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Introduction

Readers scan these first words of my Ph.D. thesis with different intentions. Therefore, the
author’s first statements are meant to help the reader find (at best) what he might be
looking for. Three parts of this thesis should be accessible to any non-expert. These are:

1. The introduction: in this part, the author explains the general context of his research,
in two segments. First, the field of research called ‘string theory’ is sketched. This
is followed by a short orientation on the topic of ‘black holes’. The introduction is
rounded off by a short overview of the content of this thesis, allowing the reader to
decide, whether, and if he answers this question to himself affirmatively, to which
part he would like to turn to continue reading. The introduction should allow any
reader to understand the topic of this Ph.D. and put the title of the thesis in context.
It should serve as a layman’s guide to the first two main chapters of this thesis.

2. The conclusions: while the more specialized reader will find separate and more sci-
entific introductions, summaries and discussions at the beginning and at the end of
each chapter, the conclusions as a separate section are intended to be far more ac-
cessible. In particular, they consist of a short description of the research performed
during the author’s Ph.D. studies, using a metaphor. Namely, the type of research on
black holes in string theory will be compared to studying genomes in microbiology.
The analogies are sometimes far from perfect, but they do allow to transport some
intuition on the author’s work with relative ease. The concluding discussion is meant
as a layman’s guide to chapters 3-5 of this thesis.

3. The part of the appendix titled ‘Dutch summary’: finally, there is a short description
of the content of this thesis in Dutch. This parallels many explanations put forward
in the introduction and the conclusions, but is briefer. However, it enjoys the fact of
being written in another beautiful language, as the title suggests.

The main part of this Ph.D. thesis consists of five chapters. Three (chapters 1-3) introduce
the context in which the research of the author has been performed. These first three
chapters appear in the order of increasing specialization. Two (chapters 4 and 5) describe
the author’s main research results.

Finally, some minimal reading suggestions are given for expert readers with various
backgrounds to take shortcuts to the most interesting parts of this thesis. The sections
and chapters indicated below are suggested in addition to the chapter introductions and
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summaries / overviews given at the beginning / end of each main chapter as well as the
concluding discussion.

• A physicist working in a field different from string theory is advised to read: 1.1, 2.1,
2.3, 2.4.2 – 2.4.4, 3.3. This should allow some understanding of the core chapter of
this thesis: 4.

• A string theorist familiar with the field of research in general, but not with the specific
techniques used in these studies, is suggested to read: 2.1 – 2.3, 2.4.2 – 2.4.4, 3.3,
followed by chapters 4 and 5.

• An expert familiar with the techniques used in this thesis can of course move on to
chapters 4 and 5, immediately.

• A reader with interest in the connection of the author’s results to algebraic geometry
will find the results of interest in chapter 4. Sections 2.1, 2.3, 2.4.2 - 2.4.4 and 3.3
should provide some background on the physics involved. The appendix A.1 should
clarify notation and the use of some mathematical concepts involved.

As was mentioned before, this introduction will be rounded off with a detailed overview
(in more technical terms) over the content of this thesis. This overview precedes two
sections, written for a more general public, one on ‘string theory’ and one on ‘black holes’.

String theory as a candidate for a quantum theory of

all four forces

It does not seem misplaced to name the historic phenomenon of unification as well as
the inner consistency, simplicity paired with abstraction, and the connected mathematical
elegance as an incitement for string theorists. Unification in theoretical physics can be
followed back through the centuries. It denotes the ascription of different phenomena to
common laws of nature. As an example, consider how electricity and magnetism, which
were understood as two independent physical phenomena for a long time, were both ex-
plained by the laws of electromagnetism, in the second half of the 19th century. With some
hesitation one might summarize nowadays’ stand of unification of theories in theoretical
physics as follows:

• The microcosmos: The three forces (amongst which electromagnetism) governing
‘the very small’ are described by quantum field theories. Particles acquire the inter-
pretation of propagating disturbances of quantum fields, and all particles are divided
into two fundamental categories: fermions, with a half-integer spin (an inner quan-
tum mechanical angular momentum); e.g. an electron, and bosons, with an integer
spin; e.g. a photon. This fundamental division in two parts might to the aesthete be
perceived as disturbing, if he would like ‘everything to be of the same make’.
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• The macrocosmos: The weakest force, gravity, becomes the only relevant force on
large scales. Gravity is described by general relativity theory, founded by Albert
Einstein, in 1915.

One would like to have a theory, doing justice, at the same time to gravity and the macro-
cosmos, as well as the microcosmos and therefore the other three forces.

It seems fair to say that the majority of physicists accept, according to the findings
from general relativity theory, that our universe contains black holes. Indirect evidence
for the actual existence of many such objects has now been found, and it is a widely held
belief, that galaxies contain super-massive black holes at their centers. Black holes are
extremely massive, thus gravity is important, but they are also dense enough (implying a
high energy density), that quantum effects must not be neglected, at least near the core
of the matter making up a black hole. To describe them properly, a theory of quantum
gravity, or maybe of all four forces is unavoidable. Black holes will be the topic of the next
section.

Another central idea which dates from around the beginning of the 1970’s is super-
symmetry. Supersymmetry relates one partner-boson to every fermion and vice versa. It
therefore provides for a common origin of the two sorts of particles. Furthermore, super-
symmetry also implies many other desirable (and some undesirable) virtues, both from the
viewpoint of theory and experiment, and supersymmetry is also one of the main points un-
der investigation of the projects begun at CERN. String theory automatically involves su-
persymmetry for inner consistency and plays an unchallenged role in most research studies
within string theory. Experiments on supersymmetry may also be understood as indicators
for string theory.

If one were to try and use one sentence to separate string theory from ‘pre-string’
physics, it would be the paradigm shift from a point-particle to the string, from a zero-
to a one-dimensional object. All particles, no matter how different they might seem, arise
as different vibrational modes of a string, much in the way different tones are produced
on a violin string. This underlines beautifully their common origin. As it turned out
in 1995 however, the string lost the fundamental role it had just gained. String theory
naturally incorporates objects of various dimensions, called p-branes (objects with p space
dimensions, and one time dimension, as they travel through time). A 0-brane is a point
particle, a 1-brane is a string, but these are just special cases of p-branes. The latter can
be understood as generalizations of particles (or strings) of an arbitrary dimension. To
be explicit, this means that one can also come across 2-branes, 3-branes, etc. Just like a
charged point particle, also a p-brane can be charged (in a more general way). Such branes
will become important when modeling black holes in string theory.

At this point, no further attempt will be made to explain string theory more explictly,
but the author will rather try to give a very short character sketch of the field of research,
hoping to give a broad audience a flavor of the type of activity a string theorist might be
involved in. The reader can find more explicit explanations on the basics of string theory
in the first section of chapter 1.
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Character sketch of the research field of string theory

It would be incorrect to imagine string theory as a uniform field of research. Rather, string
theory stands for a conglomeration of research on a large number of (strictly speaking) dis-
tinct theories, which reflects the fact that the field is at an early stage of development. This
structural condition seems worthy of being communicated. These distinct ‘sub-theories’ of
string theory come in a wide variety. Some are four-dimensional, others are six-dimensional
(theories with any number of dimension are involved at some point), while some of them
just describe a subspectrum of the physical states. Nevertheless, and this is the beauty of
it, all of these theories have a lot in common. First of all, they center around the notions
of dynamical strings and more generally, branes. More fundamentally, they are all believed
to describe aspects of one big fundamental theory, called ‘M-theory’. In neat accordance
with this interpretation, it is often the case that specific questions or problems in the field
not only allow, but often demand analysis in different ‘pictures’. These different pictures
might be provided by different theories, or within a theory, to use a more technical phrase,
in different ‘duality frames’. While one of these pictures might emblaze and simplify one
aspect of a problem, it might cloud another aspect. Another picture (theory or duality
frame) might reverse the role of these two aspects. Sometimes, the same phenomenon can
be investigated from different points of view, often leading to remarkable and even spooky
validations. At times, this fate can be a source of deep fulfilment, whereas at other times,
this kind of ‘patchwork approach’ might be highly disturbing to the physicist, as it sets
boundaries to his striving for order and setting a clear frame of analysis. With great plea-
sure, the author might right now refer to this phenomenon as the wonderful waggishness
inherent to the quest for quantum gravity. To summarize, it seems a good first approach
to imagine the field of research as taking peeps through little windows at phenomena in
M-theory (by means on occasion of doing inhumanly complicated and sometimes inter-
minable calculations).

A bridge between string theory and reality: compactification

One fact that appears strange to many people upon initial confrontation with string theory
is, that they require to be ten-dimensional for their inner consistency. In fact, M-theory
even requires to be eleven-dimensional. What is meant by requiring a dimensionality for
inner consistency? The reader can imagine calculating the volume of a ball in three di-
mensions and calculating the surface of a circle in two dimensions. This is an example of
two analagous calculations, but working in a different number of dimensions. The type of
calculations that is referred to in the following, is much more complicated, but to give a
bold picture: if one chooses anything different from ten (or eleven) dimensions, calculations
become senseless, because they just yield infinities. Now, given that our universe has ten or
eleven dimensions, one has to make contact with ‘reality’, in the sense of a four-dimensional
spacetime universe. Generally, what one does, is to choose six (or seven) dimensions very
small and compact, and four large dimensions. The four large dimensions (three space
dimensions and one time dimension) are perceived in one’s daily life, but there are also
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‘extra dimensions’. Probably, it might sound a bit misguiding to the layman to speak of
extra dimensions. Rather, these ‘extra dimensions’ stand for ‘internal, extra degrees of
freedom’. To gain some intuition on such an extra degree of freedom, the layman may
think of an elementary particle, e.g. an electron. Such an electron has an inner quantum
mechanical angular momentum, namely the spin, which can take on different values. The
direction in which the spin ‘points’ is not in spacetime however, but it is an inner degree
of freedom. One might just say that it points into a direction of an extra dimension. One
of the key messages of the previous passage is that these degrees of freedom arise in the
same way as spacetime dimensions in string theory, they are of a common origin.

The sticking point of quantum gravity: black holes

Increasingly, a string theorist is confronted with political and social pressure to make veri-
fiable predictions, if he wants to maintain that he is a visionary physicist and not a careless
mathematician. It is hard to know, how close any experimental verification of string the-
oretical predictions lies. In any case, researchers are called to concretize their qualitative
descriptions of primordial cosmology and of black holes. It is clear that these two physical
systems are the playground in which a theory of quantum gravity has to be put to a test.
In this thesis, black holes are set as a landmark.

Black holes: the most dense assemblies of matter in our universe

Black holes were discovered during the First World War by Karl Schwarzschild, as so-
lutions to Einstein’s equations of general relativity. General relativity describes gravity as
the curvature of spacetime. In particular, a massive object forces the space surrounding
it to curve. The term ‘black hole’ refers to an area in spacetime, that is populated by
such a dense congregation of matter, that space is so strongly curved, that no object can
escape this region anymore. This also applies to light, the fastest moving entity in the
universe. Because light does not escape, the objects appear black, hence the name ‘black
holes’. Matter can fall into a black hole, and there is a certain point of ‘no-return’: the
event horizon of a black hole.

Black holes are believed to be the final phase in the life cycle of very massive stars 1.
This shall be briefly described. A star is a luminous plasma held together by gravity, is of
course tremendously hot, and can be pictured as a huge nuclear power plant performing
nuclear fusion. In order to do this, it consumes ‘fuel’ (the fuel is used to perform nuclear
fusion): hydrogen and later on in the life cycle, heavier elements. As long as there is fuel
left, the star resides in an equilibrium. This equilibrium can be pictured as the cancellation
of the effects induced by gravity, which tries to ‘pull the matter closer together’, and of the
pressure, as it is a gigantic active ‘engine’, ‘trying to push the matter further apart’. Put
very simply, when a star runs out of fuel, there is no pressure left to counteract gravity. A
star will start to collapse, and it depends on the original mass, what the end stadium of

1Our star, the sun, is too light and will never become a black hole.
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the star will be. The heavier stars perform gigantic explosions called supernovae, of which
some have been observed, but this will be left out in the following discussion.

• When the matter of the star is squeezed, atoms are squashed and electrons become
free. The pressure of the resulting gas of electrons becomes the dominant counterforce
to gravity. If the electron gas pressure is strong enough, the star can reach an
equilibrium state called a white dwarf. The upper limit for the total (original) mass
of the star lies somewhere around M ≈ 1.4M� – a bit less than one and a half times
the mass of our sun 2.

• For heavier stars, the gravitational collaps will not stop at an equilibrium called a
white dwarf. Rather, the star continues to collapse, and a new equilibrium might
be reached, where the role of the electrons is taken over by the neutrons. This
equilibrium is called a neutron star or a pulsar.

• If the star is too massive, the gravity is also too strong for the neutron star equilib-
rium. At present there is no knowledge of any denser ‘plasma’ than the one thought
to be found in a neutron star, and upon further gravitational contraction, one does
not expect to reach another equilibrium. In this case, the most resounding gravita-
tional collapse takes place, presumably leading to a black hole. The resulting object
continues an ongoing collapse in ‘on itself’ and disappears behind an event horizon,
shielding it off from the outside.

Based on (indirect) experimental observation, there are by now several ‘candidates’, which
are widely believed to be black holes. An example for such indirect observations is given
by a star, that behaves as though it were a member of a double star system, but one
cannot see its partner. This might be because the partner was once a star, but is now a
black hole. Apart from the double star systems, there is also the fact that a black hole
that acquires new matter, also referred to as an ‘active black hole’, will produce distinct
radiation, and such radiation has been observed. This is no proof that the radiation stems
from a black hole, but the black hole is a model predicting data that has been measured.
If black holes exist, they come in a variety. Some are super-massive black holes in centers
of galaxies (galaxies are generically believed to harbor super-massive black holes at their
center), some of them are black holes in stellar mass range.

The amount of information contained by a black hole and the microscopic
explanation using geometries of extra dimensions

Probably every reader will have heard of Schrödinger’s cat. The purpose of this absurd
invention is allow everyone to easily understand and remember one of the key principles in
any theory that is ‘quantum’. According to the mainstream ‘Kopenhagener’ interpretation
of quantum theories, a quantum object lives in a superposition of more than one state. In
the case of Schrödinger’s cat, the cat is alive and dead, until someone measures, whether

2M� is a symbol which is commonly used to denote the mass of our sun.
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the cat is dead. The wavefunction of the cat consists of a part ‘alive’ and a part ‘dead’,
each possibly weighted by a probability (say 90% and 10% probability, so if one had one
hundred cats one would statistically find 90 of the cats alive). A wavefunction is a sum
of possible ‘states’ of a system weighted with their probabilities. One more concept is of
interest in this context. In the case of the cat, the cat can be in two possible states. This
means that before measuring whether the cat is dead or alive, one lacks some information:
there is an uncertainty as to the state of the cat. In physics, this is called ‘entropy’ of
the system. This leads to the discussion of what a black hole is as an object in quantum
gravity.

In the Seventies of the 20th century, Stephen Hawking and collaborators made the pre-
diction, that the amount of uncertainty adhering to a black hole is proportional to the area
of the event horizon 3. This uncertainty is the counterpart to the amount of information
contained in a black hole, and receives the term ‘entropy’ in physics. But the ‘classical’
picture of a black hole is just a black ‘ball’ without any complexion. An important goal of a
theory of quantum gravity, is to explain this entropy microscopically. The possible number
of states in which a black hole could reside is a measure for the amount of uncertainty,
of entropy. For any given area of the event horizon, one would thus like to explain this
number by finding all possible ‘microstates’ of the black hole. In string theory, this has
been done for some (supersymmetric) black holes. The general paradigm is to model black
holes by wrapping various extended objects, called D-branes around extra dimensions, in
such a manner, that the whole assembly of branes is perceived as a point-like object from a
four-dimensional point of view. By assembling enough branes, one can model a black hole.
The number of possibilities to realize such a black hole from a four-dimensional point of
view with these branes, explains the entropy.

Split attractor flow trees

The concept ‘split attractor flow trees’ appearing in the title of this thesis needs some
explanation. Having said that one models black holes in string theory by wrapping branes
(several branes) around extra dimensions, this allows to explain, that (a certain class of)
black holes very strongly restrict the geometry of extra dimensions. In fact, to model a
black hole, one can choose the form and size of the geometry of extra dimensions at infinite
distance of such a black hole, but the black hole then imposes a particular geometry, all
the way from infinite distance until the event horizon of the black hole. If one chooses
a slightly different geometry at infinite distance of the black hole, the black hole again
dictates a specific, but slightly different geometry all the way from infinite distance up to
the event horizon. The geometry at the event horizon however remains unchanged. There
are certain physical fields that ‘measure’ this geometry, and their values are driven to at-
tractor values. One therefore speaks of the ‘black hole attractor mechanism’. Should one

3As a side remark: the fact that the amount of uncertainty grows with the surface and not with the
volume might be seen as a cue to the concept of ‘holography’, that appears to be distilling into one of the
most fundamental characteristics of string theory.
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depict these fields, in dependence of a radial coordinate in spacetime (a simple black hole
is radially symmetric), the values of these fields form a line (in the space of possible field
values), starting at the chosen value at infinity, and ending at the attractor point. This
line can also be referred to as a ‘single flow’.

It turns out also that black holes with more than one center, so-called ‘multi-centered
black holes’ are of great importance in string theory. Such multi-centered black holes are
bound states of black holes. A similar attractor mechanism also holds for these black
holes, but the line, starting at a given background for the geometry chosen at infinite
distance of the (multi-centered) black hole, splits (maybe more than once). There is one
‘end branch’ for each center, terminating at the corresponding attractor point. For each
center, the attractor point describes (‘form or size’ of) the geometry of the extra dimension
at the event horizon. This depiction of the fields measuring the geometries are called split
attractor flow trees, and they have been conjectured to be an existence criterion for multi-
centered black holes. Taking a small jump ahead, note that a special class of multi-centered
black holes (or more generally bound states) play an important role in this thesis. They will
receive the interpretation of chromosomes of a black hole in the metaphor developed for the
research performed by the author, in the concluding discussion. This remark underlines
the crucial importance of split attractor flow trees and multi-centered black holes for the
present work.

To conclude the introductory explanations on the topic of these thesis, let it be said
that this thesis studies black holes in (type II) string theory, using split attractor flow trees.

Content of this thesis

The first three out of five main chapters set the stage within string theory for the research
performed by the author, which is presented in the last two main chapters. Before present-
ing the content of these chapters, for the sake of completeness, let it be mentioned, that
there is an appendix, in which conventions, notation and mathematical definitions used
in this thesis are gathered. The appendix also contains some lengthy, technical research
results, to which there will be references in the main text when they come into play. The
last part of the appendix is a layman’s guide to the content of this thesis in Dutch. As a
general aid to communicate the central line of thought presented, short summaries (and
sometimes outlooks) are included at the end of each chapter, placing the chapter into the
bigger context of the thesis as a whole.

• Chapter 1 presents the general framework of this thesis: type II string theory com-
pactifications, with focus on the most prominent choice of a Calabi-Yau manifold for
the ‘extra dimensions’. The latter is discussed both from a worldvolume and from a
supergravity spacetime perspective. The last part of the chapter discusses the BPS4

D-brane content and more generally the BPS spectrum of these theories.

4The word ‘BPS’ stands short for Bogomolnyi–Prasad–Sommerfeld and should in this context be read
as supersymmetric and mass equal to charge (in some units).
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• Chapter 2 gathers the relevant information on black holes, realized in the setting
introduced in chapter one. The BPS black hole attractor mechanism is introduced.
Building upon this, one of the most important tools of this thesis can be explained:
split attractor flow trees. Split attractor flow trees as an existence criterion for multi-
centered black holes, and more generally, for BPS bound states in type II string
theory, reach their full glory in the split attractor flow conjecture. Finally, entropy
of black holes is briefly discussed.

• Chapter 3 presents some basics and moreover some relevant features of topological
string theory, which owes its connection to this thesis to a stunning conjecture that
appeared in 2004, by Ooguri, Strominger and Vafa, known under the name ‘OSV-
conjecture’. Topological string theory computes invariants counting BPS states on
Calabi-Yau manifolds, which can be used to enumerate black hole microstates for
certain study models.

• Chapter 4 presents the results on enumerating mixed ensembles of D-brane states on
various Calabi-Yau manifolds modeled as hypersurfaces in weighted projective spaces.
In many aspects this research can be seen as a low-charge counterpart to studying
black hole microstates. Various exact results on elliptic genera are presented, includ-
ing some corrections to previous studies performed by other researchers. Additionally,
a refinement for the index enumerating BPS bound states is proposed. This index,
although at this point still lacking a mathematical definition, is presumably a refine-
ment of the index proposed in [1], giving a more refined physical picture associated
to the wall-crossing formula of Kontsevich and Soibelman, [2]. As elliptic genera
are determined exclusively from polar states through modularity, non-trivial checks
can be performed on a couple of non-polar states, yielding strong evidence that the
performed calculations are correct. In addition, the results provide additional evi-
dence for a strong version of the split attractor flow conjecture. A part of the results
presented in this chapter has been published in [3], together with Andrés Collinucci,
while another part has been published in [4], together with Walter Van Herck.

• Chapter 5 presents the research performed by the author in collaboration with Joris
Raeymakers, Bert Vercnocke and Walter Van Herck, published in [5]. The first part of
the chapter contains a short explanation of some basic facts on the fuzzball program
on black holes in string theory, which, in addition to the previous material, should
allow the reader to understand the context of research. The research relates the
framework of 4d black holes and of the research presented in chapter 4 to 5d fuzzball
geometries.

• Finally, there is a short chapter called ‘concluding discussion’, in which a metaphor is
developed to elucidate the context and the findings of the research described in this
thesis. Namely, it draws analogies between the studying of black hole microstates
in string theory, and the studying of genomes in microbiology. Some analogies are
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by no means perfect, but the author nevertheless believes, this metaphor can be a
valuable source of inspiration, and hopefully serve as a memorable allegory.



Chapter 1

String theory compactifications

As pointed out in the introduction, string theory refers to a conglomeration of research
attempting to formulate a consistent theory of quantum gravity, or even more broadly,
of a unified theory of all forces, which might well be valid up all the way to the Planck
scale, EP ≈ 1.2 · 1019GeV/c2. The basic starting point of all this research, separating it
from pre-string theories of fundamental physics is the fact that one treats one-dimensional
objects, strings, instead of points as the basic building blocks of the universe. Historically,
the field of string theory was founded around the beginning of the seventies of the 20th
Century. One of the important early discoveries was a miraculous anomaly cancellation
mechanism, [6]. The first fifteen years of research were centered around the study of string
quantum mechanics, governed by a field theory living on the string worldsheet, the surface a
string sweeps out as time evolves. After this initial period of ‘string quantum mechanics’,
it turned out that other extended objects, going under the notion of branes, play an
important role, questioning and eventually relativizing this aforementioned fundamental
role of the string. Therefore, to borrow a custom which recently seems to have become
fashionable amongst physicists, one might from todays’ perspective call ‘string theory’ a
historical misnomer, and rather speak of ‘brane theory’.

In this chapter, the relevant part (for this thesis) of the web of strings and branes is
presented, arising in the different consistent superstring theories. By web of strings and
branes the variegated zoo of various objects is meant, with different worldvolume dimen-
sionality, present in the different theories. In addition, some common dualities between
different theories will be stated, some of which will be used later on in this thesis, and
have been and are specifically used in the research performed by the author. As a next
step, compactification of string theory to four dimensions is discussed. The most common
choices for the internal space dimensions are either a six-torus, T 6 (this type of compacti-
fication is at the base of the research presented in chapter 5), a Calabi-Yau twofold times
a two-torus. K3× T 2, or a compact Calabi-Yau (CY) threefold X (as will be at the basis
of the presentations on the OSV-conjecture in chapter 3 and the research presented in
chapter 4). The emphasis in this chapter will be on the case involving a CY 3-fold X.
This will be done by taking a quick glance at the worldsheet perspective on a string theory
compactification. In a second step, the spacetime physics associated to such a compactifi-
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cation is highlighted. In order to do that, the classical low-energy approximation to type
II string theories, type II supergravities is presented, starting in ten spacetime dimensions,
followed by a discussion of compactification, which is realized as Kaluza-Klein reduction
and truncation.

As the research presented in the later chapters takes place in four and to a lesser
extent in five spacetime dimensions within type II string theory, the focus will be on
the very powerful, so-called special geometry inherent to four-dimensional supergravity
theories. This sets the stage to investigate supersymmetric black holes preserving part of
the supersymmetry retained after compactification, which are the center of attention in
chapter 2. The last part of this chapter gathers the foundations on D-branes and of their
complementary realization as p-brane solutions to supergravity theories, which will be used
at various occasions further on in this thesis. Finally, as announced in the introduction,
the reader can find a very brief summary of some key thoughts presented in this chapter
in the last subsection, including some pointers to later topics, embedding this chapter in
the more global context of the thesis as a whole.

1.1 The web of strings and branes

The thread is picked up at the point in recent research history called the ‘first superstring
revolution’, which dates back to 1985. The realization which theories of strings allow
anomaly cancellation, rendering them consistent, led to the puzzling number of exactly
five different superstring theories. For anomaly cancellation to hold, these five superstring
theories all require a 10D spacetime, and they are named as follows:

• Type I string theory:
unoriented open strings with N = 1 supersymmetry in D = 10, SO(32) gauge group,

• Type IIA string theory:
oriented closed and open strings, N = 2 supersymmetry in D = 10, non-chiral
massless fermions,

• Type IIB string theory:
oriented closed and open strings, N = 2 supersymmetry in D = 10, chiral massless
fermions,

• Type SO(32) heterotic string theory:
hybrid form of left-movingN = 2 and right-movingN = 1 supersymmetry inD = 10,
fermions partly replaced with scalar fields, gauge group SO(32),

• Type E8⊗ E8 heterotic string theory:
hybrid form of left-movingN = 2 and right-movingN = 1 supersymmetry inD = 10,
gauge group E8⊗ E8.
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The state of art, that one was left with five seemingly different choices for a consistent
theory of quantum gravity (or possibly of all forces) was highly inconvenient. There seemed
to be no apparent deeper reason to which theory should be the correct one. This era
came to an end with the ‘second superstring revolution’ in 1995, a huge turning point in
the development of string theory. Namely, Edward Witten conjectured the five different
superstring theories to be related by dualities and each to describe different limits of one
big underlying theory, given the name M-theory. How did this conjecture come about?

As the perturbative analysis of string theories reveals, the massless sectors of each of
these five 10D string theories consists of a very specific and constrained set of bosonic and
fermionic fields. These massless degrees of freedom can be described, at least classically
and at low energy, by 10D supergravity theories. At the same time, it had been previously
discovered in 1978, [7], that there is an N = 1 supergravity theory in D = 11, involving
fields with spin up to 2. Such a theory preserves 32 supercharges, and is maximal in the
sense that – also in lower dimensions – introducing more supercharges forces to include
higher spin fields. In this sense, this supergravity can be seen as the tip of an iceberg and
seems to be a special theory of supergravity; it has been conjectured to be the classical
description of the physics governing the zero modes of M-theory (although not much in-
formation is available on this theory itself), in analogy to the relation of 10D supergravity
theories to critical (10D) string theories. Figure 1.1 pictures the relation between these
different theories.

Classical supergravity theories have been studied very carefully over the last decades.
Of significant importance within this pursuit is the concept of dimensional reduction, which
will be discussed in more detail, shortly. The main idea is to choose some dimensions very
small, ‘wound up’, or, put differently, ‘compactified’, and see how to effectively describe the
higher dimensional theory at low energies, as observed from the lower dimensional point
of view. An important step was the realization that N = 1, D = 11 supergravity leads
to a maximal (maximal in the sense of maximal supersymmetry) supergravity theory in
10D upon dimensional reduction, choosing the eleventh direction to be a tiny circle, also
referred to as the M-theory circle. This 10D theory is type IIA supergravity, a classical
low energy limit of type IIA string theory. The reader gets the bigger idea: M-theory
is thought to reduce to type IIA string theory upon compactification on a circle. This
connection illustrates another phenomenon typical for the whole field of research: the
beautiful geometrization / higher dimensional interpretation of various concepts. One of
them is the strength of the string coupling of type IIA string theory, which is interpreted
as the size of the M-theory circle. Thus, upon compactification on a very small circle,
the perturbative string theory description of type IIA becomes an accurate approximative
description of M-theory. At the same time, the very small circle allows the massive field
modes obtained upon the dimensional reduction of 11D supergravity to be neglected: this
is the truncation to the massless type IIA supergravity (to the reader unfamiliar with
this jargon: these concepts will be explained in more detail, shortly). In this sense, the
five superstring theories are interpreted as different perturbative expansions of a unique
vacuum of M-theory, whereas the N = 1, D = 11 supergravity is interpreted as a classical
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11D sugra N = 1, 10D

N = 2, 10D
(chiral)

N = 2, 10D
(non-chiral)

E8⊗ E8 het
SO(32) het

type IIA type IIB

type I

M-theory

classical supergravity limits

Figure 1.1: M-theory, superstring theories and 11D/10D supergravity: This figure
represents the relation of various theories to a putative 11D fundamental quantum theory of
all forces called M-theory. Upon taking certain limits, this theory is thought to be described
by one of the five possible superstring theories, which are interrelated by dualities (indicated
by the dotted red arrows). The classical low energy limits describing the massless modes of
these theories are thought to be supergravity theories (the upper layer in the figure). 11D
supergravity can be dimensionally reduced and related to type II or heterotic supergravity
theories. These 10D supergravity theories support various duality relations (also indicated
with dotted red arrows), which can be interpreted as a test ground for the dualities in
the full underlying theories (the lower layer in the figure), or, put differently, allowing to
peak into the relations between the quantum field theories of strings and branes, theories
of immense complexity. Note that there are also supergravity theories associated to the
heterotic string theories, which were not labeled in order to avoid cluttering of the figure.

theory describing the massless fields of the fundamental theory in eleven dimensions. Also
E8 × E8-heterotic string theory is believed to be a low-energy limit of M-theory, obtained
by compactifying on an interval I, leaving an external ten-dimensional space. By virtue of
more dualities, all string theories are conjecturally related to M-theory.

This idea of dualities led physicists to probe non-perturbative features of string theory,
by mapping an untractable problem in the non-perturbative regime of a theory to a dual
picture, where one would e.g. be at weak coupling and possess techniques to tackle the
dual formulation. In the meantime, many intriguing tests of these dualities have been
performed, sometimes yielding spectacularly different but completely consistent points of
view of the same physical problem and its solution. An example of such a duality is mirror
symmetry between type IIA string theory compactified on a Calabi-Yau threefold X and
type IIB string theory compactified on the ‘mirror’ Calabi-Yau Y . These two compactified
string theories are believed to describe the same physics.
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Another important realization, which penetrated the world of research starting around
1995, was already pointed at. Namely, strings are not the only degrees of freedom in string
theory. Strings are 1-dimensional objects, which sweep out a 2-dimensional ‘world volume’
as time evolves. More generally, string and M-theory contain p-dimensional objects, sweep-
ing out a (p+1)-dimensional world volume. Such an object is called a p-brane. This concept
contains the string as a special case, the 1-brane, and also the point-particle, the 0-brane.
More specifically, the concept of a D-brane, a Dirichlet-brane, appears when studying per-
turbative worldsheet string theory. Open strings can satisfy boundary conditions of the
form

na∂aX
µ = 0 µ = 0, ..., p ,

X i = ci i = p+ 1, ..., 9 ,

where the ci are constants, and na is a normal vector to the surface X i = ci in 10D
spacetime. The XD = (Xµ, X i) (D = 0, ..., 9) are bosonic worldsheet fields, and with this
boundary conditions, naturally split up into coordinates Xµ given the interpretation of
lying in the directions of the worldvolume of the brane, and coordinates normal to the
brane, X i. The coordinates normal to the brane are constant (as long as the brane is
not treated dynamically), and are interpreted as end points of open strings. Furthermore,
Polchinski discovered in 1995, [8] that D-branes carry charge under gauge fields. Depending
on the specific charge of such a brane, or more specifically, on which sector of string theory
the massless degree of freedom interpreted as a (generalized) gauge field (to which such
a brane couples) lives, one speaks of a NS-p-brane or a Dp-brane, or, very generally, of a
mixed type (p, q)-brane, [9]. Furthermore, there are also so–called instantonic branes (if
the whole worldvolume lies in spacelike directions), referred to as S-branes, [10], where ‘S’
stands for ‘spacelike’. The branes in M-theory are referred to as M-branes: the (electric)
M2-brane and the (magnetic, dual) M5-brane.

This sets the stage to start discussing string theory as a perturbative, compactified
theory, choosing six compact dimensions and four non-compact dimensions (space-time),
much in the way that string theory was perceived in the eighties and beginning of the
nineties of the 20th Century. As the following section is not essential for an understanding
of the main topics in this thesis, the reader may decide to skip it. Note however that the
introduction to topological string theory in chapter 3 will build upon this section, and the
discussion of 5 will be based on some of the introduced concepts.

1.2 String theory compactified on a Calabi-Yau man-

ifold

As mentioned before, string theory was originally studied as a 2D quantum field theory
on the worldsheet, containing worldsheet bosons as well as fermions. This thesis uses type
II string theory, and only this case will be analyzed in the following. The classical local
superconformal symmetry translates into a superconformal quantum symmetry, and it is
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required that the left- and right-moving central charges have to be equal to c = 15. This is
also sometimes denoted as a N = (2, 2) supersymmetric field theory with cL = cR = 15 (or
N = 2, c = 15 for short). A first, if modest step to make contact with ‘everyday physics’ is
to assume that four of the ten space-time dimensions are large, whereas the other six are
assumed to be ‘wound-up’ and tiny. For now, the case will be discussed when the theory
is a product of a N = 2, c = 6 theory for the external space-time part, and a N = 2, c = 9
part for the internal compact dimensional part. The former theory can be realized as a
theory of two complex bosons and superpartners, where the bosons are interpreted as the
four real space-time coordinates. The interest for this thesis however lies in the internal
theory, as a modification of this part of the theory leads to the so-called ‘twisting’ of the
ordinary N = 2 superconformal algebra, which is a good topic by which to familiarize the
reader with topological string theory. This will be discussed in chapter 3.

The N = 2 superconformal algebra is built out of the energy momentum tensor T (z)
and two weight 3/2 supercurrents G+(z) and G−(z), which automatically also enforces
inclusion of an additional U(1) current J(z). One can expand these operators into their
Laurent modes according to

T (z) =
∑
n∈Z

Ln
zn+2

, G(z) =
∑
n∈Z

G±n±a
zn±a+3/2

, J(z) =
∑
n∈Z

Jn
zn+1

, (1.1)

which allows the expression of the algebra as

N = 2 superconformal algebra
[Lm, Ln] = (m− n)Lm+n + c

12
m(m2 − 1)δm+n,0

[Lm, G
±
n±a] = (m

2
− (n± a))G±n+m±a

[Lm, Jn] = −nJm+n

[Jm, G
±
n±a] = ±G±n+m±a

[Jm, Jn] = c
3
mδm+n,0

{G±m+a, G
±
n−a} = 2Lm+n + (m− n+ 2a)Jm+n + c

3
((m+ a)2 − 1

4
)δm+n,0

where the central charge will be chosen as c = 9 in this case, according to preceding
remarks. The parameter 0 ≤ a < 1 controls the boundary conditions of the fermionic
currents. This can be seen from z → e2πiz, which implies G± → −e∓2πiaG±. Algebras
with different choices for a are related via spectral flow. If a is chosen integer, one speaks
of Ramond boundary conditions, if a is chosen half-integer, one speaks of Neveu-Schwarz
boundary conditions.

There are several examples of theories with N = 2 superconformal symmetry, and the
different conformal field theories related to string theory are often closely connected. It
is interesting to choose a non-linear sigma model realization of the worldsheet superstring
with a curved Riemannian manifold as a background. Such a non-linear sigma model gov-
erns maps φ : Σ → X from the worldsheet Σ to a target manifold X, which will now be
assumed to be a complex Riemannian manifold. In order for an action of such a non-linear
sigma model to possess (2, 2) supersymmetry, it is conveniently constructed using a su-
perspace formalism, in schematic form S ≈

∫
d2zd4θK(Φi, Φ̄i). In this form it is easy to
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prove that the target space manifold X has to be a Kähler manifold (defined in A.1 of
the appendix). The reader can follow this closely in [11]. Furthermore, by calculating the
β-function for the metric one obtains something proportional to the Ricci tensor, at lowest
order. This is thus a possibility to discover that the conformal symmetry requires X to be
a Calabi-Yau manifold, which is by definition a Kähler manifold allowing a Ricci-flat metric.

Non-linear sigma model realization of N = 2 superconformal worldsheet theory

An explicit realization of an N = 2 superconformal worldsheet theory will be discussed
briefly: a non-linear sigma model. The interest will lie in two global symmetries known
as R-symmetries. In particular, it will be shown that they are only present both after
quantizing the theory when choosing a Calabi-Yau manifold as a target space. These sym-
metries are at the basis of defining the so-called topological twist, leading to topological
field theories (and eventually string theories). This will be discussed in chapter 3.

Coordinates (z, z̄) will be chosen on the worldsheet Σ, and (φi) (i = 1, 2, 3) on the 3-
complex dimensional target space X. This means that the manifold can be described by a
family of charts {Uα, φiα, φīα}, such that transition functions do not mix the holomorphic and
anti-holomorphic coordinates, i.e. on an intersection Uα ∩Uβ one has φiα = φiα(φ1

β, . . . , φ
3
β)

and φīα = φīα(φ1̄
β, . . . , φ

3̄
β). One can hence decompose the fields appearing in the action

according to

φI = {φi, φī}, ψI± = {ψi±, ψī±} , and gIJ = {gij̄, gīj} . (1.2)

Stating that the geometry of X is ‘complex’ means that that a splitting of indices into
barred and unbarred indices is consistent throughout all patches of X. One also wants
the supersymmetry transformations to respect the complex structure of X, thus one has
to require that the metric on X be such that parallel transport of vectors preserves the
decomposition TX = T 1,0X ⊕ T 0,1X. Metrics that satisfy this condition are called Kähler
metrics. The (supersymmetric) action for this non-linear sigma model realization of an
N = (2, 2) superconformal field theory reads

S =

∫
Σ

d2z
(1

2
gij̄ ∂zφ

i ∂z̄φ
j̄ +

1

2
gīj ∂zφ

ī ∂z̄φ
j

+i gīj ψ
ī
−Dz ψ

j
− + i gīj ψ

ī
+Dz̄ ψ

j
+ +

1

4
Rij̄kl̄ ψ

i
+ ψ

j̄
+ ψ

k
− ψ

l̄
−
)
, (1.3)

where Dz̄ψ
i
+ = ∂z̄ψ

I
+ + ∂z̄φ

jΓijkψ
k
+ (and analogous for Dz).

The superalgebra

The supersymmetry generators Q± and Q± are defined such that a total supersymmetry
variation is expressed as follows:

δ = i α−Q+ + i α+Q− + i α̃−Q+ + i α̃+Q− . (1.4)
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These generators obey the following anti-commutation relations1:

{Q±, Q±} = P ±H , (1.5)

where P and H are the Euclidean versions of the generators of space and time translations.
Recall that the action (1.3) is referred to as N = (2, 2) supersymmetric, because there

are two holomorphic and two anti-holomorphic SUSY parameters. The spinors and SUSY
transformation parameters are sections of the following bundles:

ψi+ ∈ Γ(Σ, K1/2 ⊗ Φ∗(T 1,0X)) , ψī+ ∈ Γ(Σ, K1/2 ⊗ Φ∗(T 0,1X)) ,

ψi− ∈ Γ(Σ, K1/2 ⊗ Φ∗(T 1,0X)) , ψī− ∈ Γ(Σ, K1/2 ⊗ Φ∗(T 0,1X)) ,

α+ , α̃+ ∈ Γ(Σ, K1/2) , (1.6)

α− , α̃− ∈ Γ(Σ, K1/2) ,

where K1/2 and K1/2 can loosely be referred to as the ‘square root’ of the canonical,
K = T (1,0)Σ = T (0,1)Σ, and the anti-canonical bundle, K = T (0,1)Σ = T (1,0)Σ. More
specifically, these spin bundles have transition functions which are elements of U(1) and
square to elements, which are transition functions of K and K.

Classical and quantum R-symmetry

Now that the supersymmetry of the sigma model has been established, let two additional
global symmetries be stated, that this theory enjoys. These symmetries go by the name of
vector R-symmetry and axial R-symmetry, whose generators will be denoted by FV and FA,
respectively. These two symmetries act on the fermions only, and are defined as follows:

ei αFV {ψi±, ψī±} 7→ {e−i α ψi±, ei α ψī±} ,
ei αFA {ψi±, ψī±} 7→ {e∓i α ψi±, e±i α ψī±} . (1.7)

Finally, one can write the commutation relations with the supersymmetry generators:

[FV , Q±] = Q± ,

[FV , Q±] = −Q± ,
[FA, Q±] = ±Q± , (1.8)

[FA, Q±] = ∓Q± .

Having defined the R-symmetries (1.7) of the classical action (1.3), the question arises
whether they are symmetries of the full quantum theory. This question will be answered
by carefully defining the measure of the path integral. In order to do this, the basis of the
fermions is changed to ‘momentum’ space. For simplicity, spacetime indices are suppressed
and the fermions are written as ψ± and ψ±. The ψ− will be decomposed into eigenspinors

1Only non-vanishing relations are written.
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of the Dz̄Dz operator. If one denotes the eigenvalues as λn, then one can write the spinor
as follows:

ψ− =
∞∑
n=0

∑
α

cn,αψ−
(n,α) , (1.9)

where the n labels the eigenvalue and the α labels the degeneracy of that eigenvalue. One
can split up this sum into zero and non-zero modes

ψ− =
∑
α

c0,αψ−
(0,α) +

∞∑
n=1

∑
α

cn,αψ−
(n,α) , (1.10)

where λ0 = 0. Notice that a zero mode of Dz̄Dz is necessarily annihilated by Dz. Suppose
there is a ψ− such that Dz̄Dzψ− = 0. Then, one can take the complex conjugate of that
solution, ψ+, and compute the following

0 = −
∫
ψ+Dz̄Dzψ− = +

∫
Dz̄ψ+Dzψ−

= +

∫ (
Dzψ−

)∗
Dzψ− ≥ 0 , (1.11)

where the last inequality is saturated if and only if Dzψ− = 0.
One can similarly make a decomposition of ψ− into eigenspinors of the same operator, and
ψ+ and ψ+ into eigenvectors of DzDz̄. Having made this change of basis, one can rewrite
the fermionic measure of the path integral roughly as follows:(∏

α

dψ+
(0,α)

)(∏
α

dψ−
(0,α)

)(∏
α

dψ+

(0,α)
) (∏

α

dψ−
(0,α))× (nonzero modes) . (1.12)

In this basis, the action will look like

S ∼
∑
n,m 6=0

∞∑
α,β

(
ψ

(n,α)

+ Dz̄ ψ
(m,β)
+ + ψ

(n,α)

− Dz ψ
(m,β)
−

)
. (1.13)

The point now is that the zero modes do not appear in the action, because they have
been killed by the corresponding operator. This means that the Grassmann integration
over these modes will go unsaturated, i.e. we will have integrals of the form

∫
dψ · 1 = 0.

So the whole path integral will vanish unless one adds some fermions to the integrand.
The question is: how many fermions of each kind does one have to add? If it turns out
that one had to add the same amount of fermions for each kind, say `, then non-vanishing
correlators for this theory will look like this:

〈ψ1
+ . . . ψ

l
+ ψ

1
− . . . ψ

l
− ψ

1

+ . . . ψ
l

+ψ
1

− . . . ψ
l

−〉 . (1.14)

Such a correlator has neutral RV and RA charge, so no anomaly is present. If, however,
the number of zero modes of the different kinds of operators differ, then there will be an
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anomaly. So one needs to count the (difference in) zero modes. First of all, one notes that
the number `+ of ψ+ zero modes is equal to the number of ψ− zero modes. This follows
from the fact that (

Dz̄ψ+

)∗
= Dzψ− . (1.15)

Similarly, the number `− of ψ− zero modes equals the number of ψ+ zero modes. This
means that the non-vanishing correlator will have neutral RV charge, because there is an
equal number of barred and unbarred spinors.
Now, it is time to know the difference `+−`−. The space of sections of K1/2⊗Φ∗(T (1,0)) (i.e.
ψ+ spinors) that are annihilated by Dz is denoted in the language of sheaf cohomology as
H0(K1/2⊗Φ∗(T (1,0))). The Riemann-Roch theorem yields information about this space by
stating that, given a bundle E on a complex n-dimensional space Y , the following relation
holds:

n∑
i=0

(−1)i dim(H i(E)) =

∫
Y

ch(E) td(Y ) . (1.16)

On the left hand side, H i(E) means (0, i)-forms taking values in E that are in the kernel of
a covariantized Dz̄ operator, modulo elements in the image of this operator. On the right
hand side, ch and td stand for the Chern character and Todd class of the bundles in their
argument. In this case, the alternating sum terminates at the first cohomology

n∑
i=0

(−1)n dim(H i(E)) = dim(H0)− dim(H1) . (1.17)

H0 was what was sought, and now what remains is its difference with H1. One can use
what is known as Serre duality, which states the following:

H i(E) = Hn−i(K ⊗ E)∗ , (1.18)

where E is the dual bundle, and the ∗ means ‘dual vector space’. In this case, this means

H1(K1/2 ⊗ Φ∗(T (1,0)X)) = H0(K ⊗K1/2 ⊗ Φ∗(T (0,1)X))∗ = H0(K1/2 ⊗ Φ∗(T (0,1)X))∗ .
(1.19)

This is the dual to the space of ψ+’s, so its dimension is just `−. In other words, the
Riemann-Roch theorem (1.16) already yields the difference `+ − `−. So let the right hand
side be computed. First, one needs ch(K1/2 ⊗ Φ∗(T (1,0)X)), and one can simplify this by
using the rule that the Chern character of a tensor product bundle equals the product of
the Chern characters of the individual bundles. Using the fact that K = T (1,0)Σ = T (0,1)Σ
one can rewrite this as follows:

ch(K1/2 ⊗ Φ∗(T (1,0)X)) = ch(K1/2)ch(Φ∗(T (1,0)X)) =
√

ch(K)Φ∗(ch(T (1,0)X))

=
(
1− 1

2
c1(T (1,0)Σ)

) (
d+ Φ∗(c1(T (1,0)X))

)
(1.20)

= d+ Φ∗(c1(T (1,0)X))− d

2
c1(T (1,0)Σ) , (1.21)
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where d is the complex dimension of the worldsheet. For simplicity, T (1,0) will be denoted
by T and T (0,1) by T , in the following. Using the relation td(TΣ) = 1 + 1

2
c1(TΣ) for the

Todd class and multiplying it all together, keeping only the two-forms, one gets

`+ − `− =

∫
Σ

Φ∗(c1(TX)) . (1.22)

Therefore, a correlation function must be of the form

〈(ψ+)`+(ψ−)`+(ψ−)`−(ψ+)`−〉 . (1.23)

such that the difference is given by (1.22). If c1(TX) 6= 0, this means that an operator with
non-zero RA charge has a vev (vacuum expectation value), which means that the symmetry
is spontaneously broken, thus exhibiting an anomaly in the symmetry. The condition for
this anomaly to vanish is c1(TX) = 0: the target space is a Calabi-Yau 3-fold X.

To summarize:

• The RV -charge is always preserved for any Kähler target space.

• The RA-charge is preserved if and only if the target space is Calabi-Yau.

Additionally, some closing remarks on the worldsheet perspective of string theory on a CY
manifold are given. There are scalar parameters controlling form and size of a CY manifold
that are commonly called the moduli of a CY. These will be discussed in detail in the next
section. Let it at this point be said though, that the CY’s associated to some scalar moduli
are not smooth. It was perceived more than twenty years ago, that the perturbative SCFT
description breaks down at singular points (singularities will be discussed in chapter 3).
The resolution of some of these singularities goes through the appearance of new mass-
less degrees of freedom, which can generally be associated to branes. The description of
the theory including the new degrees of freedom requires a different CY threefold: this
is called a topology changing transition, which appears to be something dynamical and
smooth within the physics of string theory on CY threefolds. Such non-perturbative coni-
fold transitions interconnect different CY threefolds with completely different topologies.
More radically, in [12, 13], it was even argued that all CY threefolds realized as complete
intersections in products of projective spaces are connected through conifold transitions.
The most daring idea is that all type II string theory compactifications on a CY 3-fold
are related by perturbative and non-perturbative ‘transitions’, that is to say, this family
of theories then is just a collection of momentary depictions of a dynamical whole: type II
string theory compactified on a Calabi-Yau 3-fold. The reader who wishes to read more
about this can take the lecture notes of Brian Greene, [14], as a starting point.

1.3 From 10D to 4d N = 2 supergravity theories

As discussed previously, the type II superstring theories are believed to be described ef-
fectively by type II supergravity theories at low energies. Of particular relevance is the
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compactification of these supergravities down to four dimensions. This may be seen as a
counterpart to the discussion presented in the previous chapter on the worldsheet perspec-
tive of string theory. Here, the low energy spacetime perspective of compactifying string
theory on a CY 3-fold is discussed. The presentation will be exclusively on the IIA and
IIB N = 2, d = 4 supergravity theories. A total space of the form M4 ×X will be chosen
as a background, where M4 denotes 4d Minkowski space, and X denotes a CY 3-fold. The
starting points are the two D = 10 supergravities.

The bosonic massless field content of the non-chiral N = 2, D = 10 IIA, and the chiral
N = 2, D = 10 IIB supergravities is summarized in the following table, indicating the
fields’ string theoretical origin.

NS-NS sector R-R sector

IIA metric (graviton) GMN RR 1-form C(1)

10D Kalb-Ramond 2-form B(2) RR 3-form C(3)

supergravity dilaton Φ

IIB metric (graviton) GMN RR 0-form C(0)

10D Kalb-Ramond 2-form B(2) RR 2-form C(2)

supergravity dilaton Φ RR 4-form C(4)

A real irreducible (Majorana-Weyl) spinor in ten dimensions has 16 components, [15],
and N = 2 thus means 32 supercharges. The scalar Φ called the dilaton can be seen as
dynamically determining the string coupling gs = eΦ. There are various approaches as to
how one can find these two supergravities involving massless fields. One could start with
the maximal D = 11 supergravity believed to be a low energy limit of M-theory and do a
dimensional reduction. Alternatively, they can be found by starting with the field content
listed above, and as these supergravities are maximal, supersymmetry fully constrains the
action to the form of which the bosonic part is given below.

Choose type IIA supergravity first. Apart from the bosonic field content, there are
the fermionic fields: two spin 3

2
opposite chirality gravitinos ψ±µ and two spin 1

2
opposite

chirality dilatinos λ±. The action for the bosonic fields has a part for the dynamics of the
fields arising from the NS-NS sector,

S10D,NSNS

IIA,bosonic
=

1

2κ2
10

∫
d10x
√
−Ge−2Φ(R + 4(∂MΦ∂MΦ)− 1

12
HMNPH

MNP ), (1.24)

one for the dynamics of the fields from the RR-sector,

S10D,RR

IIA,bosonic
= − 1

4κ2
10

∫
d10x
√
−G(|F (2)|2 + |F̃ (4)|2), (1.25)

using F̃ (4) = F (4) − C(1) ∧H(3), and finally a (topological) Chern-Simons term,

S10D,CS

IIA,bosonic
= − 1

4κ2
10

∫
B(2) ∧ F (4) ∧ F (4), (1.26)
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yielding the bosonic action S10D
IIA,bosonic

= S10D,NSNS

IIA,bosonic
+ S10D,RR

IIA,bosonic
+ S10D,CS

IIA,bosonic
. The action is

written in string frame, and the relation between Newton’s constant, gravitational coupling
constant and string length reads 16πG10 = 2κ2

10 = 2κ2g2
S = (2π)7l8Sg

2
S. G denotes the

determinant of the 10D metric, Φ is the dilaton, H(3) = dB(2) is the field strength belonging
to the NS-sector two-form and F (2) = dC(1) and F (4) = dC(3) are the corresponding
field strengths originating from the RR-sector of the theory. Note that the action can be
transformed to the Einstein frame by a Weyl rescaling of the metric (Gstring = e−

Φ
2 GEinstein),

in which the term for the metric will have the familiar form from the Einstein-Hilbert action.
Similarly, the bosonic part of the action for IIB string theory splits up into a term from

the NS-NS sector, which is exactly the same as for type IIA,

S10D,NSNS

IIB,bosonic
=

1

2κ2
10

∫
d10x
√
−Ge−2Φ(R + 4(∂MΦ∂MΦ)− 1

12
HMNPH

MNP ), (1.27)

one for the RR-sector,

S10D,RR

IIB,bosonic
= − 1

4κ2
10

∫
d10x
√
−G(|F (1)|2 + |F̃ (3)|2 +

1

2
|F̃ (5)|2), (1.28)

using F̃ (3) = F (3) − C(0) ∧ H(3) as well as F̃ (5) = F (5) − 1
2
C(2) ∧ H(3) + 1

2
B(2) ∧ F (3), and

finally a Chern-Simons term,

S10D,CS

IIB,bosonic
= − 1

4κ2
10

∫
C(4) ∧H(3) ∧ F (3), (1.29)

yielding the bosonic action S10D
IIB,bosonic

= S10D,NSNS

IIB,bosonic
+S10D,RR

IIB,bosonic
+S10D,CS

IIB,bosonic
, where the action is

again written out in string frame. There was a little (standard) cheating involved, though.
The action on its own is not sufficient 2, one needs to impose one additional constraint,

?F̃ (5) = F̃ (5), (1.30)

the self-duality of the five-form field strength F̃ (5), as this does not follow from the action.

1.3.1 Compactification to four dimensions

Compactification in supergravity means performing a dimensional reduction, and the idea
of dimensional reduction refers to effectively describing a higher dimensional theory in
terms of a lower dimensional one. The first ideas on this appear to go back to Gunnar
Nordström back in 1914 [16–18], but in general such theories became known as Kaluza-
Klein theories, referring to their attempts to unify general relativity and electromagnetism
in five dimensions, [19,20].

2The action could be reformulated such that one can avoid having to impose an extra constraint, but
only at the cost of considerable technical complication.
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Kaluza-Klein truncation

The basic intuition can be gained from the easiest example, namely reduction on a circle
S1 of length L = 2πR. Imagine starting with a 10D theory consisting of massless fields and
considering for example a massless scalar field Φ. In 10D, the equation of motion reads

210Φ = 0. (1.31)

One now chooses to write the 10D Minkowski spacetime as a product M1,9 =M1,8 × S1,
and label the coordinates xµ, µ = 0, ..., 8 on M1,8 and y on S1. This means that the
d’Alembertian decomposes, 210 = 29 + ∂2

y . If one expands the scalar field in Fourier
modes,

Φ(x, y) =
∑
n

φn(x)e
iny
L ,

one sees that (1.31) decomposes into equations for the modes of the form

29φn −
n2

L2
φn = 0. (1.32)

From a 9D point of view, each mode φn is again a scalar field, with mass |n|
L

. This means
that the size of the circle determines how massive these scalar fields are, and it is clear,
that by choosing L very small, the modes will become extremely massive. If one chooses
L to be of a certain length, the scalar fields will have masses of the corresponding order
of magnitude. One would like to keep only the massless fields, in this case φ0, and this is
justifiable if the other modes are heavy enough, which is of course the case if the circle is
small enough. The modes φn are called massive Kaluza-Klein modes and do not play any
role at an energy scale much lower than the compactification scale.

If one is allowed to throw away the massive modes, the lower dimensional theory can be
truncated down to the massless modes: this yields a consistent Kaluza-Klein truncation.
In principle one has to check for all the fields whether the equations of motion allow
neglecting of all the massive modes. For CY compactifications, this is an unsettled issue.
Using special geometry and the cohomology of a CY, one can determine the massless modes
for such a compactification, but no proof has been found as to whether the massive modes
decouple from the massless ones. Unlike the case of the circle, where the Fourier modes are
orthogonal, this decoupling is already non-trivial for a reduction on a three-sphere. These
long-standing problems will not be addressed in this thesis.

It is clear that these explanations generalize to other types of fields. For example, a
10D metric GMN will reduce to various types of fields: splitting up 10D indices according
to M = (µ, y) and as a KK-ansatz taking G to be independent of y, one will obtain a
metric in 9D, gµν = Gµν , a vector field Aµ = Gµz = Gzµ and a scalar φ = Gzz. A similar
reduction applies to all 10D n-form gauge fields.

When reducing over several dimensions, the d’Alembertian will split according to
2D = 2d + 2D−d and it is clear that one will want to expand the forms into eigenstates of
2D−d and the harmonic forms belonging to this operator will lead to the massless modes in



1.3 From 10D to 4d N = 2 supergravity theories 25

the reduced theory. In the case of the scalar field this harmonic 0-form was ‘e0 = 1’ belong-
ing to ∂2

y . On Riemannian manifolds, harmonic forms are determined by the cohomology.
It is thus intuitively clear that the cohomology of the compact manifold determines the
massless field content of the dimensionally reduced theory. A part of these aspects for
the case of main interest, namely choosing the compact manifold to be a Calabi-Yau, will
be discussed in 1.3.2. In the next section, type II supergravity theories will be analyzed
a bit more closely for the case of a CY compactification. The reader not familiar with
such spaces is at this point referred to the appendix, part A.1, providing him with various
possible definitions and all the important key facts, which will be a firm basis for the rest
of this chapter. He will find further sections, dwelling within Algebraic Geometry, allowing
understanding of the actual construction of Calabi-Yau spaces within this powerful and
beautiful mathematical framework. At this point, the first section of the appendix should
be sufficient, the reader is advised to go back to the algebraic sections later.

Compactification of type II supergravity on a Calabi-Yau threefold

Although there seems to be little freedom for string theory / M-theory living in 10 /
11 dimensions, there is a humongous amount of choices upon compactification for the six
compact dimensional space, that reduces to a theory in the four dimensions that one knows
well. A few steps away from reality, but very interesting, is to let oneself be guided by
requiring at least some unbroken supersymmetry in four dimensions, but not too much
supersymmetry as this is at present unattractive when seeking to make contact with phe-
nomenology. Compactification of a type II supergravity theory on a CY breaks 3

4
of the

original supersymmetry, leaving 8 out of the original 32 supercharges conserved, yield-
ing N = 2 supergravity in four dimensions. According to the preceding discussion, the
massless wave equation 210 ω = 0 in ten dimensions will split up according to

210 = 24 + 2CY, (1.33)

from which one sees that harmonic forms ω on the CY X satisfying 2CY ω = 0 determine
the massless field content in four-dimensional compactifications. According to Hodge’s fa-
mous theorem, there is exactly one harmonic form in every cohomology class, and thus, the
CY’s Hodge diamond determines the number of massless bosonic fields, and hence also of
the massless (super) multiplets. These multiplets shall now be described. In 4d, fermionic
charges belong to a spinor representation of SO(1, 3), and in the minimal supersymmetric
case, supercharges have 4 real components. Writing the 4d Majorana spinor Q containing

the supercharges with Weyl spinors Q =

(
Qα

Qα̇

)
, the N = 2 supersymmetry algebra is

thus of the form
{Qi

α, Q̄
j

β̇
} = γµ

αβ̇
Pµδ

ij, (1.34)

(and {Qi
α, Q

j
β} = 0, {Q̄i

α̇, Q̄
j

β̇
} = 0), where i, j = 1, 2, Pµ is the momentum operator and

γµ is a 4d gamma matrix. The algebra allows three kinds of basic representations (note
that tensor multiplets can be dualized into hypermultiplets). The massless field content



26 Chapter 1. String theory compactifications

of a type II supergravity theory can be arranged into these three possible kinds of N = 2
multiplets:

• Gravity multiplet: a spin 2 graviton, two spin 3
2

gravitini and a spin 1 graviphoton,

• Vector multiplets: each of which contains a spin 1 photon, two spin 1
2

fermions
and two real spin 0 scalars,

• Hypermultiplets: each of which contains two spin 1
2

hyperfermions and four spin
0 hyperscalars.

On general grounds, check e.g. [21,22], an N = 2, d = 4 action, coupled to NV abelian
vector multiplets and NH abelian hypermultiplets, can be determined to be of the general
form (only listing the bosonic part):

S =
1

16πG4

∫
d4x
√
−g
(
R− gIJ̄(φ)∂µφ

I∂µφ̄Ī − huv(q)∂µqu∂µqv

+
1

4
(ImNIJ)(φ)F IµνFµν J +

1

8
(ReNIJ)(φ)εµνρσF IµνFJρσ

)
, (1.35)

with a 4d metric g, NV complex scalars φI , spanning a special Kähler manifold (as will
be discussed), vector field strengths F I and 4NH real scalars qu, spanning a quaternionic
manifold. G4 denotes the 4d Newton constant, gIJ̄ denotes the metric on the target space
of the involved scalar fields φ, huv the metric on the target space of the scalars qu, and
N is a complex symmetric matrix, determining the kinetic terms for the vectors. These
structures will be discussed in more detail, below. The dimensional KK-reductions (and
truncations) of type IIA and type IIB supergravities from ten dimensions indeed fit into
this form, [23, 24]. According to this line of arguments, one can interpret such 4d type II
supergravities as originating from 10D supergravity and string theory.

Type IIA supergravity in four dimensions

In the following, the bosonic massless field content of type IIA supergravity in 4d will
be explained. The 10D origin of each field will be motivated by giving the 10D index
structure and fields they originate from as massless modes: this will be indicated by an
arrow pointing from the 10D field to the 4d field. Choose Greek indices µ = 0, 1, 2, 3 for
the non-compact 4d spacetime, and Latin indices i, j̄ for the complex Calabi-Yau 3-fold.
For example, Gµν → gµν , means that the 4d metric is inherited from the 10D metric
components with indices in the four non-compact spacetime directions. The gravity and
the universal hypermultiplet (universal because it always exists) are the same for every
compactification, the number of additional multiplets depends on the specific Calabi-Yau
manifold.

1. In the gravity multiplet, one obtains the (spin 2) 4d metric Gµν → gµν and the (spin

1) graviphoton C
(1)
µ → Cµ.
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2. One obtains h(1,1) vector multiplets, one for every harmonic (1, 1)-form on the CY

3-fold3. In each of them, one finds a (spin 1) vector C
(3)

µij̄
→ CA

µ (A = 1, ..., h(1,1)) and

two scalars, B
(2)

ij̄
→ BA and Gij̄ → JA. Combined, φA = BA + iJA, they form the

complexified Kähler moduli of the Calabi-Yau 3-fold.

3. Apart from the universal hypermultiplet, one obtains h(2,1) additional hypermulti-
plets, each containing four scalars, Gij → aI , Gīj̄ → bI , C

(3)

ijk̄
→ cI1, C

(3)

īj̄k
→ cI2, where

I = 1, ..., h(2,1). The aI and bI form the complex structure moduli zI of the CY.

4. The universal hypermultiplet contains four scalars. One finds the dilaton Φ → φ,
and an axion B

(2)
µν → bµν ⇒ a, where the inherited two-form has been dualized

into a scalar 4. The two other scalars are obtained from the RR 3-form, specifically
C

(3)
ijk → c3 and C

(3)

īj̄k̄
→ c4, and reflect the existence of one harmonic (3, 0)- and one

(0, 3)-form on the CY.

This is summarized as follows:

type of multiplet number bosons
1. gravity multiplet 1 gµν , Cµ
2. vector multiplets h1,1 CA

µ , B
A, JA

3. hypermultiplets h2,1 aI , bI , cI1, c
I
2

4. IIA universal hypermultiplet 1 φ, a, c3, c4

Type IIB supergravity in four dimensions

The massless field content of type IIB supergravity in 4d is organized as follows:

1. In the gravity multiplet, one obtains the (spin 2) 4d metric Gµν → gµν and the (spin

1) graviphoton C
(4)
µijk → Cµ.

2. Apart from the universal hypermultiplet, one now obtains h(1,1) additional hyper-
multiplets, each containing four scalars, Gij̄ → J I , Bij̄ → BI , C

(2)

ij̄
→ cI1, C

(4)

µνij̄
→ cI2,

where I = 1, ..., h(1,1). The tI = BI + iJ i form the complexified Kähler moduli of the
CY.

3. This time one obtains h(2,1) vector multiplets, one for every harmonic (2, 1)-form on

the CY. In each of them, one finds a (spin 1) vector C
(4)

µijk̄
→ CA

µ (A = 1, ..., h(2,1))

and two scalars, Gij → aA and Gīj̄ → bA. Combined, zA = aA + ibA, they form the
complex structure moduli of the Calabi-Yau 3-fold.

3The Hodge diamond of a Calabi-Yau and the used notation is explained in the appendix, part A.1.
4Note that the field strength of a two form is Hodge dual to the field strength of a scalar in four

dimensions: db = ?da.
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4. In the universal hypermultiplet one finds the dilaton Φ → φ, and an axion B
(2)
µν →

bµν ⇒ a, where the inherited two-form has been dualized into a scalar. The two other

scalars are obtained from the RR 2-form and 4-form, specifically C
(2)
µν → cµν ⇒ c3

and C
(4)
µνij → c̃µν ⇒ c4.

This is summarized in the following table:

type of multiplet number bosons
1. gravity multiplet 1 gµν , Cµ
2. hypermultiplets h1,1 BI , J I , cI1, c

I
2

3. vector multiplets h2,1 CA
µ , a

A, bA

4. IIB universal hypermultiplet 1 φ, a, c3, c4

The moduli spaces of CY manifolds: spacetime point of view

Both in the spectrum of IIA and of IIB supergravity on a CY manifold one came across
some scalar fields which were given the name moduli of the CY, and this should be ex-
plained in some more detail. Giving the Hodge numbers of a Calabi-Yau space does not
determine it completely. In fact, it can undergo two types of deformations parametrized by
what are known as the Kähler moduli and the complex structure moduli. One can imag-
ine that one has actually selected a whole family of Calabi-Yau manifolds, continuously
related through these deformations of moduli, but one normally views this family as one
Calabi-Yau manifold with a moduli space 5. The meaning of these deformations shall now
be discussed. Starting from a CY with a Ricci-flat metric Rij̄(g) = 0, one can deform the
metric g → g+ δg, demanding that the new metric should again be Ricci-flat, Rij̄(g+ δg).
One can consider deformations with pure indices (with respect to the complex structure),

δgijdz
idzj + δgījdz̄

īdz̄ j̄, (1.36)

and deformations with mixed indices,

δgij̄dz
idz̄ j̄ + δgījdz̄

īdzj. (1.37)

It turns out that in order to result in a Ricci-flat metric the latter type of deformations
(1.37) are required to be harmonic two-forms δgij̄dz

i∧dz̄ j̄, which naturally associates them
with elements in H(1,1)(X,Z). They do not change the index structure of the metric, but
as can be pictured intuitively, they change the volume of the CY. In fact, they change the
Kähler class J to a new element in H(1,1)(X,Z) 6. In fact, one can also deform the bij̄-
components of the other vector-/ hyper- multiplet scalars accordingly, and one is naturally
led to consider complexified Kähler deformations: (δbij̄ + iδgij̄)dz

i ∧ dz̄j̄ = (BA + iJA)DA,

5Apart from deformations, there may also be topologically distinct CY manifolds with the same Hodge
numbers.

6Thus, they change volumes
∫
Cn J

(n) (J (n) stands for an outer product of the Kähler form, the integral
yields the Kähler volume of a cycle) of various n-cycles Cn of the CY.
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using the basis DA for the even degree cohomology defined in the appendix. These are the
deformations of the complexified Kähler structure.

Alternatively, and this will lead to the complex structure moduli, the deformations
of type (1.36) change the index structure of the metric. In order to still get a Ricci-flat
Kähler metric, one needs to amend this by changing the complex structure. This means
that one is deforming the unique (3, 0)-form Ω. Note that this form is harmonic (∂Ω = 0
and ∂̄Ω = 0) and thus defines a cohomology class in H(3,0)(X,Z). As nicely discussed
in [25], the requirement that the new form Ω is again closed, imposes that the deformation
is by a (2, 1)-form, ω(2,1), and it turns out that this form is also required to be harmonic.
This can roughly be seen by writing the variation of coordinates as dzi → dzi+µi

j̄dz̄j (one
often calls these forms ‘µ’ Beltrami differentials), and then writing out the holomorphic
variation of Ω = f(z)dz1 ∧ dz2 ∧ dz3 out to first order. One observes that this variation is
of type H(3,0)(X,Z) ⊕H(2,1)(X,Z), and checks that the new holomorphic 3-form is again
closed. These deformations are thus naturally associated with elements in H(2,1)(X,Z).

To summarize: the moduli space of a CY 3-fold X splits into a product of the following
two pieces, classified by cohomology groups.

H(1,1)(X) Kähler deformations

H(2,1)(X) complex structure deformations

Additionally, it turns out that the Kähler moduli space as well as the complex structure
moduli space are both Kähler manifolds of their own, [26]. The Kähler potential KK of
the Kähler moduli space MK is found to be

KK =

∫
X

J ∧ J ∧ J, (1.38)

and the Kähler potential KC of the complex structure moduliMC space can be calculated
as

KC = −ln(i

∫
X

Ω ∧ Ω̄), (1.39)

using the Kähler form J and the holomorphic (3, 0)-form Ω. An even more refined mathe-
matical structure will be discussed in the next subsection. This section shall be closed with
a few remarks about – in fact simpler – compactifications, retaining more supersymmetry
in the 4d theory, as they connect to some of the author’s research and will be used in chap-
ter 5. It has been said that a Calabi-Yau compactification breaks 3

4
of the supersymmetry,

leaving behind an N = 2 supergravity theory in 4d. One can also compactify on a six-torus
T 6, breaking no supersymmetry, thus keeping 32 supercharges in 4d. As irreducible spinors
in 4d are Majorana spinors with 4 components this leads to a N = 8, d = 4 supergravity
theory. In [5], we analyzed a class of multi-centered black holes in this setup, and this
compactification is discussed in 5.2. Apart from that, one could also choose to compactify
on a CY 2-fold times a two-torus, K3×T 2, breaking one half of the supersymmetry, leaving
16 conserved supercharges. This leads to an N = 4, d = 4 supergravity theory. For an
extremely insightful discussion of K3 CY-twofolds and their moduli spaces, the reader is
referred to [27].
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1.3.2 Special geometry of Calabi-Yau compactifications

It was already mentioned that the Kähler as well as the complex structure moduli spaces
turned out to be Kähler manifolds, their Kähler potentials taking a simple form, (1.38,
1.39). However, the structure of these spaces is even more restricted. In general, for an
N = 2, d = 4 supergravity theory, the target spaces MV for the scalars XA (where A =
0, 1, ..., h(1,1) for type IIA and A = 0, 1, ..., h(2,1) for type IIB) arising in vector multiplets
XA : M(1,3) → MV obey a very restricted geometry, called special Kähler geometry, or
simply ‘special geometry ’. Note that the moduli consist of one extra scalar compared to the
previous discussion. This extra scalar field X0, which is unphysical, arises naturally when
constructing N = 2, d = 4 actions using superconformal tensor calculus and is convenient
to present the mathematical structure from a coordinate independent viewpoint.

On the other hand, the target spaces MH for the scalars arising in hypermultiplets
φ : M(1,3) → MH are also of a restricted type of geometry, called a quaternionic Kähler
manifold (which itself is not Kähler). As the interest in this thesis lies in BPS black
holes, the hypermultiplets are not of much further interest. They do not couple to the
supergravity multiplet or to vector multiplets, and beyond this fact, quaternionic scalars
can be set to any constant value for the black hole solutions, which will be considered. In
particular, quaternionic scalars are not influenced by the attractor equations (see section
2.1.3) and their value is arbitrary, even at the event horizon. The point of interest here is
that the vector multiplet scalars target in a special Kähler manifold. Some properties of
special geometry will now be reviewed. For a thorough discussion of special geometry, the
reader is referred to [25, 28–31] and for specific mathematical interest [32, 33]. Physically,
special geometry governs the couplings of the vector multiplets as well as the metric of
the scalar manifold. It will be presented from a somewhat abstract point of view first, as
this will allow to stress the symmetry in structure between the situations arising from type
IIA and IIB supergravities in a moment, also offering the chance to highlight the essential
differences, contrasting the analogies.

A special Kähler manifold is nicely described using the machinery associated to a prin-
cipal bundle P (MV , Sp(2NV +2)) with structure group Sp(2NV +2) above the base space,
which will, suggestively, already at this point be denoted as MV . Note that this is a
bundle over the moduli space of a CY. Also picture that a CY 3-fold (with the correspond-
ing Kähler/complex structure) is associated to each point z ∈ MV , namely the one with
the corresponding Kähler/complex structure. A special Kähler manifold allows a nowhere
vanishing holomorphic section Ω,

Ω(z) = (XA(z), FA(z)), (1.40)

of an associated vector bundle P ×ρ V corresponding to a vector representation ρ of
Sp(2NV + 2). The coordinates on the (vector space) fibers V are split up into XA on
the one hand, which can be seen as homogeneous coordinates onMV (they are the scalars
arising from compactification), and on the other hand the FA coordinates. Actually, Ω
is only defined projectively and one can consider a rescaling, Ω(z) → ef(z)Ω(z), using a
holomorphic function f(z). One thus really specifies a section Ω of the product bundle
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(P ×ρV )⊗H, where H is a line bundle overMV , whose first Chern class equals the Kähler
form on MV . So, to be precise,

Ω ∈ Γ(MV , (P ×ρ V )⊗H), (1.41)

where Γ denotes the space of sections. At each point z, Ω is an element of the fibre
(V ⊗ H)z ∼= V ⊗ H. Such a choice of holomorphic section will be interpreted nicely for
type II supergravity theories, shortly. For explicit calculations, it is appealing to choose
local, so called special coordinates on MV , which are affine coordinates,

zA =
XA

X0
. (1.42)

Having chosen such a section (1.40), the Kähler potential and thus also the metric on
the base spaceMV are determined. The fibres V are endowed with a symplectic product,
〈, , .〉 : V × V → Z, yielding

〈Γ1,Γ2〉 = XA
1 F

2
A −XA

2 F
1
A, (1.43)

for Γ1,2 ∈ V expressed in coordinates as Γi = (XA
i , F

i
A). This allows writing the Kähler

potential as
K = −ln

(
i〈Ω̄,Ω〉

)
= −ln

(
i(X̄AFA −XAF̄A)

)
, (1.44)

which is the great virtue of special geometry. Note that under the rescalings Ω → ef(z)Ω,
mentioned above, the Kähler potential shifts by a Kähler transformation,

K → K − f(z)− f̄(z̄), (1.45)

thus leaving the metric invariant. In order to give one of various clean definitions of special
Kähler geometry, one should in principle add the condition

〈DAΩ,DBΩ〉 = 0, (1.46)

which ensures that the matrix NAB, (1.48), to be defined below, is symmetric, using the
covariant derivative

DA = ∂A + ∂AK, (1.47)

which satisfies the desired property DA(efΩ) = efDAΩ.
Apart from these statements about the target space of the scalars, the coupling of the

vector multiplet vectors CA
µ (A = 1, ..., NV ), together with the graviphoton Cµ, as well as

their magnetic duals, alltogether yielding 2NV + 2 vector fields, is also fully determined
once a choice of holomorphic section (1.40) has been made. These vectors live in a section
of a Sp(2NV +2,Z)-vector bundle above spacetime, and accordingly, these transformations
mixing the graviphoton Cµ with the other NV vectors CA

µ as well as their magnetic duals,
leave the action invariant, as was discussed first in [34]. The matrix NIJ determines the
kinetic terms of the vectors appearing in a N = 2, d = 4 action, see formula (1.35), reads

NAB = H(F )AB + 2i
Im(H(F ))ABz

B Im(H(F ))KLz
L

Im(H(F ))ABzAzB
(1.48)
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using the Hessian H(F )AB = ∂A∂BF of the prepotential F , which will be discussed below,
and where ∂A = ∂

∂zA
is written in affine coordinates (1.42).

According to what was stated before, for a type IIA compactification, the vector mul-
tiplet scalars target in the moduli space of Kähler deformations, MV = MK , whereas
for a type IIB compactification the scalars target in the complex structure moduli space
MV = MC . The structure of special geometry will now be inspected separately for the
IIA and the IIB case in more detail.

Special geometry of the IIA Kähler moduli space

For type IIA supergravity compactified on a CY 3-fold, one has NV = h(1,1) vector multi-
plets containing one scalar field each. One can again group them together with one more
auxiliary scalar field X0. They define homogeneous coordinates on the projective manifold
MV = MK , where the last equation states that the target space for the scalars is the
Kähler moduli space of the CY.

The Sp(2h(1,1) +2)-vector bundle V can now be specified. It has fibers H2∗(X,Z) (even
degree cohomology of the CY X), as defined in the appendix, (A.2). An even degree form
Γ is expressed with the basis introduced in the appendix, Γ = Γ0 + ΓADA + ΓAD̃

A + Γ0 ω.
The symplectic product on the fibers between two even degree cohomology forms is, up to
some signs, defined as the integral over X of their wedge product, as follows. Using the
map

? : H2∗(X,Z)→ H2∗(X,Z),

Γ = (Γ0,ΓA,ΓA,Γ0)→ Γ∗ = (Γ0,−ΓA,ΓA,−Γ0), (1.49)

the intersection product reads

〈Γ1,Γ2〉 =

∫
X

Γ1 ∧ Γ∗2, (1.50)

where it is naturally understood that only the pairings yielding a six-form are considered
to contribute to the integral.

A choice of holomorphic section as in (1.40) becomes a beautiful geometric statement:
it means choosing a Kähler class. Put differently, it assigns volumes to the various cycle
classes of the CY homology. Using the complexified Kähler form JK = XADA, these
volumes, which are by definition the periods of the complexified Kähler form, read

X0 =

∫
D0

1, (1.51)

XA =

∫
DA
JK , (1.52)

FA =

∫
D̃A

JK ∧ JK , (1.53)

F0 =

∫
X

JK ∧ JK ∧ JK . (1.54)
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Note that the integrals only depend on homology classes of the cycles over which one
integrates. Hence, the integration domains are written with the homology basis elements
defined in the appendix, (A.5). The section Ω(z) is thus now just the period vector Ω =
XADA − FAD̃A 7 (literally the section in coordinates), where A = 0, ..., h(1,1).

Everything was now expressed in homogeneous coordinates, but this is not always
convenient. One can switch to special coordinates on MK ,

tA =
XA

X0
, IIA complexified Kähler deformation moduli (1.55)

which will be from now on called the Kähler moduli. Note that they are given by the
complexified Kähler form t = tADA = B + iJ , a (1, 1)-form. The holomorphic section can
now be written as

Ω = −et = −etADA = −(1 + t+
1

2
t ∧ t+

1

6
t ∧ t ∧ t), (1.56)

where A = 1, ..., h(1,1), now. According to the geometric interpretation just given, it will
also be referred to as the holomorphic period vector. The Kähler potential of the Kähler
moduli space can be written out as

K = −ln
(
i〈Ω, Ω̄〉

)
= −ln

(
i

∫
X

Ω ∧ Ω̄∗
)
,

= −ln

(
i

∫
X

et ∧ e−t̄
)

= −ln

(
4

3

∫
X

(J ∧ J ∧ J)

)
, (1.57)

noting that the operation star acts as et → e−t. This shows that the Kähler potential
depends logarithmically on the volume of X. This period vector shall from now on be
referred to as the holomorphic period vector, Ωhol = −et. For later reference, also the
normalized period vector is introduced,

Ω = e
K
2 Ωhol = −e

K
2 et, (1.58)

which of course satisfies i〈Ω,Ω〉 = 1.
As shall be discussed more closely for the IIB case below, one can introduce a prepo-

tential

F (X) =
1

2
XAFA, (1.59)

which is homogeneous of degree two in the coordinates XA, from which one can easily
obtain the Kähler potential and thus the metric as gAB̄ = ∂A∂B̄K. The dual periods
can now be written as a derivative of the prepotential, ∂AF (X) = FA. For the type IIA
supergravity compactification without any corrections, the prepotential reads

F (X) =
DABC

6

XAXBXC

X0
. (1.60)

7To check the signs appearing in Ω, compare with (A.6).
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From the string theoretical point of view, the prepotential F (X) is exact at tree level,
it does not receive any string loop corrections. This is not hard to understand, if one
goes back and considers in which multiplets the different scalars sit in an N = 2, d = 4
compactification on a CY threefold. The scalars corresponding to periods of the 2-cycles,
XA, sit in a vector multiplet, whereas the dilaton sits in the universal hypermultiplet. As
the dilaton determines the string coupling, which governs the string loop expansion, and
there are no couplings between vector and hyper multiplets, it is clear that the prepotential
will not receive any string loop corrections. However, it can and does receive perturbative
corrections in α

′
, but this is not the complete story. For the prepotential arising in the

IIA compactification, there is another type of corrections arising. This is also not hard to
understand intuitively. The periods of the Kähler form, by definition measuring volumes
of two-cycles, can receive instanton corrections by strings wrapping (holomorphic) curves.
These are worldsheet instanton corrections, which depend on α′ in a non-polynomial way.
From supergravity considerations, it is clear that the form of the perturbative corrections in
α
′
is very restricted. In the classical supergravity description of the theory, the Sp(2h(1,1) +

2,R)-symmetry allows a shift in the B-field. This is known as the Peccei-Quinn symmetry,
and it constrains the form of the perturbative corrections to the prepotential: the additional
term can only be of the form iC(X0)2, with C a constant. In fact, this constant has been

determined using mirror symmetry. The constant takes on the value ζ(3)χ(X)
2(2π)3 (see [35])

with ζ being the Riemann-Zeta function and χ(X) the Euler characteristic of the CY X.
More specifically, a direct relation has been established between the prepotential and the
topological free energy of the A-model topological string theory (3.41). The prepotential
including corrections thus takes the form

F (X) =
DABC

6

XAXBXC

X0
+ i

ζ(3)χ(X)

2(2π)3
(X0)2 + Fnonpert, (1.61)

where the last term Fnonpert arises from the worldsheet instantons mentioned before, and
breaks the Sp(2h(1,1) + 2,R)-symmetry down to Sp(2h(1,1) + 2,Z), a nice illustration of
the discretization of symmetries realized in the low-energy supergravity descriptions string
theory imposes. As will be discussed in chapter 3, the non-perturbative corrections are
directly encoded in the Gromov-Witten expansion of the topological free energy.

Special geometry of the IIB complex structure moduli space

In this case one has NV = h(2,1) vector multiplets, and the scalars in MC parametrize
the complex structure of the Calabi-Yau metric. The Sp(2h(2,1) + 2)-vector bundle has
fibers H3(X,Z) (the third cohomology of the the CY X): this is known as a Hodge bun-
dle. The name ‘Hodge’ bundle explains itself from the fact, that a choice of section of
the bundle can be seen as fixing a choice of the complex structure of a CY, thus fixing
index structure (what one calls holomorphic and anti-holomorphic) and therefore ‘Hodge’
structure of a CY. The symplectic intersection product defined on the fibers of the Hodge
bundle is in this case as defined in the appendix, (A.6).
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Again, a choice of holomorphic section (1.40) 8 has a beautiful geometric interpretation.
It is given in terms of periods of the holomorphic (3, 0)-form of the Calabi-Yau, using the
basis of 3-cycles (A.7), given in the appendix A.1,

X0 =

∫
A0

Ω, (1.62)

XI =

∫
AI

Ω, (1.63)

FI =

∫
BI

Ω, (1.64)

F0 =

∫
B0

Ω. (1.65)

where I = 1, ..., h(2,1). The ‘A-periods’ XI of the holomorphic 3-form Ω (note the analogy
with (1.51)) yield coordinates on MC , and, as will be discussed, the ‘B-periods’ FI are
functions of the A-periods, FI = FI(X). Again, one can also introduce affine or so-called
‘special coordinates’,

zI =
XI

X0
, IIB complex structure deformation moduli (1.66)

which shall from now on be called complex structure moduli of X.
Picking a holomorphic section for type IIB, as was done by fixing the periods, means

fixing the holomorphic (3, 0)-form (up to a rescaling). One can express the three-form as
Ω = XAαA − FAβA, and the Kähler potential K of the complex structure moduli space
reads

K = −ln(i(

∫
X

Ω ∧ Ω̄)). (1.67)

Now one can vary the complex structure moduli of X. This means moving in the complex
structure moduli space, and this will generally transform the holomorphic (3, 0)-form into
a linear combination of a (3, 0)-and a (2, 1)-form. A general variation reads

∂IΩ = KIΩ + χI
JαJ (1.68)

where KI is a function of the coordinates on MC , and χI
JαJ is a (2, 1)-form. Clearly,

(1.68) implies 〈∂IΩ,Ω〉 = 0, and it immediately follows that

FI = XJ∂IFJ . (1.69)

One can rewrite FI as FI = 1
2
∂I(X

JFJ) and introduce the prepotential

F (X) =
1

2
XIFI , (1.70)

8Note that the same symbol Ω is used for the holomorphic section of the vector bundle as for the
holomorphic (3, 0)-form on the Calabi-Yau X. As this seems the most common notation in the literature,
it will be used here too, hoping that in the light of this remark, it will not cause any confusion to the
reader.
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which is homogeneous of degree two in the coordinates XI . Again, the dual periods are
obtained as a derivative, ∂IF (X) = FI .

The prepotential F (X) for type IIB is exact. It cannot receive worldsheet instanton
corrections, as one is now dealing with three-cycles, and there are no E2-branes in type
IIB string theory. As mentioned above, the prepotential of the Kähler moduli space does
receive corrections. However there is a symmetry, called mirror symmetry (which will be
discussed in more detail in section 3.4), relating a type IIA compactifiation on a CY X to
a IIB compactification on a so called mirror CY Y . As the physics of these two models
are equivalent, mirror symmetry can be utilized to calculate quantities which receive an
infinite series of corrections on the IIA side, by switching to the IIB side, where these
quantities are determined by classical geometry. Again the prepotential is directly related
to the free energy of topological string theory, but this time to the B-model.

1.4 BPS spectrum of type II string theory

This section is a short presentation of the BPS spectrum of type II string theories, a
subspectrum of states conserving part of the supersymmetry. This short discussion only
contains standard material included in many textbooks and reviews. Should the reader
be familiar with D-branes, BPS states in general and also BPS supergravity solutions in
particular, she/he can directly move on to chapter two. D-branes in type II theories will
be picked out and construed as generalizations of charged particles in electromagnetism.
This is followed by the relevant formulae for D-brane actions. The second part of this
subsection is a discussion about the counterpart to the D-brane description of BPS states,
consisting of solitonic solutions to supergravity: the p-brane solutions.

1.4.1 D-Branes in type II string theory

As mentioned earlier on, D-branes were originally defined as open string boundary condi-
tions,

na∂aX
µ = 0 µ = 0, ..., p ,

X i = ci i = p+ 1, ..., 9 ,

where the ci are constants, and na is a normal vector to the surface X i = ci in 10D space-
time. A D-brane is thus an extended object, with p+1 worldvolume dimensions. The
discovery by Polchinski in 1995, [8], that the extended classical objects on which open
strings can end, called D-branes, multipresent in the weak string coupling description of
string theory, are actually charged sources for closed strings in the RR sector, was certainly
one of the milestones in the young history of string theory. In order to explain this a bit,
it is worth going back to Maxwell-theory and discussing the concept of charge once more.
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Electric and magnetic charges in electromagnetism

In a favourite notation, the Maxwell equations in the presence of charge and currents
read

dF = ∗Jm, (1.71)

d ∗ F = ∗Je, (1.72)

where Jm is a magnetic four-current, and Je is an electric four-current. A particle is said to
carry a charge and act as a source for an electromagnetic gauge field A. This is described by
an interaction of the form S = e

∫
A, whereas the charge of the particle can be calculated

using Gauss’ law, using the field strength dA = F . Electric (e) and magnetic (g) charge
can be defined in terms of the field strength, as

e =

∫
S2

∗F,

g =

∫
S2

F,

where the S2 surrounds the sources. Note that F is a two-form field strength, and Hodge
duality will send this to a (d − 2)-form field strength, which is of course also a two-form
for d = 4.

Charged Dp-branes

This concept of charge generalizes to higher dimensional objects. Just like a charged
particle (1-dimensional worldline) couples to a one-form gauge field, a charged (p + 1)-
dimensional object, namely a Dp-brane is said to couple to a (p+ 1)-form, a circumstance
which is accompanied by an interaction of the form

S = µp

∫
C(p+1), (1.73)

where integrand and integrator (not written explicitly) are given as the product of the
value of the (p + 1)-form gauge field C(p+1) with the induced volume element on the D-
brane hypersurface in 10D spacetime, and µp is the charge of the p-brane (it can be either
electrical or magnetical). As was stated previously, such (p + 1)-form gauge fields arise
from the RR-sector of type II string theories, and ‘Dp-branes’ are precisely the kind of
objects charged with respect to these gauge fields C(p+1). This of course requires that the
putative wavefunction of a D-brane transforms accordingly. One therefore speaks of the
RR-charge of a D-brane.

In analogy to the charge in electromagnetism, a Dp-brane carries electric charge qp (q
stands for an electric charge, and the subscript indicates that it is the charge of a p-brane)
measured by

qp =

∫
SD−(p+2)

∗Fp+2, (1.74)
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where for string theory in D = 10, Fp+2 is a D− (p+ 2)-form field strength and a D(p+2)-
sphere is required to surround a Dp-brane. One can in complete analogy equally model
magnetically charged branes, with magnetic charge pp (p stands for a magnetic charge and
the subscript again indicates the dimensionality of the brane) measured by

p6−p =

∫
Sp+2

Fp+2, (1.75)

where a Sp+2 is required to surround a (6-p)-brane: the magnetic dual of Dp-brane is a
D(6-p)-brane.

D-branes in IIA string theory

As discussed before, the low-energy spectrum contains a RR 1-form C(1) and a RR 3-form.
From dimensionality, it is clear that one expects a D0-brane and a D2-brane. Fitting into
the general scheme given above, the (electric) D0-brane charge reads q0 =

∫
S8 ∗dC(1), and

correspondingly one can also define a magnetic charge p6 =
∫
S2 dC

(1). Out of dimensional
reasons, the S2 can surround a D6-brane, which means that the magnetic dual of a D0-
brane is a D6-brane. Similarly, the D2-brane charge is defined as q2 =

∫
S6 ∗dC(3), and the

magnetically dual charge reads p4 =
∫
S4 dC

(3), and the magnetically dual of a D2-brane
is a D4-brane. One can also include a D8-brane in type IIA string theory, coupling to a
non-physical gauge field, but this is of no relevance in this thesis.

Of specific interest for this thesis are D-branes which can be wrapped on cycles in CY
manifolds and yield point-like objects from a 4d point of view. One can then imagine the
4d particle – or, if one generates enough mass, a black hole – as a beautifully ‘geometrized’
particle, or black hole. The following table summarizes the branes of interest, indicating
whether they will be referred to as ‘electric’ or ‘magnetic’:

Type IIA electric and magnetic BPS D-branes
D0-branes electric q0

D2-branes electric q2

D4-branes magnetic p4

D6-branes magnetic p6

D-branes in IIB string theory

The low-energy spectrum contains a RR 0-form C(0), a RR 2-form C(2), and a RR 4-
form C(4). Again, from dimensionality, it is clear that one expects a D(-1)-brane (this
is an object localized in space and time, thus an instanton, also called a D-instanton), a
D1-brane and a D3-brane. The magnetic dual of a D-instanton has a charge of the form
p7 =

∫
S1 dC

(0) and is a D7 brane. The D1-brane charge reads q1 =
∫
S7 ∗dC(2), the magnet-

ically dual is a D5-brane carrying the charge p5 =
∫
S3 dC

(2). Finally, there are D3-branes

carrying charges of the form q3 =
∫
S5 ∗dC(4), and the magnetic duals also turns out to be

D3-branes, carrying charges p3 =
∫
S5 dC

(4).
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In analogy to the IIA case, the branes of interest for this thesis are summarized in the
following table:

Type IIB electric and magnetic BPS D-branes
D1-branes electric q1

D3-branes electric q3

D3-branes magnetic p3

D5-branes magnetic p5

Preservation of supersymmetry and BPS states

The branes presented for type IIA and IIB string theory are stable. One could also con-
sider other branes, but these would not carry a conserved charge and would decay. These
processes are complicated and are under present investigation, in particular in the context
of tachyon condensations in string field theory. Stability of a D-brane is reflected in the
fact that the massless open string spectrum ending on such a D-brane does not contain a
tachyonic mode. It is beyond the scope of this thesis to go any further into these matters.

Another important fact is that these D-branes break half of the supersymmetry of the
vacuum. This means that a brane placed in the 10D background will leave 16 out of the
original 32 supercharges of type II string theories conserved. For this reason, they are also
called 1

2
-BPS states, a terminology which will receive further explanation when p-brane

solutions of supergravity will be discussed. On the other hand, if one considers a compact-
ification on a CY, one has already broken 3

4
of the original supersymmetry, leaving eight

remaining conserved supercharges. Again, placing a D-brane in this background, breaks 1
2

of the remaining supersymmetry, leaving 4 supercharges conserved, and one speaks of a 1
2
-

BPS state of the compactified theory. Finally, one can also combine various D-branes, but
superimposing them generically just breaks all supersymmetry. As is discussed in detail
in [9], one can however superimpose a Dp-brane and a D(p-4)-brane, successively breaking
half of the remaining supersymmetry, twice. This leads to what is called a 1

4
-BPS state.

For example, the combination of a D4 brane with a D0 brane yields a 1
4
-BPS state of type

IIA string theory compactified on a CY threefold. In the same way, one can of course also
construct 1

8
-BPS states.

The Dirac-Born-Infeld and the Chern-Simons action

One can describe the physics of D-branes at low energy by an effective action. The follow-
ing discussion will be restricted to the bosonic parts of the action. As can be followed in
many textbooks, it turns out that the actions for D-branes in type II string theories are
described by two terms. The first one arises from the RR-sector of the theory, and is a
generalization of the Born-Infeld action for non-linear electrodynamics. For a Dp-brane, it
takes the form

Sp = −Tp
∫
dp+1x e−φ

√
det(g + b+ 2πα′F ), (1.76)

where the integral is over the D-brane worldvolume, and where
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• Tp is the Dp-brane tension,

• g = Ξ∗(G), b = Ξ∗(B(2)), φ = Ξ∗(Φ) are the pullbacks of the 10D spacetime metric,
the antisymmetric NS-NS 2-form and the dilaton to the worldvolume of the D-brane,
respectively, using the map Ξ : H → M1,9 to denote the embedding of the (p+1)-
dimensional Dp-brane hypersurface H in 10D spacetime,

• the 2-form F is the field strength of the U(N) gauge field living on a stack of N
Dp-branes.

It was already discussed that a Dp-brane couples to RR gauge fields, and the action
corresponding to minimal coupling is of the form S =

∫
H
dp+1xC(p+1). However, as it turns

out, from demanding (chiral) anomaly cancellation on the intersection between two (or
more) branes, the true topological coupling is more complicated: it has been found to be
a Chern-Simons type action, [36], and reads

S =
Tp
2

∫
H

C ∧ ch(F ) ∧

√
Â(TH)

Â(NH)
, (1.77)

where

• Tp again denotes the tension of the Dp-brane,

• C is the total RR potential (a sum of the RR forms C(i) of different degree),

• ch(F ) is the Chern character belonging to the vector bundle F , which can be written
out using the field strength of the U(N) gauge field, ch(F ) = Tr

(
exp( F

2π
)
)
,

• Â(TH) is the well known A-roof genus of the tangent bundle to the brane world-
volume H, and Â(NH) is the A-roof genus of the normal bundle. For exam-
ple, for a tangent bundle TH, the A-roof genus is related to the Todd class by
Â(TH) =

√
td(TCH).

1.4.2 p-brane solutions in supergravity

Supergravity theories, and type II supergravity theories in particular, support a type of
classical solutions of specific interest. At this point I will have to jump ahead of myself for
just one moment and use some simple black holes as thought material. I will go back and
discuss black holes more systematically, in the next chapter. One of the proximate gen-
eralizations of the easiest black hole solution, which has been around the longest, namely
the Schwarzschild black hole, is a black hole carrying charge, besides mass. It is called
a Reissner-Nordström (RN) black hole, and the metric is given in equation (2.3). This
solution, being interesting in itself, turns out also to be a solution of supersymmetric gen-
eralizations of general relativity: supergravity. In fact, one can imagine a 4d supergravity
theory originating from type IIA or type IIB theory with the RN black hole as a solu-
tion. The solution is characterized by its mass M , and its charge Q, which allows one to
distinguish between three cases.
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• M > Q: In this case, the RN black hole turns out to break all the supersymmetry
present in the vacuum, and the solution is called non-extremal. Futhermore, the
black hole has two event horizons.

• M = Q: Such a solution is called the extremal RN black hole, and it turns out to
preserve 1

2
of the original supersymmetry, rendering it a 1

2
-BPS solution in supergrav-

ity, terminology-wise. The two event horizons existing in the previous case approach
each other when the values of mass and charge approach each other, and the two
horizons become identical when having reached the extremal case.

• M < Q: In this case, the two horizons disappear, the solution describes a naked
singularity, which is excluded from the physical spectrum by the cosmic censorship
principle.

The example of an extremal RN black hole in supergravity theories allows commenting on
the non-perturbative aspect of such a solution and the (satisfied) BPS bound, which are
general features of BPS p-brane solutions to supergravity.

• Non-perturbative solitonic nature
A RN black hole solution (or any black hole solution for that matter) is a called a non-
perturbative solution to the non-linear equations of motion arising from supergravity
(or general relativity), as it is a non-trivial solution, which cannot be found from a
linearized version of the equations of motion. It is very distinct from the vacuum,
as it carries a non-zero (topological) conserved quantum number (or charge), which
is zero for the vacuum (and states which are perturbatively related to the vacuum).
Thinking of a putative quantum theory of which supergravity is a classical limit,
such a black hole solution should have a mass inverse to some power of a coupling
constant, as it cannot be found in the weak coupling limit (perturbatively). It is thus
very massive, and any possible quantum effects due to exchange of such ‘solutions’
is bound to be a non-perturbative effect. It is also a static (or at least a stationary)
solution to non-linear differential equations, localized in nature, and finite, which
are attributes associated to a soliton. For this reason, they are also called solitonic
objects. Namely, such a soliton is thought to interpolate between the vacuum at
infinite distance of the black hole, and the (asymptotic) near-horizon geometry. For
example, the ordinary 4d Schwarzschild black hole interpolates between the vacuum
and AdS2 × S2.

• The BPS bound
The so-called extremal mass-charge bound, M = Q, is an example of the more general
BPS bound. Actually, the N = 2 supersymmetry algebra given in (1.34) can be (and
in the presence of a solution like the RN black hole is) supplemented by a central
charge Z, yielding the relations

{Qi
α, Q

j
β} = εα,βε

ijZ, (1.78)

{Q̄i
α̇, Q̄

j

β̇
} = εα̇,β̇ε

ijZ. (1.79)
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Switching to a new basis, Q̃±α = 1√
2
(Q1

α ± εαβQ̄2
β̇
), and taking the system to the rest

frame, P µ(M, 0, 0, 0), one gets the relations

{Q+
α , Q

+

β̇

†} = δα,β̇(M + Z),

{Q−α , Q−β̇
†} = δα,β̇(M − Z), ,

(all the other anticommutators vanish). Unitarity thus imposes the requirement
M ≥ Z, which is called the Bogomolny-Prasad-Sommerfeld (BPS) bound.

If the BPS bound is satisfied, M = Z, it is obvious that one of the two anticommutators
vanishes trivially. This means that a solution like the extremal RN black hole solution
automatically preserves half of the supersymmetry: it is a 1

2
-BPS state.

There is a rich variety of such solitonic solutions, generally called p-branes, supporting
a BPS bound as a general feature. The trailblazing insight of Polchinski in 1995 was that
these solitons can be associated to Dp-branes, the objects appearing as boundary states
in open string perturbation theory (hence the name p-branes). Their RR charges are the
conserved charges that act as sources for the various anti-symmetric gauge fields appearing
in the supergravity actions. What is presented for D-branes, can also be adapted to NS-
branes. The solution, which is a source for the three-form H(3) appearing in the NS sectors
of both type IIA and IIB string theory, has to be a 1-brane, and is referred to as a NS1
brane. One can show that the corresponding dual field strength in this case is a seven-form,
which means that there is a magnetically dual NS5-brane, which exists in type IIA and in
type IIB string theory. The example of an NS1-solution to supergravity is called a black
string, and serves to give some further intuition for the notion of extremality. Already in
1991, it was discovered, that there is a whole family of black string solutions, [37]. These
solutions are called ‘black’ because the string is in general surrounded by an event horizon.
This is not the case, if the value of the mass M of the string is minimal (and is given by
the charge Q in appropriate units). In this case, the string is not excited and satisfied the
BPS bound. An ‘excited state’ is not BPS, and this is also the intuition one can keep in
mind for black holes. A non-BPS black hole is ‘excited’, but by radiating, it drives itself
down to the BPS bound, leaving behind an extremal black hole.

Constructing general p-brane solutions

The following lines are some remarks on how one finds p-brane solutions to supergrav-
ity. This provides the reader with some intuition about the origin and the form of the
black hole solutions which will appear in this thesis. The main idea is to make an ‘ansatz’
imposing the symmetry the solution is supposed to have. For the case of an electric p-brane
solution (which of course, depending on the charge, can correspond to either one or a stack
of D-branes in the complementary picture) will break the 10D Lorentz symmetry down to
SO(1, p)×SO(9−p), where the latter is the rotation group for the space transverse to the
brane. At the same time, such a solution will only have a non-zero dilaton, a metric and
the appropriate RR gauge field. This allows the truncation of the type II 10D supergravity
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action down to something of the schematic form

S =
1

16πGN

∫
d10x

√
−GE(R− 1

2
dφ2 − 1

2
e

(3−p)φ
2

1

(p+ 2)!
(dC(p+1))2), (1.80)

written in the Einstein frame. From this action, one can derive the corresponding equations
of motion, which should be supplemented with a source term, though. This corresponds to
the fact that one adds the Dp-brane action of the form S = Tp(SDBI + SCS), consisting of
a Dirac-Born-Infeld, and of a Chern-Simons term, as one is adding a ‘source brane’. The
spherically symmetric p-brane ‘ansatz’ is of the form ds2 = e2A(r)d~x2 +e2B(r)d~y2, where the
~x are the ‘longitudinal’ coordinates, and the ~y are the ‘transverse’ coordinates. In principle,
one could now plug this ‘ansatz’ into the equations of motion resulting from the truncated
action, but it is much simpler to impose the preservation of the remaining supersymmetry
first, and to then solve the first order BPS equations.

Without going into these details, acknowledge that an analysis of the supersymme-
try equations for the fermions (the BPS equations) yield solutions of the form A(r) =
7−p
16
C,B(r) = −(p+1)

16
C, φ = φ0 + p−3

4
(C − C0), provided e−C ≡ Hp(r) = e−C0 + Qp

r7−p (with
Qp a constant, which one can interpret as the charge of the Dp-brane) is a harmonic
function of the transverse coordinates, yielding a general p-brane solution (written in the
Einstein frame) of the form

ds2 = H
p−7

8
p d~x2 +H

p+1
8

p d~y2,

C(p+1) = 1− 1

Hp

, (1.81)

e2φ = H
3−p

2
p .

Note that as e
φ
2 = H

3−p
8

p , the metrics in the string frame are even simpler,

ds2 =
1√
Hp

d~x2 +
√
Hpd~y

2, (1.82)

and the harmonic function for a p-brane reads, [38],

Hp = 1 +
cpgSNpl

7−p
S

r7−p , (1.83)

with cp = (2
√
π)5−pΓ(1

2
(7−p)). The reader will recognize the appearance of such harmonic

functions in numerous black hole solutions in the remainder of this thesis.
In principle, superpositions of such solutions can be considered, which (under certain

conditions, allowing the preservation of supersymmetry) yield multi-centered p-brane so-
lutions. Additionally, one can also find magnetically dual p-brane solutions, but such a
construction will not be sketched here. The reader who wishes to jump into the topic of
p-brane solutions of supergravity, or is interested to study the Dp-brane / p-brane corre-
spondence, can start and find orientation with [38–40].
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The central charge associated to a Dp-brane / p-brane system

Throughout this thesis, Dp-branes will be wrapped on p-cycles of Calabi-Yau manifolds (or
a torus) to yield point-like objects traveling through time, from a spacetime point of view.
Typically, one will consider a (D6, D4, D2, D0)-brane system with charges (p0, pA, qA, q0)
in type IIA string theory. Charge can arise by wrapping branes on a cycle, and this will
in general also induce lower dimensional brane charge, e.g. induced from curvature. Us-
ing the basis of the Poincaré dual cohomology with respect to the cycle classes on which
one wraps branes, such Dp-brane charge systems can be parametrized using polyforms
Γ ∈ H2∗(X,Z) = H0(X,Z) ⊕ H2(X,Z) ⊕ H4(X,Z) ⊕ H6(X,Z) for type IIA. One asso-
ciates a central charge to such a brane system, of the form

Z(Γ, t) = 〈Γ,Ω(t)〉, (1.84)

which shows dependence on either the Kähler or the complex structure moduli t.
The name central charge for this originates from the fact, that it is actually this quantity

that appears as a central charge in the supersymmetry algebra, check equations (1.78). The
example above can be written out to yield

Z(Γ, t) = e
K
2

∫
X

Γ ∧ (−e−tADA)∗,

= e
K
2 (
p0

6
DABCt

AtBtC − pA

2
DABCt

BtC + qAt
A − q0), (1.85)

where in the large volume limit e
K
2 ≈ 1√

4
3
DABCIm(tA)Im(tB)Im(tC)

.

1.5 Chapter summary and outlook

In this chapter it is discussed how type II (10D) string theories fit into the bigger framework
of strings and branes, and how compactifications thereof are of special interest, especially
the compactification on a Calabi-Yau 3-fold, leaving N = 2 supersymmetry in 4d. This
process was highlighted somewhat from the worldsheet theory perspective, focussing on
the part of the superconformal algebra, describing the worldsheet physics in the wound-
up dimensions in the direction of the CY 3-fold. Some basic material on the classical
supergravity descriptions of the zero mode spectrum of type II string theories was included,
as well as on KK reduction and truncation of the spectrum, to obtain N = 2, d = 4
supergravity theories in 4d, which are interpreted as originating from string theory. Next,
special geometry of type II supergravity theories in 4d was discussed. The geometry of the
target space of the vector multiplet scalars as well as the couplings of the corresponding
vectors is subject to restrictive constraints, allowing the bundling of all information in
one holomorphic section of a bundle, or, adapted to concrete application, to write down
a function called the prepotential, from which a variety of entities of interest are directly
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calculable. This was followed by a brief summary of some aspects of the BPS spectrum of
type II string theories. The BPS spectrum was discussed briefly from the point of view of
D-branes and RR-charge, and also from the supergravity perspective, giving rise to BPS p-
brane solutions. Such BPS spectra of four-dimensional black holes originating from type II
string theory compactified on a Calabi-Yau manifold have been studied intensively over the
last decade. The BPS property of extremal solutions and the supersymmetry are absolutely
crucial, as under the identification of Dp-branes and p-brane solutions in supergravity, it
allows for the varying of the string coupling and taking the physical system into different,
complementary description regimes. The discovered connection between this picture and
the supergravity approximation of string theory has been and still is deepening. This link
is also not far from leading to the central topic in this thesis. In [41], [42], G. Moore
studied the attractor mechanism devised to describe BPS black hole solutions, and put
forth a correspondence between spherically symmetric solutions to the black hole attractor
equations and BPS states in string theory. However, this correspondence turned out not
always to hold. The remedy, developed in [43], is to consider not only single attractor flows,
but also ‘split attractor flows’, which are conjectured to be in one-to-one correspondence
with multi-centered BPS solutions. This is the topic of the next chapter.

One point which was sidestepped in the discussion up until now, on which the author
owes some explanation to the reader, is the question of validity of low energy descriptions of
compactified type II string theories. The question of validity of the low energy supergravity
description in 4d, for a KK reduction (and truncation) on a CY threefold is singled out,
here. There are a number of requirements one needs to impose in order for this description
to make any sense. These issues are important when describing black holes and also their
low charge ‘counterpart’, point particles (the ‘geometrized’ so-called D-particles). They
can be summarized as follows:

• Suppress quantum gravity
To describe black holes using p-brane solutions to supergravity, the curvature at the
event horizon needs to be weak, in order to suppress quantum gravitational effects.
As the horizon scales with the square (or, as is at the core of [1], with the cube for
multi-centered black hole) of the charges, this translates into a condition that one
needs large D-brane charges. Note that the fuzzball program, which is discussed in
section 5.1, might shed a different light on some of these remarks.

• Large radius regime
The 4d Lagrangian should not receive dominant α

′
corrections. As these are con-

trolled by the volume VX of the CY threefold X, one wants to be in the so-called
large radius regime, VX >> 1. If one leaves the large radius regime, one knows that
the worldsheet instanton corrections to the prepotential become important for a type
IIA theory.

• Not too large radius regime
On the other hand, one wants KK modes to be light, which means that the CY

volume must not be too large. This condition is expressed in the formula
Ag2

S

VX
>> 1,
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using the event horizon of the hole, A. Together with the previous condition, this
yields an ‘intermediate regime’ for the size of the CY.

At some point in the research performed by the author, these requirements are no longer
met, and one has to come up with a mechanism to include corrections to the supergravity
theory. In chapter 4 the main virtue which comes to rescue lies in the power of mirror
symmetry.

This ends the first main chapter, having taken the reader from the basic foundation
of string theory, to the context of BPS states in type II string theory compactifications,
illuminated from the geometric D-brane picture on the one hand, and the complementary
spacetime picture provided by supergravity on the other hand.



Chapter 2

Black holes in string theory and the
split attractor flow conjecture

Techniques to study black holes in string theory stand central in this thesis. This chapter
presents the reader with the relevant background material on black holes and some im-
portant techniques such as split attractor flow trees. Split flow trees (or single flows) can
be seen as depictions of the values of scalar fields belonging to vector multiplets (these
were discussed in the previous chapter) for a specific black hole solution of supergravity.
The meaning of split flow trees however extends beyond supergravity, they can be used to
classify BPS bound states in type II string theory.

The present chapter is organized as follows. In the first section, the reader is quickly
guided from the original Schwarzschild black hole solution (in general relativity) to black
holes carrying angular momentum and charge. Such black hole solutions can also be found
to the classical low energy descriptions of type II string theories, the type II supergravities.
A special class of solutions, BPS black holes, are of special interest, as the index used to
estimate the number of states is often invariant under continuous changes of the coupling
constant. For this reason, such systems can also be investigated in the zero string coupling
regime. In the latter, complementary description, such black holes become BPS D-brane
systems and can be studied using classical geometry. After taking the reader from the
Schwarzschild black hole to BPS black holes, the attractor mechanism governing the latter
is explained. To get the reader acquainted with the attractor mechanism, the latter shall be
explained very pictorially. The attractor equations determine the geometry of the compact
dimensions for a black hole solution. In particular, it determines this geometry at the
event horizon, independently of the background in which the black hole is placed. More
specifically, the vector multiplet scalars are driven to so-called attractor values. Hence the
name attractor mechanism.

The second section is a brief presentation on multi-centered BPS black hole bound
states in supergravity, discovered by Denef and collaborators.

The third section is the most important one of this chapter: the introduction of split
attractor flow trees and the formulation of the split attractor flow conjecture. Just as a
‘single flow’, depicting the former attractor mechanism, describes the value of the scalars
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characterizing form (in IIA string theory) or size (in IIB string theory) of the geometry of
the extra dimensions for a single-centered black hole, a split flow does this for the extra
dimensions for a multi-centered black hole. In its strongest form, the split attractor flow
conjecture is a far-reaching claim, that split flow trees can be used as an existence and
classification criterion for BPS states in the full type II string theories. This idea has been
put to use and tested by the author and his collaborators in two broad research programmes
on black holes in string theory, as will be presented in chapters 4 and 5.

The fourth section is devoted to the laws of black hole thermodynamics and black hole
entropy. From the analogy between black hole mechanics and thermodynamics, one can
conclude that the entropy of a black hole is proportional to the area of its event horizon.
The area of the horizon of supergravity black hole solutions can be computed, and such
a result is referred to as the macroscopic entropy prediction. By taking such a black
hole system into the complementary D-brane regime, and by using various computational
techniques, the entropy of the black hole can be reproduced and moreover, explained
microscopically, at least in certain charge regimes. This may be seen as one of the biggest
qualitative successes achieved in string theory. On a qualitative level, it is very tempting
to compare this to the microscopic explanation delivered by statistical thermodynamics of
macroscopic quantities (such as pressure) appearing in thermodynamics.

Specific attention is given to D4-D2-D0 black holes in type IIA string theory. Keeping
the D4-charge fixed, and summing over various D2-D0 brane charges, one arrives at a mixed
ensemble, from which one can construct a black hole partition function. This is important
in connection to a conjecture relating the black hole partition function to topological string
theory, which will be discussed in chapter 3. If one chooses a small D4-charge, one is left
with a D-particle. The partition function is given by an object known from conformal
field theory: the elliptic genus. Elliptic genera for specific Calabi-Yau study models were
computed by the author and collaborators, and are presented in chapter 4. Finally, a
relevant concept is introduced: the notion of polar states. These are (within such mixed
ensembles) charges (of D-particles or black holes), which do not support single-centered
BPS states, but are exclusively realized as bound states. Polar states are crucial in all the
research presented later on.

Finally, this chapter is again rounded off with a short summary of the gathered key
ingredients, placing them in the context of the thesis as a whole.

2.1 Black holes from D-branes and the attractor mech-

anism

This section leads from the Schwarzschild black hole to black holes with angular momentum
and charge. It also covers basic material on supersymmetric black holes, and on how
black holes are perceived from the viewpoint of string theory. From the latter point of
view, one models black holes by wrapping branes around various cycles in the wound-up
dimensions. For such a setup of a brane system, it is possible to write down a corresponding
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supergravity solution. The last part of this section is devoted to the attractor mechanism,
which governs the values of the Kähler moduli (IIA) or the complex structure moduli (IIB)
of a solution, driving them to the attractor values at the horizon of the black hole solution.
This part is crucial, as it will be generalized to the split attractor mechanism, governing
the corresponding scalars in a multi-centered black hole solution. As announced previously,
split attractor flow trees are at the ‘core’ of the research presented in this thesis.

2.1.1 From the Schwarzschild to supersymmetric black holes

In 1915 Karl Schwarzschild discovered a solution to Einstein’s newly found equations of
general relativity, which is interpreted as a simple model of a black hole. While making
his discovery, Schwarzschild was serving in the armed forces in the First World War, where
he tragically died. Put very simply, his solution is just some mass sitting in a point (a
singularity), surrounded by the vacuum.

The Schwarzschild black hole

According to Einstein’s equations, the geometry of spacetime, given by the Einstein tensor
G, is determined by the matter distribution, described by the energy-momentum tensor T :

G = R− 1

2
Rg = 8πT, (2.1)

where R denotes the Ricci tensor, g is the metric, and R denotes the scalar Ricci curvature.
If there is no matter, T = 0, the Einstein equations are solved by flat Minkowski space.
Schwarzschild found a static, spherically symmetric solution to the case, when matter is
placed at the origin in spacetime. In local (Schwarzschild) coordinates, the Schwarzschild
metric reads

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2
S2 , (2.2)

where the three space dimensions are covered by spherical coordinates. This was inter-
preted as a black hole with mass M . Note that the metric shows no time dependence (at
least outside of the event horizon). Furthermore, as the mass is sent to zero, the Minkowski
spacetime (vacuum) is recovered. The metric in these coordinates possesses two singulari-
ties. One lies at rH = 2GM , and one at r = 0. The latter is the singularity, where the black
hole resides. This is where all the mass M is concentrated. The former singularity however
is only a coordinate singularity. As can be followed in standard textbooks, this is (in this
case) revealed by calculating the coordinate invariants scalar RµνρσRµνρσ = 48G2M2

r6 , which
clearly blows up as r → 0. It does not blow up at rH = 2GM . In different coordinates,
such as Kruskal coordinates, this singularity does not appear. The sphere at r = rH is
called the event horizon of the black hole.

Before concluding the very quick recapitulation of the Schwarzschild black hole, let
it be said, that one can interpret it as interpolating between the near-horizon geometry
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AdS2×S2 and a flat Minkowksi spaceM1,3, very far away from the singularity (r >> rH):
this is what is referred to as the ‘solitonic’ nature of a black hole.

Adding charge to a black hole and the notion of extremality

In Einstein-Maxwell theory 1, one can also consider spherically symmetric black holes
with electric charge q and possibly magnetic charge p. The metric for such a solution reads

ds2 = −
(

1− 2GM

r
+
G(p2 + q2)

r2

)
dt2 +

(
1− 2GM

r
+
G(p2 + q2)

r2

)−1

dr2 + r2dΩ2
S2 ,

(2.3)
and is called the Reissner-Nordström black hole. Note that when one sets p = q = 0,
one recovers the Schwarzschild solution. Again, one can ask where the metric becomes
singular. The condition reads

r± = GM ±
√
G2M2 −G(p2 + q2), (2.4)

and one has to distinguish between three different cases.

• GM2 < p2 + q2: In this case, there is obviously no real solution, and one has to
conclude that there is no event horizon. The singularity at r = 0 (one can again
check that it really is a singularity) is unshielded, and one calls such a singularity
a naked singularity. Most physicists consider such singularities unphysical, and this
is put down as a conjecture, called the cosmic censorship conjecture, which simply
states that no naked singularities exist.

• GM2 > p2 + q2: In this case one finds two solutions, and one concludes that there is
an inner and an outer event horizon. This gives rise to some weird observations, such
as, that an observer should, in principle be able to cross the outer event horizon, is
driven to the inner horizon, but after crossing the latter can choose to steer back out
of the black hole. He would however exit into a different universe. Presumably, such
observations are not describing anything realistic, but are peculiarities associated
with such ‘perfect’ toy models like a Reissner-Nordström black hole.

• GM2 = p2 + q2: This bound is reached, when ‘the mass equals the charge’ of the
black hole. It is then called an extremal black hole. The two horizons from the
previous, also referred to as the non-extremal case, combine into one single horizon
at r = GM . Throughout this thesis, extremal black holes will be considered.

Adding angular momentum to a black hole and extremality revisited

Another possibility is to consider rotating black holes. Such a black hole was constructed

1The reader not familiar with Einstein-Maxwell theory can imagine it to be the combination of general
relativity and classical electromagnetism, schematically described by a Lagrangian of the form L =

√
−gR+

1
4F

2.
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by Kerr in 1963. One can also combine charge and angular momentum, a black hole
referred to as the Kerr-Newman black hole:

ds2 = −∆

ρ2
(dt− a sin2θ dφ)2 +

ρ2

∆
dr2 + ρ2dθ2 +

sin2θ

ρ2

(
(r2 + a2)dφ− dt

)2
, (2.5)

using ∆ = r2− 2GMr+ a2 +G(p2 + q2) and ρ2 = r2 + a2 cos2 θ, and where the coordinates
are referred to as Boyer-Lindquist coordinates and are related to Cartesian coordinates by

x =
√
r2 + a2 sin θ cosφ,

y =
√
r2 + a2 sin θ sinφ,

z = r cos θ.

Such a solution is no longer static, but it is still stationary. The interpretation is that
of a charged black hole which is rotating at constant angular velocity. An asymptotic
expansion in the radius r allows identification of an angular momentum as J = aM . Again,
similar observations as for the Reissner-Nordström black hole are possible, also signaling in
particular a lower mass bound GM2 > p2 +q2 + a2

G
, corresponding to an extremal (rotating)

black hole.

An interesting observation which followed from studying all of these named black holes,
is that, spherically symmetric, stationary black holes are characterized by just three pa-
rameters: M , J and Q = (p, q). In words: mass, angular momentum and charge. This
fact is often emblematized by saying that black holes have no hair. This is of course only a
statement about the classical solutions such as those presented here, and no longer applies,
when considering possible quantum aspects of black holes.

Supersymmetric, extremal black holes in supergravity

Such black holes, possibly carrying charge and angular momentum are also solutions to
supergravity. More generally, as was already mentioned in part 1.4.2, p-brane solutions
(or superpositions of p-branes) to supergravity are used to model black holes. As was also
discussed, the central charge Z of the brane system also appears as the central charge in
the N = 2 supersymmetry algebra. It was shown in [44] that every solution satisfied the
BPS bound, M ≥ Z. If the solution preserves some supersymmetry and is therefore a
BPS state, it turns out that it saturates the bound. For example, the extremal Reissner-
Nordström solution described above is a 1

2
BPS solution to N = 2, d = 4 supergravity.

It thus conserves one half of the supersymmetry of the vacuum. Along the lines of the
sketched D-brane/p-brane correspondence, one can access a complementary description of
the same system, by driving the string coupling constant to zero, gS → 0. The special
interest in BPS black holes results from the fact, that they are ‘protected by supersymme-
try’ in the sense that Witten indices used to count/estimate the number of states with a
specific charge remain invariant under variations of the coupling constant.
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2.1.2 Supersymmetric black holes made from branes

The general picture from the viewpoint of string theory, is to model black holes by wrapping
D-branes (various types of D-branes model different types of charges) around cycles in the
extra dimensions. More specifically, one will wrap the Dp-branes around p-cycles, at one
point in spacetime, such that one obtains a pointlike object traveling through time, from
the spacetime point of view.

Inspired by these ideas, there is something like a general ‘ansatz’ to obtain BPS black
hole solutions to supergravity, which is known as the harmonic function rule: one just
superimposes the harmonic functions for different p-brane solutions. This is illustrated
best by using a simple example which clarifies the general idea. Choose type IIB string
theory compactified on S1×T 4, for the moment. This breaks no supersymmetry, leaving 32
supercharges conserved in the 5d theory. According to what was stated earlier on, one can
superimpose a Dp-brane with a D(p-4)-brane, leading to a 1

4
BPS state: a D1-D5 system

is chosen here. The following diagram illustrates around which dimensions one chooses to
wrap a D1 brane and a D5 brane. A dot indicates that the brane is pointlike as concerns
that dimension, a line indicates that the brane is extended in the corresponding dimension,
and a ∼ denotes that it is smeared2 in that direction.

0 1 2 3 4 5 6 7 8 9
D5 – · · · · – – – – –
D1 – · · · · – ∼ ∼ ∼ ∼︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸

t ~x S1 T 4

Using the notation ~x = (x1, x2, x3, x4) for the non-compact space directions and x5 for the
circle S1, the harmonic function rule yields

ds2 =
1√
H1H5

(−dt2 + dx2
5) +

√
H1H5d~x

2 +

√
H1

H5

ds2
T 4 ,

C(2) = 1− 1

H1

C(6) = 1− 1

H5

, (2.6)

eφ =

√
H1

H5

,

written in the string frame, where H1, H5 are defined as suggested in the previous chapter.
Note how there is a correspondence between ‘coordinate dimensions’ around which a brane
is wrapped, and the powers of the harmonic functions appearing in front of specific parts
of the metric. When adding a third type of charge, namely momentum P to the previous
system, one obtains a three charge system in five dimensions: the famous D1-D5-P black
hole. The reader can follow more details on these examples e.g. in [45].

2For a brane to be smeared in a direction means that its charge can be redistributed, but the brane
does not explicitly extend in that direction.
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2.1.3 The attractor mechanism for BPS black holes

BPS black holes in N = 2, d = 4 supergravity theories are described not only by the
metric, but also by the values of the gauge fields and of the scalars. As discussed before,
scalars appear in vector multiplets and in hypermultiplets. The values of the hypermultiplet
scalars can take on an arbitrary value throughout a solution and are therefore not of further
interest. Something extremely enlightening however was revealed with the discovery that
the vector multiplet scalars are governed by the so-called attractor mechanism. Namely,
their values are highly constrained. After choosing a specific value at infinite distance
(r = ∞) of the black hole (residing at r = 0), which will also just be referred to as
choosing a ‘background’ from now on, their values are determined by the so-called BPS
flow equations, presented below. In particular, their values at the event horizon are fixed at
so-called ‘attractor values’, independently of the chosen background, thus depending only
on the charges assigned to the black hole. This is worth being very clearly stated. Starting
with a black hole solution (and corresponding solutions for the vectors and scalars), one can
change the values of the scalars at infinity. As one follows the values of the scalars radially
inwards, one will find that the attractor mechanism drives them to the same attractor
values at the event horizon.

Often, in this context, τ = 1
r

is used as a radial coordinate. The vector multiplet scalars
will be denoted as tA in the following, and the background values (the value for the scalars
chosen at r = ∞, τ = 0) are denoted by tA∞. The attractor mechanism is illustrated in
figure 2.1). The evolution of the values of the scalars as a function of the radius tA(τ)
can be called a flow, and is described by first order differential equations in τ . They are
referred to as BPS ‘attractor flow equations’, or just ‘attractor equations’, for short.

Recall the form of a general metric for a static spherically symmetric BPS black hole,

ds2 = −e2U(r)dt2 + e−2U(r)d~x2, (2.7)

with a radial function U(τ), and where 1
τ

= r =
√
~x2. For black hole solutions in type II

supergravity theories, the attractor mechanism was first described in 1995, [46], and recast
as first order flow equations on moduli space in [47]:

∂τU = −eU |Z|, (2.8)

∂τ t
A = −2eUgAB̄∂̄B̄|Z|, (2.9)

where tA now stands either for the Kähler or the complex structure moduli, gAB̄ is the
Kähler metric obtained from the Kähler potential on the Kähler or complex structure
moduli space, and Z = Z(Γ, tA) is interpreted as the ‘central charge’ of the brane system
Γ used to model the black hole, corresponding to tA in moduli space. The central charge
of the associated supergravity solution is retrieved as Z(Γ, tA∞), where the notation tA∞
indicates the values of the moduli one imposes at infinity τ = 1

r
→ 0, also referred to,

from now on, as the background values of the moduli. Note that the moduli as well as the
function U entering the metric show a radial dependence, (U = U(τ), tA = tA(τ)). From
(2.9) it follows directly that

∂τ |Z| = −4eUgAB̄∂A|Z|∂̄B̄|Z|, (2.10)
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tA∗

tA∞
t̃A∞

τ = 0
τ =∞

Figure 2.1: Schematic depiction of the BPS black hole attractor mechanism and a flow
in moduli space/spacetime. The circle represents spacetime with a black hole sitting in the
middle (τ = ∞, r = 0), the boundary of the circle represents spatial infinity, (τ = 0, r =
∞). The blue lines depict how one would approach the black hole from infinity, following an
attractor flow. Two examples have been plotted, they could of course be chosen anywhere
due to the spherical symmetry. The profile above indicates the corresponding geometry
(in fact actually the Kähler or the complex structure moduli) of the extra dimensions,
belonging to the Calabi-Yau manifold. Both background values tA∞ and t̃A∞ given at infinity
are driven to the same attractor point in moduli space, tA∗ . The flows in moduli space
are depicted by the dotted red line for tA∞ and by the dotted green line for t̃A∞. The
independence of the attractor point (at the event horizon of the black hole) on the choice
of background (the deformation from tA∞ to t̃A∞ is indicated with a fat black arrow) is the
powerful core feature of the attractor mechanism.

which implies ∂τ |Z| ≤ 0: in other words, as one follows the flow radially inward, |Z|
converges to a minimum; the flow of |Z| is a decreasing gradient flow.

An alternative form of these BPS attractor flow equations was derived in [43],

2∂τ
(
e−U Im(e−iαΩ)

)
= −Γ, (2.11)

using α = arg(Z). In fact, one can extract 2NV + 2 real equations from this, by taking
the projections on to the basis for the corresponding cohomology, either H2∗(X,Z) for
the IIA case, or H3(X,Z) for the IIB case. However one component is redundant, as the
intersection product of Γ with itself vanishes trivially, 〈Γ,Γ〉 = 0, allowing elimination of
one equation. This yields 2NV + 1 real equations determining the solutions of 2NV + 1 real
variables (U(τ),Re(tA), Im(tA)).

In the form (2.11), the BPS equations can be integrated easily, yielding

2e−U Im(e−iαΩ) = −Γτ + 2Im(e−iαΩ)|τ=0, (2.12)

and the attractor values of the moduli read

2 Im(Z(Γ, t∗(Γ))Ω) = −Γ. (2.13)
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In fact, using the implicit solution (2.12), it is convenient to define the right-hand side (up
to a sign) as the harmonic function

H(r) =
Γ

r
− 2Im(e−iαΩ)

∣∣∣
r=∞

. (2.14)

One can interpret this harmonic function to express that one has placed a charge Γ at r = 0,

and by setting the background moduli, one chooses the background h = −2Im(e−iαΩ)
∣∣∣
r=∞

.

Note that it is a cohomology valued function, H = (H0, HA, HA, H0) with 2NV + 2 compo-
nents. A complete explicit solution to the attractor equations (2.11) can be parametrized
using a single function, called the entropy function, defined as

Σ(H(r)) =
S(H(r))

π
= e−2U(r). (2.15)

Using this entropy function, the solution for a black hole, the scalar moduli and the gauge
fields reads

ds2 = − 1

Σ
dt2 + Σ d~x2,

tA =
HA − i∂HAΣ

H0 − i∂H0Σ
,

A0 = −∂H0 ln(Σ)dt− p0 cosθ dφ,

AA = ∂HA ln(Σ)dt− pA cosθ dφ.

Another remark for future reference is at hand. Imagine that one is describing a BPS
black hole modeled by a Calabi-Yau compactification of type II string theory. As will
be explained in more detail in the next section, attractor equations are also meaningful
when describing BPS states beyond the supergravity approximation. Although (2.12) is of
course a solution to the attractor equations, knowledge of the explicit flows of the moduli
tA(τ) can in general not be obtained analytically. On one hand, when working near the
large complex structure point in moduli space, this is feasible. On the other hand, one can
work numerically, a method which has been exploited when performing major parts of the
research treated in chapter 4. Given a certain charge, analysis of the attractor equations
turned out to be very insightful. In 1998, Greg Moore distinguished three possible cases
with regard to the possible ‘end point’ in moduli space, tA, of a flow of |Z|, [41,42]. Namely,
there is no guarantee that a flow continues until τ =∞.

1. Attractor point tA∗
The flow ends at an attractor point and Z(Ω, tA) takes on a minimal value, which will
be denoted as |Z|∗ = Z(Ω, t∗), where the moduli tA take on their attractor values tA∗ .
This means that there is a single-centered BPS solution subject to the corresponding
attractor values for the scalars.

2. Crash at a regular point tA0
The flow continues until the corresponding value |Z| reaches zero, whereas the value
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of the moduli signals a regular point in moduli space. This means that from a
spacetime view on the flow, the flow stops at finite radius from the black hole. The
flow terminates at a regular point in moduli space, it cannot be continued. As was
explained in [48], this situation would imply that a massless particle exists at the locus
where |Z| = 0, creating a singularity in moduli space, contradicting the supposed
regularity of the point. This situation will be referred to as a crash of the flow at a
regular point in moduli space. The conclusion is, that no single-centered BPS state
with the charge Γ exist, More specifically, no spherically symmetric, static solution
exists. One might ask oneself how it could be the case that this charge does not
support a BPS solution. However, there is a way out, as will be discussed shortly.

3. Crash at a singular point tA0,∗
The flow can also continue until |Z| reaches zero, but this time with a corresponding
point in moduli space which is singular, or a boundary point of moduli space. In
this case, the BPS equations might or might not have a solution. More information
is needed to give a conclusive answer. There is e.g. a solution if the end point is a
conifold point in moduli space, as will be discussed later on. In fact the latter type
of solutions play a very prominent role in the research presented.

The reader interested in more detailed reviews on the attractor mechanism can start
by consulting [41,49,50].

2.2 Multi-centered black holes

In N = 2, d = 4 supergravity theories not all charges support single-centered BPS so-
lutions. This alone is not surprising, as the BPS spectrum is only a subset of the full
spectrum. According to the preceding discussions, one can model the BPS spectrum in
the complementary D-brane picture. When searching for the corresponding BPS black
hole solutions, this leads to a very surprising conclusion. The single-centered, spherically
symmetric solutions do not account for the full BPS spectrum, [43], either. It turns out
that the BPS states not supporting single-centered solutions are realized as multi-centered,
stationary black hole bound states, carrying intrinsic angular momentum. By now, it has
been established that BPS states of a given charge are often realized as multi-centered solu-
tions in four-dimensional supergravity [43,51,52]. In general, such multi-centered solutions
are genuine bound states of black holes, subject to specific equilibrium distances and not
just superpositions of black holes, that are always mutually BPS (this will become clearer
from explanations below). The latter are realizations of so-called mutually local charges,
satisfying 〈Γ1,Γ2〉 = 0 and can just be superimposed without breaking any supersymmetry.
Genuine multi-centered black hole bound states are important in this thesis. Therefore, to
foster the reader’s general understanding of multi-centered black holes, a short account of
some of their properties is given in the following. A class of multi-centered black holes was
constructed in the course of the research performed by the author and collaborators. This
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can be found in section 5.2, where some more explanation about their construction can be
found. A detailed instruction how to construct such solutions was developed in [52].

The metric of a stationary solution is of the general form

ds2 = −e2U(dt+ ω)2 + e−2Ud~x2, (2.16)

where ω =
∑3

i=1 ωidxi is a one-form, describing the angular momentum of the solution.
The BPS equations generalizing those for a single center (2.12) read, [43],

2e−U Im(e−iαΩ) = −H, (2.17)

∗dω = 〈dH,H〉. (2.18)

Note that, again, H(~x) is a form valued either in H2∗(X,Z) or H3(X,Z), and ∗ denotes the
ordinary Hodge star operators in three dimensions. For a multi-centered black hole with
N centers corresponding to charges Γi at position ~xi, the harmonic function generalizes to

H(~x) =
N∑
i=1

Γi
|~x− ~xi|

− 2Im(e−iαΩ)τ=0, (2.19)

in asymptotically flat space. Just like for the single-centered case, it was shown in [52] that
the whole solution is determined in terms of one entropy function,

S(H(~x)) = π · Σ(H(~x)) = π · e−2U(~x). (2.20)

whereas the moduli fields are given by

tA =

∂S
∂qA

+ iπpA

∂S
∂q0

+ iπp0
. (2.21)

Knowing the entropy function, one can for example also determine the electromagnetic
field

A = 2eURe(e−iαΩ)(dt+ ω) +Ad, (2.22)

with
dAd = −2 ∗ d(e−U Im(e−iαΩ)) = ∗dH. (2.23)

As discussed in [43], these multi-centered solutions have intrinsic angular momentum, in
many ways analogous to the angular momentum stored in a monopole-electron system. It
is given by

~J =
1

2

∑
i<j

〈Γi,Γj〉~xij, (2.24)

where ~xij is a unit vector pointing from ~xj to ~xi. The positions of the centers are not
arbitrary, as can be seen by the following constraint,

N∑
j=1

〈Γi,Γj〉
|~xi − ~xj|

= 2Im(e−iαZi)|τ=0, (2.25)
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which is valid for every i, and can be easily derived from equation (2.17). It is insightful
to examine this condition for a two-centered solution in more detail. It reads

|~x1 − ~x2| =
〈Γ1,Γ2〉

2Im(e−iαZ1)

∣∣∣
τ=0

=
〈Γ1,Γ2〉

2

|Z1 + Z2|
Im(Z1Z2)

∣∣∣
τ=0

, (2.26)

from which one can read off a necessary (but not sufficient) condition for the existence of
a multi-centered solution,

〈Γ1,Γ2〉 · Im(Z1Z̄2)τ=0 > 0, (2.27)

which can also be written as 〈Γ1,Γ2〉 · sin(α1 − α2) > 0, with the αi = arg(Z(Γi))|τ=0

denoting the phases of the central charges. This shows that the background moduli are
decisive in whether a multi-centered solution with centers corresponding to the charges Γ1

and Γ2 exists. Of course, one can vary the background values of the moduli, and when the
sign of sin(α1 − α2) flips, the multi-centered solution leaves the spectrum (when starting
with backgrounds such that the condition is fulfilled). When one is sufficiently close to the
point where this flip occurs, one can approximately write the stability condition as

〈Γ1,Γ2〉 · (α1 − α2) > 0. (2.28)

The locus where α1 = α2 is of special interest. The state ‘marginally exists’ for these back-
grounds, and in fact, the locus in moduli space where this condition holds is called a wall
of marginal stability. This will be explained in more detail, below. (2.28) is not a sufficient
condition for the existence of a multi-centered solution, but it can be supplemented with
two other conditions, which yields necessary and sufficient conditions for the existence of
a multi-centered black hole solution, [1]:

• The condition
∑N

j=1
〈Γi,Γj〉
|~xi−~xj | = 2Im(e−iαZi)|τ=0,

• For IIA black holes made from D6-D4-D2-D0 branes, with charge Γ = reF (1−β+nω),
where F is worldvolume flux, β ∈ H2(X,Z) is D4 brane charge, and nω ∈ H6(X,Z)
is D0 brane charge (check 3.3.3 below, for a detailed treatment of the charges used
in this thesis). The entropy of the black hole can be written as S = π

3
r2
√
D, where√

D is called the discriminant function, and reads

D = 8(β)3 − 9n2 ≥ 0. (2.29)

Obviously, for the entropy to be real, and for the metric warp factor in (2.20) to be
real, the discriminant has to be positive. In other words, D > 0 has to lie in dom(S)
for all ~x ∈ R3. An analogous statement holds for type IIB black holes, [41,42].

• The moduli fields tA must remain within the physical moduli space throughout the
solution: tA must stay in the ‘Kähler cone’. This is another way of saying that
volumes of cycles should remain positive (except if they vanish).
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Whereas the first condition is of course very easy to check, the second and third condition
require knowledge of various fields throughout the solution, which renders these conditions
very cumbersome for practical calculations. There is however a conjecture that there is a
much simpler sufficient condition. This condition shows to be very powerful and is at the
center of this thesis: the split attractor flow tree.

2.3 The split attractor flow conjecture

As emphasized before, the technique of split flow trees plays a central role in this thesis.
Both ‘single flows’ – the attractor flow that was introduced earlier on – and split flow trees
are assumed to be an existence criterion for BPS solutions in supergravity. In fact, as will
be discussed shortly they are even conjectured to be an existence criterion for BPS states
in the full string theory. They are graphical depictions of the flow of the Kähler moduli or
the complex structure moduli belonging to a BPS solution of supergravity 3. The single
flow was already discussed, and can be seen as a subcase: the flow starts at the background
value t∞ at radial infinity and moves towards one attractor point t∗ at the horizon of the
black hole (recall figure (2.1)). Alternatively, for a multi-centered solution, the flow ends
at several attractor points (t1∗, ..., tm∗), one for each center.

A split flow or split flow tree (the name ‘tree’ suggests the different ‘branches’) is built
from several pieces, which are all ‘partial’ single flows by themselves. One follows the in-
coming branch 4 of a flow tree from radial infinity towards a putative attractor point, until
one hits a wall of marginal stability for two constituents Γ1 and Γ2 such that Γ = Γ1 + Γ2.
At this point, the flow splits into two branches. One can again follow a single flow for
each of the two centers, starting at the split point, and flowing towards either an attractor
point, or alternatively to another split point. For example, Γ1 could again split into the
constituents Γ1

a and Γ1
b, and those could flow to their individual attractor points each,

or a branch could split yet again. In this way, a split flow tree is built iteratively from
single flows. Given their absolutely crucial role, it is necessary to discuss walls of marginal
stability in more detail.

Walls of marginal stability

A wall of marginal stability between two charges Γ1 and Γ2 is defined as the hypersur-
face in moduli space where the phases of the two central charges align: arg(Z1) = arg(Z2).
The absolute value of a central charge measures the mass of the corresponding state (as it
would be perceived should the corresponding modulus be chosen as a background value),
whereas the phase indicates which N = 1 supersymmetry of the original N = 2 supersym-
metry is preserved by the state. If the phases of two central charges align, the two states

3This is not completely true for a split flow tree, but it is a good first intuition. A depiction of the
moduli would actually correspond to a fattened version of a split flow tree, as is discussed below.

4The term ‘incoming branch’ refers to the part of the flow tree connecting the background point and
the first split point.
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are mutually BPS (i.e. preserve the same supersymmetry) and the binding energy of the
BPS bound state vanishes,

|Z1+2| = |Z1|+ |Z2|, (2.30)

or equivalently,
Re(Z̄1Z2) > 0, Im(Z̄1Z2) = 0. (2.31)

To render this more precise, the notion of a wall of marginal stability, as opposed to a
wall of threshold stability, will be reserved for the case when the two charges are non-local:
〈Γ1,Γ2〉 6= 0 5. If one reaches the wall from the side where 〈Γ1,Γ2〉(arg(Z1)− arg(Z2)) > 0,
the decay of Γ → Γ1 + Γ2 is energetically favored. One then follows the flows of the
constituents, which might decay again according to the same scheme, until every end
branch flows towards an attractor point. Figure 2.2 illustrates a split flow tree with three
endpoints corresponding to a solution with three centers.

t∞

t1,2S

t2a,2bS

t
(1)
∗ t

(2)
∗ t

(3)
∗

Figure 2.2: Split flow tree for a three-centered solution: One starts at the background
point, t∞, at the top, and follows the incoming branch (plotted in black) until one hits a
wall of marginal stability (plotted in red) between Γ1 and Γ2. This is the first split point t1,2S ,
wherefrom single flows corresponding to the two centers continue (both branches are plotted

in red). The first center reaches an attractor point, t
(1)
∗ , whereas the second branch again

reaches a wall of marginal stability (plotted in green), at t2a,2bS . The two constituents Γ
(2)
a

and Γ
(2)
b were denoted with Γ(2)=Γ

(2)
a +Γ

(2)
b . Two branches plotted in green, corresponding

to these two constituents, finally flow off to their attractor points, t
(2)
∗ and t

(3)
∗ . All the

relevant data belonging to this split flow tree are the background point, the two split points
and the three end points, (t∞, t

1,2
S , t2a,2bS , t

(1)
∗ , t

(2)
∗ , t

(3)
∗ ), all plotted in blue in this figure.

Now of course, a split flow tree does not have the same literal interpretation (like a
single flow) as the set of points tA(r), a depiction of the Kähler moduli or the complex
structure moduli in dependence of the radial coordinate. One can however imagine a
fattened version of a split flow tree, including all the values tA(r, θ, φ). This is illustrated
by figure 2.3.

5If the charges are ‘local’, 〈Γ1,Γ2〉 = 0, they are mutually BPS in a trivial way. More details can be
found in the discussion on threshold walls.
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Figure 2.3: The values of the moduli belonging to a multi-centered solution:
Spacetime is depicted below, the split flow drawn above takes place in the moduli space.
The solution differs significantly from being spherically symmetric in some region. This
region has been sketched as lying somewhere within the dotted green line. Should one map
all the points to corresponding values of the moduli, one could get a fattened version of a
split flow tree. The flow tree becomes thinner again, the further one gets away from the
two centers. In other words, the black hole bound state starts resembling a spherically
symmetric solution. Correspondingly, the nearer one gets to one of the centers, the more
the geometry resembles that of a single black hole and spherical symmetry is approximately
restored, so the ‘pants’ of the fattened flow tree become thinner again, as one approaches a
center. Generally, it is clear, that the more the solution differs from a spherically symmetric
case, the fatter the flow tree becomes.

Essentially, one can state the conjectured existence criterion for multi-centered BPS
black holes in N = 2, d = 4 supergravity as follows: a multi-centered BPS black hole
solution (single-centered BPS solution) exists iff a split (single) flow tree exists.

Threshold walls

Apart from the walls of marginal stability, which separate regions in moduli space between
which a BPS index can jump, there is a second type of wall that is also of importance in
the research presented later on: walls of threshold stability. The distinction between these
two kinds of walls was first discussed in [53], and was later explained in more detail in [54].
The threshold conditions are the same as for marginal stability,

Re(Z̄1Z2) > 0, Im(Z̄1Z2) = 0 , (2.32)

however this time, one is dealing with two mutually local charges, 〈Γ1,Γ2〉 = 0. As will
become clear below, this has a microscopic picture to it. It means that there is no net
force between the two branes, as there are either no tachyonic strings between the two
branes that can condense to merge Γ1 with Γ2, or the interaction effects cancel out. Most
importantly, a BPS index cannot jump when crossing the threshold stability wall with the
background modulus. In the context of split flow trees, this means that a split flow can
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change topology. It is convenient to illustrate this with the archetypical example.
Consider a three-centered solution, with one ‘satellite’ center, denoted γ, and two ‘core’

centers Γ1 and Γ2. The threshold wall is defined between the satellite γ and the total core
Γ = Γ1 + Γ2. Thus, one would like to investigate a situation where the total core and the
satellite are mutually local 〈Γ, γ〉 = 0. One will find that the satellite center binds to one
of the two ‘core’ centers, when choosing the background on one side of the wall, and binds
to the other one, when one crosses the wall with the background moduli. Note that a
core constituent and the satellite are in general not mutually local, 〈Γi, γ〉 6= 0, allowing a
bound state to form. If one would place the background exactly on the threshold wall, one
can picture that the forces between the satellite and either of the cores effectively cancel.
The satellite can be placed at any distance from the total core, it is just ‘relatively’ BPS.
This is completely analogous to what one would find, if the core Γ were realized as a single
center. For the three-centered solution however, choosing the background on one side of
the wall ‘pushes’ the satellite towards one of the cores.

Figure 2.4 illustrates this topology change associated to a threshold wall. Both kinds
of walls appear throughout the studies on BPS states on various CY 3-folds in chapter 4.

t∞ t∞

t
(1)
∗ t

(2)
∗ t

(1)
∗

t
(2)
∗

γ γ

Γ1 Γ1Γ2

Γ2

Figure 2.4: Threshold walls and topology change of flow trees: 1. On the left-hand
side, the background t∞ is chosen to lie to the left of the threshold wall (plotted in red);
this background region is denoted by 1. The incoming branch reaches a wall of marginal
stability (plotted in green) between Γ1 and Γ2 + γ and splits. The satellite γ binds to the

center Γ2 with attractor point t
(2)
∗ on the right-hand side of the wall. This bound state is

realized as two centers, thus the flow splits once more (the wall of marginal stability for this
split is not plotted in the figure). Typically, in the studies performed later on, the satellite
will be realized as a D0-brane, of which the attractor point lies at the LCS (large complex
structure) point (the branch flows off to that limit in the picture). 2. On the right-hand
side, the background is chosen to lie to the right of the threshold wall. This background is
denoted as region 2. The split flow tree behaves analogously, but the satellite binds to Γ1

with attractor point t
(1)
∗ .

The area code

In general, one finds several different split flow trees for a given total charge Γ, and maybe
also a single flow. These all contribute to the total index of BPS states with this total
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charge, which will be denoted by Ω(Γ). In general, this index of BPS states Ω(Γ) remains
invariant under infinitesimal variations of the background moduli, t∞, but it can jump
when the moduli are driven through a wall of marginal stability. This is intuitively clear;
a certain split might disappear from the spectrum, because the flow starts on the unstable
side of the appropriate wall of marginal stability. Altenatively, a new type of split flow
tree might enter the spectrum, as the new background lies on the stable side of the corre-
sponding wall. If the spectrum changes, one speaks of having taken the background into
a different area. The fact that there are different basins of attraction in moduli space has
led to the name area code for the background. Hence, an index of BPS states should be
denoted more precisely as Ω(Γ, t∞).

The split attractor flow conjecture

The split attractor flow conjecture from [1] states that:

• For a given background t∞ in Kähler / complex structure moduli space, the existence
of a split attractor flow tree starting at the background t∞, with a given total charge
Γ and endpoints corresponding to Γi, is equivalent to the existence of a multi-centered
BPS solution in supergravity, with centers Γi.

• The number of split flow trees and hence the total number of states with a given
charge Γ in a fixed background is finite, at least when charge quantization is imposed.

Now imagine one would like to know how many BPS states there are in the spectrum
corresponding to the total charge Γ. According to the split flow tree conjecture, they are
classified, and one just has to find the number of BPS states corresponding to each flow
tree (this should be accomplished by calculating appropriate Witten indices). Figure 2.5
illustrates this.

One potential failure of the conjecture (in particular for classification of BPS states
in supergravity) became clear fairly recently. Namely, it became apparent that there are
multi-centered solutions which are not described by split flows, but might rather correspond
to single flows, or not have an attractor description at all. This type of solutions have been
called scaling solutions, [1], and are addressed in the next paragraph. Scaling solutions are
multi-centered black holes with two (or more) centers lying so close together in spacetime,
that their throats have melted together in the supergravity description. It is interesting
to include them in the discussion and possible implications for the split attractor flow
conjecture.

2.3.1 Scaling solutions

Scaling solutions owe their name to the special feature that the distance between their
centers is not fixed, but rather a ‘scaling’ modulus. The appearance of scaling solutions
can be understood easily using a concrete three-centered example. To make following
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Ωtotal(Γ) =

Ω1(Γ) + Ω2(Γ) + Ω3(Γ)

Figure 2.5: Total number of BPS states Ω(Γ): According to the split flow conjecture
the BPS states in N = 2, d = 4 supergravity of total charge Γ are classified by flow trees,
and one can add up the number of states belonging to all existing flow trees. In the
example in the figure, there is a single flow, a 3-centered split flow tree, and a 4-centered
split flow tree, which means that this charge is realized as a single-centered black hole and
two different types of multi-centered black holes.

equations transparent, the shorthand notation Γij = 〈Γi,Γj〉 is introduced, as well as h to
label the constants appearing in harmonic functions,

H(~x) =
N∑
i=1

Γi
|~x− ~xi|

+ h, (2.33)

where h = −2Im(e−iαΩ)τ=0. One can find a scaling solution to the integrability conditions
(2.25), by treating |~xi − ~xj| = λΓij as independent variables and sending λ → 0: this
explains why these solutions are called ‘scaling solutions’. The distances between the
centers are not completely independent: in order for such a solution to exist, one must
respect the triangle inequality Γ21 + Γ13 ≥ Γ32 (and cyclic permutations thereof). In the
limit λ = 0 (or λ infinitesimally small), the locations of the centers in spacetime become
identical, and the black hole solution becomes indistinguishable from a single-centered
black hole for a distant observer, whereas for an observer remaining at finite distance from
the centers, the solution stays multi-centered. The interpretation is, that the throats of
the black holes have melted together and that the near observer has disappeared down the
throat. This is illustrated in figure 2.6.

If a scaling solution exists, it will not decay upon variation of background moduli, and
it thus seems that they cannot be described by split attractor flow trees, although they are
multi-centered black hole solutions in supergravity. The fact that the constituent throats
melt together renders them very similar to single-centered solutions in many respects. Due
to the fact that such solutions can carry the same charges as a (large) black hole, they
were interpreted as a ‘deconstruction’ of a D4-D0 black hole into zero-entropy constituents
in [55]. This might also be a next step towards understanding the CFT dual of an asymtot-
ically AdS2 black hole, [56, 57], but this cannot be conclusively addressed at this time. It
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Figure 2.6: Scaling solution: As the positions of several black holes become identical,
the throats belonging to the black holes melt together, eventually disappearing down the
(infinitely long) throat of one big black hole. From the outside, it is indistinguishable from
a single-centered black hole, for an observer placed somewhere down the throat it remains
multi-centered.

is also not clear a priori how to count the number of states associated to a scaling solution
using the methods put to work in this thesis.

The authors of [58] studied the quantization of the phase space of smooth supergravity
solutions. In well understood situations (type IIB compactifications and the Strominger-
Vafa (SV) black hole), it can be shown that the quantization of the phase space of smooth
supergravity solutions (thus a restriction to the states carrying quantum numbers) is in one-
to-one correspondence with the BPS microstates in the D-brane description. Microstates
on the gravity side arise as wavefunctions, which localize on a unit of phase space. A
classical solution can then be interpreted as the limit of this localized wavefunction. It
can however be the case, that there are quantum states in the spectrum, which do not
localize on such a unit of phase space, and it is questionable if these states have a rea-
sonable classical description. On the other hand, the authors also argue, that ‘nominally’
classical solutions might occupy the same volume in quantized phase space (arise as lim-
its of a state localized in the same volume), although they differ on a macroscopic scale
in their gravitational description. This cannot be reasonable when taking into account
Heisenberg’s uncertainty principle, and thus ‘classical solutions’ of this kind might not be
‘valid’ geometries of the black hole. They might just be a peculiarity without physical
significance, found in supergravity. This is exactly what the authors claim to be the case
for scaling solutions. Thus, scaling solutions might not be valid classical limits of black
hole microstates. Nevertheless, an index accounting for scaling solutions, based on the
quantization of phase space was constructed in [58], and this might help when trying to
match classical and quantum BPS states.

At present, the meaning of scaling solutions, in particular in relation to the split attrac-
tor flow conjecture is not completely clear. Scaling solutions might not be good classical
limits of quantum microstates, or one might not understand them properly, yet. Maybe –
being very careful not to make any overstatement – it is too much to hope for, that split
attractor flow trees classify the full BPS spectrum. In any case, the split attractor flow
tree conjecture is extremely accurate for a large number of BPS states in supergravity,
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and also classifies BPS bound states outside of the regime of supergravity: this claim was
successfully put to various non-trivial tests, and the results on this will be presented in
chapter 4.

2.3.2 Microscopic D-brane picture

The meaning of split attractor flow trees outside the range of validity of the supergravity
approximation to type II string theories is of interest in this thesis. Strictly speaking, it
is the uncorrected supergravity action that entered the derivation of the split attractor
flow equations from [43], [59]. Nevertheless, some ingredients of the derivation should be
valid outside of the original regime. For example, arguments leading to stability or decay
of a BPS state on one or the other side of a wall of marginal stability are still based on
BPS mass and N = 1 phase encoded in the central charge. As discussed in chapter 4, the
central charge does receive quantum corrections that have to be taken into account, and,
fortunately, can be taken into account. Using an appropriate measure of the charge of a D-
brane system, |Γ|, the former (macroscopic) supergravity description of BPS states is valid
at gS |Γ| >> 1, whereas a microscopic D-brane description becomes valid at gS|Γ| << 1.

Bound states and decay of bound states near a wall of marginal stability have some
nice interpretations in the low energy description of the D-brane system. When the phases
of the central charges of two D-branes are almost equal, light bosonic open strings stretch
between the two branes. At low energy, the worldvolume N = 1, d = 4 gauge theory
describing several D-branes can be dimensionally reduced to one dimension, yielding su-
persymmetric quantum mechanics. The D-brane systems can be described as quivers 6,
each D-brane ‘center’ is represented by one node. In the quiver quantum mechanics, light
strings stretching between the D-branes become chiral multiplets, which are represented
by arrows in the quiver picture and their masses can be seen as arising from a D-term
potential. For the moment take for simplicity a system consisting of two D-branes. The
symplectic intersection between the two charges,

〈Γ1,Γ2〉 = n+ − n−, (2.34)

now computes the difference of positively and negatively charged bifundamental fermionic
zero modes. When one approaches a marginal stability wall in moduli space from the side
where

〈Γ1,Γ2〉 · (α1 − α2) > 0, (2.35)

where the α’s are the respective phases, there will be tachyonic strings present between
the two branes. Tachyon condensation on this side creates a bound state of total charge
Γ = Γ1 + Γ2.

6Basically, quivers are graphic representations of the matter content of gauge theories, consisting of
nodes (representing the branes) and arrows connecting the nodes (standing for the strings connecting the
branes). Nodes come with a number, indicating which representation the gauge fields (arising from the
strings ending on that brane) demand. More details can be found in [51].
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Quite spectacularly, in [60], this setting was used to show how one can dynamically
interpolate, by varying the string coupling constant, between the two complementary de-
scriptions of a BPS bound state. If gS → 0, the supersymmetric ground state wave
functions live in the Higgs branch of the quiver quantum mechanics, where all nodes are
at the same position. This is the microscopic D-brane picture. As the string coupling is
increased, these states are transformed into multi-centered molecules, BPS bound states.
The supersymmetric ground state wave functions gain a life on the Coulomb branch of the
theory, and the nodes acquire finite fixed distances from each other.

Flow tree data and the BPS spectrum of D-brane states

A correspondence between split flow trees and BPS states in string theory, valid outside
of the large radius regime is supported by the quiver picture of bound states of D-branes.
Branes can be imagined to get glued together through tachyon condensation, when fol-
lowing an inverse flow [60]. In a flow tree, background and attractor values of the Kähler
modulus retain their meaning in the quiver picture. A smooth interpolation between the
microscopic D-brane quiver picture and the supergravity picture of multi-centered solu-
tions was given in [60]. The quiver picture has now been placed in the broad categorical
framework as reviewed in [61].

In the D-brane description, the graphical representation of a flow tree associated to a
charge and the constituents of the flow tree themselves somewhat lose their direct interpre-
tation as the variation of the CY geometry along the radial coordinate of a BPS solution.
However, microscopically one can think of splitting or gluing D-branes together through
tachyon condensation when following a split flow tree in moduli space. Essentially, a split
flow tree belonging to the total charge Γ and n constituents (Γ1, ...,Γn) can be reduced to
a set of data

(t∞; t1,split, ..., tn−1,split; t1∗, ..., tn∗), (2.36)

consisting of 2n points, a background value t∞, a set of n − 1 split points ti,split (i =
(1, .., n− 1)), and n attractor points, tj∗ (j = 1, ..., n+ 1), one for each center 7. With this
notation, a single flow would just be denoted (t∞; t∗). The full correspondence between
these sets of data (2.36) and BPS states in string theory is referred to as the strong version
of the split attractor flow conjecture. As will be shown, the results presented in chapter
4 provide some very non-trivial tests of the strong version of the conjecture. However, in
section 4.3, it is also argued that it needs emendation: certain indices corresponding to
split flow trees have to be calculated with greater care, as the corresponding moduli spaces
do not factorize, but rather have a non-trivial fibration structure.

7Note that this is based on the assumption that a charge always splits into two at a split point, however
a more general situation is also possible where a charge splits into three or more constituents at a split
point: this would require a slight generalization of the statements made.
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2.4 Black hole entropy

The event horizon and the entropy of black holes already made their appearance in this
chapter and will now be re-examined in more detail. Originally, these concepts arose from
studying the macroscopic description of black holes as solutions to gravitational theories.
Namely, they behave like thermodynamical objects with a temperature and an entropy.
This entropy and therefore the amount of information carried by a black hole turns out to
be proportional to the area of the event horizon.

The intriguing proposal, that the entropy is proportional to the area A of the event
horizon, was first made by Bekenstein and further substantiated by Hawking, leading to

S =
kBA

4l2P
, (2.37)

using the Boltzmann constant kB and the Planck length lP , which will be set to one from
now on.

The laws of black hole mechanics

In fact, Carter, Hawking and Bardeen went on to suggest a stunning analogy between
the laws of thermodynamics (TD) and of ‘black hole mechanics’ for stationary black holes
carrying angular momentum and charge, [62]. These laws can be expressed as follows.

• Zeroth law of black hole mechanics:
The event horizon has constant surface gravity κ for a stationary black hole. This is
analogous to the zeroth law of TD stating that the temperature is constant through-
out a body in thermal equilibrium.

• First law of black hole mechanics:
The mass deformations dM of a black hole behave according to

dM =
κ

8π
dA+ ωdJ + ΦdQ, (2.38)

where dA is the change in surface area of the event horizon, ω is the angular velocity
and dJ a change in angular momentum, Φ is the electrostatic potential and dQ
is a change in the charge of the black hole. This shows some analogy with the
thermodynamic law dE = TdS− pdV +µdN . The changes in mass of the black hole
due to changes in angular momentum and charge can be seen as a sort of energy
conservation, whereas the term proportional dA can be interpreted as analogous to
the term dS in the first law of TD.

• Second law of black hole mechanics:
The area of a black hole does not decrease over time: dA ≥ 0. This matches the
second law of TD, dS ≥ 0.
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• Third law of black hole mechanics:
Finally, it is not possible to have a black hole with zero surface gravity, κ = 0. This is
analogous to the third law of thermodynamics, stating that it is impossible to reach
absolute zero temperature in a physical process.

Taking this analogy a step further, these laws suggest that the temperature of a black hole
is proportional to the surface gravity, and the entropy of a black hole is proportional to
its event horizon area. Furthermore, the famous semi-classical computation of Hawking,
which will be discussed in chapter 5 (in the context of the problem of information loss in a
black hole as well as possible resolutions to this problem), shows that a black hole should
radiate at a temperature T = κ

2π
, which allows to identify S = A

4
.

It is clear that one would ideally like to have a microscopic explanation of such an
entropy in terms of a degeneracy of possible microstates, allowing one to express the
entropy in the form

S = kB · ln(Ω), (2.39)

where Ω is the number of microstates of the black hole. Indeed, for some BPS black holes,
some intriguing discoveries in this direction have been made, by relying on the invariance
of indices to count the number of microstates under variation of the string coupling as well
as concrete realizations of holography, allowing one to count microstates in an appropriate
dual field theory.

2.4.1 A black hole made from a D4-D2-D0 brane system

Although the focus in this section will be on black holes made from a D4-D2-D0 brane
system, some more general remarks will provide a useful background. A different type
of black hole, in type IIB string theory, made from D1, D5 branes and momentum P is
maybe the black hole for which microscopic entropy calculations are now best understood.
The 5d D1-D5-P system for a type IIB compactification on K3 × S1 was also the first
black hole for which a microscopic explanation for its entropy was given. This was done
by Strominger and Vafa in 1996, [63]. Therefore, this system is sometimes also referred
to as the SV (Strominger-Vafa) black hole. In a type IIA theory compactification on a
CY 3-fold X, or an M-theory compactification on X × S1, a similar derivation was given
by Maldacena, Strominger and Witten in 1997, [64]. This system is therefore sometimes
referred to as the MSW system. The focus in the following will be on the IIA description
of the MSW system, as this kind of setup is used most, later on in this thesis.

For the microscopic counting of the number of microstates of a D1-D5-P system in 5d
from 1996, [63], it was central that the number of states of the black hole can (hopefully)
be identified with a Witten index, which is independent of the string coupling. Strominger
and Vafa analyzed a black hole made from N5 D5-branes, N1 D1-branes and NP units
of momentum, for a K3 × S1 compactification. They argue, for a regime where the ra-
dius of the S1 is very large compared to the characteristic length in K3, that the low
energy states are described by a 2d superconformal field theory on S1 × R with target
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space SymN1N5(K3). This CFT has (4, 4) supersymmetry and left- and right-moving cen-
tral charge cL = cR = 6N1N5. There is an index of BPS states, invariant under marginal
deformations of this CFT, referred to as the N = (4, 4) elliptic genus,check e.g. [65]. Spe-
cific results on the elliptic genus can be found in [66, 67]. Strominger and Vafa found
e2π
√
N1N5NP , and the logarithm of this number of BPS states yields Smicro = 2π

√
N1N5NP ,

which agrees with the macroscopic calculation.

The MSW system: a D4-D2-D0 / M5-M2-P black hole

Another intensively studied black hole system can be modeled either from a 5d point of
view, using an M-theory compactification on X×S1, where X is a CY 3-fold and S1 is the
M-theory circle, or a type IIA 4d compactification on the same CY X. From a supergravity
perspective, it is often possible to continuously interpolate between 4d and 5d configura-
tions, a procedure which has become known under the name ‘4d-5d connection’ [68, 69].
Starting from 4d solutions, this connection allows construction of 5d solutions through the
performing of the so-called ‘lift’. The former class of solutions is not completely general in
5d, as they always have at least one U(1) isometry. On one hand, one can dimensionally
reduce a 5d supergravity theory on a circle, without reference to a 10D supergravity or
string theory origin. On the other hand, from a 10D point of view, the 4d or 5d descrip-
tions are just valid in different regimes, between which can be interpolated by varying an
appropriate circle. Later on in this thesis, a 4d solution will be lifted to 5d in a different
setup, namely in IIB compactified on a six-torus T 6. The reader can find more details on
that lift where it is actually performed, under 5.3.4. In the present case, one considers
black holes with charges (0, pA, qA, q0) in the IIA picture, in other words, carrying no total
D6-brane charge.

Using the notation for forms on CY manifolds introduced in the appendix, A.1, and
modeling a CY manifold X by means of algebraic geometry, one wraps a D4 brane on
some complex codimension one hypersurface P ⊂ X, which is Poincaré dual to a two form,
and one can write the D4-brane charge as pADA, where the D4 brane is wrapped on a
hypersurface divisor (which one can think of as a formal sum of hypersurfaces adhering
to the definition of a Weil divisor) in the homology class

∑
A PD(DA), where PD(DA)

means the homology class of cycles Poincaré dual to the cohomology class DA. On general
ground, supersymmetry allows binding (p − 4)-branes to p-branes, [9], one can thus bind
a number of D0-branes to the D4-brane. In this thesis, the branes that bind to D4-branes
are called anti-D0-branes, following the convention of [1]. In addition one can turn on
U(1)-worldvolume flux, and when considering a stack of N branes for systems appearing
in the discussions on the OSV conjecture, this flux will be restricted to diagonal fluxes
lying in the subgroup U(1)N ⊂ U(N). The flux induces D2-brane charge,

qA = DA · F, (2.40)

using the notation DA · DB =
∫
P
DA · DB as a product between two forms in H2(P,Z).

There is one restriction imposed by supersymmetry: the fluxes have to be of type (1, 1),
F ∈ H(1,1)(P,Z), [70]. Let iP : P → X denote the embedding of P in X. It is clear that
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the fluxes pulled-back from the CY X, F = i∗PF , from now on referred to as ‘pullback-
fluxes’, are automatically of this type, where F is a two-form on X (note that h(2,0)(X) =
h(0,2)(X) = 0).

The total D0-charge reads

q0 =
χ(P )

24
+

1

2
F 2 −N, (2.41)

where

• χ(P )
24

= P 3+c2·P
24

is the (dissolved) curvature induced D0-charge, which has been written
out using the adjunction formula from algebraic geometry, discussed in the appendix,
A.1,

• 1
2
F 2 is the flux-induced (dissolved) D0-charge,

• N is the number of pointlike bound D0-branes.

Upon lifting this configuration to 5d, one obtains M5-branes wrapped on P × S1. The
fluxes and D0-charges lift to fluxes inducing M2 brane charge as well as momentum P = q0.
From the 5d point of view, this system is a ‘black string’ wrapped and rotating around
the S1, with near horizon geometry AdS3 × S2. A D6-brane gets mapped to Kaluza-Klein
monopole (of higher origin). The resulting metric is often referred to as a Taub-NUT
space. A black hole carrying total D6-charge has a different near horizon geometry (as in
this case, the circle would pinch off where the black hole sits).

The entropy of the MSW black hole

According to earlier remarks, calculating the entropy through the area of the event horizon
can be called a macroscopic calculation. Many such computations were performed around
1995, see e.g. [46,71]. For the MSW system, in other words (from the IIA perspective) for
a D4-D2-D0 black hole on a CY manifold carrying the charges (0, pA, qA, q0) it is in general
quite difficult to write down the complete solution to the attractor equations. By taking a
look at the general form of the metric (2.7) and the entropy function (2.20), one can easily
see where the entropy function earned its name. From the form of the metric one sees that
the area of the event horizon reads

A = 4π · limr→0

(
r2Σ(r)

)
= 4πΣ(Γ). (2.42)

In other words, as S = A
4
, the entropy function literally yields the entropy at the event

horizon: S = πΣ(Γ). The solution for the entropy function for Calabi-Yau black holes
depends strongly on the form of the prepotential

F =
DABC

6

XAXBXC

X0
, (2.43)
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using DABC =
∫
X
DA ∧DB ∧DC . The general solution for the entropy function was found

in [72]. Upon including also D6-brane charge p0, for reasons which will become clear, a
solution was not found to exist for all values of the charge p0. The entropy function reads

Σ(H) =

√
Q3(H)− L2(H)

(H0)2
, (2.44)

using

L(H) = H0(H0)2 +
1

3
DABCH

AHBHC −HAHAH
0,

Q3(H) = (
1

3
DABCx

A(H)xB(H)xC(H))2.

The xA are defined implicitly through the intersection numbers of a CY and have to be
calculated on a case by case basis

DABCx
AxB = −2HCH

0 +DABCH
AHB.

Using the notation p3 := DABCp
ApBpC and defining the quantity q̂0 = q0 − 1

2
DABqAqB,

which will play an important role further on in this thesis and shall be referred to as the
‘reduced D0-brane charge’, the equations for the attractor values of the moduli can then
be written out as

tA = DABqB + ipA

√
−6q̂0

p3
.

It is also useful for future reference, to introduce the notation DAB = DABCp
C and

DABDBC = δAC . Using (2.44), the entropy of the MSW black hole can be derived to
be

S = 2π

√
−p

3q̂0

6
. (2.45)

The MSW CFT and the N = (0, 4) modified elliptic genus

As indicated above, the other famous microscopic entropy is from 1997, where a compu-
tation analogous to the Strominger-Vafa computation was done for a 4d D4-D2-D0 black
hole in IIA. In [64], the authors successfully reproduced (2.45). By growing the M-theory
circle, the D4-D2-D0 configurations oxidize to M5-M2-KK-mode configurations. In the
limit where the M-theory circle is large with respect to the CY threefold, the system is
effectively described by a string. The corresponding (S)CFT on it is referred to as the
MSW CFT. It has central charges

cL = P 3 + c2 · P, cR = P 3 +
1

2
c2 · P, (2.46)

where c2 is the second Chern class of the CY X. The field content of this CFT can be very
explicitly analyzed in a sigma model realization, [73], but this will not be discussed here.
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For this theory, there is a supersymmetric index counting BPS states called the modified
elliptic genus. It is defined as

Z(q, q̄, y) = Tr

(
1

2
F 2(−1)F qL0−

cL
24 q̄L̄0−

cR
24 yJ0

)
, (2.47)

and will be examined in more detail in the next section.
Again, growth estimates of BPS degeneracies performed in [64] rely on the famous

Cardy formula, which restricts the regime of applicability. Namely (apart from the general
restriction to zero D6-charge) the number of D0-branes N has to be very large. Check also
[74], where the same system was analyzed in a IIA picture and where the same restriction
was again imposed.

2.4.2 The modified elliptic genus

As explained in [75], the modified elliptic genus (2.47) is constrained to be a weak Jacobi
form of weight (−3

2
, 1

2
) (the weight refers to transformations under the modular group).

One can imagine such a weak Jacobi-form to be a vector containing modular forms as
components: objects that transform under the modular group. As explained in [41, 42],
one can associate a modular invariant theta function

ΘΛ =
∑

F∈H2(P,Z)

(−1)
(f+γ)||
D e

1
2
πiτF 2

⊥+ 1
2
πiτ̄F 2

||+2πiyAqA (2.48)

to the lattice of points Λ, representing all possible fluxes F ∈ H2(P,Z), that can be turned
on on the D4-brane worldvolume. The notation F⊥ and F|| is used to distinguish be-
tween self-dual and anti-self-dual parts of the flux (with respect to the intersection form
on H2(P,Z)), f|| + γ|| denotes the integer part of the flux in direction of the self-dual part
of the flux lattice. This shall be explained a bit more closely.

The lattice of fluxes in H2(P,Z)

One would like to turn on worldvolume flux on a D4 brane wrapped on a divisor P ⊂ X
of the CY X. These lie in H(1,1)(P,Z). This is not always exactly true. It might happen
(and does for the examples explained in this thesis), that the divisor is a manifold that
does not allow a spin structure. The examples do however support a spin-c structure. The
same fact can also be seen as an anomaly from both a worldvolume perspective on the
D-brane wrapped on the divisor, [76], and a string worldsheet [77] point of view (the latter
has become known as the Freed-Witten anomaly). From a more mathematical point of
view, one can express this as non-vanishing Stiefel-Witney classes, representing ‘topological
obstructions’. Discussing these viewpoints in detail is however beyond the scope of this
thesis. Roughly, the fact that a manifold does not support a spin structure means that
one cannot define transition functions for spinors, that close. One can compensate for this
shortcoming by using a tensor product of the would-be spin bundle with a line bundle, the
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latter chosen such that it has first Chern class c1(P ). Of direct concern in this thesis is
the fact that this is reflected by a half integer shift in the measured D-brane charges, or,
in this case, flux values. The flux lattice is given by c1(P )

2
+H(1,1)(P,Z) = P

2
+H(1,1)(P,Z).

One can further decompose this flux lattice. The first type can be called pullback fluxes
(iP again denotes the embedding map iP : P → X),

LX = i∗P (H2(X,Z)). (2.49)

Clearly, i∗PDA form a basis on LX , with metric DAB = DABC p
C . However, in general

det(DAB) 6= 1, thus LX is not unimodular, while H2(P,Z) has to be. LX united with
the orthogonal complement L⊥X is not the full lattice, but only a sublattice of the possible
fluxes. One defines the quotient of H2(P,Z) by LX ⊕ L⊥X , which yields a finite number of
elements γ called gluing vectors (they glue together the full lattice of ‘flux points’). Thus
an element of the full lattice F ∈ H2(P,Z) can be decomposed as follows

F =
P

2
+ f || + f⊥ + γ, (2.50)

where f || ∈ LX and f⊥ ∈ L⊥X , and γ is given by gluing vectors in the flux lattice. When one
splits up as γ = γ|| + γ⊥ (even if these parts might in general not be integer forms corre-
sponding to lattice points in LX and L⊥X), one realizes that γ|| and γ⊥ have to be different
from zero, at least when the divisor P is very ample 8 (this is the case for the examples
used in this thesis). That γ|| 6= 0 is clear, because otherwise, γ ∈ L⊥X in contradiction
to the supposed splitting of the total flux. If on the other hand γ⊥ = 0, one can write
γ = rAiP∗DA, where of course, if γ 6= LX , rA cannot be integer. For a very ample divisor
P , the Lefshetz hyperplane theorem guarantees that the map iP ∗ : H2(P,Z) → H2(X,Z)
is surjective. Thus, one can choose a basis σA for H2(P,Z) such that the pushforwards
of these basis elements, iP ∗(σ

A), also yield a basis for H2(X,Z), dual to the usual basis
DA for the cohomology of X. As γ is integral by definition (for any cycle σA),

∫
σA
γ ∈ Z.

However, this equals
∫
σA
rBi∗P (DB) =

∫
iP ∗(σA)

rBDB = rA, and thus rA ∈ Z. This means

that a gluing vector is always of the form γ = γ|| + γ⊥.

Decomposition of the elliptic genus

The following statements are included to give the general picture. Justification can be
found e.g. in [41, 42, 78]. The modular invariant theta function (2.48) associated to the
flux lattice on the divisor can be decomposed as

ΘΛ(τ, τ̄ , y) =
∑
γ

ΘL⊥X+γ(τ)ΘLX+γ(τ, τ̄ , y), (2.51)

where γ runs through a finite set of gluing vectors. The theta functions ΘLX+γ will be
abbreviated as Θγ, and can be written out, in the conventions used in this thesis, explicitly

8A divisor is very ample, when the associated line bundle allows enough sections to set up an embedding
of its base variety into projective space.
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as

Θγ(τ, τ̄ , y) =
∑

qA=DAB( 1
2
pB+kB)+γA

(−1)J
AqAe

2πiτ

„
1
2

( p
ApB

D
−DAB)

«
qAqB

e2πiτ̄
(pAqA)2

2D e2πiyAqA .

(2.52)
Using these latter functions (2.52), the modified elliptic genus can be decomposed as

Z(q, q̄, z) =
∑
γ

Zγ(q) Θγ(q, q̄, z) , (2.53)

where the Zγ(q) are meromorphic functions of the variable q. The dimensionality of the
vector Zγ is thus given by the number of independent elements γ of the discriminant group,
the gluing vectors. Additionally, as discussed in [1, 41, 42, 78], it follows from modular
invariance, that there is an identification

Zγ = Zδ, for γ = −δ mod LX . (2.54)

Roughly speaking, the modified elliptic genus behaves as a modular form with respect to
q and as an elliptic function with respect to z. The Θγ form modular representations of
weight (1

2
(h(1,1)(X)−1), 1

2
) Jacobi-forms (in the cases investigated in this thesis this means

weight (0, 1
2
)), and thus Zγ is a Jacobi-form of weight −3

2
.

One can add some D-brane charge interpretation to the terms appearing in the Zγ’s:
Z0 corresponds to a sum over states with no added D2-charge, and increasing D0-charge
as the powers of q increase. Each coefficient in the q-expansion corresponds to the index
of a state with fixed D0-charge. Similarly, the Zγ’s correspond to states with k units of
added D2-charge 9. Schematically, the first few terms of Zγ will look as follows

Zγ(q) = q−α(# + # q + # q2 + . . .) , (2.55)

where q̂0 ≡ q0 − 1
2
DABqAqB, and α is the highest possible value of q̂0 for a given γ.

In the analysis of chapter 4, only the Zγ(q) functions will be investigated explicitly, as
they determine the full elliptic genus. A stringent mathematical property of weak Jacobi
modular forms is the fact that they are entirely determined by their polar part, i.e. terms
with negative powers of q. These terms correspond to charge configurations that satisfy
q̂0 > 0, where the variables are defined in (4.10). Such configurations will be referred to as
polar states.

To determine elliptic genera as in chapter 4, the method of generating modular repre-
sentations was exploited. The basic idea is to write down a basis of modular forms in the
correct modular representation. The number of basis elements should then correspond to
the allowed number of polar states appearing in Zγ, and the degeneracies of polar BPS

9The words ‘no added’ D2-charge were used, because there is some induced D-brane charge if the D4
is wrapped on a divisor lying in an uneven homology class, resulting from the shift in the flux lattice, to
cancel anomalies, as discussed above.
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states then determines the full modular vector. This method starts with so-called seed-
ing modular forms, transforming in a particular m-dimensional modular representation of
weight w. Successive differentiation of such forms yields forms with higher weights, and
the basis elements collected in this way allow one to determine all the elliptic genera in
this thesis. Details on this technique can be found in the appendix of [79].

2.4.3 A D4-D2-D0 black hole partition function

If one chooses the D4-brane to be wrapped on a divisor lying in a very large homology
class, one can obtain enough mass to describe a system, which backreacts to yield a black
hole in the gravitational description. In the following, some central ideas on the partition
function of a black hole are gathered. This is worked out in detail in [1]. One would like
to model a D4-D2-D0 black hole that arises from a mixed ensemble of D-brane charges.
One would like to choose a (large) and fixed magnetic D4-brane charge p, and sum over
all electric (D2-D0) charges. This is a mixed ensemble (microcanonical with respect to the
magnetic charge, macrocanonical with respect to the electric charge).

One can write down a formal partition function

ZBH(φ; t) =
∑
q

Ω(p, q; t)e2πφΛqΛ , (2.56)

where Ω(p, q; t) denotes the number of BPS states of total charge (p, q) (using a shorthand
notation for magnetic and electric charges) at background values t = tA for the Kähler
moduli. Note that this background dependence also leads to an overall background de-
pendence of the black hole partition function. There is also a second dependence, namely
on the variables φΛ, which are called electric potentials and are Legendre transformed
variables of the electric charges qΛ.

Writing out (2.56) as a sum over all possible fluxes and D0-charges, one gets

ZBH(φ0, φA; t) =
∑
F,N

d(F,N)e2πφ0(
χ(P )

24
+ 1

2
F 2−N)+2πφ·F , (2.57)

where d(F,N) is given by the second helicity supertrace, in a sector of fixed F,N , [1]. Up
to a sign, this identifies this number with an Euler characteristic of the moduli spaceMF,N

of BPS configurations in the sector labeled by (F,N):

d(F,N) = (−1)dim(MF,N )χ(MF,N) (2.58)

As discussed in detail in [1], a partition function of the form (2.57) is everywhere
divergent, [1,80], but this can be remedied by introducing a Boltzmann weight e−βH with H
denoting the BPS energy of the state. The partition function is then interpreted physically
as the BPS partition function of a single D4-brane wrapping the divisor P and a Euclidean
time circle of circumference β. This physical partition function can be investigated under
S- and T-dualities. In fact, in [1], it is shown that this partition function is also a weak
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Jacobi-form and after performing a ‘TST’ duality, the authors show that the whole partition
function is determined by a finite part, namely the ‘polar part’. Formally:

ZD4 =
∑

A∈Mmod

A(Z−
(− 3

2
, 1
2

)
), (2.59)

where one sums over all images of Z−
(− 3

2
, 1
2

)
under the modular group. Z− is called the

polar part of the black hole partition function, and (−3
2
, 1

2
) signalizes the modular weight

of this generalized weak Jacobi-form. From the preceding presentation, it should have
become clear, that the D4-version from [1] of such a black hole partition function, is a
generalization of the modified elliptic genus, presented above. It is an elliptic genus for a
‘higher cohomology class divisor’.

2.4.4 Polar states

At this point, it is highly interesting to study D4-D2-D0 charge configurations in a mixed
ensemble that are polar states from the supergravity point of view, and in particular with
the split flow tree conjecture in mind. The holomorphic (the factor e

K
2 plays no role in the

following argument) central charge for a D4-D2-D0 brane system Γ = pADA + qAD̃
A + q0ω

in the large radius approximation reads

Z = 〈Γ,Ωhol〉 = −q0 + qAt
A − 1

2
DABCp

AtBtC . (2.60)

Writing out the (complexified) Kähler moduli tA = BA + iJA, and changing the variable
for the magnetic field BA → B̃A = BA +DABqB, the holomorphic central charge reads

Z = −q̂0 −
1

2
DAB(B̃A + iJA)(B̃B + iJB), (2.61)

where q̂0 = q0 − 1
2
DABqAqB. The quantity

q̂0 = q0 −DABqAqB = q0 −
1

2
(
P

2
+ f || + γ||)2 =

χ(P )

24
+

1

2
(f⊥ + γ⊥)−N (2.62)

is of crucial importance in this thesis, and will be referred to as the ‘reduced D0 brane
charge’, and, as indicated, only depends on ‘non-pullback’ fluxes. One can now ask, in
which charge regimes, the central charge will have a zero at a regular point in moduli
space. Setting Z = 0, one obtains the two equations (real and imaginary part of Z both
have to be zero)

B̃ · J = 0, (2.63)
1

2
(J2 − B̃2) = q̂0, (2.64)

where the dot product is with reference to the metric DAB on H2(P,Z). As J = JADA

is a self-dual form (it is a pullback form), and B̃ is orthogonal to J by the first equation,
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one knows that B̃ = B̃A is anti-self dual: J ∈ LX = H
(1,1)
+ (P,Z), B ∈ L⊥X = H

(1,1)
− (P,Z).

Thus, one obtains as a condition for a zero to exist, that

q̂0 > 0. (2.65)

Put in words, the so called ‘reduced D0-brane charge’ has to be positive. This is the
condition for polarity. In that case, one can e.g. see that the central charge vanishes at

B̃ = 0, J =
√

2q̂0
P 3 P . Note that this analysis is based on the large radius approximation to

the central charge.

2.5 Chapter summary and outlook

Generally speaking, this chapter gives a peak at a more holistic picture of black holes
starting to crystallize from a string theoretical point of view. A main theme, at least for
supersymmetric (BPS) black holes, is the moving back and forth between a supergravity
and a D-brane perspective. The reader enjoying this sort of attempt to understand black
holes from a broader point of view will find a further augmentation of these discussions on
two fascinating conjectures about black holes: The first one is called the OSV conjecture,
and can, at first glance, be stated as a conjecture on a wavefunction describing a black
hole realized as a superposition of a mixed ensemble of D-brane charges. The second
one is called the fuzzball conjecture and describes how microstates of a black hole are all
given as smooth gravitational solutions coined fuzzballs. It is also in the context of these
two conjectures, that split flow trees (and some other techniques) were put to use in the
research presented in chapters 4 and 5.

More specifically, it was explained in this chapter, how black holes and especially the
degeneracy of BPS states is approached from the supergravity and the D-brane perspec-
tive. Of central importance is the attractor mechanism for BPS black holes, governing the
‘form/size’ of the extra dimensions, driving the values of vector multiplet scalars to at-
tractor points at the event horizon. Genuine multi-centered BPS black hole bound states,
as discovered by Denef and collaborators, were presented after that. A manner of gener-
alization of the attractor mechanism for multi-centered black holes was introduced, and
the existence of a split attractor flow tree was proposed as an existence criterion for a
multi-centered solution.

This idea was taken a step further in the presentation of the split attractor flow tree
conjecture, according to which (in its strongest form) BPS states of type II string theory are
classified by attractor flow trees, and this includes single-centered solutions corresponding
to single flows. As the technique of split flow trees is at the core of this thesis, the non-
expert reader might want to go back and take a look at figure 2.2. He will see in depiction
of the scalar moduli space (for type IIA string theory, this is the Kähler moduli space of
the Calabi-Yau 3-fold), how a flow starts at the background value of the scalar moduli
and splits at a wall of marginal stability. A wall of marginal stability is defined as the
locus, where two D-branes (the constituents after the split) are mutually supersymmetric.
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This is a hypersurface in moduli space. The condition for a wall of marginal stability
can be expressed as alignment of the phases of their central charges: arg(Z1) = arg(Z2).
This happens at the locus, where the following equation |Z| ≤ |Z1|+ |Z2| reaches equality.
Interpreting the central charge as a measure of the energy of a D-brane system, one can
thus view the branes as marginally stable. Exactly at the wall of marginal stability, a split
becomes energetically possible. Such splitting processes can occur repeatedly, and by an
iterative procedure, one ends up with a split flow tree. The term ‘tree’ refers to the fact
that one might find several ‘end branches’. For each center of a BPS bound state, there
will be one ‘end branch’ in the flow, ending at an attractor point.

It was discussed how the analogy of black hole mechanics and thermodynamics led to
the idea that black hole entropy is proportional to the area of the event horizon of a black
hole: S = A

4
. An important goal for string theorists, which has been achieved for some

supersymmetric (BPS) black holes, is to explain the entropy with a number of microstates:
S = kB ·ln(Ω). For a type IIA string theory compactification on a Calabi-Yau 3-fold, a black
hole (or just a particle in 4d) can be modeled by wrapping a D4 brane on a hyperplane
of the Calabi-Yau, yielding a point-like object from the 4d point of view. Keeping the
D4-brane charge fixed and considering various values for the D2- and D0-brane charges,
one arrives at a mixed ensemble of states. Degeneracies are counted by a supersymmetric
(BPS) index, called the elliptic genus. At large charge, this elliptic genus generalizes to
an object which one can just call a black hole partition function. An elliptic genus (or a
black hole partition function) is a generalized vector valued modular form. The central
mathematical property of interest is, that they are completely determined by a finite set of
degeneracies, much in the way a pole can entirely determine a complex function. The set
of charges determining the full index are called polar states. In terms of D4-D2-D0 brane
charges, the condition for a state to be polar reads

q̂0 > 0, (2.66)

where q̂0 is called the reduced D0-brane charge. This quantity is just the D0-brane charge
minus a small contribution, determined by the D4-worldvolume flux-induced D2-brane
charge. Namely, one subtracts the contribution 1

2
F 2
|| arising from those fluxes, that do not

encode any actual information on the degeneracy of the states and were referred to as pure
pullback fluxes.

The degeneracies of these polar states determine the degeneracy of the full elliptic genus
or the full black hole partition function. From a gravitational spacetime point of view, polar
states (at least in a first approximation) do not support single-centered solutions. They
are thus realized as bound states, and this can be used to obtain factorizations (at least
approximately) of the degeneracies of these polar states. This will be addressed in detail
in the following chapter. In the research presented in chapter 4, numerous polar states will
be examined explicitly, and exact results will be obtained. The existence of polar states
is established using split flow trees, and they are enumerated with techniques introduced
in the following chapter. Also in chapter 5, split flow trees will be used as an existence
criterion for a class of 4d multi-centered solutions, which are mapped to 5d black hole
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microstates. The latter form fuzzball geometries for a black ring, thus relating 4d split
flow trees to fuzzballs.



Chapter 3

Topological strings, split states and
mirror symmetry

A beautiful connection between the six-dimensional topological string theories, which can
be pictured to govern the topological subspectrum of states on the compact Calabi-Yau
manifold, and black hole microstates has emerged over the last years. This chapter ad-
dresses this connection between black holes and topological strings, and more broadly, be-
tween microstates of an object modeled by wrapping D-branes around cycles in Calabi-Yau
manifols. In 2004, Ooguri, Strominger and Vafa conjectured that the partition function
of a black hole corresponding to a mixed ensemble of D-brane charges is related to the
absolute value squared of the topological string partition function, Zblackhole = |Ztop|2.
This statement has become known as the OSV-conjecture. It has been thoroughly inves-
tigated, clarified and refined by Denef and Moore, in [1], using split flow trees and the
Donaldson-Thomas version of the topological string partition function.

Some basics of topological string theory are introduced briefly at the beginning of this
chapter. The focus will be on the aspects relevant for later. Although, such claims are
still in a conjectural phase, there is strong evidence that the partition function of topolog-
ical string theory can be stated in different forms, harboring various physical interpreta-
tions. Namely, the original form sums over terms including topological invariants counting
‘topological strings’. Resummations however can lead to a form where the terms contain
topological invariants counting BPS bound states. One of these sums is the Donaldson-
Thomas (DT) partition function. Ztop ≡ ZDT =

∑
β,nNDT(β, n)unvβ. The DT invariants

NDT(β, n) count the number of BPS states of a D6-D2-D0 BPS state, with the D6 wrap-
ping the CY 3-fold, the D2 brane wrapped on a cycle in homology class β and D0-brane
charge n, at least when taking some subtleties into account. In [1], it was shown how a full
black hole partition function is determined by the polar part (see section 2.4), consisting
of polar states only, giving rise to a D6−D6-realization of |Ztop|2. DT invariants will also
be used to enumerate D6-D2-D0 states in chapter 4. Much of the research presented in
that chapter uses techniques developed by Denef and Moore, but the analysis takes place
at low D-brane charge. Thus, the research is really on a D-particle partition function and
its enumeration.
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Finally, the last part of this chapter discusses the topic of mirror symmetry, relating a
IIA string theory compactification on a Calabi-Yau X to a type IIB compactification on
the mirror Calabi-Yau Y , which is in general closely related to topological string theory,
and plays a central role in the research in chapter 4. Given the massive scope of mirror
symmetry, the author will present only the specific example for the quintic CY 3-fold. The
generalization to the other CY’s used in this thesis is straightforward.

The reader interested in jumping to the most important points in this chapter, is
suggested to continue with section 3.3, directly, as the two following sections introduce the
full context properly, but are not essential for gaining a basic understanding of this thesis.

3.1 Worldsheet instantons from topological string the-

ory

To approach topological string theory in the first instance with insight, it is convenient to
take a look at some features of topological field theory, as the key aspect of ‘twisting’ can be
explained in this simpler setting. After all, topological string theory arises from coupling
such a theory to gravity. There is a central idea called the ‘topological twist’, which goes
back to Witten, and was invented to be able to make use of the power of localization, which
allows the performing of quantum mechanically exact calculations by reducing (localizing)
complicated path integrals to simpler ones. The latter is also the trait which attributes
topological string theory with a certain simplicity as opposed to ordinary string theory. It
is worth going back to the worldsheet non-linear sigma models, as introduced in chapter 1.

3.1.1 Twisting worldsheet sigma models

One would like to treat the globally supersymmetric worldsheet sigma model using Eu-
clidean path integrals, with an arbitrary Riemann surface (with an arbitrary metric) as a
worldsheet, and one thus wants supersymmetry parameters ε that are well-defined and co-
variantly constant throughout the whole worldsheet, not just a spacelike slice. This means,
that the epsilons need to be covariantly constant sections of K1/2 and K1/2. If these bun-
dles are not trivial, they will only admit sections with at least one vanishing point. One
can show that should an object that is covariantly constant everywhere have a vanishing
point, then it has to be zero everywhere. Hence, it will in general not be possible to use
the supersymmetry techniques for ordinary non-linear sigma-models, unless changes are
made to the theory. The trick is to replace the spinor fields by fields that are sections of
trivial bundles. This modification is Witten’s topological twist.

When one defines theN = (2, 2) model (1.3), one first determines what kind of fields the
theory should have (by superspace methods, for instance), and then one writes a Lagrangian
such that it is Lorentz invariant (rotation invariant in the Euclidean case). Oppositely, one
could look at the terms in the Lorentz invariant Lagrangian for the fermions,

L ∼ +ψ+Dz̄ ψ+ + ψ−Dzψ− , (3.1)
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and reverse-engineer what the transformation properties of the ψ’s should be. Clearly, the
derivativeDz̄ transforms as a dual anti-holomorphic vector, i.e. as a section ofK, z 7→ ei α z,
Dz̄ 7→ e−i αDz̄. Thus, in order to have a Lorentz invariant term in the Lagrangian, it is
clear that the product of the two ψ’s must transform oppositely to Dz̄

Dz̄ 7→ e−i αDz̄,

ψ+ ψ+ 7→ e+i αψ+ ψ+ , (3.2)

i.e. their product must be a section of K. The first obvious choice was of course to take
them each to be a section of K1/2. However, as was argued before, this bundle may be
non-trivial. The other two inequivalent choices 1 are the following: One can take ψ+ to be
a section of the trivial line bundle I, (i.e. a scalar), and ψ+ to be a section of K (i.e. a
holomorphic one-form). This is called the (+) twist. One can also do the opposite, i.e. let
ψ+ be a section of K and ψ+ a section of the trivial bundle. This is obviously called the
(−) twist. To summarize

(ψ+, ψ+) ∈
(

Γ(K1/2),Γ(K1/2)
)
→


(

Γ(I),Γ(K)
)

(+) twist(
Γ(K),Γ(I)

)
(−) twist .

(3.3)

Similarly, one can define the (±) twists for the other two spinors as follows:

(ψ−, ψ−) ∈
(

Γ(K1/2),Γ(K1/2)
)
→


(

Γ(I),Γ(K)
)

(+) twist(
Γ(K),Γ(I)

)
(−) twist .

(3.4)

Up to the inversion of the worldsheet complex structure, i.e. switching the definitions of z
and z̄, there are only two inequivalent choices one can make for the whole model:

• The ‘A-model’: Taking the (−) twist for ψ+ and the (+) twist for ψ−.

• The ‘B-model’: Taking the (−) twist for both ψ+ and ψ−.

To define the supersymmetry transformation rules for these new models, one must take
into account that expressions like δφ ∼ εψ and δψ ∼ ε∂φ will only make sense if one also
redefines the Lorentz properties of the ε’s. The important result of these twisted models,
is that half of the supersymmetry parameters have now become scalars (even though they
are still Grassmann valued). It is always possible to define globally constant non-zero
scalars. Now, one can use the full power of supersymmetry, without any obstructions of
the non-trivial worldsheet topology.

There is another approach for defining the twists, which nicely generalizes to topological
strings, namely using the algebra of symmetry generators. One can restate the A and B

1up to a redefinition of the complex structure, z → z̄.
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twists by saying that the Lorentz transformation properties of the new fields should be
related to the old transformation properties as follows:

MA = Mold − FV for the A−model , (3.5)

MB = Mold − FA for the B−model . (3.6)

Defining QA = Q̄+ +Q− and QB = Q̄+ +Q̄−, one can check (using (1.8)) that [MA, QA] = 0
and [MB, QB] = 0, making QA (QB) a scalar under the new Lorentz group for the A-twist
(B-twist). This means that one can define the A- and B- Lorentz group on arbitrary curved
worldsheets.

3.1.2 Localizing to holomorphic maps: the A-model topological
field theory

Now that the spinors are actually no longer spinors, it is convenient to introduce a notation
that makes their transformation behavior more obvious.

ψi+ 7→ ψiz , ψi+ 7→ χi

ψi− 7→ χi , ψi− 7→ ψiz̄ . (3.7)

The A-model action now reads

SA = 2t

∫
Σ

(gi j∂zφ
i∂z̄φ

j+gi j∂z̄φ
i∂zφ

j+igijψ
i
zDz̄χ

j+igijψ
j
z̄Dzχ

i+
1

2
Rijklψ

i
zψ

j
z̄χ

kχl) , (3.8)

where the coupling constant t was introduced up front. Looking at the old supersymmetry
transformations, one can check that α− and α̃+ are now scalars, and α+ and α̃− are sections
of the canonical and anti-canonical line bundle, respectively. One can now have a globally
supersymmetric system, by throwing away the two latter, and keeping the scalar SUSY
parameters. Denoting these parameters as α and α̃, the supersymmetry transformations
act on the fields as

δφi = i αχ

δφi = iα̃ χi

δψiz = −α ∂zφi − i α̃ χk Γi
km
ψmz (3.9)

δψiz̄ = −α̃ ∂z̄φi − i α χk Γikm ψ
m
z̄

δχi = δχi = 0 .

One can simplify this model by taking α = α̃, corresponding to defining an operator, which
one calls the A-SUSY operator QA, as QA = Q̄+ + Q−. Using this new operator, one can
now express the action (3.8) as

SA = i t

∫
Σ

{QA, V }+ t

∫
Σ

Φ∗(K) , (3.10)
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where V = gij̄(ψ
i
z∂z̄φ̄

j + ∂zφ
iψz̄j̄ ), and K is the Kähler form of the target space. Hence,

one can almost express the Lagrangian as QA-exact, which would by definition make the
theory topological. The failure of this action to be a purely QA-exact action, is an integral
over the worldsheet of the pullback of the spacetime Kähler form (to the worldsheet), i.e.
the second term. However, this term depends only on the homology class of the image
Φ(Σ) of the worldsheet under the embedding map. This means that one can split up the
path integral into different sectors according to this homology class and factor this Kähler
term out, as follows:

Z =
∑

β∈H2(X,Z)

e−tK·β
∫

[Φ(Σ)]∈β
D[Φ]D[χ]D[ψ]e−i t

R
{QA,V } . (3.11)

It can be shown, that this theory is independent of the complex structures of Σ and X, and
depends only on the Kähler class of the target space through the exp(−tK ·β). Otherwise,
the model is half topological in the sense that it is independent of half of the moduli of
the worldsheet and target space metrics. This path integral localizes to the minima of the
action. For the bosonic part of the path integral, these are configurations satisfying

∂z̄φ
i = ∂zφ

i = 0 , (3.12)

i.e. the holomorphic maps Φ : Σ 7→ X.

Anomalies

One can repeat an analysis of the zero modes analogous to the one done for the un-
twisted model. The number `χ of χ zero modes equals that of χ zero modes (by simple
complex conjugation of the zero mode equation), and similarly the number `ψ of ψz zero
modes equals that of ψz̄ zero modes. Therefore, there will be no RV anomaly. There will
be an RA anomaly if `χ 6= `ψ. The χ zero modes are elements of H0(Φ∗(TX)). From the
Riemann-Roch theorem one obtains∫

Σ

ch(Φ∗(TX)) td(TΣ) = dimH0(Φ∗(TX))− dimH1(Φ∗(TX)) . (3.13)

By Serre duality, one can write H1(Φ∗(TX)) = H0(K⊗Φ∗(TX))∗. This can be recognized
as the dual to the space of ψ zero modes. Hence, the Riemann-Roch theorem yields the
difference needed,

`χ − `ψ = 2

∫
Σ

(d+ Φ∗c1(TX)) (1 +
1

2
c1(TΣ))

= 2

∫
Σ

Φ∗c1(TX) + d (1− g) ≡ 2 k , (3.14)

where d is the complex dimension of the target space, and
∫

Σ
c1(TΣ) = χ(Σ) = 2−2 g. The

factor of two comes from the fact that the Riemann-Roch theorem computes complex di-
mensions. This result shows that a non-vanishing correlator must have 2 k more insertions
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of χ operators than of ψ operators. These must come in equal numbers of holomorphic
and anti-holomorphic versions of the operators.

Observables

Physical observables in a topological field theory must be defined by correlators of op-
erators that are closed under the QA operation and must be topological themselves, in the
sense that the worldsheet and target metrics must not be involved in their construction.
One can thus not use the ψ’s, since they contain a worldsheet Lorentz index that needs to
be contracted with the metric. Local operators are therefore of the form

O(x) = Ci1...ipj̄1...j̄q(φ(x))χi1 ...χipχj̄1 ...χj̄q , (3.15)

where C is a function of the φ’s, and is antisymmetric in its indices due to the fact that it
is contracted with Grassmann variables. Here, x is the worldsheet position of the operator
insertion. By using the transformation rules in (3.10), one easily sees that the variation of
such an operator is the following:

{QA,O(x)} '
∂Ci1...ipj̄1...j̄q(φ(x))

∂φk
χkχi1 ...χipχj̄1 ...χj̄q +

∂Ci1...ipj̄1...j̄q(φ(x))

∂φk
χkχi1 ...χipχj̄1 ...χj̄q .

(3.16)
In other words, if one views C(φ(x)) as a (p, q) form on X, then

{QA,OC} ' OdC , (3.17)

where dC is the de Rham exterior derivative on C. One can identify (by a group isomor-
phism) the QA cohomology of physical operators with the de Rham cohomology of X, by
viewing the χi as holomorphic differentials dφi and the χi as the anti-holomorphic ones
dφi:

H(QA) = HdR(X) . (3.18)

The result in the previous subsection prescribes that a correlator is only non-vanishing if
one inserts a certain number of χ’s and ψ’s, whereby the difference in the numbers is given
by

2 k = 2

∫
Σ

Φ∗c1(TX) + 2 d (1− g) . (3.19)

The theorem only gives a difference, it does not tell one how many ψ’s are needed. The
following will be restricted to the ‘generic’ case, when dimH1(Φ∗(TX)) = 0. This is
the case, if one makes no ψ-insertions, and those were excluded earlier on. The reader
interested in a more general treatment will find a carefully chosen list of references at the
end of section 3.2. One is studying correlators of the form

〈O1...On〉 =

∫
D[Φ]D[χ]D[ψ] e−S O1...On (3.20)
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(n-point functions) with Oi ∈ H(pi,qi)(X). The analysis of anomalies presents a set of
selection rules for non-trivial correlators, which thus contain the interesting information
encoded by the model. The vector anomaly cancellation rule gave

∑n
i=1 pi =

∑n
i=1 qi, and

this, combined with the axial anomaly cancellation, means k =
∑n

i=1 pi =
∑n

i=1 qi with k
given by the Riemann-Roch calculation.

Holomorphic maps from genus zero and genus one worldsheets

As this is a TFT, it is important to stress that one is working with a fixed genus g world-
sheet Σg. More precisely, one is actually considering a Riemann surface with n punctures
at positions xi ∈ Σg, where one inserted the operators Oi. From (3.10), one sees that one
can rewrite correlators (3.20) as∑

β∈H2(X,Z)

e−tK·β
∫

[Φ(Σ)]∈β
D[Φ]D[χ]D[ψ]O1...On e−i t

R
{QA,V } . (3.21)

According to what was said above, the path integrals will localize on holomorphic maps.
The basic idea now will be to ‘pull the path-integral back’ on to the space of all such
holomorphic maps. Therefore, define a moduli space of holomorphic maps from the fixed
genus g Riemann surface (the worldsheet) Σg into curve class β, MΣg(X, β),

MΣg(X, β) := {φ : Σg → X
∣∣ φ∗[Σg] = β ∈ H2(X,Z) and ∂̄φ = 0}. (3.22)

Note that a point in this moduli space is a holomorphic map, φ. In order to evaluate
observables, one would like to construct a measure of integration on this space. A measure
is given by the tangent directions. The basic idea is to deform the image of a point φ
(this is a curve in X) and then study the pull-back of this. By doing this, one reaches
a new map in moduli space, which should again be holomorphic. This means, that from
the Calabi-Yau point of view, one has moved in a direction lying in T (1,0)X. Recall that
χ ∈ φ∗(T (1,0)(X)). The link between the χ’s and the tangent directions sought is clear from
this, but it can be made more concrete. Taking a supersymmetry variation of the original
map (the bosonic worldsheet scalar), one gets something proportional to χ: δφi ∝ χi. If
one requires this deformation to be holomorphic, one gets the zero mode equation ∂̄χi = 0.
The reader can read this up in detail in [81]. Therefore, one can conclude that the χ-zero
mode directions can be identified with directions in TMΣg(X, β), providing the desired
volume measure on MΣg .

For each operator Oi one can now define an evaluation map on this moduli space of
maps, evi, (i = 1, ..., n),

evi :MΣg(X,Z)→ X, φ→ φ(xi). (3.23)

In other words, an evaluation map evi sends every map φ (a point inMΣg(X,Z) to its value
φ(xi) at the point of the insertion of the associated operator Oi. This allows one to write
the operator Oi as a pullback uner the evaluation map of a form on the CY ωi ∈ H∗(X):
Oi(xi) = ev∗i (ωi).
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One can now write a correlator (3.21) as a path-integral on the moduli space of holo-
morphic maps

〈O1...On〉 =
∑

β∈H2(X,Z)

e−tKβ
∫
MΣg,n (X,β)

ev∗1(ω1)...ev∗n(ωn). (3.24)

The expression
∫
MΣg,n (X,β)

ev∗1(ω1)...ev∗n(ωn) evaluates to the number of holomorphic maps

Nβ
g,n from the genus g Riemann surface with n punctures, Σg,n, into curve class β in the

CY target space. In short,

〈O1...On〉 =
∑

β∈H2(X,Z)

e−tKβNβ
g,n. (3.25)

Since the theory considered is cohomological, differentiating the path integral with
respect to the Kähler parameter t yields zero2. Hence, one can safely take the t → ∞
limit. In this limit, the dominant contributions come from the maps whose image belongs
to the trivial class β = 0. In other words, maps for which the image of the worldsheet is
homologous to a point. For these maps, one finds MΣg(X, 0) ' X and evi = idi. That
means that one gets an integral over the target space CY. For the A-model TFT with a
CY 3-fold as a target space, one can easily read off, that the selection rules require the
insertion of a (3, 3) total form degree. One thus obtains an integral of the CY volume
form. At genus one, no insertion is needed to find a non-zero result, and one is left with
the partition function (3.11). At higher genus, there are no insertions possible: higher
correlators are zero.

One could analyze the B-model, much in the same way as the A-model in this section,
but for the sake of brevity this will not be presented in this thesis.

3.1.3 A-model topological string theory and Gromov-Witten in-
variants

For the A-model TFT on a fixed genus g Riemann surface Σg, one found selection rules for
the correlators, by analyzing the potential for anomalous R-symmetries. The sum of the
holomorphic degrees of any operator insertions as well as the sum of the anti-holomorphic
degrees must be equal to an expression depending on the (complex) target space dimension,
the first Chern class and the genus of the worldsheet:∑

k

degpkO
(pk,qk)
k =

∫
φ∗(c1(M)) + d(1− g),

∑
k

degqkO
(pk,qk)
k =

∫
φ∗(c1(M)) + d(1− g). (3.26)

2Only the cohomological part is t-independent. The part that is factored out certainly depends on it.
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This meant that one only found non-vanishing correlators when using a TFT with a genus
zero and a genus one worldsheet and a target space CY 3-fold. The basic reason for this
was that the degree of the insertion (as seen as an element of the target space de Rham
cohomology H∗(X)) corresponds to the axial charge of the worldsheet operator, hence one
cannot make any ‘negative’ insertions. However, one will be able to make negative inser-
tions, when allowing a path-integral over the worldsheet metric field. One thus couples
the (twisted) topological sigma model to gravity and arrives at topological string theory,
which is a 2d conformal field theory.

One can develop some more intuition behind why there were no holomorphic maps from
punctured Riemann surfaces of genus g ≥ 2 to the CY 3-fold X. When considering a TFT,
one works with a fixed genus g Riemann surface, and, more importantly, also with a fixed
complex structure class. It is not hard to imagine, that given a fixed complex structure
class, the conditions for mapping n points on the puncture Riemann surface to n points
on X simply overdetermine a holomorphic map. By varying the complex structure class
however, one might be able to ‘catch’ the conditions for the mapping of these n points.
Let this serve as a motivation to include a path-integral over all possible metrics on Σg.

When integrating over all possible metrics on a genus g Riemann surface, one is
confronted with a problem of ‘overcounting metrics’ known from ordinary string theory.
Schematically, one deals with a partition function of the form

Z =
∑
Σg

∫
D[gΣg ]

∫
D[φ]D[χ]D[ψ] e

−
R
Σg

L[g,φ,ξ,ψ]
, (3.27)

written out as a sum over genus g contributions and a path-integral over all metrics on a
specific worldsheet Σg. Again, the contributions will localize on holomorphic map contri-
butions. The integral over all metrics is interpreted as a sum over all genus g Riemann
surfaces with all possible metrics. As the theory exhibits conformal gauge symmetry, one
has to fix a conformal gauge on each Riemann surface, also requiring the introduction of
ghost and anti-ghost fields, according to the Fadeev-Popov procedure. The procedure for
topological string theory is very similar to the bosonic string, a different gauge has to be
chosen for each complex structure class. The volume of the conformal group is then fac-
tored out, and one is left with an integral over the moduli space of complex structuresMg

on every genus g Riemann surface. In fact, one can also use BRST quantization for the
topological string. This procedure will not be included in this thesis, however the reader
familiar with the bosonic string may use his knowledge on the latter quantization to serve
his intuition. The reader interested in a treatment of these matters is referred to [82].

Integrating over the moduli space of complex structures

At each genus, one fixes a conformal gauge and is left to integrate over a representa-
tive metric in each complex structure class. This can be translated into an integral over
the moduli space of complex structures. In order to find a measure on the moduli space
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of complex structures Mg, one will, just like one did for the moduli space of holomorphic
maps, search for the tangent directions. For the following argument, any specific genus g
surface Σg can be chosen.

Recall that an almost complex structure (in this case on a Riemann surface) is an
endomorphism J ∈ End(TΣg) (i.e. J ∈ TΣg ⊗ T ∗Σg, or — put differently – J is a (1, 1)-
tensor) squaring to minus the identity, J2 = −1. Defining projections for vector fields
onto their holomorphic and anti-holomorphic parts (with respect to the almost complex
structure J) according to

P = 1− iJ

2
,

P̄ = 1 +
iJ

2
,

one can nicely formulate the condition for J to be a complex structure. For two vector
fields X, Y on Σg, (using the Lie bracket for vector fields) the (integrability) condition
reads

P̄ [PX,PY ] = 0.

This can be shown to be equivalent to the vanishing of the Nijenhuis tensor

N [X, Y ] = [JX, JY ]− J [X, JY ]− J [JX, Y ]− [X, Y ] = 0. (3.28)

One can now consider an infinitesimal deformation of the complex structure, J → J + ε.
In coordinates (z, z̄) on Σg, the map J : TΣg → TΣg reads

J =

(
i 0
0 −i

)
. (3.29)

For an infinitesimal deformation, the equation (J + ε)2 = −1 yields

ε =

(
0 ε1
ε2 0

)
. (3.30)

The requirement that the Nijenhuis tensor vanishes for J+ε (for an infinitesimal variation)
leads to the restrictions ∂̄ε1 = 0 and ∂ε2 = 0. In other words, ε1 is a (0, 1) form with values
in T (1,0)Σg; it only has off-diagonal components, so to be valued in the holomorphic tangent
bundle, it has to be of type (0, 1). This means ε1 ∈ Λ(0,1)(T (1,0)Σg), and, accordingly ε2 ∈
Λ(1,0)(T (0,1)Σg). These tangent bundle valued forms are known as ‘Beltrami differentials’
in the literature, and they appear in the same way when studying bosonic string theory.
They can be denoted as

µ = µzz̄(z)∂zdz̄,

µ̄ = µz̄z(z̄)∂z̄dz. (3.31)

As ∂̄ε1 = 0 and ∂ε2 = 0, one learns from this, that deformations of the complex structure are
classified by H(0,1)(Σg, TholΣg) and H(1,0)(Σg, Tanti-holΣg). The dimensions of these spaces is
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of course the same, so in order to calculate the dimension of the moduli space, one can re-
strict to the holomorphic one. One can write H(0,1)(T (1,0)Σg) = H1

∂̄
(T (1,0)Σg) = H1(TΣg),

where the first equality is mere notation and the second equality follows from the Čech-
Dolbeault isomorphism. To summarize, this means that the tangent space to the moduli
space of complex structures reads TMg = H1(TΣg).

This allows the calculation of the dimension of this moduli space. From the Riemann-
Roch formula one obtains

χ(Σg, TΣg) = dimH0(TΣg)− dimH1(TΣg),

=

∫
Σg

ch(TΣg) td(TΣg),

=

∫
Σg

(dimCTΣg + c1(TΣg))(1 +
c1(TΣg)

2
), (3.32)

=
3

2

∫
Σg

c1(Σg) =
3

2
χ(Σg) = 3(1− g).

Generically (this turns out to be true for genus g ≥ 2), dimH0(TΣg) = 0, thus dim(Mg) =
3(g − 1). This in fact singles out a three complex dimensional Calabi-Yau target space as
the case where TST calculates non-trivial information (numbers of holomorphic maps) at
every genus.

For completeness, a few comments on the two non-generic cases: the sphere Σ0 = S2

and the torus Σ1 = T 2. For a sphere, dimH0(TΣ0) = 3, which means that dim(M0) = 0
(and not 3). For a torus, dimH0(TΣ1) = 1, which means that dim(M1) = 1.

The Beltrami differentials thus generically yield a basis for the tangent space TMf to
the moduli space of complex structures. A measure on moduli space is thus provided by
the dual one forms, which one can denote by dmi and dmj̄. Additionally, at each genus,
operators are included in order to cancel axial charge anomalies, as inevitably encountered
when wanting to define non-vanishing correlators for topological field theories at genus
g ≥ 2. The next step is to construct such operators. Namely, this allows one to obtain a
partition function at every genus. One has no Beltrami differentials at one’s availability for
the sphere, one for the torus, and 3(1− g) for genus g ≥ 2. The crucial point is that each
of these Beltrami differentials can be contracted with an operator of axial ghost number
minus one – a fact again familiar from the quantization of the bosonic string. Such an
operator with axial ghost number minus one is in fact provided by the worldsheet partner
of the energy-momentum tensor,

T = {Q,G}. (3.33)

As the energy-momentum tensor is traceless, one can write

G =

(
Gzz 0
0 Gz̄z̄

)
. (3.34)
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This allows one to form

βi =

∫
d2z Gzz(µi)z̄

z,

βj̄ =

∫
d2z Gz̄z̄(µj̄)z

z̄, (3.35)

for i, j̄ = 1, ..., 3g− 3, and these expressions provide the operators for each genus, with the
desired axial charge. Note that the product of all the constructed expressions has axial
charge 6(1− g).

Topological free energy of the A-model

This allows the stating of a formal definition of the free energy of the topological string

Fg =

∫
Mg

3g−3∏
i,j̄=1

dmidmj̄〈βi βj̄〉, (3.36)

related to the topological string partition function as Ztop = eFtop . Introducing a topological
string coupling constant λ, one can write the topological string free energy as a perturbative
power series

Ftop =
∑
g

λ2g−2Fg. (3.37)

The interpretation of what is calculated can be taken over from the discussion on topological
field theory, directly, but the spectrum is of course a lot richer. The computations localize
on holomorphic maps, and the number of such holomorphic maps at each genus, into a
specific homology class β ∈ H2(X,Z) are topological invariants, called Gromov-Witten
invariants.

Gromov-Witten invariants Nβ
g count maps φ from a given worldsheet Σg of genus g

to a curve φ(Σg) ⊂ X in the (integral) spacetime homology class β. They have been
conjectured to be rational, most generally, and form an example of a set of topological
invariants associated to the Calabi-Yau X and computed by the A-model. Using Gromov-
Witten (GW) invariants, the topological free energy of the A-model can be written as

FGW (λ, q) =
∑
g≥0

∑
β∈H+

2 (X)

λ2g−2Nβ
g q

β, (3.38)

acquiring contributions from every worldsheet genus in analogy to ordinary string theory,
and one sums over ‘positive’ elements of the second cohomology H2

+(X) (cycles with a
positive coefficient). This can be interpreted as a sum over worldsheet instantons with
amplitudes

qβ := e2πiβAt
A

. (3.39)
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Contributions from genus g Riemann surfaces embedded in the CY X are weighted by
their complex spacetime image area eA = q, and multiplied with the appropriate number
of maps.

Splitting the ‘Gromov-Witten expansion of the topological string free energy’ into the
contributions arising from each genus,

FGW =
1

λ2
F0 + F1 +

∑
g≥2

λ2g−2Fg, (3.40)

and splitting the contributions at each genus g into the contributions arising from different
curve classes.

Fg = F β=0
g + F β=1

g +
∑
β≥2

F β
g ,

it is illustrative to see how things already discussed in this thesis fit. The constant map
contributions – the ones where the whole genus g Riemann surface is mapped to a point
in the CY – are dominant when studying a CY at large volume.

The genus zero constant map term and thus the Gromov-Witten invariant N0
0 reads

F β=0
0 = DABC

6
tAtBtC , where DABC =

∫
X
JAJBJC , and tA denote the (complexified) Kähler

moduli of the Calabi-Yau X. At genus one, the constant map term is found to be F β=0
1 =∫

c2AJ
24
tA, using c2A =

∫
X
JA · c2(X). All other terms arise from worldsheet instantons and

are thus non-perturbative in α
′
. To accentuate this, one can write

Ftop = ln(Ztop) =
1

6λ2
DABCt

AtBtC − 1

24
c2At

A + Fnon-pert. (3.41)

A comparison of (3.41) with the prepotential (1.61) of the CY X is striking: topological
string theory computes the prepotential including quantum corrections. The first two
terms appearing in (3.41) are the classical terms, which are perturbative in α′. The rest
of the series is non-perturbative in the worldsheet (it arises from worldsheet instantons)
as is indicated by the subscript. Such a perturbative expansion (in the topological string
coupling) becomes the more accurate to calculate a prepotential, the closer one gets to the
large radius limit of a Calabi-Yau compactification.

3.2 The Donaldson-Thomas partition function: D6-

D2-D0 states

Clearly, the expansion of the topological free energy is perturbative in the topological string
coupling. The complete topological free energy Ftop is not known. This is archetypical for
the situation in modern quantum field theories, but this is a particularly nice example, as
one does not seem to be that far away from understanding the non-perturbatively complete
free energy. In fact, it seems that one knows three different asymptotic series, approximat-
ing Ftop. All three series are divergent everywhere, but two resummations, one of which will
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be discussed in this section, do render parts of the Gromov-Witten series finite. Knowl-
edge of the exact free energy is sometimes referred to as knowing the non-perturbative
completion of the topological string. The three asymptotic series approximating the topo-
logical string free energy compute different sets of topological invariants associated to a
Calabi-Yau manifold with interesting physical interpretations, each. The first set were the
Gromov-Witten invariants counting worldsheet instantons. The second series is known
as the Gopakumar-Vafa form, which is not of any further relevance in this thesis. The
third form shall be presented now, and is known as the Donaldson-Thomas form of the
topological string partition function.

This leads to the discussion of the Donaldson-Thomas invariants and the associated
expansion of the topological free energy. Again, the identification with the topological
free energy is conjectural at this stage, but a lot of evidence has been found in recent
years. Donaldson-Thomas invariants were originally discovered in the context of pure al-
gebraic geometry, and were conjectured to be related to the Gromov-Witten invariants
in [83, 84], through FGW = FDT. Mathematically, they can be rigorously formulated as
invariants counting ideal sheaves, however they will be treated from a physical point of
view in this thesis. A more recent connection also with the Gopakumar-Vafa resumma-
tion of the topological free energy can be well illustrated using the the discoveries from [85].

Heuristic definition of Donaldson-Thomas invariants

Donaldson-Thomas invariants associated to a CY X can be understood in (at least) two
complementary ways: As objects counting curves and points, which correspond to D2 and
D0-branes on the D6 (or D6) wrapped on X, or as the Witten indices of the worldvolume
gauge theory on the latter. More precisely, the invariant NDT(β, n) computes the Witten
index of a system with a D2 brane wrapping a curve of homology class β, and a collection
of D0’s, such that the total D0 charge equals n. Although the U(1) flux on the D6 interacts
with these lower branes, it does not alter the Witten index. In mathematical terms, the
DT invariants compute the dimensions of the moduli spaces of the ideal sheaves corre-
sponding to curves and points on the Calabi-Yau. They are indeed conjectured [83,84] to
contain equivalent information to the Gopakumar-Vafa invariants [86,87], which count the
states of M2 branes with momentum, where the M2’s are wrapped on holomorphic curves.
These ideal sheaves, just as ordinary Born-Infeld flux, will induce lower brane charges.
Alternatively, one can think of these sheaves literally as lower dimensional brane charges.
Depending on whether one is using an ideal sheaf or a dual ideal sheaf, the induced D2
charge will be dual to some curve class ∓β (i.e. it is a D2 or a D2), where β ∈ H4(X,Z),
and the D0 charge will be dual to nω, where

n = −1
2
χ(Cβ) +N , (3.42)

whereby χ(Cβ) is the ordinary Euler number of the curve in the homology class β, N is
the number of point-like D0’s, and ω is the volume-form of the CY.
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The other way to view these invariants, is by treating the worldvolume gauge theory on
the D6-brane as follows. It is known, that the Born-Infeld theory on a D6-brane is simply
the reduction of N = 1, d = 10 SYM on R4,1 × XCY down to XCY . This yields a maxi-
mally supersymmetric (N = 2) d = 6 SYM theory on the Calabi-Yau. However, because a
(proper) Calabi-Yau manifold only admits one covariantly constant spinor, the theory is au-
tomatically topologically twisted. Nekrasov et al. [88] devised a trick to compute the path
integral of this Euclidean 6d topological theory. By introducing a non-commutative defor-
mation, this gauge theory now supports ‘small’ instantons with vanishing first Chern class,
but non-vanishing second Chern character, which cannot exist in an ordinary Abelian gauge
theory. The size of these instantons is a modulus, just like that of non-Abelian instantons
in 4d. One can then show that the path integral of the non-commutative theory localizes
on instantons of zero ‘thickness’, i.e. on instantons localized on holomorphic curves and
points. The Donaldson-Thomas partition function is conjectured to be the Witten index of
this theory [88]. One also expects this partition function to remain unchanged after turning
the non-commutative deformation off. Keeping this in mind, one can view the GW-DT
‘correspondence’ as an open-closed duality, relating a theory of closed strings, given by the
GW interpretation, to a theory of open strings on a D-brane, described by a worldvolume
gauge theory at low-energy, leading to the DT interpretation of the topological string.

One can write the DT partition function ZDT = eFDT as a generating function:

ZDT (u, v) =
∑
β,n

NDT(β, n)unvβ =: Zβ=0
DT · Z

′

DT . (3.43)

Making the identification of variables u = e±iλ and v = e2πit, it is conjectured to be related
to the GV form by

Zβ=0
DT = (Zβ=0

GV )2,

Z ′DT (u, v) = Z ′GV (−u, v). (3.44)

The MacMahon form of the GV partition function is already very suggestive of a D-brane
world-volume gauge theory interpretation, and one can for instance read off the β = 0 part
to be

Zβ=0
DT =

∑
n

NDT (0, n)un =
∞∏
k=1

(1− (−e±iλk))−kχ(X). (3.45)

This should count D6-D0 states, and this function can indeed be retrieved by counting D0
particles in a D6 background. Similarly, it can be shown how to reproduce the form of Z ′DT
by counting D6-D2-D0 BPS states, check [1] and [80]. There is a strong connection between
4d BPS black hole degeneracies and the Donaldson-Thomas form of the topological string
partition function. This is discussed in the next section.
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3.3 Split brane states, flow trees and topological in-

variants

After a decline in the original interest in topological string theory, it saw a big revival in
2004, when a truly stunning conjecture by Ooguri, Strominger and Vafa (OSV) entered
the stage, [89]. The OSV conjecture relates a BPS black hole partition function in type
II string theory in 4d to the topological string partition function, ZBH ∼ |Ztop|2. Between
1998 and 2001, a series of papers appeared, [90–97], which refined the predictions of black
hole entropy by investigating the BPS black holes and the attractor mechanism including
higher derivative corrections to the action. These corrections to black hole entropy were
the main inspiration for the OSV conjecture, making a far-reaching conjecture about the
correspondence between entropies as calculated in supergravity and microscopic statistical
entropies. The black hole partition function is (formally) understood to arise from a mixed
ensemble that is now concretely chosen to be in a type IIA setup, with magnetic and
electric (p, q) charges. While the magnetic charge p is kept fixed, it arises as a sum over
all electric charges of the form

ZBH(φ, t∞) =
∑
q

Ω(p, q; t∞) e2πφΛqΛ , (3.46)

where φΛ denote electric potentials (Legendre transforms of the electric charges) and
Ω(p, q; t∞) is an index enumerating the number of BPS states with charge (p, q) and Kähler
background moduli t∞.

3.3.1 The OSV conjecture: Zblackhole ∼ |Ztop|2

The OSV conjecture can be stated in the two forms

Ω(p, q; t∞) ∼
∫
dφ e−2πφΛqΛ|Ztop|2, (3.47)

ZBH(φ, t∞) ∼ |Ztop(gtop, t)|2, (3.48)

where the topological string coupling and the Kähler moduli appearing in the topological
string partition function depend on the values of the electric potential and the magnetic
charges through

gtop =
4πi

X0
=

4π

2I0
ΛφΛ + ip0

, tA =
2IAΛφ

Λ + ipA

2I0
ΛφΛ + ip0

, (3.49)

and IΛ1
Λ2 denotes the symplectic intersection form between magnetic and electric charges

introduced earlier on.
Many studies have been performed on the OSV conjecture since 2004. A large number

of them focused on non-compact (local) CY manifolds, a number of studies have also been
performed model independently, [98–101], and there are specific studies on compact CY
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manifolds, [80,102] and specifically on K3× T 2 or T 6 in [103]. Of specific interest for this
thesis however is the very detailed study performed in [1], using split flow trees. This paper
was the main inspiration for many of the studies presented in this thesis.

The OSV conjecture as originally formulated leaves many open questions. Among these
is the issue, that Ztop is only known through the asymptotic approximations, discussed
above. This means that the OSV conjecture as it stands now can only hold approximately.
Additionally, the regime of validity was not clear. Furthermore, the studies in [1,80,102,103]

detected an extra measure factor µ = e−K

g2
top

in the formula for BPS indices Ω(p, q; t∞) ∼∫
dφµ e−2πφΛqΛ |Ztop|2.

3.3.2 Split states, flow trees and index factorization

In [1] by Denef and Moore, factorization of the integrand in

Ω(p, q; t∞) ∼
∫
dφµ e−2πφΛqΛ|Ztop|2

results from the fact that all D4 indices can be expressed in terms of a finite number
of polar indices, which do not form single centered black holes, but can be described by
D6-D6 bound states. The factorized indices for such polar states, developed in [1], are
explained in part 3.3.3. In a suitable limit, these D6(-D4-D2-D0) BPS states are counted
by Donaldson-Thomas invariants. If there were a perfect one-to-one map between all polar
states and all possible pairs of single D6 and single D6 states in which they are counted by
DT invariants, this would lead to a complete proof of the OSV conjecture. However, not all
polar states turned out to be realized as single D6-D6 bound states. This realization only
holds for sufficiently polar states. Using (q̂0)max to denote the reduced D0-brane charge of
the most polar state, one can introduce

η =
(q̂0)max − q̂0

(q̂0)max

(3.50)

to label ‘how polar’ a state is. Obviously, η = 0 for the most polar state, polar states
satisfy 0 ≤ η ≤ 1, and for non polar states η > 1. One of the findings in [1] is, that an
approximate factorization can be proved, when dropping all polar states with η > η∗, and
much of [1] was devoted to finding out how large η∗ can be taken.

Originally, the OSV conjecture was intended to hold at weak topological string coupling.
The derivation of [1] however gives an approximate and refined OSV formula, holding at
strong topological string coupling. The derivation relies on the two following conjectures.

• The split attractor flow conjecture: details on this conjecture were presented in
section 2.3. It is well founded, although, according to the discussion in the previous
chapter, there might be shortcomings in connection with scaling solutions. This
conjecture is also at the ‘core’ of this thesis, and will be put to non-trivial tests in
the research presented in the next chapter.
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• The extreme polar state conjecture: this conjecture states that all polar states with
η < η∗ can be realized as single D6-D6 pairs with the constituent charges close to
the constituents of the most polar state, a pure fluxed D6 and a pure D6.

Assuming the former two conjectures hold true, and dropping polar states with η > η∗,
they arrive at an approximate, refined OSV formula

Ω(p, q; t = i∞) =

∫
dφµe−2πqΛφ

Λ|Zεtop|2eδF (3.51)

using an appropriate cutoff Zεtop of the divergent Donaldson-Thomas partition function,
and the substitutions

gtop =
2π

φ0
, tA =

1

φ0
(φA + i

PA

2
). (3.52)

Note that the background in (3.51) was chosen to be t = i∞. For further details on the
cutoff of the DT partition function and a detailed error analysis, the reader is referred to
the original reference. The next paragraph summarizes some important formulae developed
in [1], which will be important in the following chapters.

3.3.3 Factorized wall-crossing indices for polar states

The conventions for the total charge vectors for D6 and D6-branes used in this thesis come
about as follows. The general formula for the induced charges on a D-brane (due to the
WZ term in the Born-Infeld action) wrapped on a (sub)-manifold W is the following:

SDbrane
W,C = 2π

∫
W

C ∧ e−B Tr eF

√
Â(TW )

Â(NW )
, (3.53)

where Â is the A-roof characteristic class, TW the tangent bundle of the brane, and NW
its normal bundle.

In the case that will be of interest in this thesis, that of a D6-brane carrying U(1)-
flux with field-strength F1, a D2 of class −β1 and N1 D0’s, the above formula yields the
following polyform:

ΓD6 = eF1

(
1− β1 − (1

2
χ(Cβ1) +N1)ω

)(
1 +

c2(X)

24

)
, (3.54)

where β ∈ H4(X,Z), and c2(X) is the second Chern class of the tangent bundle of the CY
threefold X. Similarly, a D6 with flux F2 will bind to a D2 of class β2 and N2 D0’s to give
the following total charge vector:

ΓD6 = −eF2

(
1− β2 + (1

2
χ(Cβ2) +N2)ω

)(
1 +

c2(X)

24

)
, (3.55)

The modification with respect to the general formula is the addition of D2 and D0 charge
in the form of sheaves, which can be thought of as generalizations of bundles (U(1) fluxes).
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Notice that the D6 will bind with a D2, the D6 with a D2, but both will bind to D0’s.

In the research presented in the next chapter, the goal was to enumerate numbers of
D4-D2-D0 BPS states using the D6 / D6 tachyon condensation picture and split flow trees.
To derive the results presented in section 4.2, the index for D4-D2-D0 BPS states of total
charge Γ from [1] will be used,

Ω(Γ) =
∑

Γ→Γ1+Γ2

(−1)|〈Γ1,Γ2〉|−1|〈Γ1,Γ2〉|Ω(Γ1) Ω(Γ2), (3.56)

with the sum running over all possible first splits Γ→ Γ1 +Γ2, belonging to a full split flow
tree, and 〈Γ1,Γ2〉 is the symplectic intersection of the two charges, as defined previously.
The microscopic logic behind this formula is that all degrees of freedom in a D6/D6 can
be factorized as the degrees of freedom on the gauge theories of the D6 and D6 plus the
degrees of freedom of the tachyon field, that are counted by the intersection product. As
shall be presented, this formula will need some refinement in general, when seeking exact
results. To evaluate the number of states for the two building blocks after the first split,
Donaldson-Thomas invariants for specific CY’s will be used, which may naively just be
interpreted as counting the number of D6-D4-D2-D0 BPS states. A split will contribute a
term to the index of the D4 system as follows:

∆Ω(ΓD4) = (−1)|〈ΓD6,ΓD6
〉|−1 |〈ΓD6,ΓD6〉|NDT(β1, n1)NDT(β2, n2) , (3.57)

where

ni = 1
2
χ(Cβi) +Ni . (i = 1, 2) (3.58)

The full index for the D4 will then be constructed by adding up all possible contributions
of this form. In the studies presented later on however, this does require care, as it is not
always trivial whether one is enumerating the D6-D2-D0 BPS states in the background
where indeed NDT yields the correct number of states.

3.4 Mirror symmetry for Calabi-Yau manifolds

This section presents a symmetry closely linked to topological strings, and important for
the research presented in the next chapter. Whereas for IIA compactifications, the prepo-
tential of a CY 3-fold X, and thus the topological free energy are determined by quantum
geometry, they are determined classically for the IIB side. Mirror symmetry relates IIA
string theory on X to IIB string theory on a mirror CY Y . Therefore it is clear that
mirror symmetry is relevant to understanding the relationship between black hole entropy
and topological strings. Mirror symmetry is one of the essential tools used in the research
presented in chapter 4, which is essentially an enumeration of D-particle BPS states (a
low-charge ‘cousin’ of a BPS black hole) by using split flows to establish existence of split
states, and enumerating the centers using invariants computed by the topological string.
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To be more precise, one should state that mirror symmetry is not generally proven, but
it has more of the status of a conjecture, that has however been put to numerous tests and
has received substantial evidence. From a purely mathematical point of view, it associates
to every Calabi-Yau X a so-called mirror Calabi-Yau Y with a ‘mirror Hodge diamond’,
H(3−p,q)(X) = H(p,q)(Y ). This means in particular that h(1,1)(X) = h(2,1)(Y ), and vice
versa. From the viewpoint of physics one can go further and state mirror symmetry as the
equivalence of a type IIA string theory compactified on X, and a type IIB string theory
compactified on the mirror Y . This is a highly non-trivial observation, given the fact that
from a classical point of view on geometry, X and Y are very different. One illustration of
this is the difference in sign of their Euler characteristics χ(X) = −χ(Y ).

Mirror symmetry maps the Kähler moduli space of X to the complex structure mod-
uli space of Y and vice versa. In the light of the preceding discussion on these moduli
spaces, the reader will certainly be struck by such revolutionary ties between two very
different setups: mirror symmetry relates classical geometry (on the complex structure
side) to quantum geometry (on the Kähler side). More specifically, the prepotential of the
Kähler moduli space F is an object which in general receives an infinite sum of quantum
corrections, and it can be calculated from the mirror classical geometry. Translated to
topological strings, this statement means that the classical periods of the mirror CY Y
contain information about holomorphic curves of X, and also, according to the different
interpretations of topological strings, about BPS states on CY 3-folds.

Mirror symmetry exemplified: the quintic threefold

Mirror symmetry will now be discussed by using a simple example: an algebraic Calabi-
Yau variety, the quintic threefold. This makes sense as a substantial amount of research
performed by the author was carried out using the quintic. The statements made for
the quintic become more involved for other Calabi-Yau’s, but the mechanism is the same,
essentially. In particular, the other CY’s used in this thesis are also one-modulus CY’s
embedded in weighted projective spaces, and the generalizations to these cases should be-
come quite obvious. Most of the following material follows the famous paper of Candelas,
de la Ossa, Green and Parkes from 1990, [104].

The quintic X

This paragraph begins by stating some basic features of the quintic. The reader can
find a more general treatment in the appendix, section A.1. The quintic X is an algebraic
variety. It is defined as the zero locus of a quintic polynomial in CP4. The ambient space
CP4 can be covered with homogeneous coordinates (x1 : x2 : x3 : x4 : x5), and one can
write a quintic polynomial as

pX = a1x
5
1 + a2x

5
2 + a3x

5
3 + a4x

5
4 + a5x

5
5 + q(5)(x) = 0, (3.59)

with q(5) a general degree five polynomial involving monomials mixed in the coordinates
xi. The quintic has one Kähler modulus and 101 complex structure moduli. The one-form
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on CP4, generating the second cohomology and Poincaré dual to a hyperplane (in this
case the quintic), descends to the single generator of H(1,1)(X) 3. Both the form on X
and on the ambient space will be denoted by H. The cohomology class H on X will also
be referred to as the hyperplane class. To study low charge D-brane BPS states, one will
wrap a D4 brane on a cycle (or a formal sum of cycles) in the Poincaré dual 4-cycle PD[H].
These are divisors described by a linear equation such as x1 = 0. Of course, one could
also consider higher classes such as Hn. A corresponding divisor would then be given by a
degree n polynomial.

According to the adjunction formula (note that H4 = 0),

c(X) =
c(CP4)

c(O(5))
=

(1 +H)5

1 + 5H
= 1 + 10H2 − 40H3, (3.60)

where O(5) is the normal bundle NX of X. Of course, by using the adjunction formula one
can see that in order to obtain a CY (c1(X) = 0), one has to choose a quintic polynomial
to describe an appropriate hypersurface in CP4, as c(CP4) = c(X)c(O(5)). Using the
intersection number

∫
X
H3 = 5 (check A.1), one obtains the Euler character by integrating

over the top Chern class

χ(X) =

∫
X

c3(X) = −40

∫
X

H3 = −200, (3.61)

and from the Hodge diamond of a CY, (A.1), one can see that 2(h(1,1) − 2h(2,1)) = −200,
which is consistent with earlier statements.

The mirror quintic Y

One way to represent the mirror quintic is again as a hypersurface within CP4, given
as a quotient of the set described by the zero locus of the following quintic polynomial:

pY = a1x
5
1 + a2x

5
2 + a3x

5
3 + a4x

5
4 + a5x

5
5 − 5ψx1x2x3x4x5 = 0. (3.62)

As mentioned earlier, Kähler and complex structure moduli are exchanged, and correspond-
ingly h(1,1)(Y ) = 101 and h(2,1)(Y ) = 1. Note that the quintic equation is in this case in
principle determined up to six parameters, (a1, ..., a5, ψ), but a coordinate transformation,
an element in PGL(5,C) will set the ai to one, if one wishes to do so. There is thus only
one parameter ψ in (3.62), which can be interpreted as the complex structure modulus
of Y . Such a quintic is preserved under certain rescalings. Namely, one can consider the
operation xi → λkixi, where e.g. λ = e

2πi
5 is a fifth root of unity and

∑
i ki = 0 (mod 5).

For the corresponding group G, operating on the locus where Y resides, using the notation
g = (k1, k2, k3, k4, k5), where g acts as xi → λkixi, it is clear that one can e.g. choose the

3This is not generally true, but it generically works for CY’s with a low number of Kähler moduli.
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following generators

g1
.
= (1, 0, 0, 0, 4),

g2
.
= (0, 1, 0, 0, 4),

g3
.
= (0, 0, 1, 0, 4),

g4
.
= (0, 0, 0, 1, 4).

At first sight, one might be tempted to conclude that this group is (Z5)4, but one must not
forget the projective rescaling of CP4. The successive action of all these generators

∏
i gi

introduces an overall phase in front of all the xi’s, leaving the possibility to be undone
by a rescaling of the homogeneous coordinates, so three generators suffice. The group
is therefore G = (Z5)3, and the correct statement is to define the mirror quintic as the
quotient of the zero locus of (3.62) by (Z5)3.

This group has fixed points, which means that this is not precise, yet. In fact one should
blow up the resulting singularites, each of which will then contribute to the Euler number
of Y , which can be calculated to be +200 (this is −χ(X)). This results in a generically
smooth space, but this is not important in the present context. Furthermore, this is not
the only possbility to present the mirror quintic. It can also be embedded as a degree 256
hypersurface in WCP4

41,48,51,52,64 or as a degree 320 hypersurface in WCP4
51,60,64,65,80, [26],

having the advantage that one does not have to take a quotient, but it leads to a bit more
complicated numerics.

In fact, ψ is not quite a good variable for the complex structure modulus, because
transformations ψ → λψ with λ again denoting a fifth root of unity, are equivalent to
a coordinate transformation of the form xi → 1

λ
xi (for any one i). Thus, only ψ5 is an

unambiguous coordinate on the complex structure moduli space.

The Picard-Fuchs equations

The essential strength of mirror symmetry is, that it allows one to map difficult prob-
lems in quantum geometry, typically encountered in IIA string theory compactifications,
to problems of classical geometry, typically in IIB compactifications. In the latter case, the
periods of the holomorphic three-form are exact and determine the prepotential. These
periods are solutions to a set of differential equations, called the Picard-Fuchs equations. A
brief derivation will be given for the quintic, and this will be supplemented with a general
formula for a certain class of hypersurfaces in weighted projective spaces.

Define the (4, 0) form Θ on CP4 by Θ = 1
p

∑
i=i(−1)idx1 ∧ dx2 ∧ ...xi...∧ dx5 (the form

dxi has been replaced by xi). One considers 1
p

as a prefactor with a quintic polynomial p,

which renders the form well defined on CP4, except at the locus where it becomes singular,
namely on the quintic Y . Now, one chooses p = pY (a polynomial that vanishes on Y ).
One can then explicitly write down a holomorphic (3, 0)-form on Y , by choosing a closed
path γ around pY = 0 in CP4, and defining

Ω =

∫
γ

Θ. (3.63)
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To understand this, consider pY as a coordinate normal to the directions lying along the
quintic Y , in the neighborhood of pY = 0. Choose affine coordinates, say, by setting x5 = 1,
and replace one coordinate, e.g. x4 by pY . One can rewrite dx4 as ∂x4

∂P
dP and integrate

out to obtain

Ω =
x5dx1 ∧ dx2 ∧ dx3

∂P
∂x4

.

Using a basis Ai for H3(X,Z), one can write the periods as

Ωi =

∫
Ai

∫
γ

Θ. (3.64)

Next, the Picard-Fuchs equations for the quintic are stated, followed by a little derivation,
which the reader not interested in any technicalities may skip.

Picard-Fuchs equations: quintic(
(z
d

dz
)4 − 55z

4∏
k=1

(z
d

dz
+
k

5
)

)
ωi = 0 (3.65)

‘Proof’:

1. From (3.64) and regarding the form of a general mirror quintic polynomial (3.62),
∂λ (Ωi(λa1, λa2, λa3, λa4, λa5, λψ)) = − 1

λ2 Ωi(a1, a2, a3, a4, a5, ψ) follows immediately.
Writing out this condition, one obtains the equation (

∑
i ai

∂
∂ai

+ ψ ∂
∂ψ

+ λ)Ωi = 0.

2. Similarly, one obtains ∂λΩi(a1, ..., λaj, ...,
a5

λ
, ψ) = 0, for some j 6= 5, leading to(

aj
∂
∂aj
− a5

∂
∂a5

)
Ωi = 0. As one can write out this equation for all values j = 1, 2, 3, 4,

one concludes that Ωi = Ωi(a1a2a3a4a5).

3. Combining the two previous steps, one can conclude that Ωi = Ωi(
a1a2a3a4a5

ψ6 ). To

relate to the literature, one can rewrite this for convenience as Ωi = 1
5ψ
ωi(

a1a2a3a4a5

(5ψ)5 ),
and set z := a1a2a3a4a5

(5ψ)5 .

4. Successive differentiations lead to
∏5

i=1
∂
∂ai

Ωi = ∂5Ωi
∂p5

∏5
i=1

∂p
∂ai

= ∂5Ωi
∂p5 (x1x2x3x4x5)5,

which is equal to −1
5
∂5

∂ψ5 Ωi = −(1
5
)5 ∂5Ωi

∂p5 ( ∂p
∂ψ

)5 = −(1
5
)5 ∂5Ωi

∂p5 (−5x1x2x3x4x5)5

= ∂5Ωi
∂p5 (x1x2x3x4x5)5. Adapting to the notation introduced in the previous step, and

replacing ∂ai by 1
ai
z d
dz

, this equality results in the equation(
1

a1a2a3a4a5
(z d

dz
)5 + (1

5
∂
∂ψ

)5
)

Ωi = 0.

5. From 1
5
∂ψ

1
(5ψ)N

f(z) = − 1
(5ψ)N+1 (5z d

dz
+N)f(z) it easily follows that

(
1
5
∂ψ
)5 1

5ψ
f(z) =

− 1
5ψ6 (5z z

dz
+ 5)(5z z

dz
+ 4)(5z z

dz
+ 3)(5z z

dz
+ 2)(5z z

dz
+ 1))f(z). Applying this to the



104 Chapter 3. Topological strings, split states and mirror symmetry

previous equation one obtains
(
(z d

dz
)5 − 55z(z d

dz
+ 1)

∏4
k=1(z d

dz
+ k

5
))
)
ωi = 0. Note

that z(z d
dz

+ 1)f(z) = (z z
dz

)zf(z), which allows to factor out the differential operator

z d
dz

, leading to the PF equations
(
(z d

dz
)4 − 55z

∏4
k=1(z d

dz
+ k

5
)
)
ωi = 0.

It is not hard to imagine, seen how scaling arguments associated to the quintic embed-
ded in CP4 entered this little derivation of the Picard Fuchs (PF) equations and that this
will generalize to something similiar with specific dependence on the scaling parameters
for a general hypersurface in a weighted projective space. For later reference, the general
PF equations for weighted projective spaces are stated:(

z
d

dz

∏
i=1,...,q

(z
z

dz
+ βi)− z

∏
j=1,...,p

(z
d

dz
+ αj)

)
ωi = 0, (3.66)

where the βi and αj are model-dependent constants. For the quintic, αj = j
5

(j = 1, 2, 3, 4)
and βi = 1 (i = 1, 2, 3), which recovers the PC equations for the quintic given above, when
rescaling the coordinate z to z → 55z. The PF equations are generalized hypergeometric
equations, for which the solutions are given in terms of generalized hypergeometric func-
tions, called Meijer-G-functions.

Singularities in moduli space and D-branes wrapping vanishing cycles

There are three special points in moduli space, which are of importance for the physics of
D-branes and black holes in CY compactifications. For convenience, set the parameters
ai = 1 in (3.62):

x5
1 + ...+ x5

5 = 5ψx1x2x3x4x5. (3.67)

• The Gepner point, ψ = 0
Setting ψ = 0, one immediately observes, that the group G, leaving the CY equation
(3.62) invariant, is enlarged from (Z5)3 to (Z5)4, as one can still do the rescalings,
but the condition

∑
i ki = 0 (mod 5) is no longer a restriction. This point in moduli

space is referred to as the Gepner point and is thus a Z5 orbifold singularity.

• The conifold point, ψ = 1
The hypersurface (in this case the mirror quintic) Y becomes singular when pY = 0

and ~∇xpY = 0, where the latter means ∂xipY = 0, ∀i. In addition to (3.4) this leads to

x5
i = ψx1...x5,∀i. One finds that this condition can be fulfilled when ψ = e

2πin
5 , n ∈

Z. These are (the copies of the) conifold point in moduli space. Namely, the CY
associated to this modulus contains a singularity at a point, where |xi| = |xj|,∀i, j.
Using the projective rescaling and the group Z3

5 this point can be represented as
(1 : 1 : 1 : 1 : 1) in homogeneous coordinates, and a coordinate transformation and
expansion near this point indeed shows that this point is a conifold singularity. This
means that the CY is of the form z1z2−z3z4 = 0 in the vicinity of this point (mapped
to 0 in these coordinates).
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• The large complex structure point, ψ =∞
Finally, one can also satisfy the conditions for a singularity in the CY, for ψ → ∞.
In this case, one finds, that the CY is of the form x1x2x3x4 = 0 in affine coordinates.
In this case, the CY contains a union of singular surfaces as a sublocus. The point
ψ =∞ is referred to as the (large complex structure) LCS point, and is mapped on
to the point known as the large volume limit under mirror symmetry.

The reason why singularities are interesting for this thesis, is that certain cycles in the CY
shrink in their vicinity and eventually vanish. Certain D-branes can become massless at
those points in moduli space, when they wrap a vanishing cycle. The corresponding point
in moduli space is also the attractor point for that brane system, and the vanishing cycles
are also called saturated cycles. For example, one can follow the behavior of 3-cycles as
one varies the complex structure modulus of the mirror quintic (or some other Calabi-Yau
Y ). A specific cycle will shrink to zero at the conifold point, and a certain D3-brane will
wrap a vanishing cycle and become massless. From the viewpoint of mathematics, the
cycles on which a D3-brane has an attractor point, are called Lagrangian 3-cycles, and
have been intensively studied by Joyce, [105]. Note that the singularities of the complex
structure moduli space were discussed here, but there are corresponding analogs in the
Kähler moduli space. Thus, one will also find vanishing cycles upon varying the Kähler
moduli of a CY, and a D6-brane becomes massless at the conifold point. These facts will be
reflected in the attractor points found in the research, presented in the following chapter.

3.5 Chapter summary and outlook

In this chapter, the stage was set for the research presented in the next chapter. Topological
string theory was introduced, and different interpretations of topological data computed by
topological strings were discussed. The reader interested in gaining a deeper understanding
of topological string theory is referred to [106–109]. A review with special focus towards
the OSV conjecture and black holes is provided by [110]. There is also the book called
‘Mirror Symmetry’ [11], which provides the reader with a very detailed account of TST.

Building upon the basics of TST discussed, the OSV conjecture was introduced, relating
the partition function of a BPS black hole modeled as a mixed ensemble (with respect to
the D-brane charges) of states to the partition function of topological string theory. How
Frederik Denef and Greg Moore studied and refined the OSV conjecture in a IIA picture
was then presented, using split flow trees to establish existence of polar states in the black
hole partition function, and enumerating them by using Donaldson-Thomas invariants.

The research to be presented in chapter 4 inspects mixed ensembles of low-charge BPS
states. Again, existence of polar states (and some non-polar states) is performed using
split flow trees and the centers of split states are enumerated using Donaldson-Thomas
invariants. It is important for the reader to remember that a Donaldson-Thomas invariant
NDT(β, n) counts the number of D6-D2-D0 BPS bound states of a D6 wrapping the CY,
with the D2-brane wrapped on a cycle of homology class β ∈ H2(X,Z) and with n D0-
branes added.
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In this low-charge setting, higher order corrections to the action become important,
and central charges of brane systems have to be calculated by exploiting mirror symmetry.
In the last part of this chapter, the topic of mirror symmetry has been introduced, by
presenting a specific example, namely the quintic 3-fold which was extensively studied in
this Ph.D. In principle, the research presented in the next chapter is closely connected to
an OSV-like statement for D-particles. The question is of course again, in what regime
such a conjecture is valid, and how exact it is. The topological string partition function
will be used to enumerate D6 (and lower dimensional brane charge) systems, or, in the
mirror picture, to count D3-brane systems. Schematically, these relations can be expressed
as

ZDparticle
∼ |Ztop|2 ≈ |ZDT|2 ≈ |ZD6|2 = |ZD3|2. (3.68)

A conjecture ZDparticle
∼ |Ztop|2 is of course a toy model in which to examine more details

on the OSV conjecture. This is one of the motivations for the research presented in the
following chapter. The research should just be viewed as a step in this program. To end
this outlook, some brief comments on the different conjectured and approximated identities
are added:

• ZDparticle
∼ |Ztop|2: This step is the OSV-like statement for a D-particle.

• |Ztop|2 ≈ |ZDT|2: The topological string partition function is not known, in this case
the Donaldson-Thomas asymptotic expansion is used.

• |ZDT|2 ≈ |ZD6|2: Donaldson-Thomas invariants count D6-D4-D2-D0 BPS states,
the closer relationship has been clarified in [1] and has been commented on, in this
chapter.

• |ZD6|2 = |ZD3|2: Finally, this is where mirror symmetry comes into play, and in fact,
one examines the mirror D3-brane systems, as one can calculate the exact central
charges. Alternatively, one could of course also just view this as a method and not
directly interpret this as an enumeration in type IIB.

The goal of the research presented in the next chapter is to describe all polar (and some
non-polar) D4-D2-D0 configurations as bound states of D6-D2-D0 and D6-D2-D0 with
U(1) fluxes on them, whereby the D4 charge is induced by the latter fluxes. This will allow
to factorize the indices of D4 systems as products of D6 and D6 indices. BPS indices of the
D6 and D6 systems are enumerated by Donaldson-Thomas invariants. The rough scheme
discussed above is followed up in the next chapter, resulting in various elliptic genera for
specific CY 3-fold study models, obtained from a new perspective. The research can also
be viewed as a highly non-trivial test of the split flow tree conjecture.



Chapter 4

Elliptic genera from split flows and
Donaldson-Thomas partitions

In this chapter research results are presented on BPS degeneracies of D-particles on Calabi-
Yau manifolds. Several elliptic genera are obtained, and various non-trivial checks on
the methods used are performed. It is shown however, that in order to obtain exact
results on BPS degeneracies more generally, previous techniques have to be refined. In
particular, a more refined index is suggested for bound states, and is succesfully put to the
test. The studies discussed in this chapter can be seen as a highly non-trivial test of the
split attractor flow conjecture. Additionally, as was mentioned at the end of the previous
chapter, this work can be seen to consist of low-charge counterpart studies to the more
involved OSV setup of [1]. Some of the main results discussed in the following stem from
a collaboration with Andrés Collinucci and are published in [3], others have been obtained
in a collaboration with Walter Van Herck, and have been published in [4].

The D-particles considered in this chapter are modeled with mixed ensembles of (D4-D2-
D0)-branes wrapped on an algebraic CY 3-fold. For various examples, including different
choices for the Calabi-Yau 3-fold, exact elliptic genera (the partition functions for these
D-particles) are obtained, through exact knowledge of the degeneracy of all polar states.
This is accomplished by using split attractor flow trees and the index factorization formulae
from [1]. Polar states are realized as bound states, with D6- and D6-systems as constituents.
These are enumerated using Donaldson-Thomas invariants, provided by topological string
theory. Using these techniques allows exact results to be obtained, even though various
charges exhibit quite complicated area codes for the split flow trees. In this sense, the
results found are strong evidence for (a strong version of) the split attractor flow conjecture,
discussed extensively, in chapter 2.

Additionally, several non-polar states, which are also realized as bound states, are ana-
lyzed using the same techniques. As the degeneracy of these states is fixed by modularity,
this can be seen as a non-trivial check on the techniques used. It is found, that to ob-
tain exact results in general, the index associated to a split flow tree has to be calculated
with greater care. Namely, the index of a bound state does not factorize in general, but
this can be taken care of. As a consequence, the separation of the states of a center into
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generic states (which behave the way one naively expects) and special states (which are
‘perceived’ differently within the bound states) is possible. This translates into a splitting
up of Donaldson-Thomas invariants (counting the BPS states associated to such a con-
stituent center) into what has been named Donaldson-Thomas partitions, consisting of a
part counting generic, and of a part counting special states. Although the full meaning
of these partitions is not yet clear, they do exhibit highly interesting features. Should
the refined index for bound states computed in this chapter turn out to be correct, this
refines the wall-crossing index of Denef and Moore, [1], and could be interpreted as the
correct physical picture associated to the general wall-crossing formula of Kontsevich and
Soibelman, [2] 1.

The setup in this chapter will always be a single D4 brane wrapped on a hyperplane
class divisor P = H of a one-modulus CY 3-fold. While this charge is kept fixed, one then
considers different possible fluxes F ∈ H2(X,Z) and D0-branes. In order to determine the
full partition function, according to the explanations in chapter 2, it is sufficient to restrict
attention to polar states, but some interesting non-polar states will be discussed in detail
as well. As one is working at low charge, instanton corrections to the central charges of
the brane systems under consideration become important.

In the first section of this chapter, how mirror symmetry can be used to obtain fully
corrected central charges is discussed. Following this, polar states and some non-polar
states on the quintic are analyzed, resulting in a first encounter of Donaldson-Thomas
partitions. The results are compared to other derivations of the index of such an ensemble.
An exact agreement with the results in [99], and the enumeration of a non-polar state is
improved to yield the exact result. This is followed by similar enumerations for a series
of other models, again accompanied by a comparison to previous results. Exact results
are obtained by utilizing the method stated here and thus the ideas put forth earlier are
confirmed. The refinement of the prescription to enumerate states does however lead to
a slight modification in the prediction of the elliptic genus for one model. Various non-
polar states are analyzed, and an exact confirmation of the suggested method is found.
This chapter is concluded with a summary of the obtained results and some comments on
future research directions.

4.1 Mirror symmetry and instanton corrected central

charges

For configurations with low D-brane charges, the attractor flow equations drive the horizon
size of solutions to very small sizes in string scale units. This automatically leads far
outside the supergravity regime, requiring higher curvature corrections. However, as will
be confirmed shortly, the main tool of analysis, namely split attractor flow tree techniques,
will retain its meaningfulness as predicted by the strong split attractor flow tree conjecture.
As the attractor equations will typically drive the cycles and the CY itself to stringy sizes,

1The author would like to thank Markus Reineke for pointing this out.
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the central charges of brane systems receive important worldsheet instanton corrections as
a consequence, and these need to be taken into account. In type IIA string theory this
would be an impossible task. Luckily, mirror symmetry solves the problem as the central
charges are exactly determined classically by the periods of the holomorphic three-form in
type IIB string theory on the mirror CY manifold. Note that the mass of a BPS saturated
brane wrapping an even cycle corresponds exactly to the notion of quantum volume of
that cycle from [111]. The general scheme is to identify an integral basis of three-cycles,
calculate the periods of these cycles, find the explicit mirror map and in this way define
the quantum volume of any even dimensional cycle of the mirror.

As discussed in section 3.4, the periods of the mirror are determined as Meijer G-
functions. Thus, it is not possible to write down analytic formulae for central charges,
and certainly not possible to work with split attractor flow trees analytically. This hurdle
is overcome in the following by means of numerical approximations with Mathematica2.
Basically, the periods are evaluated to create a lattice, from which the function can be
approximated by interpolation. Split flow trees and single flows are then established nu-
merically. More details on the applied technique can be found in [51]. The mirror symmetry
induced monomial-divisor map is used, to convert Kähler to complex structure modulus,
and map (D6, D4, D2, D0) brane systems ΓA into their (D3, D3, D3, D3) brane mirrors
ΓB, L : H2∗(X,Z) → H3(Y,Z), and then analyze the attractor flows of the exact cen-
tral charges in complex structure moduli space (or more precisely in the five-fold cover
w-plane). In the IIB picture, black holes are made of D3-branes wrapped along special
Lagrangian three-cycles of the internal Calabi-Yau manifold, whereby these D3’s (and their
corresponding three-cycles) can split up into intersecting D3’s, by moving in the complex
structure moduli space of the CY across some ‘line of marginal stability’.

The techniques explained in the following are adapted from [111]. For concreteness and
simplicity, again the quintic shall be treated explicitly, but the reader can easily repeat
these steps for the other models used, given the former reference.

The mirror map L can be found from a comparison of the IIA and IIB periods of the
quintic near the LCS point: (check [51] for more explanations)

L =


−1 0 0 0
0 1 0 0
25
12

11
2

1 0
0 −25

12
0 −1

 . (4.1)

It relates the even cycles of real dimension 2j on the CY XA to the three-cycles γi of the
mirror CY manifold XB. The periods Πi =

∫
γi

Ω, of the holomorphic three-form on the

γi have leading logarithmic behavior logj(z) near z = 0 (LCS point), using the coordinate
z = ψ−5. As stated before, these periods are solutions to the generalized hypergeometric
equation, known as the Picard-Fuchs equation,[

z ∂z
∏
i=1...q

(z ∂z + βi − 1)− z
∏
j=1...p

(z ∂z + αj)
]
u = 0, (4.2)

2Special thanks to Frederik Denef for sharing his Mathematica code with the author [51].
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where the αj and the βi are model dependent constants, which in the case of the quintic are
αj = j

5
, βi = 1, j = 1, ..., 4, i = 1, 2, 3 3. For the quintic, the Meijer-functions (G-functions)

Uj(z) can be expressed as

Uj(z) =
1

(2πi)j

∮
Γ(−s)j+1

∏4
i=1 Γ(s+ αi)((−1)j+1z)s

Γ(s+ 1)3−j ds. (4.3)

This particular basis of periods is related to three branching points (LCS point, conifold
point and Gepner point) which are connected by appropriately chosen branch cuts. This
was important when establishing flow trees, as flow tree branches often cross such branch
cuts in moduli space, and this needs to be taken into account when building more compli-
cated flow trees. Associated to these branch cuts are three types of monodromies, which
can be expressed as matrices acting on the periods. The monodromy T (0) around the LCS
point (z = 0, ψ =∞) and the monodromy T (∞) around the Gepner point (z =∞, ψ = 0)
act on the period vector U(z) = (Uj(z))j=1...4 as follows,

U(e2πiz) = T (0) U(z), |z| << 1

U(e2πiz) = T (∞) U(z), |z| >> 1. (4.4)

The third monodromy matrix of course follows directly from the other two, as a monodromy
can always be seen either as ‘around one of the branching points’ or, equivalently as a
monodromy ‘around the two other branching points’ in the appropriate directions. For the
monodromy around the conifold point one has

T (1) = T (∞)T (0)−1 Im(z) < 0,

T (1) = T (0)−1T (∞) Im(z) > 0. (4.5)

Adhering to the conventions in [51], a period basis can be defined by the vector Π = LU,
where L is the following matrix:

L =
8 i π2

125


0 5 0 5
0 1 −5 0
0 −1 0 0
1 0 0 0

 . (4.6)

Knowing the exact periods one can calculate the Kähler potential

e−K = i

∫
Y

ΩB ∧ ΩB = iΠ†(z) · I−1 ·Π(z) , (4.7)

where ΩB is the holomorphic (3, 0)-form of type a IIB CY compactification ΩB, and I is
the symplectic intersection matrix given by

I =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 . (4.8)

3The values for the αi need to be replaced with ( 1
6 ,

1
3 ,

2
3 ,

5
6 ), ( 1

8 ,
3
8 ,

5
8 ,

7
8 ) and ( 1

10 ,
3
10 ,

7
10 ,

9
10 ) for the

sextic, the octic, and the decantic, used in this chapter, respectively.
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The fully quantum corrected central charges of a IIB charge vector q = (p0, p, q, q0) can
now be computed as follows:

Z(Γ) = eK/2 q ·Π . (4.9)

4.2 Enumeration of D4-D2-D0 BPS states on the quin-

tic

It is time to present split flow trees and BPS indices for a type IIA string theory com-
pactification on the quintic. The results offer strong evidence that the split attractor flow
conjecture holds accurately for the BPS states under investigation, suggesting a ‘strong’
correspondence between flow tree data and BPS solutions of the worldsheet instanton cor-
rected theory. It becomes clear however, that one has to take care of some subtleties in
order to establish a correspondence for all charge systems considered. The results will also
be compared to the calculations of the modified elliptic genus performed by means of geo-
metric and CFT-inspired techniques, as well as the use of modular invariance, performed
by Gaiotto, Strominger and Yin, [99].

Using the notation for the charge vectors (3.54,3.55), a charge polyform on the quintic
reads

Γ = p0 + pH +
q

5
H2 +

q0

5
H3. (4.10)

As stressed under 2.4.4, whether a charge is polar or non-polar has decisive implications
for the existence of attractor flows, at least in the large volume regime. If the central charge
Z(Γ, t) vanishes on a regular point in the moduli space, then no single-centered solution
exists. In the large radius approximation, the central charge of system with (D4, D2, D0)
charge (p, q, q0) reads Z = 〈Ω,Γ〉 = −5p

2
t2+qt−q0. Under a shift of the B-field, B → B− 1

5
q,

this becomes Z = −5p
2
t2 − q̂0. For this shift in the B-field not to affect the BPS spectrum

one has of course to assume that the background Kähler modulus does not cross a wall
of marginal stability. Writing the Kähler modulus as t = B + iJ and setting Z = 0 leads
to B · J = 0 and 1

2
(J2 − B2) = q̂0, from which one can deduce that one needs q̂0 > 0 to

have a solution4. Thus, it turns out that in the large radius approximation, q̂0 > 0 is the
condition for a single flow to crash at a regular point in moduli space, whereas for q̂0 < 0
the flow will terminate at a regular attractor point. As will be discussed shortly, this is
no longer true when working in the regime where the central charge receives dominant
instanton corrections.

Clearly, there is no algorithm to find all attractor flows for the charge systems under
investigation. However, a certain set of rules was followed when gathering all attractor
flows contributing to an index. One might say very loosely that one chose the most conve-
nient and least complicated topological background sector in moduli space, but one may
elaborate more on that. First of all, one searches for a value of the background complexified
Kähler modulus where no single flow exists for a given system. One then looks for splits

4Recall that J is in the self-dual part of H2(P,Z).
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into a single D6-brane (potentially with U(1) flux, D2 (D2) and D0-branes) and a single D6
(again potentially carrying lower-dimensional brane charge) and restricts attention to D2’s
(or D2’s) wrapped on holomorphic curves of up to degree three, either rational or elliptic.
A next criterion was to select a topological sector of the background where there is no
single flow, but only split flows are possible. All the splits discussed in this chapter are
splits into single D6/D6 pairs. However, the author and his collaborators also searched for
splits into higher rank stacks, whenever it seemed intuitively reasonable to expect these,
but did not find any.

As mentioned before, the centers were enumerated using DT invariants. Note that
when using a DT-invariant to count a number of D6-D2-D0 states, one must be careful not
to overcount the states involved in a flow tree. Such issues are discussed in more detail on
a case by case basis in what follows and in the appendix.

For convenience, some DT invariants for the quintic are stated in the following table,
including all the ones used to derive the results.

Donaldson-Thomas invariants: quintic
n = 0 n = 1 n = 2 n = 3

β = 0 1 200 19’500 1’234’000
β = 1 0 2875 569’250 54’921’125
β = 2 0 609’250 124’762’875 12’448’246’500
β = 3 609’250 439’056’375 76’438’831’000 7’158’676’736’750

By the conjectured identity between the generating functional for GV invariants and DT
invariants [85], one can easily obtain these from [112], [113], where the GV invariants for
the quintic were calculated up to high order.

4.2.1 Polar states: q̂0 > 0

All polar states are analyzed, moving from more polar to less polar. The following table,
4.2.1, summarizes the polar charge systems with one p = 1 magnetic D4-brane wrapped on
a hyperplane class divisor of the quintic. Charges systems are labeled by their deviation
in D2-brane charge ∆q and D0-brane charge ∆q0 as measured from the most polar state
with charge vector

Γ = H +
1

2
H2 +

7

12
H3, (4.11)

which means D2-brane charge q = 5
2

and D0-brane charge q0 = 35
12

. Thus, q̂0 = q0− 1
10
q2 =

55
24

. In the ‘charge shift’ notation it is denoted as ∆q = 0,∆q0 = 0.

Polar brane systems
D2/D0 shifts Total charge Reduced D0 brane charge q̂0

1. ∆q = 0 ∆q0 = 0 H + 1
2
H2 + 7

12
H3 55/24 ≈ 2.29

2. ∆q = 0 ∆q0 = −1 H + 1
2
H2 + 23

60
H3 31/24 ≈ 1.29

3. ∆q = 1 ∆q0 = −1 H + 7
10
H2 + 23

60
H3 83/120 ≈ 0.69

4. ∆q = −1 ∆q0 = −2 H + 3
10
H2 + 11

60
H3 83/120 ≈ 0.69

5. ∆q = 0 ∆q0 = −2 H + 1
2
H2 + 11

60
H3 7/24 ≈ 0.29
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In the following, small pictograms will be used to denote flow trees. Indices corresponding
to a flow tree will be calculated right after the first split point, at the wall of marginal
stability, as in [1]. The various branches of a pictogram will be denoted by the correspond-
ing brane charge, where D6- or D4-branes are denoted with a subscript indicating possible
worldvolume flux and bound (anti-) D2- or D0-branes. When stating a flux dual to a curve
on a D4-brane or stating the type of curve on which one wraps a (anti-) D2-brane, the
curves of degree d will be denoted by Cd when they are rational (i.e. genus zero), otherwise
the genus will be stated explicitly.

1. ∆q = 0,∆q0 = 0:
The first state to be analyzed is the most polar state: a pure D4-brane (q̂0 ≈ 2.29).
One needs to turn on a half-integer flux for anomaly cancellation as the hyperplane
class divisor does not support a spin structure, [76], [77]. This pure fluxed D4-brane

has charge Γ = H + H2

2
+ (χ(P )

24
+ 1

2
F 2)ω = H + 1

2
H2 + 7

12
H3 where ω ∈ H6(X,Z)

denotes the volume form on X. One finds a split flow tree with two endpoints,
corresponding to charges

Γ1 = 1 +H +
H2

2
+
c2(X)

24
+
H3

6
+
c2(X) ·H

24
,

Γ2 = −1− c2(X)

24
.

It looks and is enumerated as follows:

D4H
2

D6H D6

= 5.

The first center is a D6-brane with one unit of worldvolume flux turned on, the
second center is a pure D6. Note that the correction from the second Chern class of
the quintic c2(X) on D2- and D0-brane charges has been taken into account for both
centers. As discussed in [51], the attractor points for these centers lie on copies of
the conifold singularity. They might be viewed as some ‘microscopic building blocks’
of an empty hole. The BPS index reads

Ω = (−1)|〈Γ1,Γ2〉|−1|〈Γ1,Γ2〉|NDT(0, 0) ·NDT(0, 0) = (−1)4 · 5 · 1 · 1 = 5. (4.12)

2. ∆q = 0,∆q0 = −1:
The next polar state is obtained by binding one D0-brane N = 1 to the D4-brane.
This system has total charge Γ = H + H2

2
+ (χ(P )

24
+ 1

2
F 2 −N)ω = H + H2

2
+ 23

60
H3.

One finds a split flow tree with three endpoints corresponding to a D6-brane with
one unit of worldvolume flux, a pure D6 and an D0. Depending on the background
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value of the Kähler modulus, the D0-brane is on the side of the D6 or of the D6.
There is a threshold wall for the D0 running through the fundamental wedge. One
finds what one expects: the D0 binds to the D6 on one side of the TH wall and it
binds to the D6 on the other side of the wall. One possibility is the flow tree:

D4H
2
,D0

D6H D6

D0
= −800,

leading to the BPS index

Ω = (−1)|〈Γ1,Γ2〉|−1|〈Γ1,Γ2〉|NDT(0, 1) ·NDT(0, 0) = (−1)3 · 4 · 200 · 1 = −800.

Note, that in calculating this index one has now in some sense approximated the
degeneracy (index) by treating the whole flow tree as though it corresponded to a
two-centered solution (instead of a three-centered one). The physical justification for
this, which is based on the supergravity picture (which is a priori not valid at low
charge), is that, during the first split, the D6 (or the D6-brane, depending on the side
of the threshold wall) with a bound D0 behaves approximately as a single particle in
spacetime, since the distance between the D6 and the D0 is negligible compared to
the distance between the D6 and the D6. Of course, this does not immediately imply
how one would go about computing the exact index for a three-centered solution. In
this case here, the DT invariant correctly counts the number of BPS states. It can
and will happen, though, that one has to work harder to get the correct index for a
whole flow tree. In that case a more detailed area code analysis becomes relevant.

3. ∆q = 1,∆q0 = −1:
The next state (q̂0 ≈ 0.69) is obtained in the D4-picture by turning on a flux dual to

a degree one rational curve. This leads to the total charge Γ = H + 7
10
H2 + (χ(P )

24
+

1
2
F 2)ω = H + 7

10
H2 + 23

60
H3. One finds a split flow tree ending with a D6 with one

unit of worldvolume flux and a D6 with a sheaf corresponding to a D2-brane wrapped
on a degree one rational curve. The holomorphic Euler character for this curve is
n2 = χh(C1) = 1, so one sets (β2, n2) = (1, 1). The split flow tree looks like

D4H
2

+C1

D6H D6D2(C1)

= 8′625,

which leads to the BPS index

Ω = (−1)|〈Γ1,Γ2〉|−1|〈Γ1,Γ2〉|NDT(0, 0) ·NDT(1, 1) = (−1)2 · 3 · 1 · 2′875 = 8′625.
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4. ∆q = −1,∆q0 = −2:
Similarly there is the state (q̂0 ≈ 0.69) with total charge Γ = H + 3

10
H2 + (χ(P )

24
+

1
2
F 2)ω = H + 3

10
H2 + 11

60
H3. One finds the split flow tree with a D6 with one unit

of worldvolume flux and a sheaf corresponding to an D2 wrapped on a degree one
rational curve on one side, and an D6 on the other side, as centers. One therefore
sets (β1, n1) = (1,−1). The split flow tree looks like

D4H
2

+C1

D6H,D2(C1) D6

= 8′625,

and one obtains the BPS index

Ω = (−1)|〈Γ1,Γ2〉|−1|〈Γ1,Γ2〉|NDT(1, 1) ·NDT(0, 0) = (−1)2 · 3 · 1 · 2′875 = 8′625.

5. ∆q = 0,∆q0 = −2:
Next, one can bind two N = 2 D0’s to the D4. This yields a total charge Γ =
H + H2

2
+ (χ(P )

24
+ 1

2
F 2 −N)ω = H + H2

2
+ 11

60
H3. One finds one split flow tree of the

schematic form
D4H

2
,2D0

D6H D6

2 D0
= 58′500,

and one is led to the BPS index

Ω = (−1)|〈Γ1,Γ2〉|−1|〈Γ1,Γ2〉|NDT(0, 2) ·NDT(0, 0) = (−1)2 · 3 · 19′500 · 1 = 58′500.

One can check that all the results for the polar states exactly match the corresponding
numbers from the elliptic genus obtained in [99], by analyzing the degrees of freedom
associated to a charge lifted to M-theory in the MSW CFT.

4.2.2 Non-polar states: q̂0 < 0

Here is a summary of the non-polar charges that will be considered.

Non-polar brane systems
D2/D0 shifts Total charge Reduced D0 brane charge q̂0

6. ∆q = 2 ∆q0 = −1 H + 9
10
H2 + 23

60
H3 −13/120 ≈ −0.11

7. ∆q = 1 ∆q0 = −2 H + 7
10
H2 + 11

60
H3 −37/120 ≈ −0.31

8. ∆q = 0 ∆q0 = −3 H + 1
2
H2 + −1

60
H3 17/24 ≈ −0.71

9. ∆q = 2 ∆q0 = −2 H + 9
10
H2 + 11

60
H3 83/120 ≈ −1.11
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6. ∆q = 2,∆q0 = −1:
The first non-polar state (q̂0 ≈ −0.11) can be obtained in the D4-picture by turning
on flux dual to a degree two rational curve. This system has charge Γ = H + 9

10
H2 +

(χ(P )
24

+ 1
2
F 2)ω = H + 9

10
H2 + 23

60
H3. One finds the split flow tree

D4H
2

+C2

D6H D6D2(C2)

= −1′218′500,

which leads to the index

Ω = (−1)|〈Γ1,Γ2〉|−1|〈Γ1,Γ2〉|NDT(0, 0) ·NDT(2, 1) = (−1)1 ·2 ·1 ·609′250 = −1′218′500.

7. ∆q = 1,∆q0 = −2:
The next state (q̂0 ≈ −0.31) can be viewed as a D4-brane with worldvolume flux
dual to a degree one rational curve as well as (N = 1) one D0, corresponding to

the total charge Γ = H + 7
10
H2 + (χ(P )

24
+ 1

2
F 2 − N)ω = H + 7

10
H2 + 11

60
H3. This

system is the first with a non-trivial area code. The correct index receives different
contributions in different background regimes. The reader interested in the details of
the area code is referred to the appendix B. Tuning the background to the simplest
case, two split flow trees contribute. First, there is the split into a D6-brane with
one unit of worldvolume flux, a pure D6 and a D2-D0 halo particle. The halo is on
the anti-D6 side after the first split. Second, there is the split into the D6-brane with
one unit of worldvolume flux, a D6 with sheaf corresponding to a D2 on a degree one
rational curve and one D0, where the D0 is on the D6 side after the first split. This
schematically corresponds to

D4H
2

+C1,D0

D6H D6D2(C1),D0

+

D4H
2

+C1,D0

D6H D6

D2D0

= −1′138′500.

These two flow trees sum up according to the following:

Ω = (−1)|〈Γ1,Γ2〉|−1|〈Γ1,Γ2〉|NDT(0, 0) ·NDT(1, 2) = (−1)1 ·2 ·1 ·569′250 = −1′138′500.

8. ∆q = 0,∆q0 = −3:
One then considers a state (q̂0 ≈ −0.71) which can be seen as a D4-brane with three

D0’s (N = 3). The total charge is Γ = H+ 1
2
H2+(χ(P )

24
+ 1

2
F 2−N)ω = H+ 1

2
H2− 1

60
H3.

One finds two contributions to the total index. The first split flow tree is
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D4H
2

+C1+C1

D6H,D2(C1) D6D2(C1)

= 8′265′625,

and contributes by

ΩA = (−1)|〈Γ1,Γ2〉|−1|〈Γ1,Γ2〉|NDT(1, 1)·NDT(1, 1) = (−1)0 ·1·2′875·2′875 = 8′265′625.

The second type of split flow tree is one with three centers, a D6-brane with one unit
of worldvolume flux, a pure D6 and three D0’s. Again, a threshold wall interpolates
between areas where the D0’s are on the D6 side after the first split, or on the D6
side, respectively. The flow tree looks like

D4H
2
,3D0

D6H D6

3 D0
= −2′468′000,

and contributes

ΩB = (−1)|〈Γ1,Γ2〉|−1|〈Γ1,Γ2〉|NDT(0, 3) ·NDT(0, 0)

= (−1)1 · 2 · 1′234′000 · 1 = −2′468′000.

Altogether this leads to

D4H
2

+C1+C1

D6H,D2(C1) D6D2(C1)

+

D4H
2
,3D0

D6H D6

3D0
= 5′797′625.

9. ∆q = 2,∆q0 = −2:
The last state (q̂0 ≈ −1.11) considered has the most complicated area code. In
the D4 picture, one obtains it by turning on flux dual to a degree two rational
curve as well as binding one anti-D0-brane (N = 1). The total charge reads Γ =

H + 9
10
H2 + (χ(P )

24
+ 1

2
F 2 − N)ω = H + 9

10
H2 + 11

60
H3. Again, the reader can find a

detailed discussion in the appendix B. Choosing a convenient background, one finds
three split flow trees.
The first two contribute as follows:
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D4H
2

+C2,D0

D6H D6D2(C2),D0

+

D4H
2

+C2,D0

D6H D6

D2D0

= 124′762′875,

which is calculated according to

ΩB = (−1)|〈Γ1,Γ2〉|−1|〈Γ1,Γ2〉|NDT(0, 0) ·NDT(2, 2)

= (−1)0 · 1 · 1 · 124′762′875 = 124′762′875.

Note that the subscript of the index will become clear in the appendix, where the area
code for this charge system is discussed in detail. The next contribution arises from
a split flow tree with a D6 with two units of flux and additional sheaf corresponding
to a D2 wrapped on a degree three rational curve (β1, n1) = (3, 1) as well as a D6
with one unit of worldvolume flux. This flow tree looks like

D4H
2
,C3

D62H,D2(C3) D6H

= 317′206′375.

One might at first have thought that this flow tree would yield the index

ΩC = (−1)|〈Γ1,Γ2〉|−1|〈Γ1,Γ2〉|NDT(0, 0) ·NDT(3, 1) = 439′056′375 ,

but closer inspection shows that one would overcount the number of BPS states
corresponding to this flow tree. Namely, one would also enumerate the number of
BPS states corresponding to the case, when the D6-brane would have a D2 on an
elliptic degree three curve, C3

g=1, and an extra D0. However, one does not find this
type of split flow tree. A simple trick allows the substraction of the right number
of states from 439′056′375: Imagine that this type of split existed. In that case one
might also find a threshold wall for the D0. If one would take the background into
a region, where the D0 flips side after the first split, one would then enumerate this
split as follows:

ΩC2 = (−1)0 · 1 ·NDT(0, 1) ·NDT(3, 0) = 200 · 609′250 = 121′850′000.

Again, the subscript ‘C2’ of the index will become clear in the appendix, where the
area code is discussed in detail. As the index cannot jump at a threshold wall, this
is presumably also the index that one has to substract. One then obtains

ΩC1 = ΩC − ΩC2 = 439′056′375− 121′850′000 = 317′206′375.

This can also be graphically depicted by
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D4H
2

+C3

D62H,D2(C3)D6H

+

D4H
2

+C3
g=1,D0

D62H,D2(C3
g=1)D6H

= 439′056′375,

and

439′056′375 −

D4H
2

+C3
g=1,D0

D62H,D2(C3
g=1)D6H

= 317′206′375.

Finally, one can sum up to obtain the total BPS index:

D4H
2

+C2,D0

D6H D6D2(C2),D0

+

D4H
2

+C2,D0

D6H D6

D2D0

+

D4H
2
,C3

D62H,D2(C3)D6H

= 441′969′250.

Before continuing to analyze and extend the results, one should consider one more impor-
tant remark. Overviewing all polar and non-polar states and their split flow trees obtained
numerically, and taking into account that a BPS index cannot possibly jump when crossing
a wall of threshold stability5 , one may safely conclude that there is indeed a background
region where all indices are valid simultaneously, making the enumeration valid as a whole.

4.2.3 Non polar states without any single flows

In the large radius regime the notion of a polar state automatically coincided with a state
that does not support a single attractor flow. On the other hand, for a non-polar state, one
was able to write down an attractor point for a single flow. As mentioned previously and
as now observed, this property is altered when using instanton corrected central charges,
exhibiting an interesting difference with the large radius regime. As discussed, three of
the non-polar states do not allow for any single-centered attractor flows6. This might have
been expected, as the criterion in [1] for the existence of a crash in the flow was based on
the central charge, which gets strong instanton corrections in the regime one is working
in. The criterion for having a crash in the single flow is therefore no longer q̂0 > 0. Put
differently, non-polarity no longer guarantees the existence of single-centered solutions.

5As explained earlier in this thesis, unlike a wall of marginal stability, a wall of threshold stability
means that there are no tachyon fields between the would-be products of a decay process. Therefore, the
decay is kinematically impossible.

6Note that also the fourth non-polar state does not allow single flows in certain background regimes.
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4.2.4 Comparison to the elliptic genus

A partition function for a D4-D2-D0 black hole or a D-particle was discussed in chapter 2.
It is appropriate, to restate once more, how to obtain the elliptic genus from the viewpoint
exploited in this thesis. It is sufficient to enumerate degeneracies of all polar states. One
proceeds as follows.

1. Find all the non-pullback fluxes, corresponding to the gluing vectors, in the flux
lattice H2(P,Z) on the divisor. For each gluing vector, add various numbers of
anti-D0-branes, and in this way classify all polar states.

2. For each of these polar states, find all the split flow trees with corresponding indices,
and add them up to yield the total index.

3. Write down a basis of modular forms of the right weight and dimension, using the
techniques explained in [79]. Finally, determine the full elliptic genus, by using the
polar state indices to fix a specific vector, written out in the basis constructed.

In the following, the gluing vectors for the quintic are briefly re-examined and supple-
mented with some additional intuition. States will be labeled by their gluing vector, and
by the reduced D0-brane charge, as [γ, q̂0].

Gluing vectors and fluxes dual to curves

• γ = 0
From the D4-picture of mixed ensemble on the quintic, one can easily classify the
states. Turning on no flux (apart from the mandatory H

2
for anomaly cancellation),

one obtains three equivalence states to consider. These are [0, 55
24

], [0, 31
24

] and [0, 7
24

].
Of course, this means ‘no gluing vector’ in the flux lattice.

• γ = C1

The next obvious step might be to turn on a flux in a cohomology class dual to a
degree one rational curve, which will sloppily be written as F = C1. The reduced
D0-brane charge reads q̂0 = χ(P )

24
+ 1

2
F 2
⊥. As mentioned in [99], for a curve which one

embeds algebraically, the adjunction formula allows the calculation of C ·C+C ·H =
2g−2, and generically, a degree one curve will intersect the hyperplane once, C1 ·H =
1. Using this, one gets C1 ·C1 = −3, and thus 1

2
F 2 = 1

2
(H

2
+C1)2 = −3

8
= 1

2
F 2
|| +

1
2
F 2
⊥.

Note that one can fix the part pointing in direction of LX using the D2-charge,
q = F ·H = 7

2
, thus f|| + γ|| = H

5
. One thus gets the equation for the non-pullback

flux
1

2
F 2
⊥ =

1

2
(f⊥ + γ⊥)2 = −8

5
. (4.13)

For this gluing vector, [C1,
83
120

] is the only class of states.
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• γ = C2

In analogy to the discussion on the degree one curve, one can turn on a flux dual
to a degree two rational curve. However, this automatically means that one gets a
non-polar state: q̂0 = −37

24
.

One might go on and consider fluxes dual to curves of higher degree, but the elliptic genus
of the quintic is a modular vector of dimension five, (2.53). This means that there are
five different values for γ (including zero), but as can be followed e.g. in [1, 41, 42, 78],
Zγ = Zδ or γ = −δ modLX eliminates two). This is reflected by the fact that Z3 and
Z4 in (2.53) are determined, once one knows Zγ (γ = 0, 1, 2). One therefore expects, that
one can restrict oneself to working with fluxes dual to curves up to degree two, and this
is sufficient to account for all the degeneracies to determine the full elliptic genus, and
therefore account for all the degeneracies of the D-particle analyzed.

Quintic elliptic genus

For the quintic, the theta function (2.52) is determined to be

Θγ(q̄, z) =
∑
n

(−1)n+|γ||| q̄
5
2

(n+
|γ|||

5
+ 1

2
)2

z5n+|γ|||+ 5
2 , (4.14)

where, according to the preceding discussion, the sum over the variable γ corresponds
physically to a sum over possible U(1) fluxes on the worldvolume of the D4-brane that
cannot be written as the pullback of some two-form on the ambient space. In the above
formula, the notation |γ||| = γ|| ·H has been used. For a flux dual to a degree one curve,
e.g. |γ||| = H

5
·H = 1

5

∫
P
H2 = 1

5

∫
X
H3 = 1, for a flux dual to a degree two curve, similarly

|γ||| = 2. If |γ||| reaches five, then the flux can be represented as the pullback ı∗(H) of
the hyperplane class on the CY space. Hence, the sum terminates at four, and the elliptic
genus is of the form

Z0(q)Θ0(q̄, z) + ...+ Z4(q)Θ4(q̄, z). (4.15)

One can now restrict attention to the functions Zγ(q).
Four numbers determine the full elliptic genus for the quintic through

Z0(q) = q−
55
24 (5− 800q + 58′500q2 + 5′817′125q3 + 75′474′060′100q4 + ...),

Z1(q) = Z4(q) = q−
83
120 (8′625− 1′138′500q + 3′777′474′000q2 + 3′102′750′380′125q3 + ...),

Z1(q) = Z3(q) = q
13
120 (−1′218′500 + 441′969′250q + 953′712′511′250q2...).

All the other numbers can thus be viewed as non-trivial consistency checks, and of course
as highly intricate tests of the split attractor flow conjecture.

The following table summarizes the results for BPS indices obtained using split flow
trees and DT invariants to this point, and compares them with the predictions from the
modular form (for non-polar states, obtained from the knowledge of the polar states) as
well as their results obtained by performing a geometric counting for the D4-D2-D0 moduli
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space, and then improved by analyzing the degeneracies of the (0, 4)-MSW-CFT dual states
from [99]. The latter is just denoted with the short term ‘CFT results’ in the following
table.

Reduced D0 charge q̂0 Modular form prediction CFT results Split flows and DT

2.29 +5 +5 +5
1.29 -800 -800 -800
0.69 +8’625 -8’625 +8’625
0.69 +8’625 -8’625 +8’625
0.29 +58’500 +58’500 +58’500
−0.11 -1’218’500 -1’218’500 -1’218’500
−0.31 -1’138’500 +1’138’500 -1’138’500
−0.71 +5’817’125 +5’797’625 +5’797’625
−1.11 +441’969’250 +441’969’250 +441’969’250

It is intriguing to see that our results match the numbers from [99], but do correct some
signs. At the same time our and their result differs from the exact prediction from the
modular form on one of the states. The next section is devoted to a resolution of this
puzzle.

4.3 Flow tree index refinement: non-trivially fibered

moduli spaces

The results obtained in the last section are almost fully satisfying. The ∆q = 0,∆q0 = −3
state is the only case where the result expected from modularity was not directly repro-
duced. The index yields +5′797′625, whereas the expected value would be +5′817′125.
Interestingly enough, this is off by 19′500, which exactly equals NDT(0, 2) for the quintic.
Luckily, careful consideration of the geometry from the D4 perspective does shed some
light on this discrepancy. In [79], Gaiotto and Yin calculated this index by refining the
geometric counting of the D4-moduli space. They found that the index for this state had
two contributions: a D4-brane with three D0’s bound to it, and a D4-brane with two degree
one rational curves on it. This is analogous to the author and his collaborator’s findings.
We had a case with a D6/D6 split with three D0’s bound to one of these two branes, and
a case where there is one degree one rational curve on each of the two constituent branes.
For the contribution arising from a D4 with three D0’s, careful consideration is taken of the
fact that the three D0’s can be aligned, which enhances the moduli space of the D4-brane.
This raises one very interesting question. Does this special collinear locus of the three
D0-branes leave a footprint on the structure of the split flow trees? In other words, does
something special happen in the supergravity picture when these branes align?

Based on a supergravity analysis (ignoring validity of the description for the moment),
one might expect a scaling solution for this brane system. A possible (although not specifi-
cally motivated) speculation is, that the states with collinear D0-branes could be quantum
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states, that are described as scaling solutions, after taking a classical limit (see subsection
2.3.1). As explained in subsection 2.3.1, these are are multi-centered supergravity solutions
that are parametrically connected to single-centered solutions. In other words, the distance
between the centers is no longer fixed by the BPS condition, but becomes a modulus. They
might correspond to a single flow, but it is also possible, that they do not have an attrac-
tor description at all. In any case, we were not able to find any single-centered solutions,
or single flows for that matter, corresponding to the (0,−3)-state. This may be due to
finiteness in the numerical precision of our approach, as every single-centered flow seems
to want to go straight through the Gepner point in the CY moduli space. The author and
his collaborators do not believe that scaling solutions (or ‘quantum partners’ of these) lie
at the heart of the problem encountered here. A different calculation will reveal the exact
way to compute the number of BPS states for the charge system of interest, and it seems
unlikely to the author, that there is room in the quantum BPS spectrum for states, that
would serve as candidates to become scaling solutions, after taking a classical limit. This
will be commented on further in the discussion of this chapter, 4.6.

In the language used in the approach advocated in this thesis, the moduli space of the
D4-brane translates into the degrees of freedom of the tachyonic strings stretching between
the D6 and the D6. The actual number of tachyonic degrees of freedom is computed by the
DSZ intersection product. The index factorization scheme does not ‘see’ this possibility
for the three D0’s to align. Let this be made more precise.

Suppose one just had a D6 with flux F1 = H, and a D6 flux F2 = 0. Then the DSZ
intersection product gives 5. This DSZ product is actually computing an index via the
Riemann-Roch theorem∫

X

ch(F ∗2 ) ch(F1) Td(X) =

∫
X

ch(H) Td(X) . (4.16)

The tachyon field between the two branes is a section of F ∗2 ⊗ F1, and this index is just
counting the basis elements in the space of sections of this bundle. In this case, the general
form of the tachyon will be a polynomial of degree one:

T = a1 x1 + . . .+ a5 x5 . (4.17)

Hence, one can see where the ‘5’ comes from. After tachyon condensation, a D4-brane will
emanate at the locus T = 07.

Suppose now, that one also turned on an ideal sheaf on the D6, localized at a point p
on X. If one computes the DSZ product, which now becomes a Grothendieck-Riemann-
Roch type of index, it will actually compute the number of sections of the bundle one had
before, tensored with the ideal sheaf. In other words, the index computes the number of
independent sections of the bundle F ∗2 × F1 that vanish on the point p. Geometrically,
this means that the D4 brane resulting from the condensation will be at the locus T = 0,
and that this hypersurface will actually pass through p. In this case, the DSZ index gives

7From the point of view of the D4 divisor, the moduli space is a projectivization of the moduli space
of sections of the tachyon bundle.



124 Chapter 4. Elliptic genera from split flows and Donaldson-Thomas partitions

4. This reflects the fact that the tachyon field loses one degree of freedom due to the
restriction of having to vanish on p.

If one now puts an ideal sheaf localized on three generic points on X, then this will im-
pose three linear constraints on the tachyon field. The index in this case gives 2. However,
if these three points happen to be collinear, then the three linear constraints on T are not
linearly independent. The DSZ index, analogously to any index, relies on the ‘genericity’
of the choice of the three points. It only computes a ‘virtual’ or ‘expected’ ‘dimension’ of
the tachyon moduli space. In the collinear case, however, the true ‘dimension’ is 3. That
is, the system with three collinear D0’s behaves as a system with only two D0’s.

When one computes the index in the straightforward fashion, one is not properly taking
this special collinear locus in moduli space into account. Note that this collinear locus is
not a singularity of the moduli space. It has nothing to do with having coincident points,
which the Donaldson-Thomas invariants automatically take into account.

We therefore proposed a refinement of the prescription

Z(A+B) = (−1)〈A,B〉−1|〈A, B〉|NDT(A)NDT(B) , (4.18)

where A and B are D6 and D6 states, respectively. In general, the A and B configurations
have moduli spaces, MA, MB, corresponding to the displacements of the D0’s on them,
plus the moduli of the Riemann surfaces on which the D2’s are wrapped. Alternatively,
these are the moduli spaces of the ideal sheaves on the D6 and D6. These spaces have
Euler characteristics given by the Donaldson-Thomas invariants. The other component of
the configuration is the tachyon field T connecting A and B. It has its own moduli space
MT , whose Euler number is computed by means of the DSZ intersection number |〈A, B〉|,
which is nothing other than an Atiyah-Singer topological index. Naively, the full moduli
space should be a product

Mtotal =MA ×MB ×MT . (4.19)

However, in general, the total space will be a non-trivial fibration of MT over the other
two factors, with the fiber dimension jumping at special loci. This is also explained from
the D4-brane point of view in [1]. In the (0,−3) case, the tachyon moduli space is typically
a CP1, and the index is −2. However, whenever the three D0’s align, the system behaves
effectively like a two-particle state. In this case, the MT gets enhanced to a CP2, and
the index should really be +3. One can therefore propose to heuristically define what one
might refer to as DT-densities NDT such that w.l.o.g.∫

MA

dziNDT(A, z) = NDT(A) , (4.20)

where the zi are coordinates of the moduli space. Actually, the virtual dimension of these
moduli spaces is zero [114], so this integral can be written as a sum:∑

i

NDT(A, i) = NDT(A) , (4.21)



4.3 Flow tree index refinement: non-trivially fibered moduli spaces 125

where the index i labels a sector in the moduli space of the sheaves. One can also give
NDT(A, i) the name of a ‘DT partition’. The ‘densities’ can be thought of as the DT
analogs of the top Chern class or the Euler class of a tangent bundle, which integrates over
a manifold to give an Euler number. The proper procedure to compute the BPS index is
provided by the following refined index:

Z(Mtotal) =

∫
MA×MB

dzi dz′
j
(−1)〈A,B〉(z,z

′)−1|〈A, B〉(z, z′)| NDT(A, z′)NDT(B, z′)

=
∑
i,i′

(−1)〈A,B〉i,i′−1|〈A, B〉i,i′| NDT(A, i)NDT(B, i′) , (4.22)

where 〈A, B〉i,i′ is a function of the moduli.
In the (0,−3) state, the moduli space of the D6 is trivial, and the moduli spaceMB of

the D6 must be divided into two parts,MB1 andMB2 , where the first part corresponds to
the generic configuration of three particles, and the second part corresponds to the subspace
where the three particles are aligned, effectively behaving like two particles. Accordingly,
one can divide the states consisting of a D6 and three D0s into generic states and special
states, yielding the Donaldson-Thomas partitions 8 for the quintic:

N (g)
DT(0, 3) = 1′253′500,

N (s)
DT(0, 3) = −19′500. (4.23)

This generic states are associated to a tachyon index −2, whereas the special, effective
two-particle states are associated to a tachyon index −3. The Witten index for the super-
symmetric quantum mechanics of a three particle state on X has the form

χ(X)3 + corrections for coincidence loci = −1′234′000 , (4.24)

where χ(X) = −200. The case of a two-particle state has

χ(X)2 + corrections = +19′500 . (4.25)

Hence, the two have a relative sign difference. The total refined index Z ′ (excluding the
contribution from the curves) is then given by

Z ′(0, 3) = NDT(0, 0)×
∫
M(0,−3)

(−1)〈(0,0), B〉−1|〈(0, 0), B〉|NDT (0, 3) (4.26)

=

∫
MB1

NDT (0, 3) (−1)〈(0,0), B1〉−1|〈(0, 0), B1〉| (4.27)

+

∫
MB2

NDT (0, 3) (−1)〈(0,0), B2〉−1|〈(0, 0), B2〉| (4.28)

= −2 (1′234′000 + 19′500) +−3 (−19′500) = −2′448′500 . (4.29)

One must therefore equate one flow tree anew:

8The partitions are thus ‘integrations of the densities’ on the generic / special part of moduli space.
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D4H
2
,3D0

D6H D6

3 D0
= −2′448′500.

This means

D4H
2

+C1+C1

D6H,D2(C1) D6D2(C1)

+

D4H
2
,3D0

D6H D6

3D0
= 5′817′125,

agreeing with the modular prediction! Note that this disagrees with the result in [79].
Whereas the authors of that paper conclude the same index for the D4-picture version
of the state with three D0’s, they obtain a different index for the state with the curves,
because they applied a Pauli exclusion principle for these two curves. The fact that one
did not encounter their problem here has a nice geometrical interpretation: one considered
these two curves to lie on different branes (i.e. the D6 and D6 as opposed to the D4), so
in this case, the Pauli exclusion principle does not apply.

In connection with the split flow conjecture, one can add the following remarks. Every
supergravity tree flow corresponds to a family of microscopic states of fixed charges. The
moduli space of the latter need not be a product of the moduli spaces of the constituents
times the moduli space of the tachyon field, but can be a non-trivial fibration of the
latter over the former. Therefore, the index of such states need not be a product of
three indices, but will instead be an integral of index densities over the moduli spaces
of the constituent branes. If the tachyon index is a constant over these moduli spaces,
then the integral factorizes, however, it will typically be a locally constant function with
discontinuous jumps.

4.4 More elliptic genera from split flows and DT in-

variants

It will now be presented, how one can determine the elliptic genus for two other Calabi-
Yau hypersurfaces in weighted projective spaces. Again, numerical algorithms are used to
establish the existence of flow trees. The relevant data to obtain such a lattice of points,
is available for a certain family of CY hypersurfaces in weighted projective spaces (into
which the three present models fall), ready for use, in [111]. The exact functions cannot
be written out analytically, so again a grid of points can be evaluated in order to then
numerically interpolate the solutions to the Picard-Fuchs equations.
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4.4.1 Polar states on the sextic hypersurface in WCP4
11112

In WCP4
11112, the adjunction formula shows that one can obtain a CY hypersurface, by

choosing a degree six polynomial. This CY will be referred to as the ‘sextic’. The to-

tal Chern class reads c(X) = (1+H)4(1+2H)
1+6H

= 1 + 14H2 − 68H3, and using
∫
X
H3 =∫

WCP11112
4

H4 = 3, one gets χ(X) = −204. As
∫
X
H3 = 3, there are three possible classes of

gluing vectors (these will correspond to no extra flux, to a flux dual to a degree one, and one
dual to a degree two rational curve), the modular vector is in this case three-dimensional:

Z(q, q̄, z) =
2∑

γ=0

Zγ(q) Θγ(q̄, z) , (4.30)

and, by the identification (2.54), one only needs to determine Z0(q) and Z1(q) for a complete
knowledge of the elliptic genus on the sextic CY.

For convenience, all DT invariants for the sextic needed are listed in the following table.

Donaldson-Thomas invariants: sextic
n = 0 n = 1 n = 2 n = 3

β = 0 1 204 20’298 1’311’584
β = 1 0 7884 1’592’568 156’836’412
β = 2 7884 7’636’788 1’408’851’522 136’479’465’324
β = 3 169’502’712 443’151’185’260 5’487’789’706’776 440’554’251’409’968

1. ∆q = 0,∆q0 = 0, [0, 45
24

]:
The pure D4-brane again carries half a unit of flux to ensure anomaly cancellation,
and has total charge Γ = H + H2

2
+ (χ(P )

24
+ 1

2
F 2)ω = H + 1

2
H2 + 3

4
H3 = (0, 1, 3

2
, 9

4
),

where the notation

Γ = (p0, p, q, q0), (4.31)

has been introduced, which will be used from now on. This state has [γ, q̂0] = [0, 45
24

].
One finds a split flow tree with centers

Γ1 = (1, 1,
13

4
,
9

4
),

Γ2 = (−1, 0,−7

2
, 0),

of the form

D4H
2

D6H D6

= −4.
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This is of course completely analogous to what was found on the quintic. The BPS
index for this state reads

Ω = (−1)|〈Γ1,Γ2〉|−1|〈Γ1,Γ2〉|NDT(0, 0) ·NDT(0, 0) = (−1)3 · 4 · 1 · 1 = −4. (4.32)

It is worth pointing out from various viewpoints, how one can understand that the
number of BPS states is −4 for the sextic, while the number of most polar states
was 5 on the quintic. First of all, in the D4-brane picture, one can easily see that
the moduli space of a general hyperplane divisor H ⊂ X is not a CP4 as for the
quintic, but only a CP3, and the Euler character yields χ(CP3) = 4. This is because
the ambient space is a WCP11112

4 , and hence the coordinate with weight 2 can of
course not be used to define a hyperplane. In the D6-brane picture, the intersection
number between Γ1 and Γ2 yields 4 (up to a sign), and this can be understood from
the viewpoint that one cannot use this very same coordinate to write down a general
polynomial describing a tachyon field connecting the two branes (compare with the
discussion in the previous section).

2. ∆q = 0,∆q0 = −1, [0, 21
24

]:

Adding one D0, one gets the total charge (0, 1, 3
2
, 5

4
), with reduced D0-brane charge

q̂0 = 21
24

. The flow tree is again analogous to what one finds for the quintic (the side

of the D0 after the first split can be chosen, according to where one is with respect to
the appropriate threshold wall). The charges of the centers after the first split read

Γ1 = (1, 1,
13

4
,
9

4
),

Γ2 = (−1, 0,−7

4
,−1),

and the flow tree looks like
D4H

2
,D0

D6H D6

D0
= 612,

where of course

Ω = (−1)|〈Γ1,Γ2〉|−1|〈Γ1,Γ2〉|NDT(0, 0) ·NDT(0, 1) = (−1)2 · 3 · 1 · 204 = 612. (4.33)

3. ∆q = 1,∆q0 = −1, [γ1,
5
24

]:
One can also consider a flux dual to a degree one rational curve, which includes a
gluing vector that one denotes by γ1. This leads to the total charge (0, 1, 5

2
, 5

4
), and

to the reduced D0-brane charge q̂0 = 5
24

: thus, adding more D0 branes, one would
already render the state non-polar. One finds the split flow tree with a pure fluxed
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D6 on one side, and a D6 with a D2 on a degree one rational curve, as one might
have expected. The charges read

Γ1 = (1, 1,
13

4
,
9

4
),

Γ2 = (−1, 0,−3

4
,−1),

and the split flow tree is of the form

D4H
2

+F (C1
g=0)

D6H D6D2(C1
g=0)

= = −15′768.

The BPS index is calculated according to

Ω = (−1)|〈Γ1,Γ2〉|−1|〈Γ1,Γ2〉|NDT(0, 0) ·NDT(1, 1) = (−1)1 · 2 · 1 · 7′884 = −15′768.
(4.34)

Using a basis for modular forms of weight −3
2

in a 3d representation, one can use these
numbers to determine the modular form (4.30) with

Z0(τ) = q−
45
24 (−4 + 612q − 40′392q2 + 146′464′860q3...), (4.35)

Z1(τ) = Z2(τ) = q−
29
24 (−15′768q + 7′621′020q2 + ...). (4.36)

This agrees with the findings of [79] (up to an overall sign), which does not come as
a surprise, given the small number of polar states and the fact that their enumeration
involves no subtleties. It is however very interesting to study some non-polar states for the
sextic. This will be one of the topics of the next section, but beforehand, the polar states
will be enumerated for another model.

4.4.2 Polar states on the octic hypersurface in WCP4
11114

For WCP4
11114, the adjunction formula shows that one can obtain a CY hypersurface,

by choosing a degree eight polynomial. This CY will be referred to as the ‘octic’. The

total Chern class reads c(X) = (1+H)4(1+4H)
1+8H

= 1 + 22H2 − 148H3, and using
∫
X
H3 =∫

WCP11114
4

H4 = 2, one gets χ(X) = −296. As
∫
X
H3 = 2, the elliptic genus is two-

dimensional:

Z(q, q̄, z) =
1∑

γ=0

Zγ(q) Θγ(q̄, z) , (4.37)

which means that one needs to determine Z0 and Z1. For convenience, the DT invariants
of interest (for the octic) are listed in the following table.
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Donaldson-Thomas invariants: octic
n = 0 n = 1 n = 2 n = 3

β = 0 1 296 43’068 4’104’336
β = 1 0 29’504 8’674’176 1’253’300’416
β = 2 564’332 204’456’696 45’540’821’914 6’127’608’486’208
β = 3 8’775’447’296 6’313’618’655’104 1’225’699’503’521’536 141’978’726’005’461’504

The following report on enumeration of polar states will be quite brief, given the analogy
with the previously discussed cases.

1. ∆q = 0,∆q0 = 0, [0, 23
12

]:
The most polar state is the D4-brane carrying flux H

2
for anomaly cancellation,

with total charge (0, 1, 1, 13
6

). The reduced D0-brane charge can be calculated to be
q̂0 = 23

12
, and the state can also be denoted by [γ, q̂0] = [0, 23

12
]. One finds a split flow

tree with the centers

Γ1 = (1, 1, 1,
13

6
),

Γ2 = (−1, 0,−11

6
, 0),

of the form

D4H
2

D6H D6

= −4,

and the BPS index is calculated as

Ω = (−1)|〈Γ1,Γ2〉|−1|〈Γ1,Γ2〉|NDT(0, 0) ·NDT(0, 0) = (−1)3 · 4 · 1 · 1 = −4. (4.38)

Note that again the fact that the intersection number between Γ1 and Γ2 equals
−4 corresponds with the fact that one cannot use one of the five coordinates to
define a hyperplane, in the D4-picture (and the statement given for the sextic in the
D6-picture can be repeated equally).

2. ∆q = 0,∆q0 = −1, [0, 11
12

]:

Adding one D0 yields the total charge (0, 1, 1, 7
6
), with reduced D0-brane charge

q̂0 = 11
12

. The flow tree is again analogous to what was found for the quintic or the

sextic (the side of the D0 after the first split can be chosen, according to the location
of the chosen background modulus with respect to the appropriate threshold wall).
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The charges of the centers after the first split read

Γ1 = (1, 1,
17

6
,
13

6
),

Γ2 = (−1, 0,−11

6
,−1),

and the flow tree is of the form
D4H

2
,D0

D6H D6

D0
= 888,

where of course

Ω = (−1)|〈Γ1,Γ2〉|−1|〈Γ1,Γ2〉|NDT(0, 0) ·NDT(0, 1) = (−1)2 · 3 · 1 · 296 = 888. (4.39)

3. ∆q = 1,∆q0 = −1, [γ1,
1
6
]:

One can now consider a flux dual to a degree one rational curve, also denoted as
the gluing vector γ1. This leads to the total charge (0, 1, 2, 7

6
), and to the reduced

D0-brane charge q̂0 = 1
6
: thus, there is again only one polar state in this γ1-class.

One finds the split flow tree with a pure fluxed D6 on one side, and a D6 with a D2
on a degree one rational curve, as one might expect. The charges read

Γ1 = (1, 1,
17

6
,
13

6
),

Γ2 = (−1, 0,−7

6
,−1),

with the split flow tree
D4H

2
+F (C1

g=0)

D6H D6D2(C1
g=0)

= −59′008.

The BPS index is calculated according to

Ω = (−1)|〈Γ1,Γ2〉|−1|〈Γ1,Γ2〉|NDT(0, 0) ·NDT(1, 1) = (−1)1 · 2 · 1 · 29′504 = −59′008.
(4.40)

Using the usual techniques, one can use these numbers to determine the modular form
(4.37) with

Z0(τ) = q−
23
12 (−4 + 888q − 86′140q2 + 131′940′136q3...), (4.41)

Z1(τ) = Z2(τ) = q−
7
6 (−59′008q + 8′615′168q2 + ...). (4.42)

This again agrees with the findings of [79] (up to an overall sign).
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4.5 A refined BPS wall-crossing index and Donaldson-

Thomas partitions

In this section, non-polar states for the sextic and the octic that demand the use of a refined
prescription for the computation of the BPS index for bound states will be discussed. In
section 4.3, a refined index was computed for a non-polar BPS state on the quintic 3-fold:
the refined computation yielded an exact match with the result predicted from modularity.
In subsection 4.5.4, it will also be shown that refinements can also alter the enumeration
of polar states. In the cases treated in this section, the reason for the necessity for refined
calculations is different, but again, exact agreement is found with the results predicted by
modularity, for all tractable examples.

The reason, why refinement is necessary was explained in section 4.3, but it shall be
summarized once more. The index for BPS bound states, presented in subsection 3.3.3 is
based on the assumption, that the moduli space of a bound state factorizes into the tachyon
moduli space, the moduli space of the D6-brane, and the moduli space of the D6-brane:

M =MT ×MD6 ×MD6. (4.43)

To compute an index, one thus uses

(−1)|〈Γ1,Γ2〉||〈Γ1,Γ2〉|︸ ︷︷ ︸ · NDT(β1, n1)︸ ︷︷ ︸ · NDT(β2, n2)︸ ︷︷ ︸,
MT MD6 MD6

where (−1)|〈Γ1,Γ2〉||〈Γ1,Γ2〉| and IT (the index of the tachyon moduli space) agree up to a
sign.

In general, this moduli space is non-trivially fibered, and thus the dimensionality of the
fiber jumps. As a consequence, this index is not always accurate: it computes a virtual
dimension, [106], which does not always equal the real dimension of the moduli space. The
reason is basically, that tachyonic strings gluing together the bound state do not perceive
all the constituent states ‘generically’. For simplicity, the discussion will be restricted
for now to the case that only one of the two constituents is not perceived generically,
namely the D6-consistuent. We will also focus on the case, where D0-branes are not
perceived generically by the tachyon fields, although it will be shown for an example, that
an analogous phenomenon holds for special D2-states (and the curves on which these are
wrapped). Generalizations of the presented scheme will become clear from examples later
on in this section.

The moduli space of a BPS bound state splits up, and can be grouped into two pieces:

M =MTg ×MD6 ×MD6g
⊕ MTs ×MD6 ×MD6s

. (4.44)

The first part, with the subscripts ‘g’ stands for the part, where the tachyon fields perceive
the constituent states ‘generically’, and hence the virtual dimension ofMT is actually the
real dimension, and the part with the subscripts ‘s’ stands for the part, where the tachyon



4.5 A refined BPS wall-crossing index and Donaldson-Thomas partitions 133

fields perceive the constituent states as ‘special states’ (in the present studies, the special
states will always concern the D6-system). This usually happens, because the tachyon
fields do not perceive all D0’s, that are bound to the D6, which results in a constraint loss
on the tachyon field T . For example, generically three D0’s mean that the independent
sections have to vanish at three points. If the tachyon is ‘blind’ to one of the three, this
number is reduced to two, resulting in a jump in the dimension of the fiber of the moduli
space of the bound state. Typically, the dimension ofMTs will thus be greater by one, as
opposed to MTg .

In section 4.3, it was proposed to define Donaldson-Thomas densities (in analogy to
a top Chern class), which integrate over moduli space to a Donaldson-Thomas invariant.
This allows the definition of a product formula for the bound state index, on the level of
index densities. One can also decide to integrate these densities on the various partitions of
moduli space, with a constant dimension of the fiber of the tachyon moduli space: this leads
to Donaldson-Thomas partitions (DT partitions). They separately enumerate generic and
special D6-D2-D0 states, and a series of examples of such DT partitions will be calculated.
Using these, one can write down, how refined indices come about:

(−1)|〈Γ1,Γ2〉||〈Γ1,Γ2〉|︸ ︷︷ ︸ · NDT(β1, n1)︸ ︷︷ ︸ · N (g)
DT(β2, n2)︸ ︷︷ ︸

MTg MD6 MD6g

+ (−1)|〈Γ1,Γ2〉|||〈Γ1,Γ2〉|+ 1|︸ ︷︷ ︸ · NDT(β1, n1)︸ ︷︷ ︸ · N (s)
DT(β2, n2)︸ ︷︷ ︸ .

MTs MD6 MD6s

Before giving explicit examples, a more detailed instruction will now be presented on how
to separate the ‘generic’ from the ‘special’ states, thereby resulting in a calculation of
Donaldson-Thomas partitions.

4.5.1 Algebraic techniques to deal with special constituent states

In the case of the quintic, D4 − 3D0 states had to be treated more carefully, because
the tachyon fields of a D6-(D6-3D0)-bound states do not perceive three collinear D0’s
generically. Rather, they appear only as two particles. In terms of algebraic geometry,
this is simple to express: the three constraints on the tachyon field are not independent
(only two of them are independent). For the following examples, constraint loss occurs for
two reasons, which shall be referred to as ‘special loci’, and as ‘special tangent directions’
(which are important when blowups are performed, required for dealing with coincident loci
for two D0’s). The special loci appear because the Calabi-Yau varieties are embedded in
weighted projective spaces, which means that there is not a complete democracy amongst
coordinates: If a D0 sits at a position with non-zero coordinates of a higher weight only,
it will not impose a constraint on the tachyon, as the higher weight coordinates cannot be
included in the definition of the tachyon map.

1. Constraint loss because of special loci
For simplicity, consider a CY embedded in WCP4

1111n with n > 1 using coordinates
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(x1, ..., x5), and a bound state of a D6-brane with flux F = H (one unit of flux),
and a D6 without flux. In this case, H is a line bundle of which the coordinates xi
form sections. However, x5 is forbidden as a section, as it has a higher weight. This
means, that there are only four instead of five independent sections for the tachyon
T ∈ Γ(H) (F ∗2 is the trivial bundle in this case). The most general tachyon field
reads T = a1x1 + ...+ a4x4. In general, placing a D0 on the D6 means imposing one
constraint on the tachyon field. A good way to think about this, is by treating the
D0 on the D6 with point particle quantum mechanics, (check [115]). If one puts the
particle at x5 = 1 (and all other coordinates zero) it will not impose a constraint
on the tachyon. This might be of relevance and it might not: one still has to check
whether this point actually lies on the Calabi-Yau. This will be the case for examples
investigated in this section.

2. Constraint loss because of special tangent directions
An additional complication arises, as soon as one considers two (or more) D0-
particles: orbifold singularities arise, when particles meet. This is dealt with by
performing a blowup, which imposes a distinction between the particles, that inhabit
the same spot on the brane (and hence on the CY). One can intuitively picture
this, as considering an infinitesimally short time period before they meet, and dis-
tinguishing the particles upon all the different tangent directions (which of course
have to be tangent directions to the Calabi-Yau variety under consideration), from
which the two particles can approach each other. Two particles lying on the same
spot in the Calabi-Yau would originally only impose one constraint on the tachyon
field, according to the previous discussion. After performing a blowup, an additional
constraint arises, from the splitting through the tangent direction. This means, that
the tachyon moduli space fiber does not jump (at least generically) for states, where
particles lie at the same locus. The point is: it can jump, though. Namely, one
(or several) tangent directions might be built from coordinates, that do not impose
constraints. Thus, also after performing blowups, one still has to distinguish between
generic and special states of particles, that lie at coincident loci.

Let the two situations when special states occur (in this case for D0
′
s) be summarized once

more:

• For non-coincident D0
′
s, one needs to check whether the particles lie at ‘special loci’,

where they do not impose a constraint on the tachyon fields. One could refer to these
cases as the special non-blowup loci.

• For a bound state, there are cases, when various D0’s are coincident: in this case
one needs to perform blowups. These blown-up states have to be separated into
generic and special states, according to whether the tangent direction (arising from
the blowup) imposes a constraint on the tachyon fields or not. One might refer to
these latter cases as the special blowup loci.
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As will become clear from an example later on, analogous implications arise for bound
D2-branes, depending on whether the curves (on which those branes are placed) impose
‘enough’ constraints on the tachyon fields (to make the bound state ‘generic’).

4.5.2 Special points and DT partitions N (g,s)
DT (0, 2)

In the following, a few interesting non-polar states on the sextic and the octic CY’s for
which the elliptic genera were predicted in the previous section, are examined. The refined
caculations match the predictions from modularity.

The state ∆q = 0,∆q0 = −2 on the sextic

For this charge system, one finds a split flow tree with centers

Γ1 = (1, 1,
13

4
,
9

4
),

Γ2 = (−1, 0,−7

4
,−2),

of the form
D4H

2
,2D0

D6H D6

2D0
= −2 · 20′298 = −40′596,

and obviously, the index obtained naively Ωnaive differs from the exact index, which
is given by Ωexact = −40′392. This can be put right, using the refined index, as the
non-trivially fibered moduli space of this bound state dictates.

One can either argue from the D6-picture, or from a purely algebraic geometrical D4-
perspective. Essentially the two arguments are identical. In the first picture, one places
two D0-branes on the D4, in the second case, one chooses two point-like sheaves to lie on
the vanishing locus of the polynomial describing the tachyon.

As discussed before, for the most polar state, the most general tachyon map is of the
form

T = a1x1 + ...a4x4 = 0, (4.45)

choosing coordinates (x1, ..., x4, x5) on WCP4
11112 transforming with weights (1, 1, 1, 1, 2).

Setting two D0-branes on the D6 means that the map has to ‘pass’ through two points, so
in general, the moduli space of the tachyon will be reduced to from CP3 to CP1, yielding
χ(CP1) = 2. This is where the intersection number 2 comes from. It will now be shown
that the dimension of this fiber jumps (as was observed for a state on the quintic 3-fold,
though it happens for a different reason. One might remark, that two D0-particles behave
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as one, on a specific ‘special’ locus. The scheme is to analyze the remaining moduli de-
scribing this tachyon, demanding that two points as well as the tangent directions at these
points lie on the CY, as well as on the zero locus of the tachyon.

Finding special tangent directions arising from blowups

For the cases, when constraint loss on the tachyon matrix happens because of special tan-
gent directions, in other words, for special blowup loci, one needs to be able to determine
which tangent directions are special.

Generically, demanding two points to lie in the zero of (4.45), imposes two independent
constraints, reducing the number of moduli by two. Denote the coordinates of the two
points by xP1

i and xP2
i . This is not that clear if the two points lie on top of each other

xP1
i = xP2

i . However, this is generically resolved by the blowup procedure, rendering the
tangent directions of the particles independent, again leading to two constraints. However,
as one is working with a weighted projective space, the coordinate x5 does not appear
in (4.45). Different x5-coordinates are not ‘seen’ by the tachyon. The points do however
have to lie on the sextic, for which one can choose a representative given by a transverse
polynomial, [116],

psextic = x3
5 + p(6)(x1, x2, x3, x4) = 0. (4.46)

That means that the case xP1
5 = 1

k
3xP2

5 for k = 0, 1, 2 with all other coordinates equal
xP1
i = xP2

i for i = 1, 2, 3, 4 is possibly of interest.
If the first four coordinates of the two points are identical, this amounts to imposing

only one instead of two constraints on the tachyon field. After the usual blowup procedure
(as explained above), the particles are however distinguished by a tangent direction, which
can be interpreted as the direction from which they ‘approach’ each other.

Consider thus a tangent vector X i∂i, and demand that it is indeed a direction tangent
to the sextic CY;

∇Xpsextic = 0, (4.47)

but it also acts on (4.45)

∇XT = X1a1 + ...+X4a4. (4.48)

This equation is like a second constraint. The particles are in general distinguished after a
blowup. This is also the reason why a coincident locus does not in general lead to a jump
in the tachyon fiber above that locus. Namely, (4.48) does not lead to an extra constraint,
iff

rank

(
x1 x2 x3 x4

X1 X2 X3 X4

)
< 2, (4.49)

which can happen if either X1 = ... = X4 = 0 or if X i = λxi. It will be shown where this
can happen in the present case. One can distinguish between

• x5 6= 0: This means one can choose affine coordinates with x5 = 1. Thus, in these
coordinates, one knows that X5 = 0 for the tangent vector (and hence the case
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X1 = ... = X4 = 0 is ruled out and only the case X i = λxi remains). The tangent
vectors should remain in the CY, (4.47), which leads to 6λp(6) = 0. Differentiating
with respect to x5 yields p(6) = 0, which would imply x5 = 0 upon plugging this into
(4.46). If x5 6= 0, the two particles are distinguished after the blowup.

• x5 = 0: In this case, fix (w.l.o.g.) x1 = 1. This means X1 = 0 for the tangent
vector. To have only one instead of two ‘constraint’ equations for the tachyon, one
thus needs X1 = ... = X4 = 0. This occurs when the tangent vector equals X5∂5,
which is possible at the locus x5 = 0. Note that there is one tangent direction for
which this occurs. This is where the fiber of the tachyon jumps and needs to be taken
into account.

Calculating the refined index

Starting from the naive form for the index of this bound state,

χ(two particles) · χ(tachyon) = χ(X)2 · χ(CP1) + corrections, (4.50)

one can see nicely, how the refinement comes in. The refined index receives the following
contributions (where χ(X) = −204 denotes the Euler character of the sextic).

• 1
2
(χ(X)2 − 3χ(X) + 2χ0) · χ(CP1): this is the generic locus, where the two particles

are separated, but the locus where the two particles are identical as well as the
locus where xP1

i = xP2
i for i = 1, 2, 3, 4 and xP1

5 = 1
k
3xP2

5 for k = 0, 1, 2 have been
substracted. Note that one has to be careful not to substract the locus where the
first four coordinates are identical and x5 = 0 more than once. This has been taken
into account with the +2χ0 term. The Euler character χ0 of the locus x5 = 0 can be
calculated from the adjunction formula and is found to be χ0 = 108.

• (χ− χ0) · χ(CP2) · χ(CP1): this accounts for the locus where the two D0’s coincide,
without the locus x5 = 0. Note that the χ(CP2) results from the blowup of a
codimension 3 locus.

• 2 · 1
2
(χ− χ0) · χ(CP2): this takes into account the loci where xP1

5 = 1
k
3xP2

5 for k = 1
and k = 2 (hence the overall factor of two, as these loci both contribute equally).
Note that the fiber of the tachyon has jumped, these two particles are seen as one.

• χ0 · (χ(CP2)− 1) · χ(CP)1: here, the locus x5 = 0 is dealt with. In principle one just
has to do a blowup of a codimension 3 locus (hence a factor of χ(CP2). After the
blowup, the tachyon in principle ‘sees’ two D0’s. However, one needs to substract
the one tangent direction found in the analysis above, because one loses one of the
two constraints on the tachyon. This one tangent direction is taken into account on
the next line.

• χ0 ·1 ·χ(CP)2: for this one blowup direction (for which the 1 stands for as an index),
the tachyon again sees only one particle.
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Note that had one ignored the subtlety with the locus x5, one would have retrieved the
calculation where one finds a product of the tachyon index 2, and the Donaldson-Thomas
invariant NDT(0, 2). Collecting all the pieces linked to the value 2 or 3 for the tachyon
index (up to a sign), one can state the correct index in the form

Ωexact = −2 · (20′298 + 204)− 3 · (−204) = −40′392. (4.51)

This allows the stating of the Donaldson-Thomas partitions N (g,s)
DT (0, 2) for the sextic:

N (g)
DT(0, 2) = 20′504, (4.52)

N (s)
DT(0, 2) = −204. (4.53)

N (g)
DT(0, 2) counts the generic D6-2D0 BPS states, for which the tachyon perceives two D0’s,

and N (s)
DT(0, 2) counts the special D6-2D0 BPS states, for which the tachyon perceives only

one D0-brane. Note that there is a sign difference between these indices.

NDT(0, 2) = N (g)
DT(0, 2) +N (s)

DT(0, 2). (4.54)

On the octic, one finds a state that behaves similarly.

The state ∆q = 0,∆q0 = −2 on the octic

For this charge system, one finds a split flow tree with centers

Γ1 = (1, 1, 1,
13

6
),

Γ2 = (−1, 0,−11

6
,−2),

of the form
D4H

2
,2D0

D6H D6

2D0
= −2 · 43′068 = −86′136.

For the octic, one can choose

poctic = x2
5 + p(8)(x1, x2, x3, x4) = 0 (4.55)

as a transverse polynomial. This time, the cases where the particles have four equal
coordinates, and where xP1

5 = 1
k
2xP2

5 , are possibly of interest. The analysis of the locus,
where the tachyon field perceives the BPS state with two D0’s differently and where the
fiber changes dimension is analogous to the sextic case, and the discussion will therefore
be brief. One again starts by searching for the ‘special tangent directions’, by considering
(4.49):
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• x5 6= 0: This means one can choose affine coordinates with x5 = 1. Again, one knows
that X5 = 0 for the tangent vector (and hence the case X1 = ... = X4 = 0 is ruled
out and only the case X i = λxi remains). The tangent vectors should remain in the
CY, which leads to 8λp(8) = 0. p(8) = 0 would imply x5 = 0, contradicting the first
assumption.

• x5 = 0: In this case, fix (w.l.o.g.) x1 = 1. This means X1 = 0 for the tangent
vector. To have only one instead of two ‘constraint’ equations for the tachyon, one
thus needs X1 = ... = X4 = 0. This occurs when the tangent vector equals X5∂5,
which is possible at the locus x5 = 0. Note that there is again one tangent direction
for which this occurs. This is where the fiber of the tachyon jumps and needs to be
taken into account.

Calculating the exact index

The index receives similar contributions to the case on the sextic, but the calculation
is slightly simpler.

• 1
2
(χ(X)2 − 2χ(X) + χ0) · χ(CP1): this again is the generic locus, but as in this case

xP1
5 = 1

k
2xP2

5 for k = 0, 1 one substracts two instead of three loci with index χ(X).
Instead of substracting the locus x5 = 0 three times, one does this twice, and needs
to compensate once. In this case, χ0 = 304.

• (χ− χ0) · χ(CP2) · χ(CP1): this accounts for the locus where the two D0’s coincide,
without the locus x5 = 0. Note that the χ(CP2) results from the blowup of a
codimension 3 locus.

• 1
2
(χ−χ0) ·χ(CP2): this takes into account the locus where xP1

5 = −xP2
5 . This is again

a locus where the tachyon index has jumped.

• χ0 · (χ(CP2) − 1) · χ(CP)1: here, the locus x5 = 0 is dealt with. In principle one
just has to do a blowup (hence a factor of χ(CP2). After the blowup, the tachyon
in principle ‘sees’ two D0’s. Again, one needs to substract the one tangent direction
one found in the analysis above, because one loses one of the two constraints on the
tachyon. This tangent direction is taken into account on the next line.

• χ0 ·1 ·χ(CP)2: for this one blowup direction, the tachyon again sees only one particle.

Collecting all the pieces linked to the value 2 or 3 for the tachyon index (up to a sign), one
can state the correct index in the form

Ωexact = −2 · 43′064 + 3 · (−4) = −86′140. (4.56)

This means, that the Donaldson-Thomas partitions N (g,s)
DT (0, 2) for the octic read:

N (g)
DT(0, 2) = 43′064, (4.57)

N (s)
DT(0, 2) = −4. (4.58)

Note that the sum of the partitions yields NDT(0, 2).
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4.5.3 Special curves and DT partitions N (g,s)
DT (1, 2)

Up until now, refinements were presented, which were necesary due to the fact, that the
tachyon fields did not perceive D0’s generically. An example will be given now, where an
analogous refinement is necessary because of the fact, that a D2/D0-state (with the D2
wrapped on a curve) is not perceived generically. A different way of expressing this is to
state, that there are special D2/D0 bound states, or again put differently, one might refer
to these states as special curves on CY manifolds.

The state ∆q = 1,∆q0 = −2 on the octic

For this charge system, one finds a split flow tree with centers

Γ1 = (1, 1,
17

6
,
13

6
),

Γ2 = (−1, 0,−7

6
,−2),

of the form
D4H

2
+F (C1

g=0)

D6H D6−D2(C1
g=0), D0

= −8′674′176,

with an index naively calculated as

Ω = (−1)|〈Γ1,Γ2〉|−1|〈Γ1,Γ2〉|NDT(0, 0)·NDT(1, 2) = (−1)0·1·1·8′674′176 = 8′674′176. (4.59)

This naive index needs refinement again. In this case, for simplicity, choose the Fermat–
polynomial for the octic:

poctic = x2
5 + x8

1 + x8
2 + x8

3 + x8
4 = 0 (4.60)

A degree one rational curve on the octic can be represented as a degree one map from CP1

to the Calabi–Yau. Consider for example the map

(s, t)→ (s, is, t, it, 0). (4.61)

This generically imposes two constraints on the tachyon field, reducing its moduli space
to CP1. Adding an extra D–particle will then reduce this moduli space to CP0, unless
something special happens:

• The particle (D0) lies on the curve, but nevertheless produces no extra constraint.
It is easy to verify that this cannot possibly happen for this example.
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• The particle lies on the curve, which means that a blowup needs to be performed,
in the directions normal to the curve. Again, one might encounter special tangent
directions, which do not impose an extra constraint on the tachyon. Following a
similar procedure to the previous examples, one can indeed verify that this is the
case for the direction X5∂5. As x5 = 0 lies on the curve (4.61), this direction is
automatically also tangent to the octic.

Calculating the exact index

The various contributions to the exact index according to the refined prescription read:

• NDT (1, 1)(χ(X)− χC)χ(CP0), where χC = 2 is the Euler characteristic of the curve.
This term deals with the case, when the D0 is placed at a locus different from the
curve, thereby reducing the tachyon moduli space to CP0.

• NDT (1, 1)χC [χ(CP1)−1]χ(CP0), dealing with the case, when the D0 is located on the
curve, but the blowup tangent direction leads to an extra constraint on the tachyon.

• NDT (1, 1)χC · 1 · χ(CP1), which deals with the case, when the D0 lies on the curve,
and a blowup is performed leading to a special tangent direction. This is an example
of what was referred to as a special D2/D0 bound state, or alternatively just as a
special curve. In this case, the tachyon field moduli space remains a CP1.

In total, this leads to the index

Ωexact = |1 · (−8′733′184) + 2 · (59′008)| = 8′615′168. (4.62)

Spectacularly, by comparing this number to the prediction from modularity, (4.41), one also
finds exact agreement for this case. One can thus state the Donaldson-Thomas partitions
NDT(1, 2) for the octic:

N (g)
DT(1, 2) = −8′733′184, (4.63)

N (s)
DT(1, 2) = 59′008. (4.64)

Again, note that the sum of the partitions yields NDT(1, 2).

To summarize, one can conclude that all results obtained in this section provide exact
agreement with the predictions from modularity. This clearly is strong evidence, that the
suggested procedure for computing refined bound state indices is indeed correct. These
results also provide a non-trivial and successful test for the split attractor flow conjecture.
In the next subsection, states on another CY-manifold will be be discussed, for which a
non-polar state also requires calculation of a refined bound state index.
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4.5.4 Refined predictions for elliptic genera

In this subsection, it will be shown how a refined index computation alters the prediction
for an elliptic genus of a CY, realized as a degree ten hypersurface in WCP4

11125. One can
choose coordinates (x1, ..., x4, x5), corresponding to the weights (1, 1, 1, 2, 5). This CY will
be referred to as the decantic, in the following. The total Chern class of this space reads

c(X) = (1+H)4(1+2H)(1+5H)
1+10H

= 1 + 34H2 − 288H3, and using
∫
X
H3 =

∫
WCP11125

4
H4 = 1,

one obtains χ(X) = −288. Again, a D4-brane is wrapped on the hyperplane class divisor
P = H. For the lattice of fluxes, one finds in this case, that the pullback LX = i∗P (H2(X,Z)
and it’s orthogonal complement, LX ⊕L⊥X , are already unimodular, thus no gluing vectors
exist, and the elliptic genus is a ‘one-dimensional vector’,

Z(q, q̄, z) = Z0(q) Θ0(q̄, z) . (4.65)

The list of DT invariants of interest is again stated for convenience.

Donaldson-Thomas invariants: decantic
n = 0 n = 1 n = 2 n = 3

β = 0 1 288 40’752 3’774’912
β = 1 1150 435’827 89’103’872 11’141’118’264
β = 2 -64’916’198 40’225’290’446 9’325’643’249’563 1’119’938’319’168’004

1. ∆q = 0,∆q0 = 0, [0, 23
12

]:
As usual, the most polar state is the D4-brane carrying flux H

2
for anomaly cancella-

tion, with total charge (0, 1, 1
2
, 19

12
). The reduced D0-brane charge can be calulcated

to be q̂0 = 35
24

, thus the state lies in the class [0, 35
24

]. One finds a split flow tree with
centers

Γ1 = (1, 1,
23

12
,
19

12
),

Γ2 = (−1, 0,−17

12
, 0),

with split flow tree
D4H

2

D6H D6

= 3,

where the BPS index is calculated according to

Ω = (−1)|〈Γ1,Γ2〉|−1|〈Γ1,Γ2〉|NDT(0, 0) ·NDT(0, 0) = (−1)2 · 3 · 1 · 1 = 3. (4.66)

As usual, the number 3 can be nicely understood along the lines of previous expla-
nations. In WCP4

11125 one can only use three coordinates to define a hyperplane, and
χ(CP2) = 3, so the correspondence between divisor moduli in the D4-picture and
tachyonic degrees between the D6 and the D6 again works out nicely.
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2. ∆q = 0,∆q0 = −1, [0, 11
24

]:

Adding one D0, one obtains the total charge (0, 1, 1
2
, 7

12
), with reduced D0-brane

charge q̂0 = 11
24

. The flow tree is again analogous to the previous findings, the side of

the D0 after the first split governed by the appropriate threshold wall. The charges
of the centers after the first split read

Γ1 = (1, 1,
23

12
,
19

12
),

Γ2 = (−1, 0,−17

12
,−1),

and the flow tree looks like
D4H

2
,D0

D6H D6

D0

= −576,

from which one is tempted to conclude

Ω = (−1)|〈Γ1,Γ2〉|−1|〈Γ1,Γ2〉|NDT(0, 0) ·NDT(0, 1) = (−1)1 · 2 · 1 · 288 = −576. (4.67)

Using these two polar degeneracies, the elliptic genus would be determined by

Z0(τ) = q−
35
24 (3− 576q + 271′704q2 + 206′401′533q3 + 21′593′767′647q4...), (4.68)

which agrees with the findings in [79]. It will now be argued that this is not quite correct,
and the (essential part of the) elliptic genus will be predicted to be

Z0(τ) = q−
35
24 (3− 575q + 271′955q2 + 206′406′410q3 + 21′593′817′025q4...). (4.69)

The reason for this lies in the fact that the index (4.67) is not correct, because the state
∆q = 0,∆q0 = 1 has a non-trivially fibered moduli space. This will allow the calculation
of partitions of NDT(0, 1) for the decantic.

DT partitions N (g,s)
DT (0, 1): generic and special D6-D0 states

Note that the tachyon map for the most polar state is a section of the bundle H, and
is of the general form

T = a1x1 + ...a3x3 = 0, (4.70)

as the coordinates x4 and x5 are ‘forbidden’ (weight too high). This yields a moduli space
with Euler character χ(CP2) = 3, accounting for the degeneracy of the most polar state. If
one adds a D0-brane to the system, the tachyon map has to vanish on an additional point.
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Inserting this in (4.70) generically eliminates one of the moduli, reducing to a tachyon
moduli space with Euler character χ(CP2) = 3. The problem is that one can place the
D0-brane at the locus x1 = x2 = x3 = 0, which is indeed a point lying on the decantic
X. Placing the D0 on this point, means that this ‘particle’ will not imply a constraint
on (4.70). The Euler character of this locus (x1 = x2 = x3) χ0 can easily be determined:
χ0 = 1 (this is trivial, as the locus is just a point).

Thus, the correct index for the ∆q = 0,∆q0 = −1 system reads as follows:

Ω = 2 · (χ(X)− χ0) + 3 · χ0 = −575. (4.71)

In other words, NDT(0, 1) can be partitioned, into the DT-partitions

N g
DT(0, 1) = |χ(X)− χ0| = 289, (4.72)

N s
DT(0, 1) = |χ0| = 1. (4.73)

Again, note that NDT (0, 1) = |N g
DT(0, 1)|+|N s

DT(0, 1)|. Recall that the superscript g stands
for generic, and N g

DT(0, 1) counts the number of D6-D0 states, which are perceived by the
tachyon generically. The superscript s stands for special. Accordingly, Ns

DT(0, 1) counts
the number of D6-D0 states, where the D0 sits at a special locus, where the tachyon matrix
does not perceive the particle.

Of course, this also means, that the index for the split flow tree must be stated correctly
as:

D4H
2
,D0

D6H D6

D0

= −575.

The elliptic genus (4.65) is thus determined by

Z0(τ) = q−
35
24 (3− 575q + 271′955q2 + 206′406′410q3 + 21′593′817′025q4...). (4.74)

It is interesting to note that the authors of [79], after having predicted a slightly deviating
elliptic genus (as explained above), find 271′952 as a prediction for the number of BPS states
of the system, which is denoted (in the ‘charge shift notation’) as ∆q = 0,∆q0 = −2. This
is only off by 3 of the modular result predicted, as opposed to the 248 from the result
predicted by the ‘naive elliptic genus’ (4.68). This might be seen as an indicator, that
the new prediction is indeed correct. Unfortunately, the present technique does not allow
for checking this prediction, as a single flow exists for this state. It is thus not possible
to confirm the next term in (4.74) with absolute certainty, but strong evidence for the
computational scheme used here has been collected.

Still, it is nevertheless interesting from a computational point of view to predict Donaldson-
Thomas partitions N (g,s)(0, 2) for the decantic.
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The state ∆q = 0,∆q0 = −2 on the decantic

The total charge for this system reads Γ = (0, 1, 1
2
,− 5

12
), which implies q̂0 = −13

24
: this

is thus a non-polar state. One finds a split flow tree with the centers

Γ1 = (1, 1,
23

12
,
19

12
)

Γ2 = (−1, 0,−17

12
,−2),

and a flow tree of the form
D4H

2
,2D0

D6H D6

2D0
= = 40′752,

which would naively yield an index

Ω = (−1)|〈Γ1,Γ2〉|−1|〈Γ1,Γ2〉|NDT(0, 0) ·NDT(0, 2) = (−1)0 · 1 · 1 · 40′752 = 40′752. (4.75)

For the decantic, one can choose

pdecantic = x2
5 + x5

4 + p(10)(x1, x2, x3) = 0 (4.76)

as a transverse polynomial. Note that the moduli space for the tachyon was CP2 for the
most polar state. Generically, this is reduced to CP0 when placing two D0’s, but there are
a lot of subtleties involved. Namely, the cases when the D0’s have three equal coordinates
x1, x2, x3 and xP1

4 = 1
j
5xP2

4 , x
P1
5 = 1

k
2xP2

5 (with j = 0, 1, 2, 3, 4 and k = 0, 1) are of special
interest. Additionally, the locus x1 = x2 = x3 = 0 is special. Again, constraint loss will
occur for some loci directly, but will also result from blowups, when placing the two D0’s
on the same locus. Thus, one again has to analyze which tangent directions are special.

The condition for a constraint loss to occur after a blowup reads

rank

(
x1 x2 x3

X1 X2 X3

)
< 2, (4.77)

which can happen either if X1 = ... = X3 = 0 or if X i = λxi.

• x4 6= 0 or x5 6= 0: Assuming that not all coordinates x1, x2, x3 vanish at the same
time (this case will be dealt with separately), an analysis shows that for the cases
that either (or both) of the coordinates x4, x5 do not vanish, one finds one tangent
direction for which a constraint loss occurs. These subcases shall be discussed briefly:
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– x4 6= 0, x5 6= 0: In this case set x4 = 1, thus X4 = 0. One can easily check
that X1 = X2 = X3 = 0 is not possible as it would imply X5 = 0. Thus,
set X i = λxi (i = 1, 2, 3), which leads to ∇Xpdecantic = 10λp(10) + 2X5x5 = 0.
Combining this with (4.76) yields x2

5 + 1 = 1
5λ
X5x5. This completely fixes the

tangent vector, thus there is one direction for which constraint loss occurs.

– x4 6= 0, x5 = 0: w.l.o.g. set x4 = 1, thus X4 = 0. Choosing X1 = X2 = X3

yields ∇Xpdecantic = 2X5x5 = 0, thus one finds one special tangent direction.

– x4 = 0, x5 6= 0: w.l.o.g. set x5 = 1, thus X5 = 0. Choosing X1 = X2 =
X3 yields ∇Xpdecantic = 5X4x5

4 = 0, and one again finds one special tangent
direction.

• x4 = x5 = 0: In this case, one can choose x1 = 1, and thus X1 = 0. So, a general
tangent vector reads X2∂2 + ... + X5∂5. Setting X1 = X2 = X3 = 0, and plugging
this into ∇Xpdecantic = 0 yields 5X4x4 + 2X5x5 = 0, which can be satisfied. Thus,
the tangent directions, for which there is a constraint loss, form a CP1.

• x1 = x2 = x3 = 0: In this case, set x5 = 1. Thus, (4.76) reads x5
4 + 1 = 0. One

might think that one has found five points on the CY, but taking the equivalence
into account under the group action, one realizes, that this is only one point. In this
case X4 = X5 = 0, and thus X1 = X2 = X3 = 0 is not possible. Therefore, there
is no (extra) constraint loss, when considering a blowup, when the two D0’s coincide
at this point on the decantic.

Calculating the exact index

Using the adjunction formula, one can calculate the Euler character associated to a
number of loci of interest for the following calculation:

1. x4 = 0 : χ4 = 76.

2. x5 = 0 : χ5 = 295.

3. x4 = x5 = 0 : χ45 = −70.

4. x1 = x2 = x3 = 0 : Recall that this is only one point. The Euler character is thus
χ0 = 1.

A careful calculation reveals the following contributions:

• 1
2
((χ(X)− χ0)2 − 10(χ(X)− χ0 − χ4 − χ5 + χ45)− 2(χ4 − χ45)− 5(χ5 − χ45)
−χ45) · χ(CP0): this is the generic locus. The case x1 = x2 = x3 = 0 has been
substracted from the beginning on, and additionally, also the cases when the co-
ordinates x1, x2, x3 of the two D0’s are identical and xP1

4 = 1
j
5xP2

4 , x
P1
5 = 1

k
2xP2

5 ,
j = 0, 1, 2, 3, 4; k = 0, 1 will be treated independently. These cases have been sub-
stracted, but for each possibility (j, k), the subloci where x4 = 0, x5 = 0 or both have
been substracted and will be treated separately.
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• (χ−χ0−χ45) ·(χ(CP2)−1) ·χ(CP0): this is the most general case when the two D0’s
coincide. One has to treat various loci separately: the case, when the two particles
lie on the point x1 = x2 = x3 (this is substracted by the term −χ0), and also the
cases when x4 = x5 = 0 have been removed (the term −χ45). The factor χ(CP2)
arises from the blowup of a codimension 3 locus. According to the analysis presented
above, one does however need to substract one direction, for which there will be a
constraint loss. In this case two constraints on the tachyon are imposed, reducing
the moduli space to CP0.

• (χ−χ0−χ45) · 1 ·χ(CP1): This is the case analogous to the previous, but associated
to the blowup direction yielding a constraint loss.

• χ45 · (χ(CP2) − χ(CP1)) · χ(CP0): When the two D0’s coincide and x4 = x5 = 0,
a blowup is performed, but the previous analysis revealed two tangent directions
associated to a constraint loss. That locus will be dealt with, next. In this case, two
constraints are imposed on the tachyon, yielding a χ(CP0).

• χ45 ·χ(CP1) ·χ(CP1): This is the case, when the blowup is associated to a constraint
loss, with the two D0’s coincident on a locus with x4 = x5 = 0.

• χ0 · χ(CP2)χ(CP1): When the two D0’s lie on the point x1 = x2 = x3 = 0, there
is only one constraint on the tachyon, arising from the tangent directions after the
blowup. Recall that there is no constraint from placing a particle at this point:
this subtlety appeared already when considering the state D4−D0 on the decantic,
previously.

• (χ− χ0) · χ0 · χ(CP1): This contribution arises, when one D0 is placed on the locus
x1 = x2 = x3 = 0 (this D0 will not impose a constraint on the tachyon), and the
other one somewhere else.

• 1
2
· 9(χ− χ0 − χ4 − χ5 + χ45) · χ(CP1): These are the cases, when the two D0’s have

identical coordinates x1, x2, x3, but differ in at least one of the other coordinates,
xP1

4 = 1
j
5xP2

4 , x
P1
5 = 1

k
2xP2

5 . In these cases, there is only one constraint on the tachyon.
The cases when x4 = 0, x5 = 0 (or both) will be treated separately, though.

• 1 · 1
2
(χ4 − χ45) · χ(CP1): This is as the previous case, but additionally x4 = 0.

• 5 · 1
2
(χ5 − χ45) · χ(CP1): Again, the conditions as previously, but with x5 = 0.

Collecting all the pieces linked to the value 0 or 1 for the tachyon index (up to a sign), one
can state the correct index in the form

Ωexact = 1 · (40′752 + 3′127) + 2 · (−3′127) = 37′625. (4.78)

The Donaldson-Thomas partitions N (1,2)
DT (0, 2) for the decantic thus read

N (g)
DT(0, 2) = 43′879, (4.79)

N (s)
DT(0, 2) = −3′127. (4.80)
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Again, note that the sum of the partitions yields NDT(0, 2).

Clearly, the number 37′625 is still very far off from the modular prediction 271′955, the
missing states (at least the single-centered states) however cannot be enumerated at the
moment. Namely, one finds a single flow for this charge system, so there is little hope of
obtaining the correct index exclusively using the methods utilized in this thesis. It is left
as a problem for future research to enumerate the number of BPS states corresponding to
this single flow, and (possibly) find and enumerate other split flow trees.

4.6 Discussion

Results on the BPS spectrum of Calabi-Yau study models were presented in this chapter.
The existence of states was examined using split attractor flow trees. D-particles modeled
with mixed ensemble of D4-D2-D0 branes were considered, choosing minimal magnetic
D4-brane charge p = 1, and varying over different electric D2-D0 charges. This meant
that instanton corrections to the central charges became important for establishing (split)
flows numerically. This was accomplished by using mirror symmetry and was explained
in more detail in the first section. After establishing split flow trees, the number of states
corresponding to such a split flow was computed using the methods developed by Denef
and Moore, [1]. The number of states was enumerated as perceived on the wall of marginal
stability, where the first split occurs. This number is then typically (although this is not
always the case) a product of the number of states of the first center, a D6-brane (including
lower dimensional brane charge), the number of states of the tachyonic modes gluing the
two centers together, and the number of states of the second center, a D6-brane (including
lower dimensional brane charge). The D6- and the D6-center are both enumerated using
Donaldson-Thomas invariants.

The partition function of a D-particle of the type discussed goes under the name of
an elliptic genus. Elliptic genera are generalized modular forms and are determined by a
finite number of terms, when considering their expansion. Knowledge of this finite number
of terms corresponding to polar states, allows one to determine the complete elliptic genus
from modularity. All polar states were enumerated for the models considered. For three of
the models, the method discussed yields exact results. For another model, (presumably)
exact results were found, after taking into account a subtlety, which will be discussed
shortly.

After enumerating all polar states, the complete elliptic genus is determined by mod-
ularity. The predictions on the number of BPS states for the first few non-polar states
thus offers a very interesting ground for testing the methods used. Indeed, for many non-
polar states, the exact results can be found. Given the fact, that some area codes were
considerably complicated, this can be interpreted as strong evidence for a strong version of
the split attractor flow conjecture, stating that split attractor flow trees provide an exact
classification for all BPS states in type II string theory. For some states one finds a result
however, which is close, but not exact. The reason for this as well as the solution have
been found: the moduli space of a BPS bound state consisting of two branes (in this case
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a D6- and a D6-brane glued together by tachyonic fields) is not a direct product space, but
a non-trivial fibration. By taking this into account correctly, a perfect matching could be
found for all examples considered (at least for those, in which a result could be found with-
out having to enumerate single flows, which was not possible at this point). This suggests,
that the split attractor flow conjecture holds, when using refined indices to enumerate the
number of corresponding states.

The fact that the refined computation works perfectly for all studied examples makes
it seem very unlikely that this is coincidental. If the index can be correctly defined 9,
it generalizes the BPS wall-crossing index of Denef and Moore from [1], and furthermore
could be associated to the more precise physical picture of wall-crossing, consistent with
the formula of Kontsevich and Soibelman, [2]. This point needs to be further investigated.

Additionally, the fact that the dimension of the moduli space belonging to the tachyon
field of a bound state jumps, allows the splitting up of the states belonging to a center into
‘generic’ states, that are perceived as one generically expects, and ‘special’ states, that
are perceived (by the tachyons) as though there were less brane charge present on that
constituent. D6-D2-D0 states split up into these two sorts of states, and this also allows the
partitioning of Donaldson-Thomas invariants. The two pieces are referred to as Donaldson-
Thomas partitions N (g)

DT, N (s)
DT (where the superscripts ‘g/s’ stand for ‘generic/special’) in

this work. The partitions always sum up to yield the ordinary Donaldson-Thomas invariant:
N (g)

DT(i, j) +N (s)
DT(i, j) = NDT(i, j).

Should the approach to model black holes and D-particles using mixed ensembles of
D-branes turn out to be of crucial importance, the relevance of polar states cannot be
overestimated. In an attempt to make the results accessible to a general public, this fact led
the author to interpret the research context and results using a metaphor. Polar states are
realized as a pair of branes, and the set of all polar states determines the complete partition
function of a black hole or a D-particle. In the same spirit, a finite set of chromosomes,
also appearing in pairs, determine the complete microbiological structure of an organism.
Polar states are given the interpretation of chromosomes of black holes (and of D-particles).
The D-particle on the other hand, can be seen as a ‘simpler organism’ than a black hole,
and might be seen as a fruit fly in quantum gravity. In this interpretation, the author’s
research can be seen as an analysis of D-particle genomes. The reader will find more on
this topic in the ‘concluding discussion’ and in the ‘Dutch summary’ (appendix D).

One more point was announced in this chapter, namely the question, whether the results
obtained on BPS spectra of D-particles might shed any light on the mysterious nature of
scaling solutions. For the following charge systems, one might naively expect a scaling
solution in supergravity: ∆q = 0,∆q0 = −3 on the quintic, ∆q = 0,∆q0 = −2 on the
sextic, ∆q = 0,∆q0 = −2 on the octic and ∆q = 0,∆q0 = −1 on the decantic. For the
first three of the listed charge systems, the number of BPS states in the spectrum can be
predicted by modularity, and the methods used in this thesis allow for exact results to be
derived, based on the prescriptions for refined calculations presented in this chapter. One is
led to believe, that one has indeed exhausted the BPS spectrum of the quantum theory, in

9The author would like to thank Frederik Denef and Markus Reineke for clarifications on this point.
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the sense that one has classified and enumerated all BPS microstates of the corresponding
D-particles, carrying the desired charge. At the same time, this means, that the split
attractor flow conjecture worked perfectly. For none of the mentioned charge systems is
there seemingly room for states, which would be described by scaling solutions, after taking
a classical limit (compare with the explanations on this in subsection 2.3.1). This can be
concluded from the fact, that an index (as suggested in [58]) for scaling solutions seems
to yield results that strongly deviate from any numbers contributing to the total number
of BPS states one would expect. It seems reasonable to suppose that the exact numbers
for BPS states for the D-particles investigated can be interpreted as indicators that the
interpretation of [58] on scaling solutions is indeed correct. It would be wrong however
to make an overstatement, as these implications do remain quite speculative, and there
are no properly legitimated methods to compute an ‘index for scaling solutions’, taking
into account the regime of validity needed in this case. One should at this point remain
open to other ideas, one of which might be the wild proposal that ‘special states’ could be
quantum partners of scaling solutions. The author believes this to be rather unlikely, but
further investigation on this exciting topic remains for the future.

In any case, to the reader, the importance of polar states and split flow trees will have
become clear. They will also form the bridge to the next chapter, in which polar states
in 4d will be inspected using split flow trees, and mapped to 5d fuzzball geometries. This
relates one of the major research programs on black holes in string theory at this moment
in time, namely the fuzzball program (this will be introduced briefly at the beginning of the
next chapter), to the formalism and techniques used and developed further in this chapter.

The discussion of this chapter is concluded by indicating some future directions of re-
search. A central goal certainly is, to investigate and state a proper mathematical definition
of the refined index introduced in this chapter, and above all, test the consistency of this
index with the wall-crossing formula of Kontsevich and Soibelman, [2]. Apart from this,
it might be interesting to work out more study models like the ones used in this chapter
explicitly, in order to perform further tests on the split flow tree conjecture, and also to find
out, how Donaldson-Thomas partitions behave more generally. It would also be interesting
to be able to enumerate single flows, and see if one could find a matching with the modular
result for the state ∆q = 0,∆q0 = −2 on the decantic. Furthermore, it would be interesting
to extend the type of computations presented to Calabi-Yau varieties embedded in toric
varieties. In those cases, the refinements should appear frequently and play a prominent
role. In general, what can be learned about the problems associated to the OSV-conjecture
from the considerations presented in this chapter is an open question. In the light of the
discovery of the Donaldson-Thomas partitions, it is especially interesting to find out more
about the type of information they carry about bosonic vs. fermionic states. Finally, it
is a goal to gain a rigorous understanding of the Donaldson-Thomas partitions introduced
from the viewpoint of algebraic geometry.



Chapter 5

5d fuzzball geometries and 4d polar
states

This chapter is based on research performed together with Joris Raeymaekers, Bert Verc-
nocke and Walter Van Herck, presented in [5]. The prominent role played by multi-centered
black holes in four dimensions should be clear from the preceding chapters. In five dimen-
sions, BPS objects are also not restricted to single-centered black holes. One also finds
supersymmetric black rings and combinations of black holes and rings [117–119], often
called black saturns. Furthermore, there are Kaluza-Klein monopole supertube solutions
which carry the charges of a black hole or a black ring and are smooth and horizon-
less [120–123]. These solutions can be viewed as gravity duals to individual microstates
in the CFT description of the black hole, which lead to the ‘fuzzball’ picture proposed by
Mathur and his collaborators. According to their proposal, the naive picture of a singular
black hole is actually only a coarse approximation to the microstructure, given by smooth
gravitational ‘fuzzball’ microstates. More precisely, the fuzzball conjecture suggests that
all black hole geometries in string theory are horizon-free (also states, which one might
not be able to describe using supergravity). A ‘naive’ black hole solution as well as an
event horizon should be interpreted as a result of an ‘averaging procedure’ with respect to
all fuzzball geometries. Each single microstate on the gravitational side of the theory (as
opposed to the holographically dual CFT description) does not have either a horizon or a
singularity: it is completely ‘smooth’.

In order to provide the reader with some background on the fuzzball proposal, some
main features of this research program will be presented first, in 5.1, including some basic
ideas on how the fuzzball proposal presumably resolves the black hole information paradox.
This will be followed by a presentation of the research, establishing an interesting link
between fuzzball geometries in 5d and multi-centered black holes in 4d. The 4d picture will
be discussed first. The reader can find a short review on the construction of multi-centered
solutions in the STU-model in the appendix, 5.2. Solutions carrying the charges (5.15) were
constructed, and the author and his collaborators gave an explanation why these states
are polar and confirmed their existence by establishing split flow trees (assuming the split
attractor flow tree conjecture to hold). In the next subsection, 5.3, a transformation to a
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U-dual type IIB duality frame is presented, and the lift of these solutions to 10 dimensions
is discussed. The reduction formulae in the type IIB duality frame have been worked
out and can be found under C. It is shown that the solutions in the type IIB frame
represent supertubes embedded in Taub-NUT space, and the 5d limit is discussed. Finally,
in subsection 5.4, the microscopic interpretation of these configurations is discussed, from
a 4d and a 5d point of view. Some prospects for future research in this direction are given
in subsection 5.5.

5.1 The black hole information paradox and the fuzzball

conjecture

At the present time, the black hole information paradox is an important issue in theoretical
physics, especially in the quest towards a better understanding of quantum gravity. This
paradox has been around for more than thirty years, since the appearance of Stephen
Hawking’s analysis suggesting that black holes radiate. The fuzzball conjecture by Samir
Mathur is a promising remedy for the problem of information loss in a black hole. In order
to give a brief explanation on this, the black hole information paradox will be presented
first, followed by the solution which the fuzzball program has to offer. The reader is referred
to some recent and thorough reviews, such as [124–128] for more detail and completeness.
This section should provide the reader with enough context to place the research performed
by the author, linking polar states in 4d (in the IIA picture) and a specific class of fuzzball
geometries in 5d (in the IIB picture).

5.1.1 The black hole information paradox

Essentially, the naive picture of a black hole, as appreciated through the theoretical frame-
work of general relativity and also of supergravity theories, is that of a point-like sin-
gularity, surrounded by an event horizon. Already in 1975, Stephen Hawking performed
his famous semi-classical calculation, examining quantum fields in a classical black hole
background, [129]. He showed that black holes do not exist eternally, but actually slowly
radiate (eventually losing all of their mass) – a phenomenon now known as the Hawking
effect. Some basic ideas on this calculation and the resulting problem shall be sketched
next. To be specific, recall the metric for the Schwarzschild black hole (setting GN = 1),

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2(dθ2 + sin2 θdφ2). (5.1)

As mentioned earlier on, the metric is written in Schwarzschild coordinates, which are
good coordinates outside of the event horizon r = 2M . It might seem that this metric is
globally time independent, and one could therefore take a globally time-independent space-
like slice. This is not correct however, as when one crosses the event horizon, time and
space interchange their roles. Outside of the horizon (r > 2M), one can choose t = t0 as
a spacelike slicing, but inside the horizon (r < 2M), a spacelike slicing is of the form r = r0.
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Particle creation in curved spacetime

It is a basic, but very intriguing (inherently) quantum effect that a curved spacetime
background will automatically lead to particle creation. Some thought material on this
will now be borrowed from many of the reviews by Mathur himself. Imagine starting with
a Lagrangian for a scalar field, L = 1

2
∂µφ∂

µφ, expanding the field into Fourier modes, and
then concentrating on only one of the modes with amplitude a. For simplicity assume
dependence on only just one space dimension and on time, φ =

∑n=∞
n=−∞ e

i(n+ 1
2

)xan(t). The
Lagrangian for the mode an turns out to be L = 1

2
ȧn

2 − 1
2
ω2a2

n, where one set ω = n + 1
2
.

This is nothing else but a harmonic oscillator. The field starts in the vacuum mode |0〉.
Now, imagine that the space expands (as time evolves): this means that the frequencies
belonging to the modes change. If the space expands very slowly, the field has time to
react, and the vacuum ‘evolves along with the stretching of the potential’. However, if
the space expands too quickly, the mode ‘will not have time to adapt’ to the change in
potential, and the state will not be in a vacuum mode anymore. This is illustrated in figure
5.1.

1 2 3

Figure 5.1: Stretching of space: change of particle frequency modes. 1. Left: the ground
state wave function in green corresponding to the potential of the harmonic oscillator in
red. 2. Middle: When space has expanded, the potential has been stretched, the ground
state wave function experiences a stretching, too. 3. Right: If space expands too quickly
(imagine a strong curvature of spacetime), a mode has not had time to stretch according to
the change of potential. This is essentially why particles are created in curved spacetime.

Rather, the ground state corresponding to the old ground state frequency ω will be a
superposition of the new ground state (with frequency ω

′
) and multi-particle states,

|0〉ω =
∑
i∈Z+

2n

ci|i〉ω′ = c0|0〉ω′ + c2|2〉ω′ + c4|4〉ω′ + ...1 , (5.2)

where the ci are some coefficients, depending of course on the amount of expansion of space
considered.

1Note that in this specific little example for a mode of a harmonic oscillator only even particle states
arise in the superposition as the overall wavefunction is even – this however has no relevance for the present
concern.
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Wave-packets stretching across the event horizon of a black hole

Now imagine a wave-packet stretching across the horizon of the Schwarzschild black hole.
As time evolves, one can analyze what happens to such a wave-packet. The wave-packet
will be stretched at different rates, according to the different amounts of curvature sur-
passed. Keeping the intuition in mind, gained by the brief discussion of mode evolution
of the harmonic oscillator in curved spacetime, it is not hard to imagine that this leads
to particle creation inside and outside the event horizon. This however leads to an entan-
gled state of the states created inside the horizon, |ij〉, and the ones outside the horizon,
|oj〉, [129].

The concept of entanglement can be explained easily using a system of two particles
with spin. The entangled state |ψ〉 (the situation if one had for example created a particle-
anti-particle pair) is of the form

|ψ〉 =
1√
2

(| ↑〉1 ⊗ | ↓〉2 + | ↓〉1 ⊗ | ↑〉2) (5.3)

where | ↑〉1 denotes spin-up for particle one, etc. It is clear that if one measures spin up for
particle one, one will automatically know that particle two has spin down and vice versa.
An example of a state where the particle spins behave independently would be the tensor
product of states:

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 =
1

2
(| ↑〉1 + | ↓〉1)⊗ (| ↑〉2 + | ↓〉2). (5.4)

When the whole black hole has radiated away completely, this leaves behind particles
entangled with nothing, as the particles inside are destroyed, and only the ones outside
survive. This means a violation of unitarity, as will now be explained.

Loss of unitarity, information loss in a black hole

Unitarity is one of the most sacred principles of quantum theory. In the Schrödinger
picture, pure quantum states |ψ〉t are evolved into later-time pure states |ψ〉t′ with the
unitary time evolution operator, U = exp( i~H(t− t0)):

|ψ〉t′ = e
i
~H(t

′−t)|ψ〉t. (5.5)

A black hole that has been radiated away completely leaves behind a whole series of
particles |o〉j, entangled with nothing. This means that these particles are described by a
mixed state. If a pure state evolves into a mixed state, unitarity of quantum theory is lost.
Put differently, this mechanism leads to information loss. The information that entered
the black hole has disappeared into nowhere. Nothing is left but particles in a mixed state.

Over the last decades, people have come up with several resolutions to this problem.
Amongst these, the suggestion has been made that indeed unitarity is not a feature of
quantum theory. Alternatively, researchers suggested that subtle quantum gravitational
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effects can alter the form of the emitted radiation, encoding the information about the
black hole. Sometimes researchers also claim that unitarity might well be violated, but
that one might be able to resolve the information paradox in the dual CFT. Probably,
a majority is however convinced that if unitarity really were violated, the dual quantum
theory would not be consistent, and one would not be able to use any AdS/CFT dualities.
In the following, a different resolution to the problem will be sketched, namely Mathur’s
fuzzball proposal.

The difference between a black hole and a piece of coal

It is convenient to introduce some more thought material widely used by Mathur. It
is nice to compare the classical picture of a black hole and the Hawking radiation leaving
the latter, to an ordinary piece of coal (one could of course for the sake of argument choose
something different from a piece of coal) and the radiation leaving the coal, when the coal
burns away. Why is there no information loss when one burns a piece of coal? The key
point is that the quanta emitted from the coal interact with what is (or is about to be) left
of the coal. A particle leaving the coal might well be entangled with the rest of the coal,
but the following emission is not independent of the first emission. Imagine that the spin
of all the particles in the coal are dependent on the spin of a particle leaving. This means
that the following emitted quanta will carry some information about this. In contrast, a
particle leaving a black hole is not influenced by any previous emission, as the particles
were just created from the vacuum. The big difference is that the particles leaving the coal
interacted with the ‘rest material’, the particles leaving a black hole did not – they were
created from the vacuum. This is a result of the fact that the event horizon of a black hole
(in the classical sense) is surrounded by the vacuum. The fuzzball proposal alters exactly
this idea about black holes, rendering them more similar to a piece of coal.

5.1.2 The fuzzball conjecture: there are no black holes

As just mentioned, the central idea leading to the fuzzball picture is that a black hole
is not formed by a singularity, surrounded by vacuum, eventually sheltered off from the
outside by an event horizon, but rather, by matter/energy density spread out all across
the spacetime region within the event horizon. This is illustrated in figure 5.2.

The ‘classical idea’ of a black hole involves the notion that there is no matter and no
energy density located anywhere near the horizon. One can suggestively call such a hori-
zon an ‘information-free horizon’. As discussed previously, the reason that the radiation
emmited does not carry any information about the black hole is that the quanta emitted
do not interact with any quanta carried by the black hole. If the matter in microstates of
the black hole spreads out to the event horizon, the situation is essentially different. Note
that the idea that black holes are actually effective descriptions of underlying horizon-free
objects is somewhat surprising, because it is in contradiction with the intuition that the
curvature of spacetime near the event horizon of a black hole is small and thus one would
expect no (or at least hardly any) effects of quantum gravity. A simple example will be
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black hole fuzzball

singularity

Figure 5.2: Naive black hole versus fuzzball picture. Left: Black hole. All the mat-
ter/energy of a black hole sits in a singularity of order of Planck length. Spacetime is
curved to the extent that an infinite throat forms at the end of which there is a singularity,
drawn as a edgy line. The matter located in a singularity is surrounded by vacuum (the
pink region) all the way out to the event horizon. As the event horizon lies in the vacuum,
it is called an ‘information free horizon’. Right: Fuzzball microstate. The throat of
a fuzzball microstate is not infinitely deep, but ends at a finite distance (this is indicated
with a small red circle). The matter(drawn in red) is spread all across the spacetime re-
gion bounded by the event horizon. The horizon only appears as an ‘effective’ barrier. The
distribution of the ‘fuzzy’ matter probably becomes denser (as indicated in the picture)
towards the center of the region.

given next, to illustrate the relation of a ‘naive’ black hole metric to fuzzball microstate
metrics.

Two-charge black hole and fuzzball geometries (NS1-P)

It is worth recapitulating a few thoughts on modeling of black holes in string theory.
According to the conjectures on duality and chains of dualities in string theory, all theories
are related by dualities and one can choose any one of them to model a black hole without
losing any generality. The fuzzball proposal is normally approached using type IIB string
theory. Here, type IIB string theory compactified to 5d is chosen, using M1,4×S1× T 4 as
a background, where one S1 with radius R has been singled out from the 5-torus. The co-
ordinates on the 5d Minkowski space will be labeled as (t, r = (

∑4
i=1 x

2
i )

1
2 ), the coordinate

on the S1 will be called y, and the coordinates on T 4 will be called za (a = 1, 2, 3, 4).

One might start by trying to model a black hole using only one kind of brane charge:
for example with Q1 units of fundamental string (NS1-brane) charge. A bound state of N1

strings results in one big string, winding N1 times around the circle S1, thus exhibiting a
total length of 2πN1R. If one wants to describe one black hole and not several, one wants
to locate all the charge in one point of spacetime. One finds however that this system does
not yield a black hole, and one needs to add at least a second type of brane charge. One
can choose to add Qp units of momentum P to the string. One now wants to describe
a multiwound string with traveling waves in the S1 direction y. The metric, which one
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obtains for this charge system using the methods explained in chapter 2, reads

ds2 =
1

1 + Q1

r2

(−dt2 + dy2 +
Qp

r2
(dt+ dy)2) +

4∑
i=1

dx2
i +

4∑
a=1

dz2
a.

In order to compare the singular black hole geometry, which one associates to this charge
system, to the fuzzball microstates, it is convenient to introduce the coordinates u =
t+y, v = t−y. The ‘naive’ proposal for the 10D-metric as well as the other non-zero fields
for this system could read

ds2 = H(−dudv +Kdu2) +
4∑
i=1

dx2
i +

4∑
a=1

dz2
a,

Buv = −1

2
(H − 1), (5.6)

e2φ = H.

using H−1 = 1 + Q1

r2 and K = Qp
r2 . It is important to note that from a 5d point of view,

all the mass is concentrated in a single point at r = 0. From the viewpoint of the fuzzball
program, this is not the correct metric to describe a string with momentum.

The main intuition for why the correct metric is not of this form is that a string
with momentum has a vibrational profile. This means that the state is not localized in
a point, but has a small extension in spacetime (one might picture this as rendering the
system ‘fuzzy’). Solutions to this charge system have been found, suggested to be the real
geometries belonging to such a NS1-P charge system. From the viewpoint of the fuzzball
program, the metric (5.6) is not an accurate physical description of this ‘black hole’ in
gravity, but it is just a (purely mathematical) solution to the supergravity equations away
from r = 0. In the string frame, fuzzball solutions of the supergravity equations for the
metric, the gauge field B as well as the dilaton profile read, [121,130],

ds2 = H(−dudv +Kdv2 + 2Aidxidv) +
4∑
i=1

dx2
i +

4∑
a=1

dz2
a,

Buv = −1

2
(H − 1), Bvi = HAi, (5.7)

e2φ = H,

with

1

H
= 1 +

Q1

LT

∫ LT

0

dv

|~x2 − ~F (v)|2
,

K =
Q1

LT

∫ LT

0

dv(Ḟ (v))2

|~x2 − ~F (v)|2
, (5.8)

Ai = −Q1

LT

∫ LT

0

dvḞi(v)

|~x2 − ~F (v)|2
.
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where ~F = Fi(t, y). The function ~F is called the profile function of a fuzzball and can be
interpreted as describing the profile of the vibrating string. It is thus a function of time
and the coordinate on S1, ~F = ~F (t, y). As is generically the case for fuzzball microstates
that one can describe in supergravity, these geometries do not have a horizon, and they do
not end in an infinite throat, but they cap off. Note the difference between (5.6) and (5.7):

it arises from terms which are obtained as integrals over ~F . One can interpret intuitively,
that the movement of the string in the S1 direction gives the object a little extension, and it
is this geometrical backreaction which makes the fuzzball solutions deviate from the naive
geometry. Another point of interest is the question as to what size these fuzzballs have in
terms of spacetime extension. The entropy of the NS1-P black hole arises from distributing
momentum across the string. The string does not carry any longitudinal vibrations. All
the momentum is carried in transverse directions, and it is intuitively clear that this will
lead to some ‘fuzziness‘ from the 5d point of view. In fact, as the reader can follow in [125]
(where he will also find further references), it turns out that the mass/energy is not spread
across a region of Planck length lp, but rather a region that scales with

√
N1Np – and this

seems to be a generic feature of all solutions believed to be fuzzball microstates of the NS1-
P black hole. In other words, the size of such a fuzzball has been estimated to be of order√
N1NP . Furthermore, when considering all constructed fuzzball geometries, the entropy

of the black hole (originally ‘guessed’ by the macroscopic calculation of the area of the
event horizon) could be reproduced: SNS1−P

fb ≡
√
N1Np, [125]. In other words, an entropy,

macroscopically known from the area of the event horizon, microscopically explained using
holography, can also be explained by finding enough microstates in the gravitational theory.

Fractionation: how branes are partitioned enabling to squeeze information

This is a good moment to introduce another interesting thought important to the fuzzball
program. The total momentum on the string is given by P = NP

R
= NP · 2π

L
. One unit of

momentum evaluates to
2π

L
=

2πN1

N1L
=

2πN1

Lstring

,

where Lstring = 2πN1R = N1 · L and L labels the length of the circle S1. This means that
adding one unit of momentum to the string looks like adding N1 units of momentum to
the multiwound string – one might call these units N1 fractional momentum units. This
phenomenon is a simple example of what has been called ‘fractionation’, [131]. Upon dual-
izing to other systems this also leads to other fractional brane charges. The splitting up of
units of charge in a bound state can intuitively be pictured as leading to a large degeneracy
through all the different ways of being partitioned. Mathur and collaborators argue that
this is one of the central insights into black hole physics: modeling black hole physics re-
quires the use of bound states of branes. Fractionation enables such a huge entropy in such
a small region of spacetime. It is claimed to be the key principle behind the most dense
form of packaging information. Just like crystals choose a dense form of organizing their
atoms, one might say that black holes choose bound states of branes allowing fractionation,
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which leads to entropy maximization. Mathur claims that this situation has analogies with
the splitting up of simple elementary particles (branes) into quark constituents (fractional
branes), and the understanding of QCD. Hence one of the central goals is to develop a
good understanding of these fractional units of brane charge in order to gain a better
understanding of black hole entropy. In the case of the NS1-P black hole, fractionation
of momentum leads to a large degeneracy of possibilities when distributing momentum
among different harmonics. Upon dualization to the D1-D5 black hole (this will be men-
tioned briefly, next), these fractional momentum modes map to fractional branes, which
have fractional brane tension. Again, very intuitively, it is these fractional tensions which
allow the microscopic quanta to extend over such large regions, thereby allowing the fuzzy
matter in a black hole to extend all the way out to the event horizon, [132].

Dualization to fuzzball picture of D1-D5 black hole

This system can be dualized to the well known D1-D5 system, which appeared previ-
ously in this thesis. As all dualities have been performed on the extra dimensions, nothing
changes with respect to the 4d observations. Thus one still has a black hole of the same
extension. The naive metric becomes

ds2 =
1√

(1 + Q1

r2 )(1 + Q5

r2 )
(−dt2 + dy2) +

√
(1 +

Q1

r2
)(1 +

Q5

r2
)

4∑
i=1

dx2
i +

√
1 + Q1

r2

1 + Q5

r2

4∑
a=1

dz2
a

(5.9)
upon dualization, whereas the fuzzball geometries dualize to

ds2 =

√
H

1 +K
(−(dt− Aidxi)2 + (dy +Bidx

i)2) +

√
1 +K

H

4∑
i=1

dx2
i

+
√
H(1 +K)

4∑
a=1

dz2
a,

1

H
= 1 +

µQ1

LT

∫ µLT

0

dv

|~x2 − ~F (v)|2
,

K =
µQ1

LT

∫ µLT

0

dv(µ2Ḟ (v))2

|~x2 − µ~F (v)|2
, (5.10)

Ai = −µQ1

LT

∫ LT

0

dvµḞi(v)

|~x2 − µ~F (v)|2
,

Bi = − ?4 dA,

where ?4 denotes the Hodge operator on the 4d non-compact space using the flat metric.
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The fuzzball program

This allows to state the ‘fuzzball program’. One starts by modeling a black hole in string
theory, wrapping various (p, q)-branes around compact dimensions, generating mass in
spacetime. One can then calculate the entropy by calculating the area of the event horizon
belonging to the singular black hole geometry. One might also be able to microscopically
explain this entropy using a holographically dual CFT. The goal of the fuzzball program
is to then find all gravitational solutions, which should altogether account for this entropy.
The fuzzball conjecture has received a lot of attention in the context of type IIB 4d and
5d compactifications on T 6, K3 × T 2 or T 5. Extremal black holes have been studied in-
tensively: for 2-charge systems (such as the NS1-P or the dual D1-D5 system) all fuzzball
solutions have been found, for 3-charge (e.g. D1-D5-P) and 4-charge systems (e.g. D1-D5-
P-KK) not all, but large numbers of fuzzball solutions have been found. In addition, there
are also some papers where non-extremal fuzzball solutions have been constructed, check
e.g. [133].

Before discussing the more specific aim of the research presented in this chapter, a few
final remarks on fuzzballs in general shall be given. It is ironic and amusing to think, that
if the fuzzball program is on the right track, black holes do not really exist. Fuzzballs
do actually interact with the outside world, just like a piece of coal does. Fuzzballs only
seemed to be black holes because of the long time scales inherent to their life cycles. In
order to understand this, one can consider two different time scales. The first one is the
time it takes a quantum to fall into the fuzzy hole and interact with the quanta forming
the hole: one can call this the ‘crossing time’. The second time scale can be denoted as
the ‘evaporation time’; this is the time needed for a black hole to evaporate. In order to
solve the information paradox, quanta must have time to interact with the hole, before
the latter disappears: otherwise, the whole idea of a black hole being similar to a piece of
coal is meaningless, as this would be purely theoretical. For a Schwarzschild black hole it
turns out, that roughly, tevap · Mmp = tcross, where M denotes the mass of the black hole,

and thus tevap � tcross. Nevertheless, from the viewpoint of human life spans, it takes far
too long for matter to interact and come out of a fuzzball for this to be of any relevance –
this means that fuzzballs behave pretty much like one imagines a black hole to behave.

Another point which should be stated clearly is that the fuzzball conjecture does not
imply that all the smooth gravitational microstates (smooth in the sense that the mi-
crostates do not contain a singularity) can be described as solutions to the supergravity
limit of string theory. Some of them can, and in the case of the two-charge system it
would seem that this works for all microstates. There might however (and probably will)
also be ‘quantum’ microstates, that do not have a nice limit in supergravity, are stringy
and quantum in nature, and characterized by string scale curvatures and large quantum
fluctuations. In the light of these remarks, one can ask oneself the question, how a smooth,
horizonless fuzzball geometry in supergravity could possibly be a microstate of a black hole.
As discussed in [134], it seems correct not to interpret a smooth geometry as presented
earlier on as an ‘actual microstate’ of the corresponding black hole. Rather, one might in-
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terpret them as classical limits of quantum mechanical microstates localized in one unit of
volume in the phase space of solutions. Only in taking the classical limit of this procedure,
may one really think of fuzzball geometry as a microstate. Quantum microstates may also
not localize in a unit volume of phase space and are not likely to have any sort of classical
limit 2. The important point is that they will typically have an interesting, non-trivial
microstructure stretching all the way up to the horizon: this is the central message of the
fuzzball conjecture.

Finally, as stressed in this section, according to the fuzzball conjecture, the matter of
a black hole is not concentrated in a singularity of size of order of the Planck length lP ,
or string length ls. It is rather spread out as ‘quantum fuzz’, and the size of a black hole
(actually of a fuzzball) increases with the amount of brane quanta included, according to
some law of the form NαlP . If the fuzzball proposal turns out to be the correct way to go,
quantum gravity effects reach out to a length scale of the form NαlP , rather than being
confined to e.g. the Planck length lP .

5.1.3 Relating polar states in 4d to fuzzball geometries in 5d

It will have become clear from previous chapters, that multi-centered black holes and
especially polar states in four dimensions are of special interest. Having explained the
interest in the fuzzball program, which is more closely linked to a 5d setup, it is not hard
to imagine that one would like to make contact between these two frameworks. It seems
that it is typical for fuzzball geometries for a D1-D5-P black hole to be given as KK-anti-
KK monopole configurations, which seems very similar to the D6-anti-D6 deconstruction of
black holes made from D4-branes. It is also a goal to gain a better understanding of OSV-
like statements, polar states in 4d and the connection to such ‘fuzzball deconstructions’
of D1-D5(-P) black holes in 5d. It is well known that four- and five-dimensional BPS
configurations are related, and it is often possible to continuously interpolate between 4d
and 5d configurations using the ‘4d-5d connection’, [68,69,135–138]. Given a general multi-
centered solution in 4d, or more specifically, the metric (2.16) ds2

4d, the moduli (2.21) tA

and the gauge field (2.22) A4d, one can write down a solution to 5d supergravity:

ds2
5d = (2V )

2
3 (dψ +A0

4d)
2 +

1

(2V )
1
3

ds2
4d,

AA5d = AA4d + Re(tA)(dψ +A0
4d), (5.11)

Y A =
Im(tA)

V
1
3

.

where V = DABC
6

JAJBJC denotes the volume of the CY X, and the scalars appearing in a
5d action have been labeled as Y A. Five-dimensional configurations can often be embed-
ded in Taub-NUT space in a supersymmetric manner. The spatial geometry of Taub-NUT

2Note that this was suggested to be the case for the scaling solutions, discussed earlier on – a crucial
point in connection to the split attractor flow tree conjecture.
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space interpolates between R4 near the origin and R3×S1 at infinity. By varying the size of
the S1, one can then interpolate between effectively five- and four-dimensional configura-
tions. Under this map, a point-like configuration at the center of Taub-NUT space becomes
a 4d pointlike solution with added Kaluza-Klein monopole charge. A ring-like configuration
at some distance from the center goes over into a two-centered solution where one center
comes from the wrapped ring and the other contains Kaluza-Klein monopole charge. An-
gular momentum in 5d goes over into linear momentum along S1 in four dimensions. The
goal of the research presented in this chapter was to give an explicit mapping between
supertube solutions arising in the fuzzball picture in five dimensions and multi-centered
solutions in four dimensions under the 4d-5d connection, and to interpret the resulting
configurations using split attractor flow trees.

We (the author and collaborators) worked in toroidally compactified type II string the-
ory, and considered a symmetric class of 2-charge supertubes, which are described by a
circular profile [120–123], as well as 3-charge solutions obtained from those under spec-
tral flow [139–142]. Placing such supertubes in Taub-NUT space gives the solutions that
were constructed in [143, 144]. Applying the 4d-5d connection, we showed that, in the
standard type IIB duality frame, one obtains 4d solutions which are two-centered Kaluza-
Klein monopole-antimonopole pairs carrying flux-induced D1- and D5-brane charge as
well as momentum. These solutions can be described within an STU-model truncation of
N = 8 supergravity and can be seen as simple examples of ‘bubbled’ solutions [145–153]
(for a review, see ( [154]). To make contact with the techniques developed for analyzing
multi-centered configurations in Calabi-Yau compactifications, we transformed these con-
figurations to a type IIA duality frame where all charges and dipole moments carried arise
from a D6-D4-D2-D0 brane system. In this duality frame, the relevant configurations are
two stacks of D6-branes and anti-D6 branes with worldvolume fluxes turned on. Those
configurations fall into the class of ‘polar’ states in 4d for which no single-centered solution
exists.

Before moving on to present our research in detail, a brief summary of our results is
given. We considered 5d supertube solutions carrying D1 charge N1, D5 charge N5 and
momentum P and which are the gravity duals of a class of symmetric states in the D1-D5
CFT with quantum numbers

L0 = N1N5

(
m2 + m

n
+ 1/4

)
, L̄0 = N1N5

4
,

J3 = −N1N5

2

(
2m+ 1

n

)
, J̄3 = −N1N5

2n
,

P = L0 − L̄0 = N1N5m
(
m+ 1

n

)
.

(5.12)

These represent Ramond sector states that are in a right-moving ground state and form
excited states on the left, in a twisted sector. The integer n labels the twist sector and
should be a divisor of N1N5. In a component string picture, n represents the length of
the component strings. These states can be seen as obtained from Ramond ground states
through a left-moving spectral flow transformation determined by the parameter m, which
should be an integer. They exclusively carry momentum when m is nonzero.

After applying the 4d-5d connection to these configurations, we interpreted them in
a U-dual type IIA frame where all the charges arise from D6-D4-D2-D0 branes. Only 4
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q0 : D0 p0 : D6(T1 × T2 × T3)
q1 : D2(T1) p1 : D4(T2 × T3)
q2 : D2(T2) p2 : D4(T1 × T3)
q3 : D2(T3) p3 : D4(T1 × T2)

Table 5.1: Type IIA D-brane charges carried by the considered configurations. The sub-
manifold wrapped by the brane is indicated in brackets.

electric charges qI and magnetic charges pI are turned on in these solutions. They arise
from wrapping D-branes on the internal cycles given in table 5.1.

Under the 4d-5d connection, the 5d quantum numbers (5.12) map to the following 4d
charges

5d : N1 N5 J3 J̄3 P
4d : p2 p3 − q1

2
−Jz −q0

(5.13)

Writing charges as Γ = (pI , qI), the 4d BPS state corresponding to (5.12) carries the charge

Γtot =

(
0, 1, N1, N5,

(
2m+

1

n

)
N1N5, 0, 0,−m

(
m+

1

n

)
N1N5

)
. (5.14)

This is a polar charge, for which there is no single-centered solution. It is realized as a
two-centered solution consisting of two stacks of D6 and anti-D6 branes with fluxes, which
can be written as

Γ1 = −ne−(m+ 1
n)D1+mN1D2+mN5D3 ,

Γ2 = ne−mD1+(m+ 1
n)N1D2+(m+ 1

n
)N5D3 . (5.15)

The length of the component string n has become the number of D6 and anti-D6 branes
in the 4d picture, while the spectral flow parameter m has become a flux parameter.
The restrictions on these parameters from charge quantization match the quantization
conditions in the CFT description.

5.2 A class of polar states in N = 8 supergravity

In this section, the construction of two-centered solutions of type IIA supergravity com-
pactified on a torus T 6, built from D6 and anti-D6 branes with flux, is presented. Split
attractor flow trees are established, suggesting the existence of these states. First, the trun-
cation of the torus-compactification of IIA supergravity to an STU-model will be briefly
reviewed.

5.2.1 STU-truncation of type IIA on T 6

In the low-energy limit type IIA string theory compactified on a six-torus reduces to N = 8
supergravity in four dimensions. In N = 2 language, the N = 8 gravity multiplet decom-
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poses into the N = 2 gravity multiplet, 6 gravitini multiplets, 15 vector multiplets, and 10
hypermultiplets. For our purposes, it was sufficient to consider a consistent truncation to
a sector where only gravity and 3 vector multiplets are excited. This sector is described
by the well-known STU model [155, 156], consisting of N = 2 supergravity coupled to 3
vector multiplets with symmetric prepotential

F =
DABC

6

XAXBXC

X0
=
X1X2X3

X0
,

where DABC = |εABC |. The bosonic part of the action is given by

S =
1

16πG4

∫
d4x
√
−g
[
R− 1

2

3∑
A=1

∂µz
A∂µz̄A

(ImzA)2

+
β2

2
ImNIJF IµνFJ µν +

β2

4
ReNIJεµνρσF IµνFJρσ

]
. (5.16)

with zA = XA/X0 ≡ aA + ibA, A = 1, 2, 3, I = 0, 1, 2, 3 and ε0123 ≡ 1. An arbitrary
normalization constant β was left in front of the kinetic terms of the U(1) fields for easy
comparison with different conventions used in the literature. The matrix N is given by

NIJ = F̄IJ + 2i
Im(FIK)XKIm(FJL)XL

Im(FMN)XMXN
, (5.17)

where FIJ = ∂
∂XI

∂
∂XJF . The explicit form ofN can be found in the appendix (C.10). In the

conventions used here, the scalars bA have to be positive in order to have the correct kinetic
term for the U(1) fields. For simplicity, the hypermultiplet moduli are chosen such that the
six-torus is metrically a product of three 2-tori T1×T2×T3

3. The 10-dimensional origin of
the fields in (5.16) is the following. The vector multiplet scalars zA = XA/X0, A = 1, 2, 3
describe complexified Kähler deformations of the tori TA:

B + iJ = zADA , (5.18)

where DA are normalized volume forms on TA satisfying
∫
TA
DB = δAB. The constants DABC

entering in the prepotential are proportional to the intersection numbers: DABC =
∫
DA∧

DB ∧ DC . The four U(1) field strengths F I = dAI , I = 0, . . . , 3 arise from dimensional
reduction of the RR sector. Charged BPS states can carry electric and magnetic charges
under the four U(1) fields. The magnetic charges are denoted by pI and the electric charges
by qI , and a general charge vector Γ is written either by a row vector or an element of the
even cohomology of T 6:

Γ = (p0, pA, qA, q0) = p0 + pADA + qAD
A + q0ωvol , (5.19)

3For later convenience, T1 is chosen to be rectangular, and its two circles are denoted by S4, S5.
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with DA = 1
2
DABCDB ∧ DC and ωvol = D1 ∧ D2 ∧ D3 and A = 1, . . . , 3. Taking into

account charge quantization, the components pI , qI should be integers or Γ ∈ Heven(T 6,Z).
In analogy to the CY case treated in previous chapters, the symplectic inner product reads

〈Γ, Γ̃〉 = −p0q̃0 + pAq̃A − qAp̃A + q0p̃
0 . (5.20)

From a 10-dimensional point of view, the charged BPS states arise from D-branes wrapping
internal cycles. The D-brane interpretation of the charges is given in table 5.1. Dimen-
sionally reducing the D-brane Born-Infeld and Wess-Zumino action leads to point-particle
source terms to be added to the bulk action [157] (5.16):

Ssource =
β

G4

∫ [
−|Z(Q)|ds+

β

2
〈Q,A〉

]
. (5.21)

Here, Q is a vector whose components have the dimension of length defined as∫
S2

F I = 4πQI ,

∫
S2

GI = 4πQI , (5.22)

where GI = ImNIJ ? FJ + ReNIJFJ and ? denotes the Hodge dual. As the size of one
of the internal directions will be taken to infinity, it will be useful to work in conventions
for later convenience, where the coordinate volume of the internal cycles is not fixed. The
components of Q are then given by4

QI =

√
8

β
T IV IG4p

I , QI =

√
8

β
TIVIG4qI . (5.23)

where T I , TI are the tensions of the branes in table 5.1 and the V I , VI are the coordinate
volumes of the cycles they are wrapping. The quantity Z(Q) in (5.21) is the central charge

Z = 〈Q,Ω〉 , (5.24)

and Ω is the normalized period vector defined as

Ω =
Ωhol√
8b1b2b3

, (5.25)

with Ωhol = −ezADA . A stack of D-branes with worldvolume flux F turned on sources lower
D-brane charges according to

Γ = Tr eF . (5.26)

This particular embedding of the STU model in toroidally compactified type II string
theory will be denoted as ‘duality frame A’ in what follows. Later, in section 5.3, an
embedding of the STU model into a U-dual type IIB duality frame is considered, which
will be called ‘frame B’.

4To find agreement with [52], one should take the coordinate volume of all cycles equal to one in units
of 2π

√
α′. In that case, the relation between Q and Γ is Q =

√
G4
β Γ. Furthermore, β = 1 in [52].
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5.2.2 Multi-centered BPS solutions

Now, the construction of general multi-centered BPS solutions in the STU model considered
above will be reviewed, along the lines of Bates and Denef [52]. Such solutions can be
constructed from the harmonic functions

HI = hI +
∑
s

QI

|~x− ~xs|
, HI = hI +

∑
s

QI

|~x− ~xs|
, (5.27)

where the index s runs over the centers and xs are the locations of the centers in R3. As
explained in chapter 2, the metric and gauge fields are then completely determined from
the knowledge of a single function Σ(H) on R3:

Σ(H) =

√
4κ1κ2κ3 − L2

(H0)2
, (5.28)

with

κA = 3DABCH
BHC −HAH

0 ,

L = 2H1H2H3 +H0(H0)2 −HAHAH
0 . (5.29)

If one replaces the harmonic functions H in Σ(H) by the charge vector Γ, the result is
proportional to the Bekenstein-Hawking entropy S(Γ) of a black hole with charge vector
Γ: Σ(Γ) = S(Γ)/π. The constants h in the harmonic functions are related to the asymptotic
Kähler moduli as follows,

h = − 2

β
Im
Z̄holΩ

|Zhol|

∣∣∣
∞
, (5.30)

where Zhol is the holomorphic central charge

Zhol = 〈Γtot,Ωhol〉 . (5.31)

Of the 8 components of h, only 6 are independent, corresponding to the asymptotic values
of the 6 moduli aA, bA. Indeed, from the expressions above it follows that the h satisfy
two constraints

Σ(h) =
1

β2
,

〈h,Qtot〉 = 0 . (5.32)

The metric of the multi-centered solution is given by

ds2
4 = − 1

β2Σ(H)
(dt+ ω)2 + β2Σ(H)d~x2 , (5.33)

where ω is a 1-form on R3 that satisfies

?3dω = β2〈dH,H〉 = β2
(
−H0dH

0 +HAdH
A −HAdHA +H0dH0

)
, (5.34)
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where the Hodge star ?3 is to be taken with respect to the flat metric on R3. The in-
tegrability condition for the existence of ω leads to constraints on the positions of the
centers: ∑

t

〈Qs, Qt〉
|xs − xt|

+ 〈Qs, h〉 = 0 . (5.35)

An important condition for the existence of the supergravity solution is that, when the
above conditions are imposed, the function Σ(H) should be real everywhere. Multi-centered
solutions whose charges are non-parallel also carry angular momentum given by

~J =
1

2

∑
s<t

〈Γs,Γt〉
~xs − ~xt
|~xs − ~xt|

. (5.36)

In the special case of only 2 centers, the constraint on the distance a between the centers
simplifies to

a =
〈Q1, Q2〉
〈Q2, h〉

, (5.37)

while the angular momentum is

Jz =
1

2
〈Γ1,Γ2〉 , (5.38)

where the z-axis has been chosen to run in the direction from the second to the first center.
The solution for the scalar moduli reads

zA =

∂Σ(H)
∂HA

− iHA

∂Σ(H)
∂H0

+ iH0
. (5.39)

More explicitly, splitting za into real and imaginary parts zA = aA + ibA, A = 1, 2, 3 one
finds

aA = −H
A

H0
+

L

2κAH0
,

bA =
Σ

2κA
. (5.40)

The gauge fields read

A0 =
1

β

∂ ln Σ(H)

∂H0

(dt+ ω) +A0
D ,

AA = − 1

β

∂ ln Σ(H)

∂HA

(dt+ ω) +AAD , (5.41)

where the Dirac parts AID have to satisfy

?3dAID = dHI . (5.42)
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This can be worked out to yield

A0 = − 1

β

L

Σ2
(dt+ ω) +A0

D ,

AA =
1

β

6DABCκBκC −HAL

H0Σ2
(dt+ ω) +AAD . (5.43)

These quantities can be rewritten as

Σ =

√
−4H0H1H2H3 − 4H0H1H2H3 + (HIHI)2 − 2

∑
I

(HI)2(HI)2 , (5.44)

aA =
H0H

0 +HAH
A −

∑
B 6=AHBH

B

DABCHBHC − 2HAH0
,

bA =
Σ

DABCHBHC − 2HAH0
, (5.45)

A0 =
1

βΣ2

(
H0
(
HIH

I − 2H0H
0
)
− 1

3
DABCH

AHBHC

)
(dt+ ω) +A0

D ,

AA = − 1

βΣ2

(
HA

(
HIH

I − 2HAHA

)
−DABCHBHCH

0
)

(dt+ ω) +AAD . (5.46)

One can also consider the effect of large gauge transformations of the B-field, under which
the B-field shifts with a harmonic form. Gauge invariance requires that this is accompanied
by a shift in the worldvolume flux, resulting in a transformation of the charge vector:

B → B + S Γ→ eSΓ . (5.47)

In the 4d effective theory, the above transformation is induced by a symplectic transfor-
mation

XA → XA + SAX0. (5.48)

Taking charge quantization into account, S should be restricted to be an element of
the integer cohomology. Large gauge transformations change the boundary conditions
at infinity and, in the dual conformal field theory, have the effect of inducing a spectral
flow [54,101,158].

5.2.3 Solutions for polar states

A particular set of 2-centered solutions will now be described, where the centers are stacks
of D6 and anti-D6 branes with worldvolume fluxes turned on. It will also be shown that
no single-centered solutions with the same total charge exist for these configurations. As
can be traced in the previous chapters, they correspond to polar states and, according to
the split attractor flow conjecture, their existence can be established from split attractor
flow trees.
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We considered two classes of polar states: the first class carries no D0-brane charge and
has four net D4-D2 charges p1, p2, p3, q1. These are the configurations (5.15) with m = 0.
By performing a spectral flow transformation of the form (5.47) one obtains a second class
of solutions (m 6= 0 in (5.15)), which carry the above four charges as well as D0-brane
charge q0. In section 5.3, it will be shown that these two classes of configurations, after a
U-duality transformation, give rise to smooth ‘fuzzball’ solutions placed in a Taub-NUT
background. The solutions without D0-charge will map to fuzzball solutions with D1-
charge and D5-charge in Taub-NUT space while the solutions carrying D0-charge will map
to fuzzball solutions with D1-D5 charge and momentum P in Taub-NUT.

Configurations without D0-charge

The first class of solutions considered consists of a stack of n D6 branes and a stack of n
anti-D6 branes. Each stack of branes has U(n) = U(1)× SU(n) gauge fields living on the
worldvolume. Worldvolume fluxes are chosen to lie in the U(1) part so that each stack
carries lower-dimensional D-brane charges as well. Three numbers characterize the fluxes,
which, for later convenience, are labeled NK , N1, N5. The charges at the centers are

Γ1 = −n e−
NK
n
D1 = (−n,NK , 0, 0, 0, 0, 0, 0) ,

Γ2 = n e
N1
n
D2+

N5
n
D3 =

(
n, 0, N1, N5,

N1N5

n
, 0, 0, 0

)
. (5.49)

In the quantum theory, charge quantization restricts n,NK , N1, N5 to be integers and n to
be a divisor of N1N5. These configurations carry 4 nonzero net charges p1, p2, p3, q1:

Γtot =

(
0, NK , N1, N5,

N1N5

n
, 0, 0, 0

)
. (5.50)

One can choose coordinates on R3 such that the first center Γ1 is located at the origin and
Γ2 lies on the positive z-axis at z = a. The harmonic functions are

H0 = h0 − Qn
r

+ Qn
r+
, H0 = h0 ,

H1 = h1 + QK
r
, H1 = h1 + Q1Q5

Qnr+
,

H2 = h2 + Q1

r+
, H2 = h2 ,

H3 = h3 + Q5

r+
, H3 = h3 .

(5.51)

r+ was defined to be the radial distance to the second center:

r+ ≡
√
r2 + a2 − 2ar cos θ . (5.52)

From now on, the normalization constant β in (5.16) will be chosen to be

β =
1√
2
. (5.53)
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Using (5.23), the normalizations in the harmonic functions are then given by

Qn = 1
2

√
α′gn QK = (2π)2(α′)

3
2 g

2VT1
NK

Q1 = (2π)2(α′)
3
2 g

2VT2
N1 Q5 = (2π)2(α′)

3
2 g

2VT3
N5

(5.54)

where g is the 10D string coupling constant. One can simplify the form of the solution by
picking convenient values for the asymptotic moduli and correspondingly the constants h.
We chose six of the constants to be

h0 = −1; h1 = h2 = h3 = 1; h2 = h3 = 0 . (5.55)

The remaining constants h0, h1 are then fixed by the constraints (5.32):

h1 = −h0 =
Q1Q5

QnQK

. (5.56)

From (5.45) one can see that this choice of harmonic constants corresponds to turning on
asymptotic B-field on T1 but not on T2, T3. The constraint (5.37) on the distance between
the centers reads

a =
QKQ1Q5

Q2
n −Q1Q5

. (5.57)

The solution carries angular momentum given by (5.38):

Jz =
NKN1N5

2n
. (5.58)

One can then find the explicit expressions for the metric, scalar fields and U(1) fields from
(5.33, 5.45, 5.46). For configurations where H2 = H3 = 0, the expression (5.44) for Σ
simplifies to

Σ =
√
−4H0H1H2H3 − (H0H0 −H1H1)2 . (5.59)

For the solution to the equations (5.34) and (5.42) for ω and the Dirac parts AID one finds,
using (5.57) and choosing convenient integration constants,

ω =
QKQ1Q5

2aQn

(
r + a

r+

− 1

)
(cos θ − 1)dφ ,

A0
D = Qn

(
− cos θ +

r cos θ − a
r+

)
dφ ,

A1
D = QK cos θdφ ,

A2
D = Q1

r cos θ − a
r+

dφ ,

A3
D = Q5

r cos θ − a
r+

dφ . (5.60)
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Spectral flow and adding D0-charge

One is interested in a second class of solutions obtained from the ones considered above
by a spectral flow transformation of the form (5.47) Γ→ eSΓ. One can choose S such that
the new configuration carries nonzero p1, p2, p3, q1 charges as well as D0-charge q0, while
keeping q2 and q3 zero. There is a one-parameter family of spectral flows S which does the
job and which will be labeled by a parameter m:

S = −mNKD1 +mN1D2 +mN5D3 . (5.61)

When taking charge quantization into account, the parameter m could be fractional but
such that m is a common multiple of 1/N1, 1/N5 and 1/NK . The charges carried by the
two centers are then the ones anticipated in (5.15):

Γ1 = −ne−(m+ 1
n)NKD1+mN1D2+mN5D3 ,

Γ2 = ne−mNKD1+(m+ 1
n)N1D2+(m+ 1

n
)N5D3 , (5.62)

and the total charge of the solution is

Γtot =

(
0, NK , N1, N5,

(
2m+

1

n

)
N1N5, 0, 0,−m

(
m+

1

n

)
NKN1N5

)
. (5.63)

The angular momentum of these configurations is independent of the parameter m and
still given by (5.58). For m = 0 one recovers the configurations discussed in the previous
section. The harmonic functions for a configuration obtained using spectral flow are

H0 = h0 − Qn
r

+ Qn
r+
, H0 = h0 + (mn+1)(mn)2QKQ1Q5

Q2
nr

− (mn+1)2mnQKQ1Q5

Q2
nr+

,

H1 = h1 + (mn+1)QK
r

− mnQK
r+

, H1 = h1 − (mn)2Q1Q5

Qnr
+ (mn+1)2Q1Q5

Qnr+
,

H2 = h2 − mnQ1

r
+ (mn+1)Q1

r+
, H2 = h2 + (mn+1)mnQKQ5

Qnr
− (mn+1)mnQKQ5

Qnr+
,

H3 = h3 − mnQ5

r
+ (mn+1)Q5

r+
, H3 = h3 + (mn+1)mnQKQ1

Qnr
− (mn+1)mnQKQ1

Qnr+
.

(5.64)
As before, one can choose the asymptotic moduli such that h0 = −1, h1 = h2 = h3 =
1, h2 = h3 = 0. The remaining constants are determined by (5.32) to be

h1 = −h0 =
(2mn+ 1)Q1Q5Qn

(mn+ 1)mnQKQ1Q5 +QKQ2
n

. (5.65)

For the constraint (5.37) on the distance one finds a rather complicated expression

1
a

=
1

QKQ1Q5 ((mn+ 1)2(mn)2Q1Q5 +Q2
n)

(
Q4
n −Q2

n (Q1Q5 + (mn+ 1)(2Q1Q5 −QK(Q1 +Q5)))

+(mn+ 1)2(mn)2Q1Q5(QKQ1 +QKQ5 +Q1Q5)
)
. (5.66)
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5.2.4 Polarity and flow trees

It will be now be discussed that the considered configurations are four-dimensional ‘polar’
states. As discussed already extensively in this thesis, the relevant quantity for establishing
whether a total charge system Γtot is polar, is the ‘reduced’ D0 brane charge

q̂0 = q0 −
1

2
DABqAqB , (5.67)

where DAB = (DABCp
C)−1. If q̂0 > 0, the states are polar and no single-centered black

hole solutions carrying these charges exist. This means that the states considered here, are
polar if one chooses positive fluxes on the branes. For n = 1, when there is only one D6 and
one anti-D6 brane, q̂0 reaches its maximal value for a given p1, p2, p3 charge. The quantity
q̂0 is invariant under spectral flow transformations (5.47), hence the charge configurations
with D0 charge (5.63) are also polar. We inspected the existence of split flow trees for these
configurations in order to be able to infer the existence of the corresponding BPS state.
We were able to show that the single centered flow reaches a wall of marginal stability at
a point zsplit in moduli space before reaching the crash point z0, where the single centered
flow ends. At the marginal stability wall, the flow branches into two flows representing the
D6 and anti D6 centers, which reach their attractor points without encountering any more
marginal stability walls. A schematic depiction of the split flow is given in figure 5.3.

zsplit

z0

Figure 5.3: Schematic drawing of the split flow tree for our representative charge system.
The flow coming in from the top (red line) reaches the wall of marginal stability (green
line) at the split point zsplit (green) before it would reach the crash point z0 (black). One
also sees the single flows for each center starting from the split point until they reach the
boundary of moduli space (blue). The existence of those states is clear in the light of the
previous chapter.

A crucial simplification is that, by doing the spectral flow transformation (5.47), one
can equivalently examine the flow tree for a charge eSΓ at a shifted B-value B+S. When,
by shifting the asymptotic value of the B-field, one does not cross any walls of marginal
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stability, one can simply fix the asymptotic B-field to a convenient value and choose a
charge vector eSΓ such that the analysis becomes simple. This was possible for the consid-
ered configurations, provided that one chooses the background Kähler moduli large enough.
The reason for this is that walls of marginal stability between two charges can only run all
the way to infinity for a ‘core-halo pair’ of D-branes (Halos can only carry D2-D0 brane
charge, any other charge configuration will automatically be a core, see [1] for definitions
and a more in-depth treatment of these concepts). Luckily, one is always dealing with core
constituents here. From now on, the asymptotic B-field will be taken to be zero and an
appropriate charge vector eSΓ is chosen.

One can pick a charge representative by giving some convenient value to the spectral
flow parameter m in the general charge configuration (5.63). It can be taken to have the
value5 m = − 1

2n
. This leads to the total charge

Γtot =

(
0, NK , N1, N5, 0, 0, 0,

NKN1N5

4n2

)
. (5.68)

This obviously is a pure D4-D0 system. As discussed above, one chooses the background
moduli to have purely imaginary and very large values, z∞ = (iy1

∞, iy
2
∞, iy

3
∞). The single

centered flow runs along the imaginary z-axes until the crash point is reached where the
holomorphic central charge (5.31) vanishes. This happens at the point

z0 = i

√
q̂0

3NKN1N5

(NK , N1, N5) = i
1√

12n2
(NK , N1, N5) . (5.69)

Next one can check whether the flow hits a wall of marginal stability. The charges at the
centers read

Γ1 =

(
−n, NK

2
,
N1

2
,
N5

2
,−N1N5

4n
,−NKN5

4n
,−NKN1

4n
,
NKN1N5

8n2

)
,

Γ2 =

(
n,
NK

2
,
N1

2
,
N5

2
,
N1N5

4n
,
NKN5

4n
,
NKN1

4n
,
NKN1N5

8n2

)
. (5.70)

One easily sees that the real parts of the central charges are equal, whereas the imaginary
parts have opposite signs. Thus, the wall will be hit when Im(Z1) = Im(Z2) = 0. One finds

zsplit = i

√
3

4n2
(NK , N1, N5) . (5.71)

As
√

3
4n2 >

√
1

12n2 this means that the wall of marginal stability is always reached before

the single flow crashes. The single centered flows for the fluxed D6 brane centers terminate
at the boundary of moduli space in the supergravity approximation. Nevertheless they
correspond to states in the BPS spectrum of string theory and higher derivative corrections

5As the flow tree analysis takes place within supergravity, one can ignore charge quantization restrictions
for the moment.
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are expected to yield regular attractor points: the reader finds explanations on this as well
as numerous examples for (fluxed) D6 branes on a Calabi-Yau, in chapter 4.

A further simple check also shows that the necessary stability criterion [1, 60]
〈Γ1,Γ2〉 · (arg(Z1) − arg(Z2)) > 0 is met. This shows that one indeed reaches the wall
from the side where the single brane is stable and crosses to the side where the brane
decays into a bound state. Recall that this condition can be interpreted as ensuring that
tachyonic strings would be present between the two constituent branes on the ‘stable’ side,
in this case above the wall, such that a bound state is formed after tachyon condensation.

5.3 U-duality and fuzzballs in Taub-NUT

In this section, contact is made between the polar solutions constructed above and vari-
ous horizonless supertube solutions in five noncompact dimensions that are central to the
fuzzball proposal advocated by Mathur and collaborators. As a first step, a duality trans-
formation to a type IIB frame is performed, such that the charges and dipole moments
carried by the found solutions are the same as the ones carried by the supertubes. Fuzzball
solutions in five noncompact dimensions can be seen as Kaluza-Klein (KK) monopole6 su-
pertubes where the KK monopole charge is sourced along a contractible curve in four
noncompact directions. One of the compact directions, which will become S4 in the con-
ventions used here (recall that T1 = S4 × S5 was chosen), is a Taub-NUT circle which
pinches off at every point of the curve. By adding flux to the KK-monopole, one can
source the charge of D1 and D5-branes wrapped around the S4 circle. For a circular curve,
one can place this configuration in a Taub-NUT space with a different Taub-NUT circle,
S5 in the present conventions, and interpolate between five and four dimensions by varying
the size of S5. We were able to show that the four-dimensional configurations obtained in
this manner are U-dual to the D6-anti D6 polar solutions discussed above.

5.3.1 U-duality to a type IIB frame

First, a U-duality transformation to a type IIB frame is described such that STU-model
solutions lift to configurations carrying the charges indicated above. The system is taken to
a duality frame where p0 becomes a Kaluza-Klein monopole charge with Taub-NUT circle
S4, p1 becomes a Kaluza-Klein monopole charge with Taub-NUT circle S5, p2 becomes the
charge of a D1-brane wrapped on S4 and p3 becomes the charge of a D5-brane wrapped
on S4× T2× T3. This is accomplished by making a U-duality transformation consisting of
a T-duality along S4, followed by S-duality and 4 T-dualities along T1 × T3, as illustrated
in table 5.2.

This new duality frame will be denoted ‘frame B’. In this frame, the vector multiplet
scalars z1, z2, z3 represent the complex structure modulus of T1, the 4d axion-dilaton and
the (complexified) Kähler modulus of T1 respectively. The U(1) fields A0 and A1 are

6Recall that a Kaluza-Klein monopole in 10D is a (5+1)-dimensional object whose transverse 4-
dimensional space has Taub-NUT geometry or, in the case of several centers, a Gibbons-Hawking space.
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IIA (frame A) IIB IIB IIB (frame B)
D6 (T 6) D5 NS5 KK5 (S5 × T2 × T3)
D4 (T2 × T3) T (S4) D5 S NS5 T (S4, S5, T3) KK5 (S4 × T2 × T3)
D4 (T1 × T3) −→ D3 −→ D3 −→ D1 (S4)
D4 (T1 × T2) D3 D3 D5 (S4 × T2 × T3)

Table 5.2: U-duality transformation from frame A to frame B

q0 P (S4) p0 KK5 (S5 × T2 × T3)
q1 P (S5) p1 KK5 (S4 × T2 × T3)
q2 D5 (S5 × T2 × T3) p2 D1 (S4)
q3 D1 (S5) p3 D5 (S4 × T2 × T3)

Table 5.3: 10D origin of the charges in frame B

Kaluza-Klein gauge fields from the metric components gµ4 and gµ5 respectively, while A2

and A3 arise from the RR two form components Cµ4 and Cµ5. The 10-dimensional origin of
the full set of charges in this frame is given in table C.2. In frame B, the first class of polar
solutions with charges (5.49) corresponds to two stacks of n KK monopoles and anti-KK
monopoles with Taub-NUT circle S4 carrying flux-induced charges of D1, D5, momentum
and KK monopoles wrapped on the S4 circle. The more general solutions (5.62) obtained
by spectral flow carry momentum along S4 as well. Such solutions will be smooth, and, as
will be shown, have the interpretation of KK monopole supertubes embedded in Taub-NUT
space.

5.3.2 Lifting general multi-centered solutions

In order to see what these solutions look like in frame B from the 10-dimensional point
of view, one needs to know the reduction formulas of type IIB on a six-torus to the four-
dimensional STU-model action (5.16) such that the 4d charges have the interpretation
given in table C.2. This is worked out in detail in appendix C. The metric of a general 4d
multi-centered solution lifts to a 10D geometry where the T1 torus is nontrivially fibered
over the 4d base:

ds2
10 =

1√
b2b3

ds2
4 +
√
b2b3Mmn(dxm +Am−4)(dxn +An−4) +

√
b2

b3
ds2

T2×T3
,

ds2
4 = − 2

Σ
(dt+ ω)2 +

Σ

2
d~x2 ,

Mmn =
1

b1

(
(a1)2 + (b1)2 −a1

−a1 1

)
, m, n = 4, 5 . (5.72)
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The dilaton and RR two-form are given by

e2Φ(10)

=
b2

b3
,

C(10) =
1

2
Cµνdx

µdxν + a3(dx4 −A0) ∧ (dx5 −A1)

−dx4 ∧ B2 − dx5 ∧ A3 +
1

2
(A0 ∧ B2 +A1 ∧ A3) ,

da2 = −(b2)2 ? F ,

F = dC +
1

4
(A0 ∧ G2 + B2 ∧ F0 +A1 ∧ F3 +A3 ∧ F1) . (5.73)

where the Hodge ? is to be taken with respect to the 4d metric ds2
4. It will be useful to

rewrite the metric in the form of a lifted solution of 6d supergravity as in [118, 158, 159],
where the 6d part of the metric is written as a fibration over a 4d Gibbons-Hawking base
space. If both p0 and p1 are nonzero, both the S4 and S5 are nontrivially fibered, and
one can choose either circle to be the fibre in the Gibbons-Hawking geometry. Here, the
S5 is chosen to be this fibre, so that the Gibbons-Hawking base space is spanned by the
coordinates (r, θ, φ, x5). The metric can be rewritten in the form

ds2 = − 1

HF
(dt+ k)2 +

F

H

(
dx4 − s− 1

F
(dt+ k)

)2

+Hds2
GH +

√
κ2

κ3

ds2
T2×T3

,

ds2
GH =

1

H1
(dx5 +A1

D)2 +H1dx2 . (5.74)

where one has defined

F =

(
H2

H3

H1
−H0

)
,

H =

√
κ2κ3

H1

,

k = ω +
LH1 − 2κ2κ3√

2H0(H1)2
(dx5 +A1

D)

= ω +
1

H1

(
HIH

I − 2H1H
1 − 2H0H2H3

H1

)
(dx5 +A1

D) ,

s = −A0
D +

H0

H1
(dx5 +A1

D) . (5.75)

These expressions will now be used to find the lift of the four-dimensional polar configu-
rations.

5.3.3 Lift of polar states without D0 charge

The lift of our configurations (5.49) that do not contain D0 charge will first be discussed
in frame A. In frame B these correspond, according to table C.2, to two stacks of n KK
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monopoles and anti-KK monopoles with Taub-NUT circle S4, which carry flux-induced
D1, D5 and KK monopole charges, wrapped on the S4 circle. It will be shown that, from
a 10D point of view, these charges precisely correspond to the Kaluza-Klein monopole
supertubes in Taub-NUT space that were constructed by Bena and Kraus in [143].

The harmonic functions of the solution are given by (5.51, 5.55, 5.56), where the nor-
malizations in the current duality frame should be taken to be, according to (5.23),

Qn = nR4

2
, QK = NKR5

2
,

Q1 = (2π)4gα′3

2R5VT2×T3
N, . Q5 = gα′

2R5
N5 .

(5.76)

The constraint on the distance between the centers (5.57) can also be written as

Qn =

√
Q1Q5H̃1 , (5.77)

with H̃1 = 1 + QK
a

. One finds the lift of this class of solutions to 10 dimensions in duality
frame B by plugging these expressions into (5.74). Making a coordinate transformation
x4 → x4 + t, the metric becomes

ds2 =
1√
H2H3

[
−(dt+ k)2 + (dx4 − s− k)2

]
+
√
H2H3ds2

TN +

√
H2

H3
ds2

T2×T3
,

ds2
TN =

1

H1
(R5dψ +QK cos θdφ)2 +H1dx2 . (5.78)

where the angle ψ has been defined as x5 = R5ψ. From the ten-dimensional point of view,
the constraint (5.77) on the distance between the centers arises from requiring smoothness
of the metric [143], while the condition that Σ is real implies the absence of closed timelike
curves [150]. The one-forms k and s have components along φ and ψ and, using the distance
constraint (5.77), can be written as

kψ = R5QnQK
2arr+H̃1H1

[
r+ − r − a− 2ar

QK

]
, kφ = QnQK

2ar+H̃1

[
r+ − r − a+ r−a−r+

H1 cos θ
]
,

sψ = R5Qn
rr+H1

[
r − r+ − rr+

QKH̃1

]
, sφ = Qn

r+

[
a+

r+−r−
r+

H̃1

H1 cos θ

]
.

(5.79)
Using (5.73), one can show that the dilaton and RR three-form take the form

e2Φ =
H2

H3
,

F (3) = d

[
1

H2
(dt+ k) ∧ (dx4 − s− k)

]
− ?4d(H3) , (5.80)

where the Hodge star ?4 is to be taken with respect to the Taub-NUT metric ds2
TN . As

was argued, the above solutions represent the lift of a two-centered KK-monopole anti-
monopole system in frame B (or a D6 anti-D6 system in frame A), where the Taub-NUT
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circle for these KK monopoles is the S4. The KK monopoles sit at a radial distance r+

while the anti-monopoles sit at the origin. At the position of these centers, the S4 circle
should pinch off. This is not so obvious in the 10D form of the metric (5.78), so this point
will be illustrated in more detail. The coefficient in front of the (dx4)2 term in the metric
(5.78) is 1/

√
H2H3. This factor goes to zero at r = r+ but stays finite at r = 0, so it is not

obvious that there is a KK anti-monopole source at the origin. Nevertheless, there should
be such a source since the total KK monopole charge has to balance out, and it should be
located at the origin because of symmetry reasons. The resolution to this puzzle lies in the
fact that the six-dimensional metric still contains a factor of the six-dimensional dilaton
eΦ(6)

. This factor is given by eΦ(6)
= 1

b2b3
, and hence the factor that measures the size of

the S4 is b2b3/
√
H2H3. One can easily check that this factor indeed goes to zero both in

r = 0 and r = r+. This is illustrated in figure 5.4.

S4 S4

S5

S5

Figure 5.4: Left: The black circle represents a KK monopole supertube with a circular
profile of radius a in 5 dimensions. At every point of the curve, the internal circle S4 (drawn
in red) pinches off to zero size. Right: After placing another KK monopole wrapped on
S4 in the origin, the asymptotic geometry becomes R4×S5. As argued in the text, the S4

circle pinches off along the curve as well as in the origin.

These are precisely the solutions constructed by Bena and Kraus [143]7. They represent
Kaluza-Klein monopole supertubes, which have been embedded into a Taub-NUT space
which has the asymptotic spatial geometry R3×S5. By varying the radius R5 of the circle
S5 one can interpolate between solutions in 4 and in 5 noncompact dimensions; this is the
‘4d-5d connection’ [68,69]. The 5d solutions one obtains in this way are highly symmetric
fuzzball solutions where the curve that defines the supertube is circular.

7To make contact with the conventions in [143], one has to make a further coordinate transformation
φ→ −φ, θ → π − θ.
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5.3.4 4d-5d connection and 5d fuzzball geometries

Let this be illustrated in more detail. One takes the R5 → ∞ limit keeping the following
quantities fixed:

2rR5 ≡ r̃2 , 2aR5 ≡ ã2/n2 . (5.81)

After taking this limit, the p1 charge NK of the configuration becomes a deficit angle
and one obtains a configuration embedded in an orbifold space R4/ZNK . We therefore
specialized to the case NK = 1, so that we obtained solutions in asymptotically flat space.
One defines charges Q̃1, Q̃5, which remain finite in the limit (5.81) and are the correctly
normalized D1- and D5-brane charges in 5 noncompact dimensions:

Q̃1 = 2R5Q1 =
g(2π)4α′3N1

VT2×T3

,

Q̃5 = 2R5Q1 = gα′N5 . (5.82)

The constraint (5.57) on the distance between the centers then reduces to

R4 =

√
Q̃1Q̃5

ã
. (5.83)

The solution (5.79, 5.80) can, in this limit, be written as a fuzzball solution with a circular
profile function [120–123]:

ds2 =
1√
H2H3

[
−(dt+ k)2 + (dx4 − s− k)2

]
+
√
H2H3dx2 +

√
H2

H3
ds2

T2×T3
,

e2Φ =
H2

H3
,

F (3) = d

[
1

H2
(dt+ k) ∧ (dx4 − s− k)

]
− ?4d(H3) , (5.84)

where the harmonic functions are given by

H2 = 1 +
Q̃5

L

∫ L

0

dv

|x− F|2
,

H3 = 1 +
Q̃5

L

∫ L

0

|Ḟ|2dv
|x− F|2

, (5.85)

and the one-foms k, s take the form

s =
Q̃5

L

∫ L

0

dvF a

|x− F|2
dxa ,

s+ k = − ?4 ds . (5.86)
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Here, x represents Cartesian coordinates on R4 which, in terms of the coordinates r̃, θ, φ, ψ
introduced earlier, are given by

x1 = r̃ cos θ
2

cos
(
ψ + φ

2

)
, x3 = r̃ sin θ

2
cos
(
ψ − φ

2

)
,

x2 = r̃ cos θ
2

sin
(
ψ + φ

2

)
, x4 = r̃ sin θ

2
sin
(
ψ − φ

2

)
.

(5.87)

The profile function F(v) describes a circular profile in the x1 − x2 plane:

F 1 = ã
n

cos 2πn
L
v, F 3 = 0 ,

F 2 = ã
n

sin 2πn
L
v, F 4 = 0 .

(5.88)

where L ≡ 2πQ̃5

R4
. The averaged length of the tangent vector to the profile should be

proportional to the D1-brane charge:

Q1 =
Q5

L

∫ L

0

|Ḟ|2dv . (5.89)

As a consistency check, one can easily see that this is the case using the constraint (5.83). It
is also interesting to discuss how the 5d angular momenta are related to quantum numbers
in 4d. Solutions in five noncompact dimensions can have 2 independent angular momenta
J12 in the x1−x2-plane and J34 in the x3−x4-plane. These are related to the R-symmetry
generators J3 and J̄3 in the dual CFT as J12 = −(J3 + J̄3), J12 = −(J3 − J̄3). From
the parametrization (5.87) one can see that J3 comes from a linear momentum in four
dimensions while J̄3 is proportional to the four-dimensional angular momentum Jz. This
leads to the dictionary between the charges that was anticipated in (5.13). More specifically,
the solutions above have J12 = N1N5

n
, J34 = 0, such that

J3 = J̄3 = −N1N5

2n
. (5.90)

5.3.5 Spectral flow and fuzzball solutions with momentum

In subsection 5.2.3, solutions were considered that were obtained by a spectral flow trans-
formation labeled by a parameter m that had the effect of adding D0-charge (5.63). In
the dual frame B, these will carry nonzero momentum charge P on the S4 circle. The
harmonic functions and constraint on the distance were given in (5.64, 5.66). When one
takes the special case Q1 = Q5, substituting in (5.74) gives a solution with constant dila-
ton which can be embedded in minimal 6-dimensional supergravity [159]. This solution
precisely matches the solutions constructed in [144] representing fuzzball geometries with
momentum placed in a Taub-NUT space.

One can again take the 5d limit R5 → ∞ as discussed above. Again taking NK = 1
to get solutions in flat space, one obtains the five-dimensional fuzzball solutions with mo-
mentum which were constructed in [139–142]. These solutions were originally obtained by
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applying a spectral flow transformation to the five-dimensional solutions without momen-
tum (5.86). They carry the following 5d charges

J3 = −N1N5

2

(
2m+ 1

n

)
, J̄3 = −N1N5

2n
,

P = N1N5m
(
m+ 1

n

)
,

(5.91)

where P denotes the momentum on the S4 circle. The flux quantization discussed in
paragraph 5.2.3 imposes that the parameter m should be an integer.

5.4 Microscopic interpretation

The microscopic interpretation of the solutions we considered will now be discussed both
from the 4d and 5d point of view. One can start with the configurations (5.49) without
D0-charge in frame A. It was shown that these arise through the 4d-5d connection, from
5d fuzzball solutions with circular profile, carrying macroscopic angular momentum J12 =
N1N5/n, and placed in a Taub-NUT geometry. A first question is whether one should
regard these solutions as zero-entropy constituents of a spinning black hole or of a black
ring in five dimensions. In the present context, the latter is the only possibility, since
a black hole of the desired charge (if it exists as a BPS solution in type II on a torus)
cannot be placed in Taub-NUT space in a supersymmetric manner and therefore the 4d-5d
connection cannot be applied to it. Indeed, if it could, the resulting 4d configuration would
be a small black hole with charges (0, NK , N1, N5, N1N5/n, 0, 0, 0). This is however a polar
charge for which a single-centered black hole solution cannot exist, even including higher
derivative corrections. Hence our four dimensional solutions should be seen as coming from
small black ring microstates in five dimensions. This interpretation also corresponds to the
one argued in [102, 122, 160, 161]. It is worth pointing out that that the above argument
does not rule out the existence of a 5d supersymmetric spinless (J12 = J34 = 0) small
black hole placed at the center of Taub-NUT space. Indeed, the resulting 4d configuration
would have pure D4-charge (0, NK , N1, N5, 0, 0, 0, 0), which is not a polar charge (q̂0 = 0),
and therefore could give rise to a single-centered small black hole when higher derivative
corrections are taken into account.

In the following, it is discussed, which states in the dual CFT correspond to the con-
figurations (5.49) from the 5d point of view. As mentioned in the context of introducing
the Strominger-Vafa black hole in chapter 2, the D1-D5 CFT is a deformation of a sym-
metric product CFT with target space (T2 × T3)N1N5/SN1N5 (see [162] for a review). For
present purposes, one can consider the theory at the orbifold point. The states considered
are closely related to chiral primary operators denoted by σ−−n with quantum numbers
L0 = J3 = L̄0 = J̄3 = n−1

2
. One can construct operators U(α) which generate a left-

moving spectral flow with an integer parameter α:

U(α)L0U(α)−1 = L0 − αJ3 + α2 c

24

U(α)J3U(α)−1 = J3 − α c

12
(5.92)
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where the central charge is c = 6N1N5. Similar generators of right-moving spectral flow
with parameter α̃ will be denoted by Ũ(α̃). The CFT states corresponding to (5.49) are
ground states in the R sector given by

U(1)Ũ(1)(σ−−n )
N1N5
n |0〉. (5.93)

They carry the quantum numbers

L0 = N1N5

4
, L̄0 = N1N5

4
,

J3 = −N1N5

2n
, J̄3 = −N1N5

2n
,

P = L0 − L̄0 = 0 .
(5.94)

The above states belong to a ‘microcanonical’ ensemble of R ground states at fixed D1-
charge N1, D5-charge N5, and angular momenta8 J12 = N1N5/n, J34 = 0. When n � 1,
J12 is sufficiently far from the maximal value N1N5, and there is an exponential degeneracy
of states carrying these quantum numbers, leading to a microscopic entropy [161]

Smicro = 2
√

2π
√
N1N5 − J = 2

√
2π

√
N1N5(1− 1

n
) . (5.95)

On the basis of general arguments [163], it is expected that, after including higher derivative
corrections to the effective action, a black ring solution with a matching macroscopic
entropy exists. It is an open problem to explicitly compute such corrections in toroidal
compactifications, unlike the case where the four-torus T2 × T3 is replaced with K3, [102,
160,164].

When a small black ring is placed in Taub-NUT space with one unit of NUT charge and
the radius of the Taub-NUT circle is decreased, one obtains a 4d configuration consisting of
two centers. One center, coming from the wrapped ring itself, becomes a small black hole in
4d, while the other center, coming from the Taub-NUT charge, is a KK monopole carrying
zero entropy [102,160]. In the duality frame A, the first center is a small D4−D2 black hole
with charge (0, 0, N1, N5, N1N5/n, 0, 0, 0) and entropy given by (5.95), the second center is
a pure D4-brane with charge (0, 1, 0, 0, 0, 0, 0, 0). Because these charges are not parallel,
the combined system carries macroscopic angular momentum Jz = −N1N5/n. Therefore
one can view our 4d polar D6-anti D6 configurations (5.49) as zero-entropy constituents of
this two-centered configuration.

A similar discussion can be led for the solutions (5.62) carrying D0-charge in frame A.
Their CFT counterparts are related to (5.93) by an additional left-moving spectral flow
with parameter 2m:

U(2m+ 1)Ũ(1)(σ−−n )
N1N5
n |0〉. (5.96)

They carry the quantum numbers that were anticipated in (5.12):

L0 = N1N5

(
m2 + m

n
+ 1/4

)
, L̄0 = N1N5

4
,

J3 = −N1N5

2

(
2m+ 1

n

)
, J̄3 = −N1N5

2n
,

P = L0 − L̄0 = N1N5m
(
m+ 1

n

)
.

(5.97)

8This is a different ensemble from the one, where the angular momenta are not fixed, used in the context
of the OSV conjecture in chapter 3.
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In the CFT, the parameters n and m should be quantized such that n is a divisor of N1N5

and m is an integer. This matches with the conditions found from charge quantization in
the corresponding D-brane configurations. These states are part of an ensemble of CFT
states with fixed D1-D5 charges, angular momenta J3, J̄3 and momentum P . This ensemble
is obtained by the ensemble of zero momentum ground states discussed above by acting
with the spectral flow operator U(2m). The degeneracy is then again given by (5.95).

5.5 Discussion

In this chapter, the identification of four-dimensional multi-centered D-brane configura-
tions that correspond to a class of fuzzball solutions in five noncompact dimensions was
presented, under the 4d-5d connection. In a type IIA duality frame where all the charges
come from D6-D4-D2-D0 branes, the relevant 4d configurations are two-centered D6-anti
D6 solutions with fluxes corresponding to polar states.

The fuzzball solutions considered here were highly symmetric, where the profile function
that defines the solution is taken to be a circular curve in the x1−x2 plane in the coordinates
(5.87). It is intereseting to comment on the fate of more general fuzzball solutions under the
4d-5d connection. A fuzzball solution arising from a generic curve will typically not have
enough symmetry to be written as a torus fibration over a four-dimensional base as in (5.73)
and can hence not be given a four-dimensional interpretation. However, according to the
proposed dictionary between microstates and fuzzball solutions in [165,166], the subclass of
fuzzball solutions that semiclassically represent eigenstates of the R-symmetry group should
possess U(1)×U(1) symmetry and be represented by (possibly disconnected) circular curves
in the x1− x2 and x3− x4 planes in the coordinates (5.73). Such solutions have isometries
along the directions ∂/∂φ and ∂/∂ψ as well as along the Taub-Nut direction ∂/∂x4, and
should therefore be the lift of axially symmetric solutions in four dimensions. When the
quantum numbers are chosen appropriately, these would describe other constituents of the
4-dimensional 2-centered system with entropy (5.95). It would be interesting to explore
this ensemble of four-dimensional configurations.

It is also interesting to comment on the relation between the present work and black
hole deconstruction [55]. In four dimensions, say in frame A, multi-centered ‘scaling’
solutions exist with centers so close that their throats have ‘melted’ together and which
are asymptotically indistinguishable from single centered solutions. Such solutions can
carry the same charges as a large single-centered D4-D0 black hole, and can be seen as a
deconstruction of such a black hole into zero-entropy constitutents. The scaling solutions
consist of a ‘core’ D6 anti-D6 system with flux, and a ‘halo’of D0-brane centers added to
it (again, see [1] for more details on the formalism of ‘cores’ and ‘halos’). The scaling limit
consists of taking the total D0-charge to be parametrically larger than the magnetic charge
p1p2p3. The entropy of the black hole in this limit can be understood by treating the D0-
branes as probes and counting the supersymmetric ground states of the probe quantum
mechanics [56]. The ‘core’ D6 anti-D6 system in these configurations is precisely the same
kind that we studied and mapped to 5d fuzzball solutions. Indeed, for the special values
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n = 1, m = −1/2 of the parameters one obtains the following charges at the centers

Γ1 =

(
−1,

NK

2
,
N1

2
,
N5

2
,−N1N5

4
,−NKN5

4
,−NKN1

4
,
NKN1N5

8

)
,

Γ2 =

(
1,
NK

2
,
N1

2
,
N5

2
,
N1N5

4
,
NKN5

4
,
NKN1

4
,
NKN1N5

8

)
. (5.98)

These are precisely the charges that appear in the core of the scaling solutions in [55].
It seems natural to expect that, for the other values of these parameters m and n, our
configurations can serve as the core system for the deconstruction of a black hole with
added D2-charge.

The relation to deconstruction could have interesting implications in five dimensions as
well. If one takes a scaling solution in four dimensions, dualizes it to frame B and takes
the 4d-5d limit, one should end up with a configuration carrying the charges of a large
D1-D5-P Strominger-Vafa [63] black hole. The scaling limit implies that one will have
P � N1N5, which is equivalent to the Cardy limit Λ0 � c where the CFT microstate
counting is performed. Therefore such configurations would be candidates for describing
typical microstates of the D1-D5-P black hole, and it would be interesting to study such
solutions in more detail. It is not clear whether such configurations could rightly be called
‘fuzzball’ geometries for the D1-D5-P black hole, as they will not be smooth near the centers
where the harmonic functions describing the momentum diverge. As argued in [45], treating
the momentum as coming from giant graviton probes, the number of ground states would
be of the right order to explain the entropy.



Concluding discussion

The metaphor developed in this final chapter explains the specific research context of this
thesis as well as the author’s results by drawing an analogy between black holes in string
theory and humans in microbiology. To be more specific, it suggests a ‘black hole genome
project’ in analogy to the human genome project.

This final discussion is aimed at a broad audience and should be understandable for a
reader turning to these pages directly from the introduction, but it should also provide a
final glance at – and hopefully an interesting interpretation of – the content of chapters 3-5
also for more specialized readers who have read parts or all of the thesis. This discussion
is divided into two sections:

• The first one gives a metaphoric interpretation of the research context of this thesis.
Two ideas on the quantum nature of black holes stand at the center. This part may
be seen as a layman’s guide to the most important parts of chapter 3 and section 5.1.

• The second section gives an interpretation of the results obtained during the author’s
Ph.D. studies. From the viewpoint of the metaphor, future directions of research
should become clear. This section can be seen as a layman’s guide to the chapters 4
and 5, the chapters containing the author’s main technical results.

The specific research context of this thesis

Two ideas on the quantum nature of black holes

The author’s research fits into the context of two bigger research programs, both involving
stunning ideas about the quantum nature of black holes.

• The first idea has originally been formulated within a four-dimensional compactifica-
tion of string theory, and conjectures the wave function for (a specific type of) black
holes to be of a certain form. The reader will find a short explanation of what is
meant by a ‘wave function of a black hole’ in the next paragraph.

• The second idea has been formulated and researched in five-dimensional compact-
ifications of string theory. This research program focusses on finding gravitational
microstates of black holes, allowing a gravitational explanation to be given of the
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entropy of a black hole. These gravitational microstates are not black holes, they are
rather called fuzzballs. If this conjecture turns out to be the right path, black holes
do not really exist, but they rather appear as an ‘average picture’ of these microstates
(this will be explained in more detail).

Wave functions for black holes

The ‘quantum behavior’ of the world seems to involve the awkward fact that a system
(e.g. a particle) does not behave in one specific way, but it rather realizes ‘several parallel
states’, or as the system evolves with time, ‘parallel existences’. One refers to this fact as
that of a quantum system behaving as a superposition of possible classical states. Only
when an observer performs a measurement, one of these states (or existences) is selected
from the lot, forcing the quantum entity into a classical pattern of behavior. Building upon
this, the reader is provided with an idea of the notion of a wavefunction. Putting mat-
ters into very simple words, a wavefunction is a mathematical object in which all possible
states of a system appear, weighted with the probability of their appearance, should an ob-
server perform a measurement. A wave function is denoted as |Ψ〉. Thus, for example, for
Schrödinger’s cat, the wavefunction might be written as |Ψcat〉 =

√
p

1
|alive〉 +

√
p

2
|dead〉,

where the numbers p1, p2 stand for probabilities to measure dead (p2) or alive (p1). Before
moving on to discuss a wavefunction for a black hole, another concept with which the
reader should become familiarized is the uncertainty related to quantum systems. A con-
cept known as ‘Heisenberg’s uncertainty principle’ might be called a basic fact in quantum
theories. When describing e.g. a particle as a ‘quantum’, highlighting both particle- and
wave-nature of the object, one cannot simultaneously gain a direct knowledge both of the
exact position of the particle and the speed and direction at which the particle is traveling.
One can intuitively imagine that the measurement of the position forces the speed and
direction of the particle into a ‘blurry uncertainty’ – a sum of a whole lot of possibilities
(a superposition). Should one however decide to measure the speed and direction of a
(moving) particle, the exact position becomes ‘blurry’ and ‘uncertain’. This may serve as
some intuition on the uncertainty of quantum mechanics: there is always this dichotomy
between so-called ‘conjugate’ aspects to the behavior of the system under study. This
hopefully again provides the reader with a taste of how weird the quantum world has re-
vealed itself to be; in this case this is an example of how measurements always affect the
system on which a measurement is performed: there is no such thing as an external and
neutral observer. The observer is, at least for a certain extent, ‘observing himself’.

The OSV conjecture

In 2004, a paper written by three well-known string theorists appeared (Ooguri, Stro-
minger and Vafa), in which the authors formulated a conjecture now known as the ‘OSV
conjecture’. Although the following is not really accurate, it should allow the reader to
get a grip on some main ideas. This conjecture is formulated for a very special class of
black holes. Namely, various branes of different charges are chosen to realize the various
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single microstates of a black hole. Some branes can be interpreted as being magnetically
charged, whereas others as carrying electric charge. The black hole is made from a super-
position of all sorts of brane states, carrying various magnetic and electric charges. All
states are chosen to have in common however, that they carry the same magnetic charge,
while all different branes are used carrying all possible electric charges. One might even
go as far as interpreting magnetic versus electric charge for a black hole as analagous to
position versus momentum for a particle 9. For the kind of black hole one is describing,
one can imagine having measured the magnetic charge of a black hole, but dealing with
a completely ‘blurry, uncertain’ quantum object, carrying a whole lot of possible electric
charges. The OSV conjecture states that the wave function of such a (fixed magnetic
charge, superposition of all possible electric charges) black hole is given by the topological
string partition function |ψblackhole〉 = Ztop. So, somehow topological string theory seems
to describe microstates of black holes and allows them to be enumerated.

What does the word ‘topological’ mean?

For a space to be ‘topological’ is a weaker statement than for a space to allow the per-
forming of distance measurements. In this case, an extrinsic definition of the concept will
be advocated. The topological structure of a space expresses something very coarse, yet
powerful in mathematics. Should one for example consider a donut as a ‘space’ (a geometry
on which to perform calculations), one finds that when squeezing or stretching the donut
(that is, if one does not rip the donut apart), the ‘distances’ between different parts of
the donut change, however the topological properties remain unchanged. For example, it
remains true that there is one hole in the middle. It is best to imagine, that topological
traits of a space remain invariant under pulling, stretching or squeezing a space: they are
invariant under ‘rubber-like’ deformations.

So what is topological string theory?

Topological string theory is a more simple (but still complicated) version of string the-
ory which one might imagine as the backbone of a ‘full’ string theory. Most of the states
(the flesh) are not described, only the states which are invariant under rubber-like defor-
mations are included (the bone): the topological states of the spectrum. Of course the
simplicity of the theory lies in this fact that only a small fraction of all states (states
might be read as particles, or more generally, branes, in this context) that exist in the
‘full string theory’ can be found within topological string theory. The theory only studies
a ‘mathematically well-behaved’ backbone of the full theory, without the flesh, yet very
interesting, as it does contain some ‘key information’. Topological string theory (at least
the case of interest) is six-dimensional, and describes a part of the states living in the six
extra dimensions. The core of the matter in this context lies in the fact, that one can use

9Some intuition on this, also including some connecting thoughts on the corresponding duality for
topological string theory, is beautifully described in the original publication, [89].
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this theory to compute sets of numbers counting ‘topological’ brane states, and this leads
right back to the core of the matter: degeneracies of black holes.

Before moving on to explain a slightly different topic, it seems fair to reveal some limits
of the considered setup to the reader. First of all, the class of black holes that is discussed
here, is very special. These black holes are, in the jargon of physics, extremal. This is a
restriction on charge in relation to mass, and at the same time they are supersymmetric.
This means that they are only toy models, and are certainly not a model for the black holes
one supposes to be out there, in the middle of our galaxy, or in neighboring star systems. At
the same time, the black holes which are addressed by the OSV conjecture are somewhat
special from the point of view of string theory, as one has chosen to use specific brane
charges (keeping the magnetic charge fixed, summing over electric charges – one can also
choose to study different black hole models): this is by no means the only possible setup
to perform studies. The ideas are promising, but in relation to understanding a quantum
black hole in a neighboring star system properly, the reader should imagine these studies
to be simple playgrounds in which to hopefully qualitatively understand some essential
features upon which to build more realistic studies. Having said this, it is time to move on
to present the second research program to which some of the author’s work is linked.

Fuzzballs instead of black holes

The second research program was initiated by Mathur and his collaborators, and is situated
(mostly) in five-dimensional compactifications of string theory. The picture that arises
from the original theoretical models of black holes, starting with the solution to Einstein’s
equations of general relativity, found by Schwarzschild around 1915, is a singularity (more
or less a point in the universe), where all the matter of a black hole is concentrated,
surrounded by an event horizon – recall that the event horizon is the boundary where the
region ‘of no return’ starts. As established in the 1970’s by Hawking and collaborators, a
black hole does not exist forever, but it radiates away energy, thereby losing mass. The
radiation can be imagined to leave the black hole at the event horizon, and one would
therefore expect that it never interacted with the matter located in the black hole itself –
as the latter is separated in space from the event horizon. Recall that this naive picture
of a black hole is a dot in the universe surrounded (at a distance called the Schwarzschild
radius) by a shell called the event horizon. This leads upon closer consideration to the fact
that information about the black hole is lost. In other words, a black hole radiating away
completely is a mechanism to destroy information, a loss of entropy. But that contradicts
one of the older and well-known laws of thermodynamics, namely that the total entropy
in the universe never decreases. It is this issue that apparently inspired Mathur and
collaborators to propose, that knowledge of quantum gravity alters this picture of black
holes. Rather, the matter inside a black hole should be spread out (imagine it as a sort
of foam). In fact, the black hole should be thought of as a superposition of microstates
that are all of a sort where the matter is not concentrated in a point. When averaging
over all of these geometries, the former picture of a black hole arises as an artefact, an
effective way of looking at the system. Individually, the single microstates do not contain
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a singularity (where the matter would be localized in a tiny point), and they are therefore
referred to as ‘smooth’. These microstates have been given the name ‘fuzzballs’, probably
referring to the ‘fuzzy quantum matter’ (a sort of foam) spread out somewhere in the
region between the would-be singularity at the center and the event horizon of the system.
If one takes the fuzzball idea seriously, a black hole is not really a black hole, but only
seems to be one. Actually, matter can leave the region that seems to be an event horizon
(therefore the hole is not really ‘black’), but statistically speaking it takes so long that
it appears not to be able to do so. The research program also involves a proposal of
how branes carrying integer charges are automatically split up into so-called fractional
branes inside the fuzzball states. Apparently, this allows a denser packing of matter (and
therefore entropy) than in any other way. Just like a diamond might be interpreted as
an extremely dense packed lattice, a black hole, or rather the superposition of fuzzballs
might be interpreted as the diamond of the universe: the most dense packaging of matter
and information possible. One might think of them as entropy maximizing objects, and
the fuzzball decomposition of the picture (the microscopic explanation of the macroscopic
object) offers a way of understanding how this maximization is possible. This concludes an
overview on the research context and is followed by a presentation of the author’s research
and how it fits in.

The black hole genome project

The author’s research presented in this thesis can be metaphorically interpreted as a pursuit
of a ‘black hole genome project’. This black hole genome project in string theory might
be seen as a analagous to the human genome project in microbiology. In fact, black hole
genome project goes at bit far, the results in this thesis might rather be translated into the
statement that genomes analagous to those of fruit flies are analyzed: namely, genomes for
point particles. In microbiology, studying simpler genomes (e.g. of the fruit fly, of yeast, or
of ‘roundworms’) can be seen as warm-up exercises for understanding the human genome,
and in the same way, the genome of a point particle can be seen as a ‘toy model’ for the
black hole case. It is time to take a closer look at the metaphor for the genome of a black
hole.

Polar states: the chromosomes of black holes

The ‘partition function’ of a black hole (of the type discussed, modeled with fixed magnetic
charge, and various ‘possible’ electric charges) is a mathematical object consisting of an
infinite sum of terms. Each term corresponds to a specific electric charge, and comes with
a number, counting the number of possible states with the given charges. It is easiest
to explain this more concretely, by giving a (strongly) simplified example. Imagine a
black hole with magnetic charge (this number is just randomly chosen for the example)
‘1000’, and various electric charges 1,2,3,... The black hole can thus be in the state with
magnetic/electric charge 1000/1, but it could also be in any other state, e.g. 1000/200.
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The quantum nature of the black hole lies in the superposition of these possibilites. The
partition function Z (partition functions are normally denoted with this letter) counts
all possible states of the black hole. It could be that there are 100 (this number was
again chosen at random for this example) possible states for the black hole with charges
1000/1 (magnetic charge 1000 / electric charge 1). These one-hundred states might arise
from different ways of distributing the electric charge across the magnetic charged brane.
Say, there could be 200 states with charge 1000/2. Again, this number ‘200’ arises from
the various possibilites of distributing the two electric charges across the magnetic brane,
and so on and so forth. In this case, the partition function for this black hole would be
something like Z = 100q + 200q2 + ..., where the dots indicate that an infinite number
of terms follow (for example, a term such as 15′000q20, which would mean that there are
15’000 possible states for a black hole with charge 1000/20). The number in front of a
term counts the number of states with a specific charge, while the exponent of the variable
q counts the electric charge of the state.

• The first crucial point in all of this however is, that it turns out that a partition
function is determined completely purely through mathematical knowledge about the
whole system by a finite set of terms, which are called polar states. In the example
considered it might be the case, that one only needs to know the first two terms (the
100 and the 200), and the rest would automatically be determined. One would then
automatically know that the series (e.g.) continues with 550q3 + 800q4 + .... This
would e.g. imply that one could predict that there are 550 possible states for the
black hole to have charge 1000/3, without having to count them.

• A second crucial point is, that (almost) all polar states are realized exclusively as
multicentered bound states. This means that the existence of (almost) all such polar
microstates can be inferred from examining split attractor flow trees.

These properties of black hole partition functions and the polar states were used by Denef
and Moore in 2007 to reformulate and refine the OSV conjecture stated above.

This leads to the suggested metaphor. For comparison, in microbiology, one is inter-
ested in the complete molecular structure of organisms. It is however sufficient to know
the ‘genetic code’, in this case, one can (e.g. for humans or fruit flies) analyze the pairs
of chromosomes and classify all possible genes. There are a finite total number of chro-
mosomes, which come in so-called ‘homologous pairs’, one chromosome from each parent
for each pair. Humans for example have 23 such pairs. Other organisms have a different
number of chromosomes, and in the same way the total number of polar states is different
for various D-particles (in this thesis there are particles e.g. with seven polar states, check
4.2, but there is also an example with two polar states, check section 4.4) 10. It is sug-
gested to think of polar states as chromosome pairs for black holes (or D-particles). When
these polar states are realized as bound states, they are modeled by a bound state of two

10Note that the ‘D’ in D-particles stands for the fact that the particles are geometrically modeled by
‘D’-branes wrapped around extra dimensions (this will be explained more in the next paragraph).
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higher-dimensional branes, which are ‘glued’ together by strings. Each of these branes can
be thought of as a chromosome. Topological string theory computes numbers which count
all possible states of such branes, they do in some sense classify the genome stored on one
such ‘parent chromosome’.

Figure 5.5: Polar states as black hole chromosomes: Left: A polar state is a bound
state of higher-dimensional D-branes. One ‘mother’ and one ‘father’ brane are glued to-
gether by tachyonic strings. Right: Chromosomes of organisms such as humans or fruit
flies come in (‘homologous’) pairs, one from each parent. Note that the chromosomes in
this figure have been doubled, which is not really accurate, but the reader will be more
familiar with this picture (see the explanations on meiosis for further details).

Point particles: the fruit fly of quantum gravity

Having discussed the models of black holes above, it is easy to explain how one obtains
the toy model point particles analyzed in this thesis. One just lowers the magnetic charge,
say in the example from 1000 to 1. As the mass of the system is tied to the total charge,
it turns out that such a system does not have enough mass anymore to form a black hole,
but it is just a point particle. A point particle however of which one has measured the
magnetic charge and which is realized as a ‘blurry superposition’ carrying various electric
charges, and also a ‘geometrized’ point particle of which the entropy is modeled by the
D-branes wrapped around extra dimensions. One can also refer to such a particle as a ‘D-
particle’, since the ‘inner’ degrees of freedom / the entropy of the particle reside within the
different possible states of the D-branes wrapped in the extra dimensions. In the light of
the previous paragraph, this suggests interpreting these D-particles as analogous to fruit
flies. Studying the partition functions for these particles is meant to be an instructive
exercise to gain a better understanding of black holes and their partition functions.

If one chooses minimal magnetic charge one, all polar states are in fact realized as perfect
pairs. Enumerating all polar states using split flow trees and the set of numbers computed
by topological string theory allows the writing down of exact mathematical expressions for
a couple of D-particles. A few such partition functions were known from studies by Gaiotto,
Strominger and Yin in 2006 and 2007, derived using a different technique, and also working
with a different ‘window into string theory’. In a collaboration with Andrés Collinucci, [3],
the author has derived such an example using the techniques explained here, namely using



192 Concluding discussion

Figure 5.6: Genomes in string theory vs. genomes in microbiology: Left: The
black hole genome appearing in polar states vs. humane genome appearing in chromosome
pairs. Right: Simpler study models; the D-particle genome realized as polar states vs. the
fruit fly genome appearing in pairs of chromosomes.

split attractor flow trees to establish the existence of polar states, and using a different set
of numbers computed by topological string theory to enumerate the ‘parent chromosome’
D-branes. In addition, non-trivial checks on the method were performed on non-polar
states (which are fully determined when all polar states are known), by also enumerating
such states using the same techniques. For this partition function, exact agreement with
the previous studies was found. It turned out however for non-polar states, that in order
to obtain exact results in general, a refinement of the computation prescription needed to
be developed. This will be the topic of the next paragraph. In another collaboration with
Walter Van Herck, [4], more partition functions were derived, and in fact, it was shown that
the refined prescription to enumerate the number of states is in fact correct, and also alters
some results on polar states, correcting one of the partition functions found by Gaiotto,
Strominger and Yin.

Meiosis and crossing-over for black holes

The degeneracy of a specific polar state is naively obtained by multiplying three numbers:
the number of states of the first ‘parent brane’, the number of ‘gluing strings’, and the
number of states of the second ‘parent brane’: this means that the total number of states
is assumed to factorize into three factors.

The analogy that will be made between this effect and an effect appearing in the meiosis
in biology requires the introduction of a few concepts. First of all, recall that for example
a human has 23 ‘homologous’ 11 chromosome pairs: a total of 46 chromosomes. As each
chromosome has a ‘partner’, one speaks of a diploid organism. Chromosomes carry many
different genes, which again allow variations, called alleles. For example, a gene for eye
color could have an allele ‘blue’, but also an allele ‘green’, etc. In reality, several genes
will affect an appearance such as eye color, but things are kept as simple as possible in
the current explanation. Not all genetic information is actually expressed, only a certain
part of it is really used. One might call this a specific state, belonging to the chromosome.
For example, a certain chromosome might allow for a billion different expressions, of which
one is rezlied at a specific moment in time. For the metaphor consider these billion states
as the microstates, the ‘inner degeneracy’ of the chromosome. The question one might
ask is, how many possible states a generation can pass on to the next. Naively one might

11The word homologous stands for non-identical, but carrying the same genes.
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just count the possible ‘states’ of the father chromosome pair, and multiply this with the
number of possible states of the mother chromosome pair (of course, this will be done for
each chromosome pair, separately). This is however not quite accurate, as there will also be
states, which one can imagine to be analogous to the special states of a constituent in a D-
brane bound state, as discussed previously. In order to understand this, some explanations
of the phenomenon of meiosis are needed.

Meiosis is an important mechanism for organisms performing sexual reproduction (such
as humans, fruit flies, or more generally, ‘eukaryots’). Within the process of reproduction,
genetic variability plays an important role. Put very simply, a good mixture of the possible
genes is an evolutionary factor for success. In meiosis, also called reductional divison,
genetic material is selected in order to pass it on to a next generation. Meiosis is also called
‘reductional division’, and basically consists of two cell divisions. Before the meiosis starts,
the human chromosomes are duplicated. For each pair, both the mother and the father
chromosome have been duplicated. To make this more concrete, consider the example of a
meiosis for humans. The two cell divisions, referred to as meiosis I and meiosis II, proceed
as follows:

• Meiosis I: The (duplicated) homologous chromosome pairs line up, and are split into
two. This means, that two cells are created (known as the daughter nuclei I), carry-
ing 23 duplicated chromosomes each. Note that the (duplicated) mother and father
chromosome pairs have been distributed randomly, amongst these two daughter cells.
This means, that a cell could (for example) contain 14 mother and 9 father chromo-
somes (and vice versa). This random selection of chromosomes from the parents is
one factor responsible for genetic variability and is referred to as interchromosomal
recombination.

• Meiosis II: In a next phase, the duplicated chromosome pairs are pulled apart, and
one chromosome is placed in a cell. In this way, four daughter nuclei II are created,
each carrying one simple set of 23 chromosomes. A cell of this kind is ready for
fertilization (e.g. a sperm cell). Upon fertilization, the next generation receives 23
chromomes from the mother, and 23 chromosomes from the father.

The mechanism of interchromosomal recombination is however not the only factor assuring
genetic variability, otherwise one would meet people who resemble each other to a remark-
able degree on a regular basis. Namely, in meiosis I, just before the duplicated homologous
chromosomes are split into two sets, they are neatly assembled, homologous pairs next to
each other. In fact, the pairs are brought into very close vicinity, and a phenomenon called
crossing-over, also known as intrachromosomal recombination, takes place. Crossing-over
refers to the process of exchange of pieces of the DNA on pair chromosomes. This means
that a piece is cut out on each chromosome, and the piece coming from the homologous
partner chromosome is built-in instead. It is at the core of genetic diversity.

Now, the question can be asked: how many possible microstates (in the sense of allele
combinations that are actually expressed) can be passed on to the next generation. One
might just multiply the number of ‘mother states’ with the number of ‘father states’.
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One would in this way however neglect the possibility of ‘special states’, namely those
based on an inherited cell formed by virtue of crossing-over. Without getting involved in
any microbiological details, let it be said, that a new combination of the former alleles,
resulting from a crossing-over, leads to ‘new microstates’. One thus has to deal with
the ‘special states’ (a result from some sort of interaction) separately, and the number
of possible states for the next generation does not factorize. One then needs to sum up
different combinations.

To reconnect to the author’s work, recall that for the polar states, the number of states
does not factorize. In this case, the branes never really perform a crossing-over, but the
number of tachyonic strings (whose specific existence does depend on both of the branes)
gluing the state together jumps. The number of states where the number of tachyonic
strings is as expected was called ‘generic states’, and the states on a brane giving rise to a
bound state with a different number of gluing strings were called ‘special states’. To make
this concrete, again consider the simple toy-example introduced above, and imagine that a
polar state with magnetic charge 1 and electric charge 2. It was said before that this polar
state had a degeneracy of 200, and imagine that this number came from e.g. 25*4*2, where
25 is the number of states of the mother brane, 4 is the number of tachyonic strings, and 2
is the number of father brane states. The procedure developed in this thesis might tell you
that there are actually five tachyonic strings stretching between the branes for 2 of the 25
mother brane states, and that the correct total number of states is therefore 23*4*2+2*5*2:
in other words, the number of states does not factorize, and although there are obvious
differences, one might denote this as a form of crossing-over, as the generic/special division
does depend on both parent branes, it is therefore a reflection of a form of interaction
between them.

Figure 5.7: Polar states, non-factorization and crossing-over: The number of glu-
ing strings between two branes is not independent of the states in which the two branes
reside. This ruins factorization of the total number of states for such a polar term. In
meiosis, homologous pairs of chromosomes are lined up and can exchange pieces of their
DNA (intrachromosomal recombination). This phenomenon is called crossing-over and is
depicted for the lower pair of chromosomes. This means that the number of (possibilities
to express the) genes, passed on to the next generation is not a simple product of possible
gene / allele combinations of each parent.
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Fuzzball chromosomes

A slightly different direction of research is presented in chapter 5 of this thesis. This chap-
ter is based on a collaboration with Joris Raeymaekers, Bert Vercnocke and Walter Van
Herck, [5]. A connection was established between the four-dimensional context of polar
states and the five-dimensional fuzzball program on black holes. Namely, we found an
explicit map between specific polar states and a set of fuzzball geometries. It could be
interesting to also model black holes in five dimensions, using a fixed ‘magnetic charge’
and varying over all possible ‘electric charges’. In a far-reaching sense, the research in
chapter 5 might therefore be interpreted as a pointer to ‘fuzzball chromosomes’. In any
case, it does relate ‘polar states’ in four dimensions to the type of geometries investigated
in five dimensions, in the context of the fuzzball research program.

The research presented in this thesis can be seen as a step towards a black hole / fuzzball
genome project. It is a task for the future to study more D-particles in order to establish
a more general picture of ‘generic’ and ‘special’ states of a constituent within a bound
state. It is especially interesting to see what can be learned from this refined procedure to
count D-particle microstates about black holes and, building on the developed connection,
about fuzzballs. As a simple goal one can state the finding of the meiosis for black holes /
fuzzballs. More generally, one would like to classify the genome of black holes / fuzzballs
and gain a better understanding of the wavefunctions describing these objects of crucial
importance within a theory of quantum gravity.





Appendix A

Basic definitions, conventions and
notation

Dimensions
Throughout this thesis, a capital D is used to indicate the total spacetime of a theory,
whereas a small d is used for indicating spacetime dimensions for a compactified theory.

Metrics in 10D or 11D are denoted with a capital G whereas metrics in 4d or 5d are
denoted with a small g.

Partition functions and central charges
For distinction, partition functions are consistently denoted by a calligraphic Z, whereas
central charges are always denoted by an ordinary Z.

A.1 Compendium on Calabi-Yau manifolds

Some basic properties of Calabi-Yau manifolds

On a complex manifold M, one calls a metric g that satisfies gij = gīj̄ = 0 a Hermi-

tian metric. As a consequence it can be written as g = gij̄dz
i ⊗ dz̄ j̄ + gījdz̄

ī ⊗ dzj. A
complex manifold allows a complex structure J : TM→ TM, J2 = −1. The hermiticity
condition can also be expressed as g(J(v1), J(v2)) = g(v1, v2). Given a Hermitian metric
on a complex manifold, one can define a (1, 1)-form according to

J = igij̄dz
i ⊗ dz̄ j̄ − igījdz̄ īdzj = igij̄dz

i ∧ dz̄ j̄. (A.1)

If this form is closed, dJ = 0, it is called a Kähler form, and the manifold is called
a Kähler manifold. This allows stating a definition for a Calabi-Yau manifold. In the
following, dimension always stands for complex dimension.
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Definition: Calabi-Yau manifold
A d-dimensional Calabi-Yau manifold is a compact, complex Kähler manifold
with SU(d) holonomy.

Sometimes this definition is relaxed, and one allows a holonomy group G ⊂ SU(d).
The strict SU(d) condition is then called ‘proper SU(d) holonomy’. There are a number of
equivalent definitions. Instead of using the definition through the holonomy of the metric,
one could have used either one of the following definitions. A CY d-fold is a compact
d-complex-dimensional Kähler manifold with:

• trivial canonical bundle, or, equivalently, a globally defined holomorphic (d, 0)-form,

• vanishing first Chern class c1 = 0,

• a Ricci-flat metric (Ricci tensor zero Rij̄ = 0), even though such a metric is in fact
not explicitly known for almost any CY-manifold (this is equivalent according to the
Calabi-Yau theorem stated below).

The reader can find simple proofs for the equivalence of these definitions e.g. in [167].
When reading this thesis, it probably seems most straightforward to stick to the definition
including the vanishing of the first Chern class.

According to the famous conjecture by Calabi from 1954, proven by Yau in 1976:

Calabi-Yau theorem:
A complex Kähler manifold with vanishing first Chern class (a Calabi-Yau manifold)
and with Kähler form J allows one unique Ricci-flat metric, whose Kähler form J

′

is in the same cohomology class as J .

The restriction on the general Kähler geometry simplifies the cohomology a lot. Namely,
it determines various cohomology groups to be one-dimensional, reflected in the Hodge
numbers h(0,0) = h(d,0) = h(0,d) = h(d,d) = 1, and some others are equal to zero. As the case
d = 3 is of most interest, the Hodge diamond of a CY-3-fold X shall be written out.

Dolbeault cohomology groups dimensions of a Calabi-Yau 3-fold

H0(X) = H(0,0)(X) 1
H1(X) = H(1,0)(X)⊕H(0,1)(X) 0 0
H2(X) = H(2,0)(X)⊕H(1,1)(X)⊕H(0,2)(X) 0 h(1,1) 0
H3(X) = H(3,0)(X)⊕H(2,1)(X)⊕H(1,2)(X)⊕H(0,3)(X) 1 h(2,1) h(2,1) 1
H4(X) = H(3,1)(X)⊕H(2,2)(X)⊕H(1,3)(X) 0 h(1,1) 0
H5(X) = H(3,2)(X)⊕H(2,3)(X) 0 0
H6(X) = H(3,3)(X) 1

Basis for the even degree cohomology H2∗(X) of a Calabi-Yau

The full even degree integer cohomology of X is

H2∗(X,Z) = H0(X,Z)⊕H2(X,Z)⊕H4(X,Z)⊕H6(X,Z), (A.2)
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and the basis is denoted by
(D0, DA, D̃

A, ω), (A.3)

where A = 1, ..., h(1,1). It was conciously introduced as the notation for the integer degree
cohomology, as this is mainly used in this thesis. When working in the pure supergravity
limits to the theories, one works with real cohomologies, Hk(X,R), and one could of
course use the same notation for that basis, too. In the following, the shorthand notation
Hk(X) = Hk(X,Z) will be adapted.

For H2(X,Z) the basis elements DA (A = 1, ..., h(1,1)) are introduced.Define also
DABC =

∫
X
DA∧DB∧DC , which is at the same time the intersection number belonging to

two-cycles. One can use a dual basis D̃B for H4(X) such that
∫
X
DA ∧ D̃B = δBA, where

of course D̃A =
∑

B,C D
BCDB ∧DC , using DBC := (

∑
ADABC)−1.

Basis for the even degree homology H2∗(X) of a Calabi-Yau

For the homology, one can use the Poincaré dual cycles as a basis. A hat is used to
denote a Poincaré dual element. Recall that a Poincaré dual cycle C = D̂ ∈ H6−k(X) to
a form D ∈ Hk(X) is defined through the relation∫

X

D ∧ ω =

∫
C

ω. (A.4)

Thus, one can denote the basis for (0, 2, 4, 6)-cycle classes inH2∗(X), with (1 = ω̂, ˆ̃DA, D̂A, X =
1̂). As this is obviously not a convenient notation, the dual basis will be written as

(1, DA, D̃A, D̃0). (A.5)

Note the subtle difference in where the indices stand, when comparing cohomology and
homology. Integrating forms over cycles of the appropriate dimension yields the relations∫

DB
DA = δBA ,∫

D̃B

D̃A = −δAB.

Basis for the odd degree cohomology H3(X) of a Calabi-Yau

For the cohomologyH3(X) one can choose a real symplectic basis (αI , β
I), (I = 1, ..., h(2,1)):∫

X

αI ∧ βJ = δI
J . (A.6)

Basis for the odd degree homology H3(X) of a Calabi-Yau



200 Chapter A. Basic definitions, conventions and notation

In complete analogy to what was stated for the even degree cohomology, for the dual
homology, the symplectic basis (AI , BJ) with I, J = 1, ..., h(2,1) is used. This basis is
formed with Poincaré dual 3-cycle classes. To avoid confusion, explicitly note that βI is
Poincaré dual to AI , and αI is Poincaré dual to BI . The intersection numbers thus read

AI ∩BJ = −BJ ∩ AI = δIJ ,

AI ∩ AJ = BI ∩BJ = 0, (A.7)

and the pairing of cohomology and homology elements is given by∫
AJ
αI =

∫
αI ∧ βJ = δJI ,∫

BJ

βI =

∫
βI ∧ αJ = −δIJ . (A.8)

As a side remark: note that it is exactly the group Sp(2h(2,1) + 2,Z) that preserves these
properties.

Algebraic Calabi-Yau varieties

This part of the appendix introduces some key concepts from algebraic geometry, Calabi-
Yau spaces as algebraic varieties and characteristic classes from the viewpoint of the frame-
work of algebraic geometry set up with algebraically closed fields 1. Studying algebraic CY
spaces is very convenient because this allows working with explicit examples.

Chern classes

The total Chern class c(X) =
∑n

i=0 ci(X) and the individual Chern classes ci(X) of a
space X are defined as the Chern classes of the tangent bundle TX . If the bundle TX is
differentiable, one can define the curvature of a connection A, F = dA+A∧A, and define
the total Chern class from the viewpoint of differential geometry, according to

c(TX) =c(X) = det(1 +
i

2π
F ),

=1 +
i

2π
TrF + ... (A.9)

=1 + c1(TX) + c2(TX) + ...

The i-th Chern class of a bundle can be interpreted as an obstruction to the existence of
(n−i+1) everywhere complex linearly independent vector fields, and lies in the cohomology
group H2i(X) of the base space X.

1Throughout this thesis this algebraically closed field will be the complex numbers C.
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The Hirzebruch-Riemann-Roch index theorem gives as an elegant way to compute the
Euler characteristic of a Calabi-Yau manifold using the Chern character and the Todd
class,

χ(X) =
∑
i

(−1)ibi =

∫
X

ch(X)td(X). (A.10)

Weighted projective spaces and one modulus CYs

A weighted projective space WCPN~w = WCPNw0,w1,...,wN
is defined as a space of N-tuples

(x0 : ... : xN) ∈ C. The space has homogeneous coordinates

(x0 : ... : xN) ≡ (λw0x0 : ... : λwNxN) 6= (0 : ...0), (A.11)

(∀λ ∈ C∗).
One can now embed a subspace X as a variety through the vanishing locus of n quasi-

homogeneous polynomials p1, ..., pn. Such a polynomial pi satisfies

pi(λ
w0x0 : ... : λwNxN) = λdipi(x0 : ... : xN), (A.12)

where di denotes the degree of the polynomial pi. Subvarieties are consistently defined in
this way, if the corresponding polynomials are transversal meaning that the matrix ( ∂pi

∂xj
)

has a constant rank n, and they are called complete intersections.
The adjunction formula states a relation between the canonical bundle KX of a hy-

persurface H, the normal bundle NX and the canonical bundle of the ambient space A,
KA|H . More precisely, the latter denotes the restriction of the canonical bundle to the
hypersurface H. It is based on the exact sequence

0→ TX → TA|X → NX → 0. (A.13)

The Whitney sum formula then allows to express the total Chern class of a hypersurface
as

c(TA|X) = c(TX)c(NX). (A.14)

This can be used to construct CY varieties as follows. Denote the pullback of the Kähler
form of the ambient space to the subvariety X by H. The adjunction formula then reads

N∏
i=0

(1 + wiH) = c(X) ·
n∏
j=1

(1 + djH). (A.15)

The first Chern class of X thus reads

c1(X) = (
N∑
i=1

wi −
n∑
j=1

dj)H, (A.16)

which requires one to set
N∑
i=1

wi =
n∑
j=1

dj (A.17)
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in order to obtain a CY. Having chosen the order of the polynomials defining a complete
intersection, one can easily calculate all the Chern classes and also the Euler character of
X, using the standard normalization for a weighted projective space∫

WCPN
~w

HN =
1∏N

j=0wi
. (A.18)

A simple model which is also used in this thesis extensively, is obtained by taking just
one polynomial p to define a hypersurface X in CP4. The previous equation leads to

c(X) · (1 + dH) = (1 +H)5|X = 1 + 5H + 10H2 + 10H3, (A.19)

from which one reads off that in order for the first Chern class c1(X) of X to vanish,
one needs to choose a degree five polynomial d = 5. The Calabi-Yau variety constructed
in this way is known as the quintic. One automatically also obtains c2(X) = 10H2 and
c3 = −40H3. By the Hirzebruch-Riemann-Roch theorem A.10, one now computes the
Euler character as an integral over the top Chern class

χ(X) =

∫
X

c3(X) = −40

∫
X

H3 = −200. (A.20)



Appendix B

Area code case studies on the quintic

This part of the appendix contains a more detailed study of the area code belonging to
two different charge systems on the quintic. As in [51], the w-plane is used to graphi-
cally represent the region of moduli space of interest. The w-coordinate is related to the
complex structure modulus ψ by w = ln(|ψ|+1)

ln(2)
ψ
|ψ| . The w-plane is a fivefold cover of mod-

uli space, and the normalization is chosen such that the five conifold point copies lie at
w = e2niπ/5 for (n = 0, ..., 4). In the illustrations in the appendix, beginning with figure
B.1, threshold walls are printed in black, walls of marginal stability for the first split in
blue, and flow branches in green, the five copies of the conifold point in red. A wall of
marginal stability between a D6-core and a D2-D0-halo will be printed as a dotted red line.

The state ∆q = 1, ∆q0 = −2 on the quintic

This section covers the area code of the non-polar system with q̂0 ≈ −0.31. Recall that
this charge system can be described as a D4-brane with half a unit of worldvolume of flux
turned on, additional worldvolume flux dual to a degree one rational curve, and one D0.
This corresponds to the total charge Γ = H + 7

10
H2 + 11

60
H3. One finds two different basic

types of split flow trees for this charge configuration.

The first will be called a type A-split, and it comes in two variants. These splits
come with three centers: a D6 with worldvolume flux H, a D6 with a D2 wrapped on a
degree one rational curve, and a D0. The two variants correspond to the placing of the
background on the two sides of the D0-threshold wall 1.

• If one starts above the TH wall, the D0 remains on the D6-side after the first split
(and then splits off to run towards the LCS point): this is denoted the type A1
variant. An example can be found on the left-hand side in figure B.1. Schematically:

(D4C1/D0) → (D6/D0) + (D6/D2)

→ (D6) + (D0) + (D6/D2).

1The ‘incoming branch’ of the flow tree does not cross the D0-TH wall.
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• When one starts the flow tree below the TH wall, the D0 binds to the D6-D2 after
the first split: this is referred to as the type A2 variant, and an example can be found
on the right-hand side in figure B.1. Schematically:

(D4C1/D0) → (D6) + (D6/D2/D0)

→ (D6) + (D6/D2) + (D0).
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Figure B.1: Left: Type A1 split. A split flow tree with the background above the
threshold wall. The incoming branch reaches a wall of marginal stability and splits into
D6-D0 and D6-D2. The D6-D2-branch then flows off to an attractor point outside of the
fundamental wedge, not shown in the figure. The D6 and the D0-brane split just slightly
below the wall after which the D0 flows off to the LCS point, and the D6 (with one unit of
worldvolume-flux) flows to a copy of the conifold point. Right: Type A2 split. A split
flow tree with the background below the threshold wall. The incoming branch reaches a
wall of marginal stability and splits into D6 and D6-D2-D0, after which the D6 flows to a
copy of the conifold point. The D0 split off and heads towards the LCS point, while the
D6-D2 runs off towards an attractor point outside of the fundamental wedge, again not
shown in the figure.

The second basic type of split will be called a type B-split and also comes with three
endpoints. However, this time, the D6 with flux H and the D6 do not carry any curves,
and their flow branches each end on a copy of the conifold point. After the first split,
the D2-D0 charge is on the D6-side, and then leaves the D6 at the second split point.
Schematically:

(D4C1/D0) → (D6) + (D6/D2/D0)

→ (D6) + (D6) + (D2/D0).

The important message is that the existence of this type of split is not influenced by the
threshold wall. 2

2It does however require the D6(core)-D2-D0 (halo) branch to reach the core-halo wall in order to be



205

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

Figure B.2: Left: Type B split with background above TH wall. A type B split
with the background chosen above the threshold wall (and not too close to the conifold
point). The charge splits into D6 and D6−D2−D0. The D6-branch flows to a copy of the
conifold point. The D2-D0 halo particle then splits off from the D6 and flows off towards
its attractor point outside of the fundamental wedge. The D6 also flows towards a copy of
the conifold point. Right: Type B split with background below TH wall. Example
of a type B split flow tree with the background chosen below the threshold wall.

Below the threshold wall the total index for this charge system is easy to calculate:

Ω = ΩA2 + ΩB = (−1)1 · 2 ·NDT(0, 0) ·NDT(1, 2) = −1′138′500. (B.1)

Note that the DT-invariant NDT(1, 2) counts all the D6-D2-D0 states, so this is the ap-
propriate enumeration for both the type A2 and the B flow trees. Had one not found the
type B flow trees, one would have been overcounting the states by using the DT invariant
to enumerate the number of BPS states belonging to the D6-branch.

Above the threshold wall, one finds a split flow tree of type A1 contributing, which is
enumerated as follows:

ΩA1 = (−1)1 · 2 ·NDT(0, 1) ·NDT(1, 1) = −1′150′000. (B.2)

However, one also has a type B flow tree above the wall, which explains why the two
naively equivalent indices, B.1 and B.2, do not match. The apparent discrepancy lies in
the fact, that, below the threshold wall, NDT(1, 2) counts both the A2 and the B flow
trees. Therefore the all flow trees starting below the threshold wall are taken care of by
this index.

When taking the background value of the modulus to start above the wall, the index
with NDT(0, 1) · NDT(1, 1) only counts the A1 split. One still needs to account for the

able to perform the second split (recall that the core-halo wall is plotted as a dotted red line in figure B.2),
which is the case if one does not start too close to the copy of the conifold point lying on the upper branch
cut boundary of the fundamental wedge. This latter fact would eventually lead to another topological
sector for the final area code of this charge system, but this subtlety will be ignored.
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B split, which also exists in this sector of the moduli space. In principle, one would not
directly know how to enumerate the type B split directly, but in this case one does know
that the total index cannot jump when crossing a wall of threshold stability. Therefore,
one can conclude that the type B split has to contribute +11′500 to the index above the
wall, allowing to also state −1′138′500 as the total index when placing the background
modulus above the threshold wall.

The state ∆q = 2, ∆q0 = −2 on the quintic

In this section, the area code for the system with q̂0 ≈ −1.11 is discussed. The total charge
can be obtained by considering a (pure fluxed) D4 with additional flux dual to a degree two
rational curve as well as one bound D0. This yields the total charge Γ = H+ 9

10
H2− 1

60
H3.

One finds three different flow trees for this system. Two of these and their area code behave
completely analogously to the system B, discussed previously. The only difference to the
previous case study is, that one is always dealing with a degree two instead of a degree one
curve, and as a consequence of this difference in charge, the corresponding but analogous
walls are slightly different.

One can again list the type A flow trees, two variants between which a threshold wall
interpolates.

• Above the TH wall, the D0 remains on the D6-side after the first split (and then
splits off to run towards the LCS point): this is denoted the type A1 variant. Such
a split flow can be seen on the left-hand side in figure B.3. Schematically:

(D4C1/D0) → (D6/D0) + (D6/D2)

→ (D6) + (D0) + (D6/D2).

• Below the TH wall, the D0 binds to the D6-D2 after the first split: this is referred to
as the type A2 variant. Such a split flow can be seen on the right-hand side in figure
B.3. Schematically:

(D4C1/D0) → (D6) + (D6/D2/D0)

→ (D6) + (D6/D2) + (D0).

Again, there is also a type B flow tree, the only difference to the previous case study
lies in the charge of the halo. As this is straightforward, it will not be discussed here.

However, there is a third type of flow tree for this charge system, which will be called
type C. It is extremely convenient to analyze this charge configuration in a background
where it is realized as a split flow with two end points. This specific realization of type C
split will be called a type C1. The first center corresponds to a D6-brane with flux 2H as
well as a D2 wrapped on a degree three rational curve. The second center corresponds to
a D6 with flux H. The type C1 split flow tree requires the background to be ‘very close’
to the wall of marginal stability between the two centers. An example of what is meant by
‘close’ can be seen in figure B.4.
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Figure B.3: Left: Type A1 split. A split flow tree with the background above the
threshold wall. The incoming branch reaches a wall of marginal stability and splits into
D6-D0 and D6-D2. The D6-D2-branch then flows off to an attractor point outside of the
fundamental wedge, not shown in the figure. The D6 and the D0-brane split just slightly
below the wall after which the D0 flows off to the LCS point, and the D6 (with flux H)
flows to a copy of the conifold point. Right: Type A2 split. A split flow tree with
the background below the threshold wall. The incoming branch reaches a wall of marginal
stability and splits into D6 and D6-D2-D0, after which the D6 flows to a copy of the
conifold point. The D0 splits off and heads towards the LCS point, while the D6-D2 runs
off towards an attractor point outside of the fundamental wedge.

However, when one moves the background further ‘upwards in the figure’ / ‘further
away’ from the wall of marginal stability, the first split point travels upwards ‘on the wall
of marginal stability’. At some point, this first split point would seemingly cross the upper
branch cut boundary of the fundamental wedge. This means that a topology change takes
place. The index of BPS states is not allowed to jump, but flow trees can develop new
branches. In the background region, where one finds the type C1 split flow tree, there is
no single flow. However, by moving the background to the right, the incoming branch runs
over the upper branch cut and then flows to an attractor point: a single flow enters the
spectrum. This means that this topology change can be thought of as a trade-off between
the C1 split flow tree and a single flow (and possibly also new, different split flow trees).
The contribution to the total index of BPS states cannot jump, when a topology change
occurs. This example fits in nicely with the interpretations of [51]. Running this topology
change in reverse, one could state: Starting in the background with the single flow, one
crosses a branch cut when trying to ‘pull the flow through the conifold singularity’, and
one actually creates a new branch of the flow tree.

To conclude, taking the background very ‘close to the wall of marginal stability’ between
the D6- and the D6-center, and also ‘close to the branch cut’ (the upper boundary of the
fundamental wedge), the total index for this charge reads:

Ω = ΩB + ΩC1 = ΩB + (ΩC − ΩC2) = 124′762′875 + 317′206′375 = 441′969′250. (B.3)
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Figure B.4: Type C1 split. After the first split, the D6 flows to a copy of the conifold
point, and the D6 with a D2 on a degree three rational curve runs off to an attractor point
outside of the fundamental wedge.

This index has to remain invariant when varying the background modulus without crossing
a wall of marginal stability. According to the preceding remarks, one can see this as an
interpolation between different topological sectors of moduli space (check figure B.5).
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Figure B.5: Topology change for the type C split. Left: Type C1. The charge supports
a split flow tree. The first center is a D6 with flux 2H and a D2 wrapped on a degree
three rational curve. The second center is a D6 with flux H. As one moves the background
modulus ‘upwards’ (‘further away’ from the marginal stability wall), the first split point
also moves upwards, until it hits the branch cut boundary. Right: Type C2, a single
flow. If one moves the background ‘too far’ upwards or ‘too far’ to the right, the incoming
branch hits the branch cut before reaching the wall of marginal stability. Instead, this flow
reaches an attractor point: a single flow enters the spectrum which is not supported in the
background region where one finds the split flow on the left-hand side.



Appendix C

Dimensional reduction and
truncation to the STU model

This part of the appendix contains the dimensional reduction of type II supergravity to
4d by compactification on T 6 as well as the truncation to the bosonic STU model action
(5.16) in the duality frame B. It will be convenient to first reduce to an intermediate duality
frame, which one can call frame B̃, where the U(1) fields are labeled as A0,A1,B2,A3 and
the charges are labeled as (p0, p1, p̃2, p3, q1, q̃2, q1, q0). The 10D interpretation of the charges
in frame B̃ is given in table C.1.

The frame B̃ differs from the frame B of table C.2 by an electromagnetic duality
transformation on the U(1) field B2. where P refers to momentum. It suffices to restrict
attention to a truncated IIB action containing only the metric, dilaton and RR 3-form:

S =
1

(2π)7α′4

∫
d10x

√
−G(10)

[
e−2Φ(10) (

R(10) + 4∂MΦ(10)∂MΦ(10)
)
− 1

12
F

(10)
MNPF

(10) MNP

]
.

(C.1)
A trivial dimensional reduction over the four-torus T2 × T3 ir performed, while allowing
the torus T1 to be nontrivially fibered over the four-dimensional base. One can start by
flipping the sign of Φ(10) and making a Weyl transformation (as one does in S-duality)

such that all terms in (C.1) have an e−2Φ(10)
factor in front. One can then perform the

dimensional reduction of this sector as discussed in [168]. The conventions used here match

q0 P (S4) p0 KKmon(S4)
q1 P (S5) p1 KKmon(S5)
q̃2 D1(S4) p̃2 D5(S4)
q3 D1(S5) p3 D5(S5)

Table C.1: The interpretation of the charge in an intermediate frame B̃.
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q0 P (S4) p0 KK5 (S5 × T2 × T3)
q1 P (S5) p1 KK5 (S4 × T2 × T3)
q2 D5 (S5 × T2 × T3) p2 D1 (S4)
q3 D1 (S5) p3 D5 (S4 × T2 × T3)

Table C.2: 10D origin of the charges in frame B

those of [169]. The following reduction ansatz is imposed

Φ(10) = −Φ− 1

4
ln det Ĝmn −

1

4
ln det Ĝij ,

G(10)
µν = (det Ĝ)−1/4

(
eΦGµν + 2β2e−ΦAm−4

µ An−4
ν Ĝmn

)
,

G(10)
µn =

√
2β(det Ĝ)−1/4e−ΦĜnpAp−4

µ ,

G(10)
mn = (det Ĝ)−1/4e−ΦĜmn ,

G
(10)
ij = (det Ĝ)−1/4e−ΦĜij ,

C(10)
µν = Cµν + 2β2Ĉ45(A0

µA1
ν −A1

µA0
ν) + β2(A0

µB2ν − B2µA0
ν) + β2(A1

µA3
ν −A3

µA1
ν) ,

C
(10)
µ4 =

√
2β(B2µ + Ĉ45A1

µ) ,

C
(10)
µ5 =

√
2β2(A3

µ − Ĉ45A0
µ) ,

C(10)
mn = Ĉmn . (C.2)

Here, M,N = 0, . . . , 9; m,n = 4, 5, i, j = 6, . . . 9 and x4, x5 are taken to parametrize S4, S5

respectively. The matrix Ĝij is a constant metric on T2 × T3 and the matrices Ĝmn, Ĉmn
can be conveniently parametrized as

Ĝmn = b3

(
a2

1+b21
b1

−a1

b1

−a1

b1
1
b1

)
,

Ĉmn =

(
0 a3

−a3 0

)
,

e−2Φ = b2 . (C.3)

The two-form Cµν can be dualized in four dimensions to give another scalar ã1:

da2 = b2
2 ? F , (C.4)

where the Hodge ? is to be taken with respect to the 4D metric Gµν and the three-form
field strength F is defined as

F = dC +
β2

2

(
A0 ∧ G2 + B2 ∧ F0 +A1 ∧ F3 +A3 ∧ F1

)
. (C.5)
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From the above expressions it is clear that z1 = a1 + ib1 is the complex structure modulus
of T1, z2 = a2 + ib2 is the 4D axion-dilaton and z3 = a3 + ib3 is the complexified Kähler
modulus of T1.

In these variables, one finds the 4d action

S =
1

16πG4

∫
d4x
√
−G
[
R− 2

3∑
A=1

∂µz̃
A∂µ ¯̃zA

(z̃A − ¯̃zA)2

+
β2

2
ImÑIJF IµνFJ µν +

β2

4
ReÑIJεµνρσF IµνFJρσ

]
, (C.6)

after performing the dimensional reduction, with the matrix Ñ given by

Re(̃N ) =


0 0 −a2 0
0 0 0 −a2

−a2 0 0 0
0 −a2 0 0

 ,

Im(Ñ ) =


− b2(a1

2+b12)(a3
2+b32)

b1b3

a1b2(a3
2+b32)

b1b3
−a1a3b2

b1b3

a3b2(a1
2+b12)

b1b3
a1b2(a3

2+b32)
b1b3

− b2(a3
2+b32)
b1b3

a3b2
b1b3

−a1a3b2
b1b3

−a1a3b2
b1b3

a3b2
b1b3

− b2
b1b3

a1b2
b1b3

a3b2(a1
2+b12)

b1b3
−a1a3b2

b1b3
a1b2
b1b3

− b2(a1
2+b12)
b1b3

 .

The 4-dimensional Newton constant G4 is given by

G4 =
8π6(α′)4g2

(2π)2R4R5VT2×T3

, (C.7)

where g denotes the string coupling in 10 dimensions.

To go to the duality frame B of table C.2, where the U(1) fields are labeled asA0,A1,B2,
A3 and the charges are labeled as (p0, p1, p2, p3, q1, q2, q3, q0), one has to perform an electro-
magnetic duality on the field B2. After this duality, the action takes the form (5.16) with
the matrix N related to Ñ given above by a symplectic transformation

N = (C +DÑ )(A+BÑ )−1 , (C.8)

with

A = D =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 ; B = −C =


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

 . (C.9)
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Explicitly, one finds

Re(N ) = −


2 a1 a2 a3 − (a2 a3) − (a1 a3) − (a1 a2)
− (a2 a3) 0 a3 a2

− (a1 a3) a3 0 a1

− (a1 a2) a2 a1 0

 ,

Im(N ) = −


b1b2b3 + b1b2a2

3
b3

+ b1b3a2
2

b2
+ b2b3a2

1
b1

−a1 b2 b3
b1

−a2 b1 b3
b2

−a3 b1 b2
b3

r − a1 b2 b3
b1

b2 b3
b1

0 0
−a2 b1 b3

b2
0 b1 b3

b2
0

−a3 b1 b2
b3

0 0 b1 b2
b3

 .

This is indeed the standard form of the matrix N in the STU-model derived from the
prepotential through (5.17). The U(1) field B2 is related to the AI through

dB2 = ImN2J ? FJ + ReN2JFJ . (C.10)

Summarized, the reduction formulae read

e2Φ(10)

=
b2

b3
,

ds2
10 =

1√
b2b3

ds2
4 +
√
b2b3Mmn(dxm +

√
2βAm−4)(dxn +

√
2βAn−4) +

√
b2

b3
ds2

T2×T3
,

Mmn =
1

b1

(
(a1)2 + (b1)2 −a1

−a1 1

)
,

C(10) =
1

2
Cµνdx

µdxν + a3(dx4 −
√

2βA0) ∧ (dx5 −
√

2βA1)

−
√

2β dx4 ∧ B2 −
√

2β dx5 ∧ A3 + β2
(
A0 ∧ B2 +A1 ∧ A3

)
,

da2 = (b2)2 ? F ,

F = dC +
β2

2
(A0 ∧ G2 + B2 ∧ F0 +A1 ∧ F3 +A3 ∧ F1) . (C.11)



Appendix D

Nederlandse samenvatting

Lezers interesseren zich voor verschillende aspecten van deze thesis. Evenals dit in het
begin van de introductie werd gedaan, zal ook hier hulp worden verleend aan de lezer bij
zijn zoektocht, en (in het ideale geval) tonen waar hij meer informatie kan vinden over
onderdelen die hem bijzonder interesseren.

Drie delen van deze thesis zijn niet alleen toegankelijk voor de natuurkundige, maar
voor iedereen:

1. De introductie: in de introductie verklaart de auteur de algemene context waarin zijn
onderzoek mag worden gesitueerd. Ten eerste wordt het onderzoeksgebied ‘snaarthe-
orie’ geschetst. Dit wordt gevolgd door een klein overzicht met betrekking tot het
onderwerp ‘zwarte gaten’. De lezer vindt in deze Nederlandse samenvatting veel in-
houdelijke overeenstemming met de introductie; de laatste gaat echter iets dieper in
op dezelfde onderwerpen.

2. De conclusies: Terwijl de meer gespecialiseerde lezer aparte en meer wetenschappeli-
jke introducties, samenvattingen en discussies kan vinden aan het begin en het einde
van elk hoofdstuk, zijn de conclusies bedoeld om begrijpelijk te zijn voor een meer
uitgebreid publiek. Met name wordt het door de auteur verrichte onderzoek middels
een metafoor geduid. Het onderzoek over zwarte gaten wordt vergeleken en analoog
geschetst aan het bestuderen van genomen in de microbiologie. De gemaakte analo-
gieën zijn geenszins perfect, maar ze maken het mogelijk om het werk van de auteur
vanuit een intuitieve benadering in een eenvoudige taal aan de lezer over te brengen.

3. De Nederlandse samenvatting in de appendix: (Dit is waar de lezer zich nu bevindt.)

Het hoofddeel van deze thesis bestaat uit vijf hoofdstukken. De eerste drie introduceren
de context in vaktaal, waarin het onderzoek van de auteur zijn plaats vindt. Deze hoofd-
stukken verschijnen in de volgorde naarmate van specialisatie van de behandelde onderw-
erpen, lopend van algemeen naar meer specifiek. De twee daarop volgende hoofdstukken
(4 en 5) omschrijven de belangrijkste onderzoeksresultaten van de auteur.
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Allereerst zal de algemene context van dit onderzoek worden uiteengezet (snaartheorie
en zwarte gaten), gevolgd door een meer specifieke metaforische interpretatie van de re-
sultaten die de auteur heeft gevonden. Ten slotte vindt men vanaf D.3 in de Nederlandse
samenvatting ook een meer gedetailleerd overzicht over de specifieke inhoud van deze thesis.

D.1 Snaartheorie en zwarte gaten

Men zou misschien het historische verschijnsel ‘unificatie’ (het verklaren van verschillende
fysische fenomenen door gemeenschappelijke onderliggende wetten) als een drijfveer kunnen
beschouwen voor de zoektocht naar een kwantumtheorie van alle vier bekende fysische
krachten. De huidige situatie omtrent de unificatie van theorieën binnen de theoretische
fysica zou als volgt kunnen worden samengevat:

• De microkosmos: De drie krachten (waaronder elektromagnetisme) die de microkos-
mos overheersen, worden allemaal omschreven door middel van kwantumveldentheo-
rieën. Deeltjes krijgen in deze theorieën de interpretatie van propagerende storingen
van kwantumvelden, en alle deeltjes vallen in één van de twee fundamentele klassen:
fermionen, met een halftallige spin (een kwantummechanisch draaimoment): bijvoor-
beeld een elektron, én bosonen, met een heeltallige spin: bijvoorbeeld een foton.

• De macrokosmos: De zwakste van de krachten, de gravitatie, is de enige die op heel
grote ruimteschaal een rol speelt. Gravitatie wordt omschreven door de Algemene
Relativiteitstheorie, een klassieke veldentheorie, die ongeveer tussen 1907 en 1916
door Albert Einstein werd ontwikkeld.

Men zou graag willen beschikken over een theorie, die zowel de micro- als de macrokosmos
kan omschrijven. Snaartheorie is daarvoor een veelbelovende kandidaat. In een poging om
snaartheorie te onderscheiden van pre-snaar natuurkunde, kan de paradigma-verschuiving
worden gebruikt van een punt-deeltje naar een snaar (een object met een dimensie meer).
Alle deeltjes welke in de microkosmos bestaan zijn dan verschillende modes van een fun-
damentele, vibrerende snaar. Dit is vergelijkbaar met de manier waarop een toon ontstaat
op een viool. Dit voorstel onderstreept de gemeenschappelijke oorsprong van deeltjes. In
1995 werden echter verschillende ontdekkingen gedaan die de overheersende rol van de snaar
zouden relativeren. Het blijkt namelijk, dat snaartheorie noodzakelijkerwijs ook objecten
van verschillende andere dimensies (naast 0-dimensionale punt-deeltjes en 1-dimensionale
snaren) bevat, aan welke de naam ‘branen’ werd gegeven. Een punt-deeltje (0-braan) en
een snaar (1-braan) zijn dus alleen speciale gevallen binnen een rijk spectrum van objecten,
waaronder er ook hoger dimensionale objecten zoals 2-branen, 3-branen, etc. kunnen wor-
den gevonden. Een voor menigeen vreemd verschijnsel, zeker voor wie er de eerste keer mee
wordt geconfronteerd, is, dat snaartheorie een totaal aantal van 10 of 11 dimensies vereist.
Dit is noodzakelijk voor haar innerlijke consistentie. De lezer kan zich de voorstelling
maken, dat een andere keuze voor het totaal aantal dimensies direct zou impliceren, dat
vele berekeningen onzin opleveren, in de zin dat de gevonden resultaten oneindig zijn. Dit
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betekent wederom, dat een snaartheoreticus gedwongen is om een verbinding te scheppen
tussen de 10 (of 11)-dimensionale wereld op het papier en de 4-dimensionale ruimtetijd
welke men in het dagelijkse leven ondervindt. Een gebruikelijke werkwijze is om zes di-
mensies ‘compact’ (dat wil zeggen heel klein) te kiezen, en de vier dimensies, welke men
in het dagelijkse leven ervaart, groot te houden.

Een kwantumveldentheorie van alle vier krachten, daaronder ook de kwantumgraviteit,
wordt onder meer belangrijk, als men de natuurkunde van het heel vroege universum wil
omschrijven, maar ook als men modellen van zwarte gaten wil ontwikkelen. Het onderzoek
dat in deze thesis wordt omschreven, richt zich op de zwarte gaten, zoals ze kunnen worden
beschouwd binnen het kader van de snaartheorie. Hieronder zal daarom meer uitleg over
zwarte gaten worden gegeven.

Het breekpunt van de kwantumgravitatie: zwarte gaten

Zwarte gaten als theoretische entiteiten werden tijdens de eerste wereldoorlog ontdekt door
Karl Schwarzschild. Zulk een zwart gat is een oplossing van de Einstein vergelijkingen van
de Algemene Relativiteitstheorie (ART), die gravitatie omschrijft als de kromming van de
ruimtetijd. In het bijzonder dwingt een massief object de ruimtetijd in zijn nabijheid te
krommen. De term ‘zwart gat’ heeft betrekking op een gebied van de ruimtetijd dat zo
dicht wordt gekoloniseerd door materie, dat de ruimtetijd daardoor een dusdanig sterke
kromming ervaart, dat er uit dat gebied geen ontkomen meer is. De ‘rechte banen’ in zo
een gekromde ruimtetijd-achtergrond leiden namelijk niet weg van het zwart gat. Dit is net
zoals een rechte baan in de 4-dimensionale ruimtetijd voor een planeet in de buurt van een
ster een cirkelvormige beweging is, en niet, zoals men misschien zou kunnen verwachten,
die planeet gewoon laat wegglijden van de ster: dit laat zien hoe de 4-dimensionale, ge-
ometrische herinterpretatie van de gravitatiekracht werkt. Dit geldt ook voor de snelst
bewegende entiteit binnen het universum: het licht. Omdat geen licht van een zwart gat
wordt uitgezonden, lijkt het object ook zwart. Ergens in de buurt van een zwart gat is er
een zone waar geen ontsnappen meer mogelijk is, genoemd ‘waarnemingshorizon’.

In de jaren zeventig van de 20e eeuw maakten Stephen Hawking en medewerkers de
voorspelling dat de hoeveelheid aan onzekerheid, die met de daadwerkelijke toestand van
een zwart gat verbonden is, proportioneel is met het oppervlak van de waarnemingshori-
zon. Deze onzekerheid wordt in de natuurkunde entropie genoemd, en wordt gemeten door
het aantal toestanden in welke zich een zwart gat zou kunnen bevinden. Dit zou men
graag ook expliciet willen verklaren door alle mogelijke ‘microtoestanden’ van een zwart
gat te vinden. Het klassieke beeld van een zwart gat is alleen een zwarte bal zonder verdere
kenmerken. Daarom is het een belangrijk doel binnen een theorie van kwantumgravitatie
om de entropie van een zwart gat microscopisch te verklaren. Dit zou inhouden om voor
een bepaalde entropie van een zwart gat (dat wil zeggen een bepaald oppervlak van de
waarnemingshorizon) alle microscopische toestanden te vinden, om zo alle mogelijkheden,
welke voorspeld worden door de entropie-berekeningen, ook te zien. Binnen de snaarthe-
orie is dit voor een bepaalde klasse van zwarte gaten ook gebeurd. Zwarte gaten binnen
de snaartheorie (ten minste de supersymmetrische, die binnen de snaartheorie beter zijn
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begrepen) kunnen gemodelleerd worden door branen op de ‘extra’ (opgewonden, compacte)
dimensies te zetten, zodanig dat men een punt (of iets wat een beetje groter wordt dan een
punt) observeert vanuit een vierdimensionaal perspectief. De verschillende mogelijkheden
om deze branen op de extra dimensies te zetten levert dan de (microscopisch verklaarde
en ‘geometriseerde’) entropie van een zwart gat op.

Gespleten attractor stromen

Het concept van ‘gespleten attractor stromen’, dat in de titel van deze thesis opduikt,
vergt enige verklaring. Er werd al gezegd dat zwarte gaten binnen de snaartheorie door
branen worden gemodelleerd die om extra dimensies worden gewikkeld. Dit laat toe om
te verklaren dat een speciale klasse van zwarte gaten de geometrie van de extra dimensies
sterk beperkt. Om een zwart gat te modelleren kan men namelijk de vorm en de grootte
van de extra dimensies op een oneindige afstand van het zwarte gat kiezen, maar het
zwarte gat eist dan een bepaalde geometrie op alle eindige afstanden van het zwarte gat
zelf, in het bijzonder ook bij de waarnemingshorizon. Zou men een licht andere geometrie
op oneindige afstand kiezen, blijft de geometrie bij de waarnemingshorizon invariant. Er
bestaan specifieke grootheden die de geometrie bij de waarnemingshorizon ‘meten’, en die
worden bij de horizon naar attractor-waarden gedreven. Daarom spreekt men ook over
het attractor-mechanisme voor zwarte gaten. Zou men deze waarden voor de geometrieën
in beeld brengen, in functie van een radiële coördinaat (een simpel zwart gat is radiaal-
symmetrisch), dan vormen de waarden een lijn (in de ruimte van mogelijke ‘veld-waarden’),
beginnend bij de waarde op oneindige afstand, en eindigend bij het attractor punt. Deze
lijn noemt men ook, om dit van de nog te bespreken gespleten attractor stromen te onder-
scheiden, een ‘enkele stroom’.

Het blijkt echter dat ook zwarte gaten met meerdere centra, zogenaamde multicenter
zwarte gaten, van groot belang zijn binnen de snaartheorie. Zulke multicenter zwarte gaten
zijn gebonden toestanden van ‘gewone’ zwarte gaten (gewoon betekent hier: met één cen-
trum). Een gelijkaardig attractor mechanisme is ook van toepassing op deze multicenter
zwarte gaten, maar een ‘stroom-lijn’, beginnend bij de waarde op oneindige afstand, splitst
(misschien zelfs meerdere keren). Er bestaat één ‘eind-tak’ per centrum, dat eindigt bij
een met het centrum geassocieerd attractorpunt. Voor elk centrum omschrijft het attractor
punt (de ‘vorm of grootte’ van) de geometrie van de extra dimensies bij de waarnemingshori-
zon. De grafische representaties van de geometrieën worden ‘gespleten attractor stromen’
genoemd, en er bestaat een vermoeden dat ze een bestaanscriterium vormen voor multicen-
ter zwarte gaten. Eén klasse van multicenter zwarte gaten speelt een bijzonder belangrijke
rol in deze thesis. Deze zullen als chromosomen van zwarte gaten worden geduid binnen de
aangekondigde metafoor, waarvan gebruik zal worden gemaakt om het onderzoek van de
auteur te bediscussiëren. Deze opmerking onderstreept het belang van gespleten attractor
stromen voor dit werk.
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D.2 Het genoomproject voor zwarte gaten

De metafoor die nu zal worden uiteengezet, verklaart het door de auteur verrichte onderzoek
door een analogie te trekken tussen zwarte gaten binnen de snaartheorie en mensen binnen
de microbiologie. Meer specifiek wordt er een voorstel gedaan van een ‘genoomproject
voor zwarte gaten’, dat analoog is aan het menselijke genoomproject. Dit deel kan worden
gezien als een voor een leek toegankelijke uiteenzetting van de hoofdstukken 3 tot 5.

Dit doctoraatsproject is gericht op het opdoen van verdere kennis over zwarte gaten. In
het bijzonder werden systemen van zwarte gaten onderzocht in compactificaties van type
II snaartheorieën. Het verrichte onderzoek valt binnen de context van twee grotere onder-
zoeksprogramma’s, die allebei verbazingwekkende uitspraken doen over de kwantumnatuur
van zwarte gaten.

Golffuncties voor zwarte gaten

In 2004 verscheen een publicatie van drie snaartheoretici (Ooguri, Strominger en Vafa),
waarin dat de auteurs een vermoeden formuleerden, welke nu bekend staat onder de naam
‘OSV hypothese’. Hoewel de volgende omschrijvingen niet volledig correct zijn, zou het
voor de lezer een paar centrale ideeën begrijpbaar moeten maken. Het vermoeden is gefor-
muleerd voor een heel specifieke klasse van zwarte gaten. Met name zijn het zwarte gaten,
die met verschillend geladen branen worden gemodelleerd. Terwijl sommige braan-ladingen
als magnetisch worden beschouwd, gelden andere als elektrisch. Een zwart gat is dusdanig
gebouwd, dat het als superpositie van verschillende microtoestanden kan worden gere-
aliseerd, waarbij de totale magnetische lading voor alle toestanden vast wordt gehouden,
terwijl alle mogelijke elektrische ladingen worden gerealiseerd.

In de afgelopen jaren is duidelijk geworden dat multicenter zwarte gaten centraal zijn
voor de notie van entropie van zwarte gaten. Gespleten attractor stroom technieken werden
ontwikkeld om het bestaan van multicenter zwarte gaten te onderzoeken, of – microscopisch
– om het bestaan van gebonden toestanden van snaren en branen te onderzoeken. Het on-
derzoek kan in een bredere context van twee vermoedens worden gezet. De eerste is de
‘OSV hypothese’, die een relatie tussen de partitie functie van een zwart gat en de topol-
ogische snaren schept. De tweede is het ‘fuzzball voorstel’ dat een voorstel doet over de
kwantumgravitationele natuur van zwarte gaten, dat hopelijk een resolutie zal blijken te
zijn van de informatie paradox voor zwarte gaten. De OSV hypothese stelt dat de golf-
functie van zo’n zwart gat (magnetische lading vast, variabele elektrische lading) wordt
gegeven door de partitiefunctie van de topologische snaartheorie, |ψblackhole〉 = Ztop. Dus
telt blijkbaar, op welke manier dan ook, topologische snaartheorie microtoestanden van
zwarte gaten. (De lezer die meer wil weten over wat het woord ‘topologisch’ en in het bi-
jzonder ook ‘topologische snaartheorie’ betekent, wordt geadviseerd om in de ‘concluding
discussion’ te lezen, waar hij meer details zal vinden.)
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Fuzzballs in plaats van zwarte gaten

Het tweede grote onderzoeksprogramma werd door Mathur en zijn medewerkers begonnen,
en wordt vooral in vijf-dimensionale compactificaties van snaartheorieën bestudeerd. Het
beeld van zwarte gaten, dat wordt gesuggereerd door de Algemene Relativiteitstheorie,
zoals bijvoorbeeld door de Schwarzschild-oplossing, is een singulariteit (min of meer een
puntje binnen het universum), waarin al de materie die een zwart gat vormt, is geconcen-
treerd. Dit puntje wordt dan (op een eindige afstand) omrand door de waarnemingshorizon.
Zoals in de jaren zeventig werd aangetoond door Hawking en zijn medewerkers, bestaat
een zwart gat echter niet voor altijd, maar het straalt en verliest daardoor materie. Men
kan zich voorstellen dat de straling het zwart gat bij de waarnemingshorizon verlaat en
dat zij daarom ook nooit met de materie in een directe wisselwerking kwam – dit omdat
de materie op een afstand zit van de waarnemingshorizon. Dit betekent wederom dat het
stralen van een zwart gat een mechanisme zou opleveren om informatie in het universum te
vernietigen, een stelling die een directe tegenspraak oplevert met de tweede hoofdwet van
de thermodynamica, namelijk dat de totale entropie binnen het universum alleen toe- en
nooit afneemt. Het was deze ontdekking die Mathur blijkbaar de inspiratie heeft geleverd
om het voorstel te doen, dat kennis van de kwantumgravitatie deze visie zal veranderen.
Men zou zich volgens het fuzzball-voorstel een zwart gat beter kunnen voorstellen als een
verzameling van materie, die binnen de waarnemingshorizon over het hele gebied is ver-
spreid. Volgens het fuzzballprogramma moet men zich een zwart gat voorstellen als een
superpositie van microtoestanden, welke allemaal zodanig zijn bepaald, dat de materie niet
in een punt is gelokaliseerd. Als men over alle geometrieën middelt, ontstaat een zwart gat
zoals men zich dat op de conventionele manier voorstelt, als een soort artefact van deze
middelings-procedure, als een ‘effectieve’ omschrijving van het systeem. Alle individuele
microstoestanden bevatten geen singulariteit (waar de materie zou gelokaliseerd zijn). Ze
worden daarom ook ‘glad’ genoemd. Deze microtoestanden hebben de naam ‘fuzzballs’
gekregen (wat op hun ‘fuzzy’, kwantum-natuur wijst). De fuzzball-materie is verspreid is
over het hele gebied tussen het midden van het systeem en de waarnemingshorizon. Als
men het fuzzball-idee serieus neemt, is een zwart gat niet echt een zwart gat, maar lijkt
er alleen één te zijn. In feite kan materie namelijk altijd het door de waarnemingshorizon
omgrensde gebied verlaten, alleen gebeurt dit statistisch gesproken zo langzaam, dat het
lijkt alsof de materie niet in staat zou zijn dat te doen.

Het genoomproject voor zwarte gaten

Het door de auteur verrichte onderzoek mag metaforisch worden beschouwd als een streven
naar een ‘genoomproject voor zwarte gaten’. Dit project binnen de snaartheorie zou als
analoog kunnen worden bekeken aan het menselijke genoomproject binnen de microbiolo-
gie. De in deze thesis gepresenteerde resultaten kunnen beter worden vertaald naar een
ontdekking van genomen voor fruitvliegen. Het bestuderen van eenvoudigere organismen
binnen de microbiologie (e.g. de fruitvlieg) kan als opwarm-oefening worden bekeken voor
het vormen van een beter begrip van het genoom voor mensen. Op dezelfde manier kan het
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bestuderen van een simpeler, maar analoog gevormd systeem (tegenover een zwart gat), in
dit geval een puntdeeltje, tot beter begrip leiden van het ‘genoom voor zwarte gaten’.

Polaire toestanden: de chromosomen van zwarte gaten

De partitiefunctie van een zwart gat (van het type met vaste magnetische lading en verschil-
lende mogelijke elektrische ladingen) is een wiskundig object, dat uit oneindig veel termen
bestaat (zie wederom voor een nauwkeurigere verklaring van deze noties in de ‘concluding
discussion’). Hierover kan men twee cruciale conclusies trekken.

• De eerste cruciale vaststelling is, dat een partitiefunctie volledig wordt bepaald door
een eindig aantal termen, welke de polaire toestanden worden genoemd.

• De tweede cruciale vaststelling houdt in dat bijna alle polaire toestanden alleen door
multicenter toestanden worden gerealiseerd.

Dit betekent, dat de vraag naar het bestaan van bijna alle polaire microtoestanden kan wor-
den beantwoord door het bestuderen van gespleten attractor stromen. Deze vaststellingen
werden door Denef en Moore in 2007 gebruikt om een herformulering (en een nauwkeurigere
formulering) van de OSV conjecture te vinden.

Dit maakt de weg nu vrij om de aangekondigde metafoor uiteen te zetten. Om te
vergelijken: de interesse binnen de microbiologie is gericht op de complete moleculaire
structuur van organismes. Het is echter voldoende om de genetische code te kennen; men
kan namelijk in dit geval (bijvoorbeeld voor mensen of voor fruitvliegen) alléén naar de
chromosomen kijken en deze analyseren om alle genen te klassificeren. Er bestaan in totaal
een eindig aantal chromosomen, welke in zogenaamde ‘homologe paren’ optreden, waaron-
der één chromosoom afkomstig is van elke ouder. Mensen vertonen bijvoorbeeld 23 paren
van chromosomen. Andere organismes hebben een verschillend aantal chromosomen, en op
dezelfde manier hebben verschillende deeltjes of zwarte gaten binnen de snaartheorie een
verschillend aantal polaire toestanden. Daarom wordt voorgesteld om polaire toestanden
als chromosomen van zwarte gaten (of puntdeeltjes) te interpreteren. Als deze polaire toe-
standen worden omschreven als gebonden toestanden, worden ze gemodelleerd door een
gebonden toestand van D-branen, die worden samengelijmd door snaren. Elk van die twee
branen kan worden beschouwd als een chromosoom. Topologische snaartheorie telt toes-
tanden van zo’n braan, en klassificeert dus het genoom op een chromosoom.

Hoe kan men dus de resultaten van deze thesis interpreteren? Ten eerste werd het genoom
van verschillende puntdeeltjes binnen de snaartheorie bestudeerd, en exacte resultaten
werden gevonden. Dit gebeurde door het bestuderen van polaire toestanden (dit zijn
altijd gebonden toestanden van twee puntdeeltjes) middels gespleten attractor stromen.
Ten tweede werd in deze thesis ontdekt, dat het totaal aantal toestanden, dat met een
gebonden polaire toestand overeenkomt, niet als een product mag worden berekend, dat
wil zeggen: niet als het product van het totaalantaal toestanden van een centrum, ver-
menigvuldigd met het totaal aantal toestanden van het andere centrum, maal het aantal
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toestanden van de snaren, die de twee centra aan elkaar vastlijmen. Bij een nadere studie
blijkt namelijk, dat de toestanden van de twee centra niet totaal onafhankelijk zijn, en er
een soort wisselwerking van de twee centra plaatsvindt. Dit wordt in de metafoor als een
intrachromosomale recombinatie binnen de meiose geinterpreteerd (meer daarover in de
‘concluding discussion’).

Een ander deel van de onderzoeksresultaten die in deze thesis werden gepresenteerd,
vormt een samenhang tussen de twee geschetste grotere onderzoeksprogramma’s. In hoofd-
stuk vijf wordt een afbeelding van vier-dimensionale polaire toestanden op vijf-dimensionale
fuzzball-geometrieën uitgelegd. Dit kan vanuit de metafoor worden beschouwd als een uit-
leg over wat men zou kunnen bedoelen met ‘chromosomen voor fuzzballs’ (indien men zou
beslissen om een bepaalde klasse van fuzzballs te bestuderen: vaste magnetische lading en
verschillende elektrische ladingen).

D.3 Inhoudelijk overzicht van deze thesis

Introductie
In de introductie vindt de lezer eenvoudige verklaringen voor het situeren van deze thesis en
verder ook discussies over theorie en experiment omtrent het onderwerp van zwarte gaten
heden ten dage. Drie van de vijf aansluitende hoofdstukken leiden vanuit de grondbegin-
selen van de snaartheorie naar een punt waarop het afgewerkte onderzoek van de auteur
aansluit.

Hoofdstuk 1: Compactificaties van de snaartheorie
Het eerste hoofdstuk zet de algemene context uiteen van het onderzoek binnen de snaarthe-
orie. Compactificaties van type II snaartheorieën (met een bijzondere aandacht voor
compactificaties op Calabi-Yau variëteiten) worden gepresenteerd vanuit het perspectief
van wereldvlakken van snaren, maar ook vanuit het ruimtetijd-perspectief van de laag-
energetische type II supergravitatie. De effectieve vier-dimensionale supergravitaties, hun
veld-inhoud en geometrieën worden doelmatig bediscussiëerd. Ook worden een paar rele-
vante beginselen voor branen en meer algemeen voor het supersymmetrische spectrum van
toestanden in type II snaartheorieën besproken.

Hoofdstuk 2: Zwarte gaten in de snaartheorie en gespleten attractor stromen
Het tweede hoofdstuk leidt de lezer, die inmiddels bekend is met zwarte gat oplossingen,
naar het modelleren van zwarte gaten met branen binnen de snaartheorie. Het attractor
mechanisme evenals de techniek van gespleten attractor stromen wordt in detail uitgelegd.
De essentie van dit hoofdstuk vormt de discussie van de ‘split attractor flow conjecture’,
welke het vermoeden bevat (opgesteld door Frederik Denef en medewerkers), dat gespleten
attractor stromen bestaanscriteria zijn en een classificatie toestaan voor gebonden (BPS)
toestanden, niet alleen binnen de supergravitatie, maar ook binnen de hele snaartheorie.
Op het einde van het hoofdstuk wordt entropie van zwarte gaten besproken.
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Hoofdstuk 3: Topologische snaren, gespleten toestanden en spiegelsymmetrie
Een korte introductie en overzicht omtrent de belangrijkste principes van de topologische
snaartheorie vormen het begin van het derde hoofdstuk. Daarna wordt de reeds genoemde
‘OSV hypothese’ gepresenteerd, die een verbinding legt tussen partitiefuncties van zwarte
gaten en van de topologische snaartheorie. De centrale technieken voor het tellen van
braan-toestanden voor de twee centra van gebonden toestanden, zoals door Denef en Moore
ontwikkeld, worden toegelicht. Het hoofdstuk wordt afgerond met een presentatie van de
gebruikte spiegelsymmetrie, die een gelijkwaardigheid postuleert van type IIA snaartheo-
rie op een Calabi-Yau variëteit en van type IIB snaartheorie op een andere, zogenaamde
spiegel-Calabi-Yau variëteit.

Hoofdstuk 4: Elliptic genera, gespleten attractor stromen en Donaldson-Thomas parti-
tions
Het vierde hoofdstuk toont de vermoedelijk belangrijkste resultaten van het afgesloten
onderzoek afkomstig uit samenwerkingen met Andrés Collinuci en Walter Van Herck. Ob-
jecten worden gemodelleerd met type IIA of IIB snaartheorie-compactificaties op Calabi-
Yau variëteiten. Er worden Calabi-Yau’s gekozen welk als hypervlakken in ‘gewogen pro-
jectieve ruimtes’ worden ingebed. Aan de ene kant worden voor een punt-deeltje met
minimale magnetische (D4-braan) lading en variërende elektrische (D2/D0-braan) lad-
ing op een aantal Calabi-Yau’s alle polaire toestanden geteld met attractor stromen en
Donaldson-Thomas invarianten. Aan de andere kant worden verschillende niet-triviale
consistentie-checks doorgevoerd voor niet-polaire toestanden. Voor kleine ladingen spelen
instanton-correcties voor de centrale ladingen een belangrijke rol. Exacte centrale ladingen
voor bepaalde braansystemen worden met spiegelsymmetrie gefundeerd. Vanuit een on-
nozele manier van kijken factoriseren moduliruimtes voor tachyonische snaren, die de twee
centra aan elkaar vastknopen. De niet-triviale fibratiestructuur van de moduliruimte van
een gebonden toestand wordt uitgelegd en verfijnde indices worden berekend. Een veelheid
aan exacte resultaten wordt op deze manier gereproduceerd. De resultaten onderbouwen
het ontwikkelde raamwerk en leveren sterk bewijsmateriaal voor een sterke versie van de
‘split attractor flow tree conjecture’ van Denef en Moore. Bovendien staat deze behan-
deling toe om ‘partitions’ van Donaldson-Thomas invarianten in te brengen, die tussen
algemene en speciale D6-D4-D2-D0 (de ladingen van de verschillende centra) toestanden
onderscheiden.

Hoofdstuk 5: 5d Fuzzball geometrieën en 4d polaire toestanden
Dit hoofdstuk presenteert onderzoeksresultaten die in samenwerking met Joris Raeymaek-
ers, Bert Vercnocke en Walter Van Herck werden gevonden. Er werd samenhang aange-
toond tussen multicenter zwarte gaten in 4d type IIA compactificaties, waarvan het bestaan
door gespleten attractor stromen werd onderzocht, en 5d fuzzball geometrieën in type IIB
compactificaties.

Concluding discussion
De lezer kan in deze slotbeschouwing een metaforische interpretatie vinden van het door
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de auteur verrichte onderzoek. Dit stuk vertoont veel overeenkomsten met delen van de
voorliggende Nederlandse samenvatting, maar bevat meer detail.

Appendix
De appendix houdt aan de ene kant vele korte definities van wiskundige structuren in, die
in deze thesis voorkomen. Aan de andere kant worden enkele zeer technische berekenin-
gen getoond, die echter voor het begrip van de hoofdtekst niet essentieel zijn. Daaronder
vindt men in detail enkele bijzonder ingewikkelde attractor stromen en het tellen van
overeenkomstige microtoestanden van braanladingen op de quintic Calabi-Yau. Bovendien
is er een dimensionele reductie te vinden, die in het kader van het fuzzball-onderzoek werd
toegepast. Ten slotte vindt de lezer voorliggende Nederlandse samenvatting.
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