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The universe itself keeps on expanding and expanding

In all of the directions it can whizz

So remember, when you’re feeling very small and insecure
How amazingly unlikely is your birth
And pray that there’s intelligent life somewhere out in space

"Cause it’s bugger all down here on Earth

“The Galaxy Song” from the 1983 film Monty Python’s The Meaning of Life.



Abstract

This compendium thesis compiles three scientific articles elaborated during my doctoral
studies. These articles are framed within the field of computational cosmology and explore
different aspects related to the analysis and interpretation of cosmological simulations.
Cosmological simulations involve computational algorithms for studying the behaviour of
multiple particles under the effect of gravity in a cosmological context. Such simulations
are instrumental in characterizing the formation processes and to connect the theoretical
predictions of cosmological models with the observations made by telescopes that map the
positions and properties of hundreds of millions of galaxies. In this document, after a brief
introduction to the field of modern cosmology, I will describe the three main articles that
constitute this thesis. First, I will explain how it is possible to employ certain models known
as "semi-analytical" to populate with galaxies the simulations that only use gravitational
interactions to predict the formation of structures. This way it is possible to connect the results
from simulations with galaxy observations from space-based or ground-based telescopes.
Secondly, I will present a model that we have developed for accurately predicting the internal
structure of dark matter halos, which are gravitationally bound structures that generate the
potential wells within which galaxies form. This model accurately captures how the internal
structure of the halos depends on their formation time, which in turn depends on other
properties such as halo mass, the cosmic time at which halos are observed, and the underlying
cosmological model that is assumed. Finally, I will explain how to develop a model based on
machine learning techniques for predicting regions in the initial conditions of a simulation
that end up forming different dark matter halos. This technique makes use of neural networks
to capture complex halo formation processes and can be used to make fast predictions, as
well as to investigate which aspects of the initial conditions play a role in halo formation.
Altogether, these studies contribute to improve the analysis and interpretation of cosmological
simulations. Moreover, they show how the use of novel techniques such as machine learning
methods can complement traditional methods for studying structure formation processes.
These advances are currently of paramount importance as cosmological simulations represent
the most important tool employed to interpret galaxy survey observations. In conclusion,
the results presented in this work contribute to enhancing our general knowledge about the
structure of the Universe and offer a novel perspective from which to approach observational

cosmology, paving the way for future research.
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Resumen

Esta tesis por compendio consiste en la recopilacion de tres articulos cientificos elaborados
durante el transcurso de mis estudios doctorales. Estos articulos se enmarcan dentro del
campo de la cosmologia computacional y exploran distintos aspectos relacionados con el
andlisis y la interpretacion de las simulaciones cosmoldgicas. Las simulaciones cosmoldgicas
se basan en el empleo de algoritmos computacionales para estudiar el comportamiento de
multiples particulas bajo los efectos de la gravedad en un contexto cosmoldgico. Estas
simulaciones sirven para caracterizar la formacion de estructuras en el Universo y conectar
las predicciones tedricas de modelos cosmoldgicos con las observaciones llevadas a cabo por
telescopios encargados de registrar las posiciones y propiedades de cientos de millones de
galaxias. En este documento, tras realizar una breve introduccién al campo de la cosmologia
actual, pasaré a describir los tres trabajos principales que conforman esta tesis. En primer
lugar explicaré como es posible usar ciertos modelos conocidos como "semi-analiticos"
para poblar con galaxias simulaciones que s6lo emplean la interaccion gravitatoria para
describir la formacién de estructuras. De esta forma es posible conectar los resultados de
simulaciones con los datos sobre posiciones de galaxias observados por telescopios espaciales
o terrestres. En segundo lugar presentaré un modelo que hemos desarrollado capdz de
predecir con precision la estructura interna de halos de materia oscura, estructuras ligadas
gravitacionalmente que generan los pozos de potencial gravitacional dentro de los cuales
se forman las galaxias. Este modelo captura con precision cémo depende la estructura
interna de los halos en funcién su instante de formacién, lo cual depende a su vez de
otras propiedades tales como la masa de los propios halos, el tiempo césmico en el cual se
observan, y el modelo cosmoldgico subyacente aque se asume. Por dltimo explicaré cémo
es posible emplear un modelo basado en técnicas de aprendizaje automadtico para predecir
las regiones en las condiciones iniciales de una simulacion que acaban formando distintos
halos de materia oscura. Este técnica emplea redes neuronales para caracterizar procesos
complejos de formacién de halos y puede ser empleada tanto para realizar predicciones
rdpidas, como para investigar qué aspectos en las condiciones iniciales juegan un papel
relevante en la formacién de halos. En conjunto, todos estos trabajos mejoran el anélisis
y la interpretacién de las simulaciones cosmoldgicas. Ademads, muestran cémo el uso
de ténicas novedosas como elaprendizaje automdtico pueden complementarse con métodos
tradicionales para estudiar procesos de formacion de estructuras. Todos estos avances resultan
de capital importancia en el momento actual ya que las simulaciones cosmoldgicas son la

herramienta principal empleada para intepretar los datos recogidos por nuevas campaiias
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observacionales que registran la estructura a gran escala de nuestro universo a través de las
posiciones de numerosas galaxias. A modo de conclusién, los métodos presentados en este
trabajo ayudan a mejorar nuestro conocimiento en general sobre la estructura del Universo y
oferen una perspectiva novedosa desde la cual investigar la situacion actual de la cosmologia

observacional allanando el camino para futuras investigaciones.
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Introduction

As I have highlighted in the abstract, the primary research topics I have addressed during
my PhD relate to structure formation processes, the study of the internal structure of dark
matter (DM) haloes, and the characterization of galaxy populations through cosmological
simulations. Throughout my years of doctoral studies, I have also dedicated significant time
to understanding fundamental aspects of cosmology that constitute the theoretical backbone
upon which different research areas in this field sprout.

In this introduction, I will emphasize some of the most relevant principles that serve as
building blocks of cosmology as a whole and make my way to the current open problems
I have been working on. My intention is not to create a self-contained manuscript from
the most fundamental aspects of cosmology to the current state of the field. Instead, I
aim to methodically present core topics I consider essential, from the formulation of general
relativity using differential geometry to modern cosmology topics like numerical simulations,
large-scale structure surveys, and structure formation theory. My goal is to present an
introduction that serves as a structured roadmap, referencing comprehensive sources and
covering relevant topics at various levels to outline cosmology’s broader landscape.

The introduction is structured as follows: first I will outline some basic concepts of
differential geometry that serve as pillars for defining general relativity (0.1). Then I will
introduce in a simple way the formulation of general relativity (0.2). Afterwards, I will explain
how cosmology arises from general relativity by solving the background homogeneous and
isotropic case (0.3). Next, I will focus on topics more relevant to my work related to structure
formation processes and the growth of perturbations (0.4). Finally, I will comment on
some of the current open problems in cosmology directly relevant to my research (0.5), and
contextualize the different projects I have been working on (0.6), thus paving the way to the

main chapters of this thesis.

0.1 Fundamentals of differential geometry

I believe that the best way to learn any topic in physics is to first gain a solid understanding

of its mathematical foundations. While developing intuition is also crucial, it becomes
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increasingly unclear what form this intuition should take as the physical process at hand
strays from our everyday classical experience. This is especially true for areas like quantum
physics and general relativity where intuition can only flourish after some previous effort in
understanding (and practising) with its underlying mathematical footing.

Although the role of a mathematical formalism, in this case differential geometry, might
not play a fundamental role in day-to-day calculations (depending on the field), I think it is
crucial to have a good grasp of it. Differential geometry is the real theoretical backbone upon
which general relativity (and therefore cosmology) is built. Many interesting phenomena
can only be truly comprehended after consolidating the basic knowledge of this topic.
Understanding differential geometry it is also essential to comprehend how fundamental
modifications can yield alternative theories of gravity other than general relativity.

The lectures by Prof. Frederic P. Schuller at the WE-Heraeus International Winter
School on Gravity and Light provide an excellent introduction to this topic Schuller (2015).
A detailed transcription of these lectures, accompanied by supplementary materials, is
available in Dadhley (2015). This series of lectures pivots around a central sentence that
encapsulates the formulation of general relativity through differential geometry: "Spacetime
is a four-dimensional topological manifold with a smooth atlas carrying a torsion-free
connection compatible with a Lorentzian metric and a time orientation satisfying the Einstein
equations".

To fully grasp the meaning of this sentence, it is necessary to dissect it into smaller
chunks and tackle each of them separately. In Appendix A, I present a series of definitions to
elucidate what constitutes a "four-dimensional topological manifold with a smooth atlas". For
a detailed explanation of the sentence’s middle portion — "carrying a torsion-free connection
compatible with a Lorentzian metric and a time orientation" — I direct the reader to Schuller
(2015) and Dadhley (2015). The final part of this sentence, "satisfying the Einstein equations",
is addressed in the following Section 0.2.

Although it is unavoidable to delve into precise mathematical definitions to truly
understand this phrase, I will try to give an intuitive explanation of what the different parts
of it mean before moving on to the next section. The three-dimensional space that we are
familiar with can be regarded along with time as a single mathematical entity comprised by a
set of points in four dimensions with nice properties. By "nice properties" I refer to the fact
that the points of spacetime behave in relation to each other in such a way that it is possible
to represent them in an orderly and smooth manner, somewhat like an elastic fabric. On top
of this structure that represents a "four-dimensional smooth manifold" we need to impose
additional constraints that describe how objects (for example, tensors) transform when they
move from one point of this space to another (this is related to the part "carrying a torsion-free

connection"). We also need to specify further requirements to build a physical theory which
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is locally compatible with special relativity (in connection with the part "with a Lorentzian
metric and a time orientation"). Nevertheless, this construction does not fully constitute what
we refer to as the theory of general relativity; it is necessary to state how the presence of
energy and its momentum affects the "shape of our well-behaved and soft elastic fabric", and

for that we need to postulate Einstein’s equations.

0.2 General relativity

The differential geometry framework presented in Section 0.1 (and references therein)
specifies how spacetime is defined in the context of general relativity. However, the physical
core of general relativity is constituted by the Einstein equations. Einstein’s equations
describe how the metric, g,,,,, which characterizes the structure of spacetime, is affected by
the matter-energy distribution, described by the stress-energy tensor 7,,,,.

Numerous comprehensive sources provide excellent introductions to general relativity
and Einstein’s equations, for example, see (Ortin, 2007; Zee, 2013). In this section, I will
outline how to derive the equations of motion of a system from its Lagrangian density (using
the stationary-action principle) and formulate the Cosmological Einstein equations from the
Einstein-Hilbert action.

For any given Lagrangian density, £, explicitly dependent on special relativistic fields?,
¢'(x*), and their corresponding first derivatives®, 9, ¢ (z*), we can write its corresponding

action as:
S ("), 0,0' (a"); 2] = / d'z {L [¢(2"),0,¢'(a"); "] }
)
Taking an arbitrary infinitesimal variation, d,, and assuming the coordinate variations dz* to

be zero by hypothesis,

[au 76‘1}:0
LuAL

00S = / d*z {6, L} = / d*z { G5 L 600" + 05,5 L 600,40’
b))
35S = / d*x {820" [P L — 8,0,4 L]} + / d*x {0, [0, L 0ad’] }
Y

If we now impose that the field variations vanish over the boundary, [§,¢"|ss+, the second

term cancels out:

[(2 oy [?gmiﬁdaq’)i}} (G £ 6u e = 0.

’Defined on a four-dimensional sm\ooth manifold whose elements we denote with coordinate map
components x*.

31 will employ the notation Oy = 82” . Itis possible to consider the more general case where the Lagrangian
density, £, also depends on higher derivative terms of the field, {qbi, 0,¢", 00,4, ... . However, most physical
laws can be obtained considering only the first two terms.




Taking into account the stationary-action principle, 6,5 = 0, we obtain the

Euler-Lagrange equations from the first term:
(5(18 — /d4$ {5a¢z [ ¢z£ - 6Maau¢i£] } «5=0 a¢z£ - 6Maaﬂ¢i£ - O

Although not all the equations in physics can bs obtained from an action formulation,
most of them do. In particular, the equations of motion for the gravitational field, Einstein’s

equations, can be derived starting with the Einstein-Hilbert action,

C3
St (G (21); 2] = TonCn / d'zv/=gR(gum),

where Gy = 6.67430(15) - 10~ "m3kg~1s~2 (Mohr and Taylor, 2000) is the gravitational

constant, and R(g,, ) is the Ricci scalar, which depends on the metric as follows:

Ricci scalar: R = ¢""R,,
Ricci curvature: R, = R% ..,

Riemann-Christoffel curvature tensor: R’ = 0,17 ,5 — 0,17 15 + T? 0T, — [7,,I*

1
5 (ang/w + aug,lm - augm) .

Christoffel Symbols of the Second Kind: I’ = 5

After extensive manipulation (see Ortin, 2007, for an explicit derivation), we can derive

the following equation:
1
0Sen [gu (2); 2] = / d*zv/—yg {59“5 {Raﬁ - §gaﬁR] Va (9770055 — ¢7"oTg,)
by

If the covariant derivative® gives a term that vanishes when dg,, = 0 on the boundary’, we
obtain the Einstein equations in the vacuum,
1
G" = R" — —¢g"R=0.
2 g

*The covariant derivative V, of a tensor r-times contravariant and s-times covariant, Tyt is defined
as:

W1y 1oy
VI =0, ThH 1+ ...

Vg

“._|_]_"M1 T2 B + ...+ THr THL e —1

QR V]...Vg ARk~ V1...Vg
_T« Pl _ T« IRy 7S
Fl/lﬁ,TOLVQ...l/S FvsmTul...yS_la

3 At this point it is necessary to point out a very interesting appreciation about the Einstein-Hilbert action
that is rarely mentioned in most textbooks but that is carefully addressed in Ortin (2007): "The Einstein—-Hilbert
action contains second derivatives of the metric. However, the terms with second derivatives take the form of a
total derivative. This means that the original action can in principle be used to obtain equations of motion that
are of second order in derivatives of the metric. However, we would have to impose conditions on the derivatives
of the metric on the boundary. [...]. The solution to these problems consists in adding a general-covariant
boundary term to the original Einstein—Hilbert action.". This term is known as the Gibbons—Hawking—York

boundary term and is given by:
1
SGHY = /( d3ye\/ﬁK.
8 M



We can now consider what is the effect of matter by including an additional term in the
action, Sy, [g, (2#), ¢'(2*); 2#], that depends on the matter fields, ¢(z#). If we define the

matter stress-energy tensor as

2¢ 08y,
v—9g 59;1117

Where T satisfies the continuity equation: V,71* = 0. We recover the Einstein

i ']

equations in presence of matter:

g = TGN g

ct

Finally, let’s consider the effect of including a cosmological constant, A, term in our

action,
3 4
Sa (g (2h); 2] = / d*zv/—g[-2A]. = S = Sp + S + Sa
167 GN
In this case, we recover the Cosmological Einsteins’s equations given by
G
G — 87T_4NT£V — g"A. (1)
c

These equations would be central for the rest of this work as they describe the interaction
between spacetime and matter. Moreover, they incorporate the effect of a cosmological
constant, currently the most widely accepted approach for modelling the observed accelerated

expansion of the Universe (Riess et al., 1998).

0.3 The homogeneous universe

In this section I will present the basic assumptions taht are employed in cosmology for
describing the evolution of the Universe as a whole on its largest scales. I will employ the
machinery from general relativity presented in sections 0.1 & 0.2 to build towards the ACDM
model, the current cornerstone of modern cosmology. I will derive the main equations
that are employed for studying the behaviour of a homogeneous and isotropic universe. A
comprehensive introduction to this topic can be found in classic references (Kurki-Suonio,
2024b, 2023; Dodelson and Schmidt, 2020; Baumann, 2022). My intention for this section is
to present compact and direct derivations for analyzing dynamical aspects of the homogeneous
universe. At the end of this section, I will also comment on some crucial thermodynamical
results, but, since will not play a direct role on the main results Iwill present of this thesis, I
refer the avid reader to the aforementioned sources for more in depth explanations.

To analyze the behavior of the Universe at its largest scales, we are going to assume

that it looks the same at every point (homogeneity) and in every direction (isotropy).
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This assumption captures the behaviour of the Universe as a whole effectively and allows
to find simple solution to Einstein’s equations (1). Imposing these conditions leads to
a restricted form for the metric known as the Friedmann-Lemaitre—-Robertson—Walker
(FLRW) metric given by:

1 0 0 0
. 0o O 9 0
ds® = Gudxtdx with g, = 0 1*51 R(t)222 0 N\ 2
0 0 0 R(t)%x?sin* 0

where z# = (ct,x") are referred to as comoving coordinates, R(t) is a parameter that
describes how distances evolve with cosmic time, ¢, and k£ measures the curvature of the
universe®.

From this restricted metric, we can directly derive several interesting quantities. If we
consider a photon (that follows a null-geodesic with ds? = 0) following a radial trajectory’,

we find that

csinh(\/m:rf> k<0

dx? T cdt ! dx a
i = o - s = [ - —0 G
‘ R OO | vyl & =0 o

arcsin( |k|xf) k>0

N

From this expression we can define the comoving distance, Y, as the comoving separation
between two comoving points. It is constant for objects that move with the Hubble flow (the

intrinsic expansion of the universe) and can expressed as

f dx to=te+At gy
= =, 4
i =0 1 - km2 tg R(t)

where x ¢ is the comoving coordinate reached by a photon that was emitted at time ¢g from
x; = 0 and traveled during a time At (as measured by the observer located at x; = 0).

Note that independently of the emission time, ¢g, a photon will always arrive to the same

R(1)
R(to)"

The proper distance, d,(t), indicates the physical separation (measured in your favourite

comoving coordinate x at t,. We can now define the proper distance as d,(t) = x

units: m, Gpc, ...) that corresponds to the comoving distance y measured at a certain cosmic
time .

Using Equation 3 we can derive the relation between the scale factor, a, and redshift, z
(both defined below). We start by considering the trajectories of two photons that are emitted

one shortly after the other. We consider that the first photon is emitted from the comoving

5The curvature, k, can only take the values k = +1 (positive curvature), k = 0 (zero curvature, or flat), and
k = —1 (negative curvature).
"Without loss of generality we can set § = 0.



position z at g and reaches its destination, x, at t,. The second photon is emitted shortly

after from x at tg + Oty and reaches xq at ¢y + dtg, then,

1st phot. : /IOd—x—/OL‘lt 2nd phot. : /wod—x—/ﬁ&oiﬁ
P o TE Vl_ka t R(t) . P . TE V]-_kIQ th+otg R(t)

Since the comoving spatial integrals are the equivalent, we can combine the temporal part of

both equations,

/to cdt _/t°+6t0 cdt _/to cdt _/E+5tE cdt +/t0+5t° cdt .
w BO Dy RO Jy RO N, RO ), RO
. / tototo oy B / tetote oy Sto<<1_ cAty cAtg
I ) S

R

R(t) st <<1 R(ty) R(tg)

E

In the derivation’s final step, I have considered the limit where the time intervals between the
emission and reception of the photons (dtg and dt,, respectively) are so small that the scale
factor of the universe can be considered constant. If we now consider that instead of having
two different photons we are dealing with two events that correspond to an interval equivalent
to the frequency of a particular lightray, such that cAt; = ¢/v; = \;, we can rewrite the last

equation as

Ao Mg R(ts)  Am 1 a(tr)=R(tr)/R(to) 1
Rt Rt | Rl e 1521 o BT O

The redshift = measures the ratio of the observed wavelength, A\, to the emitted wavelength,
Ag. We denote the scale factor by a(t).

From Equation 3 it is also possible to define different characteristic scales relevant in

cosmology:

* Since the age of the Universe and the speed of light are both finite, we can define the
(comoving) particle horizon, x,,, as the maximum (comoving) distance from which
we can retrieve information, that is, the past observable universe. The particle horizon,
Xp» 18 defined in terms of Equation 3 as the (comoving) distance associated with a
photon that was emitted at decoupling time, ¢; = t4ec, from z; = x4e, that is received
by an observer located at x; = 0 at present time ¢; = t,. It is common to see the term
particle horizon defined in terms of Big Bang time instead of decoupling time, in this

case, t; =0, r; = TppB.

* The (comoving) event horizon corresponds to the maximum (comoving) distance a
photon would be able to travel if it is emitted from x; = 0 at present time, ¢; = ¢, and
travels for all eternity, ¢y = oo. It can be finite or infinite, depending on the behaviour

of R(t), which depends on the composition of the universe.
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* The (comoving) Hubble radius is defined as the (comoving) distance at which
recessional velocity equals the speed of light xy(t) = ¢/H(t). Where H(t) is the

Hubble parameter which I will define below.

So far we have discussed the consequences of restricting the metric to the homogeneous
and isotropic FLRW case. We now move on to characterize the behaviour of R(t) once a
specific form of the stress-energy tensor, 7}, is specified.

Let’s consider that the total stress-energy tensor of the universe, 7},,,, can be expressed as

a sum of the individual stress-energy tensors of different perfect fluids, T;(Lf/) that is,

0 0 0 (
i . i P 0 0
TW:Z ;EV)’ with T;Su) = 0o P 0] (6)
’ 0 0 P

Where p; is the energy density and P, is the pressure of the "i-th" perfect fluid species.

Considering the continuity equation (see section 0.2), we obtain that each species satisfies:

= 38 (e
Pi = 3R(z+pz/0) (7)

Where I have employed the notation p := dp/dt.
We can substitute Equation 6 on Equation 1 assuming a FLRW metric (Equation 2); after

extensive manipulations we arrive to the Friedmann Equations,

N2
R e k2 Ac?
LS

R ArGN 3p; Ac?

RT3 Z%*ﬂ*? ©

We can simplify Equation 8 and Equation 9 even further but we need to take a small
thermodynamic detour.

Let’s assume that the second law of thermodynamics holds for each fluid component,
T;dS; = dU; + p;dV. Where T; is the temperature associated with the ¢-th fluid component,
U; = p;R(t)3c? is its internal energy, S; represents its entropy, and V' = R(¢)3. Then:

We can show that this expression is equal to zero substituting Equation 7. Therefore, T,5; = 0,

and since T} # 0 Vi,t — S; = 0, hence, entropy is conserved?.

8For the condition S; = 0 people commonly say that the expansion of the universe is ""adiabatic'', However,
this term is employed in many different contexts and can mean diverse things, so be carefull out there.
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If we now assume that each fluid component can be described as a barotropic fluid with

pi = w;p;ic?, from Equation 10 we have that

dS; =0=dU; + p;dV =d (Rgpi02)£ wipl-czd (Rg) C CQRSdpi + C2pidR3 + wipiczng = ...
3

o= CCRYp; + Epid R (1 + w;) — —CpidR? (14 w;) = AR dp; — ...
dR®  dp; R() dR? Pit) dp;
R pi R(to) R pi(to) Pi
Assuming that w; is a constant we have that
Rt qR3 p(t) dp; - _
—F M)/ R / = = pit) = pilto) a(t)P0F) (1D
R(to) pi(to) Pi

This equation relates how the density of a barotropic fluid with constant w; evolves as a
function of the scale factor. Using this result we can simplify Friedmann’s equations after

introducing some additional definitions:

« The Hubble parameter at time ¢, H(t) := R/R, indicates the ratio between the
recession velocity of an object, that is static in the comoving frame, and its distance to
a given observer, which is also at rest in the comoving frame. The Hubble constant is
defined as Hy = H (tp) and its value according to Planck Collaboration et al. (2020a)
is Hy = (67.4 £ 0.5)kms™' Mpc ™" ~ 0.069Gyr .

» The time dependent critical density of the universe is defined as p.(t) =
382&2. At present time, puit(ty) = % = 1.8788 x 107%h2kgm™> =
2.7754 x 10"h? My Mpc™>, where the little h parameter is defined as h =

Hy/(100 km s~'Mpc ™) (Planck Collaboration et al., 2020a).

* We define the present time density parameters for the curvature and the cosmological

constant as

kc? A

Qk(tO) = Qk70 = —Fg ’ QA<tO) = QA,O — 3_}[8

The density parameter associated to a barotropic fluid is
8 GN
Qi(to) = Qip = sz‘(to)-
0
In general, we define the time-dependent density parameter for any component
(curvature, cosmological constant, or barotropic fluid) as

a(t)—3(1+wi)

( ) 0 Qr,(]a_4 + Qm,Oa_?) + Qk,Oa_2 + QA,OCL0

For curvature we are going to associate the value wy := —1/3. For the cosmological

constant we define that wy, = 0. Based on statistical mechanic arguments (see
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Baumann, 2018), it can be shown that for radiation w, = 1/3, and for collisionless
matter w,, = 0. We will also enforce the following definition for all density parameters
that would allow us to effectively talk about curvature and cosmological constant
densities:

pl(t) B 87TGN a(t)*g(”%')

®) Perit (1) H? pilto) Q00 + Qa3 + Qg 0a=2 + Qp pad

Taking into account the definitions above and substituting the result of Equation 11 in
Equations 8 and Equations 9 we obtain the Friedmann Equations written in the most common

form:

H(a)? = H? (r(T,Oa-‘* + Quoa ™ + Qoa™ + Qupa’) = HF > ()i(a)E2(a) (12)
1

0= = = 30(0) + 0ult) — (0 (13)

These equations have some analytical solutions, for example in the case in which only one
component is considered. However, to solve them in general way it is necessary to employ a
numerical approach.

I would like to add that this derivation can be generalized for considering fluids
that transition between a relativistic behaviour (contributing to the radiation term) and
a non-relativistic behaviour (contributing to the matter term). This treatment becomes
particularly important for describing the effect of neutrinos in the background. In the case

of neutrinos it is possible to write the following term (see Lesgourgues and Pastor, 2006;

Zennaro et al., 2016, and M. Zennaro & D. Lépez-Cano, in prep., for a detailed derivation):

05 = (1) (3m<a>E2<a>f<y> -(%) (im,oa—‘*f(y»

4

2
With  F(y;) = /( dx; ijJr " exi1+ T where xz; = % — T
Were I', = 0.71611. is the noK-instantaneous interaction rate of neutrinos with photons (see
Hannestad and Madsen, 1995; Dolgov et al., 1997; Esposito et al., 2000).

In this section I have presented the Friedmann equations 12 & 13 starting from the
cosmological Einstein’s equations 1. Friedmann equations describe how a homogeneous and
isotropic universe evolves with cosmic time depending on its composition® The information
of the evolution is encoded in the scale factor. In the next section 0.4 I will go beyond the
homogeneous framework to investigate how is it possible to model the growth of structures

supposing that, from a certain scale downwards, there exists perturbations that imprint

There exist many other interesting phenomena that can be analyzed in the "background" framework
(decoupling, nucleosynthesis, time of recombination, etc.). For a comprehensive review check Kurki-Suonio
(2024b, 2023); Dodelson and Schmidt (2020); Baumann (2022).
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small-scale inhomogeneities. These inhomogeneities (which are originally created due to

cosmic inflation) grow afterwards naturally due to effect of gravity.

0.4 Growth of perturbations

There exist many approaches for describing the behaviour of perturbations within a
homogeneous and isotropic background. One of the most rigorous methods involves
adding fluctuations to the metric and to the stress-energy tensor in a perturbative manner
using the framework of general relativity. While this approach yields exact solutions for
various scenarios using first-order terms, including higher-order terms significantly increases
complexity, limiting its applicability. For a detailed explanation of the GR perturbatition
framework I highly recommend reading the notes by Baumann (2018) and Kurki-Suonio
(2024a).

Even though the GR perturbative approach represents the most exhaustive method for
dealing with metric fluctuations, there exist certain regimes in which some approximations
can be made and still recover accurate predictions. Throughout this section, I will focus on
three formalisms that allow us to study how matter perturbations grow in our Universe. This
regime is crucial to describe structure formation processes and explain the distribution of
observed galaxies, which constitutes the central observational target of large-scale structure
surveys (more about LSS surveys in section 0.5).

I first discuss treating perturbations as classical fluid components evolving under
Newtonian gravity within the expanding background. The main idea for developing this
formalism is that, even though the background expansion of the Universe needs to be treated
using general relativity, it is possible to accurately approximate the evolution of perturbations
employing the Newtonian law of gravity. This approximation is valid as long as we focus
on matter perturbations at distances well within the Hubble horizon and not coupled with
other components such as radiation, where Newton’s law of gravity accurately describes their
evolution. To see a detailed derivation of these equations check, e.g., Kurki-Suonio (2023);
Dodelson and Schmidt (2020); Baumann (2022), or M. Zennaro & D. Lépez-Cano (in prep.).
Here, I present the general equations that cosmological simulation codes used to describe the

evolution of perturbations:

25 1 10p o :
5 4+ EV[(l +d0)u] + (1 +96) (55 + 3H> 6 0 (Continuity Equation),
5;_1; 1 oax EHQ 1 %_]j] 6 Hu + %(u -V)u = —ivcip — %Vg@ (Euler Equation),

V2p = 47Gpa*s (Poisson Equation),
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Where x represents comoving coordinates and the derivatives V are also taken with respect
to the comoving coordinates. The symbol ¢ := p/p — 1 corresponds to the overdensity of a
fluid component and the variable u := v — afix is the peculiar velocity. ¢ is the comoving
Newtonian potential, and dp represents the pressure perturbations of a fluid component.

These equations are crucial to implementing particle-mesh cosmological simulation
codes (e.g. Klypin and Holtzman, 1997; Feng et al., 2016) which are employed to study
structure formation processes. I will not investigate these equations any further here. I
suggest checking Brandbyge et al. (2017); Fidler et al. (2016) for a more detailed justification
regarding why these equations allow to reproduce the evolution of matter perturbations from
the perspective of GR.

Next, I discuss the Top-Hat Spherical Collapse Model. The key approximation
considered in this framework is that, once an overdense region of space decouples from
the global background expansion of the universe (due to its gravitational pull), the evolution
of this patch can be approximated by the solution to Friedmann’s equations (12) of a closed
universe with positive curvature only composed by a homogeneous distribution of matter!”.
To obtain information about the collapsed system it is possible to consider its behaviour once
it has reached virialization. If we employ the virialization condition and study the linearized
solution for the overdensity evolution we reach a very interesting conclusion: The value of
the linear overdensity required for this patch to collapse into a halo (reaching virialization)
is 0sc &~ 1.686. This back-of-the-envelope calculation provides an approximate value for the
linear overdensity required of a region to collapse onto itself due to its own gravitational pull.
Even though The top-hat Spherical Collapse Model deals with a very idealized system, it
sheds some intuition about the relevant processes that lead to the gravitational collapse and
is wildly used by other structure formation theories such as the one discussed below.

Lastly, I introduce the Extended Press-Schechter (EPS) model or Excursion Set
Theory. This framework allows treating analytically the linear growth of perturbations
from a statistical standpoint. Thanks to this technique it is possible to qualitatively predict
relevant cosmological quantities such as the Halo Mass Function (HMF), or the halo merger
and accretion history. The origin of this theory can be traced back to the seminal work of
Press and Schechter (1974a) and Bond et al. (1991a), but more recent articles improve upon
the original formulation, providing a more robust mathematical justification, and employing
this formalism for the prediction of additional observables (e.g. Lacey and Cole, 1993; Sheth
and Tormen, 2002; Zentner, 2007; de Simone et al., 2011). I will now briefly summarize the
basic assumptions made by this formalism to derive the analytical expression for the HMF.

Let’s start by considering a realization of the overdensity field of matter perturbations at

101n this scenario we can compute a parametric solution to Friedmans’s equations describing how the scale
factor evolves with cosmic time.
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a certain scale factor, d,,(x,a). Given this field, we can compute at each comoving point,
x, the “smoothed” value of the field at a characteristic scale, s, having previously defined a

window function W (s; r):

Om(s;x,a) = /( W(s; |x — y|)ou(y, a)d®y.

Additionally, we can compute the variance of the overdensity field at that scale by averaging

across all points in space, i.e.,

o2 (s;a) = /(D |0 (53 %, )| d*x.

If we consider a Gaussian random overdensity field whose modes evolve independently
in time in Fourier space!' we can impose a sharp k-space window function to obtain random
walk “trajectories”, d,,(s; %, a), as a function of the variance of the field, o2 (s; a). Factoring
out the linear growth factor we obtain that collectively (in the statistical ensemble sense), the
different random walks satisfy the diffusion equation at all times

oP 10*P
05~ 206%

where P(S, ) represents the probability density function of finding a trajectory at S with a

(14)

value J, and we have performed the following notation simplification:
S :=02(s;a), and 6 :=0n(s;x, a).

Now it is possible to include some additional physical assumptions for solving Equation 14
analytically. According to the top hat spherical collapse approximation, we can consider that

halo formation takes place whenever a linear overdensity value is higher than dc. For this
D(a)
D(a())

such that P(S,0 > d.) = 0. This condition imposes that any trajectory that crosses the

reason, we can assume that there exists an absorbing barrier condition at'? §.(a) ~ 1.686

threshold value d.(a), collapses into a halo with the characteristic mass M, associated with
the scale .S, hence it cannot contribute any longer to the path probability distribution P
for larger values of S. Considering this constraint and assuming as initial condition that
P(60,S0) = dp(do) we obtain that the probability distribution function (with respect to §) of

trajectories, 0., (; X, a), that have never exceed the threshold value, d.(a), prior to S is

2(S = So) 2(5 = So)

(15)

271'(5 - S{J

P(5, S a,00, S0) = — e ) {exp [——(5 — ) ] —exp [<<2(5 —bcla)) (6~ &)

"'This occurs in the linear regime when the growth of modes can be expressed in terms of the primordial
amplitude fluctuations in k-space times a multiplicative linear growth factor, D(a). See the references above
for a detailed derivation.

12The factor D(a) denotes the linear growth factor and needs to be taken into account for the barrier height
since we have factored out the time evolution of the overdensity modes in the equation 14.
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Therefore the fraction of trajectories that have crossed above the threshold, dc(a), before S is

(@) be(a) — b
F(S;a,80,80) =1— P(6,S;a,d,S0)ds = erf | —=——T— ),
sy [ s sasn (=)

and the differential probability of first piercing the threshold at S can be expressed as

dF(S7 a, 50) SO)

f(S,CL,(S(),S())dS: ds S = ...
d c(a) 18P(5, S;ay(SO?SO) (@)
T (OO P(0,S;a,dy,50)dé = — {5 95 Loo

where, in the last step, we have commuted the integral operation with the derivative with
respect to .S, and afterwards we have employed Equation 14. Finally, after substituting in the

last equation the result from Equation 15 we obtain that

- __ Oela) = _(0e(a) = &)
f(S;a,dg, So)dS = VEr(S — 5o exp { 205 = 5) 1 <ZS

To obtain the HMF predicted by EPS we need to consider that, within a finite volume, V/,

that contains a total (matter) mass, M, := p,,V, the fraction of mass contained in haloes of
characteristic mass, M, 1s

NoMy  NoMy ds
Mm - ﬁmv - f(Sh7a7070) AM

dM,

where S}, corresponds to the characteristic Lagrangian scale associated with the characteristic
halo mass, M), and is determined by the specific window function chosen. The ratio N}, /V
is known as the HMF predicted by EPS and corresponds to the differential number of halos
of per unit volume that have a characteristic halo mass M,,. Rearranging the terms of the last

equation we obtain

5 da)  dlogay bla)?
LN L VA BN ) VA
v = g M \/EMgagn(h;a) dlog My, P |22 gy | (M0 (O

The EPS formalism is a powerful analytical approximation for describing halo formation

from the initial density field fluctuations. It is of particular relevance for this work and some

of its results play a relevant role in the chapters 2 and 3 of this thesis.

0.5 Current state: ACDM, LSS surveys, simulations,
haloes, machine learning

Until this point in the introduction, I have introduced the fundamental theory describing
the universe’s behaviour at the background level (section 0.3) and outlined some models to

characterize structure formation processes (section 0.4). However, I have not yet discussed
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the connection between these theories and actual astronomical observations. This section will
explain how major observational discoveries have shaped our understanding of cosmology
and established the ACDM paradigm.

A pivotal observational evidence that marks the birth of cosmology as a consolidated
scientific discipline is the discovery of the Cosmic Microwave Background (CMB) radiation.
Detectable from every direction in the sky, this radiation has a temperature of T\ =
2.72548 £ 0.00057 K (Fixsen, 2009) and originates in the early universe (2 4ec ~ 1090).
The CMB radiation originates from a process known as photon decoupling that occurs
when the interaction rate between photons and matter (electrons in particular) fell below
the universe’s expansion rate. The CMB radiation’s detection in the 1960s through radio
experiments (Penzias and Wilson, 1965), and its interpretation within the cosmological
context, triggered posterior dedicated efforts for cosmological studies, leading to the
development of the ACDM model.

The ACDM model provides a robust description of multiple astronomical observations, it
is based on general relativity and considers the following main components: ordinary matter,
cold dark matter, and dark energy. The term cold dark matter (CDM) refers to all non-baryonic
elements of the universe (that are not visible) that satisfy wpy ~ 0 (Peebles, 1982). The
Dark energy component is modelled in the ACDM model through a cosmological constant
term. The addition of this term to the standard cosmological model occurred throughout
the nineties, and the work by Riess et al. (1998) stands out in particular since it helped
to consolidate the dark energy term by providing direct evidence regarding the accelerated
expansion of the Universe.

One of the most notable accomplishments of the ACDM model has been to accurately
describe CMB anisotropies. These small matter perturbations imprinted on the CMB signal
were generated in the primordial Universe by the quantum fluctuations of the inflaton field.
They correspond to the initial matter overdensity perturbations from which later structures
such as galaxies and galaxy clusters grew due to gravity. NASA’s COBE mission first detected
the CMB anisotropies in 1992 (Smoot, 1999). NASA’s WMAP observatory (Bennett et al.,
2013) and ESA’s Planck experiment provided more precise measurements in the 2010s Planck
Collaboration et al. (2020a), offering the most accurate cosmological parameter estimates for
the ACDM model to date.

Despite all the ACDM model’s successes, several phenomena and astronomical
measurements do not align perfectly with it (see Perivolaropoulos and Skara, 2022, for
a review). Testing the ACDM model in all possible regimes is necessary to probe the
microscopic nature of dark matter and dark energy and to test the theory of general relativity
on large scales.

Over the last decades, large-scale structure (LSS) surveys have emerged as a promising
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avenue for cosmological studies. These experiments aim to map the positions of as many
galaxies as possible in the sky. By studying the distribution of galaxies in LSS surveys, it
is possible to test cosmological theories by characterizing the statistical properties of their
distribution. Many LSS surveys have been conducted, with more currently collecting data or
planned to start in the coming years (Alam et al., 2017a; Euclid Collaboration et al., 2022;
DESI Collaboration et al., 2016; Ivezic et al., 2019, for example).

LSS surveys generate petabytes of data on galaxy properties and positions. This
information is crucial for investigating astrophysical effects and studying cosmological
models. To do so it is necessary to compare the observed galaxy distributions with the
predictions from models that correctly capture cosmological and astrophysical processes.
However developing such models is challenging since galaxies form in high-density regions
of the matter field, where very difficult to model non-linear processes occur. Currently,
numerical simulations are the most commonly used method to study galaxy formation in
cosmological studies.

Cosmological simulations are numerical algorithms that accurately capture non-linear
structure formation processes. They predict the matter distribution across cosmological
scales, allowing for a comparison between observed galaxy distributions and theoretical
models. These simulations typically solve Newton’s equations for a set of tracer particles that
evolve in an expanding background, effectively capturing non-linear gravitational processes
without needing full general relativistic treatment at all scales (see Angulo and Hahn, 2022a,
for a review).

Despite considerable advancements in the field of cosmological simulations, limitations
in computing power and data storage prevent us from running complete forward predictions
that can be directly compared with observational galaxy catalogues. The simulations need to
be extensive enough to cover large cosmological volumes while also incorporating detailed
modelling of all the astrophysical processes that influence the final galaxy properties. To
address these challenges, numerous strategies have been developed to create simulations
that are faster to compute and require less storage space, however, there is still significant
potential for improvement and numerous research groups work to enhance the performance
of cosmological simulations.

In the remainder of this section, I briefly discuss various aspects related to improving
cosmological simulation results. Specifically, I will focus on topics most relevant to the work
presented in the central chapters of this thesis.

One of the main challenges in cosmological simulations is to reduce their computational
cost for simulating the formation and evolution of galaxies. To accurately reproduce this
process it is necessary to simulate the behaviour of normal ("baryonic") matter and compute

the gravitational interactions at the same time. To incorporate these baryonic processes, it is
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common to include in simulations hydrodynamical recipes. However, solving these equations
is computationally expensive and limits the potential simulated volume to scales not large
enough for comparison with galaxy survey data. Various alternatives exist to circumvent
this problem, most involving running a gravity-only simulation and including galaxies in
a post-processing step. Common techniques include Halo Occupation Distribution (HOD)
models (e.g. Berlind et al., 2003), (sub-)halo abundance matching techniques (e.g. Vale and
Ostriker, 2004), and semi-analytic models (e.g. Knebe et al., 2018b).

Including galaxies in gravity-only simulations during a post-processing step requires
understanding how to link Dark Matter (DM) haloes with the corresponding galaxies they
may host. The most important property for linking DM haloes with galaxies is their mass.
However, mass alone is insufficient for accurately matching host haloes with galaxies. It’s
necessary to consider additional properties related to the internal structure of DM haloes.
Navarro et al. (1996, 1997) pointed out that, along with halo mass, halo concentration
is sufficient to model the internal mass distribution of haloes. Understanding how halo
concentration varies with mass, redshift, and cosmology is essential for describing matter
distribution at small scales and for correctly linking galaxies with haloes.

Finally, the last problem I want to discuss is that, despite the current efficiency achieved by
gravity-only simulations, they remain significantly expensive to execute, requiring millions
of CPU hours for covering large volumes with sufficient mass resolution. One of the most
substantial advancements in computational science over the last decade is related to the
development of artificial intelligence and machine learning techniques. These methods have
significantly impacted cosmology lately, offering fast and accurate emulation of various
processes. Recent works have employed machine learning to accelerate calculations (He
et al., 2019; Giusarma et al., 2019; Alves de Oliveira et al., 2020; Wu et al., 2021; Jamieson
et al., 2022), perform likelihood-free inference (Hahn et al., 2023), and use machine learning
frameworks as a tool for interpreting halo properties (Lucie-Smith et al., 2018, 2019, 2020;
Chacoén et al., 2022; Betts et al., 2023).

0.6 About this thesis

This thesis explores the connection between theoretical cosmological models and
Large-Scale Structure (LSS) observations through the use of cosmological simulations.
These simulations model the Universe’s structure formation processes and the large-scale
distribution of galaxies. Enhancing the speed and reliability of cosmological simulations is
crucial for bridging galaxy observations with the theoretical modelling side.

As of September 2020 (when I started my doctoral studies), a number observational

LSS campaigns have concluded, unveiling tensions between early Universe probes and late
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Universe observations, particularly regarding the og and H, parameters (see Verde et al.,
2019, for a review). The upcoming survey campaigns at the time (such Euclid and DESI,
both currently operational) had amplified the community’s interest in advancing cosmological
simulation techniques for analyzing and interpreting the anticipated influx of high-quality
observations of millions of galaxies. Next, I categorize some of the main challenges for
enhancing cosmological simulations; I will mainly focus on aspects that have been particularly
relevant for my work:

* Improving the modelization of structure formation processes: From the developement
of the first cosmological simulation codes more than twenty years have passed. During
this time both the efficiency and accuracy of these codes has significantly improved.
Alongside, the development of analytical models that link the initial conditions with

the final halo properties has helped to speed up prediction tasks.

* Improving our understanding of baryonic processes: Another big challenge for
performing realistic simulations is the necessity of including baryonic process to
accurately reproduce galaxy formation processes. There currently exist several
approaches (some of them mentioned in section 0.5), each of with certain advantages
and limitations that try to balance the accuracy of the predictions with the computational

cost required to execute them.

* Accelerating simulations: Originally, paralelization techniques helped to improve
greatly the speed of simulations. Over the last years, machine learning algorithms
and GPU acceleration have transformed the field of cosmological simulations reducing
significantly the computational time required to make predictions using emulators and

other techniques.

My work during the Ph.D. has focused on these three aspects, contributing to the
development of next-generation cosmological simulators from multiple angles. These
advancements aim to provide a more accurate description of the Universe’s matter distribution
and observed galaxy populations. This thesis compiles three papers that have already
being published in specialized scientific jounals. I have adapted these articles into separate
self-contained chapters that constitute the main body of this work. Here I summarize the

contents of each chapter and contextualize the problem each one focuses on.

» Chapter 1 is based on the article titled "UNITSIM-Galaxies: data release and clustering
of emission-line galaxies" (Knebe et al., 2022). This article is currently published
in the journal Monthly Notices of the Royal Astronomical Society (MNRAS) and
can currently be accessed through the following link . This work describes how

is it possible to develop a mock galaxy catalog to simulate the expected galaxy
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distribution observed by the Euclid mission. By employing gravity-only simulations
and a semi-analytical model, we generate a galaxy mock catalog and post-process it to
predict the expected H, flux for galaxies detected by the Euclid survey. My contribution
to this article, in which I appear as second author, has been crucial. I have played a
key role developing the codes and methods necessary for generating, analyzing and

interpreting the results presented here.

Chapter 2 compiles the paper "The cosmology dependence of the
concentration-mass-redshift relation" (Lépez-Cano et al., 2022). This article is
currently published in the journal Monthly Notices of the Royal Astronomical Society
(MNRAS) and can currently be accessed through the following link . The focus of
this article is to investigate the concentration of halos, a parameter that determines their
internal structure. This chapter explains how is it possible to model the cosmology
dependence of the concentration parameter combining the Exceursion Set Theory

formalism with a relation empirically derived from multiple gravity only simulations.

Chapter 3 describes the work "Characterizing Structure Formation through Instance
Segmentation" (Lépez-Cano et al., 2023). This article is currently published in the
journal Astronomy & Astrophysics (A&A) and can currently be accessed through the
following link . It showcases machine learning’s ability to identify features in the
initial conditions that lead to the formation of dark matter haloes. This work illustrates

the potential of machine learning techniques to describe structure formation processes.

The conclusion section 3 provides a summary of my contributions, their significance

in cosmology, and their potential impact on future research.
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Chapter 1

UNITSIM-Galaxies: data release and
clustering of emission-line galaxies

New surveys such as ESA’s Euclid mission are planned to map with unprecedented precision

the large-scale structure of the Universe by measuring the 3D positions of tens of millions
of galaxies. It is necessary to develop theoretically modelled galaxy catalogues to estimate
the expected performance and to optimise the analysis strategy of these surveys. We
populate two pairs of (1h7'Gpc)® volume dark-matter-only simulations from the UNIT
project with galaxies using the SAGE semi-analytic model of galaxy formation, coupled to
the photoionisation model GET_EMLINES to estimate their Ha emission. These catalogues
represent a unique suite that includes galaxy formation physics and — thanks to the fixed-pair
technique used — an effective volume of ~ (5h~'Gpc)?, which is several times larger than
the Euclid survey. We present the performance of these data and create five additional
emission-line galaxy (ELG) catalogues by applying a dust attenuation model as well as
adjusting the flux threshold as a function of redshift in order to reproduce Euclid-forecast
dN/dz values. As a first application, we study the abundance and clustering of those model
Ha ELGs: for scales greater than ~ 5h~!Mpc, we find a scale-independent bias with a value
of b ~ 1 at redshift z ~ 0.5, that can increase nearly linearly to b ~ 4 at z ~ 2, depending
on the ELG catalogue. Model galaxy properties, including their emission-line fluxes (with

and without dust extinction) are publicly available.

1.1 Introduction

During the last few decades, numerous projects have been aimed at creating large
cartographic maps of galaxies, such as 2dFGRS (Cole et al., 2005), SDSS (Alam et al.,
2017a; Eisenstein et al., 2005), WiggleZ (Drinkwater et al., 2010; Parkinson et al., 2012),
BOSS (Dawson et al., 2013; Alam et al., 2017b), eBOSS (Dawson et al., 2016; Alam et al.,
2021a) or DES (The Dark Energy Survey Collaboration, 2005; Abbott et al., 2018). They
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have been carried out with the objective of trying to better understand the large-scale structure
of the Universe, to estimate the different parameters that regulate the formation of structures,
to determine the expansion history of the Universe, to study how galaxies form, to reconstruct
their star formation histories, and to impose constraints upon different models that currently
exist for dark energy and for alternative theories of gravity. While advances have certainly
been made, all these grand topics remain open areas of investigation, and likely will for years

to come.

New surveys such as Euclid (Laureijs et al., 2011; Amendola et al., 2013), the Nancy
Grace Roman Space Telescope (Spergel et al., 2013, 2015), the Dark Energy Spectroscopic
Instrument (DESI, Collaboration et al., 2016), and the 4-metre Multi-Object Spectroscopic
Telescope (4MOST, de Jong et al., 2012) are planned to map with unprecedented precision
the large-scale structure of the Universe by measuring the 3D positions of tens of millions
of galaxies. These missions are expected to start operating in the coming years, providing
the scientific community with wider, deeper, and more accurate data, which may be used to
impose stronger constraints upon theoretical models and to provide more accurate estimates
for some of the aforementioned parameters relevant in cosmology. Some of these forthcoming
missions (e.g., Euclid) will focus on conducting spectroscopic surveys of galaxies using
near-infrared grisms in order to determine the positions of galaxies by observing their
emission lines such as Ha. The wavelength of the observed emission lines will serve
to determine the redshifts of the detected objects. Such observations have already been
undertaken in the past. There are, for instance, the High-z Emission Line Survey (HiZELS,
Geach et al., 2008) and the Wide Field Camera 3 Infrared Spectroscopic Parallels survey
(WISP, Atek et al., 2010). The WISP survey, for instance, has been used by Colbert et al.
(2013) to measure the number density evolution of Ha emitters; Sobral et al. (2016) employed
the HiZELS data (and additional follow-up observations) to quantify the evolution of the Ho

luminosity function. But all previous efforts lack the volumes to be probed by future missions.

Observational campaigns need to be complemented by cosmological simulations: a
cornerstone of large-scale structure analysis. Cosmological simulations inform and validate
galaxy clustering models. They are also used to test and optimise different estimators and
analysis pipelines, to estimate covariance matrices, and to compare with measurements from
data. Smaller scales (i.e. below 1 Mpc) are known to contain many more Fourier modes than
larger ones and hence constraining power. However, they are heavily affected by the physics
of galaxy formation. Since the spatial volumes that the aforementioned surveys seek to study
are notoriously large, it is still necessary to rely on dark-matter-only simulations in which
galaxies are introduced in post-processing either by halo occupation distribution (HOD, e.g.
Berlind et al., 2003, as well as the Euclid Flagship mock galaxy catalogue), (sub-)halo
abundance matching (SHAM, e.g. Vale and Ostriker, 2004) or semi-analytic models (SAM)
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(e.g. the MultiDark-Galaxies,! Knebe et al., 2018b). While there are efforts to push the limits
of ‘full physics’ hydrodynamical simulations to larger and larger volumes (e.g. Lee et al.,
2020), it still remains more feasible to match the volumes that missions like Euclid will cover
with gravity-only simulations.

The demand for large volumes modelled with sufficiently high resolution is also the reason
why, during the last years, alternatives to running such demanding simulations have been
explored. For instance, the technique developed by Angulo and Pontzen (2016b) dramatically
reduces the variance arising from the sparse sampling of wavemodes in cosmological
simulations. The method uses two simulations that are ‘fixed’ and ‘paired’, i.e. the initial
Fourier mode amplitudes are fixed to the ensemble average power spectrum and their phases
are shifted by 7. This approach has been adopted by the UNIT collaboration? (Chuang et al.,
2019) where it has been shown that the effective volume of such fixed-and-paired simulations
can be several times larger than the actual volume simulated: in Chuang et al. (2019) we have
shown that the original four (14~ 'Gpc)? simulations correspond to a total effective volume
of ca. (bh™'Gpc)?, i.e. ~ 7 times of the survey volume of Euclid or DESI. We use the
same two pairs of simulations for our study here. Our simulations include the large scales
with an accuracy greater than expected by these surveys, and here we have populated them
with galaxies using a semi-analytical model that includes all the relevant physical processes
for galaxy formation. In terms of galaxy clustering statistics, each pair can be as precise
on (non-)linear scales as an average over approximately 150 traditional simulations. They
therefore are suitable to statistically study matter—galaxy interplay and galaxy clustering
alongside its bias.

In this work we present and use galaxy catalogues for simulations that were generated
by applying the SAGE semi-analytic model (Croton et al., 2016) to the aforementioned
gravity-only UNIT simulations. These SAGE galaxies have then been processed with the
GET_EMLINES code (Orsi et al., 2014) in order to obtain emission-line galaxies (ELGs).
Using the resulting ELG catalogues, we study the predicted number density evolution of Ha
emitters and compare it to other theoretical models as well as observational data. We also
generate additional ELG catalogues by imposing certain flux threshold and/or even apply a
dust attenuation model. All catalogues are used to study the clustering of our Ha galaxies
and their linear bias with respect to the dark matter field, a quantity first studied by Kaiser
(1984) for Abell clusters and developed in theoretical detail by Bardeen et al. (1986). The
bias is a key parameter and a result of not only halo formation but also the varied physics of
galaxy formation that can cause the spatial distribution of baryons to differ from that of dark

matter. The bias connects the observed statistics to theoretical predictions and has recently

!Galaxy catalogues based upon three distinct SAMs can be downloaded from CosmoSim.
’http://www.unitsims.org
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been the target of many theoretical studies in light of ELGs (e.g. Geach et al., 2012; Cochrane
et al., 2017; Merson et al., 2019; Tutusaus et al., 2020). Our results add to these and may be
used to make forecasts for Euclid and related studies for which both the abundance and bias
of Hae ELGs is an input.

There already exist previous works based upon the UNIT simulations and the modelling
of ELGs in them (Zhai et al., 2021, 2019). However, the important difference to our work is
that in those papers only one of the UNIT simulations has been used, as opposed to all four
here. Further, Zhai et al. applied a completely different modelling for the ELGs, namely the
GaLacTicus semi-analytic model (Benson, 2012), coupled to the CLOUDY photoionisation
code (Ferland et al., 2013) for the calculation of emission line properties. Further, their dust
model was tuned as a function of redshift to match observations of the Har luminosity function
in the redshift range 2z € [0.8,2.3]. And while Zhai et al. also studied galaxy clustering in
the later work, they have not investigated the bias. Our work therefore extends those previous
studies and should be viewed as complementary. We further have made our galaxy catalogues
publicly available.

The structure of this article is as follows. In Section 1.2 the methods used to generate
the ELG catalogues are presented, namely the N-body UNIT simulations (Section 1.2.1), the
SAGE semi-analytic model (Section 1.2.2) and the emission-line modelling (Section 1.2.3).
Next, in Section 1.3, we present a series of figures to validate the galaxy catalogues generated
by SAGE by comparing key properties with observational results. Then in Section 1.4 we
examine the validity of the modelling for the emission lines of the galaxies. Afterwards,
in Section 1.5, the results obtained by studying the two-point correlation function and the
bias obtained for the ELGs in the Euclid range of redshifts will be presented. Finally, in

Section 1.6, the conclusions derived from this work will be outlined.

1.2 The Methods

1.2.1 The UNIT Simulations

As a basis for this work, four gravity-only simulations that have been developed within the
UNIT project have been employed. The names for the two pairs of simulations that we use
throughout this work are UNITSIM1 (U1), UNITSIM1-Inverted Phase (U11P), UNITSIM2
(U2), and UNITSIM2-Inverted Phase (U2IP). The procedure followed for generating these
simulations as well as an analysis of the resulting correlation properties is discussed in Chuang
et al. (2019). For this particular study we have used the two pairs of simulations in which
the code GapgGert (Springel et al., 2001b) has been used to study the behavior of a total of

4096° particles in a volume of 14 ~3Gpc? per simulation, thus obtaining a mass resolution of
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1.2 x 10°h~'Mg, per simulation particle.

In Chuang et al. (2019) it is also explained how the Rockstar halo catalogues
and the corresponding CoNsISTENTTREEsS merger trees have been generated for each
of the gravity-only simulations using the publicly available codes from Behroozi et al.
(2012). Al the data corresponding to the UNIT simulations are publicly available at
http://www.unitsims.org. By making the galaxy catalogues and their emission-line

properties available too, this work further adds to the community.

1.2.2 Semi-analytic galaxy modelling via SAGE

SAGE (Semi-Analytic Galaxy Evolution, Croton et al., 2016) is a modular, publicly
available® semi-analytic model of galaxy formation, branched from the Munich family
of models (specifically from Croton et al., 2006). Haloes (in this case, from the UNIT
simulations) are initially seeded with ‘hot’ gas based on the cosmic baryon fraction (modulo
a reionization factor at higher redshift and in low-mass haloes). Cooling/accretion of this gas
onto the central galaxy is based on the two-mode (hot and cold) model of White and Frenk
(1991). Star formation in the disc occurs once the gas is above a critical average surface density
(see Kennicutt, 1989; Kauffmann, 1996). Metals are immediately injected and gas recycled
into the inter-stellar medium (ISM), where a constant mass-loading factor is also applied to
reheat gas out of the disc, some of which will end up in an ejected component if the energy
budget allows it. A parametrized fraction of the ejected gas (connected to the virial velocity)
is reincorporated into the halo on a dynamical time-scale. Satellite galaxies are tracked in the
merger trees until merged or unresolved. Once their subhaloes become unresolved, satellites
are either disrupted (where their baryons are placed in intracluster reservoirs) or immediately
merged with the central, dependent on how long they survived as a satellite. SAGE, therefore,
does not have orphan galaxies. Mergers and disc instabilities trigger starbursts, drive stars into
the bulge, and cause gas to be accreted onto the central black hole. This triggers quasar-mode
active galactic nuclei (AGN) feedback, which reheats gas from the disc. When galaxies
have sufficiently (super)massive black holes, cooling is also suppressed by radio-mode AGN
activity (both past and present), modelled by a phenomenological ‘heating’ radius that can
only grow with time, within which gas cannot cool.

This is the same SAGE model that was also applied to the MultiDark simulation MDPL2
(Knebe et al., 2018b). The model was calibrated for that simulation by fitting visually
first the z = 0 stellar mass function (Baldry et al., 2008), and secondarily using the stellar

metallicity—mass relation (Tremonti et al., 2004), baryonic Tully—Fisher relation (Stark et al.,

Shttps://github.com/darrencroton/sage
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2009), black hole-bulge mass relation (Scott et al., 2013), and cosmic star formation rate
density (Somerville et al., 2001). The model has not been re-calibrated here as both the
UNIT and MDPL2 simulations were run with the same cosmological parameters (Planck
Collaboration et al., 2015) and have the same box size. However, the mass resolution is
marginally better for UNITSIM, due to the 20 per cent larger number of particles. For the
general performance of the SAGE model we refer the reader to the results presented in Knebe
et al. (2018b), as the calibration plots change minimally when going from MPDL2 to UNIT
(see also Fig. 1.1, in this paper). The calibration does not include constraints for emission-line
galaxies.

For a more detailed description of the model we refer the reader to Croton et al. (2016)
and section 2.4 of Knebe et al. (2018b).

1.2.3 Emission-line galaxy modelling

Once we have populated the dark matter haloes from the UNIT simulations with the
semi-analytic galaxies generated by SAGE we obtain values for the intensity of the most
relevant emission lines such as Ha, [OIII]4959, [OIII]5007, [NII]6548 and [NII]6584 for
each of the model galaxies. In this study we focus on the Ha line — with a particular focus

on the Euclid mission. The other emission lines are left for future work.

GET_EMLINES code. In order to reproduce the intensity of Ha emission lines of our
galaxies, we have used the method presented in Orsi et al. (2014), i.e. the publicly available
GET_EMLINES code.* This code is based on the algorithm MAPPINGS-III described in Groves
et al. (2004) and Allen et al. (2008), which relates the ionization parameter of gas in galaxies,
q, to their cold-gas metallicity Z..q as:

- Zcold -
q(Z)—qO( Z ) , (1.1)

where ¢ is the ionisation parameter of a galaxy that has cold gas metallicity Z, and 7 is
the exponent of the power law. We adpoted the suggested values of ¢y = 2.8 x 107 cms™!
and v = 1.3, which were found to yield Ha luminosities for star-forming galaxies in good
agreement with observations (Orsi et al., 2014). Cold gas metallicity is defined as the ratio

between the cold gas mass in metals to the total cold-gas mass:

(1.2)

The other relevant component is the star formation rate (SFR).> Note that SAGE provides

this quantity averaged over the previous time-step in the merger trees, despite this interval

“https://github.com/aaorsi/get_emlines
5Total SFR in SAGE is the sum of the SfrDisk and SfrBulge fields.
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being broken into sub-time-steps in the code. But the model ideally requires as inputs the
instantaneous SFR and cold gas metallicity of galaxies. However, Favole et al. (2020) have
shown that for galaxies that are not too bright the differences are negligible. To be able to
properly compare our results to observations, we convert the luminosities to fluxes and also
apply a dust extinction to the luminosities of the model galaxies.

Please note that when applying the GET_EMLINEs code to the SAGE catalogues,® we
rejected all galaxies with a star formation rate equal to zero. One might be inclined to
therefore claim that our emission-line galaxies are ‘star-forming galaxies’, but usually a
threshold on the specific star formation of order 0.01/Gyr (and hence clearly larger than 0)
is assumed to separate ‘passive’ and ‘star-forming’ galaxies. Therefore, our ELGs are based
upon SAGE galaxies that do form stars, but also include ‘passive’ galaxies in the conventional

sense.

Dust extinction. We use here a Cardelli extinction law implemented following Favole et al.
(2020), but we also summarize it here. The attenuation from interstellar dust is added to the

intrinsic Ho luminosity using:
L()\j)att _ L()\j)intr1070.4A,\(‘rf,9)’ (13)

where the attenuation coefficient, as a function of the galaxy optical depth 75 and the dust
scattering angle 6, is defined as (Osterbrock, 1989; Draine, 2003; Izquierdo-Villalba et al.,
2019; Favole et al., 2020):

1 — exp(—a, sect)

ay sec

In Eq. (1.4), ay = /1 —wx7§, and w is the dust albedo. We assume cosf) = 0.30 and
wy = 0.56, meaning that the scattering is not isotropic but forward-oriented, and about 60

per cent of the extinction is caused by scattering.

The galaxy optical depth is defined as (Hatton et al., 2003; De Lucia and Blaizot, 2007):

. Ax Ecold o (Nm)
£ (A_V> Zs < Zs ) 2.1 x 10*'atoms cm—2 15)

in terms of the cold gas metallicity Z..,q defined in Eq. (1.2) and the extinction curve for
solar metallicity: Z, = 0.0134 (Asplund et al., 2009). We assume the Cardelli et al. (1989)

extinction law: y
(—AA> 6 a(z) + b(z) /Ry, (1.6)
A%

SWe are using the plural here when referring to the catalogues as we will always have at our disposal the
four catalogues coming from the two pairs of UNIT simulations.
"https://github.com/gfavole/dust
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where z = \7!, Ry = Ay /E(B — V) = 3.1 is the ratio of total to selective extinction for

the diffuse interstellar medium in the Milky Way, and
a(z) =14 0.17699y — 0.50447 3> — 0.02427 >+
0.72085y* + 0.01979 3> — 0.77530 3/° + 0.32999 ¢,
b(x) =1.41338y + 2.28305 y* + 1.07233 3> — 5.38434 ¢*
—0.62251 y° 4+ 5.30260 ¢ — 2.09002 y",

(1.7)

with y = (z — 1.82). The quantity (Ny) in Eq. (1.5) is the mean hydrogen column density
defined as (Hatton et al., 2003; De Lucia and Blaizot, 2007):

Mdisc
(Ny) = cold atoms cm™ 2, (1.8)

~ Ldmy, 7 (L68RY)?

where M35¢ is the cold-gas mass of the disc, m, = 1.67 x 10727 kg is the proton mass, and
R‘fi/sgc is the half-mass radius of the disc.
We caution that emission lines are expected to be more attenuated than the continuum,

e.g. De Barros et al. (2016), which is the model used here.

1.3 The SAGE galaxies

The aim of this section is to validate how well our theoretically modelled SAGE galaxies
perform with respect to the quantities that enter into the calculation of the emission-line
properties. This involves a) stellar mass, b) star formation rates, c) metallicities, and d)
disc lengths. We will further focus on redshifts in the range = € [1,2] and compare to
observational data where possible. For comparisons of other properties to observations and
the calibration plots, respectively, we refer the reader to Knebe et al. (2018b) where SAGE has
been applied to the MultiDark simulation MDPL2. Note that in this Section we are using the
complete SAGE galaxy catalogue, not restricting any results to ELGs. However, we provide

in the Appendix all the corresponding plots for our model ELGs.

1.3.1 Stellar Mass Function

The stellar mass function (SMF) is one of the most significant properties that can
be inferred from galaxy surveys since this function represents the number of galaxies in
stellar-mass bins, normalized to the volume of the survey/simulation and to the bin width. Its
simplicity yet fundamental importance resides in the fact that the SMF is often employed for
calibrating semi-analytic models such as SAGE used here.

In the main panel of Fig. 1.1 the results obtained for the SMF computed from the SAGE

galaxies modelled over the UNITSIM1 simulation are presented for three different redshifts
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z = [0.0,1.710,2.695]. Together with the results obtained from our simulation, a series
of observational results obtained for a range of redshifts similar to those simulated are also
represented in the same figure. The compilation for redshift z = 0 is taken from the so-called
‘CARNage calibration” data set described in great detail in section 3.3 and appendix A of
Knebe et al. (2018a)®. The observations for the higher redshifts are taken from Davidzon
et al. (2017) and are based on the UltraVISTA near-infrared survey of the COSMOS field.
In the bottom panel of Fig. 1.1 the variation in SMF between UNITSIM1 and the three other
UNIT simulations is shown, i.e. the y-axis represents’
SMF(U;
6(U;,U;) = WEUJ)) -1, (1.9)
where U, refers to the one of our four UNIT simulations (and U; to another, different one).
For all the simulations conducted, the results produced for the SMF qualitatively follow
the observational trends. This outcome is in line with previous results such as those presented
in Favole et al. (2020) and Asquith et al. (2018). The results obtained at redshift = = 0 agree
almost seamlessly with the observational data. This is readily explained by the fact that
the SAGE model was pre-calibrated to very similar data. When studying the behavior at
higher redshifts (which is a prediction of the model) certain discrepancies start to show up.
For stellar masses below 104~ M, the SMF calculated for the SAGE galaxies exceeds the
observational points, while the opposite is true for masses higher than 102~ 'Mg. This is
related to the condition that getting both the SMF at z = 0 and the cosmic star-formation
history to simultaneously agree with the observations demands that stars that should have
been formed in haloes below this simulation’s resolution limit must instead be formed as
extra stars in the haloes that are resolved. This inevitably leads to resolved high-z galaxies
having too much stellar mass (and star-formation rates that are too high) in the model. It also
changes how galaxies acquire stellar mass through mergers (as fewer mergers are resolved),
which might help explain why there are too few galaxies with M, > 10'*h~*M, at higher z
in the model. Additionally, the deviations observed here for high redshifts — especially at the
low-mass end — are similarly found when studying the SMF produced by other semi-analytic
models, as extensively discussed in Asquith et al. (2018). Our explanation is hence generic
and not only applies to SAGE. Therefore, despite the discrepancies seen in Fig. 1.1, the results
obtained are reasonably accurate for us to say that the modelled SAGE galaxies fairly depict
the behaviour of the SMF that could be expected in the redshift range for which Euclid is

planned to operate.

8The ‘CARNage calibration’ set is available for download from http://popia.ft.uam.es/public/
CARNageSet.zip.

Note that we use the same strategy for presenting the variations across the four UNIT simulations in
practically all plots.
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Figure 1.1: Stellar mass function. In the upper panel we compare the results for the modelled galaxies
at various redshifts (solid lines) to observational data (points with error bars). The lower panel shows
the fractional difference of U1 to the other UNIT simulations. Note that the z = 0 SMF has been used
to calibrate the SAGE model whereas the results for higher redshift are a prediction of the model.

Another important aspect worth mentioning in this section is that due to resolution
limitations in our simulations, galaxies whose stellar mass is lower than 10°%2 =M, have not
been considered. Please refer to Knebe et al. (2018a,b) for a justification of this threshold, but
we can also see in Fig. 1.1 how the number of galaxies starts to decline for stellar masses below
that threshold due to numerical limitations. Therefore, to produce the results presented in the
following sections we will discard all those galaxies whose mass is inferior to this threshold.
This is not a cause for concern in this work though, as the vast majority of relevant ELGs

have stellar masses above this threshold (see Appendix B).

1.3.2 Star Formation

With respect to the star formation (SF) in galaxies, which is also used as an input to
the GET_EMLINEs code, we only present the relation between specific star formation (i.e.
SF per unit stellar mass) and stellar mass at redshift z ~ 2. We find that SAGE makes a
prediction for this relation that is in excellent agreement with the observations of Daddi et al.
(2007): in the main panel of Fig. 1.2 the specific SF rate (sSFR) of U1-SAGE galaxies is
plotted against the stellar mass M, for redshift z = 2.028. We show both the contours of
a 2D histogram of this scatter plot as well as the median of the values obtained for sSFR

within a series of bins along the z-axis. As is customary, in the bottom panel of the Fig. 1.2
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the variations between simulations with respect to the other UNITSIM-SAGE galaxies have
been represented. When comparing our results to observational data extracted from Daddi
et al. (2007), we find sufficient agreement, at least within the 1o regions. Though not
explicitly shown here, we also confirm that our SAGE results are in excellent agreement with
observational data for the sSFR (as provided by Elbaz et al., 2011) as a function of stellar
mass at redshift z = 0. These results, in turn, are also compatible to those shown in Favole
et al. (2020) for redshift z = 0.1.

For a comparison of the star formation rate (SFR) function to observational data at redshift
2z = 0.14 and the redshift evolution of the cosmic star formation rate density, we refer the
reader to Knebe et al. (2018b). While the SFR function is compatible with the observational
data at low redshift — as seen for the MultiDark galaxies and also confirmed for the UNITSIM
galaxies (though not explicitly presented here) — it is worth mentioning that for SFR values
greater than ~ 10'54~1M, /yr, the number of galaxies generated with SAGE seems to
underestimate the observed number (see fig. 2 in Knebe et al., 2018b). As we will see later in
Section 1.4.2 this is going to leave an imprint on the abundance of (dust-attenuated) ELGs,
especially at high redshifts. We finally like to remark again that the relation between sSFR
and stellar mass as shown here is a prediction of the SAGE model.

Based on these results, we can say that our galaxies sufficiently reproduce the behaviour
of the sSFR that would be expected for a sample of real galaxies in Euclid’s operating range
of redshifts.

1.3.3 The mass-metallicity relation

Another aspect of galaxies to be considered for the emission-line modelling is the chemical
composition, since — depending on the fraction of metals that a galaxy may contain — its SFR
may be substantially modified due to the fact that a higher metal content favours cooling
mechanisms. This property is explicitly taken into account by the GET_EMLINES code and has
to be provided as an input, respectively.

Since SF is regulated by the collapse of cold gas clouds, in Fig. 1.3 we study the relation
that exists between the total mass of metals contained in such clouds and the total mass of
cold gas in a given galaxy throughout the parameter Z which is calculated as (Favole et al.,
2020; Knebe et al., 2018b):

where 7,4 was previously defined in Eq. (1.2), and we use the same Z., = 0.0134 as already
in Eq. (1.5). Note that this quantity Z is meant to be a proxy for 12 + log(O/H).
In the main panel of Fig. 1.3 we show the correlation between Z and stellar mass as

contours alongside the median (solid blue line) for redshift z ~ 1. The lower panel shows
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Figure 1.2: Specific star formation rate vs. stellar mass at redshift z ~ 2 in comparison to observations
by Daddi et al. (2007). We show both the median (solid blue line) and the contour levels of the scatter
relation. This relation is a prediction of the SAGE model.
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Figure 1.3: Cold gas metallicity vs. stellar mass. The relation shown here for redshift z ~ 1 is a
prediction of the SAGE model. We also show the relation as found in Bellstedt et al. (2021) (dashed
line).
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again the fractional difference with respect to to the other UNITSIM model. The relation is
as expected, i.e. larger mass galaxies have larger metallicities, with a strength comparable to
the one observed for lower redshifts. This relation — as observed at redhift ~ 0.1 — is used
during the calibration of the SAGE model; its extension to z ~ 1 shown here nevertheless
is a clear prediction. We also show the relation as expected from observations by using
the best-fit function presented in Bellstedt et al. (2021, eq. 6). This fitting function was
obtained by applying the spectral-energy-distribution-fitting code ProSpect to galaxies from
the Galaxy and Mass Assembly (GAMA) survey at z < 0.06; comparing with observations
of gas-phase metallicity over a large range of redshifts, they then showed that their best-fit
evolving mass—metallicity relationship is consistent with observations at all epochs and
hence used here by us at redshift = ~ 1. We only show the Bellstedt et al. function
out to M, = 10"h~1M, which was their limit for obtaining the best-fit parameters. The
predictions of the SAGE model are in fair agreement with the Bellstedt et al. function. If one
were to extrapolate the Bellstedt results, we would find a deficit of cold gas metallicity for the
highest mass galaxies with M, > 10''h~'M. Even though there is no observational data
in that regime, one possible explanation could be that the cold gas in those galaxies comes
from mergers rather than accretion/cooling. I.e. AGN feedback might have shut off cooling
entirely, so enriched gas in the circumgalactic medium will not get back to the inter-stellar
medium. Instead, we might just be seeing the low-metallicity gas from now-cannibalised
low-mass galaxies dominating most of the cold gas in the galaxy. But it yet remains unclear
if the the drop in metallicity predicted for SAGE galaxies at M, = 10'*h~1 M, will also be
seen in observations. While the redshift z ~ 1 is relevant for the Euclid mission, it also
appears to be important to verify the mass-metallicity relation for even higher redshifts as
it plays an important role in the estimation of emission lines. The Bellstedt et al. (2021)
function can also be used to obtain results at, for instance, z = 2. There also exists a best-fit
relation derived from actual observations at z = 2.2 (Maiolino et al., 2008, eq. 2 together
with table 5). We refrain from showing the corresponding plot here, but confirm that our

SAGE galaxies reproduce those two observations equally well as seen here for z = 1.

1.3.4 The disc size-mass relation

The last relevant quantity to validate for our SAGE galaxies is the size of the disc.
While it is not important for GET_EMLINES it nevertheless enters into our dust attenuation
model via Eq. (1.8). We therefore show in Fig. 1.4 the correlation of the effective disc
radius (i.e. exponential scale radius, as calculated by SAGE) with stellar mass at redshift
z = 1.22. For comparison we use the best-fit relation as reported by Yang et al. (2021,

eq. 1) for late-type galaxies at redshift = = 1.25 and as derived from the complete
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Hubble Frontier Fields data set. While the agreement is very good for higher mass
galaxies, the disc sizes predicted by SAGE for galaxies with mass M, < 101°A~tM,, are
systematically larger than the observed ones. However, this does not significantly affect our

results here as our ELGs preferentially have stellar masses M, > 10'%°h =M, (see Fig. B.2).

Given all the results presented throughout this particular section, with the majority even
being predictions of the SAGE model, we are confident that our UNITSIM-SAGE galaxies
meet all the requirements to be used for the emission-line modelling, which is discussed in

great detail in the following section.

1.4 SAGE’s Emission-Line Galaxies (ELGs)

The results presented in the previous section indicate that our SAGE model galaxies are
in sufficient agreement with a range of observations, in particular those properties that are
used as an input for the model that calculates spectral emission lines. Here we now focus
on the ELGs and contrast additional properties with a set of observations.!® To this extent,
we start with generating two distinct ELG catalogues, constructed from the full list of SAGE
galaxies: one set will be obtained by simply applying the GET_EMLINES code (RawELGsys)
and another one by additionally modelling dust extinction (DustELGs). These value-added
properties are included in the publicly available catalogues. However, in order to compare
to existing observations and to make predictions for Euclid, we apply a redshift-independent

1

flux cut of F,; = 2 x 1071 erg st cm™2, which corresponds to the limit of the Euclid

satellite.

1.4.1 The luminosity function of Ho-ELGs

We start with comparing the Ho luminosity functions (LFs) — as obtained by GET_EMLINES
— at various redshifts of interest to observational data. The results can be viewed in Fig. 1.5
for the two base catalogues RawELGs and DustELGs at z = 0.49,0.987, 1.48, and 2.23. For
the first two redshifts we contrast our theoretical LFs to observations as found in Colbert
et al. (2013). The data are taken from their table 3, where we removed again the [NII]
contamination; as the data have not been corrected for dust extinction, they are best compared
against our DustELGs. For the latter two redshifts, the observations from Sobral et al. (2016)
are used. We used the data as provided in their table 4, noting that here they corrected
for dust extinction, and hence those curves should be compared against our RawELGs. We

actually find that our ELGs match the observations fairly well, though there are some obvious

0The same validation plots as shown in Section 1.3 for the SAGE galaxies can be found for the ELGs in
Appendix B.
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Figure 1.4: Effective disc radius as a function of stellar mass (contours and blue solid line with 1o
error region). This is a prediction of the SAGE model. We also show the relation as reported for
late-type galaxies in Yang et al. (2021) at z = 1.25 (dashed line).
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discrepancies at redshift z ~ 1: both DustELGs and even RawELGs do not provide enough
high-luminosity ELGs. This eventually translates into a too-low (integrated) abundance, as
we will see below. But we are not too concerned about that as the relevant redshift range for
Euclid is z € [0.9, 1.8], and the match of our RawELGs galaxies with the Sobral et al. (2016)
observations is rather good for z ~ 1.5, i.e. the centre of that interval.

In the Introduction we mentioned that Zhai et al. (2019) also model Ha ELGs using
the GaLacticus SAM coupled to the single UNITSIMI simulation. But their catalogue
was constructed such that the SAM parameters were tuned to best reproduce — amongst other
properties —the Ha LFs, and in particular the observed ones shown here for redshifts z = 1.48
and 2.23 (see their fig. 1). They accomplish this by — in practice — adjusting A, (7%, 0) (as
also found in our Eq. (1.3)) as a free parameter, tuning it until they match the observed Ha
LF at a given redshift. Our value for A,(7§,6) is based upon physical properties of the
underlying galaxies whose values change as a function of redshift (leading to an implicit
redshift dependence of our dust model). Meaning, we actually use a physically motivated A

and hence the LFs seen here are a clear prediction of our modelling.

1.4.2 Abundance evolution of flux-selected Ho-ELGs

We show in Fig. 1.6 the redshift evolution of the number density for our RawELGs and
DustELGs catalogues, after applying the redshift-independent flux cut of Fi,; = 2x10 % erg
s~' cm~2, in comparison to observational data from Colbert et al. (2013) and Bagley et al.
(2020). We also show two of the three models of Pozzetti et al. (2016, P16). By fitting
to observed luminosity functions from existing Ha surveys, P16 build three distinct models
for the Ha number density evolution. Different fitting methodologies, functional forms for
the luminosity function, subsets of the empirical input data, and treatment of systematic
errors were considered to explore the robustness of the results. Functional forms and model
parameters were made available!! (and are being used here), along with the counts and
redshift distributions up to z ~ 2.5 for a range of limiting fluxes bracketing the sensitivity
of Euclid. Their models are named ‘Pozzetti model #1, #2, and #3°, with model #1 being
the most optimistic and model #3 the most pessimistic for Euclid.'?> Both these models are
shown here, also for a flux cut of 2 x 107! erg s=! cm™2.

We can see in Fig. 1.6 how, for z < 1, our DustELGs follow the same trends as the
P16 models, but show a substantial lack of objects at higher redshift. By comparison, our

RawELGs clearly overpredict the abundance of ELGs for the applied redshift-independent

"1"The P16 data can be downloaded from here: http://www.bo.astro.it/ pozzetti/Halpha/Halpha.
html

12P16 called the models that way themselves, based upon the fact that if you have more galaxies, you reduce
the shot-noise. Hence, Pozzetti model #1 is more optimistic for Euclid’s figure-of-merits than #3, as we will
have smaller error bars in the cosmological parameters.
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Table 1.1: Average number density and flux cuts as a function of redshift z (first column). Columns
2-3 top table (RawELGs) and bottom table (DustELGs) list the mean and standard deviation (across
the four UNIT simulations) of the number density of ELGs with an applied redshift-independent flux

cut of Foyp = 2 x 10716 erg s~

1

cm~2. Columns 4-5 and 67 give the target number density (taken

from table 3 in P16) and average flux cut applied to reach it (the standard deviation is smaller than the
reported accuracy and hence left out for clarity) for RawELGs-PozI and RawELGs-Poz3, respectively
(top table). The bottom table provides the same information for DustELGs-Pozl and DustELGs-Poz3.

RawELGs (F., = 2)

RawELGs-Pozl

RawELGs-Poz3

<dN/dz> o dN/dz <Fou> | dN/dz <F.>
0.490 24652 47 9946  6.441 - -
0.987 22015 89 7353  4.864 3779  7.080
1.220 17709 94 5097  4.600 2518 6.300
1.321 15809 98 4281 4452 2148 5.759
1.425 13988 77 3447  4.343 1817  5.353
1.650 10277 57 2253 3.930 1279  4.564
2.028 5294 38 1006 3.330 616 3.687
z DustELGs (F., = 2) | DustELGs-Pozl | DustELGs-Poz3
<dN/dz> o dN/dz <Fou> | dN/dz <Fu>
0.490 15262 30 9946 2.85 - -
0.987 3238 12 7353 1.37 3779 1.88
1.220 957 7 5097 1.13 2518 1.50
1.321 577 4 4281 1.05 2148 1.35
1.425 370 3 3447 0.98 1817 1.22
1.650 153 3 2253 0.84 1279 1.00
2.028 35 1 1006 0.67 616 0.77
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Figure 1.6: Redshift evolution of the number density of dust-attenuated ELGs (DustELGs, orange)
and the initial RawELGs catalogue (i.e. no dust modelling, blue), both for a redshift-independent

flux cut at 2 x 10716 erg s™' cm™2, in comparison to the observational data of Colbert et al. (2013)

and Bagley et al. (2020). We also show model #1 and #3 of Pozzetti et al. (2016) for the same flux
threshold (not to be confused with our catalogues PozModI and PozMod3 that were designed to match
these number densities). Only UNITSIM1 ELGs are shown for clarity.

flux cut (at least for z > 0.5). A similar discrepancy between semi-analytic galaxies and the
P16 models can also be seen in fig. 5 of P16, where their three models are compared against
the results from two other SAMs. It should also be mentioned that a more recent study of the
observed number density evolution of Ha ELGs indicates a possible decline beyond redshift
z ~ 1.4 (Bagley et al., 2020, lower right panel of their fig. 7), although it is not as pronounced
as the dip found for our DustELGs. To highlight this we have added those data points'?
to our plot, too. While there is agreement between the observations of Bagley et al. and
P16’s model #3 in the redshift range z € [1, 1.5], the observational data drop more steeply at
higher redshifts and are more in line with our DustELGs prediction. However, Bagley et al.
(2020) also say that their higher redshift points are in the region were the sensitivity of their
instrument could be degraded.

This discrepancy between ours and the Pozzetti ELG number densities is also reflected

in Table 1.1, where we list as a function of redshift the number density of ELGs in our

3The Bagley et al. (2020) data are based upon completeness-corrected measurements of the blended Ho
and NII fluxes, while our fluxes include only Ha. We have therefore ‘corrected’ the Bagley et al. (2020) data
points — as obtained with PlotDigitizer — by reversing their adjustment to model #3 of P16 to account for the
combined fluxes. This was done by finding the shift needed to bring the digitized data points into the same
kind of agreement with the original Pozzetti model #3, as seen in the lower right panel of Bagley’s fig. 7 for the
blended Pozzetti model #3.
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reference RawELGs and DustELGs catalogues (as averaged over the four UNIT simulations,
also providing the standard deviation). While we have to acknowledge that both our RawELGs
and DustELGs do not reproduce the predictions of P16, we also have to remark again that it

yet remains unclear what the correct abundance evolution d/N/dz should look like.

1.4.3 Flux-adjusted catalogues

Taking the models of P16 as the reference, we now construct four additional catalogues
that are designed to match the P16 dN/dz curves as shown in Fig. 1.6. We take RawELGs
as the starting point and adjust the flux threshold until reaching the target dN/dz values as
given by P16’s models #1 and #3, providing us with the two models RawELGs-Pozl and
RawELGs-Poz3. We use the same approach for DustELGs, providing two more models:
DustELGs-Pozl and DustELGs-Poz3. We used this methodology with all four UNITSIM
catalogues. The means of the required flux cuts to our data are listed in columns 4-7, and
10-13 of Table 1.1 (we omit error estimates as they are below the reported accuracy). The
remaining columns — 2, 3, 8, and 9 — are the mean number densities (and its standard deviation)
for the RawELGs and DustELGs catalogues, respectively, when using a redshift independent
flux threshold of Fi.,; = 2 x 1071 erg s™! cm™2. Our methodology for constructing ELGs
eventually leaves us with six distinct catalogues'*

1. RawELGs: directly coming from GeT_EMLINES (with a flux threshold of F,, =

2 x 10716 erg s7! cm~2 across all redshifts, when used here),

2. RawELGs-Pozl1: variable flux threshold applied to RawELGs to match the number
density of Pozzetti’s model #1 at each redshift,

3. RawELGs-Poz3: variable flux threshold applied to RawELGs to match the number
density of Pozzetti’s model #3 at each redshift,

4. DustELGs: passing the RawELGs ELGs through our dust model (with a flux threshold

of F.e = 2 x 107 erg s™! cm™2 across all redshifts, when used here),

5. DustELGs-Poz1: variable flux threshold applied to DustELGs to match the number
density of Pozzetti’s model #1 at each redshift,

6. DustELGs-Poz3: variable flux threshold applied to DustELGs to match the number
density of Pozzetti’s model #3 at each redshift,

where we note that all the ELGs are, by construction, a subset of the full SAGE catalogue

used in the previous section. Likewise, the four additional ‘ELGs-Poz’ catalogues are

“We need to state here again that the public versions of RawELGs and DustELGs are not subjected to any
flux cut: they contain all ELGs as provided by GET_EMLINES.
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sub-sets of the public RawELGs and DustELGs, respectively.

Instead of introducing a redshift-dependent flux cut — which might be considered
counter-intuitive, as Euclid will have a fixed flux threshold — we could have also taken
the RawELGs model as the starting point and tuned our dust extinction parametersuntil we
match the P16 dN/dz values, akin to what Zhai et al. (2019) have done. But finding the
best possible dust model is beyond the scope of this work and hence we prefer to adhere to
the former approach. The main idea here is to restrict the model ELGs to the brightest ones
that are still observable. And we have seen in Fig. 1.5 that applying the dust model basically
just shifts the LF towards lower luminosities, especially at high redshift and for the brightest
ELGs (e.g. Sobral et al., 2016). Therefore, adjusting the luminosity threshold will still select
the brightest galaxies. Moreover, one could also re-calibrate SAGE, the GET_EMLINES code
or choose a different dust model beyond a Cardelli law, all of which can affect the number
density of ELGs. But exploring all these possibilities is beyond the scope of the present work.
We prefer to work with minimal variations to the existing models and codes.

We also like to emphasize that our ‘-Poz/’ and ‘-Poz3’ models are not the two models #1
and #3 of P16. They are ELG catalogues where we adjusted the number densities to match
those of model #1 and #3 of Pozzetti, respectively. We did this to correct for the mismatch of
ELGs with respect to the Pozzetti models seen in Fig. 1.6. We further refrain from showing

their abundance evolution as they match — by construction — the curves from P16.

Given the results presented in this section, we conclude that our UNITSIM-SAGE-ELGs
provide a fair sample and can be used for further analysis. The RawELGs and DustELGs
galaxies will serve as the two base catalogues, with the four additional catalogues acting as
our best predictions for Euclid. As a particular application we employ them now for a study

of galaxy clustering and the related bias.

1.5 Clustering of ELGs

Quantifying the clustering of galaxies is one of the main objectives of ongoing and
upcoming galaxy surveys such as the Euclid satellite mission. Clustering measurements
probe the fluctuations of the underlying dark matter from the positions of galaxies, and they
encode geometric, model-dependent cosmological information. Using the positions of our
theoretical UNITSIM ELGs, we now study the two-point correlation function &gy gs(r) and
its redshift evolution. We further use the positions of 107 randomly selected dark matter

particles from the total 4096° particles present in each of the UNIT gravity-only simulations
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to calculate pyp(r)." This allows us to also infer the bias that we define here as

ELGs(T)

b(r) = ) (1.11)
between both populations and study its evolution across redshift. The bias b, i.e. the
statistical relation between the distribution of galaxies and matter, needs to be taken into
account when interpreting galaxy surveys; it describes how galaxies trace the underlying
dark matter distribution. The biased galaxy formation scenario (e.g. Dekel and Rees, 1987)
implies that galaxies are not uniformly distributed in the Universe, but primarily form in the
peaks of the matter density field. Galaxies are therefore biased tracers of it, sampling only
the overdense regions (see Desjacques et al., 2018a, for a recent review). The particular bias
of ELGs, i.e. a sub-class of all galaxies, will be of greatest importance for surveys such as
Euclid.

All two-point correlation functions (2PCFs) have been obtained with the CUTE!®
software presented in Alonso (2012). In addition, for the results that we will present
throughout this section, we have taken the average of the values computed for the
2PCF over the four simulations UNITSIM1, UNITSIMI1-InvertedPhase, UNITSIM?2, and
UNITSIM?2-InvertedPhase.

In the top panel of Fig. 1.7 we present the 2PCF computed for the RawELGs (dashed
lines) and dark matter (solid lines). The lower panel of the same figure shows the bias b(r)
defined via Eq. (1.11). In order to better verify the scale-dependence of the bias, we also

calculate the ‘average’ bias
N bin
1

<b>:mz i

2

(1.12)

where Ny, is the number of bins and b; = b(r;) the value of the bias in distance bin ;. This
average bias (b) is shown as a dashed horizontal line in the lower panel of Fig. 1.7. Note that
we exclude the first bin in this calculation since for such small distances the bias is certainly
scale-dependent (see Fig. 1.10 below). It is also obvious that the data for this particular
model become rather noisy at high redshifts due to the very low number of objects above the
reference flux cut of F,,, = 2 x 107% erg s7! cm™2 (see Table 1.1). But we can nevertheless
appreciate that for distances r 2, 5h~'Mpc the bias is remarkably constant, something we
will quantify in more detail below.

An equivalent analysis has been conducted for our other ELG catalogues, but we decided
to only show here in Fig. 1.8 the results for the bias and not also the 2PCFs. Once more we

can see that we get fairly noisy results at redshift z = 2.028 due to the reduced number of

SWe confirm that the resulting 2PCFs have converged and will not change when using more particles.
Further, this number of dark matter particles is comparable to the number of ELGs, at least at redshifts z < 1.
https://github.com/damonge/CUTE
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Figure 1.7: Top panel: 2PCF of SAGE ELGs with flux greater than 2 x 10716 erg s7! cm™2
(RawELGs galaxies, dashed lines) and collisionless trace particles (solid lines) for various redshifts.
Bottom panel: associated bias as defined by Eq. (1.11).

galaxies at that redshift. We also observe that at scales ~ 120k~ Mpc the bias behaves more
erratic, which can be explained by the fact that the 2PCF crosses zero at r ~ 130h~'Mpc
(Sanchez et al., 2008; Prada et al., 2011): taking the numerical ratio between two numbers
close to zero then introduces noise. But the most important point is that the bias of ELGs
(at least for z < 2) in all our catalogues remains constant on scales r € [5, 100]A~*Mpc (in
line with the findings of, for instance, Abbott et al., 2018). Below 5k 'Mpc it is obvious
that the mixture contribution between the one- and two-halo terms will introduce non-linear
effects which in turn will cause the bias to no longer behave independently with scale. On
larger scale we have already seen above that the zero-crossing of the 2PCF is introducing
noise and hence the results for the bias are expected to be affected by this, too. We further
note that the bias clearly is a function of redshift. But this is also expected, as the mass of
the haloes hosting ELGs will change with redshift (see Fig. B.1 in the Appendix). Not only
that, but haloes of the same mass or luminosity at different redshifts will also have a different
bias. It therefore only appears natural that the bias increases with redshift as, for instance,
modelled analytically by Basilakos et al. (2008) or found in other cosmological simulations

(e.g. Merson et al., 2019; Tutusaus et al., 2020).

Fig. 1.9 now quantifies the evolution of the average bias (b) (obtained from the results
presented in Fig. 1.7 and Fig. 1.8) as a function of redshift for all our catalogues. This figure
is accompanied by Table 1.2 that lists the plotted values. We find that for all our galaxies the
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Figure 1.8: The bias for the RawELGs-Pozl, RawELGs-Poz3, DustELGs, DustELGs-Pozl, and
DustELGs-Poz3 galaxies (in that order from top to bottom), using the same r-range and redshift
colouring as for Fig. 1.7.
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Figure 1.9: Bias values averaged for scales larger than 5 h~*Mpc computed for our six models. The
grey points are the best fit b(z) for the bias found in Euclid’s Flagship simulation (Tutusaus et al.,
2020), and the red squares the results as reported by Merson et al. (2019).
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Table 1.2: Bias values averaged for scales larger than Sh~!Mpc computed for all our ELG catalogues.
The values listed here correspond to the lines presented in Fig. 1.9.

RawELGs RawELGs DustELGs DustELGs

z RawELGs Pozl Poz3 DustELGs Pozl Poz3
0.490 0.94 0.94 - 0.96 0.97 -
0.987 1.18 1.23 1.28 1.40 1.31 1.38
1.220 1.35 1.44 1.48 1.92 1.57 1.70
1.321 1.42 1.54 1.58 2.19 1.71 1.82
1.425 1.53 1.66 1.70 2.48 1.83 1.97
1.650 1.76 1.89 2.00 3.19 2.26 2.45
2.028 2.19 2.42 2.55 4.40 3.05 3.24

bias systematically increases with redshift, despite showing different growth rates, especially
for the two base catalogues RawELGs and DustELGs. We also acknowledge that the strength
of this b(z) relation for our four ‘-Poz’ galaxies — especially the ones based upon DustELGs —
is in excellent agreement with the relation presented in Tutusaus et al. (2020, eq. 11), shown
as circles in Fig. 1.9. The b(z) function given in Tutusaus et al. is derived from studying
the bias in the Euclid Flagship simulation,!” which is also just based upon dark matter. But
the way in which the dark matter haloes are populated with galaxies is quite distinct to our
approach: they have applied a Halo Occupation Distribution (HOD) that does not take into
account the merger trees of the haloes (for a comparison of these two different techniques
see, for instance, Knebe et al., 2015, 2018a).!® Merson et al. (2019) also forecast the redshift
evolution of the linear bias for Ha-emitting galaxies in a similar redshift range. Their data
are shown here as squares. Like Tutusaus et al. (2020), they also used a HOD for which they
calibrated the dust attenuation to reproduce observed Ha counts. Merson et al. (2019) now
predict lower biases than Tutusaus et al. (2020) and our dust-based ‘-Poz’ galaxies, more in
line with the results we obtain for our RawELGs catalogue and its derivates. The comparison
of these three different b(z) predictions for ELGs indicates that the theoretical models have
not yet converged. There are degeneracies and uncertainties that still require more detailed
and refined investigations before any final conclusion could be drawn. But we finally remark
that our findings for the redshift evolution of the bias b(z) are also in agreement with those of
Favole et al. (2017, right panel of their fig. 6), who used a SHAM model. However, in their
work, the bias increases more mildly, as the SDSS redshift range studied there is very much

reduced compared to ours.

"https://www.euclid-ec.org/?page_id=4133

8While there is no reference paper for this galaxy catalogue, we nevertheless like to mention that it is based
upon the MICE HOD (Carretero et al., 2015). The clustering is fit to SDSS galaxies as a function of magnitude
and colour at low redshift. Then, most of the properties are assumed to depend on redshift only via their
SEDs/color evolution, allowing for correlations between many observables.
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We further recognize in Fig. 1.9 that the bias is sensitive to the particulars of our
modelling, especially at high redshift. This certainly relates to how we treat the dust
extinction and select the observable ELGs from RawELGs, respectively. But this is known
and can also be appreciated when comparing the bias predictions from Tutusaus et al. (2020)
and Merson et al. (2019) where similar discrepancies are seen. We particularly notice
the degeneracy between dust modelling and flux selection: first applying our extinction
prescription and then matching a preset dN/dz by varying the flux threshold always leads to
larger bias than not employing a dust model at all. Even though we argued before that the
dust-attenuated luminosities — as seen in Fig. 1.5 — are a shifted version of the raw values (at
least for luminous ELGs; see also Sobral et al., 2016, where a constant luminosity offset was
applied to model dust extinction), here we realize that their relation is not that simple. But
we have clearly seen that fixing the abundance of Ha ELGs, the differences substantially
reduce. Nevertheless, we like to stress again that designing a new dust extinction model is
beyond the scope of this work and hence we leave a more detailed study of this to a future
work. Note that in this work we primarily aim at presenting the publicly available data,

discussing its scope and possible limitations.

So far we have mainly focused on large scales, but to conclude this section we also
present how the bias varies for small scales. In Fig. 1.10 we present the bias b(z) for various
redshifts and all our catalogues out to r ~ 20h~'Mpc using logarithmic binning. We observe
that for redshifts z < 2 the bias remains constant down to scales r ~ 3h~'Mpc and then
starts to mildly drop. It is actually around this distance that we expect the contribution from
the one-halo term to start to become relevant. However, this behaviour weakens for higher
redshifts and possibly reverses for = = 2. Something similar has also been observed by Nuza
et al. (2012, fig. 10) for BOSS CMASS galaxies, but there the inversion was already seen
at redshift z ~ 0.53 (and one needs to bear in mind that CMASS galaxies and ELGs are
not directly comparable as they are different types of galaxies, where the latter are mostly

star-forming and the former could be dominated by passive galaxies).

1.6 Conclusions

Realistic simulations are a necessary tool to optimise and validate the methodology that
will be used to extract cosmological constraints from future surveys. Indeed, they are used to
estimate the theoretical error budget on surveys (for example, for the eBOSS-ELG analysis,
see Alam et al., 2021b).

In this work we have employed the UNIT simulations, which model the evolution of

dark matter within a 1»~*Gpc box at a mass resolution of 1.2 x 10°A~!M, per particle
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Figure 1.10: The bias b(r) for all six models in logarithmic r bins, focusing on the small scales up to
r < 20h~'Mpc, using the same redshift colouring as for Fig. 1.7.
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(Chuang et al., 2019). Given the large volume of these simulations together with the
fixed-and-paired technique of Angulo and Pontzen (2016b) that enhances the effective volume
of the simulations, the resulting galaxy mocks that we have produced represent a unique
resource for model testing based on a semi-analytic model of galaxy formation. We used our
ELG catalogues to make predictions for the galaxy statistics that the Euclid experiment is
expected to obtain for redshifts between 0.9 < z < 1.8. Note that the simulations presented
here cover an effective survey volume of about seven times the effective survey volume
of Euclid (Chuang et al., 2019). And having the galactic physics included is key, since
the complicated relation between haloes and galaxies can modify the clustering of ELGs
significantly, even at scales used to put cosmological constraints when working in Fourier

space (see, for instance, Gonzalez-Perez et al., 2020; Avila et al., 2020).

For this work we have generated six synthetic catalogues of emission-line galaxies of
which the two base ones (i.e. RawELGs and DustELGs, without any flux cuts applied) are
publicly available. The galaxies were first obtained by applying the semi-analytic galaxy
formation model SAGE (Croton et al., 2016) to the gravity-only UNIT simulations. They
were then subjected to the emission line modelling with the Ger_EmMLINES code (Orsi et al.,
2014) and an additional dust attenuation model (following Favole et al., 2020). This left
us with the two base ELG catalogues RawELGs and DustELGs, in addition to the general
SAGE galaxy catalogues. As argued throughout Section 1.3, the properties associated with
our UNITSIM-SAGE galaxies reproduce observed properties of galaxies with 0 < z < 2.
Here we have focused on those properties that are most relevant for the construction of ELGs
catalogues, i.e. stellar mass, star formation rate, metalicity, and disc size. In particular, we find
that the (evolution of the) mass—metallicity relation agrees sufficiently well with observations.
However, we have seen in Knebe et al. (2018b) that the SAGE model underpredicts the number
of galaxies with high SFRs. This then affects the abundance of our (dust-attenuated) ELGs as
seen in Fig. 1.6. While we presented the validation plots in the main body of the paper only
for the full set of SAGE galaxies, the corresponding plots for the RawELGs and DustELGs
ELGs can be found in Appendix B.

In Section 1.4 we adjusted the number densities of our two base UNITSIM-ELG sets
by applying distinct flux thresholds to them (using the Euclid-models as given by P16),
eventually comparing the redshift evolution of their abundance to observations. When
studying the density of galaxies per deg? with fluxes greater than 2 x 10716 erg s™' cm~2 as
a function of redshift we observe that the density obtained for the raw ELG galaxies is above
both the observations and other theoretical modelling. That means that some additional
selection needs to be applied to end up with a more realistic ELG catalogue. We have
addressed this in several ways. We first applied a dust-attenuation (a Cardelli law, following

Favole et al., 2020), which led to a possible underestimation of the expected density of
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galaxies dN/dz observed from redshift z ~ 1.4 onwards. Nevertheless, the most recent
study by Bagley et al. (2020) suggests that the observational value for d/N/dz could be closer
to our results than predicted by P16. We also designed additional catalogues where we
instead varied the flux threshold for the selection of galaxies from the RawELGs catalogue;

those fluxes were adjusted to reproduce number densities as predicted by P16.

The linear bias is a key parameter to understand the cosmological power of Euclid and
can help construct forecasts that inform the optimisation of both observational and analysis
strategies. The bias of Ha galaxies may be particularly relevant for forecasts on studies such
as primordial non-Gaussianities or relativistic effects. We therefore studied the clustering
of all our six samples listed in Table 1.1: two with the Euclid flux cut applied and four in
which the flux cuts are adjusted to follow the predictions by two of the models presented in
P16. We measure the linear bias as a function of redshift by averaging &gp.qs/Epm for scales
r > 5h~!Mpc. For the samples whose abundances are matched to the to P16 predictions,
we find a b(z) in line with that reported in Tutusaus et al. (2020) for the Euclid Flagship
simulation (and mildly in agreement with the same results reported by Merson et al.,
2019). This is striking, as the Flagship mock was constructed following a very different
methodology (Carretero et al., 2015). Additionally, we report the clustering at small scales,
that becomes scale-dependent. These measurements can be used to test the robustness of
different large-scale structure models to extract cosmological information from the small
scales, that have the highest signal-to-noise ratio but at the same time are the most difficult

to model.

We close with the remark that an improved dust attenuation modelling might be the most
physical approach for choosing the ELGs so that the observed d/N/dz will be recovered.
This would, however, only affect the catalogues that are based upon DustELGs; it will
leave RawELGs untouched, which is the primary ELG catalogue made available publicly.
Therefore, while we have shown throughout this work that the particulars of the dust extinction
have an effect on the the results, the published data contain all that is required for the
community to apply their favourite post-processing models for dust and emission lines from
star-forming regions. Or put differently, the base catalogue RawELGs is certainly inclusive,
i.e. a superset of the ELGs of interest. A better understanding of the process of selecting
observable ELGs from that base catalogue and developing an improved dust attenuation
model will be left for a future work. The public data can already been used for a great variety
of studies and have extensive applications like, for example, informing Halo Occupation
Distribution models. Indeed, we will study the properties of Hoe ELG HOD models in a

follow-up paper.
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Chapter 2

The cosmology dependence of the
concentration-mass-redshift relation

The concentrations of dark matter haloes provides crucial information about their internal

structure and how it depends on mass and redshift — the so-called concentration-mass-redshift
relation, denoted c(M, z). We present here an extensive study of the cosmology-dependence
of ¢(M, z) that is based on a suite of 72 gravity-only, full N-body simulations in which
the following cosmological parameters were varied: og, v, €, ns, h, M, wy and w,.
We characterize the impact of these parameters on concentrations for different halo masses
and redshifts. In agreement with previous works, and for all cosmologies studied, we
find that there exists a tight correlation between the characteristic densities of dark matter
haloes within their scale radii, r_», and the critical density of the Universe at a suitably
defined formation time. This finding, when combined with excursion set modelling of halo
formation histories, allows us to accurately predict the concentrations of dark matter haloes
as a function of mass, redshift, and cosmology. We use our simulations to test the reliability
of a number of published models for predicting halo concentration and highlight when they

succeed or fail to reproduce the cosmological ¢(M, z) relation.

2.1 Introduction

Cosmological simulations have revealed that the spherically-averaged density profiles
of dark matter (DM) haloes exhibit a high degree of self-similarity across a wide range of
masses, redshifts, and cosmologies (Navarro et al. 1996; Huss et al. 1999; Bode et al. 2001;
Bullock et al. 2001; Neto et al. 2007; Maccio et al. 2008; Knollmann et al. 2008; Wang and
White 2009; Hellwing et al. 2013; Ludlow and Angulo 2017; Brown et al. 2020 and Angulo

and Hahn 2022b for a review). The most popular analytic expression used to describe these
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profiles is the NFW profile (Navarro et al., 1996, 1997), written as
4p_o
r/r_g (r/r_o + 1)2’

where r_5 is the characteristic radius at which the profile’s logarithmic slope is equal to —2,

PNFW = (2.1)

and p_o = pnrw(7r_2) is the corresponding density. These two parameters fully specify
the NFW profile and therefore completely describe the structure of dark matter haloes. It
is however common practice to recast these parameters in terms of the halo’s virial mass',
Mopo.m» and concentration, ¢ = 709,,/7—2, an approach we follow in this paper; in what
follows we refer to these quantities simply as Mspo and 79.

As simulations grew in volume and simultaneously achieved higher mass and spatial
resolution, it became clear that simulated halo profiles exhibit slight but systematic departures
from the NFW shape. As discussed in Navarro et al. (2004, see also Gao et al. 2008; Ludlow
et al. 2011; Dutton and Maccio 2014; Child et al. 2018), simulated halo profiles are better
described by the Einasto (1965) profile, which can be written

N ) —

where r_5 and p_, have the same meaning as in Eq. (2.1), and « is a shape parameter that
can be tailored to better-fit individual haloes. For a ~ 0.18, Eq. (2.2) resembles the NFW
profile over a wide range of scales.

Neglecting the slight deviations between simulated halo density profiles and the NFW
profile, the values of ¢ and My, are sufficient to determine their structure. This led to
numerous studies of the relationship between halo mass and concentration, and how it changes
as a function of redshift and cosmology (the so-called concentration-mass-redshift relation,
often denoted ¢(M, z)). These studies paint a clear picture of the structure of CDM haloes:
at fixed redshift, their concentrations, on average, decrease with increasing mass, and at fixed
mass, on average, decrease with increasing redshift (e.g. Bullock et al., 2001; Dolag et al.,
2004; Prada et al., 2012; Ludlow et al., 2012, 2013; Bhattacharya et al., 2013; Kwan et al.,
2013; Ludlow et al., 2014; Correa et al., 2015; Ludlow et al., 2016; Diemer and Joyce, 2019;
Brown et al., 2020; Ragagnin et al., 2021). Although the exact physical mechanism that sets
the concentration of a halo is not known, numerous studies have convincingly demonstrated
that it is closely connected to its assembly history (Navarro et al., 1996, 1997; Bullock et al.,
2001; Wechsler et al., 2002; Zhao et al., 2003; Dolag et al., 2004; Ludlow et al., 2014, 2016;
Diemer and Joyce, 2019).

A number of studies have also addressed the mass and redshift dependence of «, the

Einasto shape parameter in Eq. (2.2). For example, Gao et al. (2008, see also Dutton and

'We define the virial mass Mop0,m of a DM halo as the total mass enclosed by a sphere of radius 7209, m,
centered on the halo particle with the minimum potential energy, that encloses a mean density of 200 X pyy,
where py, = Qup. is the mean matter density and p. = 3 H? /87 G is the critical density of the universe.
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Maccio 2014; Child et al. 2018) demonstrated that the average value of « increases with both
halo mass and redshift in a manner that can be neatly described by a single relation between «
and peak height?, (M, z). Ludlow et al. (2013, see also Ludlow and Angulo 2017) showed
that, like the halo concentration, « is intimately linked to the assembly histories of dark matter

haloes.

Given the approximate self-similarity of halo structure, the ability to accurately predict
halo concentrations has numerous applications, including estimating merger rates of
primordial black holes (e.g. Mandic et al., 2016), predicting the lensing signal associated with
haloes (e.g. Bartelmann et al., 2002; Fedeli et al., 2007; Mandelbaum et al., 2008; Amorisco
et al., 2021) and their substructure (e.g. Despali et al., 2018), and to estimate the gamma ray
signal potentially produced by dark matter annihilation (e.g. Sdnchez-Conde and Prada, 2014;
Okoli et al., 2018). Another potential application — indeed, the one that motivated this work
— is to improve the performance of cosmological rescaling algorithms (Angulo and White,
2010; Contreras et al., 2020) that can be used to transmute a template N-body simulation
carried out with a set of cosmological parameters to a synthetic simulation consistent with
another cosmology. Whether existing models can appropriately account for the cosmology

dependence of halo concentrations has not been rigorously tested.

The aim of this work is therefore to study the dependence of the ¢(M, z) relation on
cosmology, and to test the extent to which it can be reproduced by published models for
predicting halo concentrations. To do so, we ran a large suite of gravity-only simulations
in which the cosmological parameters were systematically varied with respect to the
best-fit Planck Collaboration et al. (2020b) results. In Section 2 we present our suite of
cosmological simulations along with their associated halo and merger tree catalogs (§§2),
explain our approach to discarding unrelaxed haloes (§§2), and outline how we measure halo
concentrations (§§2). In Section 2 we present the ¢()M, z) relations obtained for different
cosmologies (§§2) and study the relation between the internal structure of haloes and their
formation histories. In §§2 we compare the performance of different published models for
predicting the mass- and redshift-dependence of halo concentration, focusing on their ability
to reproduce the cosmology-dependence of the ¢( M, z) relation. In Section 2 we discuss how
accurate predictions for halo concentration can lead to improved accuracy when applied to a

cosmological scaling algorithm. In Section 2 we provide a few concluding remarks.

2The peak height, a dimensionless mass parameter, is defined as (M, z) = §./0(M, z), where (M, z) is
the variance of the matter density perturbations linearly extrapolated to redshift z, and J. is the critical density
for gravitational collapse, usually estimated from the spherical collapse model for which J. ~ 1.686 (e.g.
Peebles, 1980).
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2.2 Numerical simulations and analysis

Below we describe the pertinent details of the numerical simulation used in this work,

and discuss our analysis algorithms and techniques.

2.2.1 Numerical simulations

Our results are inferred from a suite of DM-only simulations in which we modify the

values of different cosmological parameters. We define these parameters below.

1.

og: The root mean square of matter density perturbations averaged in spheres of radius

R = 8h~"Mpc and linearly extrapolated to z = 0.

Qn: The dimensionless matter density parameter, 2, = pm/pe = 87Gpn/3H?,
which is the ratio of the total matter density, p,,, and the critical density, p.. Note that
., includes contributions from both DM and baryons, i.e. €, = Qcqm + €2}, For
runs in which €2, is varied, we only modify the value of (2.4, (keeping €2, fixed) and
adjust the value of {2pg (the cosmic dark energy density) to maintain a flat cosmology.

Note that neutrinos do not contribute to this definition of €2,,.

. ng: The scalar spectral index of the primordial density fluctuation power spectrum,

P(k) oc kL.

wo  and  wy: The dynamical dark energy parameters used in the

Chevallier-Polarski-Linder (CPL) parameterization (Chevallier and Polarski,
2001; Linder, 2003). When wy = —1 and w, = 0 the dark energy contribution to the

background expansion is consistent with a cosmological constant, see Eq. (2.3).

M,,: The sum of the individual masses for the three neutrino species, which is related
to the neutrino density parameter by 0, = M, /[(93.14€V)h?] (with M,, expressed in

eV)’. When we increase the value of €2, we reduce the value of Q.q,, by the same

3The first Friedmann equation can be written in terms of the neutrino density parameter, €2, as (Zennaro
etal., 2017):

H?(a) = H{ [((eeam,o + Q,0) a™ + Qy(a) E*(a)+
+QDE70G73(1+U/0+U}&)e?)aw@:| ( (23)

where we have also included the Chevallier-Polarski-Linder (CPL) parameterization (Chevallier and Polarski,
2001; Linder, 2003) of dynamical dark energy component whose equation of state is w(z) = wg + wez/(1 +
z) (Linden and Virey, 2008).
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amount in order to maintain a flat cosmology. When we vary M,, in our simulations
we kept fixed the value of the power spectrum initial amplitude, A;, therefore varying

M, will result in different values for og at z = 0.

6. h: The dimensionless Hubble-Lemaitre parameter, which sets the value of the

Hubble-Lemaitre constant, i.e. Hy = 100 h km s+ Mpc_1 at z = 0.

7. ,: The baryon density parameter, {2, = py,/p.. Changes to (2;, are compensated by

changing €).q, such that (), remains constant.

Our suite of simulations is designed around four reference runs, which we refer to as
Nenya, Narya, Vilya and The One. All reference simulations share a number parameters —
specifically, og = 0.9, M,, = 0.0 eV, wg = —1.0, w, = 0.0, and Ly,x = 512 h_lMpc are the
same for all of them — but other parameters are varied as described in Table 2.1. Along with
these reference runs, we carried out 32 additional simulations divided in 8 groups (with 4
simulations in each group) according to the cosmological parameter that was varied. For the
runs in a given group we uniformly vary a particular cosmological parameter so that it spans a
50 or 100 region (depending on the parameter) around the best-fit parameter values provided
by Planck Collaboration et al. (2020b). For the case of the Hubble-Lemaitre parameter, h,
we explore values that span a 4 ¢ region around the best-fit value obtained from low-redshift
supernovae data Riess et al. (2016).

The selection of these cosmologies was motivated by the criteria set forth in Contreras
et al. (2020), and we have generated them, in part, to serve as a follow-up of the runs presented
in that work (some of our simulations have, in fact, already been used in other studies, e.g.
Contreras et al. 2021; Zennaro et al. 2021; Pellejero-Ibanez et al. 2022). The objective
of Contreras et al. (2020) was to test the performance of cosmology-rescaling algorithms

(which we explain in more detail in Section 2). We therefore designed our simulation suite

Table 2.1: Our four “reference” simulations (Nenya, Narya, Vilya and The One) share the following
cosmological parameters: og = 0.9, M,, = 0, wg = —1 and w, = 0. The parameters listed below
have been varied.

Name Qum | ns h Oy | mpum [ Mg
Nenya | 0.315 | 1.01 | 0.60 | 0.050 10951
Narya | 0.360 | 1.01 | 0.70 | 0.050 10927
Vilya 0.270 | 0.92 | 0.65 | 0.060 10944
The One | 0.307 | 0.96 | 0.68 | 0.048 109
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Table 2.2: The values of the cosmological parameters that are modified for each simulation. All
runs have the same cosmological parameters as those used for one of the four reference simulations
listed in Table 2.1 but with one parameter modified to match the values listed below. For example,
the run referred to in the upper-left entry adopts cosmological parameters consistent with the Nenya
simulation, but with a lower value of the rms density fluctuation amplitude, i.e. og = 0.730.

Ref - o3 Ref - QO Ref - ng Ref - wy
Nenya 0.730 | Nenya 0.23 | The One 0.920 | Nenya —0.70
The One 0.770 | Nenya 0.27 | The One 0.940 | Nenya —0.85
Nenya 0.815 | Narya 0.36 | The One 0.965 | Nenya —1.15
Nenya 0.860 | Narya 0.40 | Narya 0.990 | Nenya —1.30
Ref - w, Ref - M, Ref - h Ref -
Nenya —0.30 | Nenya 0.1 eV | Nenya 0.65 | Nenya 0.040
Nenya —0.15 | Nenya 0.2 eV | Narya 0.70 | Nenya 0.045
Nenya 0.15 | Nenya 0.3 €V | Narya 0.75 | Nenya 0.055
Nenya 0.30 | Nenya 0.4 eV | Narya 0.80 | Nenya 0.060

in such a way that each run can be compared to a rescaled simulation obtained from one
of our four reference runs. This is why we modified only one cosmological parameter per
simulation, while keeping all others fixed with respect to the values used for one of the
reference simulations. The various runs are listed in Table 2.2, where the column headers
indicate the cosmological parameter that was modified, and the prefix indicates the reference
model.

All simulations were carried out using a lean version of L-Gadget3 (see Springel
et al., 2008; Angulo et al., 2012) and evolved the DM density field using Npy = 15363
equal-mass DM particles; they all employed the same softening length: ¢ = 5h 'kpc.
All simulation volumes are approximately Viox = (512 h~'Mpc)?, but vary slightly from

4. The slight variation in box size, along with changes to ,,, result in small

run to run
differences in the DM particle masses between simulations. Our lowest-mass resolution
run has mpy = 101%°* h=tM, (Extreme high-ns), and our highest mass-resolution run has
mpm = 10%4 h=IM (Extreme low-h); the particle masses of all other simulations falls
within this range. We use a version of NgenlC (Springel, 2015) that employs second-order
Lagrangian Perturbation Theory (2LPT) to generate the initial conditions at z = 49 for each
simulation.

For simulations including massive neutrinos, we created initial conditions according to

the cold matter power spectrum obtained using the scale dependent backscaling technique

4Slight differences in the box size between the various runs ensures that variations of our reference models,
when the cosmology-rescaling algorithm is employed to match the corresponding reference cosmology, will
have a volume of exactly Viox = (512 h_lMpc)3. Selecting the simulation volumes this way simplifies the
comparison between the N-body simulations and the results obtained from the cosmology-rescaling algorithm

(see Contreras et al., 2020)
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described in Zennaro et al. (2017). We then evolved these simulations using a version of
L-Gadget3 that incorporates the neutrino implementation of Ali-Haimoud and Bird (2013),
where neutrino perturbations were solved on a grid, employing a linear response function
that is sensitive to the non-linearities developed in the cold matter distribution.

To reduce cosmic variance, we followed the approach of Angulo and Pontzen (2016a)
and carried out paired-phase counterparts of each of our simulations, which doubles the total
number of simulations used in our analysis. We differentiate the two simulations within

29

each of the fixed-paired doublets with the suffixes “- 0” and “- 7. For more information
regarding the fixing and pairing technique and how it reduces cosmic variance in cosmological
simulations see Angulo and Pontzen (2016a), Chuang et al. (2019), Knebe et al. (2021) and
Maion et al. (2022).

We identify haloes and subhaloes in our simulations using a Friends-of-Friends
algorithm (Davis et al., 1985), with linking length b = 0.2, and a modified version of
SUBFIND (Springel etal.,2001a). As discussed in Contreras et al. (2020), our implementation
of SUBFIND is able to robustly identify substructure haloes by considering their prior
evolution.

We construct merger trees by linking haloes and subhaloes between consecutive snapshots,
starting from the first snapshot in which a particular halo is identified. We then progress
through subsequent snapshots and determine which halo or subhalo is its most likely
descendant. To do so, we track its 15 most-bound particles between snapshots and identify
all (sub)haloes in which these particles end up; these constitute a set of possible descendants.
We identify the most likely "true" descendant by considering which (sub)halo candidate has
the highest score based on the number of particles it inherits weighted by their rank ordered
binding energy with respect to the original (sub)halo. This approach constitutes a slight
modification to the method used by Angulo et al. (2012) where only the inherited number of

(most-bound) particles is considered but not their binding energies.

2.2.2 Halo dynamical state and relaxedness

In this work we analyze the c(M, z) relations of "relaxed" DM haloes. We discard
unrelaxed haloes from our analysis because their density distribution is likely to deviate from
spherical symmetry, and as such be ill fit by simple analytic profiles such as NFW or Einasto.
Considering only relaxed haloes biases the median concentrations to higher values in mass
bins where a large number of haloes are expected to be out of equilibrium, particularly
high-mass bins (unrelaxed haloes typically have larger values of r_, than relaxed ones of

the same mass). However, excluding unrelaxed haloes is crucial for our analysis because it
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allows us to quantify the connection between the inner structure of haloes and their formation
histories, and eliminates the possibility of dynamical processes such as mergers biasing our
results).

Following Ludlow et al. (2012), we consider a halo unrelaxed if its half-mass formation
lookback time (since identification), i.e. ¢, = ty,(2n) — t1,(20), is less than a crossing time,
teross = 27200/ Vaoo. Following Neto et al. (2007), we also discard haloes for which the
distance between their center of mass and the position of the gravitational potential minimum
is greater than 0.07 ro99 as well as those whose substructure mass fraction (i.e. the mass

contained in subhaloes within r9gq of the host halo) exceeds 0.1 Msqg.

2.2.3 Analysis of halo density profiles

Much of our analysis focuses on the median mass-concentration-redshift relations
obtained from the best-fit density profiles of well-resolved haloes in our simulations, which
we initially compute using logarithmically spaced mass bins of width A log Mgy = 0.1 that
span the range My € (10'3,10'>2) h=*M,. Following previous works (e.g., Gao et al.,
2008; Dutton and Maccio, 2014; Child et al., 2018; Ludlow et al., 2019; Brown et al., 2020),
we then discard bins corresponding to haloes with fewer 5000 particles within their virial
radius, 1909, as well as those containing fewer than 50 haloes, the latter to avoid excessive
noise in the relations.

To compute the concentrations of haloes we fit each of their spherically-averaged density
profiles to Einasto’s formula, i.e. Eq. (2.2), but fix the value of « according to the @ — v

relation obtained by Gao et al. (2008), i.e.

o = 0.155 + 0.0095 v (M, z)*. (2.4)

When fitting the density profiles we discard radial bins that are below the resolution limit,
rmin- We follow Power et al. (2003) and define r,;, as the radius at which relaxation time
is equal to the circular orbital time at the virial radius, i.e. frefax ("min) = teirc(7200) (S€€ also

Zhang et al., 2019; Ludlow et al., 2019). This yields the following condition:

Lrelax (rmin) V200 N (Tmin> |: pC(ZO) :|é =1 (25)

tcirc (TQOO) - 8 In N (rmin) Penc (Tmin)

where p.(2o) is the critical density of the universe at the halo identification redshift z,, and
N (Tmin ) and Pene(rmin ) are the enclosed number of particles and enclosed density at 7y,
respectively. We also discard radial bins for which r > 7., = 0.8ryg9, where density profiles
can be sensitive to local departures from equilibrium (see, e.g. Ludlow et al., 2020). When

carrying out our fits, we restrict the best-fit value of r_, to the range 7, < -9 < Thax.
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Although we have excluded unrelaxed haloes from our analysis, we nonetheless encounter
a great diversity in profile shapes, and for a number of them the best-fit value of r_5 is equal
to Tmin O Tmax. FOr these cases, the true value of r_ is likely outside the resolved radial
range and our estimate of r_, therefore represents a lower or upper limit. We surmount this
problem by discarding all mass bins in which more than 30 per cent of haloes have either
T'_9 = T'min OF T_o = Tmax, Which ensures that such poorly-fit systems do not bias the median
concentrations used in our analysis. We have employed a simulation with higher resolution
(more than 3 times the number of particles and 50 per cent smaller force softening) to verify
that this procedure yields robust values for the median concentrations.

In Fig. 2.1 we show the median 2y = 0 density profiles (weighted by a factor of
r2) for haloes of different virial mass in the The One — 7 simulation. Halo masses are
logarithmically-spaced and span the range Msgy € (103, 10'>2) h~'M,. The filled circles
correspond to radial bins with 7, < 7 < 7., By plotting log;o(pr?), the value of r_ is
readily apparent as the radius of the "peak" of each best-fit profile. In addition to the median
density profiles, we present their best Einasto fits (with o computed using Eq. (2.4); solid

lines).

2.3 Results

2.3.1 Cosmology dependence of the mass-concentration-redshift
relation

In Fig. 2.2 we plot using connected circles the ¢(M) relations obtained from our
suite simulations at zp = 0. The results are split into different panels according to the
cosmological parameter that was varied. With a total of 72 simulations, Fig. 2.2 represents,
to our knowledge, the most extensive analysis to date of the cosmology-dependence of the
mass-concentration relation. For each cosmology, we plot the average concentration of haloes
in each mass bin after combining the fixed amplitude and inverted-phase simulations (all the
results presented henceforth correspond to averages of our fixed-amplitude and inverted-phase
simulations). For completeness, in Appendix E we present the concentration-mass relations
at zg = 0.5.

In agreement with previous findings, Fig. 2.2 shows that the concentrations of relaxed
DM haloes decreases as a function of halo mass for all cosmological models studied. This
is consistent with interpretation that structure forms hierarchically, i.e. low-mass haloes
typically form before more massive ones, and that the concentrations of haloes are correlated
with their formation times.

The results also illustrate how varying different cosmological parameters affects the
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Figure 2.1: Median density profiles corresponding to six different logarithmically-spaced mass bins
spanning the range Mgy € (10'3,10'>2) h='Mg. All haloes were identified in the The One —
simulation at zg = 0 (circles). The filled circles correspond to the "resolved” radii used when carrying
out our fits, i.e. they correspond to radial bins satisfying rpin < 7 < rmax (see subsection 2 for
details). The thick solid lines show to the best-fit Einasto profiles with the values for o computed
using Eq. (2.4). Different colors distinguish the different median virial masses, Mg, which are
indicated in the legend in units of log;, M2go[10*°Mzh ™.
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Figure 2.2: Median concentration-mass relations at zy = 0 for all cosmologies studied in this paper

(see Table 2.2). Simulation results are shown as connected colored circles; the solid lines plotted in
the panels of the first and third rows show the relations that are predicted by the model presented in
this work, a modified version of the .16 model (using A = 493; see Section 2 for details). From
top-to-bottom and left-to-right, the cosmological parameters varied are, og, O, ng, Wo, Wa, My, h
and . The simulation results correspond to the average of the median concentrations obtained for
phase-0 and phase-m simulations. The solid lines plotted in the smaller "residual" panels (second
and fourth rows) correspond to the ratio of the concentrations predicted by the L16 model and the
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concentration-mass relation. For example, regardless of halo mass, increasing the value of
og leads to higher concentration. This is because higher og implies higher linear fluctuation

amplitudes at fixed mass, and so earlier average formation times.

Higher values of wy also increase concentrations at all masses. This is because wy
alters the growth histories of haloes through the dark energy term in Eq. (2.3). Specifically,
higher wy leads to earlier halo formation times since (for a fixed value of og) the increased
contribution of dark energy to the universal expansion history demands that the haloes of a

given mass form earlier, which in turn increases their concentration.

As a final example, consider the impact of €);,. For the runs plotted in the lower-right
panel of Fig. 2.2, €}, contributes at least 4 per cent and at most 6 per cent of the critical density
of the universe. Such a small contribution from baryons implies that the matter component
in all our runs is dominated by cold dark matter. As such, the formation histories—and as
a consequence, the concentrations—of haloes are largely insensitive to €2, at least over the

range of values studied here.

2.3.2 The relationship between the characteristic densities of haloes and
their formation histories

As pointed out in Section 2, there are a number models that aim to accurately predict the
c(M, z) relation, as well as its dependence on cosmological parameters. Many are based on
empirical fits to results obtained from large suites of simulations (e.g. Dutton and Maccio,
2014; Diemer and Joyce, 2019), while others are based on physical models that relate the
concentrations of haloes to their collapse histories (e.g. Navarro et al., 1996, 1997; Bullock
et al., 2001; Wechsler et al., 2002; Gao et al., 2008; Ludlow et al., 2013, 2014; Correa
et al., 2015; Ludlow et al., 2016). One model in particular, that of Ludlow et al. (2016,
L16 hereafter), has been shown to reproduce the mass-concentration relation for a variety
of cosmological models, including cold and warm dark matter models that adopt sharply
truncated power spectra (Ludlow et al., 2016; Wang et al., 2020; Richardson et al., 2022).
The .16 model is based on the assumption (see appendix D for more details) that the enclosed
density within a halo scale radius, (p_2) = (p(r_2)), is directly proportional to the critical
density of the universe at the time when its characteristic mass, i.e. M_5 = M(< r_5), had
first assembled into progenitors more massive than 0.02 x M, where M, is the present-day
mass of the halo. The redshift evolution of the mass fraction collapsed in such progenitors
(i.e. those with masses exceeding 0.02 x M) defines the halo’s "collapsed mass history"
(hereafter CMH for short). Below we test whether this result also holds for the various

cosmologies explored in our simulation suite.

To do so, we use the simulated profiles to determine the mass M _, enclosed by the best-fit
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scale radius r_,, and then define (p_») = 3M_,/47r3,. The formation time, z_,, is defined
as the redshift at which the halo’s CMH first exceeds M _, , which is obtained by interpolating
along the CMH that we calculated using each halo’s merger tree.

In Fig. 2.3 we plot the relation between (p_») and p.(z_5) for all the simulations described
in Section 2, and for redshifts zy = 0, 0.5, 1, 2 (distinguished using different symbols). Each
point corresponds to the average (p_») and p.(z_») calculated for the same mass bins used
to construct Fig. 2.2. Fig. 2.3 reveals an approximate power-law relation between (p_,) and
pe(z_2) that is largely independent of cosmology, halo mass and redshift. Note too that the
relation plotted has a "natural" slope very close to 1, i.e. {(p_2) x p.(z_2). The solid line
shows the best-fit relation: (p_s) & 493 p.(z_5).

The existence of a tight relation between (p_5) and p.(z_») suggests that the concentrations
of haloes — regardless of mass, redshift, or cosmology — can be predicted if an accurate model

for the CMHs of haloes can be found. We investigate this next.

2.3.3 Predicted formation times based on the extended Press-Schechter
formalism

In Fig. 2.4 we show the median CMHs of haloes of different mass identified at 2y = 0 in the
The One — 7 simulation (solid lines; note that these are the same mass bins used to construct
the density profiles plotted in Fig. 2.1). The outsized squares indicate the average halo
formation times, z_o, for the different mass bins. The dashed curves show, for comparison,
the CMHs predicted by the extended Press-Schechter (EPS) formalism (Bond et al., 1991b;
Lacey and Cole, 1993) for haloes of the same present day mass, see Eq. (D.2).> The open
triangles show the values of z_, associated with these EPS-collapsed mass histories (the
latter referred to henceforth as EPS-CMHs). Note that the measured and predicted formation
times agree quite well, as do the overall shapes of the CMHs.

In Fig. 2.5 we test how accurately the EPS model describes the formation times of haloes
in our simulations (after a suitable modification to account for the impact of massive neutrinos
in EPS, see Appendix D). Here we plot the relative difference between the EPS-predicted

formation redshifts, expressed as pEPS

CMH
c

(z_3), and the formation redshifts measured directly
from the simulated CMHs, i.e. p;™" (z_2). Each point corresponds to the median values of
these quantities in bins of halo mass, and are plotted at different redshifts, which increase from
the top to bottom panels. To help with visualization, we have applied a small horizontal shift
to the values in each mass bin so that results obtained for different cosmological parameters

can be easily distinguished. Our results show that the EPS-predicted formation redshifts

3In order to predict the CMHs for DM haloes using the EPS formalism, we adopt a critical density for
gravitational collapse of 3. = 1.46. This minimizes the typical difference between the predicted halo collapse
redshifts and those measured in our simulations (see Fig. 2.5).
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Figure 2.6: Relative differences between the c¢(M, z) relation measured for different simulations
(connected circles). The simulation taken as reference to compute the relative differences in each
panel is the one with the intermediate value of the cosmological parameter that is varied. The plotting
conventions match those used for Fig. 2.2. The solid lines correspond to the relative differences
between the predictions for the concentration computed using the re-calibrated L.16 model.

agree well with the simulated ones, with residuals that show no clear systematic dependency
on cosmology or on mass. But the residuals do exhibit a slight redshift dependence, but it
remains below about 6 per cent for all models, mass bins and redshifts analyzed. Such small
differences between the predicted and measured formation times of haloes do not significantly
impact our ability to accurately model halo concentrations based on EPS CMHs, and we
conclude that the CMHs of cold dark matter haloes can reliably modelled using the EPS

formalism for a wide range of cosmological models.

2.3.4 Model predictions for the mass-concentration-redshift relation

We follow L16 and use the power-law relation between (p_) and p.(z_2) presented in
Fig. 2.3, together with EPS-predicted formation times to predict the cosmology-dependence
of the ¢(M, z) relation. The results are plotted in Fig. 2.2 as solid colored lines, which agree
well with the results of our simulations.

Fig. 2.6 further explores the extent to which the L16 model captures the correct cosmology-
and mass-dependence of the ¢(M, z) relation. The plot is organized to match Fig. 2.2, with
each panel showing results obtained from runs that vary a particular cosmological parameter;
all results are plotted at z; = 0. The various connected circles show the relative differences
between the median concentrations in each simulation measured with respect to those obtained
from the run that was carried out with the intermediate value of the relevant cosmological
parameter. The solid lines show the predictions of the L16 model, which reproduces the
cosmology-dependence of concentration-mass relation rather well.

In Fig. 2.7 we compare how well our measurements for the ¢(M, z) relation can be
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reproduced by various other published concentration models. To produce Fig. 2.7 we select
the values for the concentration measured for each mass bin (considering separately the
simulations in each subpanel of Fig. 2.6), then, we obtain the gradient of the concentration
with respect to the cosmological parameter that is varied, dc/df, by fitting the selected
points to a straight line. We repeat the process for all mass bins. The results obtained are
then normalized by dividing by the interval spanned in each subpanel by the cosmological
parameter that is been varied, Af (connected circles). We repeat this operation employing
the predictions for the concentration provided by the re-calibrated L16 model (solid lines),
the Prada et al. (2012) model (“P12”, dotted lines), the Child et al. (2018) model (“C18”,
dot-dot-dashed), the Diemer and Joyce (2019) model (“DJ19”, dashed lines), the Ragagnin
et al. (2021) model (“R21”, dash-dash-dot-dot lines), and the Brown et al. (2022) model
(“B22”, dashed-dotted lines).

The model that best captures the dependence of concentration on cosmology is our
implementation of L16. Nevertheless, it is important to point out that the comparison of
our results with the predictions provided by P12, C18, DJ19, R21, and B22 is somewhat
unfair since, for instance, P12 aims to predict the concentrations for all haloes (including
unrelaxed ones) and the model of R21 is calibrated using a set of hydrodinamical simulations.
Regardless, it is important to note that the P12, C18, DJ19, R21, and B22 models predict that
halo concentrations do not depend on w, or w,, whereas L16 provides reasonably accurate
predictions for the concentration dependence of these parameters. These results are not
unexpected. The P12 and B22 models depend only on the shape of the (smoothed) density
fluctuation power spectrum, but not on the assembly histories of haloes. Their predictions
are therefore insensitive to the expansion history of the universe. The models of C18 and R21
are based on empirical fits to the simulated concentration-mass-redshift relation that are also
insensitive to the expansion history of the universe, and therefore cannot recover its impact
halo concentrations. The DJ19 model, however, does consider the slope of the growth factor
(instead of the full merger history of haloes) when predicting halo concentrations, but this is

largely insensitive to wy and w,, particularly at low redshifts.

2.4 Application of the .16 model to scaling algorithms

In this section we illustrate how the LL16 model can be used in studies that require
a theoretical model capable of producing accurate concentration predictions. We will
provide, as an example, the performance of the scaling algorithms (briefly summarized in
the next paragraph), where the results substantially improve when including a concentration
correction.

The scaling algorithm is a method developed by Angulo and White (2010) which allows
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Figure 2.7: Linear dependence of the concentration on different cosmological parameters as a function
of Magg. The results have been computed as described in subsection §§2. The connected dots
correspond to the results derived from our simulations. Different lines correspond to the results
derived from different models: re-calibrated .16 model (solid lines), Prada et al. 2012 (P12; dotted
lines), Child et al. 2018 (C18; dot-dot-dashed lines), Diemer and Joyce 2019 (DJ19; dashed lines),
Ragagnin et al. 2021 (R21; dash-dash-dot-dot lines), and Brown et al. 2022 (B22; dashed-dotted
lines).

one to rapidly generate mock or synthetic cosmological simulations from a "template"
N-body simulation. The mock simulation that the algorithm generates contains the DM
particles of the original simulation displaced to new positions in such a way that its density
field accurately reproduces that of an actual N-body simulation executed using different
cosmological parameters from those of the original N-body simulation. Zennaro et al. (2019)
extended the cosmology-rescaling technique to provide predictions when considering a hot

component of arbitrary mass, such as neutrinos.

Contreras et al. (2020) showed that very accurate predictions for the halo clustering can
be achieved by including a concentration correction on top of the standard scaling algorithm.
The concentration correction modifies the position of DM particles within haloes to match

halo concentrations in the target cosmology.

Fig. 2.8 illustrates how concentration corrections improve the accuracy of the power
spectrum corresponding to a scaled simulation generated using the scaling algorithm. To
generate this figure we employ the set of simulations presented in §2 in which we vary
the total neutrino mass, M, from 0.0eV to M, = 0.4eV, keeping all other cosmological

parameters (those of Nenya) fixed, see Table 2.2.

We apply a scaling algorithm to the N-body simulation with M, = 0eV to produce mock
simulations that mimic the behaviour of runs with M, = 0.1,0.2,0.3,0.4eV. We first scale

the M, = 0eV-simulation to the target cosmologies (changing M, to 0.1,0.2,0.3,0.4eV
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Figure 2.8: Relative difference between the power spectrum obtained from a gravity-only reference
simulation and the power spectrum obtained from the corresponding rescaled simulation, i.e.,
AP(k)/P(k) = Picaled(k)/Px—body(k) — 1. We focus on models with different neutrino masses,
and choose our reference simulation to be the one with A, = 0eV. The thin solid lines correspond
to the case without applying any concentration correction and the other line styles correspond to
concentration corrections obtained using three different concentration models: the re-calibrated
L16 model (Eq. (D.1); thick solid lines), the Prada et al. 2012 model (P12; dotted lines), and the
model of Diemer and Joyce 2019 (DJ19; dashed lines). The different shades of red correspond
to different neutrino masses. The Nyquist frequency corresponding to these set of simulations is
logg kny [R Mpc™!] & 0.97, and the number of points selected to compute the power spectrum is
sufficiently large so that aliasing effects are not important.
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subsequently) without considering concentration corrections, then, we repeat the process
employing three different concentration models — the re-calibrated L16 model, the model
presented in Prada et al. (2012) and the one from Diemer and Joyce (2019) — to provide the
predictions for the concentration corrections.

We compute the power spectrum for the original N-body simulations and the scaled
simulations with and without concentration correction. The relative differences between the
original and scaled power spectra AP(k)/P(k) = Picaled(k)/Px—body(k) — 1 are plotted
in Fig. 2.8 as a function of scale. The thin solid lines correspond to the comparison with
respect to mock simulations scaled without concentration corrections; the remaining lines
correspond to the comparison with scaled simulations in which we have considered the
concentration corrections associated with different concentration models: the re-calibrated
L16 model (solid lines), Prada et al. 2012 (P12 — dotted lines) and Diemer and Joyce 2019
(DJ19 — dashed lines).

In Fig. 2.8 one can appreciate that the power spectra of the scaled simulations with
concentration corrections are closer to the power spectra of the original N-body simulations in
comparison with the case without concentration corrections. Different concentration models
produce different levels of concentration corrections in the scaling technique which can be
observed at the power spectrum level. The re-calibrated L16 model (i.e. Eq. (D.1)) yields
the most accurate predictions for the power spectrum when compared to the other models.
In the most extreme scenario, when M,, = 0.4 eV, the relative difference between the power
spectrum from the rescaled simulation (for the L16 model) and the original simulation at
k~4h Mpc_l is less than 1%:; for the other concentration models the relative differences at

this scale are at least twice as large.

2.5 Conclusions

In this paper, we carried out an extensive analysis of the cosmology dependence of the
mass-concentration-redshift relation, ¢(M, z), for dynamically relaxed dark matter haloes.
Our results were based on a large suite of gravity-only simulations in which we systematically
varied the following cosmological parameters: og, v, y, ns, h, M,,wy and w,. Each
parameter was varied linearly across a range that spans a 5 to 100 region (depending on the
parameter; see Table 2.2 and Table 2.1) surrounding the best-fit value obtained by Planck
Collaboration et al. (2020b).

In agreement with previous work, we find that, regardless of the cosmological parameter
varied, the concentrations of DM haloes, on average, decrease with increasing halo mass at
fixed redshift (Fig. 2.2), as well as with increasing redshift at fixed halo mass (Fig. E.1). For

the range of parameter values we considered, concentrations are most sensitive to changes in
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og, the rms amplitude of linear density fluctuations; they are least sensitive to changes in €2,
the baryon density parameter. This result is not surprising given the strong dependence of
halo formation times on og and their weak dependence on (2,.

In general, our results agree with previous studies showing that the structure of dark matter
haloes is strongly correlated with their formation histories (e.g. Ludlow et al., 2014, 2016;
Lucie-Smith et al., 2022). Specifically, we find that halo concentrations, when expressed in
terms of the enclosed density within the halo scale radius, i.e. (p_»), correlate strongly with
the critical density at their formation time z_s, i.e. p.(z_2). Indeed, when the latter is defined
as the point at which the "collapsed mass history" (CMH; defined as the mass in collapsed
progenitors larger than a fraction f = 0.02 of the halo’s present day mass) first exceeds the
halo’s characteristic mass, i.e. M_o = M(< r_5), we find an approximately linear relation

between the two densities that may be accurately approximated by

(p_2) =493 X p(z_2). (2.6)

This simple relation holds for all cosmologies, redshifts, and masses studied. This is a
somewhat surprising result and the most important finding of our paper: The relation between
nonlinear halo structure and formation time is universal hinting that it may be a fundamental
consequence of gravitational dynamics and collapse. This universality implies that our
predictions for the concentration-mass relation should be valid even for cosmologies and halo
masses outside the range considered here.

We showed that equation 2.6, when combined with an accurate model for halo CMHs
based on extended Press-Schechter theory (see Fig. 2.4 and appendix D), can be used to make
accurate prediction for the mass-, cosmology- and redshift-dependence of halo concentrations
(Fig. 2.6) even when considering dynamical dark energy and massive neutrinos. We compared
our predictions for the ¢(M, z) relation with other published models (Fig. 2.7) and verified
that they more accurately capture its cosmology dependence.

Our results confirm and extend those originally obtained by Ludlow et al. (2016) and
suggest that equation 2.6 can be used to accurately predict the concentrations of DM haloes in a
wide range of scenarios. This can be very useful in many areas of cosmology, e.g., to improve

cosmological rescaling algorithms (see Contreras et al., 2020, Fig. 2.8 and Section 2).
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Chapter 3

Characterizing structure formation
through instance segmentation

Dark matter haloes form from small perturbations to the almost homogeneous density
field of the early universe. Although it is known how large these initial perturbations must
be to form haloes, it is rather poorly understood how to predict which particles will end
up belonging to which halo. However, it is this process that determines the Lagrangian
shape of proto-haloes and is therefore essential to understand their mass, spin and formation
history. We present a machine learning framework to learn how the proto-halo regions
of different haloes emerge from the initial density field. We develop one neural network
to distinguish semantically which particles become part of any halo and a second neural
network that groups these particles by halo membership into different instances. This instance
segmentation is done through the Weinberger method, in which the network maps particles
into a pseudo-space representation where different instances can be distinguished easily
through a simple clustering algorithm. Our model reliably predicts the masses and Lagrangian
shapes of haloes object-by-object, as well as other properties like the halo-mass function. We
find that our model extracts information close to optimal by comparing it to the degree of
agreement between two N-body simulations with slight differences in their initial conditions.
We publish our model open-source and suggest that it can be used to inform analytical
methods of structure formation by studying the effect of systematic manipulations of the

initial conditions.

3.1 Introduction

Dark matter (DM) haloes are the primary structures in the universe within which galaxies
form and evolve. Acting as gravitational anchors, they play a pivotal role in connecting
theoretical cosmology with empirical observations from galaxy surveys. Given their

significance in cosmology, a comprehensive understanding of DM haloes and their behaviour
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is paramount. Currently, our most detailed insights into their formation and properties come
from N-body simulations (see Frenk and White, 2012, for a review). These computationally
intensive simulations model the interactions of vast numbers of particles, pinpointing the
regions of the density field where gravitational collapse leads to the formation of DM haloes
(e.g. Angulo and Hahn, 2022a). Therefore, understanding the formation and behaviour of
DM haloes is essential to bridge the gap between theoretical models and observational data.

However, providing quick and accurate predictions (based on the initial conditions of a
simulation) remains a challenging task for physically-motivated models. An accurate model
for halo formation must be able to capture the nonlinear growth of density fluctuations.
Previous analytical or semi-analytical models for halo formation, such as the top-hat spherical
collapse (Gunn and Gott, 1972; Gunn, 1977; Peebles, 1980), the Press-Schechter / Excursion
Set Theory (Press and Schechter, 1974b; Bond et al., 1991b; Lacey and Cole, 1993), or
ellipsoidal collapse approaches (e.g. Sheth et al., 2001; Sheth and Tormen, 2002), qualitatively
reproduce the behaviour of the halo-mass function and the merging rate of haloes, however,
they fail on predicting these quantities accurately (e.g. Jiang and van den Bosch, 2014).
Further, N-body simulations show the formation of “peak-less” haloes, that cannot be
accounted for by any of these methods (Ludlow and Porciani, 2011).

Traditional analytical methods have provided foundational insights into the process of
halo formation, but they struggle to capture the full complexity of it. Machine Learning
(ML) techniques have emerged as a promising alternative, capable of capturing intricate
non-linear dynamics inherent to the gravitational collapse of structures. ML algorithms can
be trained on N-body simulations to emulate the results of much more expensive calculations.
Previous studies have trained ML models to map initial positions and velocities of particles
to their final states (He et al., 2019; Giusarma et al., 2019; Alves de Oliveira et al., 2020; Wu
et al., 2021; Jamieson et al., 2022) and to predict the distribution of non-linear density fields
(Rodriguez et al., 2018; Perraudin et al., 2019; Schaurecker et al., 2021; Zhang et al., 2023;
Schanz et al., 2023).

Further, ML has been used to predict and gain insights into the formation of haloes.
Some studies utilized classification methods to anticipate if a particle will become part of
a halo (Lucie-Smith et al., 2018; Chacén et al., 2022; Betts et al., 2023), or to predict its
final mass category (Lucie-Smith et al., 2019). In Lucie-Smith et al. (2020) a regressor
network is trained to predict the final halo mass for the central particle in a given simulation
crop. The work by Bernardini et al. (2020) demonstrates how ML-segmentation techniques
can be applied to predict halo Lagrangian regions. In Berger and Stein (2019) a semantic
segmentation network is trained to predict Peak-Patch-haloes. In Lucie-Smith et al. (2023)
a network is trained to predict the mass of haloes when provided with a Lagrangian region

centred on the centre-of-mass of proto-halo patches and is then used to study assembly bias
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when exposed to systematic modifications of the initial conditions.

While interesting qualitative insights have been obtained in these studies, it would be
desirable to develop a model that accurately predicts halo membership at a particle level,
surpassing some of the limitations from previous works. An effective model should predict
particles forming realistic N-body halos, improving upon previous models restricted to
simpler halo definitions (e.g. Berger and Stein, 2019, where Peak-patch haloes are targeted).
Additionally, an ideal model should be able to predict disconnected Lagrangian halo patches,
overcoming the limitations of methods like the watershed technique used in Bernardini et al.
(2020), which can only handle simply connected regions. Furthermore, particles within the
same halo should share consistent mass predictions, avoiding having different halo mass
estimates for particles belonging to the same halo.

We present a general ML framework to predict the formation of haloes from the initial
linear fields. We create a ML model designed to forecast the assignment of individual
particles from the initial conditions of an N-body simulation to their respective haloes.
To do so we train two distinct networks, one for conducting semantic segmentation and
another for instance segmentation. These two networks together conform what is known
as a panoptic-segmentation model. Our model effectively captures the dynamics of halo
formation and offers accurate predictions. We provide the models used in this study for
public access through our GitHub repository: https://github.com/daniellopezcano/
instance_halos.

The rest of this paper is organized as follows: In Section 3, we define the problem of
identifying different Lagrangian halo regions from the initial density field (§§3), introduce the
panoptic segmentation method (§§3), present the loss function employed to perform instance
segmentation (§§3), describe the simulations used for model training (§§3), asses the level of
indetermination for the formation of proto-haloes (§§3), outline the CNN architecture (§§3),
and explain our training process (§8§3). In Section 3, we present the outputs of our semantic
model (§8§3) and our instance segmentation approach (§§3). We investigate how our model
reacts to changes in the initial conditions in §§3 & §§3, and study how the predictions of our
model are affected when varying the cosmology §§3. We conclude with a summary and final

thoughts in Section 3.

3.2 Methodology

We aim to predict the formation of DM haloes provided an initial density field. To
comprehensively address this problem, we divide this section into distinct parts. In §§3, we
explain the problem of predicting halo-collapse and discuss the most general way to phrase

it. In §§3, we introduce the panoptic segmentation techniques and explain how they can
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be employed to predict halo formation. We divide §§3 into two separate parts: semantic
segmentation and instance segmentation. In §§3 we describe the loss function employed to
perform instance segmentation. In §§3, we present the suite of simulations generated to train
and test our models. In §§3 we assess the level of indetermination of proto-halo formation.
In §§3 we explain how to build a high-performance model employing convolutional neural

networks. Finally, in §§3 we present the technical procedure followed to train our models.

3.2.1 Predicting structure formation

The goal of this work is to develop a machine-learning framework to predict the formation
of haloes from the initial conditions of a given universe. Different approaches are possible
to define this question in a concrete input/output setting. We want to define the problem in a
way that is as general as possible so that our model can be used in many different contexts.

The input of the model will be the linear density field discretized to a three-dimensional
grid 0;;,. A slice through such a linear density field is shown in the top panel of Figure 3.1
and represents how our universe looked in early times, e.g., z = 100. Beyond the density
field, we also provide the linear potential field ¢;;;, as an input. The information included in
the potential is in principle degenerate with the density field if the full universe is specified.
However, if only a small region is provided, then the potential contains additional information
of e.g. the tidal field sourced by perturbations outside of the region considered.

The model shall predict which patches of the initial density field become part of which
haloes at later times. Concretely, we want it to group the N? initial grid cells (corresponding,
e.g., to particles in a simulation) into different sets so that each set contains exactly all particles
that end up in the same halo at a later time. Additionally, there has to be one special extra set

that contains all remaining particles that do not become part of any halo:

Input:  d;j, Pijik (3.1)

halo 1 halo2 outside of haloes
o\ o\

Output: '{fA,iAd,(,...},({iﬁc,id{,...E,(..,{;ﬁE,id(,...f,( (3.2)

This task is called in the ML literature an instance segmentation problem. Note that it

is different from typical classification problems since (A) the number of sets depends on the
considered input and (B) the sets have no specific order. In practice, it is useful to define the
different sets by assigning different number-labels to them. For example, one possible set
of particles belonging to the same halo can be given the label “1”, another set the label “2”,
and so forth. These number-labels do not have a quantitative meaning and are permutation
invariant, for example, interchanging the label “1” with “2” yields the same sets.

We show such labelling of the initial space in the bottom panel of Fig. 3.1. In this case,

the labels were inferred by the membership to haloes in an N-body simulation that employs
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the initial conditions depicted in the top panel of Fig. 3.1 (see Sec. 3). Our goal is to train
a model to learn this instance segmentation into halo sets by training it on the output from
N-body simulations.

We note that other studies have characterised the halo-formation processes through a
slightly different prediction problem. For example, Lucie-Smith et al. (2020) trains a neural
network to predict the final halo masses directly at the voxel level. While their approach offers
insights into halo formation, our method provides a broader perspective: halo masses can be
inferred easily through the size of the corresponding sets, but other properties can be inferred
as well — for example the Lagrangian shapes of haloes which are important to determine their
spin (White, 1984). Furthermore, our approach ensures the physical constraint that particles

that become part of the same halo are assigned the same halo mass.

3.2.2 Panoptic Segmentation

The proposed problem requires first to segment the particles semantically into two
different classes (halo or non-halo) and then to classify the particles inside the halo class into
several different instances. The combination of such semantic plus instance segmentation
is sometimes referred to as panoptic segmentation. Several strategies have been proposed
to solve such panoptic segmentation problems (Kirillov et al., 2016; Bai and Urtasun, 2016;
Arnab and Torr, 2017; De Brabandere et al., 2017; Kirillov et al., 2018, 2023) and they
usually operate in two-steps:

1. Semantic segmentation: The objective of this task is to predict, for each voxel in our
initial conditions (representing a tracer particle in the N-body code), whether it will be
part of a DM halo at z = (. This task is a classification problem, and we will employ
the balanced cross-entropy (BaCE) loss (Xie and Tu, 2015) to tackle it:

Lace (YY) 6 ~BYlog¥ — (1-)(1-Y)log(1-¥)  (33)

Here, Y represents the ground truth data vector, each entry corresponds to a voxel and
is equal to 1 if the associated particle ends up being part of a halo; otherwise, its value
is 0. Y contains the model predictions, with each entry representing the probability
that this particle ends up in a halo. The parameter 5 handles the class imbalance
and is calculated as the number of negative samples divided by the total number of
samples. We measure (3 using our training simulations (see §§3) and obtain a value of

B = 0.5815'. After training our network, we need to choose a semantic threshold to

'The value of 3 depends on many properties such as the cosmological parameters chosen for the simulations,
the redshift, or the mass resolution. We would need to retrain our network and recompute the value of 3 to
obtain reliable predictions in different scenarios.
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Figure 3.1: Example of the prediction problem considered in this article. Top panel: Slice of the
three-dimensional initial density field of an N-body simulation. Each voxel (represented here as a
pixel) corresponds to a particle that can become part of a halo at later times. Bottom panel: Regions
in the initial condition space (same slice as the top panel) that are part of different DM haloes at
redshift z = 0. Pixels coloured in white do not belong to any halo. Pixels with different colours
belong to different haloes

. In this work, we present a machine-learning approach to predict the formation of haloes (as
in the bottom panel) from the initial condition field (top panel).
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generate the final semantic predictions. This threshold is calibrated to ensure that the
fraction of predicted particles belonging to haloes is equal to 1 — /3, resulting in a value

of 0.589 (refer to Appendix H for an in-depth explanation).

. Instance segmentation: The objective of this task is to recognize individual haloes
(instances) by identifying which particles (from those that are predicted to be part of a

DM halo) belong to the same object and separating them from others.

Instance segmentation tasks are not conventional classification problems and tackle
the problems of having a varying number of instances and a permutational-invariant
labelling. To our knowledge, there is no straightforward way to phrase the problem of
classifying each voxel into a flexible number of permutable sets through a differentiable
loss function. Typical approaches train a model to predict a related differentiable loss
and then apply a postprocessing step on top of it. Unfortunately, this leads to the loss

function not directly reflecting the true objective.

Various approaches have been proposed to tackle this problem (Kirillov et al., 2016;
Bai and Urtasun, 2016; Arnab and Torr, 2017; De Brabandere et al., 2017; Kirillov
etal., 2018, 2023). A popular method is the watershed technique (Kirillov et al., 2016;
Bai and Urtasun, 2016). This method uses a network to predict semantic segmentation
and the borders of different instances (Deng et al., 2018) and then applies a watershed
algorithm to separate different instances in a post-processing step. However, the

watershed approach comes with several limitations:

* It cannot handle the identification of disconnected regions belonging to the same

instance, a problem known as occlusion.

* It is necessary to select appropriate threshold values for the watershed
post-processing step to generate the final instance map. These parameters are
typically manually chosen to match some particular metric of interest, but might
negatively impact the prediction of other properties. For instance, in Bernardini
et al. (2020), they apply the watershed technique to predict Lagrangian halo
regions identified with the HOP algorithm (Eisenstein and Hut, 1998). However,
they choose the watershed threshold to reproduce the halo-mass-function, which

does not ensure that the Lagrangian halo regions are correctly predicted.

* The watershed approach would struggle to identify the borders of Lagrangian
halo regions since they are difficult to define. In Fig. 3.1 it can be appreciated
that the borders of halo regions are very irregular. There also exist points in the
“interior” of these regions which are “missing” and make it particularly complex

to define the border of a halo.

77



Despite all the challenges presented by the watershed approach, in Section F, we
apply this method to predict the formation of FoF-haloes and discuss how the

border-prediction problem can be addressed.

An approach that offers greater flexibility for grouping arbitrarily arranged particles
was presented by De Brabandere et al. (2017). We will follow this approach through the
remainder of this work. The main idea behind this method, which we will refer to as the
“Weinberger approach’™?, is to train a model to produce a “pseudo-space representation”
for all the elements of our input space (i.e., voxels/particles in the initial conditions).
An ideal model would map voxels belonging to the same instance close together in
the pseudo-space while separating them from voxels belonging to different instances.
Consequently, the pseudo-space distribution would consist of distinct clouds of points,
each representing a different instance (see Fig. 3.2). The postprocessing step required
to generate the final instance segmentation in the Weinberger approach is a clustering

algorithm which operates on the pseudo-space distributions.

3.2.3 Weinberger loss

The Weinberger approach possesses some advantages over other instance segmentation
techniques: First of all, the loss function more closely reflects the instance segmentation
objective; that is, to classify different instances into a variable number of permutationally
invariant sets. Secondly, the approach is more flexible and makes fewer assumptions,
for example, it can handle occlusion cases and does not need to assume the existence of
well-defined instance borders.

In Fig. 3.2, we schematically illustrate the effects of the individual components of the
Weinberger loss. Each point in this figure represents a pseudo-space embedding of an input
voxel. The colours indicate the assigned labels based on the ground truth. Points sharing the
same colour belong to the same instance (according to the ground truth), whereas different
colours depict separate instances. The "centre of mass" for each cluster is computed and
indicated with coloured crosses as "cluster centres". The Weinberger loss is constituted by
three separate terms:

* Pull force, Eq. (3.4):

L CLq e
Ly = ol Z N Z max ((fl e — x| — Spun)” 0) (3.4)
e=1""°i=1

2The loss function employed by De Brabandere et al. (2017) to perform instance segmentation is inspired
by a loss function originally proposed by Weinberger and Saul (2009) in the context of contrastive learning as
a triplet-loss function.
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Figure 3.2: Example of a two-dimensional pseudo-space employed to separate different instances
according to the Weinberger loss. Coloured points represent individual points mapped into the
pseudo-space. The centres of the clusters are presented as coloured crosses. Coloured arrows depict
the influence of the pull force term, only affecting points outside the dpy)) range of their corresponding
cluster centre. Grey arrows show the influence of the push force that manifests if two cluster centres
are closer than the distance 2 - dpysh

Given a certain instance ¢ (where C' is the total number of instances), a point ¢
belonging to that set, whose pseudo-space position is X;, will feel an attraction force
proportional to the distance to the instance centre p,. = vazl x;/N,, where N, is the
number of members associated with the instance c. Points closer than dp,; (Which is
a hyperparameter of the Weinberger loss) from the instance centre will not experience
any pull force. The pull force is represented in Fig. 3.2 as coloured arrows pointing
towards the instance centres outside the solid-line circles, which symbolize the distance

Opan to the instance centres.

* Push force, Eq. (3.5):

C C
1 2
Lo = G =T D> fnax ((Eorun — lten — pesl)?.0) [ (3.5)

ca=1 cp=1
caA#cB

Two instances A and B will repel each other if the distance between their instance

centres in the pseudo-space, (., and fi.,, is smaller than 20p,g, (a hyperparameter of

the Weinberger loss). The force they feel is proportional to the distance between them.

In Fig. 3.2 the push force is represented as grey arrows. The dashed circles represent

the distance Jpyg, to the instance centres.
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* Regularization force, Eq. (3.6):

1 C
Lis = 5 (ucll (3.6)
c=1

To avoid having an arbitrarily big pseudo-space distribution all instance centers will

feel an attraction towards the pseudo-space origin.
The overall effect of these forces on the total Weinberger loss is written as:
EWein = Cpull * LPull =+ Cpush LPush + CReg * LReg (3 7)

Where cpui, Cpysh, and cge, are hyperparameters that regulate the strength of the different
components.

Minimizing Eq. (3.7) ensures that the pseudo-space mapping produces instance clusters
separated from each other. A model trained effectively will predict pseudo-space distributions
with points corresponding to the same instances being grouped together and distinctly
separated from other instances. In an ideal scenario in which the Weinberger loss is zero,
all points are closer than dp; to their corresponding cluster centres, and clusters are at least
20push apart. However, realistically, the Weinberger loss won’t be exactly zero, necessitating
a robust clustering algorithm for accurate instance map predictions.

In Appendix G we describe the clustering algorithm that we have developed to robustly
identify the different instance maps. In our clustering algorithm we first compute the local
density for each point in our pseudo-space based on a nearest neighbors calculation. We
then identify groups as descending manifolds of density maxima surpassing a specified
persistence ratio threshold. Particles are assigned to groups according to proximity and
density characteristics. We merge groups selectively, ensuring that the persistence threshold
is met. The algorithm relies on three key hyper-parameters for optimal performance: Ngeps,
Nygp and pinresn. This approach effectively segments the pseudo-space distribution of points,
even when perfect separation is not achieved, thus enhancing the reliability of predicted

instance maps.

3.2.4 Dataset of Simulations

We generate twenty N-body simulations with different initial conditions to use as training
and validation sets for our panoptic segmentation model. Our simulations are carried out
using a lean version of L-Gadget3 (see Springel et al., 2008; Angulo et al., 2012, 2021).
For each of these simulations, we evolve the DM density field employing Npy = 2563

DM particles in a volume of Vpox = (50 A~ 'Mpc)?, resulting in a DM particle-mass of
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mpm = 6.35 - 108 h~1M,. All our simulations employ the same softening length: ¢ =
5h~'kpc, and share the cosmological parameters derived by Planck Collaboration et al.
(2020b), that is, og = 0.8288, ny = 0.9611, h = 0.6777, 2, = 0.048252, ,, = 0.307112,
and 2, = 0.692888. Our suite of simulations is similar to the one employed in Lucie-Smith
et al. (2020).

We use a version of the NgenIC code (Springel, 2015) that uses second-order Lagrangian
Perturbation Theory (2LPT) to generate the initial conditions at z = 49. We employ a
different random seed for each simulation to sample the Gaussian random field that determines
the initial density field. We identify haloes at redshift z = 0 in our simulations using
a Friends-of-Friends algorithm (Davis et al., 1985), with linking length b = 0.2. In this
work, we will only consider haloes formed by 155 particles or more, corresponding to
Mror 2, 10" h7'Mg,. We use 18 of these simulations to train our model and keep 2 of them

to validate our results.

3.2.5 Assessing the level of indetermination

In addition to the training and test sets, we run a set of simulations to establish a target
accuracy for our model. These simulations test to what degree small sub-resolution changes

of the initial density field can affect the final Lagrangian halo regions.

Structure formation simulations resolve the initial conditions of a considered universe
only to a limited degree and exhibit therefore an inherent degree of uncertainty. (1) The
numerical precision of simulations is limited (e.g. to 32bit floating point numbers) and
therefore any results that depend on the initial conditions beyond machine precision are
inherently uncertain. For example, Genel et al. (2019) show that changes in the initial
displacement of N-body particles at the machine-precision level can lead to differences in
the final locations of particles as large as individual haloes. (2) The initial discretization
can only resolve the random perturbations of the Gaussian random field down to a minimum
length scale of the mean-particle separation. If the resolution of a simulation is increased,
then additional modes enter the resolved regime and act as additional random perturbations.
Such additional perturbations may induce some random changes in the halo assignment of
much larger-scale structures.

A good model should learn all aspects of structure formation that are certain and well
resolved at the considered discretization level. However, there is little use in predicting aspects
that are under-specified and may change with resolution levels. Therefore, we conduct an
experiment to establish a baseline of how accurate our model shall be.

We run two additional N = 256% simulations with initial conditions generated by MUSIC

code (Hahn and Abel, 2011). For these simulations we keep all resolved modes fixed (up
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to the Nyquist frequency of the 2562 grid), but we add to the particles different realisations
of perturbations that would be induced by the next higher resolution level. We do this by
selecting every 23th particle from two initial condition files with 5123 particles and with
different seeds at the highest level (“level 9” in MUSIC). Therefore, the two simulations differ
only in the random choice of perturbations that are unresolved at the 256 level. We refer to

these two simulations as the “baseline” simulations.

In Fig. 3.3 we show a slice of the Lagrangian halo patches at z = 0 through these
simulations (left and right panels respectively). The colour map in this Figure represents
the masses of the halo that each particle becomes part of, which correspond to the size of
the corresponding halo-set. We colour each pixel (which corresponds to a certain particle)
according to the mass of the halo that it belongs to. We can appreciate that the outermost
regions of the Lagrangian regions are particularly affected while the innermost parts remain
unchanged. Notably, in certain instances, significant changes appear due to the merging of
haloes in one of the simulations where separate haloes are formed in the other (black-circled
regions).

Throughout this article, we will use the degree of correspondence between the baseline
simulations as a reference accuracy level. We consider a model close to optimal if the
difference between its predictions and the ground truth is similar to the differences observed
between the two baseline simulations. A lower accuracy than this would mean that a model
has not optimally exploited all the information that is encoded in the initial conditions. A
higher accuracy than this level is not desirable, since it is not useful to predict features
that depend on unresolved aspects of the simulation and may be changed by increasing the

resolution level.

3.2.6 V-Net Architecture

V-nets are state-of-the-art models, product of many advances in the field of ML over the
last decades (Fukushima, 1980; Lecun et al., 1998; Krizhevsky et al., 2012; Szegedy et al.,
2014; Long et al., 2014; Ronneberger et al., 2015; He et al., 2015). They are a particular kind
of convolutional neural network (CNN) developed and optimized to efficiently map between
volumetric inputs and volumetric outputs. V-nets are formed by two separate modules: the
encoder (or contracting path) which learns how to extract large-scale abstract features from
the input data; and the decoder (or up-sampling path) that translates the information captured
by the encoder to voxel-level predictions (also making use of the information retained in the
“skipped connections”). We train V-nets to minimize the loss functions presented in §§3
and §§3. We now explain the technical characteristics of how we have implemented a V-net

architecture in TEnsorFLow (Abadi et al., 2015) (see Fig. 3.4 for a schematic representation
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Figure 3.3: Slice of the Lagrangian halo regions of the two “baseline” simulations (left and right
panels respectively). These simulations only differ in sub-resolution perturbations to the initial
conditions and their level of agreement sets a baseline for the desired accuracy of our models. The
colours employed for both panels represent the mass of the halo associated with each particle for the
different Lagrangian halo patches. Circled regions highlight Lagrangian patches whose associated
mass significantly changes between the two simulations.
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Figure 3.4: Flowchart of the particular V-Net architecture we have implemented. The network can
take as input multiple channels with dimensions of 1443 (top left green cube) and generates predictions
for the central voxels with dimensions 128 (top right red cube). The flowchart illustrates the encoder
and decoder paths, along with other distinctive features of the network. Notably, the hidden layers
and skip connections are represented by purple and yellow cubes, with their respective dimensions
annotated at their centres. The down-sampling and up-sampling blocks are shown as brown and
purple trapezoids, in their centres we indicate the number of filters employed for the convolution (or
transposed convolution) operations.
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of our network architecture):
« Input: Our network is designed to accept as input 3D crops consisting of 1443 voxels.?
For the results presented in Section 3, we employ two input channels for the semantic
segmentation model, corresponding to the initial density field and the displacement

potential, which is defined through Poisson’s equation as:

3(q) = V*6(q) (3.8)

For the instance segmentation model, we include three additional input channels
corresponding to the Lagrangian positions of particles. This is necessary since the
network has to be able to map different haloes with the same density (and potential)
structure at different locations in the initial field to different locations in the pseudo

space.

* Encoder / contractive / down-sampling / down-scaling path: This module consists of
consecutive down-scaling blocks that reduce the number of voxels per dimension by
half at each level of the network. The purpose of the down-scaling path is to enlarge
the network’s field of view, enabling per-voxel predictions that take into account distant
regions of the field. Achieving this would be impractical using large convolution
kernels, as they would consume excessive memory. Within each down-sampling
block, we apply three consecutive convolution operations followed by a Leaky-ReLu
activation function. The number of convolution filters in a contractive block doubles
with each level of compression to improve the performance of the model. For each
level, the latent maps computed before the final convolution (the one used to reduce
the data size) are temporarily stored to serve as a skip connection for the up-scaling
path. In Fig. 3.4 we show the dimensions of the latent maps computed at each level of

the contractive path; the deepest level of our network has a size of 93 x 128.

* Decoder / up-sampling / up-scaling path: This path operates opposite to the contractive
path; each up-scaling block doubles the number of voxels per dimension, ultimately
recovering an image with the same dimensions as the original input (see Fig. 3.4).
The up-sampling path facilitates the extraction of smaller-scale features that influence
the final per-voxel predictions. Within an up-sampling block, the final convolution is
substituted with a transposed convolution operation, that allows doubling the output

size per dimension.

* Output: The final module of our network takes as input the latent maps with dimensions

1443 x 16. The functionality of this module varies depending on the task at hand. For

3Ideally, we would prefer to accept as input 2563 voxels (corresponding to the full simulation box). However,
our GPU resources, though powerful (specifically, an NVIDIA QUADRO RTX 8000 with 48 GB of memory), are
insufficient to accommodate such an input size while maintaining a reasonably complex network architecture.
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semantic segmentation, a single convolution operation is performed, resulting in a
latent map of 1443 x 1. This map is subsequently cropped to 1283 x 1, and finally, a
sigmoid activation function is applied. In the case of instance segmentation, we have
decided to work in a three-dimensional pseudo-space, hence, we employ a convolution
with three filters to obtain 144% x 3 maps, which are afterwards cropped to 1283 x 3. In
both cases, the final cropping operation is implemented to enhance model performance

by focusing on the central region of the image.

The V-Net architecture we have implemented is a state-of-the-art model that encompasses

over 3 - 10° trainable parameters.

3.2.7 Training

We train our segmentation networks using a single Nvidia Quadro RTX 8000 GPU card.
As mentioned in §§3, we employ 18 simulations for training, dividing the training process
into separate stages for the semantic and instance models.

To ensure robust training and enhance the diversity of training examples without needing
to run more computationally expensive simulations, we apply the following data augmentation
operations each time we extract a training sample from our simulation suite:

1. Select one of the training simulation boxes at random.
2. Select a random voxel as the center of the input/output regions.

3. Extract the input (144%) and target (128%) fields of interest by cropping the regions
around the central point, considering the periodic boundary conditions of the

simulations.
4. Randomly transpose the order of the three input grid dimensions g, g, q-.
5. Randomly chose to flip the axes of the input fields.

To train our semantic and instance segmentation networks we minimize the respective
loss functions — Eq. (3.3) and Eq. (3.7) — employing the Adam optimizer implemented in
TensorFlow (Abadi et al., 2015). We train our models for over 80 epochs, each epoch
performs mini-batch gradient descent using 100 batches, and each batch is formed by 2 draws
from the training simulations. We deliberately choose a small batch size to avoid memory
issues and ensure the network’s capability to handle large input and output images (1443 and
1283 respectively). Selecting a small batch size induces more instability during training; we
mitigate this issue by using the clip normalization operation defined in TensorFlow during

the backpropagation step.
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The hyper-parameter 5 in the Balanced Cross-Entropy Eq. (3.3) is determined by
computing the ratio of negative samples to the total number of samples in the training data.
The value of 5 measured in different training simulations lies in the interval [0.575, 0.5892].
There exists a slight predominance of voxels/particles that do not collapse into DM haloes
with mass Mg.r 2 101 h~'M, at z = 0 considering the Planck Collaboration et al. (2020b)

cosmology. We fix the hyper-parameter (5 in Eq. (3.3) to the mean value 3 = 0.5815.

Regarding the hyper-parameters in the Weinberger loss Eq. (3.7), we adopt the values
presented in De Brabandere et al. (2017), as we have observed that varying these parameters
does not significantly affect our final results. The specific hyper-parameter values are the
following: cpuy = 1, Opunr = 0.5, Cpysh = 1, Opysh = 1.5, and cge, = 0.001. We have conducted
a hyper-parameter optimization for the clustering algorithm described in Appendix G and
found the following values: Ngens = 20, Nygp = 15 and pynresh = 4.2 (see Table 3.2).

Our semantic and instance models are designed to predict regions comprising 128°
particles due to technical limitations regarding GPU memory. To overcome this limitation
and enable the prediction of larger simulation volumes, we have developed an algorithm that
seamlessly integrates sub-volume crops. For our semantic model, we serially concatenate
sub-volume predictions to cover the full simulation box. For our instance network, we propose
the method described in Appendix I. In summary, this method works as follows: we generate
two overlapping lattices. Both lattices cover the entire simulation box, but the second one is
shifted with respect to the first one (its sub-volume centres lay in the nodes of the first one).
The overlapping regions between the lattices are employed to determine whether instances
from different crops should merge or not. We have verified that this procedure is robust by

checking that the final predictions are not sensitive to the particular lattice choice.

We train our semantic and instance networks separately. The semantic predictions are
not employed at any stage during the training process of the instance model. To compute
the instance loss, Eq. (3.7) is evaluated using the true instance maps and the pseudo-space
positions. The semantic predictions are only employed once both models have been trained.
We use the semantic predictions to mask out pseudo-space particles not belonging to haloes.
Then, the clustering algorithm described in Appendix G is applied to identify clusters of

particles in the pseudo-space (which yields the final proto-halo regions).

Table 3.1: Hyper-parameters employed in our instance segmentation pipeline.

5Pull 5Push Cpull  Cpush CReg N, dens N, ngb  Pthresh
05 1.5 1 I 0.001 20 15 4.2
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3.3 Model Evaluation

In this section, we test the performance of our models for semantic segmentation (§§3)
and instance segmentation (§§3). We use the two simulations reserved for validation to

generate the results presented in this section.

3.3.1 Semantic Results

In Fig. 3.5, we compare the predictions of the semantic segmentation network with the
halo segmentation found in the validation simulation. The leftmost panel illustrates a slice of
the ground truth. Voxels/particles of the initial conditions belonging to a DM halo at z = 0
are shown in red; blue voxels represent particles not belonging to a DM halo at z = 0.

The central panel of Fig. 3.5 displays the probabilistic predictions from our semantic
model for the same slice. The colour map indicates the probability assigned to each pixel for
belonging or not to a DM halo. Voxels with a white colour have a 50% predicted probability
of belonging to a halo. The neural network tends to smooth out features, assigning uncertain
probabilities to regions near halo borders, while consistently assigning high probabilities to
inner regions and low probabilities to external regions. In the ground truth it is possible
to observe that some interior particles within proto-haloes are predicted to belong to the
background. We refer to these as "missing voxels". One of the consequences of the smoothing
effect of our network is to ignore these missing voxels, predicting a homogeneous probability
of collapse in the interior regions of proto-haloes. The missing voxels in the Lagrangian
structure seem to be a feature very sensitive to the initial conditions impossible to capture
accurately at a voxel level. This is supported by the fact that the missing voxels also change
significantly in the baseline simulations (see Fig. 3.3).

The rightmost panel of Fig. 3.5 shows the pixel-level error map for the same slice. We
select a semantic threshold value equal to 0.589 to generate these results. We choose this
value for the semantic threshold so that the total predicted number of particles that belong to
a halo matches the number of collapsed voxels in the validation simulations. In Appendix H
we further analyze the sensitivity of our semantic results to the value chosen for the semantic
threshold. We use different colours to represent the corresponding classes of the confusion
matrix: Green corresponds to true positive (TP) cases, blue to true negatives (TN), black to
false negatives (FN), and red to false positives (FP).

Some regions are particularly challenging to predict for the network, likely due to their
sensitivity to changes in the initial conditions. For example, in the rightmost panel of
Fig. 3.5, it is easy to appreciate many FN regions that appear as black string-like structures
surrounding TP collapsed regions. These FN cases likely correspond to particles infalling

into the halo at z = 0, identified as part of the FoF group despite not having completed the
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Figure 3.5: Slice through the predictions of our semantic segmentation network applied to a validation
simulation. Left panel: Ground truth representation showing in red the voxels/particles belonging
to a DM halo at z = 0 and in blue those particles that do not belong to a DM halo. Central panel:
Probabilistic predictions of the semantic network with colour-coded probabilities for halo membership.
Right panel: Pixel-level error map indicating true positive (green), true negative (blue), false negative
(black), and false positive (red) regions resulting after applying a semantic threshold of 0.589 to our
predicted map. The network effectively captures complex halo boundaries and exhibits high validation
accuracy (acc = 0.86) and Fy-score (F; = 0.83).
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first pericentric passage. Capturing this behaviour might be particularly challenging for the
network since the exact shape of these “first-infall” regions is more sensitive to small changes
in the initial condition and can also be influenced by distant regions of the proto-haloes that do
not completely fit within the field-of-view of our network (which can occur for very massive
proto-halos). Also, we can appreciate FP regions that appear between the FN string-like
regions and the TPs corresponding to the central Lagrangian regions of haloes. Additionally,
the boundaries of the largest haloes may be especially difficult to predict for the network,

since they only fit partially into the field of view.

The results presented in Fig. 3.5 suggest, upon visual inspection, that our model accurately
captures many of the complex dynamics that determine halo collapse. To rigorously assess
the performance of our model we need to quantify the results obtained from our semantic
network and compare them with the differences between the baseline simulations, as discussed

in Section 3.

In Table 3.2 we present the values of some relevant metrics that we can employ to
evaluate the performance of our semantic network (we have considered the semantic threshold
of 0.589). In particular, we study the behaviour of five different metrics: True Positive
Rate TPR = TP/(TP + FN), True Negative Rate TNR = TN/(TN + FP), Positive
Predictive Value PPV = TP /(TP + FP), Accuracy ACC and the F;-score (which is a more

representative score than the accuracy when considering unbalanced datasets), see Eq. (3.9):
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TP + TN 2TP

ACC = ; Fi=
TP + TN + FN + FP 2TP + FP + FN

(3.9)

Table 3.2 also contains the scores measured using the baseline simulations. Our model
returns values for all the metrics very close to the optimal target from the baseline simulations.
This demonstrates the reliability of our model in predicting the well-specified aspects of halo
collapse. See Appendix H for a more detailed discussion about the performance of our
semantic model and the relation between the selected semantic threshold with the results
contained in Table 3.2.

In addition to the optimal case, we compare our semantic model with the explicit
implementation of the excursion set theory from ExSHaLos (Voivodic et al., 2019). The
ExSHaLos code grows spheres around the density peaks in the Lagrangian density field until
the average density inside crosses a specified barrier for the first time. The barrier shape is
motivated by the ellipsoidal collapse (Sheth et al., 2001; de Simone et al., 2011) with three
free parameters that were fitted to reproduce the mean mass function of our simulations.
In Table 3.2 we include the semantic metrics measured with the ExSHaALos results. While
ExSHaLos can describe halo formation to some degree, there exist some aspects that go
beyond the spherical excursion set paradigm which are better captured by our semantic
model. A more detailed analysis of the results obtained with ExSHaLos is presented in
Appendix J.

In Fig. 3.6 we compare the values of the predicted TPR as a function of ground truth halo
mass (TPRp,4, solid green line), with the TPR values measured from the baseline simulations
(TPRy,s, solid black line). It is possible to perform this comparison for the TPR because,
in the ground truth data, we retain information about the mass of the FoF-haloes associated
with each DM particle. Therefore, we can compute the fraction of TP cases in different
ground-truth-mass-bins by selecting the voxels according to the mass associated with them
in the ground truth.

In Fig. 3.6, the values for TPRy,, increase with halo mass, indicating that particles that

end up in lower-mass haloes are more sensitive to small-scale changes in the initial conditions,

Table 3.2: Performance metrics of our semantic segmentation model, along with the ExSHaLos
results, compared against the optimal target accuracy estimated from the baseline simulations. The
table presents True Positive Rate (TPR), True Negative Rate (TNR), Positive Predictive Value (PPV),
and Negative Predictive Value (NPV).

Type TPR TNR PPV ACC F,
ExSHaLos 0.518 0.845 0.707 0.708 0.598
Pred. 0.838 0.883 0.838 0.864 0.838

Optimal 0.887 0914 0.882 0.903 0.884
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Figure 3.6: True Positive Rate expressed as a function of the halo mass associated with the ground
truth voxels. We present the results measured from the model predictions (solid bright green line)
in comparison to the optimal target accuracy from the baseline simulations (solid black line). The
vertical dotted line at 10" h~'M, marks the point where model predictions start to differ from the
baseline results.

consequently, harder to predict accurately. Our network’s predictions follow a similar trend,
albeit with some discrepancies. The model seems to under-predict the number of particles
that end up in haloes with masses lower than M. < 101 A~ Mg, (dotted vertical black line
in Fig. 3.6). This indicates that our model tends to under-predict the number of pixels that are
identified as TPs in the lower mass end. For haloes whose mass is greater than 1012 h‘lM@,
our model returns accurate predictions to a good degree over a broad range, extending more
than two orders of magnitude in halo mass.

In this subsection, we have demonstrated that our semantic model extracts most of the
predictable aspects of halo formation by comparing our results with the baseline simulations
(which only differ in unresolved aspects of the initial conditions). We now employ
the predictions of our semantic network to generate the final results using our instance

segmentation model.

3.3.2 Instance Results

We provide some examples of our instance predictions in Fig. 3.7. The left column
displays the ground truth masses of halo Lagrangian regions extracted from the simulation

results (analogous to Fig. 3.3); the right column shows the predictions obtained from our
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Figure 3.7: Examples of the instance segmentation results obtained with our model. Left column:
ground truth masses obtained using N-body simulations. Right column: predicted masses obtained
using our instance segmentation pipeline. The model can predict the Lagrangian patches of haloes,
although some small differences — e.g. regarding the connectivity of haloes — exist.
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segmentation pipeline. The way in which we compute halo masses from the instance
predictions is by counting the number of particles/voxels that have been assigned to the same
label and multiplying that by the particle mass of our simulations, mpy = 6.35- 108 A~ M.

The shapes of the halo contours are well-captured thanks in part to the semantic
predictions. The instance segmentation pipeline successfully distinguishes the different
haloes that have formed, and in most cases, correctly separates neighbouring haloes. This
is not a trivial task since the size of halo Lagrangian regions varies across several orders
of magnitude. Therefore, the instance segmentation pipeline must correctly separate wildly
different particle groupings in the pseudo-space. Fig. 3.7 shows that our instance segmentation
pipeline correctly identifies different Lagrangian halo regions for the majority of cases.
However, we note that differences arise on the one hand for very small haloes that are close
to the resolution limit and on the other hand for very large haloes that are larger than the field
of view of the network.

In Fig. 3.8, we present a comparison between the ground truth halo masses and the
predicted masses associated with the particles/voxels in our validation set. To generate these
results we apply the following procedure: We select all the ground truth voxels/particles that
end up in FoF-haloes and study the predictions associated with them. We can associate a
predicted mass for all the voxels that belong to a DM halo. In these cases, we can compare
the predicted mass values (Mp,eq) With the ground truth masses (M) at a voxel level. This
comparison is shown in the main panel of Fig. 3.8 as black violin plots (“‘violins” henceforth).
The mass range covered by the black violins goes from My, = 10! h~'M, corresponding
to the minimum mass of haloes (155 particles), to My, ~ 1047 h=1M,,, which is the mass
of the most massive halo identified in the validation simulations. The number of high-mass
haloes is smaller than small-mass ones and therefore the higher-mass end of the violin plot
exhibits more noise. We can appreciate that the median predictions (black dots) correctly
reproduce the expected behaviour (ground truth) for several orders of magnitude.

The voxels identified as part of a halo in the ground truth, but not in the predicted map, are
false negative (FN) cases. For these occurrences, we can study the dependence of the False
Negative Rate (FNR) as a function of the ground truth halo mass (solid black line on the top
panel of Fig. 3.8; analogous to 3.6). We can also study the reciprocal case in which a voxel is
predicted to be part of a halo (hence, it has an associated Mp,.q) but the ground truth voxel
is not collapsed. These cases correspond to False positives (FP) but to make a comparison
as a function of mass we can only express it in terms of the predicted mass. Therefore, we
show as a dashed black line in the top panel of Fig. 3.8 the false discovery rate,

[FP | MPred]

FDR =
[TP|MPred] + [FlePred}

(3.10)
We compare our results with those obtained from the baseline simulations. In the main
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panel of Fig. 3.8 we present the corresponding violin plots from the baseline simulations with
green lines. The range that the green violins span is smaller than the black violins since the
most massive halo identified in the baseline simulations has a mass of My, ~ 1044 A= M,.
In the top panel, the solid and dashed green lines represent the FPR and FDR respectively. As
expected, the FPR and FDR coincide in the case of the baseline simulations. The top panel
results demonstrate that our predictions are comparable to those of the baseline simulations
(as pointed out in Fig. 3.6) over most of the considered mass range. However, they get
progressively worse for masses below My < 102 h~ M (vertical dotted black line),
deviating from the baseline trend. This indicates that our model struggles to capture the
correct behaviour of lower-mass haloes but it produces accurate predictions for higher-mass
ones. When comparing the violin plot distributions of our model with the baseline simulations
we appreciate that we obtain similar (but slightly broader) contours. Being able to achieve
a similar scatter as in the baseline simulations indicates that our model can capture the
well-resolved aspects of halo formation. We want to emphasize that precise predictions
for halo masses are not directly enforced through the training loss, but are a side product,
consequence of precisely reproducing halo Lagrangian patches. The scatter broadens for
smaller halo mass and the network loses accuracy in these cases, sometimes associating
smaller haloes close to a big Lagrangian patch to its closest more massive neighbour.

In the main panel of Fig. 3.8, we include the violin plot lines presented in Lucie-Smith
et al. (2020) (blue violin lines). In this study, a neural network was trained to minimize the
difference between predicted and true halo-masses at the particle level using as inputs the
initial density field or the potential. The focus of Lucie-Smith et al. (2020) is to examine how
different features of the initial conditions influence mass predictions within a framework that
mirrors analytical models.

The comparison between our methodology and Lucie-Smith et al. (2020) in Fig. 3.8
highlights the differing outcomes that arise from the unique objectives and constraints each
model employs. While both models ultimately predict halo masses, we suggest that our
approach benefits from the rigid operator that groups particles together and assigns them
the same halo mass. Therefore, analytical approaches towards predicting the formation
of structures may benefit from knowing about the fate of neighbouring particles. Since in
excursion set formalisms, this is only possible to a limited degree, this increases the motivation
for considering alternative approaches, like the one proposed by Musso and Sheth (2023a).

In Appendix J, we include a comparison of our instance model with the predictions of
ExSHaLos (Voivodic et al., 2019). In Fig. J.1, we show a map-level comparison between
the Lagrangian shapes of friends-of-friends proto-haloes and ExSHaLos predictions. The
shapes of proto-haloes predicted by the ExSHALos implementation are limited to sphere-like

volumes, which affects its flexibility and, consequently, its accuracy (see Table 3.2). While
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Figure 3.8: “Violin plot”, visualizing the distribution of predicted halo masses (at a voxel level) for
different ground-truth mass bins. The black violin plots show the results obtained with our instance
segmentation model. Green violin plots show the agreement between the two baseline simulations
— representing an optimal target accuracy. The blue violin plots in the main panel show the results
presented in (Lucie-Smith et al., 2020). The solid black line in the top panel shows the false negative
rate, FNR, as a function of the ground truth halo mass. The dashed black line represents the fraction
of predicted collapsed pixels that are not actually collapsed as a function of predicted halo mass (false
discovery rate, FDR). The green lines on the top panel correspond to the analogous results obtained
from the baseline simulations. The model predicts haloes accurately object-by-object for masses
M > 10'2Mg /h.
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Figure 3.9: Halo-mass-function (HMF) computed using our N-body simulations reserved for
validation (solid black line). The dashed black line represents the predicted HMF using the Lagrangian
halo regions obtained with our instance segmentation pipeline. The solid blue line shows the HMF
prediction from (Ondaro-Mallea et al., 2022). The dashed blue line corresponds to the HMF obtained
after evaluating our model in a simulation with 10243 particles and Viox = (200 A~ Mpc)3.

ExSHaLos correctly replicates the halo mass function of friends-of-friends haloes, it struggles

to reproduce particle-level mass predictions, as shown in the violin plot in Fig. J.2.

In Fig. 3.9 we present the halo-mass-function (HMF) computed using the validation
simulations (solid black line). The dashed black line shows the predicted HMF computed
using the results of our instance segmentation pipeline. We can appreciate that our predictions
reproduce the N-body results over a range that spans more than two orders of magnitude.
Our results improve upon the prediction mass range for the HMF of previous similar
approaches (Berger and Stein, 2019; Bernardini et al., 2020). This is despite the fact that
Bernardini et al. (2020) select their hyper-parameters to reproduce the HMF; while in Berger
and Stein (2019) they reproduce the HMF corresponding to Peak Patch haloes (Stein et al.,
2019), instead of the HMF associated with FoF haloes. In Fig. 3.9 we also include a solid blue
line representing the theoretical HMF predictions using the model by Ondaro-Mallea et al.
(2022). We compare this result with the HMF associated with the haloes predicted by our
model using the density and potential fields of a realization with 10243 particles and a volume
of Vhox = (200 h~'Mpc)3. Both lines show a good agreement in the 10'? — 10! =M,

range.

We conclude that our semantic plus instance segmentation pipeline correctly reproduces
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the Lagrangian halo shapes of FoF-haloes spanning a mass range between 102 h=1M,
and 10'*7 h='M.. We have tested the accuracy of our results employing different metrics
(presented in several tables and figures). Inferred quantities from our predicted Lagrangian
halo regions, such as the predicted halo masses, correctly reproduce the trends computed

using N-body simulations and improve upon the results presented in previous studies.

3.4 Experiments

In this section, we test how our network reacts to systematic modifications to the input
density field and potential and how well it generalizes to scenarios that lie beyond the
trained domain. Therefore, we analyze the response to large-scale density perturbations, to

large-scale tidal fields and to changes in the variance of the density field.

3.4.1 Response to large scale densities

We study the response of the haloes to a large-scale over-density such as typically
considered in separate universe simulations (Wagner et al., 2015a; Lazeyras et al., 2016;
Li et al., 2014). We add a constant d. to the input density field 6(¢) so that the new density
field J.(q) is given by

6.(¢) = 6(q) + 6, (3.11)

and to maintain consistency with Poisson’s equation, see Eq. (3.8), we add a quadratic term

to the potential:

o .
6-(0) = (@) + (7 - @) (3.12)

where ¢ is an arbitrary (and irrelevant) reference point (Stiicker et al., 2021a), which we
choose to be in the centre of our considered domain. Note that we break the periodic boundary
conditions here, so it is difficult to do this operation for the whole box, but instead we consider
it only for a smaller region to avoid boundary effects.

We show how haloes respond to this modification in Fig. 3.10. The middle panel shows
the predicted masses associated with the particles/voxels (in a similar way to Fig. 3.7) for the
reference field, 0. = 0. The upper and lower panels show the results of including a constant
term to the initial over-density field of J. = —0.5 and d. = 0.5, respectively.

Increases in the background density lead to more mass collapsing onto haloes, thus
generally increasing the Lagrangian volume of haloes. Furthermore, it leads in many cases to
previously individual haloes merging into one bigger structure. This is qualitatively consistent

with what is observed in separate universe simulations (e.g. Dai et al., 2015; Wagner et al.,
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Figure 3.10: Response of proto-haloes to large-scale over-densities.
over-densities of ). = —0.5, 0 and 0.5 respectively. A larger large-scale density tends to increase the

Lagrangian volume of haloes and leads to additional mergers in some cases.
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2015b; Barreira et al., 2019; Jamieson and Loverde, 2019; Terasawa et al., 2022; Artigas
et al., 2022).

To evaluate quantitatively whether the model has learned the correct response to
large-scale density perturbations, we test whether it recovers the same halo bias that has
been measured in previous studies (Desjacques et al., 2018b, for a review). In separate
universe experiments, the linear bias parameter can be inferred as the derivative of the halo
mass function with respect to the large-scale density:

b (M) = nn(M) 06,

(3.13)

Therefore, (Lazeyras et al., 2016) used the halo mass function measured in separate universe
simulations with different large-scale densities d. to measure the bias parameters through a
finite differences approach. While our qualitative experiment from Figure 3.11 follows this
in spirit, it is difficult to do the same measurement here, since the addition of the quadratic
potential term in equation (3.12) breaks the periodic boundary conditions and makes it
difficult to measure the mass function reliably over a large domain. Therefore, we instead
adopt an approach to infer the bias from the unperturbed J. = 0 case. (Paranjape et al., 2013)
shows that the Lagrangian bias parameter can be measured by considering the (smoothed)

linear over-density at the Lagrangian location of biased tracers 9;:

bip = % % (3.14)
where the sum goes over [V different tracers (e.g. all haloes in a given mass bin) and where
o? = (%) is the variance of the (smoothed) linear density field. Since this measurement
should give meaningful results only on reasonably large scales, we smooth the Lagrangian
density field with a Gaussian kernel with width o, = 61~ 'Mpc. We measure the smoothed
linear density d; at the Lagrangian centre of mass of each halo patch and then we measure
the bias by evaluating equation (3.14) in different mass bins.

We show the resulting b;;, as a function of mass in Figure 3.11. The blue solid and dashed
lines show the bias parameters measured in an L = 50h~*Mpc box for the simulated versus
predicted halo patches respectively. These two seem consistent, showing that the model has
correctly learned the bias relation that is captured inside of the training set. However, this
(L = 50h~'Mpc) relation is not consistent with the well-measured relation from larger scale
simulations, indicated as a black solid line adopted from (Lazeyras et al., 2016). This is
because very massive haloes M > 1045~ M, do not form in simulations of such a small
volume, but they are important to get the correct bias of smaller mass haloes, since wherever
a large halo forms, no smaller halo can form. Our network has never seen such large scales,
so it is questionable whether it has any chance of capturing the large-scale bias correctly.

However, it might be that what it has learned in the small-scale simulation transfers to larger
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Figure 3.11: Linear Lagrangian bias parameter b j, for the haloes, measured for different boxsizes L and
comparing simulation and model. The model agrees well with the simulation at the L = 50k~ Mpc
scale, but both are inconsistent with the true large-scale bias relation from (Lazeyras et al., 2016)
due to effects from the limited size of the simulation volume. Evaluation on larger boxes moves the
prediction closer to the known relation, but some deviation is maintained.

scales. To test this, we evaluate the network on two larger boxes, L = 100h~'Mpc and
L = 200h~'Mpc, shown as orange and green lines in Figure 3.11. These cases match the
true bias relation better, but still show some significant deviation e.g. at M ~ 1014h=1 M.
Therefore, we conclude that the network generalizes only moderately well to larger scales and
halo masses. Improved performance could possibly be achieved by extending the training set

to larger simulations and by increasing the field of view of the network.

3.4.2 Response to large scale tidal fields

In a second experiment, we want to study the response of haloes to purely anisotropic
changes of the initial conditions, by adding a large-scale tidal field. We, therefore, aim
to emulate a modification similar to the ones considered in anisotropic separate universe
simulations (Schmidt et al., 2018; Stiicker et al., 2021b; Masaki et al., 2020; Akitsu et al.,
2021). We modify the input potential through the term

1
0.(0) = (@) + 57— @) " T — &) (3.15)
0O 0 0
T=1(0 -\, 0 (3.16)
( 0
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Figure 3.12: Response of proto-halo regions towards a large-scale tidal field. The different panels
show the cases with A, = —0.5, 0 and 0.5 — corresponding to a stretching tidal field, no tidal field
and a compressing tidal field in the vertical direction respectively. A negative (stretching) tidal field
delays infall and shrinks the proto-halo patches in the corresponding direction, whereas a positive
(compressing) tidal field facilitates infall and extends the proto-halo patches.
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Since we are considering a trace-free tidal tensor, we do not need to include any modifications
to the initial density field. The results of introducing the tidal field are presented Fig. 3.12.
In the upper panel in which we have imposed a value of A\, = —0.5, the regions of typical
proto-haloes are slightly reduced in the z-direction and extended in the y-direction. Further,
in some cases haloes merge additionally in the y-direction while separating in the z-direction.
In the bottom panel with A\, = 0.5 we observe the opposite behaviour, with proto-halo shapes
elongated in the z-direction and reduced in the y-direction. These observations are consistent
with the naive expectation: A positive A\, means a contracting tidal field in the z-direction,
which facilitates infall in this direction, whereas a negative )\, delays the infall. Therefore,
proto-haloes appear extended in the direction where the tidal field has a contracting effect.
This should not be confused with the response of the halo shapes in Eulerian space which
has the opposite behaviour — reducing the halo’s extent in the direction where the tidal field is
contracting (Stiicker et al., 2021b). Therefore, a large-scale tidal field effects that the direction
Jrom which more material falls in, is the direction where the final halo is less extended.

However, by comparing Figures 3.10 and 3.12, we note that the effect of modifying the
eigenvalues of the tidal tensor (while keeping the trace fixed) is much less significant than
modifying its trace ¢ by a similar amount. Modifying ¢ leads to strong differences in the
abundance and the masses of haloes whereas the modifications to the tidal field strongly affect
the shapes, but has a much smaller effect on typical masses — if at all.

Our investigation into the role of anisotropic features in the initial conditions complements
the findings of Lucie-Smith et al. (2020). They find that anisotropic features of the initial
conditions do not significantly enhance halo mass predictions when compared to predictions
based on spherical averages. Therefore, they conclude that including anisotropic features
would not significantly improve the mass predictions that can be obtained within excursion
set frameworks. This observation is consistent with masses not changing significantly when
applying a large-scale tidal field. However, we find that anisotropic features are in general
important for the formation of structures since they affect which particles become part of
which halo.

Finally, we note that the response of the Lagrangian shape of haloes is particularly
interesting in the context of tidal torque theory (White, 1984). To predict the angular
momentum of haloes, tidal torque theory requires knowledge of both the tidal tensor and
the Lagrangian inertia tensor of haloes. Further, it has been argued that the misalignment
of tidal field and Lagrangian inertia tensor is a key factor for predicting galaxy properties
(Moon and Lee, 2023). Our experiments show that modifications of the tidal tensor itself
also trigger modifications of the Lagrangian shape. Precisely understanding this relation
would be relevant to correctly predict halo spins from the initial conditions. Note that such

responses are inherently absent in most density-based structure formation models (e.g. Press
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and Schechter, 1974b; Bond et al., 1991b; Sheth and Tormen, 2002), but could possibly be
accounted for by recently proposed approaches based on the Lagrangian potential (Musso
and Sheth, 2021a, 2023b).

3.4.3 Response to changes in the variance of the density field

We now study whether our model can generalize to scenarios different from the training
set by investigating how it responds to variations in og, deviating 30% from the original
Planck Collaboration et al. (2020b) cosmology. We aim to discern if the network, trained
on a singular variance setting, has gained enough insight into halo formation to anticipate
outcomes considering different values for the variance of the initial density field. These
modifications only affect the initial conditions which are fully visible to the network, so it
could be possible that the network correctly extrapolates to these scenarios.

In Fig. 3.13 we show how the HMF reacts to changes in og in comparison to the
measured mass functions from Ondaro-Mallea et al. (2022) (solid lines) as a benchmark.
Our predictions for the HMF (dashed lines) are generated by taking the average results
of 10 different boxes, each one spanning L = 50h~'Mpc, with og values set to 0.5802
(blue lines), 0.8288 (black lines), and 1.077 (red lines). The model’s predictions reveal a
discrepancy with the anticipated HMF behaviour beneath the threshold of ~ 10*27h~1 M,
for both g ~ 0.5802, and og ~ 1.077. This discrepancy is attributed to the model’s
training on datasets characterized by the specific og from Planck Collaboration et al.
(2020b). The model’s ability to extrapolate to different variances remains limited. At higher
masses, however, the network’s predictions correspond more closely with the expected HMF.
This partial alignment suggests that the network possesses some degree of generalization
capability. Nonetheless, for reliable application across varying cosmologies, incorporating

these scenarios into the training set is essential.

3.5 Discussion & Conclusions

We present a novel approach to understand and predict halo formation from the initial
conditions employed in N-body simulations. Benchmark tests indicate that our model can
predict Lagrangian FoF-halo regions for simulations efficiently, taking around 7 minutes in
a GPU for a simulation with 2563 particles in a volume of 50h~'Mpc. For those interested
in leveraging or further enhancing our work, we have made our codes publicly available:
https://github.com/daniellopezcano/instance_halos.

Our model consists of a semantic network that reliably recognizes regions in Lagrangian
space where haloes form, and an instance segmentation network, that identifies individual

haloes from the semantic output. Our predictions accurately reproduce simulation results
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Figure 3.13: Comparison of HMF predictions with variations in the cosmological parameter osg.
Solid lines represent HMF predictions from (Ondaro-Mallea et al., 2022). Dashed lines indicate our
model’s predictions. Blue and red curves correspond to scenarios with og = 0.5802 and og = 1.077
respectively. Black lines show the results for og = 0.8288 (our reference cosmology).
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and outperform traditional analytical, semi-analytical techniques, and prior ML methods.

The foundation for our instance segmentation model is the Weinberger approach, first
introduced by De Brabandere et al. (2017). This technique lets us develop a more general
framework for identifying Lagrangian halo patches than previous attempts. Employing
the Weinberger loss approach, we bypass some limitations of other instance segmentation
methods, like the watershed technique employed by Bernardini et al. (2020). With our
approach, we manage to predict the complicated Lagrangian shapes of haloes that are formed
in N-body simulations. This is notably more difficult than the predictions of spherical

Peak-Patch-haloes that were considered by Berger and Stein (2019).

Additionally, we quantify in how far halo formation is indetermined by the resolved
scales of the initial conditions, to establish an optimal performance limit of machine learning
methods. We infer this limit by comparing two simulations which only differ in their initial
conditions realization on scales beyond the resolution level. We find an agreement between
our model predictions and reference simulations similar to the agreement between the two
"baseline’ simulations. This shows that our model extracts information encoded in the initial
conditions close to optimal. We suggest that such reference experiments may also be used as

a baseline in other ML studies to establish whether information is extracted optimally.
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Upon evaluating our semantic model, we measure an accuracy of 0.864 and an F;-score
of 0.838. Compared to the baseline simulations, which have an accuracy of 0.903 and an
F;-score of 0.884, our model results stand remarkably close, demonstrating its capability to
predict halo regions nearly matching N-body simulations’ natural variability.

We also assess our instance segmentation network using various metrics. As depicted in
Fig. 3.8, our model closely aligns with the baseline across a broad mass range, outperforming
previous methods like Lucie-Smith et al. (2020). We speculate that our approach benefits
from the physical constraint that different particles that belong to the same halo are assigned
the same halo mass. Moreover, the halo mass function (HMF) predictions in Fig. 3.9
closely match the true ground truth values across three orders of magnitude. The visual
representations in Fig. 3.7 reinforce our model’s precision, faithfully replicating Lagrangian
halo patch positions and shapes.

We have tested through experiments how the network reacts to systematic modifications
of the initial conditions. We find that the network correctly captures the response to density
perturbations at the finite boxsize provided in the training set. However, it struggles to
generalize to larger boxsizes and to cosmologies with different amplitudes of the density field
og. This can easily be improved by increasing the diversity of the training set.

Further, we have found that our network utilizes information from the potential field that is
not encoded in the density field of any finite region. Modifications to a large-scale tidal field
are consistent with the same linear density field, but do affect the potential landscape. Our
network predicts that such tidal fields affect the Lagrangian shape of haloes in an anisotropic
manner which is consistent with the intuitive expectation of how a tidal field accelerates and
decelerates the infall anisotropically.

We have demonstrated the robustness of our model in its current applications and we
believe it could find potential utility in several other scenarios like crafting emulated merger
trees, aiding separate-universe style experiments (e.g. Lazeyras et al., 2016; Stiicker et al.,
2021b) and informing the development of analytical methods for halo formation (e.g. Musso
and Sheth, 2021b, 2023a). Other works such as MUSCLE-UPS (Tosone et al., 2021) can
also benefit from our semantic predictions alone by informing their algorithm about which
particles will collapse into haloes.

Additionally, our model can be used to help understand the development of spin and
intrinsic alignments in haloes and galaxies by establishing how tidal fields modify the
Lagrangian shapes of haloes. This is a vital ingredient to predict the spin of haloes through
tidal torque theory (White, 1984). Also, we can employ our model to predict changes
in the Lagrangian regions of halos in combination with the “splice” technique presented
by Cadiou et al. (2021). We believe this approach can provide new insights regarding how

modifications in the environment of haloes at initial conditions can affect their final properties.
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We encourage experts in these fields to use our open-source code as a basis for tackling and
exploring these and other related problems.

The models we have presented in this paper can be easily extended to characterize other
properties of halos. One possible extension of the model would be to include an additional
spatial dimension to our instance network’s output to predict final halo concentrations. In
this extension of our model, each particle would have associated a concentration prediction
whose average (over all particle members of the same halo) would be trained to minimize the
mean square error with respect to the true halo concentration.

The findings presented in this work are promising but there exist some aspects of
our models that would benefit from further investigation. For instance, extending our
methodology to understand other halo properties beyond mass would be a logical next
step. It would also be interesting to test our model’s performance under a wider variety of
simulation conditions, including variations in cosmology and redshift. An additional avenue
of exploration might involve delving into capturing intricate structural details, specifically
the gap features in the predicted Lagrangian halo regions. Generative Adversarial Networks
(GANG5s) are tools that have demonstrated potential in reproducing data patterns in the context
of cosmological simulations (e.g. Rodriguez et al., 2018; Villaescusa-Navarro et al., 2021;
Schaurecker et al., 2021; Robles et al., 2022; Nguyen et al., 2023; Zhang et al., 2023). Hence,
employing a GAN-like approach might help recreate these gap features, further improving
our model’s ability to mimic the structures of haloes found in N-body simulations.

In conclusion, this study showcases the potential of machine learning for facilitating the
study of halo formation processes in the context of cosmological N-body simulations. We
provide a fast model that exploits the available information close to optimally. We hope our
approach serves as a useful tool for researchers working with N-body simulations, opening

avenues for future advancements.
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Summary and Conclusions

The main objective of my thesis has been to progress upon the current methods used to
model cosmological theories and to bridge the gap with large-scale structure observations.
I have focused on improving the quality of several techniques derived from cosmological
simulations and on advancing strategies that allow for more accurate cosmological analyses.
The results of my work comprise a set of tools for handling and interpreting simulation data
and can be applied to analyze present and future galaxy survey observations. This effort to
bring together theoretical models and astronomical observations is of paramount importance
to advance our understanding regarding the structure and evolution of our Universe.

In the process of doing my thesis, I have improved several aspects related to the
computational efficiency of cosmological simulations. This contribution represents a useful
asset to the community, as it allows a broader exploration of cosmological models with
varying initial conditions and physical assumptions.

My research has led to several findings concerning different areas:

e The development of realistic galaxy mock catalogs in the context of the
UNITSIM-Galaxies project proves the effectiveness of semi-analytical models
for populating large cosmological volumes highlighting the value of employing
high-resolution gravity-only simulations for survey forecast problems.  This
combination provides a robust framework for generating galaxy populations with
their corresponding physical properties; it also offers insights into galaxy formation

processes and clustering mechanics within the large-scale structure of the Universe.

* The exploitation of analytical models such as excursion set theory to accurately predict
the internal structure of dark matter haloes. This research illustrates how simple
structure formation theories can help us devise fast methods that approximate complex

features within haloes and allow for a better understanding of non-linear processes.

* The incorporation of machine learning techniques, specifically instance segmentation
methods, in combination with cosmological simulations for capturing the complicated
mechanisms that determine halo formation. With this approach, we explore the

potential of ML architectures to generate fast and accurate predictions exploiting GPU
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acceleration and how these frameworks can be employed to interpret the relevant

intervening processes that play a role in complex physical systems.

All these advances weave together into a global cohesive narrative related to understanding
distinct aspects of structure formation. The synergies between developing accurate mock
galaxy catalogues, capturing with precision internal halo properties, and the exploitation of
machine learning algorithms represent a multifaceted approach integrating different aspects
crucial to understanding the complex nature of structure formation processes and robustly
describing galaxy survey observations. Altogether my work underscores the importance of
combining different state-of-the-art techniques, from analytical prescriptions to numerical
methods, for improving our knowledge of complicated physical processes that occur in the
context of cosmology. The methodologies I have developed provide new tools to accurately
simulate the universe’s evolution.

There exist many possibilities for continuing and extending my research in the future,

here are some selected ideas:

* Refinement of machine learning algorithms to capture broader aspects of cosmological
simulations beyond just halo formation, employing neural networks developed in

combination with existing codes.

* Expansion of current neural network architectures to model additional halo properties

beyond Lagrangian shapes.

* As the field progresses towards larger and more accurate hydrodynamical simulations,
machine learning can serve as both an accelerator and an interpretive tool for analyzing

the effects of baryonic processes.

* Exploration of the synergies between semi-analytical galaxy formation models and
machine learning to create more realistic mock catalogues for upcoming galaxy surveys,

thereby providing critical insights into galaxy formation and evolution.

* Enhancement of the scalability of cosmological simulations to enable the analysis of

larger volumes with higher resolution.

* Investigation into the integration of novel data analysis methodologies, such as
emulators and contrastive learning techniques to extract cosmological information

from observations.

* Further application of the excursion set theory in novel contexts, such as the study of
cosmic filaments and voids, to better understand their properties and the role they play

in conforming cosmic web structures.
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In the long run, the implications of my work extend beyond immediate advancements in
cosmological simulations. The broader field of observational cosmology moves as a whole
towards more ambitious objectives, trying to better understand the microscopic properties of
the different components conforming our Universe. This encompasses close objectives such
as determining the masses of neutrinos and other more ambitious goals for constraining the
equation of state and exact properties of dark matter and dark energy and testing possible
scenarios for gravity beyond general relativity.

Thanks to having participated in projects of different nature during my PhD. I have
acquired a broad view of the current cosmological landscape that involves the integration
of observational data, theoretical models, and advanced computational tools. The advent of
next-generation of galaxy surveys and the developments in the field of machine learning have
the potential to revolutionize traditional techniques for data exploration and analysis.

This thesis represents a step forward towards addressing several of the current challenges
in cosmology, mainly related to connecting numerical simulations with survey observations,
however, there are still many challenges ahead of us. The questions raised by my
research and the solutions proposed here encourage a broader dialogue within the scientific
community bridging theoretical developments, astronomical observations, and computational
implementations, all of them aligning towards advancing our understanding of cosmology as
a whole.

In conclusion, the contributions of this thesis to the field of cosmology extend beyond
the specifics of simulations, Its roots lie in the need to gain a better understanding of our
universe and the complicated processes taking place in it. As I look into the future (from
the precarious stability that science provides) I hope to have contributed, if only slightly, to
push towards unveiling some of the most fundamental principles that constitute the pillars of

physics and our understanding of the universe in general.
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Resumen y Conclusiones

El objetivo principal de mi tesis ha sido hacer progresar los métodos que actualmente
se utilizan para modelar teorias cosmoldgicas y reducir la distancia que las separa de las
observaciones astrondmicas acerca de las estructuras a gran escala de nuestro Universo. Me
he centrado en mejorar la calidad de varias técnicas derivadas de simulaciones cosmoldgicas
y en mejorar ciertas estrategias que permiten realizar andlisis cosmoldgicos mds precisos.
Los resultados de mi investigacion comprenden un conjunto de herramientas que pueden
ser empleadas para interpretar los datos de simulaciones computacionales y para analizar
observaciones sobre la distribucién de galaxias. Este esfuerzo por aunar modelos tedricos y
observaciones astronémicas es de suma importancia para avanzar en nuestra comprension de
la estructura y evolucién del Universo.

Durante la realizacién de mi tesis, he mejorado varios aspectos relacionados con la
eficiencia computacional de las simulaciones cosmoldgicas. Esta contribucién resulta de
capital importancia para la comunidad cientifica, ya que permite una exploracion mas amplia
de modelos cosmoldgicos con distintas condiciones iniciales y diferentes suposiciones fisicas.

Mi investigacion me ha llevado a varias conclusiones relativas a distintos dmbitos:

* El desarrollo de catdlogos realistas de galaxias simuladas en el contexto del proyecto
UNITSIM-Galaxies demuestra la eficacia de los modelos semianaliticos para poblar
grandes volimenes cosmoldgicos. En este trabajo se destaca el valor de emplear
simulaciones de alta resolucién basadas tnicamente en la gravedad para predecir la
distribucién de galaxias a nivel observacional. La combinacién de estas herramientas
proporciona un marco robusto con el cual generar poblaciones sintéticas de galaxias
y sus correspondientes propiedades fisicas; también ofrece informacién acerca de los
procesos de formacion de galaxias y los mecanismos mediante los cuales las galaxias

se agrupan dentro de la estructura a gran escala del Universo.

* Emplear modelos analiticos como la “Excursion Set Theory” resulta de gran utilidad
para predecir con precision la estructura interna de los halos de materia oscura. Esta
investigacion ilustra como las teorias simples de formacién de estructuras pueden
ayudarnos a idear métodos rdpidos que aproximen caracteristicas complejas dentro de

los halos y permitan una mejor comprension de los procesos gravitacionales no lineales
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que llevan a su formacion.

* La incorporacion de técnicas de aprendizaje automdtico, en concreto métodos de
segmentacion de instancias, en combinacién con simulaciones cosmoldgicas puede
ayudar a captar los complicados mecanismos que determinan la formacién de halos.
Con este método exploramos el potencial de las arquitecturas de aprendizaje automatico
para generar predicciones rdpidas y precisas explotando la aceleracion por GPUs.
También estudiamos cémo estas técnicas pueden emplearse para interpretar los

complejos procesos fisicos que intervienen en la formacion de estructuras.

Todos estos avances se encuentran intimamente relacionados entre si y estdn relacionados
con distintos aspectos que mejoran nuestra comprension sobre los porcesos de formacion de
estructuras en el Universo. La relacion entre el desarrollo de catdlogos simulados precisos
de galaxias, la capacidad para capturar con precision las propiedades internas de los halos, y
la explotacién de algoritmos de aprendizaje automatico, conforman un enfoque polifacético
que empuja nuestra comprension sobre los procesos de formacién de halos y la prediccién
de la distribucion de galaxias. En conjunto, mi trabajo subraya la importancia de combinar
diferentes técnicas vanguardistas, desde prescripciones analiticas hasta métodos numéricos,
para mejorar nuestro conocimiento de los complicados procesos fisicos que tienen lugar en
el contexto de la cosmologia. Las metodologias que he desarrollado proporcionan nuevas
herramientas para simular con precision la evolucién del universo.

Existen muchas posibilidades de continuar y ampliar mi investigacién en el futuro;

menciono a continuacién algunas ideas seleccionadas:

* Perfeccionamiento de algoritmos de aprendizaje automatico para captar aspectos mas

amplios de las simulaciones cosmoldgicas.

* Ampliacién de las arquitecturas actuales de redes neuronales para modelar propiedades

adicionales de los halos (més alld de sus formas lagrangianas).

* A medida que el campo avanza hacia simulaciones hidrodindmicas mds grandes
y precisas, el aprendizaje automdtico puede servir, tanto como herramienta de

aceleracion, como para interpretar y analizar el efecto de los bariones.

* Exploracion de las sinergias entre los modelos semianaliticos de formacidn de galaxias
y el aprendizaje automdtico para crear catidlogos simulados mds realistas para los
proximos sondeos de galaxias, proporcionando asi conocimientos fundamentales sobre

la formacién y evolucién de las galaxias.

* Mejora de la escalabilidad de las simulaciones cosmoldgicas para permitir el anélisis

de volimenes mds grandes con mayor resolucion.
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* Investigacion sobre la integracién de nuevas metodologias de andlisis de datos, como
emuladores y técnicas de “Contastive Learning” para extraer una mayor cantidad de

informacion cosmolégica de las observaciones.

* Amplaicién de la “Excursion Set Theory” para estudiar la formacién de filamentos y
vacios cosmicos y comprender sus propiedades en el contexto de la estructura a gran

escala.

Las implicaciones de mi trabajo a largo plazo van mas alld de lograr mejorar las
simulaciones cosmoldgicas en si mismas. En su conjunto, el campo en el cual se enmarca la
cosmologia observacional, avanza hacia tratar de comprender las propiedades mircroscépicas
de los distintos componentes que conforman nuestro Universo. Estas metas comprenden
desde objetivos mds realistas y cercanos en el tiempo como tratar de determinar las masas
de los neutrinos, hasta otros objetivos mas ambiciosos como el de restringir la ecuacion de
estado y las propiedades de la materia oscura y la energia oscura, o el de explorar otros
escenarios para la teoria de la gravedad distintos al de la relatividad general.

Gracias a haber estado involucrado en proyectos de distinta naturaleza durante mi
doctorado, he adquirido una amplia visién del campo de la cosmologia donde es
necesario integrar datos observacionales con modelos tedricos haciendo uso de herramientas
computacionales avanzadas. La llegada de la proxima generacion de experimentos para la
recogida de datos sobre posiciones de galaxias, y los avances en el campo del aprendizaje
automatico, tienen el potencial de revolucionar las técnicas tradicionales empleadas para la
exploracién y el andlisis de datos.

Esta tesis supone un paso adelante necesario para abordar distintos retos de la cosmologia
observacional y computacional actual; en particular sobre nuestro conocimiento a cerca de
la conexidn entre las simulaciones numéricas y las observaciones de galaxias. Las preguntas
planteadas por mi trabajo y las soluciones propuestas fomentan un didlogo mas amplio dentro
de la comunidad cientifica, tendiendo puentes entre los desarrollos tedricos, las observaciones
astrondmicas y las implementaciones computacionales, todos ellos alineados para avanzar
en nuestra comprension de la cosmologia en su conjunto.

En conclusidn, las aportaciones de esta tesis al campo de la cosmologia van més alld de las
especificidades de las simulaciones, sus raices se encuentran en la necesidad de comprender
mejor nuestro Universo y los complicados procesos que tienen lugar en él. Mirando hacia
el futuro (desde la precaria estabilidad que proporciona la ciencia) espero haber contribuido,
aunque sea humildemente, a desvelar algunos de los principios fundamentales que constituyen

los cimientos de la fisica y que conforman nuestra concepcion del Universo.
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Appendix A

Definining smooth manifolds

This Appendix is devoted to defining what a "four-dimensional topological manifold with
a smooth atlas" is. In Figure A.1 I provide a schematic representation contextualizing the

different definitions I introduce encoded by color.

* Aset M isawell-defined collection of elements m. For example, the set of real numbers
M = R is formed by all real numbers m = {..., —m, —2.34, —1,0,1/2,¢,10%", ...} . 1

will also denote sets with A and elements as n.

e fis a map from M (domain) to N (target), denoted as f : M — N, if Vm €
M, In € N f(m) = n. I will also employ g to denote maps.

* The powerset P(M) of a set M is the set of all possible subsets of M.
* O CP(M) is atopology on M, denoted as O, if and only if:

l.0ecOQand M e O
2.VU, Ve O—=UnNV e O. Iwilluse U,V to denote subsets of O (open sets).

3. Uaea U € O where A denotes an arbitrary index set.

- N N
( ) ) d-dim
( ( M 0 ) opologend c/q o0
manifold C
Set Topology d d
U A Smooth atlas
PO f | o Oga |OJ0)
Powerset Map Continuous Standard map -1
L ) me topology A fuely d-dim smooth
. art Chart transition .
L Topological space ) o compatile  map manifold
L \_ charts J )

Figure A.1: Scheme for helping to relate the mathematical objects defined in this section.
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* the doublet (M, O) is a topological space.
 The R? standard topology, Oga, is defined as:
Oga ::{ EP(Rd)(Vp€U3T€R+:BT(p)§U ,

where B, (p) is the soft-ball of radius

B, (p) = {<€I1,---,Qd) e R?| Z(q@ —pi)’ < 7“2}-

about p defined as:

i=1
o [ : Op — Oy is a continuous map with respect to (M, Op) and (N, Oy) <~
VYV € On — preim (V) = {m e M : f(m) € V} € Op.

* A topological space (M, O,y) is a d-dimensional topological manifold, (M, Ox),,
iftYm e M3{U |meU} € Opn:3{fu:U— fu(U) CR? , where R? implicitly
belongs to (R?, ORd),Cnd the map fy satisfies:

T 1. fuU) = U,
2. fu is continuous with respect to (U, Oy|,,) and (R, ORd),Q

1. fy is invertible:

3. fy' is continuous with respect to (U, Oy ,,)" and (R?, Oa

* The doublet (U, fi) is a chart of (M, O )4 and fy; : U — fU(L() C R? is known
as a chart map defined by the coordinate maps fy(m) = ( ft(jl)(m), c [(]d) (m)> <
U SR

* Given some arbitrary index set A, the set A = {(U,, fu) | « € A} is an atlas of
(M, Om)a = U(i: Us = M.

¢ The chart transition
(U, fu), (V. fv) |UNV #0,is the map (fy o fy') (av(UﬂV) = fu(UNV).

* Two chart maps (U, fy) and (V, fy) from (M, Oy),.\are C°-compatible charts if:

ap between two chart maps, both from the same (M, O ),

1. UNV =0, or,

22.UNYV # ( and both chart transition maps (fyo fi;') : fy (UNV) —
fu(UNV) and (fyo f;") (: foUNV) - f,(UNV) are C* in the

"oridinary multivariable calculus sense".
* An atlas is ('*°-compatible, A¢, if all of its charts are C'*°-compatible.

* A d-dimensional smooth-manifold (or C'*°-manifold) is defined by the triplet
(M7OMaAC°°)d

Loy| v indicates the inherited topology on U from O
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Appendix B

Additional validation plots

In this Appendix we provide supplementary plots that further show the validity and properties

of the SAGE and ELG galaxies used throughout this study.

B.1 Halo Mass Function of flux-selected ELGs

Applying a SAM will eventually lead to selecting a sub-sample of the underlying dark
matter haloes as galaxies, i.e. while every halo contains a galaxy, some might be too small
to be detectable. To better understand which haloes host our ELGs, we show their halo
mass functions for the two base models RawELGs and DustELGs for various redshifts in
Fig. B.1. The dashed lines are without applying any flux cut, whereas the solid lines use the
Euclid-inspired cut Fi.,; = 2 x 1071% erg s™! cm™2. We can see that the flux cut primarily
affects low-mass haloes, i.e. the less luminous ELGs also live in lower mass host haloes.
We further observe a shift of this ‘cut-off” halo mass with redshift; while at z ~ 0.5 it is
approximately 101! M, it increases to ~ 10*2 M, at z ~ 2 for RawELGs and even ~ 103 M,
for DustELGs.

B.2 Baryonic properties of flux selected ELGs

In Section 1.3 we presented baryonic relations for the full set of SAGE galaxies, focusing
on those properties that are relevant for the dust attenuation modelling. Here we now like to

provide counterparts of those plots for the ELGs.
Stellar Mass Function

In order to view the effect of the flux selection and its relation to the stellar masses of the
resulting sub-sample of ELGs, we show in Fig. B.2 both the SMF of all ELGs (i.e. no flux
cut, dashed lines) and the flux-selected samples of ELGs (solid lines) for various redshifts.
We restrict the results again to the two base models RawELGs and DustELGs. We appreciate

that the majority of ELGs coincide with the most massive galaxies.
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Figure B.1: Halo mass function of all ELGs (dashed lines) and the flux-selected samples (solid lines)
for RawELGs (top) and DustELGs (bottom).
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Figure B.2: Stellar mass function of all ELGs (dashed lines) and the flux-selected samples (solid lines)
for RawELGs (top) and DustELGs (bottom). The vertical dot-dashed line shows our lower stellar mass
limit.
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Specific star formation rate

In Fig. 1.2 we show the specific star formation rate of all our SAGE galaxies in comparison
to the observations of Daddi et al. (2007) at redshift z ~ 2. Here we now present in
Fig. B.3 another version of that plot, this time using the (flux-cut) ELGs of the RawELGs and
DustELGs catalogues. We further show results for z ~ 1 and add the best-fitting correlation

for Hor emitting galaxies, as found by de los Reyes et al. (2015, eq. 3).!

The mass—metallicity relation

Here we reproduce Fig. 1.3 for the RawELGs and DustELGs catalogues, additionally adding
the best-fit relation for Ha-emitting galaxies, as reported by de los Reyes et al. (2015,
eq. 4). The results can be viewed in Fig. B.4, which shows that the SAGE-ELGs follow the

observations sufficiently well.

The disc size-mass relation

At last we turn to the effective disc size of our RawELGs and DustELGs galaxies, shown in
Fig. 1.4 for all SAGE galaxies. The results can be viewed in Fig. B.5, again in comparison to

the general results of Yang et al. (2021).

Ide los Reyes et al. (2015) studied 299 Ha-selected galaxies at redshift z ~ 0.8.
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Figure B.3: Specific star formation rate of the RawELGs (top) and DustELGs (bottom) ELGs at
redshift z ~ 1 in comparison to the best-fit relation as found by de los Reyes et al. (2015) at z ~ 0.8,
shown as grey-shaded region. This figure is a reproduction of Fig. 1.2, but this time for our model

ELGs.
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Figure B.4: Cold gas metallicity vs. stellar mass for all ELGs for RawELGs (top) and DustELGs
(bottom) at redshift z ~ 1. This figure is a reproduction of Fig. 1.3, but this time for our model ELGs,
but we also added the best-fitting relation as found by de los Reyes et al. (2015) at z ~ 0.8, shown as
grey-shaded region.
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Figure B.5: Effective disc radius as a function of stellar mass at redshift z = 1.25 for all RawELGs
(top) and DustELGs (bottom) galaxies. This figure is a reproduction of Fig. 1.4, but this time for our
model ELGs.
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Appendix C

Conversion of number densities

Here we show the steps necessary to go from volumetric number density

dN
= — C.1
n=— (C.D)
to the angular and redshift density
dN
= ) C2
T a0 dz (€2
Taking into account
dV = dQr*dr (C.3)
where df2 is the solid angle in stereoradians, we then get
d
n=n-r*-_ (C4)
dz

Therefore, to go from number density n = N/V of galaxies to number density of galaxies

per square degree and redshift interval we find

g AT N2
77—”7“(»2)£<@> , (€5)

where r(z) is the comoving distance
c ds
= F/(m o

1
(Qo(T4+2)* + Quo(1+ 2)3 + Qo1 + 2)2 4+ Qap)

where (2 x are the usual density parameters of radiation (X = r), matter (X = m), curvature

with

E%(2) =

(C.7)

(X = k), and cosmological constant (X = A) at present time. We note that the derivative of
r(z) with respect to z as needed in Eq. (C.5) is simply
dr c 1
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Note that in the main body of the paper 7 is referred to as d/N/dz, which is not fully consistent
with the terminology used here, but compliant with how other workers in the field refer to
this quantity. /N as used in the main part is ‘number of galaxies per unit area’, whereas here

it simply means ‘number of galaxies’.
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Appendix D

Description of .16 Model

Here we explain the main ideas behind the Ludlow et al. (2016) (L16) model for predicting
the ¢(M, z) relation. Throughout this work we carefully examined if the assumptions upon
which L16 is founded are fulfilled or not for a variety of cosmologies, masses and redshifts.
The original L16 paper shows that their model accurately predicts the ¢(M, z) relation for
relaxed haloes in different cosmologies, including both cold and warm dark matter scenarios;
in this work we extend their analysis by considering a broader range of distinct cosmologies,
including the effect of massive neutrinos and dynamical dark energy.

The L16 model is based on an empirical relation between p_5(z), i.e. the enclosed
density of a halo within the scale radius, r_, measured at redshift zy, and p.(z_5), i.e. the
critical density of the universe defined at a suitable formation redshift, z_», The relation can

be written as:

p—2(20) = Apc(2-2), (D.1)

where A is a proportionality constant. In L16 the halo formation redshift, z_, is defined
as the redshift at which the collapsed-mass history (CMH) of a halo' first exceeds M_, =
M (r < r_s), i.e., the mass enclosed within a sphere of radius r_,, at the 2, centered around
the potential minimum of the halo analyzed.

If indeed Eq. (D.1) is verified, we can predict the value of p_5(z,) employing an analytical
model capable of reproducing the CMH of a halo given its mass, which would allow us to
infer p.(z_2). To obtain the synthetic CMHs, we make use of the extended Press-Schechter
(EPS) formalism (Bond et al., 1991b; Lacey and Cole, 1993), according to which the mass
contained in progenitors more massive than a certain fraction f of the final halo mass, Mj,

at a given redshift, z, is given by:

IFor a given halo identified at redshift z, the collapsed-mass history is defined as the sum of all the mass
contained in progenitor haloes at redshift z > z( that end up being accreted by the halo of interest and whose
mass exceeds a certain fraction f (inLL16 f = 0.02) of the halo’s final mass. This can be calculated for simulated
haloes using their merger trees, or predicted theoretically using the extended Press-Schechter formalism using
Eq. (D.2).
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(z,kfMg)
0c ( é<—zO,mf0> - 1)

o2 (kf 7Z0) —o? (kM()v ZO)]

(D.2)

MCOH(Z) = MO erfc </ [

where J, is the threshold for non-linear collapse extrapolated to z = 0 using l{near theory. The
value of . can be calculated using the spherical collapse model, which predicts d. ~ 1.686.
However, we found that adopting a value of . = 1.46 improves the agreement between
the EPS-predicted collapsed mass histories and those obtained from our simulations, and
therefore minimizes the error in the predicted redshifts of halo collapse (see Fig. 2.5). This is
crucial for obtained accurate predictions for halo concentrations from the L.16 model, since
it relies on having accurate predictions for halo formation times.

Note o2 (kyr, z) denotes the variance of the linear matter density field at redshift z and
at scale ky; (associated with the mass M o ky,%). To compute o (ky, 2) we use a sharp-k
window function (which in real space can be written W (x) = 3(sinz — z cos z)/x®, where
x o< k~1) which exploits the fact that, for a Gaussian random field, the derivation of the EPS
formula becomes simpler because overdensity "trajectories" in the smoothed density field
follow Markovian random walks (Bond et al., 1991b; Lacey and Cole, 1993).

The scale dependent growth factor, D(z, kyr), can be computed at redshift z and for scale
kys following Zennaro et al. (2017). The scale dependence of the growth factor introduces
significant corrections when considering massive neutrinos, which impact the growth of
structures differently at different scales in a manner that also depends on the neutrino mass.

Note that in Eq. (D.2) we evaluate the variance of the matter field and the growth factor at
different scales. This is particularly important for calculating the CMHs in cosmologies with
massive neutrinos, where the scale dependence of the growth factor can have a significant

impact.
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Appendix E

c(M) relation at zj = 0.5

In Fig. E.1 we present the results for the concentration-mass relation (as measured in
Fig. 2.2) at z = 0.5 (connected squares). We also show the predictions provided by the L16

model at that redshift employing the same calibration as the one used in Fig. 2.2.
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Appendix F

Watershed segmentation

In this appendix, we present an alternative approach to instance segmentation, based on the
watershed approach. Originally we tried this technique to address the instance segmentation
problem, but we finally decided to use the Weinberger approach presented in the main paper
because of its theoretical advantages. These are that the loss function closer reflects the
objective, that it is possible to predict disconnected regions, and that it is not necessary
to define borders. However, during our exploration, we have gained some insights of
how to make watershed-based instance segmentation techniques work for friends-of-friends

proto-haloes. We will explain these here for the benefit of future studies.

Our watershed approach makes use of a U-Net-based architecture Ronneberger et al.
(2015), specifically a 3D Residual U-Net based on previous work Franco-Barranco et al.
(2021). The model’s input consisting of 128 x 128 x 128 x 2 voxels for (x, y, z, channels)

axes. The two input channels correspond to the initial density field and the potential.

The model is trained to predict two output channels: binary foreground segmentation
masks and instance contours masks. Following the prediction, the two outputs are thresholded
(automatically using Otsu’s method Otsu (1979)) and combined. Next, a connected
components operation is applied to generate distinct, non-touching halo instance seeds.
Subsequently, a marker-controlled watershed algorithm Meyer (1994) is applied, using three
key components: 1) the inverted foreground probabilities as the input image (representing
the topography to be flooded), 2) the generated instance seeds as the marker image (defining
starting points for the flooding process), and 3) a binarized version of the foreground
probabilities as the mask image (constraining the extent of object expansion). To binarize the
latter, we employed a threshold value of 0.372, which was determined through the application
of the identical methodology outlined in Appendix H. The collective implementation of these
components facilitates the creation of individual halo instances (see Fig. F.1 for a visual
representation). This strategy has been extensively employed within the medical field with
remarkable success Wei et al. (2020); Lin et al. (2021); Andres-San Roman et al. (2023).

In order to facilitate the generation of the two channels used to train the network, several
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Figure F.1: Processing pipelines of our watershed segmentation approach. The input 3D image
contains two channels: the density field and the potential. The model predicts foreground and
contour probabilities that are fused to create three inputs for a marker-controlled watershed to produce
individual instances.
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Figure F.2: Data preparation process of our watershed segmentation approach. From left to right: the

original halo instances for the considered prediction problem, subsequent modifications involving the
removal of small holes and spurious pixels and contour smoothing, and the presentation of both the
foreground and contour masks utilized for model training. Pixels coloured in white do not belong to
any halo. Pixels with the same colour belong to the same halo and different colours indicate different
haloes.
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transformations were applied to the labels. For each halo instance, small particles along the
edges were removed, central holes were filled, and the labels were dilated by one pixel. This
process results in instances with smoother boundaries, thereby aiding the network in training
(see Fig. F.2).

The result of this method is depicted in Fig. F.3. The code is open source and readily
available in BiaPy Franco-Barranco et al. (2023).
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from Fig. 3.7.
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Appendix G

Clustering algorithm

In this appendix, we describe the clustering algorithm that we have developed. This
algorithm calculates instance predictions from the pseudo-space representations that are
output by our instance segmentation network.

As described in §§3, the output of our instance network consists of a set of points that
populate an abstract space (referred to as pseudo-space). Our instance network has been
trained to minimize the Weinberger loss function 3.7, hence, we expect that the predicted
mapping of points in the pseudo-space causes that points corresponding to the same instances
to be close to each other, and separated to points that correspond to different instances. In the
ideal case where Lwi,=0, all points belonging to the same instance would be no farther apart
from each other than a distance 2 - dp,j, and the points corresponding to separate instances
would be, as close as a distance 2 - dpy, — Opun close to each other. However, we cannot
expect that our network always separates perfectly the different instances. For example, if
some Lagrangian voxel has a 60% chance to belong to halo A and a 40% chance to belong
to halo B, then the optimal location in pseudo space (that statistically minimizes the loss)
may be somewhere in between the centre of halo A and B in pseudo space and not inside
the dp,) radius of neither. Therefore, we employ a clustering algorithm that can segment the
pseudo-space distribution of points also when Ly, is not exactly zero.

For this, we first estimate the local pseudo-space density p; for each point :. For this we

compute the distance 7, ; to the kth-nearest neighbour of the point and assign

3k

= 3
47”"1<;,z‘

Pi (G.1)
where k = Nyeps 1S a hyper-parameter of the clustering algorithm. We accelerate this step
with the ckp-TrREE from the scipy package in pyTHON (Virtanen et al., 2020).

Then we determine groups as the descending manifold of the maxima that exceed a
persistence ratio threshold puax/Psad = Pthresn between maximum and saddle-point. The
descending manifold corresponds to the set of particles from whose location following the

local density gradient would end up in the same maximum (e.g. Sousbie, 2011; Tierny et al.,
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2017). For this, we use a slightly modified version of the density segmentation algorithm
used in suBFIND (Springel et al., 2001):

We consider the particles from highest to lowest density. For each particle we consider
from the NV, nearest particles the subset of particles that have a higher density than p; (this
set may be empty). Among these we select the set B; of the (up to) two closest particles.

This set can have zero, one or two particles.

* If the set B; is empty, then there is a density maximum p,,., = p; and we start growing

a new subgroup around it.

* If the set B; contains a single particle or two particles that are of the same group, the

particle 1 is attached to the corresponding group.

* If B; contains two particles of different groups, then 7 is potentially a saddle-point.
We check whether the group with the lower density maximum py,, has a sufficient
persistence pmax/pPi < Pruresh- 1f nOt, then we merge the two groups (and keep the
denser maximum). Otherwise, we keep both groups and we assign the particle to the
group of the denser particle in B;. (This step corresponds to following the local discrete

density gradient.)

Note that unlike the suBrIND algorithm, we merge groups not at every saddle-point, but
only if they are below a persistence threshold. Therefore, sufficiently persistent groups are
grown beyond their saddle point and ultimately correspond to the descending manifold of
their maximum.

The clustering algorithm has three hyper-parameters Ngens, Ngb and penresh.  We have
done a hyper-parameter optimization over these and found that Ngens = 20, Npgp, = 15
(quite close to the default parameters in the suBrIND algorithm, 20 and 10 respectively) and
Prnresh = 4.2 give the best results, though our results are not very sensitive to moderate
deviations from this. We can understand the quantitative value of the persistence ratio

threshold by considering that the relative variance of our density estimate is

1
Ologp A % = ~ 0.22 (G.2)

so that at a fixed background density having a density contrast of pipesh = 4.2 due to Poisson

noise corresponds to a
Alog p = 1og(Pinresn) ~ 1.43 = 6.50154 (G.3)

outlier. Therefore, the persistence ratio threshold piy,esn €nsures that it is very unlikely that

our algorithm mistakes a spurious overdensity in the pseudo space for a group.
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Appendix H

Semantic threshold

In the bottom panel of Fig. H.1 we present how the predicted fraction of voxels that
are members of a halo (that is 1 — [3) evolves as we change the semantic threshold (black
solid line). As it can be expected when the semantic threshold is close to zero, the majority
of voxels are identified as members of haloes, and the contrary occurs when the semantic
threshold approximates one. The horizontal dashed-dotted line corresponds to the ground
truth value of 1 — 8 = 0.418, measured in the validation simulations. The semantic threshold
value that we have selected is 0.589 (black dotted vertical line). This value corresponds to the
intersection between the black solid line and the dashed-dotted line; it ensures that the total
fraction of voxels that are members of haloes is correctly reproduced. Choosing this criterion
to determine the semantic threshold also ensures more robust instance predictions since the
number of FP cases is reduced, hence eliminating potentially uncertain pseudo-space particles

that would complicate the clustering procedure.

In the top panel of Fig. H.1 we show the evolution of several metrics as a function of
the semantic threshold value. These metrics allow us to asses the quality of our semantic
predictions by comparing our results with values obtained using the baseline simulations.
We study the behaviour of five different metrics: True Positive Rate TPR, True Negative
Rate TNR, Positive Predictive Value PPV, Accuracy ACC and the F;-score.

In the top panel of Fig. H.1 we also present the values obtained for the different metrics
using the baseline simulations (horizontal dashed lines). We have obtained these results
considering one of the baseline simulations as predicted maps and the other simulation as the
ground truth. The values measured for the different metrics in the baseline simulations give

us an expected ideal performance that we would like to reproduce with our model.

If we focus on the performance curves for the accuracy and the F;-score (orange and
yellow lines respectively) we can appreciate that they always remain under the baseline limit.
The curve for the F;-score peaks around the value for the semantic threshold of 0.5, which
is a behaviour we expected since we considered the balanced cross-entropy loss to train our

semantic model. The value for the F;-score at its maximum is F;(0.5) = 0.842, which
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is very similar to the value at the point in which we have fixed the semantic threshold,
F1(0.589) = 0.838. The F;-score obtained is only about 5% away from the optimal value
obtained from the baseline simulations F$"** = (.884. The accuracy reaches its maximum
value around the semantic threshold of 0.58, where ACC(0.58) = 0.864; the value for the

model accuracy is even closer to the baseline limit ACC“"* = (.903.
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Figure H.1: Top panel: Evolution of different metrics (TPR - green, TNR - blue, PPV - purple,
Fi-score - yellow & ACC - orange) measured employing the predictions of the semantic model as a
function of the semantic threshold selected (solid lines); we also show the values measured for the
corresponding metrics studying the differences between the baseline simulations (horizontal dashed
lines). Bottom panel: Fraction of voxels predicted to be collapsed (equivalent to 1 — 3) as a function
of the semantic threshold employed (solid black line); the horizontal black dashed line corresponds
to the fraction of particles that end up in DM haloes measured in the validation simulations. In both
panels, the vertical black dotted line shows the semantic threshold we employ; this threshold has been
selected to match the fraction of collapsed voxels.
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Appendix I

Generate full-box predictions from crops

In this appendix, we address the challenge of generating full-box predictions employing
our instance segmentation model.

While our network architecture captures intricate features within simulation sub-volumes,
the challenge arises when we aim to apply it to arbitrarily large input domains. Unlike
some other ML approaches that rely on networks that are translational invariant, our model
incorporates the Lagrangian positions of particles as input channels, making it dependent
on the relative Lagrangian position. This design choice ensures that similar regions of the
initial density field are mapped to distinct locations in the pseudo-space, allowing us to
distinguish between separate structures, even if they are locally identical. However, this
feature also presents a challenge when creating full-box predictions. Combining independent
crop predictions straightforwardly may lead to inconsistencies due to the network’s inherent
non-translational invariance. To tackle this issue, we have developed a methodology for
predicting sub-volumes independently and then merging these predictions to generate accurate
full-box instance segmentation results.

To reduce the boundary effects that may result from such a method we employ the

following strategy.

1. We evaluate the instance network centred several times, centred on locations ¢;;;, that
are arranged on a grid

1- Noft
Gijk = | Jy Nott | (LD

" Noff
where we choose an offset of n.,g = 64 voxels and (i, j, k) run so far that the whole
periodic volume is covered — e.g. from 0 to 4 each for a 256 simulation box. The
network’s input in each case corresponds to the 1443 voxels (periodically) centred on

G+ and the instance segmentation output will predict labels for the 128° central voxels.

2. From each prediction we only use the predicted labels of the central n2; = 643 voxels,

since we expect these to be relatively robust to field-of-view effects. We combine these
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from all the predictions to a global grid that has the same dimensions as the input
domain. In this step we add offsets to the labels so that the labels that originate from
each predicted domain are unique in the global grid (this process will become relevant

in step 4 where we define a graph used to link instances).

3. We repeat steps 1-2, but with an additional offset of (nog/2, nos/2, o /2)T. We
additionally offset the labels in this second grid so that no label appears in both grids.

4. We use the two lattices and the intersections between instances to identify which labels
should correspond to the same object. We do this by creating a graph' where each
instance label is a node. Initially the graph has no edges, but we subsequently add edges
if two labels should be identified (i.e. correspond to the same halo). Each connected
component of the graph will then correspond to a single final label. To define the edges
of the graph, we consider each quadrant @ of size (n.g/2)? individually, since such
quadrants are the maximal volumes over which two labels can intersect. We define the
intersection I (ly,l5) of two labels /; and /5 as the number of voxels that both carry
label /; in grid one and label [, in grid two. We define as the union Ug(ly,l5) the
number of voxels inside of quadrant () that carry /; in grid 1 or /5 in grid 2 (or both).

We then add an edge between /; and [, into the graph if for any quadrant () it is

]Q(lh l2)

——==— == > JoUipres 1.2
UQ(Z1712> 2 10Uthresh (1.2)

where we set [oUipresn = 0.5.

5. We summarize each connected component in the graph into a new label. After this
operation for most voxels the new label in grid 1 and in grid 2 agree and we can choose
that label as our final label. However, for a small fraction of voxels the labels still
disagree, because the corresponding instances had too little overlap to be identified
with each other. In this case, we assign to the corresponding voxel the label that

contains the larger number of voxels in total.

We illustrate the different steps of this procedure in Fig. I.1. The top panel, labelled
"Latticel’, shows the individual instances predicted in the first lattice arrangement. Each
colour represents a distinct label assigned to a group of voxels within the 643 central region of
the sub-volumes. The middle panel, ’Lattice2’, displays the second set of predictions using
a shifted lattice by half the offset in each dimension. Here again, different colours represent
unique instance labels. The bottom panel, ’Combined’, presents the final merged full-box

prediction. It is generated by synthesizing the labels from ’Latticel’ and ’Lattice2’ using

lusing the NETWORKX library (Hagberg et al., 2008)
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Figure I.1: Process of merging predictions from two overlapping lattice structures to produce a full-box
instance segmentation map. ’Latticel’ (top) and ’Lattice2’ (middle) represent predictions from initial
and shifted lattice grids, respectively, with unique color-coded labels for instances. Black dashed lines
indicate the lattice employed in each case, while thin dashed grey lines correspond to the lattice
employed in the reciprocal scenario. ’Combined’ (bottom) depicts the final synthesized full-box
map, where instances have been merged based on their overlap, demonstrating the effectiveness of the
methodology in generating contiguous and comprehensive halo segmentations from smaller, predicted
sub-volumes.

189



the graph-based method to connect overlapping instances. The resulting image shows larger,
coherent structures, indicative of the correct performance of combining both lattices.
Regarding the semantic segmentation network, we can merge the predictions
corresponding to different crops independently since, in this case, we are truly working with
a translation-invariant network. We employ the central 64° voxels (analogous to ’Latticel”)

of separate predictions and merge them together to generate the final full-box predictions of

the semantic segmentation network.
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Appendix J

Comparison with ExSHalos

In this appendix, we explore how the results obtained with the ExSHaLos code (Voivodic
et al., 2019) compare against our semantic and instance predictions.

As mentioned in §§3, ExSHaALos is an explicit implementation of the excursion set theory
that identifies haloes in Lagrangian space by growing spheres around density peaks until the
average density inside crosses a specified barrier for the first time. The barrier shape is
motivated by the ellipsoidal collapse (Sheth et al., 2001; de Simone et al., 2011) and we have
fitted the three free parameters in the model to reproduce the mean halo mass function of our
simulations.

In Fig. J.1 we show a map-level comparison between the Lagrangian proto-haloes
identified in one of our validation simulations with the friends-of-friends algorithm (left
panel), and the ExSHaLos detected employing the code presented in Voivodic et al. (2019)
(central panel). The ExSHaLos regions in Lagrangian space are spherical by construction
(see the middle panel of Fig. J.1). The physical approach of the ExSHaLos algorithm enables
to identify, with a reasonable degree of accuracy, the location of proto-haloes in Lagrangian
space, and their mass. However, the built-in assumption that proto-haloes are spherical gives
only a crude approximation to the actual proto-halo shapes. In Table 3.2 we quantify the
differences between ExSHaLos and friends-of-friends employing several semantic metrics.

In Fig. J.2 we present a violin plot analogous to Fig. 3.8. This plot shows a comparison
between the ground truth halo masses (friends-off-friends) and the predicted masses from
our model associated with the particles/voxels in our validation set (black violin lines in
the main panel). We also include the comparison between the masses of ExSHaros and
of friends-off-friends haloes (purple violin lines). We have generated the violin lines of
ExSHaLos employing all our simulations (both training and validation) to achieve better
statistics. Our model predictions are capable of achieving greater mass accuracy than
ExSHaLos throughout all mass bins considered here.

In the upper panel of Fig. J.2, we show the False Negative Rate (FNR) as solid lines against
the ground truth halo mass, and the False Discovery Rate (FDR) as dashed lines against the
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Figure J.1: Slices through the Lagrangian field of friends-of-friends proto-haloes, and the
corresponding predictions using the ExSHaros algorithm. Left panel: ground truth masses
obtained using N-body simulations (friends-of-friends proto-haloes). Central panel: predicted
masses obtained using the ExSHaLos algorithm. Right panel (analogous to left panel of Fig. 3.5):
Semantic pixel-level error map between ExSHaLos and friends-of-friends haloes indicating true
positive (green), true negative (blue), false negative (black), and false positive (red) regions.

predicted mass. This plot is analogous to the top plot in Fig. 3.8 (See §§3 for details). We
additionally include solid and dashed purple lines corresponding to the ExSHavros case. It’s
clear that ExSHaLos predicts higher FNR and FDR values compared to the baseline case

and our model predictions, indicating more semantically-misclassified particles.
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Figure J.2: “Violin plot”, visualizing the distribution of predicted halo masses (at a voxel level) for
different ground-truth mass bins. The black violin plots show the results obtained with our instance
segmentation model. Green violin plots show the agreement between the two baseline simulations
— representing an optimal target accuracy. The purple violin plots in the main panel correspond to
the comparison with the ExSHarLos predictions. The solid black line in the top panel shows the false
negative rate, FNR, as a function of the ground truth halo mass. The dashed black line represents the
fraction of predicted collapsed pixels that are not collapsed as a function of predicted halo mass (false
discovery rate, FDR). The green and purple lines on the top panel correspond to the analogous results
obtained from the baseline simulations and ExSHarLos respectively.
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