EPJ Web of Conferences 295, 11018 (2024) https://doi.org/10.1051/epjconf/202429511018
CHEP 2023

Porting ATLAS Fast Calorimeter Simulation to GPUs with
Performance Portable Programming Models

Mohammad Atif?, Zhihua Dong?, Charles Leggett!, Meifeng Lin?, and Vakhtang Tsulaia!

"Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA
2Brookhaven National Laboratory, Upton NY USA

Abstract. FastCaloSim is a parameterized simulation of the particle energy
response and of the energy distribution in the ATLAS calorimeter. It is a rela-
tively small and self-contained package with massive inherent parallelism and
captures the essence of GPU offloading via important operations like data trans-
fer, memory initialization, floating point operations, and reduction. It was iden-
tified by the High Energy Physics Center for Computational Excellence project
as a good testbed for evaluating the performance and ease of portability of pro-
gramming models.

In this paper, we will discuss the results of our evaluation of the porting pro-
cess to Kokkos, SYCL, Alpaka, OpenMP and std::par (nvc++), and compare
performance on NVIDIA, AMD and Intel GPUs, as well as multicore CPUs.

1 Introduction

Simulation is an essential aspect of all High Energy Physics (HEP) experiments and the AT-
LAS experiment at the Large Hadron Collider is no exception, requiring massive numbers
of simulated events for detector modeling. The traditional method of propagating particles
through the detector to model interactions uses the Geant4 toolkit [1], which operates with
small, step-wise increments, and is extremely compute-intensive, especially for the com-
plex detector geometry of the ATLAS Liquid Argon Calorimeter. Using this technique for
all Monte-Carlo simulation of the detector would either consume too large a fraction of the
ATLAS computing budget or limit the physics precision. In order to address this, ATLAS
developed the FastCaloSim package [2] [3] that uses a simplified detector geometry and
parametrizations of shower development initiated by particles traversing the calorimeter vol-
umes. Depending on the processes being modeled, this parametrized simulation can reduce
CPU usage by a factor of 10 to 25 compared to a full Geant4 simulation.

We are currently witnessing a rapid expansion of available architectures for computational
accelerators such as GPUs. Until very recently, NVIDIA was the dominant manufacturer of
GPUs, and there was no reason not to use CUDA [4] to write code for them. In the past few
years, both AMD and Intel have significantly increased their penetration into the computa-
tional GPU market, and we have seen multiple new facilities being built around them, such
as Frontier (AMD) at Oak Ridge National Laboratory and Aurora (Intel) at Argonne National
Laboratory in the US. Some HEP experiments have already committed to using non-NVIDIA
GPUs, such as ALICE which is using AMD GPUs for its online event farm. However, most
HEP experiments lack the resources to rewrite their algorithms for each individual architec-
ture, so a portability solution that can execute on both CPUs and all current GPUs is essential.
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There are a number of portability layers currently available that can target CPUs and GPUs
from the same source code, such as Kokkos, alpaka, SYCL, OpenMP, and std::par. In or-
der to understand their strengths and weaknesses, it is important to evaluate each one using
real-world scenarios from HEP.

The original CPU-based FastCaloSim code has been extracted from the ATLAS reposi-
tory into a standalone package, and ported to run on GPUs [5] using CUDA, where runtime
speedups of as much as 60 times that of a single-threaded CPU process have been demon-
strated. This code offers an excellent opportunity to test other GPU programming mecha-
nisms, as not only is it self-contained with few external dependencies, but also it represents a
real High Energy Physics workflow with valuable physics potential, making it far superior to
an artificial testcase or synthetic benchmark.

The High Energy Physics Center for Computational Excellence (HEP-CCE) [16] has been
evaluating portable parallelization strategies by selecting a number of representative GPU
workflows from HEP and porting them to various GPU portability layers. FastCaloSim has
been chosen as a testbed for this purpose.

2 FastCaloSim

FastCaloSim models the interaction of particles in the ATLAS Liquid Argon Calorimeter by
using a simplified detector geometry and parameterizations of shower development initiated
by particles traversing the calorimeter volumes. During a simulation, the optimal parameter-
ization is selected based on the particle type, energy deposit and location in the detector in
order to best model the corresponding electromagnetic or hadronic shower. The parameteri-
zations are then used to create calorimeter hits, which contain information about the location,
and amount of energy deposited in the detector.

The detector geometry is composed of 187,652 elements arranged in 24 layers. In the
original CPU code, the detector description is encoded in a std: : vector of pointers to ele-
ments, which is not ideal for usage on GPUs. These data structures have been flattened and
coalesced into simple arrays for better performance on the GPU. Similarly, the parametriza-
tion tables, which are also held in an std: :vector, were transformed into a simple array
before being copied to the GPU. The size of the parametrization tables can vary significantly
depending on the type of particles being modeled, from a megabyte for 65 GeV electrons, to
over a gigabyte for high energy #f simulations.

The simulation requires a large number of random numbers. Each hit requires 3, and
events can have up to 20,000 hits. The input data samples are between 500 and 10000 events,
so for some runs we require on the order of 600 million random numbers. These numbers
are generated in batches on the GPU to avoid repeated calls to the generator and regenerated
when the batches are consumed. However, in order to simplify data validation, the random
numbers can also be generated on the CPU and copied to the GPU.

There are three main kernels that perform the simulation on the GPU. The first resets a
large workspace, an array of approximately 200k floats, which corresponds to the detector
elements. The second performs the actual parameterized simulation, calculating into which
detector cells the energy of the hit is deposited, and is mostly composed of floating point
operations. Atomic operations are used to accumulate the energy deposits. A block reduction
method was evaluated in order to avoid the use of atomics but was found to be less performant.
Itis parallelized over the number of hits in the event, with each hit being assigned to a different
thread. If the hit count per event is below a certain minimum, then the kernel is not offloaded,
but instead computed on the CPU, as the kernel launch penalty becomes larger than the CPU
computation time. This minimum is on the order of 500 hits. The last kernel performs a
stream compaction step, counting the hit cells and gathering the result for more efficient data
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transfer back to the host. Since the algorithmic processing is sequential in nature, the kernels
are launched synchronously. After the third kernel executes, an array of structs containing
the cell identifiers and their energy deposits are transferred back to the host.

For some particle types and energy combinations, the number of hits in the detector is
small, leading to under-utilization of GPU resources. To increase the load on the GPU, we
grouped hits between multiple events, providing sufficient extra information to the kernels to
disambiguate between the grouped events. Though this method slightly increases the sizes
of the data structures on the GPU, it allows for much longer running kernels, overshadowing
the launch latency penalties and using all the computational cores on the GPU.

3 Portability Layers
3.1 Kokkos

Kokkos [6, 7] is a portable, performant, C++ based shared-memory programming model that
is single source, i.e. it lets you write algorithms once and run on any supported backend
architectures, such as a traditional CPU, NVIDIA, AMD, and Intel GPUs, and manycore
CPUs, minimizing the amount of architecture-specific implementation details that users need
to know. It provides a number of different parallel abstractions available, such as parallel_for,
reductions, and scans, and also provides utilities such as random number generators, and
support for atomic operations, chained kernels, and callbacks. The library, which is mostly
header-based, is compiled for a selected set of backends - one serial, one host parallel, and
one specific accelerator device can be chosen in a single binary. These backends must be
selected at compile time. Though it provides constructs for allocating and managing data
on the host and accelerator devices, these can be wrapped around pre-existing data objects.
Execution kernels can also use bare pointers to operate on data allocated and transferred by
other means.

3.2 SYCL

SYCL [8] is a cross-platform abstraction layer intended for heterogeneous computing, based
on OpenCL, and originally released by the Khronos group in 2014. Since then, there have
been a number of implementations by different groups. Like Kokkos, it is also intended
to support single source portable C++ programming. It does not mandate explicit memory
transfers, but rather builds a directed acyclic graph (DAG) of kernel data dependencies, and
transfers the data between host and offload device as needed. SYCL runs on a broad range
of architectures, and in theory, permits the selection of the execution devices at runtime. In
practice, different accelerator backends require different compilers, such as openSYCL, to
target AMD GPUs, and different builds of llvm/dpc++ to target NVIDIA or Intel GPUs.

3.3 OpenMP

OpenMP [9], originally a shared-memory programming model through compiler directives,
has extended support for parallel execution on both host and device architectures via its
target offload model. Several compilers currently support OpenMP’s target offload,
among which LLVM Clang and GCC are community-developed, while NVIDIA’S nvc++,
AMD’s amdclang, AOMP, AFAR, and Intel’s icpx are vendor-developed. As the compilers
are undergoing rapid development, appropriate flags that vary with compilers and architecture
are currently required for device execution. Among the compilers, LLVM Clang stands out
due to the support from the developers and because most vendor based compilers are based
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on it. It offers features such as optimization remarks and debug environments. The optimiza-
tion remarks, invoked with flags -Rpass=openmp-opt, -Rpass-analysis=openmp-opt,
and -Rpass-missed=openmp-opt provide details about the location or movement of data
and insights into performance improvement or degradation.

3.4 alpaka

Alpaka[12-14] is another single source portability layer implemented as a header-only C++
library. Alpaka is platform-independent and it allows for concurrent use of multiple devices,
such as the CPU host and the attached accelerators. User kernels are represented by function
objects with a special interface. There is no need to write specialized code in various GPU
programming languages, only one implementation of the kernel works across different de-
vices. The alpaka library provides backends for several GPU programming technologies (e.g.,
CUDA, HIP, SYCL, OpenMP) and for several CPU threading libraries (e.g., C++ Threads,
Intel TBB). Its C++ template interface allows for implementing user-defined extensions of
the list of supported accelerators and libraries. The abstraction used by alpaka is similar to the
strategy used by CUDA, which builds a parallel execution hierarchy from elements, threads,
blocks, and the grid. In the alpaka library, the memory allocation function is uniform for all
devices, including the host. It returns reference counted memory buffer objects that take care
of proper memory handling for specific backends. Finally, for porting the existing CUDA
code alpaka offers its extension called cupla [15], where only the includes and syntax of the
kernel calls need to be changed, while the kernel body remains intact.

3.5 std::par

std::execution::parallel (std::par), is an existing C++ standard introduced in
C++17 to enable parallel processing of algorithms on CPUs by defining execution policies.
It offers execution policies such as serial, parallel execution using threads, and parallel exe-
cution using threads and vectorization. NVIDIA introduced a new compiler (nvc++) in 2020
which enabled the execution of these policies on NVIDIA GPUs. In order to transparently
move data between host and device, nvc++ uses unified shared memory, with data being
migrated on demand via page faults. It is not intended to be a replacement for a low-level
language such as CUDA, as it lacks many GPU-specific features and optimizations, but rather
as a stepping stone or bridge between CPU-based serial code, and that explicitly written for
GPUs, dramatically lowering the entry bar for execution on accelerators. Intel also has a
compiler (oneAPI :dpl) that mostly supports this standard.

4 Porting Experience

A CUDA version of FastCaloSim had been produced by a previous project and was used as a
starting point for the ports to the various portability technologies. Since it had already been
heavily tested, we used the CUDA version as both a performance baseline, and a source of
validated "truth".

In order to maximize code reuse, the FastCaloSim git repository was structured so
that the same branch would be used for all the portability technologies. We kept the
same CMake infrastructure as the original code, and added configuration time switches,
such as -DUSE_KOKKOS=0ON or -DUSE_ALPAKA=O0N, to select the desired technology at build
time. Technology specific files were identified by name, such as File.cxx would be used
by all technologies, File_cu.cu would be used for CUDA, File_kk.cxx for Kokkos,
File_al.cxx for alpaka, etc.
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One low-level GPU feature that is used by FastCaloSim is incrementing integer and float
counters using atomics. We tried to use the portability layer specific implementation for
each portability layer, instead of using a device-specific implementation, in order to maximize
portability.

4.1 Kokkos

Kokkos permits the intermingling of native and Kokkos kernels in the same application or
even file, for example if the CUDA backend of Kokkos is used, then code written in CUDA
can be used in the same file as a Kokkos kernel. This permits the piecemeal migration of
kernel, greatly simplifying the process.

FastCaloSim uses shared libraries, so Kokkos needs to be compiled with this feature en-
abled. However, shared libraries are not compatible with device symbol relocation, meaning
that all symbols within one kernel have to be visible by a single compilation unit. Due to the
file and class structure of FastCaloSim, which we attempted to preserve, this required using
a wrapper file that used #include to load individual files into one. In order to simplify this
process, and to be able to reuse as much common code in the CUDA and Kokkos imple-
mentations, a considerable amount of code refactoring was necessary. One issue is that the
main Kokkos include headers cannot be exposed to nvcc, the CUDA compiler, so careful file
separation and judicious use of macros to select compilation paths are necessary to maintain
the CUDA/Kokkos separation while maximizing the amount of shared code. However, the
effort put into this refactoring paid off later by considerably simplifying the ports to other
technologies.

While Kokkos: : View<> can wrap data objects that have been previously allocated on
host or device, in order to fully explore the Kokkos API and maximize portability, we rewrote
all data allocations to use Kokkos: :Views natively. We did, however, simplify the port-
ing process by first wrapping pre-existing structures before fully converting them to native
Views. FastCaloSim uses a number of different data structures that need to be transferred to
the device, from simple structures to more complicated arrays of classes and jagged multi-
dimensional arrays. While the former are easy to convert to Kokkos: :View, the latter are
not well supported by Kokkos, which strongly recommends against using Views of Views.
We chose to convert these jagged arrays to either regular 2-dimensional arrays by padding
them, or flattened them into 1-dimensional arrays. This required a significant amount of extra
boilerplate code as compared with the CUDA implementation.

The Kokkos runtime needs to be explicitly initialized and finalized. This requires in-
serting appropriate code into the main() routine, and since this routine is shared between
portability technologies, it is necessary to protect it with macros so that it only gets used dur-
ing Kokkos builds. Kokkos uses lambda syntax to define its kernels, but while the syntax is
different than the triple chevrons used by CUDA, the functionality is largely the same, and the
conversion between the two is trivial. Kokkos: :atomic_fetch_add was used to increment
the atomic counters.

Kokkos code could be somewhat challenging to debug and profile, as at runtime, the
kernel names are heavily templated and very long. Profilers such as nsys will often truncate
these long names, rendering the kernels indistinguishable.

4.2 SYCL

Intel provides a CUDA — SYCL translation program, originally called the DPC++ Compati-
bility Tool, now an open source project called SYCLomatic, which we tried using to generate
the first pass of the SYCL port of FastCaloSim. While this proved instructive in generating
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useful boilerplates for kernel dispatching, queue generation, and data buffer creation, it did
not in fact generate runnable code. So, unlike the other ports, instead of trying to merely
translate the CUDA code to the SYCL syntax, we instead re-wrote the code following SYCL
best coding practices.

We kept the structure of jagged arrays, and used a mixture of explicit data transfers and
Unified Shared Memory for automatic data migration. The explicit transfers were used for
the more static data, such as the detector geometry and parametrization tables, while the USM
was used for the event varying data that the kernels would work on.

At the time of code development, there was no uniform interface from SYCL to GPU
based random number generators. We developed separate implementations for Intel, AMD
and NVIDIA devices, and then ultimately made an addition to the Intel OneMKL random
number generator that offers both buffer and USM based data access and uses cuRAND and
rocRAND for native hardware support on NVIDIA and AMD GPUs.

Intel offers very powerful tools for profiling and debugging SYCL on Intel hardware. We
were very fortunate to have access to development prototypes for the Aurora supercomputer
during our studies which enabled us to run these profiling tools. These tools are now available
to run on commodity Intel GPUs.

The SYCL standard and language implementations were seeing tremendous development
while we were working on FastCaloSim. This was both a blessing, as many bugs that we
discovered were resolved, and new features, such as support for atomics were added, as
well as being a curse, since features or syntax that worked in one release would not func-
tion in another, and careful selection of specific builds of the compilers, of which they were
many, were required. We experimented with a number of different compilers, including In-
tel’s one API/dpc++ (for Intel GPUs), hipSYCL/openSYCL (for AMD GPUs), Codeplay (for
NVIDIA GPUs), and llvm (for Intel, NVIDIA and AMD GPUs). Some of these no longer
exist, or have been subsumed by others. SYCL compilers have since stabilized, resulting in a
much smoother developer experience.

4.3 OpenMP

The FastCaloSim port of OpenMP’s target offload was relatively easy to implement.
OpenMP allows simultaneous device and host parallelization and is interoperable with other
programming models. This makes an incremental porting of a serial C++ code or an existing
CUDA code easy. The major modifications when porting from an existing CUDA imple-
mentation were inserting appropriate memory allocation APIs and replacing CUDA kernel
calls with compiler directives. The data structures containing the geometry and random
numbers were allocated on the GPU using omp_target_alloc which requires the clause
is_device_ptr to indicate to the compiler that a pointer has been allocated memory on the
target device. The arrays were moved between host and device using omp_target_memcpy
whenever needed.

The declare mapper directive along with targer enter/exit data map was pre-
ferred over individually mapping members of structure with data map as the latter is
slower. LLVM Clang has been introducing compiler flags such as -fopenmp-cuda-mode,
-fopenmp-assume-no-thread-state, -fopenmp-assume-no-nested-parallelism
for performance optimization, and -foffload-1to for link-time optimization. The com-
piler flag -fopenmp-cuda-mode drastically improved performance on NVIDIA GPUs for
sequential simulations, but did not have a significant impact on AMD GPUs or group sim-
ulations. The rest of the compiler flags had marginal impact on the performance. Further
performance optimization required fine-tuning the number of threads per team and carefully
managing static variables with map and target region clauses [10, 11].
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Performance profiling on NVIDIA hardware can be achieved with Nsight Systems’
profile tool with command-line argument --stats=true --trace=openmp,cuda. This
generates an nvprof-style profiling data about data movement and offloaded kernels. Sim-
ilarly, rocprof from the ROCm stack with option --stats generates profiling data of the
offloaded kernels on AMD hardware. The environment variable LIBOMPTARGET_INFO=-1
also provides detailed runtime information about the performance of the various offloaded
kernels. Debugging is at times challenging as tools like compute_sanitizer have limited
support from the vendors for OpenMP offloading. The demangling tools do not seem to
work for symbols beginning with __omp_offloading_. However, LLVM Clang offers de-
bugging options via the flags -fopenmp-target-debug=<N> or the environment variable
LIBOMPTARGET_DEVICE_RTL_DEBUG=<N> for compile time and runtime debugging respec-
tively.

4.4 alpaka

The process of porting FastCaloSim code to alpaka was rather straightforward. The learning
curve was rather steep due to the challenging nature of the alpaka coding style and principles.
Also, the first piece of code in FastCaloSim which we decided to port from CUDA to alpaka
was the code generating a set of random numbers on the accelerator. At the time of the code
development, the documentation/guidelines for developing random number generation code
in alpaka were missing, and the number of code snippets showing the usage of random num-
ber generators within alpaka examples was rather limited (the situation in this area has since
been greatly improved). As a result, it took us longer than anticipated to complete the first
porting task. Nonetheless, becoming familiar with developing random number generation
code in alpaka was a valuable experience in the overall learning process.

Similarly to Kokkos, it is possible to mix alpaka code with native GPU application code
(e.g., written in CUDA when targeting NVIDIA hardware) in the same application. This
feature turned out to be very helpful in the process of step-by-step migration of the existing
CUDA implementation of FastCaloSim to alpaka. This made it also possible to check the
correctness of the migrated code by using the original CUDA implementation as a reference
and validating alpaka implementations of kernels one at a time. In general, we found the
process of porting CUDA kernels to alpaka relatively simple, as in our application the kernel
bodies remained practically unchanged.

In general, given that alpaka offers a heavily templated, low-level API, the application
code written in alpaka tends to be rather verbose. Hence, for applications with a large code
base, it may be beneficial to implement a shallow layer of template functions on top of the
alpaka API in order to hide this complexity from the application code.

alpaka offers two mechanisms for performing memory operations (e.g., allocation, and
copying). One can either explicitly allocate memory using reference-counted alpaka buffers
or use already pre-allocated chunks of memory via alpaka memory views. In the alpaka im-
plementation of FastCaloSim we used only the former mechanism, which is also an approach
recommended by the alpaka developers as the usage of buffers removes the need for manual
freeing and the possibility of memory leaks. As mentioned above, FastCaloSim uses differ-
ent data structures, including some jagged arrays. There is no explicit support for jagged
arrays in alpaka, so we took the approach of flattening them into 1-dimensional arrays. This
required the addition of some boilerplate code, although the amount of such extra code was
not dramatic.
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4.5 std::par

We encountered a major hurdle in porting FastCaloSim to std: :par - after compiling all
of FastCaloSim with nvc++, we suffered from runtime errors when using a ROOT library
compiled with g++. We were unable to perform a purely native build of ROOT using nvc++,
and were thus forced to compile part of the project which used ROOT with g++ and the parts
that were offloaded to the GPU with nvc++. Since CMake only permits one compiler per
file extension, this required creating a compiler wrapper that would select the appropriate
compiler and compile flags based on the directory in which the file was located.

nvc++ migrates data between host and device automatically, triggered by page faults on
memory accesses. At compile time, it instruments object allocations to aid this process.
However, if data is allocated using g++, this instrumentation is absent, and so a runtime error
will occur if the data is accessed on the device. It needs to be copied to another structure
allocated by nvc++ before it can be utilized on the device.

std: :par was designed to be used on STL algorithms and containers, with access via a
forward iterator. It lacks the ability to access a specific index. When multiple containers or
data structures need to be accessed within a single kernel, having an index is essential. When
utilizing the C++20 specification, this functionality can be accomplished using an mdspan,
but C++20 was not compatible with ROOT at the time of our studies. For C++17, which is
the latest version of the standard supported by FastCaloSim, we needed to use a helper class
called the CountingIterator to replicate index based access to arrays.

FastCaloSim makes use of atomic operations on floats and integers, however
std: :atomic<float> is only supported by C++20 and later. To work around this limi-
tation, we tried two techniques - converting the float to an appropriately scaled integer and
using a std: :atomic<int>, and by using the CUDA implementation atomicAdd(float).
While the latter is not a portable solution, nvc++ currently only works for NVIDIA GPUs,
and this was used as a comparison and placeholder until we could implement a C++20 com-
patible solution.

5 Performance Results

When benchmarking the performance of the Kokkos port of FastCaloSim, the overheads from
the Kokkos layers over the data structures and the kernel launches becomes immediately
evident. As seen in Figure 1, where the timing of the individual kernels, data transfers and
overall event loop is shown relative to a native CUDA, HIP or SYCL implementation, Kokkos
imposes a non-negligible penalty on the creation of objects in Views, the dispatching of
kernels, and the data transfers from device to host. This is exacerbated by the fact that the
kernel runtimes are between 10 and 100 us on an NVIDIA A100, and thus heavily impacted
by the unavoidable kernel launch latency, which is on the order of 5 to 10 us. The apparently
good performance of the HIP backend to Kokkos for the simulation kernel is in fact due to
the very poor performance of FastCaloSim on AMD hardware, with runtimes being between
40x and 4000x slower than on NVIDIA GPUS, depending on the energy of the simulated
particles, which overshadows the overheads from Kokkos. The SYCL backend on AMD
hardware has significantly worse performance for the main simulation kernel than the other
technologies, however the code is still very immature and lacks the years of optimization that
the Kokkos developers have had for the NVIDIA and AMD backends.

We also see performance penalties when using the host parallel backends of Kokkos to
run on multiple CPU cores using OpenMP or pThreads. As shown in Figure 2, the single core
serial backend of Kokkos runs at about 75% of the speed of the original CPU implementation
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when measuring the full event loop runtime. As the number of threads or processes is in-
creased, we see performance topping out at around 12 threads/processes, though the runtime
is only about 2x that of the original CPU implementation.

The performance with SYCL is much more uniform. As shown in Figure 3, we see close
to native performance on a variety of hardware, including both GPU and CPUs. While we did
observe some overheads from the use of Unified Shared Memory for the automatic migration
of data between host and device, the amount of data transferred per event is relatively small,
and thus these overheads remain small. We witnessed the same poor performance of the main
simulation kernel on AMD hardware as compared with NVIDUA GPUs when using SYCL
for several different SYCL compilers, including hipSYCL (now openSYCL) and llvm, though
the SYCL performance was in fact slightly better than the native HIP implementation.

The performance of OpenMP is somewhat consistent with Kokkos for GPU backends.
The NVIDIA GPUs are about 10x faster than AMD GPUs for 65 GeV energy runs (see Figure
5) with a larger disparity being observed in higher energy runs. We also observe that LLVM
Clang’s optimization flags - fopenmp-cuda-mode improves performance on NVIDIA GPUs
by 10x but has no impact on AMD GPUs. For the host backends, OpenMP’s performance
improves with the number of threads (see Figure 6) even benefiting from hyperthreading up to
48 threads. Performance comparison with native programming models reveals an interesting
pattern: on NVIDIA V100 for all energies, the data copy from device to host using OpenMP
shows similar performance to CUDA, however, the kernels are about 1.5% to 2x slower (see
Figure 7). On AMD MI100 GPUs, on the other hand, the data copy from device to host using
OpenMP is 1.5x to 20x slower than HIP for different energies (see Figure 8), however, the
offloaded kernels either perform better than or similar to HIP.
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The std: :par implementation produced some very interesting results. While for sin-
gle event simulation, where the kernel times are less than 100 us, we do see a significant
overhead in the main simulation kernel runtimes due to the translation to Thrust that nvc++
performs in order to run on GPUs, as the workload on the GPU increases with increased
particle energies, this overhead goes down (see Figure 9). And for event batched data, where
the kernel runtimes are on the order of milliseconds, std: :par performed better than the
original CUDA implementation for high energy particles (see Figure 10). We also saw a sig-
nificant performance hit, sometimes as much at 70%, when using atomicAdd(float) from
CUDA to perform atomic operations instead of a scaled std: :atomic<int> operation. We
also observed another unusual effect, where data transfers between device and host were up
to 50x slower when the host had an AMD CPU instead of one from Intel (see Figure 4). This
phenomena was reproduced on several systems with different combinations of GPUs and
CPUs. Another interesting result was that the CPU serial backend to std: :par ran 10-20%
faster than the original CPU version, showing the advantage of refactoring the code to expose
the parallelism.

Figure 11 shows the results of performance comparisons between alpaka implementa-
tions of the FastCaloSim using event-batched data with CUDA and HIP backends and corre-
sponding native implementations. The general observation is that with alpaka we are getting
quite similar performances in all tests, except for memory copying operations on M100 GPU
where alpaka adds a visible overhead compared to native HIP. For the execution of simula-
tion kernels on NVIDIA GPUs we even observe a slight speedup when using alpaka kernels
compared to native CUDA implementations.
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6 Conclusions

There are a number of competitive alternatives to CUDA currently available that enable cross
platform compatibility on GPUs, including Kokkos, SYCL, OpenMP, alpaka and std::par.
Each portability layer has its own characteristics, and associated advantages and disadvan-
tages. There is no turn-key solution, and all layers require a certain amount of work to port
to, though since we had a CUDA implementation to start with, the most challenging aspect of
porting code to GPUs, i.e. exposing the parallelism and refactoring the exported data objects,
had already been accomplished. None of the developers were familiar with the portability
layers under study when this project started, so each port had an associated learning curve.
std::par was the easiest to learn, as it is plain C++, and alpaka the most abstruse. Kokkos,
SYCL and OpenMP fall between the two extremes. We found that for short kernels, the
overheads from Kokkos structures can be much more significant than for the other portability
layers. We found that the alpaka coding style to be rather verbose, with significant amounts
of boilerplate code needed. Intel offers a powerful SYCL ecosystem for code development,
debugging and profiling, as well as tools to aid conversion from CUDA, though it is not a
turn-key process. OpenMP required a significant amount of experimenting with different
compiler flags to achieve optimal performance, though was able to exercise host-parallel tar-
gets better than all others. std::par had significant hurdles in setting up the build system,
which we expect to be corrected as the compiler matures, but performed remarkably well
after that. We were ultimately able to extract reasonable performance from all the different
portability layers.

The choice of a portability layer for a project is a complicated decision. Though impor-
tant, merely evaluating performance is insufficient. There are many aspects of a project, such
as external dependencies, build systems, library structure, and available hardware which must
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be considered. Despite being small and self-contained, while FastCaloSim has allowed us to
explore many aspects of this decision phase space, it is by no means an exhaustive evaluation.
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