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Abstract The decay b → sνν̄ has received comparatively
less attention than the semileptonic decay b → s�+�−,
because neutrinos pass undetected and hence the process
offers lesser number of observables. We show how the decay
b → s + invisible(s) can shed light, even with a limited num-
ber of observables, on possible new physics beyond the Stan-
dard Model and also show, quantitatively, the reach of future
B factories like SuperBelle to uncover such new physics.
Depending on the operator structure of new physics, differ-
ent channels may act as the best possible probe. We show,
using the optimal observable technique, how almost the entire
parameter space allowed till now can successfully be probed
at a high-luminosity B factory.

1 Introduction

While the semileptonic decay B → K (∗)�+�− mediated by
the flavor-changing neutral current (FCNC) transition b → s
has received a lot of attention as a sensitive probe of new
physics (NP) beyond the Standard Model (SM), much less
discussion is available in the literature on the analogous pro-
cess b → sνν̄; either the exclusive channels B → K (∗)νν̄

or the semi-inclusive one B → Xsνν̄. There are three main
reasons for this. First, the decay is yet to be observed; there
is only an upper limit to the branching ratio (BR) of such
processes [1,2]. This is not unexpected considering that the
experimental sensitivity is about one order of magnitude
above the SM predictions. Second, the number of observ-
ables are less than the processes involving charged leptons,
because the neutrinos escape undetected. Third, the theoreti-
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cal uncertainties like those coming from the form factors are
more serious than relatively cleaner channels like K → πνν̄.

One can pose counter-arguments too. For example, the
Belle upgrade with a much enhanced integrated luminosity
(or any other future e+e−B factory) will almost definitely
observe this process even if there is no NP involved. With a
small number of observables, one may extract only a limited
amount of information as regards possible beyond-SM con-
tributions to this decay. As we will show quantitatively, one
can successfully use even these few observables not only to
differentiate some well-motivated NP models from the SM
but also to have a glimpse of the possible operator structure
of those models. This remains true even when one takes into
account all the theoretical uncertainties like the form fac-
tors, elements of the Cabibbo–Kobayashi–Maskawa (CKM)
matrix, the running quark masses, or the higher-order cor-
rections.

The conception that whatever may be inferred from the
neutrino channels can also be inferred in a much cleaner
way addressing charged lepton final states, because of the
SU (2)L conjugate nature of the corresponding operators, is
also not entirely correct. Consider, for example, an SU (2)L
singlet current of the form εab L̄a

Lγ μQb
L , involving both

quark and lepton doublets that couple to a vector leptoquark.
The charged lepton final states, obviously, come only from
the anomalous top decays and not from B decays. Thus, the
neutrino channels are worthy to be studied on their own right.
There may be other light invisible particles in the final state
(we will show an example later) which have nothing to do
with charged leptons. As neutrinos or other such invisibles
go undetected, this channel offers an effective probe for such
models. Thus, one must treat the decay channel b → s +
invisible(s) as an independent source of information from
b → s�+�−, although there can be correlations in some
beyond-SM models. A typical case of how crucial the invisi-
ble channel can be for the explanation of the apparent anoma-
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lies in the semileptonic decays of the B meson has been
exemplified in Ref. [3]

As an example of what we have just said, let us note that
apart from neutrinos coming from non-SM operators, the
FCNC transition b → s can involve light invisible scalars
in the final state. If they are singlet under all the SM gauge
groups, they can very well be a candidate for cold dark mat-
ter (DM). Although there are strong constraints on such light
DM particles from the direct detection experiments like LUX,
XENON or PANDAX [4–6], one may avoid them if the DM
is nonthermal in origin. The only limit comes from the invis-
ible decay width of the Higgs boson at the Large Hadron
Collider (LHC), which one can easily keep within the tolera-
ble limit of ∼ 10% if the Higgs-DM coupling is small. Thus,
an analysis of the decay b → s + invisibles will also act as
a complementary probe to the DM direct search.

At this point, let us emphasize that it is not necessary for
a particular observable, like the differential branching ratio,
to have equal sensitivity to different types of NP operators.
Therefore it is useful to know how an observable can be
optimized to guarantee the maximal sensitivity to a particu-
lar type of NP interaction, which in turn will help us select
observables suitable for the extraction of a particular type of
coupling. Hence, from a phenomenological point of view, it
is important to find the significance of different types of NP
interaction to an observable. To achieve this goal, we will
use the optimal observable (OO) technique for the analysis.
The OO technique helps one to identify observables where
the NP can be differentiated from the SM with highest con-
fidence level. Of course, which observables are to be used
depends on which part of the parameter space the NP falls.
While this technique has been more widely used for col-
lider studies [7,8], Ref. [9] shows how this can be applied to
semileptonic B decays as well. Note that in the absence of any
data, one must work only with statistical uncertainties. The
systematic uncertainties will somewhat relax the reaches and
the confidence levels. In the OO technique, the NP sensitiv-
ities are decided on the basis of the statistical uncertainties
in the extraction of the relevant new model parameters in
comparison to a reference model. In general, the smaller the
uncertainty, the better the expected sensitivity. Any predic-
tion or conclusion that is obtained as a result of this analysis
takes only three things in consideration: (a) the theoretical
expression involving all (un)known parameters, (b) the seed
values of the parameters (which can be taken to be zero), and
(c) the projected effective luminosity. Unlike any post-data
statistical analysis, like the maximum likelihood method, this
technique focuses on the predictive power of the theoretical
expression of the observable itself and quantifies the sensi-
tivity of that observable in distinguishing between compet-
ing models. In other words, given two points in the allowed
parameter space A and B, we can say with what confidence
level we can differentiate model A from model B depending

on the observables chosen. The method is obviously even
more useful for cases where there is no data available yet.

The OO technique not only shows the regions of the
parameter space for NP where differentiation from the SM
will be easy but also the variables that one should look at
to have such a successful differentiation. In other words, a
simultaneous study of all the relevant observables can effec-
tively pin down the region of the parameter space where any
beyond-SM physics may lie. In the next section, we will pro-
vide a sketchy discussion of the OO technique. In Sect. 3, we
discuss two most popular NP models; one with neutrinos in
the final state but the effective operator basis augmented by
some NP operators; and the second with light scalars in the
final state along with SM neutrinos. Sections 4 and 5 discuss
our results for these two models, respectively. We summarize
and conclude in Sect. 6.

2 The optimal observable technique

This section is rather sketchy and follows the notation of
Refs. [7,8]. Suppose there is an observable O which depends
on the variable φ as

O(φ) =
∑

i

ci fi (φ), (1)

where ci s are model-dependent coefficients, like the Wilson
coefficients (WC), and fi (φ) are known functions of φ. For
our case, φ can be identified with the momentum transfer (to
the invisible particles) squared, q2 = (pB − pK (∗) )2, where
pa denotes the four-momentum of the particle a. To get ci ,
one can fold with weighting functions wi (φ) such that
∫

wi (φ)O(φ) dφ = ci . (2)

There happens to be a unique choice of wi (φ) such that the
statistical error in ci s are minimized. For this choice, the
covariance matrix V , defined as

Vi j ∝
∫

wi (φ)w j (φ)O(φ) dφ, (3)

is at a stationary point with respect to the variation of φ :
δVi j = 0. This happens if we choose

wi (φ) =
∑

j Xi j f j (φ)

O(φ)
, (4)

where

Xi j = (M−1)i j , Mi j =
∫

fi (φ) f j (φ)

O(φ)
dφ. (5)

In this case,

ci =
∑

j

Xi j I j =
∑

j

(M−1)i j I j , I j =
∫

f j (φ) dφ. (6)
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For only this choice of weighting functions, the covariance
matrix is

Vi j = 〈ΔciΔc j 〉 = (M−1)i jσT

N
, (7)

where σT = ∫
O(φ) dφ. (If O(q2) = dΓ/dq2, σT = Γ .) N

is the total number of events, given by the integrated cross
section times total luminosity times the efficiencies. This
result holds even if there are applied cuts. The minimum of
statistical uncertainty in the extraction of a parameter gives
the maximum significance of that parameter over the others.
Therefore, using this technique we can test the significance
of a specific NP model over the other models, including the
SM. In other words, given the data, one can say with what
significance some observable may differentiate a particular
type of NP from the SM. This significance, as one should
emphasize here, depends on the observable chosen, on the
parameters of the NP model, and on the integrated luminos-
ity, all of which are intuitively obvious.

As an example, suppose one is looking at the branching
fractions of a B meson to several final states. For the final
state f , the branching fraction can be expressed as

B(B → f )exp = 1

Γ

∫
dΓ

dq2 dq2, (8)

where Γ is the total decay width. The uncertainties of ci s in
the parameter space, extracted from the branching fractions,
can be written as [9]

|δci | =
√

XiiB(B → f )exp

N
=

√
Xii

σPLeff
. (9)

As given in Eq. (9), the errors are also related to the total
production cross section σP ( = σB→ f /B(B → f )), and
the effective luminosity Leff = Lintεs , where Lint and εs
are the integrated luminosity and reconstruction efficiency,
respectively.

When the number of nonzero NP parameters is small, the
analysis can also be done by defining a quantity analogous
to χ2, such as

χ2 =
∑

i, j

(ci − c0
i )(c j − c0

j )V
−1
i j . (10)

The c0
i s are called the seed values; they can be considered

as model inputs. Thus, they are the values of ci s with the
parameter values chosen for the reference model. Vi j s are
defined in Eq. (7).

In the absence of data and with only an estimate of the
effective luminosity (Leff ), the only prediction one can make
is a model-dependent prediction of the event distribution.
The strength of the OO technique lies in the fact that, even in
the absence of any data, it can predict the minimum uncer-
tainty with which competing models can be separated from

each other, given any experimentally measurable observable.
For example, if we consider SM (i.e. vanishing NP param-
eters), there would be regions in the NP parameter space
which will be indistinguishable from SM under a certain
confidence level. The OO technique finds the highest pre-
cision (minimum-area error-ellipse for any confidence level)
with which any NP model (a specific point on the parameter
space) can be distinguished from SM. The technique works
not only for SM, but also for any other specific reference
model, denoted by c0

i, j in Eq. 10.
As mentioned earlier, our goal is to study the decay b →

s + invisible(s), which includes the exclusive modes like
B → K (∗)νν̄ 1. In such decays, the major sources of uncer-
tainties are the hadronic form factors, like FB→K (∗)

(q2).
Thus, it is important to differentiate between SM and any
possible NP taking into account all these uncertainties, and
check whether the future experimental statistics will allow a
clear separation of the two. Let us now explain briefly how
to use a χ2 statistic test to pinpoint such a differentiation.

There are a few things one should take note of while inter-
preting the results of the OO technique.

1. As is explained in detail in Sect. 4 of Ref. [10], OO tech-
nique was introduced to measure the values of physical
parameters gi (i = 1, . . . ,m) giving small contributions
to the differential cross section in a reaction. Expand-
ing the differential cross section to first order in gi gives
dσ
dφ

= S0 + ∑
i S1,i gi . Reference [10] goes on to show

that observables Oi = S1,i/S0 are optimal in the sense
that the error ellipsoids in the parameter space are of
the smallest volume. These are equivalent to the fi (φ)s
in our analysis (see Eq. (1)). Optimizing the covariance
matrix of fi s in turn optimizes the covariance matrix of
ci s. We use this precise fact in our analysis in predicting
the optimal isolation of competing models, in the line of
[7]. The ‘observables’ that we talk about, and those that
the experimentalists measure, are not the same as those
used in the context of OO.

2. A regular χ2 statistic is a function of parameters of
a model and ‘measures’ the deviation of those from
observed values of some experimental quantities. The
one we need to concoct, however, should take one spe-
cific model (e.g. SM) as reference, in place of experimen-
tal results, and should be a function of some parameters,
each set of values of which indicates one comparison-
worthy model (e.g. NP). For example, if we have a set of
new operators Oi with ci being the corresponding WCs,
ci = 0 ∀ i is the SM and any other set is a NP model
that may be compared with the SM. The χ2 should also
be a measure of ‘separation’ (deviation) between any NP

1 Technically, this is not fully exclusive, as we do not care about the
flavor of the neutrinos.

123



650 Page 4 of 15 Eur. Phys. J. C (2017) 77 :650

model and the reference one. In the rest of this analysis,
the reference model will always be SM. By construction,
we ensure that χ2|SM = 0 and χ2 = n2 denotes a sepa-
ration of n σ from the SM.

3. Projections of the constant χ2 = 1 contours on each
parameter axis will give us the corresponding δci s. Fol-
lowing the point above, the constructed χ2 has no mea-
surements or data points in it and thus the δci s obtained
are not statistical uncertainties on the ci s; it is not even the
predictions for them. These are uncertainties of the ref-
erence model, or, in other words, a measure of the region
in parameter space where the reference model is indis-
tinguishable from models parametrized by surrounding
points in the parameter space. Thus, points on the 1σ con-
tour parametrize models that can be distinguished from
the SM at 1σ level only.

4. When varying the χ2 over the allowed parameter space,
V−1
i j also depends on the parameter values of the refer-

ence model through O(φ), which comes in the denomi-
nator of Mi j (Eq. (5)). This we will call the seed depen-
dence.

5. The covariance matrix Vi j as well as the χ2 is obtained
using the central values of all the parameters. So any
separation obtained after the analysis, though qualita-
tively correct, has to be modified after inclusion of the
SM errors.

6. If considered, theoretical uncertainties in O(φ) will in
turn introduce an uncertainty in the χ2. In other words,
in the presence of the uncertainties, the n σ contours will
become bands of nonzero width in the parametric space.

For completeness, we will also provide the decay rate dis-
tributions of the processes under consideration and test their
usefulness in differentiating the NP models from the SM.

3 New physics models and observables

3.1 Only neutrinos as invisible

The first NP model treats neutrinos as the only carriers of
missing energy in b → s decays. We will also take, for
simplicity, not only no lepton flavor violation (LFV) but also
lepton flavor universality (LFU). This means all the three
flavors of νν̄ pairs are produced in equal number even by the
NP operators, and there are no νi ν̄ j final states with i 	= j .
Note that both these assumptions can be violated in specific
NP models.

The effective Hamiltonian for b → sνi ν̄i can be written
as

Heff = 4GF√
2
VtbV

∗
ts

[
CSMOSM + CV1 OV1 + CV2 OV2

]
,

(11)

where

OSM = OV1 = (
s̄Lγ μbL

) (
ν̄i Lγμνi L

)
,

OV2 = (
s̄Rγ μbR

) (
ν̄i Lγμνi L

)
. (12)

Note that OSM and OV1 are identical only with our assump-
tion of LFU and no LFV. NP with LFU can mean, in an
extreme case, that only one flavor of neutrino will be present;
with LFV, the two neutrinos can be of different flavor. Similar
considerations apply for OV2 . Under our simplifying assump-
tions, one can write Eq. (11) as

Heff = 4GF√
2
VtbV

∗
tsCSM

[
(1 + C ′

1)OV1 + C ′
2OV2

]
(13)

in terms of the scaled Wilson coefficients defined as C ′
1,2 ≡

CV1,2/CSM, with

CSM = α

2π sin2 θW
Xt (xt ). (14)

If the NP is also at the loop level, we expect |C ′
1|, |C ′

2| ∼
O(1). If it is at tree level, |C ′

1|, |C ′
2| 
 1. At the leading

order, the Inami–Lim function Xt is given by

XLO
t = xt

8

[
xt + 2

xt − 1
− 3

xt − 2

(xt − 1)2 ln xt

]
, (15)

with xt = m2
t /m

2
W .

We will use the following numbers for our subsequent
analysis:

mB = 5.280 GeV, mK ∗ = 0.896 GeV,

mK = 0.498 GeV, ms = 0.096 GeV,

|VtbV ∗
ts | = 0.0401, sin2 θW = 0.2313,

Xt = 1.469, τB = 1.519 ps,

GF = 1.166 × 10−5 GeV−2, α = 1/127.925, (16)

where τB is the lifetime of the B meson.
The exclusive differential decay distributions are given by

[11,12]

dΓB→Kνν̄

dq2 = G2
Fα2

256π5

|VtbV ∗
ts |2X2

t

m3
B sin4 θW

λ3/2(m2
B,m2

K , q2)

×
[
f K+ (q2)

]2 ∣∣1 + C ′
1 + C ′

2

∣∣2
,

dΓB→K ∗νν̄

dq2 = G2
Fα2

256π5

|VtbV ∗
ts |2X2

t

m3
B sin4 θW

q2λ1/2(m2
B,m2

K ∗ , q2)

×
[(

|1 + C ′
1|2 + |C ′

2|2
)

×
(
H2
V,+ + H2

V,− + H2
V,0

)

− 2Re[(1 + C ′
1)C

′
2
∗]

×
(
H2
V,0 + 2HV,+HV,−

)]
, (17)
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and the inclusive distribution by

dΓB→Xsνν̄

dq2 = G2
Fα2

128π5

|VtbV ∗
ts |2X2

t

m3
b sin4 θW

κ(0)
(
|1 + C ′

1|2 + |C ′
2|2

)

×λ1/2(m2
b,m

2
s , q

2)

×
[

3q2

(
m2
b + m2

s − q2 − 4msmb

× Re[(1 + C ′
1)C ′

2
∗]

|1 + C ′
1|2 + |C ′

2|2
)

+ λ(m2
b,m

2
s , q

2)

]
,

(18)

where

λ(a, b, c) = a2 + b2 + c2 − 2 (ab + bc + ca) , (19)

and κ(0) = 0.83 is the QCD correction factor. Note that the
structure of the interference term in |1+C ′

1|2 changes if OV1

has LFV or non-LFU nature.
For B → K ∗, the form factors are defined in terms of the

conventional set as

HV,±(q2) = MA1(q
2) ∓ λ1/2(m2

B,m2
K ∗ , q2)V (q2)

M
,

HV,0(q
2) = M

2mK ∗
√
q2

[
λ(m2

B,m2
K ∗ , q2)

M2 A2(q
2)

−
(
m2

B − m2
K ∗ − q2

)
A1(q

2)

]
, (20)

where M = mB + mK ∗ . To get the form factors, one first
defines the function

z(q2) =
√
t+ − q2 − √

t+ − t0√
t+ − q2 + √

t+ − t0
, (21)

where

t± = (
mB ± mK (∗)

)2
, t0 = t+

(
1 − √

1 − t−/t+
)

. (22)

Then we define the generic structure as

Fi (q
2) = 1

1 − q2/m2
P

∑

k

αi
k

[
z(q2) − z(0)

]k
, (23)

where the pole masses mP are

V : 5.415 GeV, A0 : 5.366 GeV, A1, A12 : 5.829 GeV,

(24)

and [13]

αV
0 = 0.38(3), αV

1 = −1.17(26), αV
2 = 2.42 ± 1.53,

α
A0
0 = 0.37(3), α

A0
1 = −1.37(26), α

A0
2 = 0.13 ± 1.63,

α
A1
0 = 0.30(3), α

A1
1 = 0.39(19), α

A1
2 = 1.19 ± 1.03,

α
A12
0 = 0.27(2), α

A12
1 = 0.53(13), α

A12
2 = 0.48 ± 0.66.

(25)

Here A2 has been replaced by A12, given by

A12(q2) =
M2

(
m2

B − m2
K ∗ − q2

)
A1 − λ(m2

B ,m2
K ∗ , q2)A2

16MmBm
2
K ∗

.

(26)

The form factor A0 will be needed when we discuss the
decays to light invisible scalars.

The scalar form factors f0 and f+ for B → K are given
by [14]

f0(q
2) =

K∑

k=0

a0
k z(q

2)k,

f+(q2) = 1

1 − q2/m2
P

×
K−1∑

k=0

a+
k

[
z(q2)k − (−1)k−K k

K
z(q2)K

]
, (27)

where

mP = mB + Δ∗+ (28)

and

a0
0 = 0.550(20), a0

1 = −1.89(23), a0
2 = 1.98(1.24),

a0
3 = −0.02(2.00), a+

0 = 0.432(15), a+
1 = −0.65(23),

a+
2 = −0.97(1.24), Δ∗+ = 0.04578(35). (29)

Another observable that we may use is the modified trans-
verse polarization fraction of K ∗ in B → K ∗νν̄ decays,
defined as

F ′
T ≡ dΓT /dq2

∫
(dΓ/dq2) dq2

= τB
dΓT

dq2 . (30)

Note that the denominator has been integrated over, to give
an overall normalization. It can easily be shown that

dΓT

dq2 = G2
Fα2

256π5

|VtbV ∗
ts |2X2

t

m3
B sin4 θW

q2λ1/2(m2
B,m2

K ∗ , q2)

×
[(

|1 + C ′
1|2 + |C ′

2|2
) (

H2
V,+ + H2

V,−
)

− 4Re[(1 + C ′
1)C

′
2
∗]HV,+HV,−

]
. (31)

From the experimental bounds on the branching fractions,
namely,

Br(B → Kνν̄) < 1.7 × 10−5,

Br(B → K ∗νν̄) < 7.6 × 10−5, (32)

at 90% CL, we get the following approximate constraints on
the scaled Wilson coefficients, assuming them to be real (but
not necessarily positive):
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Fig. 1 Allowed ranges of C ′
1 and C ′

2. Also shown is the truncated
region allowed by the recent Belle data [2]

− 3.0 ≤ C ′
1 + C ′

2 ≤ 1.0,
(
|1 + C ′

1|2 + |C ′
2|2

)
− 1.3

(
1 + C ′

1

)
C ′

2 ≤ 8.0. (33)

The allowed parameter spaces are shown in Fig. 1. Belle
has a recent update [2], mostly on the B → K ∗νν̄ mode:

Br(B → Kνν̄) < 1.6 × 10−5,

Br(B → K ∗νν̄) < 2.7 × 10−5. (34)

While our analysis uses the old parameter space, the results,
as we will see, are obvious even with the new data. Figure 1
also shows the updated parameter space.

We will show (with the OO technique) how much of the
parameter space can be successfully differentiated from the
SM, and with what confidence level. In our analysis, we have
noted that the errors extracted on the new WCs are indepen-
dent of the choices of the seed values. As mentioned ear-
lier, these seed values can be chosen from the allowed NP
parameter space. Obviously, depending on the data, different
observables will have different powers to differentiate NP
effects from the SM. As the values are not known a priori,
one has to look at all the observables and the pattern of the
signal to have an idea of the underlying model.

3.2 Light invisible scalar

Another possibility is to consider the decay b → sSS where
S is some gauge singlet scalar, which can be a cold DM
candidate. In the Higgs portal DM models, S couples only to

the SM doublet Φ through a term likea2S2Φ†Φ → 1
2a2S2h2

in the Lagrangian, where h is the SM Higgs field. If mS <

mh/2, the invisible decay h → SS opens up, and one must
keep a2 to be sufficiently small to avoid the LHC bound on
such invisible decay channels: BR(h → invisible) < 10%.
Although this is in contradiction to a thermalized cold DM
giving the correct relic density of the universe, the singlets
can form only a part of the relic density and may even be
nonthermal in nature.

One has to be careful about the construction of effective
operators. At the first sight, it may appear that an effec-
tive dimension-6 operator s̄LbRΦS2 may lead to the decay
b → sSS when Φ is replaced by its vacuum expectation
value (VEV). This is indeed the case if S does not have any
VEV, which is essential if S is a DM candidate (otherwise it
will mix with h and decay to SM final states). On the other
hand, the Higgs penguin diagrams like b → sh∗, h∗ → SS,
as discussed in some literature [15,16], cannot be there if
the electroweak symmetry is broken by a single Higgs field.
The reason is that the effective off-diagonal Yukawa coupling
ybsh is proportional to the off-diagonal mass term mbs in the
mass matrix, and once one goes to the stationary basis, such
off-diagonal Yukawa couplings must vanish. This loophole
can be avoided if there are more than one fields responsible
for symmetry breaking, or if there are higher dimensional
operators involving Φ in quadratic or more, so that the pro-
portionality of the Yukawa matrix and the mass matrix gets
spoiled.2 Here, we will just assume the existence of a set of
effective operators and explore the consequences.

We start with an effective Lagrangian of the form

Lb→sSS = 1

Λ2

[
CS1mbs̄LbRS

2 + CS2mbb̄LsRS
2 + H.c.

]
,

(35)

and assume only the SM operator to be present for the b →
sνν̄ decay, so that

dΓ

dq2

∣∣∣∣
b→s+invis

= dΓ

dq2

∣∣∣∣
b→sνν̄

+ dΓ

dq2

∣∣∣∣
b→sSS

. (36)

Here, CS1 and CS2 are dimensionless numbers, typically of
the order of unity or less, and Λ is the generic mass scale
of new physics which gives rise to such operators. Unless
otherwise mentioned, we will take Λ = 1 TeV for our analy-
sis, reminding the reader that both CS1 and CS2 scale as Λ2.
Following Ref. [11], one gets

dΓB→K SS

dq2 = f 2
0 (q2)(m2

B − m2
K )2

∣∣CS1 + CS2

∣∣2

512π3m3
BΛ4

×
√

1 − 4m2
S

q2 λ1/2(m2
B ,m2

K , q2),

2 An example is provided in Ref. [17].
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Fig. 2 Allowed ranges of CS1 and CS2 for mS = 0.5 GeV and mS = 1.8 GeV, taking Λ = 1 TeV. Also shown is the truncated region allowed by
the recent Belle data [2]

d2ΓB→K ∗SS
dq2 d cos θ

= 3A2
0(q

2)
∣∣CS1 − CS2

∣∣2

1024π3m3
BΛ4

×
√

1 − 4m2
S

q2 λ3/2(m2
B ,m2

K ∗ , q2) cos2 θ,

dΓB→Xs SS

dq2 = |CS1 |2 + |CS2 |2
128π3mbΛ4

×
√

1 − 4m2
S

q2 λ1/2(m2
b,m

2
s , q

2)

×
[
(m2

b + m2
s − q2) − 4msmb

Re[CS1C
∗
S2

]
|CS1 |2 + |CS2 |2

]
,

(37)

where the form factors f0(q2) and A0(q2) can be obtained
from Eqs. (27) and (23), respectively.

For the decay B → K ∗SS, all K ∗s are longitudinally
polarized. We define a modified longitudinal polarization
fraction

F ′
L ≡ dΓL/dq2

∫
(dΓ/dq2) dq2

= τB
dΓL

dq2

= τB

[
dΓL

dq2
B→K ∗νν̄

+ dΓ

dq2
B→K ∗SS

]
, (38)

which turns out to be

F ′
L = G2

Fα2

256π5

|VtbV ∗
ts |2X2

t

m3
B sin4 θW

τB q2λ1/2(m2
B,m2

K ∗ , q2) H2
V,0

+ ∣∣CS1 − CS2

∣∣2 A2
0(q

2)

512π3m3
BΛ4

τB

×
√

1 − 4m2
S

q2 λ3/2(m2
B,m2

K ∗ , q2). (39)

Obviously, the allowed range of the WCs depends on
the scalar mass mS , which is shown in Fig. 2. Thus, apart
from the new WCs, mS is also another a priori unknown
quantity.

4 Results: only neutrinos

Our results are shown for the projected SuperBelle inte-
grated luminosity Lint = 50 ab−1. However, to motivate
experimentalists, we also show, for some cases, the results
with Lint = 2 ab−1, just to bring home the message that
there might be reasons to feel excited even within the first
year of running. We have taken the production cross section
for B0 and B+ to be the same, which is known to be an
excellent approximation. The detection efficiencies for dif-
ferent channels are taken from Ref. [18], which is an update
over [19] 3:

ε(B+ → K+νν̄) = 5.68 × 10−4,

ε(B0 → KSνν̄) = 0.84 × 10−4,

ε(B → K ∗νν̄) = 1.46 × 10−4, (40)

3 These are for Belle-I. The efficiencies are expected to go up for Belle-
II, but we have been conservative in our estimates.
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Fig. 3 (a) and (b) The SM-NP differentiating χ2 contours for the
exclusive and the inclusive channels coming from b → sνν̄, where
the left and the right panels are for Lint = 50 ab−1 and 2 ab−1, respec-
tively. The q2 (in GeV2) distributions of the decay rates are shown in c

and d, respectively, with Lint = 50 for two benchmark scenarios of NP.
For these and subsequent plots, we have not shown anything beyond 9σ

and we use the SU (2) averaged detection efficiency for B →
K ∗νν̄. We also take the detection efficiency for the semi-
inclusive B → Xs channel to be the same as that of B → K ∗.
These numbers will probably be slightly modified for the
next generation detectors. Note that the detection efficiencies
include a large part of systematic errors too. However, in
the absence of a detailed simulation study for Belle-II, it is

impossible to include all the systematic errors, so we have
to work with the statistical error only. As is obvious, with
higher detection efficiencies, the number of events goes up,
which can be parametrized by a higher effective luminosity.

From the definition of the OOs, it is clear that one needs
to have at least two different ci s for this technique to work,
otherwise it is just a simple scaling of the SM expectation.
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Fig. 4 The contours from the measurement of F ′
T for Lint = 50 ab−1 (left), 2 ab−1 (right)

With the assumption of LFU and no LFV, this is what happens
for the decay B → Kνν̄; the SM factor of 1 is replaced
by |1 + C ′

1 + C ′
2|2. On the other hand, the decays B →

K ∗νν̄, B → Xsνν̄, and the scaled transverse polarization
fraction F ′

T all have more than one combinations of the new
WCs.

In Fig. 3a, b, we show the results from the OO analysis of
the decays B → K ∗νν̄ and B → Xsνν̄, respectively. These
plots use the q2-integrated data, and shows how far the NP
can be differentiated from the SM depending on the precise
values of C ′

1 and C ′
2. The χ2 = n2 (with n = 1, 3, 5, 7, 9)

lines are obtained in theC ′
1,C

′
2 basis with χ2|SM = 0, where,

depending on the values of n, each line represents a deviation
of n σ from the SM. Obviously, C ′

1 = C ′
2 = 0 is the SM and

close to that the chances of separation are the weakest, as
shown by the 1σ band. Note that C ′

1 = −2 and C ′
2 = 0 are

also SM-like, because of the destructive interference between
the two amplitudes, keeping |1 + C ′

1|2 = 1. As can be seen,
with Lint = 50 ab−1 (left panels), both decays can differen-
tiate NP from SM over most of the allowed parameter space
with a high confidence level. Even small NP contributions
like |C ′

1| and/or |C ′
2| of order 10−1 can be differentiated

from the SM at more than 5σ confidence level. The point
C ′

1 = −1, C ′
2 = 0 denotes completely destructive interfer-

ence with the SM and no signal events, and this is obviously
much away from the SM expectation. The separations are
expectedly worse for Lint = 2ab−1, as shown in the right
panels of the Fig. 3a, b, but even then there are regions in the
parameter space that can show some interesting trend. As an
example, we note that it is possible to separate out NP con-
tributions like |C ′

1|, |C ′
2| ≈ 1 from the SM at 9σ confidence

level or more.
With enough data, one may even measure the differen-

tial decay distribution dΓ/dq2. In Fig. 3c, d, we show the

differences in dΓ/dq2 profiles between the SM and the NP
for a couple of benchmark points, shown as NP-1 and NP-2,
for the decays B → K ∗νν̄ and B → Xsνν̄. Note that both
the benchmark points are allowed even by the new Belle data
(Fig. 1). Integrated branching fractions of these modes in SM
and the selected benchmark points are listed in Eq. (41):

Br(B → K ∗νν̄)SM = (9.43 ± 1.48) × 10−6,

Br(B → K ∗νν̄)NP−1 = (17.77 ± 2.86) × 10−6,

Br(B → K ∗νν̄)NP−2 = (3.99 ± 0.70) × 10−6,

Br(B → Xsνν̄)SM = (28.88 ± 1.90) × 10−6,

Br(B → Xsνν̄)NP−1 = (49.40 ± 3.24) × 10−6,

Br(B → Xsνν̄)NP−2 = (8.61 ± 0.56) × 10−6. (41)

The present data almost rules out |C ′
i | 
 1—the NP

has to be either loop-mediated or the new particles have to
be so massive as to lie outside the direct detection range
of the LHC—and so we concentrate on small-C ′

i points.
The bars shown in the plots represent the combined errors
due to the various theory inputs, mostly coming from the
form factors. In the case of NP, if we treat the δC ′

i s com-
ing from the OO analysis of the respective decay modes
as a measure of future statistical uncertainties on the NP
WCs, then both dBr/dq2 and the total branching fraction
will have additional errors coming from them. We note that
the NP sensitivities on the q2 distributions of the exclusive
and inclusive decay modes are different. For example, the
distribution for B → K ∗νν̄ is highly sensitive to NP in
the region 10 GeV2 < q2 < 15 GeV2, while that for the
decay B → Xsνν̄ is more sensitive to the low-q2 region,
q2 < 10 GeV2. Therefore, study of dΓ/dq2 for these exclu-
sive and inclusive channels may be quite useful to pin down
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Fig. 5 The differentiation contours for b → sSS with mS = 0.5 GeV and Lint = 50 ab−1 (left panels), 2 ab−1 (right panels). We take Λ = 1 TeV
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Fig. 6 Comparison of the q2 (in GeV2) distributions of the decay rates for several b → sSS channels, with Lint = 50 ab−1 and mS = 0.5 GeV

the parameters of the NP. For most of the beyond-SM theo-
ries, there should be a corroborative signature from charged
lepton final state channels, but, as we pointed out, this may
not be true always.

Other observables are expected to yield different confi-
dence level contours. This is shown in Fig. 4 for the mod-
ified transverse polarization fraction F ′

T , both for low and
high Lint. Note that the NP sensitivities of this observable
are similar to that for the decay B → K ∗νν̄. Note that the
separation for this observable may not go beyond 7σ confi-
dence level for the low-Lint option.

5 Results: invisible light scalars

With invisible light scalars escaping the detector, one gets
an identical signal as b → sνν̄. We will assume two such
identical light scalars produced in the decay, i.e., b → sSS.
The differential decay distributions depend on the mass of S,
which we take to be either 0.5 GeV (called the light scalar or
LS option), or 1.8 GeV (called the heavy scalar or HS option).
For both these options, we show our results taking Lint =
50 ab−1 and 2 ab−1, just as before. Obviously, separation
from the SM will be better for lighter scalars, as for heavier

scalars, the low-q2 region will be covered only by the SM
and hence those bins will be irrelevant for the analysis.

We show the confidence levels in Fig. 5a–c for the decays
B → K SS, B → K ∗SS and B → Xs SS, respectively,
for the LS option. The shape of the contours are intuitively
obvious from the expressions of dΓ/dq2. For example, the
mode B → K SS is not of much use if CS1 ≈ −CS2 . A
complementary set of information can be obtained from the
B → K ∗SS mode. As expected, only regions close to the
SM point CS1 = CS2 = 0 may not be differentiable from the
SM itself. Roughly speaking, one can have a 5σ separation
from the SM in at least one channel with Lint = 50 ab−1 if
|CS1 | and/or |CS2 | be as small as 0.01. The inclusive channel
B → Xs SS is even more powerful, as the branching frac-
tion depends on the combination |CS1 |2 + |CS2 |2. This leads
to circular contours around the origin. There is a subleading
term proportional to the strange quark mass ms which breaks
this symmetry, and so the contours appear to be slightly
deformed. The low-luminosity option as displayed in the
right panels show that the differentiation is harder for exclu-
sive modes, while the inclusive mode fares better. Points like
|CS1 | and/or |CS2 | ≈ 0.01 can be differentiated from the SM
at more than 5σ confidence level. Integrated branching frac-
tions of these modes in SM and the selected benchmark point
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Fig. 7 Same as Fig. 5 with mS = 1.8 GeV
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Fig. 8 Same as Fig. 6 with mS = 1.8 GeV

(Fig. 6) are listed in Eq. (42):

Br(B → K + invis)SM = (3.86 ± 0.53) × 10−6,

Br(B → K + invis)NP−1 = (8.89 ± 0.79) × 10−6,

Br(B → K ∗ + invis)SM = (9.43 ± 1.48) × 10−6,

Br(B → K ∗ + invis)NP−1 = (23.91 ± 2.77) × 10−6,

Br(B → Xs + invis)SM = (28.88 ± 1.90) × 10−6,

Br(B → Xs + invis)NP−1 = (12.39 ± 0.45) × 10−5. (42)

Similar set of plots for the HS option are shown in Fig. 7.
The nature of the plots is identical to that of Fig. 5. However,
to reach the same sensitivity, one needs higher WCs than the
LS option, as the NP effects are visible only in the low-q2

bins. Integrated branching fractions of these modes for the
selected benchmark point (Fig. 8) are listed in Eq. (43):

Br(B → K + invis)NP−1 = (5.79 ± 0.52) × 10−6,

Br(B → K ∗ + invis)NP−1 = (11.20 ± 1.11) × 10−6,

Br(B → Xs + invis)NP−1 = (34.79 ± 1.71) × 10−6. (43)

The q2 distributions for the decay rates of B →
K SS, B → K ∗SS and B → Xs SS are shown in Fig.

6a–c, respectively, for Lint = 50 ab−1 for the LS option.
While, for B → K SS and B → K ∗SS, the q2 distribu-
tions are sensitive for NP over the entire q2 region except for
very high (> 15 GeV2) and very low (≈ 0) regions, for the
semi-inclusive decay the NP sensitivity is more in the region
2 GeV2 < q2 < 10 GeV2. Similar plots for mS = 1.8 GeV
are shown in Fig. 8. We note that though q2

min is much higher
for this case, the nature of the q2 distributions, and therefore
the NP sensitivities, is similar to that obtained for the LS
case.

As is defined in Eq. (38), the decay B → K ∗SS has
another observable, namely, the longitudinal polarization F ′

L .
This is because the K ∗ mesons appearing with scalars are
completely longitudinally polarized. The confidence level
contours for F ′

L obtained from the OO analysis are shown
in Fig. 9a, b for the LS and the HS options, respectively.
This observable has similar kind of NP sensitivity as that of
B → K ∗SS.

6 Summary

We have analyzed the NP sensitivities of the different observ-
ables in the decays b → s + invisibles using the Opti-
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Fig. 9 The contours from the measurement of F ′
L (Eq. (38)), with mS = 0.5 and 1.8 GeV, Lint = 50 ab−1 (left panels), 2 ab−1 (right panels)

mal Observables technique. We consider two NP models:
(1) only neutrinos as the carriers of missing energy but with
a new operator involving a right-handed quark current; and
(2) apart from the SM neutrinos, light invisible scalars as the
carriers of missing energy. The analysis takes into account
all the new effective operators and their effects on several
observables, namely, the total decay width for inclusive and
exclusive modes, the differential decay distributions, and the
modified transverse and longitudinal polarization fractions
as defined in the text.

We show our results both for the high- and low-luminosity
options of Belle-II, namely, Lint = 50 ab−1 and 2 ab−1,
respectively. All the observables are sensitive to NP effects,
and even small NP effects might be detectable at future high-
luminosity Belle-II. The differentiation of the NP from the
SM is obviously not that trivial for the low-luminosity option,
apart from the observables like inclusive branching fractions.

The NP sensitivities of dΓ/dq2 for exclusive and inclu-
sive channels are different. As the data on that will possibly
come after the branching fraction data, they will serve as
an additional check on the operator structure and parame-
ter values of the NP. Note that the exclusive distributions are
more or less similar for both the NP models, but the inclusive
distributions are different, so that may serve as a good dis-
criminator. Thus, we encourage our experimental colleagues
to investigate both the q2-integrated branching fractions and
the differential distributions.

We would also like to point out that when the data comes,
and one has a better idea of backgrounds and systematic
errors, it is easy to extrapolate our findings by taking the
appropriate efficiency into account. The number of events
will change, which can be parametrized by a change of the
effective luminosity Leff in the denominator of Eq. (9). This
will increase the volumes enclosed by constant χ2 surfaces in
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the parameter space. Thus, two points that are differentiable
at aσ in our analysis will only be differentiable at bσ where
b < a. Still, our conclusions are expected to be valid, as we
have shown large parts of the parameter spaces differentiable
up to ∼ 9σ from the SM, for the higher luminosity case.
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