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Abstract

Effective formalisms play an important role in analyzing phenomena above some
given length scale when complete theories are not accessible. In diverse exotic but
physically important cases, the usual path-integral techniques used in a standard
Quantum Field Theory approach seldom serve as adequate tools.

This thesis exposes a new effective method for quantum systems, called the
Canonical Effective Method, which owns particularly wide applicability in background-
independent theories as in the case of gravitational phenomena. The central purpose
of this work is to employ these techniques to obtain semi-classical dynamics from
canonical quantum gravity theories. Application to non-associative quantum me-
chanics is developed and testable results are obtained. Types of non-associative
algebras relevant for magnetic-monopole systems are discussed.

Possible modifications of hypersurface deformation algebra and the emergence
of effective space-times are presented.
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Chapter 1
Introduction

The “Holy Grail” of contemporary theoretical physics has been to construct a
meaningful quantum theory of gravity. More explicitly, it is the quest to reconcile
General Relativity (GR) and Quantum Mechanics (QM): On one hand, Einstein’s
theory governs the macroscopic, classical dynamics of space-time and how it reacts
to the presence of matter in a deterministic way while quantum mechanics aims
at explaining the microscopic realm dominated by uncertainties and probabilistic
distributions all of which in turn deeply altered our notions of causality. However,
difficulties arise when trying to apply a mathematically consistent quantization
procedure for the gravitational interaction and putting it in a physical context
that has predictive power in a way similar to what has been achieved by the
quantum field theories (QFTS) of electroweak and strong forces under the Standard
Model of particle physics. The incompatibility of the two descriptions of nature
exhibits itself when one naively tries a perturbative approach: Namely, at each
order increasingly higher curvature counter-terms need to be introduced which
results in the non-renormalizability of the theory.

Stepping back for a moment, we realize that there are various reasons to
motivate the search for quantum gravity (QG). To begin with, at a fundamental
level, quantum effects cannot be ignored if, for example, we wanted to examine the
space-time structure at the Planck length. Basically, trying to measure the geometry
beyond this so-called fundamental length scale would result in the formation of
micro-singularities as a result of concentrating extreme energies in such small a
space. This, in effect, would simply remove the region which we are actually trying
to observe from the accessible space-time. Furthermore, a similar logic can be

applied to the whole universe: Our observation of the curretly expanding cosmos



immediately leads to the standard cosmological model which asserts that we should
come across an infinitely dense and curved singular point that is commonly called
as the Big Bang'. However, it is at such occasions where QG effects need to be
taken into account which are absent from the above mentioned classical model
of cosmology. Last but not the least, QG is expected to explain different facets
of black hole physics, from the true nature of the Hawking radiation to the root
causes of the huge entropy a black hole possesses.

Hence with the need for a consistent QG theory and with the above mentioned
failure of standard methods, a number of different approaches have been suggested.
String Theory differs from the rest of QG research in the sense that it aims at
unifying all known fundamental forces into a common description where the whole
spectrum of physical bodies are encoded in the different vibration modes of strings.
However, the arena in which these strings live is at least ten dimensional and when
one attempts to make contact with the physical four dimensional space-time the
practically infinitude of ways to compactify the extra dimensions leads to what

0°% possible

is known as the landscape problem: by a rough estimate there are 1
inequivalent vacua. The more widely studied and more realistic modern version
which incorporates fermionic fields into the same picture as the bosonic ones (su-
perstring theory) uses the idea of supersymmetry: Despite being a mathematically
elegant idea, the absence of supersymmetric particles in the mass ranges set by
earlier experiments during the latest run of the Large Hadron Collider (LHC) has
been a major discouragement for some researchers in the field. It is noteworthy
that the type of infinities that present obstacles to the innocent quantization of
GR does not appear in a perturbative expansion of String Theory around a fixed
background; however, as finite as each term in such an expansion seems, the full
series is evidently divergent. This fact motivated string theorists to work on the
still ongoing programme of a non-perturbative formulation.

Another popular approach, loop quantum gravity (LQG), is less ambitious and

has simply as its sole objective to describe the (quantum) states of the physical four-

! As far as the two competing models discussed below are considered, Loop Quantum Cosmology
(LQC) - a finite, symmetry reduced model of LQG - involves a quantum bridge, called the Big
Bounce, between contracting and expanding universes. String cosmologies, on the other hand,
claim a replacement of the singularity by a saddle-point in the evolution of curvature: in this
pre-big-bang universe the curvature is increasing. It has always amazed me to compare and
contrast the ways these models look at the universe with ancient philosophies; particularly LQC
and cyclic universes of the Hindu/Buddhist temporal cosmologies.



dimensional space-time in terms of labelled graphs called spin networks. This model
has the (aesthetically) desirable property of manifest background-independence,
i.e. the requirement the geometrical structure itself be a local degree of freedom in
the sense that it allows us to obtain different space-time configurations as different
solutions of the underlying equations. However, this seemingly appealing fact that
the equations of LQG are not dependent on the properties of space-time but only on
the given topology may also be a shortcoming for the theory in the following sense:
Study of three dimensional QG models has suggested that there exist non-zero
transition amplitudes between two distinct topologies. But, some derivations of
LQG fixes a choice of topology in the first place which may be interpreted as a
flaw of the theory not being able to meet the expectation that it should include
topology change as a dynamical process. In any case, this model is plagued by an
even more important problem: It is not known whether GR can be recovered as a
classical limit of LQG. ?

Indeed, it is this last point that brings us to the main theme of this thesis.
As successul as String Theory might be in accomodating a spin-2 boson in its
spectrum or LQG in computing the precise size of the granular structure of space-
time, neither theory haa suggested any predictions that could be directly verified
experimentally. It could be said that we are undeniably at that stage of high energy
physics research where the success of precision cosmology experiments in gathering
useful data precedes that of predictive theoretical descriptions of nature: Missions
like COBE from as early as 1989, and its successors WMAP (2001-2010) and Planck
(2009-2013) whose purposes were mainly the measurement of the anisotropies in
the Cosmic Microwave Background Radiation (CMB) with high sensitivity helped
constrain the Lambda-CDM parametrization of the classical Big Bang cosmology
to a high degree, which gave a good explanation of the large-scale structure and
the accelerated expansion of the universe.

The dates mentioned above are not to be seen as details but rather as a reference
to the timeline of the theoretical attempts. It was 1974 when Schwarz and Scherk [2]
proposed bosonic string theory as a theory of QG and it was 1986 when Ashtekar [3]

introduced a set of new variables to write down GR in terms of SU(2)-gauge fields

2Although some of the difficulties arising in reproducing this limit have been improved or
overcome by the introduction of the so-called master constraint [1], the discovery of appropriate
semi-classical tools for graph-changing operators such as Hamiltonian constraint does not seem to
be within reach in the near future.



which brought the subject closer to the field-theoretic setup of other fundamental
interactions. The position theoretical high energy physics is now in demonstrates
no resemblance to the historical progression it has witnessed, take for example the
case of Gell-Mann’s coming up with (what I would call the semi-phenomenological)
Eight-Fold Way to describe the myriad of subatomic particles discovered in the
newly established accelerators of 60’s: His mathematically beautiful model not only
organized the existing particles into various multiplets but also predicted one missing
component of the decuplet, the 2~ meson. Two years later, in 1964, it was observed
in Brookhaven with the same mass, charge, and quantum numbers as foreseen by
Gell-Mann. The current situation carries even a deeper contrast to that of the
beginning of last century: There was no experimental contradiction challenging the
validity of Newtonian gravity when Einstein came up with his ingenious theory
whose consecutive predictions such as gravitational waves, orbital effects and light
deflection in the form of gravitational lensing have all been confirmed.

It is this immediate necessity to re-establish the contact of current models
with reality and to obtain verifiable predictions that motivates the new effective
technique introduced and employed in this thesis. It is the hope that this novel
formalism can shed light onto the semi-classical analysis of existing theories that
has inspired my research. It is the fear that the common trend in high energy
physics is challenging its status as an experimental science and slowly turning
it into an undistinguished philosophy [4,5,6] which prompts the investigation of

effective theories in the next section.

1.1 Effective Theories

Effective theories in physics portray physical phenomena at or below a given
energy scale by a kind of averaging over the unknown degrees of freedom of the
underlying theory beyond that certain scale. This procedure works well as long as
the fundamental energy scale of the full theory is broadly separated from that of
this chosen-by-hand cutoff. In the context of QFTs, this formalism is encoded in
the concept of an effective action, I'[¢], which coincides with the classical action,
Slg|, for a free field theory, but for which contributions higher order in & can
be interpreted as coming from the purely quantum mechanical process of virtual

particle exchanges. However, this particle physics driven, loop-correction type



of justification of I'[¢] does not always go smoothly for various other quantum
mechanical systems and presents some technical, as well as heuristic, problems.

First, the solutions of equations of motion coming from the variation of the
effective action with respect to ¢ are known to be complex and this fact is related
to the ¢ variable lacking any classical attribute and it being associated with the off-
diagonal elements of the matrix representation of the position operator §. Moreover,
I['[¢q] not necessarily being a local functional of g requires, in most cases, a derivative
expansion; however, many solutions of the higher derivative effective action, for
various technical reasons, destroy the validity of this perturbative scenario in the
case where the leading order contribution may be overshadowed by the higher
orders in the expansion. In order to keep the legitimacy of this programme, only
solutions analytic in its parameter are to be kept which in turn raises questions
as to what significance could be attributed to the apparently (spurious) quantum
degrees of freedom that had to be discarded.

When such methods are applied particularly to a theory of QG various additional
conceptual complications emerge. For example, the unavailability of a standard
Fock vacuum for the quantization of a dynamical background space-time presses one
to consider more general states. Also, the problem of time in QG, namely that there
is none in GR due to the Hamiltonian being a vanishing constraint to ensure general
covariance but that time evolution of states are generated by the Hamiltonian
operator in QM, obscures the possibility of writing down relevant effective actions.
Quantum effects in some cases modify the diffeomorphism covariance of GR which
forms the ground for its symmetry algebra; as a result the study of the gauge
structure of such theories demand more care. Lastly, on the more technical side,
proper inner-products on the physical Hilbert spaces of any back-ground independent
theory must be established in a way that allows a meaningful extraction of semi-
classical effects.

With the need to overcome the aforementioned obstacles, an effective method
for quantum systems resting on their geometrical formulations was established first
in [7]. The applications considered in Chaper-2 of this thesis rely on this method.
For this reason, in the next subsection an overview of this Canonical Effective
Method will be presented.



1.1.1 Canonical effective methods

It is of no surprise that the approach studied in this thesis is based on a Hamiltonian
formulation granted that the primary field to which it was originally planned to be
applied was in the context of canonical quantum gravity theories (for the time being,
LQG to be specific). Expectation value functionals, which are simply positive linear
functionals defined on an abstract algebra, are understood as states in this kind of
an algebraic method. In this manner, there is no reference needed to a wavefunction
on an underlying Hilbert space which, as we have briefly touched upon in the
previous section, might not always turn out to be well-defined. Practically, this
implies that we are indeed representing expectation values, (({;), (;)), of canonical
variables and their moments (A(pq) for a single canonical pair for example) on a
space of states, as demonstrated in Section 2.2.3 below (see e.g. Eqn.(2.23)).
Once this step ensures that a single point in this infinite-dimensional space is
fully characterized by these variables, it is endowed with a Poisson structure taking
advantage of the commutator of two (generic) elements, A and B , of the abstract

algebra under consideration

{(A), By} = ([4.5]) (1)

]

extended by the Leibniz rule for the product of expectation values on the left hand
side. Defining an effective (a.k.a quantum) Hamiltonian, Ho((.), (.}, A()) := (H)
where the dots in arguments stand for the various canonical pairs relevant to the
particular case and the arbitrary order of moments, from the expactation value of
the Hamiltonian operator on the space of states, consequently allows us to describe
the dynamics of the system, and determine the equations of motion for various

entities as follows:

(A) = {<A>,HQ} . (1.2)

Clearly, this prescription above has succeeded in replicating the behavior of a
wavefunction subject to partial differential equations equivalently by infinitely many
coupled yet ordinary differential equations. However, the central mathematical
difficulty in this procedure lies in bringing this infinite set of equations to a finite

subset in a consistent way. This is first attacked by utilizing a semi-classical



expansion in A which is enabled by the fact that a moment of a given order has
a definite i dependence in a semi-classical state (by definition). This means the
expansion of a quantity up to a finite h-order will only involve finite number of
moments. ° This way the infinite set of coupled differential equations are reduced
to a finite coupled sytem of differential equations. However, since the coefficients in
these equations can be functions of the position and momentum variables another
expansion, an adiabatic expansion, is used to convert these hard-to-solve differential
equations into algebraic ones. This procedure in practice boils down to setting
the left hand side of (1.2) to zero at the zeroth adiabatic order; once the zeroth
order adiabatic contribution to a moment of given A order is computed, one can
proceed recursively and compute higher order adiabatic contributions from the
already known lower ones and their time derivatives. Thus, all in all, we end up
with a finitely coupled system of algebraic equations which is easier to solve.
This method has been shown in [7] to yield the low-energy effective action for

the case of a generic anharmonic oscillator

_ . hU" (q)? .2
Leglq(t)] = /dt<2 ( " 32m2w5(1+U”(Q)/mw2)5/2> '

" 1/2
_lmu)2q2 —-Ul(q) — @ <1 + v <Q)> ) (1.3)

2 2 mw?

which is identical to the one obtained by standard path-integration [$] up to the
first order in A and second order in the adiabatic expansion. Nonetheless, the path
integral approach has some disadvantages. The above expression is reached by
necessarily applying a derivative expansion around the harmonic oscillator ground
state. In the canonical formalism, on the contrary, the moments are only subject
to Schwarz inequality type bounds and the quantum corrections do not have to be
only associated to a minimal uncertainty state. Moreover, a closer look at (1.3)
reveals an infrared problem in the massless limit. In our language, this obstacle
is mainly due to the adiabatic approximation and in principle could be surpassed.
Additionally, the present method has the capability to deal with Hamiltonians

which are non-quadratic in momenta, which is a relevant situation in quantum

3This expansion might have half integer h orders because a moment of order n has the
dependence O(h™/?). Even though we can impose that an initial state consists of only even order
moments, quantum back-reactions can lead to non-zero moments of odd order.



cosmology whereas standard techniques would face problems not being able to
employ Gaussian path integrations.

To these orders the above expression only involves corrections to the particle
mass and by an effective quantum potential. The analysis was carried out for
higher /i and adiabatic orders in [9], and it was found there that terms involving
higher order time derivatives appear. This situation is naturally understandable
in terms of path integrals where observable quantities are identified by the full
sum-over-histories which reflect the nature of quantum effects that are non-local
in time. The consequences of having higher order derivative corrections are even
more far-reaching in a gravitational context; namely that equations of motion
corresponding to a gravitational theory extended by higher powers of curvature
often includes time derivatives higher than second order.

Such already well-established successes and its advantages mentioned above over
the standard methods motivated the usage of Canonical Effective Methods as the
main tool in this thesis. The difficulties sometimes arising from the representations
of algebras on Hilbert spaces are simply bypassed thanks to the basic characteristic
of the formalism that the existence of a Hilbert space is not a prerequisite for
extracting the dynamics and that the calculation of the expectation values does
not require fixing a vacuum state. In this fashion, being able to relax some of the
technical ingredients of QM opens up the possibility to explore more generalized
settings.

One such example is non-associative algebras. A simple case, first suggested by
Jackiw [10], where such constructs can appear is to consider a generic magnetic
field in three dimensions causing a Lorentz force on an electrically charged particle.
In this magnetic background translation invariance is lost, i.e. finite translations
by a vector a, U(a) = €™/ fail to commute due to a phase-factor which is
proportional to the magnetic flux through a triangle defined by two such vectors.
This factor has roots in the non-zero commutation relations of two gauge invariant
momenta. Even more significantly, three finite translations have an associator,
i.e. the difference between the only two possible bracketings of the three objects,
proportional to the flux ® through a tetrahedron defined by three such vectors.
This effect comes from the fact that the Jacobi identity of three physical momenta,
based on their non-vanishing commutators, goes as the divergence of the magnetic

field. In the case where magnetic monopoles exist (V.B # 0) in the system,



¢®/h ¢ 7., which reflects the Dirac quantization

unless the phase factor satisfies e
condition for a magnetic charge, the non-associativity of the global translations is
non-vanishing. The fact that such non-associative algebras cannot be represented
in the standard way on a Hilbert space has been our driving force for employing the
representation-independent Canonical Effective Methods described in this section.

At first, this endeavor might seem like a purely mathematical curiousity; but
there are a couple reasons to physically motivate the investigation of non-associative
algebras. Firstly, research in flux compactifications of string theory has witnessed the
emergence of non-associative deformations of closed string background geometries
where the gravity sector lives [11]. But even before this observation, non-associative
gauge theories arose within the context of D-branes in a non-constant B-field
background [12,13,14]. On the other hand, the motivation from the other candidate
theory for QG, Loop Quantum Gravity, is not necessarily related to a non-associative
structure explicitly but the appearance of modified brackets in some models of LQG
points to a possible non-Riemannian (non-)geometry. Also the fact that the area
(and volume) operator has a discrete spectrum [15] might signal an underlying non-
commutative space-time. Indeed some connection between this fuzzy space-time of
canonical QGs for point-like fields and the smooth geometry of String theory on
which its finitely extended objects evolve was suggested making use of non-geometric
flux compactifications and the T-duality in [16] where the derived non-associativity
follows from the violation of Jacobi identity. This in turn raises the possibility of a
non-commutative (or non-associative?) theory of gravity [17, 18, 19].

This last point will be discussed in more detail in Chapter 5, but for now we
suffice to say part of this thesis is dedicated to exploring various possibilities of
deforming the constraint algebra of GR. In the context of canonical QG theories,
covariance is implemented by brackets of hypersurface-deformation generators
forming a Lie algebroid. Lie algebroid morphisms therefore allow one to relate
different versions of the brackets that correspond to the same space-time structure.
An application to examples of modified brackets found mainly in models of loop
quantum gravity can in some cases map the space-time structure back to the
classical Riemannian form after a field redefinition. However, our construction in
Chapter 4 reveals that this is not always possible. After all, the central part of this
work has been advertised to be establishing an effective method that is relevant to

such canonical theories and we tried to lay out the necessary ingredients for this



mission.

1.2 Organization of the thesis

State vectors and operators by construction require an associative product of
observables in standard quantum mechanics, but some exotic systems such as
magnetic monopoles, as briefly demonstrated in Chapter 1, have long been known
to lead to non-associative products. In Chapter 2, we employ algebraic methods in
order to derive uncertainty relations and semiclassical equations, based on general
properties of quantum moments. New results about effective potentials in non-
associative quantum mechanics and related observable effects are also derived. This
chapter is based on [20,21], and and further explanation of the physical relevance
of such systems are given. Chapter 3, based on [22], elaborates on the type of
non-associative algebras that can emerge in these quantum mechanical contexts
where such magnetic monopoles are present in the system. It is shown here by
using methods of deformation quantization that algebras for such systems cannot
be alternative, i.e. their associator cannot be completely anti-symmetric. Chapter 4
returns to the essential question of this thesis: For one type of quantum corrections
(holonomies), signature change appears to be a generic feature of effective space-
time, and is shown here to be a new quantum space-time phenomenon which cannot
be mapped to an equivalent classical structure. Based on [23] we prove that in
low-curvature regimes, our constructions prove the existence of classical space-time
structures assumed elsewhere in models of loop quantum cosmology, but also shows
the existence of additional quantum corrections that have not always been included.
Chapter 5 is devoted to a survey of what has been achieved in this formalism for
fully constrained systems and a discussion of implications of the present work for
quantum gravity. A review of current open projects and how they are suited in the

bigger picture will also be given.

10



Chapter 2
Non-associative quantum theo-
ries

2.1 Introduction

Quantum mechanics represents the classical Poisson algebra of basic variables g;
and pg, {¢;,pr} = 0;k, as an operator algebra acting on a Hilbert space, so that the
Poisson bracket is turned into the commutator [§;, px] = ihd;i, of basic operators.’
The Jacobi identity satisfied by a Poisson bracket has an analog in the associativity

of the operator product: A simple calculation shows that

A

(01,0, 0r] = 24(0,, 0,0, 2y

where the 3-bracket on the right-hand side is used to denote the associator of the
product of the quantum observables, [O1, Oy, O3] := (010,)03 — 01(0,03). 1If the
Jacobiator of the classical bracket — or the Jacobiator of the operator product
introduced on the left-hand side of (2.1) — vanishes for all triples of operators Oi,
an associative operator algebra is consistent with Dirac’s basic quantization rule
relating Poisson brackets to commutators. (These concepts have been formalized
mathematically in different ways, for instance in the frameworks of group-theoretical

quantization [24], geometric quantization [25], and deformation quantization.)

IThis latter equation, as usual, holds on a dense subspace only. From a mathematical
perspective, it is convenient to consider bounded operators obtained after exponentiating ¢; and
Dj, resulting in the Weyl algebra. In this chapter, however, we focus on conceptual questions
of the construction of non-associative quantum mechanics and related consequences in possible
physical applications, postponing more mathematical issues to later work.

11



For classical systems with modified brackets, such as twisted Poisson structures
(26,27, 28], the Jacobi identity may no longer hold true and be replaced by a
non-zero Jacobiator €7*{{0;,0;},Ox} # 0. As the quantum analog, there must
be a non-zero associator [01, O, ég] # 0 of a non-associative operator algebra.
Such an algebra cannot be represented on a Hilbert space in the standard way,
and alternatives making use, for instance, of non-associative x-products must be
developed. In this chapter, we focus on the general aspects of states on a non-
associative operator algebra and see how the basic notions familiar from quantum
mechanics can be derived in representation-independent terms. In some respects
(and unless extra conditions on states are imposed) the results seem to differ from
existing constructions using non-associative s«-products [12,29,30, 31,32, 11].

Non-associative structures have recently gained interest in the context of certain
flux compactifications of string theory and double-field theory [16,33,29, 34, 35].
They have played a role in the understanding of gauge anomalies, and also appear
in “standard” quantum mechanics if a charged particle is coupled to a density of
magnetic monopoles [36]. These monopoles need not be fundamental, and therefore
the systems may describe realistic physics in some analog models of condensed-
matter systems (see for instance [37]). A related version is realized in chiral gauge
theories [38,39,410]. We briefly review how non-Poisson brackets or non-associative
algebras appear, which will present the main example to keep in mind throughout
this chapter.

In the presence of a magnetic field with vector potential A;, the canonical
momentum of a particle with mass m and charge e is m; = mv; + eA; in terms of
the velocity v; = ¢;. While the momentum components obey canonical Poisson
brackets with the position variables and have zero brackets with one another, the
velocity components or the kinematical momentum components p; = muv; have

brackets related to the magnetic field:

{pi,p;} = e B*. (2.2)

(We use the convention that repeated indices are summed over.) These brackets
define a Poisson structure provided the magnetic field is divergence free.
If the divergence is non-zero, the magnetic field no longer has a vector potential,

but one may still use (2.2) as the definition of a bracket on phase space (together

12



with {¢;, p;} = §;; and antisymmetry). One then computes a non-zero Jacobiator

eijk{{pi,pj}7pk} = —2¢9,B". (2.3)

The corresponding quantum mechanics cannot be represented by an associative
operator algebra acting on a Hilbert space.

For a constant monopole density, the bracket is twisted Poisson [20, 27, 28]
and can be realized as a Malcev algebra [11,42]. The *-product constructions
of [29,30, 31,32, 11] simplify for a constant density and allow several explicit
results to be derived, but they hold more generally. Our calculations here are
complementary and allow for 9;B' to be non-constant even in some explicit results.
The existence of relevant algebras and states based on our relations alone is more
difficult to show, but if they are assumed to exist, several properties can be derived
efficiently by considering expectation-value functions w: A — C.

From the physical perspective, this example is of interest because the existence of
a magnetic monopole density, fundamental or effective, somewhere within the system
necessitates a modification of very fundamental aspects of quantum mechanics.
The notion of a Hilbert space is a non-local one, for instance in the sense that wave
functions in the Schrodinger representation are normalized by an integration over all
of space. Nevertheless, for meaningful experiments it must be possible to construct
a local description of quantum physics outside the magnetic monopole density,
where it has to reproduce the established and experimentally verified quantum
properties (at least to a very high precision). This (perhaps hypothetical) physical
system thus provides an interesting playground and a test for the development of

non-associative quantum mechanics.

2.2 Properties of states

As briefly derived in the example of a magnetic monopole density, we assume that
we have an algebra A of observables, which includes elements ¢; and p; (as well as

a unit ) and obeys the relations
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[pi,D;] = iheeypB* (2.6)
[Pi Dj» Dr] = —h’eei0, B! (2.7)

where 4,5,k € {1,2,3}. Summation over double indices is assumed, and, as
before, the 3-bracket denotes the associator. We further assume that, other than
(2.7), all associators between the fundamental variables ¢; and p; vanish. Among
basic operators, only the associator (2.7) is non-zero because of the non-vanishing
Jacobiator (2.3).

In (2.6) and (2.7), B* € A (and similarly Z;El) is obtained by inserting §; in the
classical function B¥(g;). Since the §; commute and associate with one another, B*
is well-defined for polynomial B*. For non-polynomial magnetic fields, we assume
that B* can be defined by a formal power series. With the magnetic field and also
its divergence allowed to be functions of ¢;, the relations may be non-linear. If the
magnetic-field components are assumed to be analytic functions, then also their
derivatives are well-defined, which we will use in some semiclassical expansions.
The assumption of analyticity may have to be weakened in some physical situations
because it is not consistent with a monopole density of compact support. For the
algebra, we need the first derivatives of B, so that these functions should at least
be differentiable.

At this point, we encounter the first existence question. In associative cases, it
is known that ¢; and p; are not bounded in Hilbert-space representations. It is then
more convenient to use exponentiated (Weyl) operators for explicit constructions of
algebra representations. In the present case, Hilbert-space representations cannot
exist at all, and existence questions are more complicated. In this chapter, we
take a pragmatic view and assume that an algebra with the relations (2.4)—(2.7)
(as well as a *-relation introduced below) exists. Our aim is to derive properties
of states which are of interest for physical questions and can be obtained using
only the given relations. This view is akin to the one taken in particle physics,
where it is difficult to show that interacting quantum field theories do indeed exist,
but powerful computational methods are still available and can be compared with
observations.

The relations (2.4)-(2.6) are direct translations of basic brackets, the first two of
standard form and (2.6) derived from (2.2). The non-zero Jacobiator (2.3) implies

that there must be a non-zero associator. However, (2.1) shows that only the totally

14



antisymmetric part of the associator is determined by the correspondence between
classical brackets and commutators. Contributions to the associator which are
not totally antisymmetric can be considered as quantization choices, which one
may be able to choose so as to realize certain simplifications. For now, we will
assume simplifications which appear to be consistent with the equations (2.4)—(2.7),
postponing a more precise construction of A to later work.

We could assume the associator between any three elements of the algebra A to

be completely antisymmetric, or equivalently

A(BB) = (AB)B 2.8)
(AA)B = A(AB) 2.9)
(ABYA = A(BA) (2.10)

for all A, B,C' € A. Any algebra satisfying these conditions (two of which imply the
third one) is called an alternative algebra. For such an algebra, we have additional
relations between algebra elements which are not as strong as assocativity but will

turn out to be useful: An alternative algebra satisfies the Moufang identities [13]

C(A(CB)) = (CAC)B (2.11)
((AC)B)C = A(CBCQC) (2.12)
(CA)(BC) = C(AB)C. (2.13)
(If (2.8) holds, we do not need to set further paranthesis in (2.13).) These identities
are also useful for an extension of some of the measurement axioms of quantum
mechanics to non-associative versions [11]. The algebras constructed by *-products
in [30,31,32, 11], with the same basic associator (2.7), are not alternative.” Our
explicit results derived in the rest of this chapter only require (2.7) to be totally
antisymmetric, and the corresponding Moufang identity for A, B and C linear in
the p;. They will therefore also hold for the known *-algebra realizations of (2.7),
but there may be deviations at higher moments or h-orders.

We turn A into a *-algebra by requiring ¢; and p; to be self-adjoint. (We then
have the usual relations, such as (Ap;)* = A*p; for all A € C, and (AB)* = B*A* for
all A, B € A.) This requirement is consistent with (2.7) thanks to the alternative

2We are grateful to Peter Schupp and Richard Szabo for pointing this out to us.
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nature of the algebra: for self-adjoint p; = p;, we then have

A A A

[]517252,253]* = 253(]32]51) - (p3p2)p1 = —[]337]327]31] = [151,1527133] (2~14)

so that both sides of (2.7) are self-adjoint.

2.2.1 The Cauchy—Schwarz inequality and uncertainty relations

In treatments of algebra theory relevant for quantum mechanics it is often assumed
that one is dealing only with associative algebras. Several important results no
longer apply in the non-associative case. However, a notable exception is the
Cauchy—Schwarz inequality. It is important in quantum mechanics because it leads
to the uncertainty relation, and fortunately, this result is still available for non-
associative algebras. Even the standard proof can be used without modifications,
which we sketch here for completeness.

For any complex-valued, positive linear functional w on the algebra A (that is,
w(A*A) > 0 for all A € A), we would like to prove that

W(A*A)w(B*B) > |w(B*A)? (2.15)

for any two elements A and B in .A. We define a new element A’ := A exp(—iargw(B*A)),
so that |w(B*A)| = w(B*A’), and compute

0 < ( (Vo(B*B)A — \Jw(ArA) B)* (Vw(B*B)A — A’*A’)B))
= 2w(B*B)w(A™A") — \/w(B*B)w(A*A") (w(A”*B) + w(B*A'))
= 2w(B*B)w(A”A") — 2y/w(B*B w(A’*A’)\w(B*AN . (2.16)

Therefore,

lw(B*A)| < Vw(B*B)\/w(A*A") = /w(B*B)w(A*A).

One can then derive the standard uncertainty relation for basic operators by
applying the Cauchy-Schwarz inequality to A = §; — w(§;)I and B = p; — w(p;)I:
We have w(A*A) = (Ag;)?, w(B*B) = (Ap,)?, and w(B*A) can be split into its
real part, which equals the covariance Cy,,, := %w(djﬁi + pig;) — w(@;)w(p;), and its
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imaginary part proportional to the commutator [§;, p;]. The inequality (2.15) then
implies

h? h?
(Ag;)*(Ap)* > Z(Sij +C; 0ij - (2.17)

4;pi = 4
In the present case, there is a new uncertainty relation for different components of
p' thanks to the non-zero commutator (2.6):

2 ) e kY2 2 h*e’ kY2
(Api)*(Ap;)” 2 — (e (B"))°05 + Oy, = — (i (B7))0i5. - (2.18)
These relations depend only on commutators, and therefore are equivalent to those
given in [30,31,32,11] based on *-products.

At this stage, we note a difference with the s-product treatment of non-
associative algebras. When one constructs an analog of a Hilbert-space repre-
sentation of wave functions v acted on by A using a non-associative x-product,
one assigns to any A € A a map ¢ — A * 1 on a set of wave functions ¢ instead
of the usual associative action of operators. (The constructions in [32] are more
general and consider also density states.) In deriving the uncertainty relation, one
applies two such multiplications of the form A x (B x1)). This product is sensitive to
non-associativity, and indeed the derivation of an uncertainty relation is non-trivial.
In [32], the problem has been solved by introducing modified (and associative) com-
position maps derived but different from the original algebra product:* o is obtained
from (Ao B)xC = Ax(B=C) for all A, B,C, and o from C'* (AoB) = (C'x A) x B.
For the x-product action on states, a Cauchy—Schwarz inequality holds for o but
not for the original . However, as derived in detail in [32], the o-commutator acts
by (piop; —pjopi) *x¢ =1 * K, with K corresponding to the right-hand side of
the commutator (2.6), but now acting from the right. Accordingly, the resulting
uncertainty relation is not of the standard form, unless an additional “symmetry”
condition is imposed on wave functions, or p * C' = C' % p on density states p. The
general derivation of the Cauchy—Schwarz inequality, on the other hand, makes
use of products of at most two operators and is not sensitive to non-associativity.
It implies an uncertainty relation that is equivalent to the one obtained using
x-products only if the symmetry condition is imposed. We view this observation

as an additional argument that wave functions should indeed obey the symmetry

3These composition maps are important for the construction of states obeying the positivity
condition [32].
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condition (as already suggested in [32]).

2.2.2 Failure of the GNS construction

Given an associative x-algebra A and a positive linear functional w on it, one
can construct a Hilbert-space representation by making use of the GNS construc-
tion. (See for instance [15,416].) It is clear that the construction must fail in the
non-associative case because such an algebra cannot act by standard operator
multiplication on a Hilbert space. Nevertheless, it is interesting to see where exactly
the construction breaks down.

In the GNS construction, one starts with the algebra A as a linear space and
constructs a Hilbert space from it. Multiplication in the algebra then implies an
action of the algebra on the Hilbert space. In order to derive the Hilbert space,
one introduces a (degenerate) scalar product on A by (A|B) := w(A*B) for all
A, B € A. The scalar product is positive semidefinite because w is assumed to be
a positive linear functional, but it has a kernel spanned by all C' € A for which
w(C*C) = 0. Assuming the algebra to be associative, the kernel is a left-ideal in
A and can be factored out, leaving a linear space with a positive definite scalar
product which can be completed to a Hilbert space.

In this last step, associativity is important. In order to show that the kernel is
a left-ideal, one makes use of the Cauchy—Schwarz inequality and computes (using

associativity only at this place in the present chapter)
|w((AC)*(AC))|* = |w(C*A*AC)|? < w(C*Cw((A*AC)*A*AC) =0, (2.19)

so that AC is in the kernel for any A € A and C' in the kernel. For a non-associative
algebra, (2.19) is not available and it is in general impossible to factor out the
kernel consistently in order to obtain a Hilbert space.

It would be possible to obtain a left ideal from the kernel of w if all C' in the
kernel would be self-adjoint (or anti-selfadjoint). For an alternative algebra, we

could then proceed as in (2.19) thanks to the Moufang identity

C(AB)C = (CA)(BC) (2.20)
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which allows us to write

W((AC) (AC)* = |w((CA(AC))|* = |w(C(ATA)C)? (2.21)

< W(COW((AACY (AAC) =0 (2.22)

if C* = +C. A real Hilbert space would follow from the GNS construction if
the algebra could be restricted to only (anti-)self-adjoint elements. Unfortunately,
however, a closed algebra of (anti-)self-adjoint elements can be obtained only with
(anti-)commutative multiplication.

The GNS construction plays an important role in algebraic approaches to
quantum mechanics and quantum field theory because it shows that Hilbert-
space representations do exist. In particular, using all states in a Hilbert-space
representation, one is assured that sufficiently many positive linear functionals
exist on the algebra, allowing one to derive potential measurement results. A
quantum system would not be considered meaningful if it does not allow sufficiently
many states, for instance when w(§;) = w(go) for all states w. For every point
(G1, @2, G3; P1, P2, P3) in the classical phase space in which we expect a semiclassical
quantum description to be available, we should require that there is a state w such
that w(§;) = ¢; and w(p;) = p;. The classical freedom of choosing initial values
then remains unrestricted after quantization.

If sufficiently many states exist, general features of expectation-value functionals
can be employed to derive generic properties which are independent of which
specific representation is used. For non-associative algebras, we cannot have
standard Hilbert-space representations, and we are not aware of an alternative
version of the GNS construction that could guarantee the existence of sufficiently
many positive linear functionals on the algebra. The methods of [32] show that
states can be constructed with an action of the algebra given by a *-product, and
positivity properties have been demonstrated. However, as shown by the discussion
of uncertainty relations in the preceding section, the general algebraic results we
make use of here agree with those found by non-associative sx-products only when
the class of states is restricted by an additional symmetry condition. To the best of
our knowledge, it is not clear whether sufficiently many positive linear functionals
obeying the symmetry condition do exist. In what follows, we will have to assume

that there are such states, some of whose properties we will be able to derive.
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2.2.3 Moments

Without a Hilbert space, we cannot describe states by wave functions. However, we
can use an alternative set of variables which describes a positive linear functional w
on A in terms of expectation values w(0O) and moments of the form w((O —w(O)I)")
for O one of the basic operators. More generally, covariance parameters in which
w is applied to products of O; — w(O;)I for different values of i are also required.
We introduce these variables and determine some of their algebraic relations after
switching to a physics-oriented notation in which w(A) is written as the expectation
value w(A) = (A) of an operator A. These expectation values, by definition, refer
to a state as a positive linear functional on the algebra; they do not require wave
functions or a Hilbert space. Moreover, we will omit explicit insertions of the unit
operator I and assume that it is understood in expressions such as A — (A).

In the associative case, the definition of the moment variables is as follows:

AP arpa®) = ((Pe — (Pe)™ (Ge — (Ga))™
(Ay - <ﬁy>)bl(Ay - <Ay>)b2
X(ﬁz - <ﬁZ>>Cl (Qz - <AZ>>C2>Wey1 (223)

with totally symmetric or Weyl ordering indicated by the subscript “Weyl.” Weyl
ordering makes sure that we do not count as different moments which can be
obtained from each other by simple applications of the commutator. Moreover,
the moments of Weyl ordered products in an associative algebra are defined as
real numbers. It turns out to be useful to define them as expectation values of
products of the differences A— (fl} as opposed to products just of basic operators
because a semiclassical state can then be defined as one in which moments of order
ay 4 ag + by + by +c1 + ¢y =: n are of the order O(R™?). In this way, one generalizes
the family of Gaussian states in which this order relationship can be confirmed by
an explicit calculation. We make use of the h-orders in our semiclassical equations
derived in Sections 2.3 and 2.4.

For a non-associative algebra, we have to be careful with the order in which
the products are performed. We define the moments by declaring that products of

operators in them are to be evaluated from the left, that is

A(pepyp:) = ({ (P — (P2)) (By = (By))} (D= = (D)) ey - (2.24)



A bracket on the space of expectation values and moments is defined via the

commutator A
{00, (Osyy = 101 02D

combined with the Leibniz rule for products of expectation values. For an associative

(2.25)

algebra, this definition gives rise to a Poisson bracket;* for a non-associative one,
the associator is turned into a non-zero Jacobiator of (2.25). Evaluating the bracket

on basic variables gives

1

(@) (@) = (64 =0 (2.26)
(@ ) = i) =y (2.07)
{0, )} = AP pyl) = celBY) (2.28)

For a magnetic field B* linear in the ¢;, the right-hand side of the last relation is
a function of basic expectation values, which from now on we will abbreviate as
¢; = {;). For a quadratic function, such as B*(¢;) = C'(¢;)* with a constant C, we
have (BF) = C(§2) = C(q;)? + CA(¢?) with a moment contribution. In general, if

the magnetic field is non-linear, we may further expand

1 8a+b+ch " .
Algrayes)  (2:29)

(BY) = (B"ai + (G — a:))) = B @) + Y~ besodoe

a,b,c

with a series of moment contributions. There will be an infinite number of terms if
B is non-polynomial. Such an expansion is usually asymptotic and gives rise to

semiclassical or effective equations following the methods of [7,17].

2.2.4 Volume uncertainty and uncertainty volume

Moments are subject to uncertainty relations and cannot be assigned arbitrary
values. For covariances and fluctuations (2.23) with a; + ag + by + by + ¢ + ¢o = 2,
the standard uncertainty relation follows from the Cauchy—Schwarz inequality with
A= Z\Ol =0, — <Ol> and B = A/52 =0y — (Og> linear in basic operators O; and

A

Oy. Moments of higher order are restricted by uncertainty relations that follow

4The resulting Poisson manifold is much larger than the classical phase space, and in fact
infinite-dimensional owing to infinitely many independent moments.
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from the Cauchy-Schwarz inequality with A and B polynomial in Z\OZ (See for
instace [18,19].)

A non-zero commutator between two observables Ol and Og provides a lower
bound for the product of their fluctuations AO; and AO,. For a set of n canonical
pairs (§;, p;), the lower bound of [}, (A¢:Ap;) > (7/2)" may then be interpreted
as an elementary chunk of phase-space volume. For non-canonical commutators,
different lower bounds may be realized for a subset of the phase-space variables or
even the configuration (or momentum) variables among themselves. For instance,
(2.6) suggests that areas in momentum space have lower bounds given by, for
instance, Ap,Ap, > %he(éz% depending on the magnetic field and therefore,
possibly, on the position. A new suggestion, going back to [16] and further analyzed
in [32], is that a non-zero associator may provide an independent lower bound for
triple products of fluctuations, such as Ap,Ap,Ap, for (2.7). Non-associativity in
position space may then, intriguingly, imply spatial discreteness. (However, even if
there is a lower bound for quantum fluctuations, the relation to discrete structures
is not obvious: In [50], uncertainty relations have been computed for a discrete
system, given by the cotangent space of a circle, and no lower bound for fluctuations
of the discrete momentum was obtained. As discussed there, such lower bounds
could rather be taken as an indication for extended fundamental objects, as would
be appropriate for lower bounds found in models of string theory.)

It is not obvious how such uncertainty relations may be derived in a general
way. The Cauchy—Schwarz inequality quite naturally leads to commutators by
expressing the expectation value (A*B) in terms of symmetric and antisymmetric
combinations of A and B. It is more difficult to see how the associator might appear
in uncertainty relations as an intrinsic quantity (as opposed to a quantity derived
from the commutator which happens to resemble the associator). For instance,

given a non-trivial uncertainty relation between momentum components, such as

A

h2€2 <Bz>2 ’

=~ =

(Apx)Q(Apy)2 >

and the standard uncertainty relation between Aq, and Ap., a magnetic field with

0B?/0q, # 0 would imply a non-trivial lower bound for the triple product

(Bp. P (Ap P (Ap.) > B (A, (230)
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T Z(/A\\2 z(/A 8232(@]-)) 2 2
= e (B ) 5 B s ) (o)
> o' G ) (2:31)

However, such an uncertainty relation is neither simple enough to suggest a universal
and state-independent lower bound, nor does it follow directly from the associator.
Moreover, there would be no lower bound for a linear magnetic field, or a constant
associator. (For a semiclassical state, the second term in (2.31) would be dominant,
so that the inequality would just amount to the momentum uncertainty relation
for Ap, and Ap,, multiplied with an additional factor of Ap, on both sides.)

A direct definition of volume uncertainty would be the uncertainty AV =
\/ (V2) — (V) of the volume operator V := ((PPy)D2)weyr- (The definition Vo=
(P (ﬁyﬁz))weyl would result in the same operator for an alternative algebra.) How-
ever, an uncertainty relation follows from the Cauchy-Schwarz inequality only when
AV is combined with the fluctuation of another observable not commuting with V.
No universal lower bound for AV itself would be implied.

One can introduce different quantities which may capture some of the intuition
that may be associated with the notion of “volume uncertainty.” For instance,
the quantity (@x&)y)&% could be related to the associator. In what follows,
we call this triple product of uncertainties the uncertainty volume, in order to
distinguish it from the uncertainty of the volume operator. (As noted in [32], the
antisymmetrized uncertainty volume is related to the associator, but it is not clear
to us how this quantity may appear as an upper or lower bound.)

Although the uncertainty volume does appear in some uncertainty relations, it
turns out that it is subject to an upper rather than lower bound by higher-order
uncertainty relations. Choosing A= %(&Ux&oy + &?y&)m) and B = &72, one can

compute

2h2 242

(& A~ (& FL _ o~
= AW+ (B + - <ApI8yBZ . Apyasz> .

(For a linear magnetic field, the last term is zero.) We obtain (B*B) = (Ap.)?, as
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usual, and (/Al*é ) contains in its real part the fluctuation volume:
R 1 _— 1 o,
(A B) = (Bp.Bp,)Bp2) + e <8ZBZ> — Jihe(B*Bp. + Ap.BF). (233)

Therefore, the uncertainty relation for the fluctuation volume f := ((@@)Z\pz)

is of the form )
1 —
( [+ <asz>) < AP AP?) + - (2.34)

However, the associator again does not play a direct role in the derivation.

2.3 Algebra of second-order moments

We now calculate some of the brackets between second-order moments, providing
characteristic examples in which different features of alternative algebras appear.
These brackets are useful for Hamiltonian equations of motion once the dynamics

is specified, which we will explore in the next section.

2.3.1 Application of Moufang identities

We begin with an example in which the identity (2.20) (for A, B and C linear in
the p;) plays an important role. For the bracket of two covariances of different

momentum components, we have

Proi= {A(papy), Alpyp-)} (2.35)
= e = 2By 1) + By~ )5~ P,

(By = py) (D= = p=) + (P = p=)(By — py)])

= m([lhéB + 2(py _py)(px _px)72heB + 2(pz _pz)(py _py)]>

using the non-zero commutator (2.6). We continue and write out the commutator

explicitly,

Pi= - {((y 1) — ) (B~ p2) By 1)

—((p. — pz)(ﬁy - py))((ﬁy - py)(ﬁz — Pz)) (2.36)

]-. N N A A Nz
+§Zhe(B (D> — p2)(Dy — py) — (P- — p-)(Dy — py)B?)
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1, B/ A N ~ A DT
+§Zh€(—B (py - py)(pa: - px) + (py - py)(pa: - pI)B )) :

The Moufang identity can be used in the first line, but not in the second line in its
present form. Two additional applications of commutators bring the momentum

factors of the second line into the form of (2.13):

Pio= (5 = 0,) B — p) (52 — p)By — 21)

ih
_((ﬁy - py)(ﬁz - pz) - Zﬁéw)((ﬁm - pm)(ﬁy - py) - Zhéz)
+%ih€(éz(ﬁz - pz)(ﬁy - py) — (P — pz)(ﬁy - py)éz)

+%ih€(_éx(ﬁy - py)(ﬁx - pz) + (ﬁy - py)(ﬁﬁx - px)Bm» . (2-37)

Now distributing the second term and using (2.13), and collecting the middle

terms of the first and second terms into a commutator, we obtain

b o= e <_(ﬁy _py)éy(ﬁy _py)>
45 (B 60 =220y = 2) + (b, = 2) b~ p:) B

“(Bp D D 5 Nz
+§ <Bz(pz - pz)(py - py) + (py — py)(pz — pz)B > .

We can now expand (B?) as in (2.29) in order to express this expectation value
in terms of moments. If we keep up to second-order moments for semiclassical

equations, we obtain

{APzpy), Alpyp2)} = —eByA(pZ) + eB*A(p.py) + eB*A(pyp.) -

2.3.2 Application of the associator

Another example in which a combination of commutators and the associator can

be used directly is

P2 = {A(pxq,z)> A(pypz)} (238)
- %iqgax _px)(Cjz - Qz)7 (ﬁy - py)(ﬁz - pz) + (ﬁz - pz)(ﬁy - py)]>
= (@ 4 (5s ~ (B~ )5~ p2)
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—((By = y) (B2 — P2)) (b — P2)(@z — ¢2))) + (y <> = only in p-terms).

The goal here is to bring the triple product of p; in the first term to the form of
the second term; for this reason we use the associator first, and concentrate only

on the first term (omitting the (§, — ¢.) term for now):

(ﬁx - px)((ﬁy - py)(ﬁz - pz)) = ((ﬁx - px)(ﬁy _py))(ﬁz - pz) + hzea/i-gi . (239)

After using the commutator in the paranthesis of the first term on the right-hand

side we arrive at

(ﬁx_px)«ﬁy_py)(ﬁz_pz)) = ((ﬁy_py)(ﬁm _pz>>(ﬁz _pz)+iheéz(ﬁz _pz)+h2€a/iEi .
(2.40)

Once again, we use the associator followed by the commutator, writing

(Pe — px)((ﬁy - py)(ﬁz -p.) = (ﬁy - py)((ﬁz —D2)(Pe — Pz)) (2.41)
—ihe(p, — py)éy + iheéz(ﬁz —p.) + 2h2€67§i )

Applying this procedure one last time on the very first term in (2.41) yields
((ﬁy _py)(ﬁz _pz»(ﬁx _p:c) - Zhe(ﬁy _py)éy +ih€l§z(ﬁz _pZ) + SHQGaiBi : (2'42)

So far we have looked only at the first term in (2.38). Observe that we brought
it to the same form as the second term in (2.38) up to the position of (¢, — ¢.) to
the left and right, respectively, which can be combined into a commutator with
(p. — p.) to yield an ih. Now doing the same calculation with the third and fourth
term in (2.38), which we did not spell out explicitly, yields the bracket wherein the

contributions from the associator terms drop out

(At App)} = 5By =)o = p2) + (o =By =)
+§ <BZ(@Z = @) (D= — p=) + (G — ¢=) (P — pz>éz>
_g <By<qu — qz)(ﬁy — py) + (qu - QZ)st o py)By>
ihe

5 (5. (2.43)
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Expanding to second order in moments, we obtain

{A(p2gz), Alpyp2)} = Alpapy) +eB*A(p2q:) — eBYA(pyq-)
ihe 1 0°B*
—— (B 4= Algg) ) +--- . (244

J

Here and in what follows, the dots indicate terms having moments higher than

second order, or terms of order larger than A in a semiclassical state.

2.3.3 Application of commutator identities

In our third example of the brackets it is sufficient to use standard commutator

identities:

{A(Pny)’ A(py%:)} = % <Kﬁx - Px)(@y - Qy)v (ﬁy - Z@)(Qx - QI)D (2.45)

A

= ((Pr = P2)(Ge — @) — (By — Py)(Gy — qy) + eéz@y — qy)(Ge — 4a))
= A(psq:) — Alpygy) + eB*A(q2qy)

expanded up to second order in moments.

In general, however, one should be careful with the usual identity [fl, EC’] =
[fl, é]é’ + l%[fl, CA’} when the algebra is not associative, as has already been pointed
out in [32] in the context of Heisenberg equations of motion, no longer given by a

A

derivation [-, H]. In fact, the equation is not valid in general: We have
[A, BC] = A(BC) — (BO)A
and
[A, B]C + B[A,C) = (AB)C — (BA)C + B(AC) — B(CA).
The two terms in the middle of the last equation cancel out only when the multipli-
cation of three given operators is associative. In our example, we have at most two

momentum components, so that this requirement is satisfied. In general, one can

write the difference of the usual two expressions as a combination of associators:

A A

[A,BC)—[A,B|C + B[A,C) = —[A,B,C] - |[B,C, A — [B,A,C].  (2.46)



For an alternative algebra, the last two terms cancel out and the difference is just

the negative associator [A, B, C].

2.3.4 Brackets

Having shown a few explicit calculations, we give here a list of some more brackets

of generic type, including their expansions up to second-order moments:

{A(pyp:), Algyg:)}
{A(paay), Algway)}
{A(P2qy), Alpyaz) }
{A(pry)> A(poIz)}

{A(P2Gz), APyay) }

{A(pmq,z)v A(pypz)}

{A(P24a), Alpyp-)}

—A(p2gs) — Alpyay) (2.47)
~A(gy) (2.48)
A(pete) = Alpyay) + e(B*(dy — 0,)(dr — a2)

A(pets) — Alpyay) + eB*Algoqy) + - - (2.49)
—e(B(4y — 4,)(d: — ¢:))

—eBYA(qyq:) + -+ (2.50)
e(B*(3: — ¢:)(dy — a))

eB*A(q.qy) + - - (2.51)
Alpop,) + 5(B(d: = @) (b = p:) + (@ — 4.) (5 — p) BY)
U~ BB, — 1) + (@~ )5, — 2)BY) — ()

A(pxpy) + eBZA<pzq,z) - eByA(prZ>

ihe 1 9?°B?
B+ 227 Algigy) ) + - 2.52

<((jac - Qx)éy(ﬁy _py) + ((jx - %:)(ﬁy - py)By>

_¢
2
eB*A(p.q.) — eBYA(pyq.) + - - (2.53)

For a non-constant magnetic field, some of the brackets of basic expectation

values and moments are non-zero as well:

P A(p?/)} = €<Bz<ﬁy —py) + Dy — py>Bz> (2.54)
= Qeaai'zA(pyqi) +oee (2.55)
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2.4 Semiclassical dynamics of a charged particle in a

magnetic monopole density

For algebraic states, the dynamics is defined in terms of a flow of positive linear
functionals wy, t € R on A with respect to a Hamiltonian H € A:

o = 0, H]) = {w(0), w(H)} (2.56)

in terms of the bracket (2.25). This definition agrees with the standard Schrédinger
or Heisenberg flow in the case of an associative algebra of operators represented
on a Hilbert space, but it does not require this additional structure. (It is also
insensitive to the commutator [-, H ] no longer being a derivation, which had been
noted in [32].) We can therefore apply it to the example of a non-associative algebra
studied here.

2.4.1 General magnetic field
We first choose the “free-particle” Hamiltonian

|
H=—(p2+p>+p’ 2.57
5 (Ox + 0, +P2) (2.57)

so that we will be considering the motion of a charged particle in a background
magnetic field without additional forces. Interactions between the charged particle
and the magnetic field are represented by the non-associativity of the algebra or
the Jacobiator of the bracket of expectation values and moments, rather than terms

in the Hamiltonian. We obtain the quantum Hamiltonian as
Hq := (H) = p2 + 1 + 12 + A2) + A(p) + A(p2) (2.58)

which generates Hamiltonian equations of motion as per (2.56), now writing w(H) =
().

As an example we look at the z-components of the equations of motion,

1
lr = —Dz 2.59
q mp ( )
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. _ 1 2 2 1 A2 2 A2 2
Pe = 2m{px,py +pt+ Qm{px, (p,) — p, +(P2) — s}
e

= %(@yéz + Bzﬁy> - <ﬁzéy + éyﬁz» . (2-60)

In this expression we expand the magnetic field as

- oB* 1 0?B?
BZ q :BZ Ai— i) T~ —(g; — 1 A,L'— i 261
(@) = B(q) + (@ = a:) 5= + 500 = )@ — @) oo+ (2.61)
and insert it in the first term of (2.60):
AL A B OB~ 2Bz
(byB* + B*py) = 2B7py + 2——A(pyq:) Algigg) +--- (262)

+pys——
0q; ya%a%‘

Here we just added the (vanishing) contribution (p,(g; — ¢;)). Similarly expanding

the second term in (2.60) and using the definitions of moments we get

mi, = e(B7vy, — B'v;) (2.63)
e 0B* e OBY e 92 B S2BY
m 0g; (pyqi) — (p2s) + 5 (py 9g0q, g aqj) (q:q;) +

The first term is the classical Lorentz force. The additional terms are quantum
corrections to the equation of motion, which vanish for a constant magnetic field.
Indeed, it is well-known that a charged particle in a constant magnetic field can be
described by a harmonic-oscillator Hamiltonian, and the harmonic oscillator does
not give rise to quantum corrections in Ehrenfest equations.

The moments that appear in (2.63) are themselves subject to dynamical equa-

tions of motion with respect to the effective Hamiltonian. We have

Alpya;) = 2A(pypa)dic + 2A(p2)8iy + 2A(pyp.)0i. — 2¢ B*A(poq;)

0B* 2B
2eB A (p.qi) + 2eqi—— A(pag; Do A(g;
+2e (pZQZ)+ €q; aqj (prJ)+BQpr8qjaqk (Qqu:)
0B* 0*B*
—2eq; —A(p>q;) — eqip:———A(g;qe) + -+ - 2.64
Urm (p-q;) — eqip 9000 (g59) (2.64)

The equation for A(p.q;) is analogous to the equation above. The remaining
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moment in (2.63) has an equation of motion of the form

A(Qin) = 2A<pri)5jx + 2A(pxq]')5m + ZA(pri)5jx + QA(prj)(Sm
F2A(p2i)0ja + 2A(p2qj)0in + - - - (2.65)

For a closed set of equations, we need an equation of motion for moments of the
form A(pyp,), which appears in (2.64). This calculation turns out to be more
challenging, but it can be handled by using the associator as well as the defining

identities (2.8) for an alternative algebra

. aBz p2 2Pz
A = 2¢| — B*A(p?) + B*A(p? = Apq;) + == —=——A(q;q;
O B* p? 9% B*
—py——A ) — 2 Alg;q.) — BYA B*A
Pv o, (Pyai) 2 9404, (¢iq;) (pyp=) + (psp2)
OBY OB
A , = A :
P2 9 (pyai) + P2 94 (P24i)
 0?Bi ihp, <aBJ' 1 93BJ )
—ih———A(p.q;) — - Alg; + (2:66

We now have a closed system of equations for the moments up to second order.

2.4.2 Canonical variables in the absence of a magnetic charge

density

In order to test the quantum corrections for a non-constant magnetic field, we
use moment expansions in a derivation of semiclassical equations for the canonical
variables ¢; and m; = m¢; + eA; (with {¢;, 7;} = ih). These variables can be used
only in the absence of a magnetic charge density, in which case we can compare
their dynamics with (2.63).

In canonical variables, the Hamiltonian operator (2.57) is

B = 5= eV = 58— eA)(r; — ed). (267)
m

2m
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To second order in moments, it implies a quantum Hamiltonian

N 1 . g 2
Ho=(H) = 3-0"mm;— —0"md; + 69 A, (2.68)
1 .. e .. 0A;
— SUA(mms) — — R A .
+2m (mim;) m’ g (Tkq;)

0% A, _eaAlﬁAl)A( ‘ )
an5% an oqy, A

—iﬁll <<7Tz — 614,])

2m

where A; is understood as the classical function A4;((g;)) evaluated at expectation

values.

We compute Hamiltonian equations of motion

¢ = %m - % i — %aaqig;lA(%ql) (2.69)
_ %(m —e(A))
and
= %&%%ﬁf —%j(sjmj%;lf (2.70)
S5 )
+%5ﬂ€ <<7rj - Mﬁ%

(24 DAy OA(pypa)A; 0*A,  0A; 0*A () +
9¢; 04mIqy Om  04:0¢n  0¢y 9G:0Gm (mln

We will also need the equations of motion for some moments:

Alant) = - () + M) = = (G2 8aan) + G M) )+
(2.71)

With these results, we can rewrite the Hamiltonian equations of motion as

second-order differential equations for the components g;:

. € : 8Ak aAl 62 : OAk 8Al
o= —m | 00— — =) — — A 6 — =
e m ( " g a%) m”’ ( “oq.  9g
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e O Lo 0Ar  0A
— ke — — =) A(miqpm
+m OGm, < : oq aqj) (W]q )

e 0? o 0A, 04 0%A; o 0A, 04
— A kg, —= — =) — I gk, == — ==
“om <<”J ) B, < "o aqj) © 04m0, ( "o aq]>

0A; 0 . 0A, 04
a0 (g, AN
an aQn : aQZ an (q 4 )

After several simplifications, we can bring this equation into the form

. e N L 0A 0A
mq; = E(Wj — e(4;)) <5jk5ila—qlk - 8_ql) (2.73)
j
e 0 we OAr  0A
— = | §Rs, E Y A — e A
+maqm (5 51[ 8ql aqj) ((71'] € j)qm)

"’i(ﬂj — 6Aj)

P (g P OA
om il

—— — —— 1A mln) + -
e A ; 8Ak 8Al
= (i —elA. jkg 2R 22
(71'] €< J>) <5 67«l aql aqj >

m

e 0 Lo 0Ap  0A

7 gk, 2 T A (s — eAs
o, (5 "0 aqj) (o = ean) e

(2.74)

This equation agrees with (2.63), but is valid only in the absence of a magnetic

charge density.

2.4.3 Potential and magnetic charge density

If there is a position-dependent potential in addition to the magnetic field, the

effective Hamiltonian is

1
Ho = - +p,+r)+V(e) (2.75)
L a0 + A0+ 209) + 22V Agg

The potential implies the usual additional terms —9V/dq; and —3(8°V/8¢;0q;0qx) A(q;qr)

in the equation of motion for md;.

ov

mg, = e(B*v, — BYv,) — 94

(2.76)
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e 0B* e 0BY e 0% B* 0?BY
—A ) — — A(p,q; — — . A(q;q:
+m Jq; (pya:) m 0g; (p-q:) + 2m (pyaQian p 8qi(9qj> (¢i4;)
1 0V
" Alas e
2 0q;0q;0qy (4390) +

Equations of motion for moments (which appear in the above equation) in this

case are modified as follows:

Alpygi) = 2A(pypa)dia + 2A(p})0iy + 2A(pyp-)diz — 2¢B*A(pyq;)

8BZ 2Nz
2e B*A(p.q; 2eq;—— A\ (pzq; iDe————0\(q;
+2eB*A(p.q;) + 2eq 90 (P2q;) + €qip 9000, (g5qx)
a x 2Bx
~2eq: %~ Apsa;) — eqips——Alg;
eq Ja, (p-q;) — eqip 94,05 (¢jqr)
1 0%V
_- Ala:0: Al . 9.
28%8% [ (QZQJ)(S’W + ((]zCIk)(SJ ]+ ( 77)
+2A(p2qi)djw + 2A(p2qj)0iz + - - (2.78)
For completeness, we also note
. OB* p2 aQBz
A = 2| — B*A(p? B*A(p? —A A = A(g;q;
dB* P2 92B*
—py——A ) — 2L ——A(qq;) — BYA . B*A(p.p.
Pr g (Pya:) 2 Paidg, (%) (pyp=) + (p2D-)

oBY 0B*
- z_A 7 z_A Y1
P 5 (Pyqi) +p o0 (P2qi)

02 BJ ihp, (aBJ‘ 1 9387 )
—ih——A(paq) — +2 Alg:
95da, (p-4;) > \9g 20000 (qiqr)
1 0%V

(A(py@i)dje + Alpyd;)dia + Alpeti)djy + Alpag;)diy) £2.79)
As is evident from (2.64), (2.65), (2.66), (2.77) and (2.79) the equations of

motion for A(p,q;) (and A(p.¢;)) and A(pyp,) get some additional terms due to

the potential , whereas that for A(g;¢;) remains the same.
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2.5 Application: Testing non-associative quantum me-

chanics

Quantum mechanics is being tested ever more precisely by experiments, even while
conceptual questions remain. We suggest a new kind of test in an extended setting
in which the usual concepts of wave functions or state vectors and operators do not
exist. Therefore, the standard axioms about outcomes of individual measurements
are unavailable, or at least not known yet, and even at a practical level, no
computational methods have been available so far. Here we show how one can
derive semiclassical corrections to the motion of a particle and associated new
phenomena.

The formalism of state vectors and operators implies that the action of the

latter on the former is associative:

A A A A A

(ABYC = ABY' = A(BY') = A(BC)y (2.80)

if ¢ = C*w, for an arbitrary . However, some exotic ingredients, such as magnetic
monopoles, require an underlying non-associative algebra in order to quantize such
systems. Quantum observables then no longer obey (AB)C' = A(BC). Not much
has been known about physical effects when this basic identity is not available.
In this section, we develop and utilize a novel method in order to reveal testable
quantum effects in such a system.

A non-associative algebra cannot be represented by operators on a Hilbert space.
Instead, one has to work with an abstract non-associative algebra, which can be
constructed by methods of deformation quantization as applied in [29,30,31,32, 11].
States in this setting are not defined as normalized vectors in a Hilbert space, but as
suitable linear functionals A — (A) from the algebra of observables to the complex
numbers. (For associative observable algebras, this definition of a state is equivalent
to the Hilbert-space picture thanks to the Gelfand-Naimark-Segal theorem; see for
instance [15].) The primary object is therefore not a wave function but the set of
expectation values assigned by a single state to all possible observables. We will
demonstrate, for the first time in the context of non-associative quantum mechanics,
that algebraic properties of such expectation-value functionals can be used to derive

new semiclassical effects.
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The best-known example of a non-associative quantum system is a charged
particle in a magnetic monopole density [36]. Even if fundamental magnetic
monopoles may not exist, such systems are gaining interest from a physical per-
spective, following recent constructions of analog systems of magnetic monopoles
in condensed-matter physics [51,37,52,53,54,55]. (Related models also play a role
in string theory [16,33,29,34,35].) As is well known, the canonical momentum
of a charged particle in a magnetic field B without monopoles, divB = 0, is a
combination of the particle velocity and the vector potential. For the kinematical

momentum p = mg, one has non-canonical commutators of momentum components,
3
PN . Sl
[pjapk] = ieh E ijlB (281)
=1

where e is the particle’s electric charge.

This relation depends only on the magnetic field and does not require a vector
potential. Therefore, it can be used to define the basic commutators of a charged
particle moving in a magnetic field with divB # 0, where no vector potential exists.

However, the resulting algebra does not fulfill the Jacobi identity of commutators:

[[Pe, By), =] + [[Dy, -], D] + [[D2, Pa), Dy

3
= ieh Y [B/ p;] = —eh*divB . (2.82)
j=1

As the name suggests, the Jacobi identity normally follows without further as-
sumptions, provided the algebra is associative. The non-zero result just obtained
can therefore be consistent only if the multiplication of momentum components
is not associative. (Finite translations generated by momentum operators are not
associative [00]. The classical analog is a twisted Poisson bracket [26,27,28].)

A physical version of the property of non-associativity is a “triple” uncertainty
relation, just as the usual uncertainty relation is a consequence of non-commuting
operators. As usual, (2.6) implies that Ap,Ap, > %eh(éz>: a large magnetic
field in the z-direction deflects the particle from a straight line, making it harder
to measure momentum components. A characteristic of monopole fields is that
they change along the direction in which they point, for instance if B* = pz with

a constant p. The commutator of p, and p, then depends on the measurement
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of Z, which itself is subject to the standard uncertainty relation AzAp, > %h
Therefore, all three fluctuations, Ap,, Ap, and Ap,, together determine how small
the momentum fluctuations can be.

As already mentioned, states then cannot be defined as vectors in a Hilbert space,
but their physical properties can be analyzed by treating them as linear expectation-
value functionals on the algebra. Any such functional must be normalized, (I) = 1
for the identity I in the algebra, and obey a positivity condition which implies
uncertainty relations. Having identified basic operators as the components of
position and kinematical momentum, we can parameterize a state by the basic
expectation values (§;) and (p;) as well as fluctuations, correlations and higher

moments. The latter are defined to be of the form
A A
A(pip;) = §<pz‘pj + pipi) — (i) (Dy) (2.83)

for the example of two momentum components. (With this notation, we slightly
modify the usual denotation of quantum fluctuations, identifying A(p?) = (Ap;)?.)
The symmetrization in (2.83) takes into account the non-commuting nature of
kinematical momentum components in a magnetic field. For higher moments
with more than two factors of momentum or position components, different sym-
metrizations are possible, of which we choose, following [7], totally symmetric (or
Weyl) ordering by summing with equal weights over all permutations of factors.
Moreover, non-associativity requires a fixed choice for the bracketing of products of
observables, which we choose to be done from the left as was done in the earlier
sections of this chapter.

A Hamiltonian leads to equations of motion for the basic expectation values
coupled to moments, giving an infinite-dimensional dynamical system. In a semi-
classical approximation, only a finite number of moments need be considered,
corresponding to a specific order in A. The Hamiltonian we use in this section is of
the standard form,

=

2m

3
YD VI(E,9,2), (2.84)
j=1

where interactions of a charged particle with the magnetic field are implemented
not by a term in the potential but by the non-trivial commutators of momentum

components. (The potential V' (z,y, z) for an additional, non-magnetic force will
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be specified below.) Given a Hamiltonian, the equations of motion for expectation
values and moments follow by using
d(0) _ (10, H])

P 2.
dt ih (2.85)

which is still available in the non-associative case. However, the non-associative
nature requires great care when evaluating commutators of products of the basic
observables, for which we refer to section 2.2.3 above.

The specific effect we will derive, related to stable motion in an effective potential,
requires the particle to be completely confined. A magnetic field in the z-direction,
B* = 0 = BY, confines the particle motion to a plane normal to the magnetic
field. For complete confinement, we combine the magnetic force with a harmonic
force in the same direction, choosing the potential to be V (z,y, z) = %muﬂz?. This
force could be generated by an electric field. For simplicity, we consider a linear
z-component B* = pz, so that p is the magnetic charge density. The resulting
Hamiltonian is

p- L 23: 2 1 Lets? (2.86)
T a2 ’ '
and the magnetic field enters via [p,, p,| = iephZ while the other pairs of momentum
components commute.

We are interested in deriving an effective potential for the motion of such a
particle. If one knows a suitable state of the system, the effective potential can
be obtained from the expectation value of the Hamiltonian in which one sets
all momentum expectation values to zero in order to remove the kinetic term,
Vet = (f[ )py=0- (We do not require solutions for momentum expectation values to
be zero at all times.) In the given case with a quadratic Hamiltonian, the effective

potential is the classical potential plus a sum of fluctuations:

V() = gmu(s) (2.87)
o (AR + AR + AY) + gmuPA?).

In order to express this potential as a function of the coordinates, we have to
compute the values of quantum fluctuations. Following the methods of [57], we can

compute the relevant state properties without using a wave function. Instead, we
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solve equations of motion for fluctuations in an adiabatic approximation (giving
stationary moments in a near-coherent state) and saturating uncertainty relations
(minimizing fluctuations). For well-understood (associative) systems such as an-
harmonic oscillators [¢] or Coleman—Weinberg potentials in self-interacting scalar
field theories [58], the correct results are obtained in this way [7,57]. In our new
situation, we minimize fluctuations by saturating the uncertainty relations, in the
standard form for ¢; and p; and for non-commuting momentum components.

We can derive Ehrenfest-type equations of motion by using (2.85) for the
moments. Expanded up to first order in h for semiclassical states, thus including

no moments of higher than second order, they are

mA(qq;) = APati)dje + Apat;)di + Apyai)dje
+A(pyqi)0iz + A(p2Gi)0jz + A(p2q;)dix (2.88)

for all position moments,

mApet) = AD2)0i + Apapy)diy + A(pap:)dic

+ep (()Apyai) — (4) Apy2)) (2.89)
mA(pyg;) = Alpapy)dic + Ap2)diy + Alpyp:)d;

—ep ((2)AP2qi) — (4:) Alpez)) (2.90)
mAP.q;) = Apap:)dia + Apyp:)diy + A(p2)5;

—m*w?A(g;2) (2.91)

for the position-momentum covariances,

mA(ppy) = —ep ((2)AWP) - (HAWP])
—(Pa) Alpaz) + (Py) Alpy2)) (2.92)
mA(pyp.) = —ep ((2)APap:) + () Ap:2))
2w A(py2), (2.93)
mApep.) = ep((2)Apyp:) + () A(p-2))
20 A(pe2) (2.94)
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for momentum covariances, and

mA@p2) = 2ep ((2)A(papy) + 2(0,) A(pez) + (Pa) Alpy2)) (2.95)
mA®P) = —2ep((2)A(ppy) + By)A(poz) + 2(p)A(pyz))  (2.96)
mA(Pp?) = —2m*w?A(zp.) (2.97)

for momentum fluctuations.

We solve these equations to zeroth adiabatic order in the moments, so that all
time derivatives on the left-hand sides can be set to zero. The moments are then
subject to linear algebraic equations. In order to solve the set of coupled equations,

we use (2.88) for all possible index combinations to conclude that

A(zpy) = A(ypy) = Azp,) = 0 (2.98)
A(yps) + Azpy) = 0 (2.99)
A(zpy) + A(zp,) = 0 (2.100)
A(zpy) + Ayp.) = 0. (2.101)
Using equations for mixed position-momentum moments, we obtain
ApY) = —en((2)A(xpy) — (2)A(2py)) (2.102)
Alpapy) = —en((8)A(ypy) — (9)A(zpy)) (2.103)
A(pepz) = 0 (2.104)
from (2.89),
Alpepy) = ep((E)A(xps) — (2)A(2ps)) , (2.105)
APy = ep((B)Aps) — (YA (2p2)) (2.106)
Alpyp:) = 0 (2.107)
from (2.90), and
Alpp.) = miwiA(xz), (2.108)
Alpyp:) = m’w?A(yz), (2.109)
A(p?) = mPwiA(2?) (2.110)



from (2.91). The equations of motion (2.92), (2.93) and (2.94) for momentum

covariances provide

Alpy) = Alpy) = <ﬁx>A<pr)<;><ﬁy>A(Zpy>7 (2.111)
_oomt (8

A(zp,) = eu(@)A( Dy) <]%)A(pggpz), (2.112)
 mAW? o) (2)

A(zp.) = eu(f)y>A( 129 <][z/)A(pypz). (2.113)

Since A(zp,) = 0 from (2.98) and A(p,p.) = 0 = A(pyp.) from (2.104) and
(2.107), (2.112) and (2.113) imply A(zp;) = 0 = A(zp,). From (2.111) and (2.103)

or (2.105), we immediately conclude that
A(pz) = A(py) and  A(pep,) =0, (2.114)

also using (2.98). These values are consistent with (2.102) and (2.106), in which
the same fluctuations appear. All equations are then solved and the adiabatic
approximation is self-consistent, showing that an effective potential exists.

We now consider states saturating the uncertainty relations. For the pair (2, p,),

we have the standard one,

h2
A(Z)AP2) = Alzp2)* 2 7 (2.115)
while (2.6) implies an uncertainty relation
1 N
AP AWP)) — Alpapy)* > 7°h*(B)*. (2.116)
If both inequalities are saturated, we obtain
1 N
A(p;) = Alpy) = eh(B) (2.117)
and
A(2?) = e A(p?) L (2.118)
C 2mw bz) = 5w '
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Finally, inserting these values in (2.87), we obtain

Vir((2) = Smarzy2 + Lpe BN %hw (2.119)

1
2 2 m

If the magnetic field is constant, the fraction eB/m = w, in (2.119) is the
cyclotron frequency. It is well known that the Hamiltonian of a charged particle
in a constant magnetic field can be transformed to one of a harmonic oscillator
with the cyclotron frequency, so that our derivation provides the correct result of a
constant A-term in the effective potential given by the sum of zero-point energies
%hwc and %hw of two uncoupled oscillators.

With the absolute value in (2.119), the effective potential differs from the
classical potential by a kink around (£) = 0, accompanied by a modification of
the potential in a neighborhood around (2) = 0 where the linear contribution to
the potential is dominant. (At the kink, where the fi-correction implied by the
magnetic field is zero, it is likely that higher-order corrections are relevant.) The
motion of a charged particle in a magnetic monopole density therefore differs from
the classical motion by anharmonic behavior around the minimum of an additional
quadratic potential.

This effect cannot be mimicked by magnetic fields without monopole densities.
Such a magnetic field could produce a z-dependent potential only if there are
non-vanishing components B* or BY, either by cancelling the z-derivative of B* in
the divergence or by having the z-dependence come only from B* or BY. However,
the motion would then be more complicated than circular motion in the x — y-plane
at some fixed value of z.

Our results have important conceptual and potentially observable consequences.
They demonstrate that physical effects can be derived in quantum mechanics
even when the usual and widely used notions of state vectors and operators are
unavailable. Non-associative quantum mechanics is thereby shown to be meaningful
physically, which, despite its exotic appearance, can be applied in diverse ways,
including some versions of string theory and analog magnetic monopoles.

Regarding the latter, we have specialized our general methods to a system in
which closed-form solutions can be obtained, providing a model system with clear
new effects. Such models always play important roles in situations like the present

one: not much is known about testable quantum effects of analog condensed matter
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monopoles, even while experimental realizations seem to be within reach [59]. Our
model amounts to an idealized example which brings out new effects clearly.

In practice, although it seems hard to have a constant monopole density, for
sufficiently large amplitude of the oscillating motions of a charged particle, it is
conceivable that a fine lattice of magnetic monopoles could be used to test the new
effect found here. Specifically, one should arrange the lattice in cylinder shape, so
as to impose a preferred direction identified here with the z-direction. On scales
larger than the lattice spacing (but well within the entire lattice), the complicated
dynamics of electric charges moving around monopoles can be approximated by
electric charges moving through a uniform monopole density to which our methods
apply. Analog monopoles do have Dirac strings [79], which may still have an
effect after averaging to a continuous density, making the magnetic field non-linear.
For more accurate derivations of the effective potential, applying our methods to
non-linear magnetic fields, the same equations for moments are available, but they
are coupled in more complicated ways which are likely to require numerical input
and further research. Similarly, the equations can be extended to higher orders
in A by including higher moments, but again we are not aware of closed analytic

solutions.
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Chapter 3
Alternative algebras and monopole
star products

Deformation quantization [60,61] has been explored much in the associative setting.
If one drops the condition that the star product be associative, some of the
usual methods are no longer available. The classification of such star products
therefore remains open. In this chapter, we present one general result in this
direction, motivated by a recent resurgence of interest in magnetic-monopole
systems [29, 30, 31,32, 11,62], where standard quantization methods show that
associative algebras cannot constitute consistent quantizations of the relevant
observables [10,11].

In the original version of deformation quantization, associativity of the star
product represents an important condition on the coefficients in the formal power
series of the product. If one works with star products without the condition of
associativity, at first sight it may seem easier to find acceptable versions because
they may appear to be subject to fewer consistency requirements. However, if one
is forced to use a non-associative star product for physical reasons, one is not fully

liberated from imposing conditions on the associator
la,b,c] =ax(bxc)— (axb)x*c. (3.1)
For a specific set of basic observables, the associator, like the usual commutator

[a,b] =a*xb—bxa, (3.2)
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is prescribed based on physical arguments.

Formulated for position and momentum components as basic observables, the
commutator of an acceptable star product should be [¢;, p;] = ih{q;, p;} = ihd;j,
mimicking the Poisson bracket. If these are coordinates of a charged particle (with
electric charge €) moving in the magnetic field B'(¢;) of a magnetic monopole
distribution, so that divB = §;B' # 0, the classical brackets are modified: They are
twisted Poisson brackets for which the Jacobi identity does not hold [26,27,28]. An
algebra that quantizes the bracket endows phase-space functions with a new product
* and the associated commutator (3.2) and associator (3.1). The Jacobiator of the
commutator is proportional to the totally antisymmetric part of the associator and
can be non-zero for non-associative x-products. In the present context, one is led

to the relations [10,11]

[gi,q5] = 0O (3.3)
g, p5] = ihdy (3.4)
[pip;] = iheey, B* (3.5)
[@:2",27] = 0 (3.6)
[pi.pj ] = —he€ijpd B’ (3.7)

to be realized by a star product. Here (z7)S_; is a collective notation for the

Cartesian coordinates (g;, p;);_;. In the absence of a magnetic charge density, one
can introduce a canonical momentum 7; with zero brackets for its components.
However, the definition, 7; := p; + A;, makes use of a vector potential A through
B = rotA, which does not exist if divB does not vanish. Instead of a zero
associator in standard star products, the specific form of (3.7) imposes restrictions
on acceptable star products for magnetic-monopole systems.

Most of the usual properties of quantum mechanics are no longer valid and
must be modified when observables cannot be represented as associative operators
on a Hilbert space. In some studies, a weaker condition given by an alternative
algebra has been found advantageous [14]—if it can be realized. This is also the
case explored in Chapter 2. An alternative algebra is one where the associator (3.1)

is completely antisymmetric, or, equivalently, where the x-product obeys
ax(axb) = (a*xa)*b

45



(axb)xb = ax(bxb) (3.8)

for any a, b in the algebra. Many well-known non-associative algebras are of this
form, such as the octonionic ones. Requiring an algebra to be alternative, provides
a priori a tempting option for the case of a charged particle in the background of
magnetic monopoles, in particular in view of the total anti-symmetry of the basic
relation (3.7).

However, in this chapter we demonstrate the impossibility of such an algebra
as a set of quantized observables of a charged particle in the presence of magnetic
monopole densities, obtained by deformation quantization. While (3.7) implies a
totally antisymmetric associator for linear functions of the basic observables, the
associator of general algebra elements is not guaranteed to be totally antisymmetric.
Different examples for algebras consistent with the relations (3.3)—(3.7) have been
constructed using star products [29,30,31,32,11,62], one of which has explicitly been
shown to be non-alternative [63]. In what follows, we will analyze the possibility of
alternative monopole star products in general terms, using deformation theory, the

basics of which we first recall in the next section.

3.1 Deformation quantization with non-associativity

The classical theory is described by the commutative algebra of smooth functions
on T*R3, equipped with the bivector field!

) o)
1= B (q)=—
(@qi + €, B"(q) (9pj) A

0
Op; ’

(3.9)

in the canonical linear coordinates (z/)S_, = (q1,q2, g3, p1, P2, p3). For a vector
field B with non-vanishing divergence, this is only a twisted Poisson bivector: Its

Schouten bracket with itself does not vanish but is given by

%[H, IT] = II*(H) (3.10)

'We set the electric charge to e = 1 from now on.
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where the 3-form H takes the form
H =rn"dB. (3.11)

Here the magnetic field B is considered a 2-form on R* by means of B = ¢;;,B'd¢’ A
dg* and 7: T*R3® — R? is the canonical projection. Maxwell’s equations link dB
directly to the magnetic monopole density: dB = *pmagnetic-

The bivector field II then induces the following bracket on the functions f, g €
C>(T*R3),

1 af o
(.0 = 517 (@) 528

This bracket is an antisymmetric bi-derivation, but no longer a Lie bracket and

(3.12)

thus not a Poisson bracket: the r.h.s. of (3.10) provides precisely the non-zero

Jacobiator.

3.1.1 Star product

Deformation quantization turns the classical commutative algebra (C*°(T*R?), ")
into the quantum algebra A := (C(T*R?)[[A]], ), where X = 1ih is considered as

a formal deformation or expansion parameter:
frg=2 NB(f.9). (3.13)
j=0

Here B;: A x A — C are bilinear maps on \A.> To zeroth order in A\, we have
the classical product given by pointwise multiplication, Bo(f,g9) = f -9 = fg.
Following [60], we will assume that B; is a bi-differential operator of maximum
degree 7 which is zero on constants for strictly positive j:

J

Bi(f.9) = > Bj'(f.g) for j>1 (3.14)

k=1
6
of d'g
k,l _ k,l
Bj'(f.9) = E, Bj;h,...,lk,Jl,...,Jl(Q)axh,__axzk Oz - O

I, Iy, J1,. 0 Ji=1

(3.15)

2Using the same letter for these bilinear maps and the magnetic field should not cause confusion.
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The property implies in particular that the star product defines a unital algebra,
with the unit function as unit.

Let us for a moment assume that x would be associative. In this case, we
would have that the commutator (3.2) evidently satisfies the Jacobi identity and
also that [f,gxh| = [f,g] x h+ g x [f, h]. Both equations together, evaluated at
lowest non-vanishing order in A, imply that the antisymmetric part By (f,g) =
2(Bi(f,9) — Bi(g, f)) of Bi(f,g) is a Poisson bivector. On the other hand, for
physical reasons, we want that the antisymmetric part of the first order deformation

is determined by the classical bracket:

By (f,9)={f.g} (3.16)

This then shows that the x-product cannot be associative for the deformation quan-
tization of the above classical system, cf., in particular, Eq. (3.10)—as anticipated
already in the Introduction.

In fact, in the present chapter, we want to strengthen eq. (3.16) in a two-fold

way: First, we require in addition that B; is antisymmetric itself already, so that

Bi(f,9)=1{f.g} (3.17)

This, in fact, is not really a restriction: it can be shown that every star product
either satisfies this condition or has an equivalent deformation for which (3.17) is
fulfilled. We will come back to this below and assume it for now in any case. Second,
we want that for linear coordinate functions on T*R? the bracket determines the

commutator even to next-to-leading order, i.e. we require

R

th

v (2,27} + O(h2). (3.18)

The first condition is equivalent to requiring B; (f, g) = 0 for all functions f, g, the
second one to demanding
By (z',27)=0. (3.19)

We remark in parenthesis that the equation (3.18) is implied if the ! are imple-

mented as distinguished observables in the sense of [01].
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3.1.2 Monopole star products

Since we found above that the associator of the monopole star product cannot be

zero, we also expand it into a formal power series in \:

o0

A(fg.h) = fx(gxh) = (frg)xh:=3 NAj(f gh). (3.20)

J=0

The maps B; and A; are not independent; in fact, A; is determined by the B; with
1 < j. It is easy to evaluate the low orders: We always have Ay = 0, because the
point-wise multiplication of phase-space functions is associative. At first order, we

have

simply since Bj is bi-differential of order (1,1).

At second order, one finds

A2(f7g7 h) = fB2(97 h) - B2(f7 g)h+ BQ(f7 gh) - BQ(f.Q? h)
+Bi1(f, Bi(g,h)) — Bi(Bi(f, 9). h) - (3:22)

For a non-associative star product, the coefficient A, as the first non-zero one
in the expansion (3.20), plays a role similar to the coefficient B in specifying
conditions on the star product as a quantization of the classical bracket. The totally

antisymmetric contribution

AZ(fgoh) = 5 (a0, h) + As(h f9) + Ax(g. . f)
_AQ(f7 h7g) - A2(97fa h) - A2(hvga f))

to Ag, in view of (3.19), only depends on By if it is evaluated on linear functions

of the basic variables z!: We have
1
A (2h 27 2%) = §J(:cl,x‘7,xK) (3.23)

where J(f,g,h) is the Jacobiator of By, i.e. of the classical bracket {-,-}. In
particular, A; (p1,p2,p3) = 4n*dB for a star product that quantizes a twisted
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Poisson bivector obeying (3.10). It is then consistent to assume that Ay (pq, pa, p3) =
A5 (p1,p2,p3) is totally antisymmetric, as written in the basic relation (3.7). The
basic relations do not give us direct statements about A, evaluated on functions
not linear in the global coordinates 2. We will assume that Ay(f, g, h) can be
chosen totally antisymmetric even in this case — since our aim is to prove that
monopole star products cannot be alternative, there would be nothing to show if
this assumption were violated. However, this condition does not already imply
that the star product is alternative, since non-linear functions generically lead to
contributions to A(f, g, h) of higher order in A, which do not directly follow from
simple combinations of the basic relations (3.7).

We summarize our conditions on A, in

Definition 1. A monopole star product is a non-associative star product x on
C>(T*R3)[[N]] such that (3.18) holds, its associator to second order in X is totally

antisymmetric and further obeys the following conditions:

1. AQ(p17p27p3) 7é 0;

2. Ag(qi, 2t 2?) =0 foralli=1,2,3 and I,J =1,...,6, and
3. Bi(qi, A2(p1,p2,p3)) =0 fori=1,2,3.

where (x1)8_, = (q1, G2, @2, 1, P2, P3) are the canonical linear coordinates on T*R3.

3.1.3 Hochschild cohomology

For an associative algebra A, the space of multilinear maps from A to itself can
be equipped with a coboundary operator d, used in Hochschild cohomology. For a
multilinear map ¢: A®" — A of n arguments, d¢ is a multilinear function of n + 1

arguments given by

n—1

dﬁb(am ag, ... ’an> = Qaop- ¢(a17 s 7an) + Z(_l)j¢(a07 s A1, At Ayl Ay, - - 7an)

<

+(=1)"¢(ag, -, n-1) - ap - (3.24)

Hochschild cohomology plays an important role in classifying equivalent star
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products with respect to a redefinition of higher orders in a A-expansion: If

D(f) =) Di(f)N (3.25)

J=0

with linear differential operators D; starting with Dy = id, for any given star

product x a new product ' can be defined by means of

D(f)* D(g) = D(f *g). (3.26)

The condition on Dy ensures that D is invertible as a map on formal power series.
If functions in C°*°(M) are written as symbols of operators, for instance by a Weyl
correspondence, a non-trivial map D changes the factor-ordering choice in the
correspondence. To first order, B} = By — dD; while dB; = 0; see (3.21). The first
Hochschild cohomology therefore classifies inequivalent choices of B; which cannot
be related by a different choice of factor ordering. For a given bracket {-, -}, all star
products quantizing it respect the condition (3.16), but not necessarily (3.17).

If A is not associative, d, defined just like d for an associative algebra, is not a

coboundary operator: For a linear function ¢: A — A, we have

dd(ag, ar) = ag* P(ar) — ¢(ag * ar) + ¢(ag) *x aq (3.27)

and

A>d(ag, a1, as) = Alag, ar, ¢(as))+A(ao, do(ar), az)+A(¢(ao), a1, az)—po(A(ao, a1, az))
(3.28)
with the associator A. Therefore, Hochschild cohomology is not available for non-
associative algebras. However, the coboundary operator d of the classical associative
commutative algebra of smooth functions may still be used in constructing non-
associative deformations, as we will do below. For instance, the product in (3.21)
refers to -, not to x. Moreover, we can refer to the standard argument [64] for
changing the star product within its equivalence class to show that the symmetric
part in By can always be set to zero and (3.17) be achieved. Thus, up to operator
ordering, we can always assume that B is given by the classical bracket, even if it

is not Poisson, but for example twisted Poisson as here.
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3.2 The main result

Our main result is

Theorem 1. Let x be a monopole star product as defined above, cf. Definition
1. Then the associator A(f,g,h) = f* (g*xh) — (f *g) * h cannot be totally

antisymmetric in its arguments.
We will prove this result by making use of three lemmas:

Lemma 1. Let x be a star product obeying (3.18). If x is flexible at second order,
that is As(f,g,h) = —As(h, g, f), then By is symmetric.

Proof. We evaluate A, in (3.22) on functions with f = h, writing the result as

AQ(f?.g?f) = fB2<g>f)_BQ(fag)f+BZ(fagf)_BQ(fgmf)
= —2fBy(f.9)+2B;(f, f9g) (3.29)

using the antisymmetric part By (f, g) := 3(Ba2(f, 9)—Ba(g, f)) of Ba. If As(f, g, h) =
—As(h, g, f) holds, Ax(f, g, f) =0, and we obtain

By (f, fg) = fBy(f,9)- (3.30)

For an antisymmetric bi-differential form, this equation can hold only if the degree
is (1,1). However, if By has a contribution of degree (1,1), (3.19) cannot hold.
Therefore, By, = 0 and B, is symmetric. O

In particular, the conclusion holds for a monopole star product (3.13). All
explicit star products that have been constructed for monopole systems indeed
have a symmetric By. For associative star products, Kontsevich’s formula [65] has
the same property. If symmetry of B; holds at all even orders j, the star product
gives rise to a formal deformation of the twisted Poisson bracket by powers of \2,

or a Vey deformation as defined in [60].

Lemma 2. If (3.13) is a star product with symmetric By, then the totally anti-

symmetric part of As is equal to zero.
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Proof. Using the definition of the associator and the star product, we derive

A3(fugu h) = dBB(f?.g? h) + BZ(f7 Bl(g7 h))
—Ba(Bi(f,9), h) + Bi(f, B2(g, 1)) — Bi(Ba(f, 9), h) ,(3.31)

where d is the coboundary operator of Hochschild cohomology, cf. eq. (3.24). In
particular, dBs(f, g,h) = fBs(g, h)+ Bs(f, gh) —hBs(f,g) — Bs(fg, h). The totally
anti-symmetric part A; of As, defined as in (3.23), is given by

345(f,9.h) = By (f,2By (g,h)) + By (h,2By (f,9)) + By (9,2B; (h, f)B.32)
+By (f,2By (9,h)) + By (f,2By (g9,h)) + By (f,2B5 (g,h))

where, as before, B; (f,g) = %(Bj(f, g) — Bj(g, f)) is the antisymmetric part of
B;.? Since all terms on the right-hand side of (3.32) contain a By, By = 0 implies
Ay =0. O
We remark that for the last conclusion it is important that the antisymmetric part
of Az, unlike the full A3, does not depend on Bs.

Lemma 3. Let x be a star product such that

O(f, 9,0 k) = Aaf, g, Bi(h,k)) — As(f, Bi(g, h), k) + Aa(Bi(f, 9), b, k)
+Bl(A2<g7h7 k)7f) _Bl(A2<f7g7h)7k) (333>

is not identically zero. Then the third-order contribution Az to the associator is

non-zero.

Proof. Again, we use the Hochschild coboundary operator and consider
dA3(f> g, h7 k) = fAS(ga h7 k) - AB(fga ha k) + A3(f7 gha k) - A3(f> g, h’k) + kA?)(f? 9, hQ334>

Our goal is to show that dAj is non-zero for algebras with non-zero O, which

implies immediately also that A3 # 0. The Pentagon identity
fxAlg, h,k)+A(f,9,h) k= A(f x g, h, k) — A(f, gx h, k) + A(f, g, h * k|3.35)

for non-associative algebras can be used for a compact proof of this statement.

3See App. A for a detailed derivation of (3.32).
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Expanding it to third order in A, we obtain

fA3(97 h7 k) + Bl<f7 A2(g7 h7 k)) + kA3<f7g7h) + BI(A2(f>g> h‘)? k)
= A3<fga h7 k) - A3<f7 gh7 k) + A3(f7g7 hk)
+A2(Bi(f, 9), b k) — Aa(f, Bi(g, h), k) + A2(f, g, Bi(h, k)) (3.36)

where we used A; = 0, cf. eq. (3.21). These terms can be organized to obtain

dAs(f,g,h, k) = As(f, g, Bi(h,k)) — As(f, Bi(g, h), k) + Aa(Bi(f, g), b, k)
+BI(A2(g7h7k)7f>_BI<A2(f>g>h)7k)' (337>

Alternatively, one can prove directly that dAjs is of this form without invoking the
Pentagon identity, as shown in App. B. The right-hand side of this equation is
equal to O(f, g, h, k). If it is not identically zero, A3 is non-zero. O

We are now ready to prove our main result:

Proof (of Theorem 1): By Lemmas 1 and 2, a monopole star product has an A3
with zero totally antisymmetric part. If the star product is alternative, we must
then have A3 = 0. If the obstruction O provided by Lemma 3 is not identically zero,
however, it is not possible that A3 = 0. We now show that O # 0 for a monopole
star product, discussing two cases separately depending on whether the associator
(the monopole density) is constant or a function of the position.

For a constant associator, we may choose f = pi, g = p2, h = p3 and k = ¢3ps.
Using the twisted Poisson bracket for By, all but the first term in O(f, g, h, k) are
zero, while Ay(f, g, B1(h, k)) is proportional to the monopole density and therefore
Nnon-zero.

If the monopole density is not constant, we specialize O(f, g, h, k) to

O(fvgv h'7 g) = A2(Bl(f7 9)7 h’? g) - BI(A2(f797 h)Jg) : (338>

Since the associator is not constant, it depends on at least one position coordinate,
say ¢1 without loss of generality. If we then choose f = ps, g = p; and h = p3 we
have B1(Aa(f,g,h),g) # 0 while Ay(By(f,g),h,g) =0. O

The conclusion is independent of the choice of the star product within an
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equivalence class, with [30] or [02] as concrete examples, because alternativity is
independent of the choice of the ordering (the “gauge”) [60].

More generally, Lemma 3 gives us an obstruction to alternativity which only
depends on By and As, and therefore can be tested for general non-associative star

products more easily than the full associator.

3.3 Monopole Weyl star product

Two different star products have been proposed recently for the magnetic-monopole
system, one by using the Kontsevich formula [29,30,31,32, 11], and one from Weyl
products [62]. The former is known to be non-alternative [03]. Since it satisfies our
assumptions, it provides an explicit example for our general result. We now discuss

the star product of [62] in more detail.

Ezxample (Weyl star product): The star product of [62] has the first coefficient
Bi(f,9) = 3{/, ¢} with an atisymmetric bracket {f, g} = 1I1'/9;f0,g given by an
arbitrary bivector II’/. It can therefore be applied to monopole star products. The

second coeflicient is

By(f,9) = _%HIJHKL(aIaKf)(aJaLg)_%HIJaJHKL ((9r0k f)(Org) — (Ox [)(010L9)) ,
(3.39)

transferred to our notation. It obeys our assumptions. In particular, B, has

no contribution of bi-differential degree (1, 1), and it is symmetric thanks to the

antisymmetry of the twisted Poisson tensor II’Y. Therefore, our conditions on

monopole star products are satisfied and the algebra cannot be alternative.* O

In [67,60], an explicit expression for Bj is given as well. It is therefore possible

to compute As in specific examples and show that it is not totally antisymmetric. In

4This star product has been conjectured to be alternative in [67], with a proof suggested in [66].
However, the arguments given are not complete: They are based on a computation of the associator
A pc = Alexp(i& - z), exp(in - z), exp(i€ - z)) with phase-space variables z, together with a Fourier
representation f(z) = [ duf(§)exp(i - z) of smooth functions. The direct calculation of Ag ¢
shows that it is zero whenever two of its arguments are equal. If A¢, . were tri-linear in (§,7, ¢),
this fact would imply that it is antisymmetric, which would imply alternativity. However, A¢ ,, ¢ is
not tri-linear in (£, 7, ¢) but rather in (exp(i€ - z), exp(in - z), exp(i( - z)), and antisymmetry is not
implied. In fact, direct inspection of the result given in [66] shows that A¢ , ¢ is not antisymmetric
in (¢,m, (), even though it is zero whenever two of its arguments are equal.
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particular, for monopole star products, it is not difficult to find functions f(p1, ps, p3)

such that As(f, f, f) #0.

Lemma 4. Let x be a Weyl star product on C*(T*R?)[[\]] according to [6°] which
quantizes a twisted Poisson tensor (5.9), and let f(p1,p2,p3) be a function of the
fiber coordinates of T*R? such that Op,Op, f = 0 whenever i # j. The third coefficient

of the associator of x then obeys

4 .
A3(f, 1, f) _ §Z (3q1Hp2p3 + 8q2Hp3p1 + 0q3ﬂplp2) Z Hpa(l)pa@)apa(?))faf)a(l)faf’o(?)f’
o€Zs

(3.40)

summing over elements of the alternating group As = Z3 of cyclic permutations.

Proof. We have explicitly computed As(f, f, f) for arbitrary f using Cadabra

software [08,09]:

)
A o) = 5 (M0N0 O™ 0y £ O f Boda )

—TM o, TINO ONTTP? O f Op f Oni O f
—2 TIFMTINOGTTFC Op f OpiOn f D0Oo f
HITEMTINO G, TIPQ Oy, f O p f 000 f) . (3.41)

For a monopole star product, the bivector II is a function only of the position
coordinates ¢; via the magnetic field. Therefore, I and N must be position indices
for non-zero contributions in the first two terms of (3.41). These terms are then

HNO

identically zero because each contains a factor of 9, , which is zero for a bivector

of the form (3.9).

In the third term, only L is required to be a position index, while M, N, O,
P, and ) are momentum indices if f depends only on momenta. The components
IT“M then equal 6™ since they contain one position and one momentum index.

The remaining terms in (3.41) yield

%A3< L1 f) = —20Y9(9,1YC 0y f 0,05 f 000of + 0,1V 0y f 0,,0n f 000 f
+8Q3HUQ Oy f OpsOn f 0000 f )
+1IN0 (9,119 8, f OnOu f 00 f + 05,11V 0, f OOy f D00 f
+0, 11V 8, f OnOu f D000 f)
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We collect terms with the same factor of 9, 11’7 from derivatives of the bivector.

Such a contribution with 9, II’7 is of the form

1IN0 (=20, 119 9y f 0,0 f DD f + 0y 11V2 8, f OnDs f Dodof)
IV (9, f (=0, 1790, O f + 04, TIP?? N0, f + 0y 17> On Dy f)
_28P2f6111 HPQQ 8]01 aNf - 28;03 fathmQ apl aNf) aOan )

arranging by factors of first-order derivatives J,, f. By our assumptions on f, the

index N is determined in all terms for non-zero contributions and we obtain

(apl £ (=T17199, T2 f + TIP200, TP 92 f + T170), T2 32 f)
20, fIIP00, TI7*9 02, f — 20, 1100, T2 2, f) ) dodof

- Z (Op f (—T1PC0, TIO02 f + TIP290, I172C 02 f + 117°0,,117C 02, f)
O
—20,, fTIP1C0, 11720 82 [ — 20, fIIP*C0, T 02 f) 05 f)

setting O = @ in the last step, again by our assumptions on f. We now go through
all remaining choices of the only free index O. All contributions to terms containing

04, 1719 cancel out. We arrive at

28171 fI1P2Ps aql [1P2ps 8§2 faig f— 28172 fIIP1Ps aq1 [1P2Ps a; f@ig f— 23p3 fIIPrP2 aql [1PsP2 851 f@i f
= 20, PP Z Hpa(l)pff(z)apa(s) f@ig(l)fﬁim)f.

oEZ3

Bringing back contributions with the remaining 9,,11/7, we have (3.40). O

For specific choices of f obeying the condition stated in the Lemma, we can
compute As(f, f, f) more explicitly. The first parenthesis in (3.40) is half the
Jacobiator of the bivector, which is non-zero for a monopole star product. The sum

over cyclic permutations depends on the specific f.

Example: Let 1I be a bivector as stated in the conditions on a monopole star

product.
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1. Let f = |p|* = p] + p3 + p3. We have

N ey, f02 fO2 | f =8 MPPp, )

oE€Zs3 0€Z3

With a bivector as implied by (3.5),
2 12 12y _ 92 :
As(lpl%, Il ) = 5 i(p - B) divB . (3.42)

For a monopole star product, divB # 0, and p - B is generically non-zero
for a charged particle with momentum p moving in the magnetic field B.
Therefore, the a monopole star product obtained from a Weyl star product

cannot be alternative to third order in .

. Another example in which (3.40) can be used is f = ei®1P1 4 giozpz 4 cio’ps
for (aq, a9, a3) € R3, a family of bounded functions. The sum over cyclic

permutations then equals

Do (1)Po(2) 2 2 — in2n22
Z II 01,0(3) fﬁpa(l)fﬁpm)f laas0s

o€Zs

[[P1P2 [[P2P3 T[PsP1
( + +

el(P1+patps)
as a1 (%)

For a bivector as in (3.5), we have

Ag(eim+eip2+€ip3’6ip1+€ip2+6ip37€ip1 +6ip2+€ip3) (3‘43)
1 2 3
_ _Z_la2a2a2€i(a1p1+a2pz+a3p3) B_+B_+B_ divB .
3 1727 aq (6%) (0%

For any non-zero B, there is a triple (ay, as, a3) such that B'/a; + B?/ay +
B3 /as is not identically zero. Therefore, every magnetic field with non-zero
divergence gives rise to an f with Az(f, f, f) # 0.

The Lemma implies non-alternativity of monopole star products obtained from

a Weyl star product quantizing (3.9), but this already follows from Theorem 1.

Having explicit examples with As(f, f, f) # 0 implies further results.

A property weaker than alternativity is flexibility, for which, by definition, only
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anti-symmetry with respect to the first and third entry is required:

A(f,9:h) = =A(h,g, f) .- (3.44)

Flexibility is important for quantum mechanics because it is a necessary and

sufficient condition [70] for the commutator

[fogl=f*g—gxf (3.45)

to be a derivation of the Jordan product

fog=g(fxg+gxf). (3.46)

Heisenberg equations of motion

df _ [/, 4]
A 3.47
dt ih (347)
with a Hamiltonian H then obey a product rule of the form
d(fog) df dg

To second order in A, flexibility of the associator follows from (3.22) for any star
product with symmetric B,. However, as with alternativity, this fact does not
guarantee that flexibility is realized at higher orders.

Another condition weaker than alternativity is power-associativity: A power-
associative algebra is defined as an algebra A such that the subalgebra generated by
any single element a € A is associative. For any positive integer n, the n-th power
a” is then uniquely defined even though the algebra product may be non-associative.

For Weyl star products of monopole systems, we have

Theorem 2. A Weyl star product which quantizes (3.9) with divB # 0 cannot be

flexible or power associative.

Proof. Since there is an f such that As(f, f, f) # 0, the associator cannot be
antisymmetric in its first and last arguments. Moreover, we have f % (f x f) —
(fxf)*xf=As(f, f, )X*> + O(A\?) and the subalgebra generated by f cannot be

associative. O
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3.4 Conclusions

We have shown that, under rather weak conditions, star products that quantize
the phase space of a charged particle in the presence of a magnetic monopole
density cannot be alternative. More generally, we have provided obstructions
for a non-associative star product with symmetric By being alternative. By the
non-associative Gelfand—Naimark theorem [71], this result, together with the fact
that the algebra is unital, implies that there is no norm that would turn the
quantum algebra into a C*-algebra, even if the algebra can be restricted to bounded
functions; see (3.43). This version of our result strengthens the usual statement that
non-associative systems cannot be quantized in the standard way by representing
observables on a Hilbert space. One way to circumvent the use of Hilbert spaces in
associative systems is to take an algebraic view point and define quantum states
as positive linear functionals on the C*-algebra of bounded observables; see for
instance [15]. For non-associative systems of the kind studied here, this route must
be generalized because the star-product algebra cannot be turned into a C*-algebra.
One can still use positive linear functionals, but only on a x-algebra.
Non-alternativity rules out the use of octonions as realizations of observable
algebras of the relevant physical systems. Recently, in [72], octonions have been
used to realize the relations (3.5) and (3.7) for linear functions of the momentum
components. An extension to non-linear functions would encounter the same
obstructions found here for star products, and a purely octonionic construction

would no longer suffice.
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Chapter 4
Effective space-time models

4.1 Introduction

Several independent examples of modified gauge transformations have been found in
different models of canonical quantum gravity, using effective [73,74,75,76,77,78,79]
and operator calculations [80, 81,82, 83,84]. In classical canonical formulations,
space-time structure is encoded not in the usual form of general covariance of tensors,
but by the equivalent version of gauge covariance under hypersurface deformations
in space-time [35, 86]. The new structures found as a direct consequence of key
ingredients of the quantization process using holonomies instead of connections
therefore confirm a general expectation: Quantum geometry may lead to modified
space-time structures [37,88].

Although these modified gauge structures have been found within a variety of
models of loop quantum gravity and by virtue of different computational methods,
they all share some important properties. There is a phase-space function (3
modifying only the Poisson bracket of two smeared Hamiltonian constraints (or
normal deformations of hypersurfaces). Denoting the constraints by H[N] with the
lapse function N that specifies the magnitude of the normal deformation at every

point on a spatial hypersurface, we have
[HIN), H[M]} = —Ho[5q™(NO,M — MaN)]. (4.1)

On the right-hand side, H, are the components of the diffeomorphism constraint

(generating tangential deformations) and ¢ is the inverse metric on a spatial
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hypersurface. Brackets involving H,[M?] retain the classical form

{Ha[Mf]va[Mé)]} = _Hc[cMlec] (42>
{H[N]7Ha[Ma]} = _H[EMN] (43>

There have been attempts to modify the brackets involving not only the Hamiltonian
constraint as in (4.1) but also the diffeomorphism constraint [89,90]. Other such
examples are given by fractional space-time models, in which the modification
functions can, however, be absorbed [91]. A discrete version of the brackets has
been defined in [92], which differs from (4.2) and (4.3). In the present chapter, we
focus on continuum effective theories in which space (but not necessarily space-time)
has the classical structure. Accordingly, (4.2) will not be modified. We will derive
a new form of brackets in which (4.3) is modified, but (4.2) is not. Nevertheless,
our main focus will be on brackets with modifications as in (4.1).

The correction function § # 1 depends on the phase-space variables, and
transforms as a spatial scalar. In the classical case, the hypersurface-deformation
brackets are (on shell) related to the Lie algebra of space-time diffeomorphims,
reflecting the coordinate invariance of general relativity. Brackets with G # 1
modify general covariance of the effective theory, but in such a way that no gauge
transformations are violated. (Obeying the condition of anomaly freedom, gauge
transformations are allowed to be modified by quantum corrections but not to be
destroyed.)

With modified brackets, the effective metric g, appearing in (4.1) cannot be
part of a space-time line element of classical form: Modified gauge transformations
of qup, generated by H|e] and H,[e*], do not complement coordinate transformations

of dz* to form an invariant space-time line element
ds? = —N?dt* 4 qup(da® + N°dt)(dzb + Nbdt) (4.4)

in canonical form. Nevertheless, there may be field redefinitions of different kinds
which allow one to find a classical space-time picture for some function (3 of the
phase-space variables. For instance, in some cases (5 can be absorbed in the lapse
function by N’ := \/W N, with classical brackets in terms of N’. Or, a combination
of the original spatial metric and extrinsic curvature could determine the spatial

geometry of an effective space-time of classical type. The question has been
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investigated in certain spherically symmetric models in [93], with some encouraging
results: Gauge transformations of the original canonical fields of the effective
theory (including g,;) are deformed, but by applying canonical transformations it is
possible, in some cases, to recover the classical hypersurface-deformation brackets
and hence to restore general covariance. Specifically, a canonical transformation
with this effect has been found in [93] when 3 depends only on metric components.
Absorbing 3 in ¢® then provides a simple canonical transformation. If 3 depends
on the momentum (extrinsic curvature) as well, it is more difficult to see whether
it can be removed from the brackets.

In this chapter, we analyze the same question from a different perspective
which is insensitive to the availability of canonical transformations. Our discussion
makes use of the general setting of Lie algebroids, of which a suitable fiber-bundle
formulation of (4.1) provides an example [91]. More generally, the language of Lie
algebroids is a well-defined mathematical structure that allows one to formalize
theories with structure functions. Our results are independent of details of any
specific form of quantum gravity in the sense that we will not use equations or
methods characteristic of a specific approach. Instead, we use the general form
(4.1) of the modified bracket of two normal deformations as a guiding principle and
study possible Lie-algebroid realizations. Modifications of the classical brackets
can be understood as a generic form of quantum corrections, introduced by some
effective quantum gravity theory.

We will be able to classify different inequivalent space-time structures corre-
sponding to modified brackets of the type (4.1) that cannot be related by morphisms.
While there appears to be an arbitrary modification function [ in (4.1) with vir-
tually unrestricted quantum corrections, only sgnf remains as the single choice
left after equivalence classes of brackets up to morphisms are considered. This
result helps to clarify the implications of modified brackets (4.1) for space-time
structures. In particular, they can be related to the classical brackets by Lie
algebroid morphisms as long as § has a definite sign and is non-zero. The existence
of effective Riemannian space-time structures is confirmed in this case, which so far
has only been assumed, for instance in [95,96,97,98]. Such modifications therefore
do not imply radical changes of the space-time structure, even though they may
still lead to a modified dynamics on and of the effective space-time. If § does not

have a fixed sign, a new version of quantum space-time is obtained which exhibits
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signature change as a new physical effect.

In some cases, concrete morphisms can be formulated with simple interpretations
of their implications on canonical variables and the dynamics. For instance, with
spatially constant 3 # 1, as in cosmological models with first-order perturbative
inhomogeneity, a suitable morphism is obtained by changing the usual conventions
in setting up the canonical formulation based on space-time foliations into spatial
slices. Somewhat akin to absorbing 3 in the lapse function, one can make use
of a generalized canonical formulation which is a hybrid version of, on one side,
Dirac’s [85] and the ADM [99] formulation with variables adapted to directions
normal and tangent to a spatial hypersurface, and on the other Rosenfeld’s [101]
earlier derivation of canonical gravity without reference to a foliation or preferred
directions. We will use a foliation, but do not require the timelike vector n* to
be normalized or orthogonal to the spatial tangent plane. The normalization
function n*n,, can be related to 3. Therefore, non-standard normalizations present
a more-general way of relating modified brackets to classical space-time structures
than absorbing ( in the lapse function would do. The angles between n* and
the spatial tangent plane give rise to new modifications of the brackets not yet
encountered elsewhere. At the same time, we make use of a concise derivation of the
hypersurface-deformation brackets and use the example to introduce Lie algebroids
in this context. Morphisms of Lie algebroids will lead to further transformations
that can be used to relate modified brackets of different types, still with the
classical signature as the only parameter that characterizes inequivalent space-time
structures of brackets of the form (4.1) via sgn/. This result allows us to draw

rather general conclusions about implications of the modified dynamics according
to (4.1).

4.2 Canonical gravity and Lie algebroids

In order to set up the canonical formalism, we assume, as usual, space-time M
to be globally hyperbolic and introduce a foliation by constant-level surfaces of a
parameter t € R, such that the hypersurfaces are all spacelike. Each spatial slice is
homeomorphic to a 3-manifold o, on which we may choose local coordinates x,
a €{1,2,3}. We realize o as a spatial hypersurface ¥; := X;(0) at constant ¢ by
an embedding X: R x 0 < M with (¢t,z) — X(t,z) = Xi(x).
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We choose a foliation X; = X (t,-) and define a time-evolution vector field 7# by
7(X) == 0. X"(t,x)0, . (4.5)

This vector field is, in general, not normal to ¥;. Following ADM [99], it is

convenient to introduce vector fields tangential to ¥, given by
Xo(X) =0, X"(t,2)0, , (4.6)
and to define a time-like vector field normal to the time slice ¥; by
Gun' X, =0 | gun'n"=-1. (4.7)

If we further require that n* point toward the future, that is, n*9,t > 0, it is
uniquely defined. By introducing the lapse function N(X) and the shift vector
field M*(X) the time-evolution vector field 7# is decomposed into its components
normal and tangential to 3;:

T™(X) = N(X)n*(X) + NY(X)X*(X). (4.8)
Since the choice of the embedding X is arbitrary, the components of lapse and shift
are free functions as long as they give rise to a timelike 7#.

So far, we have used only well-known and basic ingredients of the canonical
formulation. (See [102] for further details.) The decomposition (4.8) and the
normalization condition of n# in (4.7) play a key role in our considerations of
modified space-time structures. In order to exhibit the full freedom of the formalism,
we will not follow the common convention of normalizing n* by g, n*n” = —1. We
may fix any other negative constant, or even a phase-space function, for Lorentzian
space-time signature, or a positive constant (or phase-space function) for Euclidean
signature. We may therefore require that g,,n*n” = €3, where ¢ = —1 in the
Lorentzian case and € = +1 in the Euclidean case. If the signature is constant,
B > 0 is a positive phase-space function. But in anticipation of applying these
methods to some of the models found in the context of loop quantum gravity, we
allow for 3 to change its sign, so that sgn =: €g may not be constant. The overall

signature is then locally given by the product eeg.
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In order to compare dynamical results obtained with different normalizations,

we should demand that 7#(X) remain the same and be independent of 3:

H(X) = ﬁN(X)n“(X) + MO(X)XP(X) = Np(X)n(X) + M(X)X2(X)
(4.9)

where now n*/ \/m is normalized to £1 = eeg. This condition ensures that
equations of motion for evolution along 7# exist independently of the canonical
decomposition in terms of hypersurfaces. At this stage, we see the simple result that
the lapse function has to absorb any non-standard normalization factor 3, but later
on we will be able to draw more benefit from these simple-looking considerations.
The only requirement for (4.9) to be used is that n* and M* = M*X* form a basis
of the tangent space to M at each point. We may therefore drop normalization

conditions as well as orthogonality of n* and M*.

4.2.1 A concise derivation of the hypersurface-deformation brack-

ets

We derive the brackets of hypersurface deformations with non-standard normaliza-
tion by repurposing a derivation of the usual result given in [94]. The main aim of
this chapter was to analyze the Lie-algebroid structure of the brackets, which we
will describe in the following subsection. Some part of the mathematical analysis
of [94] amounts to a brief derivation of the brackets which we formulate here in
abstract index notation and, at the same time, use it to derive the brackets with
non-standard normalization. As a further generalization, we will also assume a
non-orthogonality relation between n* and X*. More traditional derivations using
ADM-style evolution equations or geometrodynamics are given in App. C for the
case of a non-unit normal n*, with equivalent results.

The explicit derivation of hypersurface deformations depends on choices of
coordinates or embedding functions, but the brackets must be covariant under
changes of these auxiliary structures. As in [94], one can exploit the coordinate
freedom by working with embeddings such that the space-time metric, from which
the spatial metric g, in the structure functions is induced, is Gaussian with respect
to the hypersurfaces:

ds® = edt® + gupdr®da’. (4.10)
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In this way, one fixes a representative in each equivalence class of hypersurface
embeddings. The remaining coordinate freedom is given by diffeomorphisms gener-
ated by so-called g-Gaussian vector fields v* which preserve the Gaussian form of

the metric and therefore satisfy
' LyGu =0 (4.11)

with some vector field n* normal to ¢ = constant, but not necessarily normalized.
This condition ensures that an infinitesimal diffeomorphism along v#*, changing
Y 10 Gy, = G + Loguw, respects the relations n*ng,, = n*n”g,, = € and
nfw”g,, = 0 if n*w"g,, = 0 of the Gaussian system. Because they generate
diffeomorphisms preserving the Gaussian form of the metric, g-Gaussian vector
fields form a subalgebra of the Lie algebra of all vector fields with bracket the usual
Lie bracket. As found in [94], one can derive the hypersurface-deformation brackets
by rewriting the Lie bracket using properties of vector fields v* satisfying (4.11).
Some restriction on the form of vector fields is necessary because the hypersurface
deformations as gauge transformations are known to be equal to infinitesimal space-
time diffeomorphisms only on-shell [36], that is, when some of the generators H
and H, and the equations of motion they generate are set to zero as phase-space
functions. The restriction is implemented here by using g-Gaussian vector fields,
which turn out to have Lie brackets directly related to the hypersurface-deformation
brackets. Such a restriction cannot be chosen arbitrarily but must fulfill three
conditions: (i) The vector fields considered must provide a unique extension from
spatial (lapse) functions N and spatial (shift) vector fields M to a space-time
vector field v* which equals Nn* + M*X* on the spatial slice. If this condition is
fulfilled, it is possible to compute space-time Lie brackets. (ii) The vector fields
considered must form a subalgebra of the Lie algebra of all space-time vector
fields. And (iii), the Lie bracket of space-time extensions of two pairs (N7, M{) and
(N2, M§) should not depend on the extensions but only on spatial derivatives of N;
and M in addition to the functions and vector fields themselves. With conditions
(ii) and (iii) fulfilled, it is then possible to interpret the Lie bracket of extensions of
two pairs (N1, M{) and (Ny, M) as the unique extension of a third pair (N3, M$),
and to define a new bracket [(Ny, M), (Na, M)] := (N3, M$). All three conditions

can be shown to be true for g-Gaussian vector fields [91], recovered as a special case
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(8 =1 and a® = 0) of the following calculations. To the best of our knowledge, it
is not known whether g-Gaussian vector fields are the only choice fulfilling all three
conditions, but having one such choice is sufficient for a derivation of the brackets.

We first derive properties (i), (ii) and (iii), found in [91], using abstract index

notation. We write (4.11) as
0 =n"Lyg, = n"'v?0,9,, + 1" 9,,0,0° + n*'g,,0,0" . (4.12)

The first two terms can be expressed by the Lie bracket of n* and v” if we write
n*vP0,9,, = v°0,n, — guv’0,n*. The last term in n*L,g,, can be replaced by a
total derivative using n*g,,0,v” = 0,(n*v"g,,) — v?0,n,. In addition to the Lie
bracket and the total derivative, there remain two extra terms related to the 2-form
dn:

0=n"Lygu = [n,v]" g, + 0,(n"0°g,,) +v°(dn),, . (4.13)

If n* is hypersurface orthogonal, by the Frobenius theorem we have dn =n A w
with some 1-form w which can, without loss of generality, be assumed to be
orthogonal to n*. For n¥n, = € and the metric in Gaussian form, w = 0 because
n = edt is closed. In this case, n* is hypersurface orthogonal in a neighborhood of
the initial slice by construction of the Gaussian system. If n*n, = €3, the analog of
the Gaussian system has n* hypersurface orthogonal only if 3 is spatially constant.
In order to allow for spatially non-constant 3, we use a Gaussian system constructed
from a unit normal, which would be n* := n#/ \/W it n#n, = €B. This rescaled
normal is extended to a closed 1-form in its Gaussian system. We can compute
dn = n A w from the equation da = 0, resulting in w = —367(dS — €| 3|72 pn).
The second term, with 3 = 93 /Ot, is chosen such that n*w, = 0.

We include one further generalization by relaxing the usual orthogonality relation
to gun* X! = a, with fixed phase-space functions «, allowed to be non-zero. The
components of o, are related to the direction cosines (hyperbolicus) of n* with
respect to the spatial basis X?. The new condition can equivalently be written
as an orthogonality relation g,,n*X! = 0 with a redefined n* := n* — a*X*.
With the non-standard normalization of n*, the redefined vector satisfies n’“n; =
€0 — a,a” =: ey. In the Euclidean case, e = 1, we must have v > 0 and therefore
a’a, < (3. The same condition ensures that n* and X! form a basis because the

angle between the direction n* and the spatial tangent plane spanned by X* is less
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than ninety degrees. In the Lorentzian case, a®«, is unrestricted.

We construct a Gaussian system as before. The hypersurface orthogonal vector
is now given by 2’ := n'*/\/|3 — eata,| = n'*/\/|y]. Computing dn’ = n' A w
from the equation dn’ = 0 now results in w = —%7*1(d7 — e|y|7Y24n). With the
redefined normal, (4.13) takes the form

0=n"Lyguw = [0, 0]" g + 0,(n"v’g,,) + v°(dn),., . (4.14)

We use n/'* because we need a normal vector for the condition of a g-Gaussian
vector field. However, we may decompose a g-Gaussian vector field v* according to
our original basis (n*, X?) or according to the redefined basis using n'* instead of
nt:

v = Nn# + M" = Nn* + M (4.15)

with M#* = M*X* and M™" = M* + Na®XF, or M'* = M® 4+ Na®. The latter
choice simplifies some derivations and is therefore employed below, but for full
generality we will transform the final result to a decomposition with respect to
(n, X2).

We will need the following ingredients in order to rewrite (4.14) with a de-
composed vector field v*. In contrast to the standard case, n’“nL = ¢y is not a
constant because a® and 5 may depend on space and time via phase-space variables.

Therefore, for spatial M* (or M'*), [n/, M]* has a normal component given by

! In! . MY 1
% = e—n’“ (n,n'*V ,M" — nl, M"V ,n"")
K v
1
= ——n"(M"n'"*V n., + n, MV n")
ey
1
- —an"‘ (2M¥n'?V 0, +n" MP(dn’) )

1
_ _an’“ <2M” Y[ I’V\ﬁ’y)+2“'”M””fpw”})

1
= —n'"n"n,Mw, =n"M"w, (4.16)
€y

using M*7;, = 0 and the geodesic property 7'°V 7, = 0 of the normal in a Gaussian
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system. With
v (dn'),, = 2(Nn' + M"?)nj,w,) = eyNw, — M"Pw,n,,, (4.17)
we can write (4.14) as
0=n"g,n"0,N + [n', M'"g,, + 0,(Nn"*n'?g,,) + eyNw, — M"w,n,, (4.18)

or
0=[n,M'|"+n"*"n?0,N + ed"(yN) + eyNw" — M w,n". (4.19)

The equation can now be split into components parallel and orthogonal to n’*:

The normal component implies

IN
n,papN = —577?,/ Y (420)

(the contribution from dn’ cancelling out with the normal contribution from [n/, M’])

while the spatial component gives

[0/, M')* = &[0/, M']* = —eq®0(vN) — eyNw® = —e(grad,(YN))* — eyNw* .
(4.21)

The full space-time commutator is
[n', M')" = ¢t [n, M'|* + M"Pw,n™", (4.22)

combining (4.21) with (4.16).

With these relations, the hypersurface-deformation brackets follow immediately
from the Lie brackets of g-Gaussian vector fields. First, in the Gaussian system,
(4.20) and (4.22) provide first-order partial differential equations for N and M*
or M'" to be extended into a neighborhood of the initial slice. (Importantly, all
M*"-dependent terms cancel out in (4.20) even with non-standard normalization.
The equation for N is therefore decoupled from the equation for M*.) We can then

compute space-time Lie brackets of two g-Gaussian vector fields

[’Ul, UQ] = [Nln' + M{, Ngn, + Mé]
= [Nln,7 NQn/] + [Nlnlv Mé] + [M{’ Nin] + [M{7 Mé]
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= (Nlﬁn/Ng — Nzﬁn/Nl)TLl + (ﬁM{NQ — EMéNl)n’ + Nl[n’, Mé] — Ng[n/, M{] + [M{, Mé]

The first term, N1L, Ny — NyL, Ny, is zero even with the new contributions
in (4.20) for non-constant 7. Similarly, the wterm in (4.21) does not con-
tribute to Ny[n', Mj}] — Ny[n', M{]. However, the normal contribution M""w,n* =

—%fy‘ln’“]\/[ 70,7 in (4.22) does not cancel out and provides a new normal term in

1
[v1, 2] = (/:'M{NQ — Ly N1 — 2 (N1 Ly — NzﬁMﬂ)) n’

—eNygrad, (Nyy) + eNograd, (Nvy) + [M], M,)]

— <= (CuVPIN) — La V)

—ey(Ngrad, Ny — Nograd, Ny) + [M7, My]. (4.24)

The last line can now be transformed from n* = n# — o* and M'* = M* + No*
to n* and M*. Inserting the expressions for the primed vectors leads to several

extra terms, most of which cancel out. However, two new contributions remain:

1
V1, U2 == ——— EMl N2 — £M2 N1 NlﬁaNQ — NQEQNl n 4.25
o1, ) ( m( (VIIN) = Lo (VRN ) + ) (4.25)

—ey(Nigrad, Ny — Nograd, N1) — /|| <N1£M2

(0% (67

_NQ;CMI— Ml,Mg .
v m) AR

By extracting terms parallel to n or the tangent plane, we write this Lie bracket as

bracket relationships between pairs (N, M®):

[(07 Mf)? (07 MS)] = (07 [Mh MZ]C) (426)
[(N,0), (0, M) = (=7 V2La (A 2N), = PN Lag (97 20%)) - (4.27)
[(N1,0), (N2, 0)] = (N1LoN2 — NoLGNy, —ey(Nigradi N, — NagradiNi().28)

The following special cases are of interest:

o If a* # 0, there is a new class of modified brackets which have not been
derived explicitly in models of loop quantum gravity. New features are a
transversal deformation (along a non-normal n*) contributing to the bracket

of two transversal deformations, and a spatial diffeomorphism contributing to
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the bracket of a transversal deformation and a spatial diffeomorphism. If this
example is realized by quantum-gravity effects, it would require the existence

of a preferred spatial direction a“.

If a® = 0, the bracket of two normal deformations is a spatial diffeomorphism,
as in the classical version, but with a multiplicative correction function v = f3.
One can obtain the modified brackets (4.28) by replacing N; with \/WNZ» and
n' with n'/ \/m in the standard brackets, in accordance with the rescaling
transformations of the normal keeping Nn' invariant for (4.9) to be preserved.
However, our calculation shows more than this because it ensures that the
three conditions required for a meaningful relation between hypersurface-
deformation brackets and space-time Lie brackets are still satisfied for g-

Gaussian vector fields with a non-standard normal.

If a* = 0 and v = 3 is spatially constant, all derivatives of v cancel out
and the bracket of a normal deformation and a spatial diffeomorphism is
unmodified. A time-dependent = therefore leads only to a multiplicative
modification of the standard brackets, and it appears only in the bracket of
two normal deformations. This is the example (4.1) found in models of loop

quantum cosmology with first-order perturbative inhomogeneity.

4.2.2 Lie algebroids

The hypersurface-deformation generators do not form a Lie algebra, owing to the

appearance of structure functions. Structure functions can be elegantly described

by the notion of Lie algebroids, which may be motivated as follows: Assume that

we have a finite number of constraints C;, I = 1,...,n, on a Poisson manifold

B, which satisfy an algebra {C,C;} = ¢ (z)Cy with structure functions ¢ (z)

depending on x € B. We can formally rewrite brackets with structure functions

in terms of structure constants by defining an extended system of infinitely many

constraints

Cr o, Cry = {CI, CJ} = CﬁCK )
CH[J = {CH, C[J} == ({CH, Cﬁ} + Cﬁ]ch)CK s R (429)
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The brackets {C},C;} = Cry, {Cy,Cr;} = Cyyy, ... of the extended system then
have structure constants.

These constraints span a certain linear subspace of the space I'(A) of sections
a = a(z)!C; of a vector bundle A over the base manifold B (phase space) with
fiber 77(z) ~ R™ 3 {a(x)!, ..., a(z)"}. The sections of this bundle form a Lie
algebra by taking Poisson brackets [ay, as] = {ay(2)! Cr, as(2)?Cy}. Moreover, we
can define a linear map p: I'(A) — I'(TB),a = of(2)C; — {a(z)'Cy, -} which

appears in a Leibniz rule

[0, 98] = {a(2)'Cr,g(2)B(x)"Cr} = g(x){a(2)'Cr, B(2) " Cr} + {a(2)' Cr, g() }B(2)" C

= g(@){a(2)'Cr, B(x)’Cs} + (pla(x) Cr)g(2)) Blx)'C;y
= gle, Bl + (p()9)53

and p is a homomorphism of Lie algebras:

p([Oz, ﬁ]) = {{Q(I)IC[, ﬁ(x)JCJ}v }
= {a(@)'Cr, {B(x)’Cy,-}} = {B(2)’Cy, {a(x)' C1,-}}
= p(a)p(B) — p(B)p(a) = [p(ar), p(B)] (4.31)

using the Jacobi identity. The Lie bracket on sections together with a homomor-

phism p characterize A as a Lie algebroid [103].

Definition 2. A Lie algebroid is a vector bundle A over a smooth base manifold
B together with a Lie bracket [-,-]a on the set I'(A) of sections of A and a bundle
map p: T'(A) — T(T'B), called the anchor, provided that

e p: (I'(A),[-,-]a) = (I(T'B),[,+]) is a homomorphism of Lie algebras, that is

p([§;ml4) = [p(&), p()] ,

where [-, -] is the commutator of vector fields in I'(T'B).

e Forany &, neT(A) and for any f € C(B) the Leibniz identity

€, fnla= fI&mla+ (p(E)f)n
holds.
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If the base manifold B is a point, the Lie algebroid is a Lie algebra. Another
example for a Lie algebroid is the tangent bundle T'B of a manifold B with
p: I'(TB) — I'(T'B) the identity map and the Lie bracket of vector fields as the
bracket on sections. The hypersurface-deformation brackets have been shown in [94]
to be captured by a certain Lie algebroid more specific than the construction
based on (4.29). This notion can therefore provide useful methods in an analysis
of different versions of hypersurface deformations. In order to identify classes of
equivalent Lie algebroids, one may generalize the notion of a Lie algebra morphism

to the Lie algebroid case.

Definition 3. A base-preserving morphism between Lie algebroids (A, |-, -]a,p)
and (A’ [-,-]ar, ') is a bundle map ®: A — A’ over idg: B — B’ = B such that
& induces a Lie algebra homomorphism ®: (I'(A),[-,]a) — (I'(A"), [, ]a) and
satisfies p' o & = p.

If the induced base map ¢ is a diffeomorphism, the definition can still be used.
In such cases, which will be of interest to us, the bundle map induces a map on
sections via ®(&)(y) = &(dy ' (y)) for € € T(A) and y € B'. For completeness, we
mention that a Lie algebroid morphism which does not preserve the base manifold

can be defined as follows; see for instance [104]:

Definition 4. A Lie algebroid morphism from A — B to A’ — B’ is a bundle map
¢: A" — A* with induced base map ¢o: B' — B, such that:

1. The induced map ®: T'(A) — T'(A"), defined by ®(&)(y) = ¢*E(Po(y)) for
y € B’, preserves the Lie bracket on sections: [®(&), ®(n)] = ®([£,n]) for all
&nel(A).

2. We have p = ¢g, 0 p' 0 .

We will not use general morphisms in this thesis, but note that an example of
a morphism as in the preceding definition could be used to relate the space-time
structures underlying general relativity and higher-curvature actions, respectively.
The latter are higher-derivative theories and have additional canonical degrees of
freedom compared with general relativity; therefore, the base manifolds are not
diffeomorphic. Nevertheless, the hypersurface-deformation brackets are the same in

both settings [105] and could be used to construct a Lie algebroid morphism.
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From now on, we focus on the specific example of the algebroid underlying

general relativity. We quote useful definitions and one central result from [9]:

A connected Lorentzian manifold (or space-time) (M, g) is called X-adapted if
it admits an embedding of 3 as a spacelike hypersurface. Such an embedding
is called a Y-space in M, and a pair consisting of a space-time and a Y-space
in it is called a Y-space-time. On every Y-space we have an induced, or spatial,

metric ¢ = i*g using the embedding i: (3, ¢q) — (M, g).

» Coordinate independence leads to the concept of a X-universe, an equivalence
class [i] of ¥-space-times where i: (3, q) — (M, g) and 7': (X,q) — (M',¢)
are equivalent if there is an isometry ¥: (M, g) — (M’, ¢’) which preserves
the coorientation of ¥ and satisfies ¥ o ¢ = i’. The set of all Y-universes is
denoted by UX. In order to confirm that this definition is consistent, we pull

back ¢’ along 7" and obtain the same result as before applying the isometry:
(i)' g = (Woi)'g =i (Vy)=i"g=q

o So far, the relations between a Cauchy hypersurface ¥ and space-time M
have been formalized. The next step is to look at the evolutions of one time
slice into another time slice. A time slice is defined to be an embedding i; for a
fixed time parameter ¢ = constant within a 1-parameter family. Different time
slices are related by X-evolutions, equivalence classes [i1, 7o of pairs (i,1dg) of
Y-spaces in the same space-time, where a pair (i1,49) in M is equivalent to
(,1y) in M’ if there is a single isometry W: M — M’ which is consistent
with the coorientations of time slices and which satisfies both ¥ 04 = i} and
VU oig = ij. The set of all 3-evolutions is denoted by £X.

The set of Y-evolutions, €Y, forms a Lie groupoid [94] with elements in U,
source map $([i1,%0]) = [io] and target map t([i1, ip]) = [¢1], multiplication given by
li2,71][11,90] = [i2, 0] and inversion by [iy,i9] ™' = [ig, 71]. The definition therefore
gives rise to an evolution picture in terms of groupoid multiplication. The Lie
algebroid AEY belonging to the Lie groupoid £ provides the link between this

formulation and the infinitesimal one used for instance in [36]. According to [94],

Proposition 1. The Lie algebroid AEY. of X is isomorphic as a vector bundle to
the trivial bundle UE x (I'(TE) & C*°(X)) over the base manifold UX.
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Proposition 1 tells us that infinitesimal evolutions of an equivalence class in
UY are described by (shift) vector fields in I'(TY) and (lapse) C'*°-functions on .
The base manifold of the Lie algebroid is the space of equivalence classes of spatial
embeddings. Structure functions of the classical hypersurface-deformation brackets
depend on the spatial metric, which in turn depends only on the equivalence class
of embeddings ¥ <— M for a given space-time metric. Similarly, extrinsic curvature
on Y depends on the embedding in (M, g), but it is not invariant under space-time
isometries fixing (X, ¢). Since the modification function  may depend on all phase-
space variables, we should refine the equivalence classes to those transformations
that keep both ¢,, and K4 fixed on ¥. However, if the hypersurface-deformation
brackets are modified, it is not clear whether a space-time metric structure exists
which can induce a spatial metric. It is then more appropriate to formulate the Lie
algebroid directly over a base manifold of spatial metrics and extrinsic-curvature
tensors on X (or the classical phase space). In fact, [91] indicates the way to such a
formulation using Gaussian representatives.

For an explicit construction of Lie algebroid brackets and the anchor, [94] chooses
as a representative for a X-universe a slicing which is locally of Gaussian form, as in
the derivation of Sec. 4.2.1. A representative of a class in U3 can then be fixed by
specifying the induced metric ¢ instead of the embedding. The tangent space of the
resulting base manifold of spatial metrics is, at a point ¢, given by T,UY = S*T*Y,
the space of symmetric tensors identified with Lie derivatives of the space-time
metric by g-Gaussian vector fields v* = Nn#+ M*: Since such vector fields preserve
the Gaussian form, £,¢g is equivalent to a change d,q := Ly;q + N¢ of just the
spatial metric, where ¢ = L,,¢ = 2K is proportional to the extrinsic-curvature
tensor. The latter changes by 0,K = Ly K + NK(q, K) where K = L£,K is a
function of g4, and K. via the field equations. (The field equations had been
bypassed on [941] by working with equivalence classes of entire neighborhood of
embeddings of ¥ in M.) Notice that the anchor p depends on the field equations
of the theory, while the brackets do not.

The anchor map of the Lie algebroid with the gravitational phase space as
base manifold is given by (N, M) — (dnn+mq, Onn+m K). This base manifold and
anchor have been extended to the space of induced metrics and extrinsic-curvature
tensors, which is necessary if one works with modified brackets where 3 depends

on ¢, and K. The same calculations as in Sec. 4.2.1 imply that the Lie algebra
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of g-Gaussian vector fields v leads to a Lie-algebroid bracket
[(N1, My), (N2, Mo)] (4.32)

(if @ = 0) once the decomposition v* = Nn#* + M* is introduced.

4.3 Physics from hypersurface-deformation algebroids

Using the Lie-algebroid structure of hypersurface deformations, we can now look
at possible modified versions and their relations to the classical brackets. In some
cases, they turn out to be related by algebroid morphisms. We begin with a review

of existing examples for deformed brackets.

4.3.1 Modified brackets

The classical hypersurface-deformation brackets have been derived from the usual
space-time structure, using for instance infinitesimal space-time diffeomorphisms in
(4.24). They are independent of specific solutions to Einstein’s or modified field
equations as long as the theory is based on Riemannian geometry. For instance, the
same brackets are obtained for higher-curvature actions [105]. In several effective
models of loop quantum gravity, however, modified versions of the brackets have
been found, and it has not been clear what space-time structure or what effective
actions they may correspond to. In this subsection, we discuss several relevant
conceptual details of such models, leaving aside technical features.

Modified brackets have been derived canonically, by including possible quantum
corrections in the classical constraints and checking under which conditions they
still give rise to a closed set of Poisson brackets. Generically, quantum corrections
suggested by loop quantum gravity, based on real connection variables, could be
implemented consistently only when the brackets were modified as in (4.1). For
complex connections, the derivative structure of the Hamiltonian constraint is
different, in that there are no second-order derivatives of the triad unlike in real
formulations which have the generic pattern responsible for signature-change type

deformations [100]. At least in spherically symmetric models, it is then possible to
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have undeformed brackets even in the presence of holonomy modifications [107].
Such models are less restrictive than the full theory, and therefore it is not clear
whether the full brackets can be undeformed.

Two main classes of models in which deformed brackets have been derived are:
(i) cosmological perturbations [73,108] where, to linear order, (3 is a function only of
time (via the background spatial metric and extrinsic curvature) and (ii) spherically
symmetric models [74,76,75,79] where 3 may also depend on the radial coordinate.
With so-called holonomy modifications of the classical dynamics,  depends on
K, as some kind of higher-curvature correction, but only in spatial terms so that
the modification is not necessarily space-time covariant. Detailed calculations have
shown that it is possible to have such spatial-curvature modifications and still
maintain closed brackets of correspondingly modified hypersurface-deformation
generators, but only when 3 and the way it appears in the equations of motion
are restricted. This is the condition of anomaly-freedom. Generically, whenever
0 depends on K, it changes sign at large curvature if quantum effects lead to
bounded curvature or densities (so-called bounce models). The same observations
have been found in cosmological and spherically symmetric models, with agreement
also in the specific functional form of 5 [109]. There are, however, obstructions in
models with local physical degrees of freedom [110,111], in which no anomaly-free
holonomy-modified versions have been found yet. (There are also obstructions in
some operator versions of spherically symmetric models that implement spatial
discreteness [112].)

In these two classes of models, two kinds of methods have been used to provide
complementary insights: Effective calculations proceed by computing Poisson
brackets of classical hypersurface-deformation generators modified by potential
quantum corrections, following a systematic canonical version of effective-action
techniques [7,9,113,57]. Operator methods compute commutators of quantized
generators. Also here, there is full agreement between results from these two different
methods: The operator calculations of [$4] in spherically symmetric models provide
the same restrictions on modifications and the function § as found by effective
methods [71]. It is not known how to implement cosmological perturbations at
the operator level, but there is a set of 2 + 1-dimensional models which provide
complementary insights. In [30], a modification function for holonomies has been

found that shows the same features related to the change of sign of 3; see also [111].
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Other operator calculations in 2 + 1-dimensional models [31, 82, 83] are only
partially off-shell so far, and therefore are not able to show the full brackets. In
particular, since they amount to factoring out spatial diffeomorphisms everywhere
except at a finite number of isolated points, they cannot exhibit holonomy modi-
fications which are spatially non-local. The interesting conclusion of 3 changing
sign therefore cannot yet be tested in this setting. Nevertheless, these models have
confirmed the presence of modified brackets for metric-dependent modifications.
For instance, Eq. (9.27) in [81] gives a definition of the right-hand side of the
operator equivalent of (4.1), which contains an inverse-metric operator with a factor
of (det ¢)~!/* modified by so-called inverse-triad corrections [115,116]. We note
that reading off modified brackets from commutators is not straightforward because
in addition to the commutator, an effective bracket contains information about
semiclassical states. Defining such states and computing expectation values in
them is notoriously difficult in background-independent quantum-gravity theories.
Nevertheless, it is clear that the naive classical limit of the equation just cited
shows a modification of the classical bracket. (In the naive classical limit, one
replaces operator factors in the quantized constraints and structure functions with
their expectation values in simple states, thus ignoring fluctuations and higher
moments. )

Some quantization schemes of constrained gravitational systems represent hyper-
surface deformations in an indirect way, after reformulating the classical constraints
so as to make them easier to quantize. In the present context, two examples
are relevant in which one can use reformulations in order to eliminate structure
functions from the constraint brackets. In [33], 2 + 1-dimensional gravity is quan-
tized by writing the bracket of two Hamiltonian constraints in the schematic form
{H[N], H[M]} = {D[N'%], D[M"]} where N’ and M" are shift vector fields related
to N and M, respectively. There are no structure functions on the right-hand
side, and it is possible to represent the bracket relation without modifications.
However, this result does not imply that the hypersurface-deformation brackets
are undeformed; in fact, one can check that {H[N], H[M]} written as a single
diffeomorphism constraint has quantum-corrected structure functions. (The vector
fields N’ and M’ mentioned above depend on the spatial metric and give rise to
new terms in structure functions when {D[N"], D[M"]} is expressed as a term

linear in D.)
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Similarly, spherically symmetric systems can be reformulated in a way that
partially Abelianizes the constraint algebra [117,118]. The Hamiltonian constraint is
here replaced by a linear combination C[L] := H[L'|4+ D[L"] with L’ and L" suitably
related to L such that {C[L4], C[Ls]} = 0. Structure functions are thus eliminated
from the constrained system (C, D), and the brackets can be represented without
quantum corrections in their coefficients. However, if one tries to find hypersurface-
deformation generators of quantum constraints with the correct classical limit, it
turns out that this is possible only if the hypersurface-deformation brackets are
deformed [110,111].

Since all these examples are obtained after quantizing generators of normal
deformations with respect to n* such that g, n*n” = € and the vector field n* is
not subject to quantum corrections, the deformed algebra refers to a unit normal
vector. With such modified brackets but standard normalization, the space-time
considerations of [36] no longer apply, and therefore a non-classical space-time
structure seems to be realized.

The new brackets, in general, cannot be viewed as describing deformations of
hypersurfaces in a Riemannian space-time with metric g,,. They do, however,
determine a well-defined canonical theory, in which one can, in principle, solve the
constraints and compute gauge-invariant observables, which is all that is needed
for physical predictions. Importantly, the brackets are still closed, which is the
challenging part of their constructions. If the brackets were not closed, the models
would be anomalous and inconsistent because gauge transformations would be
violated and results would depend on choices of coordinates.

Modified brackets can be formulated as a Lie algebroid over the space of pairs
of symmetric tensor fields (qup, Kq) with positive-definite gqp. The inverse of gqp, as
well as K, through possible modifications in 3, appear in the structure functions
of the constraint brackets, but they play the role only of phase-space functions
which need not have a geometrical interpretation as spatial metric and extrinsic
curvature associated with a slice 3 in space-time (M, g). Instead of defining these
spatial tensors in terms of the embedding functions X (z) and a space-time metric
Juv, the only option is to view gq and Ky, as independent phase-space degrees
of freedom on which the constraints and the structure functions depend. The
modification function must be covariant under transformations with brackets (4.2),

(4.3) and (4.1). In particular, since these brackets contain infinitesimal spatial
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diffeomorphisms as a subalgebra, # must be a spatial scalar. In the modified case,
the theory is not necessarily standard space-time covariant, but if the brackets close,
[ and the resulting theory are covariant under transformations generated by Poisson
brackets with the modified constraints. In the absence of a space-time picture,
the physical meaning of ¢,, and K4 is supplied by how they appear in canonical
observables. The latter have a known interpretation in the classical limit of § — 1
(low curvature), which is extended to non-classical regimes in an anomaly-free
deformed theory. Alternatively, one may employ field redefinitions such that a
relation of Lie algebroid elements to space-time metrics becomes possible. We

discuss two possible types in the following subsections.

4.3.2 Base transformations

In (4.1), B always appears in combination with the inverse of ¢**, whose com-
ponents can be used as coordinates on the base manifold along with the com-
ponents of K,. We can define a transformation of the base manifold by map-
ping (qap, Kea) to (18] qap, Kea) and extend it to a fiber map (qap, Kea, N, M€) —
(18] qap, Keqs N, M€). Here, the fiber coordinates N and M¢ as well as K4 are
unchanged, while g,, absorbs |3|. As long as § # 0, the base map is a diffeomor-
phism and a well-defined Lie algebroid morphism is obtained, eliminating |3| from
the brackets. The only parameter that cannot be absorbed is sgnf because g, is
required to be positive definite and, in particular, invertible.

We may then consider |3|7'qq as the spatial metric on a spatial slice in a

space-time with line element
ds? = eegN?dt? + | B qup(da® + M°dt)(dz® + MPdt) (4.33)

which generically cannot be obtained by a coordinate transformation from (4.4). (If
this were possible, one could eliminate the scale factor a = |3|~'/? of a Friedmann—
Robertson-Walker metric by a coordinate transformation.) The extrinsic curvature
of a t = constant slice in (4.33) is not equal to K,,. However, we can use the field
equations of the modified theory in order to relate Ky, to ¢up = L£,,qap. Using the
standard equation for extrinsic curvature computed from (4.33), a relationship
between K, and extrinsic curvature is obtained, which may not be the identity.

The new variables (]3| 'qu, Kcq) are no longer canonical coordinates on the

81



base manifold. Non-canonical base coordinates do not make a difference for a Lie
algebroid, which in general does not even have a Poisson structure on its base.
However, we need a Poisson structure on the base manifold in order to derive
the dynamics generated by the constraints, and for this it is useful to have a
canonical set of variables. Modifying the map (quy, Keq) — (|37 qap, Keq) such that
it becomes canonical is possible in some models [93], but may be complicated in
general.

While base transformations can map modified brackets to the classical version,
as long as (3 does not change sign, it is not easy to derive general, theory-independent
effects because the interpretation of K, depends on the dynamics, and there may
be no simple canonical sets of variables. It turns out that general aspects of
physical implications of the absorption are easier to discern if one uses morphisms
that originate from fiber maps. We will be able to do so by absorbing || in the
normalization condition, at least partially, allowing us to discuss possible physical

implications in general terms.

4.3.3 Change of normalization as algebroid morphism

One usually expects that the classical theory can be recovered when 3 approaches
one in some regime, such as low curvature. However, as already mentioned, the
classical theory can be described with a more general (3 if one uses non-standard
normalizations g,,n*n” = €3 of normal vectors to hypersurfaces. Even the classical
brackets can therefore be modified without changing the implied physics. Although
it is customary to assume the normal vector n* to be normalized to ¢ = 41,
depending on the signature, this choice is a mere convention and one may as well
introduce a different normalization. Thus, the requirement of having the correct
classical limit does not restrict § much, except that § should not be identically
Zero.

Since we know from Sec. 4.2.1 that, for spatially constant 3, the hypersurface-
deformation brackets belong to a Lie algebroid, irrespective of how the normal is
normalized, there are no further conditions on 3 from the Jacobi identity. As in
our explicit derivation of the brackets, we may obtain a deformation by using a
non-standard normalization of the normal vector field in classical general relativity.

We introduce a bundle map ¢ with fiber map (N, M®) — (y/|5|N, M*) and
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the identity as base map. It obeys

[@((N,0)), (N2, 0))] = [(+v/IBIN1,0), (v/]B| N2, 0)] = (0, | 3| M)
= B((0,[B| M) = ®([(N1,0), (N2,0)]5)  (4.34)

where M{, = ¢**(N19,No — N2, N;) and we have more specifically denoted the
modified bracket by [-,-]g while [, -] is the classical bracket. The anchor is preserved
because Nn# = /[3[#* with a non-standard normal #* such that g,,7#*n” = 1/|3).
If 3 is spatially constant, as in models of first-order cosmological perturbations,
modified brackets of sections in the Lie algebroid A are mapped to the classical
brackets on A’, with the required anchor because Nn# s (N/1/|B])n* = Nar.
With spatially dependent (3, the existence of a morphism is less clear because
{H[N], H,[M*]} is not modified in effective models of loop quantum gravity, while
it would change in (4.24). Fiber transformations are therefore less general than
base transformations in mapping modified brackets to the classical ones.

The fiber map just introduced is valid only if # has constant sign. When
0 is of indefinite sign, no (-absorbing morphism can exist: For opposite signs
of 3, the corresponding groupoids are inequivalent because their compositions
are concatenations of slices in Lorentzian space-time and 4-dimensional space of
Euclidean signature, respectively.

For spatially constant § > 0, we have a Lie algebroid morphism between
modified and unmodified brackets irrespective of where the deformation function (8
originates. In the modified case, we then have the classical space-time structure
after applying the morphism that absorbs [ in the normalization. But the classical
structure is obtained after a field redefinition: The space-time metric obtained from

gap is not of the standard canonical form but reads
ds? = eBN2dt* + qup(dz® + N°dt)(da® + N°dt) (4.35)

depending, in general, on ¢4, and K,,. This line element is conformally related to
(4.33).
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4.3.4 Equations of motion

When we interpret hypersurface deformations as actual moves in space-time, we
refer to time-evolution vector fields, and therefore to coordinate structures. Space-
time coordinates are not quantized in canonical quantum gravity, and therefore the
vector field should not receive quantum corrections if there is a classical manifold
picture for the effective theory. Deformed brackets with > 0 can sometimes be
mapped to the classical space-time structure in terms of hypersurface deformations,
but this does not necessarily lead to the same physics in terms of time evolution.

For a classical deformation with standard normalization, we use
T =90X"=0Nn"'+IN° XY (4.36)

in order to identify time deformations, while in the classical case with non-standard

normalization, we have
0XH" =0Ngnt + IN* XY (4.37)

with n# = \/\ﬂfz“. These vector fields must be the same: Changing the normaliza-
tion of the normal vector should not affect the relative position of two hypersurfaces
XH* and X* + §X* embedded in space-time. Thus, the two time-evolution vector
fields have to be the same, and it follows that the infinitesimal lapse function 0 /Ng

of the modified theory must be given by

SNs = Lo (4.38)

V18l

4.3.4.1 Classical theory with non-standard normalization

(Classically, we have standard hypersurface-deformation brackets with the normal-
ization condition g,,n*n” = e and we know, by [30], that second-order equations of
motion for the metric are the classical field equations of general relativity. However,
we may change the normalization condition to g,,n*n” = €|3|. The theory is still
classical, but the generator of normal deformations is rescaled. Accordingly, the
hypersurface-deformation brackets are modified. Since the physics is insensitive to
our choice of normalization, we should be able to recover Einstein’s field equations
from the new brackets.

In [86, 119] the Lie derivative with respect to the normal vector field plays an
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important role in the derivation of possible Hamiltonian constraints consistent with
the brackets and hence in the derivation of the equations of motion. One obtains
a partial differential equation which the Hamiltonian constraint as the generator
of normal deformations must obey [$0], and similarly there is a related partial
differential equation for the Lagrangian [119]. If the brackets are modified, the
differential equation is changed by a new coefficient 3. For instance, a metric-
dependent Lagrangian L[q.(x), K. (x)] consistent with constraints satisfying (4.1)

must satisfy the functional equation [37]

dL(x)
0qap(’)

OL(x)
Kab(.T)

OL(z)

Kap(2')+2(05)()

8Kab T
) (4.39)

where K, = %L’nqab is taken with a non-standard normal n*. The normal derivative
is subsequently written as a Lie derivative along 7# in order to arrive at equations
of motion with respect to the time-evolution vector field. For the classical equations
to result in this second case, in which the algebroid and the normalization are
modified in such a way that we are still dealing with the classical theory, the
function ( appearing in n* with non-standard normalization (and therefore in the
Lie derivative £,, as well) must cancel the function § appearing in the modified
brackets. We will make use of the presence of such cancellations in our discussion

of the modified case.

4.3.4.2 Modified theory

In models of loop quantum gravity, the hypersurface-deformation brackets are mod-
ified. However, since one sets up the models in the standard canonical formulation,
the normalization g,,n*n” = € is preserved. Since the normal does not depend on
phase-space variables and is not quantized, the normalization convention does not
change. And yet, the brackets are modified. This case is therefore different from
simply rescaling the normal vector. Nevertheless, one can understand the resulting
structures by rescaling the normal after new brackets have been obtained from
quantum effects. For spatially constant 3, a morphism to the classical brackets
is obtained. By applying the preceding arguments, we nevertheless expect non-
classical equations of motion: There is a function 3 from the modified brackets
appearing in the Hamiltonian constraint or Lagrangian regained from the brackets,

but now there is no compensating 3 in the normal Lie derivative in relation to the
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TH-derivative because it is defined with respect to the standard normal vector n*.

The dynamics is therefore modified, which is consistent with the results of several
detailed investigations of cosmological [120, 121,122 123 124, 78,125,126, 127] and
black-hole consequences [128,76,75,129] in terms of physical, coordinate-independent
effects. An open question has been whether one can introduce a modified effective
space-time metric which is generally covariant in the standard sense, or whether the
deformed algebroid modifies this symmetry and leads to an entirely new space-time
structure.

For spatially constant (3, we know that deformed brackets can be mapped to
classical brackets by a Lie-algebroid morphism so long as 3 does not change sign. In
terms of space-time geometries, rescaling the normal vector n# to n* = | |_1/ 2
then leads us back to the unmodified brackets. We already know that this algebroid
implements standard space-time covariance in the canonical formalism. We therefore
see, in qualitative agreement with [93], that a field redefinition allows us to restore
the undeformed brackets, and consequently general covariance in the classical form.
The equations of motion are nevertheless different from the classical ones because
we moved the  appearing in the modified brackets into the new normal vector,
which is not cancelled out when we finally switch to equations of motion with

respect to 7H.

4.4 Consequences

Hypersurface-deformation brackets can be modified by replacing the usual nor-
malization of the normal vector by g,,n*n” = €3, while the time-evolution vector
field must be the same for the modified as well as the unmodified theory. These
two facts raise the question of whether it is possible to distinguish between clas-
sical modifications from non-standard normalizations and modifications induced
by quantum gravity theories. We have answered this question in the affirmative
because equations of motion with respect to a fixed time-evolution vector field do

change.
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4.4.1 Field equations and matter couplings

If 8 has definite sign and is spatially constant, one can absorb the bracket mod-
ifications in a non-standard normalization. Gauge transformations generated by
the algebroid then amount to the standard symmetries of covariance. Accordingly,
regained constraints or Lagrangians must belong to the canonical theory of some
higher-curvature action, assuming that a local effective action exists.

We expect higher-curvature effective actions when a local derivative expansion
exists. In canonical terms, a non-local quantum effective action is obtained by
coupling expectation values to independent quantum moments [7,9], which formally
play the role of auxiliary fields in a non-local theory. Only when moments behave
adiabatically can they be eliminated from the equations of motion, and a local
effective action results. As shown in [!13], moments do not appear in structure
functions such as  here, but they lead to higher-order constraints which restrict
the moments as independent variables. For a local, higher-curvature version of the
effective theory one would have to solve for almost all the higher-order constraints,
which may not always be possible. A canonical effective theory still exists.

However, even if we have a standard higher-curvature effective action after a field
redefinition, there are additional effects from modified brackets. The Hamiltonian
constraint in such a system generates deformations along a non-standard normal
vector. Therefore, when equations of motion are written with respect to a time
coordinate, they belong to an effective action in which time derivatives are multiplied
by a factor of 3. The main consequence of modified algebroids is therefore a non-
classical propagation speed, which is in agreement with the specific results obtained
in [120, 121,77, 124,78, 108] for cosmological scalar and tensor modes. From (4.35),
we have the kinetic term ¢ /B — A¢ in an equation of motion for a scalar field on
the effective Riemannian space-time. This result is in agreement with a related one
derived in [87] for metric-dependent (3, following [119,87]. At the same time, we
have generalized the result of [37] by extending it to functions ( that may depend
on extrinsic curvature as in cases of interest for signature change.

One can turn these arguments around and try to generate explicit consistent
models with modified brackets by introducing non-standard normalizations in
different classical actions or constraints. More generally, we could relax the orthogo-

nality condition between n* and X! in order to find models with the new modified

87



brackets (4.27) and (4.28) with a® # 0. The recent analysis of [130] suggests that
such modified versions of constraints will have to be of higher than second order in

extrinsic curvature.

4.4.2 (Non-)existence of an effective Riemannian structure

Sometimes, the classical space-time structure is assumed in toy models of quantum
gravity, without checking closure of modified constraints. In fact, one should not
consider such constructions as models of quantum gravity but rather of quantum-
field theory on (modified) curved space-times because quantum gravity is usually
understood as including a derivation of non-classical space-time structures in
addition to a modified dynamics. For instance, some constructions [96,97, 98]
use perturbation equations on a modified background ¢, subject to evolution
equations with quantum corrections. Perturbations are gauge-fixed or combined
into gauge-invariant expressions before quantization, and therefore one assumes
the classical space-time structure. As confirmed here, an effective formulation with
the classical space-time structure does exist as long as § > 0, but only after a
field redefinition using either base transformations or, in the case of a spatially
constant 3 as it is realized in first-order cosmological perturbation theory, fiber
transformations of the hypersurface-deformation algebroid.

There are therefore two important caveats regarding assumptions as in [96,97,98]:
First, if the evolution of ¢, is modified, a consistent description of space-time
transformations for inhomogeneous modes requires a modified N which can only be
computed if one knows a consistent set of -modified brackets. (The lapse function
of the postulated space-time metrics in [96,97,98] do have quantum corrections,
but in an incomplete way that ignores the field redefinition required for a consistent
space-time structure.) The modified N, as opposed to the classical N, then implies
further quantum corrections not directly present in the evolving ¢,,. One can, of
course, partially absorb \/W in N' = \/W N by introducing a new time coordinate
t' with dt’ = \/m dt. But the dependence of ¢, on this new ¢’ is different from the

original dependence on t, so that additional quantum corrections are present.
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4.4.3 Signature change

In particular, as the second caveat, the signature of the effective space-time metric
can be determined only if one knows the sign e by which 3N?d¢? enters the metric
(4.35) in the equivalent Riemannian space-time structure, which can differ from the
classical value if 3 does not have definite sign. The sign, in turn, affects the form of
well-posed partial differential equations on the background; see for instance [106,131].
In the presence of signature change, there is no deterministic evolution through
large curvature. And even if one tries to ignore this conclusion for a formal analysis
of the resulting phenomenology, no viable results are obtained [132].

If 3 is of indefinite sign, it can no longer be absorbed globally. The classical
space-time structure can be used only to model disjoint pieces of a solution in
which 3 has definite sign, corresponding to Lorentzian space-time patches when
[ is positive and Euclidean spatial patches when it is negative. We then have
non-isomorphic Lie algebroids. A non-constant sign of § therefore triggers signature
change [87, 133, 131] with the effective signature locally given by eeg. Globally,
such a solution of an effective quantum-gravity model can be described consistently
only with a modified algebroid, in which all structure functions are continuous and
well-defined even when 3 goes through zero. It is no longer possible to absorb 3

globally, and therefore a new version of quantum space-time is obtained.
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Chapter 5
Conclusions and Future Direc-
tions

Gravity, from the point of view of canonical formulations, can be described by slicing
the full space-time into three dimensional hypersurfaces that evolve in time. Not
possessing a particular notion of time and being a fully constrained system implies
for General Relativity that a combination of first class constraints is what constitutes
its total Hamiltonian which is trivial on the constraint surface. Classically speaking,
in general, the Poisson brackets of two constraints is required to close into another
first class constraint for any generally covariant theory. Being one such theory, in
GR this condition is satisfied by its Hamiltonian and diffeomorphism constraints.
The same algebra is still obeyed by the constraints obtained from higher curvature
gravity theories. This type of theories are significant as these are the only actions
consistent with local covariance. Perturbative corrections that generically come
about on quantizing the classical theory will basically be identified with such
higher curvature terms of a corresponding effective theory of gravity. In [113] these
higher curvature effects have been shown to correspond to constraints themselves
getting corrections due to quantum back-reaction by moments on expectation
values, but that, under a anomaly-free quantization scheme, constraint algebra
stays undeformed. This observation also supports the view that if quantization
essentially persists all the way down to Planck length, then semi-classical effects
might take forms other than higher curvature terms. In turn, one is moved to look
for non-perturbative corrections within a given theory.

In LQG there are two known such non-perturbative contributions. The lack

of a well defined curvature operator acting on the Hilbert space of this theory
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resulted in these expressions being written in terms of holonomies of connection
components. Other than this so-called (nonlocal) holonomy corrections, another
non-perturbative effect that goes under the name of inverse-triad corrections is
present due to the constraint of the theory including an operator inverse for the
volume. Since constraint algebra characterizes the local diffeomorphism symmetry
of the particular theory at hand, it is necessary that it still closes even after any
such non-perturbative corrections are included in the constraints simply because it
should still reflect some version of general covariance.

The well-established feature of Quantum Mechanics that the order of the
measurement of two of its dynamical quantities actually matters is mathematically
encoded in the fact that the operators corresponding to these variables have a
non-vanishing commutator. On the other hand, Einstein’s GR teaches us that
gravity is equivalently the geometry of space-time. These simple statements hint at
us that the tool for explaining the underlying space-time structure for a quantum
gravity theory could very well be non-commutative geometry (NCG). There are
various approaches, tailored for different purposes, in this direction [134, 135, 136].
For example, claims in [137] about the role NCG plays in M-Theory (a unification
of all five consistent versions of superstring theory) sparked the recent interest in
the subject, which eventually led to what is known as Noncommutative Standard
Model [138,139], a model that extends Standard Model by a modified version of
GR. !

Such encouraging physical results along with the mathematical indications
coming from String theory and LQG which we talked about in Chapter 1 pro-
voked us to consider non-commutativity as another possible cause for obtaining
modifications of hypersurface deformation algebra. For this purpose, endowed
with the differential geometry of deformed diffeomorphisms of [141,142] which is
formulated in an explicitly covariant and coordinate-independent way, our plan is
to apply the mechanism of Gaussian vector fields from Section 4.2.1 above to this
non-commutative setup. In particular, making use of the x-Lie derivative defined
as in Eqn. (4.12) and the deformed Leibniz rule it obeys written as in Eqn.(4.13)
of [111], it would be interesting to start from our Eqn. (4.11) and see whether

we would still be able to get a closed yet deformed algebra of constraints if any

LOne of the impressive achievements of this model is that the Higgs mass predicted within
this model is in agreement with the 125-127 GeV range set by recent runs at CERN. [140]
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correction terms appear in this process. After all, at least in a (Minkowskian) field
theory context, non-vanishing commutators between space-time coordinates for
example as in the case of Weyl-Moyal star product are known to lead to verifiable
predictions for Lorentz violating effects [143].

Our method has proven successful in obtaining observable predictions which
cannot be replicated in the absence of monopole densities as we have detailed in 2.5.
Fur the purpose of extracting even more such verifiable results in more complicated
systems, we attempt a new definition of spectra of elements in some unital algebra A
which does not make use of a Hilbert-space representation. In order to achieve this
we generalize the definition of a state to be positive linear functionals, w, obeying
Cauchy-Schwarz inequalities on a (not necessarily associative) *-algebra. Given
such a unital algebra and a Hamiltonian constructed from the product structure

on this algebra, an eigenvalue A was defined with respect to the following equation
w(a(H—-A1))=0 (5.1)

if there exists a state w : A — C for all a € A. If further A happens to be a unital
*_algebra, imposing the self-adjointness condition on the Hamiltionian results in
its eigenvalues defined as above to be real, as expected from the usual quantum
mechanical calculations but this time formulated in the language of such linear
functionals. One remark about Eqn. (5.1) is that it can only yield what is called the
discrete spectrum of an operator acting on a Hilbert space. This above definition of
an eigenvalue has an advantage over the more standard definition of the spectrum
of let’'s say A € A as the set of all A € C such that A — A1 does not have an inverse
in A: It is not as hard to use in practice when one does not have a Hilbert-space
representation and the associated topologies on state spaces.

In order to define moments in this formalism, we make use of a set of dis-
tinguished observables, O, in an algebra A as follows: Given a classical phase
space M and a classical Poisson algebra defined on it, the global coordinates
x; € C°(M) are required to form a linear subalgebra of the the full Poisson
algebra and hence generate a Lie algebra, g, which is finite dimensional if M is
finite dimensional. Then O > d; is a subalgebra of the Lie algebra associated to A
through the commutator such that A is a quantization, for example with respect to

the deformation quantization scheme, of the classical Poisson algebra (C*(M, {,})
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with a Lie algebra isomorphism ¢ — O, x; — d;. Then moments of such observables
are defined with the Weyl ordering as before making use of the expectation values
w(d;).

It turns out that these definitions are very functional, and in the case of hydrogen
atom, with Hamiltonian H = $|p|> — ar~!, the choice of distinguished observables
as r, P := r|p|*,Q = zp, + yp, + zp. which is enough to reproduce the known

Hydrogen eigenvalues

ma?

S 2n2(141)2

for maximal angular-momentum quantum number [ from the standard uncertainty

)\H_l - (52)

relation. However, even more surprisingly, following this same derivation in the
case where we introduce a non-zero [p, p] commutator taken to be proportional to
a magnetic field which is, a priori, chosen to be generic, we obtain the very same
algebra

[r,Q|=1ir, [r,P]=2iQ, [Q,P]=iP (5.3)

of distinguished observables as in the standard Hydrogen atom case if the magnetic

field components satisfy the conditions:
B,

B,=""% B, = (5.4)

zZ zZ

where B, is a free parameter.? It should be noted here that V.B # 0 if B, # 0.
Under these conditions the usual Virial Theorem relating the expectation value of
the kinetic term and the potential term of the standard Hydrogen hamiltonian and
their dependence on the energy eigenvalue remain unaltered, hence we recover Eqn.
(5.2). The remaining step in this non-associative Hydrogen problem is to check if
the transition rates from time correlation functions get modified at all. If we get
some new contributions, as minute as they might be, which are not present in the
transition rates for the associative Hydrogen atom, this could give us an indication
as to whether non-associativity, at least at this energy scale, is a physical entity or
not once a proper experiment to distinguish such effects for this already extremely
well-tested system is devised.

Last but not the least, we would like to touch upon what consequences our

results from Chapter 3 might have. There we concluded that star products used

2As a special case the linear magnetic field is covered with the choice B, = z
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for mganetic monopole systems cannot be alternative, that is the associator cannot
be completely anti-symmetric. This means a totally symmetric and two mixed
type 2 x 2 x 2 tensors can contribute to the Jacobiator. A totally symmetric

2 x 2 x 2-tensor T;j;, has components

c; C c, C
Tij1 = ( Cl 02 ) . Tijo = ( 02 C’S ) ) (5.5)
5 Cs 3 Oy

There are two mixed types obtained from a generic matrix S;;; by a product
of one symmetrizer and one antisymmetrizer in different pairs of indices. We first
apply a symmetrizer in the first pair, followed by an antisymmetrizer in the first

and last index. A matrix with these symmetries has the form

Tijk = Sijk + Sjik — Skji — Skij (5.6)

in terms of the generic matrix ;;;. Its components are

0 A —2A4, A
Ty = ! . Tyo = R I (5.7)

The last type can be obtained by symmetrizing in the first and last index,

followed by antisymmetrizing in the first index pair:

Tijk = Sijk + Skji — Sjik — Sijki (5.8)

with components

0 —-2B B B
Tij1 = ' , Tijo = ! “ ). (5.9)
B, By —2B, 0

As appropriate for a decomposition of a 2 x 2 x 2-tensor, we have eight inde-
pendent components.
If we use S;ji, written in terms of the contributions A;, Ay, By, By and C;

through Cjy, as the associator for a single pair of degrees of freedom, we obtain

[z, z, 2] = C4 (5.10)
[z,2,p] = =241+ B+, (5.11)
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[z,p,x] = Ay —2B+Cy (5.12)
[p,x,2] = A+ Bi+Cy (5.13)
[z,p.p] = As+ B+ Cs (5.14)
[p,z,p] = Ay —2By+Cs (5.15)
[p,p,7] = —2Ay+ By +Cs (5.16)
[p.p.p] = Cu. (5.17)

The associators [x, p,p] and [p, z, x|, together with [p, z,p] and [x, p, x], are par-
ticularly relevant for equations of motion of expectation values in a non-alternative

harmonic oscillator. With H = 5-p* + $mw?z?, we compute

= H] = ﬁ (z(p*) = (")) + %muﬂ (z(2?) — (2)z)
_ % ((@p)p + [z, p,p] — p(pr) — [p, P, 7]) + %mwz &, 7, 7]
_ % ((px + ih)p — p(xp — ih) + [z, p, p| — [p, p, 2]) + %mwQ[:ﬂ, z, 7]
- gp + % ([z,p,p] = [p, p, 2] — [p, 2, p]) + %mwz[x, x, ] . (5.18)

In terms of the decomposition coefficients, we have

[z, H] Z‘h+1(2A + 2B (J)+1 °C (5.19)

x =—p+— — —mwCYy . :

3 mp om 2 2 3 5 4

An additional drift term is then obtained in the equation of motion for (x), which
implies that (x) can change even for vanishing momentum. Similarly, the equation
of motion for (p) would have an extra shift term corresponding to a constant force
or a linear potential, which shifts the minimum of the harmonic potential. Even
such preliminary results, again, illustrate the possibility of deriving experimentally

testable effects in the context of such exotic system.
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Appendix A
Details on the derivation of eq. (3.32]

Starting from (3.31), and using all its cyclic permutations, we can write the fully

anti-symmetric part of As as

6A43(f,9.h)" = Ba(f, Bi(g:h)) — B2(Bi(f.9),h) + Ba(h, Bi(f,9)) (A1)
—By(Bi(h, f)g) + Ba(g, Bi(h, f)) — Ba(Bi(g, 1), f)
—Bs(f, Bi(h, g)) + B2(Bi(f, h), 9) — Ba(g, Bi(f, h))
+Bs(Bi(g, f), h) — Ba(h, Bi(g, [)) + Ba(Bi(h, g), f) + (B < Bs).

Using the definition of the anti-symmetric parts of the B;, we have

6A43(f,9,.h)" = 2B, (f,Bi(g,h)) +2B; (h, Bi(f, 9)) + 2B (g9, Bi(h, ) (A.2)
_2B2_(f7 Bl(h79)) — 2Bs(g, B1(fa h)) - 2B2_(ha Bi(g, f)) + (Bl — Bs).

Finally, using the fact that the B; are linear in their arguments, we obtain the

required form for the fully anti-symmetric part of As as in (3.32).
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Appendix B
Proof of Lemma 3 without Pen-
tagon identity

To begin with, let us write the third-order associator as before:

AS(fagah) = dB?)(f?g?h)_l_BQ(faBl(g?h))
_BQ(Bl(fag)’h)+Bl(f>BQ(gvh))_Bl<B2(fag)ah)7(B‘1)

where dB,, = [B,(g,h) + B.(f,gh) — hB,(f,g9) — Bn(fg,h).If we apply the
Hochschild coboundary operator to As, the first term in (B.1) should give zero
because d? = 0. (Again, when applied to coefficients in an A-expansion of a non-
assocative star product, only the associative multiplication of smooth functions is
used in the definition of d.) However, for completeness we will explicitly show this.
The part in dAs(f, g, h, k) involving contributions only from the Bs terms has the

form
de3(g7 h7 k) - dB3(fg7 h7 k) + dBS(f: ghu k) - dB3<f’g’ hk) + kdBS(faga h)(B2)

Using the definition of dB,, for n = 3 gives
7 (980000 + Balg, ) — b Baly. 1) ~ Balah )
- (fg Bs(h, k) + Bs(fg,hk) — k Bs(fg,h) — Bs(fgh, k))

; (f Bu(gh. k) + Ba(f, ghk) — k B(f. gh) — Bu(fgh. k))
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_ (f Bu(g, hk) + Ba(f, ghk) — bk By(f. g) — Ba(fo. hkr))

+k<f By(g.h) + By(f.gh) — h Ba(f.g) — Balfo. h>) |

Upon a close inspection of this expression, we see that there is a counterterm for
each term, and thus it is zero. We are left with the action of the coboundary
operator on the last four terms in (B.1). Concentrating, for now, on its action on
the By terms, using the generic definition of dB,, for n = 2, we obtain a part in
dAs(f, g, h, k) that is of the form:

_f(B2(gaBl(h7 k)) — BQ(Bl<gah)vk))

—Bs(fg, Bi(h, k)) + Ba(Bi(fg, h),

+Bs(f, Bi(gh, k)) — Ba2(Bi(f, gh),

—Bs(f, Bi(g, hk)) + Ba(Bi(f, 9), hk)
)

+k(32<f, Bu(g,h)) — Bo(By( . g>,h>). (B.3)

k)
k)

Using the Leibniz property of B;, and removing terms that identically cancel out,

we are left with

—f Ba(g, Bi(h,k)) — f B2(Bi(g, h), k) — Ba(fg, Bi(h, k))
+Bs(fBi(g, h), k) + Ba(f, gB1(h, k) — Ba(hBi(f, g), k)
—Bsy(f, kBi(g,h)) + B2(Bi(f, 9), hk) + k Ba(f, Bi(g, h)) — k B2(Bi(f, 9), h) -

This expression can be cast into a more succinct form in terms of dAs, by adding

and subracting a few terms as follows:

dBs(f, g, Bi(h,k)) — dBa(f, Bi(g, h), k) + dBa2(Bi(f, 9), b, k) (B.4)
+B1(h, k)Bs(f,g) — Ba(h, k)Bi(f, 9) -

The action of the differential on the By terms in (B.1) gives an expression similar

to (B.3), with the roles of By and B, exchanged. Again upon using the Leibniz
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property of By and cancelling terms, we have the contribution to dAs as

—f Bi(Ba(g,h), k) — g Bi(f, B2(h, k) + Bi(Ba(fg, h), k) + Bi(f, B2(gh, k))
—Bi(Ba(f, gh), k) — Bi(f, Ba(g, hk)) + h B1(Ba(f, 9), k) + k Bi(f, B2(g, h)) -

Using anti-symmetry and linearity in either of the arguments of B;, and again

adding and subtracting a few terms, we introduce dBs as
Bl(dBQ(ga ha k)a f) - Bl<dBZ(f7 g, h)a k) - BQ(fv g)Bl(ha k) + Bﬂ<h7 k)Bl(f’ g)(B5)
As the final result, (B.4) and (B.5) give

dAs(f,g,h, k) = dBs(f,g, Bi(h,k)) —dBy(f, Bi(g,h), k) + dBa2(B1(f, 9), h, k)
+Bl(dB2(g7 h7 k)? f) - Bl(dBQ(f7g7 h)> k) : (BG)

To get the same result as in (3.37), which was obtained using the Pentagon

identity, we just use the definition of d B in terms of the second-order associator as
dB2(f7 g, h) = A2(f7 g, h) - Bl(fa Bl(g7 h’)) + Bl<Bl(f7 g)? h)a and use the linearity

of Bj in its first argument in the last two terms.
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Appendix C

ADM and geometrodynamics deriva-
tion of non-standard classical
constraints

We derive the results of Sec. 4.2.1 for a® = 0 using more familiar methods.

C.1 ADM

Given a space-time metric g, and a time-evolution vector field of the form (4.9)
with respect to a foliation, we obtain the canonical form of the metric by expanding
9, dX*d X" using

AX" = ,X"dt + 0,X"da" = (Nsn" + N°X") dt + XV da® (C.1)

with Ng = N/4/|B|. If n* has non-standard normalization g,,n*n” = €3, the

metric components are

gtt:NaNa—i-EﬁNg:NaNa-i—EEgNQ v Yot =Na 5 gw=Np . Gab= Gab-

(C.2)
With respect to a non-standard normal, we define the tensor
1
K,uu = §£nqu . (C3>

It differs from the extrinsic-curvature tensor bu a factor of /||, as can be seen
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from the alternative version

1
K,LLI/ e 2_]\]-5‘67-_]\7un (C4)
derived from (C.3) using (4.9). The relationship between K, = K, X* X} and the

T-derivative ¢, = L+qq is therefore

L.
Kap = N, (Gab — L4ab) - (C.5)

In order to relate K, to the momentum of q,,, we need the gravitational action
S = f dy*y/| det g| R in new variables defined with respect to a non-standard normal.
(We set 167G = 1.) The standard derivation from Gauss-Codazzi equations gives

us the space-time Ricci scalar
R=R- % (KK — K?) (C.6)

expressed as a combination of the spatial Ricci scalar R and K. (See also [144],
where a time-dependent 3 has been assumed to study classical signature change.)
Together with

V] det (X*g) [ = Ny/det(gus) = Nsv/|8]v/det (qus) , (C.7)

all contributions to the Einstein—Hilbert action appear are written in terms of new

variables. The momentum of ¢, is

0S €€
PPt z) = — = ——L_ /det(gm) (K** — ¢®K°) , (C.8)
5qab \/ |ﬁ’ ( )
while the momenta P of N and P, of N* vanish as usual. (The factor of ee5/+/|5] =
(e/B)(N/Ng) in (C.8) is a result of combining ¢/ in (C.6) with N in (C.7) and
one of the N3 obtained after converting Ky, to ¢q using (C.5).) For the primary

constraints P = 0 and P, = 0 to be preserved in time, we obtain as secondary

constraints the diffeomorphism and Hamiltonian constraints

Hy = —2quV,P" (C.9)
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\/ 1
H = _GEﬂ—M <Qacq1)d - _Qachd) PabPCd Y |5’ V det<qab)R(Clo)

det (qab) 2

These constraints have closed Poisson brackets corresponding to (4.24). In terms of
extrinsic curvature instead of the momentum, the first term of (C.10) has a factor
of g/ \/W , in agreement with expressions regained from modified brackets [37]
following the methods of [36, 119].

C.2 Geometrodynamics

Using the formalism of hyperspace [115, 116, 117], the hypersurface-deformation
brackets can be derived from infinitesimal deformations, irrespective of the dynamics.

An infinitesimal deformation 6 X* may be decomposed as
0XH" = 0Ngnt + IN“ X! . (C.11)

The (non-standard) normalization and orthogonality relations g,,n*n” = ¢ and
Gun* X = 0 allow us to compute 0 Ng and 6N® from d.X*:

SN = %nu 5XH ., SN = X°5X* (C.12)

Here we do not refer to 7# or N because the present geometrical considerations
refer to what is considered as the normal vector with a non-standard normalization.

An arbitrary functional F' = F[X*(x%)] on hyperspace changes if we deform the
hypersurface by dNg(z) along a normal geodesic and stretch it by dN*(x). Using

(C.11), we write the infinitesimal change of F' as

)
dX*H(x)

5F:/d3x(5X“(a:) F:/d3x (0Ng(z)po(x) + IN(z)pa(x)) F (C.13)

with the generators of pure deformations and pure stretchings given by

5 b0
Sy )= X

pol) = n(X () (C.14)

These generators can be interpreted as the Lie-algebroid anchor p: I'(A) — I'(T'B),

with base manifold B the space of embeddings X: 0 — M, expressed in a local
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basis: In a neighborhood U C B, we introduce a smooth chart (U,{z%}) of the
manifold B and a local frame {e;} for sections of the Lie algebroid #=*(U) C A.
Then there exist smooth functions cfj, pl: B — R, such that

0
lei,ej]a = ijek ;o ople) = pg&x“ . (C.15)

These functions are called the structure functions of the Lie algebroid with respect to
the local frame {e;} and local coordinates {z°}. For the hypersurface-deformation
algebroid, py = p(ep) and p, = p(e,).

There are infinitely many generators po(z) and p,(x) which span the tangent
space to hyperspace at each hypersurface. Compared with the coordinate basis
d/0X* an important advantage of this basis is its independence of the choice of
space-time coordinates X*. We can therefore describe the kinematics in terms
intrinsic to the hypersurfaces. However, the basis is non-holonomic: commutators
of the generators po(x) and p,(x) do not vanish in general.

In order to establish the commutators of deformation generators (C.14) we have
to know how the normal vector changes under an infinitesimal deformation. To

this end, the formula
ont = —eX"ON , + K XPagNb — [, XEn7ON® — I, n"n’oN (C.16)

has been used in [30, [15] in order to compute the commutator of normal defor-
mations po(x) in which on*(z)/6X"(2') appear. Only the first term in (C.16)
contributes to this commutator, while all other terms are irrelevant for this pur-
pose because they present variations proportional to delta functions. Since delta
functions are symmetric in their arguments they will cancel out thanks to the
anti-symmetry of a commutator. The variation given by the first term in (C.16), on
the other hand, is proportional to d ,(x,2") = —0 »(2’, z), which is anti-symmetric
and does contribute.

The first term in (C.16) follows from a simple consideration that can easily be
extended to non-standard normalizations of n*. One can compute the full (C.16)
in terms of its normal and tangential components by varying g,,n*n” = € and
G XHn” = 0. Since the first term in (C.16) does not contribute to the normal

component n,0n*, it must result from 6(g,, X#n") = 0. This variation has three
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terms, so that the equation can be solved for
Xopont = —nt6X,, o — Xhn"0g,, = —(n"0X,) o — /0 X, — Xtn"0g,, .

The metric variations in the last term as well as nf, in the second term can be
written in terms of extrinsic curvature and the Christoffel symbol, while the first
term provides the first part of (C.16) upon using (C.12) with § = 1. For g # 1,
the first term in (C.16) is replaced by —e(30N3) 4, or —€B(0Ng) , if the derivative
of ( is combined with the last term in (C.16) which drops out of commutators. As

a result, there is a factor of 4 in the commutator

(o), po()] = €8 (4" () d.a(w,2") py(x) — ¢ (2) O.a(a’, 2) pi(a)) . (C.1T)

This result agrees with (4.24).
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