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THE SIMPLE BEAM-LOADING THEORY
FOR CONSTANT-GRADIENT LINACS

1. UDesign Philcsophy of Constant-Gradient Linacs

*
This has been described by Neal.  No further discussion is needed here.

2. (Conditions and Assumpbions

{a) The liwae waveguide is almost a periodic structure. Waveguide dimen-
sions vary slowly from zell to 221l in & suitable manner, so that the forward
B field exeited by an exbternal source located at 2z = 0 dis constant over
the whole lengzth of the waveguide from z = 0 to z = 4.

th the attenuation constant @ and the group velocity vg are
funciions of z. We assume that O and vg are independent of frequency .
The group velocity is much smsller than the veloeity of light c.

{c¢} The phase velocity of wave propegation at the operating frequency
is egual to c.

(@) The rf bunehing of the electron beam is infinitely sharp. FElectron
velocity 1s egual to c. *

(e} Backward wave propagation in the waveguide may be neglected.

{f} fThe shunt impedance r per unit length of the waveguide is assumed

to be a constant, independent of both o and 2.

3. Differential Eguation

corresponding to Bg. (1} in TW-62-69 we have, for a linac waveguide of

siowly-varying geometrical dimensicns,

{Z?;’j + i{a% + tig - dm 4 avg (l + T B% %)}J Ez’t(zjt) e - ¥{z,t). (1

= \

¥k, B. Weal, "fheory of the Constant Gradient Linear Electron Accelerator,”
M.L. Report No. 513, Stanford University, dMey 1958.



Here ®_ ., ¥, and P are as defined in TN-62-69. In order that  E may

Z,“" z,“:‘

~ have a constent amplitude in the steady state, i.e., E _ = comst. X exp(iwt ~ iBz),
: - . . 2
the waveguide must be so designed as to satisfy

1w é%’ééF =0 (2)
Unciez' this condition Eq. (1) becomes
<§z‘ + 16) + -1;1— (5%- - id; Ez +(z,t) = ~ Pz,t). (3)
g 2

Since r is assumed to be & comstant, (1/0) must vary linearly with z.
Let &, be the value of Q at z = 0, then

a = a,/(1 - eaoé). | (%)
Since V= wf20n = (wf2aR) - (1 - 20,2),

Vg = vgo(l - 20602}. (5)
Here, Va0 = w/20,Q is the value of v_ at z = 0.

Substituting Bq. (5) into Bg. (3) we cobtain the differential equation
for a constant-gradient linnc waveguide as follows: |

{(l - 203} (5%7 + iB) + '{}L (éa'é' - im> E, t(z,,*:,) = - {1 - 20,2 )F(z,t). (6)
\ go >

-

4. QGreen's Function

3 i {8 | N fa
{(l - 20, %) (35 + iﬁ) + ?g: (’E}“{;’ - 1m> g+(z,t) = - &{z)&(t). (7)
z
g+(z,t) = - U(Z)ﬁ(b -uf %3.) ei(wt-ﬁz). (83
0 g



As a contrast, we re-write the Green function given by Eq. (3) in TN-62-69 for
constent~ linacs as

v

g,(z,t) = - U(z)&(t ] _§_> 0z+i(at-Ba)
&

The differences in characteristics between these two kinds of linac waveguides

way be seen most clearly by comparing these two forms of Green's functions.

5. The Formal Solution

[*5] o3
Ezyt(z,t) gk/m azvjn ast g+(z vzt - ) s (1 - 2o,z (2" ,%" ). (9)
C O} 00

6. Source Terms

As in TW-62-59 ve denote the extermal source by (- Fa) and the internal

source accounting for the sherply-bunched electron beam by (- Eb).

- Fa(z,t} - EZ(O3U{t + 1)8(2)0(t + 7) + exp(iwt + 16). (10}
- Fb(z,ﬁ} = - arf » U(z)U(t - z/c) - exp(iet - 1Bz ). (11)

In BEq. (10) ©{t + )} is some suitable function not yet defined. The right-
hand side of Fg. (11) is obtained from <« arJ(z,tj> by omitting all the
haxmonics exp<%n(am - ﬁz)} of J{z,t) with n % 1. This approximation is
Justifiable in the simple beam-loading theory a&s discussed in TH-63-6.

T. An Awxiliary Punction

For subsequent analyses we find it coavenient to introduce the auxiliary

function ¥{w) such that, if

o g .
vi= vg/(l - vg/c), 0<u<4, then
u = y{w), {12p)
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F o ( Y e d Ty 47 e o - :
(1 - 2o0u) an;\daovgou/e) w exp { 2auvg0w3¢

Since 20u £ 1 ard vgﬂ/c << 1, the foregeing equation gives, on omitting

the higher order terms of lagrange's series expansion,

1 v .
YW} E e (‘1 - e‘zo‘ovgﬂ + E2 (e'e%vgow - e"i*aoszW) (13)
5 C
e}
and
d";" [ -0 v oW vgf{) 20V W -'l!a Vo] f )
—— vgc e "0 gn . BT (e Qg0 -~ 2¢ Togo \) - (14)
W : c

C. The Forverd ¥ #ield
Assuming that the phase angle 6 1In Eg. {10) is zero, we obtain by integrating
Eg. (9)

Z 2
o i\ ./ AT
B (2,5) = B (0U(2)ut + 1 -f it 4w »f & elut-pz) (15)
\ o & \ o

b |
B (2,8) = - a7 oHPa) U'{Z)U(t ) :t) : L -y f dz _ } e -yl - 2N ey

|
~>;
L o vg / - © J

The vesultant field E7 ‘(z,t§ is the sum of the two fields given above.
Ls 5 "5
Te fecilitate comparison we reproduce here the corresponding field expressions

for constant-¢ linacs:
4y vf o e z ~Czri{at-gy )
EZ@.(“; ‘) EZ( QMJ{Z:}‘U V@f [V 3 V_r e
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S. Electyién Energy Gain

The electron energy gain V{ﬂt) in length 4 of the linac waveguide is
given by Eq. (11} in TN-62-69. This consists of two parts; Vgﬁt) = V@a(t) + Véb(t)'
For the seke of convenience, we again define the quantities La(t) - Vgﬁ(t)/Ez(O),
Lb(t) =Vpy (t)/EZ(O), and L(t) = V&(t)/EZ(O} as in TN-62-78 and consider the

dimensionless quantity

abL(t) - aoLa(t) + abLb(t)’ 7

Subsﬁituting Egs. (1) and (16) given above into Eq. (11} of TH-62-69 and
simplifying the resulting equetion we obtain

T+

oL, {t) = f vleie(ele ' (t + = - £)ag - (18)
LA Al
and
ad&
G‘ol*o'(’t) e - XU(L) - f C}lozde(czoz)
LO
H
bt
- Ulty - -t:)ef ay'{t + n) {aozsr(t +q) - acasf(t)}dn : (19}
= [N | ‘?) dz
In these two equations, X = rJ/‘EZ(O), tho= f =, and v'(w) = ay(w)/aw. The
| Fo

quantity t% may be called the elfective filling time to distinguish it from
L
the filling timé t, = | ==, Evidently, 4 = d’(tﬁ)’ Eq. {19) can easily be

Foo5 Vg
integrated. Thus,
) 5 - ; i 1 o = “1 3
a b, (t) = - ult) £ - [(ao'&)a - Ut - ) {aofé - aogf(t)) 2} . {20}



L

For comparison, we may note the following corresponding equations for the

case of constant O

4
otLa(t) = f U(§)f(§)avé emé(t-’r’ﬁ"g}dg'

t+r»t§

ol
oy (t) = =XU(t)f (l - e‘o‘z)a(az)

ey 5 )
- ult), - ) f o {e Vet | e”wg(t+ﬂ)> an

10. Time Derivative of « cL(t)
1t is to be understood that f(g} is & continuous funcition of £ and
£{0) = 0. By differentiating Egs. (18) and (20) with respect to t we obtain

T+t
= aQLa(’G)> = f u(e)e (Ela v (b + v - £)ag | (21)
t+'r-t1;
and
= czoLb(t)} = - u(edults - £) - Xe ' (6) {a b - ao\zr(t)} . (22)

11. The Condition for Attaining Constant Electron Energy
r
Let us restrict the time variable to t > 0. From (d/dt)iceoL(t )} = 0,
we obtain this condition as

ty o (6)[ag(tn) - ap(e)] , b <ty (230)
u(g)e (el y'(t + v ~ £}t = |
taT-tl 0, t >ty . (23v)



From Eg. {(23b) it is clear that, when & > v, either £'(£) must vanish or
ozoﬂf’(t + 7~ 8)°(E) must be an oscillating function of period tzj.,. In the
latter case, the integral of Cco\if"(t + 1 - &)+ £'(&) over any whole period
must vanish. Here we mey recall that f£°'({¢) satisfies similar conditions

for constant~g linacs.

12. The Required Function f£{%t + %) for Constant BEnergy Gain

For the sake of simplicity, we consider 7T > tF",. Under this condition

Eq. (23) is not difficult to solve. Let us denote

‘&'O(W) = (1/2050) (l - e—aaovgow)

and

w00 = Vo eV go?
so that, according to Egs. (13) end (1b),

OERAC RN RCERRAG)
and

W) T () - <vgo/c><ew5<aw> - w;(w)>.

Evidently, £(&) may alsc be expanded in powers of the small quantity Vgo/c'
We thus take

£(g) S 1 (2) + (vgo/c)fl(g)

and

£r(e) = £(8) + (v, /e)e (k).

(2ha)

(2kb)

(25)

(26

(27a)

(2)



In terms of these new functions Eq. {(23) may be written as

t+7 v
| ae - %g(g)abwg(t T - &)+ ~§9 {f1(§)05¢g(t +t - k)
t+1nt§
- ep{eoyilt + 1 - b))+ of (E)ay! (2t + 2 - 2é%ﬂ
e r Y3 gr Vgo
= ultl - t) © XoZ - ‘-i‘-’;fo&t) L\ifo(.‘tl';.) =i {t)) - TQ“’é(t) boltg) - v ()
Veo v Y_&E?. |
P wo(t){\yO(EtF) - woéet»)} * 2y (2t) {u’o(tgp} -y et . (28)
Since ¥ {t1) - ¥_(t) = - (1/2a0vgo) volty) - wg(t%> viiet) = (1fvgo)w£(t) M

and () -y ltp) = v yilty + t), ve have

§ " +1 - " = Yl 2+ t) - 2t .
vaat) Qo (th) - v () = yile) Qg + ) -y ( )1
Thus, every term inside the square brackets on the right-hand side of Lq. (28)
contains the common factor w;(t). Similarly, every term inside the square
brackets on the left-hand side of Eq. [28) contains the common factor

Wg(t + 7 - £), vhich is equal to exp¢- 20 v {71 - £)\ . wg(t). Therefore,

o go
we can cancel the factor ngg(t) on both sides of Eq. {28). We then get

4+ '
L =0l {~-~ . v
f R P O £(8) - .08)
t+1_t% ¢

+

HENCANPE KO §{}

"

V K v B! i Y )
ues - ) ~2a - My (e) - v () ..gg{ vo(2th) - 3y (2t)
L

C

3V
O

+ E\ya(tEi +t) - ewv(tg,) + e\yggt)} (z
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The zeroth-order solution is obtained by neglecting the small terms having
the factor Vgo/c. Noting that

(t‘}wf w(t - 1+ £t ,

T~

we easily find
(&) = 6z - &) - Xa_ ooty w2ty - 21 + 28). (30}
Having obtained fg(g} we may then solve Eg. (29) for fi(g} in a straight-

forward though somewhat tedious manner. Dy using the zeroth-order solution,
By. {29) may be redused to

t+7
f e oTgolE) L prigras = ulty - 8) 2
& ¥ <

t+T—t§

+ B U { -\“ i Y oo f s §
{3{%(%}%) %(211)_/ 2 {1;@(2%.@3 vl + tF}">

LY

- {gi(lﬁ‘} - w@{t)} -2ty - il + ted.

e
Ry
S
r-;b
Rt

The solution of this sgquabtion is 28 follows:

vl - E)'*)Xao eaaOVEO ¥ . [5ﬁg(3ﬁg - 37 + 3t

i

[ ‘,’_
fl‘*-gj

- ;8 f Vo Dw Yo ! LI R 3
2y (3t5 - 21 + 2t) yo(th 2t + 2¢)

§

o go

2 {1 +2a v {(t - §?> Wg(Bté - 27 + 2&5}, {32}



Woting that f£{f} is continuous and f£{0} = 0, we obtain by integrating
Ege. {30) and (32)

xa
0

£,(e) & —2 FoVgolBT-) Ru(g) <ol - o) - vgee) + uls - DWyler)  (33)

2
and

?{05

£(8) =0 Povya(3T24) {ue) - us - o)) - [wom) = (ARG

{w (2t . - tE',:) - \I;;('c - tI;)} + {(21 - ag)x:rg(ag + 1) - 21\1:(’)(19]

7(a

r =2 Fgg(3r 2 (e - ) - b (e - {13 - v, ()
N {ACEEERACE tg%)} - eryy(n)]. (34)

The functional form of f£(&) = fo(g) + (vgo/c )fl(g) is more complicated than
the corresponding form in the case of constant-Q. For comparison, Eq. (15)
in TN-62-78 is rewritten as follows:

£(t) = vy [{Ufg) - U(§ - ’r)} ( - e'wé'%f‘) + U(E - 1) - (l- e-ocvér)]_

Now we substrtute the foregoing expressions £ (§} and f (&) into
(JB) and carry out the 1ntegration to obtain a T, (*t:) ’I.‘he result is

o:oLa(t) = a,o—ﬂ— () - U(t}g,, -t) - g ozof?, - ao\t;(t)>2. (35)
Thus
ot
o L(t) = ozof& - (1) ~xf (aoz)d(aoz). (36)
' ‘ (9]

This is, as expected, independent of t.

- 10 -



The corresponding expressicn in the case of comstant-Q is, according
to Bg. (16) in TN-62-78,

ol
oL(t) = @ - e.urﬂ) - £(1) -Xf (1 - e_az) a(oz ).
o
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