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text of Einstein theories of gravity and string theory, where there is no gravitational Chern-
Simons term in the action. We propose that it is holographically dual to a two-dimensional
conformal field theory with equal left and right moving central charges. Various checks of
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Hopf T-dualized black string.
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1 Introduction and summary

Three dimensional spacelike warped anti-de Sitter space (W AdSs3) is the geometry obtained
by expressing AdSs as a Hopf fibration over AdSs, where the fiber is the real line [1-3],
and “warping” the length of the fiber. Its metric is given by:

(4-pHe
12

ds? = [— cosh? pdr? + dp?® + 3%(dz* + sinh pdr)?] (1.1)

where z € [—00, 00] is the fiber coordinate and 3% € [0,4] is the warp factor.



When the fiber is stretched (3% > 1) we have stretched W AdSs, whereas when the fiber
is squashed (3% < 1) we have squashed W AdSs. In [4], these solutions and their correspond-
ing black holes were studied in the context of topologically massive gravity (TMG) [5, 6]. It
was proposed that quantum gravity in spacelike stretched W AdSs is holographically dual
to a two-dimensional CFT and a left and right moving central charge was proposed.

In this note, we wish to study the warped black holes and warped self-dual objects
discussed in [4] in the context of Einstein theories of gravity and string theory. In these
theories there is no gravitational Chern-Simons (CS) term in the three dimensional effective
Lagrangian. We examine the known cases where such solutions arise in theories of Einstein
gravity with matter content. We propose that in such contexts both squashed and stretched
spacelike W AdS3 is given by a two-dimensional CFT with equal left and right-moving

central charges given by

V34— %)
2G3

C], = CRr — (1.2)
where —6/¢% is the Ricci scalar and 32 is the warp factor of the warped solution (1.1).

The central charges are obtained by studying the Bekenstein-Hawking entropy of
stretched black holes and of both stretched and squashed warped self-dual solutions. These
central charges only depend on the warp factor and the curvature scale, which are both
geometrical quantities. Furthermore, when the solution becomes unwarped with 3% = 1
the central charges reduce to the ones for AdSs. Finally, one can express the Bekenstein-
Hawking entropy of the warped black holes and self-dual solutions in the form of the
entropy of a thermal state in a two-dimensional CFT by using the above central charges.
The left and right-moving temperatures of the thermal state are related to the coefficients
of the discrete identifications made on W AdS3 to obtain the warped black holes. One way
to confirm these central charges would be to find the appropriate boundary conditions for
warped anti-de Sitter space and study the asymptotic symmetry group (ASG), in the same
spirit as Brown-Henneaux [7].

The proposed central charges are then applied to match the Bekenstein-Hawking en-
tropy of the black objects with W AdS3 x S near horizons, discovered in [2], with the
entropy of the proposed dual CFT.! These objects are Hopf T-duals of the dyonic string [8]
in type IIB string theory reduced on a T* or K3. A Hopf T-dual solution is obtained by
compactifying the fiber coordinate z of the six-dimensional type IIB solution, performing a
T-duality along z and finally oxidizing back to six-dimensions. The type I1IB dyonic string
sources both NS-NS and R-R charges and has an AdS3 x S near horizon. Using the fact
that AdSs is dual to a two-dimensional CFT, we extend the duality chain obtained in [2]
to the following:

CFTp «—— AdSs x S® «—— WAdSs x S® «—— CFTy (1.3)

where both AdS3 and W AdSs have the fiber coordinate identified. We compute the entropy
of the thermal states of the CF'Ts on either side using the proposed central charges and find

Tt worth noting that both stretched and squashed W AdSs, with the fiber coordinate identified, can also
appear as the near horizon geometry of the extremal Kerr black hole at fixed polar angle [1, 9-11].



that they match, in agreement with the observation that the entropy of the black string
solutions remains unchanged under a Hopf T-duality [2]. Thus, the duality maps thermal
states with vanishing right-moving temperature in CF'T's to thermal states with vanishing
right-moving temperature in CFT4 with the same entropy.

Finally, the duality between AdS3 x S? and the theory obtained by Hopf T-dualizing
along the fiber coordinate of the S? is studied. We find that the Hopf T-duality is a map
between thermal states with vanishing right-moving temperature with the same entropy.
The CFTs on either side have the same central charge. A similar conclusion is obtained
for the duality between W AdSs x S3 and theory obtained by Hopf T-dualizing along the
fiber coordinate of the S3.

2 Black hole entropies

Our story begins by studying the entropies of both the BTZ and warped black holes in the
context of Einstein theories of gravity. As usual the entropy is given by the Bekenstein-

Hawking formula
Apn

4G3
where Apy is the proper area of the black hole and Gj is the three-dimensional Newton’s

Spr = (2.1)

constant.

2.1 AdS3 and BTZ black holes

We begin with the metric of global AdS3 expressed as a Hopf fibration of the real line over
Lorentzian AdSs:

62
ds® = — [~ cosh® pdr® + dp? + (dz + sinh pdr)’] (22)

where z is known as the fiber coordinate and {p, 7,2z} € [—00,00]. The isometry group
is given by SL(2,R)r x SL(2,R);, and the explicit form of the Killing vectors is given in
appendix A.

As is well known by now, BTZ black holes arise in Einstein gravity endowed with a
negative cosmological constant A = —1/¢2 [12]. Furthermore, these black holes have been
shown to be global identifications of AdSs [13-15].2 Specifically, they are obtained by
periodically identifying points along Killing directions of AdS3 and excluding the region of
space where CTCs arise (behind the horizon). The identified Killing direction is given by:

{=ml (TLJ2 - TRJ2> (2.3)

where Ty, = (r4 +7_)/2n0? and Tr = (r4 — r_)/2nl? are the corresponding left and right
moving temperatures of the dual theory and r; and r_ are the outer and inner horizon radii.
The central charges of the dual CFT were discovered by Brown-Henneaux [7]:

Cf, = CR = ﬁ (24)

2In what follows we will be focusing on non-extremal warped and unwarped black holes.



Finally, the Bekenstein-Hawking entropy of the BTZ black hole is given by

prz _ T _ ol -

- <TLcL + TRCR> (2.5)

T

The entropy takes the form of a Cardy-formula in accordance with the notion that the
theory is dual to a two-dimensional CFT.

2.2 W AdSs; and warped black holes

In [4], W AdS3 was obtained and studied as a solution to pure TMG [5, 6]. The explicit
metric for spacelike W AdS3 has the form:
(4-p)e

ds® = 1 [— cosh? pdr? + dp® + 3%(dz* + sinh pdr)?] (2.6)

where the Ricci scalar is given by R = —6/¢? and {p, 7,2} € [~00,c]. The relation to the

TMG parameter v is given by
412

(v2 +3)
Notice that the whole range of v? € [0, c0] spans the interval % € [0,4]. We will restrict
(32 to this range in what follows.

The isometry group of W AdS3 is given by SL(2,R) g x U(1), where the U(1) is spacelike.
The warp factor is given by 32 such that when 3% > 1 we have a stretched warped solution,

g2 = (2.7)

and when 3% < 1 we have a squashed warped solution.
The metric of the spacelike warped black hole discovered in [16, 17], is based on the
solutions obtained in [18, 19] and given by

(4= p%)dr? 2V/3 — T
12(r —ry)(r—r-) * Vi-p2 (Br — /rer=) didf

+(4§7TﬁZ) (82 = V)r + (ry +r-) = 28y/r7—) d§° (2:8)

ds? 9

Notice that squashed black holes, with 3? < 1, have CTCs close to the boundary where r
is large. Thus, it is unclear whether squashed black holes are part of the physical spectrum
of the theory.

It was further shown in [4] (see also [20]) that warped black holes are global identifi-
cations of W AdSs under a linear combination of the Killing vectors of W AdSs:

€=l (TLJ2 - TRL) (2.9)
where
3 2
Ty, = el =) <7°+ +r_ — B\/an> (2.10)
_ 3y —r)

Here one interprets the coefficients as the left and right moving temperatures, as is done

for the BTZ black hole.



2.2.1 Warped black holes in TMG

The proposed central charges for the dual CFT in the context of TMG were conjectured
in [4] to be:3

S (5U243)¢ (14 5%)(4 — 52)1/26

‘R = Gaup?+3) — G533 (2.12)
S BV
L= i TG (2.13)

Notice that they are not equal, implying a diffeomorphism anomaly in the boundary CFT.
In fact, the diffeomorphism anomaly arises from the gravitational CS term and was shown
to agree with that predicted from the bulk point of view in [22]:

- l
Cl, — CR = —G—gy (214)

The CS corrected entropy [23-26] for the warped black hole in TMG can be written as [4]

w2l
Stia = —~ (Teer + Ther) (2.15)
which once again takes the form of the entropy for a two-dimensional CFT.

2.2.2 Warped black holes in Einstein gravity

We will be interested in the central charges relevant to the stretched warped black hole in
Einstein theories of gravity. We begin by reviewing the known cases where W AdS3 appears
in Einstein theories of gravity with matter content.

Perfect fluids. It was shown in [19] that solutions to TMG with a cosmological constant
A can be obtained from solutions to Einstein gravity coupled to a stress tensor that takes
the form of a perfect fluid. That is to say

1
Rul/ _ §QW/R _ T}I;;atter (216)

where

Tlrllll/atter = (p + p)u,uuu + PGpv (217)

The pressure and energy density of the fluid are denoted by p and p such that the cosmo-
logical constant in the TMG theory is A = (2p — p)/3 = —1/¢2. In fact for such matter
content to support stretched black holes in (2.8) one requires u,u* = +1, i.e. a spacelike
four-velocity, for the perfect fluid. The warp factor is given by 5% = 4pf2/(pf? + 3).

3Recently, cr in (2.13) has been obtained by studying the ASG in [21].



Topologically massive electrodynamics. Squashed warped black holes, which have
CTCs, arise in topologically massive electrodynamics coupled to Einstein gravity and a
negative cosmological constant [27, 28] with action

= L 31/ 3 1 2 o pvp
Itvg = e /d x [ qg <R—|— 72 4F ) 2AuFI/p5 (2.18)

Stretched warped black holes can also arise in such theories, with a warp factor 5% =
20202 /(a?£?+1), but they require wrong sign kinetic terms for the Maxwell field strength. It
was shown in [28] that the standard black hole thermodynamics holds for warped black holes
in topologically massive electrodynamics using the Bekenstein-Hawking form of the entropy.

Near horizon of a extremal Kerr black hole. W AdS;3 is revealed to be the near
horizon of extremal Kerr black holes at fixed polar angle [1, 9].* Interestingly, it also arises
as the external metric to an extremely relativistic rotating disk at fixed polar angle [29]
given a specific limit. The metric is given by [9],

ds® = 2M2Q? (-(1 +r2)dr? + ﬁ +dB2 + B(0)*(d? + rdT)2> (2.19)
where the warp factor and 2 are given by,
2sin 6 1+ cos? 6
)= ——— 0P =—- 2.2
B(0) 1+ cos20’ 2 (2.20)

The coordinate ¢ has a 27 periodicity, 6 € [0, 7] and r € [—00, c0|. The angular momentum
is given in terms of the mass M and G4 by J = M?/Gy.

Uplifted solutions in string theory. Squashed W AdSs5 can be lifted to a full string
theory solution in ten dimensions, as shown in [30]. Also, black strings with near horizons
given by W AdS3 x S® were shown to be Hopf-T duals of the dyonic black string in six-
dimensions [2], supported by both NS-NS and R-R charges, which has an AdS3 x S® near
horizon. We will return to this case in section 4. Finally squashed W AdS3 has appeared as
an exact string background obtained from the target space of an exact marginal deformation

of the SL(2,R) WZW world sheet model [31-33].

2.3 Entropy of warped black holes and central charges

For Einstein theories of gravity, the metric (2.8) has a Bekenstein-Hawking entropy is given
by the area of the black hole divided by 4G3. Using the left and right moving temperatures
given in (2.10) and (2.11) this gives®

V3l

Seir T = 50— )G, (Bry —rer-) (2.21)
20 (/34— B2)2p¢ 34— pH)V2pe
:%<\f( 2£3> By, V3 2£3> BTR> (222)

4In fact the fiber coordinate is periodically identified, so it is actually a self-dual solution as discussed
in section 3.
®The relation (2.22) has also been noticed in the context of squashed black holes in [30].



Thus we propose that in the Einstein theory the central charges of spacelike stretched

W AdSs are given by

V34— %) 2pe
2G5

The above central charges pass all the obvious tests. For example, there is no diffeomor-

Cr=cL = (2.23)

phism anomaly for Einstein theories such that the difference between the central charges
vanishes. Furthermore, they reduce to those of AdSs, i.e. 3¢/2G3, when 5 = 1. Finally,
they don’t depend on the black hole parameters, r and r_. Of course, we should empha-
size that these central charges are reliable in the limit where gravity is reliable and the
curvature is small compared to E;?.

One could, in principle, verify these central charges by studying the asymptotic sym-
metries in the spirit of Brown-Henneaux. This has been done in [34] for squashed black
holes, where they obtain the above expression of cg up to a sign. We should note, however,
that it would be ideal to find a context in which we can compute the central charges for
stretched black holes, given that it is unclear whether squashed black holes (which have
CTCs) form part of the physical spectrum of states in the dual CFT. This is difficult be-
cause there is no known action in Einstein gravity, with non-pathological matter content,
supporting stretched black holes. If the limit 7 — 0 is allowed, the geometry tends to
AdS5 x R and the proposed central charges vanish at 3 = 0. Finally, if 5> > 4 the central
charges above become imaginary, however in all cases mentioned, the stretched solutions
are at most stretched with 32 = 4, where the central charges vanish again.

On the other hand, there is another set of non-pathological solutions obtained by
identifying the fiber coordinate which are likely to be part of the physical spectrum - given
the near near horizon of the extremal Kerr black hole at fixed polar angle is one of them.
In the next section we will study these solutions to get further evidence for ¢y, for all values
of 3% € [0,4].

3 Self-dual solutions

Even though the conjecture in [4] was formulated for stretched AdSs, evidence was proposed
for the squashed case. Specifically, certain self-dual solutions were shown to be physical
solutions. These solutions have the fiber coordinate z identified.® The reason we call such
solutions self-dual is that they resemble the self-dual solutions discussed in [35], where the
fiber coordinate is identified for the case of AdSs.

Let us identify the ¢ coordinate in (2.8) such that ¢ ~ t+2ma. The Bekenstein-Hawking
entropy for the warped self-dual solution is given by

SWSD - ABH o 7TC¥€

— - 1
BH 1Gs 2G5 (3.1)

It was shown in [4] that, based on the identification, one can naturally define a left moving
temperature for these solutions as Tp, = v/3a/B3(4 — 8%)'/27f, while Tg = 0. Then we can

SThere is actually an additional subtlety about squashed solutions in TMG. The limit 8 — 0 is ill defined
since the coefficient in front of the CS part of the action blows up. This is not an issue in the Einstein theory,
and the limit leads smoothly to an AdSz x R solution where the proposed central charges in (2.23) vanish.



write our entropy as

w2Tp0/3(4 — B2)V260 72Trcr,
SaoD — 3 2G; == SWED (3.2)

Thus obtaining another confirmation of ¢z, which in fact holds even when 32 < 1. If
the dual theory is a two-dimensional CFT with no diffeomorphism anomaly, knowledge of
¢y, suffices to conclude that cg = ¢;,. Thus we have indirect evidence for cg. It would
be interesting to learn, for the squashed case, what the non-pathological bulk solutions
corresponding to states with both left and right moving temperatures in the CFT are.
The relation (3.2) is in fact a property of the self-dual solutions of regular AdSs, which
can be confirmed by taking 32 = 1. We should note that regular self-dual solutions in AdSs
have the confusing property that the dual boundary theory has closed null curves, once
the Killing vectors are conformally rescaled.” This does not seem to occur for the case of
warped self-dual solutions; however, the notion of a conformal boundary becomes less clear
in this case [1], and it deserves a better understanding. The fact that the Cardy-formula
still holds suggests that we take the notion of a dual CFT seriously for these solutions as
well. We will now proceed to explore a striking relation between the warped and unwarped

self dual solutions discovered in [2].

4 Hopf T-duality

It was shown in [2] that there is a type of T-duality transformation that one can perform
on solutions of type IIB string theories compactified on a T* or K3 to obtain solutions
of type IIA string theory compactified on a 7% or K3. In particular they showed that
AdS3 x S? solutions (or solutions with such near-horizons) of a six-dimensional consistent
truncation of type IIB theory is T-dual to a W AdS3 x S3 solution (or solutions with such
near horizons) of a six-dimensional truncation of ITA.

They obtained this by expressing AdSs as a fibration of the real line over AdSs, com-
pactifying along the fiber coordinate and Hopf T-dualizing such that the length of the fiber
is no longer equal to the anti-de Sitter length in the T-dual theory. Thus they showed,

AdSs x §% «—— W AdSs x S° (4.1)

To be more precise, the theories that are dual to each other are in fact AdSz x S2 and
W AdS3 x S? with the fibrated direction compactified, and are thus the self-dual solutions
discussed in section 3. At the level of the massless Kaluza-Klein modes, either all or none
of the supersymmetry is preserved under a Hopf T-duality depending on the orientation
associated with the Hopf reduction [2].

4.1 Solutions

The matter content of the truncated type IIB theory consists of two dilatons, ¢1 and ¢o,
two axions, x1 and yo, an NS-NS three-form F (IgI)S and an R-R three-form F; (%)R. The matter

"One way to get around this is to turn on an right moving temperature Tr, such that the solution is a
regular BTZ black hole, and take the limit Tr — 0.



content of the ITA theory consists of two dilatons, ¢ and ¢, a four-form Fiy), a three-form
Fi3) and a two-form F(,). For the sake of simplicity, all the dilatons are set to zero in what
follows. In appendix B we give further details on the construction of the solutions.

Type IIB solutions. The AdS; x S solution of the six-dimensional type IIB theory,
which arises as the near horizon of the dyonic string [8] carrying both NS-NS and R-R
charges, is given by the following metric:

ds® = ﬁ - cosh? pdr? + dp? + (dz + sinh pd7)2] + ds*(S%) (4.2)

and
Fyp = Ae(AdS3) + Ae(SE) (4.3)
Fit = pe(AdSs) + pe(SE) (4.4)

The fiber coordinate z is not necessarily compactified in the above solution. We will
compactify it in order to obtain the Hopf T-dual solution in the type IIA theory. The Ricci
tensors are

Ry = =N+ 1*)gu /2, Rypn = (A + 11°) guon /2 (4.5)

where the Greek indices are those of AdS3 and the Latin indices are those of the S%. Thus,
the anti-de Sitter length is given by

4

2=
A2 4 p

= 4(Q%s + Qkr)"? (4.6)

where Qng and Qrp are the NS-NS and R-R charges of the two three-forms present in the
truncated type IIB action. Explicitly, they are given by:

1 A
= — FNS 7 4.
QNS 167‘1’2 /S% (3) ()\2 +M2)3/2 ( 7)
_ 1 RR _ 1%
Qrr = 1672 /S% Fay = (A2 4 p2)3/2 (4.8)

Note that distances are measured with respect to the string scale, £5. For gravity to be
reliable we require a small curvature which equates to having @Qng > 1 and/or Qrr > 1.

When we do a Hopf T-duality to obtain the type ITA solution, we compactify along
the fiber coordinate z, such that z ~ z + 27, and perform the field transformations spelled
out in [2]. The six-dimensional string coupling constant is given by

and the radius of the compactification circle in the string frame is given by,
1
VA2 + p?

where ¢ is the dilaton corresponding to the compactification radius in the Einstein frame.

Ryp = e(®1+¢2)/4+/3/8¢ _ = (Qks + Q2RR)1/4 (4.10)



Type ITA solutions. The (oxidized) Hopf T-dual solution of the six-dimensional type
IIA theory is given by,

1 A2

d2: _ h2 d2 d2
TS ey | T

(dz' + sinh pd7)? | + ds* (Si") (4.11)

where, z = A2/ /(A% + p?)3/? = Qnsz’. Once again, 2’ is not necessarily identified for (4.11)
to be a solution of the type ITA theory. For convenience, we have defined dsQ(Sf)Z‘) =
(A2 + ) 1/2d52(S3).

It is interesting to note that for real NS-NS and R-R charges we always find spacelike
squashed warped dual solutions. This property is true even when we turn on non-zero
constant values for the type IIB dilatons, as shown in appendix B.

Another interesting case given by a vanishing Qrr charge with g = 0. In this case the
Hopf-T dualized solution is also a product of three-dimensional anti-de Sitter space and a
sphere. This case will be of interest in the next section. On the other hand, if we turn off
Qns, such that A = 0 then the Hopf T-dual geometry becomes AdSy x S x S3.

The Ricci scalar of the W AdSs piece is given by

R=—(\+ pH)2(302 + 44%) /2 = —(3Q%s + 4Q%R )/ (Qks + Qhgr) ™/ (4.12)

Notice that the region of parameter space where the original AdSs solution has small
curvature is also that where the W AdS3 has small curvature. On the other hand, the size
of the compactified circle in the Hopf T-dual solution is given by Ryja = 1/Rpp which is
much smaller than the string scale when R > 1.

Finally, it is rather convenient to write the quantities £ and § in terms of the new
parameters A and p:
(A2 + p2)2(3N2 +4p%)  (3Q%s +4Q%g)

Y@

M+t QRs+ Qkn

G2 = (4.14)

5 Entropy of six-dimensional black strings

In this section we compute the entropy of the black string solutions, with the fiber coordi-
nate compactified, both from the six-dimensional gravitational point of view and from the
point of view of the dual CFT.

5.1 Six-dimensional type 1IB black string

We begin with the metric (4.2) which is the near horizon of the six-dimensional type IIB
black string. This has been computed in a similar, but not identical, fashion in [36, 37]
(see also [38, 39]). The four dimensional area of the black string is given by the volume of

the fixed p and 7T surface
1672

A= ————1L
4 (A2 + 12)2

(5.1)

,10,



where L = [ dz is the coordinate length of the string, which is infinite in extent. In order
to regularize this infinity we will identify the direction z ~ z 4+ 27w« such that L = 27wa.
Strictly speaking, since we are identifying z, we are actually dealing with a five dimensional
black hole. Thus, the Bekenstein-Hawking entropy of this solution is given by,®

A4Ge  Gg(A\* + p?)?

(5.2)

Now we can use our knowledge of AdSs/CFT, to compute the entropy once again, from
the point of view of the dual conformal field theory. Notice that with z identified, the AdS3
metric is a self-dual metric with anti-de Sitter length

(= (5.3)

NscEa

The central charge is given by Brown-Henneaux to be

3¢ 3
B
C _ = 5-4
L72Gs T gy 1 12 (54
and the entropy of the CFT is given by:
72 cPT
Sorr = TLL (5.5)

The left moving temperature 77, is determined by the periodicity of z and is found to
be T, = 5. The six-dimensional Newton’s constant is related to the three-dimensional
Newton’s constant by Gg = Vol(S3)G3 so that

()\2 + ,U2)3/2G6

Gs = 5.6
3 1672 (5.6)
Assembling all the pieces leaves us with an entropy for the dual CFT of the form:

Sepp = ——— =
CFT Go(\2 + 112)2 BH

and thus the entropies of the black-string with an AdSs3 x S% near horizon and the dual
CF'T match.

cf in the ten-dimensional frame. For later convenience we also write down the form
of cf in terms of Gg and the charges

5 4871 (Qig + QXs)
cr = Ge

(5.8)

In the ten-dimensional theory we have that 167Gig = (27)78¢? where Gyg =

(27ls) VaGg and (274)*Vra is the physical volume of the 7. Furthermore, we have

$We are using the following notation. Newton’s constants with no tilde i.e. G are those of the type IIB
theory, whereas those with a tilde, i.e. G4 are those of the type ITIA theory.

— 11 —



that g¢ = gs/+/Vra which we should take into account even though we set gg = 1 by
choosing ¢1 = ¢o = 0. Thus, in the ten-dimensional frame
Vipa - -
cf =6x 2" (Qkr + QRs) glg =6 (Q&r + Qks) (5.9)
S

where we have defined Qrr = 4Qrr/96 and Qns = 4Qns/gs- In the above form, the
discrete character of the central charge is manifest. The central charge is quadratic in the
charges bearing a similarity to the case ¢;, = 6Q1Q5 from the CFT found in the IR limit
of the world volume gauge theory of the D1-D5 brane system [38, 40]. In fact, if we switch
off the Qng we recover that precise situation.

5.2 Six-dimensional Hopf T-dualized type ITA black string

At this point we would like to apply our central charges (2.23) to account for the entropy
of the Hopf T-dualized black string whose near horizon is given by W AdS3 x S3 with
metric (4.11). The Bekenstein-Hawking entropy is found to be

4Gs  Ge(A2 4 pu2)7/2

(5.10)

where L = [ dz’. Once again, L is infinite in extent and we will identify the fiber coordinate
as 2/ ~ 2/ +2ma’ such that L = 2wa’. Then we have that our solution is a warped self-dual
solution and we can compute the entropy of the dual CFT. The central charge is now given
by the proposed value in (2.23). In terms of A and p it becomes

3\

_ S 5.11
GV + 2" o

o =
The left moving temperate is easily found to be T;, = o/ /27¢ as before, where now £ is
given in (4.13), and G35 is given by

» ()\2 + Iu2)9/4616

Gyg=—"7"7-75F5— 5.12

3 1672 ( )
Notice that (5.6) and (5.12) are different since the volume of the three sphere is different
in (4.2) and (4.11).
Thus, the entropy of the CFT becomes
T2 Ty, 813\’  oTIA

= = — = 1
ScrT 3 G2 & p2)73 SBh (5.13)

Once again, the Bekenstein-Hawking entropy and the entropy coming from the dual
CF'T match.

cf in the ten-dimensional frame. In terms of G and the charges cf is given by

cf _ 48%2(6212\13 :|' QQRR)QNS

G (5.14)
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We can express this in the ten-dimensional frame where we find

cff = 6(Qks + Qhnr)Qns (5.15)

One immediately notices that the central charge is now cubic in the charges, indicating a
deviation from the type IIB situation. It would be interesting to further understand this
property and we leave this for future work.

6 Duality chains

From Brown-Henneaux we learned that quantum gravity in asymptotically AdSs space-
times is holographically dual to a two-dimensional CFT, say C'FTp. Furthermore, the
above results suggest that asymptotically W AdSs is holographically dual to another two-
dimensional CFT, say CFTy4. One may therefore ask what the relation between these two
CFTs is, in light of the Hopf T-dualization.

6.1 Hopf T-dualization along the AdS; fiber

In this case we can extend the arrow diagram of (4.1) to
CFTg «—— AdS3 x 8% —— WAdSs x $% —— CFTy (6.1)

The precise Hopf T-duality relates warped self-dual solutions with unwarped self-dual so-
lutions. We argued that self-dual solutions are in fact states in a two-dimensional CFT
with the right moving temperature turned off.

The ansatz (B.8) we have used for the dimensional reduction of the six dimensional
metric is such that fdzd‘:’x\/—_gf% = 27de5:c\/§(R + ...), where the hat denotes six-
dimensional quantities [41, 42]. This ensures that the six-dimensional Newton’s constant re-
mains unchanged before and after the Hopf T-dualization, i.e. Gg = Gg, so long as the z co-
ordinate retains its periodicity and G5 retains its value. It follows from (5.8) and (5.14) that

A
L —Qns— =0 6.2
CE NSG6 NS ( )

as expected from (5.9) and (5.15).

Now, recalling that the duality chain relates two self-dual solutions, one warped and
the other unwarped, we can compare the entropy of each and see that they match. This
happens because the ratio of temperatures is given by the change in periodicity of the fiber
coordinate given in (4.11). So we have

WQEBTECE B WQEATf‘cf

SgFT = 3 = 3 = SéFT (6-3)

Thus thermal states with vanishing right-moving temperature in C'F'T'5 are mapped to
thermal states with vanishing right-moving temperature in C'FT4 with the same entropy.
The fact that they have the same entropy may not come as a surprise given that it is
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emphasized in [2] that the area of the horizon is preserved under Hopf T-dualization and
thus the Bekenstein-Hawking entropy itself is preserved.’

One can also consider the above duality chain with vanishing Qrr charge, such that
u = 0. In this case, the map is between AdS3 X S% and AdS3 x Sfl and thus the central
charges are known. Once again, we find that the ratio of the two Brown-Henneaux central
charges cf and cng is Qns; thus the map is between two different CFTs.

Multiplicity of states. It is somewhat useful to consider the partition function of a 2d
CFT with central charge cng for the left-movers

Zp =Y d(Npe P (6.4)
Np=1

where d(Np) is the multiplicity of left-moving states and Ny, is the Lo eigenvalue. Given a
two-dimensional unitary CFT, Cardy’s formula tells us that for Ny, > 1 the multiplicty of
states goes as d(Np) ~ e2™VerNL/6 [44],

Recall that under the Hopf T-duality the effective temperatures of the type 1IB and
type ITA solutions with z and 2’ identified are in fact related by ¢pTF = Qngl ATf‘ (since
they are proportional to the periodicities of z and 2’). Using further that cf /clL3 = s
and Ny, ~ cr(T¢)? we obtain Ni*/NP = 1/Qxs. Performing the transformation

of =i =Qnscf, NP — Nit =N /Qxs (6.5)
on d(Ng), we find that the multiplicity of states for large N LA with cf is equal to that for
large N 5 with cf. Thus, we see that it is at least conceivable that the two partition func-
tions of CFTp and CFTy can, and in fact should, be equal under the Hopf T-dualization

¢ A 4 B 10
even if ¢ # cf.

6.2 Hopf T-dualization along the S3, fiber

As demonstrated in [2] one can also perform the Hopf T-duality along the fiber coordinate!!
of the S% which results in the metric [2]

1 .
ds* = m [— cosh? pdr? + dp? + (dz + sinh pdT)Q]
1 2 . 2 2 )\2 / 2
+7()\2 FIET d6” + sin 6“do* + ) (dz" + cos 0do) (6.6)

where x = Qnsz’ and 2/ ~ 2/ + 47/Qngs. This is the product of AdS3 with a squashed
sphere si‘ and thus is dual to a two-dimensional CFT. The anti-de Sitter length can be

Tt is also interesting to note the discussion of [43] on the invariance of Hawking entropy under certain
string dualities.

0From the stringy point of view, it is possible that the effective CFTs coming from the long string sectors
match [45].

HRecall the metric of a three-sphere can be written as a fibration over S? where the fiber coordinate x
is an S* with & ~  + 4.
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easily read off and is given by £ = 2/(\? + ,u2)3/ 4. Thus the Brown-Henneaux central charge
is given by

A 3 3 16w _ 487%(Qfg + Qks)

Cr, =

_ = = 6.7
Gs(\2 + p2)3/4 — Gg (A2 + p2)2 G (6.7)

where we have used that Gg = Vol(s%)G3.

Note that Ef is precisely the same central charge as the original one in (5.8), when
expressed in terms of Gg. Thus, Hopf T-Dualizing along the S% fiber maps states with
vanishing right-moving temperature to states with vanishing right-moving temperature
with the same entropy. Furthermore, the CFTs have the same central charge.

6.3 Double Hopf T-dualization

The final case of interest is given by first Hopf T-dualizing along the AdSj fiber coordinate
and then Hopf T-dualizing along the Si’i fiber coordinate. The final metric is given by [2]

1 2 )
ds® = m [— cosh? pdr? + dp? + 7()\2 ) (dz' + sinh pdT)Q]
1 . 2
+7()\2 FRIE [d@2 + sin 6%dp? + m(dw’ + cos qub)Q] (6.8)

this case, we have a product of W AdS3 and a squashed sphere s% which we have proposed
to be dual to a two-dimensional CFT. The central charge can be computed using (2.23)
and it becomes

. 3\ 3 167°A  4872Qns(Q%s + Qkr)

L = G3(\2 + p2)3/2 - G_G()\2 + p2)7/? - G

(6.9)

where we have used that Gg = Vol(s%)Gs3.

Once again, note that Ef is precisely the same central charge as the original one
in (5.14), when expressed in terms of Gg. Thus, Hopf T-Dualizing type IIA W AdS3 x Si
solution along the Si fiber maps states with vanishing right-moving temperature to states
with vanishing right-moving temperature with the same entropy and the CFTs have the
same central charge.

7 Discussion

Following previous work [4, 30, 34], we have proposed that three-dimensional spacelike
warped anti-de Sitter space, as a solution to Einstein theories of gravity, is dual to a two
dimensional CFT with central charges

V34— 3%)12
2G3

L, =CR = (7.1)

for all values of 52 in the range 5% € [0, 4].
Our evidence is based mostly on consistency checks applied to the Bekenstein-Hawking
entropy of stretched black holes and warped self-dual solutions. We have least evidence for
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the value of cg and in particular for cg when 3% < 1; the only non-pathological squashed
solutions we have are warped self-dual solutions which are sensitive only to cy. If the
diffeomorphism anomaly vanishes in the boundary theory, knowing ¢y, is enough to learn
the value of cg. Also, that the asymptotic symmetry group of the squashed black hole
gives cr up to a sign seems encouraging [34].

We have furthermore used the left moving central charge to account for the Bekenstein-
Hawking entropy of the Hopf T-dual black strings with a W AdSs x S near horizon dis-
covered in [2]. It would thus be interesting to see if these central charges can be computed
by studying the asymptotic symmetries of such theories.

We have completed the duality chain discovered in [2] as follows

CFTpg «+— AdS3 x S% «— WAdS3 x §3 «— CFTy (7.2)

The above map is between thermal states of the two CFTs with vanishing right-moving
temperature and equal entropy. It was also found that Hopf T-dualizing along the S2 fiber
coordinate of either WAdS? x S% or AdS? x S% does not affect the central charge of the
dual theory. In such cases the map is between thermal states with vanishing right-moving
temperature and equal entropy in CFTs with equal central charges.

It may seem more intuitive that CFTy and CFT'p are in fact identical; however, we
find no direct evidence for this. On the contrary, when Qrr = 0 and the Hopf T-duality
is a map between two AdS3s, the Brown-Henneaux central charges are still different. It is,
however, already an interesting feature of the Hopf T-duality that the degrees of freedom of
the dyonic black string with a W AdS3 x S near horizon conspire to those of a known two-
dimensional CFT, namely the one dual to the AdS3 x S? type IIB solution. One possibility
is that one must consider the long string sector, which is described by an effective CFT
with rescaled central charge and effective temperature, in order to understand how the
theories match microscopically.

It is well known that the dyonic black string can been obtained from an intersecting
NS-NS 1-brane and NS-NS 5-brane in the ten dimensional picture [40]. Other D-brane
configurations can also be obtained from various string dualities. In the same spirit, one
would also like to have a D-brane interpretation of the Hopf T-dual dyonic string with
W AdS3 x S2 near horizon in order to understand the world volume theory. One challenge
is to better understand how to construct CFTs with when we have both R-R and NS-NS
charges turned on.

There is another limit of interest. In particular, if we have vanishing ()ns charge, the
six-dimensional Hopf T-dual solution becomes AdS, x S' x S3. In this case the duality
chain becomes

CFTp «— AdS3 x §% «— AdSy x S' x 83 (7.3)

It would be interesting to see whether we can learn something about AdS3 and its dual CF'T
using the above relation [3, 46]. For instance, the above chain may imply that AdSs x S*
resembles a chiral half of a two-dimensional CFT with vanishing Tk rather than conformal
quantum mechanics.

In all known cases where W AdSs; (or identifications thereof) appears in Einstein
theories, it is only found to be both stretched and with matter content free of pathologies
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for the near horizon of the extremal Kerr black hole at fixed polar angle [1, 9]. It would
be of interest to understand the precise relation of the proposed central charges and the
dual theory of extremal Kerr black holes that has been recently discussed [10, 11]. It
seems that the proposed cy, should be the relevant central charge at each fixed polar angle,
and once integrated over appropriately one should retrieve the extremal Kerr black hole
entropy [47]. For instance, given the extremal Kerr metric (2.19), we can express the left
moving central charge as,

_6v2  Msing
Gz /(3 cos20)

The three dimensional Newton’s constant can be related to the four dimensional one for

CJ, (7.4)

a polar slice between 6 and 6 + df as

1 1 1 1+ cos26
Gs G, VIO =34, V2 V™2 (7.5)

Curiously, and perhaps interestingly, integrating over 6 gives
cotal — 197 (7.6)

This is the central charge obtained for the extremal Kerr black hole in [10].

Finally, given that regular matter supports squashed W AdSs in all other known cases,
one would like to construct a model with non-pathological matter content supporting
stretched W AdS3.
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A AdS; isometries

The isometries of this solution are given by SL(2,R)z, x SL(2,R)z. The SL(2,R), isometries
are given by

2 sinh
J1 = I Or — 2cosh 20, + 2tanh psinh 20, (A1)
cosh p
Jy = 20, (A.2)
2 cosh
Jy = — cos Z(?T + 2sinh 20, — 2tanh p cosh 20, (A.3)
cosh p

These satisfy the algebra [J1, Jao] = 2Jy, [Jo, J1]| = —2J2 and [Jy, J2] = 2J;. The SL(2,R)g

isometries are given by

~ 2 ,:
J1 = 2sin7tanh p0; — 2cos 70, + ﬂaz (A.4)
cosh p
- 2
Jo = —2cos 7 tanh p0; — 2sin 70, — cos Taz (A.5)
cosh p
Jo = 20; (A.6)

These satisfy the algebra [jl, jg] =2.Jp, [jo, jl] = —2J5 and [jo, jg] =2.J;.
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B Hopf T-dual solutions with non-zero ¢; and ¢,

In order to answer whether there are stretched spacelike warped solutions we must take a
close look at the equations of motion. The six-dimensional truncated type IIB Lagrangian

is given by:
-1 1 9 1 9 1 21 9 1 22 2
e Lep = R— 5(8¢1) - 5(8@) - 56 (8X1) - 56 (5)(2)
1 1 2
o P1—¢2(pNS\2 11— RR NS RR

The equations of motion are solved by the following three-forms:

Fyp = Ae(AdS3) + 2e(S?) (B.2)
Fit = pe(AdSs) + pe(S°) (B.3)
where ¢(X) denotes the volume form of X. The metric is given by:
dst = ds*(AdSs) + ds*(S?) (B.4)
with Ricci tensors,
1 1
R;w — _§(e*¢>1*¢>2)\2 + e¢>1*¢>2u2)gum Ry, = 5(67@7@)\2 + €¢17¢2M2)gmn (B.5)

The equations of motion for the scalar fields are trivially satisfied once we choose the three-
forms to be self-dual, i.e. the coefficients of the AdSs and S? pieces to be equal. The Greek
indices are those of AdS3 and the Latin indices are those of the S3.

For completeness, we also give the six-dimensional type IIA Lagrangian below

¢ Lon = R= 3(061)? — 500
1

1 B L 1 _
— g (Fy)’ - et (Fy)” - 0 () (B6)

B.1 Hopf T-dual solution
Having obtained the more general I1IB solution we can Hopf T-dualize along the AdSs fiber

coordinate to obtain a IIA solution. The explicit IIB metric in the fibrated coordinates is
given by:

1
(e=P1=b2)\2 4 ed1—d22)

ds?® = [— cosh? pdr? + dp? + (dz + sinh pdT)Q] + ds* (53) (B.7)

Reducing along the fiber coordinate z with the following ansatz for the decomposition of

the metric:
dst = e_“"/\/gdsg + eV32¢(dz + ./4(1))2 (B.8)
we obtain
ega/\/é _ (67451*452)\2 + e¢>1*¢2lu2)*1/3 = A"L/3 (B.9)
Foy = dA(y) = cosh pdpdr = %9 (B.10)
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and the five dimensional metric
ds? = A™4/3 (—dT2 + cosh? pdTQ) + AY3ds2(53) (B.11)

Once in the five-dimensional space we can Hopf T-dualize the IIB solution using the rules
obtained in [2]. The five-dimensional field content of the the IIB theory is given by

A
NS 3 NS
1
Fo =2 (B.14)

The T-dual field content in the five-dimensional IIA theory become

A

Fg) = Xe(S?), Floy = X322 (B.15)
Figyn = —pe(S?), Fg) = #2(2) (B.16)
Fon =X (B.17)
The scalars in the type IIA theory become
¢ = i (—\/680 + 31 — ¢2> (B.18)
6 = 5 (~VBo— 01+ 36) (B.19)
¢ = i (—2<p ~V6(¢1 + ¢z)> (B-20)
Finally we can oxidize back to the six-dimensional type ITA solution
dst = e‘“"l/*/gdsg + eV/3/2¢ (dz + .A'(l)) ’ (B.21)
If we express this more explicitly,
dsg — ¢ ¥/VEA—4/3 [(— cosh? pdr? + d,o2) + )\264L‘0//\/6A75/3(d2/ + ./4(1))2
e ? VAT 52(53) (B.22)

where z = AA™3/22/. One can easily check that we recover the metric 4.11 once we set
¢1 = ¢o = 0. The warping factor can be expressed more explicitly:

A2e—(P1+¢2)

2 4¢' /6 A—5/3 __
)\ € A - (6_(¢1+¢2))\2 + 6¢17¢21u2)

(B.23)

In conclusion, we still obtain a squashed metric for all constant values of the scalars ¢y

and ¢o.
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