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Abstract: The Pauli master equation describes the statistical equilibration of a closed quantum system.
Simplifying and generalizing an approach developed in two previous papers, we present a derivation
of that equation using concepts developed in quantum chaos and random-matrix theory. We assume
that the system consists of subsystems with strong internal mixing. We can then model the system
as an ensemble of random matrices. Equilibration results from averaging over the ensemble. The
direction of the arrow of time is determined by an (ever-so-small) coupling to the outside world. The
master equation holds for sufficiently large times if the average level densities in all subsystems are
sufficiently smooth. These conditions are quantified in the text, and leading-order correction terms
are given.
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1. Introduction

We investigate the connection between the irreversible statistical equilibration of
closed quantum systems, quantum chaos [1], and random-matrix theory [2]. We do so by
expanding and generalizing ideas formulated in Refs. [3,4].

To begin, we recall the standard theoretical description of statistical equilibration. The
interaction between the constituents of an isolated (or closed) many-body quantum system
drives the system toward statistical equilibrium. The process is theoretically most simply
described in terms of the Pauli master equation. Given a division of the system into a
finite number K of subsystems, the master equation for the time-dependent occupation
probability PE,α(t) of subsystem α at excitation energy E reads

ṖE,α(t) = ∑
β

(
Rβ→αPE,β(t)− Rα→βPE,α(t)

)
. (1)

The dot indicates the time derivative, and the indices α, β range from 1 to K. Equation (1) con-
serves probability, ∑α ṖE,α = 0. The interaction between states in subsystems α and β gives
rise to the time-independent transition rates Rα→β and Rβ→α. These obey detailed balance,

ρE,βRβ→α = ρE,αRα→β. (2)

Here, ρE,α is the average level density of the states in subsystem α at excitation energy

E. Equation (2) implies that P(0)
E,α = CρE,α with C a constant independent of α is a time-

independent solution of Equation (1). That solution describes statistical equilibrium. For
large times, the solutions PE,α(t) of Equation (1) tend generically toward the equilibrium

solution P(0)
E,α , irrespective of the initial conditions at time t = 0. Thus, Equation (1) describes

the irreversible development in time of the system toward statistical equilibrium.
Equation (1) goes back to the early days of quantum theory. The master equation is

a standard topic in textbooks on quantum statistical mechanics, and it is widely used to
describe statistical equilibration in atomic, molecular, and nuclear systems. At the same
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time, equilibration in isolated quantum systems poses a theoretical problem that continues
to cause intense discussion and research. The time-reversal-invariant Schrödinger equation
furnishes a universal framework for the theoretical description of closed nonrelativistic
quantum systems. How can that description be reconciled with the manifestly irreversible
tendency toward statistical equilibrium encapsulated in Equation (1)? The literature on the
subject is vast. For references, we confine ourselves to two review articles [5,6] summarizing
a total of about 500 research papers.

The derivation of the master Equation (1) in Refs. [3,4] uses arguments that differ
from the ones summarized in Refs. [5,6]. It is based upon a random-matrix approach. It is
assumed that within each subsystem or class α of states, the interaction mixes the states so
strongly that the resulting eigenvalues and eigenfunctions follow the statistical distribution
predicted by random-matrix theory. Under that assumption, the matrix elements of the in-
teraction connecting states in different classes α 6= β become Gaussian-distributed random
variables. Averaging the differential equations in time for the occupation probabilities of
states in classes α = 1, . . . , K over that distribution, and using the Markov approximation,
yields master Equation (1).

In the present paper, we address two issues that have remained unexplored in Refs. [3,4].
First, we address the connection between the basic statistical assumption used in Refs. [3,4]
and quantum chaos (Section 2). Second, we ask for the cause of irreversibility displayed by
Equation (1). Which approximation used in the derivation causes the transition from the
time-reversal-invariant Schrödinger equation to the manifestly time-reversal-noninvariant
master Equation (1)? Is irreversibility due to the Markov approximation, is it due to our
averaging over the statistical distribution of matrix elements of the interaction, or is there
another cause? To answer that question, in Section 3, we use the results of Section 2 to define
the basic random-matrix ensemble. In Section 4, we use the results of Ref. [3] to work out
the time evolution of average occupation probabilities in the various classes. In Section 5,
we apply the Markov approximation and introduce the central element which is responsible
for the violation of the time-reversal invariance. Corrections to the Markov approximation
are worked out in Section 6. Time-dependent oscillatory terms are addressed in Section 7.
We summarize the results and the answers to the questions raised above in Section 8.

We focus attention on the time evolution of average occupation probabilities, i.e., on
the diagonal elements of the density matrix of the system as described by Equation (1). Our
derivation can be extended to the equation describing the time evolution of the full density
matrix, including the off-diagonal elements. That equation is often referred to as the master
equation, while Equation (1) is then called a rate equation. We do not follow that custom
here. It is easily seen that upon averaging and in Markov approximation, the off-diagonal
elements of the density matrix decrease exponentially in time. The decrease is governed by
the same rates that determine the loss term in Equation (1).

2. Quantum Chaos and Random-Matrix Theory

The connection between quantum chaos and random-matrix theory (RMT) was un-
covered in the late 1970s and early 1980s. In the search for “quantum signatures of classical
chaos” [1], several authors turned their attention to random-matrix theory. That theory
had been introduced by Wigner [7], in 1955, in an attempt to characterize the eigenval-
ues of the nuclear Hamiltonian that appeared as parameters in his R-matrix theory of
nuclear reactions [8]. McDonald and Kaufman [9], Casati, Valz-Gris, and Guarneri [10],
and Berry [11] investigated numerically the energy spectra of two-degrees-of-freedom
quantum systems (the stadium billiard and the Sinai billiard) that are chaotic in the classical
limit. Their results suggested that the distribution of spacings of neighboring eigenvalues
coincides with the Wigner surmise. That surmise furnishes an excellent approximation
to the distribution of nearest-neighbor spacings of eigenvalues of the Gaussian orthog-
onal ensemble (GOE) [12] of random matrices. Following these investigations, Bohigas,
Giannoni, and Schmit [13] generated numerically a considerably larger set of eigenvalues
for the Sinai billiard than had been used by the earlier authors. When combined with a
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refined statistical analysis, the spacings of these eigenvalues showed good agreement with
the GOE fluctuation measures. The agreement caused the authors to formulate the “BGS
conjecture”: The spectral fluctuation measures of a classically chaotic quantum system
coincide with those of the canonical random-matrix ensemble in the same symmetry class
(unitary, orthogonal, or symplectic).

The BGS conjecture has since been thoroughly tested numerically in several few-
degrees-of-freedom systems (see the review in [2]). With the help of Gutzwiller’s periodic-
orbit sum for the level density, Sieber and Richter [14] and Heusler, Müller, Altland, Braun,
and Haake [15] gave a formal demonstration of the validity of the conjecture for general
dynamical systems, summarized in the article by Müller and Sieber [16]. The demonstration
is not a mathematical proof but shows physically convincingly why the BGS conjecture
holds for classically chaotic quantum systems that possess a periodic-orbit sum for the
level density.

These results strongly suggest that the BGS conjecture holds quite generally for
strongly interacting many-body quantum systems that are chaotic in the classical limit.
Ergodic theory [17] has shown that classical deterministic chaos is ubiquitous. It is charac-
terized by positive Lyapunov exponents. These guarantee that long periodic orbits do have
the properties used in Ref. [15]. However, that connection between RMT and classical chaos
is too narrow in the present context. Bosonic and Fermionic systems possess symmetries
that are not part of the classical ergodic theory. Ongoing research addresses the RMT
fluctuation properties in such systems (see, for example, Refs. [18,19]). Moreover, there
exist strongly interacting many-body systems that do not possess a well-defined classical
limit. Locally interacting spin chains are an example. And yet, the spectral form factor (the
Fourier transform of the spectral pair correlation function) of these systems agrees with
the RMT prediction [20]. Likewise, it is not clear that very dense quantum systems like
atomic nuclei do possess a classical limit. And yet, measures of spectral fluctuations evalu-
ated for light nuclei with a Hamiltonian containing a mean-field potential and a residual
two-body interaction do show agreement with RMT predictions [21]. Thermalization and
random-matrix properties in many-body systems governed by a mean field and a residual
interaction are analyzed more generally in Ref. [22].

It thus seems that the BGS conjecture, while generically valid, does not cover all cases
of interest. In that situation, it is useful to recall the physical reason for agreement with
RMT predictions in systems such as spin chains [20] or atomic nuclei [21]. It is the strong
mixing of the unperturbed states of the system by the interaction. A suitable generalization
of the BGS conjecture would say: For many-body systems with a sufficiently strong generic
interaction, the spectral fluctuation measures agree with RMT predictions. That formulation
is unspecific as it does not say how strong the interaction has to be. It is quite specific in
saying that RMT spectral fluctuation properties are attained.

In conclusion, RMT spectral fluctuation properties are generic and are expected to
occur universally in strongly interacting many-body systems. Therefore, the assumption
formulated in Section 1 is on firm grounds. Nevertheless, for a specific system, it is advisable
to make sure that RMT spectral fluctuation properties prevail, either by demonstrating that
the system is classically chaotic or by a numerical test. Attention must be paid, in particular,
to one-body and many-body localization [23–25]. Either phenomenon is not compatible
with RMT spectral fluctuation properties.

3. Ensemble of Random Matrices

Before we address the second issue raised in the Introduction, we give a brief summary
of the assumptions and developments in Ref. [4]. We define the basic random-matrix ensemble.

It is assumed that in Hilbert space, the states of the system can be grouped into a finite
number K of classes, such that within each class, the states interact strongly. The example
considered in Ref. [4] is a system of Fermions with a mean-field average potential and a
closed-shell ground state. Excited states are defined as particle-hole excitations out of the
ground state. Classes of such states carry the same number of particle-hole states. Our
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theoretical development is more general, however, and is not restricted to that example.
We confine ourselves, however, to the case of orthogonal symmetry.

In every class α, we use a basis of orthonormal states labeled |αm〉with m = 1, 2, . . . , Nα

and Nα � 1. On that basis, the Hamiltonian is written as

Hαm,βn = δαβH(α)
mn + 〈αm|V|βn〉. (3)

In Ref. [4], it is assumed that within each class α, the Hamiltonian H(α) is a member of
the GOE. That is in line with the arguments of Section 2. The non-statistical real matrix
elements 〈αm|V|βn〉 connect different classes and vanish for α = β. They also vanish
unless the states in both classes carry the same conserved quantum numbers. In Ref. [4],
it was assumed that V is a two-body interaction. That interaction changes the particle-
hole number by one unit. It does not connect classes of particle-hole states differing in
particle-hole number by two or more units. In the present context, it is likewise admissible
that V does not connect every class with every other one. For definiteness, we exclude,
however, the possibility that the classes form subgroups that are not connected to each
other at all by matrix elements of V. The mixing of the states in different classes due to V
yields eigenfunctions that are spread over several or all classes. As we shall see, that fact
ultimately causes statistical equilibration as described by Equation (1).

The diagonalization of each of the GOE Hamiltonians H(α) in Equation (3) yields for
the total Hamiltonian in Equation (3) the expression

Hαµ,βν = Eαµδαβδµν + 〈αµ|V|βν〉. (4)

The eigenvalues Eαµ follow Wigner–Dyson statistics. The projections of the eigenfunctions
|αµ〉 onto some fixed vector |αm〉 have a Gaussian distribution. It follows that the matrix
elements 〈αµ|V|βν〉 have a Gaussian distribution with respect to their dependence on both
µ and ν.

The central step taken in Ref. [4] consists of replacing in each class α the Hamiltonian
H(α) by an ensemble of GOE Hamiltonians. That implies that the Eαµ in Equation (4)
form an ensemble of Wigner–Dyson-distributed eigenvalues and that the matrix elements
〈αµ|V|βν〉 form an ensemble of Gaussian-distributed zero-centered random variables with
second moments 〈

〈αµ|V|βν〉〈α′µ′|V|β′ν′〉
〉

= V2
αβ

(
δαα′δµµ′δββ′δνν′ + δαβ′δµν′δβα′δνµ′

)
. (5)

The big angular brackets denote the ensemble average. For α 6= β, the states |αν〉 and |βν〉
are statistically uncorrelated. That gives rise to the Kronecker deltas involving class labels
in Equation (5). The mean square matrix elements V2

αβ vanish for α = β. They measure
the strength of the coupling of classes (α, β). Within each class α, we eventually take the
GOE limit of infinite matrix dimension Nα. Then, the spectrum of H(α) extends from −2λ
to +2λ, the average level spacing dα ∝ 1/Nα tends to zero, and the average level density
ρE,α versus energy E is given by

ρE,α =
N

πλ

√
1− (E/(2λ))2. (6)

In the following sections, we display the assumptions under which Equation (1)
follows from that central step. We show that Equation (1) describes the time evolution of
ensemble-averaged occupation probabilities defined for each class. Therefore, statistical
equilibration does not necessarily occur for each member of the ensemble. It is an average
property, characteristic of most members of the ensemble.
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4. Time Evolution of Average Occupation Probabilities

To implement the approach, we use the time-dependent Schrödinger equation in
the interaction representation. The wave function is expanded on the basis of states
|αµ〉, |βν〉, . . . with time-dependent occupation amplitudes cαµ(t), cβν(t), . . .. That yields

ih̄ċαµ(t) = ∑
βν

〈αµ|Ṽ(t)|βν〉cβν(t). (7)

The dot indicates the time derivative, and the time-dependent matrix element

〈αµ|Ṽ(t)|βν〉 = 〈αµ|V|βν〉 exp{i(Eαµ − Eβν)t/h̄} (8)

is Hermitean, 〈αµ|Ṽ(t)|βν〉∗ = 〈βν|Ṽ(t)|αµ〉.
Time-dependent average occupation probabilities PE,α(t) of the states in class α are

defined as

PE,α(t) =
〈

∑
µ

|cαµ(t)|2
〉

. (9)

In the GOE limit, the sum over µ encompasses states |αµ〉 with energies Eαµ located within
a very small energy interval centered on the energy E defined by the initial condition
cαµ(0) = δαα0 δµµ0 at time t = 0 for the coefficients cαµ(t). The time derivative of PE,α(t) is

ṖE,α(t) =

〈
∑
µ

(
c∗αµ ċαµ + ċ∗αµcαµ

)〉
. (10)

In Ref. [4], the average in Equation (10) is calculated by expanding each of the factors
cαµ(t), c∗αµ(t), ċαµ(t), ċ∗αµ(t) on the right-hand side perturbatively in powers of Ṽ. That
results in a multiple sum over products of Gaussian-distributed matrix elements. The
average is calculated for each such product separately. In each product, the average equals
the sum over all ways of averaging pairs of matrix elements using Equation (5). The
number of such pairwise “contractions” of matrix elements proliferates with increasing
order of the perturbation expansion. Terms of leading order are obtained by suppressing
all contributions that contain derivatives of the average level density ρE,α with respect to
energy E in any class α. Such suppression allows resummation of the series, is tantamount
to the Markov approximation, and yields Equation (1) for the time evolution of PE,α(t).
Leading-order contraction patterns are displayed in Section 5 of Ref. [3].

Here, we present an alternative derivation of Equation (1) which is simpler, more
transparent, and more general than the one used in Ref. [4]. That allows us to answer the
second question raised in Section 1.

We consider the first term on the right-hand side of Equation (10). The contraction
rules given in Ref. [3] imply that the first factor V in the perturbative expansion of ċαµ

is contracted either with the factor V immediately following it (case (i)), or with the first
such factor in the perturbative expansion of c∗αµ (case (ii)). For case (i), we integrate
Equation (7) with respect to time and reinsert the result on the right-hand side of that
equation. That gives

ċαµ(t) =
1
ih̄ ∑

βν

〈αµ|Ṽ(t)|βν〉cβν(0)

+
1

(ih̄)2 ∑
βν

〈αµ|Ṽ(t)|βν〉 (11)

×
∫ t

0
dt1 ∑

γρ

〈βν|Ṽ(t1)|γρ〉cγρ(t1).
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The first term on the right-hand side does not contribute because Ṽ is not followed by a
second such factor. We insert the second term into ∑µ〈c∗αµ ċαµ〉 and contract the two factors
V displayed explicitly. We obtain

1
(ih̄)2 ∑

β

V2
αβ ∑

µν

∫ t

0
dt1 exp{i(Eαµ − Eβν)(t− t1)/h̄}

×
〈

c∗αµ(t)cαµ(t1)

〉
. (12)

Writing t1 = t + (t1− t), we expand 〈cαµ(t1)〉 in a Taylor series in (t1− t) and keep the first
two terms. The leading-order term yields the Markov approximation, and the next-order
term, the correction of subleading order. We define ∆ν = (Eαµ − Eβν)/h̄, carry out the time
integrations, and find

1
(ih̄)2 ∑

β

V2
αβ ∑

µν

{
i

∆ν

(
1− exp{i∆νt}

)〈
c∗αµ(t)cαµ(t)

〉

+
1

∆2
ν

(
1 + (it∆ν − 1) exp{i∆νt}

)〈
c∗αµ(t)ċαµ(t)

〉}
. (13)

For case (ii) we proceed analogously. In the first term, on the right-hand side of Equation (10),
we use Equation (7) for ċαµ. For c∗αµ, we integrate the complex conjugate of Equation (7)
over time and obtain

c∗αµ(t) =
i
h̄ ∑

βν

∫ t

0
dt1 〈αµ|Ṽ(t1)|βν〉∗c∗βν(t1). (14)

The term analogous to expression (12) is

1
(h̄)2 ∑

β

V2
αβ ∑

µν

∫ t

0
dt1 exp{i(Eαµ − Eβν)(t− t1)/h̄}

×
〈

c∗βν(t1)cβν(t)
〉

. (15)

We expand c∗βν(t1) in a Taylor series in t1 − t and keep the first two terms. We define
∆µ = (Eαµ − Eβν/h̄, carry out the time integrations, and obtain

1
(h̄)2 ∑

β

V2
αβ ∑

µν

{
i

∆µ

(
1− exp{i∆µt}

)〈
c∗βν(t)cβν(t)

〉

+
1

∆2
µ

(
1 + (it∆µ − 1) exp{i∆µt}

)〈
ċ∗βν(t)cβν(t)

〉}
. (16)

In evaluating expressions (13) and (16), we take the GOE limit defined on top of
Equation (6). We omit the terms carrying the factor exp{i∆νt} in expression (13) and
the terms carrying the factor exp{i∆µt} in expression (16). These terms are addressed in
Section 7.
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5. Markov Approximation

We focus attention on the remaining terms in the first lines of expressions (13) and (16).
These are given by

− 1
h̄2 ∑

β

V2
αβ ∑

µν

(
i

∆ν
〈c∗αµ(t)cαµ(t)〉+ c.c.

)
,

1
h̄2 ∑

β

V2
αβ ∑

µν

(
i

∆µ
〈c∗βν(t)cβν(t)〉+ c.c.

)
. (17)

In the summation over ν in the first line, we assume that ∆ν carries an infinitesimal positive
imaginary increment iε with ε > 0. In the GOE limit, that gives

1
∆ν

= P h̄
Eαµ − Eβν

− iπh̄δ(Eαµ − Eβν). (18)

The summation over ν is replaced by an integral over E′ = Eβν. The weight factor is ρE′ ,β,
the average level density in class β defined in Equation (6). The symbol P denotes the
principal-value integral. In the first expression (17), that integral gives a purely imaginary
contribution which cancels against the principal-value integral in the complex conjugate
term. We are left with the contribution due to the delta function which links only states in
classes α and β that pertain to the same energy. As a consequence, the process is entirely
on shell. The integration over E′ yields −iπh̄ρEαµ ,β. We recall that the summation over µ
encompasses a set of energies Eαµ narrowly centered at E, the energy defined by the initial
value for cαµ. Within that interval, we may replace ρEαµ ,β with ρE,β. We use definition (9) to
perform the remaining summation over µ and obtain for the first of expressions (17)

−2π

h̄
PE,α(t)∑

β

V2
αβρE,β. (19)

That is the loss term in Equation (1), with an explicit expression for the rate Rα→β. Proceed-
ing analogously for the second term in expression (17), we obtain

+
2π

h̄
ρE,α ∑

β

V2
αβPE,β(t). (20)

That is the gain term in Equation (1), again with an explicit expression for the rate Rβ→α.
Our treatment has been very explicit because gain term plus loss term together yield
Equation (1) which violates time-reversal invariance. The origin of that violation and of
the resulting tendency toward equilibration is in the choice of the sign of the infinitesimal
increment iε in ∆ν and ∆µ. That choice determines the sign of the last term in Equation (18).
Choosing the opposite sign would change the signs of gain term and loss term and would
result in an equation where the occupation probabilities PE,α grow indefinitely with time.
That is physically unacceptable.

Use of an imaginary increment iε in ∆ν and in ∆µ is a formal necessity. Without it, our
approach would involve the matrix elements 〈αm|(E− H(α))−1|αm′〉 of the propagators of
the GOE Hamiltonians H(α) with real energy E for α = 1, . . . , K. Each of these quantities
is a random variable that does not possess a well-defined distribution. All moments
higher than the first diverge. That can easily be checked by direct calculation. Use of an
imaginary increment iε in ∆ν and in ∆µ is also a physical necessity. It breaks time-reversal
invariance. Without it, the terms in expressions (19) and (20) would vanish, and the Markov
approximation would say that the time derivatives of all average occupation probabilities
are equal to zero. We see that a consistent and singularity-free derivation of Equation (1)
cannot be given in the present framework for ε = 0. These difficulties are removed by
adding the increment iε. Purely formally, either sign of ε is admissible. Choosing a positive
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value for ε reflects physical necessity and has distinct physical significance. The sign of
ε determines the signs of gain and loss term and, thereby, the direction of the arrow of
time. A positive value of ε causes an ever-so-small exponential decrease with time of
all time-dependent exponentials in the time evolution of cαµ(t) and c∗αµ(t). The resulting
small but continuous loss of occupation probability corresponds to a leakage of the system,
physically caused by the evaporation of particles, by gamma emission, or by another such
mechanism. That leakage determines physically the direction of time and is ultimately
responsible for the loss of time-reversal invariance in Equation (1).

In summary: In the present framework, master Equation (1) cannot be derived for a
strictly isolated system, i.e., for ε = 0. The direction of the arrow of time is determined by
the sign of ε. A positive value of ε accounts for an (ever-so-small) coupling to the outside
world that causes a loss of probability.

6. Corrections to the Markov Approximation

Subleading-order corrections to the Markov approximation are due to the terms in
the second lines of expressions (13) and (16) and to certain contraction patterns of pairs
of matrix elements of V that violate the rules laid down in Ref. [3] to leading order. We
consider these in turn.

In the second lines of expressions (13) and (16), we neglect the strongly oscillating
terms. The remaining expressions are proportional, respectively, to ∑ν 1/∆2

ν and to ∑µ 1/∆2
µ.

Either term can be written as a derivative with respect to energy. It follows that the said
terms are proportional, respectively, to ṖE,α ∑β V2

αβdρE,β/dE and to dρE,α/dE ∑β V2
αβ ṖE,β.

That result has two consequences. First, it contains the time derivatives of the occupation
probabilities PE,α and PE,β. When statistical equilibrium is reached, all time derivatives

vanish. The equilibrium solution P(0)
E,α = CρE,α is determined by the interplay of gain

term and loss term on the right-hand side of Equation (1). It has the same value without
and with non-Markovian corrections. We conclude that the corrections to the Markov
approximation in expressions (13) and (16) change the form of master Equation (1), may
affect the time within which statistical equilibrium is approximately attained, but do
not affect the tendency of the system to attain equilibrium or change the form of the
equilibrium solution. Second, the result allows us to sharpen the criterion for the validity
of the Markov approximation. The corrections to the Markov approximation are negligible
if the characteristic energy interval Eβ = ρE,β/(dρE,β/dE), within which the level density
ρE,β changes significantly, is large compared to the spreading width 2πV2

αβρE,β for all classes
α coupled to class β.

We turn to the subleading contributions due to contraction patterns that violate the
rules laid down in Ref. [3]. We confine ourselves to a single example. In Equation (11), we
carry the perturbation expansion of ċαµ(t) up to the term of fourth order in Ṽ. That term
involves a time-ordered integral over times t1, t2, t3. The integrand is the product of three
matrix elements of Ṽ and of cγρ(t3). In the average over the four matrix elements of V
displayed explicitly, the contribution of subleading order is obtained by contracting the
outer pair and the inner pair. In the resulting expression, we replace cαµ(t3) by cαµ(t) and
carry out the three time integrations. As done at the end of Section 4, we suppress terms
that carry rapidly oscillating exponential factors. These are addressed in the next section.
That leaves us with a single term given by

1
(ih̄)4 ∑

βγ

V2
αβV2

βγ ∑
µν

h̄2

i2(Eαµ − Eβν)2

×∑
ρ

h̄
i(Eγρ − Eαµ)

〈c∗αµ(t)cαµ(t)〉. (21)

The sum over ν can be written as a derivative with respect to energy. We use Equation (18)
and suppress the principal-value contributions. The result is proportional to
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iPE,α(t)∑β V2
αβdρE,β/dE ∑γ V2

βγρE,γ. It is purely imaginary and, thus, does not contribute
to Equation (1). We note, however, that the form of the result shows that the criterion for
the validity of the Markov approximation stated in the previous paragraph applies here
as well. A term similar to expression (21) is obtained from the subleading contraction
connecting a factor V in ċαµ(t) and three factors V in c∗αµ(t). Actually, neither of these two
terms modifies Equation (1). The form of the equilibrium solution remains unchanged.

These results confirm that the Markov approximation is not the cause of violation of
time-reversal invariance in Equation (1).

7. Oscillatory Terms

As done in Ref. [4], we have consistently omitted terms of the form

∑
ν

exp i(E− Eβν)t/h̄}
E− Eβν + iε

. (22)

Such terms are not peculiar to the Markov approximation. They arise, in general, whenever
the time evolution of a quantum system is studied perturbatively. Actually, the contents
of the big round brackets in Equations (13) and (16) vanish for t = 0. That shows that the
neglect of the oscillatory terms, intuitively justified because of the rapid oscillation of the
exponential, is valid only beyond some finite time t0. At that time, the contribution of the
oscillating terms becomes small compared to that of the first term in big round brackets
in Equations (13) and (16). To determine t0, we replace the infinitesimal increment ε in
expression (22) by a finite width γ. That gives

∑
ν

exp i(E− Eβν)t/h̄}
(E− Eβν)2 + γ2

(
E− Eβν − iγ

)
. (23)

Upon summation, the real part of the big round bracket vanishes or is very small. That is
true even for t = 0. The term proportional to iγ involves the summation over a Lorentzian
with width γ. If the remaining terms in the sum were sufficiently smooth functions of Eβν,
the limit γ → 0 may be taken. That yields the delta function on the right-hand side of
Equation (18). In the present case, we cannot use that step because of the oscillation of the
exponential. We assume that γ� dβ, the mean level spacing in class β. Then, the sum over
the Lorentzian effectively involves a large number of terms. Because of the exponential, the
sum becomes negligible for t & 2πh̄/γ. We compare that with the characteristic time scale
of Equation (1) which is given by the inverse rate h̄/(2πV2

αβρE,β). The two time scales are
approximately equal, and oscillating terms may be suppressed in master Equation (1) after
some initial time t0 = 2πh̄/γ, if γ is of order (2π)2V2

αβρE,β.
While an infinitesimal increment ε is sufficient to guarantee violation of time-reversal

invariance in Equation (1), a finite width γ is needed to validate omission of the exponential
terms for times t & t0 = 2πh̄/γ. The width γ, caused by decay into open channels, leads to
a decay in time of all exponentials in the time evolution of amplitudes, see Equation (7). To
be consistent, such decay may have to be accounted for explicitly in terms of an additional
loss term in Equation (1). That was done, for instance, in Ref. [26], where γ accounts for
neutron evaporation in a laser-induced nuclear reaction.

8. Summary and Conclusions

We have considered a system composed of classes of states, each of which is strongly
mixed internally. By recalling central results of quantum chaos and its connection to
random-matrix theory, we have justified the use of a random-matrix approach to that
system. Within each class, the dynamics are governed by an ensemble of GOE Hamil-
tonians. States in different classes are coupled by an ensemble of Gaussian-distributed
matrix elements. We have simplified the derivation of Ref. [4] for the time evolution of
average occupation probabilities for each class. That has enabled us to precisely define the
conditions of validity of master Equation (1) and to identify the central element that causes
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the violation of time-reversal invariance. Irreversibility is due to an ever-so-small loss of
probability (due to particle evaporation, gamma emission, or another such mechanism).
The loss term defines the direction of the arrow of time. In combination with ensemble
averaging and the Markov approximation, it leads to the irreversible master Equation (1).

Corrections of the subleading order to the Markov approximation may modify the
speed at which the system equilibrates. They do not affect the irreversible tendency toward
statistical equilibrium. The corrections are negligible, and the Markov approximation is
valid, if in each class α the average level density ρE,α is sufficiently smooth. Quantitatively,
that requires that the energy interval Eα = ρE,α/(dρE,α/dE), within which ρE,α changes
significantly, is large in comparison with every one of the spreading widths 2πV2

βαρE,α that
feed states in class α from states in any other class β. For the terms that strongly oscillate
in time, we have derived a lower bound t0 on time beyond which such oscillating terms
are negligible.

We have answered the questions raised in Section 1. In doing so, we have formulated
precise conditions on level densities and time scales within which Equation (1) can be used
with confidence.

After completion of the manuscript, I became aware of Ref. [27]. I am grateful to A.
Volya and to V. Zelevinsky for drawing my attention to that paper. Investigating a number
of examples, the authors demonstrate the limitations in specific cases of the universal
random-matrix approach adopted in the present paper.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Haake, F. Quantum Signatures of Chaos; Springer: Berlin, Germany, 2000.
2. Guhr, T.; Müller-Groeling, A.; Weidenmüller, H.A. Random-Matrix Theories in Quantum Physics: Common Concepts. Phys. Rep.

1998, 299, 189. [CrossRef]
3. Agassi, D.; Weidenmüller, H.A.; Mantzouranis, G. The Statistical Theory of Nuclear Reactions for Strongly Overlapping Resonances

as a Theory of Transport Phenomena. Phys. Rep. 1977, 22, 145. [CrossRef]
4. Weidenmüller, H.A. Transport Equations for Driven Many-Body Quantum Systems. J. Phys. A Math. Theor. 2022, 55, 184001.

[CrossRef]
5. Eisert, J.; Friesdorf, M.; Gogolin, C. Quantum Many-Body Systems out of Equilibrium. Nat. Phys. 2015, 11, 124. [CrossRef]
6. Gogolin, C.; Eisert, J. Equilibration, Thermalization, and the Emergence of Statistical Mechanics in Closed Quantum Systems. Rep.

Prog. Phys. 2016, 79, 056001. [CrossRef]
7. Wigner, E.P. Characteristic Vectors of Bordered Matrices with Infinite Dimensions. Ann. Math. 1955, 62, 548. [CrossRef]
8. Wigner, E.P.; Eisenbud, L. Higher Angular Momenta and Long Range Interaction in Resonance Reactions. Phys. Rev. 1947, 72, 29.

[CrossRef]
9. McDonald, S.W.; Kaufman, A.N. Spectrum and Eigenfunctions for a Hamiltonian with Stochastic Trajectories. Phys. Rev. Lett. 1979,

42, 1189. [CrossRef]
10. Casati, G.; Valz-Gris, F.; Guarneri, I. On the Connection between Quantization of Nonintegrable Systems and Statistical Theory of

Spectra. Lett. Nuovo C. Soc. Ital. Fis. 1980, 28, 279. [CrossRef]
11. Berry, M.V. Quantizing a Classicallz Ergodic System: Sinai’s Billiard and the KKR Method. Ann. Phys. 1981, 131, 163. [CrossRef]
12. Dyson, F.J. Statistical Theory of the Energy Levels of Complex Systems. I. J. Math. Phys. 1962, 3, 140. [CrossRef]
13. Bohigas, O.; Giannoni, M.-J.; Schmit, C. Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws.

Phys. Rev. Lett. 1984, 52, 1. [CrossRef]
14. Sieber, M.; Richter, K. Correlations between Periodic Orbits and their Role in Spectral Statistics. Phys. Scr. 2001, T 90, 128.

[CrossRef]
15. Heusler, S.; Müller, S.; Altland, A.; Braun, P.; Haake, F. Periodic-Orbit Theory of Level Correlations. Phys. Rev. Lett. 2007, 98, 044103.

[CrossRef] [PubMed]
16. Müller, S.; Sieber, M. Quantum Chaos and Quantum Graphs. In The Oxford Handbook of Random Matrix Theory; Akemann, G., Baik,

J., Francesco, P.D., Eds.; Oxford University Press: Oxford, UK, 2011; pp. 683–702.
17. Eckmann, J.-P.; Ruelle, D. Ergodic Theory of Chaos and Strange Attractors. Rev. Mod. Phys. 1985, 57, 617. [CrossRef]
18. Rammensee, J.; Urbina, J.D.; Richter, K. Many-Body Quantum Interference and the Saturation of Out-of-Time-Order Correlators.

Phys. Rev. Lett. 2018, 121, 124101. [CrossRef] [PubMed]
19. Geiger, B.; Urbina, J.D.; Richter, K. Emergence of a Renormalized 1/N Expansion in Quenched Critical Many-Body Systems. Phys.

Rev. Lett. 2021, 126, 110602. [CrossRef]

http://doi.org/10.1016/S0370-1573(97)00088-4
http://dx.doi.org/10.1016/0370-1573(75)90028-9
http://dx.doi.org/10.1088/1751-8121/ac2f8d
http://dx.doi.org/10.1038/nphys3215
http://dx.doi.org/10.1088/0034-4885/79/5/056001
http://dx.doi.org/10.2307/1970079
http://dx.doi.org/10.1103/PhysRev.72.29
http://dx.doi.org/10.1103/PhysRevLett.42.1189
http://dx.doi.org/10.1007/BF02798790
http://dx.doi.org/10.1016/0003-4916(81)90189-5
http://dx.doi.org/10.1063/1.1703773
http://dx.doi.org/10.1103/PhysRevLett.52.1
http://dx.doi.org/10.1238/Physica.Topical.090a00128
http://dx.doi.org/10.1103/PhysRevLett.98.044103
http://www.ncbi.nlm.nih.gov/pubmed/17358777
http://dx.doi.org/10.1103/RevModPhys.57.617
http://dx.doi.org/10.1103/PhysRevLett.121.124101
http://www.ncbi.nlm.nih.gov/pubmed/30296114
http://dx.doi.org/10.1103/PhysRevLett.126.110602


Entropy 2022, 24, 959 11 of 11

20. Kos, P.; Ljubotina, M.; Prosen, T. Many-Body Quantum Chaos: Analytic Connection to Random-Matrix Theory. Phys. Rev. X 2018,
8, 021062. [CrossRef]

21. Zelevinsky, V.; Brown, B.A.; Frazier, N.; Horoi, M. The Nuclear Shell-Model as a Testing Ground for Many-Body Chaos. Phys. Rep.
1996, 276, 85. [CrossRef]

22. Borgonovi, F.; Izrailev, F.M.; Santos, L.F.; Zelevinsky, V.G. Quantum Chaos and Thermalization in Isolated Systems of Interacting
Particles. Phys. Rep. 2016, 626, 1. [CrossRef]

23. Evers, F.; Mirlin, A.D. Anderson Transitions. Rev. Mod. Phys. 2008, 80, 1355. [CrossRef]
24. Alet, F.; Laflorencie, N. Many-Body Localization: An Introduction and Selected Topics. C. R. Phys. 2018, 19, 498. [CrossRef]
25. Abanin, D.A.; Altmann, E.; Bloch, I.; Serbyn, M. Many-Body Localization, Thermalization, and Entanglement. Rev. Mod. Phys.

2019, 91, 021001. [CrossRef]
26. Palffy, A.; Buss, O.; Hoefer, A.; Weidenmüller, H.A. Laser-Nucleus Interactions: The Quasiadiabatic Regime. Phys. Rev. C 2015,

92, 044619. [CrossRef]
27. Volya, A.; Zelevinsky, V. Time-dependent relaxation of observables in complex quantum systems. Phys. Complex. 2020, 1, 025007.

[CrossRef]

http://dx.doi.org/10.1103/PhysRevX.8.021062
http://dx.doi.org/10.1016/S0370-1573(96)00007-5
http://dx.doi.org/10.1016/j.physrep.2016.02.005
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1016/j.crhy.2018.03.003
http://dx.doi.org/10.1103/RevModPhys.91.021001
http://dx.doi.org/10.1103/PhysRevC.92.044619
http://dx.doi.org/10.1088/2632-072X/ab79bc

	Introduction
	Quantum Chaos and Random-Matrix Theory
	Ensemble of Random Matrices
	Time Evolution of Average Occupation Probabilities
	Markov Approximation
	Corrections to the Markov Approximation
	Oscillatory Terms
	Summary and Conclusions
	References

