian mani-
fold, i.e. a fully determinate, classical entity, seems to suggest that spacetime, what-
ever it is, must be something free of indeterminacy.

The connection between determinacy and spacetime becomes even clearer by 
noting how, for example, spin networks, the building blocks of LQG, are hardly non-
spatiotemporal classical entities, i.e. before quantization. Classically, a spin network 
is just the (dual of) a triangulation of spacetime; while a triangulation of a manifold 
is not the same as the manifold itself, it would seem quite hard to justify why the 
triangulation would count as less spatiotemporal than the manifold from which it 
comes. To really see the non-spatiotemporal nature of spin networks, we need to 
quantize them, which leads to the geometric variables associated with them non-
commuting, losing a straightforwardly geometric, and hence spatiotemporal inter-
pretation. However, as we have discussed at length, the appearance of non-commut-
ing variables, or incompatible observables, is nothing more than the appearance of 
indeterminacy, i.e. the failure of spin networks to be determinate. Hence, determi-
nacy and spacetime appear to go together, much like their contrast pair, indetermi-
nacy and disappearance of spacetime.

Indeed, the interpretation that we have offered in this paper for the appearance 
of non-commutativity in the description of spacetime, and in particular in the 
appearance of incompatible observables, is that these features should be interpreted 
in terms of ontological indeterminacy. The contrast here is immediate: spacetime 
emergence, insofar as it is regarded as a conceptually revisionary program, claims 
that in QG we deal, at the fundamental level, with non-spatiotemporal entities from 
which spacetime should emerge. In the indeterminacy approach we are discussing, 
instead, spacetime never really disappears, but rather loses its fully determinate sta-
tus, and becomes an indeterminate entity. Given the quantum nature of the indeter-
minacy under discussion, it seems appropriate then to speak of quantum spacetime 
for this indeterminate structure, in analogy to how we speak of quantum fields for 
the quantum indeterminate counterparts of determinate classical fields.

This approach presents a variety of attractive conceptual features: first of all, it 
establishes a fundamental continuity between the concepts used in QG and those 
used in General Relativity; in particular, no hard problem of spacetime emergence 
[61] is present in this context, since both at the fundamental and at the classical level 
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we are employing spacetime concepts, only at the fundamental QG level they appear 
to be indeterminate. Relatedly, an important advantage of this approach to the ontol-
ogy of spacetime in QG is that it reduces the issue of recovering spacetime from QG 
to the issue of studying the classical limit of a quantum theory; and while this is a 
formidable conceptual issue, it is one that seems to us to be under much better con-
trol than issues of spacetime emergence.41

Finally, the indeterminate spacetime hypothesis allows us to make sense of claims 
along the lines of [38, pp. 146–147]’s claim that, in LQG:

The quanta of space described by the spin network states [...] should not be 
thought of as quanta moving in space. They are not in space. They are them-
selves physical space.

For in this context, it is straightforward to see how spin networks, or the strings of 
perturbative string theory, make up spacetime: it is the same way in which quantum 
mechanical degrees of freedom make up quantum systems in QM. For example, in 
LQG the connection between spacetime and spin networks goes through the fact 
that spin networks are eigenstates of the area operator, hence making up an (onto-
logically indeterminate) property of quantum spacetime, which, upon taking the 
classical limit, corresponds to the classical, determinate property of having a cer-
tain determinate area. In this sense, this story is perfectly analogous to the angular 
momentum story that [27] use as analogy for the QG case; moreover, a broadly anal-
ogous story can be told for the degrees of freedom of perturbative string theory and 
how they relate to classical spacetime. Contrast this straightforward story with the 
more complicated story that the advocate of spacetime emergence has to tell: in that 
case, the spin networks or the perturbative strings make up a non-spatiotemporal 
entity, whose properties have any relation to spacetime properties only insofar as 
they stand in an appropriate relation to the emergent spacetime. In other words, in 
this context, the area operator of LQG, or the X� fields of perturbative string theory, 
do not really represent any area, and are rather just operators in the Hilbert space of 
LQG; we think of them in terms of areas or positions only because, when we move 
to a regime where we can identify an emergent spacetime, the properties described 
by the area operator or the X� fields make up, in some sense to be determined (and 
indeed object of intense debate, see, e.g., [62]), the classical areas or positions 
described by general relativity. This picture appears to us to be at least as conceptu-
ally cumbersome as the one offered by the indeterminate spacetime hypothesis, if 
not significantly more cumbersome.42 While we have only sketched the basics of 

42  As shown, among others, by [52, 63, 64], the consequences of the emergent spacetime hypothesis may 
be potentially disruptive for many standard philosophical views in mereology, theories of causation, and 
formal views of location. These are, we believe, reasons enough to look for an alternative view such as 
the one we suggest in this paper.

41  This observation is especially true once we consider the large literature developed on this topic in the 
context of QM, which could be then brought to bear directly on QG within the MI approach we are sug-
gesting.
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such an account, we take it that the indeterminacy approach to the ontology of spa-
cetime in QG provides a new and exciting avenue to study the conceptual founda-
tions of QG.43

5 � Conclusions

The main goal of this paper has been to argue that there is a profound conceptual 
continuity between QM and QG when it comes to understanding the ontology of the 
so-called lack of value definiteness for physical quantities. We have shown that in 
two of the most developed approaches to QG, namely Loop Quantum Gravity and 
String Theory, the observables representing the geometric structure of spacetime 
are non-commuting ones. We have argued that these quantities can be considered 
indeterminate by building upon the standard reasoning leading to ontological inde-
terminacy in standard QM. These results point towards the possibility that, accord-
ing to theories of quantum gravity, spacetime is indeterminate and yet fundamental. 
This conclusion has various consequences that are worth developing further. First, it 
provides a clear background for understanding how some features of QG are onto-
logically continuous to features of quantum mechanics. Second, it sets the stage for 
asking new interesting questions about QG, for instance concerning the status of the 
so-called Eigenstate-Eigenvalue link. Finally, it also indirectly shows how the debate 
on ontological indeterminacy may extend well beyond the non-relativistic case, con-
trary to what has been assumed so far.
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