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The present study deals with the exact solutions of the Einstein’s field equations
with variable gravitational and cosmological “constants” for a spatially homogeneous
and anisotropic Bianchi type-I space-time. We assume that the conservation law for
the matter is fulfilled. Hence giving rise to separate equations one for the perfect fluid
and other connecting gravitational and cosmological constants. Assuming that G be a
function of volume scale V/, the metric functions, A-term, energy density and pressure
are found to be functions of V. The equation for V' is found through Einstein’s field
equations and solved both analytically and numerically. The present study also allows
a time dependent deceleration parameter (DP). It is found that for empty universe, the
derived model is accelerating whereas for radiating dominated and stiff fluid universes,
we obtain models that depict a transition of the universe from the early decelerated
phase to the recent accelerating phase. The cosmological constant A is obtained as a
decreasing function of time and approaching a small positive value at present epoch
which is corroborated by consequences from recent supernovae Ia observations. The
physical significances of the cosmological models have also been discussed.
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1. INTRODUCTION

Einstein’s theory of gravity contains two fundamental constants: Newton’s gra-
vitational constant GG and the cosmological constant A. Here G plays the role of cou-
pling constant between geometry and matter while, A was introduced by Einstein [1]
as the universal repulsion to make the universe static in accordance with generally ac-
cepted picture of that time. But a general expansion of the universe was observed by
Hubble [2] subsequently. The variability of G and A is also one of the most striking
and unsettled problems in cosmology. A time variation of G has been first suggested
by Dirac [3-5] and extensively described in literature [6-8].
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The recent observations by Perlmutter ef al. [9, 10] and Riess et al. [11, 12]
suggested a positive value of A, which causes the acceleration in the expansion of
universe. The status of cosmological constant has been reviewed by Carroll ef al.
[13], Sahni and Starobinsky [14], Peebles and Ratra [15], Padmanabhan [16, 17].
Among the various solutions proposed is the phenomenologically simple one of en-
dowing the effective (A) with a variable dynamic degree of freedom which allows it
to relax to its present value in an expanding universe. Berman [18, 19], Chen and
Wu [20] have argued in favour of the dependence A ~ t. Recently, several authors
[21-45] have studied variable cosmological constant A(t) in different context.

Anisotropic Bianchi type-I universe, which is more general than FRW universe,
plays a significant role to understand the phenomenon like formation of galaxies in
early universe. Theoretical arguments as well as the recent observations of cosmic
microwave background radiation (CMBR) support the existence of anisotropic phase
that approaches an isotropic one. Motivated by the above discussions, in this pa-
per, we propose to study homogeneous and anisotropic Bianchi type-I cosmological
models with time dependent gravitational and cosmological “constants”. The paper is
organized as follows. In Sect. 2, the metric and basic equations have been presented.
Section 3 deals with results and discussions. Finally, conclusions are summarized in
the last Sect. 4.

2. THE METRIC AND BASIC EQUATIONS

We consider the space-time metric of the spatially homogeneous and anisotropic
Bianchi-I of the form

ds® = dt* — A*(t)dx* — B (t)dy* — C*(t)d2>. (1)

where A(t), B(t) and C(t) are the metric functions of cosmic time t.
Einstein field equations with time-dependent G and A are given by

1
Rij = 59i 1t = 87G T + A gij, @

where the symbols have their usual meaning.
For a perfect fluid, the stress-energy-momentum tensor 7;; is given by

Tij = (p+p)uivj —p gij, 3)

where p is the matter density, p is the thermodynamics pressure and u’ is the fluid
four-velocity vector of the fluid satisfying the condition

uiui =1. 4

In the field equations (2), A accounts for vacuum energy with its energy density p,



3 Bianchi type-I cosmological models with ¢ dependent constants: alternative approach 5

and pressure p, satisfying the equation of state

A
—< A %)
8t
The critical density and the density parameters for matter and cosmological constant
are, respectively, defined as

Pv=—pPv=

3H?
Pec = Fywar (6)
p 8nGp
QM = E = 3H2 ’ (7)
Pu A

In a comoving system of coordinates, the field Eqs. (2) for the metric (1) with
(3) read as

A B AB
Z+§+7B——87TGP+A, (9)
A C  AC
T A 10
1T 8nGp+A, (10)
B C BC
T - A 11
stoT o = 8"GP A, (1)
AB BC CA
Tt i . 12
AB+BC+C’A 8tGp+ A (12)
The covariant divergence of Egs. (2) yield
+3(p+p)H + §+7_0 (13)
P pTp Pat g~
The spatial volume for the model (1) is given by
V =ABC (14)
We define the average scale factor a of anisotropic model as
a=(ABC)3 =V3 (15)
So that the generalized mean Hubble parameter H is given by
1
Hzg(Hx+Hy+Hz), (16)

where H, = %,Hy = %,H = % are the directional Hubble parameters in the di-
rection of x, y and z respectively and a dot denotes differentiation with respect to

cosmic time t.
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From Egs. (15) and (16), we obtain an important relation

a 1({A B C 1V
H—a—3<A+B+o>—3V' (a7

The expression for the dynamical scalars such as the expansion scalar (6), anisotropy
parameter (A,,) and the shear scalar (o) are defined as usual:

(mm) 4
2

> (19)
, 1 1 AQ 32 o\’ e

o =007 =2 <A> +<B> +(C> 5 (20)

.o H H2 b
q:—aa:—< i )_2—3‘/.‘/. 1)

3. RESULTS AND DISCUSSION

The field Eqs. (9—12) are a system of four equations with seven unknown
parameters A, B, C', G, p, p and A. Hence, three additional constraints relating these
parameters are required to obtain explicit solution of the system.

From Egs. (9)—(11), following Saha [46], one can derive the metric functions
in terms of V' as

At) =1,V 3exp <m1/V_1dt> , (22)
B(t) =1,V 3 exp <m2 / v—ldt) : (23)
C(t) =13V 3exp <m3 / Vldt> , (24)

where constants my,mg, m3 and l1,l2, 3 satisfy the following two relations:
mi+mo+m3=0, lilslz=1. (25)

Note that in a previous paper [47], we assumed some concrete form for a or V. In this
case we take another approach, by assuming that conservation law for the material
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field fulfils. In this case Eq. (13) can be separated to write
p+3(p+p)H =0, (26)
and
87pG+A =0. (27)
First we assume equation of state for perfect fluid as
P=pP; (28)

where v (0 <y < 1) is constant.
On account of Egs. (28) and (17), Eq. (26) can be solved to get

_ PO
P= Vity’

(29)

where pg is an arbitrary constant.

Second, we assume a power-law form of the gravitational constant (G) with
scale factor as proposed by Singh and Kumar [31], Chawla et al. [44] and Pradhan
et al. [45]

Goca™, 30)
where m is a constant. For sake of mathematical simplicity, Eq. (30) may be written
as

G =Goa™ =GoV'3, 31)
where (i is a positive constant.

Now inserting Egs. (29) and (31) into Eq. (27) one finds

A=Ay [8”’ oGiom } vE-1), (32)
m—3(1+7)

where Ag is an arbitrary constant. From above equation we see that A is a decreasing

function of time and it is always positive when

v < [zt =
& £0 G()m

Thus we see that the metric functions, energy density, pressure, Newton’s gra-

vitational constant and Einstein’s cosmological constant can be expressed as a func-

tion of volume scale V. In what follows we find the equation for determining V' and

solve it both analytically and numerically. Now summation of Egs. (9), (10), (11)

and three times Eq. (12) gives
V =12r(1—~)GpV +3AV. (33)
Inserting p, G and A into (33) one finds

V =XV5743A0V, (34)
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with
3(1—7)+ m}
X =127pgGo(1+ —Y. 35
TpoGo(1+7) [3(1+7)—m (35)
The foregoing equation allows the first integral
V2= X VIE T 4300V 4V, (36)
where we denote X = ﬁ. Here 1} is the constant of integration. In view of

Eq. (36) the solution for V' can be written in quadrature as
av

/ \/ XV E T 1 300V2 4 )

=t+1o, (37)

where % is an integrating constant. Thus, we have the solution to the corresponding
equation in quadrature.

In Fig. 1, we plot the evolution of V' in time. As one see, it is an expanding
function of time, with V' expanding as a power-law function at early stage and expo-
nentially at late. Here and in the figures following the solid line (red) corresponds to
~ = 0 (dust Universe), dot line (magenta) corresponds to v = 1/3 (radiation domi-
nated Universe) and dash line (blue) corresponds to v = 1 (stiff or Zel’dovich Uni-
verse). Here and in the figures following we have considered the values of different
constants as pg =Ag=m =1, A¢g=0.1, m; =0.25, m=0.75and mg = —1l as a
representative case. We have solved Eq. (33) numerically with initials Vp = 0.001
and Vp = 0.003. In all figures, we have not mentioned the parameter, as we give a
qualitative picture of the evolution.
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1 04(]

103(]

1020

1010

10°

0.01

Fig. 1 — Evolution of the volume scale V' vs. time t.
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Fig. 2 — Evolution of deceleration para-
meter g vs. time .
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Fig. 4 — Evolution of gravitational con-
stant G vs. time ¢.
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Fig. 3 — Evolution of anisotropic parame-
ter Ay, vs. time t.
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Fig. 5 — Evolution of energy density p vs.
time ¢.

In this case, expressions for physical parameters such as expansion scalar (6),
Hubble’s parameter (H), deceleration parameter, shear scalar (o) and anisotropy pa-

rameter (A,,) are given by

0=3H =

" Vi
X VE I 4300+ S

73 (38)

XV EHI=7 4 30,V2

V2 X VEHTY L 30 V24 T,

; (39)
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Fig. 6 — Evolution of cosmological con-
stant A vs. time ¢.

Fig. 8 — Evolution of density parameter
QA vs. time t.
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Fig. 7 — Evolution of density parameter
Qg vs. time £,

Fig. 9 — Evolution of total density para-
meter {2 vs. time t.

+6 X1V3 ’Y+3A0+W s (40)

3(m%+m%+m§) @1

3V2H?

[le”?” F3AV24 V|

From above relations (29), (31), (32) and (38)—(41), we can obtain the expres-
sions for different physical parameters for four types of models:
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e When v = 0, we obtain empty model.
e When vy = %, we obtain radiating dominated model.

e When v = —1, we have the degenerate vacuum or false vacuum or p vacuum
model [48].

e When v = 1, the fluid distribution corresponds with the equation of state p = p
which is known as Zeldovich fluid or stiff fluid model [49, 50].

Therefore, we study the variation of these parameter with respect to cosmic time ¢
for three values of v =0, % and 1.

From Eq. (38), we observe that the Hubble parameter tends to infinity where
V' — 0. From Eq. (39), we observe that

. XV3H=7 4 370,V2 2
qg>0 if T < =,
X Vst 3A0V2 4+, 3

and
L XVEHIT 30 V2 2
q <0 if = > —.
X VEHT 1 30V2 4V, 3

Figure 2 depicts the variation of g versus cosmic time ¢{. From this figure,
we observe that for empty model (v = 0), the universe is accelerating whereas for
radiating dominated (y = %) and stiff fluid model (v = 1), the universe has transition
from very early decelerated phase to the present accelerating phase. In such type of
universe, the DP must show signature flipping [51—53].

From Eq. (41), one observes that anisotropy is constant as IV — 0, but vanishes
away with increase of V. The variation of anisotropic parameter with ¢ is shown in
Fig. 3 for y =0, % and 1. From this figure we observe that A,, decreases with time
and approaches to zero as t — oo. Thus, the observed isotropy of the universe can be
achieved in our three types of models at present epoch.

From Eq. (31), we observe that G is an increasing function of V' if m > 0
whereas G is a decreasing function of V' if m < 0. The nature of variation of G with
cosmic time is shown in Fig. 4 for three values of v = 0,% and 1 by considering
m = 1. We observe that for all three types of models (empty, radiating dominated
and stiff fluid), G is found to be increasing function of time. The possibility of an
increasing G has also been suggested by several authors [32—34, 54].

The energy density has been graphed versus time in Fig. 5 for v =0, % and 1. It
is evident that the energy density remains positive in all three types of models under
appropriate condition. However, it decreases more sharply with the cosmic time in
empty universe compare to radiating dominated and Zeldovich Universes.

Figure 6 is the plot of cosmological term A versus time for v = 0, % and 1. In
all three types of models, we observe that A is decreasing function of time ¢ and it
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approaches a small positive value at late time (i.e. at present epoch). However, it de-
creases more sharply with the cosmic time in empty universe, compare to radiating
dominated and stiff fluid universes. Recent cosmological observations [9—12] sug-
gest the existence of a positive and small cosmological constant A at present epoch.
These observations on magnitude and red-shift of type la supernova suggest that our
universe may be an accelerating one with induced cosmological density through the
cosmological A-term. Thus, the nature of A in our derived models are supported by
recent observations.

The vacuum energy density (p, ), critical density (p.) and the density parameter
(Qpr,82,) are obtained as

Ao mpo
1/: m bl 42
P SWGOV?+[3(1+7)—m]V1+7 @2
1 m m
Pe= 2urGy R AR e ERT i al P (43)
24mGopoV 3 T177
M= g , (44)
X VST 4 3A0V2 4 1)
Q-3 (3437 = m) AoV 4 8mpoGomV 5+ 0]
(3+3y—m) X VEHITY 430, V2 4V ’
B 3 247Gopo(1+7)V5 17 4 (34 3y —m)AgV? 46)
(B+3y—m) X1 VETITY 4 300V2 4V '

From Eq. (43) we see that when V' — 0, p. — oco. From Eqgs. (44) and (45), we
observe that for V' — 0, both 23, and 25 vanish but for V' — oo, both €2, and Q2
approach to some constant. Figures 7 and 8 plot the variation of density parameters
for matter (€237) and cosmological constant (£25) versus t respectively. From these
figures it is clear that the universe is dominated by matter in early stage of evolu-
tion whereas the universe is dominated by dark energy (cosmological constant A)
at present epoch. Figure 9 plots the variation of total energy parameter (£2) versus
cosmic time ¢. From the Fig. 9, we observe that {2 — 1 at late time which is in good
agreement with the observational results [55].

4. CONCLUSION

In this report we have studied the exact solutions of the Einstein’s field equa-
tions with variable gravitational and cosmological “constants” for a spatially ho-
mogeneous and anisotropic Bianchi type-I space-time by taking an alternative ap-
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proach. Our solution has been given in quadrature and it is regarded as exact so-
lution [56]. We assume that the conservation law for the matter is fulfilled. Hence
giving rise to separate equations one for the perfect fluid and other connecting gra-
vitational and cosmological constants. The equation for volume scale V' is found
by using Einstein’s field equations and solved both analytically and numerically. The
present study also permit a time dependent deceleration parameter. It is found that for
empty universe, the derived model is accelerating whereas for radiating dominated
and stiff fluid universes, we obtain models that depict a transition of the universe
from the early decelerated phase to the recent accelerating phase. The observations
suggest that the universe was previously decelerating which entered into an accel-
erating phase. It was decelerating when dominant was matter, but afterwards when
dark energy became dominant the phase transition took place. A real model should
describe both phases, that is why we introduce both usual matter and DE. The cos-
mological constant A is obtained as a decreasing function of time and approaching
a small positive value at present epoch which is corroborated by consequences from
recent supernovae la observations. The gravitation constant G is found to be an in-
creasing function of time. Our models are expanding, shearing and non-rotating and
they all are accelerating at present epoch.
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