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Abstract

The differential inclusive jet cross section in proton-antiproton collisions at a
center of mass energy of 1.96 TeV reaches the smallest distances or equivalently
the highest momentum transfers ever probed. We present a preliminary mea-
surement of jet production from the DO experiment at Run II of the Tevatron.
Next-to-leading-order QCD calculations of the cross section are consistent with

the data over seven orders of magnitude.
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Chapter 1

The Energy Frontier

One of the most basic questions a scientist can ask about almost anything is:
“what is this made of?” Modern science has answered this to a remarkable
degree. By the beginning of the twentieth century, scientists had determined
that all visible matter in the universe was made of atoms, and they formulated
the periodic table of elements. While the table did not list every element that
can be found in nature, and new ones have since been manufactured, this was a
major success that lead to great progress in answering the above fundamental
question. Some scientists believed that atoms were entirely indivisible, but
nobody had yet applied enough energy to completely rip them apart and see
what they were made of. Chemical reactions typically involve energies of no

more than a few eV (electron Volts) per atom, not enough to break them apart.
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CHAPTER 1. THE ENERGY FRONTIER 2

Early x-ray work reached energies of keV (10% V) but this too was insufficient
to break atoms.

There were hints that atoms might be divisible. The electron and other
forms of radiation were discovered before the end of the nineteenth century. In
the early part of the twentieth century, scientists learned that atoms contained
electrons and a positively charged nucleus. The discovery of the nucleus required
hitting atoms with other particles that had kinetic energies of several MeV
(10% eV). Doing this experiment required the use of energetic natural radiation
that was also discovered near the turn of the century.

By the mid 1930s, scientists determined that matter was made of three
types of particles: electrons, protons, and neutrons. Much of this knowledge
came from scattering experiments, the most famous of which was done in Ernest
Rutherford’s laboratory in 1911. By scattering ﬁaturaﬂy occurring « particles
off thin gold foil, his group discovered that gold atoms h:;we hard cores at their
centers. The energy of the naturally occurring o particles was about 6 MeV.
With this energy, they could easily penetrate the atom, but not the nucleus.
Discovering protons and neutrons in the nucleus required similar energies, but
smaller target nuclei. To dig any deeper required higher energies, far beyond

the reach of natural radiation.
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CHAPTER 1. THE ENERGY FRONTIER 3

To probe the nature of electrons, protons, and neutrons requires accelera-
tors.! Using primarily accelerator-based experiments, physicists in the twentieth
century have constructed the Standard Model of particle physics. In the Stan-
dard Model, the electron is a fundamental particle, but the neutron and proton
are composites made of indivisible quarks and gluons. As the energy frontier
moves forward, we will probe these particles at even smaller distance scales al-
ways asking: “what is this made of?7” References to all of these discoveries and
much more can be found in Ref. [1].

This thesis reports research performed at Fermi National Accelerator Lab-
oratory’s Tevatron, currently the world’s highest-energy accelerator, where we

study the highest energy pp collisions. The name Tevatron comes from TeV.

1 TeV = 1000 GeV = 10" eV (1.1)

We are following the tradition of Rutherford, probing the structure of the proton

at the smallest distances we can attain.

! Cosmic rays come to earth from space and they can have extremely high energies. These
have been used for studying many issues in particle physics, but, unlike particle beams from
accelerators, they constitute a poorly controlled laboratory. Accelerators can provide many
collisions at a fixed energy; with cosmic rays, you get what comes.
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