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The universe itself keeps on expanding and expanding 
In all of the directions it can whizz 
. . . 
So remember, when you’re feeling very small and insecure 
How amazingly unlikely is your birth 
And pray that there’s intelligent life somewhere out in space 
’Cause it’s bugger all down here on Earth 

“The Galaxy Song” from the 1983 flm Monty Python’s The Meaning of Life. 
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Abstract 

This compendium thesis compiles three scientifc articles elaborated during my doctoral 
studies. These articles are framed within the feld of computational cosmology and explore 
diferent aspects related to the analysis and interpretation of cosmological simulations. 
Cosmological simulations involve computational algorithms for studying the behaviour of 
multiple particles under the efect of gravity in a cosmological context. Such simulations 
are instrumental in characterizing the formation processes and to connect the theoretical 
predictions of cosmological models with the observations made by telescopes that map the 
positions and properties of hundreds of millions of galaxies. In this document, after a brief 
introduction to the feld of modern cosmology, I will describe the three main articles that 
constitute this thesis. First, I will explain how it is possible to employ certain models known 
as "semi-analytical" to populate with galaxies the simulations that only use gravitational 
interactions to predict the formation of structures. This way it is possible to connect the results 
from simulations with galaxy observations from space-based or ground-based telescopes. 
Secondly, I will present a model that we have developed for accurately predicting the internal 
structure of dark matter halos, which are gravitationally bound structures that generate the 
potential wells within which galaxies form. This model accurately captures how the internal 
structure of the halos depends on their formation time, which in turn depends on other 
properties such as halo mass, the cosmic time at which halos are observed, and the underlying 
cosmological model that is assumed. Finally, I will explain how to develop a model based on 
machine learning techniques for predicting regions in the initial conditions of a simulation 
that end up forming diferent dark matter halos. This technique makes use of neural networks 
to capture complex halo formation processes and can be used to make fast predictions, as 
well as to investigate which aspects of the initial conditions play a role in halo formation. 
Altogether, these studies contribute to improve the analysis and interpretation of cosmological 
simulations. Moreover, they show how the use of novel techniques such as machine learning 
methods can complement traditional methods for studying structure formation processes. 
These advances are currently of paramount importance as cosmological simulations represent 
the most important tool employed to interpret galaxy survey observations. In conclusion, 
the results presented in this work contribute to enhancing our general knowledge about the 
structure of the Universe and ofer a novel perspective from which to approach observational 
cosmology, paving the way for future research. 
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Resumen 

Esta tesis por compendio consiste en la recopilación de tres artículos científcos elaborados 
durante el transcurso de mis estudios doctorales. Estos artículos se enmarcan dentro del 
campo de la cosmología computacional y exploran distintos aspectos relacionados con el 
análisis y la interpretación de las simulaciones cosmológicas. Las simulaciones cosmológicas 
se basan en el empleo de algoritmos computacionales para estudiar el comportamiento de 
múltiples partículas bajo los efectos de la gravedad en un contexto cosmológico. Estas 
simulaciones sirven para caracterizar la formación de estructuras en el Universo y conectar 
las predicciones teóricas de modelos cosmológicos con las observaciones llevadas a cabo por 
telescopios encargados de registrar las posiciones y propiedades de cientos de millones de 
galaxias. En este documento, tras realizar una breve introducción al campo de la cosmología 
actual, pasaré a describir los tres trabajos principales que conforman esta tesis. En primer 
lugar explicaré cómo es posible usar ciertos modelos conocidos como "semi-analíticos" 
para poblar con galaxias simulaciones que sólo emplean la interacción gravitatoria para 
describir la formación de estructuras. De esta forma es posible conectar los resultados de 
simulaciones con los datos sobre posiciones de galaxias observados por telescopios espaciales 
o terrestres. En segundo lugar presentaré un modelo que hemos desarrollado capáz de 
predecir con precisión la estructura interna de halos de materia oscura, estructuras ligadas 
gravitacionalmente que generan los pozos de potencial gravitacional dentro de los cuales 
se forman las galaxias. Este modelo captura con precisión cómo depende la estructura 
interna de los halos en función su instante de formación, lo cual depende a su vez de 
otras propiedades tales cómo la masa de los propios halos, el tiempo cósmico en el cual se 
observan, y el modelo cosmológico subyacente aque se asume. Por último explicaré cómo 
es posible emplear un modelo basado en técnicas de aprendizaje automático para predecir 
las regiones en las condiciones iniciales de una simulación que acaban formando distintos 
halos de materia oscura. Este técnica emplea redes neuronales para caracterizar procesos 
complejos de formación de halos y puede ser empleada tanto para realizar predicciones 
rápidas, como para investigar qué aspectos en las condiciones iniciales juegan un papel 
relevante en la formación de halos. En conjunto, todos estos trabajos mejoran el análisis 
y la interpretación de las simulaciones cosmológicas. Además, muestran cómo el uso 
de ténicas novedosas como elaprendizaje automático pueden complementarse con métodos 
tradicionales para estudiar procesos de formación de estructuras. Todos estos avances resultan 
de capital importancia en el momento actual ya que las simulaciones cosmológicas son la 
herramienta principal empleada para intepretar los datos recogidos por nuevas campañas 
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observacionales que registran la estructura a gran escala de nuestro universo a través de las 
posiciones de numerosas galaxias. A modo de conclusión, los métodos presentados en este 
trabajo ayudan a mejorar nuestro conocimiento en general sobre la estructura del Universo y 
oferen una perspectiva novedosa desde la cual investigar la situación actual de la cosmología 
observacional allanando el camino para futuras investigaciones. 
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Introduction 

As I have highlighted in the abstract, the primary research topics I have addressed during 
my PhD relate to structure formation processes, the study of the internal structure of dark 
matter (DM) haloes, and the characterization of galaxy populations through cosmological 
simulations. Throughout my years of doctoral studies, I have also dedicated signifcant time 
to understanding fundamental aspects of cosmology that constitute the theoretical backbone 
upon which diferent research areas in this feld sprout. 

In this introduction, I will emphasize some of the most relevant principles that serve as 
building blocks of cosmology as a whole and make my way to the current open problems 
I have been working on. My intention is not to create a self-contained manuscript from 
the most fundamental aspects of cosmology to the current state of the feld. Instead, I 
aim to methodically present core topics I consider essential, from the formulation of general 
relativity using diferential geometry to modern cosmology topics like numerical simulations, 
large-scale structure surveys, and structure formation theory. My goal is to present an 
introduction that serves as a structured roadmap, referencing comprehensive sources and 
covering relevant topics at various levels to outline cosmology’s broader landscape. 

The introduction is structured as follows: frst I will outline some basic concepts of 
diferential geometry that serve as pillars for defning general relativity (0.1). Then I will 
introduce in a simple way the formulation of general relativity (0.2). Afterwards, I will explain 
how cosmology arises from general relativity by solving the background homogeneous and 
isotropic case (0.3). Next, I will focus on topics more relevant to my work related to structure 
formation processes and the growth of perturbations (0.4). Finally, I will comment on 
some of the current open problems in cosmology directly relevant to my research (0.5), and 
contextualize the diferent projects I have been working on (0.6), thus paving the way to the 
main chapters of this thesis. 

0.1 Fundamentals of diferential geometry 

I believe that the best way to learn any topic in physics is to frst gain a solid understanding 
of its mathematical foundations. While developing intuition is also crucial, it becomes 
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increasingly unclear what form this intuition should take as the physical process at hand 
strays from our everyday classical experience. This is especially true for areas like quantum 
physics and general relativity where intuition can only fourish after some previous efort in 
understanding (and practising) with its underlying mathematical footing. 

Although the role of a mathematical formalism, in this case diferential geometry, might 
not play a fundamental role in day-to-day calculations (depending on the feld), I think it is 
crucial to have a good grasp of it. Diferential geometry is the real theoretical backbone upon 
which general relativity (and therefore cosmology) is built. Many interesting phenomena 
can only be truly comprehended after consolidating the basic knowledge of this topic. 
Understanding diferential geometry it is also essential to comprehend how fundamental 
modifcations can yield alternative theories of gravity other than general relativity. 

The lectures by Prof. Frederic P. Schuller at the WE-Heraeus International Winter 
School on Gravity and Light provide an excellent introduction to this topic Schuller (2015). 
A detailed transcription of these lectures, accompanied by supplementary materials, is 
available in Dadhley (2015). This series of lectures pivots around a central sentence that 
encapsulates the formulation of general relativity through diferential geometry: "Spacetime 
is a four-dimensional topological manifold with a smooth atlas carrying a torsion-free 
connection compatible with a Lorentzian metric and a time orientation satisfying the Einstein 
equations". 

To fully grasp the meaning of this sentence, it is necessary to dissect it into smaller 
chunks and tackle each of them separately. In Appendix A, I present a series of defnitions to 
elucidate what constitutes a "four-dimensional topological manifold with a smooth atlas". For 
a detailed explanation of the sentence’s middle portion – "carrying a torsion-free connection 
compatible with a Lorentzian metric and a time orientation" – I direct the reader to Schuller 
(2015) and Dadhley (2015). The fnal part of this sentence, "satisfying the Einstein equations", 
is addressed in the following Section 0.2. 

Although it is unavoidable to delve into precise mathematical defnitions to truly 
understand this phrase, I will try to give an intuitive explanation of what the diferent parts 
of it mean before moving on to the next section. The three-dimensional space that we are 
familiar with can be regarded along with time as a single mathematical entity comprised by a 
set of points in four dimensions with nice properties. By "nice properties" I refer to the fact 
that the points of spacetime behave in relation to each other in such a way that it is possible 
to represent them in an orderly and smooth manner, somewhat like an elastic fabric. On top 
of this structure that represents a "four-dimensional smooth manifold" we need to impose 
additional constraints that describe how objects (for example, tensors) transform when they 
move from one point of this space to another (this is related to the part "carrying a torsion-free 
connection"). We also need to specify further requirements to build a physical theory which 
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is locally compatible with special relativity (in connection with the part "with a Lorentzian 
metric and a time orientation"). Nevertheless, this construction does not fully constitute what 
we refer to as the theory of general relativity; it is necessary to state how the presence of 
energy and its momentum afects the "shape of our well-behaved and soft elastic fabric", and 
for that we need to postulate Einstein’s equations. 

0.2 General relativity 

The diferential geometry framework presented in Section 0.1 (and references therein) 
specifes how spacetime is defned in the context of general relativity. However, the physical 
core of general relativity is constituted by the Einstein equations. Einstein’s equations 
describe how the metric, gµν , which characterizes the structure of spacetime, is afected by 
the matter-energy distribution, described by the stress-energy tensor Tµν . 

Numerous comprehensive sources provide excellent introductions to general relativity 
and Einstein’s equations, for example, see (Ortín, 2007; Zee, 2013). In this section, I will 
outline how to derive the equations of motion of a system from its Lagrangian density (using 
the stationary-action principle) and formulate the Cosmological Einstein equations from the 
Einstein-Hilbert action. 

For any given Lagrangian density, L, explicitly dependent on special relativistic felds2, 
ϕi(xµ), and their corresponding frst derivatives3, ∂ν ϕ

i(xµ), we can write its corresponding 
action as: Z� � � � �	 

µ µS ϕi(xµ), ∂ν ϕ
i(xµ); x = d4 x L ϕi(xµ), ∂ν ϕ

i(xµ); x . 
Σ 

Taking an arbitrary infnitesimal variation, δα, and assuming the coordinate variations δxµ to 
be zero by hypothesis, Z Z � [∂µ,δα]=0

d4 d4 ϕiδαS = x {δαL} = x ∂ϕi L δαϕi + ∂∂µϕi L δα∂µ −−−−−→ ... 
Σ Z Σ Z� � �	 � � �	 

... → δαS = d4 x δαϕ
i ∂ϕi L − ∂µ∂∂µϕi L + d4 x ∂µ ∂∂µϕi L δαϕi . 

Σ Σ 

If we now impose that the feld variations vanish over the boundary, [δαϕi |∂Σ4 , the second 
term cancels out: Z � � �	 � 

d4 x ∂µ ∂∂µϕi Lδαϕi = ∂∂µϕi L δαϕi |∂Σ4 = 0. 
∂Σ 

2Defned on a four-dimensional smooth manifold whose elements we denote with coordinate map 
µcomponents x . 

∂3I will employ the notation ∂µ := . It is possible to consider the more general case where the Lagrangian ∂xµ �
density, L, also depends on higher derivative terms of the feld, ϕi, ∂ν ϕ

i, ∂κ∂ν ϕ
i , ... . However, most physical 

laws can be obtained considering only the frst two terms. 
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Taking into account the stationary-action principle, δαS = 0, we obtain the 
Euler-Lagrange equations from the frst term: Z � � �	 δαS=0

δαS = d4 x δαϕ
i ∂ϕi L − ∂µ∂∂µϕi L −−−→ ∂ϕi L − ∂µ∂∂µϕi L = 0. 

Although not all the equations in physics can be obtained from an action formulation, 
most of them do. In particular, the equations of motion for the gravitational feld, Einstein’s 
equations, can be derived starting with the Einstein-Hilbert action, Z 

c3 √ 
SEH [gµν (x

µ); xµ] = d4 x −gR(gµν ),
16πGN Σ 

where GN = 6.67430(15) · 10−11m3kg−1s−2 (Mohr and Taylor, 2000) is the gravitational 
constant, and R(gµν ) is the Ricci scalar, which depends on the metric as follows: 

Ricci scalar: R := gµν Rµν 

Ricci curvature: Rµν := Rα
µαν 

Riemann-Christofel curvature tensor: Rρ
σµν := ∂µΓρ

νσ − ∂ν Γ
ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ 

Christofel Symbols of the Second Kind: Γµνκ := 
1
(∂κgµν + ∂ν gµκ − ∂µgνκ) . 

2 
After extensive manipulation (see Ortín, 2007, for an explicit derivation), we can derive 

the following equation: Z � � � � √ 1 � � 
αβδΓκ βκδΓαδSEH [gµν (x

µ); xµ] = d4 x −g δgαβ Rαβ − gαβ R + ∇α g − g .κβ βκ2Σ 

If the covariant derivative4 gives a term that vanishes when δgµν = 0 on the boundary5, we 
obtain the Einstein equations in the vacuum, 

1 
Gµν Rµν − µν R = 0.:= g

2 
4The covariant derivative ∇κ, of a tensor r-times contravariant and s-times covariant, T µ1...µr , is defnedν1 ...νs 

as: 

∇κT µ1...µr =∂κT µ1...µr + ...ν1...νs ν1...νs 

ακT αµ2 ...µr 
ακT µ1...,µr−1α ...+Γµ1 + ... + Γµr 

ν1...νs ν1...νs 

ν1κT µ1...µr 
κT µ1...µr ...−Γα − ... − Γα 

αν2 ...νs νs ν1 ...νs−1α 

5At this point it is necessary to point out a very interesting appreciation about the Einstein-Hilbert action 
that is rarely mentioned in most textbooks but that is carefully addressed in Ortín (2007): "The Einstein–Hilbert 
action contains second derivatives of the metric. However, the terms with second derivatives take the form of a 
total derivative. This means that the original action can in principle be used to obtain equations of motion that 
are of second order in derivatives of the metric. However, we would have to impose conditions on the derivatives 
of the metric on the boundary. [...]. The solution to these problems consists in adding a general-covariant 
boundary term to the original Einstein–Hilbert action.". This term is known as the Gibbons–Hawking–York 
boundary term and is given by: Z √ 

SGHY =
1 

d3yϵ hK. 
8π ∂M 
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We can now consider what is the efect of matter by including an additional term in the 
action, Sm [gµν (x

µ), ϕi(xµ); xµ], that depends on the matter felds, ϕi(xµ). If we defne the 
matter stress-energy tensor as � � 2c δSm

T µν ϕi 
m = √ ,

−g δgµν 

∇αT µαWhere Tm 
µν satisfes the continuity equation: m = 0. We recover the Einstein 

equations in presence of matter: 

4πGN
Gµν T µν= . 

4 m c 

Finally, let’s consider the efect of including a cosmological constant, Λ, term in our 
action, 

c3 Z √ 
SΛ [gµν (x

µ); xµ] = d4 x −g [−2Λ] . → S = SEH + Sm + SΛ
16πGN Σ 

In this case, we recover the Cosmological Einsteins’s equations given by 

8πGN
Gµν T µν µν Λ.= − g (1)

4 m c 

These equations would be central for the rest of this work as they describe the interaction 
between spacetime and matter. Moreover, they incorporate the efect of a cosmological 
constant, currently the most widely accepted approach for modelling the observed accelerated 
expansion of the Universe (Riess et al., 1998). 

0.3 The homogeneous universe 

In this section I will present the basic assumptions taht are employed in cosmology for 
describing the evolution of the Universe as a whole on its largest scales. I will employ the 
machinery from general relativity presented in sections 0.1 & 0.2 to build towards the ΛCDM 
model, the current cornerstone of modern cosmology. I will derive the main equations 
that are employed for studying the behaviour of a homogeneous and isotropic universe. A 
comprehensive introduction to this topic can be found in classic references (Kurki-Suonio, 
2024b, 2023; Dodelson and Schmidt, 2020; Baumann, 2022). My intention for this section is 
to present compact and direct derivations for analyzing dynamical aspects of the homogeneous 
universe. At the end of this section, I will also comment on some crucial thermodynamical 
results, but, since will not play a direct role on the main results Iwill present of this thesis, I 
refer the avid reader to the aforementioned sources for more in depth explanations. 

To analyze the behavior of the Universe at its largest scales, we are going to assume 
that it looks the same at every point (homogeneity) and in every direction (isotropy). 
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


This assumption captures the behaviour of the Universe as a whole efectively and allows 
to fnd simple solution to Einstein’s equations (1). Imposing these conditions leads to 
a restricted form for the metric known as the Friedmann–Lemaître–Robertson–Walker 
(FLRW) metric given by: 

ds2 = gµν dx
µdxν with gµv = 

  
  , (2) 

−1 0 0 0 
R(t)2 

0 0 0
1−kx2 

0 0 R(t)2x2 0 
0 0 0 R(t)2x2 sin2 θ 

µwhere x = (ct, xi) are referred to as comoving coordinates, R(t) is a parameter that 
describes how distances evolve with cosmic time, t, and k measures the curvature of the 
universe6. 

From this restricted metric, we can directly derive several interesting quantities. If we 
consider a photon (that follows a null-geodesic with ds2 = 0) following a radial trajectory7, 
we fnd that  Z 

�√ � 
arcsinh |k|xf√ k < 0Z |k|

dx2 tf cdt xf dx 
c 2dt2 = R2(t) (3)→ = √ = xf k = 0 

1 − kx2 
ti R(t) xi=0 1 − kx2 �√ � arcsin |k|xf√ k > 0 

|k| 

From this expression we can defne the comoving distance, χ, as the comoving separation 
between two comoving points. It is constant for objects that move with the Hubble fow (the 
intrinsic expansion of the universe) and can expressed as ZZ xf dx t0=tE+∆t cdt 

, (4)χ = √ = 
xi=0 1 − kx2 

tE R(t) 

where xf is the comoving coordinate reached by a photon that was emitted at time tE from 
xi = 0 and traveled during a time ∆t (as measured by the observer located at xi = 0). 
Note that independently of the emission time, tE, a photon will always arrive to the same 

χ R(t)comoving coordinate xf at t0. We can now defne the proper distance as dp(t) := .
R(t0) 

The proper distance, dp(t), indicates the physical separation (measured in your favourite 
units: m, Gpc, ...) that corresponds to the comoving distance χ measured at a certain cosmic 
time t. 

Using Equation 3 we can derive the relation between the scale factor, a, and redshift, z 
(both defned below). We start by considering the trajectories of two photons that are emitted 
one shortly after the other. We consider that the frst photon is emitted from the comoving 

6The curvature, k, can only take the values k = +1 (positive curvature), k = 0 (zero curvature, or fat), and 
k = −1 (negative curvature). 

7Without loss of generality we can set θ = 0. 
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position xE at tE and reaches its destination, x0, at t0. The second photon is emitted shortly 
after from xE at tE + δtE and reaches x0 at t0 + δt0, then, Z Z Z Z x0 t0 x0 t0+δt0dx cdt dx cdt

1st phot. : √ = . 2nd phot. : √ = . 
xE 1 − kx2 

tE R(t) xE 1 − kx2 
tE+δtE R(t) 

Since the comoving spatial integrals are the equivalent, we can combine the temporal part of 
both equations, Z Z Z Z Zt0 t0+δt0 t0 tE+δtE t0+δt0cdt cdt cdt cdt cdt 

= = − + → ... 
R(t) R(t) R(t) R(t) R(t)tE tE+δtE tE tE t0Z Zt0+δt0 tE+δtEcdt cdt δt0<<1 c∆t0 c∆tE 

... → = −−−−→ = . 
R(t) R(t) δtE <<1 R(t0) R(tE)t0 tE 

In the derivation’s fnal step, I have considered the limit where the time intervals between the 
emission and reception of the photons (δtE and δt0, respectively) are so small that the scale 
factor of the universe can be considered constant. If we now consider that instead of having 
two diferent photons we are dealing with two events that correspond to an interval equivalent 
to the frequency of a particular lightray, such that c∆tj = c/νj = λj , we can rewrite the last 
equation as 

λ0 λE R(tE) λE 1 a(tE):=R(tE)/R(t0) 1 
= → = = −−−−−−−−−−→ a(tE) = . (5)

R(t0) R(tE) R(t0) λ0 1 + 
λ
λ 
E 
0 − 1 z:=λ0/λE −1 1 + z 

The redshift z measures the ratio of the observed wavelength, λ0, to the emitted wavelength, 
λE. We denote the scale factor by a(t). 

From Equation 3 it is also possible to defne diferent characteristic scales relevant in 
cosmology: 

• Since the age of the Universe and the speed of light are both fnite, we can defne the 
(comoving) particle horizon, χp, as the maximum (comoving) distance from which 
we can retrieve information, that is, the past observable universe. The particle horizon, 
χp, is defned in terms of Equation 3 as the (comoving) distance associated with a 
photon that was emitted at decoupling time, ti = tdec, from xi = xdec, that is received 
by an observer located at xf = 0 at present time tf = t0. It is common to see the term 
particle horizon defned in terms of Big Bang time instead of decoupling time, in this 
case, ti = 0, xi = xBB . 

• The (comoving) event horizon corresponds to the maximum (comoving) distance a 
photon would be able to travel if it is emitted from xi = 0 at present time, ti = t0, and 
travels for all eternity, tf = ∞. It can be fnite or infnite, depending on the behaviour 
of R(t), which depends on the composition of the universe. 
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• The (comoving) Hubble radius is defned as the (comoving) distance at which 
recessional velocity equals the speed of light χH (t) = c/H(t). Where H(t) is the 
Hubble parameter which I will defne below. 

So far we have discussed the consequences of restricting the metric to the homogeneous 
and isotropic FLRW case. We now move on to characterize the behaviour of R(t) once a 
specifc form of the stress-energy tensor, Tµν , is specifed. 

Let’s consider that the total stress-energy tensor of the universe, Tµν , can be expressed as 
(i)a sum of the individual stress-energy tensors of diferent perfect fuids, Tµν , that is, 

X 
T (i) T (i)= with =Tµν µν , µν 

  
ρi 0 0 0 
0 Pi 0 0 
0 0 Pi 0 

  . (6) 
i 

0 0 0 Pi 

Where ρi is the energy density and Pi is the pressure of the "i-th" perfect fuid species. 
Considering the continuity equation (see section 0.2), we obtain that each species satisfes: 

�Ṙ 
ρi + pi/c2 (7)ρ̇i = −3 

R 

Where I have employed the notation ρ̇ := dρ/dt. 
We can substitute Equation 6 on Equation 1 assuming a FLRW metric (Equation 2); after 

extensive manipulations we arrive to the Friedmann Equations, !2
Ṙ 

= 
8πGN X kc2 Λc2 

(8)ρi − + ,
R2R 3 3 

i� 
ρi + 

�X¨ 2R 4πGN 3pi Λc 
(9)= − + ,

2R 3 3c 
i 

We can simplify Equation 8 and Equation 9 even further but we need to take a small 
thermodynamic detour. 

Let’s assume that the second law of thermodynamics holds for each fuid component, 
TidSi = dUi + pidV . Where Ti is the temperature associated with the i-th fuid component, 
Ui = ρiR(t)3c2 is its internal energy, Si represents its entropy, and V = R(t)3. Then: 

˙ ˙ ˙ = 3R2 ˙ 2 + R3 ˙ ˙TiSi = Ui + piV Rρic ρic 2 + 3piR
2R (10) 

We can show that this expression is equal to zero substituting Equation 7. Therefore, TiṠ 
i = 0, 

˙and since Ti ≠ 0 ∀i, t → Si = 0, hence, entropy is conserved8. 

8For the condition Ṡ 
i = 0 people commonly say that the expansion of the universe is "adiabatic", However, 

this term is employed in many diferent contexts and can mean diverse things, so be carefull out there. 
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If we now assume that each fuid component can be described as a barotropic fuid with 
pi = ωiρic

2, from Equation 10 we have that � � � � 
dSi = 0 = dUi + pidV = d R3ρic 2 + ωiρic 2d R3 = c 2R3dρi + c 2ρidR3 + ωiρic 2dR3 = ... 

... = c 2R3dρi + c 2ρidR3 (1 + ωi) → −c 2ρidR3 (1 + ωi) = c 2R3dρi → ... Z ZR(t) ρi(t)dR3 dρi dR3 dρi 

... → − (1 + ωi) = → − (1 + ωi) = 
R3 ρi R(t0) R3 

ρi(t0) ρi 

Assuming that ωi is a constant we have that Z ZR(t) ρ(t)dR3 dρi → ρi(t) = ρi(t0) a(t)−3(1+ωi)− (1 + ωi) 
R3 = (11) 

R(t0) ρi(t0) ρi 

This equation relates how the density of a barotropic fuid with constant ωi evolves as a 
function of the scale factor. Using this result we can simplify Friedmann’s equations after 
introducing some additional defnitions: 

˙• The Hubble parameter at time t, H(t) := R/R, indicates the ratio between the 
recession velocity of an object, that is static in the comoving frame, and its distance to 
a given observer, which is also at rest in the comoving frame. The Hubble constant is 
defned as H0 = H(t0) and its value according to Planck Collaboration et al. (2020a) 
is H0 = (67.4 ± 0.5)km s−1 Mpc−1 ≈ 0.069Gyr−1 . 

• The time dependent critical density of the universe is defned as ρcrit(t) := 
3H(t)2 3H2 

0 
8πGN 

. At present time, ρcrit(t0) ≡ 
8πGN 

= 1.8788 × 10−26h2 kg m−3 = 
2.7754 × 1011h2 M⊙ Mpc−3 , where the little h parameter is defned as h := 
H0/(100 km s−1Mpc−1) (Planck Collaboration et al., 2020a). 

• We defne the present time density parameters for the curvature and the cosmological 
constant as 

kc2 c2Λ 
Ωk(t0) ≡ Ωk,0 := − ; ΩΛ(t0) ≡ ΩΛ,0 := . 

H2 3H2 
0 0 

The density parameter associated to a barotropic fuid is 

8πGN
Ωi(t0) ≡ Ωi,0 := ρi(t0). 

H2 
0 

In general, we defne the time-dependent density parameter for any component 
(curvature, cosmological constant, or barotropic fuid) as 

a(t)−3(1+ωi) 
Ωi(t) := Ωi,0 . 

Ωr,0a−4 + Ωm,0a−3 + Ωk,0a−2 + ΩΛ,0a0 

For curvature we are going to associate the value ωk := −1/3. For the cosmological 
constant we defne that ωΛ := 0. Based on statistical mechanic arguments (see 
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Baumann, 2018), it can be shown that for radiation ωr = 1/3, and for collisionless 
matter ωm = 0. We will also enforce the following defnition for all density parameters 
that would allow us to efectively talk about curvature and cosmological constant 
densities: 

a(t)−3(1+ωi)ρi(t) 8πGN
Ωi(t) := = ρi(t0)

H2 0ρcrit(t) Ωr,0a−4 + Ωm,0a−3 + Ωk,0a−2 + ΩΛ,0a0 

Taking into account the defnitions above and substituting the result of Equation 11 in 
Equations 8 and Equations 9 we obtain the Friedmann Equations written in the most common 
form: � 

0 � X 
H(a)2 = H0

2 Ωr,0a −4 + Ωm,0a −3 + Ωk,0a −2 + ΩΛ,0a = H0
2 Ωi(a)E

2(a) (12) 
i 

¨ 
q = − 

RR 
= 

1
Ωm(t) + Ωr(t) − ΩΛ(t) (13)

Ṙ 2 2 

These equations have some analytical solutions, for example in the case in which only one 
component is considered. However, to solve them in general way it is necessary to employ a 
numerical approach. 

I would like to add that this derivation can be generalized for considering fuids 
that transition between a relativistic behaviour (contributing to the radiation term) and 
a non-relativistic behaviour (contributing to the matter term). This treatment becomes 
particularly important for describing the efect of neutrinos in the background. In the case 
of neutrinos it is possible to write the following term (see Lesgourgues and Pastor, 2006; 
Zennaro et al., 2016, and M. Zennaro & D. López-Cano, in prep., for a detailed derivation): � � � � 

15 15 
Ων (a)E

2(a) = Γ4 Ωγ (a)E
2(a)F(y) = Γ4 −4F(y).ν ν Ωγ,0a 

π4 π4 Z ∞ 2 2xi 1 pic mν,icWith F (yi) ≡ dxi p . where xi = and yi = . 
2 2 exi 

0 x + y + 1 kB Tν,i kBTν,i i i 

Were Γν = 0.71611. is the non-instantaneous interaction rate of neutrinos with photons (see 
Hannestad and Madsen, 1995; Dolgov et al., 1997; Esposito et al., 2000). 

In this section I have presented the Friedmann equations 12 & 13 starting from the 
cosmological Einstein’s equations 1. Friedmann equations describe how a homogeneous and 
isotropic universe evolves with cosmic time depending on its composition9 The information 
of the evolution is encoded in the scale factor. In the next section 0.4 I will go beyond the 
homogeneous framework to investigate how is it possible to model the growth of structures 
supposing that, from a certain scale downwards, there exists perturbations that imprint 

9There exist many other interesting phenomena that can be analyzed in the "background" framework 
(decoupling, nucleosynthesis, time of recombination, etc.). For a comprehensive review check Kurki-Suonio 
(2024b, 2023); Dodelson and Schmidt (2020); Baumann (2022). 
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small-scale inhomogeneities. These inhomogeneities (which are originally created due to 
cosmic infation) grow afterwards naturally due to efect of gravity. 

0.4 Growth of perturbations 

There exist many approaches for describing the behaviour of perturbations within a 
homogeneous and isotropic background. One of the most rigorous methods involves 
adding fuctuations to the metric and to the stress-energy tensor in a perturbative manner 
using the framework of general relativity. While this approach yields exact solutions for 
various scenarios using frst-order terms, including higher-order terms signifcantly increases 
complexity, limiting its applicability. For a detailed explanation of the GR perturbatition 
framework I highly recommend reading the notes by Baumann (2018) and Kurki-Suonio 
(2024a). 

Even though the GR perturbative approach represents the most exhaustive method for 
dealing with metric fuctuations, there exist certain regimes in which some approximations 
can be made and still recover accurate predictions. Throughout this section, I will focus on 
three formalisms that allow us to study how matter perturbations grow in our Universe. This 
regime is crucial to describe structure formation processes and explain the distribution of 
observed galaxies, which constitutes the central observational target of large-scale structure 
surveys (more about LSS surveys in section 0.5). 

I frst discuss treating perturbations as classical fuid components evolving under 
Newtonian gravity within the expanding background. The main idea for developing this 
formalism is that, even though the background expansion of the Universe needs to be treated 
using general relativity, it is possible to accurately approximate the evolution of perturbations 
employing the Newtonian law of gravity. This approximation is valid as long as we focus 
on matter perturbations at distances well within the Hubble horizon and not coupled with 
other components such as radiation, where Newton’s law of gravity accurately describes their 
evolution. To see a detailed derivation of these equations check, e.g., Kurki-Suonio (2023); 
Dodelson and Schmidt (2020); Baumann (2022), or M. Zennaro & D. López-Cano (in prep.). 
Here, I present the general equations that cosmological simulation codes used to describe the 
evolution of perturbations: � � 

∂δ 1 1 ∂ρ̄ 
+ ∇[(1 + δ)u] + (1 + δ) + 3H = 0 (Continuity Equation),

∂t a ρ̄ ∂t � � 
∂u 3 ∂H 1 1 1 

+ ax H2 + + Hu + (u · ∇)u = − ∇δp − ∇φ (Euler Equation),
∂t 2 ∂t a aρ a 

∇2φ = 4πGρa¯ 2δ (Poisson Equation), 
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Where x represents comoving coordinates and the derivatives ∇ are also taken with respect 
to the comoving coordinates. The symbol δ := ρ/ρ̄ − 1 corresponds to the overdensity of a 
fuid component and the variable u := v − aHx is the peculiar velocity. ϕ is the comoving 
Newtonian potential, and δp represents the pressure perturbations of a fuid component. 

These equations are crucial to implementing particle-mesh cosmological simulation 
codes (e.g. Klypin and Holtzman, 1997; Feng et al., 2016) which are employed to study 
structure formation processes. I will not investigate these equations any further here. 
suggest checking Brandbyge et al. (2017); Fidler et al. (2016) for a more detailed justifcation 
regarding why these equations allow to reproduce the evolution of matter perturbations from 
the perspective of GR. 

Next, I discuss the Top-Hat Spherical Collapse Model. The key approximation 
considered in this framework is that, once an overdense region of space decouples from 
the global background expansion of the universe (due to its gravitational pull), the evolution 
of this patch can be approximated by the solution to Friedmann’s equations (12) of a closed 
universe with positive curvature only composed by a homogeneous distribution of matter10. 
To obtain information about the collapsed system it is possible to consider its behaviour once 
it has reached virialization. If we employ the virialization condition and study the linearized 
solution for the overdensity evolution we reach a very interesting conclusion: The value of 
the linear overdensity required for this patch to collapse into a halo (reaching virialization) 
is δSC ≈ 1.686. This back-of-the-envelope calculation provides an approximate value for the 
linear overdensity required of a region to collapse onto itself due to its own gravitational pull. 
Even though The top-hat Spherical Collapse Model deals with a very idealized system, it 
sheds some intuition about the relevant processes that lead to the gravitational collapse and 
is wildly used by other structure formation theories such as the one discussed below. 

Lastly, I introduce the Extended Press-Schechter (EPS) model or Excursion Set 
Theory. This framework allows treating analytically the linear growth of perturbations 
from a statistical standpoint. Thanks to this technique it is possible to qualitatively predict 
relevant cosmological quantities such as the Halo Mass Function (HMF), or the halo merger 
and accretion history. The origin of this theory can be traced back to the seminal work of 
Press and Schechter (1974a) and Bond et al. (1991a), but more recent articles improve upon 
the original formulation, providing a more robust mathematical justifcation, and employing 
this formalism for the prediction of additional observables (e.g. Lacey and Cole, 1993; Sheth 
and Tormen, 2002; Zentner, 2007; de Simone et al., 2011). I will now briefy summarize the 
basic assumptions made by this formalism to derive the analytical expression for the HMF. 

Let’s start by considering a realization of the overdensity feld of matter perturbations at 

10In this scenario we can compute a parametric solution to Friedmans’s equations describing how the scale 
factor evolves with cosmic time. 
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a certain scale factor, δm(x, a). Given this feld, we can compute at each comoving point, 
x, the “smoothed” value of the feld at a characteristic scale, s, having previously defned a 
window function W (s; r): Z ∞ 

δm(s; x, a) := W (s; |x − y|)δm(y, a)d3 y. 
−∞ 

Additionally, we can compute the variance of the overdensity feld at that scale by averaging 
across all points in space, i.e., Z ∞ 

σ2 d3(s; a) := |δm(s; x, a)|2 x.m 
−∞ 

If we consider a Gaussian random overdensity feld whose modes evolve independently 
in time in Fourier space11 we can impose a sharp k-space window function to obtain random 
walk “trajectories”, δm(s; x, a), as a function of the variance of the feld, σm

2 (s; a). Factoring 
out the linear growth factor we obtain that collectively (in the statistical ensemble sense), the 
diferent random walks satisfy the difusion equation at all times 

∂P 1 ∂2P 
= , (14)

∂S 2 ∂δ2 

where P (S, δ) represents the probability density function of fnding a trajectory at S with a 
value δ, and we have performed the following notation simplifcation: 

S := σm
2 (s; a), and δ := δm(s; x, a). 

Now it is possible to include some additional physical assumptions for solving Equation 14 
analytically. According to the top hat spherical collapse approximation, we can consider that 
halo formation takes place whenever a linear overdensity value is higher than δc. For this 
reason, we can assume that there exists an absorbing barrier condition at12 δc(a) ≈ 1.686 D(a) 

D(a0) 

such that P (S, δ ≥ δc) = 0. This condition imposes that any trajectory that crosses the 
threshold value δc(a), collapses into a halo with the characteristic mass Mh associated with 
the scale S, hence it cannot contribute any longer to the path probability distribution P 
for larger values of S. Considering this constraint and assuming as initial condition that 
P (δ0, S0) = δD(δ0) we obtain that the probability distribution function (with respect to δ) of 
trajectories, δm(s; x, a), that have never exceed the threshold value, δc(a), prior to S is � � � � �� 

1 
P (δ, S; a, δ0, S0) = p

2π(S − S0) 
exp 

(δ − δ0)2 
− 
2(S − S0) 

− exp 
(2(δ − δc(a)) − (δ − δ0))2 

−
2(S − S0) 

(15) 
11This occurs in the linear regime when the growth of modes can be expressed in terms of the primordial 

amplitude fuctuations in k-space times a multiplicative linear growth factor, D(a). See the references above 
for a detailed derivation. 

12The factor D(a) denotes the linear growth factor and needs to be taken into account for the barrier height 
since we have factored out the time evolution of the overdensity modes in the equation 14. 
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Therefore the fraction of trajectories that have crossed above the threshold, δc(a), before S is Z � �δc(a) δc(a) − δ0
F (S; a, δ0, S0) = 1 − P (δ, S; a, δ0, S0) dδ = erf √ , 

−∞ 2(S − S0) 

and the diferential probability of frst piercing the threshold at S can be expressed as 

dF (S; a, δ0, S0)
f(S; a, δ0, S0) dS = dS = ... 

dSZ � �δc(a)δc(a)d 1 ∂P (δ, S; a, δ0, S0) 
... = − P (δ, S; a, δ0, S0) dδ = − 

dS 2 ∂δ −∞ −∞ 

where, in the last step, we have commuted the integral operation with the derivative with 
respect to S, and afterwards we have employed Equation 14. Finally, after substituting in the 
last equation the result from Equation 15 we obtain that � � 

δc(a) − δ0 (δc(a) − δ0)2 
f(S; a, δ0, S0) dS = √ exp − dS 

2π(S − S0)3/2 2(S − S0) 

To obtain the HMF predicted by EPS we need to consider that, within a fnite volume, V , 
that contains a total (matter) mass, Mm := ρ̄ mV , the fraction of mass contained in haloes of 
characteristic mass, Mh, is 

NhMh NhMh dS 
= = f(Sh; a, 0, 0) dM, 

Mm ρ̄ mV dM 

where Sh corresponds to the characteristic Lagrangian scale associated with the characteristic 
halo mass, Mh, and is determined by the specifc window function chosen. The ratio Nh/V 
is known as the HMF predicted by EPS and corresponds to the diferential number of halos 
of per unit volume that have a characteristic halo mass Mh. Rearranging the terms of the last 
equation we obtain r � � 

Nh dnh 2 ρ̄ δc(a) d log σm δc(a)
2 

= dMh = exp − dMh (16)
V dMh π Mh

2 σm
2 (h; a) d log Mh 2σm

2 (h; a) 

The EPS formalism is a powerful analytical approximation for describing halo formation 
from the initial density feld fuctuations. It is of particular relevance for this work and some 
of its results play a relevant role in the chapters 2 and 3 of this thesis. 

0.5 Current state: ΛCDM, LSS surveys, simulations, 
haloes, machine learning 

Until this point in the introduction, I have introduced the fundamental theory describing 
the universe’s behaviour at the background level (section 0.3) and outlined some models to 
characterize structure formation processes (section 0.4). However, I have not yet discussed 
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the connection between these theories and actual astronomical observations. This section will 
explain how major observational discoveries have shaped our understanding of cosmology 
and established the ΛCDM paradigm. 

A pivotal observational evidence that marks the birth of cosmology as a consolidated 
scientifc discipline is the discovery of the Cosmic Microwave Background (CMB) radiation. 
Detectable from every direction in the sky, this radiation has a temperature of TCMB = 
2.72548 ± 0.00057 K (Fixsen, 2009) and originates in the early universe (zγ,dec ≈ 1090). 
The CMB radiation originates from a process known as photon decoupling that occurs 
when the interaction rate between photons and matter (electrons in particular) fell below 
the universe’s expansion rate. The CMB radiation’s detection in the 1960s through radio 
experiments (Penzias and Wilson, 1965), and its interpretation within the cosmological 
context, triggered posterior dedicated eforts for cosmological studies, leading to the 
development of the ΛCDM model. 

The ΛCDM model provides a robust description of multiple astronomical observations, it 
is based on general relativity and considers the following main components: ordinary matter, 
cold dark matter, and dark energy. The term cold dark matter (CDM) refers to all non-baryonic 
elements of the universe (that are not visible) that satisfy ωDM ≈ 0 (Peebles, 1982). The 
Dark energy component is modelled in the ΛCDM model through a cosmological constant 
term. The addition of this term to the standard cosmological model occurred throughout 
the nineties, and the work by Riess et al. (1998) stands out in particular since it helped 
to consolidate the dark energy term by providing direct evidence regarding the accelerated 
expansion of the Universe. 

One of the most notable accomplishments of the ΛCDM model has been to accurately 
describe CMB anisotropies. These small matter perturbations imprinted on the CMB signal 
were generated in the primordial Universe by the quantum fuctuations of the infaton feld. 
They correspond to the initial matter overdensity perturbations from which later structures 
such as galaxies and galaxy clusters grew due to gravity. NASA’s COBE mission frst detected 
the CMB anisotropies in 1992 (Smoot, 1999). NASA’s WMAP observatory (Bennett et al., 
2013) and ESA’s Planck experiment provided more precise measurements in the 2010s Planck 
Collaboration et al. (2020a), ofering the most accurate cosmological parameter estimates for 
the ΛCDM model to date. 

Despite all the ΛCDM model’s successes, several phenomena and astronomical 
measurements do not align perfectly with it (see Perivolaropoulos and Skara, 2022, for 
a review). Testing the ΛCDM model in all possible regimes is necessary to probe the 
microscopic nature of dark matter and dark energy and to test the theory of general relativity 
on large scales. 

Over the last decades, large-scale structure (LSS) surveys have emerged as a promising 
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avenue for cosmological studies. These experiments aim to map the positions of as many 
galaxies as possible in the sky. By studying the distribution of galaxies in LSS surveys, it 
is possible to test cosmological theories by characterizing the statistical properties of their 
distribution. Many LSS surveys have been conducted, with more currently collecting data or 
planned to start in the coming years (Alam et al., 2017a; Euclid Collaboration et al., 2022; 
DESI Collaboration et al., 2016; Ivezić et al., 2019, for example). 

LSS surveys generate petabytes of data on galaxy properties and positions. This 
information is crucial for investigating astrophysical efects and studying cosmological 
models. To do so it is necessary to compare the observed galaxy distributions with the 
predictions from models that correctly capture cosmological and astrophysical processes. 
However developing such models is challenging since galaxies form in high-density regions 
of the matter feld, where very difcult to model non-linear processes occur. Currently, 
numerical simulations are the most commonly used method to study galaxy formation in 
cosmological studies. 

Cosmological simulations are numerical algorithms that accurately capture non-linear 
structure formation processes. They predict the matter distribution across cosmological 
scales, allowing for a comparison between observed galaxy distributions and theoretical 
models. These simulations typically solve Newton’s equations for a set of tracer particles that 
evolve in an expanding background, efectively capturing non-linear gravitational processes 
without needing full general relativistic treatment at all scales (see Angulo and Hahn, 2022a, 
for a review). 

Despite considerable advancements in the feld of cosmological simulations, limitations 
in computing power and data storage prevent us from running complete forward predictions 
that can be directly compared with observational galaxy catalogues. The simulations need to 
be extensive enough to cover large cosmological volumes while also incorporating detailed 
modelling of all the astrophysical processes that infuence the fnal galaxy properties. To 
address these challenges, numerous strategies have been developed to create simulations 
that are faster to compute and require less storage space, however, there is still signifcant 
potential for improvement and numerous research groups work to enhance the performance 
of cosmological simulations. 

In the remainder of this section, I briefy discuss various aspects related to improving 
cosmological simulation results. Specifcally, I will focus on topics most relevant to the work 
presented in the central chapters of this thesis. 

One of the main challenges in cosmological simulations is to reduce their computational 
cost for simulating the formation and evolution of galaxies. To accurately reproduce this 
process it is necessary to simulate the behaviour of normal ("baryonic") matter and compute 
the gravitational interactions at the same time. To incorporate these baryonic processes, it is 
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common to include in simulations hydrodynamical recipes. However, solving these equations 
is computationally expensive and limits the potential simulated volume to scales not large 
enough for comparison with galaxy survey data. Various alternatives exist to circumvent 
this problem, most involving running a gravity-only simulation and including galaxies in 
a post-processing step. Common techniques include Halo Occupation Distribution (HOD) 
models (e.g. Berlind et al., 2003), (sub-)halo abundance matching techniques (e.g. Vale and 
Ostriker, 2004), and semi-analytic models (e.g. Knebe et al., 2018b). 

Including galaxies in gravity-only simulations during a post-processing step requires 
understanding how to link Dark Matter (DM) haloes with the corresponding galaxies they 
may host. The most important property for linking DM haloes with galaxies is their mass. 
However, mass alone is insufcient for accurately matching host haloes with galaxies. It’s 
necessary to consider additional properties related to the internal structure of DM haloes. 
Navarro et al. (1996, 1997) pointed out that, along with halo mass, halo concentration 
is sufcient to model the internal mass distribution of haloes. Understanding how halo 
concentration varies with mass, redshift, and cosmology is essential for describing matter 
distribution at small scales and for correctly linking galaxies with haloes. 

Finally, the last problem I want to discuss is that, despite the current efciency achieved by 
gravity-only simulations, they remain signifcantly expensive to execute, requiring millions 
of CPU hours for covering large volumes with sufcient mass resolution. One of the most 
substantial advancements in computational science over the last decade is related to the 
development of artifcial intelligence and machine learning techniques. These methods have 
signifcantly impacted cosmology lately, ofering fast and accurate emulation of various 
processes. Recent works have employed machine learning to accelerate calculations (He 
et al., 2019; Giusarma et al., 2019; Alves de Oliveira et al., 2020; Wu et al., 2021; Jamieson 
et al., 2022), perform likelihood-free inference (Hahn et al., 2023), and use machine learning 
frameworks as a tool for interpreting halo properties (Lucie-Smith et al., 2018, 2019, 2020; 
Chacón et al., 2022; Betts et al., 2023). 

0.6 About this thesis 

This thesis explores the connection between theoretical cosmological models and 
Large-Scale Structure (LSS) observations through the use of cosmological simulations. 
These simulations model the Universe’s structure formation processes and the large-scale 
distribution of galaxies. Enhancing the speed and reliability of cosmological simulations is 
crucial for bridging galaxy observations with the theoretical modelling side. 

As of September 2020 (when I started my doctoral studies), a number observational 
LSS campaigns have concluded, unveiling tensions between early Universe probes and late 
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Universe observations, particularly regarding the σ8 and H0 parameters (see Verde et al., 
2019, for a review). The upcoming survey campaigns at the time (such Euclid and DESI, 
both currently operational) had amplifed the community’s interest in advancing cosmological 
simulation techniques for analyzing and interpreting the anticipated infux of high-quality 
observations of millions of galaxies. Next, I categorize some of the main challenges for 
enhancing cosmological simulations; I will mainly focus on aspects that have been particularly 
relevant for my work: 

• Improving the modelization of structure formation processes: From the developement 
of the frst cosmological simulation codes more than twenty years have passed. During 
this time both the efciency and accuracy of these codes has signifcantly improved. 
Alongside, the development of analytical models that link the initial conditions with 
the fnal halo properties has helped to speed up prediction tasks. 

• Improving our understanding of baryonic processes: Another big challenge for 
performing realistic simulations is the necessity of including baryonic process to 
accurately reproduce galaxy formation processes. There currently exist several 
approaches (some of them mentioned in section 0.5), each of with certain advantages 
and limitations that try to balance the accuracy of the predictions with the computational 
cost required to execute them. 

• Accelerating simulations: Originally, paralelization techniques helped to improve 
greatly the speed of simulations. Over the last years, machine learning algorithms 
and GPU acceleration have transformed the feld of cosmological simulations reducing 
signifcantly the computational time required to make predictions using emulators and 
other techniques. 

My work during the Ph.D. has focused on these three aspects, contributing to the 
development of next-generation cosmological simulators from multiple angles. These 
advancements aim to provide a more accurate description of the Universe’s matter distribution 
and observed galaxy populations. This thesis compiles three papers that have already 
being published in specialized scientifc jounals. I have adapted these articles into separate 
self-contained chapters that constitute the main body of this work. Here I summarize the 
contents of each chapter and contextualize the problem each one focuses on. 

• Chapter 1 is based on the article titled "UNITSIM-Galaxies: data release and clustering 
of emission-line galaxies" (Knebe et al., 2022). This article is currently published 
in the journal Monthly Notices of the Royal Astronomical Society (MNRAS) and 
can currently be accessed through the following link . This work describes how 
is it possible to develop a mock galaxy catalog to simulate the expected galaxy 
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distribution observed by the Euclid mission. By employing gravity-only simulations 
and a semi-analytical model, we generate a galaxy mock catalog and post-process it to 
predict the expected Hα fux for galaxies detected by the Euclid survey. My contribution 
to this article, in which I appear as second author, has been crucial. I have played a 
key role developing the codes and methods necessary for generating, analyzing and 
interpreting the results presented here. 

• Chapter 2 compiles the paper "The cosmology dependence of the 
concentration-mass-redshift relation" (López-Cano et al., 2022). This article is 
currently published in the journal Monthly Notices of the Royal Astronomical Society 
(MNRAS) and can currently be accessed through the following link . The focus of 
this article is to investigate the concentration of halos, a parameter that determines their 
internal structure. This chapter explains how is it possible to model the cosmology 
dependence of the concentration parameter combining the Exceursion Set Theory 
formalism with a relation empirically derived from multiple gravity only simulations. 

• Chapter 3 describes the work "Characterizing Structure Formation through Instance 
Segmentation" (López-Cano et al., 2023). This article is currently published in the 
journal Astronomy & Astrophysics (A&A) and can currently be accessed through the 
following link . It showcases machine learning’s ability to identify features in the 
initial conditions that lead to the formation of dark matter haloes. This work illustrates 
the potential of machine learning techniques to describe structure formation processes. 

• The conclusion section 3 provides a summary of my contributions, their signifcance 
in cosmology, and their potential impact on future research. 
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Chapter 1 

UNITSIM-Galaxies: data release and 
clustering of emission-line galaxies 
New surveys such as ESA’s Euclid mission are planned to map with unprecedented precision 

the large-scale structure of the Universe by measuring the 3D positions of tens of millions 
of galaxies. It is necessary to develop theoretically modelled galaxy catalogues to estimate 
the expected performance and to optimise the analysis strategy of these surveys. We 
populate two pairs of (1h−1Gpc)3 volume dark-matter-only simulations from the UNIT 
project with galaxies using the SAGE semi-analytic model of galaxy formation, coupled to 
the photoionisation model get_emlines to estimate their Hα emission. These catalogues 
represent a unique suite that includes galaxy formation physics and – thanks to the fxed-pair 
technique used – an efective volume of ∼ (5h−1Gpc)3, which is several times larger than 
the Euclid survey. We present the performance of these data and create fve additional 
emission-line galaxy (ELG) catalogues by applying a dust attenuation model as well as 
adjusting the fux threshold as a function of redshift in order to reproduce Euclid-forecast 
dN/dz values. As a frst application, we study the abundance and clustering of those model 
Hα ELGs: for scales greater than ∼ 5h−1Mpc, we fnd a scale-independent bias with a value 
of b ∼ 1 at redshift z ∼ 0.5, that can increase nearly linearly to b ∼ 4 at z ∼ 2, depending 
on the ELG catalogue. Model galaxy properties, including their emission-line fuxes (with 
and without dust extinction) are publicly available. 

1.1 Introduction 

During the last few decades, numerous projects have been aimed at creating large 
cartographic maps of galaxies, such as 2dFGRS (Cole et al., 2005), SDSS (Alam et al., 
2017a; Eisenstein et al., 2005), WiggleZ (Drinkwater et al., 2010; Parkinson et al., 2012), 
BOSS (Dawson et al., 2013; Alam et al., 2017b), eBOSS (Dawson et al., 2016; Alam et al., 
2021a) or DES (The Dark Energy Survey Collaboration, 2005; Abbott et al., 2018). They 
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have been carried out with the objective of trying to better understand the large-scale structure 
of the Universe, to estimate the diferent parameters that regulate the formation of structures, 
to determine the expansion history of the Universe, to study how galaxies form, to reconstruct 
their star formation histories, and to impose constraints upon diferent models that currently 
exist for dark energy and for alternative theories of gravity. While advances have certainly 
been made, all these grand topics remain open areas of investigation, and likely will for years 
to come. 

New surveys such as Euclid (Laureijs et al., 2011; Amendola et al., 2013), the Nancy 
Grace Roman Space Telescope (Spergel et al., 2013, 2015), the Dark Energy Spectroscopic 
Instrument (DESI, Collaboration et al., 2016), and the 4-metre Multi-Object Spectroscopic 
Telescope (4MOST, de Jong et al., 2012) are planned to map with unprecedented precision 
the large-scale structure of the Universe by measuring the 3D positions of tens of millions 
of galaxies. These missions are expected to start operating in the coming years, providing 
the scientifc community with wider, deeper, and more accurate data, which may be used to 
impose stronger constraints upon theoretical models and to provide more accurate estimates 
for some of the aforementioned parameters relevant in cosmology. Some of these forthcoming 
missions (e.g., Euclid) will focus on conducting spectroscopic surveys of galaxies using 
near-infrared grisms in order to determine the positions of galaxies by observing their 
emission lines such as Hα. The wavelength of the observed emission lines will serve 
to determine the redshifts of the detected objects. Such observations have already been 
undertaken in the past. There are, for instance, the High-z Emission Line Survey (HiZELS, 
Geach et al., 2008) and the Wide Field Camera 3 Infrared Spectroscopic Parallels survey 
(WISP, Atek et al., 2010). The WISP survey, for instance, has been used by Colbert et al. 
(2013) to measure the number density evolution of Hα emitters; Sobral et al. (2016) employed 
the HiZELS data (and additional follow-up observations) to quantify the evolution of the Hα 
luminosity function. But all previous eforts lack the volumes to be probed by future missions. 

Observational campaigns need to be complemented by cosmological simulations: a 
cornerstone of large-scale structure analysis. Cosmological simulations inform and validate 
galaxy clustering models. They are also used to test and optimise diferent estimators and 
analysis pipelines, to estimate covariance matrices, and to compare with measurements from 
data. Smaller scales (i.e. below 1 Mpc) are known to contain many more Fourier modes than 
larger ones and hence constraining power. However, they are heavily afected by the physics 
of galaxy formation. Since the spatial volumes that the aforementioned surveys seek to study 
are notoriously large, it is still necessary to rely on dark-matter-only simulations in which 
galaxies are introduced in post-processing either by halo occupation distribution (HOD, e.g. 
Berlind et al., 2003, as well as the Euclid Flagship mock galaxy catalogue), (sub-)halo 
abundance matching (SHAM, e.g. Vale and Ostriker, 2004) or semi-analytic models (SAM) 
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(e.g. the MultiDark-Galaxies,1 Knebe et al., 2018b). While there are eforts to push the limits 
of ‘full physics’ hydrodynamical simulations to larger and larger volumes (e.g. Lee et al., 
2020), it still remains more feasible to match the volumes that missions like Euclid will cover 
with gravity-only simulations. 

The demand for large volumes modelled with sufciently high resolution is also the reason 
why, during the last years, alternatives to running such demanding simulations have been 
explored. For instance, the technique developed by Angulo and Pontzen (2016b) dramatically 
reduces the variance arising from the sparse sampling of wavemodes in cosmological 
simulations. The method uses two simulations that are ‘fxed’ and ‘paired’, i.e. the initial 
Fourier mode amplitudes are fxed to the ensemble average power spectrum and their phases 
are shifted by π. This approach has been adopted by the UNIT collaboration2 (Chuang et al., 
2019) where it has been shown that the efective volume of such fxed-and-paired simulations 
can be several times larger than the actual volume simulated: in Chuang et al. (2019) we have 
shown that the original four (1h−1Gpc)3 simulations correspond to a total efective volume 
of ca. (5h−1Gpc)3, i.e. ∼ 7 times of the survey volume of Euclid or DESI. We use the 
same two pairs of simulations for our study here. Our simulations include the large scales 
with an accuracy greater than expected by these surveys, and here we have populated them 
with galaxies using a semi-analytical model that includes all the relevant physical processes 
for galaxy formation. In terms of galaxy clustering statistics, each pair can be as precise 
on (non-)linear scales as an average over approximately 150 traditional simulations. They 
therefore are suitable to statistically study matter–galaxy interplay and galaxy clustering 
alongside its bias. 

In this work we present and use galaxy catalogues for simulations that were generated 
by applying the SAGE semi-analytic model (Croton et al., 2016) to the aforementioned 
gravity-only UNIT simulations. These SAGE galaxies have then been processed with the 
get_emlines code (Orsi et al., 2014) in order to obtain emission-line galaxies (ELGs). 
Using the resulting ELG catalogues, we study the predicted number density evolution of Hα 
emitters and compare it to other theoretical models as well as observational data. We also 
generate additional ELG catalogues by imposing certain fux threshold and/or even apply a 
dust attenuation model. All catalogues are used to study the clustering of our Hα galaxies 
and their linear bias with respect to the dark matter feld, a quantity frst studied by Kaiser 
(1984) for Abell clusters and developed in theoretical detail by Bardeen et al. (1986). The 
bias is a key parameter and a result of not only halo formation but also the varied physics of 
galaxy formation that can cause the spatial distribution of baryons to difer from that of dark 
matter. The bias connects the observed statistics to theoretical predictions and has recently 

1Galaxy catalogues based upon three distinct SAMs can be downloaded from CosmoSim. 
2http://www.unitsims.org 
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been the target of many theoretical studies in light of ELGs (e.g. Geach et al., 2012; Cochrane 
et al., 2017; Merson et al., 2019; Tutusaus et al., 2020). Our results add to these and may be 
used to make forecasts for Euclid and related studies for which both the abundance and bias 
of Hα ELGs is an input. 

There already exist previous works based upon the UNIT simulations and the modelling 
of ELGs in them (Zhai et al., 2021, 2019). However, the important diference to our work is 
that in those papers only one of the UNIT simulations has been used, as opposed to all four 
here. Further, Zhai et al. applied a completely diferent modelling for the ELGs, namely the 
Galacticus semi-analytic model (Benson, 2012), coupled to the CLOUDY photoionisation 
code (Ferland et al., 2013) for the calculation of emission line properties. Further, their dust 
model was tuned as a function of redshift to match observations of the Hα luminosity function 
in the redshift range z ∈ [0.8, 2.3]. And while Zhai et al. also studied galaxy clustering in 
the later work, they have not investigated the bias. Our work therefore extends those previous 
studies and should be viewed as complementary. We further have made our galaxy catalogues 
publicly available. 

The structure of this article is as follows. In Section 1.2 the methods used to generate 
the ELG catalogues are presented, namely the N -body UNIT simulations (Section 1.2.1), the 
SAGE semi-analytic model (Section 1.2.2) and the emission-line modelling (Section 1.2.3). 
Next, in Section 1.3, we present a series of fgures to validate the galaxy catalogues generated 
by SAGE by comparing key properties with observational results. Then in Section 1.4 we 
examine the validity of the modelling for the emission lines of the galaxies. Afterwards, 
in Section 1.5, the results obtained by studying the two-point correlation function and the 
bias obtained for the ELGs in the Euclid range of redshifts will be presented. Finally, in 
Section 1.6, the conclusions derived from this work will be outlined. 

1.2 The Methods 

1.2.1 The UNIT Simulations 

As a basis for this work, four gravity-only simulations that have been developed within the 
UNIT project have been employed. The names for the two pairs of simulations that we use 
throughout this work are UNITSIM1 (U1), UNITSIM1-Inverted Phase (U1IP), UNITSIM2 
(U2), and UNITSIM2-Inverted Phase (U2IP). The procedure followed for generating these 
simulations as well as an analysis of the resulting correlation properties is discussed in Chuang 
et al. (2019). For this particular study we have used the two pairs of simulations in which 
the code Gadget (Springel et al., 2001b) has been used to study the behavior of a total of 
40963 particles in a volume of 1h−3Gpc3 per simulation, thus obtaining a mass resolution of 
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1.2 × 109h−1M⊙ per simulation particle. 

In Chuang et al. (2019) it is also explained how the Rockstar halo catalogues 
and the corresponding ConsistentTrees merger trees have been generated for each 
of the gravity-only simulations using the publicly available codes from Behroozi et al. 
(2012). All the data corresponding to the UNIT simulations are publicly available at 
http://www.unitsims.org. By making the galaxy catalogues and their emission-line 
properties available too, this work further adds to the community. 

1.2.2 Semi-analytic galaxy modelling via SAGE 

SAGE (Semi-Analytic Galaxy Evolution, Croton et al., 2016) is a modular, publicly 
available3 semi-analytic model of galaxy formation, branched from the Munich family 
of models (specifcally from Croton et al., 2006). Haloes (in this case, from the UNIT 
simulations) are initially seeded with ‘hot’ gas based on the cosmic baryon fraction (modulo 
a reionization factor at higher redshift and in low-mass haloes). Cooling/accretion of this gas 
onto the central galaxy is based on the two-mode (hot and cold) model of White and Frenk 
(1991). Star formation in the disc occurs once the gas is above a critical average surface density 
(see Kennicutt, 1989; Kaufmann, 1996). Metals are immediately injected and gas recycled 
into the inter-stellar medium (ISM), where a constant mass-loading factor is also applied to 
reheat gas out of the disc, some of which will end up in an ejected component if the energy 
budget allows it. A parametrized fraction of the ejected gas (connected to the virial velocity) 
is reincorporated into the halo on a dynamical time-scale. Satellite galaxies are tracked in the 
merger trees until merged or unresolved. Once their subhaloes become unresolved, satellites 
are either disrupted (where their baryons are placed in intracluster reservoirs) or immediately 
merged with the central, dependent on how long they survived as a satellite. SAGE, therefore, 
does not have orphan galaxies. Mergers and disc instabilities trigger starbursts, drive stars into 
the bulge, and cause gas to be accreted onto the central black hole. This triggers quasar-mode 
active galactic nuclei (AGN) feedback, which reheats gas from the disc. When galaxies 
have sufciently (super)massive black holes, cooling is also suppressed by radio-mode AGN 
activity (both past and present), modelled by a phenomenological ‘heating’ radius that can 
only grow with time, within which gas cannot cool. 

This is the same SAGE model that was also applied to the MultiDark simulation MDPL2 
(Knebe et al., 2018b). The model was calibrated for that simulation by ftting visually 
frst the z = 0 stellar mass function (Baldry et al., 2008), and secondarily using the stellar 
metallicity–mass relation (Tremonti et al., 2004), baryonic Tully–Fisher relation (Stark et al., 

3https://github.com/darrencroton/sage 
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2009), black hole–bulge mass relation (Scott et al., 2013), and cosmic star formation rate 
density (Somerville et al., 2001). The model has not been re-calibrated here as both the 
UNIT and MDPL2 simulations were run with the same cosmological parameters (Planck 
Collaboration et al., 2015) and have the same box size. However, the mass resolution is 
marginally better for UNITSIM, due to the 20 per cent larger number of particles. For the 
general performance of the SAGE model we refer the reader to the results presented in Knebe 
et al. (2018b), as the calibration plots change minimally when going from MPDL2 to UNIT 
(see also Fig. 1.1, in this paper). The calibration does not include constraints for emission-line 
galaxies. 

For a more detailed description of the model we refer the reader to Croton et al. (2016) 
and section 2.4 of Knebe et al. (2018b). 

1.2.3 Emission-line galaxy modelling 

Once we have populated the dark matter haloes from the UNIT simulations with the 
semi-analytic galaxies generated by SAGE we obtain values for the intensity of the most 
relevant emission lines such as Hα, [OIII]4959, [OIII]5007, [NII]6548 and [NII]6584 for 
each of the model galaxies. In this study we focus on the Hα line – with a particular focus 
on the Euclid mission. The other emission lines are left for future work. 

get_emlines code. In order to reproduce the intensity of Hα emission lines of our 
galaxies, we have used the method presented in Orsi et al. (2014), i.e. the publicly available 
get_emlines code.4 This code is based on the algorithm MAPPINGS-III described in Groves 
et al. (2004) and Allen et al. (2008), which relates the ionization parameter of gas in galaxies, 
q, to their cold-gas metallicity Zcold as: � �−γ

Zcold 
q(Z) = q0 , (1.1)

Z0 

where q0 is the ionisation parameter of a galaxy that has cold gas metallicity Z0 and γ is 
the exponent of the power law. We adpoted the suggested values of q0 = 2.8 × 107 cm s−1 

and γ = 1.3, which were found to yield Hα luminosities for star-forming galaxies in good 
agreement with observations (Orsi et al., 2014). Cold gas metallicity is defned as the ratio 
between the cold gas mass in metals to the total cold-gas mass: 

MZ,cold
Zcold = . (1.2)

Mcold 

The other relevant component is the star formation rate (SFR).5 Note that SAGE provides 
this quantity averaged over the previous time-step in the merger trees, despite this interval 

4https://github.com/aaorsi/get_emlines 
5Total SFR in SAGE is the sum of the SfrDisk and SfrBulge felds. 
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being broken into sub-time-steps in the code. But the model ideally requires as inputs the 
instantaneous SFR and cold gas metallicity of galaxies. However, Favole et al. (2020) have 
shown that for galaxies that are not too bright the diferences are negligible. To be able to 
properly compare our results to observations, we convert the luminosities to fuxes and also 
apply a dust extinction to the luminosities of the model galaxies. 

Please note that when applying the get_emlines code to the SAGE catalogues,6 we 
rejected all galaxies with a star formation rate equal to zero. One might be inclined to 
therefore claim that our emission-line galaxies are ‘star-forming galaxies’, but usually a 
threshold on the specifc star formation of order 0.01/Gyr (and hence clearly larger than 0) 
is assumed to separate ‘passive’ and ‘star-forming’ galaxies. Therefore, our ELGs are based 
upon SAGE galaxies that do form stars, but also include ‘passive’ galaxies in the conventional 
sense. 

Dust extinction. We use here a Cardelli extinction law implemented following Favole et al. 
(2020)7, but we also summarize it here. The attenuation from interstellar dust is added to the 
intrinsic Hα luminosity using: 

L(λj )
att = L(λj )

intr10−0.4Aλ(τ z ,θ)λ , (1.3) 

where the attenuation coefcient, as a function of the galaxy optical depth τλz and the dust 
scattering angle θ, is defned as (Osterbrock, 1989; Draine, 2003; Izquierdo-Villalba et al., 
2019; Favole et al., 2020): 

1 − exp(−aλ sec θ)
Aλ(τλ

z, θ) = −2.5 log10 . (1.4) 
aλ sec θ 

In Eq. (1.4), aλ = 
√ 
1 − ωλτλ

z, and ωλ is the dust albedo. We assume cos θ = 0.30 and 
ωλ = 0.56, meaning that the scattering is not isotropic but forward-oriented, and about 60 
per cent of the extinction is caused by scattering. 

The galaxy optical depth is defned as (Hatton et al., 2003; De Lucia and Blaizot, 2007): � � � �1.6 � � 
Aλ Zcold ⟨NH ⟩ 

τ z = , (1.5)−2λ AV Z⊙ 
Z⊙ 2.1 × 1021atoms cm 

in terms of the cold gas metallicity Zcold defned in Eq. (1.2) and the extinction curve for 
solar metallicity: Z⊙ = 0.0134 (Asplund et al., 2009). We assume the Cardelli et al. (1989) 
extinction law: � � 

Aλ 
= a(x) + b(x)/RV , (1.6)

AV 

6We are using the plural here when referring to the catalogues as we will always have at our disposal the 
four catalogues coming from the two pairs of UNIT simulations. 

7https://github.com/gfavole/dust 
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where x ≡ λ−1 , RV ≡ AV /E(B − V ) = 3.1 is the ratio of total to selective extinction for 
the difuse interstellar medium in the Milky Way, and 

a(x) =1 + 0.17699 y − 0.50447 y 2 − 0.02427 y 3+ 

0.72085 y 4 + 0.01979 y 5 − 0.77530 y 6 + 0.32999 y 7 , 
(1.7) 

b(x) =1.41338 y + 2.28305 y 2 + 1.07233 y 3 − 5.38434 y 4 

− 0.62251 y 5 + 5.30260 y 6 − 2.09002 y 7 , 

with y = (x − 1.82). The quantity ⟨NH ⟩ in Eq. (1.5) is the mean hydrogen column density 
defned as (Hatton et al., 2003; De Lucia and Blaizot, 2007): 

Mdisc 
cold −2⟨NH ⟩ = atoms cm , (1.8)

π (1.68Rdisc1.4 mp 1/2 )
2 

where Mcold
disc is the cold-gas mass of the disc, mp = 1.67 × 10−27 kg is the proton mass, and 

Rdisc is the half-mass radius of the disc. 1/2 

We caution that emission lines are expected to be more attenuated than the continuum, 
e.g. De Barros et al. (2016), which is the model used here. 

1.3 The SAGE galaxies 

The aim of this section is to validate how well our theoretically modelled SAGE galaxies 
perform with respect to the quantities that enter into the calculation of the emission-line 
properties. This involves a) stellar mass, b) star formation rates, c) metallicities, and d) 
disc lengths. We will further focus on redshifts in the range z ∈ [1, 2] and compare to 
observational data where possible. For comparisons of other properties to observations and 
the calibration plots, respectively, we refer the reader to Knebe et al. (2018b) where SAGE has 
been applied to the MultiDark simulation MDPL2. Note that in this Section we are using the 
complete SAGE galaxy catalogue, not restricting any results to ELGs. However, we provide 
in the Appendix all the corresponding plots for our model ELGs. 

1.3.1 Stellar Mass Function 

The stellar mass function (SMF) is one of the most signifcant properties that can 
be inferred from galaxy surveys since this function represents the number of galaxies in 
stellar-mass bins, normalized to the volume of the survey/simulation and to the bin width. Its 
simplicity yet fundamental importance resides in the fact that the SMF is often employed for 
calibrating semi-analytic models such as SAGE used here. 

In the main panel of Fig. 1.1 the results obtained for the SMF computed from the SAGE 
galaxies modelled over the UNITSIM1 simulation are presented for three diferent redshifts 
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z = [0.0, 1.710, 2.695]. Together with the results obtained from our simulation, a series 
of observational results obtained for a range of redshifts similar to those simulated are also 
represented in the same fgure. The compilation for redshift z = 0 is taken from the so-called 
‘CARNage calibration’ data set described in great detail in section 3.3 and appendix A of 
Knebe et al. (2018a)8. The observations for the higher redshifts are taken from Davidzon 
et al. (2017) and are based on the UltraVISTA near-infrared survey of the COSMOS feld. 
In the bottom panel of Fig. 1.1 the variation in SMF between UNITSIM1 and the three other 
UNIT simulations is shown, i.e. the y-axis represents9 

SMF(Ui)
δ(Ui, Uj ) = − 1, (1.9)

SMF(Uj ) 

where Ui refers to the one of our four UNIT simulations (and Uj to another, diferent one). 

For all the simulations conducted, the results produced for the SMF qualitatively follow 
the observational trends. This outcome is in line with previous results such as those presented 
in Favole et al. (2020) and Asquith et al. (2018). The results obtained at redshift z = 0 agree 
almost seamlessly with the observational data. This is readily explained by the fact that 
the SAGE model was pre-calibrated to very similar data. When studying the behavior at 
higher redshifts (which is a prediction of the model) certain discrepancies start to show up. 
For stellar masses below 1011h−1M⊙ the SMF calculated for the SAGE galaxies exceeds the 
observational points, while the opposite is true for masses higher than 1011h−1M⊙. This is 
related to the condition that getting both the SMF at z = 0 and the cosmic star-formation 
history to simultaneously agree with the observations demands that stars that should have 
been formed in haloes below this simulation’s resolution limit must instead be formed as 
extra stars in the haloes that are resolved. This inevitably leads to resolved high-z galaxies 
having too much stellar mass (and star-formation rates that are too high) in the model. It also 
changes how galaxies acquire stellar mass through mergers (as fewer mergers are resolved), 
which might help explain why there are too few galaxies with M∗ > 1011h−1M⊙ at higher z 
in the model. Additionally, the deviations observed here for high redshifts – especially at the 
low-mass end – are similarly found when studying the SMF produced by other semi-analytic 
models, as extensively discussed in Asquith et al. (2018). Our explanation is hence generic 
and not only applies to SAGE. Therefore, despite the discrepancies seen in Fig. 1.1, the results 
obtained are reasonably accurate for us to say that the modelled SAGE galaxies fairly depict 
the behaviour of the SMF that could be expected in the redshift range for which Euclid is 
planned to operate. 

8The ‘CARNage calibration’ set is available for download from http://popia.ft.uam.es/public/ 
CARNageSet.zip. 

9Note that we use the same strategy for presenting the variations across the four UNIT simulations in 
practically all plots. 
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Figure 1.1: Stellar mass function. In the upper panel we compare the results for the modelled galaxies 
at various redshifts (solid lines) to observational data (points with error bars). The lower panel shows 
the fractional diference of U1 to the other UNIT simulations. Note that the z = 0 SMF has been used 
to calibrate the SAGE model whereas the results for higher redshift are a prediction of the model. 

Another important aspect worth mentioning in this section is that due to resolution 
limitations in our simulations, galaxies whose stellar mass is lower than 109h−1M⊙ have not 
been considered. Please refer to Knebe et al. (2018a,b) for a justifcation of this threshold, but 
we can also see in Fig. 1.1 how the number of galaxies starts to decline for stellar masses below 
that threshold due to numerical limitations. Therefore, to produce the results presented in the 
following sections we will discard all those galaxies whose mass is inferior to this threshold. 
This is not a cause for concern in this work though, as the vast majority of relevant ELGs 
have stellar masses above this threshold (see Appendix B). 

1.3.2 Star Formation 

With respect to the star formation (SF) in galaxies, which is also used as an input to 
the get_emlines code, we only present the relation between specifc star formation (i.e. 
SF per unit stellar mass) and stellar mass at redshift z ∼ 2. We fnd that SAGE makes a 
prediction for this relation that is in excellent agreement with the observations of Daddi et al. 
(2007): in the main panel of Fig. 1.2 the specifc SF rate (sSFR) of U1-SAGE galaxies is 
plotted against the stellar mass M∗ for redshift z = 2.028. We show both the contours of 
a 2D histogram of this scatter plot as well as the median of the values obtained for sSFR 
within a series of bins along the x-axis. As is customary, in the bottom panel of the Fig. 1.2 
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the variations between simulations with respect to the other UNITSIM-SAGE galaxies have 
been represented. When comparing our results to observational data extracted from Daddi 
et al. (2007), we fnd sufcient agreement, at least within the 1σ regions. Though not 
explicitly shown here, we also confrm that our SAGE results are in excellent agreement with 
observational data for the sSFR (as provided by Elbaz et al., 2011) as a function of stellar 
mass at redshift z = 0. These results, in turn, are also compatible to those shown in Favole 
et al. (2020) for redshift z = 0.1. 

For a comparison of the star formation rate (SFR) function to observational data at redshift 
z = 0.14 and the redshift evolution of the cosmic star formation rate density, we refer the 
reader to Knebe et al. (2018b). While the SFR function is compatible with the observational 
data at low redshift – as seen for the MultiDark galaxies and also confrmed for the UNITSIM 
galaxies (though not explicitly presented here) – it is worth mentioning that for SFR values 
greater than ∼ 101.6h−1M⊙/yr, the number of galaxies generated with SAGE seems to 
underestimate the observed number (see fg. 2 in Knebe et al., 2018b). As we will see later in 
Section 1.4.2 this is going to leave an imprint on the abundance of (dust-attenuated) ELGs, 
especially at high redshifts. We fnally like to remark again that the relation between sSFR 
and stellar mass as shown here is a prediction of the SAGE model. 

Based on these results, we can say that our galaxies sufciently reproduce the behaviour 
of the sSFR that would be expected for a sample of real galaxies in Euclid’s operating range 
of redshifts. 

1.3.3 The mass–metallicity relation 

Another aspect of galaxies to be considered for the emission-line modelling is the chemical 
composition, since – depending on the fraction of metals that a galaxy may contain – its SFR 
may be substantially modifed due to the fact that a higher metal content favours cooling 
mechanisms. This property is explicitly taken into account by the get_emlines code and has 
to be provided as an input, respectively. 

Since SF is regulated by the collapse of cold gas clouds, in Fig. 1.3 we study the relation 
that exists between the total mass of metals contained in such clouds and the total mass of 
cold gas in a given galaxy throughout the parameter Z which is calculated as (Favole et al., 
2020; Knebe et al., 2018b): 

Z = 8.69 + log10(Zcold) − log10(Z⊙) (1.10) 

where Zcold was previously defned in Eq. (1.2), and we use the same Z⊙ = 0.0134 as already 
in Eq. (1.5). Note that this quantity Z is meant to be a proxy for 12 + log(O/H). 

In the main panel of Fig. 1.3 we show the correlation between Z and stellar mass as 
contours alongside the median (solid blue line) for redshift z ∼ 1. The lower panel shows 
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relation. This relation is a prediction of the SAGE model. 
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line). 
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again the fractional diference with respect to to the other UNITSIM model. The relation is 
as expected, i.e. larger mass galaxies have larger metallicities, with a strength comparable to 
the one observed for lower redshifts. This relation – as observed at redhift ∼ 0.1 – is used 
during the calibration of the SAGE model; its extension to z ∼ 1 shown here nevertheless 
is a clear prediction. We also show the relation as expected from observations by using 
the best-ft function presented in Bellstedt et al. (2021, eq. 6). This ftting function was 
obtained by applying the spectral-energy-distribution-ftting code ProSpect to galaxies from 
the Galaxy and Mass Assembly (GAMA) survey at z < 0.06; comparing with observations 
of gas-phase metallicity over a large range of redshifts, they then showed that their best-ft 
evolving mass–metallicity relationship is consistent with observations at all epochs and 
hence used here by us at redshift z ∼ 1. We only show the Bellstedt et al. function 
out to M∗ = 1011h−1M⊙ which was their limit for obtaining the best-ft parameters. The 
predictions of the SAGE model are in fair agreement with the Bellstedt et al. function. If one 
were to extrapolate the Bellstedt results, we would fnd a defcit of cold gas metallicity for the 
highest mass galaxies with M∗ > 1011h−1M⊙. Even though there is no observational data 
in that regime, one possible explanation could be that the cold gas in those galaxies comes 
from mergers rather than accretion/cooling. I.e. AGN feedback might have shut of cooling 
entirely, so enriched gas in the circumgalactic medium will not get back to the inter-stellar 
medium. Instead, we might just be seeing the low-metallicity gas from now-cannibalised 
low-mass galaxies dominating most of the cold gas in the galaxy. But it yet remains unclear 
if the the drop in metallicity predicted for SAGE galaxies at M∗ = 1011h−1M⊙ will also be 
seen in observations. While the redshift z ∼ 1 is relevant for the Euclid mission, it also 
appears to be important to verify the mass-metallicity relation for even higher redshifts as 
it plays an important role in the estimation of emission lines. The Bellstedt et al. (2021) 
function can also be used to obtain results at, for instance, z = 2. There also exists a best-ft 
relation derived from actual observations at z = 2.2 (Maiolino et al., 2008, eq. 2 together 
with table 5). We refrain from showing the corresponding plot here, but confrm that our 
SAGE galaxies reproduce those two observations equally well as seen here for z = 1. 

1.3.4 The disc size–mass relation 

The last relevant quantity to validate for our SAGE galaxies is the size of the disc. 
While it is not important for get_emlines it nevertheless enters into our dust attenuation 
model via Eq. (1.8). We therefore show in Fig. 1.4 the correlation of the efective disc 
radius (i.e. exponential scale radius, as calculated by SAGE) with stellar mass at redshift 
z = 1.22. For comparison we use the best-ft relation as reported by Yang et al. (2021, 
eq. 1) for late-type galaxies at redshift z = 1.25 and as derived from the complete 
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Hubble Frontier Fields data set. While the agreement is very good for higher mass 
galaxies, the disc sizes predicted by SAGE for galaxies with mass M∗ < 1010h−1M⊙ are 
systematically larger than the observed ones. However, this does not signifcantly afect our 
results here as our ELGs preferentially have stellar masses M∗ > 1010.5h−1M⊙ (see Fig. B.2). 

Given all the results presented throughout this particular section, with the majority even 
being predictions of the SAGE model, we are confdent that our UNITSIM-SAGE galaxies 
meet all the requirements to be used for the emission-line modelling, which is discussed in 
great detail in the following section. 

1.4 SAGE’s Emission-Line Galaxies (ELGs) 

The results presented in the previous section indicate that our SAGE model galaxies are 
in sufcient agreement with a range of observations, in particular those properties that are 
used as an input for the model that calculates spectral emission lines. Here we now focus 
on the ELGs and contrast additional properties with a set of observations.10 To this extent, 
we start with generating two distinct ELG catalogues, constructed from the full list of SAGE 
galaxies: one set will be obtained by simply applying the get_emlines code (RawELGs) 
and another one by additionally modelling dust extinction (DustELGs). These value-added 
properties are included in the publicly available catalogues. However, in order to compare 
to existing observations and to make predictions for Euclid, we apply a redshift-independent 
fux cut of Fcut = 2 × 10−16 erg s−1 cm−2, which corresponds to the limit of the Euclid 
satellite. 

1.4.1 The luminosity function of Hα-ELGs 

We start with comparing the Hα luminosity functions (LFs) – as obtained by get_emlines 
– at various redshifts of interest to observational data. The results can be viewed in Fig. 1.5 
for the two base catalogues RawELGs and DustELGs at z = 0.49, 0.987, 1.48, and 2.23. For 
the frst two redshifts we contrast our theoretical LFs to observations as found in Colbert 
et al. (2013). The data are taken from their table 3, where we removed again the [NII] 
contamination; as the data have not been corrected for dust extinction, they are best compared 
against our DustELGs. For the latter two redshifts, the observations from Sobral et al. (2016) 
are used. We used the data as provided in their table 4, noting that here they corrected 
for dust extinction, and hence those curves should be compared against our RawELGs. We 
actually fnd that our ELGs match the observations fairly well, though there are some obvious 

10The same validation plots as shown in Section 1.3 for the SAGE galaxies can be found for the ELGs in 
Appendix B. 
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Figure 1.4: Efective disc radius as a function of stellar mass (contours and blue solid line with 1σ 
error region). This is a prediction of the SAGE model. We also show the relation as reported for 
late-type galaxies in Yang et al. (2021) at z = 1.25 (dashed line). 

Figure 1.5: Evolution of the Hα luminosity function for our RawELGs (blue) and DustELGs catalogues 
(orange) ELGs in comparison to observational data: the Colbert et al. (2013) data (red points) are best 
compared to DustELGs whereas the Sobral et al. (2016) data (blue crosses) to RawELGs (see main 
text for details). Redshifts are (clockwise starting in the upper left panel) z = 0.490, 0.987, 1.480, 
and 2.018. 
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discrepancies at redshift z ∼ 1: both DustELGs and even RawELGs do not provide enough 
high-luminosity ELGs. This eventually translates into a too-low (integrated) abundance, as 
we will see below. But we are not too concerned about that as the relevant redshift range for 
Euclid is z ∈ [0.9, 1.8], and the match of our RawELGs galaxies with the Sobral et al. (2016) 
observations is rather good for z ∼ 1.5, i.e. the centre of that interval. 

In the Introduction we mentioned that Zhai et al. (2019) also model Hα ELGs using 
the Galacticus SAM coupled to the single UNITSIM1 simulation. But their catalogue 
was constructed such that the SAM parameters were tuned to best reproduce – amongst other 
properties – the Hα LFs, and in particular the observed ones shown here for redshifts z = 1.48 
and 2.23 (see their fg. 1). They accomplish this by – in practice – adjusting Aλ(τλ

z, θ) (as 
also found in our Eq. (1.3)) as a free parameter, tuning it until they match the observed Hα 
LF at a given redshift. Our value for Aλ(τλ

z, θ) is based upon physical properties of the 
underlying galaxies whose values change as a function of redshift (leading to an implicit 
redshift dependence of our dust model). Meaning, we actually use a physically motivated Aλ 

and hence the LFs seen here are a clear prediction of our modelling. 

1.4.2 Abundance evolution of fux-selected Hα-ELGs 

We show in Fig. 1.6 the redshift evolution of the number density for our RawELGs and 
DustELGs catalogues, after applying the redshift-independent fux cut of Fcut = 2×10−16 erg 
s−1 cm−2, in comparison to observational data from Colbert et al. (2013) and Bagley et al. 
(2020). We also show two of the three models of Pozzetti et al. (2016, P16). By ftting 
to observed luminosity functions from existing Hα surveys, P16 build three distinct models 
for the Hα number density evolution. Diferent ftting methodologies, functional forms for 
the luminosity function, subsets of the empirical input data, and treatment of systematic 
errors were considered to explore the robustness of the results. Functional forms and model 
parameters were made available11 (and are being used here), along with the counts and 
redshift distributions up to z ∼ 2.5 for a range of limiting fuxes bracketing the sensitivity 
of Euclid. Their models are named ‘Pozzetti model #1, #2, and #3’, with model #1 being 
the most optimistic and model #3 the most pessimistic for Euclid.12 Both these models are 
shown here, also for a fux cut of 2 × 10−16 erg s−1 cm−2. 

We can see in Fig. 1.6 how, for z < 1, our DustELGs follow the same trends as the 
P16 models, but show a substantial lack of objects at higher redshift. By comparison, our 
RawELGs clearly overpredict the abundance of ELGs for the applied redshift-independent 

11The P16 data can be downloaded from here: http://www.bo.astro.it/~pozzetti/Halpha/Halpha. 
html 

12P16 called the models that way themselves, based upon the fact that if you have more galaxies, you reduce 
the shot-noise. Hence, Pozzetti model #1 is more optimistic for Euclid’s fgure-of-merits than #3, as we will 
have smaller error bars in the cosmological parameters. 
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Table 1.1: Average number density and fux cuts as a function of redshift z (frst column). Columns 
2–3 top table (RawELGs) and bottom table (DustELGs) list the mean and standard deviation (across 
the four UNIT simulations) of the number density of ELGs with an applied redshift-independent fux 
cut of Fcut = 2 × 10−16 erg s−1 cm−2. Columns 4–5 and 6–7 give the target number density (taken 
from table 3 in P16) and average fux cut applied to reach it (the standard deviation is smaller than the 
reported accuracy and hence left out for clarity) for RawELGs-Poz1 and RawELGs-Poz3, respectively 
(top table). The bottom table provides the same information for DustELGs-Poz1 and DustELGs-Poz3. 

z RawELGs (Fcut = 2) RawELGs-Poz1 RawELGs-Poz3 
<dN/dz> σ dN/dz <Fcut> dN/dz <Fcut> 

0.490 
0.987 
1.220 
1.321 
1.425 
1.650 
2.028 

24652 
22015 
17709 
15809 
13988 
10277 
5294 

47 
89 
94 
98 
77 
57 
38 

9946 
7353 
5097 
4281 
3447 
2253 
1006 

6.441 
4.864 
4.600 
4.452 
4.343 
3.930 
3.330 

– 
3779 
2518 
2148 
1817 
1279 
616 

– 
7.080 
6.300 
5.759 
5.353 
4.564 
3.687 

z DustELGs (Fcut = 2) DustELGs-Poz1 DustELGs-Poz3 
<dN/dz> σ dN/dz <Fcut> dN/dz <Fcut> 

0.490 
0.987 
1.220 
1.321 
1.425 
1.650 
2.028 

15262 
3238 
957 
577 
370 
153 
35 

30 
12 
7 
4 
3 
3 
1 

9946 
7353 
5097 
4281 
3447 
2253 
1006 

2.85 
1.37 
1.13 
1.05 
0.98 
0.84 
0.67 

– 
3779 
2518 
2148 
1817 
1279 
616 

– 
1.88 
1.50 
1.35 
1.22 
1.00 
0.77 
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Figure 1.6: Redshift evolution of the number density of dust-attenuated ELGs (DustELGs, orange) 
and the initial RawELGs catalogue (i.e. no dust modelling, blue), both for a redshift-independent 
fux cut at 2 × 10−16 erg s−1 cm−2, in comparison to the observational data of Colbert et al. (2013) 
and Bagley et al. (2020). We also show model #1 and #3 of Pozzetti et al. (2016) for the same fux 
threshold (not to be confused with our catalogues PozMod1 and PozMod3 that were designed to match 
these number densities). Only UNITSIM1 ELGs are shown for clarity. 

fux cut (at least for z > 0.5). A similar discrepancy between semi-analytic galaxies and the 
P16 models can also be seen in fg. 5 of P16, where their three models are compared against 
the results from two other SAMs. It should also be mentioned that a more recent study of the 
observed number density evolution of Hα ELGs indicates a possible decline beyond redshift 
z ∼ 1.4 (Bagley et al., 2020, lower right panel of their fg. 7), although it is not as pronounced 
as the dip found for our DustELGs. To highlight this we have added those data points13 

to our plot, too. While there is agreement between the observations of Bagley et al. and 
P16’s model #3 in the redshift range z ∈ [1, 1.5], the observational data drop more steeply at 
higher redshifts and are more in line with our DustELGs prediction. However, Bagley et al. 
(2020) also say that their higher redshift points are in the region were the sensitivity of their 
instrument could be degraded. 

This discrepancy between ours and the Pozzetti ELG number densities is also refected 
in Table 1.1, where we list as a function of redshift the number density of ELGs in our 

13The Bagley et al. (2020) data are based upon completeness-corrected measurements of the blended Hα 
and NII fuxes, while our fuxes include only Hα. We have therefore ‘corrected’ the Bagley et al. (2020) data 
points – as obtained with PlotDigitizer – by reversing their adjustment to model #3 of P16 to account for the 
combined fuxes. This was done by fnding the shift needed to bring the digitized data points into the same 
kind of agreement with the original Pozzetti model #3, as seen in the lower right panel of Bagley’s fg. 7 for the 
blended Pozzetti model #3. 
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reference RawELGs and DustELGs catalogues (as averaged over the four UNIT simulations, 
also providing the standard deviation). While we have to acknowledge that both our RawELGs 
and DustELGs do not reproduce the predictions of P16, we also have to remark again that it 
yet remains unclear what the correct abundance evolution dN/dz should look like. 

1.4.3 Flux-adjusted catalogues 

Taking the models of P16 as the reference, we now construct four additional catalogues 
that are designed to match the P16 dN/dz curves as shown in Fig. 1.6. We take RawELGs 
as the starting point and adjust the fux threshold until reaching the target dN/dz values as 
given by P16’s models #1 and #3, providing us with the two models RawELGs-Poz1 and 
RawELGs-Poz3. We use the same approach for DustELGs, providing two more models: 
DustELGs-Poz1 and DustELGs-Poz3. We used this methodology with all four UNITSIM 
catalogues. The means of the required fux cuts to our data are listed in columns 4–7, and 
10–13 of Table 1.1 (we omit error estimates as they are below the reported accuracy). The 
remaining columns – 2, 3, 8, and 9 – are the mean number densities (and its standard deviation) 
for the RawELGs and DustELGs catalogues, respectively, when using a redshift independent 
fux threshold of Fcut = 2 × 10−16 erg s−1 cm−2. Our methodology for constructing ELGs 
eventually leaves us with six distinct catalogues14 

1. RawELGs: directly coming from get_emlines (with a fux threshold of Fcut = 
2 × 10−16 erg s−1 cm−2 across all redshifts, when used here), 

2. RawELGs-Poz1: variable fux threshold applied to RawELGs to match the number 
density of Pozzetti’s model #1 at each redshift, 

3. RawELGs-Poz3: variable fux threshold applied to RawELGs to match the number 
density of Pozzetti’s model #3 at each redshift, 

4. DustELGs: passing the RawELGs ELGs through our dust model (with a fux threshold 
of Fcut = 2 × 10−16 erg s−1 cm−2 across all redshifts, when used here), 

5. DustELGs-Poz1: variable fux threshold applied to DustELGs to match the number 
density of Pozzetti’s model #1 at each redshift, 

6. DustELGs-Poz3: variable fux threshold applied to DustELGs to match the number 
density of Pozzetti’s model #3 at each redshift, 

where we note that all the ELGs are, by construction, a subset of the full SAGE catalogue 
used in the previous section. Likewise, the four additional ‘ELGs-Poz’ catalogues are 

14We need to state here again that the public versions of RawELGs and DustELGs are not subjected to any 
fux cut: they contain all ELGs as provided by get_emlines. 
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sub-sets of the public RawELGs and DustELGs, respectively. 

Instead of introducing a redshift-dependent fux cut – which might be considered 
counter-intuitive, as Euclid will have a fxed fux threshold – we could have also taken 
the RawELGs model as the starting point and tuned our dust extinction parametersuntil we 
match the P16 dN/dz values, akin to what Zhai et al. (2019) have done. But fnding the 
best possible dust model is beyond the scope of this work and hence we prefer to adhere to 
the former approach. The main idea here is to restrict the model ELGs to the brightest ones 
that are still observable. And we have seen in Fig. 1.5 that applying the dust model basically 
just shifts the LF towards lower luminosities, especially at high redshift and for the brightest 
ELGs (e.g. Sobral et al., 2016). Therefore, adjusting the luminosity threshold will still select 
the brightest galaxies. Moreover, one could also re-calibrate SAGE, the get_emlines code 
or choose a diferent dust model beyond a Cardelli law, all of which can afect the number 
density of ELGs. But exploring all these possibilities is beyond the scope of the present work. 
We prefer to work with minimal variations to the existing models and codes. 

We also like to emphasize that our ‘-Poz1’ and ‘-Poz3’ models are not the two models #1 
and #3 of P16. They are ELG catalogues where we adjusted the number densities to match 
those of model #1 and #3 of Pozzetti, respectively. We did this to correct for the mismatch of 
ELGs with respect to the Pozzetti models seen in Fig. 1.6. We further refrain from showing 
their abundance evolution as they match – by construction – the curves from P16. 

Given the results presented in this section, we conclude that our UNITSIM-SAGE-ELGs 
provide a fair sample and can be used for further analysis. The RawELGs and DustELGs 
galaxies will serve as the two base catalogues, with the four additional catalogues acting as 
our best predictions for Euclid. As a particular application we employ them now for a study 
of galaxy clustering and the related bias. 

1.5 Clustering of ELGs 

Quantifying the clustering of galaxies is one of the main objectives of ongoing and 
upcoming galaxy surveys such as the Euclid satellite mission. Clustering measurements 
probe the fuctuations of the underlying dark matter from the positions of galaxies, and they 
encode geometric, model-dependent cosmological information. Using the positions of our 
theoretical UNITSIM ELGs, we now study the two-point correlation function ξELGs(r) and 
its redshift evolution. We further use the positions of 107 randomly selected dark matter 
particles from the total 40963 particles present in each of the UNIT gravity-only simulations 
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to calculate ξDM(r).15 This allows us to also infer the bias that we defne here as s 
ξELGs(r)

b(r) = (1.11)
ξDM(r) 

between both populations and study its evolution across redshift. The bias b, i.e. the 
statistical relation between the distribution of galaxies and matter, needs to be taken into 
account when interpreting galaxy surveys; it describes how galaxies trace the underlying 
dark matter distribution. The biased galaxy formation scenario (e.g. Dekel and Rees, 1987) 
implies that galaxies are not uniformly distributed in the Universe, but primarily form in the 
peaks of the matter density feld. Galaxies are therefore biased tracers of it, sampling only 
the overdense regions (see Desjacques et al., 2018a, for a recent review). The particular bias 
of ELGs, i.e. a sub-class of all galaxies, will be of greatest importance for surveys such as 
Euclid. 

All two-point correlation functions (2PCFs) have been obtained with the CUTE16 

software presented in Alonso (2012). In addition, for the results that we will present 
throughout this section, we have taken the average of the values computed for the 
2PCF over the four simulations UNITSIM1, UNITSIM1-InvertedPhase, UNITSIM2, and 
UNITSIM2-InvertedPhase. 

In the top panel of Fig. 1.7 we present the 2PCF computed for the RawELGs (dashed 
lines) and dark matter (solid lines). The lower panel of the same fgure shows the bias b(r) 
defned via Eq. (1.11). In order to better verify the scale-dependence of the bias, we also 
calculate the ‘average’ bias 

NbinX 
⟨b⟩ = 1 

bi , (1.12)
Nbin − 1 

2 

where Nbin is the number of bins and bi = b(ri) the value of the bias in distance bin ri. This 
average bias ⟨b⟩ is shown as a dashed horizontal line in the lower panel of Fig. 1.7. Note that 
we exclude the frst bin in this calculation since for such small distances the bias is certainly 
scale-dependent (see Fig. 1.10 below). It is also obvious that the data for this particular 
model become rather noisy at high redshifts due to the very low number of objects above the 
reference fux cut of Fcut = 2 × 10−16 erg s−1 cm−2 (see Table 1.1). But we can nevertheless 

>appreciate that for distances r ∼ 5h−1Mpc the bias is remarkably constant, something we 
will quantify in more detail below. 

An equivalent analysis has been conducted for our other ELG catalogues, but we decided 
to only show here in Fig. 1.8 the results for the bias and not also the 2PCFs. Once more we 
can see that we get fairly noisy results at redshift z = 2.028 due to the reduced number of 

15We confrm that the resulting 2PCFs have converged and will not change when using more particles. 
Further, this number of dark matter particles is comparable to the number of ELGs, at least at redshifts z ≤ 1. 

16https://github.com/damonge/CUTE 
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Figure 1.7: Top panel: 2PCF of SAGE ELGs with fux greater than 2 × 10−16 erg s−1 cm−2 

(RawELGs galaxies, dashed lines) and collisionless trace particles (solid lines) for various redshifts. 
Bottom panel: associated bias as defned by Eq. (1.11). 

galaxies at that redshift. We also observe that at scales ∼ 120h−1Mpc the bias behaves more 
erratic, which can be explained by the fact that the 2PCF crosses zero at r ∼ 130h−1Mpc 
(Sánchez et al., 2008; Prada et al., 2011): taking the numerical ratio between two numbers 
close to zero then introduces noise. But the most important point is that the bias of ELGs 
(at least for z < 2) in all our catalogues remains constant on scales r ∈ [5, 100]h−1Mpc (in 
line with the fndings of, for instance, Abbott et al., 2018). Below 5h−1Mpc it is obvious 
that the mixture contribution between the one- and two-halo terms will introduce non-linear 
efects which in turn will cause the bias to no longer behave independently with scale. On 
larger scale we have already seen above that the zero-crossing of the 2PCF is introducing 
noise and hence the results for the bias are expected to be afected by this, too. We further 
note that the bias clearly is a function of redshift. But this is also expected, as the mass of 
the haloes hosting ELGs will change with redshift (see Fig. B.1 in the Appendix). Not only 
that, but haloes of the same mass or luminosity at diferent redshifts will also have a diferent 
bias. It therefore only appears natural that the bias increases with redshift as, for instance, 
modelled analytically by Basilakos et al. (2008) or found in other cosmological simulations 
(e.g. Merson et al., 2019; Tutusaus et al., 2020). 

Fig. 1.9 now quantifes the evolution of the average bias ⟨b⟩ (obtained from the results 
presented in Fig. 1.7 and Fig. 1.8) as a function of redshift for all our catalogues. This fgure 
is accompanied by Table 1.2 that lists the plotted values. We fnd that for all our galaxies the 
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Table 1.2: Bias values averaged for scales larger than 5h−1Mpc computed for all our ELG catalogues. 
The values listed here correspond to the lines presented in Fig. 1.9. 

z RawELGs RawELGs 
Poz1 

RawELGs 
Poz3 DustELGs DustELGs 

Poz1 
DustELGs 

Poz3 
0.490 0.94 0.94 – 0.96 0.97 – 
0.987 1.18 1.23 1.28 1.40 1.31 1.38 
1.220 1.35 1.44 1.48 1.92 1.57 1.70 
1.321 1.42 1.54 1.58 2.19 1.71 1.82 
1.425 1.53 1.66 1.70 2.48 1.83 1.97 
1.650 1.76 1.89 2.00 3.19 2.26 2.45 
2.028 2.19 2.42 2.55 4.40 3.05 3.24 

bias systematically increases with redshift, despite showing diferent growth rates, especially 
for the two base catalogues RawELGs and DustELGs. We also acknowledge that the strength 
of this b(z) relation for our four ‘-Poz’ galaxies – especially the ones based upon DustELGs – 
is in excellent agreement with the relation presented in Tutusaus et al. (2020, eq. 11), shown 
as circles in Fig. 1.9. The b(z) function given in Tutusaus et al. is derived from studying 
the bias in the Euclid Flagship simulation,17 which is also just based upon dark matter. But 
the way in which the dark matter haloes are populated with galaxies is quite distinct to our 
approach: they have applied a Halo Occupation Distribution (HOD) that does not take into 
account the merger trees of the haloes (for a comparison of these two diferent techniques 
see, for instance, Knebe et al., 2015, 2018a).18 Merson et al. (2019) also forecast the redshift 
evolution of the linear bias for Hα-emitting galaxies in a similar redshift range. Their data 
are shown here as squares. Like Tutusaus et al. (2020), they also used a HOD for which they 
calibrated the dust attenuation to reproduce observed Hα counts. Merson et al. (2019) now 
predict lower biases than Tutusaus et al. (2020) and our dust-based ‘-Poz’ galaxies, more in 
line with the results we obtain for our RawELGs catalogue and its derivates. The comparison 
of these three diferent b(z) predictions for ELGs indicates that the theoretical models have 
not yet converged. There are degeneracies and uncertainties that still require more detailed 
and refned investigations before any fnal conclusion could be drawn. But we fnally remark 
that our fndings for the redshift evolution of the bias b(z) are also in agreement with those of 
Favole et al. (2017, right panel of their fg. 6), who used a SHAM model. However, in their 
work, the bias increases more mildly, as the SDSS redshift range studied there is very much 
reduced compared to ours. 

17https://www.euclid-ec.org/?page_id=4133 
18While there is no reference paper for this galaxy catalogue, we nevertheless like to mention that it is based 

upon the MICE HOD (Carretero et al., 2015). The clustering is ft to SDSS galaxies as a function of magnitude 
and colour at low redshift. Then, most of the properties are assumed to depend on redshift only via their 
SEDs/color evolution, allowing for correlations between many observables. 
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We further recognize in Fig. 1.9 that the bias is sensitive to the particulars of our 
modelling, especially at high redshift. This certainly relates to how we treat the dust 
extinction and select the observable ELGs from RawELGs, respectively. But this is known 
and can also be appreciated when comparing the bias predictions from Tutusaus et al. (2020) 
and Merson et al. (2019) where similar discrepancies are seen. We particularly notice 
the degeneracy between dust modelling and fux selection: frst applying our extinction 
prescription and then matching a preset dN/dz by varying the fux threshold always leads to 
larger bias than not employing a dust model at all. Even though we argued before that the 
dust-attenuated luminosities – as seen in Fig. 1.5 – are a shifted version of the raw values (at 
least for luminous ELGs; see also Sobral et al., 2016, where a constant luminosity ofset was 
applied to model dust extinction), here we realize that their relation is not that simple. But 
we have clearly seen that fxing the abundance of Hα ELGs, the diferences substantially 
reduce. Nevertheless, we like to stress again that designing a new dust extinction model is 
beyond the scope of this work and hence we leave a more detailed study of this to a future 
work. Note that in this work we primarily aim at presenting the publicly available data, 
discussing its scope and possible limitations. 

So far we have mainly focused on large scales, but to conclude this section we also 
present how the bias varies for small scales. In Fig. 1.10 we present the bias b(z) for various 
redshifts and all our catalogues out to r ≈ 20h−1Mpc using logarithmic binning. We observe 
that for redshifts z < 2 the bias remains constant down to scales r ≈ 3h−1Mpc and then 
starts to mildly drop. It is actually around this distance that we expect the contribution from 
the one-halo term to start to become relevant. However, this behaviour weakens for higher 
redshifts and possibly reverses for z = 2. Something similar has also been observed by Nuza 
et al. (2012, fg. 10) for BOSS CMASS galaxies, but there the inversion was already seen 
at redshift z ≈ 0.53 (and one needs to bear in mind that CMASS galaxies and ELGs are 
not directly comparable as they are diferent types of galaxies, where the latter are mostly 
star-forming and the former could be dominated by passive galaxies). 

1.6 Conclusions 

Realistic simulations are a necessary tool to optimise and validate the methodology that 
will be used to extract cosmological constraints from future surveys. Indeed, they are used to 
estimate the theoretical error budget on surveys (for example, for the eBOSS-ELG analysis, 
see Alam et al., 2021b). 

In this work we have employed the UNIT simulations, which model the evolution of 
dark matter within a 1h−1Gpc box at a mass resolution of 1.2 × 109h−1M⊙ per particle 
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(Chuang et al., 2019). Given the large volume of these simulations together with the 
fxed-and-paired technique of Angulo and Pontzen (2016b) that enhances the efective volume 
of the simulations, the resulting galaxy mocks that we have produced represent a unique 
resource for model testing based on a semi-analytic model of galaxy formation. We used our 
ELG catalogues to make predictions for the galaxy statistics that the Euclid experiment is 
expected to obtain for redshifts between 0.9 < z < 1.8. Note that the simulations presented 
here cover an efective survey volume of about seven times the efective survey volume 
of Euclid (Chuang et al., 2019). And having the galactic physics included is key, since 
the complicated relation between haloes and galaxies can modify the clustering of ELGs 
signifcantly, even at scales used to put cosmological constraints when working in Fourier 
space (see, for instance, Gonzalez-Perez et al., 2020; Avila et al., 2020). 

For this work we have generated six synthetic catalogues of emission-line galaxies of 
which the two base ones (i.e. RawELGs and DustELGs, without any fux cuts applied) are 
publicly available. The galaxies were frst obtained by applying the semi-analytic galaxy 
formation model SAGE (Croton et al., 2016) to the gravity-only UNIT simulations. They 
were then subjected to the emission line modelling with the get_emlines code (Orsi et al., 
2014) and an additional dust attenuation model (following Favole et al., 2020). This left 
us with the two base ELG catalogues RawELGs and DustELGs, in addition to the general 
SAGE galaxy catalogues. As argued throughout Section 1.3, the properties associated with 
our UNITSIM-SAGE galaxies reproduce observed properties of galaxies with 0 ≤ z < 2. 
Here we have focused on those properties that are most relevant for the construction of ELGs 
catalogues, i.e. stellar mass, star formation rate, metalicity, and disc size. In particular, we fnd 
that the (evolution of the) mass–metallicity relation agrees sufciently well with observations. 
However, we have seen in Knebe et al. (2018b) that the SAGE model underpredicts the number 
of galaxies with high SFRs. This then afects the abundance of our (dust-attenuated) ELGs as 
seen in Fig. 1.6. While we presented the validation plots in the main body of the paper only 
for the full set of SAGE galaxies, the corresponding plots for the RawELGs and DustELGs 
ELGs can be found in Appendix B. 

In Section 1.4 we adjusted the number densities of our two base UNITSIM-ELG sets 
by applying distinct fux thresholds to them (using the Euclid-models as given by P16), 
eventually comparing the redshift evolution of their abundance to observations. When 
studying the density of galaxies per deg2 with fuxes greater than 2 × 10−16 erg s−1 cm−2 as 
a function of redshift we observe that the density obtained for the raw ELG galaxies is above 
both the observations and other theoretical modelling. That means that some additional 
selection needs to be applied to end up with a more realistic ELG catalogue. We have 
addressed this in several ways. We frst applied a dust-attenuation (a Cardelli law, following 
Favole et al., 2020), which led to a possible underestimation of the expected density of 
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galaxies dN/dz observed from redshift z ∼ 1.4 onwards. Nevertheless, the most recent 
study by Bagley et al. (2020) suggests that the observational value for dN/dz could be closer 
to our results than predicted by P16. We also designed additional catalogues where we 
instead varied the fux threshold for the selection of galaxies from the RawELGs catalogue; 
those fuxes were adjusted to reproduce number densities as predicted by P16. 

The linear bias is a key parameter to understand the cosmological power of Euclid and 
can help construct forecasts that inform the optimisation of both observational and analysis 
strategies. The bias of Hα galaxies may be particularly relevant for forecasts on studies such 
as primordial non-Gaussianities or relativistic efects. We therefore studied the clustering 
of all our six samples listed in Table 1.1: two with the Euclid fux cut applied and four in 
which the fux cuts are adjusted to follow the predictions by two of the models presented in 
P16. We measure the linear bias as a function of redshift by averaging ξELGs/ξDM for scales 
r > 5h−1Mpc. For the samples whose abundances are matched to the to P16 predictions, 
we fnd a b(z) in line with that reported in Tutusaus et al. (2020) for the Euclid Flagship 
simulation (and mildly in agreement with the same results reported by Merson et al., 
2019). This is striking, as the Flagship mock was constructed following a very diferent 
methodology (Carretero et al., 2015). Additionally, we report the clustering at small scales, 
that becomes scale-dependent. These measurements can be used to test the robustness of 
diferent large-scale structure models to extract cosmological information from the small 
scales, that have the highest signal-to-noise ratio but at the same time are the most difcult 
to model. 

We close with the remark that an improved dust attenuation modelling might be the most 
physical approach for choosing the ELGs so that the observed dN/dz will be recovered. 
This would, however, only afect the catalogues that are based upon DustELGs; it will 
leave RawELGs untouched, which is the primary ELG catalogue made available publicly. 
Therefore, while we have shown throughout this work that the particulars of the dust extinction 
have an efect on the the results, the published data contain all that is required for the 
community to apply their favourite post-processing models for dust and emission lines from 
star-forming regions. Or put diferently, the base catalogue RawELGs is certainly inclusive, 
i.e. a superset of the ELGs of interest. A better understanding of the process of selecting 
observable ELGs from that base catalogue and developing an improved dust attenuation 
model will be left for a future work. The public data can already been used for a great variety 
of studies and have extensive applications like, for example, informing Halo Occupation 
Distribution models. Indeed, we will study the properties of Hα ELG HOD models in a 
follow-up paper. 
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Chapter 2 

The cosmology dependence of the 
concentration-mass-redshift relation 
The concentrations of dark matter haloes provides crucial information about their internal 

structure and how it depends on mass and redshift – the so-called concentration-mass-redshift 
relation, denoted c(M, z). We present here an extensive study of the cosmology-dependence 
of c(M, z) that is based on a suite of 72 gravity-only, full N-body simulations in which 
the following cosmological parameters were varied: σ8, ΩM, Ωb, ns, h, Mν , w0 and wa. 
We characterize the impact of these parameters on concentrations for diferent halo masses 
and redshifts. In agreement with previous works, and for all cosmologies studied, we 
fnd that there exists a tight correlation between the characteristic densities of dark matter 
haloes within their scale radii, r−2, and the critical density of the Universe at a suitably 
defned formation time. This fnding, when combined with excursion set modelling of halo 
formation histories, allows us to accurately predict the concentrations of dark matter haloes 
as a function of mass, redshift, and cosmology. We use our simulations to test the reliability 
of a number of published models for predicting halo concentration and highlight when they 
succeed or fail to reproduce the cosmological c(M, z) relation. 

2.1 Introduction 

Cosmological simulations have revealed that the spherically-averaged density profles 
of dark matter (DM) haloes exhibit a high degree of self-similarity across a wide range of 
masses, redshifts, and cosmologies (Navarro et al. 1996; Huss et al. 1999; Bode et al. 2001; 
Bullock et al. 2001; Neto et al. 2007; Macciò et al. 2008; Knollmann et al. 2008; Wang and 
White 2009; Hellwing et al. 2013; Ludlow and Angulo 2017; Brown et al. 2020 and Angulo 
and Hahn 2022b for a review). The most popular analytic expression used to describe these 
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profles is the NFW profle (Navarro et al., 1996, 1997), written as 
4 ρ−2

ρNFW = 2 , (2.1)
r/r−2 (r/r−2 + 1) 

where r−2 is the characteristic radius at which the profle’s logarithmic slope is equal to −2, 
and ρ−2 = ρNFW(r−2) is the corresponding density. These two parameters fully specify 
the NFW profle and therefore completely describe the structure of dark matter haloes. It 
is however common practice to recast these parameters in terms of the halo’s virial mass1, 
M200,m, and concentration, c = r200,m/r−2, an approach we follow in this paper; in what 
follows we refer to these quantities simply as M200 and r200. 

As simulations grew in volume and simultaneously achieved higher mass and spatial 
resolution, it became clear that simulated halo profles exhibit slight but systematic departures 
from the NFW shape. As discussed in Navarro et al. (2004, see also Gao et al. 2008; Ludlow 
et al. 2011; Dutton and Macciò 2014; Child et al. 2018), simulated halo profles are better 
described by the Einasto (1965) profle, which can be written� �� �α �� 

ρE = ρ−2 exp − 
2 r − 1 , (2.2)
α r−2 

where r−2 and ρ−2 have the same meaning as in Eq. (2.1), and α is a shape parameter that 
can be tailored to better-ft individual haloes. For α ≈ 0.18, Eq. (2.2) resembles the NFW 
profle over a wide range of scales. 

Neglecting the slight deviations between simulated halo density profles and the NFW 
profle, the values of c and M200 are sufcient to determine their structure. This led to 
numerous studies of the relationship between halo mass and concentration, and how it changes 
as a function of redshift and cosmology (the so-called concentration-mass-redshift relation, 
often denoted c(M, z)). These studies paint a clear picture of the structure of CDM haloes: 
at fxed redshift, their concentrations, on average, decrease with increasing mass, and at fxed 
mass, on average, decrease with increasing redshift (e.g. Bullock et al., 2001; Dolag et al., 
2004; Prada et al., 2012; Ludlow et al., 2012, 2013; Bhattacharya et al., 2013; Kwan et al., 
2013; Ludlow et al., 2014; Correa et al., 2015; Ludlow et al., 2016; Diemer and Joyce, 2019; 
Brown et al., 2020; Ragagnin et al., 2021). Although the exact physical mechanism that sets 
the concentration of a halo is not known, numerous studies have convincingly demonstrated 
that it is closely connected to its assembly history (Navarro et al., 1996, 1997; Bullock et al., 
2001; Wechsler et al., 2002; Zhao et al., 2003; Dolag et al., 2004; Ludlow et al., 2014, 2016; 
Diemer and Joyce, 2019). 

A number of studies have also addressed the mass and redshift dependence of α, the 
Einasto shape parameter in Eq. (2.2). For example, Gao et al. (2008, see also Dutton and 

1We defne the virial mass M200,m of a DM halo as the total mass enclosed by a sphere of radius r200,m, 
centered on the halo particle with the minimum potential energy, that encloses a mean density of 200 × ρm, 
where ρm = Ωmρc is the mean matter density and ρc = 3 H2/8πG is the critical density of the universe. 
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Macciò 2014; Child et al. 2018) demonstrated that the average value of α increases with both 
halo mass and redshift in a manner that can be neatly described by a single relation between α 
and peak height2, ν(M, z). Ludlow et al. (2013, see also Ludlow and Angulo 2017) showed 
that, like the halo concentration, α is intimately linked to the assembly histories of dark matter 
haloes. 

Given the approximate self-similarity of halo structure, the ability to accurately predict 
halo concentrations has numerous applications, including estimating merger rates of 
primordial black holes (e.g. Mandic et al., 2016), predicting the lensing signal associated with 
haloes (e.g. Bartelmann et al., 2002; Fedeli et al., 2007; Mandelbaum et al., 2008; Amorisco 
et al., 2021) and their substructure (e.g. Despali et al., 2018), and to estimate the gamma ray 
signal potentially produced by dark matter annihilation (e.g. Sánchez-Conde and Prada, 2014; 
Okoli et al., 2018). Another potential application – indeed, the one that motivated this work 
– is to improve the performance of cosmological rescaling algorithms (Angulo and White, 
2010; Contreras et al., 2020) that can be used to transmute a template N-body simulation 
carried out with a set of cosmological parameters to a synthetic simulation consistent with 
another cosmology. Whether existing models can appropriately account for the cosmology 
dependence of halo concentrations has not been rigorously tested. 

The aim of this work is therefore to study the dependence of the c(M, z) relation on 
cosmology, and to test the extent to which it can be reproduced by published models for 
predicting halo concentrations. To do so, we ran a large suite of gravity-only simulations 
in which the cosmological parameters were systematically varied with respect to the 
best-ft Planck Collaboration et al. (2020b) results. In Section 2 we present our suite of 
cosmological simulations along with their associated halo and merger tree catalogs (§§2), 
explain our approach to discarding unrelaxed haloes (§§2), and outline how we measure halo 
concentrations (§§2). In Section 2 we present the c(M, z) relations obtained for diferent 
cosmologies (§§2) and study the relation between the internal structure of haloes and their 
formation histories. In §§2 we compare the performance of diferent published models for 
predicting the mass- and redshift-dependence of halo concentration, focusing on their ability 
to reproduce the cosmology-dependence of the c(M, z) relation. In Section 2 we discuss how 
accurate predictions for halo concentration can lead to improved accuracy when applied to a 
cosmological scaling algorithm. In Section 2 we provide a few concluding remarks. 

2The peak height, a dimensionless mass parameter, is defned as ν(M, z) = δc/σ(M, z), where σ(M, z) is 
the variance of the matter density perturbations linearly extrapolated to redshift z, and δc is the critical density 
for gravitational collapse, usually estimated from the spherical collapse model for which δc ≈ 1.686 (e.g. 
Peebles, 1980). 
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2.2 Numerical simulations and analysis 

Below we describe the pertinent details of the numerical simulation used in this work, 
and discuss our analysis algorithms and techniques. 

2.2.1 Numerical simulations 

Our results are inferred from a suite of DM-only simulations in which we modify the 
values of diferent cosmological parameters. We defne these parameters below. 

1. σ8: The root mean square of matter density perturbations averaged in spheres of radius 
R = 8h−1Mpc and linearly extrapolated to z = 0. 

2. Ωm: The dimensionless matter density parameter, Ωm ≡ ρm/ρc = 8πGρm/3H
2, 

which is the ratio of the total matter density, ρm, and the critical density, ρc. Note that 
Ωm includes contributions from both DM and baryons, i.e. Ωm = Ωcdm + Ωb. For 
runs in which Ωm is varied, we only modify the value of Ωcdm (keeping Ωb fxed) and 
adjust the value of ΩDE (the cosmic dark energy density) to maintain a fat cosmology. 
Note that neutrinos do not contribute to this defnition of Ωm. 

3. ns: The scalar spectral index of the primordial density fuctuation power spectrum, 
P (k) ∝ kns−1. 

4. w0 and wa: The dynamical dark energy parameters used in the 
Chevallier-Polarski-Linder (CPL) parameterization (Chevallier and Polarski, 
2001; Linder, 2003). When w0 = −1 and wa = 0 the dark energy contribution to the 
background expansion is consistent with a cosmological constant, see Eq. (2.3). 

5. Mν : The sum of the individual masses for the three neutrino species, which is related 
to the neutrino density parameter by Ων = Mν /[(93.14eV)h2] (with Mν expressed in 
eV)3. When we increase the value of Ων we reduce the value of Ωcdm by the same 

3The frst Friedmann equation can be written in terms of the neutrino density parameter, Ων , as (Zennaro 
et al., 2017): � 

H2(a) = H0
2 (Ωcdm,0 +Ωb,0) a −3 +Ωv(a)E

2(a)+ i 
−3(1+w0+wa ) 3awa+ΩDE,0a e , (2.3) 

where we have also included the Chevallier-Polarski-Linder (CPL) parameterization (Chevallier and Polarski, 
2001; Linder, 2003) of dynamical dark energy component whose equation of state is w(z) = w0 + waz/(1 + 
z) (Linden and Virey, 2008). 
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amount in order to maintain a fat cosmology. When we vary Mν in our simulations 
we kept fxed the value of the power spectrum initial amplitude, As, therefore varying 
Mν will result in diferent values for σ8 at z = 0. 

6. h: The dimensionless Hubble-Lemaitre parameter, which sets the value of the 
Hubble-Lemaitre constant, i.e. H0 = 100 h km s−1 Mpc−1 at z = 0. 

7. Ωb: The baryon density parameter, Ωb ≡ ρb/ρc. Changes to Ωb are compensated by 
changing Ωcdm such that Ωm remains constant. 

Our suite of simulations is designed around four reference runs, which we refer to as 
Nenya, Narya, Vilya and The One. All reference simulations share a number parameters – 
specifcally, σ8 = 0.9, Mν = 0.0 eV, w0 = −1.0, wa = 0.0, and Lbox = 512 h−1Mpc are the 
same for all of them – but other parameters are varied as described in Table 2.1. Along with 
these reference runs, we carried out 32 additional simulations divided in 8 groups (with 4 
simulations in each group) according to the cosmological parameter that was varied. For the 
runs in a given group we uniformly vary a particular cosmological parameter so that it spans a 
5σ or 10σ region (depending on the parameter) around the best-ft parameter values provided 
by Planck Collaboration et al. (2020b). For the case of the Hubble-Lemaitre parameter, h, 
we explore values that span a 4 σ region around the best-ft value obtained from low-redshift 
supernovae data Riess et al. (2016). 

The selection of these cosmologies was motivated by the criteria set forth in Contreras 
et al. (2020), and we have generated them, in part, to serve as a follow-up of the runs presented 
in that work (some of our simulations have, in fact, already been used in other studies, e.g. 
Contreras et al. 2021; Zennaro et al. 2021; Pellejero-Ibanez et al. 2022). The objective 
of Contreras et al. (2020) was to test the performance of cosmology-rescaling algorithms 
(which we explain in more detail in Section 2). We therefore designed our simulation suite 

Table 2.1: Our four “reference” simulations (Nenya, Narya, Vilya and The One) share the following 
cosmological parameters: σ8 = 0.9, Mν = 0, w0 = −1 and wa = 0. The parameters listed below 
have been varied. 

Name Ωm ns h Ωb mDM [h
−1M⊙] 

Nenya 
Narya 
Vilya 

The One 

0.315 
0.360 
0.270 
0.307 

1.01 
1.01 
0.92 
0.96 

0.60 
0.70 
0.65 
0.68 

0.050 
0.050 
0.060 
0.048 

109.51 

109.57 

109.44 

109.5 
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Table 2.2: The values of the cosmological parameters that are modifed for each simulation. All 
runs have the same cosmological parameters as those used for one of the four reference simulations 
listed in Table 2.1 but with one parameter modifed to match the values listed below. For example, 
the run referred to in the upper-left entry adopts cosmological parameters consistent with the Nenya 
simulation, but with a lower value of the rms density fuctuation amplitude, i.e. σ8 = 0.730. 

Ref - σ8 Ref - Ωm Ref - ns Ref - w0 
Nenya 0.730 Nenya 0.23 The One 0.920 Nenya −0.70 

The One 0.770 Nenya 0.27 The One 0.940 Nenya −0.85 
Nenya 0.815 Narya 0.36 The One 0.965 Nenya −1.15 
Nenya 0.860 Narya 0.40 Narya 0.990 Nenya −1.30 

Ref - wa Ref - Mν Ref - h Ref - Ωb 
Nenya −0.30 Nenya 0.1 eV Nenya 0.65 Nenya 0.040 
Nenya −0.15 Nenya 0.2 eV Narya 0.70 Nenya 0.045 
Nenya 0.15 Nenya 0.3 eV Narya 0.75 Nenya 0.055 
Nenya 0.30 Nenya 0.4 eV Narya 0.80 Nenya 0.060 

in such a way that each run can be compared to a rescaled simulation obtained from one 
of our four reference runs. This is why we modifed only one cosmological parameter per 
simulation, while keeping all others fxed with respect to the values used for one of the 
reference simulations. The various runs are listed in Table 2.2, where the column headers 
indicate the cosmological parameter that was modifed, and the prefx indicates the reference 
model. 

All simulations were carried out using a lean version of L-Gadget3 (see Springel 
et al., 2008; Angulo et al., 2012) and evolved the DM density feld using NDM = 15363 

equal-mass DM particles; they all employed the same softening length: ϵ = 5 h−1kpc. 
All simulation volumes are approximately Vbox ≈ (512 h−1Mpc)3, but vary slightly from 
run to run4. The slight variation in box size, along with changes to Ωm, result in small 
diferences in the DM particle masses between simulations. Our lowest-mass resolution 
run has mDM = 1010.01 h−1M⊙ (Extreme high-ns), and our highest mass-resolution run has 
mDM = 109.41 h−1M⊙ (Extreme low-h); the particle masses of all other simulations falls 
within this range. We use a version of NgenIC (Springel, 2015) that employs second-order 
Lagrangian Perturbation Theory (2LPT) to generate the initial conditions at z = 49 for each 
simulation. 

For simulations including massive neutrinos, we created initial conditions according to 
the cold matter power spectrum obtained using the scale dependent backscaling technique 

4Slight diferences in the box size between the various runs ensures that variations of our reference models, 
when the cosmology-rescaling algorithm is employed to match the corresponding reference cosmology, will 
have a volume of exactly Vbox = (512 h−1Mpc)3. Selecting the simulation volumes this way simplifes the 
comparison between the N-body simulations and the results obtained from the cosmology-rescaling algorithm 
(see Contreras et al., 2020) 
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described in Zennaro et al. (2017). We then evolved these simulations using a version of 
L-Gadget3 that incorporates the neutrino implementation of Ali-Haïmoud and Bird (2013), 
where neutrino perturbations were solved on a grid, employing a linear response function 
that is sensitive to the non-linearities developed in the cold matter distribution. 

To reduce cosmic variance, we followed the approach of Angulo and Pontzen (2016a) 
and carried out paired-phase counterparts of each of our simulations, which doubles the total 
number of simulations used in our analysis. We diferentiate the two simulations within 
each of the fxed-paired doublets with the sufxes “- 0” and “- π”. For more information 
regarding the fxing and pairing technique and how it reduces cosmic variance in cosmological 
simulations see Angulo and Pontzen (2016a), Chuang et al. (2019), Knebe et al. (2021) and 
Maion et al. (2022). 

We identify haloes and subhaloes in our simulations using a Friends-of-Friends 
algorithm (Davis et al., 1985), with linking length b = 0.2, and a modifed version of 
SUBFIND (Springel et al., 2001a). As discussed in Contreras et al. (2020), our implementation 
of SUBFIND is able to robustly identify substructure haloes by considering their prior 
evolution. 

We construct merger trees by linking haloes and subhaloes between consecutive snapshots, 
starting from the frst snapshot in which a particular halo is identifed. We then progress 
through subsequent snapshots and determine which halo or subhalo is its most likely 
descendant. To do so, we track its 15 most-bound particles between snapshots and identify 
all (sub)haloes in which these particles end up; these constitute a set of possible descendants. 
We identify the most likely "true" descendant by considering which (sub)halo candidate has 
the highest score based on the number of particles it inherits weighted by their rank ordered 
binding energy with respect to the original (sub)halo. This approach constitutes a slight 
modifcation to the method used by Angulo et al. (2012) where only the inherited number of 
(most-bound) particles is considered but not their binding energies. 

2.2.2 Halo dynamical state and relaxedness 

In this work we analyze the c(M, z) relations of "relaxed" DM haloes. We discard 
unrelaxed haloes from our analysis because their density distribution is likely to deviate from 
spherical symmetry, and as such be ill ft by simple analytic profles such as NFW or Einasto. 
Considering only relaxed haloes biases the median concentrations to higher values in mass 
bins where a large number of haloes are expected to be out of equilibrium, particularly 
high-mass bins (unrelaxed haloes typically have larger values of r−2 than relaxed ones of 
the same mass). However, excluding unrelaxed haloes is crucial for our analysis because it 
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allows us to quantify the connection between the inner structure of haloes and their formation 
histories, and eliminates the possibility of dynamical processes such as mergers biasing our 
results). 

Following Ludlow et al. (2012), we consider a halo unrelaxed if its half-mass formation 
lookback time (since identifcation), i.e. th = tlb(zh) − tlb(z0), is less than a crossing time, 
tcross = 2 r200/V200. Following Neto et al. (2007), we also discard haloes for which the 
distance between their center of mass and the position of the gravitational potential minimum 
is greater than 0.07 r200 as well as those whose substructure mass fraction (i.e. the mass 
contained in subhaloes within r200 of the host halo) exceeds 0.1 M200. 

2.2.3 Analysis of halo density profles 

Much of our analysis focuses on the median mass-concentration-redshift relations 
obtained from the best-ft density profles of well-resolved haloes in our simulations, which 
we initially compute using logarithmically spaced mass bins of width ∆ log M200 = 0.1 that 
span the range M200 ∈ (1013 , 1015.2) h−1M⊙. Following previous works (e.g., Gao et al., 
2008; Dutton and Macciò, 2014; Child et al., 2018; Ludlow et al., 2019; Brown et al., 2020), 
we then discard bins corresponding to haloes with fewer 5000 particles within their virial 
radius, r200, as well as those containing fewer than 50 haloes, the latter to avoid excessive 
noise in the relations. 

To compute the concentrations of haloes we ft each of their spherically-averaged density 
profles to Einasto’s formula, i.e. Eq. (2.2), but fx the value of α according to the α − ν 
relation obtained by Gao et al. (2008), i.e. 

α = 0.155 + 0.0095 ν (M, z)2 . (2.4) 

When ftting the density profles we discard radial bins that are below the resolution limit, 
rmin. We follow Power et al. (2003) and defne rmin as the radius at which relaxation time 
is equal to the circular orbital time at the virial radius, i.e. trelax(rmin) = tcirc(r200) (see also 
Zhang et al., 2019; Ludlow et al., 2019). This yields the following condition: 

√ � � 1 
2trelax (rmin ) 200 N (rmin ) ρc(z0) 

= = 1, (2.5)
tcirc (r200) 8 ln N (rmin ) ρenc (rmin ) 

where ρc(z0) is the critical density of the universe at the halo identifcation redshift z0, and 
N(rmin ) and ρenc(rmin ) are the enclosed number of particles and enclosed density at rmin, 
respectively. We also discard radial bins for which r > rmax = 0.8r200, where density profles 
can be sensitive to local departures from equilibrium (see, e.g. Ludlow et al., 2020). When 
carrying out our fts, we restrict the best-ft value of r−2 to the range rmin ≤ r−2 ≤ rmax. 

56 



Although we have excluded unrelaxed haloes from our analysis, we nonetheless encounter 
a great diversity in profle shapes, and for a number of them the best-ft value of r−2 is equal 
to rmin or rmax. For these cases, the true value of r−2 is likely outside the resolved radial 
range and our estimate of r−2 therefore represents a lower or upper limit. We surmount this 
problem by discarding all mass bins in which more than 30 per cent of haloes have either 
r−2 = rmin or r−2 = rmax, which ensures that such poorly-ft systems do not bias the median 
concentrations used in our analysis. We have employed a simulation with higher resolution 
(more than 3 times the number of particles and 50 per cent smaller force softening) to verify 
that this procedure yields robust values for the median concentrations. 

In Fig. 2.1 we show the median z0 = 0 density profles (weighted by a factor of 
r2) for haloes of diferent virial mass in the The One − π simulation. Halo masses are 
logarithmically-spaced and span the range M200 ∈ (1013 , 1015.2) h−1M⊙. The flled circles 
correspond to radial bins with rmin ≤ r ≤ rmax. By plotting log10(ρr2), the value of r−2 is 
readily apparent as the radius of the "peak" of each best-ft profle. In addition to the median 
density profles, we present their best Einasto fts (with α computed using Eq. (2.4); solid 
lines). 

2.3 Results 

2.3.1 Cosmology dependence of the mass-concentration-redshift 
relation 

In Fig. 2.2 we plot using connected circles the c(M) relations obtained from our 
suite simulations at z0 = 0. The results are split into diferent panels according to the 
cosmological parameter that was varied. With a total of 72 simulations, Fig. 2.2 represents, 
to our knowledge, the most extensive analysis to date of the cosmology-dependence of the 
mass-concentration relation. For each cosmology, we plot the average concentration of haloes 
in each mass bin after combining the fxed amplitude and inverted-phase simulations (all the 
results presented henceforth correspond to averages of our fxed-amplitude and inverted-phase 
simulations). For completeness, in Appendix E we present the concentration-mass relations 
at z0 = 0.5. 

In agreement with previous fndings, Fig. 2.2 shows that the concentrations of relaxed 
DM haloes decreases as a function of halo mass for all cosmological models studied. This 
is consistent with interpretation that structure forms hierarchically, i.e. low-mass haloes 
typically form before more massive ones, and that the concentrations of haloes are correlated 
with their formation times. 

The results also illustrate how varying diferent cosmological parameters afects the 
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Figure 2.1: Median density profles corresponding to six diferent logarithmically-spaced mass bins 
spanning the range M200 ∈ (1013 , 1015.2) h−1M⊙. All haloes were identifed in the The One − π 
simulation at z0 = 0 (circles). The flled circles correspond to the "resolved" radii used when carrying 
out our fts, i.e. they correspond to radial bins satisfying rmin ≤ r ≤ rmax (see subsection 2 for 
details). The thick solid lines show to the best-ft Einasto profles with the values for α computed 
using Eq. (2.4). Diferent colors distinguish the diferent median virial masses, M200, which are 
indicated in the legend in units of log10 M200[10

10M⊙h
−1]. 

58 



SimulationsSimulations This workThis work

0.9

1.0

1.1

lo
g

1
0
c

8 = 0.73

8 = 0.77

8 = 0.815

8 = 0.86

8 = 0.9

8 = 0.73

8 = 0.77

8 = 0.815

8 = 0.86

8 = 0.9

M = 0.23

M = 0.27

M = 0.31

M = 0.36

M = 0.4

M = 0.23

M = 0.27

M = 0.31

M = 0.36

M = 0.4

ns = 0.92
ns = 0.94
ns = 0.965
ns = 0.99
ns = 1.01

ns = 0.92
ns = 0.94
ns = 0.965
ns = 0.99
ns = 1.01

w0 = 0.7
w0 = 0.85
w0 = 1
w0 = 1.15
w0 = 1.3

w0 = 0.7
w0 = 0.85
w0 = 1
w0 = 1.15
w0 = 1.3

1.00

1.04

1.08

cm
o
d
e
l

cs
im

0.9

1.0

1.1

lo
g

1
0
c

wa = 0.3
wa = 0.15
wa = 0
wa = 0.15
wa = 0.3

wa = 0.3
wa = 0.15
wa = 0
wa = 0.15
wa = 0.3

M = 0.0
M = 0.1
M = 0.2
M = 0.3
M = 0.4

M = 0.0
M = 0.1
M = 0.2
M = 0.3
M = 0.4

h= 0.6
h= 0.65
h= 0.7
h= 0.75
h= 0.8

h= 0.6
h= 0.65
h= 0.7
h= 0.75
h= 0.8

b = 0.04

b = 0.045

b = 0.05

b = 0.055

b = 0.06

b = 0.04

b = 0.045

b = 0.05

b = 0.055

b = 0.06

3.2 4.0 4.8

log10M200 [1010h 1M ]

1.00

1.04

1.08

cm
o
d
e
l

cs
im

3.2 4.0 4.8

log10M200 [1010h 1M ]
3.2 4.0 4.8

log10M200 [1010h 1M ]
3.2 4.0 4.8

log10M200 [1010h 1M ]
Figure 2.2: Median concentration-mass relations at z0 = 0 for all cosmologies studied in this paper 
(see Table 2.2). Simulation results are shown as connected colored circles; the solid lines plotted in 
the panels of the frst and third rows show the relations that are predicted by the model presented in 
this work, a modifed version of the L16 model (using A = 493; see Section 2 for details). From 
top-to-bottom and left-to-right, the cosmological parameters varied are, σ8, Ωm, ns, w0, wa, Mν , h 
and Ωb. The simulation results correspond to the average of the median concentrations obtained for 
phase-0 and phase-π simulations. The solid lines plotted in the smaller "residual" panels (second 
and fourth rows) correspond to the ratio of the concentrations predicted by the L16 model and the 
concentrations measured in our simulations. 
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concentration-mass relation. For example, regardless of halo mass, increasing the value of 
σ8 leads to higher concentration. This is because higher σ8 implies higher linear fuctuation 
amplitudes at fxed mass, and so earlier average formation times. 

Higher values of w0 also increase concentrations at all masses. This is because w0 

alters the growth histories of haloes through the dark energy term in Eq. (2.3). Specifcally, 
higher w0 leads to earlier halo formation times since (for a fxed value of σ8) the increased 
contribution of dark energy to the universal expansion history demands that the haloes of a 
given mass form earlier, which in turn increases their concentration. 

As a fnal example, consider the impact of Ωb. For the runs plotted in the lower-right 
panel of Fig. 2.2, Ωb contributes at least 4 per cent and at most 6 per cent of the critical density 
of the universe. Such a small contribution from baryons implies that the matter component 
in all our runs is dominated by cold dark matter. As such, the formation histories–and as 
a consequence, the concentrations–of haloes are largely insensitive to Ωb, at least over the 
range of values studied here. 

2.3.2 The relationship between the characteristic densities of haloes and 
their formation histories 

As pointed out in Section 2, there are a number models that aim to accurately predict the 
c(M, z) relation, as well as its dependence on cosmological parameters. Many are based on 
empirical fts to results obtained from large suites of simulations (e.g. Dutton and Macciò, 
2014; Diemer and Joyce, 2019), while others are based on physical models that relate the 
concentrations of haloes to their collapse histories (e.g. Navarro et al., 1996, 1997; Bullock 
et al., 2001; Wechsler et al., 2002; Gao et al., 2008; Ludlow et al., 2013, 2014; Correa 
et al., 2015; Ludlow et al., 2016). One model in particular, that of Ludlow et al. (2016, 
L16 hereafter), has been shown to reproduce the mass-concentration relation for a variety 
of cosmological models, including cold and warm dark matter models that adopt sharply 
truncated power spectra (Ludlow et al., 2016; Wang et al., 2020; Richardson et al., 2022). 
The L16 model is based on the assumption (see appendix D for more details) that the enclosed 
density within a halo scale radius, ⟨ρ−2⟩ ≡ ⟨ρ(r−2)⟩, is directly proportional to the critical 
density of the universe at the time when its characteristic mass, i.e. M−2 ≡ M(< r−2), had 
frst assembled into progenitors more massive than 0.02 × M0, where M0 is the present-day 
mass of the halo. The redshift evolution of the mass fraction collapsed in such progenitors 
(i.e. those with masses exceeding 0.02 × M0) defnes the halo’s "collapsed mass history" 
(hereafter CMH for short). Below we test whether this result also holds for the various 
cosmologies explored in our simulation suite. 

To do so, we use the simulated profles to determine the mass M−2 enclosed by the best-ft 
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Figure 2.3: Relation between the median values of ⟨ρ−2⟩ and ρc(z−2) computed for relaxed haloes 
identifed z0 = 0, 0.5, 1 and 2 in our suite of simulations (the points correspond to median values 
obtained for equally-spaced logarithmic mass bins). The color of the points indicate the cosmological 
model and match the colors used for Fig. 2.2. The shapes of the points indicate the redshift: z0 = 0 
as circles, z0 = 0.5 as squares, z0 = 1 as triangles, and z0 = 2 as stars. The solid black line is the 
best ft to all the points: ⟨ρ−2⟩ ≈ 493 ρc(z−2). 
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scale radius r−2, and then defne ⟨ρ−2⟩ = 3M−2/4πr− 
3
2. The formation time, z−2, is defned 

as the redshift at which the halo’s CMH frst exceeds M−2 , which is obtained by interpolating 
along the CMH that we calculated using each halo’s merger tree. 

In Fig. 2.3 we plot the relation between ⟨ρ−2⟩ and ρc(z−2) for all the simulations described 
in Section 2, and for redshifts z0 = 0, 0.5, 1, 2 (distinguished using diferent symbols). Each 
point corresponds to the average ⟨ρ−2⟩ and ρc(z−2) calculated for the same mass bins used 
to construct Fig. 2.2. Fig. 2.3 reveals an approximate power-law relation between ⟨ρ−2⟩ and 
ρc(z−2) that is largely independent of cosmology, halo mass and redshift. Note too that the 
relation plotted has a "natural" slope very close to 1, i.e. ⟨ρ−2⟩ ∝ ρc(z−2). The solid line 
shows the best-ft relation: ⟨ρ−2⟩ ≈ 493 ρc(z−2). 

The existence of a tight relation between ⟨ρ−2⟩ and ρc(z−2) suggests that the concentrations 
of haloes – regardless of mass, redshift, or cosmology – can be predicted if an accurate model 
for the CMHs of haloes can be found. We investigate this next. 

2.3.3 Predicted formation times based on the extended Press-Schechter 
formalism 

In Fig. 2.4 we show the median CMHs of haloes of diferent mass identifed at z0 = 0 in the 
The One − π simulation (solid lines; note that these are the same mass bins used to construct 
the density profles plotted in Fig. 2.1). The outsized squares indicate the average halo 
formation times, z−2, for the diferent mass bins. The dashed curves show, for comparison, 
the CMHs predicted by the extended Press-Schechter (EPS) formalism (Bond et al., 1991b; 
Lacey and Cole, 1993) for haloes of the same present day mass, see Eq. (D.2).5 The open 
triangles show the values of z−2 associated with these EPS-collapsed mass histories (the 
latter referred to henceforth as EPS-CMHs). Note that the measured and predicted formation 
times agree quite well, as do the overall shapes of the CMHs. 

In Fig. 2.5 we test how accurately the EPS model describes the formation times of haloes 
in our simulations (after a suitable modifcation to account for the impact of massive neutrinos 
in EPS, see Appendix D). Here we plot the relative diference between the EPS-predicted 
formation redshifts, expressed as ρEPS

c (z−2), and the formation redshifts measured directly 
from the simulated CMHs, i.e. ρCMH

c (z−2). Each point corresponds to the median values of 
these quantities in bins of halo mass, and are plotted at diferent redshifts, which increase from 
the top to bottom panels. To help with visualization, we have applied a small horizontal shift 
to the values in each mass bin so that results obtained for diferent cosmological parameters 
can be easily distinguished. Our results show that the EPS-predicted formation redshifts 

5In order to predict the CMHs for DM haloes using the EPS formalism, we adopt a critical density for 
gravitational collapse of δsc = 1.46. This minimizes the typical diference between the predicted halo collapse 
redshifts and those measured in our simulations (see Fig. 2.5). 
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Figure 2.4: Median collapsed mass histories (i.e. Mcoll) for DM haloes with fve diferent masses 
identifed in the The One simulation at redshift z0 = 0 (solid lines; note that these are the same haloes 
whose density profles are plotted in Fig. 2.1). Results are plotted as a function of scale factor, a. The 
formation time (defned as the point at which Mcoll = M−2) for each halo is marked with a square 
crossed by a solid vertical segment (used for clarity) on top of the CMH. The dashed colored lines 
correspond to the CMHs predicted by the extended Press-Schechter theory (EPS-CMHs) and have 
been computed using Eq. (D.2) with δsc = 1.46 and f = 0.02. The open triangles crossed by dashed 
vertical segments indicate the formation times obtained from the EPS-CMHs. 
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split into four panels corresponding to redshifts z0 = 0, 0.5, 1, and 2. We present the results for 
all available cosmologies in our suite of simulations and color-code the points accordingly to the 
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visualization. 
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Figure 2.6: Relative diferences between the c(M, z) relation measured for diferent simulations 
(connected circles). The simulation taken as reference to compute the relative diferences in each 
panel is the one with the intermediate value of the cosmological parameter that is varied. The plotting 
conventions match those used for Fig. 2.2. The solid lines correspond to the relative diferences 
between the predictions for the concentration computed using the re-calibrated L16 model. 

agree well with the simulated ones, with residuals that show no clear systematic dependency 
on cosmology or on mass. But the residuals do exhibit a slight redshift dependence, but it 
remains below about 6 per cent for all models, mass bins and redshifts analyzed. Such small 
diferences between the predicted and measured formation times of haloes do not signifcantly 
impact our ability to accurately model halo concentrations based on EPS CMHs, and we 
conclude that the CMHs of cold dark matter haloes can reliably modelled using the EPS 
formalism for a wide range of cosmological models. 

2.3.4 Model predictions for the mass-concentration-redshift relation 

We follow L16 and use the power-law relation between ⟨ρ−2⟩ and ρc(z−2) presented in 
Fig. 2.3, together with EPS-predicted formation times to predict the cosmology-dependence 
of the c(M, z) relation. The results are plotted in Fig. 2.2 as solid colored lines, which agree 
well with the results of our simulations. 

Fig. 2.6 further explores the extent to which the L16 model captures the correct cosmology-
and mass-dependence of the c(M, z) relation. The plot is organized to match Fig. 2.2, with 
each panel showing results obtained from runs that vary a particular cosmological parameter; 
all results are plotted at z0 = 0. The various connected circles show the relative diferences 
between the median concentrations in each simulation measured with respect to those obtained 
from the run that was carried out with the intermediate value of the relevant cosmological 
parameter. The solid lines show the predictions of the L16 model, which reproduces the 
cosmology-dependence of concentration-mass relation rather well. 

In Fig. 2.7 we compare how well our measurements for the c(M, z) relation can be 
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reproduced by various other published concentration models. To produce Fig. 2.7 we select 
the values for the concentration measured for each mass bin (considering separately the 
simulations in each subpanel of Fig. 2.6), then, we obtain the gradient of the concentration 
with respect to the cosmological parameter that is varied, dc/dθ, by ftting the selected 
points to a straight line. We repeat the process for all mass bins. The results obtained are 
then normalized by dividing by the interval spanned in each subpanel by the cosmological 
parameter that is been varied, ∆θ (connected circles). We repeat this operation employing 
the predictions for the concentration provided by the re-calibrated L16 model (solid lines), 
the Prada et al. (2012) model (“P12”, dotted lines), the Child et al. (2018) model (“C18”, 
dot-dot-dashed), the Diemer and Joyce (2019) model (“DJ19”, dashed lines), the Ragagnin 
et al. (2021) model (“R21”, dash-dash-dot-dot lines), and the Brown et al. (2022) model 
(“B22”, dashed-dotted lines). 

The model that best captures the dependence of concentration on cosmology is our 
implementation of L16. Nevertheless, it is important to point out that the comparison of 
our results with the predictions provided by P12, C18, DJ19, R21, and B22 is somewhat 
unfair since, for instance, P12 aims to predict the concentrations for all haloes (including 
unrelaxed ones) and the model of R21 is calibrated using a set of hydrodinamical simulations. 
Regardless, it is important to note that the P12, C18, DJ19, R21, and B22 models predict that 
halo concentrations do not depend on w0 or wa, whereas L16 provides reasonably accurate 
predictions for the concentration dependence of these parameters. These results are not 
unexpected. The P12 and B22 models depend only on the shape of the (smoothed) density 
fuctuation power spectrum, but not on the assembly histories of haloes. Their predictions 
are therefore insensitive to the expansion history of the universe. The models of C18 and R21 
are based on empirical fts to the simulated concentration-mass-redshift relation that are also 
insensitive to the expansion history of the universe, and therefore cannot recover its impact 
halo concentrations. The DJ19 model, however, does consider the slope of the growth factor 
(instead of the full merger history of haloes) when predicting halo concentrations, but this is 
largely insensitive to w0 and wa, particularly at low redshifts. 

2.4 Application of the L16 model to scaling algorithms 

In this section we illustrate how the L16 model can be used in studies that require 
a theoretical model capable of producing accurate concentration predictions. We will 
provide, as an example, the performance of the scaling algorithms (briefy summarized in 
the next paragraph), where the results substantially improve when including a concentration 
correction. 

The scaling algorithm is a method developed by Angulo and White (2010) which allows 
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Figure 2.7: Linear dependence of the concentration on diferent cosmological parameters as a function 
of M200. The results have been computed as described in subsection §§2. The connected dots 
correspond to the results derived from our simulations. Diferent lines correspond to the results 
derived from diferent models: re-calibrated L16 model (solid lines), Prada et al. 2012 (P12; dotted 
lines), Child et al. 2018 (C18; dot-dot-dashed lines), Diemer and Joyce 2019 (DJ19; dashed lines), 
Ragagnin et al. 2021 (R21; dash-dash-dot-dot lines), and Brown et al. 2022 (B22; dashed-dotted 
lines). 

one to rapidly generate mock or synthetic cosmological simulations from a "template" 
N-body simulation. The mock simulation that the algorithm generates contains the DM 
particles of the original simulation displaced to new positions in such a way that its density 
feld accurately reproduces that of an actual N-body simulation executed using diferent 
cosmological parameters from those of the original N-body simulation. Zennaro et al. (2019) 
extended the cosmology-rescaling technique to provide predictions when considering a hot 
component of arbitrary mass, such as neutrinos. 

Contreras et al. (2020) showed that very accurate predictions for the halo clustering can 
be achieved by including a concentration correction on top of the standard scaling algorithm. 
The concentration correction modifes the position of DM particles within haloes to match 
halo concentrations in the target cosmology. 

Fig. 2.8 illustrates how concentration corrections improve the accuracy of the power 
spectrum corresponding to a scaled simulation generated using the scaling algorithm. To 
generate this fgure we employ the set of simulations presented in §2 in which we vary 
the total neutrino mass, Mν , from 0.0 eV to Mν = 0.4 eV, keeping all other cosmological 
parameters (those of Nenya) fxed, see Table 2.2. 

We apply a scaling algorithm to the N-body simulation with Mν = 0 eV to produce mock 
simulations that mimic the behaviour of runs with Mν = 0.1, 0.2, 0.3, 0.4 eV. We frst scale 
the Mν = 0 eV-simulation to the target cosmologies (changing Mν to 0.1, 0.2, 0.3, 0.4 eV 
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Figure 2.8: Relative diference between the power spectrum obtained from a gravity-only reference 
simulation and the power spectrum obtained from the corresponding rescaled simulation, i.e., 
∆P (k)/P (k) = Pscaled(k)/PN−body(k) − 1. We focus on models with diferent neutrino masses, 
and choose our reference simulation to be the one with Mν = 0 eV . The thin solid lines correspond 
to the case without applying any concentration correction and the other line styles correspond to 
concentration corrections obtained using three diferent concentration models: the re-calibrated 
L16 model (Eq. (D.1); thick solid lines), the Prada et al. 2012 model (P12; dotted lines), and the 
model of Diemer and Joyce 2019 (DJ19; dashed lines). The diferent shades of red correspond 
to diferent neutrino masses. The Nyquist frequency corresponding to these set of simulations is 
log10 kNy [h Mpc−1] ≈ 0.97, and the number of points selected to compute the power spectrum is 
sufciently large so that aliasing efects are not important. 
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subsequently) without considering concentration corrections, then, we repeat the process 
employing three diferent concentration models – the re-calibrated L16 model, the model 
presented in Prada et al. (2012) and the one from Diemer and Joyce (2019) – to provide the 
predictions for the concentration corrections. 

We compute the power spectrum for the original N-body simulations and the scaled 
simulations with and without concentration correction. The relative diferences between the 
original and scaled power spectra ∆P (k)/P (k) = Pscaled(k)/PN−body(k) − 1 are plotted 
in Fig. 2.8 as a function of scale. The thin solid lines correspond to the comparison with 
respect to mock simulations scaled without concentration corrections; the remaining lines 
correspond to the comparison with scaled simulations in which we have considered the 
concentration corrections associated with diferent concentration models: the re-calibrated 
L16 model (solid lines), Prada et al. 2012 (P12 – dotted lines) and Diemer and Joyce 2019 
(DJ19 – dashed lines). 

In Fig. 2.8 one can appreciate that the power spectra of the scaled simulations with 
concentration corrections are closer to the power spectra of the original N-body simulations in 
comparison with the case without concentration corrections. Diferent concentration models 
produce diferent levels of concentration corrections in the scaling technique which can be 
observed at the power spectrum level. The re-calibrated L16 model (i.e. Eq. (D.1)) yields 
the most accurate predictions for the power spectrum when compared to the other models. 
In the most extreme scenario, when Mν = 0.4 eV, the relative diference between the power 
spectrum from the rescaled simulation (for the L16 model) and the original simulation at 
k ≈ 4 h Mpc−1 is less than 1%; for the other concentration models the relative diferences at 
this scale are at least twice as large. 

2.5 Conclusions 

In this paper, we carried out an extensive analysis of the cosmology dependence of the 
mass-concentration-redshift relation, c(M, z), for dynamically relaxed dark matter haloes. 
Our results were based on a large suite of gravity-only simulations in which we systematically 
varied the following cosmological parameters: σ8, ΩM, Ωb, ns, h, Mν , w0 and wa. Each 
parameter was varied linearly across a range that spans a 5 to 10σ region (depending on the 
parameter; see Table 2.2 and Table 2.1) surrounding the best-ft value obtained by Planck 
Collaboration et al. (2020b). 

In agreement with previous work, we fnd that, regardless of the cosmological parameter 
varied, the concentrations of DM haloes, on average, decrease with increasing halo mass at 
fxed redshift (Fig. 2.2), as well as with increasing redshift at fxed halo mass (Fig. E.1). For 
the range of parameter values we considered, concentrations are most sensitive to changes in 
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σ8, the rms amplitude of linear density fuctuations; they are least sensitive to changes in Ωb, 
the baryon density parameter. This result is not surprising given the strong dependence of 
halo formation times on σ8 and their weak dependence on Ωb. 

In general, our results agree with previous studies showing that the structure of dark matter 
haloes is strongly correlated with their formation histories (e.g. Ludlow et al., 2014, 2016; 
Lucie-Smith et al., 2022). Specifcally, we fnd that halo concentrations, when expressed in 
terms of the enclosed density within the halo scale radius, i.e. ⟨ρ−2⟩, correlate strongly with 
the critical density at their formation time z−2, i.e. ρc(z−2). Indeed, when the latter is defned 
as the point at which the "collapsed mass history" (CMH; defned as the mass in collapsed 
progenitors larger than a fraction f = 0.02 of the halo’s present day mass) frst exceeds the 
halo’s characteristic mass, i.e. M−2 = M(< r−2), we fnd an approximately linear relation 
between the two densities that may be accurately approximated by 

⟨ρ−2⟩ = 493 × ρc(z−2). (2.6) 

This simple relation holds for all cosmologies, redshifts, and masses studied. This is a 
somewhat surprising result and the most important fnding of our paper: The relation between 
nonlinear halo structure and formation time is universal hinting that it may be a fundamental 
consequence of gravitational dynamics and collapse. This universality implies that our 
predictions for the concentration-mass relation should be valid even for cosmologies and halo 
masses outside the range considered here. 

We showed that equation 2.6, when combined with an accurate model for halo CMHs 
based on extended Press-Schechter theory (see Fig. 2.4 and appendix D), can be used to make 
accurate prediction for the mass-, cosmology- and redshift-dependence of halo concentrations 
(Fig. 2.6) even when considering dynamical dark energy and massive neutrinos. We compared 
our predictions for the c(M, z) relation with other published models (Fig. 2.7) and verifed 
that they more accurately capture its cosmology dependence. 

Our results confrm and extend those originally obtained by Ludlow et al. (2016) and 
suggest that equation 2.6 can be used to accurately predict the concentrations of DM haloes in a 
wide range of scenarios. This can be very useful in many areas of cosmology, e.g., to improve 
cosmological rescaling algorithms (see Contreras et al., 2020, Fig. 2.8 and Section 2). 
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Chapter 3 

Characterizing structure formation 
through instance segmentation 

Dark matter haloes form from small perturbations to the almost homogeneous density 
feld of the early universe. Although it is known how large these initial perturbations must 
be to form haloes, it is rather poorly understood how to predict which particles will end 
up belonging to which halo. However, it is this process that determines the Lagrangian 
shape of proto-haloes and is therefore essential to understand their mass, spin and formation 
history. We present a machine learning framework to learn how the proto-halo regions 
of diferent haloes emerge from the initial density feld. We develop one neural network 
to distinguish semantically which particles become part of any halo and a second neural 
network that groups these particles by halo membership into diferent instances. This instance 
segmentation is done through the Weinberger method, in which the network maps particles 
into a pseudo-space representation where diferent instances can be distinguished easily 
through a simple clustering algorithm. Our model reliably predicts the masses and Lagrangian 
shapes of haloes object-by-object, as well as other properties like the halo-mass function. We 
fnd that our model extracts information close to optimal by comparing it to the degree of 
agreement between two N-body simulations with slight diferences in their initial conditions. 
We publish our model open-source and suggest that it can be used to inform analytical 
methods of structure formation by studying the efect of systematic manipulations of the 
initial conditions. 

3.1 Introduction 

Dark matter (DM) haloes are the primary structures in the universe within which galaxies 
form and evolve. Acting as gravitational anchors, they play a pivotal role in connecting 
theoretical cosmology with empirical observations from galaxy surveys. Given their 
signifcance in cosmology, a comprehensive understanding of DM haloes and their behaviour 
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is paramount. Currently, our most detailed insights into their formation and properties come 
from N-body simulations (see Frenk and White, 2012, for a review). These computationally 
intensive simulations model the interactions of vast numbers of particles, pinpointing the 
regions of the density feld where gravitational collapse leads to the formation of DM haloes 
(e.g. Angulo and Hahn, 2022a). Therefore, understanding the formation and behaviour of 
DM haloes is essential to bridge the gap between theoretical models and observational data. 

However, providing quick and accurate predictions (based on the initial conditions of a 
simulation) remains a challenging task for physically-motivated models. An accurate model 
for halo formation must be able to capture the nonlinear growth of density fuctuations. 
Previous analytical or semi-analytical models for halo formation, such as the top-hat spherical 
collapse (Gunn and Gott, 1972; Gunn, 1977; Peebles, 1980), the Press-Schechter / Excursion 
Set Theory (Press and Schechter, 1974b; Bond et al., 1991b; Lacey and Cole, 1993), or 
ellipsoidal collapse approaches (e.g. Sheth et al., 2001; Sheth and Tormen, 2002), qualitatively 
reproduce the behaviour of the halo-mass function and the merging rate of haloes, however, 
they fail on predicting these quantities accurately (e.g. Jiang and van den Bosch, 2014). 
Further, N-body simulations show the formation of “peak-less” haloes, that cannot be 
accounted for by any of these methods (Ludlow and Porciani, 2011). 

Traditional analytical methods have provided foundational insights into the process of 
halo formation, but they struggle to capture the full complexity of it. Machine Learning 
(ML) techniques have emerged as a promising alternative, capable of capturing intricate 
non-linear dynamics inherent to the gravitational collapse of structures. ML algorithms can 
be trained on N-body simulations to emulate the results of much more expensive calculations. 
Previous studies have trained ML models to map initial positions and velocities of particles 
to their fnal states (He et al., 2019; Giusarma et al., 2019; Alves de Oliveira et al., 2020; Wu 
et al., 2021; Jamieson et al., 2022) and to predict the distribution of non-linear density felds 
(Rodríguez et al., 2018; Perraudin et al., 2019; Schaurecker et al., 2021; Zhang et al., 2023; 
Schanz et al., 2023). 

Further, ML has been used to predict and gain insights into the formation of haloes. 
Some studies utilized classifcation methods to anticipate if a particle will become part of 
a halo (Lucie-Smith et al., 2018; Chacón et al., 2022; Betts et al., 2023), or to predict its 
fnal mass category (Lucie-Smith et al., 2019). In Lucie-Smith et al. (2020) a regressor 
network is trained to predict the fnal halo mass for the central particle in a given simulation 
crop. The work by Bernardini et al. (2020) demonstrates how ML-segmentation techniques 
can be applied to predict halo Lagrangian regions. In Berger and Stein (2019) a semantic 
segmentation network is trained to predict Peak-Patch-haloes. In Lucie-Smith et al. (2023) 
a network is trained to predict the mass of haloes when provided with a Lagrangian region 
centred on the centre-of-mass of proto-halo patches and is then used to study assembly bias 
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when exposed to systematic modifcations of the initial conditions. 

While interesting qualitative insights have been obtained in these studies, it would be 
desirable to develop a model that accurately predicts halo membership at a particle level, 
surpassing some of the limitations from previous works. An efective model should predict 
particles forming realistic N-body halos, improving upon previous models restricted to 
simpler halo defnitions (e.g. Berger and Stein, 2019, where Peak-patch haloes are targeted). 
Additionally, an ideal model should be able to predict disconnected Lagrangian halo patches, 
overcoming the limitations of methods like the watershed technique used in Bernardini et al. 
(2020), which can only handle simply connected regions. Furthermore, particles within the 
same halo should share consistent mass predictions, avoiding having diferent halo mass 
estimates for particles belonging to the same halo. 

We present a general ML framework to predict the formation of haloes from the initial 
linear felds. We create a ML model designed to forecast the assignment of individual 
particles from the initial conditions of an N-body simulation to their respective haloes. 
To do so we train two distinct networks, one for conducting semantic segmentation and 
another for instance segmentation. These two networks together conform what is known 
as a panoptic-segmentation model. Our model efectively captures the dynamics of halo 
formation and ofers accurate predictions. We provide the models used in this study for 
public access through our GitHub repository: https://github.com/daniellopezcano/ 
instance_halos. 

The rest of this paper is organized as follows: In Section 3, we defne the problem of 
identifying diferent Lagrangian halo regions from the initial density feld (§§3), introduce the 
panoptic segmentation method (§§3), present the loss function employed to perform instance 
segmentation (§§3), describe the simulations used for model training (§§3), asses the level of 
indetermination for the formation of proto-haloes (§§3), outline the CNN architecture (§§3), 
and explain our training process (§§3). In Section 3, we present the outputs of our semantic 
model (§§3) and our instance segmentation approach (§§3). We investigate how our model 
reacts to changes in the initial conditions in §§3 & §§3, and study how the predictions of our 
model are afected when varying the cosmology §§3. We conclude with a summary and fnal 
thoughts in Section 3. 

3.2 Methodology 

We aim to predict the formation of DM haloes provided an initial density feld. To 
comprehensively address this problem, we divide this section into distinct parts. In §§3, we 
explain the problem of predicting halo-collapse and discuss the most general way to phrase 
it. In §§3, we introduce the panoptic segmentation techniques and explain how they can 
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be employed to predict halo formation. We divide §§3 into two separate parts: semantic 
segmentation and instance segmentation. In §§3 we describe the loss function employed to 
perform instance segmentation. In §§3, we present the suite of simulations generated to train 
and test our models. In §§3 we assess the level of indetermination of proto-halo formation. 
In §§3 we explain how to build a high-performance model employing convolutional neural 
networks. Finally, in §§3 we present the technical procedure followed to train our models. 

3.2.1 Predicting structure formation 

The goal of this work is to develop a machine-learning framework to predict the formation 
of haloes from the initial conditions of a given universe. Diferent approaches are possible 
to defne this question in a concrete input/output setting. We want to defne the problem in a 
way that is as general as possible so that our model can be used in many diferent contexts. 

The input of the model will be the linear density feld discretized to a three-dimensional 
grid δijk. A slice through such a linear density feld is shown in the top panel of Figure 3.1 
and represents how our universe looked in early times, e.g., z ≳ 100. Beyond the density 
feld, we also provide the linear potential feld ϕijk as an input. The information included in 
the potential is in principle degenerate with the density feld if the full universe is specifed. 
However, if only a small region is provided, then the potential contains additional information 
of e.g. the tidal feld sourced by perturbations outside of the region considered. 

The model shall predict which patches of the initial density feld become part of which 
haloes at later times. Concretely, we want it to group the N3 initial grid cells (corresponding, 
e.g., to particles in a simulation) into diferent sets so that each set contains exactly all particles 
that end up in the same halo at a later time. Additionally, there has to be one special extra set 
that contains all remaining particles that do not become part of any halo: 

Input: δijk, ϕijk (3.1) 

Output: 
halo 1 halo2 outside of haloes z }| { z }| { z }| { 

{idA, idB , ...}, {idC , idD, ...}, ..., {idE , idF , ...}, (3.2) 

This task is called in the ML literature an instance segmentation problem. Note that it 
is diferent from typical classifcation problems since (A) the number of sets depends on the 
considered input and (B) the sets have no specifc order. In practice, it is useful to defne the 
diferent sets by assigning diferent number-labels to them. For example, one possible set 
of particles belonging to the same halo can be given the label “1”, another set the label “2”, 
and so forth. These number-labels do not have a quantitative meaning and are permutation 
invariant, for example, interchanging the label “1” with “2” yields the same sets. 

We show such labelling of the initial space in the bottom panel of Fig. 3.1. In this case, 
the labels were inferred by the membership to haloes in an N-body simulation that employs 
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the initial conditions depicted in the top panel of Fig. 3.1 (see Sec. 3). Our goal is to train 
a model to learn this instance segmentation into halo sets by training it on the output from 
N-body simulations. 

We note that other studies have characterised the halo-formation processes through a 
slightly diferent prediction problem. For example, Lucie-Smith et al. (2020) trains a neural 
network to predict the fnal halo masses directly at the voxel level. While their approach ofers 
insights into halo formation, our method provides a broader perspective: halo masses can be 
inferred easily through the size of the corresponding sets, but other properties can be inferred 
as well – for example the Lagrangian shapes of haloes which are important to determine their 
spin (White, 1984). Furthermore, our approach ensures the physical constraint that particles 
that become part of the same halo are assigned the same halo mass. 

3.2.2 Panoptic Segmentation 

The proposed problem requires frst to segment the particles semantically into two 
diferent classes (halo or non-halo) and then to classify the particles inside the halo class into 
several diferent instances. The combination of such semantic plus instance segmentation 
is sometimes referred to as panoptic segmentation. Several strategies have been proposed 
to solve such panoptic segmentation problems (Kirillov et al., 2016; Bai and Urtasun, 2016; 
Arnab and Torr, 2017; De Brabandere et al., 2017; Kirillov et al., 2018, 2023) and they 
usually operate in two-steps: 

1. Semantic segmentation: The objective of this task is to predict, for each voxel in our 
initial conditions (representing a tracer particle in the N-body code), whether it will be 
part of a DM halo at z = 0. This task is a classifcation problem, and we will employ 
the balanced cross-entropy (BaCE) loss (Xie and Tu, 2015) to tackle it: 

� � 
LBaCE Y, Ŷ = −βY log Ŷ − (1 − β) (1 − Y) log(1 − Ŷ ) (3.3) 

Here, Y represents the ground truth data vector, each entry corresponds to a voxel and 
is equal to 1 if the associated particle ends up being part of a halo; otherwise, its value 
is 0. Ŷ contains the model predictions, with each entry representing the probability 
that this particle ends up in a halo. The parameter β handles the class imbalance 
and is calculated as the number of negative samples divided by the total number of 
samples. We measure β using our training simulations (see §§3) and obtain a value of 
β = 0.58151. After training our network, we need to choose a semantic threshold to 

1The value of β depends on many properties such as the cosmological parameters chosen for the simulations, 
the redshift, or the mass resolution. We would need to retrain our network and recompute the value of β to 
obtain reliable predictions in diferent scenarios. 
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Figure 3.1: Example of the prediction problem considered in this article. Top panel: Slice of the 
three-dimensional initial density feld of an N-body simulation. Each voxel (represented here as a 
pixel) corresponds to a particle that can become part of a halo at later times. Bottom panel: Regions 
in the initial condition space (same slice as the top panel) that are part of diferent DM haloes at 
redshift z = 0. Pixels coloured in white do not belong to any halo. Pixels with diferent colours 
belong to diferent haloes 
. In this work, we present a machine-learning approach to predict the formation of haloes (as 
in the bottom panel) from the initial condition feld (top panel). 
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generate the fnal semantic predictions. This threshold is calibrated to ensure that the 
fraction of predicted particles belonging to haloes is equal to 1 − β, resulting in a value 
of 0.589 (refer to Appendix H for an in-depth explanation). 

2. Instance segmentation: The objective of this task is to recognize individual haloes 
(instances) by identifying which particles (from those that are predicted to be part of a 
DM halo) belong to the same object and separating them from others. 

Instance segmentation tasks are not conventional classifcation problems and tackle 
the problems of having a varying number of instances and a permutational-invariant 
labelling. To our knowledge, there is no straightforward way to phrase the problem of 
classifying each voxel into a fexible number of permutable sets through a diferentiable 
loss function. Typical approaches train a model to predict a related diferentiable loss 
and then apply a postprocessing step on top of it. Unfortunately, this leads to the loss 
function not directly refecting the true objective. 

Various approaches have been proposed to tackle this problem (Kirillov et al., 2016; 
Bai and Urtasun, 2016; Arnab and Torr, 2017; De Brabandere et al., 2017; Kirillov 
et al., 2018, 2023). A popular method is the watershed technique (Kirillov et al., 2016; 
Bai and Urtasun, 2016). This method uses a network to predict semantic segmentation 
and the borders of diferent instances (Deng et al., 2018) and then applies a watershed 
algorithm to separate diferent instances in a post-processing step. However, the 
watershed approach comes with several limitations: 

• It cannot handle the identifcation of disconnected regions belonging to the same 
instance, a problem known as occlusion. 

• It is necessary to select appropriate threshold values for the watershed 
post-processing step to generate the fnal instance map. These parameters are 
typically manually chosen to match some particular metric of interest, but might 
negatively impact the prediction of other properties. For instance, in Bernardini 
et al. (2020), they apply the watershed technique to predict Lagrangian halo 
regions identifed with the HOP algorithm (Eisenstein and Hut, 1998). However, 
they choose the watershed threshold to reproduce the halo-mass-function, which 
does not ensure that the Lagrangian halo regions are correctly predicted. 

• The watershed approach would struggle to identify the borders of Lagrangian 
halo regions since they are difcult to defne. In Fig. 3.1 it can be appreciated 
that the borders of halo regions are very irregular. There also exist points in the 
“interior” of these regions which are “missing” and make it particularly complex 
to defne the border of a halo. 
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Despite all the challenges presented by the watershed approach, in Section F, we 
apply this method to predict the formation of FoF-haloes and discuss how the 
border-prediction problem can be addressed. 

An approach that ofers greater fexibility for grouping arbitrarily arranged particles 
was presented by De Brabandere et al. (2017). We will follow this approach through the 
remainder of this work. The main idea behind this method, which we will refer to as the 
“Weinberger approach”2, is to train a model to produce a “pseudo-space representation” 
for all the elements of our input space (i.e., voxels/particles in the initial conditions). 
An ideal model would map voxels belonging to the same instance close together in 
the pseudo-space while separating them from voxels belonging to diferent instances. 
Consequently, the pseudo-space distribution would consist of distinct clouds of points, 
each representing a diferent instance (see Fig. 3.2). The postprocessing step required 
to generate the fnal instance segmentation in the Weinberger approach is a clustering 
algorithm which operates on the pseudo-space distributions. 

3.2.3 Weinberger loss 

The Weinberger approach possesses some advantages over other instance segmentation 
techniques: First of all, the loss function more closely refects the instance segmentation 
objective; that is, to classify diferent instances into a variable number of permutationally 
invariant sets. Secondly, the approach is more fexible and makes fewer assumptions, 
for example, it can handle occlusion cases and does not need to assume the existence of 
well-defned instance borders. 

In Fig. 3.2, we schematically illustrate the efects of the individual components of the 
Weinberger loss. Each point in this fgure represents a pseudo-space embedding of an input 
voxel. The colours indicate the assigned labels based on the ground truth. Points sharing the 
same colour belong to the same instance (according to the ground truth), whereas diferent 
colours depict separate instances. The "centre of mass" for each cluster is computed and 
indicated with coloured crosses as "cluster centres". The Weinberger loss is constituted by 
three separate terms: 

• Pull force, Eq. (3.4): 

X X1 C 
1 Nc � 2 � 

Lpull = max (∥µc − xi∥ − δPull) , 0 (3.4)
C Nc c=1 i=1 

2The loss function employed by De Brabandere et al. (2017) to perform instance segmentation is inspired 
by a loss function originally proposed by Weinberger and Saul (2009) in the context of contrastive learning as 
a triplet-loss function. 
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Figure 3.2: Example of a two-dimensional pseudo-space employed to separate diferent instances 
according to the Weinberger loss. Coloured points represent individual points mapped into the 
pseudo-space. The centres of the clusters are presented as coloured crosses. Coloured arrows depict 
the infuence of the pull force term, only afecting points outside the δPull range of their corresponding 
cluster centre. Grey arrows show the infuence of the push force that manifests if two cluster centres 
are closer than the distance 2 · δPush 

Given a certain instance c (where C is the total number of instances), a point i 
belonging to that set, whose pseudo-space position is xi, will feel an attraction force PNcproportional to the distance to the instance centre µc = i=1 xi/Nc, where Nc is the 
number of members associated with the instance c. Points closer than δPull (which is 
a hyperparameter of the Weinberger loss) from the instance centre will not experience 
any pull force. The pull force is represented in Fig. 3.2 as coloured arrows pointing 
towards the instance centres outside the solid-line circles, which symbolize the distance 
δPull to the instance centres. 

• Push force, Eq. (3.5): 

C C
1 X X � 2 � 

Lpush = max (2δPush − ∥µcA − µcB ∥) , 0 (3.5)
C(C − 1) 

cA=1 cB =1 
cA ̸=cB 

Two instances A and B will repel each other if the distance between their instance 
centres in the pseudo-space, µcA and µcB , is smaller than 2δPush (a hyperparameter of 
the Weinberger loss). The force they feel is proportional to the distance between them. 
In Fig. 3.2 the push force is represented as grey arrows. The dashed circles represent 
the distance δPush to the instance centres. 
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• Regularization force, Eq. (3.6): 

CX 
Lreg =

1 ∥µc∥ (3.6)
C 

c=1 

To avoid having an arbitrarily big pseudo-space distribution all instance centers will 
feel an attraction towards the pseudo-space origin. 

The overall efect of these forces on the total Weinberger loss is written as: 

LWein = cPull · LPull + cPush · LPush + cReg · LReg (3.7) 

Where cPull, cPush, and cReg are hyperparameters that regulate the strength of the diferent 
components. 

Minimizing Eq. (3.7) ensures that the pseudo-space mapping produces instance clusters 
separated from each other. A model trained efectively will predict pseudo-space distributions 
with points corresponding to the same instances being grouped together and distinctly 
separated from other instances. In an ideal scenario in which the Weinberger loss is zero, 
all points are closer than δPull to their corresponding cluster centres, and clusters are at least 
2δPush apart. However, realistically, the Weinberger loss won’t be exactly zero, necessitating 
a robust clustering algorithm for accurate instance map predictions. 

In Appendix G we describe the clustering algorithm that we have developed to robustly 
identify the diferent instance maps. In our clustering algorithm we frst compute the local 
density for each point in our pseudo-space based on a nearest neighbors calculation. We 
then identify groups as descending manifolds of density maxima surpassing a specifed 
persistence ratio threshold. Particles are assigned to groups according to proximity and 
density characteristics. We merge groups selectively, ensuring that the persistence threshold 
is met. The algorithm relies on three key hyper-parameters for optimal performance: Ndens, 
Nngb and pthresh. This approach efectively segments the pseudo-space distribution of points, 
even when perfect separation is not achieved, thus enhancing the reliability of predicted 
instance maps. 

3.2.4 Dataset of Simulations 

We generate twenty N-body simulations with diferent initial conditions to use as training 
and validation sets for our panoptic segmentation model. Our simulations are carried out 
using a lean version of L-Gadget3 (see Springel et al., 2008; Angulo et al., 2012, 2021). 
For each of these simulations, we evolve the DM density feld employing NDM = 2563 

DM particles in a volume of Vbox = (50 h−1Mpc)3, resulting in a DM particle-mass of 
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mDM = 6.35 · 108 h−1M⊙. All our simulations employ the same softening length: ϵ = 
5 h−1kpc, and share the cosmological parameters derived by Planck Collaboration et al. 
(2020b), that is, σ8 = 0.8288, ns = 0.9611, h = 0.6777, Ωb = 0.048252, Ωm = 0.307112, 
and ΩΛ = 0.692888. Our suite of simulations is similar to the one employed in Lucie-Smith 
et al. (2020). 

We use a version of the NgenIC code (Springel, 2015) that uses second-order Lagrangian 
Perturbation Theory (2LPT) to generate the initial conditions at z = 49. We employ a 
diferent random seed for each simulation to sample the Gaussian random feld that determines 
the initial density feld. We identify haloes at redshift z = 0 in our simulations using 
a Friends-of-Friends algorithm (Davis et al., 1985), with linking length b = 0.2. In this 
work, we will only consider haloes formed by 155 particles or more, corresponding to 
MFoF ⪆ 1011 h−1M⊙. We use 18 of these simulations to train our model and keep 2 of them 
to validate our results. 

3.2.5 Assessing the level of indetermination 

In addition to the training and test sets, we run a set of simulations to establish a target 
accuracy for our model. These simulations test to what degree small sub-resolution changes 
of the initial density feld can afect the fnal Lagrangian halo regions. 

Structure formation simulations resolve the initial conditions of a considered universe 
only to a limited degree and exhibit therefore an inherent degree of uncertainty. (1) The 
numerical precision of simulations is limited (e.g. to 32bit foating point numbers) and 
therefore any results that depend on the initial conditions beyond machine precision are 
inherently uncertain. For example, Genel et al. (2019) show that changes in the initial 
displacement of N-body particles at the machine-precision level can lead to diferences in 
the fnal locations of particles as large as individual haloes. (2) The initial discretization 
can only resolve the random perturbations of the Gaussian random feld down to a minimum 
length scale of the mean-particle separation. If the resolution of a simulation is increased, 
then additional modes enter the resolved regime and act as additional random perturbations. 
Such additional perturbations may induce some random changes in the halo assignment of 
much larger-scale structures. 

A good model should learn all aspects of structure formation that are certain and well 
resolved at the considered discretization level. However, there is little use in predicting aspects 
that are under-specifed and may change with resolution levels. Therefore, we conduct an 
experiment to establish a baseline of how accurate our model shall be. 

We run two additional N = 2563 simulations with initial conditions generated by MUSIC 
code (Hahn and Abel, 2011). For these simulations we keep all resolved modes fxed (up 
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to the Nyquist frequency of the 2563 grid), but we add to the particles diferent realisations 
of perturbations that would be induced by the next higher resolution level. We do this by 
selecting every 23th particle from two initial condition fles with 5123 particles and with 
diferent seeds at the highest level (“level 9” in MUSIC). Therefore, the two simulations difer 
only in the random choice of perturbations that are unresolved at the 2563 level. We refer to 
these two simulations as the “baseline” simulations. 

In Fig. 3.3 we show a slice of the Lagrangian halo patches at z = 0 through these 
simulations (left and right panels respectively). The colour map in this Figure represents 
the masses of the halo that each particle becomes part of, which correspond to the size of 
the corresponding halo-set. We colour each pixel (which corresponds to a certain particle) 
according to the mass of the halo that it belongs to. We can appreciate that the outermost 
regions of the Lagrangian regions are particularly afected while the innermost parts remain 
unchanged. Notably, in certain instances, signifcant changes appear due to the merging of 
haloes in one of the simulations where separate haloes are formed in the other (black-circled 
regions). 

Throughout this article, we will use the degree of correspondence between the baseline 
simulations as a reference accuracy level. We consider a model close to optimal if the 
diference between its predictions and the ground truth is similar to the diferences observed 
between the two baseline simulations. A lower accuracy than this would mean that a model 
has not optimally exploited all the information that is encoded in the initial conditions. A 
higher accuracy than this level is not desirable, since it is not useful to predict features 
that depend on unresolved aspects of the simulation and may be changed by increasing the 
resolution level. 

3.2.6 V-Net Architecture 

V-nets are state-of-the-art models, product of many advances in the feld of ML over the 
last decades (Fukushima, 1980; Lecun et al., 1998; Krizhevsky et al., 2012; Szegedy et al., 
2014; Long et al., 2014; Ronneberger et al., 2015; He et al., 2015). They are a particular kind 
of convolutional neural network (CNN) developed and optimized to efciently map between 
volumetric inputs and volumetric outputs. V-nets are formed by two separate modules: the 
encoder (or contracting path) which learns how to extract large-scale abstract features from 
the input data; and the decoder (or up-sampling path) that translates the information captured 
by the encoder to voxel-level predictions (also making use of the information retained in the 
“skipped connections”). We train V-nets to minimize the loss functions presented in §§3 
and §§3. We now explain the technical characteristics of how we have implemented a V-net 
architecture in TensorFlow (Abadi et al., 2015) (see Fig. 3.4 for a schematic representation 
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Figure 3.3: Slice of the Lagrangian halo regions of the two “baseline” simulations (left and right 
panels respectively). These simulations only difer in sub-resolution perturbations to the initial 
conditions and their level of agreement sets a baseline for the desired accuracy of our models. The 
colours employed for both panels represent the mass of the halo associated with each particle for the 
diferent Lagrangian halo patches. Circled regions highlight Lagrangian patches whose associated 
mass signifcantly changes between the two simulations. 
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Figure 3.4: Flowchart of the particular V-Net architecture we have implemented. The network can 
take as input multiple channels with dimensions of 1443 (top left green cube) and generates predictions 
for the central voxels with dimensions 1283 (top right red cube). The fowchart illustrates the encoder 
and decoder paths, along with other distinctive features of the network. Notably, the hidden layers 
and skip connections are represented by purple and yellow cubes, with their respective dimensions 
annotated at their centres. The down-sampling and up-sampling blocks are shown as brown and 
purple trapezoids, in their centres we indicate the number of flters employed for the convolution (or 
transposed convolution) operations. 
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of our network architecture): 
• Input: Our network is designed to accept as input 3D crops consisting of 1443 voxels.3 

For the results presented in Section 3, we employ two input channels for the semantic 
segmentation model, corresponding to the initial density feld and the displacement 
potential, which is defned through Poisson’s equation as: 

δ(q⃗) = ∇⃗ 2ϕ(q⃗) (3.8) 

For the instance segmentation model, we include three additional input channels 
corresponding to the Lagrangian positions of particles. This is necessary since the 
network has to be able to map diferent haloes with the same density (and potential) 
structure at diferent locations in the initial feld to diferent locations in the pseudo 
space. 

• Encoder / contractive / down-sampling / down-scaling path: This module consists of 
consecutive down-scaling blocks that reduce the number of voxels per dimension by 
half at each level of the network. The purpose of the down-scaling path is to enlarge 
the network’s feld of view, enabling per-voxel predictions that take into account distant 
regions of the feld. Achieving this would be impractical using large convolution 
kernels, as they would consume excessive memory. Within each down-sampling 
block, we apply three consecutive convolution operations followed by a Leaky-ReLu 
activation function. The number of convolution flters in a contractive block doubles 
with each level of compression to improve the performance of the model. For each 
level, the latent maps computed before the fnal convolution (the one used to reduce 
the data size) are temporarily stored to serve as a skip connection for the up-scaling 
path. In Fig. 3.4 we show the dimensions of the latent maps computed at each level of 
the contractive path; the deepest level of our network has a size of 93 × 128. 

• Decoder / up-sampling / up-scaling path: This path operates opposite to the contractive 
path; each up-scaling block doubles the number of voxels per dimension, ultimately 
recovering an image with the same dimensions as the original input (see Fig. 3.4). 
The up-sampling path facilitates the extraction of smaller-scale features that infuence 
the fnal per-voxel predictions. Within an up-sampling block, the fnal convolution is 
substituted with a transposed convolution operation, that allows doubling the output 
size per dimension. 

• Output: The fnal module of our network takes as input the latent maps with dimensions 
1443 × 16. The functionality of this module varies depending on the task at hand. For 

3Ideally, we would prefer to accept as input 2563 voxels (corresponding to the full simulation box). However, 
our GPU resources, though powerful (specifcally, an NVIDIA QUADRO RTX 8000 with 48 GB of memory), are 
insufcient to accommodate such an input size while maintaining a reasonably complex network architecture. 
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semantic segmentation, a single convolution operation is performed, resulting in a 
latent map of 1443 × 1. This map is subsequently cropped to 1283 × 1, and fnally, a 
sigmoid activation function is applied. In the case of instance segmentation, we have 
decided to work in a three-dimensional pseudo-space, hence, we employ a convolution 
with three flters to obtain 1443 × 3 maps, which are afterwards cropped to 1283 × 3. In 
both cases, the fnal cropping operation is implemented to enhance model performance 
by focusing on the central region of the image. 

The V-Net architecture we have implemented is a state-of-the-art model that encompasses 
over 3 · 106 trainable parameters. 

3.2.7 Training 

We train our segmentation networks using a single Nvidia Quadro RTX 8000 GPU card. 
As mentioned in §§3, we employ 18 simulations for training, dividing the training process 
into separate stages for the semantic and instance models. 

To ensure robust training and enhance the diversity of training examples without needing 
to run more computationally expensive simulations, we apply the following data augmentation 
operations each time we extract a training sample from our simulation suite: 

1. Select one of the training simulation boxes at random. 

2. Select a random voxel as the center of the input/output regions. 

3. Extract the input (1443) and target (1283) felds of interest by cropping the regions 
around the central point, considering the periodic boundary conditions of the 
simulations. 

4. Randomly transpose the order of the three input grid dimensions qx, qy, qz. 

5. Randomly chose to fip the axes of the input felds. 

To train our semantic and instance segmentation networks we minimize the respective 
loss functions – Eq. (3.3) and Eq. (3.7) – employing the Adam optimizer implemented in 
TensorFlow (Abadi et al., 2015). We train our models for over 80 epochs, each epoch 
performs mini-batch gradient descent using 100 batches, and each batch is formed by 2 draws 
from the training simulations. We deliberately choose a small batch size to avoid memory 
issues and ensure the network’s capability to handle large input and output images (1443 and 
1283 respectively). Selecting a small batch size induces more instability during training; we 
mitigate this issue by using the clip normalization operation defned in TensorFlow during 
the backpropagation step. 
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The hyper-parameter β in the Balanced Cross-Entropy Eq. (3.3) is determined by 
computing the ratio of negative samples to the total number of samples in the training data. 
The value of β measured in diferent training simulations lies in the interval [0.575, 0.5892]. 
There exists a slight predominance of voxels/particles that do not collapse into DM haloes 
with mass MFoF ⪆ 1011 h−1M⊙ at z = 0 considering the Planck Collaboration et al. (2020b) 
cosmology. We fx the hyper-parameter β in Eq. (3.3) to the mean value β = 0.5815. 

Regarding the hyper-parameters in the Weinberger loss Eq. (3.7), we adopt the values 
presented in De Brabandere et al. (2017), as we have observed that varying these parameters 
does not signifcantly afect our fnal results. The specifc hyper-parameter values are the 
following: cPull = 1, δPull = 0.5, cPush = 1, δPush = 1.5, and cReg = 0.001. We have conducted 
a hyper-parameter optimization for the clustering algorithm described in Appendix G and 
found the following values: Ndens = 20, Nngb = 15 and pthresh = 4.2 (see Table 3.2). 

Our semantic and instance models are designed to predict regions comprising 1283 

particles due to technical limitations regarding GPU memory. To overcome this limitation 
and enable the prediction of larger simulation volumes, we have developed an algorithm that 
seamlessly integrates sub-volume crops. For our semantic model, we serially concatenate 
sub-volume predictions to cover the full simulation box. For our instance network, we propose 
the method described in Appendix I. In summary, this method works as follows: we generate 
two overlapping lattices. Both lattices cover the entire simulation box, but the second one is 
shifted with respect to the frst one (its sub-volume centres lay in the nodes of the frst one). 
The overlapping regions between the lattices are employed to determine whether instances 
from diferent crops should merge or not. We have verifed that this procedure is robust by 
checking that the fnal predictions are not sensitive to the particular lattice choice. 

We train our semantic and instance networks separately. The semantic predictions are 
not employed at any stage during the training process of the instance model. To compute 
the instance loss, Eq. (3.7) is evaluated using the true instance maps and the pseudo-space 
positions. The semantic predictions are only employed once both models have been trained. 
We use the semantic predictions to mask out pseudo-space particles not belonging to haloes. 
Then, the clustering algorithm described in Appendix G is applied to identify clusters of 
particles in the pseudo-space (which yields the fnal proto-halo regions). 

Table 3.1: Hyper-parameters employed in our instance segmentation pipeline. 

δPull δPush cPull cPush cReg Ndens Nngb pthresh 
0.5 1.5 1 1 0.001 20 15 4.2 
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3.3 Model Evaluation 

In this section, we test the performance of our models for semantic segmentation (§§3) 
and instance segmentation (§§3). We use the two simulations reserved for validation to 
generate the results presented in this section. 

3.3.1 Semantic Results 

In Fig. 3.5, we compare the predictions of the semantic segmentation network with the 
halo segmentation found in the validation simulation. The leftmost panel illustrates a slice of 
the ground truth. Voxels/particles of the initial conditions belonging to a DM halo at z = 0 
are shown in red; blue voxels represent particles not belonging to a DM halo at z = 0. 

The central panel of Fig. 3.5 displays the probabilistic predictions from our semantic 
model for the same slice. The colour map indicates the probability assigned to each pixel for 
belonging or not to a DM halo. Voxels with a white colour have a 50% predicted probability 
of belonging to a halo. The neural network tends to smooth out features, assigning uncertain 
probabilities to regions near halo borders, while consistently assigning high probabilities to 
inner regions and low probabilities to external regions. In the ground truth it is possible 
to observe that some interior particles within proto-haloes are predicted to belong to the 
background. We refer to these as "missing voxels". One of the consequences of the smoothing 
efect of our network is to ignore these missing voxels, predicting a homogeneous probability 
of collapse in the interior regions of proto-haloes. The missing voxels in the Lagrangian 
structure seem to be a feature very sensitive to the initial conditions impossible to capture 
accurately at a voxel level. This is supported by the fact that the missing voxels also change 
signifcantly in the baseline simulations (see Fig. 3.3). 

The rightmost panel of Fig. 3.5 shows the pixel-level error map for the same slice. We 
select a semantic threshold value equal to 0.589 to generate these results. We choose this 
value for the semantic threshold so that the total predicted number of particles that belong to 
a halo matches the number of collapsed voxels in the validation simulations. In Appendix H 
we further analyze the sensitivity of our semantic results to the value chosen for the semantic 
threshold. We use diferent colours to represent the corresponding classes of the confusion 
matrix: Green corresponds to true positive (TP) cases, blue to true negatives (TN), black to 
false negatives (FN), and red to false positives (FP). 

Some regions are particularly challenging to predict for the network, likely due to their 
sensitivity to changes in the initial conditions. For example, in the rightmost panel of 
Fig. 3.5, it is easy to appreciate many FN regions that appear as black string-like structures 
surrounding TP collapsed regions. These FN cases likely correspond to particles infalling 
into the halo at z = 0, identifed as part of the FoF group despite not having completed the 
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Figure 3.5: Slice through the predictions of our semantic segmentation network applied to a validation 
simulation. Left panel: Ground truth representation showing in red the voxels/particles belonging 
to a DM halo at z = 0 and in blue those particles that do not belong to a DM halo. Central panel: 
Probabilistic predictions of the semantic network with colour-coded probabilities for halo membership. 
Right panel: Pixel-level error map indicating true positive (green), true negative (blue), false negative 
(black), and false positive (red) regions resulting after applying a semantic threshold of 0.589 to our 
predicted map. The network efectively captures complex halo boundaries and exhibits high validation 
accuracy (acc = 0.86) and F1-score (F1 = 0.83). 

frst pericentric passage. Capturing this behaviour might be particularly challenging for the 
network since the exact shape of these “frst-infall” regions is more sensitive to small changes 
in the initial condition and can also be infuenced by distant regions of the proto-haloes that do 
not completely ft within the feld-of-view of our network (which can occur for very massive 
proto-halos). Also, we can appreciate FP regions that appear between the FN string-like 
regions and the TPs corresponding to the central Lagrangian regions of haloes. Additionally, 
the boundaries of the largest haloes may be especially difcult to predict for the network, 
since they only ft partially into the feld of view. 

The results presented in Fig. 3.5 suggest, upon visual inspection, that our model accurately 
captures many of the complex dynamics that determine halo collapse. To rigorously assess 
the performance of our model we need to quantify the results obtained from our semantic 
network and compare them with the diferences between the baseline simulations, as discussed 
in Section 3. 

In Table 3.2 we present the values of some relevant metrics that we can employ to 
evaluate the performance of our semantic network (we have considered the semantic threshold 
of 0.589). In particular, we study the behaviour of fve diferent metrics: True Positive 
Rate TPR = TP/(TP + FN), True Negative Rate TNR = TN/(TN + FP), Positive 
Predictive Value PPV = TP/(TP + FP), Accuracy ACC and the F1-score (which is a more 
representative score than the accuracy when considering unbalanced datasets), see Eq. (3.9): 
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TP + TN 2TP
ACC = ; F1 = (3.9)

TP + TN + FN + FP 2TP + FP + FN 

Table 3.2 also contains the scores measured using the baseline simulations. Our model 
returns values for all the metrics very close to the optimal target from the baseline simulations. 
This demonstrates the reliability of our model in predicting the well-specifed aspects of halo 
collapse. See Appendix H for a more detailed discussion about the performance of our 
semantic model and the relation between the selected semantic threshold with the results 
contained in Table 3.2. 

In addition to the optimal case, we compare our semantic model with the explicit 
implementation of the excursion set theory from ExSHalos (Voivodic et al., 2019). The 
ExSHalos code grows spheres around the density peaks in the Lagrangian density feld until 
the average density inside crosses a specifed barrier for the frst time. The barrier shape is 
motivated by the ellipsoidal collapse (Sheth et al., 2001; de Simone et al., 2011) with three 
free parameters that were ftted to reproduce the mean mass function of our simulations. 
In Table 3.2 we include the semantic metrics measured with the ExSHalos results. While 
ExSHalos can describe halo formation to some degree, there exist some aspects that go 
beyond the spherical excursion set paradigm which are better captured by our semantic 
model. A more detailed analysis of the results obtained with ExSHalos is presented in 
Appendix J. 

In Fig. 3.6 we compare the values of the predicted TPR as a function of ground truth halo 
mass (TPRPred, solid green line), with the TPR values measured from the baseline simulations 
(TPRbase, solid black line). It is possible to perform this comparison for the TPR because, 
in the ground truth data, we retain information about the mass of the FoF-haloes associated 
with each DM particle. Therefore, we can compute the fraction of TP cases in diferent 
ground-truth-mass-bins by selecting the voxels according to the mass associated with them 
in the ground truth. 

In Fig. 3.6, the values for TPRbase increase with halo mass, indicating that particles that 
end up in lower-mass haloes are more sensitive to small-scale changes in the initial conditions, 

Table 3.2: Performance metrics of our semantic segmentation model, along with the ExSHalos 
results, compared against the optimal target accuracy estimated from the baseline simulations. The 
table presents True Positive Rate (TPR), True Negative Rate (TNR), Positive Predictive Value (PPV), 
and Negative Predictive Value (NPV). 

Type TPR TNR PPV ACC F1 
ExSHalos 0.518 0.845 0.707 0.708 0.598 
Pred. 0.838 0.883 0.838 0.864 0.838 
Optimal 0.887 0.914 0.882 0.903 0.884 
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Figure 3.6: True Positive Rate expressed as a function of the halo mass associated with the ground 
truth voxels. We present the results measured from the model predictions (solid bright green line) 
in comparison to the optimal target accuracy from the baseline simulations (solid black line). The 
vertical dotted line at 1012 h−1M⊙ marks the point where model predictions start to difer from the 
baseline results. 

consequently, harder to predict accurately. Our network’s predictions follow a similar trend, 
albeit with some discrepancies. The model seems to under-predict the number of particles 
that end up in haloes with masses lower than MTrue ⪅ 1012 h−1M⊙ (dotted vertical black line 
in Fig. 3.6). This indicates that our model tends to under-predict the number of pixels that are 
identifed as TPs in the lower mass end. For haloes whose mass is greater than 1012 h−1M⊙, 
our model returns accurate predictions to a good degree over a broad range, extending more 
than two orders of magnitude in halo mass. 

In this subsection, we have demonstrated that our semantic model extracts most of the 
predictable aspects of halo formation by comparing our results with the baseline simulations 
(which only difer in unresolved aspects of the initial conditions). We now employ 
the predictions of our semantic network to generate the fnal results using our instance 
segmentation model. 

3.3.2 Instance Results 

We provide some examples of our instance predictions in Fig. 3.7. The left column 
displays the ground truth masses of halo Lagrangian regions extracted from the simulation 
results (analogous to Fig. 3.3); the right column shows the predictions obtained from our 

90 



12.5

25.0

37.5

y 
po

sit
io

n 
[h

1 M
pc

]

12.5

25.0

37.5

y 
po

sit
io

n 
[h

1 M
pc

]

12.5

25.0

37.5

y 
po

sit
io

n 
[h

1 M
pc

]

12.5 25.0 37.5
x position [h 1Mpc]

12.5

25.0

37.5

y 
po

sit
io

n 
[h

1 M
pc

]

12.5 25.0 37.5
x position [h 1Mpc]

11.0 12.0 13.0 14.0
log10 MTrue [h 1M ]

11.0 12.0 13.0 14.0
log10 MPred [h 1M ]

Figure 3.7: Examples of the instance segmentation results obtained with our model. Left column: 
ground truth masses obtained using N-body simulations. Right column: predicted masses obtained 
using our instance segmentation pipeline. The model can predict the Lagrangian patches of haloes, 
although some small diferences – e.g. regarding the connectivity of haloes – exist. 
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segmentation pipeline. The way in which we compute halo masses from the instance 
predictions is by counting the number of particles/voxels that have been assigned to the same 
label and multiplying that by the particle mass of our simulations, mDM = 6.35 · 108 h−1M⊙. 

The shapes of the halo contours are well-captured thanks in part to the semantic 
predictions. The instance segmentation pipeline successfully distinguishes the diferent 
haloes that have formed, and in most cases, correctly separates neighbouring haloes. This 
is not a trivial task since the size of halo Lagrangian regions varies across several orders 
of magnitude. Therefore, the instance segmentation pipeline must correctly separate wildly 
diferent particle groupings in the pseudo-space. Fig. 3.7 shows that our instance segmentation 
pipeline correctly identifes diferent Lagrangian halo regions for the majority of cases. 
However, we note that diferences arise on the one hand for very small haloes that are close 
to the resolution limit and on the other hand for very large haloes that are larger than the feld 
of view of the network. 

In Fig. 3.8, we present a comparison between the ground truth halo masses and the 
predicted masses associated with the particles/voxels in our validation set. To generate these 
results we apply the following procedure: We select all the ground truth voxels/particles that 
end up in FoF-haloes and study the predictions associated with them. We can associate a 
predicted mass for all the voxels that belong to a DM halo. In these cases, we can compare 
the predicted mass values (MPred) with the ground truth masses (MTrue) at a voxel level. This 
comparison is shown in the main panel of Fig. 3.8 as black violin plots (“violins” henceforth). 
The mass range covered by the black violins goes from MTrue = 1011 h−1M⊙, corresponding 
to the minimum mass of haloes (155 particles), to MTrue ≈ 1014.7 h−1M⊙, which is the mass 
of the most massive halo identifed in the validation simulations. The number of high-mass 
haloes is smaller than small-mass ones and therefore the higher-mass end of the violin plot 
exhibits more noise. We can appreciate that the median predictions (black dots) correctly 
reproduce the expected behaviour (ground truth) for several orders of magnitude. 

The voxels identifed as part of a halo in the ground truth, but not in the predicted map, are 
false negative (FN) cases. For these occurrences, we can study the dependence of the False 
Negative Rate (FNR) as a function of the ground truth halo mass (solid black line on the top 
panel of Fig. 3.8; analogous to 3.6). We can also study the reciprocal case in which a voxel is 
predicted to be part of a halo (hence, it has an associated MPred) but the ground truth voxel 
is not collapsed. These cases correspond to False positives (FP) but to make a comparison 
as a function of mass we can only express it in terms of the predicted mass. Therefore, we 
show as a dashed black line in the top panel of Fig. 3.8 the false discovery rate, 

[FP|MPred]FDR = . (3.10)
[TP|MPred] + [FP|MPred] 

We compare our results with those obtained from the baseline simulations. In the main 
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panel of Fig. 3.8 we present the corresponding violin plots from the baseline simulations with 
green lines. The range that the green violins span is smaller than the black violins since the 
most massive halo identifed in the baseline simulations has a mass of MTrue ≈ 1014.4 h−1M⊙. 
In the top panel, the solid and dashed green lines represent the FPR and FDR respectively. As 
expected, the FPR and FDR coincide in the case of the baseline simulations. The top panel 
results demonstrate that our predictions are comparable to those of the baseline simulations 
(as pointed out in Fig. 3.6) over most of the considered mass range. However, they get 
progressively worse for masses below MTrue ⪅ 1012 h−1M⊙ (vertical dotted black line), 
deviating from the baseline trend. This indicates that our model struggles to capture the 
correct behaviour of lower-mass haloes but it produces accurate predictions for higher-mass 
ones. When comparing the violin plot distributions of our model with the baseline simulations 
we appreciate that we obtain similar (but slightly broader) contours. Being able to achieve 
a similar scatter as in the baseline simulations indicates that our model can capture the 
well-resolved aspects of halo formation. We want to emphasize that precise predictions 
for halo masses are not directly enforced through the training loss, but are a side product, 
consequence of precisely reproducing halo Lagrangian patches. The scatter broadens for 
smaller halo mass and the network loses accuracy in these cases, sometimes associating 
smaller haloes close to a big Lagrangian patch to its closest more massive neighbour. 

In the main panel of Fig. 3.8, we include the violin plot lines presented in Lucie-Smith 
et al. (2020) (blue violin lines). In this study, a neural network was trained to minimize the 
diference between predicted and true halo-masses at the particle level using as inputs the 
initial density feld or the potential. The focus of Lucie-Smith et al. (2020) is to examine how 
diferent features of the initial conditions infuence mass predictions within a framework that 
mirrors analytical models. 

The comparison between our methodology and Lucie-Smith et al. (2020) in Fig. 3.8 
highlights the difering outcomes that arise from the unique objectives and constraints each 
model employs. While both models ultimately predict halo masses, we suggest that our 
approach benefts from the rigid operator that groups particles together and assigns them 
the same halo mass. Therefore, analytical approaches towards predicting the formation 
of structures may beneft from knowing about the fate of neighbouring particles. Since in 
excursion set formalisms, this is only possible to a limited degree, this increases the motivation 
for considering alternative approaches, like the one proposed by Musso and Sheth (2023a). 

In Appendix J, we include a comparison of our instance model with the predictions of 
ExSHalos (Voivodic et al., 2019). In Fig. J.1, we show a map-level comparison between 
the Lagrangian shapes of friends-of-friends proto-haloes and ExSHalos predictions. The 
shapes of proto-haloes predicted by the ExSHalos implementation are limited to sphere-like 
volumes, which afects its fexibility and, consequently, its accuracy (see Table 3.2). While 
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Figure 3.8: “Violin plot”, visualizing the distribution of predicted halo masses (at a voxel level) for 
diferent ground-truth mass bins. The black violin plots show the results obtained with our instance 
segmentation model. Green violin plots show the agreement between the two baseline simulations 
– representing an optimal target accuracy. The blue violin plots in the main panel show the results 
presented in (Lucie-Smith et al., 2020). The solid black line in the top panel shows the false negative 
rate, FNR, as a function of the ground truth halo mass. The dashed black line represents the fraction 
of predicted collapsed pixels that are not actually collapsed as a function of predicted halo mass (false 
discovery rate, FDR). The green lines on the top panel correspond to the analogous results obtained 
from the baseline simulations. The model predicts haloes accurately object-by-object for masses 
M ≳ 1012M⊙/h. 
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Figure 3.9: Halo-mass-function (HMF) computed using our N-body simulations reserved for 
validation (solid black line). The dashed black line represents the predicted HMF using the Lagrangian 
halo regions obtained with our instance segmentation pipeline. The solid blue line shows the HMF 
prediction from (Ondaro-Mallea et al., 2022). The dashed blue line corresponds to the HMF obtained 
after evaluating our model in a simulation with 10243 particles and Vbox = (200 h−1Mpc)3. 

ExSHalos correctly replicates the halo mass function of friends-of-friends haloes, it struggles 
to reproduce particle-level mass predictions, as shown in the violin plot in Fig. J.2. 

In Fig. 3.9 we present the halo-mass-function (HMF) computed using the validation 
simulations (solid black line). The dashed black line shows the predicted HMF computed 
using the results of our instance segmentation pipeline. We can appreciate that our predictions 
reproduce the N-body results over a range that spans more than two orders of magnitude. 
Our results improve upon the prediction mass range for the HMF of previous similar 
approaches (Berger and Stein, 2019; Bernardini et al., 2020). This is despite the fact that 
Bernardini et al. (2020) select their hyper-parameters to reproduce the HMF; while in Berger 
and Stein (2019) they reproduce the HMF corresponding to Peak Patch haloes (Stein et al., 
2019), instead of the HMF associated with FoF haloes. In Fig. 3.9 we also include a solid blue 
line representing the theoretical HMF predictions using the model by Ondaro-Mallea et al. 
(2022). We compare this result with the HMF associated with the haloes predicted by our 
model using the density and potential felds of a realization with 10243 particles and a volume 
of Vbox = (200 h−1Mpc)3 . Both lines show a good agreement in the 1012 − 1015 h−1M⊙ 

range. 

We conclude that our semantic plus instance segmentation pipeline correctly reproduces 
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the Lagrangian halo shapes of FoF-haloes spanning a mass range between 1012 h−1M⊙ 

and 1014.7 h−1M⊙. We have tested the accuracy of our results employing diferent metrics 
(presented in several tables and fgures). Inferred quantities from our predicted Lagrangian 
halo regions, such as the predicted halo masses, correctly reproduce the trends computed 
using N-body simulations and improve upon the results presented in previous studies. 

3.4 Experiments 

In this section, we test how our network reacts to systematic modifcations to the input 
density feld and potential and how well it generalizes to scenarios that lie beyond the 
trained domain. Therefore, we analyze the response to large-scale density perturbations, to 
large-scale tidal felds and to changes in the variance of the density feld. 

3.4.1 Response to large scale densities 

We study the response of the haloes to a large-scale over-density such as typically 
considered in separate universe simulations (Wagner et al., 2015a; Lazeyras et al., 2016; 
Li et al., 2014). We add a constant δϵ to the input density feld δ(q⃗) so that the new density 
feld δ∗(q⃗) is given by 

δ∗(q⃗) = δ(q⃗) + δϵ, (3.11) 

and to maintain consistency with Poisson’s equation, see Eq. (3.8), we add a quadratic term 
to the potential: 

δϵ
ϕ∗(q⃗) = ϕ(q⃗) + (q⃗ − q⃗0)2 (3.12)

6 

where q⃗0 is an arbitrary (and irrelevant) reference point (Stücker et al., 2021a), which we 
choose to be in the centre of our considered domain. Note that we break the periodic boundary 
conditions here, so it is difcult to do this operation for the whole box, but instead we consider 
it only for a smaller region to avoid boundary efects. 

We show how haloes respond to this modifcation in Fig. 3.10. The middle panel shows 
the predicted masses associated with the particles/voxels (in a similar way to Fig. 3.7) for the 
reference feld, δϵ = 0. The upper and lower panels show the results of including a constant 
term to the initial over-density feld of δϵ = −0.5 and δϵ = 0.5, respectively. 

Increases in the background density lead to more mass collapsing onto haloes, thus 
generally increasing the Lagrangian volume of haloes. Furthermore, it leads in many cases to 
previously individual haloes merging into one bigger structure. This is qualitatively consistent 
with what is observed in separate universe simulations (e.g. Dai et al., 2015; Wagner et al., 
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Figure 3.10: Response of proto-haloes to large-scale over-densities. The three panels show 
over-densities of δϵ = −0.5, 0 and 0.5 respectively. A larger large-scale density tends to increase the 
Lagrangian volume of haloes and leads to additional mergers in some cases. 
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2015b; Barreira et al., 2019; Jamieson and Loverde, 2019; Terasawa et al., 2022; Artigas 
et al., 2022). 

To evaluate quantitatively whether the model has learned the correct response to 
large-scale density perturbations, we test whether it recovers the same halo bias that has 
been measured in previous studies (Desjacques et al., 2018b, for a review). In separate 
universe experiments, the linear bias parameter can be inferred as the derivative of the halo 
mass function with respect to the large-scale density: 

1 ∂nh(M)
b1L(M) = (3.13) 

nh(M) ∂δϵ 

Therefore, (Lazeyras et al., 2016) used the halo mass function measured in separate universe 
simulations with diferent large-scale densities δϵ to measure the bias parameters through a 
fnite diferences approach. While our qualitative experiment from Figure 3.11 follows this 
in spirit, it is difcult to do the same measurement here, since the addition of the quadratic 
potential term in equation (3.12) breaks the periodic boundary conditions and makes it 
difcult to measure the mass function reliably over a large domain. Therefore, we instead 
adopt an approach to infer the bias from the unperturbed δϵ = 0 case. (Paranjape et al., 2013) 
shows that the Lagrangian bias parameter can be measured by considering the (smoothed) 
linear over-density at the Lagrangian location of biased tracers δi: X1 δi

b1L = 
σ2 (3.14)

N 

where the sum goes over N diferent tracers (e.g. all haloes in a given mass bin) and where 
σ2 = ⟨δ2⟩ is the variance of the (smoothed) linear density feld. Since this measurement 
should give meaningful results only on reasonably large scales, we smooth the Lagrangian 
density feld with a Gaussian kernel with width σr = 6h−1Mpc. We measure the smoothed 
linear density δi at the Lagrangian centre of mass of each halo patch and then we measure 
the bias by evaluating equation (3.14) in diferent mass bins. 

We show the resulting b1L as a function of mass in Figure 3.11. The blue solid and dashed 
lines show the bias parameters measured in an L = 50h−1Mpc box for the simulated versus 
predicted halo patches respectively. These two seem consistent, showing that the model has 
correctly learned the bias relation that is captured inside of the training set. However, this 
(L = 50h−1Mpc) relation is not consistent with the well-measured relation from larger scale 
simulations, indicated as a black solid line adopted from (Lazeyras et al., 2016). This is 
because very massive haloes M ≫ 1014h−1M⊙ do not form in simulations of such a small 
volume, but they are important to get the correct bias of smaller mass haloes, since wherever 
a large halo forms, no smaller halo can form. Our network has never seen such large scales, 
so it is questionable whether it has any chance of capturing the large-scale bias correctly. 
However, it might be that what it has learned in the small-scale simulation transfers to larger 
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Figure 3.11: Linear Lagrangian bias parameter b1L for the haloes, measured for diferent boxsizes L and 
comparing simulation and model. The model agrees well with the simulation at the L = 50h−1Mpc 
scale, but both are inconsistent with the true large-scale bias relation from (Lazeyras et al., 2016) 
due to efects from the limited size of the simulation volume. Evaluation on larger boxes moves the 
prediction closer to the known relation, but some deviation is maintained. 

scales. To test this, we evaluate the network on two larger boxes, L = 100h−1Mpc and 
L = 200h−1Mpc, shown as orange and green lines in Figure 3.11. These cases match the 
true bias relation better, but still show some signifcant deviation e.g. at M ∼ 1014h−1M⊙. 
Therefore, we conclude that the network generalizes only moderately well to larger scales and 
halo masses. Improved performance could possibly be achieved by extending the training set 
to larger simulations and by increasing the feld of view of the network. 

3.4.2 Response to large scale tidal felds 

In a second experiment, we want to study the response of haloes to purely anisotropic 
changes of the initial conditions, by adding a large-scale tidal feld. We, therefore, aim 
to emulate a modifcation similar to the ones considered in anisotropic separate universe 
simulations (Schmidt et al., 2018; Stücker et al., 2021b; Masaki et al., 2020; Akitsu et al., 
2021). We modify the input potential through the term 

ϕ∗(q⃗) = ϕ(q⃗) + 
1
(q⃗ − q⃗0)T T (q⃗ − q⃗0) (3.15)

2 

T = 

 0 0 0 
0 −λz 0 

 (3.16) 
0 0 λz 
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Figure 3.12: Response of proto-halo regions towards a large-scale tidal feld. The diferent panels 
show the cases with λz = −0.5, 0 and 0.5 – corresponding to a stretching tidal feld, no tidal feld 
and a compressing tidal feld in the vertical direction respectively. A negative (stretching) tidal feld 
delays infall and shrinks the proto-halo patches in the corresponding direction, whereas a positive 
(compressing) tidal feld facilitates infall and extends the proto-halo patches. 
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Since we are considering a trace-free tidal tensor, we do not need to include any modifcations 
to the initial density feld. The results of introducing the tidal feld are presented Fig. 3.12. 
In the upper panel in which we have imposed a value of λz = −0.5, the regions of typical 
proto-haloes are slightly reduced in the z-direction and extended in the y-direction. Further, 
in some cases haloes merge additionally in the y-direction while separating in the z-direction. 
In the bottom panel with λz = 0.5 we observe the opposite behaviour, with proto-halo shapes 
elongated in the z-direction and reduced in the y-direction. These observations are consistent 
with the naive expectation: A positive λz means a contracting tidal feld in the z-direction, 
which facilitates infall in this direction, whereas a negative λz delays the infall. Therefore, 
proto-haloes appear extended in the direction where the tidal feld has a contracting efect. 
This should not be confused with the response of the halo shapes in Eulerian space which 
has the opposite behaviour – reducing the halo’s extent in the direction where the tidal feld is 
contracting (Stücker et al., 2021b). Therefore, a large-scale tidal feld efects that the direction 
from which more material falls in, is the direction where the fnal halo is less extended. 

However, by comparing Figures 3.10 and 3.12, we note that the efect of modifying the 
eigenvalues of the tidal tensor (while keeping the trace fxed) is much less signifcant than 
modifying its trace δ by a similar amount. Modifying δ leads to strong diferences in the 
abundance and the masses of haloes whereas the modifcations to the tidal feld strongly afect 
the shapes, but has a much smaller efect on typical masses – if at all. 

Our investigation into the role of anisotropic features in the initial conditions complements 
the fndings of Lucie-Smith et al. (2020). They fnd that anisotropic features of the initial 
conditions do not signifcantly enhance halo mass predictions when compared to predictions 
based on spherical averages. Therefore, they conclude that including anisotropic features 
would not signifcantly improve the mass predictions that can be obtained within excursion 
set frameworks. This observation is consistent with masses not changing signifcantly when 
applying a large-scale tidal feld. However, we fnd that anisotropic features are in general 
important for the formation of structures since they afect which particles become part of 
which halo. 

Finally, we note that the response of the Lagrangian shape of haloes is particularly 
interesting in the context of tidal torque theory (White, 1984). To predict the angular 
momentum of haloes, tidal torque theory requires knowledge of both the tidal tensor and 
the Lagrangian inertia tensor of haloes. Further, it has been argued that the misalignment 
of tidal feld and Lagrangian inertia tensor is a key factor for predicting galaxy properties 
(Moon and Lee, 2023). Our experiments show that modifcations of the tidal tensor itself 
also trigger modifcations of the Lagrangian shape. Precisely understanding this relation 
would be relevant to correctly predict halo spins from the initial conditions. Note that such 
responses are inherently absent in most density-based structure formation models (e.g. Press 
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and Schechter, 1974b; Bond et al., 1991b; Sheth and Tormen, 2002), but could possibly be 
accounted for by recently proposed approaches based on the Lagrangian potential (Musso 
and Sheth, 2021a, 2023b). 

3.4.3 Response to changes in the variance of the density feld 

We now study whether our model can generalize to scenarios diferent from the training 
set by investigating how it responds to variations in σ8, deviating 30% from the original 
Planck Collaboration et al. (2020b) cosmology. We aim to discern if the network, trained 
on a singular variance setting, has gained enough insight into halo formation to anticipate 
outcomes considering diferent values for the variance of the initial density feld. These 
modifcations only afect the initial conditions which are fully visible to the network, so it 
could be possible that the network correctly extrapolates to these scenarios. 

In Fig. 3.13 we show how the HMF reacts to changes in σ8 in comparison to the 
measured mass functions from Ondaro-Mallea et al. (2022) (solid lines) as a benchmark. 
Our predictions for the HMF (dashed lines) are generated by taking the average results 
of 10 diferent boxes, each one spanning L = 50h−1Mpc, with σ8 values set to 0.5802 
(blue lines), 0.8288 (black lines), and 1.077 (red lines). The model’s predictions reveal a 
discrepancy with the anticipated HMF behaviour beneath the threshold of ∼ 1012.7h−1M⊙ 

for both σ8 ≈ 0.5802, and σ8 ≈ 1.077. This discrepancy is attributed to the model’s 
training on datasets characterized by the specifc σ8 from Planck Collaboration et al. 
(2020b). The model’s ability to extrapolate to diferent variances remains limited. At higher 
masses, however, the network’s predictions correspond more closely with the expected HMF. 
This partial alignment suggests that the network possesses some degree of generalization 
capability. Nonetheless, for reliable application across varying cosmologies, incorporating 
these scenarios into the training set is essential. 

3.5 Discussion & Conclusions 

We present a novel approach to understand and predict halo formation from the initial 
conditions employed in N-body simulations. Benchmark tests indicate that our model can 
predict Lagrangian FoF-halo regions for simulations efciently, taking around 7 minutes in 
a GPU for a simulation with 2563 particles in a volume of 50h−1Mpc. For those interested 
in leveraging or further enhancing our work, we have made our codes publicly available: 
https://github.com/daniellopezcano/instance_halos. 

Our model consists of a semantic network that reliably recognizes regions in Lagrangian 
space where haloes form, and an instance segmentation network, that identifes individual 
haloes from the semantic output. Our predictions accurately reproduce simulation results 
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Figure 3.13: Comparison of HMF predictions with variations in the cosmological parameter σ8. 
Solid lines represent HMF predictions from (Ondaro-Mallea et al., 2022). Dashed lines indicate our 
model’s predictions. Blue and red curves correspond to scenarios with σ8 = 0.5802 and σ8 = 1.077 
respectively. Black lines show the results for σ8 = 0.8288 (our reference cosmology). 

and outperform traditional analytical, semi-analytical techniques, and prior ML methods. 

The foundation for our instance segmentation model is the Weinberger approach, frst 
introduced by De Brabandere et al. (2017). This technique lets us develop a more general 
framework for identifying Lagrangian halo patches than previous attempts. Employing 
the Weinberger loss approach, we bypass some limitations of other instance segmentation 
methods, like the watershed technique employed by Bernardini et al. (2020). With our 
approach, we manage to predict the complicated Lagrangian shapes of haloes that are formed 
in N-body simulations. This is notably more difcult than the predictions of spherical 
Peak-Patch-haloes that were considered by Berger and Stein (2019). 

Additionally, we quantify in how far halo formation is indetermined by the resolved 
scales of the initial conditions, to establish an optimal performance limit of machine learning 
methods. We infer this limit by comparing two simulations which only difer in their initial 
conditions realization on scales beyond the resolution level. We fnd an agreement between 
our model predictions and reference simulations similar to the agreement between the two 
’baseline’ simulations. This shows that our model extracts information encoded in the initial 
conditions close to optimal. We suggest that such reference experiments may also be used as 
a baseline in other ML studies to establish whether information is extracted optimally. 
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Upon evaluating our semantic model, we measure an accuracy of 0.864 and an F1-score 
of 0.838. Compared to the baseline simulations, which have an accuracy of 0.903 and an 
F1-score of 0.884, our model results stand remarkably close, demonstrating its capability to 
predict halo regions nearly matching N-body simulations’ natural variability. 

We also assess our instance segmentation network using various metrics. As depicted in 
Fig. 3.8, our model closely aligns with the baseline across a broad mass range, outperforming 
previous methods like Lucie-Smith et al. (2020). We speculate that our approach benefts 
from the physical constraint that diferent particles that belong to the same halo are assigned 
the same halo mass. Moreover, the halo mass function (HMF) predictions in Fig. 3.9 
closely match the true ground truth values across three orders of magnitude. The visual 
representations in Fig. 3.7 reinforce our model’s precision, faithfully replicating Lagrangian 
halo patch positions and shapes. 

We have tested through experiments how the network reacts to systematic modifcations 
of the initial conditions. We fnd that the network correctly captures the response to density 
perturbations at the fnite boxsize provided in the training set. However, it struggles to 
generalize to larger boxsizes and to cosmologies with diferent amplitudes of the density feld 
σ8. This can easily be improved by increasing the diversity of the training set. 

Further, we have found that our network utilizes information from the potential feld that is 
not encoded in the density feld of any fnite region. Modifcations to a large-scale tidal feld 
are consistent with the same linear density feld, but do afect the potential landscape. Our 
network predicts that such tidal felds afect the Lagrangian shape of haloes in an anisotropic 
manner which is consistent with the intuitive expectation of how a tidal feld accelerates and 
decelerates the infall anisotropically. 

We have demonstrated the robustness of our model in its current applications and we 
believe it could fnd potential utility in several other scenarios like crafting emulated merger 
trees, aiding separate-universe style experiments (e.g. Lazeyras et al., 2016; Stücker et al., 
2021b) and informing the development of analytical methods for halo formation (e.g. Musso 
and Sheth, 2021b, 2023a). Other works such as MUSCLE-UPS (Tosone et al., 2021) can 
also beneft from our semantic predictions alone by informing their algorithm about which 
particles will collapse into haloes. 

Additionally, our model can be used to help understand the development of spin and 
intrinsic alignments in haloes and galaxies by establishing how tidal felds modify the 
Lagrangian shapes of haloes. This is a vital ingredient to predict the spin of haloes through 
tidal torque theory (White, 1984). Also, we can employ our model to predict changes 
in the Lagrangian regions of halos in combination with the “splice” technique presented 
by Cadiou et al. (2021). We believe this approach can provide new insights regarding how 
modifcations in the environment of haloes at initial conditions can afect their fnal properties. 
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We encourage experts in these felds to use our open-source code as a basis for tackling and 
exploring these and other related problems. 

The models we have presented in this paper can be easily extended to characterize other 
properties of halos. One possible extension of the model would be to include an additional 
spatial dimension to our instance network’s output to predict fnal halo concentrations. In 
this extension of our model, each particle would have associated a concentration prediction 
whose average (over all particle members of the same halo) would be trained to minimize the 
mean square error with respect to the true halo concentration. 

The fndings presented in this work are promising but there exist some aspects of 
our models that would beneft from further investigation. For instance, extending our 
methodology to understand other halo properties beyond mass would be a logical next 
step. It would also be interesting to test our model’s performance under a wider variety of 
simulation conditions, including variations in cosmology and redshift. An additional avenue 
of exploration might involve delving into capturing intricate structural details, specifcally 
the gap features in the predicted Lagrangian halo regions. Generative Adversarial Networks 
(GANs) are tools that have demonstrated potential in reproducing data patterns in the context 
of cosmological simulations (e.g. Rodríguez et al., 2018; Villaescusa-Navarro et al., 2021; 
Schaurecker et al., 2021; Robles et al., 2022; Nguyen et al., 2023; Zhang et al., 2023). Hence, 
employing a GAN-like approach might help recreate these gap features, further improving 
our model’s ability to mimic the structures of haloes found in N-body simulations. 

In conclusion, this study showcases the potential of machine learning for facilitating the 
study of halo formation processes in the context of cosmological N-body simulations. We 
provide a fast model that exploits the available information close to optimally. We hope our 
approach serves as a useful tool for researchers working with N-body simulations, opening 
avenues for future advancements. 
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Summary and Conclusions 

The main objective of my thesis has been to progress upon the current methods used to 
model cosmological theories and to bridge the gap with large-scale structure observations. 
I have focused on improving the quality of several techniques derived from cosmological 
simulations and on advancing strategies that allow for more accurate cosmological analyses. 
The results of my work comprise a set of tools for handling and interpreting simulation data 
and can be applied to analyze present and future galaxy survey observations. This efort to 
bring together theoretical models and astronomical observations is of paramount importance 
to advance our understanding regarding the structure and evolution of our Universe. 

In the process of doing my thesis, I have improved several aspects related to the 
computational efciency of cosmological simulations. This contribution represents a useful 
asset to the community, as it allows a broader exploration of cosmological models with 
varying initial conditions and physical assumptions. 

My research has led to several fndings concerning diferent areas: 

• The development of realistic galaxy mock catalogs in the context of the 
UNITSIM-Galaxies project proves the efectiveness of semi-analytical models 
for populating large cosmological volumes highlighting the value of employing 
high-resolution gravity-only simulations for survey forecast problems. This 
combination provides a robust framework for generating galaxy populations with 
their corresponding physical properties; it also ofers insights into galaxy formation 
processes and clustering mechanics within the large-scale structure of the Universe. 

• The exploitation of analytical models such as excursion set theory to accurately predict 
the internal structure of dark matter haloes. This research illustrates how simple 
structure formation theories can help us devise fast methods that approximate complex 
features within haloes and allow for a better understanding of non-linear processes. 

• The incorporation of machine learning techniques, specifcally instance segmentation 
methods, in combination with cosmological simulations for capturing the complicated 
mechanisms that determine halo formation. With this approach, we explore the 
potential of ML architectures to generate fast and accurate predictions exploiting GPU 

107 



acceleration and how these frameworks can be employed to interpret the relevant 
intervening processes that play a role in complex physical systems. 

All these advances weave together into a global cohesive narrative related to understanding 
distinct aspects of structure formation. The synergies between developing accurate mock 
galaxy catalogues, capturing with precision internal halo properties, and the exploitation of 
machine learning algorithms represent a multifaceted approach integrating diferent aspects 
crucial to understanding the complex nature of structure formation processes and robustly 
describing galaxy survey observations. Altogether my work underscores the importance of 
combining diferent state-of-the-art techniques, from analytical prescriptions to numerical 
methods, for improving our knowledge of complicated physical processes that occur in the 
context of cosmology. The methodologies I have developed provide new tools to accurately 
simulate the universe’s evolution. 

There exist many possibilities for continuing and extending my research in the future, 
here are some selected ideas: 

• Refnement of machine learning algorithms to capture broader aspects of cosmological 
simulations beyond just halo formation, employing neural networks developed in 
combination with existing codes. 

• Expansion of current neural network architectures to model additional halo properties 
beyond Lagrangian shapes. 

• As the feld progresses towards larger and more accurate hydrodynamical simulations, 
machine learning can serve as both an accelerator and an interpretive tool for analyzing 
the efects of baryonic processes. 

• Exploration of the synergies between semi-analytical galaxy formation models and 
machine learning to create more realistic mock catalogues for upcoming galaxy surveys, 
thereby providing critical insights into galaxy formation and evolution. 

• Enhancement of the scalability of cosmological simulations to enable the analysis of 
larger volumes with higher resolution. 

• Investigation into the integration of novel data analysis methodologies, such as 
emulators and contrastive learning techniques to extract cosmological information 
from observations. 

• Further application of the excursion set theory in novel contexts, such as the study of 
cosmic flaments and voids, to better understand their properties and the role they play 
in conforming cosmic web structures. 
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In the long run, the implications of my work extend beyond immediate advancements in 
cosmological simulations. The broader feld of observational cosmology moves as a whole 
towards more ambitious objectives, trying to better understand the microscopic properties of 
the diferent components conforming our Universe. This encompasses close objectives such 
as determining the masses of neutrinos and other more ambitious goals for constraining the 
equation of state and exact properties of dark matter and dark energy and testing possible 
scenarios for gravity beyond general relativity. 

Thanks to having participated in projects of diferent nature during my PhD. I have 
acquired a broad view of the current cosmological landscape that involves the integration 
of observational data, theoretical models, and advanced computational tools. The advent of 
next-generation of galaxy surveys and the developments in the feld of machine learning have 
the potential to revolutionize traditional techniques for data exploration and analysis. 

This thesis represents a step forward towards addressing several of the current challenges 
in cosmology, mainly related to connecting numerical simulations with survey observations, 
however, there are still many challenges ahead of us. The questions raised by my 
research and the solutions proposed here encourage a broader dialogue within the scientifc 
community bridging theoretical developments, astronomical observations, and computational 
implementations, all of them aligning towards advancing our understanding of cosmology as 
a whole. 

In conclusion, the contributions of this thesis to the feld of cosmology extend beyond 
the specifcs of simulations, Its roots lie in the need to gain a better understanding of our 
universe and the complicated processes taking place in it. As I look into the future (from 
the precarious stability that science provides) I hope to have contributed, if only slightly, to 
push towards unveiling some of the most fundamental principles that constitute the pillars of 
physics and our understanding of the universe in general. 
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Resumen y Conclusiones 

El objetivo principal de mi tesis ha sido hacer progresar los métodos que actualmente 
se utilizan para modelar teorías cosmológicas y reducir la distancia que las separa de las 
observaciones astronómicas acerca de las estructuras a gran escala de nuestro Universo. Me 
he centrado en mejorar la calidad de varias técnicas derivadas de simulaciones cosmológicas 
y en mejorar ciertas estrategias que permiten realizar análisis cosmológicos más precisos. 
Los resultados de mi investigación comprenden un conjunto de herramientas que pueden 
ser empleadas para interpretar los datos de simulaciones computacionales y para analizar 
observaciones sobre la distribución de galaxias. Este esfuerzo por aunar modelos teóricos y 
observaciones astronómicas es de suma importancia para avanzar en nuestra comprensión de 
la estructura y evolución del Universo. 

Durante la realización de mi tesis, he mejorado varios aspectos relacionados con la 
efciencia computacional de las simulaciones cosmológicas. Esta contribución resulta de 
capital importancia para la comunidad científca, ya que permite una exploración más amplia 
de modelos cosmológicos con distintas condiciones iniciales y diferentes suposiciones físicas. 

Mi investigación me ha llevado a varias conclusiones relativas a distintos ámbitos: 

• El desarrollo de catálogos realistas de galaxias simuladas en el contexto del proyecto 
UNITSIM-Galaxies demuestra la efcacia de los modelos semianalíticos para poblar 
grandes volúmenes cosmológicos. En este trabajo se destaca el valor de emplear 
simulaciones de alta resolución basadas únicamente en la gravedad para predecir la 
distribución de galaxias a nivel observacional. La combinación de estas herramientas 
proporciona un marco robusto con el cual generar poblaciones sintéticas de galaxias 
y sus correspondientes propiedades físicas; también ofrece información acerca de los 
procesos de formación de galaxias y los mecanismos mediante los cuales las galaxias 
se agrupan dentro de la estructura a gran escala del Universo. 

• Emplear modelos analíticos como la “Excursion Set Theory” resulta de gran utilidad 
para predecir con precisión la estructura interna de los halos de materia oscura. Esta 
investigación ilustra cómo las teorías simples de formación de estructuras pueden 
ayudarnos a idear métodos rápidos que aproximen características complejas dentro de 
los halos y permitan una mejor comprensión de los procesos gravitacionales no lineales 

111 



que llevan a su formación. 

• La incorporación de técnicas de aprendizaje automático, en concreto métodos de 
segmentación de instancias, en combinación con simulaciones cosmológicas puede 
ayudar a captar los complicados mecanismos que determinan la formación de halos. 
Con este método exploramos el potencial de las arquitecturas de aprendizaje automático 
para generar predicciones rápidas y precisas explotando la aceleración por GPUs. 
También estudiamos cómo estas técnicas pueden emplearse para interpretar los 
complejos procesos físicos que intervienen en la formación de estructuras. 

Todos estos avances se encuentran íntimamente relacionados entre sí y están relacionados 
con distintos aspectos que mejoran nuestra comprensión sobre los porcesos de formación de 
estructuras en el Universo. La relación entre el desarrollo de catálogos simulados precisos 
de galaxias, la capacidad para capturar con precisión las propiedades internas de los halos, y 
la explotación de algoritmos de aprendizaje automático, conforman un enfoque polifacético 
que empuja nuestra comprensión sobre los procesos de formación de halos y la predicción 
de la distribución de galaxias. En conjunto, mi trabajo subraya la importancia de combinar 
diferentes técnicas vanguardistas, desde prescripciones analíticas hasta métodos numéricos, 
para mejorar nuestro conocimiento de los complicados procesos físicos que tienen lugar en 
el contexto de la cosmología. Las metodologías que he desarrollado proporcionan nuevas 
herramientas para simular con precisión la evolución del universo. 

Existen muchas posibilidades de continuar y ampliar mi investigación en el futuro; 
menciono a continuación algunas ideas seleccionadas: 

• Perfeccionamiento de algoritmos de aprendizaje automático para captar aspectos más 
amplios de las simulaciones cosmológicas. 

• Ampliación de las arquitecturas actuales de redes neuronales para modelar propiedades 
adicionales de los halos (más allá de sus formas lagrangianas). 

• A medida que el campo avanza hacia simulaciones hidrodinámicas más grandes 
y precisas, el aprendizaje automático puede servir, tanto como herramienta de 
aceleración, como para interpretar y analizar el efecto de los bariones. 

• Exploración de las sinergias entre los modelos semianalíticos de formación de galaxias 
y el aprendizaje automático para crear catálogos simulados más realistas para los 
próximos sondeos de galaxias, proporcionando así conocimientos fundamentales sobre 
la formación y evolución de las galaxias. 

• Mejora de la escalabilidad de las simulaciones cosmológicas para permitir el análisis 
de volúmenes más grandes con mayor resolución. 
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• Investigación sobre la integración de nuevas metodologías de análisis de datos, como 
emuladores y técnicas de “Contastive Learning” para extraer una mayor cantidad de 
información cosmológica de las observaciones. 

• Amplaición de la “Excursion Set Theory” para estudiar la formación de flamentos y 
vacíos cósmicos y comprender sus propiedades en el contexto de la estructura a gran 
escala. 

Las implicaciones de mi trabajo a largo plazo van más allá de lograr mejorar las 
simulaciones cosmológicas en sí mismas. En su conjunto, el campo en el cual se enmarca la 
cosmología observacional, avanza hacia tratar de comprender las propiedades mircroscópicas 
de los distintos componentes que conforman nuestro Universo. Estas metas comprenden 
desde objetivos más realistas y cercanos en el tiempo como tratar de determinar las masas 
de los neutrinos, hasta otros objetivos más ambiciosos como el de restringir la ecuación de 
estado y las propiedades de la materia oscura y la energía oscura, o el de explorar otros 
escenarios para la teoría de la gravedad distintos al de la relatividad general. 

Gracias a haber estado involucrado en proyectos de distinta naturaleza durante mi 
doctorado, he adquirido una amplia visión del campo de la cosmología donde es 
necesario integrar datos observacionales con modelos teóricos haciendo uso de herramientas 
computacionales avanzadas. La llegada de la próxima generación de experimentos para la 
recogida de datos sobre posiciones de galaxias, y los avances en el campo del aprendizaje 
automático, tienen el potencial de revolucionar las técnicas tradicionales empleadas para la 
exploración y el análisis de datos. 

Esta tesis supone un paso adelante necesario para abordar distintos retos de la cosmología 
observacional y computacional actual; en particular sobre nuestro conocimiento a cerca de 
la conexión entre las simulaciones numéricas y las observaciones de galaxias. Las preguntas 
planteadas por mi trabajo y las soluciones propuestas fomentan un diálogo más amplio dentro 
de la comunidad científca, tendiendo puentes entre los desarrollos teóricos, las observaciones 
astronómicas y las implementaciones computacionales, todos ellos alineados para avanzar 
en nuestra comprensión de la cosmología en su conjunto. 

En conclusión, las aportaciones de esta tesis al campo de la cosmología van más allá de las 
especifcidades de las simulaciones, sus raíces se encuentran en la necesidad de comprender 
mejor nuestro Universo y los complicados procesos que tienen lugar en él. Mirando hacia 
el futuro (desde la precaria estabilidad que proporciona la ciencia) espero haber contribuido, 
aunque sea humildemente, a desvelar algunos de los principios fundamentales que constituyen 
los cimientos de la física y que conforman nuestra concepción del Universo. 
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Appendix A 

Defnining smooth manifolds 

This Appendix is devoted to defning what a "four-dimensional topological manifold with 
a smooth atlas" is. In Figure A.1 I provide a schematic representation contextualizing the 
diferent defnitions I introduce encoded by color. 

• A set M is a well-defned collection of elements m. For example, the set of real numbers 
. .M = R is formed by all real numbers m = {..., −π, −2.34, −1, 0, 1/2, e, 1027 , ...} . I 

will also denote sets with N and elements as n. 

• f is a map from M (domain) to N (target), denoted as f : M → N , if ∀m ∈ 
M, ∃n ∈ N : f(m) = n. I will also employ g to denote maps. 

• The powerset P(M) of a set M is the set of all possible subsets of M. 

• O ⊆ P(M) is a topology on M, denoted as OM, if and only if: 

1. ∅ ∈ O and M ∈ O 

2. ∀U, V ∈ O → U ∩ V ∈ O. I will use U, V to denote subsets of O (open sets). S
3. α∈A U ∈ O where A denotes an arbitrary index set. 

Set Topology

d-dim
topological
manifold

d-dim smooth
manifold

MapPowerset

೏
Standard 
topology

Continuous
map

Topological space

Atlas
Chart 
map

Chart Chart transition
map𝑪ஶ- compatible 

charts

Smooth atlas

Figure A.1: Scheme for helping to relate the mathematical objects defned in this section. 
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• the doublet (M, OM) is a topological space. 

• The Rd standard topology, ORd , is defned as: � � � 
RdORd := U ∈ P | ∀p ∈ U ∃r ∈ R+ : Br(p) ⊆ U , 

where Br(p) is the soft-ball of radius r about p defned as: ( 
d 

)X 
Br(p) := (q1, . . . , qd) ∈ Rd | (qi − pi)2 < r 2 . 

i=1 

• f : OM → ON is a continuous map with respect to (M, OM) and (N , ON ) ⇐⇒ 
∀V ∈ ON → preimf (V ) := {m ∈ M : f(m) ∈ V } ∈ OM. 

• A topological space (M, OM) is a d-dimensional topological manifold, (M, OM)d,�
if ∀m ∈ M∃{U | m ∈ U} ∈ OM : ∃ fU : U → fU (U) ⊆ Rd , where Rd implicitly � � 
belongs to Rd , ORd , and the map fU satisfes: 

1. fU is invertible: fU 
−1 : fU (U) → U , � � 

2. fU is continuous with respect to (U, OU |M) and Rd , ORd , � � 
3. f−1 is continuous with respect to (U, OU |M)1 and Rd ,U , ORd 

• The doublet (U, fU ) is a chart of (M, OM)d and fU : U → fU (U) ⊆ Rd is known � � 
(1) (d)as a chart map defned by the coordinate maps fU (m) := fU (m), . . . , fU (m) 

| f (i) 
: U → R.U 

• Given some arbitrary index set A, the set A = {(Uα, fU ) | α ∈ A} is an atlas of S 
(M, OM)d ⇐⇒ α∈A Uα = M. 

• The chart transition map between two chart maps, both from the same (M, OM)d,� � 
(U, fU ), (V, fV ) | U ∩ V ̸= ∅, is the map fU ◦ f−1 : fV (U ∩ V ) → fU (U ∩ V ).V 

• Two chart maps (U, fU ) and (V, fV ) from (M, OM)d, are C∞-compatible charts if: 

1. U ∩ V = ∅, or, � �
2. U ∩ V ≠ ∅ and both chart transition maps fU ◦ fV 

−1 : fV (U ∩ V ) → � � 
fU (U ∩ V ) and fV ◦ fU 

−1 : fU (U ∩ V ) → fV (U ∩ V ) are C∞ in the 
"oridinary multivariable calculus sense". 

• An atlas is C∞-compatible, AC∞ , if all of its charts are C∞-compatible. 

• A d-dimensional smooth-manifold (or C∞-manifold) is defned by the triplet 
(M, OM, AC∞ )d 

1 OU |M indicates the inherited topology on U from OM 
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Appendix B 

Additional validation plots 
In this Appendix we provide supplementary plots that further show the validity and properties 

of the SAGE and ELG galaxies used throughout this study. 

B.1 Halo Mass Function of fux-selected ELGs 

Applying a SAM will eventually lead to selecting a sub-sample of the underlying dark 
matter haloes as galaxies, i.e. while every halo contains a galaxy, some might be too small 
to be detectable. To better understand which haloes host our ELGs, we show their halo 
mass functions for the two base models RawELGs and DustELGs for various redshifts in 
Fig. B.1. The dashed lines are without applying any fux cut, whereas the solid lines use the 
Euclid-inspired cut Fcut = 2 × 10−16 erg s−1 cm−2. We can see that the fux cut primarily 
afects low-mass haloes, i.e. the less luminous ELGs also live in lower mass host haloes. 
We further observe a shift of this ‘cut-of’ halo mass with redshift; while at z ∼ 0.5 it is 
approximately 1011M⊙, it increases to ∼ 1012M⊙ at z ∼ 2 for RawELGs and even ∼ 1013M⊙ 

for DustELGs. 

B.2 Baryonic properties of fux selected ELGs 

In Section 1.3 we presented baryonic relations for the full set of SAGE galaxies, focusing 
on those properties that are relevant for the dust attenuation modelling. Here we now like to 
provide counterparts of those plots for the ELGs. 
Stellar Mass Function 

In order to view the efect of the fux selection and its relation to the stellar masses of the 
resulting sub-sample of ELGs, we show in Fig. B.2 both the SMF of all ELGs (i.e. no fux 
cut, dashed lines) and the fux-selected samples of ELGs (solid lines) for various redshifts. 
We restrict the results again to the two base models RawELGs and DustELGs. We appreciate 
that the majority of ELGs coincide with the most massive galaxies. 
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Figure B.1: Halo mass function of all ELGs (dashed lines) and the fux-selected samples (solid lines) 
for RawELGs (top) and DustELGs (bottom). 

164 



10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

lo
g 1

0(
[M

pc
3 d

ex
1 ]

)

RawMod
z = 0.490
z = 0.987
z = 1.220
z = 1.321
z = 1.425
z = 1.650
z = 2.028

RawMod
No flux cut
RawMod
No flux cut

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0
log10(M * [M ])

0.50
0.25
0.00
0.25
0.50

(U
i,U

j)

(U1, U1IP)
(U1, U2)
(U2, U2IP)

(U1, U1IP)
(U1, U2)
(U2, U2IP)

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

lo
g 1

0(
[M

pc
3 d

ex
1 ]

)

DustMod
z = 0.490
z = 0.987
z = 1.220
z = 1.321
z = 1.425
z = 1.650
z = 2.028

DustMod
No flux cut
DustMod
No flux cut

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0
log10(M * [M ])

0.50
0.25
0.00
0.25
0.50

(U
i,U

j)

(U1, U1IP)
(U1, U2)
(U2, U2IP)

(U1, U1IP)
(U1, U2)
(U2, U2IP)

Figure B.2: Stellar mass function of all ELGs (dashed lines) and the fux-selected samples (solid lines) 
for RawELGs (top) and DustELGs (bottom). The vertical dot-dashed line shows our lower stellar mass 
limit. 
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Specifc star formation rate 

In Fig. 1.2 we show the specifc star formation rate of all our SAGE galaxies in comparison 
to the observations of Daddi et al. (2007) at redshift z ∼ 2. Here we now present in 
Fig. B.3 another version of that plot, this time using the (fux-cut) ELGs of the RawELGs and 
DustELGs catalogues. We further show results for z ∼ 1 and add the best-ftting correlation 
for Hα emitting galaxies, as found by de los Reyes et al. (2015, eq. 3).1 

The mass–metallicity relation 

Here we reproduce Fig. 1.3 for the RawELGs and DustELGs catalogues, additionally adding 
the best-ft relation for Hα-emitting galaxies, as reported by de los Reyes et al. (2015, 
eq. 4). The results can be viewed in Fig. B.4, which shows that the SAGE-ELGs follow the 
observations sufciently well. 

The disc size–mass relation 

At last we turn to the efective disc size of our RawELGs and DustELGs galaxies, shown in 
Fig. 1.4 for all SAGE galaxies. The results can be viewed in Fig. B.5, again in comparison to 
the general results of Yang et al. (2021). 

1de los Reyes et al. (2015) studied 299 Hα-selected galaxies at redshift z ∼ 0.8. 
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Figure B.3: Specifc star formation rate of the RawELGs (top) and DustELGs (bottom) ELGs at 
redshift z ∼ 1 in comparison to the best-ft relation as found by de los Reyes et al. (2015) at z ∼ 0.8, 
shown as grey-shaded region. This fgure is a reproduction of Fig. 1.2, but this time for our model 
ELGs. 
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Figure B.4: Cold gas metallicity vs. stellar mass for all ELGs for RawELGs (top) and DustELGs 
(bottom) at redshift z ∼ 1. This fgure is a reproduction of Fig. 1.3, but this time for our model ELGs, 
but we also added the best-ftting relation as found by de los Reyes et al. (2015) at z ∼ 0.8, shown as 
grey-shaded region. 
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Figure B.5: Efective disc radius as a function of stellar mass at redshift z = 1.25 for all RawELGs 
(top) and DustELGs (bottom) galaxies. This fgure is a reproduction of Fig. 1.4, but this time for our 
model ELGs. 
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Appendix C 

Conversion of number densities 
Here we show the steps necessary to go from volumetric number density 

dN 
n = 

dV 
(C.1) 

to the angular and redshift density 

η = 
dN 

dΩ dz 
. (C.2) 

Taking into account 
dV = dΩ r 2dr (C.3) 

where dΩ is the solid angle in stereoradians, we then get 

η = n · r 2 dr 
. (C.4)

dz 

Therefore, to go from number density n = N/V of galaxies to number density of galaxies 
per square degree and redshift interval we fnd 

η = n r 2(z) 
dr � π �2 

, (C.5)
dz 180◦ 

where r(z) is the comoving distance Z 
c z ds 

r(z) = (C.6)
H0 0 E(s) 

with 

E2(z) = 
1 

, (C.7)
(Ωr,0(1 + z)4 + Ωm,0(1 + z)3 + Ωk,0(1 + z)2 + ΩΛ,0) 

where ΩX are the usual density parameters of radiation (X = r), matter (X = m), curvature 
(X = k), and cosmological constant (X = Λ) at present time. We note that the derivative of 
r(z) with respect to z as needed in Eq. (C.5) is simply 

dr c 1 
= . (C.8)

dz H0 E(z) 
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Note that in the main body of the paper η is referred to as dN/dz, which is not fully consistent 
with the terminology used here, but compliant with how other workers in the feld refer to 
this quantity. N as used in the main part is ‘number of galaxies per unit area’, whereas here 
it simply means ‘number of galaxies’. 
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Appendix D 

Description of L16 Model 

Here we explain the main ideas behind the Ludlow et al. (2016) (L16) model for predicting 
the c(M, z) relation. Throughout this work we carefully examined if the assumptions upon 
which L16 is founded are fulflled or not for a variety of cosmologies, masses and redshifts. 
The original L16 paper shows that their model accurately predicts the c(M, z) relation for 
relaxed haloes in diferent cosmologies, including both cold and warm dark matter scenarios; 
in this work we extend their analysis by considering a broader range of distinct cosmologies, 
including the efect of massive neutrinos and dynamical dark energy. 

The L16 model is based on an empirical relation between ρ−2(z0), i.e. the enclosed 
density of a halo within the scale radius, r−2 measured at redshift z0, and ρc(z−2), i.e. the 
critical density of the universe defned at a suitable formation redshift, z−2, The relation can 
be written as: 

ρ−2(z0) = Aρc(z−2), (D.1) 

where A is a proportionality constant. In L16 the halo formation redshift, z−2, is defned 
as the redshift at which the collapsed-mass history (CMH) of a halo1 frst exceeds M−2 ≡ 
M(r < r−2), i.e., the mass enclosed within a sphere of radius r−2, at the z0, centered around 
the potential minimum of the halo analyzed. 

If indeed Eq. (D.1) is verifed, we can predict the value of ρ−2(z0) employing an analytical 
model capable of reproducing the CMH of a halo given its mass, which would allow us to 
infer ρc(z−2). To obtain the synthetic CMHs, we make use of the extended Press-Schechter 
(EPS) formalism (Bond et al., 1991b; Lacey and Cole, 1993), according to which the mass 
contained in progenitors more massive than a certain fraction f of the fnal halo mass, M0, 
at a given redshift, z, is given by: 

1For a given halo identifed at redshift z0, the collapsed-mass history is defned as the sum of all the mass 
contained in progenitor haloes at redshift z > z0 that end up being accreted by the halo of interest and whose 
mass exceeds a certain fraction f (in L16 f ≡ 0.02) of the halo’s fnal mass. This can be calculated for simulated 
haloes using their merger trees, or predicted theoretically using the extended Press-Schechter formalism using 
Eq. (D.2). 
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�� 
D(z,kfM0 )δc − 1
D(z0,kfM0 ) , (D.2)Mcoll(z) = M0 erfc p 

  2 [σ2 (kfM0 , z0) − σ2 (kM0 , z0)] 

  
where δc is the threshold for non-linear collapse extrapolated to z = 0 using linear theory. The 
value of δc can be calculated using the spherical collapse model, which predicts δsc ≈ 1.686. 
However, we found that adopting a value of δc = 1.46 improves the agreement between 
the EPS-predicted collapsed mass histories and those obtained from our simulations, and 
therefore minimizes the error in the predicted redshifts of halo collapse (see Fig. 2.5). This is 
crucial for obtained accurate predictions for halo concentrations from the L16 model, since 
it relies on having accurate predictions for halo formation times. 

Note σ2 (kM, z) denotes the variance of the linear matter density feld at redshift z and 
at scale kM (associated with the mass M ∝ kM 

−3). To compute σ2 (kM, z) we use a sharp-k 
window function (which in real space can be written W (x) = 3(sin x − x cos x)/x3 , where 
x ∝ k−1) which exploits the fact that, for a Gaussian random feld, the derivation of the EPS 
formula becomes simpler because overdensity "trajectories" in the smoothed density feld 
follow Markovian random walks (Bond et al., 1991b; Lacey and Cole, 1993). 

The scale dependent growth factor, D(z, kM), can be computed at redshift z and for scale 
kM following Zennaro et al. (2017). The scale dependence of the growth factor introduces 
signifcant corrections when considering massive neutrinos, which impact the growth of 
structures diferently at diferent scales in a manner that also depends on the neutrino mass. 

Note that in Eq. (D.2) we evaluate the variance of the matter feld and the growth factor at 
diferent scales. This is particularly important for calculating the CMHs in cosmologies with 
massive neutrinos, where the scale dependence of the growth factor can have a signifcant 
impact. 
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Appendix E 

c(M) relation at z0 = 0.5 

In Fig. E.1 we present the results for the concentration-mass relation (as measured in 
Fig. 2.2) at z = 0.5 (connected squares). We also show the predictions provided by the L16 
model at that redshift employing the same calibration as the one used in Fig. 2.2. 
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Figure E.1: Concentration-mass relation for all cosmologies studied in this paper at redshift z = 0.5 
as a function of M200 analogous to the results presented in Fig. 2.2. 
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Appendix F 

Watershed segmentation 

In this appendix, we present an alternative approach to instance segmentation, based on the 
watershed approach. Originally we tried this technique to address the instance segmentation 
problem, but we fnally decided to use the Weinberger approach presented in the main paper 
because of its theoretical advantages. These are that the loss function closer refects the 
objective, that it is possible to predict disconnected regions, and that it is not necessary 
to defne borders. However, during our exploration, we have gained some insights of 
how to make watershed-based instance segmentation techniques work for friends-of-friends 
proto-haloes. We will explain these here for the beneft of future studies. 

Our watershed approach makes use of a U-Net-based architecture Ronneberger et al. 
(2015), specifcally a 3D Residual U-Net based on previous work Franco-Barranco et al. 
(2021). The model’s input consisting of 128 × 128 × 128 × 2 voxels for (x, y, z, channels) 
axes. The two input channels correspond to the initial density feld and the potential. 

The model is trained to predict two output channels: binary foreground segmentation 
masks and instance contours masks. Following the prediction, the two outputs are thresholded 
(automatically using Otsu’s method Otsu (1979)) and combined. Next, a connected 
components operation is applied to generate distinct, non-touching halo instance seeds. 
Subsequently, a marker-controlled watershed algorithm Meyer (1994) is applied, using three 
key components: 1) the inverted foreground probabilities as the input image (representing 
the topography to be fooded), 2) the generated instance seeds as the marker image (defning 
starting points for the fooding process), and 3) a binarized version of the foreground 
probabilities as the mask image (constraining the extent of object expansion). To binarize the 
latter, we employed a threshold value of 0.372, which was determined through the application 
of the identical methodology outlined in Appendix H. The collective implementation of these 
components facilitates the creation of individual halo instances (see Fig. F.1 for a visual 
representation). This strategy has been extensively employed within the medical feld with 
remarkable success Wei et al. (2020); Lin et al. (2021); Andres-San Roman et al. (2023). 

In order to facilitate the generation of the two channels used to train the network, several 
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Figure F.1: Processing pipelines of our watershed segmentation approach. The input 3D image 
contains two channels: the density feld and the potential. The model predicts foreground and 
contour probabilities that are fused to create three inputs for a marker-controlled watershed to produce 
individual instances. 
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Figure F.2: Data preparation process of our watershed segmentation approach. From left to right: the 
original halo instances for the considered prediction problem, subsequent modifcations involving the 
removal of small holes and spurious pixels and contour smoothing, and the presentation of both the 
foreground and contour masks utilized for model training. Pixels coloured in white do not belong to 
any halo. Pixels with the same colour belong to the same halo and diferent colours indicate diferent 
haloes. 
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transformations were applied to the labels. For each halo instance, small particles along the 
edges were removed, central holes were flled, and the labels were dilated by one pixel. This 
process results in instances with smoother boundaries, thereby aiding the network in training 
(see Fig. F.2). 

The result of this method is depicted in Fig. F.3. The code is open source and readily 
available in BiaPy Franco-Barranco et al. (2023). 
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Figure F.3: Results of our watershed segmentation approach presented in an analogous way to results 
from Fig. 3.7. 
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Appendix G 

Clustering algorithm 

In this appendix, we describe the clustering algorithm that we have developed. This 
algorithm calculates instance predictions from the pseudo-space representations that are 
output by our instance segmentation network. 

As described in §§3, the output of our instance network consists of a set of points that 
populate an abstract space (referred to as pseudo-space). Our instance network has been 
trained to minimize the Weinberger loss function 3.7, hence, we expect that the predicted 
mapping of points in the pseudo-space causes that points corresponding to the same instances 
to be close to each other, and separated to points that correspond to diferent instances. In the 
ideal case where LWein=0, all points belonging to the same instance would be no farther apart 
from each other than a distance 2 · δPull, and the points corresponding to separate instances 
would be, as close as a distance 2 · δPush − δPull close to each other. However, we cannot 
expect that our network always separates perfectly the diferent instances. For example, if 
some Lagrangian voxel has a 60% chance to belong to halo A and a 40% chance to belong 
to halo B, then the optimal location in pseudo space (that statistically minimizes the loss) 
may be somewhere in between the centre of halo A and B in pseudo space and not inside 
the δPull radius of neither. Therefore, we employ a clustering algorithm that can segment the 
pseudo-space distribution of points also when LWein is not exactly zero. 

For this, we frst estimate the local pseudo-space density ρi for each point i. For this we 
compute the distance rk,i to the kth-nearest neighbour of the point and assign 

ρi =
3k 

(G.1)
4πr3 

k,i 

where k = Ndens is a hyper-parameter of the clustering algorithm. We accelerate this step 
with the ckd-tree from the scipy package in python (Virtanen et al., 2020). 

Then we determine groups as the descending manifold of the maxima that exceed a 
persistence ratio threshold ρmax/ρsad ≥ pthresh between maximum and saddle-point. The 
descending manifold corresponds to the set of particles from whose location following the 
local density gradient would end up in the same maximum (e.g. Sousbie, 2011; Tierny et al., 
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2017). For this, we use a slightly modifed version of the density segmentation algorithm 
used in subfind (Springel et al., 2001): 

We consider the particles from highest to lowest density. For each particle we consider 
from the Nngb nearest particles the subset of particles that have a higher density than ρi (this 
set may be empty). Among these we select the set Bi of the (up to) two closest particles. 
This set can have zero, one or two particles. 

• If the set Bi is empty, then there is a density maximum ρmax = ρi and we start growing 
a new subgroup around it. 

• If the set Bi contains a single particle or two particles that are of the same group, the 
particle i is attached to the corresponding group. 

• If Bi contains two particles of diferent groups, then i is potentially a saddle-point. 
We check whether the group with the lower density maximum ρmax has a sufcient 
persistence ρmax/ρi ≤ pthresh. If not, then we merge the two groups (and keep the 
denser maximum). Otherwise, we keep both groups and we assign the particle to the 
group of the denser particle in Bi. (This step corresponds to following the local discrete 
density gradient.) 

Note that unlike the subfind algorithm, we merge groups not at every saddle-point, but 
only if they are below a persistence threshold. Therefore, sufciently persistent groups are 
grown beyond their saddle point and ultimately correspond to the descending manifold of 
their maximum. 

The clustering algorithm has three hyper-parameters Ndens, Nngb and pthresh. We have 
done a hyper-parameter optimization over these and found that Ndens = 20, Nngb = 15 
(quite close to the default parameters in the subfind algorithm, 20 and 10 respectively) and 
pthresh = 4.2 give the best results, though our results are not very sensitive to moderate 
deviations from this. We can understand the quantitative value of the persistence ratio 
threshold by considering that the relative variance of our density estimate is 

σlog ρ ≈ 
σρ 

= √ 1 ≈ 0.22 (G.2)
ρ Ndens 

so that at a fxed background density having a density contrast of pthresh = 4.2 due to Poisson 
noise corresponds to a 

∆ log ρ = log(pthresh) ≈ 1.43 ≈ 6.5σlog ρ (G.3) 

outlier. Therefore, the persistence ratio threshold pthresh ensures that it is very unlikely that 
our algorithm mistakes a spurious overdensity in the pseudo space for a group. 
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Appendix H 

Semantic threshold 

In the bottom panel of Fig. H.1 we present how the predicted fraction of voxels that 
are members of a halo (that is 1 − β) evolves as we change the semantic threshold (black 
solid line). As it can be expected when the semantic threshold is close to zero, the majority 
of voxels are identifed as members of haloes, and the contrary occurs when the semantic 
threshold approximates one. The horizontal dashed-dotted line corresponds to the ground 
truth value of 1 − β = 0.418, measured in the validation simulations. The semantic threshold 
value that we have selected is 0.589 (black dotted vertical line). This value corresponds to the 
intersection between the black solid line and the dashed-dotted line; it ensures that the total 
fraction of voxels that are members of haloes is correctly reproduced. Choosing this criterion 
to determine the semantic threshold also ensures more robust instance predictions since the 
number of FP cases is reduced, hence eliminating potentially uncertain pseudo-space particles 
that would complicate the clustering procedure. 

In the top panel of Fig. H.1 we show the evolution of several metrics as a function of 
the semantic threshold value. These metrics allow us to asses the quality of our semantic 
predictions by comparing our results with values obtained using the baseline simulations. 
We study the behaviour of fve diferent metrics: True Positive Rate TPR, True Negative 
Rate TNR, Positive Predictive Value PPV, Accuracy ACC and the F1-score. 

In the top panel of Fig. H.1 we also present the values obtained for the diferent metrics 
using the baseline simulations (horizontal dashed lines). We have obtained these results 
considering one of the baseline simulations as predicted maps and the other simulation as the 
ground truth. The values measured for the diferent metrics in the baseline simulations give 
us an expected ideal performance that we would like to reproduce with our model. 

If we focus on the performance curves for the accuracy and the F1-score (orange and 
yellow lines respectively) we can appreciate that they always remain under the baseline limit. 
The curve for the F1-score peaks around the value for the semantic threshold of 0.5, which 
is a behaviour we expected since we considered the balanced cross-entropy loss to train our 
semantic model. The value for the F1-score at its maximum is F1(0.5) = 0.842, which 
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is very similar to the value at the point in which we have fxed the semantic threshold, 
F1(0.589) = 0.838. The F1-score obtained is only about 5% away from the optimal value 
obtained from the baseline simulations FChaos

1 = 0.884. The accuracy reaches its maximum 
value around the semantic threshold of 0.58, where ACC(0.58) = 0.864; the value for the 
model accuracy is even closer to the baseline limit ACCChaos = 0.903. 
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Figure H.1: Top panel: Evolution of diferent metrics (TPR - green, TNR - blue, PPV - purple, 
F1-score - yellow & ACC - orange) measured employing the predictions of the semantic model as a 
function of the semantic threshold selected (solid lines); we also show the values measured for the 
corresponding metrics studying the diferences between the baseline simulations (horizontal dashed 
lines). Bottom panel: Fraction of voxels predicted to be collapsed (equivalent to 1 − β) as a function 
of the semantic threshold employed (solid black line); the horizontal black dashed line corresponds 
to the fraction of particles that end up in DM haloes measured in the validation simulations. In both 
panels, the vertical black dotted line shows the semantic threshold we employ; this threshold has been 
selected to match the fraction of collapsed voxels. 
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Appendix I 

Generate full-box predictions from crops 

In this appendix, we address the challenge of generating full-box predictions employing 
our instance segmentation model. 

While our network architecture captures intricate features within simulation sub-volumes, 
the challenge arises when we aim to apply it to arbitrarily large input domains. Unlike 
some other ML approaches that rely on networks that are translational invariant, our model 
incorporates the Lagrangian positions of particles as input channels, making it dependent 
on the relative Lagrangian position. This design choice ensures that similar regions of the 
initial density feld are mapped to distinct locations in the pseudo-space, allowing us to 
distinguish between separate structures, even if they are locally identical. However, this 
feature also presents a challenge when creating full-box predictions. Combining independent 
crop predictions straightforwardly may lead to inconsistencies due to the network’s inherent 
non-translational invariance. To tackle this issue, we have developed a methodology for 
predicting sub-volumes independently and then merging these predictions to generate accurate 
full-box instance segmentation results. 

To reduce the boundary efects that may result from such a method we employ the 
following strategy. 

1. We evaluate the instance network centred several times, centred on locations q⃗ijk that 
are arranged on a grid 

⃗ =qijk 

 i · nof 
j · nof 

 , (I.1) 
k · nof 

where we choose an ofset of nof = 64 voxels and (i, j, k) run so far that the whole 
periodic volume is covered – e.g. from 0 to 4 each for a 2563 simulation box. The 
network’s input in each case corresponds to the 1443 voxels (periodically) centred on 
q⃗ijk and the instance segmentation output will predict labels for the 1283 central voxels. 

2. From each prediction we only use the predicted labels of the central nof
3 = 643 voxels, 

since we expect these to be relatively robust to feld-of-view efects. We combine these 
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from all the predictions to a global grid that has the same dimensions as the input 
domain. In this step we add ofsets to the labels so that the labels that originate from 
each predicted domain are unique in the global grid (this process will become relevant 
in step 4 where we defne a graph used to link instances). 

3. We repeat steps 1-2, but with an additional ofset of (nof /2, nof /2, nof /2)
T . We 

additionally ofset the labels in this second grid so that no label appears in both grids. 

4. We use the two lattices and the intersections between instances to identify which labels 
should correspond to the same object. We do this by creating a graph1 where each 
instance label is a node. Initially the graph has no edges, but we subsequently add edges 
if two labels should be identifed (i.e. correspond to the same halo). Each connected 
component of the graph will then correspond to a single fnal label. To defne the edges 
of the graph, we consider each quadrant Q of size (nof /2)

3 individually, since such 
quadrants are the maximal volumes over which two labels can intersect. We defne the 
intersection IQ(l1, l2) of two labels l1 and l2 as the number of voxels that both carry 
label l1 in grid one and label l2 in grid two. We defne as the union UQ(l1, l2) the 
number of voxels inside of quadrant Q that carry l1 in grid 1 or l2 in grid 2 (or both). 
We then add an edge between l1 and l2 into the graph if for any quadrant Q it is 

IQ(l1, l2) ≥ IoUthresh (I.2)
UQ(l1, l2) 

where we set IoUthresh = 0.5. 

5. We summarize each connected component in the graph into a new label. After this 
operation for most voxels the new label in grid 1 and in grid 2 agree and we can choose 
that label as our fnal label. However, for a small fraction of voxels the labels still 
disagree, because the corresponding instances had too little overlap to be identifed 
with each other. In this case, we assign to the corresponding voxel the label that 
contains the larger number of voxels in total. 

We illustrate the diferent steps of this procedure in Fig. I.1. The top panel, labelled 
’Lattice1’, shows the individual instances predicted in the frst lattice arrangement. Each 
colour represents a distinct label assigned to a group of voxels within the 643 central region of 
the sub-volumes. The middle panel, ’Lattice2’, displays the second set of predictions using 
a shifted lattice by half the ofset in each dimension. Here again, diferent colours represent 
unique instance labels. The bottom panel, ’Combined’, presents the fnal merged full-box 
prediction. It is generated by synthesizing the labels from ’Lattice1’ and ’Lattice2’ using 

1using the networkx library (Hagberg et al., 2008) 
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Figure I.1: Process of merging predictions from two overlapping lattice structures to produce a full-box 
instance segmentation map. ’Lattice1’ (top) and ’Lattice2’ (middle) represent predictions from initial 
and shifted lattice grids, respectively, with unique color-coded labels for instances. Black dashed lines 
indicate the lattice employed in each case, while thin dashed grey lines correspond to the lattice 
employed in the reciprocal scenario. ’Combined’ (bottom) depicts the fnal synthesized full-box 
map, where instances have been merged based on their overlap, demonstrating the efectiveness of the 
methodology in generating contiguous and comprehensive halo segmentations from smaller, predicted 
sub-volumes. 
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the graph-based method to connect overlapping instances. The resulting image shows larger, 
coherent structures, indicative of the correct performance of combining both lattices. 

Regarding the semantic segmentation network, we can merge the predictions 
corresponding to diferent crops independently since, in this case, we are truly working with 
a translation-invariant network. We employ the central 643 voxels (analogous to ’Lattice1’) 
of separate predictions and merge them together to generate the fnal full-box predictions of 
the semantic segmentation network. 
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Appendix J 

Comparison with ExSHalos 

In this appendix, we explore how the results obtained with the ExSHalos code (Voivodic 
et al., 2019) compare against our semantic and instance predictions. 

As mentioned in §§3, ExSHalos is an explicit implementation of the excursion set theory 
that identifes haloes in Lagrangian space by growing spheres around density peaks until the 
average density inside crosses a specifed barrier for the frst time. The barrier shape is 
motivated by the ellipsoidal collapse (Sheth et al., 2001; de Simone et al., 2011) and we have 
ftted the three free parameters in the model to reproduce the mean halo mass function of our 
simulations. 

In Fig. J.1 we show a map-level comparison between the Lagrangian proto-haloes 
identifed in one of our validation simulations with the friends-of-friends algorithm (left 
panel), and the ExSHalos detected employing the code presented in Voivodic et al. (2019) 
(central panel). The ExSHalos regions in Lagrangian space are spherical by construction 
(see the middle panel of Fig. J.1). The physical approach of the ExSHalos algorithm enables 
to identify, with a reasonable degree of accuracy, the location of proto-haloes in Lagrangian 
space, and their mass. However, the built-in assumption that proto-haloes are spherical gives 
only a crude approximation to the actual proto-halo shapes. In Table 3.2 we quantify the 
diferences between ExSHalos and friends-of-friends employing several semantic metrics. 

In Fig. J.2 we present a violin plot analogous to Fig. 3.8. This plot shows a comparison 
between the ground truth halo masses (friends-of-friends) and the predicted masses from 
our model associated with the particles/voxels in our validation set (black violin lines in 
the main panel). We also include the comparison between the masses of ExSHalos and 
of friends-of-friends haloes (purple violin lines). We have generated the violin lines of 
ExSHalos employing all our simulations (both training and validation) to achieve better 
statistics. Our model predictions are capable of achieving greater mass accuracy than 
ExSHalos throughout all mass bins considered here. 

In the upper panel of Fig. J.2, we show the False Negative Rate (FNR) as solid lines against 
the ground truth halo mass, and the False Discovery Rate (FDR) as dashed lines against the 
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Figure J.1: Slices through the Lagrangian feld of friends-of-friends proto-haloes, and the 
corresponding predictions using the ExSHalos algorithm. Left panel: ground truth masses 
obtained using N-body simulations (friends-of-friends proto-haloes). Central panel: predicted 
masses obtained using the ExSHalos algorithm. Right panel (analogous to left panel of Fig. 3.5): 
Semantic pixel-level error map between ExSHalos and friends-of-friends haloes indicating true 
positive (green), true negative (blue), false negative (black), and false positive (red) regions. 

predicted mass. This plot is analogous to the top plot in Fig. 3.8 (See §§3 for details). We 
additionally include solid and dashed purple lines corresponding to the ExSHalos case. It’s 
clear that ExSHalos predicts higher FNR and FDR values compared to the baseline case 
and our model predictions, indicating more semantically-misclassifed particles. 

192 



11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5
log10 MTrue [h 1M ]

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

lo
g 1

0
M

Pr
ed

[h
1 M

]

This work
Optimal Baseline
ExSHalos

This work
Optimal Baseline
ExSHalos

10.0
30.0
50.0

Pe
rc

en
t. FNR - Baseline

FDR - Baseline
FNR - model
FDR - model

FNR - ExSHalos
FDR - ExSHalos

FNR - Baseline
FDR - Baseline

FNR - model
FDR - model

FNR - ExSHalos
FDR - ExSHalos

Figure J.2: “Violin plot”, visualizing the distribution of predicted halo masses (at a voxel level) for 
diferent ground-truth mass bins. The black violin plots show the results obtained with our instance 
segmentation model. Green violin plots show the agreement between the two baseline simulations 
– representing an optimal target accuracy. The purple violin plots in the main panel correspond to 
the comparison with the ExSHalos predictions. The solid black line in the top panel shows the false 
negative rate, FNR, as a function of the ground truth halo mass. The dashed black line represents the 
fraction of predicted collapsed pixels that are not collapsed as a function of predicted halo mass (false 
discovery rate, FDR). The green and purple lines on the top panel correspond to the analogous results 
obtained from the baseline simulations and ExSHalos respectively. 
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