
Leung, Godfrey (2015) Forecasts of two-field inflation. 
PhD thesis, University of Nottingham. 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/28664/1/thesis.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to 

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham 

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title 
and full bibliographic details are credited, a hyperlink and/or URL is given for the 
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf 

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk


Forecasts of Two-Field Inflation

Godfrey Leung

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy, August 2014



“Most people say that it is the intellect which makes a great scientist. They are

wrong: it is character.”

– Albert Einstein

”Research is what I’m doing when I don’t know what I’m doing.”

– Wernher von Braun

“Physics is like sex: sure, it may give some practical results, but that’s not why we do

it.”

– Richard Feymann

“All science is either physics or stamp collecting.”

– Ernest Rutherford

Supervisor: Prof. Edmund J.Copeland

Examiners: Prof. Andrew Liddle

Dr. Adam Moss



Abstract

Inflation is currently the most promising paradigm of the Early Universe. The simple

paradigm involves a single canonical scalar field minimally coupled to gravity slowly

rolling down a potential.

In this thesis, we discuss an extension to the simple paradigm, multifield inflation,

in which inflation is driven by more than one scalar field. Unlike in the single field

paradigm, isocurvature perturbations could be non-vanishing and source curvature per-

turbation on superhorizon scales.

Analytic model predictions during the slow-roll regime in some classes of multifield

inflation models have been worked out in the literature. However, curvature pertur-

bation may continue to evolve after slow-roll as isocurvature perturbations are not

necessarily exhausted when inflation ends. In this thesis, by using the δN formalism,

we investigate the effects of perturbative reheating on the curvature perturbation and

related observables in multifield models. By considering various two-field models, we

demonstrate that the subsequent (p)reheating evolution is significant and must be taken

into account even for perturbative reheating. How the model predictions evolve during

reheating is a model dependent question, implying that models of multifield inflation

cannot be compared to observations directly without specifying how reheating takes

place.

We also discuss a different class of two-field models, conformal inflation, which is

locally scale invariant. Universal behaviour emerges as a critical phenomenon near

the enhanced SO(1, 1) or shift symmetry point, leading to model independent predic-

tions. Going beyond the original model proposed by Kallosh and Linde, we show that

this universal behaviour extends to more generalised models involving higher order
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derivatives for slow-roll potential driven inflation.
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Units and Notations

Frequently used symbols and their definitions:

Symbol Definition

L Lagrangian density

Mp Reduced Planck mass, defined as 1/8πG

a scale factor

ϕ Inflaton

H Hubble parameter, defined as ȧ/a

ρ Energy density

P Pressure density

N number of e-folds of expansion, N ≡
∫

Hdt

W , V Scalar Potential

S action

R Comoving curvature perturbation

Tµν Stress-Energy Momentum tensor

α Running of the spectral index ns

ζ Curvature perturbation on uniform-density hypersurface

ns Scalar spectral index

nT Tensor spectral index

X canonical kinetic term, X ≡ −1
2
gµν∂µϕ∂νϕ

r tensor-to-scalar ratio

Aζ amplitude of power spectrum of ζ

Pζ Power spectrum of ζ

Bζ Bispectrum of ζ

Tζ Trispectrum of ζ

fNL Non-linear parameter of Bispectrum

gNL, τNL Non-linear parameters of Trispectrum

nfNL
Spectral index of fNL

nτNL
Spectral index of τNL
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In this thesis, we use the metric signature ηµν = diag(−,+,+,+). Throughout the

whole thesis, we adapt the natural units where ~ = c = 1 unless stated otherwise.

Spacetime indices are raised by the metric gµν and Einstein summation are implicitly

assumed. The stress-energy momentum tensor Tµν is defined as Tµν ≡ − 2√
−g

δSm

δgµν
,

where Sm is the matter action.

� is the d’Alembert operator, defined as � ≡ gµν∇µ∇ν . Symmetriser and anti-

symmetriser are defined as U(µ1µ2...µn) ≡ 1
n!
δµ1µ2...µnδ

ν1ν2...νnUν1ν2...νn and U[µ1µ2...µn] ≡
1
n!
εµ1µ2...µnε

ν1ν2...νnUν1ν2...νn , where εµ1µ2...µn is the Levi-Civita symbol.

Greek indices µ, ν, ... correspond to spacetime indices, whereas Roman indices I, J, ...

correspond to field indices. Overline denotes background homogeneous and isotropic

quantities. Variables with subscript ∗ correspond to values evaluated at horizon-exit.

Dot ˙ denotes differentiation with respect to cosmic time t, whereas prime ′ denotes

differentiation with respect to conformal time η. Unless stated otherwise, subscripts ϕ

and χ denote partial differentiations with respect to ϕ and χ respectively.
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Chapter 1

Introduction

Since the beginning of human civilisation, understanding the origin of our Universe

has always been the core of most studies, including science, philosophy and religion.

However, it was the beginning of the twentieth century that Cosmology started to be

incorporated in a mathematical and scientific framework. Tracing back to Einstein’s

formulation of general relativity in 1915, a mathematically consistent model describing

our Universe was first constructed. The discovery of Hubble’s law and the Cosmic

Microwave Background (CMB) then confirmed the Big Bang theory, suggesting our

Universe has been expanding since its birth.

Later the discovery of Cosmic Microwave Background (CMB) Anisotropies by COBE [1]

in 1992, which later confirmed by WMAP [2] in 2003, enabled us to start to address

some very fundamental questions such as the origin of structure formation in our Uni-

verse and to understand our Universe at the very early stage. The observed nearly

scale-invariant CMB spectrum strongly favours the theory of inflation.

I, a universe of atoms, an atom in the universe. - Richard Feynman

Inflation, an era of a dramatic expansion of spacetime, is currently the most promising

paradigm of the Early Universe. It typically occurs at an energy scale that is far beyond

the reach of any possible particle physics experiments on Earth. As a result, inflation

acts as an excellent probe to physics beyond the Standard Model. Despite the success

and enormous advances in the field in recent years, inflation remains a phenomeno-

logical model with many open questions to be addressed. In particular, we still do not
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know what the true underlying particle physics model for inflation is. Motivated by

particle physics, various modifications to the simple inflationary paradigm have been

considered since it was first formulated.

In this thesis we discuss a simple extension to the original paradigm, multifield infla-

tion. We focus on the observational aspects of a simple representative class, models

involving two scalar fields. This thesis is organised as follows: in Chapter 1, we first

briefly describe the standard Big Bang picture and its shortcomings which eventually

led to the introduction of cosmic inflation. The simplest slow-roll single field inflation

paradigm is later introduced in the chapter.

In Chapter 2, we start by introducing cosmology perturbation theory and gauge-invariant

quantities, the curvature perturbation ζ in particular. Then we discuss the statistical

properties of ζ and how they could be quantified. A simpler alternative to the cos-

mological perturbation theory, the separate universe picture and the consequent δN

formalism, are then introduced later in the chapter. Using the δN formalism, we show

that ζ is conserved on superhorizon scales in the absence of isocurvature perturbations.

In Chapter 3, we introduce the ‘in-in’ formalism and δN formulae that are used to com-

pute ζ and the related observables. We discuss the inflationary model predictions of

the primordial observables, particularly focussing on the statistics of ζ , up to the level

of four-point statistics. We start with the simplest single-field model with a canonical

kinetic term. We then introduce the multifield models and discuss how the models are

different to the simple single-field paradigm. Model predictions of canonical multifield

models are later given in terms of the δN coefficients in the chapter.

In Chapter 4, by considering various two-field models, we discuss how perturbative

reheating could change the model predictions evaluated during the slow-roll regime,

at the level of power and bispectra, if isocurvature perturbations persist after inflation

ends. In Chapter 5, we extend the discussion to non-linear parameters of the trispec-

trum and their scale dependences. We also discuss the effects of perturbative reheating

on various consistency relations between observables in some classes of multifield

models.

In Chapter 6, we discuss a new class of two-field inflation models which is locally

scale invariant, known as conformal inflation. We start by introducing the original
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model first proposed by Kallosh and Linde [3] and discussing its universal behaviour

near the enhanced SO(1, 1) symmetry point. We then discuss how one can go beyond

the original paradigm and show the universal behaviour of the original model extends

to more general models. Finally, we summarise, conclude and give future directions

on how the field of inflationary cosmology may be pursued in Chapter 7.

1.1 Friedmann Universe, Standard Big Bang Cosmol-

ogy

In today’s modern Cosmology, it is assumed that our Universe is homogeneous and

isotropic on large scales. This is known as the Copernican principle. Under this as-

sumption, our Universe is described by a Friedmann-Robertson-Walker (FRW) metric

at the background level

ds2 = −dt2 + a2(t)g̃ij(dx
idxj)

= −dt2 + a2(t)

[

dx2

1−Kx2
+ x2(dθ2 + sin2 θdφ2

c)

]

(1.1)

in Cartesian and radial coordinates. Here a(t) is the scale factor and K takes value of

{−1, 0,+1}, representing negative, flat and positive intrinsic spatial curvature respec-

tively.

The Copernican Cosmological principle is well tested through today’s observations.

In particular, CMB experiments and Large Scale Structure (LSS) surveys give strong

evidence that our Universe is homogeneous and isotropic, starting from scales taken to

be typically around 100Mpc [4, 5, 6]. 1

Assuming the constituents of our Universe can be well described by a perfect fluid

with a 4-velocity uµ, the general form of the energy-momentum tensor T̄ µν is

T̄ µν = (P̄ + ρ̄)uµuν + P̄ δµν , (1.2)

1Controversially, there has been a claim by Clowes et.al. against the Cosmological principle, arguing

from the observation of a potential massive structure of size much larger than 100Mpc, the Huge Large

Quasar Group [7].
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Figure 1.1: Full sky CMB map measured by Planck, showing our Universe is isotropic on large

scales, with an amplitude of temperature fluctuations of order δT/T ≈ 10−5. Note the dipole

asymmetry due to our relative motion to the CMB has been removed. Credit: ESA and the Planck

Collaboration [8]

where P̄ and ρ̄ are the isotropic pressure and energy density of the cosmic fluid,

and gµνu
µuν = −1. The Bianchi identity or the conservation of the stress energy-

momentum tensor then leads to the continuity equation

˙̄ρ = −3H(ρ̄+ P̄ ) . (1.3)

Here H is the Hubble parameter, defined as H ≡ ȧ/a. Now consider Einstein’s Gen-

eral Relativity with the background field equation Ḡµν + Λgµν = 8πGT̄µν , where Gµν

is the Einstein tensor and G is the Newton’s constant. Λ is the cosmological constant,

which is present as a constant in the theory of Einstein gravity. For a cosmic fluid with

the stress-energy tensor Eq. (1.2) in a FRW background, the time-time component of

the Einstein equation results in the well-known Friedmann equation (for a detailed

derivation of the Friedmann Equation from GR, see [9] for example)

H2 =
ρ̄

3M2
p

− K

a2
+

Λ

3
. (1.4)

K again is the flatness parameter, corresponding to the closed (K = 1), open (K =

−1) and flat (K = 0) universes. Overline denotes the averaged background quantities.

Mp is the reduced Planck mass, defined as M2
p ≡ 1/8πG. Although Λ may con-

tribute to the dark energy (DE) that explains the observed late-time acceleration of our

Universe [10], naive estimates from the vacuum energy of quantum field theory gener-
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ically predicts its value many orders of magnitude larger than the observed DE value

and therefore leads to the well-known cosmological constant problem in cosmology

today. For a review on the cosmological constant problem, see [11, 12]. In this thesis

however, we will focus on the Early Universe when the DE contribution is assumed to

be small and negligible. We therefore take Λ = 0 in the following.

Together with the continuity equation Eq. (1.3), we then end up with a system of equa-

tions

H2 =
ρ̄

3M2
p

− K

a2

Ḣ +H2 = − ρ̄+ 3P̄

6M2
p

. (1.5)

The second equation is commonly known as the Friedmann acceleration equation

or Raychaudhuri Equation. Finally to close the system of equations we also need to

know the relation between the pressure P and the energy density ρ of the cosmic fluid.

For an adiabatic fluid where P is a unique function of ρ, i.e. P (ρ), we can define an

equation of state ω where P = ωρ. For instance, a radiation fluid gives ω = 1/3 and

a matter fluid gives ω = 0. Given the equation of state ω and together with Eqs. (1.5),

we can then solve for a(t) and find the background dynamics of the Universe. For

example, we find a ∝ t1/2 and a ∝ t2/3 in radiation-dominated and matter-dominated

universes respectively.

It is also useful to define a new dimensionless quantity Ω, known as the density param-

eter

Ω− 1 ≡ K

a2H2
. (1.6)

In Einstein gravity, with the use of the Friedmann equation Eq. (1.4), the density pa-

rameter becomes

Ω(t) =
ρ̄(t)

ρcrit(t)
, (1.7)

where ρcrit is the critical energy density defined by 3H2M2
p , or the energy density for

a spatially flat Universe (K = 0). From Eq. (1.6) we can see Ω is a measure of the
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Figure 1.2: 3-dimensional map of galaxy distribution in our Universe in the Sloan Digital Sky

Survey. Credit: M. Blanton and the Sloan Digital Sky Survey

instrinsic spatial curvature of the background geometry in units of H2, independent of

the theory of gravity.

Eqs. (1.5) form the basis for the development of the Hot Big Bang model. Accord-

ing to the Hot Big Bang model, our Universe originated from an extremely dense and

hot state and is expanding. The greatest successes of the hot Big Bang model are the

prediction of the existence of the CMB and the theory of Big Bang nucleosynthesis

that explains the origin of chemical elements in our Universe. The standard model

of cosmology, the ΛCDM model, is a parametrisation of the Big Bang model which

suggests our Universe is made up of normal baryonic matter and Standard Model par-

ticles, some form of unknown, invisible non-relativistic matter named as Cold Dark

Matter (CDM) and a cosmological constant Λ that gives rise to late-time acceleration.

The background geometry is a flat one, where K = 0.



Introduction 8

1.2 Problems of Standard Big Bang Cosmology

However, despite the success of the standard Big Bang picture, there are problems

associated with it. First of all, it is obvious that our Universe is not completely homo-

geneous. There are small inhomogeneities on top of the background on small scales

that can be seen in the CMB and in large scale structures such as galaxies and cosmic

voids. One of the quests of modern cosmology is to explain the origin of primordial

perturbations that seed structure formation in our Universe. While the standard Big

Bang picture successfully describes the background history of our Universe, it does

not tell us how and why the initial conditions of our Universe, including these small

perturbations, are set.

On the other hand, there are fine-tuned initial conditions problems at the background

level, conventionally given in terms of the flatness and horizon problems 2. There

is also the relic problem, which is related to formation of topological defects during

spontaneous symmetry breaking in the early Universe. These relics can be long-lived

and dominate our Universe, thus completely change the cosmic evolution. All these

problems will be explained in detail in the following.

Flatness Problem

In simple words, the flatness problem corresponds to the question why our Universe

remains flat to such a high precision today. It was first elucidated by Dicke and Pee-

bles [14]. This can be easily seen from the definition of the density parameter Ω

Eq. (1.6). From Eq. (1.6) and the definition of the Hubble parameter H , we can see

Ω− 1 ≡ K

a2H2
=
K

ȧ2
. (1.8)

Thus during any era of attractive gravity such that (ä < 0), Ω is always driven away

from 1 and the solution Ω = 1 is unstable. For example, in Einstein gravity, using the

Friedmann equation Eq. (1.4), one can easily find that in a matter-dominated Universe

2Recently Carroll has argued against this conventional picture, suggesting that the initial conditions

problems should been formulated in terms of the measure on the space of cosmological trajectories

instead, see [13].
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|Ω − 1| ∝ t2/3 and in a radiation-dominated Universe |Ω − 1| ∝ t. Therefore unless

the Universe is exactly flat where K = 0, given a small deviation from a flat Universe

to begin with, i.e. 1−Ω(ti) = ǫ where ǫ is small, one would always end up in a closed

or open Universe where Ω deviates significantly from 1. Current observations however

suggest Ω0, the density parameter today, cannot deviate more than a few percent from

unity. For example, measurements of CMB anisotropies suggest

−0.09 < ΩK ≡ 1− Ω0 < 0.001 at 95%C.L. (1.9)

in recent combined Planck + WP + highL data [15], perfectly consistent with K = 0. 3

As a result, in a ΛCDM Universe, to be consistent with the current observed constraint

on |Ω0−1|, we would need very fine-tuned initial conditions to start with. For example

taking ti to be the epoch of Big Bang nucleosynthesis (BBN), around 1MeV, we would

need

|Ω(ti)− 1| ≤ 10−16 . (1.10)

Such fine-tuned initial condition seems extremely unlikely. For any generic initial

values for Ω apart from 1, we would always find ourselves with a closed Universe that

recollapses very quickly or an open Universe that is too young to be consistent with

observations. An explanation is needed for why Ω either identically equals or remains

close to unity in our Universe. This is the conventional picture of the flatness problem,

which implicitly assumes a measure that is uniform in ΩK . Recently it was argued by

Carroll and Tam that the problem does not exist but arises simply because of the use of

an incorrect measure [17].

Horizon Problem

Consider the comoving horizon (aH)−1 which characterises the fraction of comoving

space that is in casual contact. It is usually of the same order of the effective comoving

particle horizon which is the maximum distance light can travel since the Big Bang.

3It was argued recently that the observed large scale CMB anomalies in Planck favours a marginally

open Universe [16].
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For attractive gravity, the scale factor grows as a ∝ tn, where 0 < n < 1 in both

radiation or matter-dominated eras. Physical wavelengths λ thus grow as aλ ∝ tn,

whereas the Hubble radius evolves as H−1 ∝ t. Going back in time, the physical

wavelength is therefore much smaller than the Hubble radius at early times.

Current observations of the CMB find that the whole observable Universe is in thermal

equilibrium, suggesting that our Universe is very homogeneous and isotropic every-

where, to one part in 10−5 at the time of decoupling. Yet as we see, the comoving

scales entering the horizon today should have been far outside the horizon at decou-

pling. Contradicting the observations, we therefore should instead expect the CMB

to be much more anisotropic, with many casually disconnected regions establishing

thermal equilibrium independently at different temperatures.

More precisely, let us consider the particle horizon, defined as

DH(t) = a(t)dH(t) =

∫ t

ti

dt′/a(t′) , (1.11)

where dH corresponds to the comoving particle horizon. The particle horizon DH(t)

gives the size of any casually connected region at time t. Comparing the comoving

particle horizon at decoupling tdec to that of today t0, we find

dH(tdec)

dH(t0)
≈
(

tdec
t0

)1/3

≈ 10−2 . (1.12)

This ratio implies that the comoving horizon at the surface of last-scattering corre-

sponds to an angle of order 1◦ in today’s CMB sky. Given that there is no way for

casually disconnected regions to establish thermal equilibrium with each other, the

near-isotropy of today’s CMB sky suggests again we need very fine-tuned and special

initial conditions. This is the horizon problem, first suggested by Misner [18].

Relics Problem

In models beyond the Standard Model of particle physics, our Universe may go through

several epochs of phase transitions during which spontaneous symmetry breaking hap-

pens. During these phase transitions, it is typical that massive objects like magnetic



Introduction 11

monopoles [19] will be produced as relics. These relics, if massive compared to H ,

are non-relativistic and contribute to the total matter energy density ρm. But from the

continuity equation Eq. (1.3) we can see that the relativistic radiation energy density

ργ decreases more rapidly compared to ρm as the universe expands. Thus a small

amount of ρm from the relics in the Early Universe could dominate very quickly and

lead to an early matter-dominated era and rapid closure of the Universe, if the relics

are sufficiently stable.

1.3 Inflation, a Solution to Hot Big Bang Problems

Inflation, proposed by a number of independent authors including Alan Guth in the

1980s [20, 21], offers an explanation to the conventional flatness and horizon problems

and provides the seed of structure formation in the Early Universe. It is now the most

promising paradigm of the Early Universe.

By definition, inflation is an era of rapid expansion of spacetime, during which the

scale factor accelerates

ä > 0 . (1.13)

The condition of inflation can be written as

d

dt

H−1

a
< 0 or − Ḣ

H2
< 1 . (1.14)

This is the era when the Hubble parameter varies slowly as compared to the Hubble

timescale. Taking H to be approximately constant over many Hubble times, we then

have a ∝ eHt, corresponding to a quasi-de Sitter Universe with an exponential expan-

sion of spacetime.

Assuming Einstein gravity, we can rewrite Eq. (1.14) in terms of a condition for ρ and

P of the cosmic fluid

ρ+ 3P < 0 . (1.15)
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Figure 1.3: Conformal diagram of a Hot Big Bang universe with and without an inflationary phase.

Inflation extends the conformal time η to negative values. The end of inflation creates an ‘apparent’

Big Bang at η = 0. Yet there is no singularity at η = 0 and the light cones intersect at an earlier

time. Credit: Daniel Baumann

Since the energy density ρ is always assumed to be positive, inflation only happens

when the pressure P becomes negative.

The conventional flatness and horizon problems are solved by inflation if the observ-

able Universe is well within the horizon before inflation begins. From the definition

of the density parameter Eq. (1.8), since inflation is an era where (ä > 0), inflation

always drives Ω towards 1 even if our Universe is not flat (K 6= 0) to begin with. For

the horizon problem, since our observable Universe is within the horizon H−1 at the

start of inflation, regions which look as if separated by distances larger than the horizon

today are indeed within the horizon and in casual contact to begin with. This justifies

the observed isotropy in the CMB. This is illustrated in Fig. 1.3. These conventional

arguments are however controversial. It was argued by Penrose that inflation does not

solve the horizon problem, or the initial conditions problems in the Early Universe,

since the onset of inflation requires extremely fine-tuned initial conditions [22].

For the relics problem, things are less controversial. Consider relics formed before

inflation, by the continuity equation Eq. (1.3), we can see that ρrelic ∝ a−3 for non-

relativistic relics. Since the scale factor a increases by many orders of magnitude dur-

ing inflation, the energy density of relics is effectively diluted away, giving negligible

contribution to the Early Universe dynamics. Or in the physical picture, the distance

between any relics formed before are stretched well beyond the horizon during infla-

tion and therefore the number density of relics becomes negligible in the observable

Universe.
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Besides solving the problems of the standard Big Bang picture, inflation also offers

an explanation to the origin of the seeds of structure formation. Because of quantum

mechanics, there are vacuum fluctuations associated with the inflaton field. During

inflation, these quantum fluctuations are stretched outside the horizon and become

classical. These perturbations are then converted to primordial density perturbations

during a phase called (p)reheating 4 and lead to the subsequent structure formation as

they later re-enter the horizon.

The original model proposed by Alan Guth, now named the ‘old inflation’, involves

a scalar field tunnelling through a metastable vacuum state to the true vacuum [20].

However this model was later replaced by ‘new inflation’, as it was found that the

model does not reheat properly: the Universe would expand too rapidly for bubble

collisions to occur if inflation lasts long enough to solve the initial conditions problems.

The simplest viable ‘new inflation’ model assumes the Universe is dominated by a

single homogeneous scalar field with a standard canonical kinetic term, slowly rolling

down a flat potential [23]. This is standard slow-roll inflation. The action is given by

S =

∫

d4x
√−g

[

M2
pR

2
− 1

2
∂µϕ∂

µϕ− V (ϕ)

]

, (1.16)

with the scalar field ϕ obeying the Klein-Gordon field equation in an expanding back-

ground

ϕ̈+ 3Hϕ̇+ Vϕ = 0 , (1.17)

where Vϕ is the derivative of the potential V with respect to ϕ. With the Universe

dominated by the scalar field, the Friedmann equation then reads as

3H2 = V (ϕ) +
1

2
ϕ̇2 . (1.18)

The instantaneous slow-roll parameters at time t are defined as

ǫH ≡ − Ḣ

H2
, ηH ≡ −1

2

ǫ̇H
HǫH

, (1.19)

4To be explained in detail in Chapter 4.
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V (ϕ)

ϕ

Figure 1.4: Slow-roll Inflation: a scalar field rolling down a flat potential.

or in terms of the potential as [24]

ǫV ≡ M2
p

2

(

Vϕ
V

)2

, ηV ≡M2
p

Vϕϕ
V

. (1.20)

To realise slow-roll inflation, we require these slow-roll parameters to be smaller than

O(1). This corresponds to when the kinetic energy ϕ̇2 is subdominant compared to the

potential energy V and ϕ is slowly rolling. In the simple canonical slow-roll models

discussed above, these slow-roll parameters are related by

ǫH → ǫV , ηH → ηV − 2ǫV (1.21)

in the slow-roll limit. Assuming slow-roll, matching the energy-momentum tensor T µν

with that of a perfect fluid, the scalar field then behaves approximately as a fluid with

ρ(ϕ) ≈ −P (ϕ)

ρ(ϕ) =
1

2
ϕ̇2 + V ≈ V ,

P (ϕ) =
1

2
ϕ̇2 − V ≈ −V , (1.22)

which satisfies the conditions for inflation Eq. (1.15). The amount of inflation is quan-

tified by the number of e-folds N , defined by

N = ln(ae/a∗) =

∫ te

t∗

Hdt . (1.23)

Here subscript ∗ denotes the epoch when the pivot scale under consideration leaves the

horizon and subscript e denotes the epoch of the end of inflation.
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To solve the horizon problem, at least N = 60 e-folds of observable inflation is needed

for the pivot CMB scale k∗ = 0.002Mpc−1 with the assumption that the usual post-

inflationary history follows. This follows from the relation

1 =
a∗H∗

aentHent

= e−N
aeH∗

arehHreh

arehHreh

aeqHeq

aeqHeq

aentHent

, (1.24)

where subscripts ‘eq’ and ‘reh’ correspond to the epoch of matter-radiation equality

and the reheating epoch, whereas subscript ‘ent’ corresponds to the epoch when the

pivot scale re-enters the horizon. This gives an estimate of the number of e-folds of

observable inflation for the pivot scale k∗ [25]

Nobs = 56− 2

3
ln

1016GeV

ρ
1/4
∗

− 1

3
ln

109GeV

TR
, (1.25)

assuming each change in the isotropic pressure P to be instantaneous. Here TR is the

reheating temperature. For reasonable choices of ρ∗ and TR, we get an estimate bound

on the observable inflation Nobs, where 70 > Nobs > 50. 5.

This is however only the background picture. There is also small inhomogeneities arise

on top of the background because of quantum fluctuations, which later seeds structure

formation in our Universe. To understand how these small in inhomogeneities arise, we

need to study perturbations about the inflationary background, which will be discussed

in the following chapters.

5More extreme values are in principle possible, see [26].



Chapter 2

Cosmological Perturbation Theory

In this chapter we first briefly introduce cosmological perturbation theory [27, 28, 29]

at linear order. We then introduce the concept of gauge-invariant quantities and discuss

how they can be constructed. In particular, we discuss the curvature perturbation ζ ,

which is a measure of the density perturbation and quantifies the scalar fluctuations in

the universe.

In Section 2.3, we discuss statistical properties of a stochastic field and discuss how

they can be quantified by various parameters. Without loss of generality, we focus on

ζ as an example and introduce various primordial cosmological parameters which can

be related to the statistical properties of CMB anisotropies.

Finally in Section 2.4 we discuss the separate universe approximation [30, 31, 32] and

explain the alternative δN formalism [33, 34] which has been proved to be very useful

in Early Universe applications. We also show that ζ is conserved on superhorizon

scales in the adiabatic limit.

2.1 Cosmological Perturbation Theory

The basic idea of cosmological/relativistic perturbation theory is straightforward: given

a theory of gravity, we perform Taylor expansions and perturb the metric gµν and the

stress-energy tensor of the cosmic fluid T µν to appropriate orders about certain back-

grounds, relate the perturbations and solve for the dynamics of these perturbations
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using the coupled system of field equations derived in the gravity theory. For sim-

plicity, we consider only linear perturbations about FRW universes and the theory of

gravity below is GR.

The most generic form of a perturbed FRW metric up to first order is

ds2 = (ḡµν + δgµν)dx
µdxν

= −a2(η)
{

(1 + 2ψ)dη2 − 2Bidx
idη − [(1− 2φ)δij + 2Eij] dx

idxj
}

,(2.1)

where the quantities ψ, φ, Bi and Eij are all functions of η and xi. Eij is a symmetric,

trace-free tensor. Here we have introduced the conformal time η, which is related to

the cosmic time t in Eq. (1.1) by dt = adη. We can use η to define a conformal Hubble

parameter H ≡ a′/a, where prime denotes differentiation with respect to η. Note that

ψ and φ are scalar functions but not Lorentz scalars. It is also convenient to decompose

Bi and Eij into scalar, vector and tensor parts

Bi ≡ ∂iB +BT
i ,

Eij ≡ ∂i∂jE + ∂(iE
T
j) + hij , (2.2)

where ET
i , BT

i are divergence-free and hij is symmetric, trace-free and divergence-

free.

At linear order, scalar, vector and tensor perturbations are decoupled from each other

and therefore it is convenient to study them independently. It is not the case at higher

orders in general though, for instance see [35].

The components of stress-energy tensor for a perfect fluid, up to first-order, are given

by

T 0
0 = −(ρ̄+ δρ) ,

T i0 = qi ,

T ij = (P + δP )δij +Πij . (2.3)

Here T µν ≡ T µσgσν and overline denotes the background averaged quantities, whereas

δρ(η, xi) and δP (η, xi) are linear perturbations of energy density and pressure. Πij is
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the trace-free anisotropic stress, which is already of linear order. This can be seen from

the fact that the background geometry in a Friedmann Universe is homogeneous and

isotropic. Defining the perculiar velocity of the fluid as vi ≡ dxi/dη, one can show

that the 3-momentum density perturbation qi is related to vi through

qi = (ρ̄+ P̄ )(Bi + vi) (2.4)

to linear order. We can also decompose qi into scalar and vector parts, i.e qi = ∂iδq+q
T
i

and similarly for vi as previously described. Focussing on the scalar part of the 3-

momentum, we therefore have δq = (ρ̄+ P̄ )(B + v).

After perturbing all quantities to linear order, we then work out how the perturbations

evolve by solving the perturbed Einstein equation

δGµν = 8πGδTµν − Λδgµν . (2.5)

Restricting ourselves to the early Universe where Λ is negligible, the perturbed Einstein

equation then reads as δGµν = 8πGδTµν .

2.2 Gauge Invariant Quantities

Because of differomorphism invariance in GR, there are gauge degrees of freedom in

the theory. Under a coordinate transformation xµ → xµ + ξµ where xµ = (η, xi) and

ξµ = (T, Li), any perturbation of a given tensorial quantity δyα1,α2...
β1,β2,...

transforms as Lie

derivatives

δyα1,α2...
β1,β2,...

→ δyα1,α2...
β1,β2,...

− (Lξy)α1,α2...
β1,β2,...

(2.6)

where the Lie derivative is given by

(Lξy)α1,α2...
β1,β2,...

= ξσ(∇σy
α1,α2...
β1,β2,...

)

−(∇σξ
α1)yσ,α2...

β1,β2,...
− (∇σξ

α2)yα1,σ,...
β1,β2,...

− ...

+(∇β1ξ
σ)yα1,α2...

σ,β2,...
+ (∇β2ξ

σ)yα1,α2,...
β1,σ,...

+ ... (2.7)
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The perturbations we discussed previously in the last section are therefore not gauge-

invariant, i.e. they depend upon the coordinate we choose. For example, the gravita-

tional potential ψ transforms as ψ → ψ − T ′ −HT .

By considering how the perturbations of different quantities transform, one can com-

bine them together to form gauge-invariant quantities. Combining the four scalar per-

turbations in the metric we can construct the so-called Bardeen variables [27]

ΨB ≡ ψ +H(B − E ′) + B′ − E ′′ ,

ΦB ≡ φ−H(B − E ′) . (2.8)

Any physical observables should be independent of the choice of coordinate system

and can be constructed from gauge-invariant quantities. For instance, the curvature

perturbation ζ that we will introduce shortly, is constructed to be gauge-invariant by

definition.

2.2.1 Curvature Perturbation, ζ

A very useful gauge-invariant quantity is the comoving curvature perturbation R.

This is the intrinsic curvature perturbation on comoving or constant η hypersurfaces,

i.e. hypersurfaces orthogonal to worldlines that are comoving with the cosmic fluid

where qi = 0 [29, 36, 37]

R ≡ −φ+H(B + v) , (2.9)

or in terms of the 3-momentum δq

R ≡ −φ+
H

ρ̄+ P̄
δq . (2.10)

Another commonly used gauge-invariant quantity is ζ , the curvature perturbation

on uniform energy density hypersurfaces. It is defined as [38, 39]

ζ ≡ −φ+
H
ρ̄′
δρ . (2.11)
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In the flat gauge where φ = 0, it is related to the density constrast δρ/ρ for an adiabatic

fluid. The two quantities R and ζ are related by

ζ = R+
H
ρ̄′
δρcom , (2.12)

where ρcom is the comoving density perturbation defined as δρcom ≡ δρ − 3Hδq.
In the case of slow-roll inflation, the difference vanishes and ζ and R coincide on

superhorizon scale as δρcom → 0. In the following we will therefore refer to the

curvature perturbation as ζ unless stated otherwise. ζ quantifies the scalar fluctuations

in the universe and can be related to the amplitude of the primordial fluctuations we

see in the CMB and the density constrast in the large-scale structure.

An important property of the curvature perturbation ζ is the fact that it is conserved on

superhorizon scales for an adiabatic fluid for which its pressure P is a unique function

of its energy density ρ, i.e. P = P (ρ), as we will show later in Section 2.4 using the

separate universe approximation.

Although ζ is gauge-invariant, it was found recently by White et al. that ζ is frame-

dependent if isocurvature perturbations (to be introduced in Chapter 3) exist, i.e. ζ

evaluated in the Jordan frame is in general different to that evaluated in the Einstein

frame [40, 41]. 1

2.3 Primordial Cosmological Observables

Just as with any physical measurements, the gauge-invariant cosmological perturba-

tions we have discussed earlier in general have random statistical disturbations even at

a fixed instant of time. They act as statistical ensembles. It is therefore the statistical

properties of these distributions we could like to measure and compare with theoretical

model predictions.

In this section we will briefly discuss the essential mathematics concerning the statis-

tics of a stochastic field. Focussing on the curvature perturbation ζ , we will illustrate

how we construct observables related to the statistical properties of the perturbations

1Recently it has been argued by Postma and Volponi that this can be resolved if ζ is defined purely

in terms of dimensionless and gauge-invariant quantities [42].
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of interest.

2.3.1 Two-Point Statistics

Consider a random field f(x) with zero mean 〈f(x)〉 = 0 where

〈f(x)〉 =
∫

DfPr[f ]f(x) , (2.13)

where the integral means the functional integral over all field configurations. Here

Pr[f ] denotes the probability of realising the field configuration f(x). The two-point

correlation function of this random field is given by

〈f(x)f(y)〉 =
∫

DfPr[f ]f(x)f(y) . (2.14)

If this field f(x) is also statistically homogeneous and isotropic, then the two-point

function depends only on the distance between x and y

〈f(x)f(y)〉 ∝ F (|x − y|) . (2.15)

In Fourier space, this gives a δ-function in the correlation function

〈f(k)f ∗(k′)〉 = 2π2

k3
Pf (k)δ(k − k′) , (2.16)

where k = |k|. Here the normalisation factor 2π2/k3 is introduced such that Pf is

defined as the dimensionless power spectrum given f(k) is dimensionless.

Now consider the curvature perturbation ζ as an example. As mentioned, for the two-

point function, we can define a dimensionless power spectrum Pζ(k) as in Eq. (2.16)

〈ζ(k)ζ∗(k′)〉 = 2π2

k3
Pζ(k)δ(k − k′) . (2.17)

For an exact scale-invariant spectrum, the amplitude of Pζ is constant and independent

of k. However, in general ζ depends on scale k and so does Pζ . We will see that how-

ever inflation generically predicts a nearly scale-invariant spectrum in the next chapter.

In that case, at leading order, it is convenient to parameterise the scale dependence of
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the power spectrum Pζ by the tilt or the spectral index ns − 1, defined by

ns − 1 ≡ d lnPζ(k)

d ln k
. (2.18)

In the most general case, ns may also depend on k, which can be quantified by the

running α, defined in a similar fashion

α ≡ dns

d ln k
. (2.19)

Note that Pζ , ns and α depend on the pivot scale k∗ we choose. For all-sky CMB

observations, the pivot scale is usually set to be k∗ = 0.002Mpc−1. 2 Eqs. (2.18)-

(2.19) correspond to parametrising the power spectrum Pζ(k) as

Pζ(k) = Aζ

(

k

k∗

)ns−1+α
2
ln(k/k∗)

. (2.20)

Here Aζ denotes the amplitude of the power spectrum Pζ . Observations of the CMB

from the Planck satellite mission suggests Aζ ∼ 2 × 10−9, ns = 0.9603 ± 0.0073 at

95% C.L. (Planck + WP data), with negligible running [44].

Similar to the scalar mode, tensor modes or primordial gravitational waves are also ex-

cited during inflation via vacuum excition. We can also define a dimensionless power

spectrum for the tensor perturbation hij as
∫

d ln kPh ≡ 〈hijhij〉, and similarly a cor-

responding tensor tilt nT.

Ph(k) = Ah

(

k

k∗

)nT

. (2.21)

The primordial tensor perturbation is usually quantified by the tensor-to-scalar ratio

r, defined as

r ≡ Ah/Aζ , (2.22)

which is the ratio between the amplitudes of the tensor and scalar power spectra. The

current constraint given by the Planck + WP + high-l CMB ACT and SPT data is

2For discussion on the choice of pivot scale, see [43].
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r < 0.11 at 95% C.L. for the same pivot scale k∗ = 0.002Mpc−1 [44]. Recently,

however, there is a claim of discovery of r ∼ 0.2 by BICEP2 [45], which appears

to be in tension with the Planck results. Questions about foregrounds substraction

in BICEP2 data have been raised [46]. This will be resolved when the full Planck

polarisation data are released in late 2014.

For purely Gaussian fluctuations, all statistical information is contained in the two-

point correlation function. In simple single-field models, we will see in the next chapter

that ζ is indeed Gaussian to a very good approximation. Higher order correlation func-

tions are negligible and observationally irrelevant in single-field models. The above

parameters are enough to describe the primordial fluctuations we see on the CMB.

However, for inflation models with multiple fields, this may not be true in general and

higher order correlation functions could become important.

2.3.2 Primordial Non-Gaussianity

Primordial non-Gaussianity is the measure of deviation from a perfect Gaussian fluctu-

ation for the curvature perturbation ζ . By definition, for any pure Gaussian fluctuations

f , all the statistical information is contained via the two-point statistics 〈f(x)f(y)〉.
Any higher-order correlation functions like 〈f(x)f(y)f(z)〉 are either zero for odd

numbers of f or functions of the two-point correlation function for even numbers. At

leading order, non-Guassianity is quantified in terms of the bi- and trispectrum, which

are defined respectively in Fourier space by

〈ζk1
ζk2

ζk3
〉 ≡ (2π)3δ 3(k1 + k2 + k3)Bζ(k1, k2, k3) , (2.23)

〈ζk1
ζk2

ζk3
ζk4

〉 ≡ (2π)3δ 3(k1 + k2 + k3 + k4)Tζ(k1, k2, k3, k4, k12, k13) ,

(2.24)

where kij ≡ |ki+kj|. Again the delta functions come from the assumption of statistical

homogeneity and isotropy. The level of non–gaussianity is quantified by the amplitudes

of these higher-order correlation functions, which are conventionally parametrised by
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Figure 2.1: Local non-Gaussianity peaks in the the squeezed limit for fNL, and in the collapsed

limit for τNL

Figure 2.2: Equilateral non-Gaussianity peaks in the equilateral limit for fNL

the dimensionless non-linear parameters fNL [47], τNL and gNL [48, 49]

Bζ(k1, k2, k3) =
6

5
fNL [Pζ(k1)Pζ(k2) + 2 perms] , (2.25)

Tζ(k1, k2, k3, k4, k12, k13) = τNL [Pζ(k12)Pζ(k1)Pζ(k3) + 11 perms]

+
54

25
gNL [Pζ(k1)Pζ(k2)Pζ(k3) + 3 perms] ,(2.26)

where perms denotes permutations over ki. In general these non-linear parameters

fNL, τNL and gNL are functions of wavevectors ki and thus are shape dependent. A

particular type of non-Gaussianity is that of the form

ζ = ζG + (3/5)fNL(ζ
2
G −

〈

ζ2G
〉

) + (9/24)gNLζ
3
G , (2.27)

where ζG is the Gaussian part. This is known as a local type of non-Gaussianity. In

the local shape, 〈ζζζ〉 peaks in the squeezed limit for fNL (k1 → 0), and 〈ζζζζ〉 peaks

in the collapsed limit for τNL (k1 + k2 → 0), see Fig. 2.1. Recalling that the skewness

of a probability distribution g is defined as Sg ≡ 〈g3〉 / 〈g2〉3/2, we can see that fNL is

an estimator of the skewness of the statistics of ζ . Similarly, gNL gives an estimate of

the kurtosis.

Another type which is often considered is the equilateral non-Gaussianity. As the

name suggests, the equilateral type peaks in the limit where all the external momenta

are equal, i.e. k1 = k2 = k3. This shape is usually enhanced by non-linear interactions

at horizon-crossing. In this thesis, we will focus only on the local and equilateral
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shapes of non-Gaussianity. For a complete review on the topic of non-Gaussianity,

see [50].

No convincing evidence of primordial non-Gaussianity has so far been observed. Cur-

rent constraints from Planck data on fNL are: f local
NL = 2.7 ± 5.8 at 68% C.L. for the

local shape, f eq
NL = −42 ± 75 at 68% C.L. for the equilateral shape [51]. Less tight

constraints come from large scale structure measurements, where −37 < f local
NL < 25

from measurements of galaxy clustering and the integrated Sachs-Wolfe effect [52]

and recently −49 < f local
NL < 31 from measurements of the clustering of 800,000 pho-

tometric quasars [53], all at 95% C.L. 3. For the local trispectrum, Planck data gives

τNL/10
3 < 2.8 at 95% C.L. [51], whereas the constraints on gNL have yet been worked

out, though there has been discussion on the implications of the Planck bispectrum

constraints for the trispectrum [55]. On the other hand, WMAP 9–year data gives the

following constraint: −5.5 < gNL/10
5 < −1.1 at 68% C.L. [56], with Regan et al.

finding a compatible constraint −6.4 < gNL/10
5 < −1.8 at 68% C.L. [57]. Similar

constraints for gNL were also found in [52, 53] using large scale structure measure-

ments.

Scale Dependent Non-Gaussianity

Like the power spectrum, it is natural that the non-linearity parameters are scale de-

pendent [58, 59, 60, 61], quantified by their spectral indices. For instance, the spectral

indices of fNL and τNL, denoted by nfNL
and nτNL

, are defined by

nfNL
≡ d ln|fNL|

d lnk
, (2.28)

nτNL
≡ d ln|τNL|

d lnk
, (2.29)

where k marks the length of any one side of the n-gon, provided that all sides are

scaled in the same proportion [60]. Examples of models where nfNL
and nτNL

can

be observably large, i.e. O(0.1), are the curvaton model with quartic self-interaction

3Recently there has been a claim of a detection of local fNL from quasar measurements in the Sloan

Digital Sky Survey [54].
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terms [62, 63] 4 and Modulated Reheating [60].

Forecasts have been made to assess our ability to detect the spectral indices of the

non–linear parameters. For nfNL
, Planck could reach a 1−σ sensitivity of σnfNL

∼ 0.1

given fNL = 50 [65]. By measurements of the CMB µ-distortion in a CMB experiment

such as PIXIE, nfNL
and nτNL

could also be measured to an accurancy of the order of

O(0.3) and O(0.6) respectively for fNL = 20 and τNL = 5000, and similarly in large-

scale surveys such as Euclid [66].5

2.4 Separate Universe Picture

An alternative approach to the cosmological perturbation theory discussed earlier is

the separate universe approximation [30, 31, 32], if we are interested only in pertur-

bations on superhorizon scales. It is a powerful tool for studying perturbations in the

Early Universe. The separate universe picture refers to the behaviour of the Universe

after smoothing on a specified scale k much larger than the horizon. The underlying

assumption is that spatial derivatives are negligible compared to time derivatives.

The separate universe approximation is also related to the gradient expansion ap-

proximation [67]. In the gradient expansion scheme, the full non-linear field equa-

tions are written in terms of a small gradient expansion parameter ǫ ≡ k/aH 6 and

the limit ǫ → 0 corresponds to an unperturbed FRW universe. That is, the metric of

any local region can be written as an unperturbed FRW metric in an appropriate set of

coordinates

ds2 = −dt2 + a2(t)localδijdx
idxj . (2.30)

During inflation, the gradient terms quickly drop out after horizon exit as aH grows

exponentially, justifying ǫ being a small parameter. At zeroth order O(ǫ0), we can see

4Note if the BICEP2 result is verified such that r ∼ 0.1, then pure curvaton models will be ruled

out [64].
5Their definition of nτNL

differs from the one used here, in the fact that in their case, nτNL
6=

d ln |τNL|/(d ln k). The two definitions are related when the four k vectors form a square by 2ntheirs
τNL

=
nours
τNL

, in which case we have to double their forecasted error bars when comparing to our definition of

nτNL
.

6Do not confuse this with the slow-roll parameter ǫH that was defined previously in Eq. (1.19).
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that the full non-linear field equations have the same forms as those at the background

level. This suggests we can treat the whole Universe as an ensemble of independent

FRW universes, which only differ by initial conditions that are sourced by quantum

fluctuations. This simplifies the analysis of superhorizon perturbation evolution [31,

34, 37, 38, 68, 69] and leads to the famous δN formalism, which will be explained in

detail in the following section.

2.5 The δN Formalism

One consequence of the separate universe approximation is the δN formalism, which

will be used extensively in this thesis. The formalism can be understood as follows:

Consider a foliation of spacetime Σ(t), where Σ(t) is the spacelike hypersurface at

time t. Let nµ be the unit vector normal to Σ(t). Define the rate of change of nµ as θ

θ ≡ ∇µn
µ . (2.31)

The volume expansion rate along some worldlines is

Ñ ≡
∫

θ

3
dτ , (2.32)

where τ is the proper time. This is defined purely geometrically. It is convenient to

write the full perturbed metric in the ADM form [70]

ds2 = −N 2dt2 + γij(dx
i + βidt)(dxj + βjdt) , (2.33)

where N and βi are the lapse and shift functions, and γij is the spatial 3-metric. With-

out loss of generality, we choose the foliation of spacetime Σ(t) as x0 = t = const.

The unit vector nµ normal to Σ(t) is then

nµ =

(

1

N ,−β
i

N

)

. (2.34)
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We then define ζ̃ by rewriting the spatial part of the metric in the form

γij = ã2(x, t)γ̃ij(x) with ã(x, t) ≡ a(t)eζ̃(x,t), γ̃ij(x) ≡ (Ieh)ij . (2.35)

Here a(t) is the homogeneous background scale factor after smoothing. Here γ̃ has

unit determinant and the matrix h is traceless. We can see this corresponds to ζ̃ =

ln(ã/a) = δ(ln ã). Note that we have not assumed ζ̃ to be small here. From the

separate universe approximation we know the metric can be written as an unperturbed

FRW metric locally, we can thus deduce βi is of order O(ǫ), ˜gammaij and hij must be

time-independent, whereas ζ̃ must vanish locally because ã(x, t) is the locally defined

scale factor. The volume expansion Eq. (2.32) as seen by a comoving observer between

t1 and t2 is thus

Ñ =

∫ t2

t1

θ

3
dτ =

∫ t2

t1

θ

3
Ndt =

∫ t2

t1

(

ȧ

a
+ ˙̃ζ

)

dt , (2.36)

which equals the corresponding number of e-folds of expansion between t1 and t2

defined by Hlocal

N(t2, t1; x) = ln

[

a(t2)

a(t1)

]

+ ζ̃(t2, x)− ζ̃(t1, x) . (2.37)

Choosing the initial hypersurface to be flat (ζ = 0) and the final one to be the uniform

density (δρ = 0), we immediately arrive at the result [67]

ζ̃(t2, x)|ρ = N(t2, t1; x)− ln

[

a(t2)

a(t1)

]

= δN(t1, t2;x) . (2.38)

Recall that on uniform-density slicing, ζ = ζ̃ and thus we have ζ = δN . This is

the well-known δN formalism [33, 34], which states that the curvature perturbation

ζ is equal to the difference in the number of e-folds expansion between an initial flat

hypersurface and a final uniform-density hypersurface, i.e. ζ(x, t) = δN(x, t). This

formalism holds as long as the Universe can be locally approximated by a FRW uni-

verse. This is an important result and we will use this in most of the analysis that

follows.
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2.5.1 Conservation of ζ

In Section 2.2.1, we have stated that the curvature perturbation ζ is conserved on super-

horizon scales. We will now show this by using the gradient expansion in the following,

first done by Lyth et al. [67].

In comoving coordinates, the 4-velocity of the comoving fluid is

uµ =

(

1

N , 0

)

+O(ǫ2)

uµ =

(

−N ,
βi

N

)

+O(ǫ2) . (2.39)

To leading order in the gradient expansion parameter ǫ, the expansion rate of uµ is

equal to that of nµ. Recall the definition of the energy-momentum tensor for a perfect

fluid Eq. (1.2), on uniform-density slicings, the continuity equation uµ∇νT
µν = 0 then

reads as

ρ̇(t) = −3
˙̃a(x, t)

ã(x, t)
[ρ(t) + P (x, t)] +O(ǫ2)

= −3

[

ȧ

a
+ ˙̃ζ

]

[ρ(t) + P (x, t)] +O(ǫ2) (2.40)

to leading order in the gradient expansion. For an adiabatic fluid where P = P (ρ),

the spatial dependence of P also vanishes and thus from Eq. (2.40) we can deduce
˙̃ζ is

independent of the position. Without loss of generality, we can choose the background

scale factor a(t) such that
˙̃ζ vanishes. However we also know that on uniform-density

slicings, the curvature perturbation is given by ζ̃ . As a result, we conclude that the cur-

vature perturbation ζ is conserved on superhorizon scale beyond linear order regardless

of the theory of gravity in the adiabatic limit as long as the continuity equation holds.

For all single-field models where slow-roll solution is an attractor in phase space, the

perturbations are purely adiabatic and ζ is conserved on superhorizon scales. In mul-

tifield models however, as we will see in Chapter 3, entropic or isocurvature perturba-

tions exist and δPnad 6= 0 7 in general. ζ is no longer conserved and it is important to

follow the superhorizon evolution of ζ when comparing with observations. In fact ζ

is only conserved on superhorizon scales when these entropic perturbations van-

7Define later.
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ish, first demonstrated by Rigopoulos and Shellard [71]. This was later generalised to

non-canonical multifield models minimally coupled to gravity with at most first deriva-

tives by Christopherson and Malik [72], and recently to higher-derivative models that

preserve second-order field equations by Naruko and Sasaki [73] and Gao [74].



Chapter 3

Predictions from Slow-roll Inflation

In this chapter we discuss the observational predictions of the standard canonical slow-

roll inflation paradigm, including single and multiple field models. In particular, we

focus on canonical models minimally coupled to gravity.

We start by introducing the ‘in-in’ formalism and the δN formulae which are com-

monly used to compute cosmological correlation functions of ζ in Sections 3.1 and

3.2. In Section 3.3 we discuss the model predictions of simplest single-field models,

compute the correlation functions of ζ and the corresponding primordial observables.

In particular, we reproduce the famous Maldacena result [75], a no-go theorem for

primordial non-Gaussianity in simplest single-field inflation.

Then in Section 3.4, we introduce the multifield inflation models and discuss the main

difference between single and multifield models, which is the existence of entropic

perturbations. We give the multifield model predictions in terms of the δN coefficients

in Section 3.4.2. Finally we end this chapter by discussing the technical difficulties in

computing the δN coefficients in general.

3.1 In-In Formalism

Before discussing inflationary model predictions, we first introduce the operator for-

malism used in computing correlation functions in cosmology, namely the ‘in-in’ for-

malism or the ‘closed time path (CPT)’ formalism [76, 77]. This formalism is simi-
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lar to canonical quantisation in QFT, except for the fact that we are now computing on

a closed time path. Unlike in QFT in which we compute the S-matrix, the transition

amplitude between asymptotic ‘in’ and ‘out’ states, in the ‘in-in’ formalism we are in-

terested in correlation functions evaluated at a fixed instant of time given some initial

conditions.

In this formalism, the correlation function of some operator Q̂ evaluated at time t is

given by

〈

Q̂(t)
〉

=

〈

Ω

∣

∣

∣

∣

T̂ † exp

(

i

∫ t

t0

Ĥint(t
′)dt′

)

Q̂(t)T̂ exp

(

−i
∫ t

t0

Ĥint(t̃
′)dt̃′

) ∣

∣

∣

∣

Ω

〉

(3.1)

in the interaction picture, where the full Hamiltonian is split into two parts: a free

part H0 and an interaction part Hint, i.e. Ĥ = Ĥ0 + Ĥint. Here T̂ , T̂ † are the time

and anti-time ordering operators, and |Ω〉 is the interacting theory vacuum at t0. One

then expands the evolution operator, exp(−i
∫

Hintdt
′), in Eq. (3.1) to compute the

correlation functions of interest to leading order as in perturbation theory.

For instance, take Q̂ = (δ̂ϕ)3, by Taylor expanding the exponentials in Eq. (3.1), we

find the 3-point function of a scalar field perturbation δϕ in Fourier space at time t is

given by

〈δϕk1
(t)δϕk2

(t)δϕk3
(t)〉 = −i

∫ t

t0

〈δϕk1
(t)δϕk2

(t)δϕk3
(t)Hint(t

′)〉 dt′ + c.c . (3.2)

to leading order. Here c.c stands for the complex conjugate.

3.2 Separate Universe Approach, δN Formulae

An alternative formalism for calculating correlation functions of ζ on superhorizon

scales is the δN formalism discussed in Section 2.5. It follows that in a FRW universe

dominated by M canonical slow-roll scalar fields ϕI at horizon-exit t∗, the difference

in the number of e-folds of expansion between different superhorizon patches can be
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accounted for by perturbations of the scalar fields at horizon-exit δϕI∗ [69] 1

ζ(x, t) = δN(x, t) =
∑

I

NIδϕ
I
∗ +

1

2

∑

IJ

NIJδϕ
I
∗δϕ

J
∗ + ... (3.3)

from perturbative Taylor expansion. Again N is defined as the total number of e-folds

of expansion from an initial flat hypersurface at horizon-exit t∗ to a final uniform-

density hypersurface at time t. Here I, J are the field labels, whereas NI , NIJ , etc are

the δN coefficients defined as partial derivatives with respect to the scalar fields, e.g.

NI ≡ ∂N/∂ϕI . This was later generalised to models with a curved field space metric,

where the kinetic terms are non-canonical, by Saffin [78] and Elliston et.al. [79]. It

should be stressed that we only require slow-roll at horizon exit, but not the entire

evolution.

From Eq. (3.3), we can then relate the correlation functions of ζ , 〈ζζ...ζ〉, to that of the

field perturbations
〈

δϕI1δϕI2 ...δϕIn
〉

at horizon-exit. For instance, to leading order,

the 3-point function 〈ζζζ〉 at time t is given by

〈ζ(k1, t)ζ(k2, t)ζ(k3, t)〉 =
∑

IJK

NINJNK

〈

δϕI(k1, t∗)δϕ
J(k2, t∗)δϕ

K(k3, t∗)
〉

+
1

2

∑

IJKL

NINJNKL

〈

δϕI(k1, t∗)δϕ
J(k2, t∗)[δϕ

K ⋆ δϕL](k3, t∗)
〉

+ perms + ...

(3.4)

where ⋆ denotes the convolution product over momentum k3

[δϕK ⋆ δϕL](k3, t∗) ≡
∫

d3q

(2π)3
δϕK(q, t∗)δϕ

L(q − k3, t∗) (3.5)

and perm denotes permutation over ki for the second term on the RHS. The corre-

sponding ζ-related primordial observables such as fNL can then be deduced once the

the correlation functions of δϕ at horizon-exit are known. For single-field models,

Eq. (3.3) simply corresponds to the gauge transformation from the flat to the uniform-

density gauge.

1The slow-roll approximation allows us to write the field velocities ϕ̇I as a function of all the scalar

fields ϕJ , i.e. ϕ̇I(ϕJ). Thus explicit ϕ̇I dependence drops out.
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3.3 Single-Field Inflation

We start with predictions of the simplest single-field inflation models with the action

Eq. (1.16). 2 We assume there exists some regions in the potential V that are flat

enough for inflation to proceed, where ǫV , ηV ≪ O(1). It is convenient to first rewrite

the action in the ADM form, i.e. substituting the ADM metric Eq. (2.33) into Eq. (1.16)

S =
1

2

∫

d4x
√
h
[

NR(3)M2
p − 2NV +N−1(EijE

ij − E2)M2
p

+N−1(ϕ̇− βi∂iϕ)
2 −Nγij∂iϕ∂jϕ

]

. (3.6)

Here R(3) is the Ricci-scalar built from the spatial metric γij and Eij is defined as

Eij ≡
1

2
(ḣij −∇iβj −∇jβi) (3.7)

and E is the trace of Eij . ∇i denotes the covariant derivative with respect to the 3-

metric γij .

To evaluate the predictions of single-field inflation, we consider perturbations about

a de Sitter background and work in the spatially-flat gauge where γij = a2δij . To

quantise the inflaton field, we first split the inflaton ϕ into a homogeneous slow-varying

background field ϕ(t) and a small perturbation δϕ(x, t)

ϕ(x, t) = ϕ(t) + δϕ(x, t) . (3.8)

We also perturb the lapse and shift functions to linear order in scalar perturbations

N = 1 + λ1 , βi = ∂iβ . (3.9)

The background equations of motion are the Klein-Gordon and Hamilton-Jacobi equa-

tions

ϕ̈+ 3Hϕ̇+ Vϕ = 0

2M2
pḢ = −ϕ̇2

. (3.10)

2Similar analysis using the covariant perturbation scheme [80] was done for single-field models with

curved field space metric by Elliston et.al. [79].
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By perturbing the full action Eq. (3.6) to quadratic order in perturbations, we get

S(2) =
1

2

∫

d4xa3
[

λ1

(

−6M2
pH

2λ1 + λ1ϕ̇
2 − 2ϕ̇ ˙δϕ− 2Vϕδϕ

)

− 2

a2
∂2β

(

2M2
pHλ1 − ϕ̇δϕ

)

+ ˙δϕ
2 − 1

a2
∂iδϕ∂

iδϕ− Vϕϕδϕ
2

]

.(3.11)

upon integration by parts. Note that N and βi act as Lagrange multipliers and are

not dynamical. Their equations of motion correspond to momentum and Hamiltonian

constraints

∇j

[

1

N (Ej
i − Eδji )

]

=
1

N (ϕ̇− βj∂jϕ)∂iϕ ,

−2V −N−2(EijE
ij − E2)M2

p −N−2(ϕ̇− βi∂iϕ)
2 − γij∂iϕ∂jϕ = 0 ,

(3.12)

which to leading order gives

2M2
pHλ1 = ϕ̇δϕ

λ1(ϕ̇
2 − 6H2M2

p)− ϕ̇ ˙δϕ− Vϕδϕ− 2M2
p

H

a2
∂2β = 0 . (3.13)

Substituting the solutions of λ1 and β back into Eq. (3.11), we finally arrive at

S(2) =
1

2

∫

d4xa3
[

( ˙δϕ)2 − 1

a2
(∂δϕ)2 +M(δϕ)2

]

, (3.14)

where we have used the background equations Eq. (3.10). Here the effective mass M
is given by

M ≡ Vϕϕ −
1

M2
pa

3

d

dt

(

a3ϕ̇
2

H

)

. (3.15)

Eq. (3.14) then yields the field equation for the field perturbations δϕ in Fourier space

δ̈ϕ+ 3H ˙δϕ+

(

k

a

)2

δϕ+ Vϕϕδϕ− 1

M2
pa

3

d

dt

(

a3ϕ̇
2

H

)

δϕ = 0 . (3.16)

Writing Eq. (3.16) in terms of a conformal scalar field v ≡ aδϕ and conformal time η,
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we then have

[

∂2

∂η2
+ k2 − z′′

z

]

vk(η, k) = 0 , (3.17)

where z ≡ aϕ̇/H . This is the Mukhanov-Sasaki equation and vk is known as the

Mukhanov-Sasaki variable [81, 82]. From here onwards we will drop the overline for

the background homogeneous field ϕ. The effective mass term z′′/z can be expressed

in terms of slow-roll parameters [83, 84, 85]

z′′

z
= 2(aH)2

[

1− 1

2
ǫH − 3

2
ηH +

1

2
ǫHηH +

1

2
η2H +

1

2
ǫ2H − 1

2H
η̇H

]

. (3.18)

During slow-roll inflation, these slow-roll parameters are slowly varying in time and

thus we can neglect their time dependence at leading order, which gives

η ≈ − 1

(1− ǫH)aH
, (3.19)

where η runs from −∞ to 0. Thus Eq. (3.18) becomes

z′′

z
=
ν2R − 1/4

η2
, νR ≈ 3

2
+ ǫH − ηH . (3.20)

The general solution to Eq. (3.17) can then be expressed as a linear combination of

Hankel functions

vk ≈
√

π

4k
(
√

−kη) exp
[

i(1 + 2νR)
π

4

]

[

c1H
(1)
νR

(−kη) + c2H
(2)
νR

(−kη)
]

. (3.21)

Note that νR = 3/2 is the de Sitter limit. Here c1 and c2 are some constants.

Canonical Quantization

We would like to canonically quantise the conformal scalar field v. From the Mukhanov-

Sasaki Equation (3.17), we can see that this is equivalent to quantisation of a ’free’

scalar field with time-dependent mass m2 = z′′/z. As in standard canonical quantisa-
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tion, we define the conjugate momentum to v as

πv ≡
∂L
∂v̇

= v̇ , (3.22)

and promote vk and πv to operators which satisfy the following equal-time commuta-

tion relations

[v̂(x, η), π̂v(x
′, η)] = iδ(3)(x − x′) (3.23)

and are zero otherwise. We can write v̂(x, η) in terms of annihilation and creation

operators

v̂(x, η) =

∫

d3k

(2π)3/2
[

â(k)uk(η)e
ik·x + â†(k)u∗k(η)e

−ik·x] . (3.24)

Here uk is the mode function satisfying the same Mukhanov-Sasaki equation Eq. (3.17).

From Eq. (3.23), one can show that â and â† satisfy the following commutation relation

[â(k), â†(k′)] = δ(3)(k − k′) . (3.25)

To solve for uk, we apply appropriate asymptotic boundary conditions to the solution

Eq. (3.21).

At early times when k2 ≫ ä/a and the short-wavelength limit applies, we can approx-

imate the FRW background as Minkowski. Choosing the vacuum to be the Minkowski

vacuum where â(k)|0〉 = 0, the solution becomes

uk(η) →
e−ikη√
2k

(3.26)

in the asymptotic limit (kη → −∞). |0〉 is known as the Bunch-Davies vacuum [86].

This corresponds to choosing c1 = 1 and c2 = 0 in the general solution Eq. (3.21).

Well after the mode exits the horizon, where kη → 0, the solution then asymptotes to

uk(η) =

√

π

4k
(
√

−kη) exp
[

i(1 + 2νR)
π

4

]

H(1)
νR

(−kη)

→ − i exp(−ikη)
η
√
2k3

. (3.27)
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From Eq. (3.19), we can see this corresponds to a growing solution with uk ∝ a.

The two-point correlation function for vk, given by its quantum expectation value, is

therefore

〈v̂k(η)v̂k′(η)〉 = |uk(η)|2
〈

0

∣

∣

∣

∣

[

âk, â
†
k′

]

∣

∣

∣

∣

0

〉

= |uk(η)|2δ(3)(k − k′) =

(

a2H2
∗

2k3

)

(−kη)3−2νR δ(3)(k − k′) .

(3.28)

Here H∗ is the Hubble parameter evaluated at horizon-exit for the mode k.

Scalar Spectrum

With the solution to the mode function uk, we can now compute the power spectrum

for the inflaton fluctuation δϕ. Transferring back to the inflaton fluctuation δϕ, we can

thus see the modes quickly become constant a few e-folds after horizon exit. As in the

convention, we assume this happens at the epoch of horizon exit. 3 The corresponding

dimensionless power spectrum is therefore

Pδϕ(k) ≡
k3

2π2

∣

∣

∣

uk
a

∣

∣

∣

2

=

(

H∗

2π

)2

(−kη)3−2νR . (3.29)

Using the definition of the curvature perturbation ζ Eq. (2.11) and the fact that ζ is con-

served on superhorizon scales in the slow-roll single-field model, we can then compute

the power spectrum

Pζ(k) =

(

H

ϕ̇

)2

∗
Pδϕ(k) , (3.30)

using the fact that δρ/ρ̇ ≈ δϕ/ϕ̇ to leading order in slow-roll. Since the Hubble

parameter H is slowly varying during inflation, the spectrum induced by inflation is

generically very close to scale-invariant. This can be seen from the spectral index ns.

Differentiating lnPζ with respect to ln k, we find [24]

ns − 1 ≈ 3− 2νR = 2(ηV )∗ − 6(ǫV )∗ . (3.31)

3For discussions on the associated error with this assumption, see [87].
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Here the subscript ∗ denotes the slow-roll parameters are evaluated at horizon exit.

Since during slow-roll inflation we generically have (ǫV )∗, |(ηV )∗| ≪ O(1), inflation

predicts an almost scale invariant spectrum with small red tilt (ns < 1) for chaotic

inflation where V ∝ ϕn.

One can go further to study the running of the spectral index α in Eq.(2.19) as well.

It is not difficult to see from Eq. (3.31) that α is second-order in slow-roll as ns is

first-order. Precisely, we have

α = 16(ǫV ηV )∗ − 24(ǫV )
2
∗ − 2(ξV )

2
∗ (3.32)

where ξV ≡M4
p
VϕVϕϕϕ

V 2 .

Tensor Spectrum

Tensor perturbations are also excited during inflation just as scalar perturbations. Again

we work in the flat gauge and consider a FRW metric with tensor perturbation of the

form

ds2 = a2(η)
[

−dη2 + (δij + hij)dx
idxj

]

, (3.33)

where hij is divergence and trace-free, obeying hij,j = hii = 0. By perturbing the action

to second-order in hij , one finds

S
(2)
h = −M

2
p

8

∫

d4xahij
[

ḧij + 3Hhij − ∂2hij

]

(3.34)

and the tensor perturbation hij satisfies an equation of motion similar to that of δϕ

Eq. (3.16) in the massless limit

ḧij + 3Hḣij +
k2

a2
hij = 0 . (3.35)
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Decomposing hij into a scalar amplitude h and polarisation tensors e
(+,x)
ij and promot-

ing hij to operators, we can write

ĥij(x, η) =

∫

d3k

(2π)3/2

∑

s=+,x

Mp

2

[

â(k)esijh
s
k(η)e

ik·x + c.c.
]

(3.36)

in Fourier space in terms of annihilation and creation operators. Here s = +, x denotes

the two polarisation states of the tensor mode. The polarisation tensors e
(+,x)
ij satisfy

the transverse and traceless condition

∑

i

kieij = 0 , (3.37)

∑

ij

e∗sij e
s′

ij = 2δss′ , (3.38)

∑

ijl

εilke
∗s
ij e

s′

jl = −
∑

ijl

εilke
∗s
ij e

s′

jl = 2
kk
|k|(1− δss′) . (3.39)

Now we define h̃sk ≡ aMph
s
k/2. It is not difficult to see h̃sk satisfies the same Mukhanov-

Sasaki equation with z → a

h̃sk
′′ +

(

k2 − a′′

a

)

h̃sk = 0 . (3.40)

The solution to this equation of motion is the same as in the scalar case with νR →
νT = 3/2 + ǫH . Defining a dimensionless tensor spectrum Ph(k) as

〈

hij(k)h
ij(k′)

〉

= 2(2π)3
2π2

k3
Ph(k)δ

(3)(k− k
′) , (3.41)

where the additional factor of 2 comes from the two polarisations of gravitational

waves, we therefore have

Ph(k) =
8

M2
p

(

H∗

2π

)2

(−kη)3−2νT , (3.42)

with the tensor tilt nT and tensor-to-scalar ratio r given by

nT = −2(ǫV )∗ , r = 16(ǫV )∗ . (3.43)
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Figure 3.1: Theoretical predictions of (ns, r) for various canonical single-field inflation models

and comparison with the current observational constraints. Credit: ESA and the Planck collabora-

tion [44].

Theoretical predictions of ns and r from various canonical simple single-field inflation

models are summarised in Fig. 3.1. Models such as power-law inflation and V ∝ ϕ4

are now already ruled out by current data from Planck, while V ∝ ϕ2 is under tension.

Though the recent BICEP2 discovery of primordial gravitational waves, if verified,

will bring the ϕ2 model back in agreement with observations.

Non-Gaussianity, No-go Theorem for Simplest Single-Field Models

Besides the scalar and tensor power spectra Pζ and Ph, statistics beyond the two-point

functions as quantified by non-Gaussianity may also be detected in precision CMB

experiments. To work out the level of non-Gaussianity in the single-field model, we

expand the action Eq. (3.6) to cubic order

S(3) =
1

2

∫

d4xa3
{

−1

3
Vϕϕϕ(δϕ)

3 − λ1Vϕϕ(δϕ)
2 + 6H2λ31M

2
p − λ31ϕ̇

2 + 2λ21ϕ̇
˙δϕ

−a−4λ1
[

∂i∂jβ∂
i∂jβ − (∂2β)2

]

M2
p + 4H2λ21a

−2(∂2β)M2
p − λ1( ˙δϕ)2

−a−2λ1(∂δϕ)
2 − 2 ˙δϕβi∂iδϕ+ 2λ1ϕ̇β

i∂iδϕ
}

, (3.44)

Note that we only need to expand N and βi to first order as the second-order terms in

N and βi are multiplied by the momentum and Hamiltonian constraints at first order.
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Again λ1 and β can be eliminated using the constraints Eqs. (3.13). Now we collect the

leading slow-roll order pieces in Eq. (3.44). Note that λ1 and β are of order O(ϕ̇/H)

to leading order in slow-roll. Eq. (3.44) then reduces to

S(3) ⊇
∫

d4x

{

− a3

4HM2
p

ϕ̇δϕ( ˙δϕ)2 − a

4HM2
p

ϕ̇δϕ(∂δϕ)2

+
a3

2HM2
p

ϕ̇ ˙δϕδij∂j∂
−2( ˙δϕ)∂i(δϕ)

}

, (3.45)

This gives the cubic interaction Hamiltonian Hint to leading order in slow-roll. To

compute the 3-point correlation function for δϕ, we apply the ‘in-in’ formalism dis-

cussed in Section 3.1. Recall that to leading order, the 3-point correlation function for

δϕ is given by Eq. (3.2). Substituting the cubic order terms Eq. (3.45) into the interac-

tion Hamiltonian Hint, we can then work out the 3-point function to leading order in

slow-roll. For details of the calculations, see [75, 88].

As an example, we compute the contribution coming from the first term in Eq. (3.45)

∫

d4x

{

− a3

4HM2
p

ϕ̇δϕ( ˙δϕ)2
}

. (3.46)

Written in conformal time, the corresponding contribution is then

〈δϕ(x1, τ)δϕ(x2, τ)δϕ(x3, τ)〉 ⊆
∫

d3ydη

{

− a

4MpH2
ϕ′(η) 〈δϕ(x1, τ)δϕ(y, η)〉

(〈δϕ(x2, τ)δϕ(y, η)〉)′ (〈δϕ(x3, τ)δϕ(y, η)〉)′

+perm + c.c} , (3.47)

which in momentum space gives

〈δϕ(k1, τ)δϕ(k2, τ)δϕ(k3, τ)〉

⊆ −i(2π)3δ(3)(
∑

i

ki)
H3

∗
4

ϕ̇∗
∏

i 2k
3
i

[

∑

perm

(

−k
2
2k

2
3

kt
− k1k

2
2k

2
3

k2t

)

]

, (3.48)

where we have Wick rotated on to the positive imaginary axis to perform the integral.

Here again perm stands for permutation over ki or xi. kt denotes the sum of the

magnitudes of ki, i.e. kt = k1 + k2 + k3.
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Together with the two remaining terms, we find the 3-point function for the field per-

turbations δϕ [88]

〈δϕ(k1)δϕ(k2)δϕ(k3)〉 = (2π)3δ(3)(
∑

i

ki)
4π4

∏

i k
3
i

(

H2
∗

4π2

)2

A(k1, k2, k3) , (3.49)

where

A(k1, k2, k3) ≡
ϕ̇∗

4H∗

[

−3
k22k

2
3

kt
− k22k

2
3

k2t
(k1 + 2k3) +

1

2
k31 − k1k

2
2 + perm

]

. (3.50)

Translating this into the 3-point function of the curvature perturbation ζ by appropriate

gauge transformation using Eq. (3.3)

〈ζ(k1)ζ(k2)ζ(k3)〉 = −H
3
∗

ϕ̇3
∗
〈δϕ(k1)δϕ(k2)δϕ(k3)〉∗

+
1

2(ǫV )∗

(

1

4
− ηV

4ǫV

)

∗
〈δϕ(k1)δϕ(k2)[δϕ ⋆ δϕ](k3)〉∗ + perm . (3.51)

Combining Eqs. (3.49) and (3.51), we finally arrive at Maldacena’s famous result for

the corresponding non-linear parameter fNL in single-field inflation [75]

fNL ≈ 5

12

[

2ϕ̈∗

ϕ̇∗H∗
+

(

ϕ̇∗

H∗

)2

(2 + f(k))

]

=
5

12
(1− ns + f(k)nT) , (3.52)

where f(k) is some function of k lying in the range 0 < f < 5/6, peaking at the

equilateral limit and vanishing in the squeezed limit. Eq. (3.52) gives the single-field

consistency relation f local
NL = 5(1− ns)/12.

From Eq. (3.52) we can see the non-linear parameter fNL is of order of O(ǫH). For an

ideal CMB experiment, we can only distangle the primordial signals from contributions

due to non-linear evolution of GR if the primordial signals give |fNL| ∼ O(5) [89]. The

level of non-Gaussianity is therefore negligible in CMB observations for the simplest

single-field model, independent of the shape. This is the famous No-Go Theorem

for non-Gaussianity in the simplest single-field inflation, first derived by Maldacena

in 2006 [75]. As in the literature, we refer to a large Gaussianity when any of the

non-linear model parameters fNL, τNL or gNL is large, particularly |fNL| > O(5). Any

detection of primordial non-Gaussianity of orderO(5) will rule out the simplest single-
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field inflation paradigm. As discussed in Chapter 2, no convincing evidence of a large

primordial non-Gaussianity is observed so far today.

3.4 Multifield Inflation Models

Absence of evidence is not the evidence of absence. - Carl Sagan

So far we have only considered the simplest model of inflation, which involves one

minimally coupled single scalar field with a canonical kinetic term. Although this

simple paradigm is consistent with current observations, it is often regarded as a phe-

nomenological model only as we are yet to connect the inflation model with particle

physics theory. Particularly, the field (or fields) that plays the role of the inflaton is

still unknown. It is therefore natural to go beyond this simplest picture and consider

more complicated models that are still consistent with observations but may have richer

phenomenology.

Everything should be made as simple as possible, but not simpler. - Albert Einstein

For example, particle physics motivated models can give rise to models with non-

canonical kinetic terms such as DBI-inflation [90] and models with features in the

inflaton potential [91, 92, 93, 94, 95]. Besides, unified theories like GUT and string

theory generically give rise to multiple scalar fields instead of one. Mechanisms that

make one of the scalar fields light often apply to other scalar fields as well. Thus it

is natural during inflation that there are additional light scalar fields as well [96, 97].

Instead of the single-field paradigm, a multiple field model should be considered as a

result. This is multifield inflation, the main focus of this thesis. Examples of multifield

inflation models are assisted inflation [98] and N-flation [99].

The general multifield action with at most first-order derivatives we will consider is

S =

∫

d4x
√−g

[

f(ϕI)
R

2
− SIJ(ϕ

I)
1

2
gµν∂µϕ

I∂νϕ
J −W (ϕI)

]

, (3.53)

where f is the non-minimal coupling to gravity, SIJ is the Kahler metric and W is the

scalar potential. Here all f , SIJ and W are functions of all of the scalar fields ϕI .
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3.4.1 Difference Between Single and Multifield Models: Entropic

Perturbations

A crucial difference between single-field and multifield models is the presence of en-

tropic perturbations or isocurvature perturbations. With the existence of isocur-

vature modes, the slow-roll solution is no longer an attractor, leading to non-vanishing

non-adiabatic pressure perturbations and thus possible superhorizon evolution of ζ . To

see this, recall that under the separate universe approximation, ζ follows the evolution

equation Eq. (2.40) on uniform-density slicings. In this gauge, the pressure perturba-

tion is non-vanishing only if the non-adiabatic pressure perturbation δPnad, defined by

δPnad ≡ δP − (Ṗ /ρ̇)δρ, is non-zero. The adiabatic regime corresponds to δPnad = 0.

The evolution equation for ζ can be written in terms of δPnad

ζ̇ ≈ − H

ρ+ P
δPnad (3.54)

to first order. In multifield models with M canonical scalar fields, δPnad 6= 0 on

superhorizon scales in general. This can be seen by redefining the M scalar fields ϕI

into an adiabatic direction σ, i.e. a direction parallel to the classical field trajectory,

and corresponding M − 1 orthogonal directions sI [100]

σ ≡
∫

σ̂Iδϕ
Idt ,

sI ≡
∑

J

ŝIJϕ
J , (3.55)

where σ̂I ≡ ϕ̇I/
√
∑

J(ϕ̇
J)2 and

∑

I ŝIJ σ̂I = 0. We also assume all the sI to be

orthogonal to each other. We then decompose the field perturbations δϕI in terms of

an adiabatic perturbation δσ and entropic perturbations δsI

δσ =
∑

I

σ̂Iδϕ
I (3.56)

δsI = ŝIJδϕ
J . (3.57)
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The adiabatic field σ follows the Klein-Gordon equation as in the case of a single-field

σ̈ + 3Hσ̇ +Wσ = 0 . (3.58)

Here Wσ denotes the partial derivative of W with respect to σ. By expressing the

stress-energy tensor T µν in the form of a perfect fluid, the pressure and momentum

perturbations in the uniform-density gauge are

δP =
∑

I

[

ϕ̇I( ˙δϕ
I − ϕ̇IΨ)−WIδϕ

I
]

= −2Wσδσ + 2δsW ,

δq = −
∑

I

ϕ̇IδϕI = −σ̇δσ , (3.59)

where we have defined δsW ≡ ∑IWIδϕ
I −Wσδσ. The non-adiabatic pressure per-

turbation is then given by

δPnad = −2Wσ

3Hσ̇
δρcom − 2δsW . (3.60)

Since the comoving density perturbation δρcom follows the Poisson equation (k2/a2)φ =

−4πGδρcom from the time-time component of the Einstein equation, the first term in

Eq. (3.60) vanishes on superhorizon scales. However, the second term in Eq. (3.60)

need not be small in general and can source δPnad on superhorizon scales. As δσ

denotes the perturbation along the classical field trajectory, which is the adiabatic per-

turbation, δsW is a measure of the entropic perturbations. Note that δsW vanishes for

the case of a single field. Therefore we conclude that entropic perturbations δsI act

as source terms for the adiabatic mode and lead to superhorizon evolution of ζ ,

which is a main feature of multifield models.

3.4.2 Multifield Predictions for Primordial Observables

Now we consider the predictions from multifield models. In particular, we consider the

case where all the fields are minimally coupled with canonical kinetic terms. Using

the δN formalism Eq. (3.3), we can express the primordial observables related to ζ

defined earlier in Section 2.3 in terms of the δN coefficients in the case of slow-roll
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scalar field inflation. In general, the δN coefficients depend on the initial conditions

at horizon-exit and so do the model predictions.

Following a similar approach as adopted in Section 3.3 for the canonical single field,

we can work out the correlation functions for the field perturbations δϕI given by [101]

(for general multifield model with a non-flat field space metric, see [80])

〈

δϕI(k1, t∗)δϕ
J(k2, t∗)

〉

=

(

H∗

2π

)2

δIJδ(3)(k1 − k2) , (3.61)

〈

δϕI(k1, t∗)δϕ
J(k2, t∗)δϕ

K(k3, t∗)
〉

= (2π)3δ(3)(
∑

i

ki)
4π4

∏

i k
3
i

(

H2
∗

4π2

)2

AIJK ,

(3.62)

to leading order. Here AIJK is a function of the external momenta ki, defined as

AIJK(k1, k2, k3) ≡
ϕ̇I∗
4H∗

δJK
[

−3
k22k

2
3

kt
− k22k

2
3

k2t
(k1 + 2k3) +

1

2
k31 − k1k

2
2 + perm

]

.

(3.63)

Power Spectrum

For the two-point statistics of ζ , at leading order, the δN formalism gives [102]

Aζ =
∑

I

N2
I P∗ , (3.64)

ns − 1 = −2(ǫH)∗ +
2

H∗

∑

IJ ϕ̇
J
∗NIJNI

∑

K N
2
K

, (3.65)

r =
8

∑

I N
2
I

. (3.66)

for the power spectrum Pζ , the spectral index ns − 1 and the tensor-to-scalar ratio r.

Here P∗ is the power spectrum for the scalar field perturbations 〈δϕ(k, t∗)δϕ(k′, t∗)〉
at horizon-exit. To derive the expression for ns Eq. (3.65), we have used the slow-roll

approximation to replace d/d ln k with the field derivatives

d

d ln k
≈ ϕ̇I∗

dt

d ln k

∂

∂ϕI∗
, (3.67)
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where the field index I is summed over. Here the subscript ∗ corresponds to quantities

evaluated at horizon-exit for the pivot scale k∗ under consideration, i.e. when k∗ =

aH∗.

For the running of the spectral index α, using again Eq.(3.67), Eq. (2.19) can be written

as

α = −4(ǫH)
2
∗ +

2Ḧ∗

H3
∗

− 2Ḣ∗

H3
∗

∑

IJ ϕ̇
J
∗NIJNI

∑

K N
2
K

+
2

H2
∗

[∑

IJ ϕ̈
J
∗NIJNI

∑

K N
2
K

+
∑

IJK

ϕ̇J∗ ϕ̇
K
∗

(

NIJKNI +NIJNIK
∑

LN
2
L

− 2NIJNI

∑

M NMNMK

(
∑

LN
2
L)

2

)]

, (3.68)

which is second-order in slow-roll in general.

Non-linear Parameters

We can also express the non–linear parameters in terms of the δN coefficients simi-

larly by considering higher order terms in the δN expansion. In terms of the expansion

Eq. (3.3), we can separate out two different contributions to higher order correlation

functions: the instrinsic non-gaussianity of the field perturbations such as 〈δϕδϕδϕ〉
and higher-order derivatives of N . It is convenient to parametrise the non-linear pa-

rameters into shape dependent and independent parts as in [103, 104], for instance

fNL = f
(3)
NL + f

(4)
NL , which are defined as

f
(3)
NL ≡ 5

6

∑

IJK A
IJKNINJNK

(
∑

LN
2
L)

2
∑

i k
3
i

, f
(4)
NL ≡ 5

6

∑

IJ NIJNINJ

(
∑

K N
2
K)

2
. (3.69)

For canonical models, the non–linear parameters defined in Eq. (2.25)-(2.26) are dom-

inated by their shape-independent parts, which under the δN formalism are expressed

as [48, 69]

f
(4)
NL =

5

6

∑

IJ NIJNINJ

(
∑

K N
2
K)

2
, (3.70)

τNL =

∑

IJK NIJNJKNKNI

(
∑

LN
2
L)

3
, (3.71)

gNL =
25

54

∑

IJK NIJKNINJNK

(
∑

LN
2
L)

3
. (3.72)



Predictions from Slow-roll Inflation 49

Unlike the simplest single-field model, local non-Gaussianity can be enhanced in canon-

ical multifield models subject to appropriate initial conditions even during slow-roll,

with |f local
NL | > O(5), if some of the second order δN coefficients NIJ are large. It

has been shown that this typically requires the fields to start near some extreme points

of the potential at horizon exit [105, 106]. A necessary condition for realising a large

non-Gaussianity in the case of canonical two-field models with separable potentials

is a hierachy between the horizon crossing field velocities, which was found using a

heatmap analysis by Byrnes et al. and Elliston et al. [102, 107].

Scale Dependence of Non-linear Parameters

The spectral indices nfNL
and nτNL

of the shape-independent parts are given by [60,

108]

nfNL
= −2[ns − 1 + 2(ǫH)∗] +

5

6fNL

(

1

H∗

)[∑

IJK NIJKNINJ(ϕ̇K)∗
(
∑

LN
2
L)

2

+2

∑

IJK NIJNIKNJ(ϕ̇K)∗
(
∑

LN
2
L)

2

]

, (3.73)

nτNL
= −3[ns − 1 + 2(ǫH)∗] +

2

τNL

(

1

H∗

)[∑

IJKLNIJLNIKNJNK(ϕ̇L)∗
(
∑

M N2
M)3

+

∑

IJKLNIJNIKNJLNK(ϕ̇L)∗
(
∑

M N2
M)3

]

, (3.74)

which are given in terms of third-order derivatives of N . These can be further sim-

plified using dN/dt∗ = −H∗ and the slow–roll field equations. In particular, the δN

coefficients can be related to the partial derivatives of the potential by

∑

I

NIWI∗ = W∗ , (3.75)

∑

I

NIJWI∗ = WJ∗ −
∑

I

NIWIJ∗ , (3.76)

∑

I

NIJKWI∗ = WJK∗ −
∑

I

NIJWIK∗ −
∑

I

NIKWIJ∗ −
∑

I

NIWIJK∗ ,

(3.77)
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where Eqs. (3.76)-(3.77) are derived by differentiating Eq. (3.75) with respect to ϕI∗.

Here subscripts I, J,K denote partial differentiation with respect to the scalar fields.

WI∗ can be replaced by ϕ̇I∗ using the slow–roll field equations 3Hϕ̇I∗ ≈ −WI∗. Using

these, we can work out alternative expressions for ns and α [96, 109]

ns − 1 = −2(ǫH)∗ −
2

∑

K N
2
K

+
1

3H2
∗

2
∑

IJ NINJ(WIJ)∗
∑

K N
2
K

, (3.78)

α = −
∑

IJ

(

2WIWJWIJ

W 3

)

∗
+
∑

I

(

2W 2
I

W 4

)

∗
+
∑

IJK

(

4

W

)

∗

(

W −NINJWIJ

N2
K

)2

∗

+
∑

IJKL

(

2NINJNKWIJK

N2
L

)

∗
+
∑

IJKL

(

4

W

)

∗

[

(WK −NIWIK)(NJWJk)

N2
L

]

∗
,

(3.79)

for canonical models.

Following a similar approach here, we extend it to the case of nfNL
and nτNL

, allow-

ing us to rewrite them in terms of only first and second order derivatives of N as

follows [110]

nfNL
= −2[ns − 1 + 2(ǫH)∗]−

10

6fNL

(

1
∑

LN
2
L

)2

+
5

6fNL

∑

IJK

[

4(ηIK)∗NIJNJNK + (ηIJ)∗NINJ + (WIJK/W )∗NINJNK

(
∑

LN
2
L)

2

]

,

(3.80)

nτNL
= −3[ns−1+2(ǫH)∗]−

2

τNL

(

1
∑

M N2
M

)3

+
2

τNL

∑

IJKL

[

2(ηJL)∗NIJNIKNLNK

(
∑

M N2
M)3

+
(ηIJ)∗NINJ + (ηIJ)∗NJLNIKNLNK + (WIJL/W )∗NIKNJNKNL

(
∑

M N2
M)3

]

.

(3.81)

Here ηIJ ≡ WIJ/W . Eqs. (3.80)-(3.81) are two useful results. Whilst Eqs. (3.80)-

(3.81) are equivalent to Eqs. (3.73)-(3.74), they possess significant computational ad-

vantages over the former since they involve lower order δN derivatives which are rel-
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atively easier to evaluate in general compared to higher order ones. From Eqs. (3.80)-

(3.81), we can also see the error bars on the scale dependence of the non-linear param-

eters fNL and τNL are approximately inversely proportional to their fiducial values [65].

δN expressions for the primordial observables also exist for generalised multifield

models with non-minimal couplings and non-canonical kinetic terms, see [111].

An Example: Two Field Canonical Models

In the following, we consider a simple subclass of multifield models, the minimally

coupled two-field model with canonical kinetic terms. This class of model is described

by the following action

S =

∫

d4x
√−g

[

M2
p

R

2
− 1

2
gµν∂µϕ∂νϕ− 1

2
gµν∂µχ∂νχ−W (ϕ, χ)

]

, (3.82)

where W (ϕ, χ) is the scalar potential which is a function of both scalar fields. The

standard slow roll parameters in the two-field case are defined as

ǫϕ =
M2

p

2

(

Wϕ

W

)2

, ǫχ =
M2

p

2

(

Wχ

W

)2

, ǫ = ǫϕ + ǫχ ,

ηϕϕ =M2
p

Wϕϕ

W
, ηϕχ =M2

p

Wϕχ

W
, ηχχ =M2

p

Wχχ

W
, (3.83)

where subscripts denote differentiations with respect to the fields ϕ and χ respectively.

Here we assume these slow-roll parameters are much smaller than O(1) during infla-

tion 4.

The background dynamics of the scalar fields are again governed by the Klein-Gordon

equation

ϕ̈+ 3Hϕ̇+Wϕ = 0 (3.84)

χ̈+ 3Hχ̇+Wχ = 0 (3.85)

where the first terms in both equations can be neglected during slow-roll inflation. The

fields then evolve monotonically and we can therefore write the number of e-folds N

4For discussion and alternative definitions for slow-roll parameters in multifield models, see [112]
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from the horizon exit t∗ to time te as

N =

∫ te

t∗

Hdt ≈ 1

M2
p

∫ ϕ∗

ϕe

W

Wϕ

dϕ =
1

M2
p

∫ χ∗

χe

W

Wχ

dχ (3.86)

by using the slow-roll equations. We can then compute the δN coefficients by differ-

entiating Eq. (3.86). For instance, the first order δN coefficient Nϕ is given by

Nϕ =
1

M2
p

(

W

Wϕ

)

∗
− 1

M2
p

(

W

Wϕ

)

e

(

∂ϕe
∂ϕ∗

)

H

+
1

M2
p

∫ ∗

e

(

∂χ

∂ϕ∗

)

∂

∂χ

(

W

Wϕ

)

dϕ ,

(3.87)

where ∂ϕe

∂ϕ∗

is evaluated on final uniform hypersurfaces, denoted by subscript H .

Technical Difficulties in Computing δN Coefficients

In Section 3.4.2, we have given the canonical multifield model predictions in terms

of the δN coefficients. Given the potential W and initial conditions at horizon-exit,

by solving the Klein-Gordon field equations subject to the Friedmann equation, we

can then evaluate the corresponding δN coefficients and make our specific model pre-

dictions. However, the coupled field equations are difficult to solve analytically in

general even for two fields in the slow-roll limit and it is not always possible to obtain

analytic expressions for the δN coefficients. In fact, analytic expressions only exist

for potentials of separable form, where W = U(ϕ) + V (χ) or W = U(ϕ)V (χ), see

Appendix A.

Another important condition required in deriving analytic expressions for the δN co-

efficients is the slow-roll approximation. Most analysis to date for multifield models is

done in the slow-roll regime. This only gives the correct predictions for models where

the adiabatic regime is reached by the end of inflation. In general, however, entropic

perturbations may persist after inflation ends. As a result, the curvature perturbation

ζ could continue to evolve beyond the slow-roll regime. In order to properly compare

with observations, we should follow the evolution of the curvature perturbation ζ until

the Universe reaches the adiabatic regime. Any post-inflationary evolution, particu-

larly (p)reheating, may alter the multifield model predictions derived in the slow-roll
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Figure 3.2: To compare with observations, model predictions should be evaluated at the time

of measurements or until the Universe reaches the adiabatic regime, which might happen after

inflation ends. Credit: Ewan Tarrant

regime. This is illustrated in Fig. 3.2.

It is important to study how sensitive ζ and the related primordial observables are to

the subsequent post-inflationary evolution in multifield models in as generic a setup as

feasible in order to compare with observations and put constraints on the models.

While we require the slow-roll approximation for deriving analytic expressions, it

should be emphasised that the δN formulae given in Section 3.4.2 for model predic-

tions only require slow-roll at horizon exit and are valid beyond the slow-roll regime.

We can apply these formulae to the post-inflationary regime and study the evolution of

ζ and the primordial observables by numerically solving the field equations. Consider-

ing a wide range of canonical multifield models, we will see in the following chapters

that even in the simplest perturbative reheating setup, post-inflationary evolution does

change the multifield model predictions and should be taken into account before com-

paring with observations in general.



Chapter 4

The Influence of Reheating on the

Power and Bispectra

As we have previously argued, to compare with observations, post-inflationary evolu-

tion needs to be taken into account in multifield inflation unless the adiabatic limit is

reached during slow-roll. In this chapter, we illustrate this and the influence of reheat-

ing on multifield model predictions. Particularly we address questions like whether

(p)reheating could significantly change the multifield model predictions evaluated un-

der the slow-roll approximation and induce any generic model-independent features.

In Section 4.1, we first give a brief review of the elementary theory of perturbative

reheating and discuss the limitations of the setup. We then discuss the evolution of

primordial observables, at the level of the power spectrum Pζ in Section 4.2 and bis-

pectrum Bζ in Section 4.3, both during and after a period of perturbative reheating in

various canonical two-field models. We compare the end of reheating predictions with

the slow-roll predictions evaluated at the end of inflation, illustrating the importance

of taking reheating into account. We also compare the qualitative behaviour between

quadratic and quartic potentials in Section 4.4, and separable and non-separable poten-

tials in Section 4.5.
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4.1 Elementary Theory of Reheating

As discussed earlier in Section 1.3, inflation effectively dilutes the energy density of

any cosmic fluids except that of the inflaton field. We can see this from the continuity

equation Eq. (1.3), which suggests ρm ∝ a−3 and ργ ∝ a−4. Thus after an almost

exponential expansion of spacetime during which a changes by many orders of mag-

nitude, the energy density of any cosmic fluids is effectively driven to zero except that

of the inflaton field.

After inflation ends, the Universe therefore ends up in a non-thermal state with effec-

tive zero temperature 1 except in the case of warm inflation where there is a continuous

production of radiation [113].

To recover the standard Big Bang scenario in subsequent evolution, the fluctuations

and the energy locked in the inflaton field must be somehow converted to other fields

including the Standard Model (SM) particles we observe today. Such a process is

called (p)reheating. This is an important epoch and must be accounted for in realistic

inflation model building from particle physics theory. For reviews of the theory of

(p)reheating, see [114, 115].

In this thesis we will consider the simple model of perturbative reheating in slow-

roll canonical models. This is based on perturbative decays of the inflaton field, first

developed by Dolgov and Linde [116] and Abbot et al. [117]. We will explain the

model setup in the following.

Let us consider the single-field case first. Recall that in canonical single-field inflation,

the dynamics of the inflaton field ϕ are governed by the Klein-Gordon equation

ϕ̈+ 3Hϕ̇+Wϕ = 0 . (4.1)

During slow-roll, the first term in Eq. (4.1) is negligible and ϕ simply flows along

the gradient of the potential. After slow-roll ends, ϕ approaches the minimum of the

potential and starts oscillating about it. This is the oscillating regime.

To study perturbative reheating, we are interested in these classical oscillations of the

1There is a Hawking temperature associated with the horizon, but is very much subdominant com-

pared to the energy density of the inflaton field.
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homogeneous background ϕ field. Take the quadratic potential W (ϕ) = 1
2
m2ϕ2 as

an example. After a few oscillations, the amplitude of the oscillations become sub-

Planckian and the inflaton ϕ approaches the aymptotic solution [118, 119]

ϕ(t) = Φ(t) · sin(mt)

Φ(t) =
Mp√
3πmt

∼ Mp

2π
√
3πNosc

, (4.2)

where Φ(t) is the amplitude of the oscillations and Nosc is the number of oscillations

since the end of inflation. This corresponds to rapid sinusoidal oscillations with slowly

decaying amplitude. Averaging over several oscillations, one finds that a ∝ t2/3 and

ϕ behaves as in the same way as that of non-relativistic particles of mass m. Hence

coherent oscillations of the homogeneous ϕ field correspond to a matter fluid with

an effective equation of state ω = 0. For a quartic potential W (ϕ) = 1
4
λ̃ϕ4, the

corresponding asymptotic solution for ϕ is [120]

ϕ(η) = Φ(η)cn

(

wϕη

c
,
1√
2

)

,

Φ(η) =

√

3

2π
Mp

c

wϕη
(4.3)

in conformal time η. Here c is a numerical constant given by c ≈ 0.85, wϕ is the effec-

tive frequency of oscillation where wϕ = c
√

λ̃aΦ and cn is the elliptic function. To a

good approximation, the solution Eq. (4.3) can be written as ϕ(η) = Φ sin(c
√

λ̃aΦη).

Again averaging over several oscillations, we can see coherent oscillations of ϕ mimic

a relativistic fluid with an effective equation of state ω = 1/3.

So far we have not taken particle production into account due to interactions between

ϕ and other particles. In general, ϕ may decay into bosons χb and fermions ψf due to

terms in the interaction Lagrangian Lint such as

Lint ⊇ −hψ̄fψfϕ−
(

bϕ+
1

2
g2ϕ2

)

χ2
b (4.4)

where h, g are dimensionless coupling constants and b is a coupling constant of mass

dimension one. Now we consider the effect of particle production due to these interac-

tion terms in the case of the quadratic potential. As discussed earlier, a homogeneous
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scalar field oscillating about a quadratic minimum with frequency wϕ = m can be in-

terpreted as a collection of ϕ particles with zero momenta. Based on this interpretation,

the effects of particle production can be incorporated into the field equation Eq. (4.1)

by means of a polarisation operator [121]

ϕ̈+ 3Hϕ̇+
(

m2 +Π(k0)
)

ϕ = 0 . (4.5)

Here, Π(k0) is the flat-space polarisation operator for the field ϕ at four–momentum

k = (k0, 0, 0, 0) = (wϕ, 0, 0, 0). The real part of Π(k0) gives only a small cor-

rection to m2, but when k0 is larger than either the mass of χb or ψf , i.e. k0 ≥
min {2mχb

, 2mψf
}, Π(k0) acquires an imaginary part ImΠ. We work in the limit

where m2 ≫ max {H2, ImΠ}, which are usually satisfied after inflation ends. This

is the condition for rapid oscillations. Neglecting the time–dependence of ImΠ and

using H ≈ 2/3t, the approximate solution to Eq. (4.5) is

ϕ(t) ≈ Mp√
3πmt

exp

(

−1

2

ImΠ

m
t

)

sin (mt) . (4.6)

From unitarity relations, it follows that ImΠ = mΓ [122], where Γ is the total decay

rate of ϕ particles, i.e. Γ = Γϕ→χbχb
+ Γϕ→ψfψf

. Eq. (4.6) implies that the amplitude

of the ϕ oscillations decays as ϕ(t) ∼ a−3/2exp(−1
2
Γt). The decay rate Γ can be

computed using perturbation theory in quantum field theory. For interaction terms

given in Eq. (4.4), decay rates for the corresponding decay channels are given by [122]

Γϕ→χbχb
=

b2

8πm
+
g2Φ2

8πm
, Γϕ→ψfψf

=
h2m

8π
. (4.7)

For a phenomenological prescription, one can add an extra friction term Γϕϕ̇ to the

classical equation of motion of the field ϕ instead of the polarisation operator during

the rapid oscillations regime [123]

ϕ̈+ (3H + Γ)ϕ̇+Wϕ = 0 . (4.8)

The rapid oscillations condition now reads as m ≫ max {H,Γ}. Multiplying through
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by ϕ̇ it is intuitive to rewrite Eq. (4.8) in terms of the energy density of the ϕ field, ρϕ

ρ̇ϕ + 3Hϕ̇2 + Γϕ̇2 = 0 . (4.9)

Now, since the oscillation of ϕ is approximately sinusoidally, ϕ̇2 can be replaced by

its average over a single oscillation cycle, i.e. 〈ϕ̇2〉cycle = ρϕ. This can be seen by

multiplying Eq. (4.8) by ϕ. In the rapid oscillations regime, this reduces to

d

dt
(ϕϕ̇)− ϕ̇2 + ϕWϕ ≈ 0 . (4.10)

Averging over a single cycle, the first term vanishes and thus we can deduce 〈ϕ̇2〉 ≈
〈ϕWϕ〉. If the decay products of the oscillating ϕ field are very light relative to ϕ itself,

we can model them as a (single) relativistic radiation fluid with energy density ργ

ρ̇γ + 4Hργ = Γρϕ = Γϕ̇2 , (4.11)

H2 =
1

3M2
p

(ρϕ + ργ) . (4.12)

Here Eq. (4.11) follows from energy conservation. Similar analysis can be applied

for the quartic potential 1
4
λ̃ϕ4, except now ϕ behaves as an effective relativistic fluid

with ρϕ ∝ a−4 and now we have 〈ϕ̇2〉cycle = 4ρϕ/3. Also the mass m is replaced

by the effective oscillation frequency wϕ = c
√

λ̃Φ. Together Eqs. (4.9), (4.11) and

(4.12) give the phenomenological description of the simple perturbative reheating of

the Universe.

When Γ > H , the energy density of theϕ field decays exponentially as ρϕ ∝ exp(−Γt).

This justisfies the interpretation of treating the oscillating ϕ field as a coherent wave of

decaying ϕ particles. ρϕ quickly becomes subdominant compared to that of the decay

products ργ and reheating is said to be completed. The density of the Universe at this

moment is

ρ(tc) ≃ 3H2(tc)M
2
p = 3Γ2M2

p . (4.13)

If the decay products interact with each other strongly enough, then thermal equilib-

rium is quickly established and may be maintained at a temperature TR. Treating this
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ultrarelativistic gas of particles with Bose–Einstein statistics, the energy density of the

Universe in thermal equilibrium is then

ρ(TR) ≃
(

π2

30

)

g∗T
4
R , (4.14)

where the factor g∗(TR) ∼ 102−103 depends on the number of ultrarelativistic degrees

of freedom. Comparing Eqs. (4.13) and (4.14) we arrive at

TR ∼ 0.1
√

ΓMp . (4.15)

Here we have assumed perfect energy transfer from inflaton to the effective radiation

fluid (ignoring damping due to expansion of the Universe). If there is significant pro-

duction of non-relativistic matter not in the form of radiation, TR decreases as H is

modified.

In order not to spoil the success of Big Bang nucleosynthesis (BBN), the inflaton decay

products should be quickly thermalised through scatterings, annihilations, pair creation

and further decays, such that the Universe is completely radiation dominated before the

BBN epoch. This constrains the reheating temperature to be TR & 5MeV [124, 125],

which in turn implies Γ & 4×10−40Mp. There is also an upper bound on TR set by the

energy scale of inflation, where TR ≤ 1016GeV . A stronger bound TR ≤ 106−8GeV

can also be found, which comes from the overproduction of gravitinos if one considers

supersymmetric models [126, 127, 128].

It is straightforward to extend the perturbative reheating setup to canonical multifield

models given that the fields are weakly coupled. To do so, we simply consider multiple

copies of the ϕ field discussed above for fields that undergo rapid sinusodial oscilla-

tions. The main difference between the single-field and multifield paradigm is that

the fields are coupled via the potential in multifield models except the case of sum-

separable potentials. This modifies the effective masses of the fields and thus modu-

lates the decay rates. For weak couplings, we expect the modulation to be small and

thus can be safely neglected.
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Discussion on the Validity of Perturbative Reheating

In this section, we would like to comment on the validity and limitions of the pertur-

bative reheating setup. Firstly and most importantly, it should be emphasised that the

simple phenomenological equations are only valid when the fields are rapidly oscillat-

ing about some minima: the ‘particle creation’ term, Γϕ̇, should not be present beyond

the rapid oscillation regime.

Furthermore, in reality, the transition from inflation to a hot Big Bang Universe could

happen via very different mechanisms than the perturbative reheating setup discussed

earlier. In particular, parametric resonance effects may be significant under certain

regimes, particularly early in the oscillating regime when the oscillation amplitude is

large. To a first approximation, the inflaton ϕ acts as a classical external force acting

on the quantum fields χb and ψf to which it couples. Since ϕ is time-dependent, the

effective masses of χb and ψf could change rapidly if the bare masses are small, leading

to non-adiabatic excitations. This process is known as preheating [118, 119, 129].

Despite various limitations, the elementary theory of reheating is appealing due to its

simplicity and its ability to be very successful in describing the reheating process in

certain regimes. Whilst reheating may well be more complex than the simple per-

turbative model we consider, it is a useful scheme for determining how sensitive the

primordial observables may be to reheating, and to check whether any general trends

exist across different models. For example, one might naviely speculate that any large

non–Gaussianity is generically damped to zero after reheating, as is often (but not

always [130]) the case during inflation if the isocurvature mode decays during slow

roll [131, 132]. This is not the case however even in the simple perturbative reheating

setup [110, 133, 134, 135].

4.2 Two-Point Statistics After Reheating

In this section, we illustrate the influence of reheating in multifield models at the level

of the power spectrum. We focus on the simple class of two-field models discussed in

Section 3.4.2. In particular, we consider several different two-field models where min-
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ima exist in either the direction of one or both fields. The results were first presented

in [133].

We model perturbative reheating as discussed in the last section by the following field

equations

ϕ̈+ (3H + Γϕ)ϕ̇+Wϕ = 0

χ̈+ (3H + Γχ)χ̇+Wχ = 0

ρ̇γ + 4Hργ = Γϕϕ̇
2 + Γχχ̇

2

H2 =
1

3M2
p

(

1

2
χ̇2 +

1

2
ϕ̇2 +W + ργ

)

, (4.16)

where Γχ and Γϕ are the decay rates for the χ and ϕ fields respectively, which only

turn on during the rapid oscillation regime. For simplicity, we take the decay rates to

be constants. There is a lower bound on Γχ and Γϕ from BBN as discussed earlier,

given by Γϕ,Γχ & 4 × 10−40Mp. We ensure that this bound is always satisfied. For

such weak decay rates, reheating would proceed incredibly slowly if the process were

entirely perturbative. In reality however, as alluded to above, the universe is unlikely

to be reheated via a mechanism that can be described completely by standard pertur-

bation theory, and so we interpret the bound rather loosely. The upper bound due to

overproduction of gravitinos can be evaded by considering non-supersymmetric mod-

els. Where applicable, we also give the value of the Hubble rate at the start of reheating

Hr so a direct comparison between the expansion and decay rate can be made.

To compute ζ and the primordial observables we apply the δN formalism. The corre-

sponding δN coefficients are computed numerically using the central finite difference

method. Here we choose to switch on the decay rates when the corresponding fields

first pass through their respective minima which they oscillate about. We denote this

epoch as the start of reheating. For the two minima case, there are two such epochs,

which we denote as Nϕ=0 and Nχ=0. While these choices of reheating hypersurfaces

are arbitrary, the main qualitative results are very much independent of how the reheat-

ing hypersurfaces are defined (see Appendix B). Details of the numerical recipe used

are summarised in Appendix B.

The reader should be reminded that model predictions in multifield inflation depends
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on the initial conditions set at horizon-crossing in general. Since we are interested

in the evolution of statistics beyond the power spectrum as well, we focus on mod-

els and regions of parameter space where some of the second order δN coefficients

NIJ and the magnitude of the non-linear parameter |fNL| can become large (at least

momentarily) here.

Models with One Minimum

The first model we considered is the ’runaway’ type quadratic times exponential po-

tential

W (ϕ, χ) = W0χ
2e−λϕ

2/M2
p . (4.17)

Here W0 sets the energy scale of the potential and is of mass dimension two. Whilst its

value sets the scale of inflation and determines the amplitude of the primordial power

spectrum and hence is constrained, it does not affect the statistics of ζ and so we leave

W0 as a free parameter. Inflation happens when χ is of super-Planckian field values and

the exponential factor is very much suppressed, i.e. λϕ2/M2
p ≪ 1. In what follows, we

identify χ as the inflaton and ϕ as the subdominant field which sources the isocurvature

perturbations. This potential was first introduced by [102] in the context of primordial

non-Gaussianity, and has made frequent appearances in the literature since then, for

instance in [105, 106, 132, 136, 137, 138]. Without any minimum for a corresponding

oscillating phase, the ϕ field is not directly involved in the reheating phase and so we

set Γϕ = 0 at all times.

This model does not contain a ‘focussing’ region in the potential where neighbouring

trajectories in the bundle may converge such that non-adiabatic perturbations vanish.

Hence, ζ and its statistics will continue to evolve after inflation has ended. The adia-

batic regime is only possible with reheating. The switching on of the decay terms at

the reheating surface sources the radiation density. As the χ field oscillates about its

minimum, its kinetic energy is transferred to the radiation fluid, resulting in bursts

of particle production. As radiation fills the universe, Hubble damping slows the

motion of ϕ to a crawl and as we approach Ωγ ∼ 1, it asymptotes to a constant:
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ϕ(t → ∞) ≈ const. Herein is the fundamental difference in the motion of ϕ when

Γχ 6= 0 compared to Γχ = 0: as radiation comes to dominate, trajectories in the bundle

cease to evolve. The bundle does not degenerate to a caustic as would be the case if the

trajectories were naturally focussed by a region of the potential, but nonetheless this

freezing of the ϕ field guarantees that ζ becomes conserved. This does not happen in

the Γχ = 0 limit where the trajectories continue to diverge in the ϕ direction, always

sourcing ζ .

Evolution of the δN Coefficients
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Figure 4.1: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . The evolution of the background fields (in

Planck units) without reheating for model parameters λ = 0.05, ϕ∗ = 10−3Mp and χ∗ = 16.0Mp.

The solid vertical (black) line denotes the end of inflation, Ne.

Before showing the influence of reheating on the two-point statistics of ζ , it is useful to

inspect the evolution of the subdominant ϕ field and the δN coefficients in this model

first. In the slow-roll regime, the solution to the Klein-Gordon equation for ϕ and the

corresponding slow-roll parameter ηϕϕ are given by

ϕ = ϕ∗e
2λN , ηϕϕ = 2λ

[

2λϕ2
∗e

4λN/M2
p − 1

]

. (4.18)

Eq. (4.18) shows that ϕ will continue to increase exponentially with the number of e-

folds N . We expect this solution to break down beyond slow-roll, but remains a good

approximation as long as |ηϕϕ| < 1. In Fig. 4.1 we compare this solution with the exact

numerical solution without reheating, showing the slow-roll solution indeed remains a
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good approximation for ϕ for the first few e-folds after inflation ends (ǫH = 1).

For the δN coefficients,Nχ remains practically constant,NχMp ≈ (1/
√

2ǫχ)∗, through-

out the entire inflationary and post–inflationary phase except momentarily during the

χ oscillations, regardless of the decay rate Γχ. It acquires this value as the fields leave

the horizon. This is shown in Fig. 4.2. This can be explained in the following.
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Figure 4.2: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . The evolution of the first order δN coefficient

Nχ in unit of M−1
p for the model parameters λ = 0.06, ϕ∗ = 10−3Mp and χ∗ = 16.0Mp. The

top panel shows the slow-roll inflationary evolution from horizon-exit, whereas the bottom panel

shows the reheating evolution with two different decay rates Γχ. The decay rates are given in unit

of
√
W0. The solid vertical (black) line denotes the end of inflation, Ne, and the dashed vertical

(black) line denotes the start of reheating, Nχ=0 where χ first crosses χ = 0. The Hubble rate at

the start of reheating is Hr ≈
√
7× 10−2W0.
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Figure 4.3: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . The evolution of the second order δN coeffi-

cient Nχχ in unit of M−2
p for the model parameters λ = 0.06, ϕ∗ = 10−3Mp and χ∗ = 16.0Mp.

The top panel shows the slow-roll inflationary evolution from horizon-exit, whereas the bottom

panel shows the reheating evolution with two different decay rates Γχ. The decay rates are given

in unit of
√
W0. The solid vertical (black) line denotes the end of inflation, Ne, and the dashed

vertical (black) line denotes the start of reheating, Nχ=0 where χ first crosses χ = 0. The Hubble

rate at the start of reheating is Hr ≈
√
7× 10−2W0.

Given H is monotonic in time, we first rewrite the number of e-folds N from an initial

flat hypersurface at t∗ to a final uniform-density hypersurface at tc as

N ≡
∫ tc

t∗

Hdt =

∫ Hc

H∗

(

H

Ḣ

)

dH . (4.19)
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Taking the derivative with respect to χ∗ as in the δN formalism we find

Nχ =

(

H

Ḣ

)

∗

(

∂H

∂χ

)

∗
+

∫ Hc

H∗

∂

∂χ∗

(

1

Ḣ

)

H

HdH , (4.20)

where the derivative inside the integral is computed by holdingH constant. The deriva-

tive at the boundary c vanishes, since by definition the final hypersurface at tc corre-

sponds to one of uniform-density and thus constant H from the Friedmann equation.

Using the fact that the fields are in slow-roll at horizon exit, the first term on the RHS of

Eq. (4.20) reduces to (1/Mp

√

2ǫχ)∗ if |χ̇∗| ≫ |ϕ̇∗|. Then, to explain why Nχ remains

constant at this value requires arguing that the integral term in Eq. (4.20) is negligible,

i.e., after perturbing χ∗, surfaces of constant Ḣ must coincide with surfaces of constant

H . This is indeed the case if a hierarchy of kinetic energies exists between the fields

at horizon crossing, i.e., |χ̇∗| ≫ |ϕ̇∗|. Since the kinetic terms are canonical, the fields

follow the gradient of the potential, and as they are in slow-roll at horizon exit, this

hierarchy implies |Wχ|∗ ≫ |Wϕ|∗. If this is the case, the dependence of Ḣ on χ∗ is

rapidly washed out, and the two–dimensional bundle in the χ direction (holding ϕ∗

fixed) degenerates to a caustic. We have found that the condition |Wχ|∗ ≫ |Wϕ|∗ is

sufficient to guarantee that the integrand of Eq. (4.20) is always small from horizon

crossing until oscillations of χ begin.

During the oscillatory phase, the integrand oscillates about zero with an amplitude that

decays with the Hubble expansion, and when integrated over many oscillations, the

net result is a negligible correction to Nχ. This is shown in Fig. 4.4. By the same

argument, differentiating Eq. (4.20) with respect to χ∗ again, we deduce Nχχ remains

roughly constant at NχχM
2
p ≈ 1 − (ηχχ/2ǫχ)∗, which, for this particular potential is

independent of λ and the field values at horizon crossing, Nχχ ≈ 0.5M−2
p .
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Figure 4.4: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . The evolution of (ǫH)−1 as a function of

− lnH (here H defined in unit of W0/Mp), denoted by the solid black line, for two different Γχ:

Γχ =
√

W0/100 (top panel) and Γχ =
√
W0 (bottom panel). As H decreases in time, ǫH evolves

to greater values of lnH and the limit of the x−axis represents the completion of reheating. Here

we also plot the evolution of ǫ−1
H for slightly different initial condition ϕ∗, denoted by the solid

green and red lines. We see that the effect of varying ϕ∗ is to introduce a relative phase into the

oscillations of ǫH . In both panels, the vertical dashed line represents the value of lnH at the start

of reheating. The thick blue line shows the derivative of ǫ−1
H with respect to ϕ∗ while holding H

constant, scaled by a factor of 10−3. The model parameters here are λ = 0.05, ϕ∗ = 10−3Mp and

χ∗ = 16.0Mp.
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Things are different for the other δN coefficients Nϕ and Nϕϕ however. Unlike Nχ,

Nϕ continues to evolve after horizon-exit. It settles down to constant value only in the

adiabatic limit after ϕ becomes frozen and reheating ends. The evolution of Nϕ and

Nϕϕ for λ = 0.05 is shown in Figs. 4.5 and 4.6, from which we see |Nϕϕ| and |Nϕ|
asymptote to smaller values as the decay rate Γχ increases and the reheating phase

becomes longer. One should also note that Nϕϕ ≫ Nχχ here.
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Figure 4.5: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . The evolution of the first order δN coefficient

Nϕ in unit of M−1
p . The top panel shows the slow-roll inflationary evolution from horizon-exit,

whereas the bottom panel shows the reheating evolution for two decay rates Γχ. The model param-

eters λ = 0.05, ϕ∗ = 10−3Mp and χ∗ = 16.0Mp. Here the Γχ is given in unit of
√
W0. The solid

vertical (black) line denotes the end of inflation, Ne, and the dashed vertical (black) line denotes

the start of reheating, Nχ=0 where χ first crosses χ = 0. The Hubble rate at the start of reheating

is Hr ≈
√
7× 10−2W0.
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Figure 4.6: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . The evolution of the second order δN coeffi-

cient Nϕϕ in unit of M−2
p . The top panel shows the slow-roll inflationary evolution from horizon-

exit, whereas the bottom panel shows the reheating evolution for two decay rates Γχ. The model

parameters λ = 0.05, ϕ∗ = 10−3Mp and χ∗ = 16.0Mp. Here the Γχ is given in unit of
√
W0.

The solid vertical (black) line denotes the end of inflation, Ne, and the dashed vertical (black) line

denotes the start of reheating, Nχ=0 where χ first crosses χ = 0. The Hubble rate at the start of

reheating is Hr ≈
√
7× 10−2W0.
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Scaling Relations Between δN Coefficients

Furthermore, the following approximate scaling relations exist between the δN coeffi-

cients throughout the entire inflationary and post–inflationary evolution

Nϕϕ ≈ Nϕ

ϕ∗
, (4.21)

Nϕχ ≈ 4λNϕNχ ≈ 4λ

(
√

2ǫχ)∗

Nϕ

Mp

. (4.22)

The scaling relation between Nϕϕ and Nϕ was first derived in [106] by considering a

first order Taylor expansion about a ‘ridge’, situated at ϕ = 0, of a generic potential.

Assuming the slow-roll conditions, the same analysis applies to the model we study

here as long as the potential remains well approximated by W ≈ W0χ
2(1 − λϕ2),

i.e., higher order terms in λϕ2 remain small. This requires ϕ ≪ O(λ−1/2Mp). In this

regime, ϕ grows exponentially with H as the bundle of trajectories rolls off the ridge:

ϕ = ϕ∗e
α̃(H2

∗
−H2), α̃ = 3λ/2W0. A short calculation reveals

Nϕ ≈ −3βH2ϕ∗

(

ϕ

ϕ∗

)2

, (4.23)

where β is some model–dependent constant. We refer the reader to [106] where the

complete derivation is presented. Taking ∂
∂ϕ∗

(on the final hypersurface of constant

H) on both sides of Eq. (4.23) gives Eq. (4.21) as long as (∂H/∂ϕ)∗ ≈ 0. Similarly,

taking the derivative with respect to χ∗ and using the ϕ slow-roll solution Eq. (4.18)

gives Eq. (4.22).

We show evolution of the Nϕ, Nϕϕ and Nϕχ derivatives before and after inflation for

a particular decay rate Γχ in Fig. 4.7, which clearly illustrates the scaling behaviour

captured in Eqs. (4.21) and (4.22). Remarkably, not only does this scaling behaviour

holds after inflation has ended, but it also holds during reheating.

The derivation of these scaling relations as sketched above relies on a number of ap-

proximations, including slow-roll. The subdominant field ϕ always remains slowly

rolling where 3Hϕ̇ ≫ ϕ̈, however χ does not necessarily. χ not being slow-roll does

not seem to violate Eqs. (4.21) and (4.22), suggesting that validity of these relations

are more reliant on ϕ being a linear function of ϕ∗, and that ϕ grows exponentially
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as the bundle slides off the ridge. As mentioned above, these conditions will break

down when ϕ ∼ O(λ−1/2Mp). Then, using ϕ ∼ λ−1/2Mp in Eq. (4.18) we may very

roughly estimate how many e–folds we expect the scaling relations to remain valid for

N ∼ 1
2λ
ln (λ−1/2Mp/ϕ∗). For example, for λ = 0.05 and ϕ∗ = 10−3Mp we have

N ∼ 85.
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Figure 4.7: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . Numerical verification of the scaling rela-

tions Eqs. (4.21) and (4.22). Top panel: Evolution of the derivatives Nϕϕ and Nϕ (in Planck-

ian units). The horizontal dashed line in the lower panel represents the value of ϕ∗, the con-

stant of proportionality between Nϕϕ and Nϕ. Bottom panel: Evolution of the derivatives Nϕχ

and Nϕ (in unit of Mp). The horizontal dashed line in the lower panel represents the value
1
4λ (Wχ/W )∗ = 1

4λ (2ǫχ)
1/2
∗ , the constant of proportionality between Nϕχ and Nϕ. We show

evolution of the derivatives for the last few e–folds of inflation, up until ζ has become conserved

at the completion of reheating. We see small departures from scaling at the start of reheating as

χ oscillates about its minimum, but as χ settles down, the scaling behaviour is quickly recov-

ered. In both panels, the parameters used are: λ = 0.05, ϕ∗ = 10−3Mp, χ∗ = 16.0Mp and

Γχ =
√
10−1W0. The solid vertical (black) line denotes the end of inflation, Ne, and the dashed

vertical (blue) line denotes the start of reheating, Nχ=0. The Hubble rate at the start of reheating is

Hr ≈
√
7× 10−2W0.
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Amplitude of the Power Spectrum, Aζ

Now we consider how sensitive two-point statistics of ζ , including the tensor–to–

scalar ratio r and spectral index ns, are to the reheating phase in this model. The

post-inflationary evolution of the amplitude of the power spectrum Aζ is illustrated in

Fig. 4.8. As expected, we see Aζ continues to evolve after inflation ends since isocur-

vature perturbations persist. In the adiabatic limit after reheating ends, ζ becomes

conserved and Aζ asymptotes to a constant value. The final asymptotic value is larger

for smaller the decay rate Γχ and longer the reheating phase. As mentioned earlier, P∗

and thus Aζ depend on the energy scale W0. By tuning W0 for different Γχ, we can

always match Aζ with the normalisation of CMB measurements in WMAP and Planck

where Aζ ∼ 10−9 [44].
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Figure 4.8: Potential: W (χ, ϕ) = W0χ
2e−λϕ2/M2

p , with ϕ∗ = 10−3Mp, χ∗ = 16Mp. The

evolution of Aζ/P∗ (in unit of M−2
p ) for two different decay rates Γχ. Here λ = 0.05 (top panel)

and λ = 0.06 (bottom panel). Γχ is given in unit of
√
W0. The solid vertical (black) line denotes

the end of inflation, Ne, and the dashed vertical (black) line denotes the start of reheating, Nχ=0

where reheating starts. The Hubble rate at the start of reheating is Hr ≈
√
7× 10−2W0.

Spectral Index ns and Tensor-to-Scalar Ratio r

Similarly, the tensor–to–scale ratio r and spectral index ns evolve during reheating and

are different to the values evaluated at the end of inflation in general. Yet they do not

depend on the energy scale W0 and thus cannot be tuned to match observations for
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any decay rate Γχ. The evolution of r and ns during reheating in this model for two

different decay rates Γχ are shown in Figs. 4.9 to 4.12. Notice that Figs. 4.9 and 4.10

are simply the inverse of Fig. 4.8 as (8/r)M−2
p = Aζ/P∗. From the plots, we see

the final value of r is bounded from above and remains very much negligible with

r < O(0.1), although the final asymptotic value does depend on Γχ.

This can be understood as follow: Recall from Eq. (3.66), in multifield models, r =

8/M2
p(
∑

I N
2
I ). Because of the hierarchy in magnitude between the scalar field kinetic

energies ϕ̇2
∗ and χ̇2

∗ at horizon exit and ϕ remains subdominant, Nχ is approximately

constant, i.e. Nχ ≈ (1/Mp

√

2ǫχ)∗. For the region of parameter space of interest, as

Γχ is decreased from infinity, the time taken for reheating to complete is increased

and ϕ freezes out later, increasing the magnitude of Nϕ as shown in Fig. 4.5. Hence,

the smaller the decay rate, the more suppressed the tensor–to–scalar ratio, and the

following bound exists:

r ≤ 8

M2
p

1

N2
0,ϕ∗

+ g2∗
. (4.24)

Here g∗ ≡ (1/Mp

√

2ǫχ)∗ and N0,ϕ∗
is defined as the value of Nϕ at the start of reheat-

ing.
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Figure 4.9: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . Evolution of r for two different decay rates

Γχ, with λ = 0.05. The parameters used are: ϕ∗ = 10−3Mp, χ∗ = 16.0Mp, and Γχ is given

in unit of
√
W0. The solid vertical (black) line denotes the end of inflation, Ne, and the dashed

vertical (black) line denotes the start of reheating, Nχ=0. The horizontal solid (red) line shows the

upper bound of the final asymptotic value of r as in Eq. (4.24). The Hubble rate at the start of

reheating is Hr ≈
√
7× 10−2W0. The top panel shows the whole evolution from N ∼ 30 since

horizon-exit, whereas the bottom panel shows the reheating evolution.
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Figure 4.10: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . Evolution of r for two different decay rates

Γχ, with λ = 0.06. The parameters used are: ϕ∗ = 10−3Mp, χ∗ = 16.0Mp, and Γχ is given

in unit of
√
W0. The solid vertical (black) line denotes the end of inflation, Ne, and the dashed

vertical (black) line denotes the start of reheating, Nχ=0. The horizontal solid (red) line shows the

upper bound of the final asymptotic value of r as in Eq. (4.24). The Hubble rate at the start of

reheating is Hr ≈
√
7× 10−2W0. The top panel shows the whole evolution from N ∼ 30 since

horizon-exit, whereas the bottom panel shows the reheating evolution.
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Figure 4.11: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . Evolution of ns during for two decay rates,

with λ = 0.05. The parameters used are: ϕ∗ = 10−3Mp, χ∗ = 16.0Mp, and the decay rates

are given in unit of
√
W0. The solid vertical (black) line denotes the end of inflation, Ne, and

the dashed vertical (black) line denotes the start of reheating, Nχ=0. The horizontal solid (red)

line shows the lowest bound of ns as in Eq. (4.26). The Hubble rate at the start of reheating is

Hr ≈
√
7× 10−2W0. The top panel shows the whole evolution from N ∼ 30 since horizon-exit,

whereas the bottom panel shows the reheating evolution.
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Figure 4.12: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . Evolution of ns during for two decay rates,

with λ = 0.06. The parameters used are: ϕ∗ = 10−3Mp, χ∗ = 16.0Mp, and the decay rates

are given in unit of
√
W0. The solid vertical (black) line denotes the end of inflation, Ne, and

the dashed vertical (black) line denotes the start of reheating, Nχ=0. The horizontal solid (red)

line shows the lowest bound of ns as in Eq. (4.26). The Hubble rate at the start of reheating is

Hr ≈
√
7× 10−2W0. The top panel shows the whole evolution from N ∼ 30 since horizon-exit,

whereas the bottom panel shows the reheating evolution.

A similar bound also exists for the spectral index. To see this, it is useful to consider the

alternative expression of ns Eq. (3.78) that involves only the first-order δN coefficients.
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In this quadratic times exponential model, the slow-roll parameters ηIJ at horizon-exit

are given by

(ηϕϕ)∗ ≈ −2λM2
p , (ηϕχ)∗ ≈ −4λM2

p

(

ϕ

χ

)

∗
, (ηχχ)∗ ≈M2

p

(

2

χ2

)

∗
. (4.25)

As discussed earlier, for inflation to proceed, we typically have λϕ2/M2
p ≪ 1. For

sufficient observable inflation where Nobs > 50, we also need χ∗ ∼ 15Mp. Therefore

we can deduce |(ηϕϕ)∗| ≫ |(ηϕχ)∗|, |(ηϕϕ)∗| for ϕ∗ < O(1). As a result, the third term

in the expression Eq. (3.78) is dominated by the (ηϕϕ)∗ term, as long as Nϕ is not too

small compared toNχ. Given the magnitude ofNϕ is monotonically increasing in time

after the start of reheating, from Eq. (3.78) we can see the spectral index ns is bounded

from below if (ηϕϕ)∗ is negative

ns − 1 ≈ −2(ǫH)∗ −
1

M2
p

2

N2
ϕ + g2∗

+
2N2

ϕ(ηϕϕ)∗

N2
ϕ + g2∗

≥ −(2ǫH)∗ − 4λ . (4.26)

In addition, we see both r and ns are very insensitive to Γχ and thus reheating for

λ = 0.06, whereas they are much more sensitive for λ = 0.05. This dramatic change

in behaviour for a small shift in λ can be explained from Eqs. (3.66) and (4.26) as

Nϕ ≫ Nχ in the former case (λ = 0.06), but Nϕ and Nχ are of the same order of

magnitude in the latter case (λ = 0.05).

Models with Two Minima

In the last section, we have discussed the influence of reheating on the two-point statis-

tics in two-field models where there exists a minimum in only one of the field direc-

tions. Next we consider two-field models where both fields are directly involved in

reheating. An example we consider is the effective two-field description of axion N-

flation. Note that in this model ’the start of reheating’ can no longer be denoted by a

single time instant, but rather two epoch Nϕ=0 and Nχ=0 corresponding to the times

when the decay rates Γχ and Γϕ are switched on 2.

2Note that unlike the single minimum case, the two ’start of reheating’ surfaces Nχ=0 and Nϕ=0 are

not identical for the same model parameters and initial conditions, but depend also on the decay rates

Γχ and Γϕ



The Influence of Reheating on the Power and Bispectra 83

Assisted inflation [98] may be realised via a collection of string axions. In this scenario,

known as N–flation [99], the many axion fields cooperatively source inflation even if

their potentials are individually too steep. The collective potential is comprised of a

sum of Nf uncoupled axions ϕi:

W (ϕ) =

Nf
∑

i=1

Λ4
i

[

1− cos

(

2π

fi
ϕi

)]

. (4.27)

With only a single field present, this model is more commonly known as natural in-

flation [139]. Each axion is fully described by its decay constant fi and its potential

energy scale Λ4
i . The standard arguments show that we should expect fi ∼ 1016GeV.

The mass of each field in vacuum satisfies m2
ϕ(i) = 4π2Λ4

i /f
2
i . Due to the shift sym-

metry ϕi → ϕi + 2πfi, we can without loss of generality set the initial conditions

ϕ∗(i) ∈ [0, fi].

Follow from [106], supposing that the initial conditions are chosen so that only a single

axion populates this hilltop region. This field sources the non–Gaussianity, whilst the

remaining Nf − 1 axions, which begin far away from the hilltop, dominate over the

energy density of the Universe. By expanding about the minimum of the remaining

Nf−1 fields, these axions may be replaced by a single effective field χwith a quadratic

potential. With fi = f for all axions, the effective two–field potential then reads:

W (ϕ, χ) = W0

[

1

2
m2χ2 + Λ4

(

1− cos

(

2π

f
ϕ

))]

. (4.28)

W0 again sets the energy scale of the potential, but is dimensionless here. In fact,

replacing the collective potential with an effective two-field potential is well motivated,

see for example [140], where they showed that the energy density of the universe is

dominated by fields with comparable masses even if one starts with thousands of fields,

including the post-inflationary reheating stage. As the field ranges are sub-Planckian in

the original picture Eq. (4.27), reheating in models of N-flation proceeds preferentially

via a perturbative decay route as opposed to via parametric resonance and preheating

[140, 141].
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Amplitude of the Power Spectrum, Aζ

In the effective two-field description of the axion N-flation model, inflation happens

when the effective field χ is of super-Planckian value. From here onwards we will

refer to ϕ as the axion and χ as the inflaton in this model. By suitably choosing the

axion/inflaton mass ratio in vacuum, various scenarios can be realised. For example, if

the axion is sufficiently massive it may quickly decay to its minimum during inflation,

where it becomes trapped without oscillating. In this case, the adiabatic limit is es-

tablished long before reheating begins, and the perturbative decay of the inflaton into

radiation does not affect the evolution of ζ .

It is also possible to realise dynamics where both fields minimise after inflation has

ended, entering an oscillating phase such that perturbative reheating can be applied.

For example, with Λ4 = m2f 2/4π2, ϕ∗ = (1
2
−0.001)f , χ∗ = 16Mp and f = m =Mp,

the inflaton minimises before the axion, but both fields minimise after inflation has

ended. In this example both fields acquire the same mass in vacuum. Since both fields

oscillate rapidly about their minima, both fields must be coupled to radiation in order to

recover a standard Big Bang radiation-dominated Universe. If one field is instead left

uncoupled, its energy density will scale as matter since the minimum is quadratic, and

will eventually come to dominate over radiation which redshifts away more quickly.

Here we are interested in the latter case where isocurvature perturbations persist during

reheating. Again it is useful to inspect the evolution of the δN coefficients first. Similar

to the one minimum case, Nχ remains very much constant over the entire evolution as

long as there is a hierachy between the kinetic energies of the fields at horizon-exit,

regardless of the decay rates Γχ and Γϕ. As shown in Fig. 4.13, we see NχMp ≈
(1/
√

2ǫχ)∗ ≈ χ∗/2. However, the second order δN coefficient Nχχ is no longer

constant and it does depend on the decay rates Γχ and Γϕ here. On the other hand,

while remaining subdominant during inflation, Nϕ and Nϕϕ evolve significantly after

horizon-exit. Comparing the second order δN coefficients, we see there is also a large

hierachy between the magnitudes of Nϕϕ, Nχχ and Nϕχ. These are shown in Fig. 4.14.

However, unlike the one minimum case where the Universe is reheated from only a

single field, the ϕ field has left slow roll by the time reheating starts. Hence, the non–

linear dynamics during the oscillating phase is essential and we could not find any
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Figure 4.13: Potential: W (ϕ, χ) = W0

[

1
2
m2χ2 + Λ4

(

1− cos
(

2π
f ϕ
))]

. Evolution of the δN

coefficients Nχ (left panel) and Nχχ (right panel) in the effective ’two-field’ N-flation model,

both in Planckian units. All decay rates are given in unit of
√
W0Mp. The parameters used are:

Λ4 = m2f2/4π2, ϕ∗ = ( 1
2
− 0.001)f , χ∗ = 16Mp, f = m = Mp. The solid vertical (black)

line denotes the end of inflation, Ne, the dashed vertical (black) line denotes Nϕ=0, and the solid

vertical (blue) line denotes Nχ=0. The background Hubble rates at the χ and ϕ reheating surfaces

are Hχ
r ≈

√
5× 10−2W0Mp and Hϕ

r ≈
√
10−2W0Mp respectively.

Figure 4.14: Potential: W (ϕ, χ) = W0

[

1
2
m2χ2 + Λ4

(

1− cos
(

2π
f ϕ
))]

. Left panel: Evolution

of the δN coefficients Nϕ in the effective ’two-field’ N-flation model. Right panel: Comparison

of the second order δN coefficients in the effective ’two-field’ N-flation model after inflation ends,

with Γϕ = Γχ =
√

W0/100Mp. All decay rates are given in unit of
√
W0Mp. In both panels, the

δN coefficients are given in unit of Mp and the parameters used are: Λ4 = m2f2/4π2, ϕ∗ = ( 1
2
−

0.001)f , χ∗ = 16Mp, f = m = Mp. The solid vertical (black) line denotes the end of inflation,

Ne, the dashed vertical (black) line denotes Nχ=0 and the solid vertical (blue) line denotes Nϕ=0.

The background Hubble rates at the χ and ϕ reheating surfaces are Hχ
r ≈

√
5× 10−2W0Mp and

Hϕ
r ≈

√
10−2W0Mp respectively.
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simple scaling relation between Nϕϕ, Nϕχ and Nϕ.

The evolution of the power spectrum amplitude Aζ in this model is shown in Fig. 4.15.

Again we see the amplitude Aζ evolves after inflation ends, though it remains very

much constant during slow-roll inflation. It oscillates and only becomes conserved

after reheating is completed when the Universe becomes radiation dominated. The

magnitude is always enhanced as compared to that at the end of inflation.

Figure 4.15: Potential: W (ϕ, χ) = W0

[

1
2
m2χ2 + Λ4

(

1− cos
(

2π
f ϕ
))]

. Evolution of Aζ/P∗

in the effective ’two-field’ N-flation model in unit of Mp. The parameters used are: Λ4 =
m2f2/4π2, ϕ∗ = ( 1

2
− 0.001)f , χ∗ = 16Mp, f = m = Mp. All decay rates are given in unit

of
√
W0Mp. The solid vertical (black) line denotes the end of inflation, Ne, the dashed vertical

(black) line denotes Nχ=0 and the solid vertical (blue) line denotes Nϕ=0. The background Hub-

ble rates at the χ and ϕ reheating surfaces are Hχ
r ≈

√
5× 10−2W0Mp and Hϕ

r ≈
√
10−2W0Mp

respectively.

Spectral Index ns and Tensor-to-Scalar Ratio r

Similarly, the spectral index ns and the tensor-to-scalar ratio r evolve during reheat-

ing, though they hardly evolve during inflation. Unlike the one minimum case where

r remains very much negligible from the end of inflation until reheating completes for

all decay rates, we see that r changes by three orders of magnitude during the post-

inflationary evolution here as shown in Fig. 4.16. This can be understood from the

evolution of Nϕ. From Fig. 4.14, we see Nϕ changes rapidly by a few orders of mag-
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Figure 4.16: Potential: W (ϕ, χ) = W0

[

1
2
m2χ2 + Λ4

(

1− cos
(

2π
f ϕ
))]

. Evolution of r in

the effective ’two-field’ N-flation model. The parameters used are: Λ4 = m2f2/4π2, ϕ∗ =
( 1
2
− 0.001)f , χ∗ = 16Mp, f = m = Mp. All decay rates are given in unit of

√
W0Mp. Here the

solid vertical (black) line denotes denotes the start of reheating, Nϕ=0. The background Hubble

rates at the χ and ϕ reheating surfaces are Hχ
r ≈

√
5× 10−2W0Mp and Hϕ

r ≈
√
10−2W0Mp

respectively. Note r always decreases after inflation ends (ǫH = 1).

nitude after inflation ends and dominates over Nχ. As a result, from Eq. (3.66), we can

deduce that r is very suppressed after reheating ends as compared to that at the end of

inflation.

On the other hand, compared to r, the spectral index ns, is very insensitive to reheating

and its final value after reheating is close to that evaluated at inflation ends. This is

shown in Table 4.2. We again use Eq. (3.78) to understand this. Since the potential W

is sum-separable in this model, ηϕχ is exactly zero. Given χ dominates the potential

W with W ≈ W0m
2χ2/2, the remaining ηIJ slow-roll parameters at horizon-exit are

given by

(ηϕϕ)∗ ≈M2
p

Λ4(4π2)

m2f 2

[

2 cos(2πϕ∗/f)

χ2
∗

]

, (ηχχ)∗ ≈M2
p

2

χ2
∗
. (4.29)

For initial conditions where ϕ starts off close to the ridge at horizon-exit, i.e. ϕ∗ ≈
(f/2), we can see the two slow-roll parameters are approximately equal for the model



The Influence of Reheating on the Power and Bispectra 88

parameter Λ4(4π2)/(m2f 2) = 1. During the slow-roll regime, the subdominant axion

ϕ is very much frozen and sits at the top of the ridge and we have Nχ ≫ Nϕ. After

inflation ends, ϕ starts rolling down the ridge and we have the opposite hierachy be-

tween the δN coefficients, Nϕ ≫ Nχ. But since (ηϕϕ)∗ ≈ −(ηχχ)∗, in both limits the

spectral index is approximated by

ns − 1 ≈ −2(ǫH)∗ −
1

M2
p

2

N2
χ

+
2N2

χ(ηχχ)∗

N2
χ

= −8M2
p

χ2
∗

end of inflation, N2
χ ≫ N2

ϕ

ns − 1 ≈ −2(ǫH)∗ −
1

M2
p

2

N2
ϕ

+
2N2

ϕ(ηϕϕ)∗

N2
ϕ

≈ −8M2
p

χ2
∗

end of reheating, N2
ϕ ≫ N2

χ

(4.30)

Here we have used the results N2
χM

2
p ≈ (1/ǫχ)∗ and (ǫH)∗ ≈ (ǫχ)∗. In the second line,

the second term on the RHS can be dropped since it is very subdominant. As a result,

we conclude that ns hardly changes from inflation ends till reheating is completed for

this choice of model parameters where Λ4(4π2)/(m2f 2). For other parameter choices,

it is possible that there is a stronger dependence on the reheating dynamics for ns.

4.3 Three-Point Statistics After Reheating, fNL

Next we consider the influence of reheating on the three-point statistics of ζ , partic-

ularly on the non-linear parameter fNL. Again we focus on the canonical two-field

models discussed above, considering the one minimum and two minima case sepa-

rately.

Model with One Minimum

Consider again the quadratic exponential model Eq. (4.17). Before moving on to dis-

cuss the influence of reheating on fNL, it is useful to revisit how fNL evolves during

inflation for the initial conditions we consider. For initial conditions close to the top

of the ridge where ϕ∗ ∼ 0, during the slow-roll regime, the bundle of field trajectories

always diverges as the fields roll away from the ridge, leading to negative values of

fNL. An example of the slow-roll evolution of the non-linear parameter fNL is given in
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Fig. 4.17. In this model, as discussed in the last section, there is always a hierachy be-
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Figure 4.17: Potential: W (χ, ϕ) = W0χ
2e−λϕ2/M2

p , with λ = 0.06, ϕ∗ = 10−3Mp, χ∗ = 16Mp.

Evolution of the non-linear parameters fNL, τNL, gNL during inflation, evaluated numerically, are

shown here. Here we terminate when ǫH = 1.

tween the magnitudes of the second order δN coefficients, i.e. |Nϕϕ| ≫ |Nϕχ|, |Nχχ|
for the model parameter space we consider. Therefore, the non-linear parameter fNL

can be well approximated by

fNL ≈ 5

6

N2
ϕNϕϕ

(N2
ϕ +N2

χ)
2
, (4.31)

This were shown in the slow-roll regime in [106]. We now move on to discuss the

dependence of ffinal
NL on Γχ, keeping the same parameter choice λ = {0.05, 0.06},

ϕ∗ = 10−3Mp and χ∗ = 16.0Mp. In the top panel of Fig. 4.18 we show the final stages

in the evolution of fNL as a function of N for various decay rate Γχ. Most importantly,

we see that reheating does not damp out fNL to zero. We interpret the finer details of

the plot as follows: At the end of inflation (Ne = 64.56) a large, negative fNL is still

present, and just before reheating begins (Nχ=0 = 65.10) fNL is growing increasingly

more negative. We see that as the decay rate Γχ is increased from zero, |ffinal
NL | freezes

out to larger values. In another example λ = 0.05 where fNL is decaying toward zero

as reheating begins, the effect of increasing the decay rate from zero is to freeze out

|ffinal
NL | to smaller values. This is shown in the bottom panel of Fig. 4.18.
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Figure 4.18: Potential: W (ϕ, χ) = W0χ
2e−λϕ2

. We show the evolution of fNL during reheating

for various decay rates Γχ, which are in units of
√
W0. In both panels, the solid vertical (black) line

denotes the end of inflation, Ne, and the dashed vertical (blue) line denotes the start of reheating,

Nr. Top Panel: The parameters used are: λ = 0.06, ϕ∗ = 10−3Mp and χ∗ = 16.0Mp. The

Hubble rate at the start of reheating is Hr ≈
√
7× 10−2W0. Bottom Panel: The parameters used

are: λ = 0.05, ϕ∗ = 10−3Mp and χ∗ = 16.0Mp. The Hubble rate at the start of reheating is

Hr ≈
√
6× 10−2W0.

This opposite dependence of |ffinal
NL | on Γχ for λ = 0.05 and λ = 0.06 is a consequence
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of the non–trivial dependence of fNL on Nϕ. Let us begin by considering the splitting

N =

∫ Hc

H∗

H

Ḣ
dH =

∫ Hr

H∗

H

Ḣ
dH +

∫ Hc

Hr

H

Ḣ
dH = N0 +N1 . (4.32)

HereN0 is the number of e–foldings from horizon crossing (t∗) up to the start of reheat-

ing (TR, when χ first passes the minimum χ = 0) and N1 is the number of e–foldings

from the start of reheating up to radiation domination (tc). Firstly, it is important to ap-

preciate that N0 contains contributions not only from the slow roll inflationary phase,

but also from the non–negligible post–inflation/pre–reheating evolution, that must be

accounted for. Unlike the slow-roll contributions, these post–inflation/pre–reheating

contributions cannot be computed analytically. Secondly, N0 does not contain any de-

pendence on the reheating process. Since we are interested here in studying the effects

of reheating on ffinal
NL , we compute N0 and its derivatives numerically and focus on

trying to understand the correction N1, which contains all the dependence on Γχ.

For the derivative of the correction N1 with respect to ϕ∗ we need only consider the

term

N1,ϕ∗
=

∫ Hc

Hr

∂

∂ϕ∗

(

1

Ḣ

)

H

HdH , (4.33)

since the derivative at the boundary at r cancels with the N0 contribution and the

derivative at the boundary c vanishes since c is defined as a surface of constant H .

Since Ḣ is a function of χ̇(t), ϕ̇(t) and ργ(t), all of which depend on ϕ∗, this integral

cannot be performed analytically beyond slow roll. However, we can make progress

by using our results in Section 4.2, NχMp ≈ (2ǫχ)
−1/2
∗ , {Nϕχ , Nχχ} ≪ Nϕϕ and

Nϕϕ ∼ Nϕ/ϕ∗ which also hold during reheating. Then, using the observation that dur-

ing reheating N1,χ∗
≈ 0, and taking the time tc to be deep in the radiation dominated

era such that N1,ϕ∗
= const, Eq. (4.31) becomes

ffinal
NL ≈ 5

6|ϕ∗|
(N0,ϕ∗

+N1,ϕ∗
)3

[(N0,ϕ∗
+N1,ϕ∗

)2 + g2∗]
2
. (4.34)

Here again g∗ ≡ M−1
p Nχ ≈ (2ǫχ)

−1/2
∗ . We plot this algebraic function, ffinal

NL against

N1,ϕ∗
, in the top panel of Fig. 4.19 for three different choices of the potential parameter

λ = {0.05 , 0.06 , 0.07}, with the same field values at horizon crossing ϕ∗ = 10−3Mp
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and χ∗ = 16.0Mp. Varying λ changes g∗ and modifies the evolution of the bundle, and

thus N0,ϕ∗
. In the bottom panel of Fig. 4.19 we show the evolution of Nϕ for various

decay rates with λ = 0.05. The final values of N1,ϕ(final) = Nϕ(final) − N0,ϕ∗
are

marked on the corresponding curve in the top panel of Fig. 4.19. Only the N1,ϕ∗
≤ 0

region of Eq. (4.34) is physical: we argue that diverging trajectories can only generate

negativeN1,ϕ∗
, which can be confirmed numerically. As can be seen from the top panel

of Fig. 4.19, Eq. (4.34) has three stationary points at finite N1,ϕ∗
:

−N0,ϕ∗
, −N0,ϕ∗

±
√
3g∗ . (4.35)

The N1,ϕ∗
= −N0,ϕ∗

root is an inflection point where ffinal
NL = 0. The N1,ϕ∗

=

−N0,ϕ∗
+

√
3g∗ root is a local maximum where ffinal

NL would be always positive and

so is not physical. The minimum at N1,ϕ∗
= −N0,ϕ∗

−
√
3g∗ however is physical

and bounds the maximum value of |ffinal
NL | when Eq. (4.34) has a minimum at negative

N1,ϕ∗
:

|ffinal
NL |max ≈

1

|g∗ϕ∗|

√

75

1024
, for N0,ϕ∗

+
√
3g∗ > 0 . (4.36)

For instance in the case λ = 0.05 as seen in the top panel of Fig. 4.19. If on the other

hand, the minimum exists at positiveN1,ϕ∗
, (i.e.,N0,ϕ∗

+
√
3g∗ < 0) then the maximum

value of |ffinal
NL | is instead bounded by its value at the start of reheating:

|ffinal
NL |max ≈ |fNL(tr)| ≈

5

6|ϕ∗|
N2

0,ϕ∗

[N2
0,ϕ∗

+ g2∗]
2
, for N0,ϕ∗

+
√
3g∗ < 0 . (4.37)

This is the case for the λ = 0.06 and λ = 0.07 models shown in the top panel of

Fig. 4.19. These bounds are independent of the decay rate Γχ. Furthermore, the bound

Eq. (4.36) is written solely in terms of quantities evaluated at horizon crossing, and

hence may be computed without explicitly knowing the full non–linear evolution of

the bundle during the reheating process. Whether this maximum value, |ffinal
NL |max, is

obtained at the end of reheating is of course dependent on Γχ.
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Figure 4.19: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . Top Panel: The algebraic function ffinal
NL

as a function of the final value of the correction N1,ϕ∗
, Eq. (4.34). We label the positions along

the λ = 0.05 curve which correspond to the decay rates given in the right panel. Bottom Panel:

The evolution of the derivative Nϕ = N0,ϕ∗
+ N1,ϕ∗

for the same decay rates as Fig. 4.18, for

λ = 0.05. All decay rates are in units of
√
W0. The solid vertical (black) line denotes the end of

inflation, Ne, and the dashed vertical (blue) line denotes the start of reheating, Nχ=0. The Hubble

rate at the start of reheating is Hr ≈
√
7× 10−2W0.

The existence of a minimum of Eq. (4.34) at negative N1,ϕ∗
for λ = 0.05 explains
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the seemingly opposite dependence of ffinal
NL on Γχ: for the λ = 0.05 model, as Γχ is

increased further, ϕ freezes out sooner, driving N1,ϕ∗
toward zero. The minimum of

Eq. (4.34) is encountered, past which point |ffinal
NL | is reduced. For λ = 0.06, increasing

Γχ still drives N1,ϕ∗
toward zero, but this time |ffinal

NL | is increased as no extreme point

exists for negative N1,ϕ∗
.

For λ = 0.07, the function Eq. (4.34) is almost completely flat for N1,ϕ∗
< 0, which

indicates that no matter how slowly or rapidly the universe is reheated, the value of

fNL at the start of reheating will survive until completion. In the limit of instantaneous

reheating, Γχ → ∞, N1,ϕ∗
≈ 0, and so ffinal

NL ≈ fNL(TR). This is only approximate

since, as reheating does not begin on a hypersurface of constant density, there will be

some small correction N1,ϕ∗
.

Another interesting observation is that |ffinal
NL | (or more accurately the derivative N1,ϕ∗

)

is fairly insensitive to changing the decay rate by many orders of magnitude. For exam-

ple, as can be seen from Table 4.1, |ffinal
NL | changes by less than O(3) as the decay rate

is increased from Γχ =
√
10−5W0 to Γχ =

√
10−1W0. We caution here that the decay

rate could, in principle, be many orders of magnitude weaker than the weakest decay

rate studied here and still be consistent with the bound derived from BBN constraints,

Γχ & 4× 10−40Mp. These tiny (but non–zero) values of Γχ are beyond our numerical

capabilities: to compute the statistics of ζ at the completion of reheating requires inte-

grating the field equations up until the universe is radiation dominated, which for such

weak rates, can take O(30) e–folds. Substantial errors are accumulated if the field

equations are integrated over such long periods of time, which in turn induces large

errors in the computation of the δN derivatives. For this reason, we only quote values

of fNL, ns and r for decay rates for which we are confident that we have control over

all sources of numerical error. However we believe the physics describing here is valid

in the other regimes as well.

The overall results for two and three-point statistics of ζ in this model are summarised

in the following Table 4.1. We see model predictions evaluated at the end of inflation

are in general different from that after reheating, verifying the importance of taking the

subsequent post-inflationary evolution into account when comparing model predictions
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to observations. 3

λ = 0.06: fNL(te) = −5.93,

ns(te) = 0.763, r(te) = 2.8× 10−4

Γχ ffinal
NL nfinal

s rfinal√
10−5 −4.35 0.761 2.4× 10−4

√
10−3 −5.54 0.762 3.9× 10−4

√
10−1 −7.14 0.762 6.3× 10−4

λ = 0.05: fNL(te) = −34.10,

ns(te) = 0.836, r(te) = 0.035

Γχ ffinal
NL nfinal

s rfinal√
10−5 −33.4 0.837 3.5× 10−2

√
10−3 −31.5 0.853 4.6× 10−2

√
10−1 −26.9 0.873 6.0× 10−2

Table 4.1: Statistics of ζ for W (ϕ, χ) = W0χ
2e−λϕ2/M2

p for different decay rates. All decay rates

are in units of
√
W0. We give values computed at the end of inflation (te) and at the completion

of reheating (final) where ζ is conserved. The model parameters are ϕ∗ = 10−3Mp and χ∗ =
16.0Mp. Left Table: λ = 0.06; Right Table: λ = 0.05.

For completeness, we also plot the final asymptotic values of the observables at the

end of reheating as a function of the decay rate Γχ for different λ in Fig. 4.20. From

the plots, we can see how sensitive the observables are to reheating depends also upon

λ in this model.

Models with Two Minima

Next we consider the case where both fields are directly involved in reheating, again

taking the effective two-field description of the N-flation model Eq. (4.28) as an ex-

ample. During slow-roll inflation, it was found that fNL is dominated by the following

term in the case where adiabaticity is reached before inflation ends [106]:

fNL ≈ 5

6

Nϕϕ

N2
ϕ

. (4.38)

Although there is no scaling relations between the δN coefficients in this model, we

find that Eq. (4.38) remains a good approximation beyond slow-roll for the model pa-

rameter space considered where both fields minimise after inflation ends. As can be

seen from the left panel of Fig. 4.21, ffinal
NL is almost completely insensitive to reheat-

ing when Γχ ∼ Γϕ. However, as can be seen from the right panel, a mild hierarchy

3We stress here we only consider the model as a toy model since the model predictions are inconsis-

tent with current observations.
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Figure 4.20: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . The final asymptotic values of ns (top left panel), r
(top right panel) and fNL (bottom panel) at the end of reheating as a function of the decay rate Γχ

for four different λ. The initial field values are ϕ∗ = 10−3Mp and χ∗ = 16.0Mp.

between Γχ and Γϕ generates significant corrections to to ffinal
NL . This effect is not due

to the axion reheating hypersurface being distinctly separated from the inflaton surface

(the vertical dotted (red) and dashed (blue) lines of Fig. 4.21 respectively) and we have

confirmed this numerically. What is important however, is the axion/inflation mass

ratio in vacuum. The model parameters which realise the dynamics seen in Fig. 4.21

give mϕ = mχ at the minimum. The differences induced in ffinal
NL when a mild hier-

archy exists between Γχ and Γϕ is greatest when the masses are equal. As the masses

are separated, keeping the ratio Γχ/Γϕ fixed, the sensitivity of ffinal
NL to reheating de-

creases. This can be understood as follows: first consider the situation where the two

fields have different masses, for instance, mχ > mϕ. Assuming both fields reheat at

roughly the same time, the more massive field χ will dominate the energy density and
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Figure 4.21: W (ϕ, χ) = W0

[

1
2
m2χ2 + Λ4

(

1− cos
(

2π
f ϕ
))]

. The parameters used are: Λ4 =

m2f2/4π2, ϕ∗ = ( 1
2
− 0.001)f , χ∗ = 16Mp, f = m = Mp. Both panels show the evolution

of fNL during reheating. Left Panel: Equal decay rates, Γχ = Γϕ 6= 0. For comparison we also

show the Γχ = Γϕ = 0 limit (thin black line). Right Panel: Unequal decay rates, Γχ 6= Γϕ 6= 0.

For comparison we also show the Γχ = Γϕ = 0 limit (thin black line). All decay rates are given

in unit of
√
W0Mp. In both panels, the solid vertical (black) line denotes the end of inflation, Ne,

the dashed vertical (blue) line denotes the start of χ reheating and the dotted vertical (red) line

denotes the start of ϕ reheating. The background Hubble rates at the χ and ϕ reheating surfaces

are Hχ
r ≈

√
5× 10−2W0Mp and Hϕ

r ≈
√
10−2W0Mp respectively.

thus the dynamics of the universe during reheating. Evaluating on constant energy hy-

persurfaces, the initial horizon crossing dependence of the χ field dynamics is smaller

compared to the casemχ = mϕ, where the energy density of the universe is distributed

evenly between the fields. As a result, we expect the number of e–folds of expansion

N and ffinal
NL are less sensitive in the case mχ 6= mϕ.

In fact, having the two fields decay at different rates is a form of modulated reheat-

ing, although it is different from the standard scenario [142, 143, 144, 145, 146]. In

the standard modulated reheating scenario, inflation is driven by a single field, whose

decay rate is modulated by a second, subdominant field that remains light and plays

a negligible role during inflation. The fluctuation of the subdominant field induces

fluctuations in the inflaton decay rate and thus generates the curvature perturbation

during reheating. In the two-minima case here, note that the initial horizon crossing

values of the fields ϕ∗, χ∗ determine how the energy density of the universe is dis-

tributed between the two scalar fields. Therefore, although the field decay rates are

constant here, the rate of energy transfer from the scalar fields to the radiation fluid

can be different for each inflationary trajectory in the bundle and thus can generate an

extra contribution to the curvature perturbation, provided there is a mild hierarchy in

the decay rates. Therefore it is not surprising that fNL can acquire such a significant
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correction during reheating when the two decay rates are different. The two-minima

scenario is also similar in spirit to a model of two field inflation with equal masses

followed by instant preheating, in which the two fields have very different couplings to

the preheat field [147], for a related scenario see also [148]. Note however that all of

these instant preheating models are very tightly constrained even at the level of linear

perturbations [149].

Recently, by modelling the fields as two effective matter fluids and applying the sud-

den decay approximation, Tarrant and Meyers have derived analytical expressions for

f local
NL , ns and r, verifying the qualitative behaviour in this model [134]. This fluid ap-

proximation approach was later generalised to arbitrary sum-separable potentials and

other models like inhomogeneous end of inflation and generalised curvaton scenarios

by Elliston et al. [135]. They have also demostrated that the behaviour can be explained

by considering the relative redshifting of the two effective scalar field fluids.

Again we summarise the overall results in Table 4.2. Depending on the physics of

reheating, we see that the final value of the non-linear parameter fNL can be quite

different for different decay rates Γχ and Γϕ, whereas r and ns are much less sensitive

in this model compared to the ’runaway’ type quadratic exponential model. Notice

also the dramatic decrease in r after the end of inflation.

χ2 minimum: fNL(te) ≈ 0,

ns(te) = 0.969, r(te) = 0.124

Γϕ Γχ ffinal
NL nfinal

s rfinal

0 0 6.88 0.935 4.6× 10−4

√
10−2

√
10−2 6.59 0.969 4.3× 10−4

√
10−4

√
10−4 6.83 0.969 4.6× 10−4

√
10−2

√
10−4 13.66 0.969 1.0× 10−3

√
10−4

√
10−2 4.37 0.969 2.7× 10−4

Table 4.2: Statistics of ζ for W (ϕ, χ) = W0

[

1
2
m2χ2 + Λ4

(

1− cos
(

2π
f ϕ
))]

for different decay

rates. All decay rates are in units of
√
W0Mp. We give values computed at the end of inflation

(te) and at the completion of reheating (final) where ζ is conserved. The model parameters are

Λ4 = m2f2/4π2, ϕ∗ = ( 1
2
− 0.001)f , χ∗ = 16Mp, f = m = Mp. Notice the very large decrease

in the tensor–to–scalar ratio r from the end of inflation to its final value.
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4.4 Quadratic vs Quartic Potentials

In the previous sections, we have illustrated the influence of reheating on two and three-

point statistics of ζ in multifield models where the reheating fields oscillate about some

quadratic potentials. Here we consider the case where the reheating fields now oscillate

about a quartic potential instead. While the oscillatory dynamics of the fields are differ-

ent, we will see similar qualitative behaviour as in the previous models with quadratic

potentials, which again can be explained using the analytic approach as in [135].

Models with One Minimum

Again we take the runaway type model Eq. (4.17) as an example of the one minimum

case, but now with a quartic minimum in the χ direction. The potential now reads as

W (ϕ, χ) = W0χ
4e−λϕ

2/M2
p (4.39)

The background inflationary dynamics are similar to the χ2e−λϕ
2

model as can be seen

from the slow-roll solutions to the Klein-Gordon field equations:

χ2 = χ2
∗ − 8NM2

p , ϕ = ϕ∗e
2λN . (4.40)

The oscillatory dynamics about the minimum are somewhat different to that of the

χ2 case however, due to the potential being much shallower around χ = 0. This is

described by the solution Eq. (4.3).

Provided λ is not too large, the ϕ field remains slowly rolling throughout the entire

reheating phase. In the left and right panels of Fig. 4.22 we show the final stages in

the evolution of fNL and Nϕ respectively as a function of N for various decay rate Γχ.

We see that the qualitative dependence of ffinal
NL on the decay rate is the same as for the

χ2 model, which can be explained by appealing to Eq. (4.34) with similar arguments.

This implies that the shape of the minimum does not change the qualitative dependence

of ffinal
NL on the reheating process. Of course, as reheating proceeds, the shape of the

χ minimum does not remain exactly quartic (or quadratic in the case of the previous

model) due to the coupling with the ϕ field.
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Figure 4.22: W (ϕ, χ) = W0χ
4e−λϕ2/M2

p . The parameters used are: λ = 0.055, ϕ∗ = 5 ×
10−4Mp and χ∗ = 23.0Mp. Top Panel: The evolution of fNL during reheating for various decay

rates Γχ. Bottom Panel: The evolution of the derivative Nϕ during reheating for various decay

rates Γχ. All decay rates are in units of
√
W0Mp. In both panels, the solid vertical (black) line

denotes the end of inflation, Ne, and the dashed vertical (blue) line denotes the start of reheating,

Nχ=0. The Hubble rate at the start of reheating is Hr ≈
√
10−1W0Mp.

On the other hand, the spectral index ns and the tensor-to-scalar ratio r are very less

sensitive to reheating, with their final values after reheating finishes hardly varying for
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different decay rates Γχ. The predictions for ns and r evaluated at the end of inflation

are close to the final asymptotic values after reheating as well. The overall results are

summarised in Table 4.3.

χ4 minimum: fNL(te) = −48.29,

ns(te) = 0.770, r(te) = 7.2× 10−3

Γχ ffinal
NL nfinal

s rfinal√
10−8 −54.40 0.772 9.7× 10−3

√
10−6 −60.32 0.778 1.2× 10−2

√
10−4 −65.80 0.776 1.5× 10−2

Table 4.3: Statistics of ζ for W (ϕ, χ) = W0χ
4e−λϕ2/M2

p for different decay rates. All decay rates

are in units of
√
W0Mp. We give values computed at the end of inflation (te) and at the completion

of reheating (final) where ζ is conserved. The model parameters are λ = 0.055, ϕ∗ = 5×10−4Mp

and χ∗ = 23.0Mp.

Models with Two Minima

Similar to the one-minimum case, we use a modified N-flation model where the quadratic

term χ2 is replaced by a quartic term

W (ϕ, χ) = W0

[

λ

4
χ4 + Λ4

(

1− cos

(

2π

f
ϕ

))]

. (4.41)

This modification was studied in [133] and [107], in which the latter consider the

model parameters such that ζ becomes conserved during slow-roll. Here we consider

a different set of model parameters where isocurvature perturbations persist at the start

of reheating, e.g. Λ4 = λM2
pf

2/8π2, ϕ∗ = (1
2
− 0.001)f , χ∗ = 22Mp, 2f 2/M2

p = λ.

The overall results comparing the values of the observables of ζ for this models at the

end of inflation to that at the end of reheating are summarised in Table 4.4 below:

From Table 4.4, we can see a similar qualitative behaviour of ffinal
NL as in the quadratic

case: the asymptotic values of fNL are very insensitive to the decay rates of the scalar

fields when they are equal, and slightly more sensitive if they are different. Com-

pared to the quadratic minimum case, all observables are much less sensitive to decay

rates here, including the non-linear parameter fNL. Although ns and r are pretty much
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χ4 minimum: fNL(te) ≈ 0,

ns(te) = 0.951, r(te) = 0.263

Γϕ Γχ ffinal
NL nfinal

s rfinal

0 0 5.04 0.966 2.9× 10−4

√
10−5

√
10−5 4.99 0.972 3.0× 10−4

√
10−4

√
10−4 5.06 0.966 3.0× 10−4

√
10−1

√
10−5 5.39 0.967 3.3× 10−4

√
10−2

√
10−4 5.28 0.967 3.2× 10−4

Table 4.4: Statistics of ζ for W (ϕ, χ) = W0

[

λ
4
χ4 + Λ4

(

1− cos
(

2π
f ϕ
))]

for different decay

rates. All decay rates are in units of
√
W0Mp. We give values computed at the end of inflation

(te) and at the completion of reheating (final) where ζ is conserved. Here the model parameters

are Λ4 = λM2
pf

2/8π2, ϕ∗ = ( 1
2
− 0.001)f , χ∗ = 22Mp, 2f2/M2

p = λ. Notice the very large

decrease in the tensor–to–scalar ratio from the end of inflation to its final value.

insensitive to different combinations of the decay rates Γχ and Γϕ, their final asymp-

totic values after reheating finishes are very different from that evaluated at the end of

inflation.

4.5 Separable vs Non-Separable Potentials

In the previous sections, we have studied the evolution of fNL and its asymptotic value

at the end of reheating, ffinal
NL , in examples where one or both fields reheat from a two–

field separable potential. In this section, we will repeat the same analysis, but this time

for a non–separable potential.

As an example, we consider a modified version of Eq. (4.39), by adding an extra

quadratic mass term, first introduced in [133]

W (χ, ϕ) = W0(χ
4e−λϕ

2/M2
p + κ2χ2) . (4.42)

Before discussing reheating, it is useful to discuss the inflationary regime. During

inflation, the quadratic χ2 mass term has a negligible effect on the field dynamics when

the χ field is of O(1) in Planckian units, unless κ ≫ O(Mp) or λϕ2 ≫ O(M2
p). Here

we consider the case κ ∼ O(Mp) and λϕ2 ≪ O(M2
p), for which we can approximate

the field dynamics and fNL during inflation as the same as setting κ2 = 0. Therefore,
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in the region of parameter space where κ ≤ O(Mp), fNL is expected to follow similar

evolution as in the separable case studied in Section 4.4 during the slow-roll regime,

with large deviations only coming in at late times towards the end of inflation. The

mechanism for generating large fNL is the same as discussed in [106], which is well

illustrated from the fact that there exists a scaling relation for the subdominant field

δN derivatives.

For model parameters κ = Mp, ϕ∗ = 10−3Mp and χ∗ = 22Mp, a large negative fNL

is generated during inflation as the ϕ field rolls down the ridge and the bundle of tra-

jectories diverge. The evolution is similar to the separable case where κ = 0, with

fNL ≈ −44 close to the end of slow-roll. Things are however a bit different after infla-

tion even before reheating starts. For λ = 0.06, the additional quadratic term becomes

comparable to the quartic term slightly earlier than in the case λ = 0.05. In this case,

fNL swaps sign shortly after the end of inflation. This unexpected behaviour, which

we do not see in other cases, could be explained as follows: although the trajectories

are still diverging in the ϕ direction, the fact that the quadratic term becomes dom-

inant suggests that the local potential geometries around each trajectory converge to

the same quadratic shape, independent of ϕ. This would have the same effect as the

trajectories themselves converging in the separable case where H is converging, thus

giving momentarily large positive fNL.
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Figure 4.23: W (χ, ϕ) = W0(χ
4e−λϕ2/M2

p + κ2χ2). We show fNL as a function of N during

reheating. The parameters used are: ϕ∗ = 10−3Mp, χ∗ = 22Mp and λ = 0.06. In both panels,

the solid vertical (black) line denotes the end of inflation, Ne, and the dashed vertical (blue) line

denotes the start of reheating, Nr. Top Panel: κ2 = M2
p . The Hubble rate at the start of reheating

is Hr ≈
√
2× 10−1W0Mp. Bottom Panel: κ2 = 0.1M2

p . The Hubble rate at the start of reheating

is Hr ≈
√
10−1W0Mp.

Shortly after inflation ends, when the χ field reaches sub–Planckian values, the χ2

term starts to dominate over the χ4 term. Therefore, we expect the additional χ2 term
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modifies the field dynamics during the reheating phase and possibly fNL as well. The

additional χ2 term makes the potential less shallow around the minimum. This saves

the χ field from being frozen to non-zero values, leaving unwanted residual potential

energy if Γχ is too large.

Similar to the separable case, as shown in Fig. 4.23, fNL oscillates roughly in phase

with χ2 during the early reheating stage, with a larger amplitude for smaller Γχ. How-

ever, unlike the previous separable case in Section 4.4, the δN derivatives and fNL are

now much less sensitive to Γχ and thus the reheating timescale. The relative change of

fNL with respect to Γχ is much smaller for κ = Mp compared to that for κ = 0.1Mp.

This is summarised in Table 4.5. We conclude that the additional quadratic mass term

reduces the sensitivity of fNL to the reheating timescale. 4 This might be understood

in terms of modulation on the mass of the χ field due to couplings with ϕ, which will

be explained in the next section.

κ2 =M2
p fNL(te) = −18.71,

ns(te) = 0.748, r(te) = 4.1× 10−3

Γχ ffinal
NL nfinal

s rfinal√
10−5 −2.27 0.912 2.0× 10−1√
10−3 −1.28 0.896 2.1× 10−1√
10−1 −0.345 0.899 2.1× 10−1

κ2 = 0.1Mp fNL(te) = −13.23,
ns(te) = 0.746, r(te) = 2.0× 10−3

Γχ ffinal
NL nfinal

s rfinal√
10−5 −32.1 0.747 1.5× 10−2√
10−3 −28.1 0.752 1.1× 10−2√
10−1 −23.9 0.751 7.8× 10−3

Table 4.5: Statistics of ζ for W (χ, ϕ) = W0(χ
4e−λϕ2/M2

p + κχ2) for different decay rates. All

decay rates are in unit of
√
W0Mp. We give values computed at the end of inflation (te) and

at the completion of reheating (final) where ζ is conserved. Left Table: κ = Mp; Right Table:

κ = 0.1Mp.

4.6 Remarks and Summary

In this chapter, we have discussed the effects of perturbative reheating on the key infla-

tionary observables fNL, ns and r, for canonical two-field inflation models. In particu-

lar, we have considered two classes of potential: the ‘runaway’ type which has a min-

imum in only one direction; and potentials which have a minimum in both directions.

4Note that changing κ also slightly changes the times that inflation ends and reheating starts. This

however has negligible effect on the dependence of the observables on Γχ in the parameter space of

interest.
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One important difference between the single-minimum models and the two-minima

model is that in the former case, the fields are coupled via the potential, whilst in the

latter they are coupled only via gravity. Thus, for the single-minimum models, the

local geometries of the χ minima are functions of the subdominant field ϕ, and these

geometries are different for different inflationary trajectories in the bundle. The shape

of these ‘reheating minima’ evolves in time as reheating proceeds, and this affects the

dynamics of the oscillating χ field. This can be seen as the effective mass of the os-

cillating field is modified by ϕ and thus the oscillating frequency being modulated. In

two-minima models however, where the potential is sum-separable and the fields are

coupled only through gravity, this modulation effect is absent.

This modulation effect depends on the strength of the coupling between the fields,

as we have illustrated with the non-separable model Eq. (4.42). The larger κ is, the

weaker is the the coupling between the ϕ and χ fields. This explains why we found the

sensitivity of the δN derivatives to Γχ decreases as κ increases.

To summarise, we see that although the way the observables depend on the reheating

dynamics is a model-dependent question even for the simplest case where the decay

rates are constants, the model predictions evaluated at the end of inflation are generi-

cally different to the final asymptotic values after reheating, particularly the non-linear

parameter fNL. If |fNL| is large at the start of reheating, it typically remains large

(i.e. |fNL| > O(1)) and is of the same sign after reheating for a wide range of decay

rates. The same qualitative conclusion can be drawn regardless of the geometry of the

reheating minima.



Chapter 5

The Influence of Reheating on the

Trispectrum and Beyond

In Chapter 4, we have discussed how a phase of perturbative reheating changes the

inflationary model predictions at the level of the power spectrum Pζ and bispectrum

Bζ in various examples of canonical two-field models.

Here in this chapter we extend the discussion of reheating to the trispectrum and scale

dependence of non-linear parameters, focussing particularly on the trispectrum non-

linear parameters τNL and gNL and the spectral indices nfNL
and nτNL

in Section 5.1.

As in the previous chapter, we consider the two broad classes of canonical two-field

models where minimum exists in one or both field directions. In Section 5.2, we il-

lustrate that while individually primordial observables could change significantly after

reheating, consistency relations between different observables are much more robust

and thus act as better probes to distinguish different multifield models. Finally we

comment on the difficulties in realising gNL as the dominating statistics of the trispec-

trum in multifield models in Section 5.3 and conclude in Section 5.4. Again we restrict

ourselves to the parameter space where a large (temporary) non-Gaussianity is plausi-

ble.
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5.1 Four-Point Statistics and Scale Dependence of Non-

linear Parameters

In this section, we consider the influence of reheating on the four-point statistics of ζ ,

particularly on τNL, gNL and the spectal index nτNL
. Again we apply the δN formalism

and use the numerical recipe in Appendix B to evaluate the δN coefficients. As in the

previous chapter, we study a simple repesentative of the class of multifield models, the

canonical two-field models, where minima exist in either one field direction or both

field directions. The results were first shown in [110].

Model with One Minimum

Again we consider the ’runaway’ type quadratic exponential models with potential

W (ϕ, χ) = W0χ
2e−λϕ

2/M2
p (5.1)

as an example. Before studying how the trispectrum non-linear parameters τNL and

gNL evolve during reheating, it is useful to revisit their evolution during the inflationary

phase. Because the potential is of a product-separable form, analytic expressions exist

for τNL and gNL during slow-roll as discussed in Appendix A. The expressions were

first derived by Elliston et al. [107] and the slow-roll evolution of the trispectrum has

been studied in the literature [107, 138]. To summarise, a large τNL is produced in

similar regions of parameter space as that of a large fNL, with τNL peaks slightly earlier

than fNL. gNL remains subdominant though, unless there are significant terms beyond

quadratic order in the potential. For instance, see Fig. 4.17 in Chapter 4.

Evolution of Third-order δN Coefficients

Before we begin discussing the trispectrum, it is useful to discuss the evolution of the

third-order δN coefficients first. Similar to the second order terms, while all of them

evolve after inflation ends, there is a hierachy in magnitude between different third-

order δN coefficients, with |Nϕϕϕ| > |Nχχχ|, |Nϕϕχ|, |Nϕχχ| regardless of the decay
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rates. In Fig. 5.1, we illustrate this by showing the fractional differences between

|Nϕϕϕ| and magnitudes of the other third order δN coefficients, defined as

∆χχχ ≡ |Nϕϕϕ| − |Nχχχ|
|Nϕϕϕ|

, ∆ϕχχ ≡ |Nϕϕϕ| − |Nϕχχ|
|Nϕϕϕ|

, ∆ϕϕχ ≡ |Nϕϕϕ| − |Nϕϕχ|
|Nϕϕϕ|

,

(5.2)

for a particular model parameter choice. We see that |Nϕϕϕ| is always orders of magni-

tude larger than |Nχχχ| and |Nϕχχ|, whereas the final asymptotic value of |Nϕϕϕ| after

reheating ends is of the same order as |Nϕϕχ|.

Figure 5.1: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . Fractional differences ∆ between |Nϕϕϕ| and

magnitudes of the other third order δN coefficients, defined as in Eq. (5.2). The model parameters

are λ = 0.05, ϕ∗ = 10−3Mp, χ∗ = 16.0Mp and Γχ =
√

W0/10. Here the solid (black) vertical

line denotes the end of inflation, Ne, and the dashed (black) line denotes the start of reheating,

Nχ=0.

Trispectrum After Reheating, τNL

Now we consider the post-inflationary evolution during reheating. Starting with τNL,

the evolution of τNL during reheating with two different decay rates Γχ, for two slightly

different slopes of the ridge in the potential which are set by λ is shown in Fig. 5.2. The

model parameters are λ = {0.05, 0.06}, ϕ∗ = 10−3Mp and χ∗ = 16Mp. Similar to
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fNL, τNL oscillates during reheating when χ oscillates about its minimum. No generic

trend independent of λ can be seen as the decay rate increases, τNL can either grow or

decay.
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Figure 5.2: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . Top panel: The evolution of τNL during post–

inflationary period, with λ = 0.05, ϕ∗ = 10−3Mp and χ∗ = 16.0Mp. Bottom panel: Same initial

conditions with λ = 0.06. All decay rates are given in unit of
√
W0 here. In both panels, the solid

vertical line denotes the end of inflation, Ne, and the dashed line denotes the start of reheating,

Nχ=0.

This quantitative behaviour can be understood by taking certain approximations in a

similar fashion as in the case of fNL. As demonstrated in Section 4.2, Nχχ and Nϕχ are

negligible compared to Nϕϕ and there exists a scaling relation between Nϕϕ and Nϕ,

where Nϕϕ ≈ Nϕ/ϕ∗. Applying these results, τNL may be written as

τNL =
(N4

ϕ)

(N2
ϕ + g2∗)

3

(

1

ϕ2
∗

)

. (5.3)

Again here g∗ ≡ Nχ = M−1
p (2ǫχ)

−1/2
∗ . The result that Nχ ≈ g∗ = const comes from

the fact that the χ field dominates the energy density over the whole evolution. This
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algebraic function has three stationary points at certain values of Nϕ,

Nϕ = 0,±
√
2g∗ . (5.4)

The Nϕ = 0 root is an infection point where τNL = 0, while the Nϕ =
√
2g∗ cor-

responds to a local maximum. Both Nϕ = 0 and Nϕ =
√
2g∗ roots are unphysi-

cal here because Nϕ is always negative with diverging trajectories. The other root,

Nϕ = −
√
2g∗, however is physical and bounds the maximum value of τNL, given by

(τNL)max =
4

27g2∗

(

1

ϕ2
∗

)

. (5.5)

This bound depends entirely on the initial conditions at horizon crossing, not on su-

perhorizon evolution including reheating. The exact final value of τNL at the end of

reheating of course depends upon Γχ though. But since a bound exists, even if the

details of reheating such as Γχ are unknown, it is still possible to constrain the range

where τNL could lie in this model. The algebraic function Eq. (5.3) also explains the

difference in the qualitative behaviour in the evolution of τNL for different λ, particu-

larly why we see the asymptotic value of τNL evolves in opposite ways for two slightly

different λ. This is shown in Fig 5.3. For λ = 0.05, Nϕ is much smaller and the

algebraic function Eq. (5.3) is close to its maximum value; whereas for λ = 0.06, Nϕ

is much larger and the algebraic function Eq. (5.3) is almost flat as a function of Nϕ.

Trispectrum After Reheating, gNL

Next we consider the non-linear parameter gNL. The evolution of gNL during reheating

for two different Γχ, with the same model parameters as in τNL, is shown in Fig. 5.4.

Similarly, gNL oscillates during reheating, with the final asymptotic value after reheat-

ing different from that evaluated at the end of slow-roll. Unlike τNL, the final value of

gNL is less sensitive to Γχ and the reheating dynamics. Generically, compared to τNL,

it remains very much subdominant and smaller than the current observational limit in

ongoing CMB experiments, i.e. gNL ≪ O(1000).



The Influence of Reheating on the Trispectrum and Beyond 113

Figure 5.3: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . The algebraic function τNL as a function

of Nϕ (in unit of Mp), Eq. (5.3). We give the final asymptotic value of Nϕ after reheating for

λ = {0.5, 0.6} with different decay rate Γχ. All decay rates are in units of
√
W0.
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Figure 5.4: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . The post–inflationary evolution of gNL for

three different decay rate Γχ. The model parameters are λ = 0.06, ϕ∗ = 10−3Mp and χ∗ =
16.0Mp. Top Panel: λ = 0.05, Bottom Panel: λ = 0.06. All decay rates are given in unit of

√
W0

here. In both panels, the solid vertical line denotes the end of inflation, Ne, and the dashed line

denotes the start of reheating, Nχ=0.

Given hierachies between the first and third order δN coefficients as mentioned, gNL

is dominated by a single term in the δN expression

gNL ≈ 25

54

NϕϕϕN
3
ϕ

(N2
ϕ +N2

χ)
3
. (5.6)

However, without any scaling relations between Nϕϕϕ and Nϕ, explicit dependence on

the reheating dynamics cannot be explained in a similar fashion as in the case of fNL

and τNL.
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Scale Dependence of Non–linear parameters, nfNL
and nτNL

As discussed earlier, it is natural that ζ is scale dependent. Apart from the amplitude

of bi- and trispectra in different shapes, one may also study their scale dependence.

Indeed it has been shown that while fNL is insensitive to preheating in canonical single

field models (as well as being too small to be observed), it is strongly scale depen-

dent [150].

Here we focus on the spectral indices of fNL and τNL, denoted by nfNL
and nτNL

re-

spectively. We ignore the scale dependence of gNL here as gNL is small and currently

irrelevant in observations. In Fig. 5.5 we give the evolution of nfNL
and nτNL

from

around 30 e-folds of inflation after horizon-exit up until the completion of reheating.

For a particular choice of λ, i.e. λ = 0.05, nfNL
and nτNL

can be of order O(0.1) and

be potentially observed in CMB experiments if the fiducial values are large enough.
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Figure 5.5: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . Top panel: The evolution of nfNL
. Bottom

panel: The evolution of nτNL
. The model parameters are λ = {0.05, 0.06}, ϕ∗ = 10−3Mp and

χ∗ = 16.0Mp, with the decay rate Γχ =
√
10−3W0. For λ = 0.05, nfNL

and nτNL
may be large

enough to be observationally relevant, while for λ = 0.06 the non–linear parameters are almost

scale–independent. In both panels, the solid vertical line denotes the end of inflation, Ne, and the

dashed line denotes the start of reheating, Nχ=0.

To understand why nfNL
and nτNL

are much larger for λ = 0.05, we first rewrite

Eqs. (3.80)-(3.81) as

nfNL
= −2 [ns − 1 + 2(ǫH)∗]−

5

192

r2

fNL

+
5

6fNL

∑

IJK

[

4ηIK∗NIJNJNK + ηIJ∗NINJ + (WIJK/W )∗NINJNK

(
∑

LN
2
L)

2

]

,

(5.7)

nτNL
= −3 [ns − 1 + 2(ǫH)∗]−

1

256

r3

τNL

+
2

τNL

∑

IJKL

[

2ηJL∗NIJNIKNLNK + ηIJ∗NINJ + ηIJ∗NJLNIKNLNK

(
∑

M N2
M)3

+
(WIJL/W )∗NIKNJNKNL

(
∑

M N2
M)3

]

, (5.8)
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using Eq. (3.66) where r is the tensor–to–scalar ratio. From this, it is not difficult to

see that the second terms in the first line of both equations are small in general as r is

smaller than O(0.1) in most cases. Making use of the approximate formulae for fNL

and τNL, the dominating terms in Eqs. (5.7)-(5.8) are

nτNL
≃ 3

2
nfNL

≃ −3[ns − 1 + 2(ǫH)∗] + 6(ηϕϕ)∗ ≃ 6(ηϕϕ)∗

(

N2
χ

N2
ϕ +N2

χ

)

, (5.9)

where we assumed slow-roll at horizon–crossing such that (WIJK/W )∗ ≪ O(1) and

used ns − 1+ 2(ǫH)∗ ≈ 2(ηϕϕ)∗

(

N2
ϕ

N2
ϕ+N

2
χ

)

. We have also assumed that the numerators

in the square brackets in Eqs. (5.7)-(5.8) are dominated by the Nϕ and Nϕϕ terms. In

Fig. 5.6, we show the comparison between the exact Eqs. (5.7)-(5.8) and the approx-

imate formula Eq. (5.9). From this, we see the approximate formula agrees very well

with the full expressions after about 30 e-folds of inflation, even during the reheating

phase.
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Figure 5.6: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . Comparison of the exact Eqs. (5.7)-(5.8) and

approximate formula Eq. (5.9). Top panel: The evolution of nfNL
. Bottom panel: The evolution of

nτNL
. The model parameters are λ = 0.05, ϕ∗ = 10−3Mp and χ∗ = 16.0Mp, for the decay rate

Γχ =
√
10−3W0. The equations agree to a good approximation after about 30 e–folds of inflation.

From Eq. (5.9), one may see that the spectral indices are relatively large when Nϕ ∼
Nχ, which is the case when λ = 0.05, but very small when |Nϕ| ≫ |Nχ|, which is the

case when λ = 0.06. Notice that if |Nϕ| ≫ |Nχ|, both spectral indices are driven to

zero and hence become independent of the decay rate.

In Table 5.1 we summarise the results, showing the comparison between the primordial

observables evaluated at the end of inflation (slow-roll stage) and at the end of reheat-
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ing. Notice the different qualitative behaviour for the non–linear parameters in the

models for different λ, where the magnitudes of fNL and τNL decrease with larger Γχ

for λ = 0.05, but increase for λ = 0.06. In general, the final values of the non–linear

parameters at the completion of reheating are different from the end of inflation values,

whilst gNL remains small ≪ O(100) in this model which is unlikely be observable in

future experiments. The spectral indices nfNL
and nτNL

are large in the case λ = 0.05

and are redder for larger Γχ.

End of Inflation, λ = 0.05

− fNL τNL gNL nfNL
nτNL

− −34.1 2.34× 103 −49.6 −0.105 −0.158
End of Reheating, λ = 0.05

Γχ fNL τNL gNL nfNL
nτNL√

10−5 −33.4 2.25× 103 −13 −0.105 −0.157√
10−3 −31.5 2.27× 103 −11.6 −0.137 −0.205√
10−1 −26.9 2.01× 103 −9.96 −0.177 −0.266

End of Inflation, λ = 0.06

− fNL τNL gNL nfNL
nτNL

− −5.93 50.7 9.86 −1.0× 10−3 −1.5× 10−3

End of Reheating, λ = 0.06
Γχ fNL τNL gNL nfNL

nτNL√
10−5 −4.35 28.1 −2.41 −9.1× 10−4 −1.3× 10−3

√
10−3 −5.54 44.5 −2.62 −1.4× 10−3 −2.1× 10−3

√
10−1 −7.14 73.9 −2.96 −2.3× 10−3 −3.4× 10−3

Table 5.1: Statistics of ζ for W (ϕ, χ) = W0χ
2e−λϕ2/M2

p for different decay rates. All decay rates

are in unit of
√
W0. We give values computed at the end of inflation (te) and at the completion of

reheating (final) where ζ is conserved. The model parameters are λ = 0.05 (Top panel) and 0.06
(Bottom panel), ϕ∗ = 10−3Mp and χ∗ = 16.0Mp.

Model with Two Minima

Next we repeat the analysis for the two-minima models. Again the example considered

is the effective two–field description of axion N–flation introduced earlier in Chapter 4,

where the potential is again given by

W (ϕ, χ) = W0

[

1

2
m2χ2 + Λ4

(

1− cos

(

2π

f
ϕ

))]

. (5.10)
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Recall that in this model, the axion ϕ, is described by its decay constant f and its

potential energy scale Λ. To generate a large non–gaussianity, we must have ϕ close to

the “hilltop” at horizon-crossing [106]. In this configuration, the second field χ, drives

inflation.

Evolution of Third-order δN Coefficients

Before we begin discussing the trispectrum, it is useful to discuss the evolution of the

third-order δN coefficients first. Similar to the second order terms, the ϕ coefficients

only become large after the end of inflation and there is a large hierachy between the

magnitudes of different third order δN coefficients, with |Nϕϕϕ| ≫ |Nχχχ|, |Nϕϕχ|, |Nϕχχ|.
This can be seen in terms of the fractional differences between the magnitudes of third

order δN coefficients defined in Eq. (5.2) as shown in Fig. 5.7.

Figure 5.7: Potential: W (ϕ, χ) = W0

[

1
2
m2χ2 + Λ4

(

1− cos
(

2π
f ϕ
))]

. Fractional difference

∆ between |Nϕϕϕ| and magnitudes of the other third order δN coefficients, defined as in Eq. (5.2).

The model parameters are Λ4 = m2f2/4π2, ϕ∗ = ( 1
2
− 0.001)f , χ∗ = 16Mp, f = m = Mp,

with Γχ = Γϕ =
√

W0/100Mp. The solid vertical line denotes the end of inflation, Ne, and the

dashed lines denote the start of reheating, Nϕ=0 (blue) and Nχ=0 (black), respectively.

Trispectrum After Reheating

The model parameters we consider are Λ4 = m2f 2/4π2, ϕ∗ = (1
2
− 0.001)f , χ∗ =

16Mp and f = m = Mp. All fNL, τNL and gNL are negligible during inflation as the

axion ϕ is sufficiently light that it remains almost frozen near the top of the ridge. In
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Figure 5.8: Potential: W (ϕ, χ) = W0[
1
2
m2χ2 + Λ4(1 − cos( 2πf ϕ))]. The evolution of τNL

during the post–inflationary period. The model parameters are Λ4 = m2f2/4π2, f = m = Mp,

ϕ∗ = ( 1
2
− 0.001)f and χ∗ = 16.0Mp. For these model parameters, the χ field minimises

before the ϕ field. Left panel: Equal decay rates, Γχ = Γϕ. Right panel: Unequal decay rates,

Γχ 6= Γϕ. The solid vertical line denotes the end of inflation, Ne, and the dashed lines denote the

start of reheating, Nϕ=0 (blue) and Nχ=0 (black), respectively. All decay rates are given in unit of√
W0Mp here. Notice that τNL changes by a few orders of magnitude during reheating. Also, τNL

is sensitive to Γχ and Γϕ if there is a hierarchy between the two decay rates.

this sense, this scenario is similar to the curvaton model. Things are different after

inflation ends however.

When inflation ends, the axion ϕ starts rolling down the ridge, producing a negative

spike in fNL. fNL then evolves to positive value when the ϕ field converges to its min-

imum as shown in the last Chapter. It is similar for τNL, except τNL is always positive.

In Fig. 5.8 we give the evolution of τNL during reheating for various combinations of

Γχ and Γϕ. Similar to fNL, although the final value of τNL is different from that at

the end of inflation, it is almost completely insensitive to the decay rates if Γχ = Γϕ.

Things are different however if there is a mild hierachy between Γχ and Γϕ. When

Γχ 6= Γϕ, the final value of τNL does depend on the reheating timescale. Compared to

the value where Γχ = Γϕ, it grows for Γϕ > Γχ and decays for Γχ > Γϕ.

As mentioned earlier, unlike the one-minimum case, there is no scaling relation be-

tween Nϕϕ and Nϕ. Yet by the observations that Nϕ and Nϕϕ dominate over the first

and second-order δN coefficients respectively, τNL is approximately given by

τNL ≈ N2
ϕϕ

N4
ϕ

. (5.11)

For gNL, things are similar to fNL and τNL. In Fig. 5.9 we give the evolution of gNL for

different combinations of Γχ and Γϕ, with the same model parameters. While the final



The Influence of Reheating on the Trispectrum and Beyond 122

values of gNL at the end of reheating is different from that at the end of inflation, they

are almost completely insensitive to Γχ and Γϕ unless there is a mild hierachy between

the decay rates. Because of a hierachy between the third-order δN coefficients, gNL

Figure 5.9: Potential: W (χ, ϕ) = W0

{

1
2
m2χ2 + Λ4

[

1− cos( 2πf ϕ)
]}

. The model parameters

are Λ4 = m2f2/4π2, ϕ∗ = ( 1
2
− 0.001)f , χ∗ = 16Mp, f = m = Mp. Left panel: Equal decay

rates, Γχ = Γϕ; Right panel: Unequal decay rates, Γχ 6= Γϕ. Similar to τNL, gNL changes by a

few orders of magnitude during reheating and is more sensitive to the decay rates whenever there

is a hierarchy between them. All decay rates are given in unit of
√
W0Mp here. The solid vertical

line denotes the end of inflation, Ne, and the dashed lines denote the start of reheating, Nϕ=0 (blue)

and Nχ=0 (black), respectively.

can be well approximated by

gNL ≈ 25

54

Nϕϕϕ

N3
ϕ

. (5.12)

Although gNL is again much smaller than the current CMB observational limit, unlike

the one minimum model, gNL is of the same order as τNL in this model. This is a

characteristic of the non-vacuum dominated sum-separable models. We will discuss

this in further detail in Section 5.2.1.

Scale Dependence of non–linear parameters, nfNL
and nτNL

We now turn our attention to the spectral indices nfNL
and nτNL

in this model. Sim-

ilar results are found as in the one-minimum case where λ = 0.06 where both spec-

tral indices are negligible regardless of the decay rates and reheating timescale, with

nfNL
, nτNL

≪ O(0.1).

In Table 5.2 we summarise the two-minima model results, showing the comparison
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between the primordial observables evaluated at the end of inflation (slow-roll stage)

and at the end of reheating. The table clearly shows the non–linear parameters in

multifield models strongly depend on the reheating timescale in general. Notice the

large differences between the statistics evaluated at the end of inflation, compared to

the end of reheating. This is because the axion field only begins to roll after inflation

has ended and so until this point, the observables do not evolve appreciably.

End of Inflation
− − fNL τNL gNL nfNL

nτNL

− − 0.006 1.3× 10−3 −3.1× 10−5 1.7× 10−2 4.9× 10−4

End of Reheating

Γχ Γϕ fNL τNL gNL nfNL
nτNL

0 0 6.88 0.69× 102 0.63× 102 −1.2× 10−6 −1.8× 10−6√
10−2

√
10−2 6.59 0.76× 102 0.55× 102 −9.3× 10−7 −1.6× 10−6√

10−2
√
10−4 4.37 0.29× 102 0.29× 102 −7.2× 10−7 −1.2× 10−6√

10−4
√
10−2 13.66 2.75× 102 1.91× 102 −2.5× 10−6 −3.7× 10−6√

10−4
√
10−4 6.83 0.68× 102 0.59× 102 −1.1× 10−6 −1.7× 10−6

Table 5.2: Statistics of ζ for W (ϕ, χ) = W0

[

1
2
m2χ2 + Λ4

(

1− cos
(

2π
f ϕ
))]

for different decay

rates. All decay rates are in units of
√
W0Mp. We give values computed at the end of inflation

(te) and at the completion of reheating (final) where ζ is conserved. The model parameters are

Λ4 = m2f2/4π2, ϕ∗ = ( 1
2
− 0.001)f , χ∗ = 16Mp, f = m = Mp. Note that the values in

the second row where Γχ = Γϕ = 0 do not correspond to end of reheating since the decay rates

are zero. However an adiabatic limit is still reached as both ϕ and χ behave as matter fluids when

oscillating about their minima.

5.2 Consistency Relations Between Observables

So far we have only considered each primordial observable individually. However, in

general observables are not completely independent of one another. For some classes

of models, there exists consistency relations between different observables. A simple

example is the single-field slow-roll consistency relation. From Eq. (3.43) in Chapter 3,

we can see that in canonical single field models the tensor-to-scalar ratio r and the

spectral tilt of the tensor power spectrum nT are always related by

r = −8nT . (5.13)
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This consistency relation has also been shown to hold for all potential-driven slow-roll

inflation in the generalised G-inflation setup by Kobayashi et al. [151].

Similar to single field models, there also exists consistency relations in multifield mod-

els. While perturbative reheating in general leads to significant changes in individ-

ual primordial observables, particularly the non-linear parameters, as compared to the

slow-roll predictions, consistency relations between the observables predicted under

slow-roll, representing certain classes of models, seem to be more robust to reheating

and therefore serve as a better discriminator to different models of inflation. We will

see this in the following for some classes of canonical multifield models.

5.2.1 Relation Between τNL and gNL

The first class of canonical multifield models we consider is models with non–vacuum

dominated sum–separable potentials. For this class of models, by making use of the

slow-roll analytic expressions for the δN coefficients, Elliston et al. [107] have shown

that gNL and τNL are of the same order during slow-roll inflation

27

25
gNL ≈ τNL , (5.14)

in the absence of significant terms beyond quadratic order in the potential. The ef-

fective two-field description of N–flation model Eq. (5.10) discussed previously is an

example of this class.

Following the evolution of the third-order non-linear parameters τNL and gNL beyond

slow-roll inflation, we see that this consistancy relation Eq. (5.14) survives through

reheating, even though individually τNL and gNL do evolve. The relation holds beyond

the slow-roll regime and during reheating for a wide range of mass ratios between the

axion and inflaton where they both minimise after the end of inflation, only mildly vi-

olated when Γχ ≫ Γϕ. This is illustrated in Fig. 5.10. A violation of this consistency

relation could therefore rule out this class of models if reheating proceeds perturba-

tively.

The reason that gNL ∼ τNL regardless of subsequent evolution beyond slow-roll may

be understood if we split the contributions to the non–linear parameters into instrinsic
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Figure 5.10: Potential: W (χ, ϕ) = W0

{

1
2
m2χ2 + Λ4

[

1− cos( 2πf ϕ)
]}

. The evolution of the

ratio (27/25)(gNL/τNL) during reheating for different combinations of decay rates. The model

parameters are Λ4 = m2f2/4π2, ϕ∗ = ( 1
2
− 0.001)f , χ∗ = 16Mp, f = m = Mp. Notice that

the relation Eq. (5.14) are satisfied after reheating in most cases, and only mildly violated when

Γχ ≫ Γϕ. All decay rates are given in unit of
√
W0Mp.

terms which depend on the instrinsic non–gaussianity of δϕI at late times and gauge

terms which do not. This is more transparent in the moment transport technique de-

veloped by Mulryne et al. [152], where ζ is evaluated by evolving the field correlation

functions from horizon–crossing to the time of interest, then gauge–transforming to ζ

on an uniform energy hypersurface.

5.2.2 The Suyama-Yamaguchi (SY) Inequality

In general, τNL(k1, k2, k3, k4) and fNL(k1, k2, k3) are functions of external momenta

which cannot be compared directly. Yet in canonical models, when the non–Gaussianity

is large, it is dominated by the shape independent parts. It is thus reasonable to com-

pare the non–linear parameters directly in such models.

The Suyama-Yamaguchi inequality, for instance, relates fNL in the squeezed limit

(k1 → 0) to τNL in the collapsed limit (k1 + k2 → 0) [144]

τNL ≥
(

6

5
fNL

)2

. (5.15)

This inequality follows simply from the Cauchy-Schwarz inequality and has been stud-

ied and verified extensively in the literature, see e.g. [153, 154, 155, 156, 157, 158,
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Figure 5.11: Fractional difference between 25τNL/36 and f2
NL after inflation ends. Left panel:

Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . The model parameters are λ = 0.05, ϕ∗ = 10−3Mp and

χ∗ = 16.0Mp. Right panel: Potential: W (χ, ϕ) = W0

{

1
2
m2χ2 + Λ4

[

1− cos( 2πf ϕ)
]}

. The

model parameters are Λ4 = m2f2/4π2, ϕ∗ = ( 1
2
− 0.001)f , χ∗ = 16Mp, f = m = Mp. All

decay rates are given in units of
√
W0 or

√
W0Mp. Here the solid vertical line denotes the end of

inflation, Ne, and the dashed line denotes the start of reheating, Nχ=0.

159]. Here the equality in Eq. (5.15) holds for single–source models [153]. For a

recent review about the inequality, see [160].

While the inequality suggests τNL can be very much larger than f 2
NL, recently Peterson

et al.[105] have shown that this is not the case in two–field canonical models in general

by applying both the slow-roll and slow-turn approximations without excessive fine-

tuning. This was also shown by Elliston et al. [107] for separable potentials in the

slow-roll limit. Here we are interested to see if this remains true beyond the slow-roll

limit, particularly after a period of perturbative reheating.

In Fig. 5.11, we plot the fractional difference between τNL and f 2
NL in the two models

discussed in this Chapter, defined as

∆̃ ≡ (25τNL/36)− f 2
NL

f 2
NL

. (5.16)

Equality here corresponds to ∆̃ = 0, whereas ∆̃ ≫ 1 if τNL is very much larger than

f 2
NL. From the plots, we see that while reheating may enlarge the difference between

τNL and f 2
NL, ∆̃ never becomes much larger than unity and τNL remains not much larger

than f 2
NL for a wide range of decay rates that vary by a few orders of magnitude. We

may conclude that an observation τNL ≫ f 2
NL could put canonical two-field models

under tension if reheating takes place perturbatively.
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Figure 5.12: Potential: W (χ, ϕ) = W0χ
2e−λϕ2/M2

p . The evolution of the ratio nτNL
/nfNL

until

the completion of reheating. The model parameters are λ = {0.05, 0.06}, ϕ∗ = 10−3Mp, χ∗ =
16Mp and Γχ =

√
0.3W0. The ratio settles to 3/2 quickly after about 30 e–folds of inflation after

horizon-exit, showing the consistency relation Eq. (5.17) is satisfied.

5.2.3 Relation Between the Scale Dependence of Bi- and Trispectra

Next we investigate any possible relations between the spectral indices nfNL
and nτNL

.

We found that whether nfNL
and nτNL

are of a detectable level or not after reheating,

for both the one-minimum and two-minima models discussed, they always satisfy the

following consistency relation

nτNL
=

3

2
nfNL

, (5.17)

regardless of the reheating timescale. For instance, see Figs. 5.12 and 5.13 for the

quadratic exponential Eq. (5.1) and effective N-axion models Eq. (5.10) respectively.

This relation Eq. (5.17) was first found by Byrnes et al. [60] in the class of two–field

local type models with ζ of the form

ζ(k) = ζG,ϕk + ζG,χk + fϕ(ζ
G,ϕ ⋆ ζG,ϕ)k + gϕ(ζ

G,ϕ ⋆ ζG,ϕ ⋆ ζG,ϕ)k , (5.18)

when fϕ and gϕ are some scale independent functions and ζG,ϕ, ζG,χ are Gaussian

variables. Again ⋆ denotes convolution in momentum space. For all models considered

only one of the fields acquires significant deviation from a Gaussian statistic after

horizon-exit, so they fit into this ansatz. The question is whether fϕ and gϕ are scale

independent, for the models we study. They are if the field which generates non-
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Figure 5.13: Potential: W (ϕ, χ) = W0

{

1
2
m2χ2 + Λ4

[

1− cos( 2πf ϕ)
]}

. The evolution of the

ratio nτNL
/nfNL

during post–inflationary period. The model parameters are Λ4 = m2f2/4π2,

f = m = Mp, ϕ∗ = 0.499Mp, χ∗ = 16Mp. Here the decay rates Γϕ and Γχ are given in unit of√
W0Mp. The solid vertical line denotes the end of inflation, Ne, and the dashed lines denote the

start of reheating times, Nχ=0 (blue) and Nϕ=0 (black), respectively. Here axion ϕ reheats first.

Gaussianity is strongly subdominant, has negligible interactions with the inflaton field

and a quadratic potential. Many of the models we study are approximately of this type,

and hence we often observe 3nfNL
≃ 2nτNL

.

On the other hand, for single source models there is a different consistency relation,

which trivially follows from τNL = 36f 2
NL/25,

nτNL
= 2nfNL

. (5.19)

In the limit that ζG,ϕk ≪ ζG,χk , which corresponds to N2
χ ≫ max

{

N2
ϕ, 1
}

, the model

becomes effectively single source. If the assumptions discussed earlier remain valid,

the non-linearity parameters then have to be scale independent.

5.3 Additional Comments on gNL

So far for all two–field models considered in the literature, gNL is at most of the same

order of magnitude as τNL and is much less than the current observational limit in

CMB experiments and large scale surveys which is about O(105). Using slow-roll

analytic expressions and heatmap analysis, Elliston et al. have shown that it is hard to

engineer a model where gNL can be as large as O(105) during inflation and dominates
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the statistics in the trispectrum for canonical separable potentials, even if one goes

beyond quadratic order in the potential [107].

This however only applies to slow-roll inflation regime. It remains to be seen beyond

the slow-roll regime. In particular, gNL could be dramatically enhanced such that it

is above the observational limit after reheating. Yet we found the same conclusion in

the simple setup of perturbative reheating in all models considered. For the effective

N-flation model, gNL does increase dramatically from 0 to O(100) for some of the

combinations of decay rates, for instance see Fig. 5.8. One may expect that a larger

hierarchy between the decay rates may thus produce a large observable gNL. How-

ever we argue that this could require Γ2
ϕ/Γ

2
χ ≫ O(103) and is beyond the numerical

capabilities of our code.

5.4 Conclusion

In this Chapter, we have extended the discussion on the influence of reheating to the

trispectrum of ζ and possible consistency relations between observables. Similar to the

bispectrum, the trispectrum continues to evolve after inflation ends with the presence

of isocurvature perturbations and so do the corresponding non-linear parameters τNL

and gNL in general. Moreover, the trispectrum in general is sensitive to the decay rates

during reheating, although in some cases in which both fields oscillate during inflation,

the sensitivity to the decay rates can be very small provided that they are equal for both

fields. The evolution during reheating is significant enough that a comparison between

observables and their values at the end of inflation would typically lead to the wrong

conclusions, since the change in observables may be larger than the expected error bars

of the observables. While the evolution to an adiabatic attractor during inflation often

(but by no means always) results in negligible non-Gaussianity [107, 131, 161, 162],

this is not the case during reheating, typically a model which is non-Gaussian at the end

of inflation will remain non-Gaussian, and in most cases which we studied, the sign

of the non-linearity parameters will also remain the same. The reverse is not always

true, we have seen how in the axion model the perturbations are Gaussian at the end of

inflation but not at the end of reheating.
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Despite ζ-related observables typically evolving during reheating, it could still be pos-

sible to test models of multifield inflation against the new observational data without

specifying the reheating dynamics. For instance, we could look for consistency rela-

tions between the non-linear parameters. First of all, it is very hard to engineer a two-

field canonical model where τNL ≫ f 2
NL, regardless of the reheating dynamics. Inter-

estingly, we have also seen that the consistency relation in non-vacuum sum-separable

models gNL ≃ τNL typically remains true during reheating. Given the observational

bounds on τNL, it will be hard to observe gNL in such models. Finally we have also dis-

cussed the relation between nfNL
and nτNL

, showing that in many cases 3nfNL
≃ 2nτNL

both during and after inflation. These relations between observables allow the under-

lying inflation models to be tested even when one cannot predict the actual values of

some model parameters, particularly the reheating parameters.



Chapter 6

Conformal Inflation

In this chapter, we introduce a new class of two-field inflation models which are lo-

cally scale invariant (or Weyl invariant). This is known as conformal inflation, first

introduced by Kallosh and Linde [3]. Although this is a two-field model, because of

the local scale invariance symmetry, only one scalar degree of freedom is physical.

Thus this model is in fact equivalent to the case of single-field inflation and pertur-

bations are purely adiabatic. Unlike the class of two-field inflation models discussed

previously, ζ and therefore the corresponding model predictions are conserved after

horizon-exit. Subsequent (p)reheating does not change the model predictions as long

as perturbations remain purely adiabatic. Motivated by the original model, we are in-

terested in studying how universality classes arise in conformal inflation in general,

beyond the original paradigm.

In Section 6.1, we first introduce Kallosh and Linde’s original conformal inflation

model and discuss its universal behaviour. In Section 6.2 and 6.3, we discuss how

one would go beyond the original paradigm and construct the most general bi-scalar

conformal inflation model with global SO(1, 1) symmetry. We then move on to discuss

whether the universal behaviour of the original model is extended to the generalised

model, particularly focussing on the class of K-inflation models. Finally motivated

by BICEP2, we discuss the possibility of realising a different universality class with a

large r in the context of conformal inflation in Section 6.6.
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6.1 The Original Model

Consider the following bi-scalar theory with canonical kinetic terms (up to a negative

sign for the π field) and the scalar fields non-minimally coupled to the scalar curvature

R(g)

S =

∫

d4x
√−g

[

1

2
∂µπ∂

µπ − 1

2
∂µχ∂

µχ+
π2 − χ2

12
R(g)− 1

36
F
(χ

π

)

(

χ2 − π2
)2
]

,

(6.1)

where F is an arbitrary function of χ/π. This theory is locally scale invariant, i.e.

invariant under the following transformations

gµν → e−2σ(x)gµν , π → eσ(x)π , χ→ eσ(x)χ , (6.2)

for any σ(x). In the case F is a constant function, i.e. F = const, there is also a global

SO(1, 1) symmetry between the π and χ field. Here the π field is often referred to as

a conformal compensator or conformon field. Its kinetic term comes with the wrong

sign. Yet it is not a ghost field, since with the scale-invariance symmetry, only one

scalar degree of freedom is in fact physical. 1 The unphysical degree of freedom can

be removed from the theory by gauge fixing π.

Motivated from the superconformal formulation of supergravity, this model was first

introduced by Kallosh and Linde [3], where π and χ are moduli fields. Gauge fixing

was interpreted as a spontaneous symmetry breaking due to existence of a classical

field. The global SO(1, 1) symmetry between the π and χ field is restored near the

boundary of the moduli space where π, χ → ∞, and is originated from SU(1, 1)

symmetry of the embedding Kahler manifold. This is the enhanced symmetry point

where critical phenomenon happens, as we will see later. The model was later extended

to the multifield paradigm [163].

To study this model, we need to first fix the gauge. An example would be the gauge

1This is true classically. Quantum corrections in general lead to conformal anomalies which break

the local scale-invariance symmetry.
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π =
√
6Mp. The full Lagrangian then becomes

L =
√−g

[

M2
pR

2

(

1− χ2

6M2
p

)

− 1

2
∂µχ∂

µχ− F (χ/
√
6Mp)

(

χ2

6M2
p

− 1

)2
]

, (6.3)

which is in the Jordan frame. To work out the model predictions, one could perform a

conformal transformation on the metric gµν and write the theory in the Einstein frame.

Alternatively, because of the global SO(1, 1) symmetry, it is convenient to choose the

following gauge

π2 − χ2 = 6M2
p . (6.4)

Upon fixing this gauge, the action Eq. (6.1) is automatically in the Einstein frame, and

reduces to

S =

∫

d4x
√−g

[

M2
pR

2
− 1

2
(∂ϕ)2 − F [tanh(ϕ/

√
6Mp)]

]

, (6.5)

where ϕ is the canonically-normalised field, defined by π =
√
6Mp cosh(ϕ/

√
6Mp)

and χ =
√
6Mp sinh(ϕ/

√
6Mp). This gauge is referred to as the rapidity gauge by

Kallosh and Linde because of the similarity between ϕ and rapidity in special relativ-

ity. From Eq. (6.5), we can see the gauge-fixed theory is equivalent to chaotic single

field models. In general the function F is arbitrary and can take any form. However,

arguing from the original bi-scalar action Eq. (6.1), we expect the function F to be

some analytic function of the gauge-invariant variable

ϕ̃ ≡ χ/π (6.6)

as in the standard approach to chaotic inflation. This restricts the form of the function F

and we shall see this leads to a universal class of inflation models in some appropriate

limit.
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Figure 6.1: The T-model motivated from conformal inflation where the potential is given by V =
tanh2n(ϕ/

√
6Mp) for n = 1(blue), 2(red), 3(brown), 4(green), in units of Mp. Credit Kallosh and

Linde [3].

Universal Predictions from Conformal Inflation

Recall that the arbitrary function F deforms the global SO(1, 1) symmetry between the

two fields. Now consider model Eq. (6.5) in the largeϕ limit, where tanh(ϕ/
√
6Mp) →

1 and F → const asymptotically and the SO(1, 1) symmetry is restored. This is also

the region where slow-roll inflation naturally occurs, since V (ϕ) = F (ϕ) ≈ const and

thus dominate over the gradient term.

For a simple set of functions F (ϕ̃) = λϕ̃2n, in terms of the canonically normalised

field ϕ, one finds

V (ϕ) = F [tanh(ϕ/
√
6Mp)] = λn tanh

2n(ϕ/
√
6Mp) . (6.7)

for some constants λn which is of mass dimension 4. This is a basis representative

of the universality class of models depending on tanh(ϕ/
√
6Mp) and is called the T-

model by Kallosh and Linde [3]. In Fig. 6.1, we plot how the potential looks like as

function of the canonically-normalised field ϕ.

Near the boundary of moduli space, or the large ϕ limit, to leading order, the potential

Eq. (6.7) is approximately given by

V (ϕ) = λn[1− 4ne−
√

2/3(ϕ/Mp)] . (6.8)

λn sets the energy scale of inflation and again can be fixed by the CMB normalisation.
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This universal form of the potential around the critical point leads to universal predic-

tions in this model. To see this, we first write the slow-roll field equation for ϕ in terms

of the number of e-folds N

dϕ

dN
≈ −M2

p

Vϕ
V

≈ −4nMp

√

2

3
e−

√
2/3(ϕ/Mp) . (6.9)

Integrating this, we get

e−(
√

2/3)∆ϕ/Mp =
3

8nN
, (6.10)

where ∆ϕ denotes the field range of ϕ over the course of N e-folds of expansion. In

the large N limit, where the initial field value ϕ∗ is large, this reduces to

e−
√

2/3(ϕ∗/Mp) =
3

8nN
. (6.11)

Using these, we can write the slow-roll parameters at horizon-exit t∗ as

(ǫV )∗ ≡
M2

p

2

(

Vϕ
V

)2

∗
≈ 3

4N2
, (ηV )∗ ≡M2

p

(

Vϕϕ
V

)

∗
≈ 1

N
. (6.12)

Recalling that in the single-field canonical models, the spectral index ns and tensor-to-

scalar ratio r can be expressed purely in terms of the slow-roll parameters at horizon-

exit, we therefore have

ns − 1 = −2/N , r = 12/N2 . (6.13)

This is the universal prediction of the model. Given the number of e-folds of inflation

after the observed CMB pivot scale leaves the horizon, we have universal predictions

for ns and r regardless of the form of the potential V . For instance, ns ≈ 0.967

and r ≈ 0.0032 for N ≈ 60, which are in perfect agreement with the recent Planck

results [44]. 2

This universal behaviour is a critical phenomenon near the point of enhanced symme-

try where the global SO(1, 1) symmetry is restored. In fact, the SO(1, 1) symmetry

2But not with BICEP2
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manifests itself as a shift symmetry in ϕ in the single-field description after gauge

fixing, see [164] for relevant discussion.

Besides universal predictions, it was argued that conformal inflation also sets the initial

conditions for inflation under the Damour-Polyakov mechanism if the model is coupled

to non-relativistic matter [165]. Similar model setups have also been discussed in the

context of the cyclic Higgs model [166].

6.2 Beyond the Original Model, Generalised Confor-

mal Inflation

While Kallosh and Linde’s original model is simple, it is possible to generalise their

models to non-canonical case that involves higher-order derivatives. In fact, the most

general scale invariant bi-scalar theory with at most second-order field equations was

first found by Padilla et al. by performing the following field redefinitions on the

Horndeski action SHorn[g̃µν , ϕ̃] [167]

ϕ̃→ χ/π , g̃µν → π2gµν , (6.14)

where SHorn[g̃µν , ϕ̃] is given by [168]

SHorn[ϕ̃, g̃µν ] =
∫

d4x
√−g̃

[

K(ϕ̃, X̃)−G3(ϕ̃, X̃)Ẽ1 +G4(ϕ̃, X̃)R̃ +G4,X̃ Ẽ2
+G5(ϕ̃, X̃)G̃µν∇̃µ∇̃νϕ̃−G5,X̃ Ẽ3/6

]

. (6.15)

Here X̃ ≡ −1
2
(∇ϕ̃)2, Ẽn = n!∇[µ1∇µ1ϕ̃...∇µn]∇µnϕ̃ where the anti-symmetriser

acts only on the lower indices. Gµν is the Einstein tensor, R̃ is the Ricci scalar, both

built from the metric g̃µν , and K, G3, G4 and G5 are arbitrary functions of X̃ and ϕ̃.

Subscripts ϕ̃ and X̃ denote partial differentiations with respect to ϕ̃ and X̃ respectively.

The resulting action Slocal[χ, π, gµν ] can be expressed in the form as Eq. (6.15), with
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the relevant terms in terms of π and χ fields given by

√

−g̃ = √−gπ4 , R̃ = π−2R− 6π−3�π , X̃ =
Xχχ

π4
− 2χXχπ

π5
+
χ2Xππ

π6

G̃µν = π−4Gµν + 4π−6∇µπ∇νπ − π−6gµν∇κπ∇κπ − 2π−5∇µ∇νπ + 2gµνπ−5�π

∇̃µ∇̃νϕ̃ = π−1∇µ∇νχ− χπ−2∇µ∇νπ − 4π−2∇(µχ∇ν)π + π−2gµν∇απ∇αχ

+4χπ−3∇µπ∇νπ − χπ−3gµν∇απ∇απ (6.16)

and

Ẽ1 = �̃ϕ̃ = π−3�χ− χπ−4�π

Ẽ2 = 2δµ1[µ2δ
µ3
µ4]

(

π−3∇µ1∇µ2χ− χπ−4∇µ1∇µ2π − 2π−4∇µ1χ∇µ2π − 2π−4∇µ2χ∇µ1π

+π−4δµ2µ1∇απ∇αχ+ 4χπ−5∇µ1π∇µ2π − χπ−5δµ2µ1∇απ∇απ
)(

π−3∇µ3∇µ4χ

−χπ−4∇µ3∇µ4π − 2π−4∇µ3χ∇µ4π − 2π−4∇µ4χ∇µ3π + π−4δµ4µ3∇απ∇αχ

+4χπ−5∇µ3π∇µ4π − χπ−5δµ4µ3∇απ∇απ
)

Ẽ3 = 6δµ1[µ2δ
µ3
µ4
δµ5µ6]
(

π−3∇µ1∇µ2χ− χπ−4∇µ1∇µ2π − 2π−4∇µ1χ∇µ2π

−2π−4∇µ2χ∇µ1π + π−4δµ2µ1∇απ∇αχ+ 4χπ−5∇µ1π∇µ2π − χπ−5δµ2µ1∇απ∇απ
)

(

π−3∇µ3∇µ4χ− χπ−4∇µ3∇µ4π − 2π−4∇µ3χ∇µ4π − 2π−4∇µ4χ∇µ3π

+π−4δµ4µ3∇απ∇αχ+ 4χπ−5∇µ3π∇µ4π − χπ−5δµ4µ3∇απ∇απ
)(

π−3∇µ5∇µ6χ

−χπ−4∇µ5∇µ6π − 2π−4∇µ5χ∇µ6π − 2π−4∇µ6χ∇µ5π + π−4δµ6µ5∇απ∇αχ

+4χπ−5∇µ5π∇µ6π − χπ−5δµ6µ5∇απ∇απ
)

(6.17)

Here Xχπ ≡ −1
2
gµν∇µχ∇νπ and similarly for Xππ, Xχχ. Note that this action is

invariant under the interchange of π and χ. The most general conformal bi-scalar

inflation model can be constructed by imposing slow-roll conditions to the action

Slocal[χ, π, gµν ]. As discussed previously, because of local scale invariance, one scalar

degree of freedom can be gauged away and the gauge-fixed model is equivalent to the

most general scalar-tensor Horndeski theory.

Here in this thesis, we are interested in the SO(1, 1) (or shift symmetric) subset of the

whole bi-scalar conformal inflation models. In particular, we are going to study the

possible critical phenomenon for generalised bi-scalar conformal inflation models that

admit an enhanced SO(1, 1) symmetry point, to see if the same universal behaviour
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emerges as in the original conformal inflation model.

6.3 Constructing the Most General Bi-scalar Local Scale

Invariant Model with SO(1, 1) Symmetry

To start with, we discuss how one could construct the most general bi-scalar local

scale invariant theory with SO(1, 1) symmetry between the two fields. For any bi-

scalar models that possess global SO(1, 1) symmetry between the scalar fields ϕI , the

action must be invariant under the Lorentz transformation ϕI → ΛIJϕ
I

S[ϕI , gµν ] → S ′[ΛIJϕ
I , gµν ] = S[ϕI , gµν ] =

∫

d4x
√−gL[ϕI , gµν ] , (6.18)

or in other words, the Lagrangian L transforms up to some total derivatives. Here I, J

run from 1 to 2 and the transformation matrix is given by

ΛIJ =
(

coshϑ − sinhϑ
− sinhϑ coshϑ

)

, (6.19)

where ϑ is some dimensionless constant. Take ϕI = (χ, π) and consider an infinites-

imal Lorentz transformation, χ → χ − ϑπ and π → π − ϑχ. The change in the

Lagrangian L is given by

∆L = ϑ∇µ

[

∂L
∂(∇µ)χ

π +
∂L

∂(∇µ)π
χ

]

+ϑ

{[

∂L
∂χ

−∇µ

(

∂L
∂(∇µχ)

)]

π +

[

∂L
∂π

−∇µ

(

∂L
∂(∇µπ)

)]

χ

}

. (6.20)

The first term is a total derivative, which corresponds to the conserved current, whereas

the second term is proportional to the EOM, which is guaranteed to vanish on-shell.

This is Noether’s theorem. However, because we are interested in the case where the

SO(1, 1) symmetry is a global off-shell symmetry, i.e. the symmetry holds for any

field configurations π, χ and metric gµν , the second term in Eq. (6.20) must vanish up
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to some total derivatives. This gives a constraint on the form of L

[

∂L
∂χ

−∇µ

(

∂L
∂(∇µχ)

)]

π +

[

∂L
∂π

−∇µ

(

∂L
∂(∇µπ)

)]

χ

= sum of total derivatives . (6.21)

To find the subset of the bi-scalar local scale-invariant models that respect SO(1, 1)

symmetry as well, we apply the constraint Eq. (6.21) to the most general bi-scalar

local scale invariant theory Llocal[χ, π, gµν ].

As an example, we consider the K-essence case, where the Lagrangian is given by

L =
√

−g̃
[

K(ϕ̃, X̃) +G4(ϕ̃)R̃
]

, (6.22)

or in terms of χ, π and gµν

L =
√−g

{

π4K +G4π
2R + 6(∇π)2G4 + 6G4,ϕ̃(∇π) ·

[

(∇χ)− χ

π
(∇π)

]}

.

(6.23)

Here we have suppressed the arguments in K and G4. Varying this Lagrangian L with

respect to χ, π, ∇χ and ∇π, we have

∂L
∂χ

=
√−g

{

π3Kχ̃ + πRG4,ϕ̃ + (KX̃ + 6G4,ϕ̃ϕ̃)

[

(∇π) · (∇χ)
π

− χ

π2
(∇π)2

]}

,

∂L
∂π

=
√−g

{

4π3K − π2χKϕ̃ + (2G4π − χG4,ϕ̃)R + 2KX̃

(∇χ)2
π

− χ

π2
(∇π) · (∇χ) [5KX̃ + 6G4,ϕ̃ϕ̃] +

χ2

π3
(∇π)2(3KX̃ + 6G4,ϕ̃ϕ̃)

}

,

∂L
∂(∇χ) =

√−g
{[

6G4,ϕ̃ +KX̃

(χ

π

)]

(∇π)−KX̃(∇χ)
}

,

∂L
∂(∇π) =

√−g
{[

6G4,ϕ̃ +KX̃

(χ

π

)]

(∇χ)

+

[

12G4 − 12G4,ϕ̃

(χ

π

)

−KX̃

(χ

π

)2
]

(∇χ)
}

. (6.24)

Substituting Eq. (6.24) into the constraint Eq. (6.21) and collecting terms with Ricci
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scalar R, we can deduce

(π2 − χ2)G4,ϕ̃ + 2χπG4 = 0 , (6.25)

since Eq. (6.21) must hold for any metric gµν and thus R. Here for simplicity, we have

considered the constraint Eq. (6.21) identically vanishes instead of up to some total

derivatives. 3 Solving Eq. (6.25) then gives

G4 = A(1− ϕ̃2) (6.26)

for some constant A. This fixes G4. To satisfy the constraint Eq. (6.21), we also need

the remaining terms to vanish, which gives

π4Kϕ̃ + 4π3χK − π2χ2Kϕ̃ + (∇π)2
[

6G4,ϕ̃ − 6G4,ϕ̃ϕ̃

(χ

π

)

+(3KX̃ + 6G4,ϕ̃ϕ̃)
(χ

π

)3
]

+ (∇π) · (∇χ)
[

12G4 + 6G4,ϕ̃ϕ̃ − 12G4,ϕ̃

(χ

π

)

−(6KX̃ + 6G4,ϕ̃ϕ̃)
(χ

π

)2
]

+ (∇χ)2
[

6G4,ϕ̃ + 3KX̃

(χ

π

)]

= 0 , (6.27)

with G4 given in Eq. (6.26). In general, Eq. (6.27) is difficult to solve. For simplicity,

we consider the sum-separable case where K(X̃, ϕ̃) = g(X̃) + h(ϕ̃). In this case,

Eq. (6.27) can be solved exactly, where the solution is

g(X̃) = X̃ + cX̃2/3 ,

h(ϕ̃) = λ(1− ϕ̃2)2 , (6.28)

for A = 1/12 and λ = const. For this example, written in terms of X̃ and ϕ̃, the full

bi-scalar action is therefore given by

L =
√−gπ4

[

(

1− ϕ̃2
) R̃

12
+ X̃ + cX̃2/3 + λ(1− ϕ̃2)2

]

. (6.29)

The original Kallosh and Linde model Eq. (6.1) at the critical enhanced SO(1, 1) sym-

metry point where F = const corresponds to the case c = 0.

3We will consider the total derivatives case later.
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This general approach works for any theory of arbitrary number of fields with any

continuous symmetries. For the global SO(1, 1) symmetry we consider, instead of

parametrising ϕI as (χ, π), it is more convenient to consider an alternative parametri-

sation as we will see later.

Alternative Parametrisation

In fact, to construct terms that are SO(1, 1) and locally scale invariant, it is better to

reparametrise the fields as

π = ρ̃ cosh(θ) , χ = ρ̃ sinh(θ) , (6.30)

where θ is a dimensionless field and ρ̃ is of mass dimension 1. In this field parametri-

sation, the global SO(1, 1) transformation of the fields corresponds a constant shift in

θ, i.e. θ → θ + ϑ, ϑ is again some dimensionless constant, whereas the local scaling

transformation becomes ρ̃ → ρ̃/σ and gµν → σ2gµν . A similar parametrisation can be

applied to models that respect SO(2) between the two fields instead of SO(1, 1), with

the field redefinition

π = ρ̃ cos(θ) , χ = ρ̃ sin(θ) , (6.31)

The locally scale-invariant bi-scalar action Slocal expressed in terms of ρ̃ and θ can be

found simply by performing the following field redefinitions on the Horndeski action

Eq. (6.15)

ϕ̃→ θ , g̃µν → ρ̃2gµν . (6.32)

Using Noether’s theorem as previously discussed, in this parametrisation (ρ̃, θ), it is

easy to see for an infinitesimal global SO(1, 1) transformation θ → θ + ϑ, the La-

grangian L[ρ̃, θ, gµν ] changes as

∆L = ϑ
∂L
∂θ

(6.33)
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for an infinitesimally small constant ϑ. Global SO(1, 1) invariance simply means the

Lagrangian cannot have explicit θ dependence except up to some total derivatives, i.e.

∂L
∂θ

= sum of total derivatives . (6.34)

for any fields ρ̃, θ and gµν .

The Most General SO(1, 1) and Local Weyl Invariant K-inflation

Model

Consider the case of K-essence Eq. (6.22) as an example, which in terms of ρ̃ and θ is

given by

L =
√−g

[

G4(θ)(ρ̃
2R− 6ρ̃�ρ̃) + ρ̃4K(θ, X̃θθ)

]

(6.35)

where X̃θθ = −1
2
ρ̃−2gµν∇µθ∇νθ. In this parametrisation, the constraint Eq. (6.34)

reads as

√−g
[

ρ̃4Kθ +G4,θ(ρ̃
2R− 6ρ̃�ρ̃)

]

= sum of total derivatives . (6.36)

Since Eq. (6.36) must holds for gµν , the term with the Ricci scalar R on its own must

vanish up to some total derivatives. This implies G4 is a constant function since G4

is independent of ρ̃ and does not contain any derivative terms. The only remaining

term left is
√−gρ̃4Kθ. For generic function K, the constraint then implies K cannot

depend explictly on θ, i.e. Kθ = 0.

As a result, we finally arrive at the full bi-scalar SO(1, 1) K-essence action

S =

∫

d4x
√−g

[

c1ρ̃
2R− 6c1ρ̃�ρ̃+ ρ̃4K(X̃θθ)

]

. (6.37)

Written in terms of χ and π and pulling out the terms in the Kallosh and Linde original
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model Eq. (6.1) at the critical point where F = λn = const, this becomes

S =

∫

d4x
√−g

{

π2 − χ2

12
R +

1

2
(∂π)2 − 1

2
(∂χ)2 − λn

36
(π2 − χ2)2

+(π2 − χ2)2f(Z)
}

,

(6.38)

where Z ≡ 1
2
(π2−χ2)−3[π2Xχχ−2χπXπχ+χ

2Xππ]. Here we have chosen c1 = 1/12.

This is the most general action with SO(1, 1) and local Weyl symmetry in the class of

K-essence. Here the second line are all the possible extra terms beyond the original

Kallosh and Linde model in the class of K-essence.

With Soft Shift Symmetry Breaking Prefactors

The model Eq. (6.37) does not provide a natural mechanism to end slow-roll inflation.

This can be seen by gauge fixing ρ̃ = Mp. However, recall that in the original model

Eq. (6.1), the function F (ϕ/π) breaks the SO(1, 1) symmetry. The symmetry is only

restored near the critical point, i.e the boundary of moduli space or in the large ϕ

limit. Here since we are interested in the model behaviour in the vicinity of the critical

point, we consider the same for the general action Eq. (6.37). That is, we promote the

dimensionless coefficients such as c1 to functions of the scale-invariant variables that

break the SO(1, 1) symmetry in general but not at the critical point.

In terms of the redefined fields Eq. (6.30), the resulting action is

S =

∫

d4x
√−g

[

c1(θ)
ρ̃2R

2
− 3c1(θ)ρ̃�ρ̃+ ρ̃4K(X̃θθ, θ)

]

. (6.39)

Here θ → ∞ is the natural critical point where the SO(1, 1) symmetry is restored, as

θ becomes shift symmetric at ∞. Upon fixing the gauge ρ̃ = Mp and performing a

conformal transformation on the metric gµν → gE = c−1
1 gµν back into the Einstein

frame, the action Eq. (6.39) becomes

SE =

∫

d4x
√−gE

[

M2
pRE

2
− 3M2

p

4

c21,θ
c21

(∂θ)2 +
M4

pK(X̃, θ)

c21

]

(6.40)
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where c1,θ ≡ ∂c1/∂θ and now X̃ reads as X̃ = − c1
2
M−2

p (∂θ)2. We have suppressed

the argument of c1 here. We call this model generalised conformal K-inflation. If

we demand c1(θ) and K(X̃, θ) to be analytic functions near the critical point θ → ∞,

then c1(θ) must also asymptote to a dimensionless constant and K(X̃, θ) → K(X̃).

6.4 Conditions for Realising Universal Model Predic-

tions

Before we discuss the model predictions of the generalised conformal K-inflation

model Eq. (6.39) near the enhanced SO(1, 1) symmetry point and check if any uni-

versal behaviour emerges, it is useful to first study the sufficient conditions for real-

ising universal model predictions. For instance, in the case of chaotic inflation, the

asymptotic scaling relations (ǫV )∗ ∝ 1/Np and (ηV )∗ ∝ 1/N q for some p and q in

the large N limit, where p, q > 0, lead to universal model predictions. This was first

noted by Roest [169]. The results were later extended to some other scaling relations

by Garcia-Bellido and Roest [170]. In the following, we use the same approach and

study the corresponding scaling relations in the case of K-inflation.

6.4.1 Slow-roll K-inflation

We begin by introducing the K-inflation model and briefly discussing its background

dynamics and model predictions. The Lagrangian of K-inflation is given by

L =
√−g

[

K(X,ϕ) +M2
pR/2

]

. (6.41)

It was first introduced by Armendariz-Picon, Damour and Mukhanov [171]. An ex-

ample of K-inflation is the Dirac-Born-Infeld (DBI) inflation [90]. For K-inflation, the

background Einstein equations in a FRW universe are

3H2 =M−2
p (2XKX −K)

Ḣ =M−2
p (−XKX) . (6.42)
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Demanding the Hamiltonian is bounded from below and the equations of motion re-

main hyperbolic, the function K must satisfy the conditions [172]

KX > 0 , 2XKXX +KX > 0 . (6.43)

It is useful to introduce a new quantity cs defined by

c2s =
KX

2XKXX +KX

. (6.44)

This quantity cs corresponds to the ’sound speed’ of the density fluctuations and takes

values between 0 to 1 for physical models. In general cs is time dependent, where its

dynamics can be described by the following sound flow functions

sn+1 ≡
d ln |sn|
dN

, s1 ≡
ċs
Hcs

. (6.45)

Slow-roll inflation happens where the following slow-roll parameters are small

ǫH ≡ − Ḣ

H2
=

3XKX

2XKX −K
≪ O(1) ,

ηH ≡ −1

2

˙ǫH
HǫH

= −ǫH − 1

2

Ḧ

HḢ
≪ O(1) . (6.46)

It was also shown that consistent slow-roll inflation models require the sound speed

does not change abruptly, or sn ≪ O(1) [173, 174]. Demanding ǫH ≪ O(1) is

equivalent to the condition −K ≫ XKX . As a result, the Friedmann equation in the

slow-roll limit becomes

3M2
pH

2 = 2XKX −K ≈ −K . (6.47)

Since ǫH ≪ O(1), to have ηH ≪ O(1) we also need Ḧ/(HḢ) ≪ O(1). Using the

background equations Eq. (6.42), we can work out Ḧ in terms of K and its partial

derivatives

M2
pḦ = −ẊKX −KXXXẊ −KXϕXϕ̇ . (6.48)
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Rewritten in terms of cs and δ ≡ −ϕ̈/(Hϕ̇), ηH then reads as

ηH = −ǫH +
1

2
(1 + 1/c2s)δ −

1

2

KXϕ

KX

dϕ

dN
. (6.49)

To realise inflation, we only need the sum of the last two terms in Eq. (6.49) to be small

but not individually. Here for simplicity, we restrict ourselves to models where ϕ is

slowly rolling such that δ ≪ O(1) and all terms on the RHS of Eq. (6.49) are small.

Now consider the full ϕ equation of motion in K-inflation from varying the action

Eq. (6.41)

3HKXϕ̇+KXϕ̈+KXϕϕ̇
2 +KXXϕ̇Ẋ = Kϕ (6.50)

at background level. Dividing this by HKXϕ̇ and expressing in terms of the physical

slow-roll parameters ǫH and ηH , this becomes

3− 2ǫH − 2ηH + δ =
Kϕ

HKX

1

ϕ̇
. (6.51)

In the slow-roll limit where ǫH , ηH , δ ≪ O(1), we therefore obtain the slow-roll

equation for X

X ≈ −1

6

(

Kϕ

KX

)2(
1

K

)

. (6.52)

Now we consider perturbations about the homogeneous background. Applying pertur-

bation theory as in the case of canonical single field models, where we perturb the field

ϕ and the metric to linear order as in Chapter 3, one can find the corresponding scalar

and tensor perturbations in the spatially flat gauge satisfy a modified Mukhanov-Sasaki

equation in Fourier space [175]

v′′k +

(

c2sk
2 − z′′

z

)

vk = 0 ,

h̃sk
′′ +

(

k2 − a′′

a

)

h̃sk = 0 , (6.53)

where again vk ≡ aδϕk and h̃sk defined as in Chapter 3. The scalar and tensor power

spectra can be worked out by solving the modified Mukhanov-Sasaki equations and
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the corresponding model predictions are given by [175]

ns − 1 ≈ −2(ǫH)∗ + 2(ηH)∗ − (s1)∗ ,

nT ≈ −2(ǫH)∗ ,

r = 16(ǫH)∗cs . (6.54)

to leading order. These results were later extended to second-order in slow-roll by

Martin et al. [176]. For generalised G-inflation with the full Horndeski action, this was

first done by Kobayashi et al. [151] at the level of the power spectrum, and later to the

bispectrum by Tsujikawa et al. [177]. Current observational constraints on K-inflation

models are given in [44] for DBI inflation and recently in [178] for some other models

where the sound speed cs is constant.

In the following we will restrict our attention to models where the sound speed cs

is effectively constant such that (s1)∗ ≪ (ǫH)∗, (ηH)∗. For these models, universal

behaviour can be realised when (ǫH)∗ scales as 1/Np in the large N limit for some

p, where N is the number of e-folds of expansion from horizon exit t∗ to the end of

inflation te.
4 We will consider what constraints this asymptotic scaling relation implies

on H and the form of K.

Scaling Relation, (ǫH)∗ ∝ 1/N

The first example we consider is the case where p = 1

(ǫH)∗ =
a1
N
. (6.55)

Here a1 is some arbitrary constant, which is fixed for a particular model and can be

constrained by comparing with observations. This corresponds to the universality class

where

r ∝ 1/N , ns − 1 ∝ 1/N . (6.56)

4Note by definition, it follows automatically (ηH)∗ scales as 1/N
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Note that universality requires the scaling relation to be satisfied for all the relevant

scales k∗ under consideration. In general to check if the scaling relation is satisfied,

one can solve for N , which depends on H(te), and check how (ǫH)∗ scales with it in a

particular model. However, in single-field models, since H(te) is always fixed, we can

simply just check how H scales with t instead.

Using the definition of ǫH and differentiating Eq. (6.55) with respect to t∗, we get

(2a1 − 1)

(

Ḣ

H

)

∗

= a1

(

Ḧ

Ḣ

)

∗

, (6.57)

assuming Ḣ∗ 6= 0. Integrating Eq.(6.57) with respect to t∗, we arrive at a scaling

relation between H and Ḣ

H2a1−1 = Σ
(

−Ḣ
)a1

or
1

H
= Σǫa1H , (6.58)

where Σ is some integration constant which sets the energy scale of H . This is the

condition on H in order to satisfy the scaling relation Eq. (6.55), which holds for all t.

In the case of K-inflation, by using the background equations Eqs. (6.42), this can be

translated to a condition on K to leading order in slow-roll

Σ(−3XKX)
a1 =

√
3(−K)a1−1/2 , (6.59)

Substituting the slow-roll equation Eq. (6.52), this becomes

Σ

[

1

2

(Kϕ)
2

KX

(

1

K

)]a1

=
√
3(−K)a1−1/2 , (6.60)

For canonical single field models where K(X,ϕ) = X − V (ϕ), Eq. (6.60) reduces to

the Roest result [169]

(ǫV )
2a1 =

λ̃

V
, (6.61)

where λ̃ =
√
3/Σ, by taking the slow-roll approximation V ≫ X . It is not difficult

to show Eq. (6.61) is satisfied for chaotic inflation with a monomial scalar potential

V = λnϕ
n where λn is constant. In general Eq. (6.60) cannot be solved without
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assuming the functional form of K.

Scaling Relation, (ǫH)∗ ∝ 1/Np

Next we consider the general case where p 6= 1

(ǫH)∗ ≈
ap
Np

, (6.62)

We can follow a similar analysis as p = 1 to work out the corresponding condition on

H . Starting with Eq. (6.62), differentiating both sides with respect to t∗, this becomes

−H∗ =
(−ap)1/p

p

(

H2

Ḣ

)1/p−1

∗

[

2H − H2Ḧ

Ḣ2

]

∗

, (6.63)

Multiplying each side by (Ḣ2/H4)∗ and integrating with respect to t∗, we have

ΣH = exp

[

(−ap)1/p
p− 1

(−ǫH)1−1/p

]

, (6.64)

where Σ is again some integration constant. Note that during slow-roll ǫH < O(1),

therefore for p > 1, as long as ap is not too large, one can Taylor expand the exponential

in Eq. (6.64) to leading order

ΣH = 1 + (−1)2/p−1

(

a
1/p
p

p− 1

)

ǫ
1−1/p
H . (6.65)

This is the general scaling relation between H and ǫH for the asymptotic behaviour

Eq. (6.62). The constant ap and p remains arbitrary as long as the scalar-tensor theory

is not specified. For slow-roll inflation where Ḣ is always negative, ap must be positive.

In the case of K-inflation, using the background equations, this becomes

Σ

(−K
3

)1/2

= 1 + (−1)2/p−1

(

a
1/p
p

p− 1

)

(

3XKX

−K

)1−1/p

, (6.66)

to leading order in slow-roll. The original conformal inflation model Eq. (6.1) belongs

to the universal class where p = 2. The scaling relation Eq. (6.66) for p = 2 is indeed

satisfied by the model, as we now confirm:



Conformal Inflation 150

Consider the T-model where K = X − V and the potential V can be approximated by

V = V∗[1− 4ne−
√

2/3ϕ +O(n2e−
√

8/3ϕ)] , (6.67)

in the large ϕ limit, where V∗ is some constant. Taking the slow-roll limit for the

Klein-Gordon equation where ϕ̇ ≈ −Vϕ/3H , the kinetic term X is well approximated

by

X ≈ V

6

(

Vϕ
V

)2

≈ V∗
8n2

3

(

2

3

)

e−
√

8/3ϕ , (6.68)

in the large ϕ limit. Subsituting Eq. (6.68) for X into Eq. (6.66), we have

LHS = Σ

√

V∗
3

[

1− 2ne−
√

2/3ϕ +O(n2e−
√

8/3ϕ)
]

RHS = 1− a
1/2
2

4√
3
ne−

√
2/3ϕ +O(n2e−

√
8/3ϕ) . (6.69)

Therefore they are equal provided a2 = 3/4 and Σ =
√
3V

−1/2
∗ , corresponding to

ǫH ≈ ǫϕ = 3/4N2.

6.5 Universal Behaviour of Generalised Conformal K-

Inflation

In this section, we discuss the universal behaviour of the generalised conformal K-

inflation model introduced in Section 6.3. Generically, we expect K is of polynomial

form in X̃ such that K(X̃) =
∑

n bnX̃
n − λ, where bn are some dimensionless con-

stants with bn+1 < bn. For potential-driven slow-roll inflation, to leading order we

typically have K ≈ b1(θ)X̃ − λ(θ) and the effective sound speed c2s ≈ 1. As a result,

we can assume cs to be constant and the sound flow functions sn contribution to the

model predictions in Eq. (6.54) can be neglected.

The action Eq. (6.40) now reads as

SE =

∫

d4x
√−gE

[

M2
pRE

2
− M2

p

2c1(θ)

(

b1(θ) +
3

2

c21,θ(θ)

c1(θ)

)

(∂θ)2 − λ(θ)M4
p

c21(θ)

]

.(6.70)
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Recall that we demand the soft breaking functions and their derivatives are analytic

at the critical point θ → ∞. In the vicinity of large θ, in simple generic cases, these

functions can be represented by the following expansions

b1(θ) = b̃[1− be−θ +O(e−2θ)] or b1(θ) = b̃[1− b

θ
+O(

1

θ2
)] , (6.71)

and similarly for λ and c1 in general. Here b̃ and b are some dimensionless constants.

As a result, for large θ, the second term in the coefficient of the kinetic piece (∂θ)2 in

Eq. (6.70) is negligible compared to the first term and the resulting action is

SE =

∫

d4x
√−gE

{

M2
pRE

2
− M2

p

2

[

b̃

c̃
+O(e−2θ,

1

θ
)

]

(∂θ)2

− λ̃M
4
p

c̃2

[

1−O(e−θ,
1

θ
)

]

}

, (6.72)

to leading order. Unless b̃ or c̃ vanishes, we can rewrite the action in terms of the

canonically-normalised field ϕ =Mp(b̃/c̃)
1/2θ,

SE =

∫

d4x
√−gE

{

M2
pRE

2
− 1

2
(∂ϕ)2 − V∗

[

1−O(e−ñϕ/Mp ,
Mp

ϕ
)

]}

,

(6.73)

where V∗ ≡ λ̃M4
p/c̃

2 and ñ = (b̃/c̃)−1/2. If the next to leading order term in the

potential is O(e−ñϕ/Mp), then the model is similar to Kallosh and Linde’s original

model in the large ϕ limit

SE =

∫

d4x
√−gE

[

M2
pRE

2
− 1

2
(∂ϕ)2 − V∗(1−Θe−nϕ/Mp)

]

. (6.74)

Here Θ is a dimensionless constant and must be positive if inflation is to end naturally.

By computing the number of e-folds N and the slow-roll parameters ǫV and ηV in the

slow-roll and large N limit as in the original model, it is not difficult to show that the

model has the same universal behaviour as the original model where r ∝ 1/N2 and

ns − 1 ∝ −1/N .

On the other hand, if the next to leading order term for the effective potential in

Eq. (6.72) is O(Mp

ϕ
), then a different universalily class where r ∝ N−4/3 and ns − 1 ∝
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−1/N is realised. This can be seen as the slow-roll parameters (ǫV )∗ and (ηV )∗ are

related to the number of e-folds N as

(ǫV )∗ ∝
1

N4/3
, (ηV )∗ ∝

1

N
(6.75)

in the large N limit.

We argue the same universal behaviour holds for other classes of SO(1, 1) bi-scalar

conformal inflation models as well in general. For the generalised bi-scalar conformal

inflation which is potential-driven such that

K(θ, X̃) = −V (θ) + bi(θ)X̃ + ... ,

Gi(θ, X̃) = gi(θ) + hi(θ)X̃ + ... (6.76)

and θ is slowly rolling, terms involving higher order derivatives are suppressed in gen-

eral. To leading order, only the canonical kinetic term X̃ survives and the action re-

duces to Eq. (6.70) assuming the functions bi, gi and hi are of similar order. The

same universal behaviour as conformal K-inflation is thus expected. For the pivot

CMB scale k∗ = 0.002Mpc−1 where the amount of observable inflation is N ∼ 60,

we therefore conclude that SO(1, 1) bi-scalar conformal inflation universally predicts

negligible level of tensor perturbations with r < O(0.01).

6.6 Universality Class with Large r?

In the light of the recent BICEP2 results which suggest tensor-to-scalar ratio r ∼
O(0.1), we will also discuss the possibility of realising a universality class where r

can be large in generalised bi-scalar conformal SO(1, 1) models.

6.6.1 K-inflation

In the last section, we have seen that conformal K-inflation models give small r if

K(X̃) is a power series in X̃ . In the following we drop this assumption and keep

K(X̃) as arbitrary.
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Sum-Separable Case: K(X̃, θ) = G(X̃)− F (θ)

Consider a sum-separable case where K(X̃, θ) = G(X̃)−F (θ) for arbitrary functions

G and F . The gauge-fixed action Eq. (6.40) then reads as

SE =

∫

d4x
√−gE

{

M2
pRE

2
− 3

4

(

c1,θ
c1

)2

(∂ϕ)2 +
M4

p

c21

[

G(X̃) + F (ϕ/Mp)
]

}

,

(6.77)

in terms of a dimensionful field ϕ ≡ θMp. Again c1 and F are functions of θ which

have the asymptotic form as in Eq. (6.71) near the critical point ϕ → ∞, and X̃ ≡
−1

2
c1(ϕ/Mp)(∂ϕ)

2. For slow-roll potential-driven inflation, the term F (ϕ) dominates

and we have 3M2
pH

2 ≈ M4
pF/c

2
1. The partial derivatives of K with respect to X and

ϕ are then

Kϕ ≈ Fϕ
c21

− 2Fc1,ϕ
c3

,

KX = −3

2

(

c1,ϕ
c1

)2

+
KX̃

c1
. (6.78)

Now we check ifK can satisfy the scaling relation (ǫH)∗ ∝ 1/N for slow-roll potential-

driven inflation in this case. Substituting Eq. (6.78) into the universality condition

Eq. (6.60), we have

RHS =
√
3(F/c21)

a1−1/2 ≈
√
3(F̃ /c̃21)

a1−1/2 +O(e−ϕ/Mp ,
1

ϕ
) ,

LHS = Σ







1

2

c21
F

(

Fϕ
c21

− 2Fc1,ϕ
c31

)2
[

KX̃

c1
− 3

2

(

c1,ϕ
c1

)2
]−1






, (6.79)

to leading order in large ϕ limit. F̃ and c̃1 are dimensionless constants where F and

c1 asymptote to. To satisfy the universality condition, we need the leading term in

the LHS to be a constant. This is only possible if M4
p
K

X̃

c1
≫ −3

2

(

c1,ϕ
c1

)2

, since

for our choice of c1 and F , their derivatives c1,ϕ and Fϕ are always of the order of
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O(e−ϕ/Mp , 1
ϕ
). In that case,

LHS ≈ Σ

[

1

2

c31
F

(

K2
ϕ

KX̃

)]

= Σ

[

1

2Fc1

(

Fϕ −
2Fc1,ϕ
c1

)2
1

KX̃

]

, (6.80)

which asymptotes to a constant in the large ϕ limit only if K2
ϕ/KX̃ → const. This is

the necessary condition for the universality condition Eq. (6.60).

However, assuming ϕ is slowly rolling, from the slow-roll solution Eq. (6.52) for X in

K-inflation, we also have

X̃ = c1X ≈ −c
3
1

6

(

Kϕ

KX̃

)2
1

K
= −1

6

(

c31
KX̃

)

1

K
∝ 1

GX̃

. (6.81)

to leading order. Therefore we find a solution for G(X̃)

G(X̃) = ln X̃ . (6.82)

Nevertheless, the solution G(X̃) ∝ ln X̃ violates the second condition in Eq. (6.43)

and gives imaginary sound speed cs in general. As a result, we conclude the univer-

sality condition ǫH ∼ a/N cannot be satisfied for slow-roll power-driven conformal

K-inflation and therefore the model predicts r ≪ O(0.1) in general. There is a caveat

that a different scaling relation with p < 1 may still be plausible though.

6.7 Summary

Conformal inflation is a new class of inflation models and is natural in the super-

conformal formulation of supergravity. In addition, universal behaviour emerges as

a critical phenomenon near the point of enhanced SO(1, 1) or shift symmetry, which

is naturally taken to be the boundary of the moduli space (χ, π) → ∞. For generic

Lagrangians where inflation happens near the enhanced symmetry point (including the

relevant observed scales), this therefore leads to the same universal model-independent

predictions, with the attractor points

ns − 1 ∝ − 1

N
, r ∝

{

1

N2
,

1

N4/3

}

. (6.83)
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This universal behaviour also extends to generalised bi-scalar conformal models be-

yond canonical kinetic terms for slow-roll potential-driven inflation. This can be un-

derstood as all models reduce to the same asymptotic forms near the enhanced sym-

metry point. Whether the local scale invariance symmetry plays any significant role in

realising universality classes remains to be seen.

For the pivot CMB scale k∗ = 0.002Mpc−1 where the amount of observable infla-

tion is N ∼ 60, we therefore conclude that SO(1, 1) (or shift symmetric) bi-scalar

conformal inflation universally predicts negligible level of tensor perturbations with

r ≪ O(0.1). 5

5Recently there have been work on building a conformal inflation models with large r that are con-

sistent with the recent BICEP2 results, for instance see [179] and [180]. These models however either

do not have an enhanced symmetry point or have singular behaviour near the enhanced symmetry point.



Chapter 7

Conclusion

Since the early work by Guth [20], inflation has become the dominant paradigm of the

Early Universe prior to the standard Hot Big Bang. According to the original paradigm,

our Universe underwent an early period of superluminal expansion, driven by a canon-

ical scalar field slowly rolling down a flat potential. This early accelerated period of

expansion does not only solve the classical problems in Hot Big Bang Cosmology, but

offers an explanation to the generation of primordial fluctuations that seeded structure

formation and the Cosmic Microwave Background (CMB) anisotropies. During in-

flation, quantum fluctuations of the inflaton field were stretched beyond the horizon

and became classical. Over time they were gravitationally amplified, and eventually

re-entered the horizon laying the foundations of all cosmic structure that we observe

in the universe today. In Chapter 1, we briefly reviewed the cosmology of the Hot Big

Bang, its shortcomings and the standard original paradigm of inflation.

Density perturbations are usually quantified in terms of the gauge-invariant curvature

perturbation ζ , defined as the spatial curvature on uniform-density slices. In Chapter 2

we reviewed cosmological perturbation theory, the gauge-invariant defintion of ζ and

its statistical properties. An important property of ζ is the fact that it is conserved

on superhorizon scales in the absence of isocurvature perturbations. We demonstrated

this in Section 2.5.1. We also reviewed the separate universe approximation and the

δN formalism, which were used extensively in this thesis.

The original inflation paradigm also has universal predictions. In particular, the primor-
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dial fluctuations produced are almost Gaussian and nearly scale-invariant. Primordial

gravitational waves are also generated and could be strong enough to be observed de-

pending on the shape of the potential. We reviewed this in Chapter 3, showing how the

model predictions are computed. We also discussed how the predictions are compared

to current observations. We then discussed a simple extension to the original paradigm,

multifield inflation, in which inflation is driven by multiple scalar fields.

Unlike in single-field models, isocurvature perturbations exist in multifield models and

could source the curvature perturbation ζ . For models where isocurvature perturbtions

persist after the end of slow-roll, we showed in Chapters 4 and 5 that the subsequent

post-inflationary evolution, particularly reheating, do significantly change the model

predictions and therefore should be accounted for, even in the simple perturbative re-

heating setup. The model predictions evaluated at the end of the slow-roll regime are

different to those after reheating in general, with the change being model-dependent.

Compared to the spectral index ns, the non-linear parameters fNL, τNL and gNL are

more sensitive to the physics of reheating. Although individual observables evolve

during reheating, consistency relations between observables are more robust to the de-

tails of reheating. Examples are gNL ≈ τNL in non-vacuum dominated sum-separable

potential models and 3nfNL
= 2nτNL

in two-field local type models. This suggests

consistency relations act as a better tool to distinguish between different multifield

models.

Another class of model we have considered is conformal inflation. The original model

involves two canonical (up to a sign) scalar fields non-minimally coupled to gravity

with an additional local scale invariance symmetry. This model is natural in the super-

conformal formulation of supergravity. Because of scale invariance, only one scalar

degree of freedom is physical and perturbation is purely adiabatic. For that reason, ζ

is conserved after horizon-exit as long as perturbations remain adiabatic and the model

is more predictive. Universal model predictions emerge as a critical phenomenon near

the enhanced SO(1, 1) or (shift) symmetry point. In Chapter 6, we showed that this

universal behaviour also extends to generalised slow-roll potential-driven models.

While the single-field paradigm has been well studied and constrained today, an equiv-

alent picture is lacking for the multifield paradigm. For instance, despite some recent
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work [181, 182] which focuses on canonical models with a sum-separable quadratic

potential, there is still work to be done in understanding how to constrain multi-

field models in general, for instance how to take (p)reheating into account. Being

more natural from particle physics point of view, a better understanding in the multi-

field paradigm such as the field dynamics and model predictions would help us make

progress in embedding inflation in unified theories like string theories.

On the other hand, despite being an important part of inflationary model building,

(p)reheating remains much less understood compared to the slow-roll regime. In order

to constrain theoretical models with observations, we however need a better under-

standing in the non-equilibrium physics of reheating, as we have seen in canonical

models reheating does significantly change slow-roll model predictions in the pres-

ence of isocurvature perturbations, perhaps except consistency relations between ob-

servables. It remains to be seen if this also holds in a more generic (p)reheating setup,

going beyond the simple perturbative reheating picture. The highly non-equilibrium

nature of (p)reheating may also open up new observational windows to inflation and

shed some light on the underlying inflation models in play in the Early Universe.

Motivated by Planck results and theoretical models such as conformal inflation, there

have also been interests in universality classes of inflation models recently. A better

understanding of different universality classes would help explore new classes of in-

flation models that are compatible with observations and their common features may

give hints of the underlying fundamental theories in play during the early universe.

As we now enter the era of precision cosmology, with more precise data coming, it is

important to address these issues in the future.



Appendix A

Analytic Expressions for δN

Coefficients

In Chapter 3, we stated that analytic expressions for the δN coefficients for potentials

of separable form exist under slow-roll approximation. Here in this appendix, we

briefly illustrate how they are derived. We will setMp = 1 here unless stated otherwise.

Consider the multifield canonical case, the slow-roll field equations give the following

relation

dϕI

WI

=
dϕJ

WJ

, (A.1)

assuming the fields ϕI and ϕJ are slowly rolling and evolve monotonically. Here again

WI denotes partial derivative of the potential W with respect to the field ϕI . We shall

use Eq. (A.1) to construct a constant of motion along each classical slow-roll trajectory

and work out the δN coefficients.

Let us consider a two field product-separable potential where W is of the form

W (ϕ, χ) = U(ϕ)V (χ) , (A.2)

for some functions U and V . The number of e-folds N from some initial time t∗ to
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final time te can be written in terms of integrals of the fields

N =

∫ ∗

e

U

Uϕ
dϕ =

∫ ∗

e

V

Vχ
dχ . (A.3)

Here
∫ ∗
e
dϕI denotes an integral of ϕI from the value ϕIe at final time te to initial value

ϕI∗ at t∗. In what follows, subscripts ∗ and e correspond to quantities evaluated at initial

time t∗ and final time te. Infinitesimal change in the number of e-folds N with respect

to changes in ϕ∗ and χ∗ is then given by

dN =

[(

U

Uϕ

)

∗
+
∂ϕe
∂ϕ∗

(

U

Uϕ

)

e

]

dϕ∗ +

[

∂ϕe
∂χ∗

(

U

Uϕ

)

e

]

dχ∗

=

[(

V

Vχ

)

∗
+
∂χe
∂χ∗

(

V

Vχ

)

e

]

dχ∗ +

[

∂χe
∂ϕ∗

(

V

Vχ

)

e

]

dϕ∗ . (A.4)

The δN coefficients in the δN formalism can then be worked out once we know how

the final field values {ϕe, χe} depend on their initial values {ϕ∗, χ∗}, subject to the

constraint {ϕe, χe} are such that the final hypersurface at te is of uniform energy den-

sity.

Using Eq. (A.1), we can construct a constant of motion along each classical trajectory

as

C = −
∫

dχ

Vχ
+

∫

dϕ

Uϕ
. (A.5)

Since C is conserved along each trajectory, the final field values {ϕe, χe} are unique

functions of C. One can then use C to work out the infinitesimal change in {ϕe, χe}
with respect to changes in ϕ∗ and χ∗

dϕe =
dϕe
dC

(

∂C

∂ϕ∗
dϕ∗ +

∂C

∂χ∗
dχ∗

)

dχe =
dχe
dC

(

∂C

∂ϕ∗
dϕ∗ +

∂C

∂χ∗
dχ∗

)

. (A.6)

From the definition of C Eq. (A.5), we can easily see

∂C

∂ϕ∗
=

(

1

Uϕ

)

∗
,
∂C

∂χ∗
= −

(

1

Vχ

)

∗
. (A.7)
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To compute the partial derivatives of the final field values with respect to their initial

values ∂ϕIe/∂ϕ
I
∗, we also need to know dϕIe/dC. Recall that in δN formalism, the final

hypersurface at te is that of uniform density, which in the slow-roll limit corresponds

to

W (te) = U(ϕe)V (χe) = const . (A.8)

Differentiating this with respect toC and use the identity dC/dC = 1, we finally arrive

at

∂χe
∂χ∗

=

(

Uϕ
U

)2

e

(

V

Vχ

)

e

(ǫχ
ǫ

)

e

(

V

Vχ

)

∗
,
∂χe
∂ϕ∗

= −
(

Uϕ
U

)2

e

(

V

Vχ

)

e

(ǫχ
ǫ

)

e

(

U

Uϕ

)

∗
,

∂ϕe
∂χ∗

= −
(

Uϕ
U

)

e

(ǫχ
ǫ

)

e

(

V

Vχ

)

∗
,
∂ϕe
∂ϕ∗

=

(

Uϕ
U

)

e

(ǫχ
ǫ

)

e

(

U

Uϕ

)

∗
, (A.9)

where ǫχ, ǫϕ and ǫ are defined in Eq. (3.83) in Chapter 3. Substituting these back

into Eq. (A.4), we can then work out analytic expressions for the δN coefficients. For

instance, the first order δN coefficients are

∂N

∂ϕ∗
=

(

1
√

2ǫϕ

)

∗

sign[(Uϕ)∗]
(ǫϕ
ǫ

)

e
,
∂N

∂χ∗
=

(

1
√

2ǫχ

)

∗

sign[(Vχ)∗]
(ǫχ
ǫ

)

e
.

(A.10)

One then differentiate Eq. (A.10) again to find the second order δN coefficients. Using

these expressions, we can then work out expressions for the primordial observables,

for instance ns and f
(4)
NL

ns − 1 = −4

[

u2

(ǫϕ)∗
+

v2

(ǫχ)∗

]−1 [

1− 2uv − u2(ηϕϕ)∗
2(ǫϕ)∗

− v2(ηχχ)∗
2(ǫχ)∗

]

− 2(ǫH)∗ ,

(A.11)

f
(4)
NL =

5

6

[

u2

(ǫϕ)∗
+

v2

(ǫχ)∗

]−2
{

2

[

u3

(ǫϕ)∗
+

v3

(ǫχ)∗

]

− u3(ηϕϕ)∗

(ǫϕ)∗
2 − v3(ηχχ)∗

(ǫχ)∗
2

+2

[

u

(ǫϕ)∗
− v

(ǫχ)∗

]2

AP

}

(A.12)



Analytic Expressions for δN Coefficients 162

where u ≡ (ǫϕ/ǫ)e, v ≡ (ǫχ/ǫ)e and

ηss ≡
ǫχηϕϕ + ǫϕηχχ − 4ǫϕǫχ

ǫ
,

Ap ≡ uv(ηss)e . (A.13)

Here ηϕϕ and ηχχ are defined in Eq. (3.83) in Chapter 3. These are first computed

by Choi et al. [104] and later by Elliston et al. for third order δN coefficients and

non-linear parameters of trispectrum τNL and gNL [107].

Other Solvable Models

We have previously showed how analytic expressions for δN coefficients and primor-

dial observables can be derived for canonical models with a product-separable po-

tential. Following similar approach, we can also derive analytic expressions of δN

coefficients and model predictions for sum-separable potentials. This was first done

by Vernizzi and Wands [103] for second order δN coefficients and the power spec-

trum, and later extended to third order δN coefficients and the trispectrum by Elliston

et al. [107]. These results are later generalised to models with potentials that are ar-

bitrary functions of these separable ansatz [183]. In fact, we can also apply the same

expressions Eqs. (A.11) and (A.12) to sum-separable potential models by considering

the following transformations

U → lnU , V → lnV , W → lnW . (A.14)

Besides, analytic expressions also exist for models where the Hubble parameter H

satisfies a product or sum-separable ansatz

H = H1(ϕ) +H2(χ) , or H = H1(ϕ)H2(χ) , (A.15)

for some functions H1 and H2, by using the Hamilton-Jacobi field equations, i.e. ϕ̇ =

−2∂H1/∂ϕ and χ̇ = −2∂H2/∂χ. The expressions were first derived by Byrnes.et

al. for the sum-separable ansatz for two fields [184] and were later generalised to

trispectrum and arbitrary number of fields by Battefeld et al. [185]. These expressions
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are valid beyond slow-roll. However, the fact that we can express the Hubble parameter

H as in Eq. (A.15) relies on the fields evolving monotonically. This assumption usually

breaks down shortly after inflation ends as the fields approach their respective minima

and start oscillating.

All the analytic expressions discussed above rely on certain approximations and spe-

cific forms of the potential or Hubble parameter such that we can solve the field equa-

tions analytically. For multifield models with arbitrary potentials and/or beyond slow-

roll regime, we can at best express the δN coefficients in terms of some integrals which

cannot be solved analytically, for instance see [186].



Appendix B

Numerical Recipe for Computing δN

Coefficients

In this appendix, we discuss the numerical recipe used in this thesis for computing

δN coefficients. As discussed, the δN formalism is based on the assumption that

(smoothed) spatially separated patches of the universe will evolve on superhorizon

scales like independent, unperturbed universes up to small corrections. An ensemble

of smoothed regions picks out a collection of trajectories in phase space which is often

referred to as a ‘bundle’ [106, 187]. In essence, the δN formalism requires that such

a bundle, centred on a fiducial trajectory, is evolved. Our choice of gauge demands

that each trajectory in the bundle is evolved from an initially flat hypersurface up to

a hypersurface of constant energy density. Hence, each trajectory will experience a

slightly different expansion history in order to bring them to a common energy density.

The adiabatic mode is generated by fluctuations along the fiducial trajectory, whilst

fluctuations between neighbouring trajectories generate the isocurvature modes.

Acknowledging this simple picture, we implement the δN formalism numerically as

follows: First, the fiducial trajectory emanating from {ϕ∗, χ∗} is constructed by solv-

ing the full, non–linear system of second order field equations Eq. (4.16) using the

Verner’s 5th and 6th order pair Runge-Kutta Method. Ths is done in Fortran using

the public domain Fortran 77 subroutine DVERK written by Hull, Enright and Jack-

son [188].
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The epoch of horizon-crossing is set by N = 0, where the initial field velocitites

{ϕ̇∗, χ̇∗} are set by imposing the slow-roll attractor solution 3Hϕ̇I = −WI . As long

as the onset of inflation happens slightly before the pivot scale under consideration

exits the horizon, we expect this to be a very good approximation. To illustrate this,

in Fig. B.1, we show the slow-roll evolution of the fields in the quadratic times expo-

nential model, one with {ϕ̇∗, χ̇∗} set by the slow-roll attractor solution and one with

slightly different {ϕ̇∗, χ̇∗}.
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Figure B.1: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . The slow-roll evolution of the background

fields (in Planck units), one with {ϕ̇∗, χ̇∗} set by the slow-roll attractor solution and one with

slightly different initial field velocities. The model parameters λ = 0.05, ϕ∗ = 10−3Mp and

χ∗ = 16.0Mp.

The bundle of trajectories is then formed by evolving neighbouring trajectories with

slightly perturbed initial conditions, ϕ∗ → ϕ∗ + δϕ∗ and χ∗ → χ∗ + δχ∗. To evaluate

the δN derivatives and primordial observables at N , each trajectory in the bundle is

then brought to a common energy hypersurface with respect to the central fiducial

trajectory emanating from {ϕ∗, χ∗} where N(ϕ∗, χ∗) is evaluated. This is done by

calculating ρ(N) for the central fiducial trajectory and using binary search algorithm

to find the corresponding the number of e-folds N for neighbouring trajectories with

slightly different initial horizon-exit field values with the same energy density.

The partial derivatives of N(tc, t∗) with respect to the field values at horizon cross-

ing {ϕ∗, χ∗} are then calculated using a seven–point (or nine–point) ‘stencil’ finite

difference method [189]. Finally, convergence check with respect to the step sizes
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{δϕ∗, δχ∗} used are done to ensure the numerical result are robust against numerical

noises.

In the following, we plot the δN derivatives and the primordial observables evaluated

using this numerical scheme as a function of the step sizes {δϕ∗, δχ∗} for some of

the models considered in this thesis, demonstrating there exists regions where the nu-

merical results converge and become independent of the step sizes used. For instance,

Figs. B.2 to B.6 for the quadratic times exponential model and Figs. B.7 to B.11 for

the effective N-flation model. In all the plots, we can see there exists regions where the

numerical results converge with respect to step sizes used.
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Quadratic Exponential Model

First Order δN coefficients
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Figure B.2: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . The model parameters λ = 0.05, ϕ∗ =
10−3Mp and χ∗ = 16.0Mp. First order δN coefficients evaluated using the numerical recipe

discussed as a function of the step sizes: Nϕ (top panel) and Nχ (bottom panel).
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Second Order δN coefficients
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Figure B.3: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . The model parameters λ = 0.05, ϕ∗ =
10−3Mp and χ∗ = 16.0Mp. Second order δN coefficients evaluated using the numerical recipe

discussed as a function of the step sizes: Nϕϕ (top panel) and Nχχ (bottom panel).
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Figure B.4: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . The model parameters λ = 0.05, ϕ∗ =
10−3Mp and χ∗ = 16.0Mp. Second order δN coefficient Nϕχ evaluated using the numerical

recipe discussed as a function of the step sizes: δϕ∗, with fixed δχ∗ ∼ O(10−2) (top panel) and

δχ∗ with fixed δϕ∗ = 2.1× 10−5 (bottom panel).
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Primordial Observables
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Figure B.5: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . The model parameters λ = 0.05, ϕ∗ =
10−3Mp and χ∗ = 16.0Mp. First order δN coefficients evaluated using the numerical recipe

discussed as a function of the step size δϕ∗, with fixed δχ∗ ∼ O(10−2): ns (top panel) and fNL

(bottom panel).
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Figure B.6: Potential: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . The model parameters λ = 0.05, ϕ∗ =
10−3Mp and χ∗ = 16.0Mp. First order δN coefficients evaluated using the numerical recipe

discussed as a function of the step size δϕ∗, with fixed δχ∗ ∼ O(10−2): τNL (top panel) and gNL

(bottom panel).
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Effective N-flation Model

First Order δN coefficients
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Figure B.7: W (ϕ, χ) = W0

[

1
2
m2χ2 + Λ4

(

1− cos
(

2π
f ϕ
))]

. The parameters used are: Λ4 =

m2f2/4π2, ϕ∗ = ( 1
2
−0.001)f , χ∗ = 16Mp, f = m = Mp. First order δN coefficients evaluated

using the numerical recipe discussed as a function of the step sizes used, for different combinations

of decay rates and : Nϕ (top panel) and Nχ (bottom panel).
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Second Order δN coefficients
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Figure B.8: W (ϕ, χ) = W0
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. The parameters used are: Λ4 =

m2f2/4π2, ϕ∗ = ( 1
2
− 0.001)f , χ∗ = 16Mp, f = m = Mp. Second order δN coefficients

evaluated using the numerical recipe discussed as a function of the step sizes used: Nϕϕ (top

panel) and Nχχ (bottom panel).
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. The parameters used are: Λ4 =

m2f2/4π2, ϕ∗ = ( 1
2
− 0.001)f , χ∗ = 16Mp, f = m = Mp. Second order δN coefficient Nϕχ

evaluated using the numerical recipe discussed as a function of the step sizes used: δϕ∗, with fixed

δχ∗ = 1.1× 10−2 (top panel) and δχ∗, with fixed δϕ∗ = 1.1× 10−4(bottom panel).
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Figure B.10: W (ϕ, χ) = W0

[

1
2
m2χ2 + Λ4

(

1− cos
(

2π
f ϕ
))]

. The parameters used are: Λ4 =

m2f2/4π2, ϕ∗ = ( 1
2
− 0.001)f , χ∗ = 16Mp, f = m = Mp. Observables evaluated using the

numerical recipe discussed as a function of the step size δϕ∗ used, with fixed δχ∗ ∼ O(10−2): ns

(top panel) and fNL (bottom panel).

This numerical recipe provides a fast, efficient method for computing the δN coeffi-

cients for an arbitrary two–field model, valid beyond slow–roll and through a phase of

reheating. Numerical codes based on the moment transport equations have also been

developed [152] and have been extended to study sub-horizon evolution [190].
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Figure B.11: W (ϕ, χ) = W0

[

1
2
m2χ2 + Λ4

(

1− cos
(

2π
f ϕ
))]

. The parameters used are: Λ4 =

m2f2/4π2, ϕ∗ = ( 1
2
− 0.001)f , χ∗ = 16Mp, f = m = Mp. Observables evaluated using the

numerical recipe discussed as a function of the step size δϕ∗ used, with fixed δχ∗ ∼ O(10−2):
τNL (top panel) and gNL (bottom panel).

B.1 Discussion on the Definition of Reheating Hyper-

surfaces

As discussed in Section 4.1, the reheating parameters Γϕ and Γχ are set to zero during

inflation. It is only when each individual trajectory in the bundle passes through its

minimum {χ0, ϕ0} for the first time that Γϕ and Γχ are introduced to the field equa-
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tions, sourcing the radiation fluid. In general, for any given trajectory, ϕ will not reach

the minimum of its potential at the same time as χ, and so Γϕ and Γχ are ‘switched

on’ at different times along the same trajectory. Furthermore, for each of the two di-

rections of the potential, the foliation of the entire bundle of trajectories as determined

by each trajectory reaching χ0 (and likewise ϕ0) does not in general occur at a surface

of constant time or a surface of constant energy, but rather at a surface of constant χ0

(and ϕ0)1. We refer to these surfaces as the reheating hypersurfaces. For potentials

which have minima in both directions there are two such hypersurfaces. If the poten-

tial does not have a minimum in the χ (or ϕ) direction, then Γχ = 0 (or Γϕ = 0)

always. Furthermore, we also ensure that when the potential has a minimum in, say,

the χ direction, the conditions mχ ≫ Γχ and mχ ≫ H are satisfied. This definition

of the reheating hypersurface is more refined than that of [106], where reheating was

initiated at a surface of constant density. It is also different to that of [191], where the

decay terms were present throughout inflation.

The main qualitative results are however independent of the definition of the reheating

hypersurface. We demonstrate this by using the quadratic time exponential model as an

example. Using a different definition of the reheating hypersurface where Γ is switched

on when H = Γ, we plot the final asymptotic value of the observables after reheating

in the model in Fig. B.12. In brief, we see the observables are sensitive to reheating

in the case where λ = 0.05 and Nϕ ∼ Nχ. Comparing with the results with Fig. 4.20

in Section 4.3, we again see the final asmyptotic value of fNL can be sensitive to the

decay rate Γχ, particularly for λ = 0.05. ns and r however are much less sensitive to

Γχ in this choice of the reheating hypersurface.

1This is true for global minima. If the oscillations of one field, χ say, occurred in a local minimum,

which is a function of the other field, χ0(ϕ), this statement will not hold true. We do not consider such

models in this thesis.
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Figure B.12: W (ϕ, χ) = W0χ
2e−λϕ2/M2

p . The final asymptotic values of ns (top left panel), r
(top right panel) and fNL (bottom panel) at the end of reheating as a function of the decay rate Γχ

for four different λ. The initial field values are ϕ∗ = 10−3Mp and χ∗ = 16.0Mp.
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