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Abstract. Ever since fast hydrodynamization has been observed in heavy ion collisions
the understanding of the hot early out-of-equilibrium stage of such collisions has been
a topic of intense research. We use the gauge/gravity duality to model the creation of a
strongly coupled Quark-Gluon plasma in a non-conformal gauge theory. This numerical
relativity study is the first non-conformal holographic simulation of a heavy ion collision
and reveals the existence of new relaxation channels due to the presence of non-vanishing
bulk viscosity. We study shock wave collisions at different energies in gauge theories
with different degrees of non-conformality and compare three relaxation times which can
occur in different orderings: the hydrodynamization time (when hydrodynamics becomes
applicable), the EoSization time (when the average pressure approaches its equilibrium
value) and the condensate relaxation time (when the expectation value of a scalar operator
approaches its equilibrium value). We find that these processes can occur in several
different orderings. In particular, the condensate can remain far from equilibrium even
long after the plasma has hydrodynamized and EoSized.

1 Motivation

The gauge/gravity duality entered a new area with the prediction of the low viscosity over sheer
entropy ratio [1] for N = 4 Super-Yang-Mills plasma. It turned out that the strongly coupled Quark
Gluon plasma (QGP) created in ultra-relativistic heavy-ion collisions features transport properties of
such an almost perfect liquid [2, 3]. Fast Hydrodynamization, meaning the early applicability of
hydrodynamics to such a liquid, got established first in boost invariand flow and than by colliding
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holographic shock waves [4–10], which trigger out-of-equilibrium strongly coupled dynamics. These
numerical studies were extended to non-conformal models [11, 12], where the fast applicability to
hydro was confirmed for non-conformal gauge theories [13–15]. EoSization, the time when the ideal
equation of state applies again, was found to depend on bulk viscosity. Moreover see the lattice study
[16] using holography for probing the Quantum ChromoDynamics (QCD) phase diagram at finite
baryon chemical potential. For a full introduction to holography and a review over it’s application to
the QGP created in collisions at the Relativistic Heavy Ion Collider and at the Large Hadron Collider
we refer the reader to the book review [17].

Shockwave collisions in an asymptotically AdS spacetime, have provided insights into the far-
from-equilibrium properties of hot, strongly-coupled, non-Abelian plasmas that are potentially rele-
vant for the QGP. The dynamics of the longitudinal, transverse and average pressures provides in-
formation about different relaxations in the evolving plasma. The non-conformality of the plasma
involves an additional channel, namely the evolution of the energy density and the average pressure
towards asymptotic values related by the equation of state. This process is named “EoSization” and
once it happened the plasma has “EoSized”. As EoSization is in part controlled by how the conden-
sate approaches its equilibrium we show new scalar condensate evolution. We expand our previous
results of the non-conformal colliding shockwaves in this proceedings for the Lattice 2017 conference
in Granada, Spain.

2 Setup

The action with κ5 the five-dimensional Newton constant for our minimally coupled Einstein-plus-
scalar models [13] is

S =
2
κ25

∫
d5x
√−g
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4
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2
(∇φ)2 − V(φ)

]
. (1)

The holographic renormalization procedure [18] for the scalar potential V(φ) fixes the first terms on
top of the negative cosmological constant of anti-de-Sitter (AdS) space. This leaves the freedom in the
higher terms of the potential for a single-parameter φM, which dictates the degree of non-conformality
of the given theory. The renormalization group flow between the two fixed points in the ultra-violet
(UV) and the infra-red explicitly breaks conformal invariance. The dual operator of the scalar field
has in the UV mass dimension three. We emphasize that our choice of potential is not guided by the
desire to mimic detailed properties of QCD but by simplicity:
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L is the the radius of the corresponding AdS solution in the UV. In the Fefferman-Graham metric
one gets a quasi-analytic solution for a single traveling shockwave on a vacuum background, the
seminal Aichelburg-Sexl solution [19]. uFG is the holographic coordinate, x± the propagation direction
of the shockwave and x⊥ the perpendicular directions to it. The metric Ansatz corresponds to the
vacuum metric plus the addition of a Gaussian function term h (x±), where f (uFG) is a second-order
differential equation coming from the Einstein equation coupled to the potential:

ds2 =
L2

u2
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(
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From the vacuum solution for the chosen potential one determines aFG and numerically solves f (uFG)
(see [14] for the detailed procedure). We choose for the gravitational wave the Gaussian with the
width ω of

h(z±) =
µ3

w
√

2π
e−z2

±/2ω
2
, (4)

where µω parametrizes the dimensionless “thickness” of the chosen initial profile.

Figure 1. Spacetime evolution of the non-conformal shockwaves, in units of Λ4, in a collision in the φM = 20
model with µω = 0.30 and µ/Λ = 0.93.

The Ward identity for the trace of the stress tensor gives
〈
T µµ
〉
= −Λ 〈O〉 , (5)

where Λ controls the magnitude of the non-normalizable mode of the scalar field and is the source
of the conformal invariance breaking. Omitting the expectation value signs we will work with the
rescaled quantities of the energy momentum tensor

(E, PL, PT ,V) = κ25
2L3 (−T t

t , T
z
z , T

x⊥
x⊥ ,O) . (6)

In these variables the Ward identity is given by

E − 3P̄ = ΛV . (7)

with

P̄ =
1
3

(PL + 2PT ) (8)

The scalar expectation value V = 0 is null for the vacuum according to the chosen renormalization.
Out of equilibrium it fluctuates independently.
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3 Non-conformal collisions

3.1 Hydrodynamization and EoSization

The physics of the resulting collision depends on the “thickness” eq. (4) of the collision and on the
initial transverse energy density in units of the source µ/Λ. In Figure 1 we show the spacetime
evolution of a very non-conformal collision [13, 14]. From a birds eye view the evolution seems quite
similar to the ones of conformal collisions, but its pressure evolution differs. In the terminology of [7]
this is a 1/2-shock with µω = 0.30. We extract the hydrodynamization time thyd according to the time
when the following criteria of first-order hydrodynamics matches to better than 10%:

∣∣∣∣∣∣∣
PL,T − Phyd

L,T

P̄

∣∣∣∣∣∣∣ < 0.1 (9)

P̄ is the average pressure. EoSization tEoS is the time beyond which the normalized average pressure
agrees with the equilibrium pressure with a 10% accuracy:

∣∣∣∣∣∣
P̄ − Peq

P̄

∣∣∣∣∣∣ < 0.1 (10)

Note that we used the average pressure to normalize (in a CFT the local energy density has a trivial
relation to pressure and hence is often in the denominator).

In our temperature scan in Figure 2 we extract for each collision the hydrodynamization time (red
dashed line) and the EoSization time (purple dashed line). Analysing it one finds an increase with
non-conformality of the hydrodynamization time. The increase of thydThyd is at maximum a factor of
2.6 compared to the CFT result. Moreover the EoSization time happens after the hydrodynamization
where as in a CFT the plasma is EoSized at all times per definition.

For sufficiently large µ/Λ we see indeed EoSization becoming negative in Figure 2, meaning that
the average and the equilibrium pressures differ by less than 10% even before the shocks collide. This
is due to the start of an overlap of the shocks before the collision and shows that those collisions are
almost conformal.

Both non-conformal effects are understood as a consequence of the presence of bulk viscosity,
which is shown in function of temperature in the upper panel of Figure 2. The bulk viscosity reduces
the speed of the expansion of the plasma. The maximal hydrodynamization time thydThyd is reached
with a bulk viscosity over sheer viscosity ratio of ζ/s ≡ 0.029. Indeed one only needs a bulk viscosity
over sheer viscosity of ζ/s > 0.025 to get sizable non-conformality for the early non-equilibrium
evolution. We extract this value as a conservative estimate below which EoSization always happens
before hydrodynamization. This is exciting as this may well be below the range of the estimated
QCD bulk viscosity from the temperature of the critical point up to twice its value, which has not yet
been computed convincingly with lattice QCD. This is the temperature range of the RHIC collisions
in the search of the critical point. The bulk viscosity is thought to have a strong effect [20, 21] on the
observable of the QCD phase transition.
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Figure 3. Spacetime evolution of the scalar condensate, in units of Λ3, in a collision in the φM = 20 model with
µω = 0.30 and µ/Λ = 0.93.

3.2 Scalar condensate relaxation

In analogy to the hydrodynamization and EoSization times we define a criterium for the condensate
relaxation time. It is fullfilled once the normalized difference of the expectation value and its equilib-
rium value

∣∣∣∣∣∣
V −Veq

V

∣∣∣∣∣∣ < 0.1 (11)

differ by less than 10% at any later time. It indicates how fast this one-point function reaches its
equilibrium value. The condensate relaxation time for the specific collision of Figure 1 is shown
in Figure 3 happens to be last after both hydrodynamization and EoSization times. For more non-
conformal setups the condensate relaxation can happen first. Figure 4 shows the scalar condensate
evolution of such an outcome. As expected in all the evolution the scalar condensate is not excited
before the collision and sharply peaks afterwards. For collisions in the non-conformal temperature
range the scalar condensate is fully out of equilibrium. The decay of the scalar condensate happens
in an oscillating way for the lower temperature collisions as governed by the intermixed quasinormal
modes of the theory.
One notes of course the delay of the maximal peak in the scalar condensate (see Figures 3,4) compared
to the local energy density superposition of the shocks (see Figure 1). This delay is also observed in
e.g. the true drag force on a quark compared to the force that it would experience in an equilibrium
plasma with the same instantaneous energy density [22, 23].

It is remarkable how hydrodynamics works so well describing a non-conformal plasma even with
a non-trivial equation of state. This success is even more surprising in cases in which hydrodynamiza-
tion precedes all other equilibration processes. What is perhaps most surprising is that, as measured
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Figure 4. Spacetime evolution of the scalar condensate, in units of Λ3, in a collision in the φM = 20 model with
µω = 0.30 and µ/Λ = 0.36.

by the bulk viscosity-to-entropy ratio, a “sufficient” degree of non-conformality requires only a small
value ζ/s � 0.025, as first estimated in [13]. This indicates that non-conformal relaxation may also oc-
cur in real-world heavy ion collisions, where both calculations [24–26] and data-driven parametriza-
tion [27–29] yield larger values than this estimate in a significant part of the time evolution of the
resulting plasma. It will be interesting to extend this non-conformal holographic study to models with
finite chemical potential [30, 31] or with a phase transition [15].
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