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Abstract

Inflation is currently the most promising paradigm of the Early Universe. The simple
paradigm involves a single canonical scalar field minimally coupled to gravity slowly

rolling down a potential.

In this thesis, we discuss an extension to the simple paradigm, multifield inflation,
in which inflation is driven by more than one scalar field. Unlike in the single field
paradigm, isocurvature perturbations could be non-vanishing and source curvature per-

turbation on superhorizon scales.

Analytic model predictions during the slow-roll regime in some classes of multifield
inflation models have been worked out in the literature. However, curvature pertur-
bation may continue to evolve after slow-roll as isocurvature perturbations are not
necessarily exhausted when inflation ends. In this thesis, by using the N formalism,
we investigate the effects of perturbative reheating on the curvature perturbation and
related observables in multifield models. By considering various two-field models, we
demonstrate that the subsequent (p)reheating evolution is significant and must be taken
into account even for perturbative reheating. How the model predictions evolve during
reheating is a model dependent question, implying that models of multifield inflation
cannot be compared to observations directly without specifying how reheating takes

place.

We also discuss a different class of two-field models, conformal inflation, which is
locally scale invariant. Universal behaviour emerges as a critical phenomenon near
the enhanced SO(1, 1) or shift symmetry point, leading to model independent predic-
tions. Going beyond the original model proposed by Kallosh and Linde, we show that

this universal behaviour extends to more generalised models involving higher order



Abstract

derivatives for slow-roll potential driven inflation.
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Units and Notations

Frequently used symbols and their definitions:

Symbol Definition
L Lagrangian density
M, Reduced Planck mass, defined as 1/87G
a scale factor
Y Inflaton
H Hubble parameter, defined as a/a
p Energy density
P Pressure density
N number of e-folds of expansion, N = [ Hdt
W,V Scalar Potential
S action
R Comoving curvature perturbation
T, Stress-Energy Momentum tensor
« Running of the spectral index n
¢ Curvature perturbation on uniform-density hypersurface
Ng Scalar spectral index
nT Tensor spectral index
canonical kinetic term, X = —% 9" 00,
r tensor-to-scalar ratio
A¢ amplitude of power spectrum of ¢
P Power spectrum of ¢
B Bispectrum of ¢
T Trispectrum of (
fNL Non-linear parameter of Bispectrum
JNL, TNL Non-linear parameters of Trispectrum
Nfar, Spectral index of fyr,

Noryy, Spectral index of 7y,




Units and Notations 7

In this thesis, we use the metric signature 7, = diag(—, +,+,+). Throughout the

whole thesis, we adapt the natural units where 4 = ¢ = 1 unless stated otherwise.

Spacetime indices are raised by the metric g* and Einstein summation are implicitly

. _ 2 5Sm
assumed. The stress-energy momentum tensor 7, is defined as 7, = — g

where S, is the matter action.
[ is the d’Alembert operator, defined as [1 = ¢*”V,V,. Symmetriser and anti-

symmetriser are defined as U =1 orrz-rnlly, by 0, and U

pipzepn) = p1%uipz..pn 12 pin] =

1 VvV . . ..
1€ pig.pin € "Uvivs...on» Where €, 4, ., 18 the Levi-Civita symbol.

Greek indices , v, ... correspond to spacetime indices, whereas Roman indices /, J, ...
correspond to field indices. Overline denotes background homogeneous and isotropic
quantities. Variables with subscript * correspond to values evaluated at horizon-exit.
Dot " denotes differentiation with respect to cosmic time ¢, whereas prime ' denotes
differentiation with respect to conformal time 7. Unless stated otherwise, subscripts ¢

and y denote partial differentiations with respect to ¢ and y respectively.
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Chapter 1

Introduction

Since the beginning of human civilisation, understanding the origin of our Universe
has always been the core of most studies, including science, philosophy and religion.
However, it was the beginning of the twentieth century that Cosmology started to be
incorporated in a mathematical and scientific framework. Tracing back to Einstein’s
formulation of general relativity in 1915, a mathematically consistent model describing
our Universe was first constructed. The discovery of Hubble’s law and the Cosmic
Microwave Background (CMB) then confirmed the Big Bang theory, suggesting our

Universe has been expanding since its birth.

Later the discovery of Cosmic Microwave Background (CMB) Anisotropies by COBE [1]
in 1992, which later confirmed by WMAP [2] in 2003, enabled us to start to address
some very fundamental questions such as the origin of structure formation in our Uni-
verse and to understand our Universe at the very early stage. The observed nearly

scale-invariant CMB spectrum strongly favours the theory of inflation.
I, a universe of atoms, an atom in the universe. - Richard Feynman

Inflation, an era of a dramatic expansion of spacetime, is currently the most promising
paradigm of the Early Universe. It typically occurs at an energy scale that is far beyond
the reach of any possible particle physics experiments on Earth. As a result, inflation
acts as an excellent probe to physics beyond the Standard Model. Despite the success
and enormous advances in the field in recent years, inflation remains a phenomeno-

logical model with many open questions to be addressed. In particular, we still do not
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know what the true underlying particle physics model for inflation is. Motivated by
particle physics, various modifications to the simple inflationary paradigm have been

considered since it was first formulated.

In this thesis we discuss a simple extension to the original paradigm, multifield infla-
tion. We focus on the observational aspects of a simple representative class, models
involving two scalar fields. This thesis is organised as follows: in Chapter 1, we first
briefly describe the standard Big Bang picture and its shortcomings which eventually
led to the introduction of cosmic inflation. The simplest slow-roll single field inflation

paradigm is later introduced in the chapter.

In Chapter 2, we start by introducing cosmology perturbation theory and gauge-invariant
quantities, the curvature perturbation ( in particular. Then we discuss the statistical
properties of ¢ and how they could be quantified. A simpler alternative to the cos-
mological perturbation theory, the separate universe picture and the consequent 6 NV
formalism, are then introduced later in the chapter. Using the 6 NV formalism, we show

that ( is conserved on superhorizon scales in the absence of isocurvature perturbations.

In Chapter 3, we introduce the ‘in-in’ formalism and ) N formulae that are used to com-
pute ¢ and the related observables. We discuss the inflationary model predictions of
the primordial observables, particularly focussing on the statistics of ¢, up to the level
of four-point statistics. We start with the simplest single-field model with a canonical
kinetic term. We then introduce the multifield models and discuss how the models are
different to the simple single-field paradigm. Model predictions of canonical multifield

models are later given in terms of the J NV coefficients in the chapter.

In Chapter 4, by considering various two-field models, we discuss how perturbative
reheating could change the model predictions evaluated during the slow-roll regime,
at the level of power and bispectra, if isocurvature perturbations persist after inflation
ends. In Chapter 5, we extend the discussion to non-linear parameters of the trispec-
trum and their scale dependences. We also discuss the effects of perturbative reheating
on various consistency relations between observables in some classes of multifield

models.

In Chapter 6, we discuss a new class of two-field inflation models which is locally

scale invariant, known as conformal inflation. We start by introducing the original
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model first proposed by Kallosh and Linde [3] and discussing its universal behaviour
near the enhanced SO(1, 1) symmetry point. We then discuss how one can go beyond
the original paradigm and show the universal behaviour of the original model extends
to more general models. Finally, we summarise, conclude and give future directions

on how the field of inflationary cosmology may be pursued in Chapter 7.

1.1 Friedmann Universe, Standard Big Bang Cosmol-

ogy

In today’s modern Cosmology, it is assumed that our Universe is homogeneous and
isotropic on large scales. This is known as the Copernican principle. Under this as-
sumption, our Universe is described by a Friedmann-Robertson-Walker (FRW) metric

at the background level

ds* = —dt® + a*(t)gi;(da'da?)
da?
— 2 2 2 2 202 2
= —dt*+a°(t) ke t? (d6” + sin” 6dg?) (1.1)

in Cartesian and radial coordinates. Here a(t) is the scale factor and K takes value of
{—1,0, +1}, representing negative, flat and positive intrinsic spatial curvature respec-

tively.

The Copernican Cosmological principle is well tested through today’s observations.
In particular, CMB experiments and Large Scale Structure (LSS) surveys give strong
evidence that our Universe is homogeneous and isotropic, starting from scales taken to

be typically around 100Mpc [4, 5, 6]. !

Assuming the constituents of our Universe can be well described by a perfect fluid

with a 4-velocity u*, the general form of the energy-momentum tensor 7 is

T = (P + p)uu, + PS*, (1.2)

!Controversially, there has been a claim by Clowes et.al. against the Cosmological principle, arguing
from the observation of a potential massive structure of size much larger than 100Mpc, the Huge Large
Quasar Group [7].
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Figure 1.1: Full sky CMB map measured by Planck, showing our Universe is isotropic on large
scales, with an amplitude of temperature fluctuations of order 67'/T =~ 10~°. Note the dipole
asymmetry due to our relative motion to the CMB has been removed. Credit: ESA and the Planck
Collaboration [8]

where P and p are the isotropic pressure and energy density of the cosmic fluid,
and g,,u*u” = —1. The Bianchi identity or the conservation of the stress energy-

momentum tensor then leads to the continuity equation
p=-3H(p+P). (1.3)

Here H is the Hubble parameter, defined as H = a/a. Now consider Einstein’s Gen-
eral Relativity with the background field equation G w+ Ngu = 8rGT, w»> Where G,
is the Einstein tensor and G is the Newton’s constant. A is the cosmological constant,
which is present as a constant in the theory of Einstein gravity. For a cosmic fluid with
the stress-energy tensor Eq. (1.2) in a FRW background, the time-time component of
the Einstein equation results in the well-known Friedmann equation (for a detailed
derivation of the Friedmann Equation from GR, see [9] for example)

p

H? =
3M2

+ (1.4)

Rl
w| =

K again is the flatness parameter, corresponding to the closed (K = 1), open (K =
—1) and flat (K = 0) universes. Overline denotes the averaged background quantities.
M, is the reduced Planck mass, defined as Mg = 1/8nG. Although A may con-
tribute to the dark energy (DE) that explains the observed late-time acceleration of our

Universe [10], naive estimates from the vacuum energy of quantum field theory gener-
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ically predicts its value many orders of magnitude larger than the observed DE value
and therefore leads to the well-known cosmological constant problem in cosmology
today. For a review on the cosmological constant problem, see [11, 12]. In this thesis
however, we will focus on the Early Universe when the DE contribution is assumed to

be small and negligible. We therefore take A = 0 in the following.

Together with the continuity equation Eq. (1.3), we then end up with a system of equa-

tions
H2 — ﬁ . 5
3M§ a?
: p+3P
H+ H*=— . (1.5)
6M2

The second equation is commonly known as the Friedmann acceleration equation
or Raychaudhuri Equation. Finally to close the system of equations we also need to
know the relation between the pressure P and the energy density p of the cosmic fluid.
For an adiabatic fluid where P is a unique function of p, i.e. P(p), we can define an
equation of state w where P = wp. For instance, a radiation fluid gives w = 1/3 and
a matter fluid gives w = 0. Given the equation of state w and together with Egs. (1.5),
we can then solve for a(¢) and find the background dynamics of the Universe. For
example, we find a oc t'/2 and a o t*/? in radiation-dominated and matter-dominated

universes respectively.

It is also useful to define a new dimensionless quantity {2, known as the density param-

eter

K
Q1= (1.6)

In Einstein gravity, with the use of the Friedmann equation Eq. (1.4), the density pa-

rameter becomes

m”:pi%y (1.7)

where p..; 1S the critical energy density defined by 3H QMIf, or the energy density for

a spatially flat Universe (K = 0). From Eq. (1.6) we can see () is a measure of the



Introduction 7

Figure 1.2: 3-dimensional map of galaxy distribution in our Universe in the Sloan Digital Sky
Survey. Credit: M. Blanton and the Sloan Digital Sky Survey

instrinsic spatial curvature of the background geometry in units of /2, independent of

the theory of gravity.

Egs. (1.5) form the basis for the development of the Hot Big Bang model. Accord-
ing to the Hot Big Bang model, our Universe originated from an extremely dense and
hot state and is expanding. The greatest successes of the hot Big Bang model are the
prediction of the existence of the CMB and the theory of Big Bang nucleosynthesis
that explains the origin of chemical elements in our Universe. The standard model
of cosmology, the ACDM model, is a parametrisation of the Big Bang model which
suggests our Universe is made up of normal baryonic matter and Standard Model par-
ticles, some form of unknown, invisible non-relativistic matter named as Cold Dark
Matter (CDM) and a cosmological constant A that gives rise to late-time acceleration.

The background geometry is a flat one, where K = 0.
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1.2 Problems of Standard Big Bang Cosmology

However, despite the success of the standard Big Bang picture, there are problems
associated with it. First of all, it is obvious that our Universe is not completely homo-
geneous. There are small inhomogeneities on top of the background on small scales
that can be seen in the CMB and in large scale structures such as galaxies and cosmic
voids. One of the quests of modern cosmology is to explain the origin of primordial
perturbations that seed structure formation in our Universe. While the standard Big
Bang picture successfully describes the background history of our Universe, it does
not tell us how and why the initial conditions of our Universe, including these small

perturbations, are set.

On the other hand, there are fine-tuned initial conditions problems at the background
level, conventionally given in terms of the flatness and horizon problems 2. There
is also the relic problem, which is related to formation of topological defects during
spontaneous symmetry breaking in the early Universe. These relics can be long-lived
and dominate our Universe, thus completely change the cosmic evolution. All these

problems will be explained in detail in the following.

Flatness Problem

In simple words, the flatness problem corresponds to the question why our Universe
remains flat to such a high precision today. It was first elucidated by Dicke and Pee-
bles [14]. This can be easily seen from the definition of the density parameter (2

Eq. (1.6). From Eq. (1.6) and the definition of the Hubble parameter /1, we can see

K K
Q= = (1.8)

Thus during any era of attractive gravity such that (@ < 0), Q is always driven away
from 1 and the solution {2 = 1 is unstable. For example, in Einstein gravity, using the

Friedmann equation Eq. (1.4), one can easily find that in a matter-dominated Universe

ZRecently Carroll has argued against this conventional picture, suggesting that the initial conditions
problems should been formulated in terms of the measure on the space of cosmological trajectories
instead, see [13].
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|0 — 1| o t?/3 and in a radiation-dominated Universe |2 — 1| oc . Therefore unless
the Universe is exactly flat where K = 0, given a small deviation from a flat Universe
to begin with, i.e. 1 —€(¢;) = € where € is small, one would always end up in a closed
or open Universe where () deviates significantly from 1. Current observations however
suggest (g, the density parameter today, cannot deviate more than a few percent from

unity. For example, measurements of CMB anisotropies suggest
—0.09 < Qg =1-Qy <0.001 at 95%C.L. (1.9)

in recent combined Planck + WP + highL data [15], perfectly consistent with K = 0. 3

As aresult, in a ACDM Universe, to be consistent with the current observed constraint
on |Qy — 1|, we would need very fine-tuned initial conditions to start with. For example
taking ¢; to be the epoch of Big Bang nucleosynthesis (BBN), around 1MeV, we would

need
1Q(t;) — 1] < 10716, (1.10)

Such fine-tuned initial condition seems extremely unlikely. For any generic initial
values for 2 apart from 1, we would always find ourselves with a closed Universe that
recollapses very quickly or an open Universe that is too young to be consistent with
observations. An explanation is needed for why (2 either identically equals or remains
close to unity in our Universe. This is the conventional picture of the flatness problem,
which implicitly assumes a measure that is uniform in €2x. Recently it was argued by
Carroll and Tam that the problem does not exist but arises simply because of the use of

an incorrect measure [17].

Horizon Problem

Consider the comoving horizon (aH)~! which characterises the fraction of comoving
space that is in casual contact. It is usually of the same order of the effective comoving

particle horizon which is the maximum distance light can travel since the Big Bang.

31t was argued recently that the observed large scale CMB anomalies in Planck favours a marginally
open Universe [16].
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For attractive gravity, the scale factor grows as a o< t", where 0 < n < 1 in both
radiation or matter-dominated eras. Physical wavelengths A thus grow as a\ o t",
whereas the Hubble radius evolves as H~! o t. Going back in time, the physical

wavelength is therefore much smaller than the Hubble radius at early times.

Current observations of the CMB find that the whole observable Universe is in thermal
equilibrium, suggesting that our Universe is very homogeneous and isotropic every-
where, to one part in 107> at the time of decoupling. Yet as we see, the comoving
scales entering the horizon today should have been far outside the horizon at decou-
pling. Contradicting the observations, we therefore should instead expect the CMB
to be much more anisotropic, with many casually disconnected regions establishing

thermal equilibrium independently at different temperatures.

More precisely, let us consider the particle horizon, defined as

D(t) = a(t)ds(t) = /1t _t at fa(t') (1.11)

7

where dy corresponds to the comoving particle horizon. The particle horizon Dy ()
gives the size of any casually connected region at time ¢{. Comparing the comoving

particle horizon at decoupling ¢4 to that of today ¢,, we find

dH(tdec) (tdec> 1/3 -9
—— x| — ~107~. 1.12
dH(to) t[) ( )

This ratio implies that the comoving horizon at the surface of last-scattering corre-
sponds to an angle of order 1° in today’s CMB sky. Given that there is no way for
casually disconnected regions to establish thermal equilibrium with each other, the
near-isotropy of today’s CMB sky suggests again we need very fine-tuned and special

initial conditions. This is the horizon problem, first suggested by Misner [18].

Relics Problem

In models beyond the Standard Model of particle physics, our Universe may go through
several epochs of phase transitions during which spontaneous symmetry breaking hap-

pens. During these phase transitions, it is typical that massive objects like magnetic
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monopoles [19] will be produced as relics. These relics, if massive compared to H,
are non-relativistic and contribute to the total matter energy density p,,. But from the
continuity equation Eq. (1.3) we can see that the relativistic radiation energy density
p~ decreases more rapidly compared to p,, as the universe expands. Thus a small
amount of p,, from the relics in the Early Universe could dominate very quickly and
lead to an early matter-dominated era and rapid closure of the Universe, if the relics

are sufficiently stable.

1.3 Inflation, a Solution to Hot Big Bang Problems

Inflation, proposed by a number of independent authors including Alan Guth in the
1980s [20, 21], offers an explanation to the conventional flatness and horizon problems
and provides the seed of structure formation in the Early Universe. It is now the most

promising paradigm of the Early Universe.

By definition, inflation is an era of rapid expansion of spacetime, during which the

scale factor accelerates
a>0. (1.13)
The condition of inflation can be written as

d H! H
— - —<1. 1.14
% a <0 or 72 < ( )

This is the era when the Hubble parameter varies slowly as compared to the Hubble
timescale. Taking H to be approximately constant over many Hubble times, we then
have a o e, corresponding to a quasi-de Sitter Universe with an exponential expan-

sion of spacetime.

Assuming Einstein gravity, we can rewrite Eq. (1.14) in terms of a condition for p and

P of the cosmic fluid

p+3P<0. (1.15)
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Figure 1.3: Conformal diagram of a Hot Big Bang universe with and without an inflationary phase.
Inflation extends the conformal time 7 to negative values. The end of inflation creates an ‘apparent’
Big Bang at n = 0. Yet there is no singularity at = 0 and the light cones intersect at an earlier
time. Credit: Daniel Baumann

Since the energy density p is always assumed to be positive, inflation only happens

when the pressure P becomes negative.

The conventional flatness and horizon problems are solved by inflation if the observ-
able Universe is well within the horizon before inflation begins. From the definition
of the density parameter Eq. (1.8), since inflation is an era where (¢ > 0), inflation
always drives €2 towards 1 even if our Universe is not flat (K # 0) to begin with. For
the horizon problem, since our observable Universe is within the horizon H ! at the
start of inflation, regions which look as if separated by distances larger than the horizon
today are indeed within the horizon and in casual contact to begin with. This justifies
the observed isotropy in the CMB. This is illustrated in Fig. 1.3. These conventional
arguments are however controversial. It was argued by Penrose that inflation does not
solve the horizon problem, or the initial conditions problems in the Early Universe,

since the onset of inflation requires extremely fine-tuned initial conditions [22].

For the relics problem, things are less controversial. Consider relics formed before
inflation, by the continuity equation Eq. (1.3), we can see that p,qic o< a2 for non-
relativistic relics. Since the scale factor a increases by many orders of magnitude dur-
ing inflation, the energy density of relics is effectively diluted away, giving negligible
contribution to the Early Universe dynamics. Or in the physical picture, the distance
between any relics formed before are stretched well beyond the horizon during infla-
tion and therefore the number density of relics becomes negligible in the observable

Universe.
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Besides solving the problems of the standard Big Bang picture, inflation also offers
an explanation to the origin of the seeds of structure formation. Because of quantum
mechanics, there are vacuum fluctuations associated with the inflaton field. During
inflation, these quantum fluctuations are stretched outside the horizon and become
classical. These perturbations are then converted to primordial density perturbations
during a phase called (p)reheating * and lead to the subsequent structure formation as

they later re-enter the horizon.

The original model proposed by Alan Guth, now named the ‘old inflation’, involves
a scalar field tunnelling through a metastable vacuum state to the true vacuum [20].
However this model was later replaced by ‘new inflation’, as it was found that the
model does not reheat properly: the Universe would expand too rapidly for bubble

collisions to occur if inflation lasts long enough to solve the initial conditions problems.

The simplest viable ‘new inflation” model assumes the Universe is dominated by a
single homogeneous scalar field with a standard canonical kinetic term, slowly rolling
down a flat potential [23]. This is standard slow-roll inflation. The action is given by

M2R
2

S = /d4xx/—_g { - %%wa“so -Vl . (1.16)

with the scalar field ¢ obeying the Klein-Gordon field equation in an expanding back-

ground
p+3Hp+V,=0, (1.17)

where V,, is the derivative of the potential V' with respect to ¢. With the Universe

dominated by the scalar field, the Friedmann equation then reads as
2 L.,
3H :V(go)+§g0 . (1.18)
The instantaneous slow-roll parameters at time ¢ are defined as

H 1 éy
€H= ——— = —=
U= ™M= "0 ey

(1.19)

“To be explained in detail in Chapter 4.
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Figure 1.4: Slow-roll Inflation: a scalar field rolling down a flat potential.

or in terms of the potential as [24]
o= (i) o (120)

To realise slow-roll inflation, we require these slow-roll parameters to be smaller than
O(1). This corresponds to when the kinetic energy ¢* is subdominant compared to the
potential energy V' and ¢ is slowly rolling. In the simple canonical slow-roll models

discussed above, these slow-roll parameters are related by
€ — €v, Mg — Ny — 2€y (L.21)

in the slow-roll limit. Assuming slow-roll, matching the energy-momentum tensor 7"

with that of a perfect fluid, the scalar field then behaves approximately as a fluid with
ple) =~ —P(¢)

_ 1.

plp) =58 +V RV,

_ 1_

szﬁﬁ—vz_ , (1.22)

which satisfies the conditions for inflation Eq. (1.15). The amount of inflation is quan-

tified by the number of e-folds NV, defined by
te
N =In(ae/a,) = / Hdt. (1.23)
t*

Here subscript * denotes the epoch when the pivot scale under consideration leaves the

horizon and subscript e denotes the epoch of the end of inflation.
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To solve the horizon problem, at least N = 60 e-folds of observable inflation is needed
for the pivot CMB scale k, = 0.002Mpc ™! with the assumption that the usual post-

inflationary history follows. This follows from the relation

1 — CL*H* o €_N aeH* arehHreh aequq (1 24)
= — = , .
Qent Hent arehHreh Qeq Heq Qent Hent

where subscripts ‘eq’ and ‘reh’ correspond to the epoch of matter-radiation equality
and the reheating epoch, whereas subscript ‘ent’ corresponds to the epoch when the
pivot scale re-enters the horizon. This gives an estimate of the number of e-folds of

observable inflation for the pivot scale k. [25]

2 10%GeV 1. 10°GeV
NObS:56—§ln7—§lnT—R, (125)

assuming each change in the isotropic pressure P to be instantaneous. Here 7T is the
reheating temperature. For reasonable choices of p, and Tk, we get an estimate bound

on the observable inflation N, where 70 > Nops > 50. 7.

This is however only the background picture. There is also small inhomogeneities arise
on top of the background because of quantum fluctuations, which later seeds structure
formation in our Universe. To understand how these small in inhomogeneities arise, we
need to study perturbations about the inflationary background, which will be discussed

in the following chapters.

SMore extreme values are in principle possible, see [26].



Chapter 2

Cosmological Perturbation Theory

In this chapter we first briefly introduce cosmological perturbation theory [27, 28, 29]
at linear order. We then introduce the concept of gauge-invariant quantities and discuss
how they can be constructed. In particular, we discuss the curvature perturbation ¢,
which is a measure of the density perturbation and quantifies the scalar fluctuations in

the universe.

In Section 2.3, we discuss statistical properties of a stochastic field and discuss how
they can be quantified by various parameters. Without loss of generality, we focus on
(¢ as an example and introduce various primordial cosmological parameters which can

be related to the statistical properties of CMB anisotropies.

Finally in Section 2.4 we discuss the separate universe approximation [30, 31, 32] and
explain the alternative 6 N formalism [33, 34] which has been proved to be very useful
in Early Universe applications. We also show that ( is conserved on superhorizon

scales in the adiabatic limit.

2.1 Cosmological Perturbation Theory

The basic idea of cosmological/relativistic perturbation theory is straightforward: given
a theory of gravity, we perform Taylor expansions and perturb the metric g, and the
stress-energy tensor of the cosmic fluid 7" to appropriate orders about certain back-

grounds, relate the perturbations and solve for the dynamics of these perturbations
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using the coupled system of field equations derived in the gravity theory. For sim-
plicity, we consider only linear perturbations about FRW universes and the theory of

gravity below is GR.

The most generic form of a perturbed FRW metric up to first order is

ds®* = (Gu + 0gu)da’da”

= —a*(n) {(1 +2¢)dn* — 2B;da’dn — [(1 — 2¢)6;; + 2E;;] dz'da? } (2.1)

where the quantities ¢, ¢, B; and L;; are all functions of 7 and xt. E;; 1s a symmetric,
trace-free tensor. Here we have introduced the conformal time 7, which is related to
the cosmic time ¢ in Eq. (1.1) by d¢ = adn. We can use 7 to define a conformal Hubble
parameter H = a’/a, where prime denotes differentiation with respect to 7. Note that
1) and ¢ are scalar functions but not Lorentz scalars. It is also convenient to decompose

B; and Ej; into scalar, vector and tensor parts

where E], B are divergence-free and h;; is symmetric, trace-free and divergence-

free.

At linear order, scalar, vector and tensor perturbations are decoupled from each other
and therefore it is convenient to study them independently. It is not the case at higher

orders in general though, for instance see [35].

The components of stress-energy tensor for a perfect fluid, up to first-order, are given

by

Ty = —(p+dp),
To=4¢,
T/ = (P+0P)0" + 117 . (2.3)

Here T!' = T"? g,, and overline denotes the background averaged quantities, whereas

dp(n, x*) and § P(n, 2*) are linear perturbations of energy density and pressure. I1% is
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the trace-free anisotropic stress, which is already of linear order. This can be seen from
the fact that the background geometry in a Friedmann Universe is homogeneous and
isotropic. Defining the perculiar velocity of the fluid as v* = da'/dn, one can show

that the 3-momentum density perturbation ¢; is related to v; through

¢ = (p+ P)(B; +v) (2.4)

to linear order. We can also decompose ¢; into scalar and vector parts, i.e ¢; = 9;0q+q?
and similarly for v; as previously described. Focussing on the scalar part of the 3-

momentum, we therefore have d¢ = (p + P)(B + v).

After perturbing all quantities to linear order, we then work out how the perturbations

evolve by solving the perturbed Einstein equation
0G,, = 8mGoT,, — Nogu, . (2.5)

Restricting ourselves to the early Universe where A is negligible, the perturbed Einstein

equation then reads as 0G, = 8mG0T),,.

2.2 Gauge Invariant Quantities

Because of differomorphism invariance in GR, there are gauge degrees of freedom in

the theory. Under a coordinate transformation z# — x# + &* where z# = (n, z%) and

a1,a9..

" = (T, L"), any perturbation of a given tensorial quantity dy5' 73" transforms as Lie

ges

derivatives

0o ... = OWoiJon,. — (Let) 26)
where the Lie derivative is given by
(Lev)iaon = €(Voyps,")

(Ve — (Vo™ —

H(Vi8 )95, 4 (Ve )y o2 + 2.7)
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The perturbations we discussed previously in the last section are therefore not gauge-
invariant, i.e. they depend upon the coordinate we choose. For example, the gravita-

tional potential ) transforms as ¢ — ¢ — T" — HT.

By considering how the perturbations of different quantities transform, one can com-
bine them together to form gauge-invariant quantities. Combining the four scalar per-

turbations in the metric we can construct the so-called Bardeen variables [27]

Up=¢+HB—-E)+B —E",
dp=¢—H(B-E). (2.8)

Any physical observables should be independent of the choice of coordinate system
and can be constructed from gauge-invariant quantities. For instance, the curvature
perturbation ¢ that we will introduce shortly, is constructed to be gauge-invariant by

definition.

2.2.1 Curvature Perturbation, ¢

A very useful gauge-invariant quantity is the comoving curvature perturbation R.
This is the intrinsic curvature perturbation on comoving or constant 7 hypersurfaces,
1.e. hypersurfaces orthogonal to worldlines that are comoving with the cosmic fluid

where ¢' = 0 [29, 36, 37]
R=—-¢p+H(B+v), (2.9)
or in terms of the 3-momentum dq

H
R=—-¢p+——0q. 2.10
¢+E+Pq (2.10)

Another commonly used gauge-invariant quantity is ¢, the curvature perturbation

on uniform energy density hypersurfaces. It is defined as [38, 39]

H
= —¢+55p. 2.11)
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In the flat gauge where ¢ = 0, it is related to the density constrast dp/p for an adiabatic

fluid. The two quantities R and ( are related by
H
=R+ ?5Pcom , (2.12)

where pom 18 the comoving density perturbation defined as dp.om = 0p — 3Hq.
In the case of slow-roll inflation, the difference vanishes and ¢ and R coincide on
superhorizon scale as dpeom — 0. In the following we will therefore refer to the
curvature perturbation as ¢ unless stated otherwise. ¢ quantifies the scalar fluctuations
in the universe and can be related to the amplitude of the primordial fluctuations we

see in the CMB and the density constrast in the large-scale structure.

An important property of the curvature perturbation ( is the fact that it is conserved on
superhorizon scales for an adiabatic fluid for which its pressure P is a unique function
of its energy density p, i.e. P = P(p), as we will show later in Section 2.4 using the

separate universe approximation.

Although ( is gauge-invariant, it was found recently by White et al. that ¢ is frame-
dependent if isocurvature perturbations (to be introduced in Chapter 3) exist, i.e. ¢
evaluated in the Jordan frame is in general different to that evaluated in the Einstein

frame [40, 41]. !

2.3 Primordial Cosmological Observables

Just as with any physical measurements, the gauge-invariant cosmological perturba-
tions we have discussed earlier in general have random statistical disturbations even at
a fixed instant of time. They act as statistical ensembles. It is therefore the statistical
properties of these distributions we could like to measure and compare with theoretical

model predictions.

In this section we will briefly discuss the essential mathematics concerning the statis-
tics of a stochastic field. Focussing on the curvature perturbation ¢, we will illustrate

how we construct observables related to the statistical properties of the perturbations

Recently it has been argued by Postma and Volponi that this can be resolved if ¢ is defined purely
in terms of dimensionless and gauge-invariant quantities [42].
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of interest.

2.3.1 Two-Point Statistics

Consider a random field f(x) with zero mean (f(x)) = 0 where

(f(x)) = / DFPLfIf(x). 2.13)

where the integral means the functional integral over all field configurations. Here
Pr[f] denotes the probability of realising the field configuration f(z). The two-point

correlation function of this random field is given by

() = / DFPLfIf(x)f(¥). 2.14)

If this field f(x) is also statistically homogeneous and isotropic, then the two-point

function depends only on the distance between x and y

(fx)f(y)) o< F(lx—yl). (2.15)

In Fourier space, this gives a -function in the correlation function

. 272
(f(k)[*(K)) = —-Pr(k)o(k — k), (2.16)
where k = |k|. Here the normalisation factor 272 /k? is introduced such that Py is

defined as the dimensionless power spectrum given f(K) is dimensionless.

Now consider the curvature perturbation { as an example. As mentioned, for the two-

point function, we can define a dimensionless power spectrum F; (k) as in Eq. (2.16)

22

(CK)C™(K)) = =5 Fe(k)o(k = K) . (2.17)

For an exact scale-invariant spectrum, the amplitude of P is constant and independent
of k. However, in general ¢ depends on scale k and so does F:. We will see that how-
ever inflation generically predicts a nearly scale-invariant spectrum in the next chapter.

In that case, at leading order, it is convenient to parameterise the scale dependence of
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the power spectrum F; by the tilt or the spectral index ny — 1, defined by

_ dlnP(k)

Ik (2.18)

ng —

In the most general case, ns may also depend on k, which can be quantified by the

running «, defined in a similar fashion

dng

Tk (2.19)

(%

Note that P, ny and o depend on the pivot scale k, we choose. For all-sky CMB
observations, the pivot scale is usually set to be k, = 0.002Mpc~'. 2 Egs. (2.18)-

(2.19) correspond to parametrising the power spectrum F; (k) as

k ns—1+5 In(k/kx)
) (2.20)

Fe(k) = A (k_*

Here A; denotes the amplitude of the power spectrum F;. Observations of the CMB
from the Planck satellite mission suggests Ac ~ 2 x 1079, ny = 0.9603 £ 0.0073 at
95% C.L. (Planck + WP data), with negligible running [44].

Similar to the scalar mode, tensor modes or primordial gravitational waves are also ex-
cited during inflation via vacuum excition. We can also define a dimensionless power
spectrum for the tensor perturbation h;; as [ dIn kP, = (h;;h"), and similarly a cor-

responding tensor tilt np.

k"
Pu(k) = A, (k—) . (2.21)

The primordial tensor perturbation is usually quantified by the tensor-to-scalar ratio

r, defined as
r= Ah/A< , (222)

which is the ratio between the amplitudes of the tensor and scalar power spectra. The

current constraint given by the Planck + WP + high-l CMB ACT and SPT data is

2For discussion on the choice of pivot scale, see [43].
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r < 0.11 at 95% C.L. for the same pivot scale k, = O.OOQI\/IpC’1 [44]. Recently,
however, there is a claim of discovery of » ~ 0.2 by BICEP2 [45], which appears
to be in tension with the Planck results. Questions about foregrounds substraction
in BICEP2 data have been raised [46]. This will be resolved when the full Planck

polarisation data are released in late 2014.

For purely Gaussian fluctuations, all statistical information is contained in the two-
point correlation function. In simple single-field models, we will see in the next chapter
that ( is indeed Gaussian to a very good approximation. Higher order correlation func-
tions are negligible and observationally irrelevant in single-field models. The above
parameters are enough to describe the primordial fluctuations we see on the CMB.
However, for inflation models with multiple fields, this may not be true in general and

higher order correlation functions could become important.

2.3.2 Primordial Non-Gaussianity

Primordial non-Gaussianity is the measure of deviation from a perfect Gaussian fluctu-
ation for the curvature perturbation (. By definition, for any pure Gaussian fluctuations
f, all the statistical information is contained via the two-point statistics (f(z)f(y)).
Any higher-order correlation functions like (f(x)f(y)f(z)) are either zero for odd
numbers of f or functions of the two-point correlation function for even numbers. At
leading order, non-Guassianity is quantified in terms of the bi- and trispectrum, which

are defined respectively in Fourier space by

(G G Gy = (27)383(ky + ko + k3) Be(ky, ko, k3) (2.23)
<Ck1 CkQ CkB Ck4> = (27T)353(k1 + k2 + k3 + k4)TC(k17 k?a k37 k47 k127 k13) )
(2.24)

where k;; = |k;+k;|. Again the delta functions come from the assumption of statistical
homogeneity and isotropy. The level of non—gaussianity is quantified by the amplitudes

of these higher-order correlation functions, which are conventionally parametrised by
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Figure 2.1: Local non-Gaussianity peaks in the the squeezed limit for fxr,, and in the collapsed
limit for 77,

Figure 2.2: Equilateral non-Gaussianity peaks in the equilateral limit for fnr,

the dimensionless non-linear parameters fxi, [47], 7nr, and gy, [48, 49]

6
Bc(k’l, kQ, ]{?3) = ngL [PC<kI)PC(k2) + 2perms] s (225)
Tc(l{il, kQ, k‘g, k‘4, ]{3127 klg) = TNL [Pg(l{ilg)Pg(/ﬁ)Pc(k}:g) + 11 perms]
54

where perms denotes permutations over k;. In general these non-linear parameters
fnu, ™1, and gnp, are functions of wavevectors k; and thus are shape dependent. A

particular type of non-Gaussianity is that of the form

¢ =Co+ (3/5) fan(CE — (C&)) + (9/24)gxr (e (2.27)

where ( is the Gaussian part. This is known as a local type of non-Gaussianity. In
the local shape, (C(() peaks in the squeezed limit for fxy, (k1 — 0), and ((((() peaks
in the collapsed limit for 7y, (k1 + k2 — 0), see Fig. 2.1. Recalling that the skewness
of a probability distribution g is defined as S, = (g°) / (g2)3/ ?, we can see that fyr, is
an estimator of the skewness of the statistics of (. Similarly, gy;, gives an estimate of

the kurtosis.

Another type which is often considered is the equilateral non-Gaussianity. As the
name suggests, the equilateral type peaks in the limit where all the external momenta
are equal, i.e. k; = ko = k3. This shape is usually enhanced by non-linear interactions

at horizon-crossing. In this thesis, we will focus only on the local and equilateral
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shapes of non-Gaussianity. For a complete review on the topic of non-Gaussianity,

see [50].

No convincing evidence of primordial non-Gaussianity has so far been observed. Cur-
rent constraints from Planck data on fy, are: £ = 2.7 4 5.8 at 68% C.L. for the
local shape, fxi = —42 + 75 at 68% C.L. for the equilateral shape [51]. Less tight
constraints come from large scale structure measurements, where —37 < fi&! < 25
from measurements of galaxy clustering and the integrated Sachs-Wolfe effect [52]
and recently —49 < fioc < 31 from measurements of the clustering of 800,000 pho-
tometric quasars [53], all at 95% C.L. 3. For the local trispectrum, Planck data gives
m~1/10% < 2.8 at 95% C.L. [51], whereas the constraints on gyg, have yet been worked
out, though there has been discussion on the implications of the Planck bispectrum
constraints for the trispectrum [55]. On the other hand, WMAP 9-year data gives the
following constraint: —5.5 < gnr,/10° < —1.1 at 68% C.L. [56], with Regan et al.
finding a compatible constraint —6.4 < gn1,/10° < —1.8 at 68% C.L. [57]. Similar
constraints for gnp, were also found in [52, 53] using large scale structure measure-

ments.

Scale Dependent Non-Gaussianity

Like the power spectrum, it is natural that the non-linearity parameters are scale de-
pendent [58, 59, 60, 61], quantified by their spectral indices. For instance, the spectral

indices of fyr, and 7wy, denoted by ny, and n,, , are defined by

dln|fNL]

N = ~dlk (2.28)
. dln’TNL|

Ny, = Ak (2.29)

where k£ marks the length of any one side of the n-gon, provided that all sides are
scaled in the same proportion [60]. Examples of models where ny  and n,, can

be observably large, i.e. O(0.1), are the curvaton model with quartic self-interaction

3Recently there has been a claim of a detection of local fyr, from quasar measurements in the Sloan
Digital Sky Survey [54].
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terms [62, 63] * and Modulated Reheating [60].

Forecasts have been made to assess our ability to detect the spectral indices of the
non-linear parameters. For n,, , Planck could reach a 1 — o sensitivity of o, ~ 0.1
given fnr, = 50 [65]. By measurements of the CMB p-distortion in a CMB experiment
such as PIXIE, ny,, and n, could also be measured to an accurancy of the order of
0(0.3) and O(0.6) respectively for fnr, = 20 and 7np, = 5000, and similarly in large-

scale surveys such as Euclid [66].

2.4 Separate Universe Picture

An alternative approach to the cosmological perturbation theory discussed earlier is
the separate universe approximation [30, 31, 32], if we are interested only in pertur-
bations on superhorizon scales. It is a powerful tool for studying perturbations in the
Early Universe. The separate universe picture refers to the behaviour of the Universe
after smoothing on a specified scale £ much larger than the horizon. The underlying

assumption is that spatial derivatives are negligible compared to time derivatives.

The separate universe approximation is also related to the gradient expansion ap-
proximation [67]. In the gradient expansion scheme, the full non-linear field equa-
tions are written in terms of a small gradient expansion parameter ¢ = k/aH ° and
the limit € — 0O corresponds to an unperturbed FRW universe. That is, the metric of
any local region can be written as an unperturbed FRW metric in an appropriate set of

coordinates
d52 = —dt2 + a2(t)loca1§ijdxidxj . (230)

During inflation, the gradient terms quickly drop out after horizon exit as a{ grows

exponentially, justifying ¢ being a small parameter. At zeroth order O(e°), we can see

4Note if the BICEP? result is verified such that » ~ 0.1, then pure curvaton models will be ruled
out [64].

STheir definition of n,, differs from the one used here, in the fact that in their case, n,y, #
dlIn|7nr|/(dIn k). The two definitions are related when the four & vectors form a square by 2ntheirs —

TNL
n2 ", in which case we have to double their forecasted error bars when comparing to our definition of

Ny -
®Do not confuse this with the slow-roll parameter ¢z that was defined previously in Eq. (1.19).
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that the full non-linear field equations have the same forms as those at the background
level. This suggests we can treat the whole Universe as an ensemble of independent
FRW universes, which only differ by initial conditions that are sourced by quantum
fluctuations. This simplifies the analysis of superhorizon perturbation evolution [31,
34, 37, 38, 68, 69] and leads to the famous d N formalism, which will be explained in

detail in the following section.

2.5 The 6N Formalism

One consequence of the separate universe approximation is the NV formalism, which
will be used extensively in this thesis. The formalism can be understood as follows:
Consider a foliation of spacetime X(¢), where 3(t) is the spacelike hypersurface at

time ¢. Let n* be the unit vector normal to ¥(¢). Define the rate of change of n* as 0
0= Vun“ . (2.31)
The volume expansion rate along some worldlines is
~ 0
N = gd']‘ , (2.32)

where 7 is the proper time. This is defined purely geometrically. It is convenient to

write the full perturbed metric in the ADM form [70]
ds® = —N2dt* + v (da’ + B'dt)(da? + p7de), (2.33)

where A and /3" are the lapse and shift functions, and ~;; is the spatial 3-metric. With-
out loss of generality, we choose the foliation of spacetime Y(¢) as 2° = ¢t = const.

The unit vector n* normal to X(¢) is then

nt = (/%/,, —%) . (2.34)
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We then define §~ by rewriting the spatial part of the metric in the form
Yij = a2(x,t)7;;(x) with a(x,t) = a(t)es™) 3,;(x) = (Ie");; . (2.35)

Here a(t) is the homogeneous background scale factor after smoothing. Here 4 has
unit determinant and the matrix h is traceless. We can see this corresponds to ¢ =
In(a/a) = 6(Ina). Note that we have not assumed ¢ to be small here. From the
separate universe approximation we know the metric can be written as an unperturbed
FRW metric locally, we can thus deduce " is of order O(¢), garnma,; and h;; must be
time-independent, whereas ¢ must vanish locally because a(x,t) is the locally defined
scale factor. The volume expansion Eq. (2.32) as seen by a comoving observer between

t; and t, is thus

~ to 0 to 0 to . -
N_/ —dr—/ —th_/ Ty at, (2.36)
t1 3 t1 3 t1 a

which equals the corresponding number of e-folds of expansion between ¢; and to

defined by Hycal

N(tg,tl;X) =1In {ZEZ?;} + 5<t2,X) - 5<t1,X) . (237)

Choosing the initial hypersurface to be flat (( = 0) and the final one to be the uniform

density (0p = 0), we immediately arrive at the result [67]

((ta,x)], = N(t2, t1;%) — In {a(“)} = 6N (t1,t2;%) . (2.38)
a(ty)
Recall that on uniform-density slicing, { = §~ and thus we have ( = 6N. This is
the well-known 0N formalism [33, 34], which states that the curvature perturbation
( is equal to the difference in the number of e-folds expansion between an initial flat
hypersurface and a final uniform-density hypersurface, i.e. {(x,t) = dN(x,t). This
formalism holds as long as the Universe can be locally approximated by a FRW uni-
verse. This is an important result and we will use this in most of the analysis that

follows.
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2.5.1 Conservation of

In Section 2.2.1, we have stated that the curvature perturbation ( is conserved on super-
horizon scales. We will now show this by using the gradient expansion in the following,

first done by Lyth et al. [67].

In comoving coordinates, the 4-velocity of the comoving fluid is

= (j%/o) +0()
u, = (—N, %) +O(e?). (2.39)

To leading order in the gradient expansion parameter €, the expansion rate of u* is
equal to that of n*. Recall the definition of the energy-momentum tensor for a perfect
fluid Eq. (1.2), on uniform-density slicings, the continuity equation u,V,T*” = 0 then

reads as

a(x,t)

pt) = RFoe [p(t) + P(x, )] + O(e?)
= -3 [g + g] [p(t) + P(x,t)] + O(e?) (2.40)

to leading order in the gradient expansion. For an adiabatic fluid where P = P(p),
the spatial dependence of P also vanishes and thus from Eq. (2.40) we can deduce 5 is
independent of the position. Without loss of generality, we can choose the background
scale factor a(t) such that f vanishes. However we also know that on uniform-density
slicings, the curvature perturbation is given by . As a result, we conclude that the cur-
vature perturbation ( is conserved on superhorizon scale beyond linear order regardless
of the theory of gravity in the adiabatic limit as long as the continuity equation holds.
For all single-field models where slow-roll solution is an attractor in phase space, the
perturbations are purely adiabatic and ( is conserved on superhorizon scales. In mul-
tifield models however, as we will see in Chapter 3, entropic or isocurvature perturba-
tions exist and 6 P,,q # 0 7 in general. ( is no longer conserved and it is important to

follow the superhorizon evolution of ( when comparing with observations. In fact ¢

is only conserved on superhorizon scales when these entropic perturbations van-

"Define later.
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ish, first demonstrated by Rigopoulos and Shellard [71]. This was later generalised to
non-canonical multifield models minimally coupled to gravity with at most first deriva-
tives by Christopherson and Malik [72], and recently to higher-derivative models that

preserve second-order field equations by Naruko and Sasaki [73] and Gao [74].



Chapter 3

Predictions from Slow-roll Inflation

In this chapter we discuss the observational predictions of the standard canonical slow-
roll inflation paradigm, including single and multiple field models. In particular, we

focus on canonical models minimally coupled to gravity.

We start by introducing the ‘in-in’ formalism and the 6 N formulae which are com-
monly used to compute cosmological correlation functions of ¢ in Sections 3.1 and
3.2. In Section 3.3 we discuss the model predictions of simplest single-field models,
compute the correlation functions of ¢ and the corresponding primordial observables.
In particular, we reproduce the famous Maldacena result [75], a no-go theorem for

primordial non-Gaussianity in simplest single-field inflation.

Then in Section 3.4, we introduce the multifield inflation models and discuss the main
difference between single and multifield models, which is the existence of entropic
perturbations. We give the multifield model predictions in terms of the N coefficients
in Section 3.4.2. Finally we end this chapter by discussing the technical difficulties in

computing the § N coefficients in general.

3.1 In-In Formalism

Before discussing inflationary model predictions, we first introduce the operator for-
malism used in computing correlation functions in cosmology, namely the ‘in-in’ for-

malism or the ‘closed time path (CPT)’ formalism [76, 77]. This formalism is simi-
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lar to canonical quantisation in QFT, except for the fact that we are now computing on
a closed time path. Unlike in QFT in which we compute the S-matrix, the transition
amplitude between asymptotic ‘in’ and ‘out’ states, in the ‘in-in’ formalism we are in-
terested in correlation functions evaluated at a fixed instant of time given some initial

conditions.

In this formalism, the correlation function of some operator Q evaluated at time ¢ is

given by

<Q(t)> = <Q’T+ exp (z /t t ﬁim(t’)dt’) Q)T exp (—@' /t: If[im@')dz?') ‘Q> (3.1)

in the interaction picture, where the full Hamiltonian is split into two parts: a free
part Hy and an interaction part Hiy, i.e. H = ﬁo + ﬁint. Here T, TT are the time
and anti-time ordering operators, and |2) is the interacting theory vacuum at ¢y,. One
then expands the evolution operator, exp(—i | Hiydt'), in Eq. (3.1) to compute the

correlation functions of interest to leading order as in perturbation theory.

For instance, take Q = (5@0)3, by Taylor expanding the exponentials in Eq. (3.1), we
find the 3-point function of a scalar field perturbation d in Fourier space at time ¢ is

given by

<590k1 (t)égpkz (t)(SSOka (t» = _7’/ <5(10k1 (t)&pkz (t)dgpks (t)Hint (t,)> dt’ +c.c. (32)

to

to leading order. Here c.c stands for the complex conjugate.

3.2 Separate Universe Approach, 6 N Formulae

An alternative formalism for calculating correlation functions of ¢ on superhorizon
scales is the 6V formalism discussed in Section 2.5. It follows that in a FRW universe
dominated by M canonical slow-roll scalar fields ! at horizon-exit t,, the difference

in the number of e-folds of expansion between different superhorizon patches can be
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accounted for by perturbations of the scalar fields at horizon-exit 6! [69] !
1
t)=O6N(x,t) = Y Nisol+ =) Nidolopl + ... 33
C(Xa ) (X7 ) ; 1 ¢*+2; 1J0P, 09, + (3.3)

from perturbative Taylor expansion. Again /V is defined as the total number of e-folds
of expansion from an initial flat hypersurface at horizon-exit ¢, to a final uniform-
density hypersurface at time ¢. Here I, J are the field labels, whereas N;, Ny, etc are
the O N coefficients defined as partial derivatives with respect to the scalar fields, e.g.
N; = ON/dy!. This was later generalised to models with a curved field space metric,
where the kinetic terms are non-canonical, by Saffin [78] and Elliston et.al. [79]. It
should be stressed that we only require slow-roll at horizon exit, but not the entire

evolution.

From Eq. (3.3), we can then relate the correlation functions of (, (C(...C), to that of the
field perturbations (9@ ™ ...5¢™ ) at horizon-exit. For instance, to leading order,

the 3-point function (((() at time ¢ is given by

(Clk1, )¢ (ko 1)C (K3, 1) = > NNy N (50" (K, £.)00” (Ko, 1) 50" (ks £.))

1JK
1
—1—5 Z NiNNgr (00" (i, t.)0¢” (Ko, t.)[60™ x 69" (ks, t.)) + perms + ...
IJKL

(3.4)

where x denotes the convolution product over momentum k3

K L _ ¢ o g L

(0" x 0p"](ks, L) = (Qﬁ)g&p (q,t.)09" (q — ks, 1) (3.5)

and perm denotes permutation over k; for the second term on the RHS. The corre-
sponding (-related primordial observables such as fyi, can then be deduced once the
the correlation functions of d¢ at horizon-exit are known. For single-field models,
Eq. (3.3) simply corresponds to the gauge transformation from the flat to the uniform-

density gauge.

IThe slow-roll approximation allows us to write the field velocities (>’ as a function of all the scalar
fields 7, i.e. ! (¢”). Thus explicit >’ dependence drops out.
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3.3 Single-Field Inflation

We start with predictions of the simplest single-field inflation models with the action
Eq. (1.16). > We assume there exists some regions in the potential 1/ that are flat
enough for inflation to proceed, where €y, 7y, < O(1). It is convenient to first rewrite

the action in the ADM form, i.e. substituting the ADM metric Eq. (2.33) into Eq. (1.16)

S = % /d‘*a:\/ﬁ INROM2 — 2NV + N7 EEY — E*)M?
+NTHp — B0,0)” — N7 9ip050] . (3.6)

Here R® is the Ricci-scalar built from the spatial metric v;; and £;; is defined as

Eij = (hU - Vlﬁj - V]@) (37)

and E is the trace of F;;. V,; denotes the covariant derivative with respect to the 3-

metric v;;.

To evaluate the predictions of single-field inflation, we consider perturbations about
a de Sitter background and work in the spatially-flat gauge where v;; = a%d;;. To
quantise the inflaton field, we first split the inflaton ¢ into a homogeneous slow-varying

background field $(¢) and a small perturbation d(x, t)
o(x,t) =(t) + dp(x,t) . (3.8)
We also perturb the lapse and shift functions to linear order in scalar perturbations
N=1+X\, Bi=08. (3.9)

The background equations of motion are the Klein-Gordon and Hamilton-Jacobi equa-

tions

P+3HG+V,=0
-2

2MIH = — (3.10)

2Similar analysis using the covariant perturbation scheme [80] was done for single-field models with
curved field space metric by Elliston et.al. [79].
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By perturbing the full action Eq. (3.6) to quadratic order in perturbations, we get

1 L
so= / Az [)\1 (—6M§H2A1 PG - 2500 — 2\/;,5@)

2 . . 1 ,
—@8% (2M2HX, — pop) + 5o — E&égp@@gp — deﬁ} (3.11)

upon integration by parts. Note that A and j; act as Lagrange multipliers and are
not dynamical. Their equations of motion correspond to momentum and Hamiltonian

constraints

1 ; : 1 .
Vi |5 B - B8] = e - #0000

—2V = N*EGE7 — )M — N72(¢ — B'00)* — v7 0100, = 0,

(3.12)
which to leading order gives
2M2HM\ = op
. o H
ME — 6H2M?) — 5op — V80 — 2M2 828 = 0. (3.13)
a
Substituting the solutions of A\; and /3 back into Eq. (3.11), we finally arrive at
2 _ 1 4, 3|52 L 2 2
S\ = 5 d*za® [(0p)° — ﬁ(ﬁégo) + M(5p)”| . (3.14)

where we have used the background equations Eq. (3.10). Here the effective mass M

is given by

B 1 d a3¢2
M=V, — Mga?’E( Fii ) : (3.15)

Eq. (3.14) then yields the field equation for the field perturbations d¢ in Fourier space

5o+ 3ms0+ [ F 25 Vg b d g 5o =0 (3.16)
v 14 a 14 Sad M§a3dt H L ’

Writing Eq. (3.16) in terms of a conformal scalar field v = adp and conformal time 7,
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we then have

82 ) P
— + k- — k)=0 3.17
|:a772 + > :| Uk(777 ) ) ( )
where z = ap/H. This is the Mukhanov-Sasaki equation and vy, is known as the
Mukhanov-Sasaki variable [81, 82]. From here onwards we will drop the overline for
the background homogeneous field . The effective mass term z”/z can be expressed

in terms of slow-roll parameters [83, 84, 85]

2" 1 3 1 1 1
= =2(aH)* |1 — ey — =0y + ~euy + =Nf + =€

B 2 2 2 2 ofH T o (3.18)

During slow-roll inflation, these slow-roll parameters are slowly varying in time and

thus we can neglect their time dependence at leading order, which gives

1
N 3.19
where 7 runs from —oo to 0. Thus Eq. (3.18) becomes
2 vE —1/4 3
_:—R 2/ s VR%_‘I’EH_UH’ (320)
z n 2

The general solution to Eq. (3.17) can then be expressed as a linear combination of

Hankel functions

oy~ \/g(\/_—kn) exp [i(1+ 208) T [er HY (—) + B (k)] . 321

Note that vg = 3/2 is the de Sitter limit. Here ¢; and ¢, are some constants.

Canonical Quantization

We would like to canonically quantise the conformal scalar field v. From the Mukhanov-
Sasaki Equation (3.17), we can see that this is equivalent to quantisation of a ’free’

scalar field with time-dependent mass m? = z”/z. As in standard canonical quantisa-
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tion, we define the conjugate momentum to v as
Ty = — =0, (3.22)

and promote vy and 7, to operators which satisfy the following equal-time commuta-

tion relations
[0(x, 7)., 7o (X, m)] = 6@ (x — x) (3.23)

and are zero otherwise. We can write 0(X,7) in terms of annihilation and creation

operators

o(x,n) = /% [d(k)uk(n)eik'x + &T(k)u,t(n)e_ik'x] ) (3.24)

Here uy, is the mode function satisfying the same Mukhanov-Sasaki equation Eq. (3.17).

From Eq. (3.23), one can show that @ and a' satisfy the following commutation relation
la(k),af (K)] = 6®(k —K') . (3.25)

To solve for u,, we apply appropriate asymptotic boundary conditions to the solution

Eq. (3.21).

At early times when k% >> @ /a and the short-wavelength limit applies, we can approx-
imate the FRW background as Minkowski. Choosing the vacuum to be the Minkowski

vacuum where a(k)|0) = 0, the solution becomes

6*11“7

V2k

uk(n) — (3.26)

in the asymptotic limit (k7 — —o0). |0) is known as the Bunch-Davies vacuum [86].

This corresponds to choosing ¢; = 1 and ¢, = 0 in the general solution Eq. (3.21).

Well after the mode exits the horizon, where kn — 0, the solution then asymptotes to

un(n) =\ (V=R exp [i(1+ 2vm) 7| HID(—k)

e
|, iexp(—iky)

3.27
e (3.27)
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From Eq. (3.19), we can see this corresponds to a growing solution with u; o a.
The two-point correlation function for vy, given by its quantum expectation value, is

therefore

(06 () (n)) = IWWW<0

_ |me&Wk—ww:( *)v«m*“w@m—k»
(3.28)

Here H, is the Hubble parameter evaluated at horizon-exit for the mode k.

Scalar Spectrum

With the solution to the mode function u;, we can now compute the power spectrum
for the inflaton fluctuation d¢. Transferring back to the inflaton fluctuation d, we can
thus see the modes quickly become constant a few e-folds after horizon exit. As in the
convention, we assume this happens at the epoch of horizon exit. > The corresponding

dimensionless power spectrum is therefore

k2 g2 H,\? o
Pro(k) = 55 || = (g) (—kn)* > (3.29)

~on?

Using the definition of the curvature perturbation ¢ Eq. (2.11) and the fact that ¢ is con-
served on superhorizon scales in the slow-roll single-field model, we can then compute

the power spectrum

Fe(k) = (g)QPw(k% (3.30)

*

using the fact that §p/p ~ dp/¢ to leading order in slow-roll. Since the Hubble
parameter H is slowly varying during inflation, the spectrum induced by inflation is
generically very close to scale-invariant. This can be seen from the spectral index 7.

Differentiating In P with respect to In &k, we find [24]

ns—1~3—2vgr =2(ny). —6(ey).. (3.31)

3For discussions on the associated error with this assumption, see [87].
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Here the subscript * denotes the slow-roll parameters are evaluated at horizon exit.
Since during slow-roll inflation we generically have (ey )., |(ny).| < O(1), inflation
predicts an almost scale invariant spectrum with small red tilt (ns < 1) for chaotic

inflation where V' o< .

One can go further to study the running of the spectral index « in Eq.(2.19) as well.
It is not difficult to see from Eq. (3.31) that « is second-order in slow-roll as ng is

first-order. Precisely, we have

a = 16(evny ). — 24(ev)? — 2(év)? (3.32)

— 4 VoVoop
where &y = M, =552,

Tensor Spectrum

Tensor perturbations are also excited during inflation just as scalar perturbations. Again
we work in the flat gauge and consider a FRW metric with tensor perturbation of the

form
ds® = a*(n) [—dn® + (8;; + hy;)da'da’] (3.33)

where h;; is divergence and trace-free, obeying hlj = hi = 0. By perturbing the action

to second-order in /;;, one finds
M? [
S\ — - / d*zah¥ [hij + 3Hh;; — 8*hy; (3.34)

and the tensor perturbation h;; satisfies an equation of motion similar to that of d¢

Eq. (3.16) in the massless limit

. . k2
hij + 3th + —2]1” =0. (335)
a
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(%)

Decomposing h;; into a scalar amplitude % and polarisation tensors e;; ™ and promot-

ing h;; to operators, we can write
7 ddk MP ~ S 1.8 ik-x
hij(x,n) = / PRt ; -5 [a(k)es;hp(n)e™™ 4 c.c.] (3.36)

in Fourier space in terms of annihilation and creation operators. Here s = +, x denotes
(%)

the two polarisation states of the tensor mode. The polarisation tensors e;; ™ satisfy
the transverse and traceless condition
Z kiei; =0, (3.37)
Z efe = 20,y , (3.38)
*8 *8 8 kk
Z 5ilkeij Z €zlk€ = ‘k’ (1 — (555/) . (339)

ijl ijl

Now we define A = aM,h /2. Itis not difficult to see h; satisfies the same Mukhanov-

Sasaki equation with z — «a

~ a// ~

hy" + <k2 - ;) hi=0. (3.40)
The solution to this equation of motion is the same as in the scalar case with vg —

vt = 3/2 + ep. Defining a dimensionless tensor spectrum Py, (k) as

(hij(k)h" (K')) = 2(2) %Ph(k)é(S)(k—k’), (3.41)

where the additional factor of 2 comes from the two polarisations of gravitational

waves, we therefore have

8 (H.\’
Pi(k) = 15 (g) (=kn)*r, (3.42)
p

with the tensor tilt n and tensor-to-scalar ratio r given by

nr = —2(6‘/)*, r = 16(6\/)* . (343)
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Figure 3.1: Theoretical predictions of (ns,r) for various canonical single-field inflation models
and comparison with the current observational constraints. Credit: ESA and the Planck collabora-
tion [44].

Theoretical predictions of ng and r from various canonical simple single-field inflation
models are summarised in Fig. 3.1. Models such as power-law inflation and V' oc ¢*
are now already ruled out by current data from Planck, while V' o ¢? is under tension.
Though the recent BICEP2 discovery of primordial gravitational waves, if verified,

will bring the (? model back in agreement with observations.

Non-Gaussianity, No-go Theorem for Simplest Single-Field Models

Besides the scalar and tensor power spectra P and P, statistics beyond the two-point
functions as quantified by non-Gaussianity may also be detected in precision CMB
experiments. To work out the level of non-Gaussianity in the single-field model, we

expand the action Eq. (3.6) to cubic order

1 1
S® = 3 / d*za’® {—ng((sgo)?’ — MV (69)% + 6H2N M — N3? + 2X7 0
—a\ [0:0;80°08 — (02B)2] M2 + AH2N2a™2(9%B) M2 — ) (3p)°
—a720(800)? — 20,0B0:0¢ + 2)\1¢ﬁi3i54p} , (3.44)

Note that we only need to expand N and /3° to first order as the second-order terms in

N and /3" are multiplied by the momentum and Hamiltonian constraints at first order.
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Again \; and 3 can be eliminated using the constraints Egs. (3.13). Now we collect the
leading slow-roll order pieces in Eq. (3.44). Note that A\; and /3 are of order O(p/H)

to leading order in slow-roll. Eq. (3.44) then reduces to

3
soo [ d%{— A e P
LHM? LHM?
3
a

MEYIp0E

@6;05”6]-6—2(6@@(6@} , (3.45)

This gives the cubic interaction Hamiltonian H;,; to leading order in slow-roll. To
compute the 3-point correlation function for dp, we apply the ‘in-in’ formalism dis-
cussed in Section 3.1. Recall that to leading order, the 3-point correlation function for
0 is given by Eq. (3.2). Substituting the cubic order terms Eq. (3.45) into the interac-
tion Hamiltonian H,,;, we can then work out the 3-point function to leading order in

slow-roll. For details of the calculations, see [75, 88].

As an example, we compute the contribution coming from the first term in Eq. (3.45)

3
Atz {— a gbagp(&p)?} . (3.46)
/ LHM?

Written in conformal time, the corresponding contribution is then

(6p(x1, )0 (X2, T)d(X3, 7)) Q/d?’ydn{—ﬁw’(n) (6p(x1,T)d0(y,m))
((8p(x2, T)00(y,m))) ((5p(x3, T)d0(y, 7))’

+perm + c.c} (3.47)

which in momentum space gives

(0o (ky, 7)0p(ko, T) 00 (ks, 7))

, H3 o, k2k2 Ky k2k2
- _2(27T>35(3)(Zki) 4 H 2k3 [Z <_ 2153 - 1]6’3 3)] ’ (348)
i i =M t

perm

where we have Wick rotated on to the positive imaginary axis to perform the integral.
Here again perm stands for permutation over k; or x;. k; denotes the sum of the

magnitudes of k;, i.e. k; = k1 + ko + k3.
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Together with the two remaining terms, we find the 3-point function for the field per-

turbations d¢ [88]

4t [ H? 2
<5so(k1)590(k2)590(k3)>=(2W)35(3)(Zki)W (H) Ak, ko, ks) . (3.49)
where
O k2k3 k2K2 1
A(ky, kg, ks) = A {—3 Zf — 1133 (ky + 2k3) + §k;” — kik3 + perm| . (3.50)

Translating this into the 3-point function of the curvature perturbation ¢ by appropriate

gauge transformation using Eq. (3.3)

(C(k1)¢(ke)¢ (ks)) = —Z;f (00(k1)dep(ka )00 (ks)),

1 1 U\%
i 2(ev )« (Z a E>* (0p(ki)dp(ke)[0p * 5] (K3)), + perm. (3.51)

Combining Egs. (3.49) and (3.51), we finally arrive at Maldacena’s famous result for

the corresponding non-linear parameter fyy, in single-field inflation [75]

f~ o [ o+ (fl ) (2+ f(k))] = 2=+ f(Fnr),  B.52)

where f(k) is some function of £ lying in the range 0 < f < 5/6, peaking at the
equilateral limit and vanishing in the squeezed limit. Eq. (3.52) gives the single-field

consistency relation fiof® = 5(1 — ny)/12.

From Eq. (3.52) we can see the non-linear parameter fyy, is of order of O(ey). For an
ideal CMB experiment, we can only distangle the primordial signals from contributions
due to non-linear evolution of GR if the primordial signals give | fx1,| ~ O(5) [89]. The
level of non-Gaussianity is therefore negligible in CMB observations for the simplest
single-field model, independent of the shape. This is the famous No-Go Theorem
for non-Gaussianity in the simplest single-field inflation, first derived by Maldacena
in 2006 [75]. As in the literature, we refer to a large Gaussianity when any of the
non-linear model parameters fyi,, 7w O gny, is large, particularly | fxr| > O(5). Any

detection of primordial non-Gaussianity of order O(5) will rule out the simplest single-
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field inflation paradigm. As discussed in Chapter 2, no convincing evidence of a large

primordial non-Gaussianity is observed so far today.

3.4 Multifield Inflation Models

Absence of evidence is not the evidence of absence. - Carl Sagan

So far we have only considered the simplest model of inflation, which involves one
minimally coupled single scalar field with a canonical kinetic term. Although this
simple paradigm is consistent with current observations, it is often regarded as a phe-
nomenological model only as we are yet to connect the inflation model with particle
physics theory. Particularly, the field (or fields) that plays the role of the inflaton is
still unknown. It is therefore natural to go beyond this simplest picture and consider
more complicated models that are still consistent with observations but may have richer

phenomenology.
Everything should be made as simple as possible, but not simpler. - Albert Einstein

For example, particle physics motivated models can give rise to models with non-
canonical kinetic terms such as DBI-inflation [90] and models with features in the
inflaton potential [91, 92, 93, 94, 95]. Besides, unified theories like GUT and string
theory generically give rise to multiple scalar fields instead of one. Mechanisms that
make one of the scalar fields light often apply to other scalar fields as well. Thus it
is natural during inflation that there are additional light scalar fields as well [96, 97].
Instead of the single-field paradigm, a multiple field model should be considered as a
result. This is multifield inflation, the main focus of this thesis. Examples of multifield

inflation models are assisted inflation [98] and N-flation [99].

The general multifield action with at most first-order derivatives we will consider is

R

1
S = /d4x\/—_9 [f(sof)g = Su(p")59" 0 00" = W(e) |, (353)

where f is the non-minimal coupling to gravity, Sy is the Kahler metric and W is the

scalar potential. Here all f, S;; and W are functions of all of the scalar fields ¢?.
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3.4.1 Difference Between Single and Multifield Models: Entropic

Perturbations

A crucial difference between single-field and multifield models is the presence of en-
tropic perturbations or isocurvature perturbations. With the existence of isocur-
vature modes, the slow-roll solution is no longer an attractor, leading to non-vanishing
non-adiabatic pressure perturbations and thus possible superhorizon evolution of . To
see this, recall that under the separate universe approximation, ¢ follows the evolution
equation Eq. (2.40) on uniform-density slicings. In this gauge, the pressure perturba-
tion is non-vanishing only if the non-adiabatic pressure perturbation ¢ P,,q, defined by
0P =0P — (P /p)dp, is non-zero. The adiabatic regime corresponds to 0 P,.q = 0.

The evolution equation for ¢ can be written in terms of § P,.q

. H
N ———0P,, 3.54
¢ oL P d (3.54)

to first order. In multifield models with M canonical scalar fields, 0P, # 0 on
superhorizon scales in general. This can be seen by redefining the M scalar fields ¢’
into an adiabatic direction o, i.e. a direction parallel to the classical field trajectory,

and corresponding M — 1 orthogonal directions s’ [100]

o= /61530[dt,

st = Z §Ug0‘], (3.55)
J

where 6; = ¢'/\/>(¢7)? and Y, 57,67 = 0. We also assume all the s’ to be

orthogonal to each other. We then decompose the field perturbations d¢! in terms of

an adiabatic perturbation §o and entropic perturbations §s’

o= 6100 (3.56)
I

§st = 51,007 . (3.57)



Predictions from Slow-roll Inflation 46

The adiabatic field o follows the Klein-Gordon equation as in the case of a single-field
c+3Ho+W,=0. (3.58)

Here W, denotes the partial derivative of W with respect to 0. By expressing the
stress-energy tensor 7" in the form of a perfect fluid, the pressure and momentum

perturbations in the uniform-density gauge are

oP=3" [@I(5¢I ~ol0) — Wfégol] — W, 00 + 20,W

I
bg=—Y ¢'dp" =660, (3.59)
I

where we have defined 5,V = ), W;idp! — W, 60. The non-adiabatic pressure per-

turbation is then given by

2
0Pad = —?)Hl;(Spcom — 20, W . (3.60)

Since the comoving density perturbation § pco, follows the Poisson equation (k2 /a?)¢ =
—471Gd peom from the time-time component of the Einstein equation, the first term in
Eq. (3.60) vanishes on superhorizon scales. However, the second term in Eq. (3.60)
need not be small in general and can source 0 P,.q on superhorizon scales. As do
denotes the perturbation along the classical field trajectory, which is the adiabatic per-
turbation, d,W is a measure of the entropic perturbations. Note that d,I/ vanishes for
the case of a single field. Therefore we conclude that entropic perturbations Js’ act
as source terms for the adiabatic mode and lead to superhorizon evolution of (,

which is a main feature of multifield models.

3.4.2 Multifield Predictions for Primordial Observables

Now we consider the predictions from multifield models. In particular, we consider the
case where all the fields are minimally coupled with canonical kinetic terms. Using
the 0 N formalism Eq. (3.3), we can express the primordial observables related to (

defined earlier in Section 2.3 in terms of the d NV coefficients in the case of slow-roll
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scalar field inflation. In general, the § N coefficients depend on the initial conditions

at horizon-exit and so do the model predictions.

Following a similar approach as adopted in Section 3.3 for the canonical single field,
we can work out the correlation functions for the field perturbations d¢! given by [101]

(for general multifield model with a non-flat field space metric, see [80])

H,

<5@I<k1, t*>(5gﬁj(k27 t*)> = (_

2
17563) (1 —
27r> §75®) (ki — ky) | (3.61)

4mt ([ H? 2
(0" (et £)3¢ (Ko, )0 (ks 1)) = (200 (Y k)7 (W) AR

(3.62)

to leading order. Here A’7% is a function of the external momenta k;, defined as

KBKE 33

AIJK(kl, kg, kg) = &&]K -3 (/ﬁ + 2k'3> + §k% - klkg -+ perm] .

4H, ky k?
(3.63)
Power Spectrum
For the two-point statistics of (, at leading order, the § N formalism gives [102]
A; = ) NiP., (3.64)
I
2 Y1 9NN
ng — 1 = —Q(GH)* + — L] 7+ y (365)
H. 3k Ni
8
- . (3.66)
> NY

for the power spectrum I, the spectral index ns — 1 and the tensor-to-scalar ratio r.
Here P, is the power spectrum for the scalar field perturbations (0p(k, ¢, )0p(K', t.))
at horizon-exit. To derive the expression for ng Eq. (3.65), we have used the slow-roll

approximation to replace d/d In k with the field derivatives

d ., dt 9
dnk ~ P*dlnkopl

(3.67)
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where the field index [ is summed over. Here the subscript * corresponds to quantities
evaluated at horizon-exit for the pivot scale k., under consideration, i.e. when k, =

aH,.

For the running of the spectral index «, using again Eq.(3.67), Eq. (2.19) can be written

as

2 2HL* 2H*ZIJ¢iNIJN[ 2 |:ZIJ¢;<]NIJNI

S _
R 7 I ER S S /0 B S

—l—Zgb;]@K (NIJKNI+N1JN1K 2NIJNIZMNMNMK>] . (3.68)

- S N7 - (3, N3)?

1JK

which is second-order in slow-roll in general.

Non-linear Parameters

We can also express the non-linear parameters in terms of the /N coefficients simi-
larly by considering higher order terms in the 0 N expansion. In terms of the expansion
Eq. (3.3), we can separate out two different contributions to higher order correlation
functions: the instrinsic non-gaussianity of the field perturbations such as (6pdpdp)
and higher-order derivatives of N. It is convenient to parametrise the non-linear pa-
rameters into shape dependent and independent parts as in [103, 104], for instance

InL = ISIP’L) + fﬁg, which are defined as

> rox AP NN N

? Z[JNIJNINJ
6 (LN K '

(k Ni)?

5
A =g (3.69)
For canonical models, the non-linear parameters defined in Eq. (2.25)-(2.26) are dom-

inated by their shape-independent parts, which under the N formalism are expressed

as [48, 69]

5%, NiyNiN,;
e ==l , (3.70)
N 6 (XxNE)?
Z[JKN]JNJKNKNI
TNL = 3 (371)
(XL N7)?
Ny NN, N
gL _ 25 2 Niswe NNy Nig (3.72)

54 (2oL NP)?
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Unlike the simplest single-field model, local non-Gaussianity can be enhanced in canon-
ical multifield models subject to appropriate initial conditions even during slow-roll,
with |figcal| > O(5), if some of the second order 6N coefficients Ny are large. It
has been shown that this typically requires the fields to start near some extreme points
of the potential at horizon exit [105, 106]. A necessary condition for realising a large
non-Gaussianity in the case of canonical two-field models with separable potentials
is a hierachy between the horizon crossing field velocities, which was found using a

heatmap analysis by Byrnes et al. and Elliston et al. [102, 107].

Scale Dependence of Non-linear Parameters

The spectral indices ny,, and n. of the shape-independent parts are given by [60,

108]

1 Ny NNy ().
npy = —2ns — 1+ 2(eg),] + 5 (_) [ZIJK 17k NiN (oK)

6z \ H. (3oL Ni)?
Yok NIJNIKNJ(¢K)*:|
o . (3.73)
(>op NE)?
2 1 > NrjpNie NyNg($r)«
314 e - [JKL
e 3l + 2en)] + TNL (H*) l (o Nip)?
_i_ZIJKLNIJNIK]XJL?)NK(@L)*] , (3.74)
(> Nir)

which are given in terms of third-order derivatives of N. These can be further sim-
plified using dN/dt, = —H, and the slow—roll field equations. In particular, the 6 N

coefficients can be related to the partial derivatives of the potential by

Y NiWn = W., (3.75)
1

D NuWr = Wp=) NiWi., (3.76)
1 I

S NugWio = Wike = NigWike = Y NigWie = > NiWigke,
I I I I

(3.77)
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where Eqgs. (3.76)-(3.77) are derived by differentiating Eq. (3.75) with respect to ¢!.
Here subscripts 7, J, K denote partial differentiation with respect to the scalar fields.
W, can be replaced by ¢! using the slow—roll field equations 3H ¢! ~ —W7,. Using

these, we can work out alternative expressions for ng and « [96, 109]

2 1 25, NiN;(Wry).

b= o) s T Ty s N

(3.78)

B QWIWJW[J QWIQ 4 W_N[NJWIJ ?
=S () 2 () 2 w). (),

N Z (2]\/'1NJNKVVUK))k+ Z (i>* |:(WK_N[W[K)<NJWJk):|* |

N?2 W N?
IJKL L IJKL L

(3.79)

for canonical models.

Following a similar approach here, we extend it to the case of ny,, and n, , allow-
ing us to rewrite them in terms of only first and second order derivatives of NV as

follows [110]

Npe = —2[ns — 1+ 2(en).] 10 < 1 >2

 Gfae \ Yo, N7
+ 5 Z {4(771K)*NIJNJNK =+ (UIJ)*NINJ + (W[JK/W>*N]NJNK:|
6/NL (XL NE)? ’
(3.80)

1 )3 2 Z [Q(ﬁJL)*NIJNIKNLNK

2
o= e (5 ) e 3 [
" (M)« NNy + (n15)« Ny Nk N Nk + (WIJL/W)*NJKNJNKNLl ‘
(> Nip)?
(3.81)

Here n;; = Wiy /W. Egs. (3.80)-(3.81) are two useful results. Whilst Egs. (3.80)-
(3.81) are equivalent to Egs. (3.73)-(3.74), they possess significant computational ad-

vantages over the former since they involve lower order d N derivatives which are rel-
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atively easier to evaluate in general compared to higher order ones. From Egs. (3.80)-
(3.81), we can also see the error bars on the scale dependence of the non-linear param-

eters fyr, and 7y, are approximately inversely proportional to their fiducial values [65].

0N expressions for the primordial observables also exist for generalised multifield

models with non-minimal couplings and non-canonical kinetic terms, see [111].

An Example: Two Field Canonical Models

In the following, we consider a simple subclass of multifield models, the minimally
coupled two-field model with canonical kinetic terms. This class of model is described

by the following action

R 1 1
S = /d49:\/—9 {Mﬁg = 59" 0up00p = 59" DuxOx = W(px) |, (3.82)

where W (p, x) is the scalar potential which is a function of both scalar fields. The

standard slow roll parameters in the two-field case are defined as

2 2
o2 \w) o 2 \w ) o

W W W,
775030:Mp2 Mifp> nwx:Mg V;X> nxx:Ms M)}X’

(3.83)

where subscripts denote differentiations with respect to the fields ¢ and  respectively.
Here we assume these slow-roll parameters are much smaller than O(1) during infla-

tion *.

The background dynamics of the scalar fields are again governed by the Klein-Gordon

equation

e+3Ho+W,=0 (3.84)

X+3Hy+W, =0 (3.85)

where the first terms in both equations can be neglected during slow-roll inflation. The

fields then evolve monotonically and we can therefore write the number of e-folds N

“4For discussion and alternative definitions for slow-roll parameters in multifield models, see [112]
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from the horizon exit ¢, to time ¢, as

te 1 (¥ W
N_/ Hdm—/ —dop = / —dx (3.86)
' Mg J, W M2 J,,

e

by using the slow-roll equations. We can then compute the N coefficients by differ-

entiating Eq. (3.86). For instance, the first order J )V coefficient N, is given by

N L (W LW (Op +L/* Ox\ 0 (W,
emwe\w, ), w2 \w,) \og. ), 2z ). \op,) ox \w, )Y

(3.87)

&pe

where o

is evaluated on final uniform hypersurfaces, denoted by subscript H.

Technical Difficulties in Computing /N Coefficients

In Section 3.4.2, we have given the canonical multifield model predictions in terms
of the 0 NV coefficients. Given the potential ¥ and initial conditions at horizon-exit,
by solving the Klein-Gordon field equations subject to the Friedmann equation, we
can then evaluate the corresponding d N coefficients and make our specific model pre-
dictions. However, the coupled field equations are difficult to solve analytically in
general even for two fields in the slow-roll limit and it is not always possible to obtain
analytic expressions for the 0 N coefficients. In fact, analytic expressions only exist
for potentials of separable form, where W = U(p) + V(x) or W = U(¢)V(x), see
Appendix A.

Another important condition required in deriving analytic expressions for the NV co-
efficients is the slow-roll approximation. Most analysis to date for multifield models is
done in the slow-roll regime. This only gives the correct predictions for models where
the adiabatic regime is reached by the end of inflation. In general, however, entropic
perturbations may persist after inflation ends. As a result, the curvature perturbation
¢ could continue to evolve beyond the slow-roll regime. In order to properly compare
with observations, we should follow the evolution of the curvature perturbation ¢ until
the Universe reaches the adiabatic regime. Any post-inflationary evolution, particu-

larly (p)reheating, may alter the multifield model predictions derived in the slow-roll
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Figure 3.2: To compare with observations, model predictions should be evaluated at the time
of measurements or until the Universe reaches the adiabatic regime, which might happen after
inflation ends. Credit: Ewan Tarrant

regime. This is illustrated in Fig. 3.2.

It is important to study how sensitive ( and the related primordial observables are to
the subsequent post-inflationary evolution in multifield models in as generic a setup as

feasible in order to compare with observations and put constraints on the models.

While we require the slow-roll approximation for deriving analytic expressions, it
should be emphasised that the ) N formulae given in Section 3.4.2 for model predic-
tions only require slow-roll at horizon exit and are valid beyond the slow-roll regime.
We can apply these formulae to the post-inflationary regime and study the evolution of
¢ and the primordial observables by numerically solving the field equations. Consider-
ing a wide range of canonical multifield models, we will see in the following chapters
that even in the simplest perturbative reheating setup, post-inflationary evolution does
change the multifield model predictions and should be taken into account before com-

paring with observations in general.



Chapter 4

The Influence of Reheating on the

Power and Bispectra

As we have previously argued, to compare with observations, post-inflationary evolu-
tion needs to be taken into account in multifield inflation unless the adiabatic limit is
reached during slow-roll. In this chapter, we illustrate this and the influence of reheat-
ing on multifield model predictions. Particularly we address questions like whether
(p)reheating could significantly change the multifield model predictions evaluated un-

der the slow-roll approximation and induce any generic model-independent features.

In Section 4.1, we first give a brief review of the elementary theory of perturbative
reheating and discuss the limitations of the setup. We then discuss the evolution of
primordial observables, at the level of the power spectrum P in Section 4.2 and bis-
pectrum B¢ in Section 4.3, both during and after a period of perturbative reheating in
various canonical two-field models. We compare the end of reheating predictions with
the slow-roll predictions evaluated at the end of inflation, illustrating the importance
of taking reheating into account. We also compare the qualitative behaviour between
quadratic and quartic potentials in Section 4.4, and separable and non-separable poten-

tials in Section 4.5.
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4.1 Elementary Theory of Reheating

As discussed earlier in Section 1.3, inflation effectively dilutes the energy density of
any cosmic fluids except that of the inflaton field. We can see this from the continuity

equation Eq. (1.3), which suggests p,, o« o and p, x a*.

Thus after an almost
exponential expansion of spacetime during which a changes by many orders of mag-
nitude, the energy density of any cosmic fluids is effectively driven to zero except that

of the inflaton field.

After inflation ends, the Universe therefore ends up in a non-thermal state with effec-
tive zero temperature ! except in the case of warm inflation where there is a continuous

production of radiation [113].

To recover the standard Big Bang scenario in subsequent evolution, the fluctuations
and the energy locked in the inflaton field must be somehow converted to other fields
including the Standard Model (SM) particles we observe today. Such a process is
called (p)reheating. This is an important epoch and must be accounted for in realistic
inflation model building from particle physics theory. For reviews of the theory of

(p)reheating, see [114, 115].

In this thesis we will consider the simple model of perturbative reheating in slow-
roll canonical models. This is based on perturbative decays of the inflaton field, first
developed by Dolgov and Linde [116] and Abbot et al. [117]. We will explain the

model setup in the following.

Let us consider the single-field case first. Recall that in canonical single-field inflation,

the dynamics of the inflaton field ¢ are governed by the Klein-Gordon equation
p+3Hp+W,=0. 4.1)

During slow-roll, the first term in Eq. (4.1) is negligible and ¢ simply flows along
the gradient of the potential. After slow-roll ends, ¢ approaches the minimum of the

potential and starts oscillating about it. This is the oscillating regime.

To study perturbative reheating, we are interested in these classical oscillations of the

IThere is a Hawking temperature associated with the horizon, but is very much subdominant com-
pared to the energy density of the inflaton field.
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homogeneous background ¢ field. Take the quadratic potential W (p) = %m2<p2 as
an example. After a few oscillations, the amplitude of the oscillations become sub-

Planckian and the inflaton ¢ approaches the aymptotic solution [118, 119]

o(t) = P(t) - sin(mt)
M, M

= ~ D , 4.2
) V3mmt 27V 3T Nose *+2)

where ®(t) is the amplitude of the oscillations and N, is the number of oscillations

since the end of inflation. This corresponds to rapid sinusoidal oscillations with slowly

decaying amplitude. Averaging over several oscillations, one finds that ¢ o t*/® and

© behaves as in the same way as that of non-relativistic particles of mass m. Hence

coherent oscillations of the homogeneous ¢ field correspond to a matter fluid with
1

an effective equation of state w = 0. For a quartic potential W (p) = ;15\@4, the

corresponding asymptotic solution for ¢ is [120]

3 c
O(n) =/ —M,— 4.3
in conformal time 7. Here c 1s a numerical constant given by ¢ ~ 0.85, w,, is the effec-
tive frequency of oscillation where w, = c\/jc@ and cn is the elliptic function. To a
good approximation, the solution Eq. (4.3) can be written as ¢(n) = ® sin(c\/iaq)n).

Again averaging over several oscillations, we can see coherent oscillations of ¢ mimic

a relativistic fluid with an effective equation of state w = 1/3.

So far we have not taken particle production into account due to interactions between
¢ and other particles. In general, ¢ may decay into bosons Y}, and fermions ¢ due to
terms in the interaction Lagrangian L;,; such as

_ 1
Ling O —hbsthrp — <bso + 59%2) Xt (4.4)

where h, g are dimensionless coupling constants and b is a coupling constant of mass
dimension one. Now we consider the effect of particle production due to these interac-

tion terms in the case of the quadratic potential. As discussed earlier, a homogeneous
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scalar field oscillating about a quadratic minimum with frequency w, = m can be in-
terpreted as a collection of ¢ particles with zero momenta. Based on this interpretation,
the effects of particle production can be incorporated into the field equation Eq. (4.1)

by means of a polarisation operator [121]
¢+ 3Hp+ (m* + (ko)) ¢ =0. (4.5)

Here, I1(k) is the flat-space polarisation operator for the field ¢ at four-momentum
k = (ko,0,0,0) = (w,,0,0,0). The real part of II(ky) gives only a small cor-
rection to m?, but when kg is larger than either the mass of xy, or ¢, i.e. ky >
min {2m,, , 2my, }, II(ko) acquires an imaginary part ImII. We work in the limit
where m? > max { H?, Im IT}, which are usually satisfied after inflation ends. This
is the condition for rapid oscillations. Neglecting the time—dependence of Im IT and

using H = 2/3t, the approximate solution to Eq. (4.5) is

M, 1 ImII
1) ~ P e ————1 | sin(mt). 4.6
o)~ —22xp (3P0 s ) “o

From unitarity relations, it follows that Im IT = mI' [122], where I is the total decay
rate of ¢ particles, i.e. I' = ',y + Ty EQ. (4.6) implies that the amplitude
of the ¢ oscillations decays as p(t) ~ a~*/?exp(—1iT't). The decay rate I' can be
computed using perturbation theory in quantum field theory. For interaction terms
given in Eq. (4.4), decay rates for the corresponding decay channels are given by [122]
b? g*®? h®>m

Loaxinn = g+ g Tomurr = — (4.7)
For a phenomenological prescription, one can add an extra friction term I' ¢ to the
classical equation of motion of the field ¢ instead of the polarisation operator during

the rapid oscillations regime [123]
o+ BH+T)p+W,=0. (4.8)

The rapid oscillations condition now reads as m > max { H, '}. Multiplying through
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by ¢ it is intuitive to rewrite Eq. (4.8) in terms of the energy density of the ¢ field, p,
po+3HP* +Tp*=0. (4.9)

Now, since the oscillation of ¢ is approximately sinusoidally, »?> can be replaced by
its average over a single oscillation cycle, i.e. (¢*)cyce = p,. This can be seen by

multiplying Eq. (4.8) by . In the rapid oscillations regime, this reduces to

d. .. .
3 (v2) - @*+ oW, =~ 0. (4.10)

Averging over a single cycle, the first term vanishes and thus we can deduce (¢?) ~
(eW,,). If the decay products of the oscillating ¢ field are very light relative to ¢ itself,

we can model them as a (single) relativistic radiation fluid with energy density p.,

py+4Hp, = Tp,=T¢%, 4.11)
1
2 _

Here Eq. (4.11) follows from energy conservation. Similar analysis can be applied
for the quartic potential %5\904, except now ¢ behaves as an effective relativistic fluid
with p, o a~* and now we have (p?)cyae = 4p,/3. Also the mass m is replaced
by the effective oscillation frequency w, = c\/iq). Together Egs. (4.9), (4.11) and
(4.12) give the phenomenological description of the simple perturbative reheating of

the Universe.

WhenI" > H, the energy density of the ¢ field decays exponentially as p,, o< exp(—I't).
This justisfies the interpretation of treating the oscillating ¢ field as a coherent wave of
decaying ¢ particles. p, quickly becomes subdominant compared to that of the decay
products p, and reheating is said to be completed. The density of the Universe at this

moment is
p(te) ~ 3H?(t.) M2 = 30° M. (4.13)

If the decay products interact with each other strongly enough, then thermal equilib-

rium is quickly established and may be maintained at a temperature 7g. Treating this
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ultrarelativistic gas of particles with Bose—FEinstein statistics, the energy density of the

Universe in thermal equilibrium is then

2

p(TR) = (g—o) 9.4, (4.14)

where the factor g, (TRr) ~ 10% —10? depends on the number of ultrarelativistic degrees

of freedom. Comparing Eqs. (4.13) and (4.14) we arrive at

Tp ~ 0.1y/TM, . (4.15)

Here we have assumed perfect energy transfer from inflaton to the effective radiation
fluid (ignoring damping due to expansion of the Universe). If there is significant pro-
duction of non-relativistic matter not in the form of radiation, 7R decreases as H is

modified.

In order not to spoil the success of Big Bang nucleosynthesis (BBN), the inflaton decay
products should be quickly thermalised through scatterings, annihilations, pair creation
and further decays, such that the Universe is completely radiation dominated before the
BBN epoch. This constrains the reheating temperature to be Ty = 5 MeV [124, 125],
which in turn implies T’ > 4 x 10749 M,,. There is also an upper bound on T set by the
energy scale of inflation, where Ty < 10*GeV. A stronger bound Tz < 10-8GeV
can also be found, which comes from the overproduction of gravitinos if one considers

supersymmetric models [126, 127, 128].

It is straightforward to extend the perturbative reheating setup to canonical multifield
models given that the fields are weakly coupled. To do so, we simply consider multiple
copies of the ¢ field discussed above for fields that undergo rapid sinusodial oscilla-
tions. The main difference between the single-field and multifield paradigm is that
the fields are coupled via the potential in multifield models except the case of sum-
separable potentials. This modifies the effective masses of the fields and thus modu-
lates the decay rates. For weak couplings, we expect the modulation to be small and

thus can be safely neglected.



The Influence of Reheating on the Power and Bispectra 60

Discussion on the Validity of Perturbative Reheating

In this section, we would like to comment on the validity and limitions of the pertur-
bative reheating setup. Firstly and most importantly, it should be emphasised that the
simple phenomenological equations are only valid when the fields are rapidly oscillat-
ing about some minima: the ‘particle creation’ term, I'¢, should not be present beyond

the rapid oscillation regime.

Furthermore, in reality, the transition from inflation to a hot Big Bang Universe could
happen via very different mechanisms than the perturbative reheating setup discussed
earlier. In particular, parametric resonance effects may be significant under certain
regimes, particularly early in the oscillating regime when the oscillation amplitude is
large. To a first approximation, the inflaton ¢ acts as a classical external force acting
on the quantum fields x} and ¢ to which it couples. Since ¢ is time-dependent, the
effective masses of x; and vy could change rapidly if the bare masses are small, leading

to non-adiabatic excitations. This process is known as preheating [118, 119, 129].

Despite various limitations, the elementary theory of reheating is appealing due to its
simplicity and its ability to be very successful in describing the reheating process in
certain regimes. Whilst reheating may well be more complex than the simple per-
turbative model we consider, it is a useful scheme for determining how sensitive the
primordial observables may be to reheating, and to check whether any general trends
exist across different models. For example, one might naviely speculate that any large
non—Gaussianity is generically damped to zero after reheating, as is often (but not
always [130]) the case during inflation if the isocurvature mode decays during slow
roll [131, 132]. This is not the case however even in the simple perturbative reheating

setup [110, 133, 134, 135].

4.2 Two-Point Statistics After Reheating

In this section, we illustrate the influence of reheating in multifield models at the level
of the power spectrum. We focus on the simple class of two-field models discussed in

Section 3.4.2. In particular, we consider several different two-field models where min-
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ima exist in either the direction of one or both fields. The results were first presented

in [133].

We model perturbative reheating as discussed in the last section by the following field

equations

P+ BH+T)p+W, =0
X+GBH+T X+ Wy =0
Py +4Hp, = Fso‘sz +FXX2

1 /1., 1,
H? = e <§x2 + §<p2 + W—i—p'y) : (4.16)
p

where I'y, and I',, are the decay rates for the x and ¢ fields respectively, which only
turn on during the rapid oscillation regime. For simplicity, we take the decay rates to
be constants. There is a lower bound on I', and I', from BBN as discussed earlier,
given by I',,, ', = 4 x 107%°M,,. We ensure that this bound is always satisfied. For
such weak decay rates, reheating would proceed incredibly slowly if the process were
entirely perturbative. In reality however, as alluded to above, the universe is unlikely
to be reheated via a mechanism that can be described completely by standard pertur-
bation theory, and so we interpret the bound rather loosely. The upper bound due to
overproduction of gravitinos can be evaded by considering non-supersymmetric mod-
els. Where applicable, we also give the value of the Hubble rate at the start of reheating

H, so a direct comparison between the expansion and decay rate can be made.

To compute ¢ and the primordial observables we apply the 6 /V formalism. The corre-
sponding N coefficients are computed numerically using the central finite difference
method. Here we choose to switch on the decay rates when the corresponding fields
first pass through their respective minima which they oscillate about. We denote this
epoch as the start of reheating. For the two minima case, there are two such epochs,
which we denote as N,—, and N,—_,. While these choices of reheating hypersurfaces
are arbitrary, the main qualitative results are very much independent of how the reheat-
ing hypersurfaces are defined (see Appendix B). Details of the numerical recipe used

are summarised in Appendix B.

The reader should be reminded that model predictions in multifield inflation depends
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on the initial conditions set at horizon-crossing in general. Since we are interested
in the evolution of statistics beyond the power spectrum as well, we focus on mod-
els and regions of parameter space where some of the second order d N coefficients
Ny, and the magnitude of the non-linear parameter | fyi,| can become large (at least

momentarily) here.

Models with One Minimum

The first model we considered is the ‘runaway’ type quadratic times exponential po-

tential
W (i, x) = Wox2e /M (4.17)

Here W) sets the energy scale of the potential and is of mass dimension two. Whilst its
value sets the scale of inflation and determines the amplitude of the primordial power
spectrum and hence is constrained, it does not affect the statistics of ( and so we leave
W) as a free parameter. Inflation happens when Y is of super-Planckian field values and
the exponential factor is very much suppressed, i.e. Ap?/ Mg < 1. In what follows, we
identify x as the inflaton and ¢ as the subdominant field which sources the isocurvature
perturbations. This potential was first introduced by [102] in the context of primordial
non-Gaussianity, and has made frequent appearances in the literature since then, for
instance in [105, 106, 132, 136, 137, 138]. Without any minimum for a corresponding
oscillating phase, the ¢ field is not directly involved in the reheating phase and so we

set I', = 0 at all times.

This model does not contain a ‘focussing’ region in the potential where neighbouring
trajectories in the bundle may converge such that non-adiabatic perturbations vanish.
Hence, ¢ and its statistics will continue to evolve after inflation has ended. The adia-
batic regime is only possible with reheating. The switching on of the decay terms at
the reheating surface sources the radiation density. As the x field oscillates about its
minimum, its kinetic energy is transferred to the radiation fluid, resulting in bursts
of particle production. As radiation fills the universe, Hubble damping slows the

motion of ¢ to a crawl and as we approach (), ~ 1, it asymptotes to a constant:
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¢©(t — o0) & const. Herein is the fundamental difference in the motion of ¢ when
I'y # 0 compared to I'y, = 0: as radiation comes to dominate, trajectories in the bundle
cease to evolve. The bundle does not degenerate to a caustic as would be the case if the
trajectories were naturally focussed by a region of the potential, but nonetheless this
freezing of the ¢ field guarantees that ( becomes conserved. This does not happen in
the I', = 0 limit where the trajectories continue to diverge in the ¢ direction, always

sourcing (.

Evolution of the 5 N Coefficients

55 57.5 60 62.5 65 67.5 70

Figure 4.1: Potential: W (¢, x) = W0X2e’/\“"2/ My The evolution of the background fields (in
Planck units) without reheating for model parameters A = 0.05, . = 1073M,, and x. = 16.0M,,.
The solid vertical (black) line denotes the end of inflation, V.

Before showing the influence of reheating on the two-point statistics of , it is useful to
inspect the evolution of the subdominant ¢ field and the J N coefficients in this model
first. In the slow-roll regime, the solution to the Klein-Gordon equation for ¢ and the

corresponding slow-roll parameter 7., are given by
0 = @, e Nep = 2 [2)\<pze4’\N/M§ — 1} . (4.18)

Eq. (4.18) shows that ¢ will continue to increase exponentially with the number of e-
folds N. We expect this solution to break down beyond slow-roll, but remains a good
approximation as long as |7,,| < 1. In Fig. 4.1 we compare this solution with the exact

numerical solution without reheating, showing the slow-roll solution indeed remains a
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good approximation for ¢ for the first few e-folds after inflation ends (e = 1).

For the § N coefficients, N, remains practically constant, N, M, ~ (1/,/2€, )., through-
out the entire inflationary and post—inflationary phase except momentarily during the
x oscillations, regardless of the decay rate I',. It acquires this value as the fields leave

the horizon. This is shown in Fig. 4.2. This can be explained in the following.
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Figure 4.2: Potential: W (p, x) = Wy )(26_’\“’2 /M The evolution of the first order SN coefficient
N, in unit of M for the model parameters A = 0.06, ¢, = 1072M,, and x. = 16.0M;,. The
top panel shows the slow-roll inflationary evolution from horizon-exit, whereas the bottom panel
shows the reheating evolution with two different decay rates I',. The decay rates are given in unit
of v/W,. The solid vertical (black) line denotes the end of inflation, N,, and the dashed vertical
(black) line denotes the start of reheating, N, —o where  first crosses x = 0. The Hubble rate at
the start of reheating is H,. ~ /7 x 10—2W,.
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Figure 4.3: Potential: W (p,x) = W)y XQe_)“"Z)/ My The evolution of the second order SN coeffi-
cient Ny, in unit of M2 for the model parameters A = 0.06, . = 107> M}, and . = 16.0M,.
The top panel shows the slow-roll inflationary evolution from horizon-exit, whereas the bottom
panel shows the reheating evolution with two different decay rates I'y.. The decay rates are given
in unit of v/Wy. The solid vertical (black) line denotes the end of inflation, N,, and the dashed
vertical (black) line denotes the start of reheating, N, —o where Y first crosses x = 0. The Hubble
rate at the start of reheating is H, =~ /7 x 10—2W,.

Given H is monotonic in time, we first rewrite the number of e-folds /N from an initial

flat hypersurface at ¢, to a final uniform-density hypersurface at . as

te H. H
N = / Hdt = / (—) dH . (4.19)
t H, \H
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Taking the derivative with respect to . as in the § N formalism we find

H OH He 9 /1
N == (= +/ <—) HAH 4.20
* (H>*<3X)* o O« \H/ g 20

where the derivative inside the integral is computed by holding H constant. The deriva-

tive at the boundary c vanishes, since by definition the final hypersurface at . corre-
sponds to one of uniform-density and thus constant /7 from the Friedmann equation.
Using the fact that the fields are in slow-roll at horizon exit, the first term on the RHS of
Eq. (4.20) reduces to (1/Mj\/2¢,), if |X.| > |.]. Then, to explain why N, remains
constant at this value requires arguing that the integral term in Eq. (4.20) is negligible,
i.e., after perturbing ., surfaces of constant H must coincide with surfaces of constant
H. This is indeed the case if a hierarchy of kinetic energies exists between the fields
at horizon crossing, i.e., |X.| > |¢.|. Since the kinetic terms are canonical, the fields
follow the gradient of the potential, and as they are in slow-roll at horizon exit, this
hierarchy implies |W,|. > |W,|.. If this is the case, the dependence of H on X« 18
rapidly washed out, and the two—dimensional bundle in the x direction (holding ¢,
fixed) degenerates to a caustic. We have found that the condition |W, |, > |W,|. is
sufficient to guarantee that the integrand of Eq. (4.20) is always small from horizon

crossing until oscillations of y begin.

During the oscillatory phase, the integrand oscillates about zero with an amplitude that
decays with the Hubble expansion, and when integrated over many oscillations, the
net result is a negligible correction to N,. This is shown in Fig. 4.4. By the same
argument, differentiating Eq. (4.20) with respect to x, again, we deduce N, remains
roughly constant at Ny, M = 1 — (1 /2€, )., which, for this particular potential is

independent of \ and the field values at horizon crossing, Ny, ~ 0.5M>.
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Figure 4.4: Potential: W (p,x) = Wox2e *¢"/M:  The evolution of (ex)~?! as a function of
—In H (here H defined in unit of W, /M,,), denoted by the solid black line, for two different Iy
I'y = /Wy/100 (top panel) and T, = VW (bottom panel). As H decreases in time, e evolves
to greater values of In H and the limit of the x—axis represents the completion of reheating. Here
we also plot the evolution of 61_11 for slightly different initial condition ¢.., denoted by the solid
green and red lines. We see that the effect of varying ¢, is to introduce a relative phase into the
oscillations of ez7. In both panels, the vertical dashed line represents the value of In H at the start
of reheating. The thick blue line shows the derivative of e;{l with respect to ¢, while holding H

constant, scaled by a factor of 10~3. The model parameters here are A = 0.05, ¢, = 1073M,, and
X« = 16.0M,.
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Things are different for the other J NV coefficients N, and N, however. Unlike N,,
N, continues to evolve after horizon-exit. It settles down to constant value only in the
adiabatic limit after ¢ becomes frozen and reheating ends. The evolution of IV, and
N, for X = 0.05 is shown in Figs. 4.5 and 4.6, from which we see |N,,| and |N,,|
asymptote to smaller values as the decay rate I', increases and the reheating phase

becomes longer. One should also note that N, > N, here.
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Figure 4.5: Potential: W (p, x) = W)y X2e_>‘“"2 /My The evolution of the first order SN coefficient
N in unit of M 1. The top panel shows the slow-roll inflationary evolution from horizon-exit,
whereas the bottom panel shows the reheating evolution for two decay rates I',. The model param-
eters A = 0.05, ¢, = 10_3Mp and x, = 16.0M,,. Here the I, is given in unit of VWy. The solid
vertical (black) line denotes the end of inflation, N, and the dashed vertical (black) line denotes
the start of reheating, N, —q where  first crosses x = 0. The Hubble rate at the start of reheating

is H, = /7 x 1072W/,.
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Figure 4.6: Potential: W (p,x) = W)y Xze_)“"Z)/ My The evolution of the second order SN coeffi-
cient Ny, in unit of M 2. The top panel shows the slow-roll inflationary evolution from horizon-
exit, whereas the bottom panel shows the reheating evolution for two decay rates I'y,. The model
parameters A = 0.05, ¢, = 1073M,, and y. = 16.0M,,. Here the T, is given in unit of /Wj.
The solid vertical (black) line denotes the end of inflation, N, and the dashed vertical (black) line
denotes the start of reheating, N, —o where x first crosses x = 0. The Hubble rate at the start of

reheating is H, ~ /7 x 10~2W,.
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Scaling Relations Between § N Coefficients

Furthermore, the following approximate scaling relations exist between the 0 N coeffi-

cients throughout the entire inflationary and post—inflationary evolution

N,

N, 2 4.21)
Pp 0.

Ny 4AN, N, ~

Q

ZD

A Ny
(/26 My

The scaling relation between NV, and N, was first derived in [106] by considering a

Q

(4.22)

first order Taylor expansion about a ‘ridge’, situated at ¢ = 0, of a generic potential.

Assuming the slow-roll conditions, the same analysis applies to the model we study
here as long as the potential remains well approximated by W ~ Wyx%(1 — A¢?),
i.e., higher order terms in A¢? remain small. This requires ¢ < O(A~/2M,,). In this
regime, ¢ grows exponentially with A as the bundle of trajectories rolls off the ridge:

@ = eI 5 — 3) /21,. A short calculation reveals

2
N, ~ —33H%p, (£> , (4.23)

*

where [ is some model-dependent constant. We refer the reader to [106] where the
complete derivation is presented. Taking a%* (on the final hypersurface of constant
H) on both sides of Eq. (4.23) gives Eq. (4.21) as long as (0H/0p). ~ 0. Similarly,
taking the derivative with respect to x. and using the ¢ slow-roll solution Eq. (4.18)
gives Eq. (4.22).

We show evolution of the N, N, and N, derivatives before and after inflation for
a particular decay rate I', in Fig. 4.7, which clearly illustrates the scaling behaviour
captured in Eqgs. (4.21) and (4.22). Remarkably, not only does this scaling behaviour

holds after inflation has ended, but it also holds during reheating.

The derivation of these scaling relations as sketched above relies on a number of ap-
proximations, including slow-roll. The subdominant field ¢ always remains slowly
rolling where 3H ¢ > ¢, however y does not necessarily. y not being slow-roll does
not seem to violate Egs. (4.21) and (4.22), suggesting that validity of these relations

are more reliant on ¢ being a linear function of ¢,, and that ¢ grows exponentially
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as the bundle slides off the ridge. As mentioned above, these conditions will break
down when ¢ ~ O(A"Y/2M,). Then, using ¢ ~ A~Y/2M,, in Eq. (4.18) we may very
roughly estimate how many e—folds we expect the scaling relations to remain valid for
N ~ £In(AY2M,/¢,). For example, for A = 0.05 and ¢, = 107°M,, we have
N ~ 85.
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Figure 4.7: Potential: W (p,x) = WOXQe_Wz/ My Numerical verification of the scaling rela-
tions Eqgs. (4.21) and (4.22). Top panel: Evolution of the derivatives N, and N, (in Planck-
ian units). The horizontal dashed line in the lower panel represents the value of ., the con-
stant of proportionality between N, and N,. Bottom panel: Evolution of the derivatives N,
and N, (in unit of M;). The horizontal dashed line in the lower panel represents the value
Wy /W), = ﬁ@ﬁx)i/ ?, the constant of proportionality between Ny, and N,. We show
evolution of the derivatives for the last few e—folds of inflation, up until ¢ has become conserved
at the completion of reheating. We see small departures from scaling at the start of reheating as
x oscillates about its minimum, but as x settles down, the scaling behaviour is quickly recov-
ered. In both panels, the parameters used are: A = 0.05, ¢, = 10’3Mp, X« = 16.0M;, and
ry=+v 10— 1W),. The solid vertical (black) line denotes the end of inflation, V., and the dashed
vertical (blue) line denotes the start of reheating, N, —o. The Hubble rate at the start of reheating is

H, ~ /7 x 1072W,.
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Amplitude of the Power Spectrum, A,

Now we consider how sensitive two-point statistics of (, including the tensor—to—
scalar ratio r and spectral index ng, are to the reheating phase in this model. The
post-inflationary evolution of the amplitude of the power spectrum A¢ is illustrated in
Fig. 4.8. As expected, we see A, continues to evolve after inflation ends since isocur-
vature perturbations persist. In the adiabatic limit after reheating ends, ( becomes
conserved and A, asymptotes to a constant value. The final asymptotic value is larger
for smaller the decay rate I', and longer the reheating phase. As mentioned earlier, P,
and thus A, depend on the energy scale W,,. By tuning W} for different Iy, we can
always match A, with the normalisation of CMB measurements in WMAP and Planck

where A ~ 1079 [44].
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Figure 4.8: Potential: W (x,¢) = W0X26_’\“"2/M3, with ¢, = 1073M,, x. = 16M,. The
evolution of A; /P, (in unit of My 2) for two different decay rates I'y. Here A = 0.05 (top panel)

and A = 0.06 (bottom panel). T', is given in unit of v/W)y. The solid vertical (black) line denotes
the end of inflation, V., and the dashed vertical (black) line denotes the start of reheating, IV, —
where reheating starts. The Hubble rate at the start of reheating is H, ~ /7 x 10=2W,.

Spectral Index n, and Tensor-to-Scalar Ratio r

Similarly, the tensor—to—scale ratio r and spectral index ng evolve during reheating and
are different to the values evaluated at the end of inflation in general. Yet they do not

depend on the energy scale W, and thus cannot be tuned to match observations for
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any decay rate I',. The evolution of  and ny during reheating in this model for two
different decay rates I', are shown in Figs. 4.9 to 4.12. Notice that Figs. 4.9 and 4.10
are simply the inverse of Fig. 4.8 as (8/r)M;? = A¢/P.. From the plots, we see
the final value of r is bounded from above and remains very much negligible with

r < O(0.1), although the final asymptotic value does depend on I,

This can be understood as follow: Recall from Eq. (3.66), in multifield models, r» =
8/MZ(>"; N7). Because of the hierarchy in magnitude between the scalar field kinetic
energies 2 and x? at horizon exit and ¢ remains subdominant, N, is approximately
constant, i.e. N, ~ (1/M, \/Z)* For the region of parameter space of interest, as
I is decreased from infinity, the time taken for reheating to complete is increased
and ¢ freezes out later, increasing the magnitude of N, as shown in Fig. 4.5. Hence,
the smaller the decay rate, the more suppressed the tensor—to—scalar ratio, and the

following bound exists:

(4.24)

Here g, = (1/M,/2¢, ) and Ny, is defined as the value of N, at the start of reheat-

ing.
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Figure 4.9: Potential: W (p,x) = Wy Xze*)“PQ/ My Evolution of r for two different decay rates
I'y, with A = 0.05. The parameters used are: ¢, = 10_3Mp, X+ = 16.0M}, and Ty, is given
in unit of v/Wy. The solid vertical (black) line denotes the end of inflation, N,, and the dashed
vertical (black) line denotes the start of reheating, NV, —o. The horizontal solid (red) line shows the
upper bound of the final asymptotic value of r as in Eq. (4.24). The Hubble rate at the start of
reheating is H, =~ /7 x 10~2W,. The top panel shows the whole evolution from N ~ 30 since
horizon-exit, whereas the bottom panel shows the reheating evolution.
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Figure 4.10: Potential: W (¢, x) = Wy Xze*)‘“‘#/ Mg Evolution of r for two different decay rates
I'y, with A = 0.06. The parameters used are: ¢, = 10_3Mp, X+ = 16.0M},, and Ty, is given
in unit of v/Wy. The solid vertical (black) line denotes the end of inflation, N,, and the dashed
vertical (black) line denotes the start of reheating, NV, —o. The horizontal solid (red) line shows the
upper bound of the final asymptotic value of r as in Eq. (4.24). The Hubble rate at the start of
reheating is H, =~ /7 x 10~2W,. The top panel shows the whole evolution from N ~ 30 since
horizon-exit, whereas the bottom panel shows the reheating evolution.
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Figure 4.11: Potential: W (yp, x) = W()XZe_)‘“”Q/ M Evolution of ng during for two decay rates,
with A = 0.05. The parameters used are: ¢, = 10*3Mp, X« = 16.0Mp, and the decay rates
are given in unit of \/Wj. The solid vertical (black) line denotes the end of inflation, N,, and
the dashed vertical (black) line denotes the start of reheating, Ny—o. The horizontal solid (red)
line shows the lowest bound of ng as in Eq. (4.26). The Hubble rate at the start of reheating is
H, = /7 x 1072W,. The top panel shows the whole evolution from N ~ 30 since horizon-exit,
whereas the bottom panel shows the reheating evolution.



The Influence of Reheating on the Power and Bispectra 81

09

0.85

W w8 %06

N

076 T T T T T
| r.2=10"
2_1A-3
| r’=10
|
0.755 | \ 1
|
|
|
|
& 0.75 } 1
|
|
‘ e ey e — |
o745 F \‘f i 1
|
|
|
|
0-74 1 1 1 ‘ 1 1
63 64 65 66 67 68

Figure 4.12: Potential: W (yp, x) = Wox%_’\“”?/ M Evolution of ng during for two decay rates,
with A = 0.06. The parameters used are: ¢, = 10*3Mp, X« = 16.0Mp, and the decay rates
are given in unit of \/Wj. The solid vertical (black) line denotes the end of inflation, N,, and
the dashed vertical (black) line denotes the start of reheating, Ny—o. The horizontal solid (red)
line shows the lowest bound of ng as in Eq. (4.26). The Hubble rate at the start of reheating is
H, = /7 x 1072W,. The top panel shows the whole evolution from N ~ 30 since horizon-exit,
whereas the bottom panel shows the reheating evolution.

A similar bound also exists for the spectral index. To see this, it is useful to consider the

alternative expression of ng Eq. (3.78) that involves only the first-order d N coefficients.
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In this quadratic times exponential model, the slow-roll parameters 7);; at horizon-exit

are given by

(o) =202, (e =008 () Lo m2 () @2s)
As discussed earlier, for inflation to proceed, we typically have \p?/ Mg < 1. For
sufficient observable inflation where Ngp,s > 50, we also need x. ~ 15M,,. Therefore
we can deduce |(1py)«] > [(Nx )« | (M) «] for . < O(1). As aresult, the third term
in the expression Eq. (3.78) is dominated by the (7),,,). term, as long as N, is not too
small compared to IV, . Given the magnitude of N, is monotonically increasing in time
after the start of reheating, from Eq. (3.78) we can see the spectral index ng is bounded

from below if (7),,,,). is negative

12 2N (Mg )«

s—1r —2(eg), — —
" (€n) MZNZ+ g2 NZ+g2

> —(2en), — 4N, (4.26)

In addition, we see both r and ng are very insensitive to I'y and thus reheating for
A = 0.06, whereas they are much more sensitive for A\ = 0.05. This dramatic change
in behaviour for a small shift in A can be explained from Egs. (3.66) and (4.26) as
N, > N, in the former case (A = 0.06), but N, and N, are of the same order of

magnitude in the latter case (A = 0.05).

Models with Two Minima

In the last section, we have discussed the influence of reheating on the two-point statis-
tics in two-field models where there exists a minimum in only one of the field direc-
tions. Next we consider two-field models where both fields are directly involved in
reheating. An example we consider is the effective two-field description of axion N-
flation. Note that in this model ’the start of reheating’ can no longer be denoted by a
single time instant, but rather two epoch N,_ and IV,_, corresponding to the times

when the decay rates I, and T',, are switched on 2.

Note that unlike the single minimum case, the two ’start of reheating’ surfaces Ny—o and N,— are
not identical for the same model parameters and initial conditions, but depend also on the decay rates
I'yandI',



The Influence of Reheating on the Power and Bispectra 83

Assisted inflation [98] may be realised via a collection of string axions. In this scenario,
known as N—flation [99], the many axion fields cooperatively source inflation even if
their potentials are individually too steep. The collective potential is comprised of a

sum of Ny uncoupled axions ¢;:

Ny
Wi(p) = 2:/\;1 [1 — CoS (Qf—wgoz)] : (4.27)
i=1 ¢

With only a single field present, this model is more commonly known as natural in-
flation [139]. Each axion is fully described by its decay constant f; and its potential
energy scale A}. The standard arguments show that we should expect f; ~ 10'°GeV.
The mass of each field in vacuum satisfies m? ;) = 47>A}/f?. Due to the shift sym-
metry ¢; — ¢; + 27 f;, we can without loss of generality set the initial conditions
Y@y € [0, fil.

Follow from [106], supposing that the initial conditions are chosen so that only a single
axion populates this hilltop region. This field sources the non—Gaussianity, whilst the
remaining N; — 1 axions, which begin far away from the hilltop, dominate over the
energy density of the Universe. By expanding about the minimum of the remaining
Ny—1 fields, these axions may be replaced by a single effective field x with a quadratic

potential. With f; = f for all axions, the effective two—field potential then reads:
1 5, 4 2m
Wi(p,x) =W, SMmX +A* [ 1—cos 7cp : (4.28)

W, again sets the energy scale of the potential, but is dimensionless here. In fact,
replacing the collective potential with an effective two-field potential is well motivated,
see for example [140], where they showed that the energy density of the universe is
dominated by fields with comparable masses even if one starts with thousands of fields,
including the post-inflationary reheating stage. As the field ranges are sub-Planckian in
the original picture Eq. (4.27), reheating in models of N-flation proceeds preferentially
via a perturbative decay route as opposed to via parametric resonance and preheating

[140, 141].
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Amplitude of the Power Spectrum, A,

In the effective two-field description of the axion N-flation model, inflation happens
when the effective field y is of super-Planckian value. From here onwards we will
refer to ¢ as the axion and x as the inflaton in this model. By suitably choosing the
axion/inflaton mass ratio in vacuum, various scenarios can be realised. For example, if
the axion is sufficiently massive it may quickly decay to its minimum during inflation,
where it becomes trapped without oscillating. In this case, the adiabatic limit is es-
tablished long before reheating begins, and the perturbative decay of the inflaton into

radiation does not affect the evolution of (.

It is also possible to realise dynamics where both fields minimise after inflation has
ended, entering an oscillating phase such that perturbative reheating can be applied.
For example, with A* = m?f? /472, ¢, = (%—0.00l)f, X+ = 16M, and f = m = M,
the inflaton minimises before the axion, but both fields minimise after inflation has
ended. In this example both fields acquire the same mass in vacuum. Since both fields
oscillate rapidly about their minima, both fields must be coupled to radiation in order to
recover a standard Big Bang radiation-dominated Universe. If one field is instead left
uncoupled, its energy density will scale as matter since the minimum is quadratic, and

will eventually come to dominate over radiation which redshifts away more quickly.

Here we are interested in the latter case where isocurvature perturbations persist during
reheating. Again it is useful to inspect the evolution of the 6 V coefficients first. Similar
to the one minimum case, /N, remains very much constant over the entire evolution as
long as there is a hierachy between the kinetic energies of the fields at horizon-exit,
regardless of the decay rates I'y, and I',. As shown in Fig. 4.13, we see N, M, ~
(1/4/2€y)« = x:/2. However, the second order §N coefficient N,, is no longer
constant and it does depend on the decay rates I', and I', here. On the other hand,
while remaining subdominant during inflation, N, and N, evolve significantly after
horizon-exit. Comparing the second order N coefficients, we see there is also a large
hierachy between the magnitudes of N, IV,, and N, . These are shown in Fig. 4.14.
However, unlike the one minimum case where the Universe is reheated from only a
single field, the ¢ field has left slow roll by the time reheating starts. Hence, the non—

linear dynamics during the oscillating phase is essential and we could not find any
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Figure 4.13: Potential: W (p, x) = Wy [%m2x2 + At (1 — cos (27”30)” Evolution of the 6 N
coefficients IV, (left panel) and N, (right panel) in the effective 'two-field’ N-flation model,
both in Planckian units. All decay rates are given in unit of v/WyM,,. The parameters used are:
A = m?f2/Ar?, o, = (3 — 0.001)f, x» = 16M,, f = m = M,. The solid vertical (black)
line denotes the end of inflation, IV, the dashed vertical (black) line denotes N,—q, and the solid
vertical (blue) line denotes N, —o. The background Hubble rates at the x and ¢ reheating surfaces

are HX =~ /5 x 1072Wy M, and H¥ ~ +/10~2W, M, respectively.
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Figure 4.14: Potential: W (¢, x) = Wy [%mQXQ + Af (1 — cos (27”90)” Left panel: Evolution
of the 0V coefficients N,, in the effective "two-field” N-flation model. Right panel: Comparison
of the second order d N coefficients in the effective "two-field” N-flation model after inflation ends,
withT'y, =T, = /Wy/100M,,. All decay rates are given in unit of VWoM,. In both panels, the
SN coefficients are given in unit of M, and the parameters used are: A* = m? f2 /472, ¢, = (% -
0.001) f, xx = 16M,, f = m = M,,. The solid vertical (black) line denotes the end of inflation,
Ne, the dashed vertical (black) line denotes IV, —g and the solid vertical (blue) line denotes N,—g.
The background Hubble rates at the y and ¢ reheating surfaces are HX ~ /5 x 10~2Wy M, and

Hf =~ +/10=2Wy M, respectively.
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simple scaling relation between N, N, and N,.

The evolution of the power spectrum amplitude A in this model is shown in Fig. 4.15.
Again we see the amplitude A; evolves after inflation ends, though it remains very
much constant during slow-roll inflation. It oscillates and only becomes conserved
after reheating is completed when the Universe becomes radiation dominated. The
magnitude is always enhanced as compared to that at the end of inflation.
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Figure 4.15: Potential: W (¢, x) = Wy [%mQXQ + A4 (1 — cos (277%,0))} Evolution of A;/ P

in the effective "two-field’ N-flation model in unit of M,. The parameters used are: A* =
m2f2 /4%, ¢, = (3 — 0.001)f, x« = 16M,, f = m = M,. All decay rates are given in unit
of \/WOMP. The solid vertical (black) line denotes the end of inflation, V., the dashed vertical
(black) line denotes IV, —g and the solid vertical (blue) line denotes N,—¢. The background Hub-
ble rates at the x and ¢ reheating surfaces are HX ~ /5 x 1072Wy M, and H¥ ~ /1072W, M,
respectively.

Spectral Index s and Tensor-to-Scalar Ratio r

Similarly, the spectral index ng and the tensor-to-scalar ratio r evolve during reheat-
ing, though they hardly evolve during inflation. Unlike the one minimum case where
r remains very much negligible from the end of inflation until reheating completes for
all decay rates, we see that  changes by three orders of magnitude during the post-
inflationary evolution here as shown in Fig. 4.16. This can be understood from the

evolution of N,. From Fig. 4.14, we see N, changes rapidly by a few orders of mag-
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Figure 4.16: Potential: W (yp,x) = Wy [%m2x2 + A% (1 — cos (27”90))] Evolution of r in

the effective ’two-field” N-flation model. The parameters used are: A = m?2 f2 /47r2, Or =
(2 —0.001)f, x» = 16My, f = m = M,. All decay rates are given in unit of /Wy M,,. Here the
solid vertical (black) line denotes denotes the start of reheating, N,—¢. The background Hubble
rates at the x and ¢ reheating surfaces are HX ~ /5 x 1072W,M,, and Hf ~ /1072W, M,
respectively. Note r always decreases after inflation ends (7 = 1).

nitude after inflation ends and dominates over V, . As a result, from Eq. (3.66), we can
deduce that 7 is very suppressed after reheating ends as compared to that at the end of

inflation.

On the other hand, compared to 7, the spectral index ns, is very insensitive to reheating
and its final value after reheating is close to that evaluated at inflation ends. This is
shown in Table 4.2. We again use Eq. (3.78) to understand this. Since the potential W
is sum-separable in this model, 7, is exactly zero. Given x dominates the potential
W with W =~ Wym?x?/2, the remaining 7;; slow-roll parameters at horizon-exit are

given by

(oo)e ~ M2A4(47r2) {2 cos(2mp./ f)

2
A2
P2 f2 X2 } ; ()= = My — (4.29)

pXQ

*

For initial conditions where ¢ starts off close to the ridge at horizon-exit, i.e. ¢, ~

(f/2), we can see the two slow-roll parameters are approximately equal for the model
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parameter A*(47?)/(m?f?) = 1. During the slow-roll regime, the subdominant axion
¢ 1s very much frozen and sits at the top of the ridge and we have IV, > N,. After
inflation ends, ¢ starts rolling down the ridge and we have the opposite hierachy be-
tween the 0V coefficients, N, > N,. But since (7,,)« & —(7yy )« in both limits the

spectral index is approximated by

12 2N2(1y)- 8M?
ns_1%—2(€H)*—Wm+ N2 = — X2
p X X *
12 2Ny 8ME
M2 N2 N2 X

end of inflation, N; > Ng

ns — 1~ —2(eg)s —

end of reheating, NZ > Ni

(4.30)

Here we have used the results N?M?2 ~ (1/¢, ). and (e ). = (€ ), In the second line,
the second term on the RHS can be dropped since it is very subdominant. As a result,
we conclude that ng hardly changes from inflation ends till reheating is completed for
this choice of model parameters where A*(472)/(m? f?). For other parameter choices,

it is possible that there is a stronger dependence on the reheating dynamics for 7.

4.3 Three-Point Statistics After Reheating, fy,

Next we consider the influence of reheating on the three-point statistics of (, partic-
ularly on the non-linear parameter fyi,. Again we focus on the canonical two-field
models discussed above, considering the one minimum and two minima case sepa-

rately.

Model with One Minimum

Consider again the quadratic exponential model Eq. (4.17). Before moving on to dis-
cuss the influence of reheating on fyr, it is useful to revisit how fy, evolves during
inflation for the initial conditions we consider. For initial conditions close to the top
of the ridge where ¢, ~ 0, during the slow-roll regime, the bundle of field trajectories
always diverges as the fields roll away from the ridge, leading to negative values of

fnL- An example of the slow-roll evolution of the non-linear parameter fyy, is given in
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Fig. 4.17. In this model, as discussed in the last section, there is always a hierachy be-
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Figure 4.17: Potential: W (x, ) = Wox2e /M with A = 0.06, ¢, = 10~3Mp, x, = 16M,,.
Evolution of the non-linear parameters fxi, 7nL, gnL during inflation, evaluated numerically, are
shown here. Here we terminate when ey = 1.

tween the magnitudes of the second order 0V coefficients, i.e. |Nyy,| > [Noyl, [ NVyy|
for the model parameter space we consider. Therefore, the non-linear parameter fyr,

can be well approximated by

5 NN,
= =< £ ; (4.31)
6 (N2 + N2)?

This were shown in the slow-roll regime in [106]. We now move on to discuss the
dependence of ffinal on '\, keeping the same parameter choice A = {0.05,0.06},
¢, = 1073 M, and x. = 16.0M,,. In the top panel of Fig. 4.18 we show the final stages
in the evolution of fxr, as a function of N for various decay rate I',.. Most importantly,
we see that reheating does not damp out fyr, to zero. We interpret the finer details of
the plot as follows: At the end of inflation (N, = 64.56) a large, negative fy, is still
present, and just before reheating begins (V,—o = 65.10) fyr, is growing increasingly

more negative. We see that as the decay rate I, is increased from zero, | ffia!

| freezes
out to larger values. In another example A = 0.05 where fyy, is decaying toward zero
as reheating begins, the effect of increasing the decay rate from zero is to freeze out

| final| to smaller values. This is shown in the bottom panel of Fig. 4.18.
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Figure 4.18: Potential: W (p, x) = Wox2e *#". We show the evolution of fx, during reheating
for various decay rates Iy, which are in units of /WW. In both panels, the solid vertical (black) line
denotes the end of inflation, V., and the dashed vertical (blue) line denotes the start of reheating,

N;. Top Panel: The parameters used are: A = 0.06, @,

1073M,, and x, = 16.0M,. The

Hubble rate at the start of reheating is H,. = /7 x 10=2W,. Bottom Panel: The parameters used
are: A = 0.05, ¢, = 1073M,, and x. = 16.0M,,. The Hubble rate at the start of reheating is

H, ~ /6 x 1072W,.

This opposite dependence of |

|on T, for A = 0.05and A = 0.06 is a consequence
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of the non—trivial dependence of fxr, on N,. Let us begin by considering the splitting

H H H,
c H T H c H
N = —dH = —.dH+/ —dH = Ny + Ny . (4.32)

. H H,

Here N is the number of e—foldings from horizon crossing (¢,) up to the start of reheat-
ing (1w, when Y first passes the minimum y = 0) and /N; is the number of e—foldings
from the start of reheating up to radiation domination (¢..). Firstly, it is important to ap-
preciate that /Ny contains contributions not only from the slow roll inflationary phase,
but also from the non—negligible post-inflation/pre—reheating evolution, that must be
accounted for. Unlike the slow-roll contributions, these post—inflation/pre-reheating
contributions cannot be computed analytically. Secondly, Ny does not contain any de-
pendence on the reheating process. Since we are interested here in studying the effects

fﬁnal

of reheating on fy1*, we compute [V, and its derivatives numerically and focus on

trying to understand the correction /Ny, which contains all the dependence on Iy

For the derivative of the correction N; with respect to ¢, we need only consider the

term

He 9 (1
Nig, = — HdH , (4.33)
H 890* H H

since the derivative at the boundary at r cancels with the N, contribution and the
derivative at the boundary c vanishes since c is defined as a surface of constant H.
Since H is a function of X(t), >(¢) and p,(t), all of which depend on ¢,, this integral
cannot be performed analytically beyond slow roll. However, we can make progress
by using our results in Section 4.2, N, M, ~ (QEX)*_UQ, {Nyy s Ny} < Ny and
Ny, ~ N, /¢, which also hold during reheating. Then, using the observation that dur-
ing reheating IV, ,,, ~ 0, and taking the time . to be deep in the radiation dominated

era such that N, ,, = const, Eq. (4.31) becomes

final ~ 5 (Noyﬂo* + N1790*)3

~ . (4.34)

Here again g, = M 'N, = (2¢,)=/%. We plot this algebraic function, fi22! against

N ., in the top panel of Fig. 4.19 for three different choices of the potential parameter
A = {0.05,0.06,0.07}, with the same field values at horizon crossing ¢, = 1072M,,
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and x, = 16.0M,,. Varying A changes g, and modifies the evolution of the bundle, and
thus Ny ... In the bottom panel of Fig. 4.19 we show the evolution of N, for various
decay rates with A = 0.05. The final values of NV; ,(final) = N,(final) — Ny, are
marked on the corresponding curve in the top panel of Fig. 4.19. Only the N; ,, < 0
region of Eq. (4.34) is physical: we argue that diverging trajectories can only generate
negative Ny ,,, which can be confirmed numerically. As can be seen from the top panel

of Fig. 4.19, Eq. (4.34) has three stationary points at finite Ny . :
~Nog..  —Nog, +V3g.. (4.35)

The N1, = —Np,. root is an inflection point where fii?l = 0. The Ny, =
—No,p, + v/3g, root is a local maximum where final would be always positive and
so is not physical. The minimum at N; ,, = —Ny,, — v/3g. however is physical
and bounds the maximum value of | fi12!| when Eq. (4.34) has a minimum at negative

NL@*:

1 75

oV 1om for Ny, +V3g. > 0. (4.36)

|fﬁna1 ’max ~

For instance in the case A = (.05 as seen in the top panel of Fig. 4.19. If on the other
hand, the minimum exists at positive V; ,_, (i.e., No o, + \/gg* < 0) then the maximum

value of | fital| is instead bounded by its value at the start of reheating:

5 NG
S for No,. +V3g. < 0. (4.37)

|fﬁna1|max ~ |fNL(tr)|
6l«| NG, + 2]

This is the case for the A = 0.06 and A = 0.07 models shown in the top panel of
Fig. 4.19. These bounds are independent of the decay rate I', . Furthermore, the bound
Eq. (4.36) is written solely in terms of quantities evaluated at horizon crossing, and
hence may be computed without explicitly knowing the full non-linear evolution of
the bundle during the reheating process. Whether this maximum value, |fial| .., is

obtained at the end of reheating is of course dependent on I',..
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Figure 4.19: Potential: W (p,x) = W)y XQe_)‘“"z /Mg Top Panel: The algebraic function fival
as a function of the final value of the correction Ny, Eq. (4.34). We label the positions along
the A = 0.05 curve which correspond to the decay rates given in the right panel. Bottom Panel:
The evolution of the derivative N, = Ny, + Ny, for the same decay rates as Fig. 4.18, for
A = 0.05. All decay rates are in units of v/TW,. The solid vertical (black) line denotes the end of
inflation, V., and the dashed vertical (blue) line denotes the start of reheating, N, —o. The Hubble
rate at the start of reheating is H, =~ /7 x 10=2W).

The existence of a minimum of Eq. (4.34) at negative N; ,, for A = 0.05 explains
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the seemingly opposite dependence of fiua! on I'y: for the A = 0.05 model, as I', is

increased further, ¢ freezes out sooner, driving /V; ,, toward zero. The minimum of
Eq. (4.34) is encountered, past which point | fi2!| is reduced. For A = 0.06, increasing

final

I', still drives Ny ,,, toward zero, but this time | fy[*| is increased as no extreme point

exists for negative Ny, .

For A = 0.07, the function Eq. (4.34) is almost completely flat for IV, ,, < 0, which
indicates that no matter how slowly or rapidly the universe is reheated, the value of
fni at the start of reheating will survive until completion. In the limit of instantaneous
reheating, I', — oo, Ny, ~ 0, and so fi"®l ~ fyxi (7). This is only approximate
since, as reheating does not begin on a hypersurface of constant density, there will be

some small correction Ny . .

Another interesting observation is that | fi1#!| (or more accurately the derivative N )

is fairly insensitive to changing the decay rate by many orders of magnitude. For exam-
ple, as can be seen from Table 4.1, | fiial| changes by less than O(3) as the decay rate
is increased from I'y, = /10-5W, to I', = 1/10~TW,. We caution here that the decay
rate could, in principle, be many orders of magnitude weaker than the weakest decay
rate studied here and still be consistent with the bound derived from BBN constraints,
Iy 2 4 x 107%M,. These tiny (but non—zero) values of I', are beyond our numerical
capabilities: to compute the statistics of ¢ at the completion of reheating requires inte-
grating the field equations up until the universe is radiation dominated, which for such
weak rates, can take O(30) e—folds. Substantial errors are accumulated if the field
equations are integrated over such long periods of time, which in turn induces large
errors in the computation of the N derivatives. For this reason, we only quote values
of fnr, ns and r for decay rates for which we are confident that we have control over

all sources of numerical error. However we believe the physics describing here is valid

in the other regimes as well.

The overall results for two and three-point statistics of ¢ in this model are summarised
in the following Table 4.1. We see model predictions evaluated at the end of inflation
are in general different from that after reheating, verifying the importance of taking the

subsequent post-inflationary evolution into account when comparing model predictions
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to observations. 3

A =0.06: fai(te) = —5.93, A = 0.05: far(te) = —34.10,
ns(te) = 0.763, r(t.) = 2.8 x 10~ ns(te) = 0.836, r(t,) = 0.035

final final final
L'y NL U r NL N r

I_\X

V1075 | —4.35 | 0.761 | 2.4 x 1074 V1075 | —33.4 | 0.837 | 3.5 x 1072

V1073 | =5.54 | 0.762 | 3.9 x 1074 V1073 | =31.5 | 0.853 | 4.6 x 1072
VioT

final final final

=] =

10-1 | —=7.14 | 0.762 | 6.3 x 10~* —26.9 | 0.873 | 6.0 x 1072

Table 4.1: Statistics of ¢ for W (p, x) = W0X2€7>‘('O2/ M for different decay rates. All decay rates
are in units of v/W,. We give values computed at the end of inflation (¢.) and at the completion

of reheating (final) where ( is conserved. The model parameters are p, = 10’3Mp and x. =
16.0M,,. Left Table: A = 0.06; Right Table: A\ = 0.05.

For completeness, we also plot the final asymptotic values of the observables at the
end of reheating as a function of the decay rate I', for different A in Fig. 4.20. From
the plots, we can see how sensitive the observables are to reheating depends also upon

A in this model.

Models with Two Minima

Next we consider the case where both fields are directly involved in reheating, again
taking the effective two-field description of the N-flation model Eq. (4.28) as an ex-
ample. During slow-roll inflation, it was found that fyp, is dominated by the following
term in the case where adiabaticity is reached before inflation ends [106]:

5N,
fNL 22

~ . (4.38)
6 N2

Although there is no scaling relations between the d N coefficients in this model, we
find that Eq. (4.38) remains a good approximation beyond slow-roll for the model pa-
rameter space considered where both fields minimise after inflation ends. As can be
seen from the left panel of Fig. 4.21, fiual is almost completely insensitive to reheat-

ing when I'y, ~ I',. However, as can be seen from the right panel, a mild hierarchy

3We stress here we only consider the model as a toy model since the model predictions are inconsis-
tent with current observations.
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Figure 4.20: W(p,x) = Woxze_’\“’z/ My The final asymptotic values of ng (fop left panel), v
(top right panel) and fni, (bottom panel) at the end of reheating as a function of the decay rate I,
for four different A. The initial field values are ¢, = 1()’3Mp and x. = 16.0M,,.

between I', and ', generates significant corrections to to fin?. This effect is not due
to the axion reheating hypersurface being distinctly separated from the inflaton surface
(the vertical dotted (red) and dashed (blue) lines of Fig. 4.21 respectively) and we have
confirmed this numerically. What is important however, is the axion/inflation mass
ratio in vacuum. The model parameters which realise the dynamics seen in Fig. 4.21
give m, = m, at the minimum. The differences induced in fi* when a mild hier-
archy exists between I'y and I, is greatest when the masses are equal. As the masses
are separated, keeping the ratio T', /T, fixed, the sensitivity of fi7! to reheating de-
creases. This can be understood as follows: first consider the situation where the two

fields have different masses, for instance, m, > m,. Assuming both fields reheat at

roughly the same time, the more massive field y will dominate the energy density and
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Figure 4.21: W (p, x) = Wy | 1m?x? + A* (1 — cos (%’“cp))} The parameters used are: A* =

m?2f?/4n?, p, = (% —0.001)f, x« = 16Mp,, f = m = M,. Both panels show the evolution
of fni during reheating. Left Panel: Equal decay rates, I', = I', # 0. For comparison we also
show the I'y, = I', = 0 limit (thin black line). Right Panel: Unequal decay rates, I'y, # L', # 0.
For comparison we also show the I'y, = I, = 0 limit (thin black line). All decay rates are given
in unit of W, M,,. In both panels, the solid vertical (black) line denotes the end of inflation, N,
the dashed vertical (blue) line denotes the start of x reheating and the dotted vertical (red) line
denotes the start of ¢ reheating. The background Hubble rates at the x and ¢ reheating surfaces

are HX ~ /5 x 1072Wy M, and H¥ ~ +/10~2W, M, respectively.

thus the dynamics of the universe during reheating. Evaluating on constant energy hy-
persurfaces, the initial horizon crossing dependence of the x field dynamics is smaller
compared to the case m,, = m,,, where the energy density of the universe is distributed
evenly between the fields. As a result, we expect the number of e—folds of expansion

final 43 :
N and fy1* are less sensitive in the case m,, # m.,.

In fact, having the two fields decay at different rates is a form of modulated reheat-
ing, although it is different from the standard scenario [142, 143, 144, 145, 146]. In
the standard modulated reheating scenario, inflation is driven by a single field, whose
decay rate is modulated by a second, subdominant field that remains light and plays
a negligible role during inflation. The fluctuation of the subdominant field induces
fluctuations in the inflaton decay rate and thus generates the curvature perturbation
during reheating. In the two-minima case here, note that the initial horizon crossing
values of the fields ¢,, y. determine how the energy density of the universe is dis-
tributed between the two scalar fields. Therefore, although the field decay rates are
constant here, the rate of energy transfer from the scalar fields to the radiation fluid
can be different for each inflationary trajectory in the bundle and thus can generate an
extra contribution to the curvature perturbation, provided there is a mild hierarchy in

the decay rates. Therefore it is not surprising that fyr, can acquire such a significant
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correction during reheating when the two decay rates are different. The two-minima
scenario is also similar in spirit to a model of two field inflation with equal masses
followed by instant preheating, in which the two fields have very different couplings to
the preheat field [147], for a related scenario see also [148]. Note however that all of
these instant preheating models are very tightly constrained even at the level of linear

perturbations [149].

Recently, by modelling the fields as two effective matter fluids and applying the sud-
den decay approximation, Tarrant and Meyers have derived analytical expressions for

local ng and r, verifying the qualitative behaviour in this model [134]. This fluid ap-
proximation approach was later generalised to arbitrary sum-separable potentials and
other models like inhomogeneous end of inflation and generalised curvaton scenarios

by Elliston et al. [135]. They have also demostrated that the behaviour can be explained

by considering the relative redshifting of the two effective scalar field fluids.

Again we summarise the overall results in Table 4.2. Depending on the physics of
reheating, we see that the final value of the non-linear parameter fyi, can be quite
different for different decay rates I'y, and I'y,, whereas r and ng are much less sensitive
in this model compared to the 'runaway’ type quadratic exponential model. Notice

also the dramatic decrease in r after the end of inflation.

X% minimum: fxg,(t.) ~ 0,
ns(te) = 0.969, r(t,) = 0.124
1"%0 FX fl%rﬁal ngnal ,r,ﬁnal
0 0 6.88 | 0.935 | 4.6 x 1074
102 102 | 6.59 | 0.969 | 4.3 x 1074

6.83 | 0.969 | 4.6 x 10~%
13.66 | 0.969 | 1.0 x 1073
4.37 10.969 | 2.7 x 107*
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Table 4.2: Statistics of ¢ for W (i, x) = Wy BWQXQ + A4 (1 — cos (27”90))} for different decay

rates. All decay rates are in units of v/WyM,. We give values computed at the end of inflation
(te) and at the completion of reheating (final) where ( is conserved. The model parameters are
A =m?f?/An?, o, = (3 —0.001) f, x» = 16M,, f = m = M,,. Notice the very large decrease
in the tensor—to—scalar ratio r from the end of inflation to its final value.
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4.4 Quadratic vs Quartic Potentials

In the previous sections, we have illustrated the influence of reheating on two and three-
point statistics of ¢ in multifield models where the reheating fields oscillate about some
quadratic potentials. Here we consider the case where the reheating fields now oscillate
about a quartic potential instead. While the oscillatory dynamics of the fields are differ-
ent, we will see similar qualitative behaviour as in the previous models with quadratic

potentials, which again can be explained using the analytic approach as in [135].

Models with One Minimum

Again we take the runaway type model Eq. (4.17) as an example of the one minimum

case, but now with a quartic minimum in the x direction. The potential now reads as
W (i, x) = Wox'e /M (4.39)

The background inflationary dynamics are similar to the y2e~*¢” model as can be seen

from the slow-roll solutions to the Klein-Gordon field equations:
X=X —-8NM?,  o=¢.e. (4.40)

The oscillatory dynamics about the minimum are somewhat different to that of the
x? case however, due to the potential being much shallower around Y = 0. This is

described by the solution Eq. (4.3).

Provided A is not too large, the ¢ field remains slowly rolling throughout the entire
reheating phase. In the left and right panels of Fig. 4.22 we show the final stages in
the evolution of fy, and N, respectively as a function of N for various decay rate I', .
We see that the qualitative dependence of fi12! on the decay rate is the same as for the
x? model, which can be explained by appealing to Eq. (4.34) with similar arguments.
This implies that the shape of the minimum does not change the qualitative dependence
of final on the reheating process. Of course, as reheating proceeds, the shape of the

x minimum does not remain exactly quartic (or quadratic in the case of the previous

model) due to the coupling with the ¢ field.
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Figure 4.22: W(p,x) = W0X4e_>“”2/M§. The parameters used are: A = 0.055, ¢, = 5 X
10~*M,, and x, = 23.0M,,. Top Panel: The evolution of fxi, during reheating for various decay
rates I'y,. Bottom Panel: The evolution of the derivative N, during reheating for various decay
rates I'y.. All decay rates are in units of /Wy M,,. In both panels, the solid vertical (black) line
denotes the end of inflation, V., and the dashed vertical (blue) line denotes the start of reheating,

N, =o. The Hubble rate at the start of reheating is H, ~ /10~ Wy M,,.

On the other hand, the spectral index ns and the tensor-to-scalar ratio r are very less

sensitive to reheating, with their final values after reheating finishes hardly varying for
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different decay rates I',. The predictions for ns and r evaluated at the end of inflation
are close to the final asymptotic values after reheating as well. The overall results are

summarised in Table 4.3.

x* minimum: fyr(t.) = —48.29,
ns(te) = 0.770, r(t.) = 7.2 x 1073

FX 1{i]rﬁal nglnal Tﬁnal

V10=% | —54.40 | 0.772 { 9.7 x 1073
V106 | —60.32 | 0.778 | 1.2 x 1072
104 | —65.80 | 0.776 | 1.5 x 1072

—_

Table 4.3: Statistics of ¢ for W (p, x) = Wox4e_’\"’2/ My for different decay rates. All decay rates
are in units of /Wy M,,. We give values computed at the end of inflation (¢.) and at the completion
of reheating (final) where ( is conserved. The model parameters are A = 0.055, ¢, = 5 x 1074,
and x, = 23.0M,,.

Models with Two Minima

Similar to the one-minimum case, we use a modified N-flation model where the quadratic

term x? is replaced by a quartic term

Wi(p,x) =Wy {%){L + A* (1 — COos (?(p))] i (4.41)

This modification was studied in [133] and [107], in which the latter consider the
model parameters such that ¢ becomes conserved during slow-roll. Here we consider
a different set of model parameters where isocurvature perturbations persist at the start
of reheating, e.g. A* = /\M3f2/87r2, Oy = (% —0.001) f, x« = 22M,, 2f2/M§ =\
The overall results comparing the values of the observables of ( for this models at the

end of inflation to that at the end of reheating are summarised in Table 4.4 below:

From Table 4.4, we can see a similar qualitative behaviour of f{#! as in the quadratic
case: the asymptotic values of fy, are very insensitive to the decay rates of the scalar
fields when they are equal, and slightly more sensitive if they are different. Com-
pared to the quadratic minimum case, all observables are much less sensitive to decay

rates here, including the non-linear parameter fyr,. Although ng and r are pretty much
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x* minimum: fyr,(t.) ~ 0,
ns(te) = 0.951, r(t.) = 0.263
Fcp PX lfllrﬁal nglnal ,rﬁnal
0 0 5.04 | 0.966 | 2.9 x 1074

1075 | V1075 | 4.99 | 0.972 | 3.0 x 10~*
V10% | V1074 | 5.06 | 0.966 | 3.0 x 104
1071 | V107 | 5.39 | 0.967 | 3.3 x 10~*
1072 | v/10~4 | 5.28 | 0.967 | 3.2 x 10~*

Table 4.4: Statistics of ¢ for W (p,x) = Wo Bx‘l + A4 (1 — cos (277’90)” for different decay

rates. All decay rates are in units of /Wy M. We give values computed at the end of inflation
(te) and at the completion of reheating (final) where ( is conserved. Here the model parameters
are A* = AM2f? /872, ¢, = (2 —0.001)f, x» = 22M,, 2f2?/M? = X. Notice the very large
decrease in the tensor—to—scalar ratio from the end of inflation to its final value.

insensitive to different combinations of the decay rates I', and I',, their final asymp-
totic values after reheating finishes are very different from that evaluated at the end of

inflation.

4.5 Separable vs Non-Separable Potentials

In the previous sections, we have studied the evolution of fyi, and its asymptotic value
at the end of reheating, ffﬁ}rﬁal, in examples where one or both fields reheat from a two—
field separable potential. In this section, we will repeat the same analysis, but this time

for a non—separable potential.

As an example, we consider a modified version of Eq. (4.39), by adding an extra

quadratic mass term, first introduced in [133]
W(x, ) = Wolx'e /M 4 12y (4.42)

Before discussing reheating, it is useful to discuss the inflationary regime. During
inflation, the quadratic x? mass term has a negligible effect on the field dynamics when
the x field is of O(1) in Planckian units, unless x > O(M,) or Ap* > O(M?). Here
we consider the case £ ~ O(M,) and Ap* < O(M?), for which we can approximate

the field dynamics and fyg, during inflation as the same as setting x> = 0. Therefore,
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in the region of parameter space where k < O(M,,), fnr is expected to follow similar
evolution as in the separable case studied in Section 4.4 during the slow-roll regime,
with large deviations only coming in at late times towards the end of inflation. The
mechanism for generating large fyi, is the same as discussed in [106], which is well
illustrated from the fact that there exists a scaling relation for the subdominant field

0N derivatives.

For model parameters k = M, o, = 1072M,, and x. = 22M,,, a large negative fxr,
is generated during inflation as the ¢ field rolls down the ridge and the bundle of tra-
jectories diverge. The evolution is similar to the separable case where x = 0, with
fnL &= —44 close to the end of slow-roll. Things are however a bit different after infla-
tion even before reheating starts. For A = (.06, the additional quadratic term becomes
comparable to the quartic term slightly earlier than in the case A = 0.05. In this case,
fnL swaps sign shortly after the end of inflation. This unexpected behaviour, which
we do not see in other cases, could be explained as follows: although the trajectories
are still diverging in the ¢ direction, the fact that the quadratic term becomes dom-
inant suggests that the local potential geometries around each trajectory converge to
the same quadratic shape, independent of ¢. This would have the same effect as the
trajectories themselves converging in the separable case where H is converging, thus

giving momentarily large positive fyr..
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Figure 4.23: W (x, ) = Wo(x*e " /M 4 k2y2). We show fx1, as a function of N during
reheating. The parameters used are: ¢, = 10*3Mp, X+ = 22Mp and A = 0.06. In both panels,
the solid vertical (black) line denotes the end of inflation, V., and the dashed vertical (blue) line
denotes the start of reheating, N,. Top Panel: x°> = Mg. The Hubble rate at the start of reheating

is H, ~ /2 x 10~1WyM,,. Bottom Panel: x* = 0.1M?. The Hubble rate at the start of reheating
is H, ~ /10 TWoM,.

Shortly after inflation ends, when the  field reaches sub—Planckian values, the >

term starts to dominate over the x* term. Therefore, we expect the additional y? term
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modifies the field dynamics during the reheating phase and possibly fxi, as well. The
additional x? term makes the potential less shallow around the minimum. This saves
the y field from being frozen to non-zero values, leaving unwanted residual potential

energy if I'y, is too large.

Similar to the separable case, as shown in Fig. 4.23, fxp, oscillates roughly in phase
with x? during the early reheating stage, with a larger amplitude for smaller T',.. How-
ever, unlike the previous separable case in Section 4.4, the ) NV derivatives and fy, are
now much less sensitive to I', and thus the reheating timescale. The relative change of
fn1, with respect to I'y is much smaller for x = M, compared to that for x = 0.1M/,.
This is summarised in Table 4.5. We conclude that the additional quadratic mass term
reduces the sensitivity of fyp, to the reheating timescale. * This might be understood
in terms of modulation on the mass of the  field due to couplings with ¢, which will

be explained in the next section.

K2 = M2 fai(t.) = —18.71, K2 = 0.1M, fxp(t.) = —13.23,
ng(te) = 0.748, r(t,) = 4.1 x 1073 ns(te) = 0.746, r(t.) = 2.0 x 1073
final final final final nﬁnal final

FX NL N r FX NL s r

V105 | —2.27 | 0.912 [ 2.0 x 1072 10° | —32.1 | 0.747 | 1.5 x 107
V103 | —1.28 | 0.896 | 2.1 x 10~* 10~3 | —28.1 | 0.752 | 1.1 x 1072
V10T | —0.345 | 0.899 | 2.1 x 10~ 10-1 | —23.9 | 0.751 | 7.8 x 107

<

—

Table 4.5: Statistics of ¢ for W (y, p) = VVo(x‘le—)‘“"Q/Ml§ + rx?) for different decay rates. All
decay rates are in unit of /WM. We give values computed at the end of inflation (¢.) and
at the completion of reheating (final) where ( is conserved. Left Table: x = M,; Right Table:
Kk = 0.1M,,.

4.6 Remarks and Summary

In this chapter, we have discussed the effects of perturbative reheating on the key infla-
tionary observables fxy,, ns and r, for canonical two-field inflation models. In particu-
lar, we have considered two classes of potential: the ‘runaway’ type which has a min-

imum in only one direction; and potentials which have a minimum in both directions.

“Note that changing  also slightly changes the times that inflation ends and reheating starts. This
however has negligible effect on the dependence of the observables on I'y in the parameter space of
interest.
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One important difference between the single-minimum models and the two-minima
model is that in the former case, the fields are coupled via the potential, whilst in the
latter they are coupled only via gravity. Thus, for the single-minimum models, the
local geometries of the xy minima are functions of the subdominant field ¢, and these
geometries are different for different inflationary trajectories in the bundle. The shape
of these ‘reheating minima’ evolves in time as reheating proceeds, and this affects the
dynamics of the oscillating x field. This can be seen as the effective mass of the os-
cillating field is modified by ¢ and thus the oscillating frequency being modulated. In
two-minima models however, where the potential is sum-separable and the fields are

coupled only through gravity, this modulation effect is absent.

This modulation effect depends on the strength of the coupling between the fields,
as we have illustrated with the non-separable model Eq. (4.42). The larger & is, the
weaker is the the coupling between the  and x fields. This explains why we found the

sensitivity of the N derivatives to I', decreases as x increases.

To summarise, we see that although the way the observables depend on the reheating
dynamics is a model-dependent question even for the simplest case where the decay
rates are constants, the model predictions evaluated at the end of inflation are generi-
cally different to the final asymptotic values after reheating, particularly the non-linear
parameter fxp. If |fxi| is large at the start of reheating, it typically remains large
(i.e. |fxn| > O(1)) and is of the same sign after reheating for a wide range of decay
rates. The same qualitative conclusion can be drawn regardless of the geometry of the

reheating minima.



Chapter 5

The Influence of Reheating on the

Trispectrum and Beyond

In Chapter 4, we have discussed how a phase of perturbative reheating changes the
inflationary model predictions at the level of the power spectrum P and bispectrum

B¢ in various examples of canonical two-field models.

Here in this chapter we extend the discussion of reheating to the trispectrum and scale
dependence of non-linear parameters, focussing particularly on the trispectrum non-
linear parameters 7ni, and gni, and the spectral indices ny,, and n, in Section 5.1.
As in the previous chapter, we consider the two broad classes of canonical two-field
models where minimum exists in one or both field directions. In Section 5.2, we il-
lustrate that while individually primordial observables could change significantly after
reheating, consistency relations between different observables are much more robust
and thus act as better probes to distinguish different multifield models. Finally we
comment on the difficulties in realising gy, as the dominating statistics of the trispec-
trum in multifield models in Section 5.3 and conclude in Section 5.4. Again we restrict
ourselves to the parameter space where a large (temporary) non-Gaussianity is plausi-

ble.
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5.1 Four-Point Statistics and Scale Dependence of Non-

linear Parameters

In this section, we consider the influence of reheating on the four-point statistics of ¢,
particularly on 7x1,, gni, and the spectal index n., . Again we apply the 0N formalism
and use the numerical recipe in Appendix B to evaluate the N coefficients. As in the
previous chapter, we study a simple repesentative of the class of multifield models, the
canonical two-field models, where minima exist in either one field direction or both

field directions. The results were first shown in [110].

Model with One Minimum

Again we consider the ‘runaway’ type quadratic exponential models with potential
W (g, x) = Wox2e /My (5.1)

as an example. Before studying how the trispectrum non-linear parameters 7y, and
gnr evolve during reheating, it is useful to revisit their evolution during the inflationary
phase. Because the potential is of a product-separable form, analytic expressions exist
for 7nr, and gnp, during slow-roll as discussed in Appendix A. The expressions were
first derived by Elliston et al. [107] and the slow-roll evolution of the trispectrum has
been studied in the literature [107, 138]. To summarise, a large 7y, is produced in
similar regions of parameter space as that of a large fx,, with 7y, peaks slightly earlier
than fyr. gy remains subdominant though, unless there are significant terms beyond

quadratic order in the potential. For instance, see Fig. 4.17 in Chapter 4.

Evolution of Third-order § N Coefficients

Before we begin discussing the trispectrum, it is useful to discuss the evolution of the
third-order 6 N coefficients first. Similar to the second order terms, while all of them
evolve after inflation ends, there is a hierachy in magnitude between different third-

order J N coefficients, with | Nugo| > [Nyl [ Nowxls [NVoyy | regardless of the decay
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rates. In Fig. 5.1, we illustrate this by showing the fractional differences between

| Ny | and magnitudes of the other third order §V coefficients, defined as

= ’Nsosw’ — |Nxxx‘ A

o [Negol

_ [Nepol = [Nox|
TET INegel

= |N909090| — ’N<p<p><|
e [Newol

(5.2)

A A

for a particular model parameter choice. We see that | N, | is always orders of magni-

tude larger than |N,,, | and | N, |, whereas the final asymptotic value of | N, | after

reheating ends is of the same order as | N, |.

1.5 :
1 |
0 R “V’
0
C
> 05
2 |
g o i _Axxx
g 3 _wax
§_05 i Ay
-ir |
64 6566 6 68

Figure 5.1: Potential: W (¢, x) = W0X26_W2 /M Fractional differences A between | Nyo,| and
magnitudes of the other third order 0 N coefficients, defined as in Eq. (5.2). The model parameters
are A = 0.05, p, = 10*3Mp, X+ = 16.0Mp and Iy, = +/Wy/10. Here the solid (black) vertical
line denotes the end of inflation, N, and the dashed (black) line denotes the start of reheating,
Ny—o.

Trispectrum After Reheating, 7y,

Now we consider the post-inflationary evolution during reheating. Starting with 71,
the evolution of 7y, during reheating with two different decay rates I', , for two slightly
different slopes of the ridge in the potential which are set by A is shown in Fig. 5.2. The
model parameters are A = {0.05, 0.06}, ¢, = 1073M,, and x. = 16M,. Similar to
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fnL, T oscillates during reheating when y oscillates about its minimum. No generic
trend independent of A can be seen as the decay rate increases, 7y, can either grow or

decay.
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Figure 5.2: Potential: W (yp, x) = Woxze_)“Pz/ My Top panel: The evolution of 7, during post—
inflationary period, with A = 0.05, . = 1073M,, and x. = 16.0M,,. Bottom panel: Same initial
conditions with A = 0.06. All decay rates are given in unit of /Wj here. In both panels, the solid
vertical line denotes the end of inflation, N,, and the dashed line denotes the start of reheating,
Ny—o.

This quantitative behaviour can be understood by taking certain approximations in a
similar fashion as in the case of fxr,. As demonstrated in Section 4.2, N,, and N, are
negligible compared to NV, and there exists a scaling relation between N, and N,

where N, = N, /p.. Applying these results, 7wy, may be written as

(N 1
o= e ()

Again here g, = N, = MP_I(QeX)QI/z. The result that N, =~ g, = const comes from

the fact that the y field dominates the energy density over the whole evolution. This
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algebraic function has three stationary points at certain values of N,
N, =0,+V2g, . (5.4)

The N, = 0 root is an infection point where 7n;, = 0, while the N, = \/§g* cor-
responds to a local maximum. Both N, = 0 and N, = v/2g, roots are unphysi-

cal here because N, is always negative with diverging trajectories. The other root,

N, = —\/§g*, however is physical and bounds the maximum value of 7vp,, given by
4 1
max — - . 5.5
(mc = gz (2) )

This bound depends entirely on the initial conditions at horizon crossing, not on su-
perhorizon evolution including reheating. The exact final value of 7y, at the end of
reheating of course depends upon I'y though. But since a bound exists, even if the
details of reheating such as I', are unknown, it is still possible to constrain the range
where 7y1, could lie in this model. The algebraic function Eq. (5.3) also explains the
difference in the qualitative behaviour in the evolution of 7y, for different A, particu-
larly why we see the asymptotic value of 7y, evolves in opposite ways for two slightly
different A\. This is shown in Fig 5.3. For A = 0.05, N, is much smaller and the
algebraic function Eq. (5.3) is close to its maximum value; whereas for A = 0.06, N,

is much larger and the algebraic function Eq. (5.3) is almost flat as a function of N,,.

Trispectrum After Reheating, gni,

Next we consider the non-linear parameter gyi,. The evolution of gyp, during reheating
for two different I',, with the same model parameters as in 7yy,, is shown in Fig. 5.4.
Similarly, gni, oscillates during reheating, with the final asymptotic value after reheat-
ing different from that evaluated at the end of slow-roll. Unlike 7y, the final value of
gnt 18 less sensitive to I'y, and the reheating dynamics. Generically, compared to 7z,
it remains very much subdominant and smaller than the current observational limit in

ongoing CMB experiments, i.e. gni, < O(1000).
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Figure 5.3: Potential: W (p,x) = W0X2e*)‘“"2/ M; . The algebraic function 7yy, as a function
of N, (in unit of M), Eq. (5.3). We give the final asymptotic value of N, after reheating for
A = {0.5,0.6} with different decay rate I',. All decay rates are in units of /.
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Figure 5.4: Potential: W (¢, x) = W0X267>‘(p2/ My The post—inflationary evolution of gnp, for

three different decay rate I',. The model parameters are A = 0.06, ¢, = 1073M,, and . =
16.0M,,. Top Panel: X = 0.05, Bottom Panel: A = 0.06. All decay rates are given in unit of /W,
here. In both panels, the solid vertical line denotes the end of inflation, N, and the dashed line
denotes the start of reheating, N, —g.

Given hierachies between the first and third order 0V coefficients as mentioned, g,

is dominated by a single term in the 6V expression

25 NopoNg

N — 5.6
51 (N2 + N2)? 60

gNL

However, without any scaling relations between N, and N, explicit dependence on
the reheating dynamics cannot be explained in a similar fashion as in the case of fnr,

and TNL-
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Scale Dependence of Non-linear parameters, n;, and n,

As discussed earlier, it is natural that ( is scale dependent. Apart from the amplitude
of bi- and trispectra in different shapes, one may also study their scale dependence.
Indeed it has been shown that while fyy, is insensitive to preheating in canonical single
field models (as well as being too small to be observed), it is strongly scale depen-

dent [150].

Here we focus on the spectral indices of fyi, and 71, denoted by ny,, and n, re-
spectively. We ignore the scale dependence of gy, here as gy, is small and currently
irrelevant in observations. In Fig. 5.5 we give the evolution of ny, and n,, from
around 30 e-folds of inflation after horizon-exit up until the completion of reheating.
For a particular choice of ), i.e. A = 0.05, ns, and n. can be of order O(0.1) and

be potentially observed in CMB experiments if the fiducial values are large enough.
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Figure 5.5: Potential: W (p,x) = Wone_’\“’2/ My Top panel: The evolution of ny, . Bottom
panel: The evolution of n,,, . The model parameters are A = {0.05, 0.06}, ¢, = 1073M,, and
X+ = 16.0M},, with the decay rate I'y, = +/10~3W;. For A = 0.05, ny,, and n.,, may be large
enough to be observationally relevant, while for A = 0.06 the non-linear parameters are almost
scale—independent. In both panels, the solid vertical line denotes the end of inflation, N, and the
dashed line denotes the start of reheating, N, —o.

To understand why ny, and n., are much larger for A\ = 0.05, we first rewrite

Egs. (3.80)-(3.81) as

5 12
anL = —2[ns—1+2(€H)*] —@K
n 5 Z |:4771K*NIJNJNK + 17 NINg + Wik /W) N1 NNk
6/NL 2 (XL NE)? ’
5.7
1
nTNL = —3[ns—1+2(€H)*] —ﬁg
—l—l Z |:277JL*NIJNIKNLNK + 017NNy + 015« Ny Nk N Nk
TNL IJKL (ZM NJ%/I)?)
N (WIJL/W)*NIKNJNKNL] (5.8)
(O_m Nip)? 7
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using Eq. (3.66) where r is the tensor—to—scalar ratio. From this, it is not difficult to
see that the second terms in the first line of both equations are small in general as 7 is
smaller than O(0.1) in most cases. Making use of the approximate formulae for fxr,

and 7n1,, the dominating terms in Eqgs. (5.7)-(5.8) are

3 Ny
My, S M, —3[ns — 14 2(en)s] + 6(1pp)+ = 6(npy )« (WXNQ> , (5.9
o T

where we assumed slow-roll at horizon—crossing such that (W, /W), < O(1) and
used ng — 14+ 2(ep ) = 2(Npy )« (%) . We have also assumed that the numerators
in the square brackets in Egs. (5.7)-(5.8) are dominated by the N, and N, terms. In
Fig. 5.6, we show the comparison between the exact Eqgs. (5.7)-(5.8) and the approx-
imate formula Eq. (5.9). From this, we see the approximate formula agrees very well
with the full expressions after about 30 e-folds of inflation, even during the reheating

phase.



The Influence of Reheating on the Trispectrum and Beyond 118

06 .
0.4 —exact ]
—approx

< =
o

70

—exact
—approx

0 30 40 50 60 70

Figure 5.6: Potential: W (p, ) = Woxze_’\WQ/Ms. Comparison of the exact Egs. (5.7)-(5.8) and
approximate formula Eq. (5.9). Top panel: The evolution of n s, . Bottom panel: The evolution of
Ny~ The model parameters are A = 0.05, ¢, = 1072M}, and x. = 16.0M,, for the decay rate
I'y, = v/1073W,. The equations agree to a good approximation after about 30 e—folds of inflation.

From Eq. (5.9), one may see that the spectral indices are relatively large when N, ~
N,,, which is the case when A = 0.05, but very small when |N,,| > |V, |, which is the
case when A = 0.06. Notice that if |N,| > |N, |, both spectral indices are driven to

zero and hence become independent of the decay rate.

In Table 5.1 we summarise the results, showing the comparison between the primordial

observables evaluated at the end of inflation (slow-roll stage) and at the end of reheat-
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ing. Notice the different qualitative behaviour for the non—linear parameters in the
models for different A\, where the magnitudes of fyi, and 7n1, decrease with larger I',,
for A\ = 0.05, but increase for A = 0.06. In general, the final values of the non—linear
parameters at the completion of reheating are different from the end of inflation values,
whilst gnp, remains small << O(100) in this model which is unlikely be observable in
future experiments. The spectral indices ny,, and n,, are large in the case A = 0.05

and are redder for larger I, .

End of Inflation, A = 0.05

- INL TNL gNL U My
— —34.1 ] 2.34 x 10% | —49.6 | —0.105 | —0.158
End of Reheating, A = 0.05
I'y JNL TNL INL ™ fa, My
V105 | =334 | 225 x 10° | —13 | —0.105 | —0.157
V1073 | =31.5 | 2.27 x 103 | —=11.6 | —0.137 | —0.205
V1071 | —26.9 | 2.01 x 103 | =9.96 | —0.177 | —0.266
End of Inflation, A\ = 0.06
- INL TNL gNL U U
— —5.93 1507 986 | —1.0x107% | —=1.5x 1073
End of Reheating, A = 0.06
I'y JNL | TNL | 9NL M far, My
V105 | —4.35|28.1 | —2.41 | =9.1 x 107* | =1.3 x 1073
V1073 | —=5.54 | 445 | =262 | —1.4x 1073 | —=2.1 x 1073
V101 | =714 [ 73.9 | =296 | —2.3 x 1073 | =34 x 1073

Table 5.1: Statistics of ¢ for W (p, x) = WO)(QG_)‘“"Q/ M; for different decay rates. All decay rates
are in unit of v/TW,. We give values computed at the end of inflation (¢.) and at the completion of
reheating (final) where ( is conserved. The model parameters are A = 0.05 (Top panel) and 0.06
(Bottom panel), p,, = 1073 M, and x. = 16.0M,,.

Model with Two Minima

Next we repeat the analysis for the two-minima models. Again the example considered
is the effective two—field description of axion N—flation introduced earlier in Chapter 4,

where the potential is again given by

27

Wi, x) =W [%m%ﬁ + A? (1 — cos <7§0))] . (5.10)
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Recall that in this model, the axion ¢, is described by its decay constant f and its
potential energy scale A. To generate a large non—gaussianity, we must have ¢ close to
the “hilltop” at horizon-crossing [106]. In this configuration, the second field x, drives

inflation.

Evolution of Third-order 6 N Coefficients

Before we begin discussing the trispectrum, it is useful to discuss the evolution of the
third-order 6 N coefficients first. Similar to the second order terms, the ¢ coefficients
only become large after the end of inflation and there is a large hierachy between the
magnitudes of different third order § NV coefficients, with | Nogo| > | Ny |, [Noox|s [NV |-
This can be seen in terms of the fractional differences between the magnitudes of third

order d N coefficients defined in Eq. (5.2) as shown in Fig. 5.7.
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Figure 5.7: Potential: W (p,x) = Wy [%mZXZ + A* (1 — cos (27’7@))} Fractional difference

A between | N,,,,| and magnitudes of the other third order § V coefficients, defined as in Eq. (5.2).
The model parameters are A* = m?f2/4n?, o, = (3 — 0.001)f, x» = 16M,, f = m = M,
with'y, =T, = /Wy / 100M,,. The solid vertical line denotes the end of inflation, IV, and the
dashed lines denote the start of reheating, N,—q (blue) and N, —q (black), respectively.

Trispectrum After Reheating

The model parameters we consider are A* = m?f? /472, p, = (5 — 0.001)f, x. =
16M, and f = m = M,. All fxi, 7nr, and gny, are negligible during inflation as the

axion ¢ is sufficiently light that it remains almost frozen near the top of the ridge. In
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Figure 5.8: Potential: W(p,x) = Wo[sm?x? + A%(1 — cos(%’rgo))]. The evolution of 7,

during the post-inflationary period. The model parameters are A* = m?f2/4x%, f = m = M,,

Pr = (% — 0.001)f and x. = 16.0M,. For these model parameters, the x field minimises
before the ¢ field. Left panel: Equal decay rates, I', = I',. Right panel: Unequal decay rates,
I'y # I',. The solid vertical line denotes the end of inflation, IV, and the dashed lines denote the
start of reheating, N,—¢ (blue) and IV, —q (black), respectively. All decay rates are given in unit of
VWoM,, here. Notice that 7y, changes by a few orders of magnitude during reheating. Also, 7t
is sensitive to I'y, and I, if there is a hierarchy between the two decay rates.

this sense, this scenario is similar to the curvaton model. Things are different after

inflation ends however.

When inflation ends, the axion ¢ starts rolling down the ridge, producing a negative
spike in fxr,. fnr then evolves to positive value when the ¢ field converges to its min-
imum as shown in the last Chapter. It is similar for 7y, except 7y, is always positive.
In Fig. 5.8 we give the evolution of 7y, during reheating for various combinations of
I'y and I',. Similar to fyy,, although the final value of 7y, is different from that at
the end of inflation, it is almost completely insensitive to the decay rates if I'y, = I',.
Things are different however if there is a mild hierachy between I', and I',. When
Iy # I',, the final value of 7y, does depend on the reheating timescale. Compared to

the value where I'y, = I, it grows for I', > I'y and decays for Iy, > I',..

As mentioned earlier, unlike the one-minimum case, there is no scaling relation be-
tween N, and N,,. Yet by the observations that N, and N, dominate over the first
and second-order ) N coefficients respectively, 7y, is approximately given by
2
Ny
-
N ®

~

TNL ~

(5.11)

For gni, things are similar to fyi, and 7n,. In Fig. 5.9 we give the evolution of gy, for

different combinations of I'y and I' ,, with the same model parameters. While the final
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values of gy, at the end of reheating is different from that at the end of inflation, they
are almost completely insensitive to I', and I',, unless there is a mild hierachy between

the decay rates. Because of a hierachy between the third-order § N coefficients, gnr,
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Figure 5.9: Potential: W (x, p) = Wy {%mQXQ + Al [1 — cos(%”ap)} } The model parameters

are A* = m2f? /4%, o, = (3 — 0.001)f, x. = 16M,, f = m = M,,. Left panel: Equal decay
rates, I'y, = I'y; Right panel: Unequal decay rates, I'y, # I',. Similar to 7y, gni, changes by a
few orders of magnitude during reheating and is more sensitive to the decay rates whenever there
is a hierarchy between them. All decay rates are given in unit of /WM, here. The solid vertical
line denotes the end of inflation, IV, and the dashed lines denote the start of reheating, N,— (blue)
and N, —q (black), respectively.

can be well approximated by

25N,

~ (5.12)
B4 N3

gNL

Although gy, is again much smaller than the current CMB observational limit, unlike
the one minimum model, gyp, is of the same order as 7yi, in this model. This is a
characteristic of the non-vacuum dominated sum-separable models. We will discuss

this in further detail in Section 5.2.1.

Scale Dependence of non-linear parameters, ns, and n,

We now turn our attention to the spectral indices ny,, and n, in this model. Sim-
ilar results are found as in the one-minimum case where A = 0.06 where both spec-
tral indices are negligible regardless of the decay rates and reheating timescale, with

My Moy, <K O(Ol)

In Table 5.2 we summarise the two-minima model results, showing the comparison
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between the primordial observables evaluated at the end of inflation (slow-roll stage)
and at the end of reheating. The table clearly shows the non-linear parameters in
multifield models strongly depend on the reheating timescale in general. Notice the
large differences between the statistics evaluated at the end of inflation, compared to
the end of reheating. This is because the axion field only begins to roll after inflation

has ended and so until this point, the observables do not evolve appreciably.

End of Inflation
— — ISy TNL gNL U Ny,
— — 0.006 | 1.3 x103 | =3.1x10°| 1.7 x 1072 4.9 x 1077
End of Reheating
Iy Iy JNL TNL gNL UZiNY Ny,
0 0 6.88 1 0.69x10%| 063x10%2 | —1.2x10°%] -1.8x107°
10-2 | V1072 | 6.59 | 0.76 x 10 | 0.55 x 10> | —9.3x 1077 | —1.6 x 10~¢
102 10~4 | 4.37 | 0.29 x 10?2 | 0.29 x 10> | =72 x 1077 | —=1.2x 107
10— 1072 | 13.66 | 2.75 x 10? | 1.91 x 10> | —=2.5 x 1076 | —=3.7 x 107
10— 104 | 6.83 | 0.68 x 10> | 0.59 x 10> | —1.1x107% | —1.7x 1076

Table 5.2: Statistics of ¢ for W (¢, x) = Wy |3m?x? + A* (1 — cos (%”@))} for different decay

rates. All decay rates are in units of v/WyM,. We give values computed at the end of inflation
(te) and at the completion of reheating (final) where ( is conserved. The model parameters are
A = m?f? /472, o, = (5 — 0.001)f, x» = 16M,, f = m = M,. Note that the values in
the second row where I'y, = I',, = 0 do not correspond to end of reheating since the decay rates
are zero. However an adiabatic limit is still reached as both ¢ and x behave as matter fluids when
oscillating about their minima.

5.2 Consistency Relations Between Observables

So far we have only considered each primordial observable individually. However, in
general observables are not completely independent of one another. For some classes
of models, there exists consistency relations between different observables. A simple
example is the single-field slow-roll consistency relation. From Eq. (3.43) in Chapter 3,
we can see that in canonical single field models the tensor-to-scalar ratio » and the

spectral tilt of the tensor power spectrum nr are always related by

r=—8nr. (5.13)
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This consistency relation has also been shown to hold for all potential-driven slow-roll

inflation in the generalised G-inflation setup by Kobayashi et al. [151].

Similar to single field models, there also exists consistency relations in multifield mod-
els. While perturbative reheating in general leads to significant changes in individ-
ual primordial observables, particularly the non-linear parameters, as compared to the
slow-roll predictions, consistency relations between the observables predicted under
slow-roll, representing certain classes of models, seem to be more robust to reheating
and therefore serve as a better discriminator to different models of inflation. We will

see this in the following for some classes of canonical multifield models.

5.2.1 Relation Between 7y, and gn,

The first class of canonical multifield models we consider is models with non—vacuum
dominated sum—separable potentials. For this class of models, by making use of the
slow-roll analytic expressions for the 0V coefficients, Elliston et al. [107] have shown

that gnp, and 7y, are of the same order during slow-roll inflation

27

= ~ 5.14
25gNL TNL ( )

in the absence of significant terms beyond quadratic order in the potential. The ef-
fective two-field description of N—flation model Eq. (5.10) discussed previously is an

example of this class.

Following the evolution of the third-order non-linear parameters 7ni, and gnp, beyond
slow-roll inflation, we see that this consistancy relation Eq. (5.14) survives through
reheating, even though individually 7v1, and gnp, do evolve. The relation holds beyond
the slow-roll regime and during reheating for a wide range of mass ratios between the
axion and inflaton where they both minimise after the end of inflation, only mildly vi-
olated when I'y > T',. This is illustrated in Fig. 5.10. A violation of this consistency
relation could therefore rule out this class of models if reheating proceeds perturba-

tively.

The reason that gnp, ~ 7ni, regardless of subsequent evolution beyond slow-roll may

be understood if we split the contributions to the non-linear parameters into instrinsic
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Figure 5.10: Potential: W (x,¢) = Wy {%m2x2 + At [1 - cos(%“ap)} } The evolution of the

ratio (27/25)(gnr/7nL) during reheating for different combinations of decay rates. The model
parameters are A* = m?f?/4r?, ¢, = (1 — 0.001)f, x. = 16M,, f = m = M, Notice that
the relation Eq. (5.14) are satisfied after reheating in most cases, and only mildly violated when
Iy > I',. All decay rates are given in unit of /Wy M,,.

terms which depend on the instrinsic non—gaussianity of Jo! at late times and gauge
terms which do not. This is more transparent in the moment transport technique de-
veloped by Mulryne et al. [152], where ( is evaluated by evolving the field correlation
functions from horizon—crossing to the time of interest, then gauge—transforming to ¢

on an uniform energy hypersurface.

5.2.2 The Suyama-Yamaguchi (SY) Inequality

In general, 7~y (k1, k2, k3, k4) and fni(k1, ko, k3) are functions of external momenta
which cannot be compared directly. Yet in canonical models, when the non—Gaussianity
is large, it is dominated by the shape independent parts. It is thus reasonable to com-

pare the non—linear parameters directly in such models.

The Suyama-Yamaguchi inequality, for instance, relates fyr, in the squeezed limit

(k1 — 0) to 7y, in the collapsed limit (kq + ko — 0) [144]

6 2
~NL > (ngL) . (5.15)

This inequality follows simply from the Cauchy-Schwarz inequality and has been stud-

ied and verified extensively in the literature, see e.g. [153, 154, 155, 156, 157, 158,
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Figure 5.11: Fractional difference between 257x1,/36 and fZ; after inflation ends. Left panel:
Potential: W (i, x) = Wox2e ***/M; The model parameters are A = 0.05, ¢, = 1073M,, and
X+« = 16.0M,. Right panel: Potential: W (x, ) = Wy {%mQXQ +A* 1 —cos(z%go)] } The

model parameters are A* = m?f2 /472, o, = (3 — 0.001)f, x, = 16M,, f = m = M. All
decay rates are given in units of /Wy or /Wy M,. Here the solid vertical line denotes the end of
inflation, N, and the dashed line denotes the start of reheating, N, —o.

159]. Here the equality in Eq. (5.15) holds for single—source models [153]. For a

recent review about the inequality, see [160].

While the inequality suggests 7y, can be very much larger than f2;, recently Peterson
et al.[105] have shown that this is not the case in two—field canonical models in general
by applying both the slow-roll and slow-turn approximations without excessive fine-
tuning. This was also shown by Elliston et al. [107] for separable potentials in the
slow-roll limit. Here we are interested to see if this remains true beyond the slow-roll

limit, particularly after a period of perturbative reheating.

In Fig. 5.11, we plot the fractional difference between 7yr, and fZ; in the two models

discussed in this Chapter, defined as

A= (257n1/36) — fRy '
fi

(5.16)

Equality here corresponds to A = 0, whereas A >> 1 if 7y, is very much larger than
f2;. From the plots, we see that while reheating may enlarge the difference between
. and f2;, A never becomes much larger than unity and 7y, remains not much larger
than f3; for a wide range of decay rates that vary by a few orders of magnitude. We
may conclude that an observation 7y, > fZ; could put canonical two-field models

under tension if reheating takes place perturbatively.
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Figure 5.12: Potential: W (x,y) = W()X?e*)‘”Q/Ms. The evolution of the ratio n,, /1, until
the completion of reheating. The model parameters are A = {0.05, 0.06}, p. = 1073 M Dy Xs =
16M, and 'y, = 1/0.3Wj. The ratio settles to 3/2 quickly after about 30 e—folds of inflation after
horizon-exit, showing the consistency relation Eq. (5.17) is satisfied.

5.2.3 Relation Between the Scale Dependence of Bi- and Trispectra

Next we investigate any possible relations between the spectral indices ny,, and n., .
We found that whether n, and n, are of a detectable level or not after reheating,
for both the one-minimum and two-minima models discussed, they always satisfy the

following consistency relation

3

== (5.17)

N, 9 LN

regardless of the reheating timescale. For instance, see Figs. 5.12 and 5.13 for the

quadratic exponential Eq. (5.1) and effective N-axion models Eq. (5.10) respectively.

This relation Eq. (5.17) was first found by Byrnes et al. [60] in the class of two—field

local type models with ¢ of the form

C(k) = C7F 4 X+ Fo(CH % O+ go(CF% % (O % C9%), (5.18)

when f, and g, are some scale independent functions and ¢ G (9X are Gaussian
variables. Again = denotes convolution in momentum space. For all models considered
only one of the fields acquires significant deviation from a Gaussian statistic after
horizon-exit, so they fit into this ansatz. The question is whether f, and g, are scale

independent, for the models we study. They are if the field which generates non-
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Figure 5.13: Potential: W (p,x) = Wy {%mQXQ + A4 [1 — cos(%’rgp)} } The evolution of the

ratio Ny, /N sy, during post-inflationary period. The model parameters are A* = m? f2 /472,
f=m= M,, ¢. =0.499Mp, x. = 16M},. Here the decay rates I',, and Iy, are given in unit of
VWo M,,. The solid vertical line denotes the end of inflation, V., and the dashed lines denote the
start of reheating times, IV, —q (blue) and N,—q (black), respectively. Here axion ¢ reheats first.

Gaussianity is strongly subdominant, has negligible interactions with the inflaton field
and a quadratic potential. Many of the models we study are approximately of this type,

and hence we often observe 3ny, ~ 2n, .

On the other hand, for single source models there is a different consistency relation,

which trivially follows from 7n, = 36 f2; /25,
Nony, = 2N 4y, - (5.19)

In the limit that CkG YK CkG X, which corresponds to Nﬁ > max {N 3, 1}, the model
becomes effectively single source. If the assumptions discussed earlier remain valid,

the non-linearity parameters then have to be scale independent.

5.3 Additional Comments on gy,

So far for all two—field models considered in the literature, gy, is at most of the same
order of magnitude as 7y, and is much less than the current observational limit in
CMB experiments and large scale surveys which is about O(10°). Using slow-roll
analytic expressions and heatmap analysis, Elliston et al. have shown that it is hard to

engineer a model where gy, can be as large as O(10°) during inflation and dominates
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the statistics in the trispectrum for canonical separable potentials, even if one goes

beyond quadratic order in the potential [107].

This however only applies to slow-roll inflation regime. It remains to be seen beyond
the slow-roll regime. In particular, gny, could be dramatically enhanced such that it
is above the observational limit after reheating. Yet we found the same conclusion in
the simple setup of perturbative reheating in all models considered. For the effective
N-flation model, gny, does increase dramatically from 0 to O(100) for some of the
combinations of decay rates, for instance see Fig. 5.8. One may expect that a larger
hierarchy between the decay rates may thus produce a large observable gnp,. How-
ever we argue that this could require I'2 /T'? >> O(10°) and is beyond the numerical

capabilities of our code.

5.4 Conclusion

In this Chapter, we have extended the discussion on the influence of reheating to the
trispectrum of ¢ and possible consistency relations between observables. Similar to the
bispectrum, the trispectrum continues to evolve after inflation ends with the presence
of isocurvature perturbations and so do the corresponding non-linear parameters 7y,
and gy, in general. Moreover, the trispectrum in general is sensitive to the decay rates
during reheating, although in some cases in which both fields oscillate during inflation,
the sensitivity to the decay rates can be very small provided that they are equal for both
fields. The evolution during reheating is significant enough that a comparison between
observables and their values at the end of inflation would typically lead to the wrong
conclusions, since the change in observables may be larger than the expected error bars
of the observables. While the evolution to an adiabatic attractor during inflation often
(but by no means always) results in negligible non-Gaussianity [107, 131, 161, 162],
this is not the case during reheating, typically a model which is non-Gaussian at the end
of inflation will remain non-Gaussian, and in most cases which we studied, the sign
of the non-linearity parameters will also remain the same. The reverse is not always
true, we have seen how in the axion model the perturbations are Gaussian at the end of

inflation but not at the end of reheating.
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Despite (-related observables typically evolving during reheating, it could still be pos-
sible to test models of multifield inflation against the new observational data without
specifying the reheating dynamics. For instance, we could look for consistency rela-
tions between the non-linear parameters. First of all, it is very hard to engineer a two-
field canonical model where 7np, >> f2;, regardless of the reheating dynamics. Inter-
estingly, we have also seen that the consistency relation in non-vacuum sum-separable
models gn;, ™~ 7wy, typically remains true during reheating. Given the observational
bounds on 7y, it will be hard to observe gy, in such models. Finally we have also dis-
cussed the relation between ny,, and n,, , showing that in many cases 3ny,, ~ 2n,
both during and after inflation. These relations between observables allow the under-
lying inflation models to be tested even when one cannot predict the actual values of

some model parameters, particularly the reheating parameters.



Chapter 6

Conformal Inflation

In this chapter, we introduce a new class of two-field inflation models which are lo-
cally scale invariant (or Weyl invariant). This is known as conformal inflation, first
introduced by Kallosh and Linde [3]. Although this is a two-field model, because of
the local scale invariance symmetry, only one scalar degree of freedom is physical.
Thus this model is in fact equivalent to the case of single-field inflation and pertur-
bations are purely adiabatic. Unlike the class of two-field inflation models discussed
previously, ¢ and therefore the corresponding model predictions are conserved after
horizon-exit. Subsequent (p)reheating does not change the model predictions as long
as perturbations remain purely adiabatic. Motivated by the original model, we are in-
terested in studying how universality classes arise in conformal inflation in general,

beyond the original paradigm.

In Section 6.1, we first introduce Kallosh and Linde’s original conformal inflation
model and discuss its universal behaviour. In Section 6.2 and 6.3, we discuss how
one would go beyond the original paradigm and construct the most general bi-scalar
conformal inflation model with global SO(1, 1) symmetry. We then move on to discuss
whether the universal behaviour of the original model is extended to the generalised
model, particularly focussing on the class of K-inflation models. Finally motivated
by BICEP2, we discuss the possibility of realising a different universality class with a

large 7 in the context of conformal inflation in Section 6.6.
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6.1 The Original Model

Consider the following bi-scalar theory with canonical kinetic terms (up to a negative

sign for the 7 field) and the scalar fields non-minimally coupled to the scalar curvature
R(g)

2 2 1

— 4./ 1 13 _1 5 T =X - — X 2 _ n2)?
S = /d V=g {f’wa ™= 500" X + —5R(9) 36F< ) 0 =7)7
(6.1)

where F' is an arbitrary function of x/mx. This theory is locally scale invariant, i.e.

invariant under the following transformations

—20(x)

G — € G, ™ — e”(x)w, X — ea(x)x, (6.2)

for any o (). In the case F is a constant function, i.e. I’ = const, there is also a global
SO(1,1) symmetry between the 7 and x field. Here the 7 field is often referred to as
a conformal compensator or conformon field. Its kinetic term comes with the wrong
sign. Yet it is not a ghost field, since with the scale-invariance symmetry, only one
scalar degree of freedom is in fact physical. ! The unphysical degree of freedom can

be removed from the theory by gauge fixing 7.

Motivated from the superconformal formulation of supergravity, this model was first
introduced by Kallosh and Linde [3], where 7 and x are moduli fields. Gauge fixing
was interpreted as a spontaneous symmetry breaking due to existence of a classical
field. The global SO(1,1) symmetry between the m and x field is restored near the
boundary of the moduli space where 7,y — oo, and is originated from SU(1,1)
symmetry of the embedding Kahler manifold. This is the enhanced symmetry point
where critical phenomenon happens, as we will see later. The model was later extended

to the multifield paradigm [163].

To study this model, we need to first fix the gauge. An example would be the gauge

I'This is true classically. Quantum corrections in general lead to conformal anomalies which break
the local scale-invariance symmetry.
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= \/éMp. The full Lagrangian then becomes

L=v=g

M 2R X2 1 X2 2
= 1— — =0, x0'x — F 6M,) | —= —1 6.3
which is in the Jordan frame. To work out the model predictions, one could perform a
conformal transformation on the metric g,,, and write the theory in the Einstein frame.
Alternatively, because of the global SO(1,1) symmetry, it is convenient to choose the

following gauge
T —x* = 6M.. (6.4)

Upon fixing this gauge, the action Eq. (6.1) is automatically in the Einstein frame, and

reduces to

M2R
2

S = / d*zy/—g [ — %(390)2 — Fltanh(o/V6M,)]| , (6.5)
where ¢ is the canonically-normalised field, defined by 7 = +/6M,, cosh(¢/v/6M,)
and x = v/6M, sinh(¢/v/6M,). This gauge is referred to as the rapidity gauge by
Kallosh and Linde because of the similarity between ¢ and rapidity in special relativ-
ity. From Eq. (6.5), we can see the gauge-fixed theory is equivalent to chaotic single
field models. In general the function F' is arbitrary and can take any form. However,
arguing from the original bi-scalar action Eq. (6.1), we expect the function F' to be

some analytic function of the gauge-invariant variable

¢ =x/7 (6.6)

as in the standard approach to chaotic inflation. This restricts the form of the function /'
and we shall see this leads to a universal class of inflation models in some appropriate

limit.
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Figure 6.1: The T-model motivated from conformal inflation where the potential is given by V' =
tanh2"(<p / \/6Mp) for n = 1(blue), 2(red), 3(brown), 4(green), in units of M,. Credit Kallosh and
Linde [3].

Universal Predictions from Conformal Inflation

Recall that the arbitrary function F' deforms the global SO(1, 1) symmetry between the
two fields. Now consider model Eq. (6.5) in the large  limit, where tanh(p/ \/EMP) —
1 and F' — const asymptotically and the SO(1, 1) symmetry is restored. This is also
the region where slow-roll inflation naturally occurs, since V' (¢) = F(¢) ~ const and

thus dominate over the gradient term.

For a simple set of functions () = A@*", in terms of the canonically normalised

field ¢, one finds
V(p) = Fltanh(¢/V6M,)] = A, tanh®(p/V6M,) . (6.7)

for some constants \,, which is of mass dimension 4. This is a basis representative
of the universality class of models depending on tanh(y/v/6M,,) and is called the T-
model by Kallosh and Linde [3]. In Fig. 6.1, we plot how the potential looks like as

function of the canonically-normalised field .

Near the boundary of moduli space, or the large ¢ limit, to leading order, the potential

Eq. (6.7) is approximately given by
V() = M|l — dne~ V/3(e/Mo)] (6.8)

A, sets the energy scale of inflation and again can be fixed by the CMB normalisation.
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This universal form of the potential around the critical point leads to universal predic-
tions in this model. To see this, we first write the slow-roll field equation for ¢ in terms

of the number of e-folds N

o o aYe o —4nMp\/§e_\/2/3(“°/Mp) : (6.9)
Py 3

Integrating this, we get

3
~(V2/3)Ap/Mp _ T 6.10
¢ SN’ (©.10)
where A denotes the field range of ¢ over the course of /V e-folds of expansion. In

the large NV limit, where the initial field value ¢, is large, this reduces to

3
e~V 2/3(px/Mp) _ N (6.11)

Using these, we can write the slow-roll parameters at horizon-exit ¢, as

M? (V. \? 3 Vv 1
=P (2| ~— =M (2] ~—. .
(ev). = = <V) e (W)= M < 0 ) i (6.12)

*

Recalling that in the single-field canonical models, the spectral index ng and tensor-to-
scalar ratio r can be expressed purely in terms of the slow-roll parameters at horizon-

exit, we therefore have
ng—1=-2/N, r=12/N?. (6.13)

This is the universal prediction of the model. Given the number of e-folds of inflation
after the observed CMB pivot scale leaves the horizon, we have universal predictions
for ng and r regardless of the form of the potential V. For instance, ns ~ 0.967
and r =~ 0.0032 for N ~ 60, which are in perfect agreement with the recent Planck

results [44]. 2

This universal behaviour is a critical phenomenon near the point of enhanced symme-

try where the global SO(1,1) symmetry is restored. In fact, the SO(1,1) symmetry

2But not with BICEP2
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manifests itself as a shift symmetry in ¢ in the single-field description after gauge

fixing, see [164] for relevant discussion.

Besides universal predictions, it was argued that conformal inflation also sets the initial
conditions for inflation under the Damour-Polyakov mechanism if the model is coupled
to non-relativistic matter [165]. Similar model setups have also been discussed in the

context of the cyclic Higgs model [166].

6.2 Beyond the Original Model, Generalised Confor-

mal Inflation

While Kallosh and Linde’s original model is simple, it is possible to generalise their
models to non-canonical case that involves higher-order derivatives. In fact, the most
general scale invariant bi-scalar theory with at most second-order field equations was
first found by Padilla et al. by performing the following field redefinitions on the
Horndeski action Stiom [§, @] [167]

S = X/Ty Gy — TG (6.14)

where Stiom[Ju, P) is given by [168]

Ston[, gu] = [ d*zv/=3 [K(@, X) = G5(¢, X)E + Gu(@, X)R + Gy &
+G5(¢, X) G VYV G — Gy ;(53/6] . 6.15)

Here X = —%(V@)Z, £, = !V, V..V, V¥ o where the anti-symmetriser
acts only on the lower indices. G, is the Einstein tensor, R is the Ricci scalar, both
built from the metric g,,, and K, G3, G4 and G5 are arbitrary functions of X and Q.

Subscripts ¢ and X denote partial differentiations with respect to ¢ and X respectively.

The resulting action Siocal|X, 7, ¢,] can be expressed in the form as Eq. (6.15), with
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the relevant terms in terms of 7 and Y fields given by

X 2XXr | X Xon

V=7 =+—gr*, R=72R—6r%0Or, X = : = T 5
T T T

G" = 17 4G" + 4 VPV — m 5¢g" VY o — 20 VAV T 4 29" PO

V.V,0 = w—lvuv,,x - X 7r_2VMVV7r — 47r_2V(uxv,,)7r + w-Qg,anwvaX

+4x 7V, mV,m — X 72, VOV (6.16)
and

& = 0p =7%0x — x 7 *0On

Ey = 2011 6 (173V,,, V2 x — x4V, V2 — 2074V, \ V2 — 20tV

12 pa)
—|—7r’45ﬁfvo‘7rvax +4x 7OV, TV — 7r’55ZfV°‘7rVa7T) (77°V 5 VY
—X 7r_4VM3V“47r — 271_4Vu3xv“47r — 27?‘4V“4xvu37r + 7r_45/‘j;‘Va7TVaX
+4x 7OV, VT — 7r_555§ VerVar)
& = 60f,L 02017 (1 2V, VHex — x 1V, Vi — 204V, x VHe T
—27r74V“2va7r + 7r’4(5l’jfva7rvax + 4y 7r’5Vm7rV"27r - X f%ﬁfvawaw)
(77, Vi — x4V, VT — 207V VT — 20 VNV T
+W_45L‘;‘VO‘7TVQX + 4 OV, VT — W_56L‘;‘VO‘7TVQ7T) (W_3V“5V“6X

—x 7V, Ve — 2W’4V”5Xv“677 — 2W’4V”6Xv#5ﬂ + 7T’455§ VerVax

+4x 7T_5Vu57TV“67T - X 7r_5(5/’j§ V“ﬂvaﬁ) (6.17)

Here X, = _%nguxvﬂr and similarly for X, ., X,,. Note that this action is
invariant under the interchange of 7 and y. The most general conformal bi-scalar
inflation model can be constructed by imposing slow-roll conditions to the action
Stocal X, T, guv]- As discussed previously, because of local scale invariance, one scalar
degree of freedom can be gauged away and the gauge-fixed model is equivalent to the

most general scalar-tensor Horndeski theory.

Here in this thesis, we are interested in the SO(1, 1) (or shift symmetric) subset of the
whole bi-scalar conformal inflation models. In particular, we are going to study the
possible critical phenomenon for generalised bi-scalar conformal inflation models that

admit an enhanced SO(1, 1) symmetry point, to see if the same universal behaviour
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emerges as in the original conformal inflation model.

6.3 Constructing the Most General Bi-scalar Local Scale

Invariant Model with SO(1, 1) Symmetry

To start with, we discuss how one could construct the most general bi-scalar local
scale invariant theory with SO(1,1) symmetry between the two fields. For any bi-
scalar models that possess global SO(1, 1) symmetry between the scalar fields (!, the

action must be invariant under the Lorentz transformation ¢’ — A% ¢!

Sle’, 9] = S' A", 9] =S¢’ 9] = / d'zv/=gLl¢", 9],  (6.18)

or in other words, the Lagrangian £ transforms up to some total derivatives. Here I, .J
run from 1 to 2 and the transformation matrix is given by

AS _ ( cosh v —sinhﬁ) 7

—sinhd  cosh (6.19)

where ¥ is some dimensionless constant. Take ¢! = (, 7) and consider an infinites-
imal Lorentz transformation, x — x — U7 and @ — 7 — ). The change in the

Lagrangian L is given by

oL oL
AL =
L=V b(vu)x”mvu)ﬂ]

g (aww)] [ ~ (awm) 1) - o

The first term is a total derivative, which corresponds to the conserved current, whereas

the second term is proportional to the EOM, which is guaranteed to vanish on-shell.
This is Noether’s theorem. However, because we are interested in the case where the
SO(1,1) symmetry is a global off-shell symmetry, i.e. the symmetry holds for any

field configurations 7, x and metric g,,,, the second term in Eq. (6.20) must vanish up
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to some total derivatives. This gives a constraint on the form of £

o (o) |7+ e - (awm) )

= sum of total derivatives. (6.21)

To find the subset of the bi-scalar local scale-invariant models that respect SO(1,1)
symmetry as well, we apply the constraint Eq. (6.21) to the most general bi-scalar

local scale invariant theory Liocal[ X, 7, gy -

As an example, we consider the K-essence case, where the Lagrangian is given by
£=V=3[K(@X)+Cu@)R], (6.22)
or in terms of x, 7 and g,

L=1v"g {#K + G R + 6(V)2Gy + 6G (V) - [(vx) - %(vw)} } .
6.23)

Here we have suppressed the arguments in K and GG4. Varying this Lagrangian £ with

respect to x, m, Vx and Vr, we have

g—i N {7#’)}()2 + 7RG+ (Kg + 6Gags) [(W)ﬂw - %(W)?} } ,
g—': = =y {471’3K — XK + (2G4 — xGag)R + 2K ¢ (Vx)*
~X(9m) - (V) K + 6Guzs] + S (VmP3K 5 +6Gu) |
8(8fo) = \/—_9{ [6G4,¢ + K (%)} (V) — KX(VX)} :
afvﬁn) = Veo{ (6 + K1 (3)] (90
+ {12(;4 — 112G ; (%) ~ Ky (%)2} (vx)} . (6.24)

Substituting Eq. (6.24) into the constraint Eq. (6.21) and collecting terms with Ricci
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scalar R, we can deduce
(m* = x*)Gap + 2x7Gy =0, (6.25)

since Eq. (6.21) must hold for any metric g,,, and thus 12. Here for simplicity, we have
considered the constraint Eq. (6.21) identically vanishes instead of up to some total

derivatives. * Solving Eq. (6.25) then gives
Gy = A(l — 5% (6.26)

for some constant A. This fixes GG4. To satisfy the constraint Eq. (6.21), we also need

the remaining terms to vanish, which gives

7T4K¢ -+ 47T3XK — 7T2X2K¢ + (Vﬂ')2 |:6G47¢ - 6G4’¢¢ (%)

+(3K g + 6Gag5) (%)3} + (V) - (VX) |12G1 + 6Ga 55 — 12Ga (3)

(6K + 6Gss) (%)2} 4 (Vy)? [6G4,¢ 43K, (%)} —0, 6.27)

with G4 given in Eq. (6.26). In general, Eq. (6.27) is difficult to solve. For simplicity,
we consider the sum-separable case where K ()N( ,P) = g(f( ) + h(p). In this case,

Eq. (6.27) can be solved exactly, where the solution is

g(X) = X + X2,

h@) = A1 - @), (6.28)

for A = 1/12 and A = const. For this example, written in terms of X and ©, the full

bi-scalar action is therefore given by

R . N
£=V=grt (1= @) 55+ X + X4 a1 -7 . (6.29)

The original Kallosh and Linde model Eq. (6.1) at the critical enhanced SO(1, 1) sym-

metry point where [’ = const corresponds to the case ¢ = 0.

3We will consider the total derivatives case later.
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This general approach works for any theory of arbitrary number of fields with any
continuous symmetries. For the global SO(1,1) symmetry we consider, instead of
parametrising ¢! as (, ), it is more convenient to consider an alternative parametri-

sation as we will see later.

Alternative Parametrisation

In fact, to construct terms that are SO(1, 1) and locally scale invariant, it is better to

reparametrise the fields as
m = pcosh(f) , x = psinh(0), (6.30)

where 6 is a dimensionless field and p is of mass dimension 1. In this field parametri-
sation, the global SO(1, 1) transformation of the fields corresponds a constant shift in
f,ie. 6 — 0+ 9, ¥ is again some dimensionless constant, whereas the local scaling
transformation becomes p — p/o and g,, — 02g,,. A similar parametrisation can be
applied to models that respect SO(2) between the two fields instead of SO(1, 1), with

the field redefinition

m=pcos(f) , x = psin(f), (6.31)

The locally scale-invariant bi-scalar action Sy, expressed in terms of p and € can be
found simply by performing the following field redefinitions on the Horndeski action

Eq. (6.15)
G =0, Gu — PG - (6.32)

Using Noether’s theorem as previously discussed, in this parametrisation (p, #), it is
easy to see for an infinitesimal global SO(1,1) transformation § — 6 + ¢, the La-

grangian L[p, 0, g,,,] changes as

oL
AL = )—= )
L BT (6.33)
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for an infinitesimally small constant . Global SO(1, 1) invariance simply means the

Lagrangian cannot have explicit § dependence except up to some total derivatives, i.e.

8—£ = sum of total derivatives. (6.34)

00

for any fields p, 0 and g,,, .

The Most General SO(1,1) and Local Weyl Invariant K-inflation
Model

Consider the case of K-essence Eq. (6.22) as an example, which in terms of p and 6 is

given by
£ =V=3 |Gi(0)(7*R ~ 6507) + 5K (0, Xoo) (6.35)
where ng = —%ﬁ’Qg‘“’V,ﬂVVQ. In this parametrisation, the constraint Eq. (6.34)
reads as
V=9 [*Ko + Gup(p’R — 6p0p)] = sum of total derivatives. (6.36)

Since Eq. (6.36) must holds for g,,,, the term with the Ricci scalar R on its own must
vanish up to some total derivatives. This implies (G4 is a constant function since G4
is independent of p and does not contain any derivative terms. The only remaining
term left is /—gp* Ky. For generic function K, the constraint then implies K cannot

depend explictly on 6, i.e. Ky = 0.

As aresult, we finally arrive at the full bi-scalar SO(1, 1) K-essence action
S = / Az =g [clﬁQR — 6e 5+ K (X)) 6.37)

Written in terms of y and 7 and pulling out the terms in the Kallosh and Linde original
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model Eq. (6.1) at the critical point where ' = \,, = const, this becomes

2 2
s A

S—/d%J—_g{” 1_2X R+%(87r)2—%(8><) 3@ =X
+Hm? =X f(2)}

(6.38)

where Z = 1 (2 —x?) 73 [12X , —2x7T X+ x? Xx ). Here we have chosen ¢; = 1/12.
This is the most general action with SO(1, 1) and local Weyl symmetry in the class of
K-essence. Here the second line are all the possible extra terms beyond the original

Kallosh and Linde model in the class of K-essence.

With Soft Shift Symmetry Breaking Prefactors

The model Eq. (6.37) does not provide a natural mechanism to end slow-roll inflation.
This can be seen by gauge fixing p = M,,. However, recall that in the original model
Eq. (6.1), the function F'(¢/m) breaks the SO(1, 1) symmetry. The symmetry is only
restored near the critical point, i.e the boundary of moduli space or in the large ¢
limit. Here since we are interested in the model behaviour in the vicinity of the critical
point, we consider the same for the general action Eq. (6.37). That is, we promote the
dimensionless coefficients such as ¢; to functions of the scale-invariant variables that

break the SO(1, 1) symmetry in general but not at the critical point.
In terms of the redefined fields Eq. (6.30), the resulting action is

~2

S = / d*zy/—g {cl(ﬁ)g — 3¢1(0)p05 + 5K (X, 0) ] . (6.39)

Here § — oo is the natural critical point where the SO(1, 1) symmetry is restored, as
6 becomes shift symmetric at co. Upon fixing the gauge p = M, and performing a
conformal transformation on the metric g, — grp = cflgw, back into the Einstein
frame, the action Eq. (6.39) becomes

2 2 2 Ap (¥
MZRg B 3M; Cl—’9(80)2 N MJK(X,0)

2 2
2 4 o ci

Sp = / d*z/—g5 (6.40)
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where ¢, 9 = dc;/00 and now X reads as X = —4 M ?(06)*. We have suppressed
the argument of c¢; here. We call this model generalised conformal K-inflation. If
we demand ¢, (0) and K (X, 0) to be analytic functions near the critical point § — oo,

then ¢, (f) must also asymptote to a dimensionless constant and K (X, 0) — K (X).

6.4 Conditions for Realising Universal Model Predic-

tions

Before we discuss the model predictions of the generalised conformal K-inflation
model Eq. (6.39) near the enhanced SO(1, 1) symmetry point and check if any uni-
versal behaviour emerges, it is useful to first study the sufficient conditions for real-
ising universal model predictions. For instance, in the case of chaotic inflation, the
asymptotic scaling relations (ey ), o 1/NP and (ny ), o« 1/N? for some p and ¢ in
the large NV limit, where p, ¢ > 0, lead to universal model predictions. This was first
noted by Roest [169]. The results were later extended to some other scaling relations
by Garcia-Bellido and Roest [170]. In the following, we use the same approach and

study the corresponding scaling relations in the case of K-inflation.

6.4.1 Slow-roll K-inflation

We begin by introducing the K-inflation model and briefly discussing its background

dynamics and model predictions. The Lagrangian of K-inflation is given by
L=+/—g[K(X,¢)+MR/2] . (6.41)

It was first introduced by Armendariz-Picon, Damour and Mukhanov [171]. An ex-
ample of K-inflation is the Dirac-Born-Infeld (DBI) inflation [90]. For K-inflation, the

background Einstein equations in a FRW universe are

3H? = M?(2XKx — K)

H=M?*-XKx). (6.42)
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Demanding the Hamiltonian is bounded from below and the equations of motion re-

main hyperbolic, the function K must satisfy the conditions [172]
f()(>07 2XKxx +Kx >0. (643)

It is useful to introduce a new quantity c, defined by

2 Kx

= . 6.44
* 2XKxx+ Kx 644)

C

This quantity cs corresponds to the ’sound speed’ of the density fluctuations and takes
values between 0 to 1 for physical models. In general c, is time dependent, where its

dynamics can be described by the following sound flow functions

dln s, Cs
Spi1 = , S = —.
i AN '~ He,

(6.45)

Slow-roll inflation happens where the following slow-roll parameters are small

H 3XKx
== 1
= T xRy -k <O
1 ey 1 H
= —= = —€yg — ———= 1). 4
Ul 5 Hen €H ST < O(1) (6.46)

It was also shown that consistent slow-roll inflation models require the sound speed
does not change abruptly, or s, < O(1) [173, 174]. Demanding ¢y < O(1) is
equivalent to the condition —K > X Kx. As a result, the Friedmann equation in the

slow-roll limit becomes
BM2H? =2XKx — K~ —K. (6.47)

Since e < O(1), to have ny < O(1) we also need H/(HH) < O(1). Using the
background equations Eq. (6.42), we can work out H in terms of K and its partial

derivatives

MIH = —XKyx — KxxXX — Kx,X¢. (6.48)
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Rewritten in terms of ¢; and 6 = —@/(H ), ny then reads as

1KX¢, d(p

TRy dN (6.49)

1
ng = —eg+ 5(1 +1/c)6

To realise inflation, we only need the sum of the last two terms in Eq. (6.49) to be small
but not individually. Here for simplicity, we restrict ourselves to models where ¢ is

slowly rolling such that 6 < O(1) and all terms on the RHS of Eq. (6.49) are small.

Now consider the full ¢ equation of motion in K-inflation from varying the action

Eq. (6.41)
BHKx ¢+ Kx¢+ Kxp@® + Kxx¢X = K, (6.50)

at background level. Dividing this by H K x ¢ and expressing in terms of the physical

slow-roll parameters €z and 7y, this becomes

K, 1

3—2eg —2 0= —.
€q N + HKx o

(6.51)

In the slow-roll limit where €y, ng, § < O(1), we therefore obtain the slow-roll

equation for X

1 /K N\ /1
X ~ -5 (K_i) (E) . (6.52)

Now we consider perturbations about the homogeneous background. Applying pertur-
bation theory as in the case of canonical single field models, where we perturb the field
¢ and the metric to linear order as in Chapter 3, one can find the corresponding scalar
and tensor perturbations in the spatially flat gauge satisfy a modified Mukhanov-Sasaki

equation in Fourier space [175]

Z//
vy + <c§k2 — —> v, =0,
z

"
e+ <k2 - %) i =0, (6.53)

where again v, = adyy and ﬁz defined as in Chapter 3. The scalar and tensor power

spectra can be worked out by solving the modified Mukhanov-Sasaki equations and
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the corresponding model predictions are given by [175]

ns — 1~ =2(em)s + 2(nm)x — (51,
nr = _2(€H)* )

r = 16(cx)ucs (6.54)

to leading order. These results were later extended to second-order in slow-roll by
Martin et al. [176]. For generalised G-inflation with the full Horndeski action, this was
first done by Kobayashi et al. [151] at the level of the power spectrum, and later to the
bispectrum by Tsujikawa et al. [177]. Current observational constraints on K-inflation
models are given in [44] for DBI inflation and recently in [178] for some other models

where the sound speed ¢, is constant.

In the following we will restrict our attention to models where the sound speed c;
is effectively constant such that (s;). < (€g)«, (nm).. For these models, universal
behaviour can be realised when (e ). scales as 1/N? in the large N limit for some
p, where N is the number of e-folds of expansion from horizon exit ¢, to the end of
inflation ¢.. * We will consider what constraints this asymptotic scaling relation implies

on H and the form of K.

Scaling Relation, (¢f). < 1/N
The first example we consider is the case where p = 1
(€m)e = N (6.55)

Here a; is some arbitrary constant, which is fixed for a particular model and can be
constrained by comparing with observations. This corresponds to the universality class

where

roc1/N, ng—1oc1/N. (6.56)

*Note by definition, it follows automatically (g ). scales as 1/N
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Note that universality requires the scaling relation to be satisfied for all the relevant
scales k, under consideration. In general to check if the scaling relation is satisfied,
one can solve for N, which depends on H (t.), and check how (e ). scales with it in a
particular model. However, in single-field models, since H (t.) is always fixed, we can

simply just check how H scales with ¢ instead.

Using the definition of €z and differentiating Eq. (6.55) with respect to ¢.., we get

(2@1 — ].) (E) = <E> s (657)

assuming H, # 0. Integrating Eq.(6.57) with respect to t,., we arrive at a scaling

relation between H and H

.\ a1 1
H2 =y (—H) or — = Dej (6.58)

where X is some integration constant which sets the energy scale of H. This is the
condition on H in order to satisfy the scaling relation Eq. (6.55), which holds for all ¢.
In the case of K-inflation, by using the background equations Egs. (6.42), this can be

translated to a condition on K to leading order in slow-roll
N(—3XKx)™ = V3(—K)n Y2, (6.59)

Substituting the slow-roll equation Eq. (6.52), this becomes

- E% (%ﬂ = V3(—K)" 2, (6.60)

For canonical single field models where K (X, ¢) = X — V (), Eq. (6.60) reduces to
the Roest result [169]

(6.61)

where A = /3 /%, by taking the slow-roll approximation V' > X. It is not difficult
to show Eq. (6.61) is satisfied for chaotic inflation with a monomial scalar potential

V = A\, " where )\, is constant. In general Eq. (6.60) cannot be solved without
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assuming the functional form of K.

Scaling Relation, (¢z). oc 1/N?

Next we consider the general case where p # 1
(er)e =~ (6.62)

We can follow a similar analysis as p = 1 to work out the corresponding condition on

H. Starting with Eq. (6.62), differentiating both sides with respect to ¢, this becomes

_,\p 2\ 1/p—1 2
T ) (£> [2}[ 7 H] , (6.63)

p H H?

Multiplying each side by (H?2/H*), and integrating with respect to ¢,, we have

_ . \1/p
YH = exp [—( )

- (—eH)“/p], (6.64)

where ¥ is again some integration constant. Note that during slow-roll e < O(1),
therefore for p > 1, as long as a,, is not too large, one can Taylor expand the exponential

in Eq. (6.64) to leading order

al/p -
SH =1+ (=1)%" el 7 P (6.65)
p_

This is the general scaling relation between H and ey for the asymptotic behaviour
Eq. (6.62). The constant a, and p remains arbitrary as long as the scalar-tensor theory
is not specified. For slow-roll inflation where His always negative, a,, must be positive.

In the case of K-inflation, using the background equations, this becomes

K 1/2 1/p 3IXK 1-1/p
E(T) =14 (1) (pap_l ( _KX> , (6.66)

to leading order in slow-roll. The original conformal inflation model Eq. (6.1) belongs

to the universal class where p = 2. The scaling relation Eq. (6.66) for p = 2 is indeed

satisfied by the model, as we now confirm:
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Consider the T-model where K = X — V' and the potential V' can be approximated by
V = Vi[l — dne" V3% 1 O(n2e~ V3], (6.67)

in the large ¢ limit, where V, is some constant. Taking the slow-roll limit for the
Klein-Gordon equation where ¢ ~ —V,,/3H, the kinetic term X is well approximated

by

2 2
2
~ % (_“/}0) zv*—&; <§) e VB8/3¢ (6.68)

in the large ¢ limit. Subsituting Eq. (6.68) for X into Eq. (6.66), we have

LHS = E\ / % [1 — 2ne~ 2/3¢ + O(n2€— 8/350)
4 /o7
RHS =1-— CL;/QETLG_ 2/3¢ + O(n26_ V 8/380) . (669)

Therefore they are equal provided a; = 3/4 and ¥ = \/§V*_1/ 2, corresponding to
€y & €, = 3/4N2.

6.5 Universal Behaviour of Generalised Conformal K-

Inflation

In this section, we discuss the universal behaviour of the generalised conformal K-
inflation model introduced in Section 6.3. Generically, we expect K is of polynomial
form in X such that K (X) = > b,X"™ — ), where b, are some dimensionless con-
stants with b,,.; < b,. For potential-driven slow-roll inflation, to leading order we
typically have K ~ b; ()X — \(0) and the effective sound speed ¢? ~ 1. As a result,
we can assume ¢, to be constant and the sound flow functions s,, contribution to the

model predictions in Eq. (6.54) can be neglected.

The action Eq. (6.40) now reads as

MRy M?
2 261 (0)

(bl(e) + §M> (90)* — M (6.70)

Sp = / d'zv/~gr [ 2 ¢1(6) ci(0)
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Recall that we demand the soft breaking functions and their derivatives are analytic
at the critical point # — oo. In the vicinity of large 6, in simple generic cases, these

functions can be represented by the following expansions

bi(6) = b[1 — be™? + O(e™?)] or by(h) = b1 — g + O(%)] : (6.71)

and similarly for \ and ¢; in general. Here b and b are some dimensionless constants.
As a result, for large 6, the second term in the coefficient of the kinetic piece (90)? in

Eq. (6.70) is negligible compared to the first term and the resulting action is

M?R M2 | b 1
ptlE p g+0(6—29’§)] (89)2

2 2

Sp = /d4x\/——gE{

A

62

[1 —0(e™?, %)] } . (6.72)

to leading order. Unless bor ¢ vanishes, we can rewrite the action in terms of the

canonically-normalised field ¢ = M, (b/¢)'/%6,

MgRE 1
2 2

5e = [ dtey=ae { @0~ V. L= 0o Ty | |

(6.73)

where V. = AM!/é® and 7 = (b/¢)~"/2 If the next to leading order term in the
potential is O(e~"#/M»), then the model is similar to Kallosh and Linde’s original
model in the large ¢ limit

MSRE 1
2 2

Sp = / d'zv/—gp [ (0¢)? — V(1 — @e /Moy | (6.74)
Here O is a dimensionless constant and must be positive if inflation is to end naturally.
By computing the number of e-folds N and the slow-roll parameters €y and 7y in the
slow-roll and large NV limit as in the original model, it is not difficult to show that the
model has the same universal behaviour as the original model where r o 1/N? and
ns— 1o —1/N.

On the other hand, if the next to leading order term for the effective potential in

4/3

Eq. (6.72) is O( %), then a different universalily class where » « N=** and ng — 1
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—1/N is realised. This can be seen as the slow-roll parameters (ey ), and (7). are

related to the number of e-folds NV as

1 1
(ev)s x N3 (v )« o N (6.75)

in the large N limit.

We argue the same universal behaviour holds for other classes of SO(1, 1) bi-scalar
conformal inflation models as well in general. For the generalised bi-scalar conformal

inflation which is potential-driven such that

K(0,X)=-V(0) +b(0)X + ...,
Gi(0,X) = gi(0) + hs(0)X + ... (6.76)

and 6 is slowly rolling, terms involving higher order derivatives are suppressed in gen-
eral. To leading order, only the canonical kinetic term X survives and the action re-
duces to Eq. (6.70) assuming the functions b;, g; and h; are of similar order. The
same universal behaviour as conformal K-inflation is thus expected. For the pivot
CMB scale k, = 0.002Mpc_l where the amount of observable inflation is N ~ 60,
we therefore conclude that SO(1, 1) bi-scalar conformal inflation universally predicts

negligible level of tensor perturbations with < O(0.01).

6.6 Universality Class with Large r?

In the light of the recent BICEP2 results which suggest tensor-to-scalar ratio r ~
0(0.1), we will also discuss the possibility of realising a universality class where r

can be large in generalised bi-scalar conformal SO(1, 1) models.

6.6.1 K-inflation

In the last section, we have seen that conformal K-inflation models give small r if

K(X) is a power series in X. In the following we drop this assumption and keep

K(X) as arbitrary.
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Sum-Separable Case: K (X,6) = G(X) — F(6)

Consider a sum-separable case where K (X, ) = G(X) — F(6) for arbitrary functions
G and F'. The gauge-fixed action Eq. (6.40) then reads as

se= [atevgm { olte 2 (42) @er + 2 a0 + P } ,

(6.77)

in terms of a dimensionful field ¢ = 0M,,. Again ¢; and F' are functions of § which
have the asymptotic form as in Eq. (6.71) near the critical point ¢ — oo, and X =
—2c1(¢p/M,)(dp)?. For slow-roll potential-driven inflation, the term F'(¢) dominates

and we have 3M2H? ~ M F/ci. The partial derivatives of K with respect to X and

© are then
F, 2F01
K,~-—2%2_—"-%
e R
3(c,\  Kji
Ky =—3 (%) +C—X. (6.78)
1 1

Now we check if K can satisfy the scaling relation (e ). o< 1/N for slow-roll potential-
driven inflation in this case. Substituting Eq. (6.78) into the universality condition

Eq. (6.60), we have

RHS = V3(F/e)" " = VB(F /&) 4 O e/, ),

2 271
LHS =% L (& — 2FCW> [KX 3 (Cl—w) ] , (6.79)

2F \ & s i 2\ ¢

to leading order in large  limit. F and ¢ are dimensionless constants where F' and

c1 asymptote to. To satisfy the universality condition, we need the leading term in
) 2

the LHS to be a constant. This is only possible if M;‘Iz—f > -3 <Ci—f> , since

for our choice of ¢; and F', their derivatives c; , and F, are always of the order of
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O(e=¢/Mv_ 1) 1 that case,
( Y ©

16 (K2
LHS~x =4 (Z2)| =%
s=2[5% (&)

1 2Fc; .\ 1
— (F, - L 6.80
2FCl ( ® C1 ) KX] ’ ( )

which asymptotes to a constant in the large ¢ limit only if K g /K — const. This is

the necessary condition for the universality condition Eq. (6.60).

However, assuming ¢ is slowly rolling, from the slow-roll solution Eq. (6.52) for X in
K-inflation, we also have

- 3 FK,\? 1 173\ 1 1
X=X~ _-d(2e — o (L X —— | (6.81)
6 \Kg

to leading order. Therefore we find a solution for G ()~( )
GX)=hX. (6.82)

Nevertheless, the solution G ()~( ) In X violates the second condition in Eq. (6.43)
and gives imaginary sound speed c; in general. As a result, we conclude the univer-
sality condition ey ~ a/N cannot be satisfied for slow-roll power-driven conformal
K-inflation and therefore the model predicts » < O(0.1) in general. There is a caveat

that a different scaling relation with p < 1 may still be plausible though.

6.7 Summary

Conformal inflation is a new class of inflation models and is natural in the super-
conformal formulation of supergravity. In addition, universal behaviour emerges as
a critical phenomenon near the point of enhanced SO(1, 1) or shift symmetry, which
is naturally taken to be the boundary of the moduli space (x,7) — oo. For generic
Lagrangians where inflation happens near the enhanced symmetry point (including the
relevant observed scales), this therefore leads to the same universal model-independent

predictions, with the attractor points

1 1 1
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This universal behaviour also extends to generalised bi-scalar conformal models be-
yond canonical kinetic terms for slow-roll potential-driven inflation. This can be un-
derstood as all models reduce to the same asymptotic forms near the enhanced sym-
metry point. Whether the local scale invariance symmetry plays any significant role in

realising universality classes remains to be seen.

For the pivot CMB scale k, = O.OOQMPC_I where the amount of observable infla-
tion is N ~ 60, we therefore conclude that SO(1,1) (or shift symmetric) bi-scalar
conformal inflation universally predicts negligible level of tensor perturbations with

r < 0(0.1).°

SRecently there have been work on building a conformal inflation models with large r that are con-
sistent with the recent BICEP2 results, for instance see [179] and [180]. These models however either
do not have an enhanced symmetry point or have singular behaviour near the enhanced symmetry point.



Chapter 7

Conclusion

Since the early work by Guth [20], inflation has become the dominant paradigm of the
Early Universe prior to the standard Hot Big Bang. According to the original paradigm,
our Universe underwent an early period of superluminal expansion, driven by a canon-
ical scalar field slowly rolling down a flat potential. This early accelerated period of
expansion does not only solve the classical problems in Hot Big Bang Cosmology, but
offers an explanation to the generation of primordial fluctuations that seeded structure
formation and the Cosmic Microwave Background (CMB) anisotropies. During in-
flation, quantum fluctuations of the inflaton field were stretched beyond the horizon
and became classical. Over time they were gravitationally amplified, and eventually
re-entered the horizon laying the foundations of all cosmic structure that we observe
in the universe today. In Chapter 1, we briefly reviewed the cosmology of the Hot Big

Bang, its shortcomings and the standard original paradigm of inflation.

Density perturbations are usually quantified in terms of the gauge-invariant curvature
perturbation (, defined as the spatial curvature on uniform-density slices. In Chapter 2
we reviewed cosmological perturbation theory, the gauge-invariant defintion of ¢ and
its statistical properties. An important property of ¢ is the fact that it is conserved
on superhorizon scales in the absence of isocurvature perturbations. We demonstrated
this in Section 2.5.1. We also reviewed the separate universe approximation and the

0N formalism, which were used extensively in this thesis.

The original inflation paradigm also has universal predictions. In particular, the primor-
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dial fluctuations produced are almost Gaussian and nearly scale-invariant. Primordial
gravitational waves are also generated and could be strong enough to be observed de-
pending on the shape of the potential. We reviewed this in Chapter 3, showing how the
model predictions are computed. We also discussed how the predictions are compared
to current observations. We then discussed a simple extension to the original paradigm,

multifield inflation, in which inflation is driven by multiple scalar fields.

Unlike in single-field models, isocurvature perturbations exist in multifield models and
could source the curvature perturbation (. For models where isocurvature perturbtions
persist after the end of slow-roll, we showed in Chapters 4 and 5 that the subsequent
post-inflationary evolution, particularly reheating, do significantly change the model
predictions and therefore should be accounted for, even in the simple perturbative re-
heating setup. The model predictions evaluated at the end of the slow-roll regime are
different to those after reheating in general, with the change being model-dependent.
Compared to the spectral index ng, the non-linear parameters fnr,, 7z, and gnp, are
more sensitive to the physics of reheating. Although individual observables evolve
during reheating, consistency relations between observables are more robust to the de-
tails of reheating. Examples are gn;, &~ 7nr, in non-vacuum dominated sum-separable
potential models and 3ny,, = 2n., in two-field local type models. This suggests
consistency relations act as a better tool to distinguish between different multifield

models.

Another class of model we have considered is conformal inflation. The original model
involves two canonical (up to a sign) scalar fields non-minimally coupled to gravity
with an additional local scale invariance symmetry. This model is natural in the super-
conformal formulation of supergravity. Because of scale invariance, only one scalar
degree of freedom is physical and perturbation is purely adiabatic. For that reason, ¢
is conserved after horizon-exit as long as perturbations remain adiabatic and the model
is more predictive. Universal model predictions emerge as a critical phenomenon near
the enhanced SO(1, 1) or (shift) symmetry point. In Chapter 6, we showed that this

universal behaviour also extends to generalised slow-roll potential-driven models.

While the single-field paradigm has been well studied and constrained today, an equiv-

alent picture is lacking for the multifield paradigm. For instance, despite some recent



Conclusion 158

work [181, 182] which focuses on canonical models with a sum-separable quadratic
potential, there is still work to be done in understanding how to constrain multi-
field models in general, for instance how to take (p)reheating into account. Being
more natural from particle physics point of view, a better understanding in the multi-
field paradigm such as the field dynamics and model predictions would help us make

progress in embedding inflation in unified theories like string theories.

On the other hand, despite being an important part of inflationary model building,
(p)reheating remains much less understood compared to the slow-roll regime. In order
to constrain theoretical models with observations, we however need a better under-
standing in the non-equilibrium physics of reheating, as we have seen in canonical
models reheating does significantly change slow-roll model predictions in the pres-
ence of isocurvature perturbations, perhaps except consistency relations between ob-
servables. It remains to be seen if this also holds in a more generic (p)reheating setup,
going beyond the simple perturbative reheating picture. The highly non-equilibrium
nature of (p)reheating may also open up new observational windows to inflation and

shed some light on the underlying inflation models in play in the Early Universe.

Motivated by Planck results and theoretical models such as conformal inflation, there
have also been interests in universality classes of inflation models recently. A better
understanding of different universality classes would help explore new classes of in-
flation models that are compatible with observations and their common features may
give hints of the underlying fundamental theories in play during the early universe.
As we now enter the era of precision cosmology, with more precise data coming, it is

important to address these issues in the future.



Appendix A

Analytic Expressions for o NV

Coefficients

In Chapter 3, we stated that analytic expressions for the 6V coefficients for potentials
of separable form exist under slow-roll approximation. Here in this appendix, we

briefly illustrate how they are derived. We will set M, = 1 here unless stated otherwise.

Consider the multifield canonical case, the slow-roll field equations give the following

relation

dp! B dy”’

= Al
W, W, (A.T)

assuming the fields ! and ¢’ are slowly rolling and evolve monotonically. Here again
W denotes partial derivative of the potential 1/ with respect to the field ¢!. We shall
use Eq. (A.1) to construct a constant of motion along each classical slow-roll trajectory

and work out the § NV coefficients.

Let us consider a two field product-separable potential where 11 is of the form

Wip,x) =U(p)V(x), (A.2)

for some functions U and V. The number of e-folds NV from some initial time ¢, to
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final time ¢, can be written in terms of integrals of the fields

* U Vv
N = —dyp = —dy. A3
/€wa /EVXX (A.3)

Here [ di' denotes an integral of ¢ from the value ¢! at final time ¢. to initial value
ol at t,. In what follows, subscripts , and e correspond to quantities evaluated at initial
time ¢, and final time ¢.. Infinitesimal change in the number of e-folds /V with respect

to changes in ¢, and Y. is then given by

_ U 0o, (U Op. (U
dN N |:(U‘P)*+asp* (U@)e:| dgp*—i_ |:8X* (U<P)e:| dX*
B Vv oxe (V Oxe (V
) ae () Joe s[5 () Joe o

The § N coefficients in the § NV formalism can then be worked out once we know how

the final field values {¢., x.} depend on their initial values {(., x.}, subject to the
constraint {¢., x.} are such that the final hypersurface at ¢, is of uniform energy den-

sity.

Using Eq. (A.1), we can construct a constant of motion along each classical trajectory

as
dx de
C=- [ =2 .y A5
/Vx+ . (A.5)

Since C' is conserved along each trajectory, the final field values {y., x.} are unique
functions of C'. One can then use C' to work out the infinitesimal change in {p,, X}

with respect to changes in ¢, and x.

de. [ 9C oC
dpe = =2 ( de +—dx*>

dC \dp, 7" Ox.

dy. [ 0C oC
dy, = deo, + —dvy, | . A.
Xe ac <a¢* ® +0X* X) (A.6)

From the definition of C' Eq. (A.5), we can easily see

oC 1 oC 1
o (@)* X (VX)* | (A7
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To compute the partial derivatives of the final field values with respect to their initial
values 0! /0!, we also need to know dy! /dC'. Recall that in § N formalism, the final
hypersurface at ¢, is that of uniform density, which in the slow-roll limit corresponds

to
W(t.) = U(pe)V(xe) = const . (A.8)

Differentiating this with respect to C' and use the identity dC'/dC' = 1, we finally arrive

e  (UN (VN rey (V e (UN (VY (e U
o= (7). () ().(w) o= (%) (). ().(z).
= (7). ().(%) 5= (2).0.(5) - e

where €, €, and € are defined in Eq. (3.83) in Chapter 3. Substituting these back

at

into Eq. (A.4), we can then work out analytic expressions for the § N coefficients. For

instance, the first order d NV coefficients are

o _ ( é_) sinl(v,).1 (%) 2 = ( é_) (V)] (2)

(A.10)

One then differentiate Eq. (A.10) again to find the second order d N coefficients. Using
these expressions, we can then work out expressions for the primordial observables,

for instance ng and f1$1413

mols [(eif)* * <>} 71 [1 s U:EZSB - 2({7))} ~ 2en).
. 3 ; ) ; (A.11)
= gl {2{@)**(69*]‘ <£Z§f2)*‘ éZ}‘f})*

(A.12)
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where u = (e,/€), v = (€, /€). and

_ e t ol — A€oty
88 — Y

€
A, = uv(nss)e - (A.13)

Here 7,, and 7),, are defined in Eq. (3.83) in Chapter 3. These are first computed
by Choi et al. [104] and later by Elliston et al. for third order NV coefficients and

non-linear parameters of trispectrum 7y, and gny, [107].

Other Solvable Models

We have previously showed how analytic expressions for N coefficients and primor-
dial observables can be derived for canonical models with a product-separable po-
tential. Following similar approach, we can also derive analytic expressions of 6V
coefficients and model predictions for sum-separable potentials. This was first done
by Vernizzi and Wands [103] for second order N coefficients and the power spec-
trum, and later extended to third order 0V coefficients and the trispectrum by Elliston
et al. [107]. These results are later generalised to models with potentials that are ar-
bitrary functions of these separable ansatz [183]. In fact, we can also apply the same
expressions Egs. (A.11) and (A.12) to sum-separable potential models by considering

the following transformations

UsU, VoV, W—hhW. (A.14)

Besides, analytic expressions also exist for models where the Hubble parameter H

satisfies a product or sum-separable ansatz

H = Hy(p)+ Ha(x), or H=H(p)H2(x), (A.15)

for some functions H; and Hs, by using the Hamilton-Jacobi field equations, i.e. ¢ =
—20H1/0¢ and x = —20H,/0x. The expressions were first derived by Byrnes.et
al. for the sum-separable ansatz for two fields [184] and were later generalised to

trispectrum and arbitrary number of fields by Battefeld et al. [185]. These expressions
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are valid beyond slow-roll. However, the fact that we can express the Hubble parameter
H as in Eq. (A.15) relies on the fields evolving monotonically. This assumption usually
breaks down shortly after inflation ends as the fields approach their respective minima

and start oscillating.

All the analytic expressions discussed above rely on certain approximations and spe-
cific forms of the potential or Hubble parameter such that we can solve the field equa-
tions analytically. For multifield models with arbitrary potentials and/or beyond slow-
roll regime, we can at best express the § V coefficients in terms of some integrals which

cannot be solved analytically, for instance see [186].



Appendix B

Numerical Recipe for Computing o /N

Coefficients

In this appendix, we discuss the numerical recipe used in this thesis for computing
ON coefficients. As discussed, the §/N formalism is based on the assumption that
(smoothed) spatially separated patches of the universe will evolve on superhorizon
scales like independent, unperturbed universes up to small corrections. An ensemble
of smoothed regions picks out a collection of trajectories in phase space which is often
referred to as a ‘bundle’ [106, 187]. In essence, the /N formalism requires that such
a bundle, centred on a fiducial trajectory, is evolved. Our choice of gauge demands
that each trajectory in the bundle is evolved from an initially flat hypersurface up to
a hypersurface of constant energy density. Hence, each trajectory will experience a
slightly different expansion history in order to bring them to a common energy density.
The adiabatic mode is generated by fluctuations along the fiducial trajectory, whilst

fluctuations between neighbouring trajectories generate the isocurvature modes.

Acknowledging this simple picture, we implement the 6N formalism numerically as
follows: First, the fiducial trajectory emanating from {., x.} is constructed by solv-
ing the full, non—linear system of second order field equations Eq. (4.16) using the
Verner’s 5th and 6th order pair Runge-Kutta Method. Ths is done in Fortran using
the public domain Fortran 77 subroutine DVERK written by Hull, Enright and Jack-
son [188].
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The epoch of horizon-crossing is set by N = 0, where the initial field velocitites
{., X+ } are set by imposing the slow-roll attractor solution 3H ! = —W/;. As long
as the onset of inflation happens slightly before the pivot scale under consideration
exits the horizon, we expect this to be a very good approximation. To illustrate this,
in Fig. B.1, we show the slow-roll evolution of the fields in the quadratic times expo-
nential model, one with {¢., X« } set by the slow-roll attractor solution and one with

slightly different {¢,., x.}.

16 T T
10¢/Mp, slow-roll
14 10¢/Mp, non-slow-roll i.c. |
X/M,, slow-roll
12 | ~_ XMy, non-slow-roll i.c. R
,\\\
10 + > 1
8 L 4
6 - .
4+ |
2 - .
0 | ~ — | |
0 10 20 30 40 50 60 70
N
. — 2 2 .
Figure B.1: Potential: W (¢, x) = Wox2e A¢"/My - The slow-roll evolution of the background

fields (in Planck units), one with {¢,, X} set by the slow-roll attractor solution and one with
slightly different initial field velocities. The model parameters A = 0.05, ¢, = 1072M,, and
X = 16.0M,.

The bundle of trajectories is then formed by evolving neighbouring trajectories with
slightly perturbed initial conditions, ¢, — ¢, + 0@, and x. — X« + Oxx. To evaluate
the 0NV derivatives and primordial observables at /V, each trajectory in the bundle is
then brought to a common energy hypersurface with respect to the central fiducial
trajectory emanating from {., x.} where N (., x.) is evaluated. This is done by
calculating p(V) for the central fiducial trajectory and using binary search algorithm
to find the corresponding the number of e-folds N for neighbouring trajectories with

slightly different initial horizon-exit field values with the same energy density.

The partial derivatives of N (¢.,t.) with respect to the field values at horizon cross-
ing {p., x«} are then calculated using a seven—point (or nine—point) ‘stencil’ finite

difference method [189]. Finally, convergence check with respect to the step sizes
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{d¢x, Ix+} used are done to ensure the numerical result are robust against numerical

noises.

In the following, we plot the J N derivatives and the primordial observables evaluated
using this numerical scheme as a function of the step sizes {Jdp., dx.} for some of
the models considered in this thesis, demonstrating there exists regions where the nu-
merical results converge and become independent of the step sizes used. For instance,
Figs. B.2 to B.6 for the quadratic times exponential model and Figs. B.7 to B.11 for
the effective N-flation model. In all the plots, we can see there exists regions where the

numerical results converge with respect to step sizes used.
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Quadratic Exponential Model

First Order 6 NV coefficients

0 T
r,?=0.1, N=66.6
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Figure B.2: Potential: W (¢, x) = Woxze_/\“’Z)/Ms. The model parameters A = 0.05, @, =
1073M,, and x, = 16.0M,. First order N coefficients evaluated using the numerical recipe
discussed as a function of the step sizes: N, (top panel) and N, (bottom panel).
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Second Order 6 N coefficients
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Figure B.3: Potential: W(p,x) = WoXQe*)‘“"z/Mr%. The model parameters A\ = 0.05, ¢, =
1073M,, and x. = 16.0M,,. Second order §N coefficients evaluated using the numerical recipe
discussed as a function of the step sizes: N, (fop panel) and N, (bottom panel).
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Figure B.6: Potential: W(p,x) = Woxze’)‘“"2/M§. The model parameters A = 0.05, ¢, =
1073M,, and x, = 16.0M,. First order 6N coefficients evaluated using the numerical recipe
discussed as a function of the step size ¢, with fixed 6y, ~ O(1072): w1, (top panel) and gnr,
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Figure B.7: W (p,x) = Wy [%mQXQ + A? (1 — cos (27’%0))} The parameters used are: A* =

m? f2 /4%, o, = (5 —0.001) f, x. = 16M,, f = m = M,,. First order 6N coefficients evaluated
using the numerical recipe discussed as a function of the step sizes used, for different combinations
of decay rates and : N, (fop panel) and N, (bottom panel).
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Figure B.8: W (y, x) = Wy [%mzxz + A4 (1 — cos (%’gp))} The parameters used are: A* =

m2f2 /4%, p. = (3 — 0.001)f, x» = 16M,, f = m = M,. Second order 6N coefficients
evaluated using the numerical recipe discussed as a function of the step sizes used: N, (fop
panel) and N, (bottom panel).
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Figure B.9: W (y, x) = Wy [%m2x2 + A% (1 — cos (%’%ﬁ))} The parameters used are: A* =

m2f2 /472, o, = (3 — 0.001)f, x. = 16M,, f = m = M,. Second order 6N coefficient Ny
evaluated using the numerical recipe discussed as a function of the step sizes used: dyp,, with fixed
dx« = 1.1 x 1072 (top panel) and 6., with fixed 5, = 1.1 x 10~*(bottom panel).
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Figure B.10: W (i, x) = Wy [2m?x? + A (1 — cos (27”90)” The parameters used are: A* =

m2f2 /4%, . = (3 — 0.001)f, x. = 16M,, f = m = M,. Observables evaluated using the
numerical recipe discussed as a function of the step size dy. used, with fixed oy, ~ 0(10’2): Ng
(top panel) and fxy, (bottom panel).

This numerical recipe provides a fast, efficient method for computing the d N coeffi-
cients for an arbitrary two—field model, valid beyond slow—roll and through a phase of
reheating. Numerical codes based on the moment transport equations have also been

developed [152] and have been extended to study sub-horizon evolution [190].
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Figure B.11: W (¢, x) = W, BmQX2 + A? (1 — cos (27”4,0))} The parameters used are: A* =

m2f2 /4%, ¢, = (3 — 0.001)f, x. = 16M,, f = m = M,. Observables evaluated using the
numerical recipe discussed as a function of the step size dp, used, with fixed dy. ~ O(1072):
T~L (fop panel) and gni, (bottom panel).

B.1 Discussion on the Definition of Reheating Hyper-

surfaces

As discussed in Section 4.1, the reheating parameters I',, and Iy, are set to zero during
inflation. It is only when each individual trajectory in the bundle passes through its

minimum {xo, o} for the first time that I, and I, are introduced to the field equa-
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tions, sourcing the radiation fluid. In general, for any given trajectory, ¢ will not reach
the minimum of its potential at the same time as x, and so I', and I, are ‘switched
on’ at different times along the same trajectory. Furthermore, for each of the two di-
rections of the potential, the foliation of the entire bundle of trajectories as determined
by each trajectory reaching x( (and likewise ¢) does not in general occur at a surface
of constant time or a surface of constant energy, but rather at a surface of constant y
(and g)'. We refer to these surfaces as the reheating hypersurfaces. For potentials
which have minima in both directions there are two such hypersurfaces. If the poten-
tial does not have a minimum in the x (or ¢) direction, then I'y, = 0 (or I', = 0)
always. Furthermore, we also ensure that when the potential has a minimum in, say,
the x direction, the conditions m, > I', and m, > H are satisfied. This definition
of the reheating hypersurface is more refined than that of [106], where reheating was
initiated at a surface of constant density. It is also different to that of [191], where the

decay terms were present throughout inflation.

The main qualitative results are however independent of the definition of the reheating
hypersurface. We demonstrate this by using the quadratic time exponential model as an
example. Using a different definition of the reheating hypersurface where I' is switched
on when H = I, we plot the final asymptotic value of the observables after reheating
in the model in Fig. B.12. In brief, we see the observables are sensitive to reheating
in the case where A = 0.05 and N, ~ N,. Comparing with the results with Fig. 4.20
in Section 4.3, we again see the final asmyptotic value of fyr, can be sensitive to the
decay rate I'y, particularly for A = 0.05. ns and r however are much less sensitive to

I'y, in this choice of the reheating hypersurface.

IThis is true for global minima. If the oscillations of one field, x say, occurred in a local minimum,
which is a function of the other field, xo(¢), this statement will not hold true. We do not consider such
models in this thesis.
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Figure B.12: W (i, x) = Wox2e ¢ /My

. The final asymptotic values of ng (top left panel), v

(top right panel) and f1, (bottom panel) at the end of reheating as a function of the decay rate Iy,
for four different A. The initial field values are ¢, = 1073M,, and x. = 16.0M,.
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