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Abstract. The characterization of entanglement is a fundamental issue for Quantum
Information Theory. But the definition of entanglement depends on the notion of locality,
and thus on the tensor product structure of the state space of the composite system. This
notion is affected by the presence of superselection rules that restrict the accessible Hilbert
space to a direct sum of subspaces.

Indistinguishability of particles imposes one such restriction, namely to totally symmetric
or totally antisymmetric states. The entanglement can in this case be defined with respect to
partitions of modes in the second quantization formalism. For fermionic systems the Fock space
of m modes is isomorphic to the space of m qubits, but the action of creation and annihilation
operators is not local, due to their anticommutation.

Conservation of the parity of fermion number imposes another relevant superselection rule.
It requires that local physical observables commute with the local parity operator.

Taking into account the considerations above, it is possible to define the set of separable
states or equivalently the concept of entanglement for fermionic systems in a number of ways.
Here we analyze systematically these possibilities and the relation among the various sets of
separable states. We also discuss the behavior of the different classes when taking several copies
of the state, as well as the characterization of the sets in terms of the usual criteria regarding
the tensor product.

1. Introduction
Besides being one of the characteristic properties of quantum mechanics, entanglement is a
valuable resource for quantum information processing. Entangled states can for instance be used
to achieve cryptographic tasks that would not be allowed classically. The goal of entanglement
theory is to characterize this resource and to quantify it, as well as to identify how it can be
transformed and manipulated.

The concept of entanglement [1] is very much related to the definition of locality. In a
composite quantum system, the notion of locality typically relies on the tensor product structure
of the total Hilbert space. In the case of indistinguishable particles such structure disappears due
to the restriction of the physical states to the completely symmetric or antisymmetric part of the
Hilbert space. Something similar happens in the presence of other superselection rules, which
affect the concept of locality and thus also that of entanglement [2–6]. Since a superselection
rule restricts physical local operations to the ones compatible with the conserved quantity, there
exist states that cannot be prepared locally, although they can be written as convex combinations
of product states.
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In this work we study entanglement in a system of indistinguishable fermions. We consider
systems in second quantization, and analyze entanglement between distinguishable sets of modes,
or regions in space. Entanglement between particles was studied in [7–9] in first quantization.
Other works have dealt with entanglement between modes [10–16].

The goal of the present work is to systematically study the possible definitions of entanglement
in this system, given the indistinguishability of fermions, the anticommutation relations and the
parity superselection rule, i.e. the conservation of the parity of the number of fermions. We find
that the various possible mathematical definitions carry different physical menaings, related to
the ability to prepare, use or measure the entanglement.

In the rest of this paper, we review the main results from our study. We discuss how the
main separability definitions arise, and emphasize the different meaning of the identified sets.
A more complete mathematical treatment, including the proofs of all the relations stated here,
can be found in [17].

In section 2 we introduce the basic ingredients for the study, namely the different
representations of the system (in terms of fermionic operators or in the Fock space) and the
parity superselection rule. The definition of product state, first step in the process of determining
what separable states are, is discussed in section 3. From the various sets of product states,
separability sets are constructed in section 4. The different sets can be characterized in terms
of the usual tensor product criteria, as discussed in section 5, what turns out to be useful in
order to determine when a given state belongs to any of the separability sets. An interesting
consideration regards the behavior of the various definitions when we analyse the separability
of several copies, and in particular, the asymptotic limit. As described in section 6, in this limit
the differences among the various definitions seem to vanish. Finally, in section 7 we summarize
the results of the work.

2. Basic concepts
We will be studying systems formed by a finite number, m, of fermionic modes. There, we
define a bipartition in two subsets A = 1, . . . mA and B = mA + 1, . . . m. The mathematical
objects describing this system are creation and annihilation operators, {a1, a

†
1, . . . am, a

†
m},

satisfying canonical anticommutation relations, {ak, a†l } = δkl. They generate the algebra of
all observables. Correspondingly, we define the subalgebras A and B as the ones generated by
the subsets of modes A and B.

The fermionic system can also be described in the Fock representation, defined by

|n1, . . . nm〉 = (a†1)n1 . . . (a†m)nm |0〉, (1)

where nk is the occupation number of mode number k. The Jordan-Wigner transformation,

a†k =
k−1∏
i=1

σ(i)
z σ

(k)
+ , ak =

k−1∏
i=1

σ(i)
z σ

(k)
− , (2)

maps fermionic creation and annihilation operators onto Pauli spin operators. The Fock space
corresponding to m fermionic modes is then isomorphic to a m-qubit space. However, the action
of fermionic operators in this space is not local, due to the anticommutation relations. Therefore,
the operators in the subalgebras A and B cannot be considered local to the corresponding
partitions.

One fundamental ingredient in the systems of fermions that we considered is the conservation
of the parity of the fermionic number,

P̂ =
∏
k

(1− 2a†kak).
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Table 1. Relations among sets of physical product states.

Set Definition Relation Example in 1× 1

P1 ρ(AπBπ) = ρ(Aπ)ρ(Bπ)
ρP1 = 1

16


9 0 0 −i
0 3 −i 0
0 i 3 0
i 0 0 1

 ∈ P1π \ P2πP2π ⊂ P1π

P2 ρ = ρA ⊗ ρB
P3π = P2π ρP2 =

(
a 0
0 1− a

)
⊗
(
b 0
0 1− b

)
∈ P2πP3 ρ(AB) = ρ(A)ρ(B)

The conservation of P̂ requires that physical states have either an even or an odd number of
fermions, forbidding any coherent superposition of both. Therefore, the physical Hilbert space
is the direct sum of the even and odd subspaces, and all physical observables must commute
with the operator P̂ . The set of physical states is the given by

Π := {ρ : [ρ, P̂ ] = 0},

while Aπ and Bπ will designate the sets of local physical observables, commuting with the local
parity operators P̂A and P̂B, respectively.

We will say that an observable is even (odd) if it commutes (anticommutes) with P̂ , and
can then be decomposed as a sum of products of an even (odd) number of fermionic creation
and annihilation operators. Notice that even (odd) operators do not correspond to the even
(odd) eigenspace of P̂ . We can define also the projectors onto the eigenspaces of well-defined
parity, Pe(o). In terms of them, any physical state can be written as ρ = PeρPe + PoρPo, with
a block-diagonal structure, and the same is true, in the local subspaces, for parity conserving
observables, Aπ = PAe AπPAe + PAo AπPAo .

3. Product states
Since separable states are defined as convex combinations of product states [1], the first step
in our analysis must be the definition of product states. Given the above considerations, we
could study the entanglement of our system both in the Fock space representation or at the level
of the operator subalgebras. In the first case, exploiting the isomorphism to a qubit system,
separability can be studied with respect to the tensor product C2mA ⊗ C2mB . In terms of
the operator subalgebras, there are two possibilities. We could study entanglement between
subalgebras A and B, but they do not commute, and the corresponding observables act in
general non-locally in the Fock space. From this argument, it is logical to consider entanglement
between Aπ and Bπ, i.e. the restriction of both subalgebras to parity conserving operators.
These subalgebras are mutually commuting and can be considered local to each partition.

Using all the criteria above, we may define three fundamental sets of product states. Here
we focus only on the relations among physical sets, which are summarized in Table 1 (for the
whole treatment of physical and non-physical states, see [17]).

• We may say that a state is a product if the expectation value for all products of local
observables factorizes. We call this set P1. Formally,

P1 := {ρ : ρ(Aπ Bπ) = ρ(Aπ)ρ(Bπ)
∀Aπ ∈ Aπ, Bπ ∈ Bπ} . (3)
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• A product state can also be defined at the level of the Fock representation. As for the
isomorphic m-qubit system, we may then say that a product state is that which can be
written as a tensor product.

P2 := {ρ : ρ = ρA ⊗ ρB} . (4)

• If we want to look at the entanglement between A and B, we may ignore the restriction to
parity conserving operators, and define product states P3 as those for which any product
of observables factorize [18], namely

P3 := {ρ : ρ(AB) = ρ(A)ρ(B) ∀A ∈ A, B ∈ B} . (5)

The three sets above are strictly different, but if we look only at physical states, i.e. those
commuting with the operator P̂ , we find that

P3π = P2π ⊂ P1π, (6)

where the subindex π indicates the interesection of the sets defined above with the set of physical
states, Π.

It is also worth noticing that the difference between P2π and P1π vanishes in the case of
pure states.

4. Separable states
Separable states are those that can be written as a convex combination of product states.
Therefore we may construct different separability sets by simply taking the convex hull of each
one of the sets defined above,

• S1π := co (P1π) = {ρ ∈ Π, ρ =
∑
λkρk, ρk(Aπ Bπ) = ρk(Aπ)ρk(Bπ), ∀Aπ ∈ Aπ, Bπ ∈ Bπ},

• S2π := co (P2π) = {ρ ∈ Π, ρ =
∑
λkρ

A
k ⊗ ρBk , [ρA(B)

k , P̂A(B)] = 0}.

None of these definitions corresponds to the usual definition of separability in the Fock space,
as we would get by just importing the definition for a system of m-qubits. This indeed gives a
third separability set,

• S2′π := co (P2π) = {ρ ∈ Π, ρ =
∑
λkρ

A
k ⊗ ρBk }.

Notice that in the definition of S2′π, no restriction from the conservation of P̂ is imposed to the
factors in the convex decomposition, whereas S2π includes such a restriction. Therefore, S2π
contains all states preparable by means of local operations and classical communication in the
presence of the superselection rule (LOCCS), whereas in S2′π there will be states that cannot
be locally prepared.

We may think of a setting in which the only accessible information about the state is the
result of local measurements. In such situation, it is not possible to distinguish states which
produce the same expectation values for all physical local operators. It makes then sense to say
that such states are equivalent, and define thus an equivalence relation between states,

ρ1 ∼ ρ2 if ρ1(AπBπ) = ρ2(AπBπ) ∀Aπ∈Aπ, Bπ∈Bπ.

As discussed above, when parity conservation is in play, the only states that can be prepared
locally are those in S2π. On the other hand, locally accessible observables are quantities of the
form ρ(AπBπ). It is then natural to define a state as separable if it is equivalent to a state that
can be locally prepared. This would define the set of separable states as the equivalence class
of S2π with respect to the relation ∼,
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Table 2. The different sets of separable states and their relations.

Set Characterization Relations Example in 1× 1

[S2π]
∑

α, β=e, o PAα ⊗ PBβ ρPAα ⊗ PBβ ∈ S2′π
ρ[S2π ] =

1
15


5 0 0 2

√
5

0 3 3 0
0 3 3 0

2
√

5 0 0 4


∈ [S2π] \ S1π

S1π ⊂ [S2π]

S1π
ρ =

∑
k λkρk, s.t.∑

α, β=e, o PAα ⊗ PBβ ρkPAα ⊗ PBβ ∈ S2′π

For the 1× 1 case, S1π = S2′π.
Therefore examples of S1π \ S2′π
can only be found in bigger
systems, f.i. 2× 2 modes.S2′π ⊂ S1π

S2′π ρ =
∑

k λkρ
k
A ⊗ ρkB

ρS2′
π =

1
4


1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1


∈ S2′π \ S2π

S2π ⊂ S2′π
S2π PeρPe ∈ S2′π, PoρPo ∈ S2′π ρ ∈ S2π ⇔ ρ diagonal

• [S2π] := {ρ ∈ Π, ∃ρ̃ ∈ S2π, ρ ∼ ρ̃}.

It is also possible to define the equivalence classes corresponding to the other sets of separable
states ([S1π], [S2′π]), but it is easy to show that they are all equivalent to [S2π] [17].

Therefore, we have defined four sets of separable states. It turns out that they are strictly
different and

S2π ⊂ S2′π ⊂ S1π ⊂ [S2π]. (7)

The non-strict inclusions are easy to show, and table 2 shows some examples of the strict
character of some of the relations (see [17] for the complete proofs).

These four sets correspond to four classes of states, each one strictly including the preceding
class.

(i) S2π contains states that can be prepared by means of local operations, when these are
restricted by parity conservations, plus classical communication.

(ii) S2′π contains states that are writable as convex combinations of product states in the Fock
representation.

(iii) S1π includes convex combinations of states for which all products of locally measurable
observables factorize.

(iv) [S2π] contains states such that all locally measurable correlations can be reproduced by a
separable state from any of the classes above.

5. Characterization
The separability sets defined in the previous section can be characterized in terms of the usual
mathematical criteria, i.e. with respect to the tensor product. This allows one to make use of
standard separability conditions [19] in order to decide the membership of a given state with
respect to each of these classes. Table 2 shows these characterizations.
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The standard separability concept [1] corresponds to set S2′π, applied to parity preserving
states only. The set S2π, on the other hand, is formed by states which can be decomposed
in terms of tensor products, where every factor commutes with the local version of the parity
operator. Since any physical state has a block diagonal structure ρ = PeρPe + PoρPo, we can
make use of this expression to conclude that each block must have an independent decomposition
in the sense of the tensor product. Therefore a state will be in S2π iff both PeρPe and PoρPo
are in S2′π.

It can be seen that for a state to be in P1π, all of its diagonal blocks must be a tensor
product [17], ∑

α, β=e, o

PAα ⊗ PBβ ρPAα ⊗ PBβ = ρ̃A ⊗ ρ̃B ∈ P2π.

The set S1π is then characterized as the convex hull of P1π, i.e. it is formed by convex
combinations of states that can be written as the sum of a parity preserving tensor product
plus some off–diagonal terms.

Finally, the equivalence class [S2π] is defined in terms of the expectation values of observable
products AπBπ. These have no contribution from off-diagonal blocks in ρ, so that the class can
be characterized in terms of the diagonal blocks alone. A state ρ is then in [S2π] if and only if∑

α, β=e, o

PAα ⊗ PBβ ρPAα ⊗ PBβ ∈ S2′π. (8)

The condition involves only the block diagonal part of the state, and is thus equivalent to the
individual separability (with respect to the tensor product) of each of the blocks.

6. Asymptotic behavior
All the definitions introduced in the previous sections apply only to a single copy of the fermionic
state. In this section we are instead concerned about the stability of the various criteria when
several copies are taken into account. In particular, it is relevant to understand their behavior
in the asymptotic limit N →∞.

The conditions for S2′π and S2π are stable when taking several copies of the state.

ρ⊗2 ∈ S2′π ⇐⇒ ρ ∈ S2′π,
ρ⊗2 ∈ S2π ⇐⇒ ρ ∈ S2π.

Moreover, in [4] it was shown that both definitions are asymptotically equivalent, as the
entanglement cost of S2π converges to that of S2′π in the limit N →∞.

On the contrary, S1π and [S2π] are not stable when we take two copies of the state. It is
possible to have a state ρ ∈ S1π ([S2π]) such that ρ⊗2 is not separable according to the same
criterion. However, the opposite sense of the implication holds.

ρ⊗2 ∈ S1π ⇒ ρ ∈ S1π,
ρ⊗2 ∈ [S2π]⇒ ρ ∈ [S2π].

Moreover, it is also possible to prove that separability of two copies according to [S2π] implies
positivity of the partial transpose (PPT) of ρ,

ρ⊗2 ∈ [S2π]⇒ ρ PPT.

Therefore, an non-positive partial transpose (NPPT) of ρ implies that the state is also non-
separable according to the broadest definition [S2π] when one takes several copies. In particular,
this is true for distillable states [20, 21]. This suggests that the differences between the various
definitions of separability may vanish in the asymptotic regime. The strict equivalence of the
classes in this limit, however, is proved only for the simplest case of only 1× 1 fermionic modes,
described in detail in [17].
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7. Conclusions
We have discussed how, in a system of indistinguishable fermions, the anticommutation rules
of the fermionic operators and the presence of the parity superselection rule give rise to several
reasonable definitions of separability. In general, we proceed by defining first the product states
and taking then convex hulls of them to construct the separability sets.

The various definitions of product states reduce in the case of physical systems to only
two different sets, P2π, or products in the Fock representation, and P1π, or states whose
locally measurable correlations can be reproduced by some state in P2π. For the definition
of separability we are left with four reasonable classes of separable states, each one associated
with different physical capabilities of preparing or measuring the states. S2π represents states
that can be prepared by LOCCS. The usual definition of separability in the Fock representation
is represented by S2′π, which contains states writable as convex combinations of tensor products
but not necessarily preparable in a local way. The set S1π contains the convex combinations of
states such that the expectation values of all local observables factorize. The last class, [S2π],
is characterized by locally measurable correlations reproducible by a state that can be prepared
locally. In order to be able to apply the usual separability criteria to determine whether a state
is or not within each of these classes, we have also characterized each set in terms of the tensor
product.

If we analyse the separability of several copies of the state, several features are to be noticed.
First of all, while the definitions of S2π and S2′π are stable under taking several copies, the same
does not hold for S1π and [S2π]. On the other hand, in the asymptotic limit the differences
among the various definitions seem to vanish. In particular, it is known that S2π and S2′π
become equivalent for a large number of copies and, in the case of 1×1 modes, i.e. the smallest
possible system, the equivalence is true for all the four classes. However whether all the classes
of separable states collapse to a single one in the asymptotic regime for a general system remains
an open question.
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