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Abstract

A scalable quantum computer requires high-�delity qubits arranged in a 2D array

to form a fault-tolerant quantum error correction code. One of the challenges in

implementing such a system is the large number of leads per qubit used to create,

control and readout the qubit. By utilising the natural con�nement potential of

P-donors in silicon, we can integrate single-gate RF readout into existing control

gates with a minimum gate density of 2 gates per qubit. This thesis investigates the

realisation of singlet-triplet qubits in silicon using P-donor qubits with minimal gate

density.

We created a coupled singlet-triplet Si-P qubit device with scanning tunnelling

microscope (STM) lithography with only 2 gates per qubit. Using a custom designed

electrostatic model with a charge-stability diagram simulator we designed and char-

acterised electrostatic couplings in this device. Using a triangulation technique, we

not only veri�ed the physical locations of the dots but were able to identify the loca-

tion of charge traps in the device and correlate them with STM images to determine

their cause. Using single lead RF read-out we demonstrated an inter-dot tunnel cou-

pling of 39 GHz, with a s0-t− decay time of 2 ms, and a large inter-qubit coupling of

5 GHz.

We then focused on the development of two compact RF sensors. The �rst, an

RF single-lead quantum dot (SLQD) sensor used the nonlinear quantum capacitance

to detect charge movement ∼100 nm away. A nanoscale Si-P SLQD patterned using

STM-lithography demonstrated a sensitivity equivalent to an integration time of

550 ns to detect a single charge with a signal-to-noise ratio of 1. We then extended

this work to a single-gate RF sensor and demonstrated single-gate single-shot RF

spin readout for the �rst time. We achieved a readout �delity of 85.77% at a 3.3 kHz

bandwidth and showed how to extend this to >99% �delity.

Finally, we discussed the theoretical development of scalable singlet-triplet archi-

tectures using P-donor qubits. We focussed on speci�c device parameters required

for high-�delity single and two qubit gates and how to integrate these into 1D and

2D arrays.
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Chapter1
Motivation and thesis organisation

Chemical sciences has a great impact on human society by providing exotic technolo-

gies ranging from contributions such as that in renewables, medicine and agriculture.

However, the methods to create new materials with exotic properties tend to be em-

pirical and employ random heuristics. It is di�cult to know the optimal chemical

compositions required for speci�c outcomes as simulations tend to be computation-

ally expensive. In fact, even the simple crystalline unit-cell cannot be solved or

simulated exactly given current computational technologies. For example, consider

a 3 × 3 × 3 cube of atoms that may represent a cubic unit-cell in a crystal. If one

were to study the magnetic properties and dynamics of strongly interacting electrons

on all 27 atoms, then one needs to store 227 values to represent the answer and an

additional 227 × 227 values to store the matrix that needs to be diagonalised dur-

ing the computation. The raw memory usage to store the matrix of values is 64

petabytes (if using 32-bit �oating-point numbers); approximately quarter the 250

petabyte storage capacity of the most powerful supercomputer at the time of writing

the thesis1. With the computational complexity of diagonalisation using SVD (sin-

gular value decomposition) being O(n3) [1], one would require in the order of 200

days of computation time2. With nonlinear dynamics of general molecules requiring

multiple diagonalisations, the idea of exactly simulating larger and more complex

chemical compounds a priori using conventional computers is unrealistic. The rea-

son for the large computational complexity is a result of the large state-space that

a heavily entangled quantum state may traverse during its time evolution. Thus,

the solution to solve systems governed by quantum mechanics is to build a computer

1The data is based on the top supercomputer Summit as catalogued by the TOP500 project
2An optimistic lower bound estimate given the approximately 148.6 peta�ops in computation

speed (1 FLOP is one �oating point operation per second) of the fastest supercomputer Summit.

1
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that speci�cally exploits quantum mechanics to solve computational problems as �rst

proposed by Feynman [2]. Further interest gathered in quantum computing when

explicit algorithms were developed to solve a certain class of useful problems; most

notably the Shor's algorithm [3] for integer factorisation and Grover's algorithm [4].

Experimental work to date has shown the formation and control of qubits (a two-

level system representing a unit of quantum information) with some cases explicitly

implementing the Shor's algorithm to factorise small integers [5�7]. However, no-

body has created a full-scale quantum computer that can solve useful commercial

problems that cannot be achieved on a classical computer. One of the key issues is

that quantum information is di�cult to isolate as any interaction the qubit has with

another particle from its environment will disperse its quantum information. Thus,

a lot of e�ort goes into the research and development of creating isolated qubits and

then having them interact to perform inter-qubit gate operations without interact-

ing with the environment. However, even with the creation of high quality isolated

qubits, the required error rates to compute useful algorithms with multiple qubits

is prohibitively low and thus, one requires many qubits to build up redundancy

and lower the e�ective error rate. Current state-of-the-art quantum error correction

codes propose up to 108 qubits, where the redundant physical qubits collectively form

approximately 4000 logical qubits to demonstrate Shor's algorithm in factorising a

2000-bit number [8]. A current challenge in creating a useful quantum processor

therefore lies in creating high �delity qubits that are isolated from their environment

and high-�delity two-qubit gate operations that can scale up to millions or billions

of interconnected physical qubits. There are now signs of signi�cant investment into

the realisation of a useful quantum processor with higher qubit numbers reported.

A startup IonQ has claimed up to 160 qubits [9] in a trapped ion quantum computer

while IBM and Google have claimed up to 50 qubits [10] and 72 qubits [11] when us-

ing superconducting transmon qubits. Despite this, a fault-tolerant implementation

where the use of redundant qubits showed a dramatic decrease in the qubit error

rates is yet to be demonstrated.

One possible approach in which to eventually realise a scalable and useful quan-

tum computer is to make qubits using electron spins trapped in nano-scale quantum

dot structures [12�18]. With the electron spins operated under cryogenic temper-

atures, one suppresses interactions the qubits may have with their environment.

Quantum dot implementations are in their infancy requiring the latest nanofabri-

cation technologies to reach device sizes .10-100 nm. As such, they have not yet

shown low enough qubit error rates as seen in their trapped ion systems or supercon-

ducting counterparts. Experimental and theoretical results however suggest that the
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strong interactions between qubits, unique to quantum dots due to the close prox-

imity of the qubits [19], should enable error rates comparable to that of trapped ion

implementations while allowing fast gate operations comparable to that found with

transmon qubits. As with ion traps and superconducting qubits, quantum dots do

not have a straightforward method to scale up to many qubits. One signi�cant ob-

stacle is the gate density required to create and control the small nano-scale qubits.

For example, with gate-de�ned GaAs quantum dots the gate density can extend up

to 11 gates per qubit [14]. However, a class of quantum dots using atoms such as

P-donors in silicon do not require extra con�ning gates to create the quantum well

that traps the electron spin qubit and o�ers a pathway to signi�cantly reduce the

gate density. Whilst the use of atomic qubits is still in its infancy, a lot of e�ort has

been made to develop the fabrication techniques to be able to atomically place both

single and multiple P-donors in quantum dot qubits in speci�c locations in silicon

using hydrogen-mask STM (scanning-tunnelling-microscope) lithography [15, 20�27].

Utilising the advantages of the lower gate density in P-donor qubits, a pathway has

been mapped out to scale up to many qubits in a 2D array with gate densities of
√
n

for n qubits [28]. This 2D Si-P surface code architecture requires great uniformity of

qubit placement as the low gate density was achieved by sharing a given gate across

many qubits.

This thesis considers an alternate proposal using two-electron singlet-triplet qubits

(rather than single-spin qubits) in which one may scale up to many qubits using

atomic qubits in silicon with a gate density of two gates per qubit. Since every qubit

has its own set of control gates, the fabrication precision of the qubits is relaxed

as each qubit can be independently tuned to overcome potential o�sets or device

defects. Furthermore, a key development in the thesis was the reduction of the gate

density by replacing the conventional 3-lead qubit sensor (the single electron tran-

sistor) with a single-gate RF (radio frequency) sensor that takes up no additional

space real-estate in the nano-scale device as it integrates directly into pre-existing

control gates in the device. Here, we demonstrated single-shot single-gate RF spin

readout for the �rst time.

The thesis is divided into four main results chapters including a theoretical pro-

posal for a scalable singlet-triplet qubit architecture. These are outlined below:

� Design and realisation of a quadruple quantum dot device in Si-P

capable of hosting two singlet-triplet qubits [29]. This chapter covers

the theoretical modelling and optimisation of a coupled singlet-triplet device.

Capacitance modelling simulations and a custom charge stability diagram sim-
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ulator were used to simulate multiple P-donor quantum dots in silicon. A

quadruple quantum dot device designed to host 2 singlet-triplet qubits (across

2P-2P and 3P-4P donor double quantum dots) was then fabricated in Si-P

using STM lithography and measured in a dilution fridge. The device was

characterised using a TJCS (tunnel junction charge sensor) and a single-gate

RF sensor. A triangulation technique using charge stability diagrams and

�nite-element models was developed to verify the location of all four quan-

tum dots. Interestingly, this technique was also used to identify the location

and source of a nearby charge trap; something that will provide useful infor-

mation in fabricating further devices. A singlet-triplet spin state was formed

between the 3P-4P dots and the singlet to triplet-t− lifetime (which limits

the available RF sensor measurement time) was measured to be 2 ms; much

larger than previously measured (60 ns [30]), owing to our design to reduce the

coupling of the quantum dots to their reservoirs. Furthermore, the improved

electrostatic model for larger P-donor quantum dots was successfully bench-

marked against experimental measurements of the gates' di�erential lever-arms

and the inter-qubit coupling. The device provided a large inter-qubit coupling

of 5 GHz, optimised for fast high-�delity two-qubit gate control. We found

that the device had too transparent a tunnel barrier between the dots hosting

the singlet-triplet qubit such that the exchange J between the dots could not

be turned o�. However, the electrostatic control demonstrated in this device

suggested that with inter-dot tunnel couplings less than 10 GHz, it would be

possible to use this design to achieve a high-�delity singlet-triplet qubit.

� Theoretical and experimental development of a compact RF SLQD

(single-lead-quantum-dot) charge sensor [31]. This chapter outlines the

advantages of RF techniques, and the possibility to reduce the lead count of a

conventional SET charge sensor to a single lead with a dedicated quantum dot.

The operation of the SLQD was �rst modelled theoretically to both under-

stand the nonlinear components of the SLQD response and to �nd the optimal

regimes of operation. This includes the �rst predictions of a saturation in the

SLQD response at high input RF powers away from the linear regime to achieve

larger readout signal strengths. The SLQD sensor was then fabricated using

STM lithography to pattern a Si-P device and the theoretical predictions were

experimentally veri�ed. The SLQD sensor was shown to operate with peak

sensitivity (using a 244.8 MHz RF resonator with an e�ective quality factor

of approximately 100) and shown to detect charge movement approximately
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44 nm away. Indeed we show how the SLQD can act as a long range (∼100 nm)

compact high-�delity charge sensor for P-donor qubits in silicon where typical

qubit sizes are within 12 nm.

� Theoretical and experimental development of a scalable single-gate

RF singlet-triplet sensor [32]. Following on from the SLQD sensor we out-

line the developments of a single-gate RF sensor that requires no dedicated

lead (and in this case no dedicated quantum dot) and integrates directly into

the pre-existing control gates within the device. To understand the optimal

operating regimes, the single-gate RF sensor was modelled theoretically using

Hamiltonian modelling of the `adiabatic quantum capacitance' and `tunnelling

capacitance' modes of operation. A unique feature of this modelling is the

investigation into the use of larger input RF voltage amplitudes to enter the

nonlinear capacitance regime. Although the RF response does not saturate

as with the SLQD sensor, the analytic models provided important bounds for

optimal operation in both the adiabatic quantum capacitance (where the driv-

ing frequency must be much smaller than the tunnel coupling frequency) and

in the tunnelling capacitance (driving frequency must match twice the tunnel

coupling frequency) regimes. The single-gate RF sensor was used to measure

a 6-electron singlet-triplet state with a 39 GHz tunnel coupling across a 3P-4P

double quantum dot separated by approximately 12.5 nm. The device design

allowed us to extend to the singlet to triplet-t− relaxation time to 2 ms. The

resonator circuit was then optimised for maximal readout signal strength, by

increasing the internal quality factor of the RF resonator by replacing the

surface mount chip inductor with a custom low-loss NbTiN superconducting

inductor with an internal quality factor of ∼800. Using this single-gate RF sen-

sor, we achieved single-shot readout for the �rst time with a �delity of 85.77%

at a 3.3 kHz readout bandwidth; thereby con�rming we could make sensitive

measurements of the electron spins without a�ecting the spin dynamics of the

qubit state under measurement. The results implied the compatibility of the

single-gate RF sensor with the large-scale qubit architectures proposed in this

thesis.

� Fundamental design and optimisation of high-�delity single and two

qubit gates for scalable 1D and 2D arrays of singlet-triplet qubits

using Si-P. In the �nal results chapter, we use the detailed understanding of

Si-P devices obtained from experimentally benchmarked electrostatic models

to optimise critical device parameters (such as the inter-dot tunnel coupling,
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the inter-qubit coupling and the operational points in qubit exchange) for one

and two qubit gates using singlet-triplet qubits. We focus on the CZ gate �-

delity under the presence of charge noise, since it can be used to realise both the

ZZ and XX parity measurements required in the fault-tolerant surface code.

A unique aspect of the modelling developed, lies in the exploitation of the

large inter-qubit couplings present in Si-P quantum dots due to their small

size and close packing when compared to equivalent gate-de�ned quantum dot

implementations. Most works in the literature involving two-qubit gates with

singlet-triplet qubits have been in the pertubative (with respect to the inter-dot

tunnel coupling) inter-qubit coupling regime [33�35]. Using the electrostatic

models developed with the optimal device parameters established for high �-

delity single and two qubit gates, we propose scalable 1D and 2D singlet-triplet

qubit arrays using P-donors in silicon.

Looking forwards, we have proposed scalable designs that require 2 gates per qubit

with each qubit hosted on asymmetric 1P-2P donor quantum dots. It is important to

investigate the nuclear spin dynamics in P-donors to ensure a stable magnetic �eld

gradient (across the quantum dots) and that the system migrates to isotopically

puri�ed 28Si to minimise magnetic noise from the substrate. Whilst there are still

technical challenges, this thesis provides both a guide and critical understanding

in the choice of device parameters required for scalable singlet-triplet architectures

using P-donors in silicon and provides a roadmap ahead.



Chapter2
Architectures for singlet-triplet qubits

in Si-P

In developing a scalable architecture for a solid-state quantum computer, a qubit

structure with a low lead density is desirable as it reduces the interconnect crosstalk

and complexity [36, 37]. Solid state qubits exist on the nano-scale and must be placed

in close proximity to each other at the nano-scale to enable high-�delity inter-qubit

gate operations. Typically, each solid state qubit requires leads to perform qubit

operations, qubit initialisation, qubit readout and, in some systems, to form the

qubit trapping potential itself. This can lead to a very large lead density with

challenges to route all gate electrodes under the constraints of limited space and

reduce inter-lead crosstalk.

The qubit unit-cell proposed in this thesis eliminates the need for additional

con�ning gates (to form the qubit trapping potential) by using P-donors in sili-

con. The P-donors' Coulombic potential well naturally con�nes the qubit electrons.

The nuclear spin-half P-donors can also be used to encode long-lived qubit informa-

tion [38, 39]. Additionally, the spin-half P-donor nuclei can be polarised to form local

magnetic �eld gradients for qubit control [40, 41]. Importantly, the gates required for

conventional qubit sensing structures are eliminated by integrating the sensor into

one of the pre-existing mandatory gates in the device (see Section 3). The result is

a linear array of qubit unit-cells that only requires two leads per qubit as shown in

Figure 2.1. Since each quantum dot in this unit-cell has a matching gate, one has

a full degree of freedom in controlling the electrostatic potentials of each individual

dot. Thus, the proposed qubit architecture does not compromise qubit tunability or

require the large device uniformity of architectures where any single gate is tasked

7



8 Chapter 2. Architectures for singlet-triplet qubits in Si-P

Qubit
Unit-cell

Reservoirs (to load electrons)

Detuning gates (to control qubits)

Double
quantum dots
(to host qubits)

Figure 2.1: Proposed architecture to host a linear array of singlet-triplet qubits
using Si-P quantum dots. The qubits are arranged in a linear array of qubit unit-cells
each consisting of a reservoir (to load electrons), a detuning gate (for qubit control) and
a double-quantum dot to host a two-electron singlet-triplet spin qubit. Single qubit gates
are performed by moving electrons between a given double-quantum dot (Pauli-x rotations
when the electrons are on separate dots and Pauli-z rotations when the electrons are pushed
towards the same dot) while two-qubit gates are mediated via the electric dipole coupling
between adjacent double quantum dots.

with controlling many quantum dots simultaneously [28]. The singlet-triplet qubit

unit-cell was developed in this thesis by taking advantage of the features unique to

STM patterned P-donor dots1. An initial geometry was investigated using a simple

electrostatic model. Based on these simulations, a quadruple quantum dot device

was fabricated using P-donor quantum dots in silicon [29]. To characterise the de-

vice, an electrostatic triangulation method was developed and implemented to verify

that the four P-donor dots were present. The geometry enabled independent control

of all four dots with the ability to load electrons onto each of the four dots. In addi-

tion, the proposed unit-cell geometry was shown to be compatible with a linear array

of singlet-triplet qubits by demonstrating a strong inter-qubit coupling (required for

two-qubit gates) of 5 GHz between adjacent double quantum dots. Finally, a singlet-

triplet spin state across one of the double quantum dots was read out in single-shot

using RF technology as discussed later in Section 3.

1The small size of the P-donor dots enables close qubit packing, thereby allowing stronger inter-
qubit interactions. In addition, local P-doped leads patterned as close as 11 nm to the quantum
dots enables greater gate tunability (in the form of a greater gate-to-dot lever-arm α) of electrons
on the quantum dots when compared to larger gate-de�ned quantum dot counterparts.
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2.1 Introduction to quantum dot spin qubits

A qubit is a controllable two-level quantum system where information is embed-

ded into the overall, possibly superposed, quantum state. In spin-based quantum

computing, the two-level system is that due to the particle's spin. For example, in

single-spin qubit proposals, the two-level system is an electron or nuclear spin that is

either aligned or anti-aligned with an applied magnetic �eld. One may concatenate

multiple spinful particles to create a larger state-space upon which a two-dimensional

subspace acts as an enhanced qubit such as the singlet-triplet qubit which has a qubit

subspace protected from global magnetic �eld noise [12�14, 42]. In all cases, there is

a need to trap and isolate a single spin from the environment.

2.1.1 Con�nement potential for qubits

It can be shown from Maxwell's equations that electrostatic �elds cannot have a

global minimum upon which charge may settle; coined Earnshaw's theorem [43].

However, one may still have saddle points, which if rotated (via two orthogonal coils

producing AC sinusoidal electric �elds in a con�guration known as a `rotating Paul-

trap') can form an electric �eld minimum that may trap charge [44�46]. Another

method to circumvent Earnshaw's theorem is to restrict the degrees of freedom in

which the electron may reside. In the case of gate-de�ned quantum dots such as that

in GaAs or SiGe, a thin doped layer within the heterostructure creates a plane of high

electron mobility in which electrons are restricted to form a two-dimensional-electron-

gas (2DEG). With one degree of con�nement provided freely by the heterostructure

formed on the semiconductor substrate, one may use surface gates (on a layer above

the 2DEG) to provide static electric �elds that con�ne the electrons laterally in the

2D plane to a small area [13, 17, 47]. On tuning the gates, the con�nement potential

of the quantum dot can be modi�ed to allow a single electron to be trapped. The

nearby gates can then be used to shape the con�nement potential to manipulate the

electron spin qubits and couple adjacent qubits. In this way, gate de�ned quantum

dots o�er tunability in terms of system parameters such as electron-electron exchange

coupling J , but come with the disadvantage that they have a high gate densities that

can tally up to 11 gates per qubit [14]. Ultimately, the higher the gate density, the

more likely there will be a problem in scaling up to many qubits due to the fanning

out of the large number of gate lines.

One method to reduce the gate density in semiconductor qubits is to use atom

donors in the silicon substrate. The donors naturally trap electrons in their atomic



10 Chapter 2. Architectures for singlet-triplet qubits in Si-P

valence bands of Coulombic potentials. However, this advantage comes at the cost of

reduced qubit tunability. For example, the inter-dot tunnel rate between two donor

quantum dots is set upon fabrication and cannot be strongly tuned using a gate like

with gate-de�ned quantum dots [13, 14]. This is because the inter-dot distances for

donor quantum dots are in the order of 12 nm and thus, any gate that tunes the

tunnel barrier (and not the on-site potentials of the dots) will need to be near the

centre of the double quantum dot; at this point the gate is too close to the quantum

dots and the gate electrons will interfere with the qubit state.

2.1.2 Types of quantum dot spin qubits

With the electrons con�ned within their Coulomb potential wells, one must create a

two-level system in which to manipulate. One simple two-level system is to apply a

magnetic �eld. The electron spin will Zeeman split into two states to form a `single-

spin' qubit: an excited state with the spin anti-aligned with the magnetic �eld and

the lower energy ground state aligned with the magnetic �eld. This magnetic �eld

naturally gives a Hamiltonian with a Pauli-z term that lets it precess the spin about

the z-axis (de�ned as the direction of the applied magnetic �eld). To get Pauli-x

terms in a similar way, one would need to tilt the magnetic �eld. However, magnetic

�elds are generated by large coils which will have large inductances that forbid quick

changes in the magnetic �eld. A more elegant solution is to create the magnetic �eld

via an electromagnetic wave, for RF pulses can be switched on and o� quickly. Known

as electron spin resonance (ESR), a sinusoidal time-varying perpendicular magnetic

�eld, which if the frequency matches the Zeeman energy splitting, performs Pauli-x

operations [48]. This yields the spin-qubit Hamiltonian:

Hspin-qubit =
geµeBz

2
σz +

geµeBx
2

cos(ω0t)σx, (2.1)

where ge is the gyromagnetic ratio for electron spins, µe is the Bohr magneton,

Bx is the orthogonal magnetic �eld strength, Bz is the global magnetic �eld and

ω0 is the driving frequency of the orthogonal RF drive. When the drive frequency

matches the Zeeman splitting, ~ω0 = geµeBz/2, the Hamiltonian yields pure x-

rotations when the system is in the so-called `weak-driving' regime [49]: geµeBx �
geµeBz + ~ω0 = 2geµeBz. In the case of semiconductor quantum dots, this involves

integrating a metal antenna in close proximity to the qubits [16, 50]. Similar qubit

control has been shown using low-loss superconducting coplanar striplines where the

ability to achieve higher current densities in the antenna enables larger amplitude

driving �elds [51]. The challenge in using antennas lies in obtaining a large enough
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magnetic drive amplitude at the location of the electron spin (typically only up to

∼1 MHz [52]). The di�culty in gathering a large drive amplitude arises from the

RF engineering challenge for the high frequencies involved2. The coaxial lines go-

ing into the fridge must be thermalised via attenuators and this sets a limit on the

maximum signal that may physically reach the device for a given high frequency

microwave generator. In addition, large RF powers sent to the antenna cause dis-

sipative heating that may warm the device and increase thermal excitations on the

spin qubit. Thus, given a limited input power, the challenge for ESR driven spin

rotations lies in shaping the antenna such that it converts as much of the RF power

into an orthogonal magnetic �eld that can drive coherent rotations [53]. As the drive

amplitude, geµeBx/2, determines the precession frequency of the Pauli-x gate, this

limits the gate speed. Nonetheless, antenna-based driving of electron spins hyper�ne-

coupled to nuclei (such as ion-implanted P-donors) to drive nuclear spin qubits has

yielded a promising route to single qubit control with long coherence times3 of up to

T ∗2 = 600 ms for the nuclear spins as opposed to T ∗2 = 270µs measured for electron

spin qubits on P-donors [39].

One approach taken to overcome the slow speed of the magnetic drive (in the

order of a few megahertz) when using antennas, is to use micromagnets [18, 47,

54, 55]. Here, groups typically evaporate cobalt under a magnetic �eld to create a

patch of magnetised material near the quantum dots. When engineered properly,

the micromagnet produces a magnetic �eld gradient (perpendicular to the globally

applied magnetic �eld) across the quantum dot. Now using the control gates to

shape the potential well, the electron can be physically moved sinusoidally back and

forth within this magnetic �eld gradient (or forced between di�erent spatial orbital

states [47]). This means that the electron feels a sinusoidal time-varying magnetic

�eld that can be used to perform resonant Pauli-x gates as before, but with much

larger driving amplitudes of up to 40 MHz [18].

The long-term issue with single-spin implementations is that they easily decohere

in the presence magnetic �eld noise since all the Hamiltonian components strongly

couple to external magnetic �elds as seen in Equation 2.1. To combat this issue and

2The frequencies range to 40 GHz as the single spin readout mechanism requires a large Zeeman
splitting for high-�delity state readout. This leads to choosing the maximum workable frequency,
when using coaxial cables, at approximately 40 GHz [16]

3The coherence time is the exponential time constant in which the spin population, when under-
going free precession (that is, identity operations), on average drops by 1/e. The drop in population
is due to the shot-to-shot inconsistencies in the precession frequency (for example, due to noise in
the B-�eld for single spin qubits). The coherence time e�ectively limits the number of possible
consecutive gate operations one may perform before the qubit. Thus, the ratio of the coherence
time to the gate operation time is ideally large for a high-�delity qubit.
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thereby avoid the hassle of patterning micromagnets or antennas, aligned to the single

spin qubits, initial semiconductor spin qubits were also created by concatenating two

di�erent electron spins to form a `singlet-triplet qubit' [12�14]. The two-spin Hilbert

space can be decomposed into the singlet-triplet basis:





s0 = 1√
2

(|↑↓〉 − |↓↑〉)
t0 = 1√

2
(|↑↓〉+ |↓↑〉)

t− = |↓↓〉
t+ = |↑↑〉

. (2.2)

The arrows indicate the state of the individual electron spins (up or down). The �rst

two states, s0 and t0, form the two-level system subspace for the qubit, while the �nal

two states, t− and t+, are considered leakage states. Notice that the qubit subspace

has anti-aligned spins and thus, the full Zeeman splitting is zero as these spins have

an overall zero z-spin-projection. Thus, these qubits are immune to global common-

mode (that is, the magnetic �eld component common to both dots) magnetic �eld

noise. In addition, they allow full electrical control in the sense that there is no need

for a high-frequency driving magnetic �eld using an antenna or waveguide. In fact,

qubit control lies in establishing a magnetic �eld gradient ∆Bz and controlling the

two-electron spin exchange J :

HST ≡
1

2
Jσz + ∆Bzσx. (2.3)

That is, in the singlet-triplet basis, s0 and t0, the singlet-triplet Hamiltonian o�ers x

rotations mediated by ∆Bz and z-rotations via the exchange J . The exchange refers

to the singlet-triplet energy splitting that manifests from energy considerations as

two electron spins are forcibly overlapped via electric �elds from local gates. The

magnetic �eld gradient ∆Bz arises from a di�erence in the local magnetic �elds

across the two dots. This gradient can be formed by many methods ranging from

the polarisation of a bath nuclear spins [40] to the placement of a permanent micro-

magnet [17] as discussed in Section 2.1.5.

For completeness, when discussing semiconductor qubits, it is worth noting the

existence of charge qubits. These qubits ignore the spin of the electron and place the

electron charge across two dots with the two qubit levels being the occupancy of the

�rst or second dot. Spin qubits are often chosen over charge qubits since their qubit

lifetimes (or T1) are signi�cantly longer. For example, electron and nuclear spin

qubits have had lifetimes in the order of tens of seconds to minutes compared with a
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few nanoseconds as seen with charge qubits [39, 56, 57]. However, the gate operations

on charge qubits are typically much faster with gate operations times ranging in the

order of several gigahertz [58]. Thus, there are proposals where one concatenates

three electron spins across two dots to form the `exchange-only qubit' [59], `hybrid

qubit' [60] or the `quadrupole qubit' [61]. A key feature of these qubits is that like

single-spin qubits, they are immune to electric �eld noise (singlet-triplet qubits are

susceptible to electric �eld noise as discussed later in Section 5.4 for CZ gates in

the strong inter-qubit coupling regime) and like singlet-triplet qubits they are also

immune to global magnetic �eld noise. However, the qubit subspaces, for these

more exotic qubits, typically require manipulation of sensitive silicon valley coupling

terms4, which may become increasingly di�cult when having to simultaneously tune

and control many qubits. In addition, the two-qubit gates for these exotic qubit types

involve many additional subsidiary gate operations which may negate the advantage

gained by having enhanced noise immunity (that is, the gained coherence time via

operation in the low-noise regimes may be negated by the longer net gate times).

Thus, given all the advantages and disadvantages of di�erent qubit types, this thesis

will focus on quantum computing architecture proposals incorporating the singlet-

triplet qubit both for its simplicity of design and operation.

2.1.3 Two qubit gates

In Section 2.1.2, the spin qubits were discussed in terms of single-qubit gates and

qubit lifetimes. However, another important criterion for a qubit processor is its

ability to perform multi-qubit entangling operations. Although the development of

fault-tolerant two-qubit gates are yet to be demonstrated in quantum dots, there has

been recent progress in increasing the two-qubit gate �delities [14, 34, 54, 55, 66].

For single spin qubits, the mechanism for a two qubit gate utilises the same setup

as that used for single-qubit operations on a singlet-triplet qubit. That is, one sets

up a magnetic �eld gradient between the two dots hosting the single-spin qubits upon

which to perform the two-qubit gate. To run the actual two-qubit gate, one increases

the electron-electron exchange J between the two spin qubits to perturb the energy

level splitting such that there is a di�erent ESR frequency between the |↓↓〉 and |↑↓〉
states5 when compared to that between the states |↑↑〉 and |↓↑〉. Thus, for example

if one probes the ESR frequency between the |↑↑〉 and |↓↑〉 states, the �rst electron
4The valley coupling terms have been shown to be sensitive to crystal strain [62], local electric

�elds [52, 63], oxide interface engineering [64], silicon interface roughness [65]
5Without loss in generality, |↑↓〉 is taken to be lower than |↓↑〉 as the magnetic �eld gradient is

directed such that it is stronger on the right dot
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spin only rotates if the second electron spin is spin-up. This operation is a controlled

Pauli-x gate (or CX gate) and often labelled as the CROT gate. The gate was �rst

demonstrated in Si-MOS quantum dot devices [67]. Later the CROT gate was again

demonstrated with higher �delities of approximately 78-85% in SiGe [54, 55] and

up to 98% in Si-MOS [66]. The dominant issue to overcome in the two-qubit gate

performance is decoherence due to charge noise6. Although single qubit gates for

single spin qubits are predominantly limited by magnetic �eld noise, the reliance

on J to perform the two-qubit gate operations ultimately makes charge noise the

limiting factor in scaling up to many single spin qubits since J is sensitive to the

electric �eld gradient across the quantum dots.

For singlet-triplet qubits, two qubit gates have been successfully demonstrated

in GaAs quantum dots via the electric dipole interaction between adjacent singlet-

triplet qubits [14]. This mechanism utilises Pauli-spin blockade between the two

electrons hosted on the double quantum dot. That is, only the singlet state allows

both electrons to occupy a single quantum dot (the two electrons must reside on

separate dots when in the triplet t0 state). In addition, note that J is a function of the

electric �eld around the double quantum dot. Thus, one may arrange adjacent singlet

triplet qubits (that is, two double quantum dots) such that there is a signi�cant

di�erence in the electric �eld sensed by the `target' qubit when the `control' qubit

is in the singlet state (both electrons occupy one of the dots in the control qubit's

double quantum dot) and the triplet state (both electron separated across the dots

in the control qubit's double quantum dot). The resulting di�erence in electric �elds

(around the target qubit) due to the control-qubit's electric dipole yields a state-

dependent perturbation on the target qubit's J . As J mediates Pauli-z rotations,

the electric-dipole interaction can be used to form a CZ gate. In the regime of weak

electric dipole coupling with respect to the speed of J-mediated Pauli-z gates (for

example, when J was set to ∼300 MHz for Pauli-z rotations in GaAs quantum dots,

a 1 MHz shift was present in J [14]), one may utilise AC driving methods [34, 35]. In

the AC drive method, one sinusoidally drives J to perform Pauli-z rotations (similar

to the AC driving used in electron spin resonance experiments). The advantage of

AC driving is that the net working point in J is set to J ≈ 0 and thereby reduces the

impact of charge noise as charge noise is minimal at J ≈ 0 [17, 34, 69]. AC driving

has been used to demonstrate two-qubit gates with �delities of up to 90% for GaAs

quantum dots. The idea of using large, non-perturbative inter-qubit couplings (large

6The exact source of charge noise is still unknown. However, there are speculations that the
noise is due to intrinsic `two-level �uctuators' caused by electrons hopping between two sites; for
example, crystal or interface defects [18, 68, 69].
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shifts in target qubit's J with respect to the target qubit's J used for Pauli-z gates)

has not been studied in detail as it is di�cult to realise in gate-de�ned quantum dot

structures. The reason why larger shifts are a challenge in gate-de�ned structures,

compared to Si-P structures, is because the dots cannot be brought close enough to

realise a large enough electric dipole. Thus, to enhance the inter-qubit coupling in

gate-de�ned structures, one needs to utilise more exotic schemes such as coupling

two GaAs singlet-triplet qubits via a superconducting resonator [70]. The strong

inter-qubit coupling regime realisable in atomic scale qubits will be a focus of this

thesis as large inter-qubit couplings in excess of 5 GHz have been measured in Si-P

quantum dots [29]. A large inter-qubit coupling implies the potential to realise faster,

therefore higher �delity, two-qubit gates.

2.1.4 Using P-donors in silicon as a qubit platform

Singlet-triplet qubits in semiconductors have been demonstrated in gate-de�ned

quantum dots in both GaAs and SiGe [14, 17]. However, these implementations

typically require a large gate density, of up to 11 gates per qubit, since singlet-triplet

qubits require two dots per qubit. The two electrons forming the singlet-triplet

qubit are con�ned across the two dots, where upon the electron-electron exchange J

(required for Pauli-z qubit rotations) is tuned by bringing both electrons onto one

dot (large J) or separating them onto separate dots (low J). To have full indepen-

dent control of the potentials on the dots, one requires a minimum of two gates per

qubit7. Some of the additional gates in the gate-de�ned implementations are present

to help create the con�nement potential; these gates can be eliminated in P-donor

architectures in silicon. Since the phosphorus atoms naturally con�ne electrons in

their valence bands, it shall be shown in this thesis, that it is be possible to reduce

the number of required gates down to two gates per qubit. The remaining gates in

gate-de�ned quantum dots are typically present for the qubit sensor. These gates

can also be eliminated (in both donor quantum dots and gate-de�ned quantum dots)

by utilising a single-gate RF sensor that integrates into the pre-existing mandatory

control gates in the device as discussed further in Section 3.

Donor based Si-P quantum dots can be created in multiple ways: one is via ion-

implantation and another via STM (scanning tunnelling microscope) lithography.

In ion-implantation one implants phosphorus ions into a silicon crystal at ∼ keV

energies and then anneals the substrate to remove the damage caused by the passage

7Sometimes full independent control is not necessary to achieve all required control on the
quantum computer, for one exploits geometric symmetries like in one of the surface code proposals
using single-spin qubits [28]
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of the phosphorus ions below the silicon surface. To manipulate the implanted P-

donor potentials, one incorporates metallic gates patterned on the surface of the

silicon crystal via EBL (electron-beam-lithography) on a SEM (scanning-electron-

microscope).

With STM lithography one can place individual P-donors in silicon [15, 20�22,

25]. Here, one starts creates a hydrogen mask where each silicon atom on the surface

is bonded to one hydrogen atom. One can remove hydrogen atoms by pulsing a high

voltage on the STM tip, causing vibrational excitation, in sites where one wishes

to place phosphorus donors. The wafer is exposed to phosphine gas which binds

to non-hydrogen-passivated sites. Upon heating the wafer to approximately 320 ◦C,

the phosphorus donors incorporate into the top layer of the silicon surface within

the patterned regions. Finally the wafer is encapsulated with an approximately

40 nm layer of silicon via a silicon-sublimation source. Unlike ion-implantation, the

control gate leads are patterned on the same atomic plane as the dopants using

STM lithography. The metallic gates are formed by creating large patches of highly

P-doped silicon with a large density of states. One connects to these buried P-

doped silicon patches via conventional metallic electrodes patterned on the top of

the encapsulated silicon.

A critical advantage of STM lithography is that one can place the P-donors in

silicon with atomic precision while ion implantation introduces errors in the lateral

position and depth that depend on the energy of the implantation process. The

typical error in depth is approximately 8 nm when using 12 keV. In addition, the

implanted ions can channel back to the surface and become electrically inactive, such

that multiple donors need to be implanted to ensure that there is a viable donor to

form a qubit [71]. A possible disadvantage of STM lithography is that the silicon

encapsulation layer must be grown at low temperatures to avoid dopant di�usion.

It remains an open question if low temperature epitaxial growth, required to avoid

dopant di�usion, a�ects the crystalline quality of the encapsulation layer. It is pos-

sible that defects may occur during the low temperature growth that can potentially

form sites to trap charge that may arbitrarily charge or discharge. This can be-

come a source of noise (where one will have diminished stability in the control of the

electron spin states) in the system in the form of random electric �eld �uctuations.

Typically the creation of a low-defect silicon surface requires annealing temperatures

reaching 1100 ◦C. However, temperatures above 450 ◦C during incorporation causes

loss of phosphorus on the surface via PH2 → PH3 recombination [72, 73]. In ad-

dition, higher temperatures lead to the formation of electrically inactive P2 dimers.

Any excess heating will cause di�usion and segregation of the phosphorus atoms
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that scramble the locations of the placed phosphorus atoms [74]. Di�usion refers to

the random movement of the highly energetic phosphorus atoms through the silicon

crystal. Segregation refers to the steady-state con�guration where the phosphorus

atom, given enough energy, may switch places with the silicon atom above it to enter

a lower energy state in the lattice. Thus, while di�usion can occur over all directions,

segregation is a vertical movement towards the surface of the silicon crystal. Current

fabrication processes have optimised the growth rates and temperatures to minimise

dopant di�usion and segregation whilst achieving full dopant activation. One can

grow at higher temperatures to ensure a low-defect encapsulation layer by making use

of `locking layers' which reduce the impact of segregation and di�usion [75]. Locking

layers are silicon encapsulated using low temperatures for the �rst few nanometres

of encapsulation while heating remaining layers to the higher temperatures required

for the formation of a low-defect silicon crystal. In fact, applying rapid thermal

anneals after growing approximately 70 nm, required for creating a new �at surface

for multilayer STM lithography, show strong indications of preserving the integrity

of the buried device layer [76].

Although ion-implanted and STM fabricated architectures share some similari-

ties, it is of note that the systems operate under di�erent physical conditions. For

example, in the case of ion-implanted donors, the donors are very close to the surface

(up to approximately 20 nm). Thus, one needs to consider surface e�ects while STM

patterned donors can be patterned either close to the surface or further away where

they can be considered to be P-donors in an e�ectively bulk silicon crystal. Donors

near the surface have the potential of better tuning of the hyper�ne interaction (pro-

portional to the electron wavefunction overlap with the phosphorus nucleus) when

compared to isolated donors in a bulk crystal8 [77]. However, this has yet to be

con�rmed experimentally.

In this thesis, STM lithography was used to reliably place multiple donors with

atomic precision and control every aspect of the Si-P device geometry, in contrast to

ion-implantation techniques. In addition, the atomic precision in placement of the

metallic phosphorus control gates allows for greater �exibility in the shape, size and

8This is because the electrons on a donor are tightly con�ned to the potential well formed by
the phosphorus nucleus (an s-orbital in the ground state). When applying a strong electric �eld,
the actual perturbations on the wavefunction are small before the electron becomes free from the
donor's potential (that is, ionisation). Having a strong barrier potential nearby (such as that of
donors placed near the surface) allows one to exceed the ionisation energy to yield wavefunctions
that have a large probability density near the barrier while retaining a smaller probability density
across the nucleus. Note that the transition in hyper�ne tuning is still a steep function that changes
rapidly with electric �eld when near the ionisation energy [38, 77, 78]
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placement of the gates while, MOS gates are limited to 10 nm in precision9. At the

time of publishing this thesis, the technology for atomic-scale fabrication was well-

developed and therefore appropriate to enable the demonstration of unit-cells capable

of hosting singlet-triplet qubits. Previous results include the activation of a single-

donor transistor device [15] and successful demonstration of phosphorus wires that

are as thin as 2 atomic rows [27, 79]. Spinful behaviour of electrons con�ned within

the phosphorus doped quantum dots had also been successfully demonstrated [50, 80�

82]. An additional advantage of STM lithography, compared to ion implantation,

is the ability to pack multiple donors into a single dot; thereby strengthening the

quantum dot's con�nement potential. This o�ers the advantage of better electro-

static tunability (lower voltage required on gates to move electrons onto or between

quantum dots) and provides more local P-nuclei for stronger or tunable hyper�ne

interactions [40, 83, 84].

2.1.5 Generating ∆Bz for singlet-triplet qubits

As shown in Section 5.3, singlet-triplet qubits require a magnetic �eld gradient ∆Bz

across the two dots to enable Pauli-x rotations. Such a magnetic �eld gradient has

been realised in SiGe systems via micromagnets, where one evaporates ferromagnetic

material (for example, cobalt) while under a magnetic �eld [17, 85]. However, this

gradient is �xed on fabrication. An alternate approach is to use dynamic nuclear spin

polarisation (DNP) where one may controllably polarise the nuclear spins within the

substrate to realise a tunable magnetic �eld gradient like that shown in GaAs [40,

41]. By running a similar DNP protocol in Si-P, the polarisation of the phosphorus

donors used to create the very dots themselves could create the required magnetic

�eld gradient. This is because the con�ned electrons on the respective dots will

experience a di�erent hyper�ne interaction depending on the nuclear spin state of the

phosphorus donors in the di�erent dots. A strong magnetic �eld gradient is desirable

as it gives rise to faster Pauli-x gates. Therefore, dots with larger clusters of P-nuclei

dot could prove useful for producing large magnetic �eld gradients. However, to

date it remains unknown if larger P-donor dots can produce a stable ∆Bz since the

dots may contain many spin con�gurations. It should be noted that the hyper�ne

interaction is of the form AIn • S (where In is the nuclear spin operator, S is the

electron spin operator and A is the contact hyper�ne constant that is proportional to

the electron wavefunction overlap with the nuclear spin). Thus, any changes in the

9The MOS gates however, can handle larger voltages between adjacent gates without current
leaking between them due to the presense of an insulating oxide layer
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electron spin, even when not intentionally performing DNP, will impact the nuclear

spin. In the case of a micromagnet, one �ipped spin in the magnetic domain will

not signi�cantly impact the ∆Bz (and this spin will likely �ip back on its own due

to thermal statistics). However, a �ipped nuclear spin in a gradient formed by P-

donors will strongly impact the ∆Bz. In addition, it has recently been shown that

the act of placing an electron on a P-donor dot decreases its nuclear spin coherence

time and can a�ect the nuclear spin states by either tilting or �ipping the nuclear

spins [39, 50]. The net impact of nuclear spin dynamics remains an area of ongoing

research and remains outside the scope of this thesis.

The expected magnitude of ∆Bz due to the di�erent number of P-nuclei in each

dot can be estimated from electron spin resonance (ESR) experiments that probe the

hyper�ne energy splitting of electrons con�ned to P-donor dots of di�ering number

of P-nuclei [39, 50]. For the �rst electron the hyper�ne splitting (that is, between

the nuclear spin pointing up and down) of a single electron on a 1P donor dot is

approximately 58 MHz [50]. Thus, a 1P donor dot will contribute exactly have this

value (that is, 29 MHz) to the magnetic �eld gradient. Therefore, between two 1P

donors, if the nuclei are anti-parallel, the magnitude of the magnetic �eld gradient will

be 58 MHz. For larger dot clusters created from more than one P-donor, the hyper�ne

interaction depends on the con�guration of the phosphorus nuclei within the dot. For

example, in a 2P cluster, if the nuclei are anti-parallel, the magnetic �eld contribution

is approximately zero. If both P-nuclei are parallel, the �eld contribution of a 2P

dot is approximately double that of a 1P dot at 58 MHz. However, this is strongly

dependent on the spatial arrangement of the two P-donors within the silicon lattice

with variations ranging from 71.9 MHz to 14.3 MHz when varying donor separation

(∼0.5-5 nm) and arrangement with respect to the Si crystal axis [83]. Similarly larger

3P or 4P clusters can yield magnetic �eld contributions of up to triple or quadruple

that of a 1P cluster for the �rst electron (for example, ∼87 MHz when arranging 4

donors in a tightly packed square). When adding more electrons to the dot, the outer

valence electron is more weakly bound and thus, its probability density is lower at

the site of the P-nuclei. Thus, the valence electron has a weaker hyper�ne coupling

and therefore, a signi�cantly lower magnetic �eld contribution. It was shown in a

simulation that a 2P cluster in a given arrangement in the silicon lattice can yield

up to 50.9 MHz in the magnetic �eld contribution for the �rst electron. However,

when adding 3 electrons to the dot, the outer valence electron yielded a magnetic

�eld contribution of 5.25 MHz. This lower hyper�ne contribution on adding more

electrons could in fact, be used as an additional strategy to guarantee a stable non-

zero magnetic �eld gradient. For example, one could have a double dot where the
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donor clusters are 1P and 2P respectively. By loading one electron onto the 1P dot

and three electrons onto the 2P dot, the di�erence in the magnetic �eld gradients

could be approximately 24 MHz or 35 MHz given the spin of the nuclei.

2.1.6 Magnetic �eld noise in the substrate

Single-spin qubits utilise global magnetic �elds for Pauli-z rotations while singlet

triplet qubits utilise local magnetic �eld gradients for Pauli-x rotations. Due to

this reliance on magnetic �elds, any stochastic noise in the magnetic �elds that

�uctuate the magnetic �eld values will become a source of decoherence. To reduce

magnetic �eld noise from the global magnet, a�ecting single-spin qubits, one may

decouple the magnet from its power supply by placing it in persistence mode where

the coil currents keep circulating due to the superconducting state of the magnet.

However, magnetic �eld �uctuations may also come from the substrate. For example,

GaAs has di�erent isotopes containing non-zero nuclear spins that create magnetic

�eld �uctuations which manifest as magnetic �eld noise. In the case of singlet-

triplet qubits, this changes the magnetic �eld gradient across the two quantum dots

causing decoherence in the Pauli-x qubit operations. The magnetic �eld gradient

noise can be countered by making the value of the magnetic �eld gradient large (to

reduce the fraction of the magnetic �eld gradient noise standard deviation to the

overall magnetic �eld gradient) via dynamic nuclear spin polarisation [40]. When

dynamically measuring the magnetic �eld gradient and setting up a feedback loop to

stabilise the gradient, one can also reduce long-term �uctuations [41]. The success of

using DNP in GaAs has been highlighted as the magnetic �eld noise no longer limits

qubit �delities. That is, single-qubit �delities have exceeded 99% while the two-qubit

gate �delity currently remains limited to 90% due to intrinsic charge noise [34, 69].

A materials-level solution to overcome the �uctuating nuclear spins in the sub-

strate is to utilise silicon; a substrate that has naturally fewer non-zero nuclear spins

present. Approximately 5% of natural silicon (natSi) consists of 29Si atoms which

have a nuclear spin of 1/2. This is known to be a source of decoherence for single

spin electron qubits in silicon [16, 50]. Although singlet-triplet qubits reject global

magnetic �eld noise (unlike their single-spin qubit counterparts), they are still sus-

ceptible to close range 29Si nuclei in the form of magnetic �eld gradient noise as in

GaAs. The long term solution is to utilise isotopically puri�ed 28Si (Si nuclei with

zero spin). Single-spin ESR experiments have shown that the bare decoherence time

(T ∗2 ) of single-spin qubits rose from 55 ns to 270µs when changing the host mate-

rial from natSi to 28Si [39]. Thus, one may posit that isotopically puri�ed silicon
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can lead to large coherence times in singlet-triplet qubits when performing Pauli-x

rotations without the need for specialised nuclear spin polarisation protocols like in

GaAs (although not a technical hindrance, the DNP sequences will add an extra

layer of complexity to the control protocols).

2.2 Design and demonstration of a Si-P singlet-triplet

unit-cell

Before optimising the qubit unit-cell for a many-qubit processor in Si-P, it is impor-

tant to verify that the one can control electrons across two P-donor quantum dots

to form a singlet-triplet qubit. For a singlet-triplet qubit, formed by two electrons

across two quantum dots, one drives Pauli-x rotations by tuning the electron-electron

exchange J to J ≈ 0 where the electrons reside on separate dots. To drive Pauli-z

rotations, one applies gate voltages to ensure J � ∆Bz where both electrons start

to reside on the same dot. Therefore, for full qubit control, one needs to be able

to controllably add one electron to each quantum dot with the ability to indepen-

dently move one of the electrons to join the other electron on the adjacent quantum

dot; a level of controllability that has already been demonstrated in Si-P quantum

dots [81, 86]. However, the electrostatic controllability must be demonstrated on a

device geometry that is compatible, in the long-term, with a scalable many-qubit

architecture. That is, one needs to demonstrate an array of qubit unit-cells with

the level of control required for individual qubit operations along with the ability to

perform two-qubit operations between adjacent qubits.

The initial geometry to demonstrate a singlet-triplet qubit unit-cell using P-

donors in silicon was designed using �nite-element electrostatic models. The re-

sulting design was then fabricated in Si-P using STM lithography and subsequently

characterised in a dry dilution refrigerator [29].

2.2.1 Overview of techniques for modelling quantum dots

Electrostatic control of Si-P quantum dots fundamentally requires control of the elec-

tron occupancy on the quantum dots. The charge occupancy of the quantum dots

is controlled by tuning the electrostatic potentials on the dots via voltages applied

to local gates. Applying a voltage on a given gate creates a non-zero electrostatic

potential on the entire structure. Tuning the electrostatic potential on the site of

a quantum dot directly tunes its energy level. The general methodology to relate
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the applied voltages on all the gates to the electrostatic potentials at the sites of

the quantum dots and thus, the resulting charge occupancy requires one to solve a

`tight-binding' problem [81, 84, 87]. In the tight-binding method, one �rst calcu-

lates the electrostatic potential due to the gates and any other sources (for example,

phosphorus donors provide a Coulombic potential well) by numerically solving the

Poisson's equation. Then one solves the Schrödinger's equation with the interac-

tion terms (such as the inter-site tunnel coupling, on-site potentials and electrostatic

inter-electron terms) discussed in Appendices E.1 and E.2. To simplify the spin

components, one can separately solve each of the singlet-triplet states while taking

care to write the wavefunction solutions in the appropriate symmetric or antisym-

metric manner to satisfy the overall antisymmetry of the wavefunction. The spatial

wavefunction solutions may be found numerically solving the Schrödinger's equa-

tion. Now individual electrons also have electric �elds that will a�ect the overall

con�nement of the other electrons. One calculates the resulting Coulombic poten-

tials from the electrons (achieved by integrating the Coulomb potential of a point

charge across the wavefunction's probability density) to create a new con�nement

potential. Finally, one solves the Schrödinger's equation as before and iterates until

the electron wavefunction no longer changes as the trial solution has found a �xed

point. The wavefunction solution can be used to extract the charge occupancy on

the dots given the initial set of gate voltages. One may enhance the analysis by intro-

ducing an orbital component to the wavefunction where the basis of wavefunctions

would be a linear combination of atomic orbitals (LCAO10). One may also include

silicon valley contributions and lattice strain e�ects [15, 27]. This self-consistent

Poisson-Schrödinger solver, especially when tempered with experimental data, pro-

vides the most accurate simulation of a device. However, this approach is very time

consuming and only provides the electron occupancy solution for one combination of

gate voltages. This makes resulting simulation of `gate maps' (electron occupancy

as a continuous function of two gate voltages) extremely time consuming. Thus, one

typically adopts a semi-classical approach known as the `constant interaction model'

or the `capacitance model' [88�90].

10If no electric �elds are to be considered, the initial ground-state wavefunction can be found by
weighting the orbital wavefunctions and �nding the weights that minimise the overall energy
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2.2.2 Adapting capacitance modelling for Si-P quantum dot de-

vices

In a simple capacitance model, one ignores strong electron-electron interactions. In

fact, only electrostatic contributions due to the gates' electric �elds are considered

while electron tunnelling and spin e�ects (that is, due to the Pauli exclusion principle)

are discarded. Note that if the tunnelling and spin interaction strengths (of electrons

between quantum dots) are much stronger than the typical on-site con�nement po-

tentials (termed `strongly interacting systems'), this model is not applicable11 [91].

In the capacitance model, one �nds the relationship between the gate voltages and

the electrostatic potentials on the dots along with the strength of electrostatic re-

pulsion amongst electrons between every pair of dots. The natural abstraction to

convert the voltages on the gates to the resulting charge states on the dots is to

treat the transfer of an electron to a dot (or between any two dots) as the charging

of a capacitor. A zero capacitance implies that no matter what voltage is applied

to the gate, there is no interaction or relationship between the gate and the dot's

voltage. On constructing capacitors for all interlinking nodes (gates and dots), one

obtains a capacitance network. Figure 2.2 shows one such example for a double-dot

system (D1 and D2) controlled by two gate leads (G1 and G2). Due to the high

carrier density of P-doped silicon, the gates and dots can be considered as metallic

objects upon which one applies a voltage [27]. All capacitances shown in Figure

2.2b are geometric capacitances that may be found in a numeric simulation via FEA

(�nite-element analysis).

Figure 2.2c shows the resulting capacitance matrix. As shown in Appendix A.1.1,

this matrix has algebraic properties that relate the node voltages V to the nodal

charges Q starting with: Q = CV. Appendix A.1 shows how, after some basic

algebra, the capacitance matrix can be used to �nd the energies on the dots given

the electron occupancies and gate voltages. The electron occupancy that yields the

lowest energy, for a given set of gate voltages, is the ground-state charge state of

interest. Subsequently, one may �nd hyperplanes in gate-voltage space that divide

two charge states and thus, one may simulate the charge transitions (transfer of

electrons onto or o� the dots) that would occur on sweeping the gate voltages. Given

simulations of the charge transitions with respect to the voltages on the gates, one

may optimise device geometries (of the P-doped leads and P-donor quantum dots)

11As shown in Appendix E.2, it is clear that if the interacting terms are removed from the singlet-
triplet Hamiltonian, the solutions to the Hamiltonian describing the double quantum dot system
become diagonal; that is, the dot energies are all independent and linear.
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(a) Example double-quantum dot device
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Figure 2.2: An example of converting a device to an equivalent capacitance
model. (a) shows the top-down view of an example device that consists of a two dots
(D1 and D2) and two gates (G1 and G2). The voltages on the gates are tuned by voltages
sources VG1 and VG2. Applying di�erent voltages on the gates changes the electrostatic
potential environment around the dots and thus, tunes their energy levels. (b) shows the
equivalent capacitance network that helps analyse the dots' energy levels. The key concept
is that all nodes in the network represent dots or gates from the original device. (c) shows
the equivalent capacitance matrix where the on-diagonal components indicate the total
capacitance branching o� a given node while the o�-diagonal components indicate the inter-
nodal capacitances. The intra-gate capacitances are irrelevant (as the charges on the gates
will be actively compensated by the voltage sources to ensure they remain at a �xed voltage)
in the context of device operation and left at zero for convenience.
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to achieve the charge states required for the electrostatic control required to perform

singlet-triplet operations.

One of the important device parameters to consider is the gate lever-arm αgd.

The lever-arm is a dimensionless scaling factor that links the energy change ∆Ud on

dot d to the change in a applied voltage Vg on gate g via:

∆Ud = −eαgd∆Vg. (2.4)

The lever-arm αgd is a geometric scaling factor between 0 and 1. One may calculate

the matrix of lever-arms using the capacitance matrix via:

α = −CGDC−1
DD, (2.5)

where CGD is the block matrix in C describing the capacitances between the gate

indices G and the dot indices D, while CDD is the inter-capacitance block matrix

between the quantum dots. The element αgd in α is the lever-arm between the gate g

and dot d. By its de�nition, it is easy to show that the sum of lever-arms for a given

dot is also bound by 1. For example, if two gates are symmetrically arranged close to

a dot, the gates individually have a lever-arm of at most 0.5. However, if these gates

are at a larger distance away from the dot (such that the dot's self-capacitance starts

to greatly dominate the gate-to-dot capacitances), then the gate lever-arms on the

dot tend to zero. It is important to maximise the lever-arm of a gate designated to

control a given dot as this minimises the required voltage swing to bring the dot to

the desired energy level. A lower voltage range (needed to control the quantum dot)

is important as the available range of gate voltages is limited by gate-to-gate current

leakage. However, a higher lever-arm implies that the gates are in closer proximity

to the dots and thus, ideally one needs to optimise the distance between the dot

and gates to achieve an acceptable voltage range without current leakage. Currently,

there exists no model to predict the gate voltage range in which no current leakage

occurs. Therefore, one must rely on current leakage data from previous devices to

optimise the device geometry and operating conditions.

In addition to the charge stability diagram simulations, it is of note that the

electrostatic simulations used to generate the capacitance matrix di�ers from that

used previously to model Si-P devices [28, 86, 92, 93]. The capacitance matrix

was previously generated from electrostatic �nite-element simulations of the device

geometries where the leads were treated as planar metallic elements with a thickness

of 3.6 nm (taken from the simulated Bohr radius of P-donors in silicon [94, 95])

while the donor dots were treated as metallic spheres with a radius of 1.4 nm to
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match the 45 meV charging energy of single P-donors [15]. The �nite-element solver

then calculates the resulting capacitances between all gates and dots to generate

the capacitance matrix. However, with double quantum dots and gates placed in

a line (like in Figure 2.2a), the model will underestimate the lever-arm of the gate

with the opposite dot due to the electrostatic screening of the second dot in between

as discussed in Appendix A.3 (for example, in Figure 2.2a, dot D1 will screen dot

D2 from gate G1 and thus the capacitive model will underestimate the gate lever-

arm of G1 to dot D2). However, a charge neutral P-donor could be inferred to be

similar to that of a nearby silicon atom; that is, the P-donor may not necessarily

act as a metallic sphere (speci�cally a perfect electrical conductor in a continuous

silicon dielectric as in previous simulations). Thus, the electrostatic simulations were

modi�ed to remove the dots' screening e�ects by removing the dots from the FEA

simulation. Here, one infers the gate lever-arms by considering the electrostatic

potentials of the gates at the positions of the dots. That is, since the dots are point-

like objects, the potential energy change on a given dot is indeed proportional to

the electrostatic potential (of the gate) at the dot's position on applying a given

voltage on the gate. Compilation of all the lever-arms can be used to generate the

gate-to-dot capacitance block matrix CGD via Equation 2.5. Similarly, the potential

energy shifts on one dot when loading electrons to the other dots can be inferred by

viewing the shift in the dot's potential energy due to the electrostatic potential of

an electron charge placed on the other dots. On compiling all the potential energy

shifts between all pairs of dots one may generate the dot-to-dot capacitance block

matrix CDD. The mathematical details along with the exact algorithm used in the

modi�ed capacitance model simulations (of Si-P quantum dots near P-doped leads)

shown in this thesis are discussed in Appendix A.3.

2.2.3 Electrostatic design of a Si-P singlet-triplet qubit unit-cell

The proposed scalable singlet-triplet unit-cell contains two gates per qubit hosted

on a double quantum dot. A two-qubit gate between two singlet-triplet qubits has

already been shown in GaAs and thus, aspects of that experiment's particular device

design were worth investigating. As shown in Figure 2.3a, the two GaAs singlet

triplet qubits (hosted on the double quantum dots LL/LR and RL/RR) are arranged

in a line to maximise the inter-qubit coupling. For example, consider a singlet-triplet

spin state hosted on the dots LL/LR. When moving both electrons onto the dot LR

(note this only occurs if the electron spins are in the singlet state), the repulsive force

(of both electrons on LR) would maximally push the electrons across the singlet-
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triplet state on RL/RR (to cause a maximal shift in J on the singlet-triplet qubit

hosted on RL/RR). Thus, having the four dots in a linear geometry maximises the

inter-qubit coupling. A key observation in the GaAs device architecture is the gate

density of 11 gates per qubit (counting the gates for the RF-QPC qubit readout

sensors in red and the blue gates reserved for con�nement and qubit control). This

large gate density (of more than 1 gate per qubit) may ultimately create challenges

in qubit scale-up [37].

One method to reduce the gate density is to replace the gate-de�ned dots (which

require many con�nement gates) with P-donor dots which provide free self-con�nement

such as the device shown in Figure 2.3b. Here, the device consists of a double quan-

tum dot (D1 and D2) with the resulting singlet-triplet state loaded and measured via

a SET charge sensor (source S, drain D and tuning gate GSET). The dots' potentials

are tuned via the gates G1, G2 and GT. As a long-term scalable unit-cell beyond

two singlet-triplet qubits, the geometry is not ideal due to the space taken up by the

three-lead sensor. Thus, the geometry used in this thesis was adapted from a di�erent

Si-P double quantum dot device (shown in Figure 2.3c) designed to measure electrons

in transport [81]. The transport device loaded electrons onto the dots (D1 and D2)

to form the singlet-triplet state via electron transport through the source and drain

leads (S and D respectively). To tune the two dots' potentials, two extra gates (G1

and G2) were required as using S and D to manipulate the dots' potentials would

cause electron current �ow. Unlike the GaAs device shown in Figure 2.3a or the SET

Si-P device shown in Figure 2.3b, there were no charge sensors patterned nearby and

thus, the spin states were deduced via electron transport [81, 86, 89, 92]. Later a

resonator was attached on the drain lead to measure the two-electron singlet-triplet

state via RF re�ectometry [30]. In the re�ectometry experiment, it was successfully

shown that the single-gate RF sensor (that integrates onto a pre-existing lead in the

device; in this case, the drain lead D) could indeed measure the singlet-triplet spin

state hosted across the double quantum dot. However, the immediate geometry was

not ideal to use as a scalable unit-cell design for two reasons. The �rst reason was

that the design required four leads to form and control the singlet triplet state (for

example, a single-spin qubit hosted on a P-donor dot and measured with a three-

lead SET would require the same number of leads per qubit). More importantly,

the second reason was that the strong coupling of the dots to their reservoirs (S and

D) resulted in very low spin life times of 60 ns. That is, the large tunnel rate of

electrons between the dots and their nearby reservoirs caused one of the electrons in

the singlet-triplet state to swap with electrons in the reservoir (via a second order

quantum co-tunnelling process) thereby destroying the initial two-electron singlet-
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(a) Quadruple quantum dot GaAs device used
to show coupled singlet-triplet qubits [14, 34]

200nm RF-QPC
Con�nement and control gates

(b) Double quantum dot Si-P device mea-
sured with an SET [86]
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(c) Double quantum dot Si-P device measured
with a single-gate RF sensor [30, 81]
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Figure 2.3: Previous devices to consider when designing a quadruple quantum
dot device in Si-P. With the aim to demonstrate a scalable singlet-triplet qubit unit-
cell in Si-P, it was important to look at previous designs. (a) A 4-dot gate-de�ned GaAs
device used to show high �delity two-qubit gates between two singlet-triplet qubits [14, 34].
The red structures highlight two RF-QPC sensors used to read out the qubit states, while
the blue structures indicate con�nement and qubit control gates. The green dots indicate
approximate locations of the four dots. (b) A 2-dot Si-P device (D1 and D2) used to
measure singlet-triplet spins via a SET (source S, drain D and SET tuning gate GSET).
The dots' potentials are tuned via gates G1, G2 and GT. The SET acts as a reservoir for
the two P-donor dots with a dot-to-reservoir distance of dr∼21 nm and dr∼22 nm for D1
and D2 respectively. The inter-dot distance was di = 20 nm. (c) A 2-dot Si-P device used
to measure singlet-triplet spins in transport [81]. The dots were loaded with source (S) and
drain (D) leads. The dots' energies were tuned via gates G1 and G2. The singlet-triplet
spin states hosted across the dots D1 and D2 were later measured with RF re�ectometry
with a resonator attached to D [30].
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dr dr
did

dg dg

diq

ϑ ϑ

R1 R2

D1L

D1U

D2L

D2U

G1 G2

Figure 2.4: Schematic of the 4-dot device with minimal gate leads to host two
singlet-triplet qubits. The qubits are to be hosted on the double quantum dot pairs
D1L/D1U and D2L/D2U. Each double quantum dot is separated by the inter-dot distance
did and tilted at an angle ϑ. Electrons are loaded onto the two qubits via reservoirs R1 and
R2 spaced dr away from the double quantum dots. Control gates G1 and G2 are placed
dg away from the double quantum dots to perform qubit operations via fast voltage pulses.
The double quantum dots are separated by the inter-qubit distance diq.

triplet spin state. The singlet to triplet t− lifetime of 60 ns was a time-frame too

short for both qubit readout (via single-gate RF sensors) and high-�delity qubit gate

operations (with Pauli-x gate times expected to be ∼30 ns). The following discus-

sion highlights the conversion of this Si-P device, designed predominantly to measure

electrons in transport, into a low lead-count device where the double-dots could be

used to host singlet-triplet qubits while working towards the demonstration of the

singlet-triplet two-qubit gate previously shown using GaAs quantum dots. The main

change (per singlet-triplet qubit hosted on a double quantum dot) was to remove the

tuning gates (G1 and G2) and designate the S and D leads as the new qubit tuning

gates. To disable direct electron transport through the dots, the source lead S was

pulled away from the dots. The drain lead was kept close to the dots (still much

further than 11.7 nm to avoid spin lifetime-limiting cotunnelling processes) to act as

a reservoir of electrons to load onto the dots.

Figure 2.4 shows a schematic of the initial device design in a wedge formation.

Each unit-cell has two dots to host the two electrons for the singlet-triplet qubit

(the pairs D1L/D1U and D2L/D2U), a reservoir (R1 and R2) to provide electrons

to load onto the quantum dots and a qubit control gate (G1 and G2) to tune the
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charge occupancy on the quantum dots (required for qubit gate operations). The

double-quantum dots (hosting the qubits) are placed on a wedge formation at an

angle ϑ from the line forming the linear array. An angle of 0◦ would replicate the

inter-qubit coupling geometry utilised in the GaAs coupled singlet-triplet qubit ex-

periments shown in Figure 2.3a. If the angle were at 90◦, then one would expect

maximal di�erential gate lever-arms (de�ned as the di�erence in a gate's lever-arms

across both dots) in which the tuning gates would be able to maximally tilt the

potential across the dots to better tune the electron-electron exchange J (that is,

moving from the state where electrons are on separate dots to both electrons being

on the same dot). The optimisation procedure requires that there is su�cient elec-

trostatic control to access the required singlet-triplet states while ensuring maximal

inter-qubit coupling (required for two-qubit gates) and di�erential gate lever-arms

(required for single-qubit control). The geometric distances that need to be optimised

include the gate-to-dot distance dg, inter-dot distance did, reservoir-to-dot distance

dr and the inter-qubit distance diq. Each of these parameters were originally chosen

from a combination of new electrostatic simulations and the results from previous

experiments performed on Si-P devices.

The inter-dot distance (within a double quantum dot hosting a singlet-triplet

qubit) did is an important parameter since it determines the tunnel coupling of

electrons between the two quantum dots12. The inter-dot tunnel coupling impacts

both qubit control and readout. A device with too small an inter-dot tunnel coupling

impedes one from obtaining coherent qubit operations due to charge noise. The

issue is that too small an inter-dot tunnel rate makes the qubit exchange sensitive to

small �uctuations in gate voltages. Ideally, one smoothly varies the electron-electron

exchange J when moving both electrons, initially on separate dots, onto the same

dot. A large tunnel coupling ensures a smooth transition in J with respect to the

applied gate voltage (as there will be residual electron wavefunction overlap even

when the electrons are on separate dots), rather than a sudden change in J when the

electrons both enter the same dot. In previous experiments using Si-P quantum dots,

the tunnel coupling was too small, at <100 MHz, for coherent interactions between

two single-spin electrons13. Numerical simulations have predicted that the required

tunnel coupling to achieve coherent Pauli-z rotations must be at least 2 GHz [82].

In this device [82], similar to that shown in Figure 2.3b, the dots were comprised

of 1P and 2P P-donor dots (separated by 16 nm) with a tunnel coupling of under

12The inter-dot tunnel coupling is half the minimum energy splitting between the ground and
excited singlet charge states.

13The goal was to show a two-qubit SWAP gate between two single-spin qubits. Nonetheless, the
physical mechanism is the same as z-rotations for a singlet-triplet qubit.
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100 MHz. In addition to qubit control, the inter-dot tunnel coupling is important in

obtaining qubit readout using a single-gate RF sensor (as required by the architecture

proposal where the sensors integrate into pre-existing leads in the device). As with

the adiabatic quantum capacitance approach (discussed in detail when modelling

the single-gate RF sensor in Section 3.3), the inter-dot tunnel rate (between the two

dots in the singlet-triplet qubit) must be much larger than the RF driving frequency

(typically in the order of 100 MHz) to enable the singlet-triplet qubit to respond

to the RF drive. A large tunnel coupling in a Si-P device (for compatibility with

single-gate RF readout) was demonstrated in the device shown in Figure 2.3c. Here,

the Si-P device had 2P and 3P P-donor dots separated by 11.5 nm to give a tunnel

coupling of 22 GHz [30, 81]. However, it is noted that if the tunnel coupling is too

large it will impede qubit control as one may not be able to switch o� J as the

electrons are now too strongly interacting across the two dots. One can estimate the

lower bound in the required voltage magnitude to turn o� J by considering how far

one must pulse (in gate voltage space) to tilt the singlet-triplet qubit's axis to 45◦

(the Hadamard point) where J = ∆Bz. As derived later, the voltage pulse required

to reach this Hadamard point is:

VHadamard =

∣∣∣∣
4∆B2

z − t2c
2∆Bze∆α

∣∣∣∣ . (2.6)

Taking ∆Bz ≈ 29 MHz (the hyper�ne interaction of a 1P donor dot) and the param-

eters from the Si-P experiment (22 GHz tunnel coupling and di�erential lever-arm of

∆α = 0.16 [30]), the required voltage magnitude to reach the Hadamard point would

have been 220 mV. Noting that one would need to pulse further to apply a large

enough electric �eld to separate the electrons enough to make J � ∆Bz, the tunnel

coupling in this device would appear to be too large as the large amplitude voltage

pulses are not only impractical when considering the experimental apparatus, but

one also risks entering a voltage region where current starts to leak between leads in

the device. With no physical reason to have such a large tunnel coupling, the initial

device was designed to aim for a slightly smaller tunnel coupling of approximately

10 GHz. To lower the tunnel coupling14, the dots were set to a nominal distance of

12.5 nm with the idea to iterate over multiple devices to obtain the optimal tunnel

14The tunnel coupling is a non-trivial function of the P-donor dot sizes, the number of electrons
forming the equivalent singlet-triplet state and the inter-dot distance. However, one may approx-
imately note that the inter-dot tunnel coupling increases with decreasing inter-dot distance (the
electron wavefunctions increase overlap between dots), increasing electron numbers on the dots
(weaker con�nement of the outer electron yields greater interaction between dots) and decreasing
the P-donor dot sizes (larger dots have greater con�nement leading to lesser electron wavefunction
overlap between dots).
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coupling. The chosen distance was to ensure that the inter-dot tunnel rate was above

1-2 GHz while not being so large (that is, > 22 GHz) that one cannot turn o� J .

dr (nm) No. donors No. electrons Tunnel rate

21 3 1 480 Hz [86]

22 2 1 170 Hz [86]

21 3 2 > 500 kHz [86]

22 2 2 9.6 kHz [86]

22 2 3 > 250 kHz [86]

18 1 1 50 Hz [82]

18 2 1 240 Hz [82]

17 2-3 1 50 kHz [96]

11.6 2 1 1 GHz [81]

11.8 3 1 250 MHz [81]

11.8 3 3 11 GHz [81]

11.8 3 4 22 GHz [81]

Table 2.1: Reservoir-to-dot electron tunnel rates of previously measured Si-P
devices. The table shows tunnel rates for P-donor dots at di�erent distances from their
reservoirs dr, di�erent dot sizes and a di�erent number of electrons on the dot (the number
of electrons refers to the valence electron; for example, 3 electron implies the 2↔ 3 electron
charge transition). Note that all data above dr = 16 nm had the SET quantum dot act as
the reservoir for the dot.

The distance dr, from the reservoir to the dot, is important as it determines the

time taken to load new electrons onto the dots. That is, a closer distance between

the dot and the reservoir (for example, R1 and D1L) yields a faster tunnel rate and

thereby a faster loading time. Faster loading times are bene�cial if one desires to

utilise dynamic nuclear spin polarisation (DNP) to set and stabilise magnetic �eld

gradients across the two quantum dots during qubit operation [40, 41]. However,

the DNP pulse sequence must be run over many cycles per second to overcome the

rate of thermal di�usion of the nuclear spins resetting the magnetic �eld gradients.

By considering the cycle rates used in GaAs and noting that DNP requires one to

freshly load new electron spins onto the quantum dots, one can estimate that the

tunnel rate needs to be at least 1 MHz. However, too large a tunnel rate implies

a stronger coupling of the electron wavefunction on the dot to its reservoir which
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Figure 2.5: Plot of the reservoir-to-dot electron tunnel rates of previously mea-
sured and published Si-P devices. The tunnel rates are plotted against the dot to
reservoir distance dr. The labels show the number of donors in the P-donor dot and the
number of electrons on the dot (the number of electrons refers to the valence electron; for ex-
ample, 1e implies the 0↔ 1 electron charge transition). Note that all data above dr = 16 nm
had the SET quantum dot act as the reservoir for the dot. The star indicates the point to
aim for the �rst iteration of the quadruple quantum dot device. The colours indicate the
di�erent devices and publications from which the data points were extracted: green [81],
red [96], blue [82], purple [86].

could lead to second order co-tunnelling e�ects where an electron on the quantum

dot swaps with that in the reservoir. The co-tunnelling destroys the coherent singlet-

triplet qubit state before operations can occur or indeed before the qubit state can

be detected by read-out. A lower qubit lifetime due to a large reservoir to dot tunnel

rate was observed in the 2P-3P device shown in Figure 2.3c where the reservoir-to-

dot distances were 11.6 nm and 11.8 nm [30, 92]. The measured singlet to triplet

lifetime for reservoir-dot tunnel rates in the order of ∼1-10 GHz was 60 ns; a �gure

much lower than the typically long spin state lifetimes of ∼1 s expected for electrons

hosted on P-donors in silicon [56, 97]. Thus, tunnel rates well below 1 GHz are

desired. The reservoir to dot tunnel rates previously measured in other Si-P devices

are shown in Table 2.1 with the plot of the data shown in Figure 2.5. The tunnel rates

gathered from the linear transport device (with dr = 11.6-11.8 nm) were estimated

from transport measurements and by noting the tunnel rate dependence on the RF

readout signal strength when using the single-lead-quantum-dot (SLQD) sensor15.

15As discussed in the modelling of the SLQD sensor in Section 3.3, the RF readout signal strength
for reservoir-to-dot transitions has a Γ2

0/(Γ
2
0 + ω2) factor where Γ0 is the reservoir-to-dot tunnel

rate and ω is the driving frequency of the resonator.
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Here, for a 2P donor dot 11.6 nm from its reservoir (the source S), the tunnel rate was

1 GHz. For a 3P cluster at a similar distance from its reservoir (11.8 nm from drain

D), the tunnel rate was lower at 250 MHz as expected from the tighter con�nement

o�ered by a larger P-donor dot. The reservoir-to-dot tunnel rate increased with

increasing electron number with the tunnel rate reaching 22 GHz at 4 electrons on

the dot.

The remaining samples employed an SET to perform single-spin readout via the

spin-to-charge conversion method on devices with the geometry given in Figure 2.3b.

Here, the SET acts as a reservoir for electrons to load onto the P-donor dots. At a

reservoir-to-dot distance of 21 nm, the tunnel rate on a 3P dot started from 480 Hz

for the �rst electron and rose beyond 500 kHz after adding 2 electrons [86]. For a 2P

dot at a distance of 22 nm, the tunnel rates started from 170 Hz for the �rst electron

and rose beyond 250 kHz only after adding 3 electrons [86]. From that device, it

was not clear whether the dot size or the distance from the reservoir that played a

signi�cant factor in the tunnel rate. However, there was a clear monotonic increase

in the tunnel rate on adding more electrons to the dot. On another similar device

with 1P and 2P donor dots both placed 18 nm from the reservoir, the tunnel rates

were 50 Hz and 240 Hz respectively [82]. The result appears counter-intuitive as the

2P cluster would be expected to con�ne the electron more tightly, resulting in a

much slower tunnel rate to the reservoir. However, the two tunnel rates were within

an order of magnitude of each other and there may have been slight di�erences in

the distances with regards to the position where the electron was con�ned on each

dot. Finally, on another similar device; for a 2-3P P-donor dot at a distance of 17 nm

from the reservoir, the tunnel rate was above 50 kHz for the �rst electron [96]. Thus,

with the desired tunnel rate being 1 MHz (a nominal value much lower than 1 GHz

where cotunnelling e�ects may start, but fast enough to perhaps run DNP), dr was

set to 17 nm as pinned by the star in Figure 2.5. Noting the non-trivial spread of

tunnel rates (highlighted in Figure 2.5), given electron number and dot sizes, one

may start to optimise the distances in future device iterations as more devices are

fabricated and measured.

With the parameters did and dr set by estimations from previous experimental

results, the geometry only requires one to optimise the gate-to-dot distance dg, the

dot-pair angle ϑ and the inter-qubit distance diq. These three geometric parameters

need to be optimised to maximise electrostatic tunability of electrons across the in-

dividual double quantum dots for single qubit operations while maintaining a strong

inter-qubit coupling for two-qubit gates.

The �rst investigation used the improved electrostatic modelling (as discussed
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in Appendix A) to study the impact of the parameters dg and ϑ on maximising

the di�erential lever-arm of gates and reservoirs onto the double quantum dot. The

di�erential lever-arm measures the di�erence in energy across a double quantum dot

on changing the voltage on a gate. A large di�erential lever-arm implies that one

can better tilt the potential across the double quantum dot given the same voltage

change on the gate. Therefore, the di�erential lever-arm is important in the context

of qubit control as it describes the ability to bring the electrons together onto one dot

(J � ∆Bz for Pauli-z rotations) and separate them (J ≈ 0 for Pauli-x rotations).

The smaller voltage range required to achieve both qubit operations, o�ered by a

large di�erential lever-arm, is desirable as one can better avoid gate-to-gate current

leakage and having large voltage pulses sent down the fridge. Gate-to-gate current

leakage is undesirable as direct current �owing across the device will certainly disrupt

or destroy any electron qubit formed on the dots [86, 92]. Regarding large high-

speed voltage pulses, arbitrary waveform generators have a limited voltage range of

typically ±1.5 V; the range is further limited (to approximately ±470 mV) due to

the thermalising attenuators (minimum recommended 10 dB [33]) placed along the

coaxial lines going into the dilution fridge. In addition to a strong gate di�erential

lever-arm (needed for good qubit control), a strong reservoir di�erential lever-arm is

desirable as one attaches the resonator of the single-gate RF sensor to the reservoir.

When oscillating electrons between the dots (when the electrons are in a singlet

state), a current forms on the reservoir that is picked up by the resonator. The current

on the reservoir (proportional to the reservoir di�erential lever-arm as discussed in

the modelling of the single-gate RF sensor in Section 4.1) is proportional to the

readout signal strength and thus, a large di�erential lever-arm on the reservoir is

desirable for maximal readout �delity.

Capacitance model simulations were used to generate the di�erential lever-arms

for the reservoir R and control gate G. Since the gates from adjacent unit-cells are

required to be set further than 30 nm away (the typical minimum distance between

device leads to avoid signi�cant gate-to-gate current leakage), the electric �elds from

adjacent unit-cells' gates will not signi�cantly perturb the �nal di�erential lever-

arms of the reservoir and gate within a given qubit unit-cell. Thus, the capacitance

matrices, used to extract the reservoir and gate di�erential lever-arms, were simulated

for a single unit-cell model shown in Figure 2.6a; from which the di�erential lever-

arms (de�ned for a lead as αD1L−αD1U) were extracted. The trends in the reservoir

and gate di�erential lever-arms are shown in Figures 2.6b-c. Note that by de�nition

of the di�erential lever-arm and noting that R has a stronger lever-arm to D1L, the

di�erential lever-arms will be positive for R. Similarly, noting that G has a stronger
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(a) Parametrised unit-cell to optimise di�erential α
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Figure 2.6: Di�erential lever-arm simulations on a single qubit unit-cell used to
�x the gate to dot distance. The simulations used dr = 17 nm and an encapsulation
layer thickness of 45 nm. (a) shows the parametrised model used in the simulation. (b)
shows the di�erential lever-arm for the reservoir R (∆αR) as a function of the gate distance
dg and inter-dot angle ϑ, while (c) shows the same variation for the di�erential lever-arm
of the control gate G (∆αG). The contours in both plots are shown for clarity. Note that
di�erential lever-arm for a lead (R or G) is de�ned as αD1L − αD1U. Since the coupling of
the bottom dot D1L is stronger to R1 (and the top dot D1U is stronger to G1), the sign
of the di�erential lever-arm is positive for the reservoir and negative for the gate. Note
that 90◦ < ϑ 6 180◦ is not shown as this region is geometrically equivalent to 180◦ − ϑ.
The dotted lines on both plots indicate the 40 nm gate distance. At 40 nm, the reservoir
di�erential lever-arms (for a given ϑ) start to approach the maximum value with respect to
increasing dg.
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lever-arm to D1U, the di�erential lever-arms will be negative for G.

Increasing the gate distance dg causes a decrease in the control gate (G) di�er-

ential lever-arm (seen in Figure 2.6c) as the larger distance lowers the magnitude

of the lever-arms of G onto both dots. The reservoir (R) di�erential lever-arm re-

mains mostly constant (as the geometric distance to the dots remains the same) with

slightly lower di�erential lever-arms when the gate G comes into closer proximity (at

dg . 30 nm) and perturbs the electric �elds of reservoir R as shown in Figure 2.6b.

For both the reservoir and the gate (R and G), the di�erential lever-arm has a strong

dependence on the inter-dot angle ϑ. At a �at angle ϑ = 0, both dots are closer to

being equidistant to either R and G and thus, the di�erential lever-arms are close to

zero. At ϑ = 90◦, the individual leads have the largest di�erence in the individual

lever-arms to the dots due to the geometry placing the dots parallel with both leads.

The simulations however show no true optimal point for the di�erential lever-arm.

In fact, the simulations suggest to bring the gate G inde�nitely closer (to the dots)

while setting the angle at ϑ = 90◦ to maximise the di�erential lever-arms on the con-

trol gate G. Nonetheless, at dg = 45 nm (indicated by the dashed line), the reservoir

di�erential lever-arm approaches a maximum (required for high-�delity single-gate

RF readout) before becoming indi�erent to the gate distance as seen by the con-

tours �attening. In addition, at dg = 45 nm, the tunnel rate between the dots and

the gate G will be negligible (that is, the electrons will only load from reservoir R)

as required to prevent accidental electron transport between R and G. In addition,

dg = 45 nm should provide a su�cient distance to avoid gate leakage between R and

G [86, 92]. It is noted that if there was a model for gate leakage, then one would be

able to truly optimise the maximal qubit control (that is, the increasing di�erential

lever-arm) with the decreasing gate voltage range as gate G is brought closer to the

dots. Although one could set ϑ = 90◦ for maximal di�erential lever-arms on both G

and R, one also needs to consider the inter-qubit coupling.

The inter-qubit distance diq and the dot-pair angle ϑ are optimised in the context

of two-qubit control. The key parameter of interest is the inter-qubit coupling ∆∆

between two adjacent singlet-triplet qubits. To describe the signi�cance of ∆∆, one

needs to consider the concept of detuning on each qubit ∆. The detuning describes

the qubit electrons' shift in potential energy as one moves between the charge states

where electrons are separated on each dot (with the (1, 1) charge occupancy across

the two dots where J ≈ 0) to the electrons being on the same dot (with the (0, 2)

charge occupancy across the two dots where J � ∆Bz). Speci�cally the detuning on

each qubit is the energy level separation from when the two states (electrons together

on the same dot (0, 2) and when fully separated (1, 1)) are degenerate:
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∆ =
U(1, 1)− U(0, 2)

2
. (2.7)

where U(m,n) is the total potential energy when there are m electrons on the �rst

dot and n electrons on the second dot. The inter-qubit coupling ∆∆ is the change in

detuning ∆ on a `target' qubit when one moves an electron between the two dots in

the adjacent `control' qubit unit-cell. That is, ∆∆ is the change in the target qubit's

detuning when the control qubit changes from the (1, 1) triplet state (the triplet is

(1, 1) due to Pauli spin blockade) to the (0, 2) singlet state. The shift in detuning

mediated by ∆∆ causes a shift in J to create an entangling gate [14, 42]. One may

determine ∆∆ by calculating the shift in detuning when the control qubit is in the

triplet state (the (0, 2) charge state) and singlet state (the (1, 1) charge state):

∆∆ =



U(0, 2, 1, 1)− U(0, 2, 0, 2)

2︸ ︷︷ ︸
Target ∆ when control is singlet


−



U(1, 1, 1, 1)− U(1, 1, 0, 2)

2︸ ︷︷ ︸
Target ∆ when control is triplet


 . (2.8)

Here the potential energies U are given as a function of the number of electrons in

the dots (D1L, D1U, D2L, D2U), with the control qubit hosted across D1L/D1U

and the target qubit hosted across D2L/D2U. Note that all device gates are held at

a constant voltage and thus, the in�uence of gate voltages cancel out when taking

the di�erences in the energies. An important property of ∆∆ is that it is symmetric

about both qubits. That is, the coupling parameter is invariant if the control and

target qubits were swapped16. In addition, ∆∆ will �ip in sign if the dot in which

both electrons are held in the (0, 2) charge state for the target or control qubit were

to be changed, while ∆∆ remains invariant if the dots holding both electrons in the

(0, 2) charge state were swapped for both qubits as illustrated in Table 2.2 for ϑ = 0.

This is because the direction in which the control qubit pushes the target qubit's

electrons (whether it is towards the (1, 1) or (0, 2) charge state on the target qubit)

changes in sign when changing the dot with both electrons occupied.

From the potential energy di�erence given in Equation A.8 (derived in Appendix

A.1), ∆∆ can be written in terms of the capacitance model parameters:

∆∆ =
e2

2

((
C−1
DD

)
14
−
(
C−1
DD

)
13
−
(
C−1
DD

)
24

+
(
C−1
DD

)
23

)
, (2.9)

16Consider the target and control qubits being swapped: 2(∆∆)swap = [U(1, 1, 0, 2) −
U(0, 2, 0, 2)]− [U(1, 1, 1, 1)− U(0, 2, 1, 1)] ≡ 2∆∆.
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Control (0, 2) Target (0, 2) Con�guration ∆∆

D1L D2U
D1U D1L D2L D2U

|∆∆|

D1U D2U
D1U D1L D2L D2U

−|∆∆|

D1L D2L
D1U D1L D2L D2U

−|∆∆|

D1U D2L
D1U D1L D2L D2U

|∆∆|

Table 2.2: How charge con�gurations on each dot determine the sign of the
inter-qubit coupling. The con�gurations are arranged when ϑ = 180◦. The control (0, 2)
indicates the dot in which both electrons are occupied when the control qubit is in the
singlet state. The target (0, 2) indicate the dot both electrons occupy when in the (0, 2)
charge state. The red arrow indicates the direction the electrons move when the control
qubit is in the singlet state (with the electrons remaining separated on di�erent dots when
in the triplet state). The black arrow indicates the direction both electrons move to occupy
the (0, 2) charge state on the target qubit. The resulting inter-qubit coupling ∆∆ is purely
dependent on the geometry, but it changes in sign as given by the dot to which both electrons
occupy in the respective qubits (as determined by the voltages set on the gates).

where C−1
DD is the inverse of the 4×4 inter-dot capacitance matrix of the four dots. For

clarity the indices (1, 2, 3, 4) indicate the dots (D1L, D1U, D2L, D2U). Once again,

note that the coupling may have a change in sign depending on the orientation of the

(0, 2) charge states on the qubits as shown in Table 2.2. As described in Appendix

A.3, P-donor dots are point-like objects in which one may rewrite the inter-dot

capacitances in terms of scalar potentials:

∆∆ =
e

2
(φ14 − φ13 − φ24 + φ23) , (2.10)

where φmn denotes the electrostatic potential on dot n when placing one electron

on dot m. Now the potential of a single electron at a distance r is well-known via

Coulomb's law:

φr =
e

4πε0εrr
, (2.11)

where εr is the relative permittivity (approximately 11.7 in silicon). Under the

assumption that the nearby leads are far away from the dots such that their e�ect on

the electrostatic potentials is weakly perturbative, one may simply use Coulomb's

law to calculate the inter-qubit couplings without resorting to long �nite element
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simulations. That is, the coupling can be approximated as:

∆∆ =
e2

8πε0εr

(
1

r14
− 1

r13
− 1

r24
+

1

r23

)
, (2.12)

where rmn is the distance between dots m and n. Substituting the geometric dis-

tances from Figure 2.4, the coupling strengths (under the Coulomb's law approxi-

mation) gives:

∆∆ =
e2

8πε0εr


 2√

d2
iq + d2

id sin2(ϑ)
− 2diq
d2
iq − d2

id cos2(ϑ)


 . (2.13)

Taking the inter-dot distance of did = 12.5 nm, the inter-qubit coupling is plotted as a

function of the inter-qubit distance diq and the double dot angle ϑ in Figure 2.7a. The

inter-qubit coupling is non-zero over the parameter space with the magnitude being

approximately inversely proportional to the inter-qubit distance diq. The inter-qubit

coupling is also negative (when taking D1U and D2U to be the dots being occupied

when the �rst and second qubits enter the (0, 2) charge state). The negative inter-

qubit coupling is best seen geometrically when considering the con�guration with

the double quantum dots being horizontal at ϑ = 180◦ like with the diagram in

the second row of Table 2.2. That is, moving one of the two qubits into the (0, 2)

charge state lowers the detuning on the other dot unless the (0, 2) charge state has

the electrons gathering in D1L for the �rst qubit and D2U for the second qubit (or

vice versa).

By inspection of Figure 2.4, for a constant diq (measured between the centres

of each double-dot), the inter-qubit coupling is symmetric about the angle ϑ = 90◦

as the dot positions are geometrically mirrored (the pivot position for the angles is

taken at the centre of each double dot pair). However, the analytic formula assumes

that there are no electric �eld perturbations from metallic structures like the nearby

reservoirs. Using a reservoir to dot distance of 17 nm and a gate-to-dot distance of

40 nm, the inter-qubit coupling was extracted numerically using Equation 2.9 from

FEA simulations as shown in Figure 2.7b. The contours from the analytic model

are overlaid with the numeric model (the dashed lines) and one observes a small

departure from the symmetry about ϑ = 90◦. In addition, the numeric simulations

di�er at the larger angles ϑ > 90◦, where the reservoirs are arranged near the two

inner dots. The angular asymmetry in the inter-qubit coupling can be explained by

the reservoirs perturbing the electrons' electric �elds (more pronounced when near

the inner two electrons for ϑ > 90◦). Otherwise, the analytic model neatly captures
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(a) Inter-qubit coupling ∆∆ (Analytical)
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Figure 2.7: Optimising the inter-qubit coupling (∆∆) as a function of inter-qubit
distance (diq) and the double quantum dot angle. Previous experiments in GaAs
had ∆∆∼300 MHz [14]. (a) Plot of the analytic approximation of the inter-qubit coupling
∆∆ given by using Coulomb's law in Equation 2.13 over di�erent inter-qubit distances diq
and dot-pair angles ϑ. The contours, highlighted for clarity, give the inter-qubit coupling
in gigahertz. (b) Plot of the inter-qubit coupling when running a FEA simulation with
dr = 17 nm, did = 12.5 nm, dg = 45 nm and an encapsulation layer thickness of 45 nm. As in
(a), the contours give the inter-qubit coupling in gigahertz. The dashed lines are contours
from the analytic approximation in (b). The analytic model captures the FEA simulation
at low angles where the contours overlap, while there is a slight discrepancy at higher angles
where the analytic calculation overestimates the inter-qubit coupling for a given distance
due to the electron's electric �elds being perturbed by the reservoir leads.
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the behaviour of the inter-qubit coupling especially at lower angles. Nonetheless, the

suggested inter-qubit couplings are all in the order of many gigahertz; a �gure much

larger than the approximately ∼300 MHz (perturbative with respect to a ∼5 GHz

tunnel coupling) measured in previous GaAs devices [14]. The larger inter-qubit

coupling, seen in the simulations here, is likely due to the smaller inter-dot spacing

(12.5 nm as opposed to ∼100 nm in GaAs quantum dots) and the smaller inter-qubit

spacing (of approximately ∼30-100 nm as opposed to 100-200 nm in GaAs quantum

dots). The inter-qubit coupling is maximal when the dots are lined up at ϑ = 0◦

in an arrangement similar to the previous GaAs device shown in Figure 2.3a [14].

Nonetheless, a �at angle of ϑ = 0◦ is not ideal for the proposed Si-P qubit unit-cell

as the gates' di�erential lever-arms tend to zero as shown in Figure 2.6, thereby

weakening gate control on the qubits (that is, one will need to apply larger voltage

pulses to perform qubit gate operations). If one were to operate in the low inter-

qubit coupling regime as in the previous GaAs experiments, one may set the dots to

be vertical at ϑ = 90◦ and separate the qubits by over 80 nm to experience maximal

ease in routing the leads and a generally larger gate voltage range before gate-to-

gate current leakage occurs. However, with the aim of achieving strong inter-qubit

couplings (with the intent to achieve faster high-�delity two-qubit gate operations),

the region with inter-qubit couplings below 5 GHz was avoided. To ensure that the

device was above the 5 GHz contour, the inter-qubit distance was nominally set to

60 nm and the dot angle was set to 135◦. Note that whilst 135◦ is equivalent to

45◦; the angle 45◦ was not chosen to ensure that the control gates (G1 and G2 in

Figure 2.4) could be far apart as possible to ensure maximal gate voltage range when

attempting to perform qubit operations. An angle of 135◦ also compromises (for the

�rst iteration) between having a large the di�erential gate lever-arm (close to 90◦

for good gate control) and a large inter-qubit coupling (close to 0◦ to ensure fast

two-qubit gates).

With the geometric parameters optimised (summary given in Table 2.3), it is im-

portant to ensure that the device can indeed achieve the required charge occupancies

on the dots before fabricating the device. Speci�cally, each pair of dots must achieve

the (1, 1) and (0, 2) charge states17 with the ability to change both charge states via

the inter-dot crossing18. To control electron numbers on quantum dots, one controls

the electrostatic potentials on the dots by applying the appropriate voltages to the

gates. In large gate-de�ned quantum dots which have dots spaced approximately

17Note that the dot in the (0, 2) charge state to which both qubit electrons occupy may be either
of the two dots.

18A nice introduction to inter-dot charge crossings and the resulting 'honeycomb' structures is
given in a review by W. G. van der Wiel [89]
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Parameter Value Key considerations

Inter-dot
distance (did)

12.5 nm
Tunnel coupling needs to be 1 GHz < tc < 22 GHz
to enable qubit control, single-gate RF readout and
tunability of J [27, 82, 86].

Dot-to-
reservoir
distance (dr)

17 nm

Reservoir-to-dot tunnel rate must be less than
∼1 GHz to ensure cotunneling does not degrade
qubit lifetimes. Qubit reloading times need to be at
least ∼1 MHz for DNP [14, 27, 30, 40, 82, 86, 96].

Dot-to-gate
distance (dg)

45 nm

A gate distance above ∼45 nm gives close to max-
imal reservoir di�erential lever-arm. Any further
simply degrades the control gate lever-arm (see Fig-
ure 2.6).

Inter-qubit
distance (diq)

60 nm
Chosen to guarantee at least 5 GHz to large with
respect to a ∼5 GHz tunnel coupling (see Figure
2.7).

Dot angle (ϑ) 135◦

Chosen as a compromise in giving as large a dif-
ferential lever-arms (on reservoir and gate) while
ensuring inter-qubit coupling is larger than 5 GHz
and control gates are maximally spaced for maxi-
mum gate voltage range (see Figure 2.7).

Table 2.3: Summary of design parameters optimised for the initial two qubit
singlet-triplet device. The design parameters are drawn on the schematic in Figure 2.4.
The extended discussion on the reasons is given in Section 2.2.3.

100 nm in scale, it is possible to pattern additional gates in between and near indi-

vidual dots such that the gates can independently shape the electrostatic potentials

on given dots without a�ecting adjacent dots19. Thus, one can easily adjust the

potential to move electrons between dots. With Si-P quantum dots, the spacing

between quantum dots is approximately 12.5 nm and thus, it is not easy to place

gates such that the electrostatic potentials on the dots can be individually controlled

(equivalently stated, it is di�cult to achieve a large di�erential lever-arm on all the

gates). Thus, inter-dot charge transitions like the singlet-triplet (1, 1)-(0, 2) may

not be as easily accessible within the voltage range available on all the gates. One

method to overcome this limitation is to realise that only certain charge states need

to be accessed for full qubit operation. It is then possible to engineer di�erent sized

P-donor dots (that is, dots with more than one P-donor) such that the required

19There is still �nite back-action of these gates to other dots to which one must compensate [55]
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inter-dot transitions can be reached with minimal voltage ranges on the gates.

Consider a symmetric double quantum dot system in the 1P-1P con�guration

such as that shown in Figure 2.8a (the geometry is used to illustrate the advantage

of using asymmetric P-donor dots). Here, the in-plane gates give a certain degree of

independent control across the dots since any voltage applied to a gate is likely bring

the potentials of both dots downwards and thus, electrons enter both the dots. One

can see the symmetric loading of electrons onto the dots in the numerically simulated

stability diagram20 in Figure 2.8b by noting that at 0 V on the left and right gates (L

and R), the charge state (on the dots DL and DR) is (0, 0). On increasing the voltage

on both gates equally one enters the (1, 1) charge state. With slight increases on the

left or right gate voltages, one may enter the (1, 1) via the (1, 0) or (0, 1) charge states

respectively. However, there is a large energy penalty, speci�cally U02/2, that must

be paid to move electrons into the singlet-triplet subspace: the (1, 1)-(0, 2) charge

transition (requiring di�erential gate voltages, between gates L and R, above 0.5 V

where gate-to-gate current leakage may start to occur as highlighted by the green

window). To overcome the lack of di�erential gate lever-arms, one may engineer the

dots to provide an extra tilting potential by adding a P-donor to the second dot to

make it a 2P [82, 84]. Figure 2.8c shows the stability diagram for 1P-2P con�guration

where a combination of the dots' tilting potential and the lowering U02 with higher

electron numbers results in an even parity transition (1, 3)↔ (2, 2) accessible within

the 0.5 V di�erential gate voltage window. The (1, 3)↔ (2, 2) transition is equivalent

to the (1, 1)↔ (2, 0) singlet-triplet subspace (two spin-paired electrons on the right

dot do not a�ect the valence electrons across the two dots forming the singlet-triplet

state). Note that the ultimate goal is to �nd inter-dot transitions where one has

one electron on each dot that may interact to form the required singlet-triplet state.

Thus, by using a combination of di�erent P-donor dot sizes and electron numbers,

it is possible to engineer inter-dot crossings of even parity; that is, a transition

where the number of electrons on both dots sum to an even number. With all

lower energy electrons spin-paired (thus, not participating in the electron-electron

physics), one may form a singlet-triplet state with the outer valence electron on each

dot. Finally, to perform two qubit gates, it is important to be able to simultaneously

form two singlet-triplet qubits (each formed by accessing the singlet-triplet spin

state) on adjacent double-quantum dots. This implies that for a given set of voltages

20The stability diagrams are inferred from the capacitance matrix extracted from a numerical FEA
solver as described in Appendix A. As described in the derivation of the stability diagram simulator,
the capacitance matrix holds information regarding the placement of the charge transitions [89].
Di�erent donor cluster sizes were simulated by taking the potential o�sets resulting from tight-
binding calculations [81].



2.2. Design and demonstration of a Si-P singlet-triplet unit-cell 45
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Figure 2.8: Using di�erent P-donor dot sizes to access singlet-triplet states on a
simple double quantum dot system in Si-P. (a) Schematic of a simple double quantum
dot system under simulation. The device includes a double quantum dot (formed by P-donor
dots DL and DR) and two control gates (L and R). (b) Simulated stability diagram when
sweeping the voltages on the gates L and R. The ordered pairs in each charge-stable region
indicate the electron numbers on DL and DR. Here, the dots DL and DR are both taken to be
1P donor dots. The green window indicates the region where the di�erential voltage between
the gates is L and R is within 0.5 V. The even-parity inter-dot transitions ((0, 2) ↔ (1, 1)
and (2, 0) ↔ (1, 1)) require di�erential gate voltages above 0.5 V. (c) When replacing DR
with a 2P donor dot, the even parity inter-dot transition (1, 3) ↔ (2, 2) is now accessible
within the 0.5 V di�erential voltage window with (VL, VR) ≈ (690, 220) mV. Note that both
stability diagram simulations limit the electron numbers to be a maximum of 2 for 1P dots
and 4 for 2P dots.
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applied to the gates, one must be able to overlap the inter-dot crossings for each

singlet-triplet pair.

Figure 2.9 shows some simulated stability diagrams for the quadruple quantum

dot device (schematic shown in Figure 2.4 and geometric parameters summarised in

Table 2.3) under di�erent P-donor dot sizes. The electron numbers of each charge

stable region in voltage space is given as a quadruplet for the number of electrons

in the dots D1L, D1U, D2L and D2U respectively. Figure 2.9a-b show simulated

stability diagrams for a symmetric 1P-1P-1P-1P cluster con�guration. With all

the gates set to zero voltage, there are no two even parity inter-dot transitions21

and two odd parity inter-dot transitions (labelled EP and OP respectively) visible

on sweeping the gates VG1 and VG2. One can only overlap adjacent even parity

transitions (labelled EP in Figure 2.9b), required to perform a two-qubit gate, on

tuning the other gates and ultimately setting the gate voltages up to 1.25 V. Such

high gate voltages will give rise to current leakage between the gates and thus, the

1P-1P-1P-1P arrangement is not a feasible con�guration to observe gates between

multiple singlet-triplet qubits.

Figures 2.9c-d show the stability diagrams when using asymmetric numbers of

P-donors within the quantum dots where each double-dot pair is in the 1P-2P con-

�guration. Figure 2.9c shows two even-parity inter-dot transitions (labelled EP)

within the gate voltage space. With mild tuning of the gate voltages on R1 and

R2, one may overlap even parity transitions across the two di�erent singlet-triplet

qubits, required for the two-qubit gate. The simulation shows that one may achieve

the charge con�guration for a two-qubit gate with all the gate voltages within 0.7 V

in magnitude as shown in Figure 2.9d. For the even parity transitions overlapped

in Figure 2.9d, both dot pairs are in the equivalent singlet-triplet (1, 3)-(0, 4) inter-

dot charge transition. Here, two electrons on the 2P dot spin-pair, while a third

(valence) electron interacts with the single electron on the 1P dot to form a singlet-

triplet spin state. Thus, the 1P-2P donor-dot was the chosen candidate for achieving

a singlet-triplet two-qubit gate. The inset in Figure 2.9d shows the zoomed over-

lap of the inter-dot crossings and the subsequent points of interest when performing

qubit operations. For this device, the bottom-left quadrant represents the (1, 3, 1, 3)

charge state where both qubits have their electrons on separate dots. The inter-dot

transitions (1, 3, 1, 3)↔ (0, 4, 1, 3) (in blue) and the (1, 3, 1, 3)↔ (1, 3, 0, 4) (in red)

21Odd parity inter-dot crossings are those where the sum of the electrons across both dots adds
to an odd number. Here, all electrons are spin-paired and one valence electron moves between the
dots; thereby not forming a two-electron singlet-triplet state. Even parity transitions have an even
number of electrons both dots in which one valence electron on each dot come together to interact
and form a singlet-triplet state
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Figure 2.9: Stability diagram simulations for di�erent P-donor cluster con�g-
urations. The goal is to overlap two even-parity singlet-triplet inter-dot transitions on
adjacent dots (D1L/D1U in blue and D2L/D2U in red) to setup a two-qubit gate. The
electron numbers on dots are shown as (D1L, D1U, D2L, D2U). The inter-dot transitions of
odd parity are labelled OP while the transitions of even parity (for singlet-triplet operation)
are labelled EP. (a)-(b) A symmetric donor cluster arrangement where each dot within the
double-dot pair has the same number of P-donors. In order to overlap adjacent singlet-triplet
charge transitions, one must apply voltages of up to 1.25 V on the gates. (c)-(d) However,
when using asymmetric dot sizes such as a 1P-2P on each double-dot pair, the two-qubit
gate charge transition can be set with all gate voltages below 0.7 V in magnitude. The inset
in (d) shows the qubit operating points when overlapping of the inter-dot transitions. For
single-qubit operations, Z is the qubit idle point for both qubits while X1 and X2 are the
operating points for Pauli-x operations for the �rst and second qubit respectively. For a
two-qubit CZ gate, one moves to G1 or G2 if choosing the �rst or second qubit to be the
control qubit respectively. The red and blue dotted lines show the zero-detuning line of the
second and �rst qubits when using the �rst and second qubits as the control qubits in the
triplet state respectively. The solid lines indicate the zero-detuning positions for the target
qubit when the respective control qubit is in the singlet state.
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represent the nominal zero-detuning position for the �rst and second qubit respec-

tively. Slightly into the (1, 3, 1, 3) charge region, where the electrons are separated,

one chooses the idle point Z where J � ∆Bz for both qubits. At point Z, the qubits

rotate about their respective Pauli-z axes. To perform individual single qubit Pauli-

x rotations, one must keep the detuning on the other qubit constant, while moving

the current qubit's detuning towards negative detuning where the electrons are fully

separated to achieve J ≈ 0. Thus, one moves from point Z to X1 (parallel with the

red inter-dot line to ensure the second qubit is left untouched kept rotating about its

Pauli-z axis at the same frequency) to perform Paui-x operations on the �rst qubit.

Similarly, one moves to X2 to perform Paui-x operations on the second qubit. To

perform a simple two-qubit gate, one needs to �rst select a control qubit. Without

loss of generality, consider the �rst qubit to be the control qubit. One moves to

point G1 where the �rst qubit is pushed into positive detuning. If the �rst qubit

is in the triplet state (electrons are on separate dots due to Pauli-blockade), then

the distance from G1 to the zero detuning line for the second qubit (red dotted line

labelled T ) remains the same as that at point Z and thus, the second qubit continues

to precess about the Pauli-z axis at the same frequency. If the �rst qubit were in

a singlet state, both electrons in the �rst qubit may enter the same dot. Thus, the

non-zero inter-qubit coupling manifests in a shift in the second qubit's detuning (red

line labelled S) shifting to a lower value (the distance from G1 has increased) where

the new J is lower (noting that ∆∆ < 0 for the simulated design) and thus, the

second qubit now precesses at a lower frequency. Waiting for a �xed period of time,

if the di�erence in frequencies causes a π phase shift to occur on the second qubit

conditional on the �rst qubit being in the singlet or triplet state, one has a CZ gate.

Using a similar argument, one can perform a CZ gate where the second qubit is the

control qubit by moving to point G2. Note that here, the �rst qubit's zero-detuning

remains the same at the blue dotted line labelled T if the second qubit is in the

triplet state and moves to the solid blue line labelled S if the second qubit is in the

singlet state.

It should be noted that the simulated voltage o�sets on the charge transition

lines given by di�erent P-donor sizes (manifested for example as the `y-intercept'

in the stability diagram) vary signi�cantly when the donor dots are placed close

to reservoirs. For example, D1L is placed close to the reservoir while D1U is far

from its reservoir. Thus, experimental measurements of the gate voltage o�set on

the D1L charging lines may di�er from the theoretical estimates and thereby the

predicted positions of the line intersections, where the inter-dot charge crossings

form, may di�er. The experimental di�erences in the gate voltage o�sets is due to



2.2. Design and demonstration of a Si-P singlet-triplet unit-cell 49

the breakdown of the metallic lead approximation where one needs to consider the

individual P-donors in the leads [15, 98]. Here, there is a possibility that on applying

a positive voltage to the reservoir, the reservoir becomes depleted of electrons. The

extent of the metallic region of the gate changes, resulting in a lower lever-arm on

the dot and thus, a di�erent voltage will be required to charge or discharge the dot.

The in�uence of the reservoir on the voltage o�sets could be empirically modelled via

experimental data with di�erent P-donor dots near reservoirs or via time-consuming

tight-binding models. Nonetheless, the theoretical simulations suggest that the donor

dots must contain a di�erent number of P-donors in each dot within a given qubit

unit-cell's double quantum dot to ensure electrostatic accessibility of the required

singlet-triplet inter-dot charge transitions.

2.2.4 Fabrication of a quadruple Si-P quantum-dot device

To experimentally demonstrate the electrostatic operation of a single singlet-triplet

unit-cell along with its interaction with an adjacent singlet-triplet unit-cell, a Si-

P quadruple quantum dot device was created using the parameters estimated by

the simulations. The device shown in Figure 2.10 was created using standard Si-P

fabrication techniques. The wafers were Si-100 with a 0.1◦ cut, P-type boron doped

and had an approximate resistivity of 5-10 Ωcm. Registration markers were created

on the wafer using EBL and a TMAH wet-etch after which they were cleaned with SP

(sulphuric acid and hydrogen peroxide) and RCA2 (hydrochloric acid and hydrogen

peroxide). The wafer was then taken into an STM. After outgassing the wafer via

direct current heating, the wafer was direct current �ash annealed to 1100◦C with

surface reconstruction at approximately 780◦C. The surface was then passivated

with monatomic hydrogen. Using the STM tip at low current (∼70 pA), the surface

can be imaged, while applying larger currents of ∼8 nA can vibrationally excite the

hydrogen o� the silicon surface to create openings. These patterned structures appear

as lighter regions as seen in the STM image in Figure 2.10 due to the height of the

dangling bonds out of the surface. Small openings (for example, D1L, D2U, D2L

and D2U) make space to form small P-donor dots while larger openings are used to

form metallic leads via the tight packing of many P-donors. The opened regions were

�lled with phosphorus by dosing the wafer with phosphine gas. The incorporation

of the phosphorus into the silicon crystal was performed via another small direct

current heating anneal. The surface was then encapsulated with 47± 3 nm of silicon

via a silicon sublimation source (SUSI) at a temperature of 250◦C and growth rate

of 0.131 nm/min. The P-doped leads were contacted to ohmic pads on the surface of
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the silicon via standard cleanroom processing. Holes were etched into the phosphorus

pad via a SF6 reactive ion etcher and then contacted to aluminium Ohmic surface

contacts via physical vapour deposition. The sample was then transferred onto a

PCB and bonded via an ultrasonic Al wedge bonder.

To aid in the electrostatic characterisation of the 4-dot device, the 2 × 1 array

of double-dots was terminated, on both ends, with tunnel junction charge sensors

(TJCS) [99]. The TJCS works by applying a voltage across the tunnel junction such

that any changes in the electrostatic environment around the tunnel junction will

a�ect the tunnel barrier and thereby cause a change in the current through the TJCS.

Although in the long term, a full-scale singlet-triplet architecture will not have space

(or indeed require the extra charge sensors), the two TJCSs in this particular device

provide a useful diagnostic tool to characterise the device since they are sensitive

to all charge transitions within the device. Note that in general the single-gate

RF sensors are only sensitive to transitions with fast tunnel rates as the electrons

must respond in time with the high frequency RF excitation as discussed in Section

3. The TJCS structures were placed approximately 80 nm away from the singlet-

triplet dots as shown in Figure 2.10. The TJCS distance was chosen to ensure that

the TJCS structures did not strongly a�ect the local electric �elds around the dots

(that is, these structures are further away than adjacent unit-cells in a larger array)

while ensuring su�cient signal for charge detection. Previous experiments using

TJCSs [99] showed a signal to noise ratio of approximately 15-20 at a distance of

50 nm; so it is estimated that the same sensor at 80 nm would yield enough signal to

detect all charge transitions onto the four quantum dots with a signal to noise ratio of

approximately 10-14. The TJCS dimensions were chosen to yield a greater junction

conductivity from the previous TJCS experiment (8.5 nm lead width and 17.2 nm gap

size) by lowering the gap size to ensure su�cient sensitivity [99]. However, previous

studies on tunnel gaps have shown that the gap resistance varies over eight orders

of magnitude when changing the gap aspect ratio (lead width divided by gap size)

from approximately 0.5 to 3.0 [100]. Thus, two TJCS structures were deliberately

patterned with di�erent gap sizes to provide additional redundancy. In the end,

the 5.6 nm lead width and 5.8 nm gap size of T1 was too conductive and failed to

show gap-like behaviour as shown in Figure 2.10. However, T2 (8.8 nm lead width

and 10.8 nm gap size) showed gap-like behaviour; since this gap could be tuned via

electric �elds, T2 functioned as a TJCS. The maximum resistance of the TJCS T2

was 600 kΩ; more than three orders of magnitude lower than the previously published

TJCS with a maximum gap resistance of 1 GΩ [99].

The fabricated device was patterned with the geometric distances suggested by
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Figure 2.10: Donor based quadruple quantum dot device with multiplexed RF
resonator readout. The STM image shows the silicon surface lithography where the lighter
regions have been desorbed from the lithographic hydrogen mask. These areas are dosed
with phosphorus to form metallic electrodes [27]. Zoomed images of the four dots (D1U,
D1L, D2U and D2L) before the dosing of phosphine are shown in the insets. Two of the
frequency multiplexed line of resonators, connected to R1 and R2, measure the singlet-triplet
states across their respective dot pairs, while the remaining two lines are connected to tunnel
junction charge sensors T1 and T2. Reservoirs R1 and R2 are used to load their respective
pairs of dots with electrons while the gates G1 and G2 are used to manipulate the singlet-
triplet detuning of the dot pairs. C highlights a lithographic defect where a portion of the
tungsten STM tip deposited on the surface. The vector B is the direction of the in-plane
magnetic �eld applied on the device during measurements in the dilution refrigerator.
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Figure 2.11: IV curves of TJCSs T1 and T2 in the fabricated 4-dot device. At
a temperature of 4 K, the current response as a function of the voltage across the TJCS
was taken for T1 and T2 shown in Figure 2.10. (a) T1 (STM image shown in inset) was
found to be too Ohmic with a resistance of ∼60 kΩ. (b) T2 (STM image shown in inset)
showed gap-like behaviour (with a maximum resistance of ∼600kΩ) that could be tuned
with electric �elds and thus, appropriate for charge sensing [99].

the simulations in Section 2.2.3 with additional increases in the distance between

leads (approximately above 50 nm) to be able to attain larger gate voltage ranges

(before gate-to-gate current leakage occurs) as summarised in Table 2.4. The extra

gate-range was to provide a bu�er if there were any unpredicted o�set potentials that

shifted the even parity singlet-triplet inter-dot charge transitions. The parameters

that were left unchanged (with any di�erences due to unintentional variations in

the STM fabrication) were the the inter-dot distances did (both at 12.5 nm), the

dot-to-reservoir distances dr (18 nm and 17 nm for the �rst and second unit-cells)

and the dot angles ϑ (128◦ and 139◦ for the �rst and second unit-cells). The dot-

to-gate distances dg were increased from 45 nm to 52 nm and 55 nm (for the �rst

and second unit-cells). The increased distance from 40 nm was predicted to result

in an approximately 1% drop in the di�erential lever-arm for the gate as shown by

the simulations in Figure 2.6. The inter-qubit distance diqwas increased to 75 nm to

ensure that the reservoir leads (the closest leads) were spaced by at least 50 nm. At

this greater inter-qubit distance the simulations shown in Figure 2.7 still suggest an

inter-qubit coupling of ∼5 GHz as desired for non-perturbative inter-qubit couplings.

Since the state of the art (at the time of publishing this thesis) method to in-

corporate P-donors in silicon was stochastic, the exact donor numbers could not

be precisely controlled within the P-donor dots. That is, previous heuristic studies

showed that the incorporation by heating yields a histogram of possible P-donor dot
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Parameter Simulation Fabrication Reason for change

did 12.5 nm 12.5 nm and 12.5 nm N/A

dr 17 nm 18 nm and 17 nm Unintentional.

ϑ 135◦ 128◦ and 139◦ Unintentional.

dg 45 nm 52 nm and 55 nm Intentional.

diq 60 nm 75 nm Intentional.

P-Donors 1P-2P ∼2P-2P and ∼3P-4P Unintentional

Table 2.4: Summary of changes to the geometry made during fabrication. The
simulation column refers to the parameters suggested by simulations in Table 2.3. The
fabrication column refers to the parameters measured from the STM image of the fabri-
cated device with dual entries referring to the parameters in the �rst and second unit-cells
(D1L/D1U and D2L/D2U respectively). The �nal column describes the reasons for the dis-
crepancies where `unintentional' refers to variations in the STM patterning of the fabricated
device while `intentional' refers to increases in the geometric distances to reduce gate-to-gate
current leakage.

sizes depending on the temperature of incorporation and the size of the lithographic

patch opened on the hydrogen mask [86, 101]. Thus, the dots were patterned to be

asymmetric (as required for feasible electrostatic access of the even parity inter-dot

charge transitions) 1P-2P donor dots. From the size of the openings on the hydrogen

mask for dots (from the STM images in the insets of Figure 2.10), one may make the

initial estimate of the dot sizes to be 2-6P, 1-4P, 2-6P, 2-6P (for the dots D1L, D1U,

D2L and D2U respectively) given previous statistical studies performed on the incor-

porated P-donor dot sizes [101]. The �nal estimations on the size of the fabricated

P-donor dots came from counting the number of charge transitions in the stability

diagrams and the positions of inter-dot transitions in the gate voltage space. That

is, if N electron transitions onto a dot are seen, then the dot has at least N/2 donors.

In addition, as discussed in the next section, the electrostatic inaccessibility of the

even parity inter-dot transitions on the �rst double quantum dot (D1L and D1U)

suggest that the dots D1L and D1U have the same number of P-donors and thus,

are symmetric. The ease in electrostatic accessibility of the even parity transitions

on the second double quantum dot (D2L and D2U) suggest an asymmetric number

of donors on these dots. Thus, the eventual dot sizes were estimated to be 2P, 2P,

3P and 4P for dots D1L, D1U, D2L and D2U respectively.
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2.2.5 Electrostatic triangulation and veri�cation of the P-donor

dots

The �rst task when electrostatically characterising devices is to ensure that all four

quantum dots are present. This is to both verify the success of fabrication process and

provide statistics to benchmark the `atomic engineerability' of the STM fabrication

process. The presence and location of the dots can be veri�ed by observing multiple

charge transitions in the device when electrons are added onto the dots when changing

the electrostatic potential around the dots by changing the voltages applied on the

gates. The charge transitions on each dot can be detected using the TJCS T2

by measuring �uctuations in its junction DC current. The TJCS was measured

using RF re�ectometry due to the enhanced signal to noise ratio comparable to that

when using a DC cold ampli�er and a lock-in ampli�er as outlined in Section 3.1.2.

The LC resonator was created via a Coilcraft 1206CS-122XJE surface mount chip

inductor (the capacitance being created via the geometric parasitic capacitance of

the inductor) with a resonant frequency22 of 215.4 MHz.

On measuring the RF response of T2 while sweeping the voltages on the reser-

voirs, VR1 and VR2, one obtains the charge stability diagram shown in Figure 2.12.

When sweeping any gate, R1 or R2, the tunnel barrier T2 is continuously changed

by the electric �elds on the gates, while the presence of electron charging events

discretely shift the barrier strength. To highlight the charge transitions in the RF

response of T2 from the linear background caused by the swept gate voltages, a

numerical derivative was taken along both the x and y axes. Charge transitions

belonging to the same dot have the same slope as highlighted by the presence of

sets of parallel lines. The two sets of steeper lines (indicating a stronger coupling to

R1 when compared to R2) highlighted by blue and dark green correspond to charge

transitions on dots D1U and D1L respectively. The two sets of shallower lines (in-

dicating a stronger coupling to R2 when compared to R1) highlighted by green and

magenta correspond to charge transitions on D2L and D2U respectively. As both

axes correspond to voltages being swept on the dots' reservoirs, electrons leave the

dot when applying a more positive voltage. Thus, the top-right quadrant is labelled

nominally as the (0,0,0,0) charge state (assuming no further charge transitions are

to follow). The separation of the lines (in gate voltage space) is proportional to a

non-trivial function of the electron charging energies on each donor dot. The initial

22The resonant frequency was selected for compatibility with on-site IQ demodulator used in the
room temperature RF circuitry. The Polyphase AD0105B IQ demodulator was speci�ed to work
for frequencies from 100-500 MHz
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Figure 2.12: Charge stability diagram of all four dots in the 4-dot device taken
using the TJCS T2. A numerical derivative of the RF response was taken along the x
and y axes. The electron numbers for di�erent charge stable regions in voltage space are
shown for the dots (D1L, D1U, D2L, D2U). The two sets of steeper lines highlighted by blue
and dark green represent transitions onto the dots D1U and D1L respectively. Similarly,
the shallower green and magenta lines are due to electrons hopping on or o� the right
hand dots D2L and D2U. The lines labelled H1 and H2 are due to hysteretic transitions
onto the dots D1U and D2U respectively. They match the slopes of D1L and D2L, due
to the slow tunnel rates (of the �rst few electrons) from the reservoir onto the dots D1U
and D2U causing them to load through the dots D1L and D2L respectively [102]. (a) and
(b) show the reverse (adds electrons onto D1L/D1U and empties electrons on D2L/D2U)
and forward (adds electrons onto D2L/D2U and empties electrons on D1L/D1U) scans
where each horizontal line was scanned (taking 10.5 s per line direction) by decreasing and
increasing VR1. C is an unintended charge trap. The voltages on the other gates were:
(VG1, VG2, VT1, VT2) = (−0.1, 0.0,−0.2,−0.13) V.
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electrons have a larger separation between charge transitions (with larger separations

for larger P-donor dots) while the lowering con�nement strength of later electrons

usually yields smaller charging energies [81]. The stability diagram shows hysteretic

behaviour where the charge transitions look di�erent (or go o� the scanning range)

depending on the voltage scan direction. The hysteretic lines occur as there are

dots further away from the reservoir (labelled H1 and H2 for transitions onto D1U

and D2U respectively), which have slow dot-to-reservoir tunnel-rates that exceed the

scanning time. Thus, the far dots (D1U and D2U) are charged and discharged by

having electrons �ow through the near dots (D1L and D2L). Note the charge transi-

tions on the dots near the reservoirs have fast electron tunnel rates to the reservoir

and do not exhibit hysteresis in the forward and reverse scans. Since the dot-to-

reservoir tunnel rates increase when more electrons on the dots, the hysteresis e�ect

disappears for higher electron transitions (for example, the two D2U lines in the

bottom of each scan). The hysteresis is discussed in detail later in this section with

details shown in Figure 2.14. Finally, there is a charge transition highlighted by C

which was due to a charge-trap caused by a lithographic defect in Figure 2.10. The

detailed justi�cation of the charge stability diagram also includes the triangulation

of the charge transition lines to the four patterned dots and the recognition of the

charge-state hysteresis on dots D1U and D2U.

To verify that the multiple charge transition lines are due to electrons moving on

the same quantum dot, many stability diagrams with a di�erent combination of gate

voltages (on the axes) were taken. The slope of the charge transition line indicates a

ratio of the lever-arm of the gates (on the x and y axes) to the quantum dot associated

with the charge transition line. Since the lever-arms relate to the gate geometry,

the slopes remain invariant with electron number. Thus, multiple charge transition

lines onto a given dot should remain parallel across di�erent stability diagrams. By

taking groups of transition lines with the same slope and verifying that they still

had matching slopes over di�erent stability diagrams, a family of four parallel lines

of di�erent slope were shown to arise from the four separate quantum dots as shown

in Figure 2.12 under the colour-coded labels for D1L, D2U, D2L and D2U. A �fth

line, that did not consistently match the slopes of the four families of transition lines

across all stability diagrams, is marked C. An electrostatic triangulation method was

then employed to infer the origin of the transition lines to the patterned quantum

dots.

The slopes of charge transition lines on a given charge stability diagram yield in-

formation on the dot couplings of the gates swept along the x and y axes respectively.

All charge transition lines were observed over multiple stability diagrams taken with
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a di�erent combination of gate voltages swept along the x and y axes. From Equa-

tion A.29 in Appendix A.2.1, the gradient of a charge transition line, when sweeping

the gate voltages Vx and Vy on the x and y axes respectively, is:

dVy
dVx

= −Kx − αx
Ky − αy

, (2.14)

where αx and αy are the gate lever-arms to the dot associated with the transition

line for the gates x and y respectively. The constants Kx and Ky are 1 if the gate (x

or y respectively) is the reservoir for the given dot and 0 otherwise23. As long as the

dot does not have multiple reservoirs24, it is evident from this equation that charge

transitions lines for a given dot have negative gradient if, and only if, the gates used

on the x and y axes are not reservoirs for the given dot. For example, the positive

slope of the charge transitions suggest that R1 and R2 are reservoirs for the given

quantum dots as expected (R1 is the reservoir for dots D1L and D1U while R2 is

the reservoir for dots D2L and D2U).

Given a family of lines from the same dot (each line corresponds to an electron

moving onto the dot), it is important to verify that the charging site is one of the

intentional quantum dots (as opposed to unintentional quantum dots that can occur

for example in MOS type devices [55, 103]) patterned during fabrication. Equation

2.14 shows that the slope of the charge transition line when sweeping the gates x

and y (on the x and y axes respectively) that are not reservoirs for a given dot

is −αx/αy. That is, the slope is the ratio of the gates' electrostatic in�uence on

the given quantum dot. Now the lever-arm of a gate due to a point-like quantum

dot (like a small P-donor dots in silicon) is numerically equal to the electrostatic

potential due to the gate at the position of the quantum dot when applying 1 V

to the gate (as discussed in further detail Appendix A.3.1 in the context of better

capacitance matrix simulations). Therefore, the slope of a charge transition line

on a stability diagram is indeed equal to the ratio of the electrostatic potentials

of the gates (when individually applying some voltage V and grounding all other

gates) at the site of the dot. By taking the exact structure of the gates from the

STM image in Figure 2.10 and transferring it into a FEA simulation (as discussed

in detail in Appendix A.3.3), one may simulate the electrostatic potentials of the

23Km accounts for the changing level of the reservoir on sweeping a reservoir's voltage. That
is, a more positive voltage on a gate will lower the dot's energy level: ∆Ud = −eαgd∆Vg but
leave the reservoir untouched. However, a change the voltage on the reservoir itself lowers the
reservoir energy level by e∆Vg, thereby raising the dot's energy level with respect to its reservoir
by ∆Ud = e(1− αgd)∆Vg

24Devices are typically designed to have single reservoirs to avoid current �ow through the dots
via multiple reservoirs [86, 92].
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Figure 2.13: Electrostatic triangulation to verify the locations of the STM-
patterned P-donor quantum dots. Each map shows the triangulation of the origin
of each transition line observed in Figure 2.12. The black regions in each map represent
electrodes in the device, while the four black dots represent the patterned locations of the
dots in the STM. Each map, for a given dot, shows four shaded regions generated by taking
the slopes of the dot transition over four di�erent gate map combinations. The red cross
marked on the �nal map represents the location where a lithographic defect due to a piece of
the tip on the surface was observed in the STM image. The loci were generated by matching
the ratio of slopes across di�erent gate maps with simulated ratios of electrostatic potentials.
Taking a 10% uncertainty in the measured slope, the regions were given a Gaussian spatial
uncertainty.
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individual gates and then calculate the locus of all points where the ratio of the

electrostatic potentials of gates x and y match the slope dVy/dVx of the transition

line in a given stability diagram. One may repeat this for the same transition line

slope across di�erent stability diagrams (taken with a di�erent combination of gates

on the x and y axes) to generate multiple loci and e�ectively triangulate the position

of the quantum dot as shown in Figure 2.13. The loci are intentionally smeared by

considering a 10% uncertainty in the measured slopes of the charge transition lines

in the charge stability diagrams. That is, the intensity of each coloured locus at

position r is given by a Gaussian distribution:

`(r) = exp

[
−1

2σ2
s

(
φx(r)

φy(r)
− |s|

)2
]
, (2.15)

where σs is the standard uncertainty in the transition line slope s. The position

dependent functions φx and φy are the electrostatic potentials when applying 1 V

to gates x and y respectively (while grounding all other gates in each case). Note

that the combinations of gates used for each transition line were chosen to give

lines of negative slope; that is, the gates swept along the x and y axes in the charge

stability diagrams were not the reservoir for the dot under concern. This was to avoid

complications that may arise when the simple electrostatic model does not accurately

predict the lever-arm of a given dot when in close proximity to the reservoir [98].

Importantly, our results show that this technique, using the four loci for each family

of transition lines, successfully triangulates the position of the measured dots to the

positions of the four STM patterned dots as shown in Figure 2.13. In addition,

this technique has the added advantage of being able to triangulate unintentional

quantum dots (also known as `charge traps'). In this case the transition line, marked

C in Figure 2.12, is consistently triangulated to the position of a lithographic defect

that occurred during fabrication before dosing as shown in the STM image of the

device in Figure 2.10 by the label C. In the future, this triangulation technique can

be iterated over new devices, so that the location and origin of unintentional charge

traps can be identi�ed, leading to a better understanding and subsequent elimination

of such defects.

With the charge transitions successfully matched to the location of the STM-

patterned dots in the device, one can label the electron charge state in the regions

between the charge transition lines. To deduce the side (left/right or above/below a

given charge transition line) with more electrons, one may examine the action of the

gates. When increasing the voltage on a gate, the electrostatic potential on the dot

becomes more positive and thus, electrons enter the dot. However, when increasing
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the voltage on a reservoir, electrons deplete from the reservoir and lower the overall

Fermi-level. Consequently, increasing the voltage on a reservoir e�ectively raises the

dot's energy level (with respect to its reservoir) and thereby depletes charge on the

dot. As shown by Equation 2.14, one may easily deduce that one of the gates being

swept in the charge stability diagram is a reservoir to the dot if the slope of the

charge transition line is positive. All lines in the stability diagram in Figure 2.12

are of positive slope. Thus, the dots all have R1 or R2 as their electron reservoirs.

To deduce which of the gates (R1 or R2) is the reservoir for a given dot, one needs

to consider the geometry. As R1 is closer, than R2, to dots D1U and D1L, R1 is

the reservoir to the dots D1L and D1U. Similarly, R2 is the reservoir to the dots

D2L and D2U. Thus, the region in the top-right corner of the stability diagram

in Figure 2.12 with the most positive gate voltage on R1 and R2, has no further

charge transition lines present and corresponds to the depleted charge region with

the electron numbers labelled as (0, 0, 0, 0) on all four dots25. When moving to more

negative voltages on R1, one crosses charging lines on D1L or D1U as electrons are

added to the respective dot. Since R2 is not a reservoir to the dots D1L and D1U,

an electron is only added when crossing the charge transition line at a more positive

gate voltage. Similarly, moving to more negative voltages on R2 loads electrons onto

the dots D2L and D2U while a more negative voltage on R1 depletes those dots.

Finally, on labelling all the charge transitions and electron numbers from the

depleted charge state, it is of note that two sets of transition lines in Figure 2.12,

labelled with H1 and H2, changed slopes and positions depending on the direction

of the voltage scan. Although the lines labelled H1 and H2 in the reverse scan in

Figure 2.12a share the same slope as the the bottom dots in the reverse scan (for

example, H1 has the same slope as D1L and H2 has the same slope as D2L), the

slopes do not remain the same as the bottom dots' slopes in the forward scan in

Figure 2.12b. This charge hysteresis e�ect is better observed in a simpler case when

probing the �rst electron on the dots D2L and D2U (seen in Figure 2.12) using the

gates R2 and G2 in Figure 2.14. The charge transition lines in both charge stability

diagrams are positively sloped as R2 is the reservoir for the dots D2L and D2U.

The two stability diagrams were taken by decreasing the voltage on R2 (reverse

scan where electrons are added to the dots) and increasing R2 voltage (forward scan

where electrons are depleted on the dots) with the charge stable regions labelled as

the number of electrons in (D2L, D2U) respectively.

25Note that there may be more electrons present in the dots D1U and D2U. They may indeed
never fully deplete due to their slow tunnel rates to their respective reservoirs. Thus, the exact
electron numbers still remain as estimates.
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(a) Reverse scan (←) to load electrons onto dots (D2L,D2U)
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(b) Forward scan (→) to empty electrons from dots (D2L,D2U)
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Figure 2.14: Hysteresis in the charge stability diagram, taken with sensor T2,
due to asymmetric coupling of the dots D2L and D2U to reservoir R2. The
tunnel rate from the reservoir R2 to dot D2U is extremely slow (compared to the tunnel
rate between R2 and D2L) and thus, electrons emptying or loading dot D2U must move
through dot D2L. This leads to a di�erent slope for the D2U charge transition line when
taking the gate map by scanning backwards (a) and forwards (b). The slope of D2U
transition (green) does not follow the expected slope (black lines), but instead follows the
slope of the D2L transition line (magenta) or the inter-dot transition line (pink) depending
on the required con�guration of the D2L energy level to load or empty electrons on D2U.
The labelled ordered pairs represent the number of electrons, in D2L and D2U, in the given
charge stable regions. The energy diagrams have three columns representing the energy
levels of the Fermi-level reservoir R2, dot D2L and dot D2U. The voltages on the other
gates were set to 0 V except VR1 = −0.2 V. To process the data from T2, a numerical
derivative was taken along the x-axis. Note that a high RF power was used in this gate
map scan and thus, charge transitions involving R2-D2L (magenta) and D2L-D2U (white)
were broadened as a result. Charge transitions on D2U were not broadened as the electron
may not move back and forth once the charge transition has occurred due to the charge
state hysteresis. The small horizontal lines seen in the (1,1) charge region in (b) are due to
another charge transition.
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By tuning the voltage on G2 one may change the dots' energy levels such that

one adds or removes electrons (in the forward or reverse scans) onto the dots D2L

and D2U as seen by the magenta (0, 0) → (1, 0) and green (0, 0) → (0, 1) charge

transition lines respectively. On moving to lower voltages on R2, the dot that wasn't

initially loaded receives an electron to �nally enter the (1, 1) charge state. The

intermediate region between which one loads to the D2L or D2U �rst is the odd-parity

(1, 0) ↔ (0, 1) inter-dot crossing shown in white where an electron moves between

the dots. The black lines indicate the expected slope of charge transitions on D2U.

However, there is a hysteresis e�ect where the slopes of the charge transition onto

dot D2U (green) has a slope depending on the direction of the voltage scan. The gate

voltage hysteresis e�ect has been previously observed in systems with asymmetric

tunnel rates of two quantum dots to their reservoir [102] with some groups exploiting

the hysteresis to prolong spin states for higher �delity readout [104]. In our case, the

tunnel rate between the reservoir R2 and D2U is too slow to load or empty directly in

the time-frame of the gate map scans (approximately 56 s per line for a given scan).

Thus, D2U can only be loaded or depleted by moving the electrons through D2L

(instead of loading directly from the reservoir as seen by the grey panels I and II).

However, D2L can be loaded fast directly (when the dot energy level aligns with the

reservoir Fermi-level as seen in the magenta panels III and IV) and thus, the charge

transition lines do not undergo any hysteresis.

Figure 2.14a shows electrons being added onto the dots. On the charge transition

(0, 0)→ (0, 1), the electron on the reservoir cannot enter D2U through D2L as D2L

is too high in energy (grey panel I). On moving collinear with the (0, 0) → (1, 0)

charge transition line, D2L is aligned with the Fermi-level on reservoir R2. Thus,

electrons may now move onto D2U via D2L (green panel V). Similarly, on the charge

transition (1, 0) → (1, 1), the electron on D2L cannot move onto D2U until D2U

lowers its energy level to match that of D2L (grey panel II). Thus, this charge

transition adopts the same slope as the inter-dot transition line (1, 0)↔ (0, 1) (green

panel VI).

Figure 2.14b shows the case when removing electrons on the dots. On the (1, 1)→
(1, 0) transition, the electron may not directly tunnel through D2L as the electron

on D2L cannot tunnel out as the associated energy level on R2 is �lled (grey panel

II). In order to have two electrons on the dot D2L, the electron on D2U will need

to tunnel onto a much higher energy level on D2L. Thus, the level on D2L must be

raised such that it is at least in line with the Fermi-level on reservoir R2 (green panel

VI). Thus, the slope of the charge transition is co-linear with the D2L transition line

(1, 1)→ (0, 1). Finally, on the (0, 1)→ (0, 0) charge transition line, D2L is once more
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too high in energy for the electron to tunnel out (grey panel I). Thus, the energy

level on D2U must be raised align with the energy level on D2L (green panel V).

Therefore, the charge transition line adopts the same slope as the inter-dot transition

line (1, 0)↔ (0, 1).

By grouping the charge transition lines that remain parallel across multiple gate

maps, then triangulating the transitions to match them to the dots and identifying

the hysteresis e�ects on multiple reservoirs, one can completely label the charge

stable states shown in Figure 2.12. Note we assume that the dots are capable of

being fully depleted and all resulting electrons entering the dots were observed in

the stability diagrams.

2.2.6 E�ectiveness of electrostatic simulations in predicting di�er-

ential gate lever-arm and inter-qubit couplings

Control of electron-electron exchange J in a singlet-triplet qubit (achieved by sepa-

rating or moving both electrons together across the double quantum dot) of a given

gate is gauged by the gate's di�erential lever-arm across the two quantum dots host-

ing the singlet-triplet qubit as discussed in Section 2.2.3. It is important to verify

that the di�erential lever-arms match simulations in order to con�dently optimise

more complex singlet-triplet qubit systems. The di�erential lever-arm across two

quantum dots can be inferred by mapping out the singlet-triplet electron energy

levels as a function of magnetic �eld using the single-gate RF sensor [29, 30, 105].

Detailed discussion of the characterisation and optimisation of the single-gate RF

sensor on R2 and the subsequent magnetic �eld measurements are shown later in

Section 4.2.2. Nonetheless, the RF sensor requires inter-dot tunnel rates (for elec-

trons in the singlet-triplet state across the two quantum dots) to be much larger

than the driving frequencies of ∼100 MHz set by the resonators26 connected to the

reservoirs R1 and R2. The inter-dot tunnel rates across dots D1L and D1U were

found to be too slow to respond to the drive frequencies of the single-gate RF sen-

sors on R1 and R2 of 300.1 MHz and 261.5 MHz respectively. Thus, the di�erential

lever-arms of the gates were only measured with respect to the dots D2L and D2U

where the inter-dot tunnel coupling was approximately 39 GHz when measured using

the (3, 3)↔ (2, 4) charge transition (for electrons on D2L and D2U respectively).

26As discussed in the design of RF readout sensors in Section 3, the readout sensor must be fast
with respect to the qubit error rate to enable error detection and correction (approximately ∼270µs
for single-spin qubits; so error rates are ∼100 kHz). High �delity readout requires high resonator
quality factors Q� 100. Noting that the readout resonator bandwidth is ∼f0/Q (f0 the resonant
frequency of resonator), 100 MHz at least yields up to 1 MHz of usable bandwidth.
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Lever-arm α Experimental Value Model

∆αR2 0.13± 0.05 0.12

∆αG2 −0.05± 0.02 −0.03

∆αR1 0.02± 0.01 0.01

∆αG1 −0.008± 0.005 −0.006

αR1-D2L 0.12± 0.07 0.07

αR1-D2U 0.10± 0.05 0.06

αG1-D2L 0.08± 0.04 0.04

αG1-D2U 0.08± 0.04 0.05

αR2-D2L 0.5± 0.2 0.34

αR2-D2U 0.4± 0.2 0.22

αG2-D2L 0.11± 0.07 0.07

αG2-D2U 0.16± 0.07 0.10

Table 2.5: Comparison of experimentally measured gate lever-arms with predic-
tions from electrostatic simulations. The experimental measurements were only possi-
ble on the right-hand dot pair D2L and D2U. For a given gate G, the di�erential lever-arm
αG (de�ned as αG-D2L−αG-D2U) was measured directly from magnetic �eld measurements,
while the remaining absolute lever-arms onto the dots were inferred by considering the dif-
ferential lever-arms in conjunction with the slopes of the charge transition lines in the charge
stability diagrams. The `model' refers to the predictions made when importing the STM
image into a FEA simulation and then calculating the expected gate to dot lever-arms as
discussed in Appendix A.3.

From the magnetic �eld measurements shown later in Section 4.2.2, the di�eren-

tial lever-arms of the reservoir R2 and gate G2 were αR2-D2L−αR2-D2U = 0.13±0.05

and αG2-D2L−αG2-D2U = −0.04±0.02 respectively. The ratio of the di�erential lever-

arms for the gates R2 and G2 (0.13/0.04) is consistent with the slope of the inter-dot

charge transition across dots D2L and D2U in the stability diagram (with R2 and G2

on the x and y axes) of 2.6±0.03 seen in Figure 2.14. The individual gate lever-arms

can be found by taking the slopes of the transition lines in stability diagrams and

applying Equation 2.14 which links the slopes to the ratio of lever-arm alphas. For

example, the slopes of the D2L and D2U transitions on a R2-G2 stability diagram

were (1− αR2-D2L)/αG2-D2L = 4.67± 0.05 and (1− αR2-D2U)/αG2-D2U = 4.01± 0.05

respectively. Thus, knowing the di�erential lever-arm (from the magnetic �eld mea-

surements) and the ratio of lever-arms (taken from the slopes of transition lines in the

stability diagrams), one may solve a linear system of equations to �nd the absolute

lever-arms of the gates to each individual dot:
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By repeating this process for all the gates, one may infer the absolute lever-arms of

all the gates R1, R2, G1 and G2 to the dots D2L and D2U as shown in Table 2.5.

The measured lever-arms on the dots D2L and D2U were compared with elec-

trostatic simulations. The electrostatic model was the same model used in Section

2.2.5 but now the real device geometry (from the STM image in Figure 2.10) was

imported into the simulation. The lever-arms were extracted from the simulations

using the methods outlined in Appendix A.3. From Table 2.5, it would appear that

the electrostatic FEA model predicts the di�erential lever-arm alphas correctly to

within experimental uncertainty27. In addition, the FEA model correctly predicts

the absolute lever-arm alphas within experimental uncertainty. However, the FEA

model appears to slightly underestimate (although captured within uncertainty) the

absolute lever-arms for R2 (αR2-D2L and αR2-D2U); a lead that is in close proximity to

the dots. When considered with the peculiarity that dot D2L (with approximately 3

P-donors) is depleted at 0 V and requires −0.28 V on R2 to �ll with the �rst electron

(3P dots in previous devices have shown at least one electron on the dot when setting

all gate voltages to zero [81]), the explanation may require tight-binding simulations

(beyond the scope of this thesis).

The �nal important parameter to be characterised in this device was the inter-

qubit coupling ∆∆ required for two-qubit gates. The coupling strength is de�ned

as the shift in the target qubit's detuning when the control qubit moves from the

(1, 1) charge state into the (0, 2) charge state (if in the singlet state and remains

in (1, 1) otherwise). Thus, to operate the two qubit-gate one must simultaneously

realise singlet triplet states on both pairs of quantum dots; that is, overlapping the

inter-dot charge transitions across both dot pairs in voltage space as discussed in

Section 2.2.3. Thus, to measure the inter-qubit coupling, one aligns the two inter-

dot crossings across the dot pairs D1L/D1U and D2L/D2U respectively on top of

one another to observe the resulting shift in the target-qubit's inter-dot crossing (as

in the simulated charge stability diagrams in Figure 2.9). However, while the inter-

dot crossing across dots D2L/D2U could be viewed via the single-gate RF sensor

27The uncertainties were calculated using standard propagation of uncertainties. The experi-
mental uncertainties include the uncertainties in measured charge transition slopes (approximately
10%) in the stability diagrams and the uncertainties in the best-�t curves from the magnetic �eld
measurements (for example, in Figure 4.2d) discussed in Section 4.2.2.
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R2 and the TJCS T2, there was no mechanism to view the inter-dot crossing across

the dots dots D1L/D1U. That is, the single-gate RF sensors R1 and R2 could not

measure inter-dot crossings across D1L/D1U as the inter-dot tunnel rate was too

slow to respond to the drive frequencies of the single-gate RF sensors on R1 and R2

of 300.1 MHz and 261.5 MHz respectively28. In addition, the charge sensor T2 could

not detect the inter-dot transition as the dots (D1L and D1U) was too far from the

sensor to detect the small electric dipole. However, the inter-qubit coupling could

still be measured by the shift in detuning induced on the adjacent qubit. Here, the

shift in the right qubit's detuning due to an inter-dot transition on the left qubit is

equivalent to the di�erence in the charge shifts on freshly introducing an electron

onto the dots D1L and D1U respectively (since by the electrostatic superposition

principle, the shift is equivalent to an inter-dot charge shift on the left qubit). That

is, the inter-qubit coupling (given by Equation 2.8 in the design discussions in Section

2.2.3) is de�ned as the shift in the right qubit's detuning (hosted on D2L/D2U) on

shifting the left qubit from the singlet to triplet state (that is, moving a charge

between the dots D1L and D2U).

Since the right qubit's shift in detuning is required, the even parity singlet-triplet

inter-dot charge transition (3, 3)↔ (2, 4) (across the dots D2L and D2U) was chosen

for the measurement. The singlet-triplet inter-dot crossing on the right qubit was

aligned with two charging lines on the dots D1L and D1U as shown in Figure 2.15a.

The stability diagram was taken using a lock-in ampli�er to enhance the signal and

automatically take the derivative of the signal by applying the lock-in excitation on

top of the voltage applied to R2. When individually moving an electron onto D1L

and D1U, the right qubit's singlet-triplet inter-dot crossing shifted by 702µV and

529µV respectively (along the R2 voltage axis). Note that the shift that occurs due

to electrons moving onto D1U is smaller (than the shift due to D1U) by virtue that

D1U is further away from the dots D2L and D2U. The di�erence in the shifts on

right qubit's inter-dot crossing was 170±60µV. Taking the experimentally measured

di�erential lever-arm for R2 across the dots D2L and D2U (αR2 = 0.13± 0.05), the

resulting energy shift is ∆∆ = 5 ± 2 GHz. Using the electrostatic model of the

device based directly on the STM image to calculate the capacitance matrix and

thus, the resulting inter-qubit coupling (given in Equation 2.9), the estimated inter-

qubit coupling from the electrostatic simulations was ∆∆ = 4.25 GHz. Thus, the

expected value was within the bounds of experimental uncertainty. Thus, once again

the validity of the model was veri�ed and predicted that even at inter-qubit distances

28The single-gate RF sensor requires the tunnel rate needs to be much larger than the drive
frequency as discussed in Section 4.1.2.
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Figure 2.15: Experimental measurement the inter-qubit coupling ∆∆. (a) Stability
diagram measured with T2 showing charge transitions onto all four dots. The response of
T2 was measured with a lock-in ampli�er. The horizontal lines represent charge transition
transfer lines onto the dots D1L and D1U while the vertical lines represent that onto the
dots D2L and D2U. The stability diagrams shown represent the response of the T2 sensor as
measured with a 4 mV lock-in excitation applied to R2. The quadruplets show the electron
numbers as in Figure 2.12. The white line represents an inter-dot singlet-triplet transition
on the right hand dot pair. The voltages on the other gates were: (VG1, VG2, VT1, VT2) =
(0.05,−0.13,−0.05,−0.023) V. (b) Aligning charge transitions onto D1L and D1U on top of
the white inter-dot transition line. Charge transitions onto D1L and D1U shift the inter-dot
line by 702µV and 529µV respectively. The di�erence in the shifts in detuning is gives the
inter-qubit coupling (that is, the shift in the target qubit's detuning when the control qubit
moves both electrons onto the same dot when shifting from the triplet to singlet state).
The resulting di�erence was 170 ± 60µV; which translated to an inter-qubit coupling of
5± 2 GHz. Note that the all the charge transition lines in this stability diagram, unlike that
in (a), were broadened heavily, to ensure an adequate signal strength, achieved by applying
the lock-in excitation to both R1 and R2.
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of diq = 75 nm, one may obtain inter-qubit couplings in the excess of a few gigahertz.

The veri�cation of the model is important as it predicts that one may obtain larger

inter-qubit couplings if desired for faster two-qubit gate operations (for example,

inter-qubit couplings of 45 GHz and above can be achieved if the dots were brought

closer at 40 nm as shown in Figure 2.7). Alternatively, one may place the qubits

further apart if one wishes to operate the singlet-triplet qubits in the perturbative

regime with AC driving as in previous experiments performed in GaAs [34, 35].

Increasing the spacing between qubits would have the advantage of reducing the

complexity of lead fan-out and increasing the gate voltage range before current leaks

between the leads.

2.3 Summary and outlook for future devices

Basic electrostatic modelling of Si-P devices using realistic experimental parame-

ters yielded a device design to form four quantum dots with accessible even parity

singlet-triplet inter-dot transitions as required for the demonstration of a two-qubit

gate between two singlet-triplet qubits. This modelling matched the experimentally

measured results by correctly predicting key system parameters, while noting the

subtle discrepancies for dots placed in close proximity to the reservoirs. In addition,

the models and measured data indicate strong inter-qubit couplings that were not

possible to realise in previous quantum dot experiments in other systems such as

GaAs. The smaller inter-qubit coupling of gate-de�ned quantum dot systems likely

arises from the lower electric dipole coupling caused by the ∼100 nm size of the dou-

ble dots (unlike 12.5 nm), being spaced further apart at approximately 100-200 nm

unlike 30-100 nm here with Si-P dots. The utilisation of this strong inter-qubit cou-

pling (with respect to the inter-dot tunnel coupling) to perform two qubit gates is

discussed in later in the development of the proposed singlet-triplet architecture in

Section 5.

Further experimental development requires the realisation of adjacent singlet

triplet qubits to perform a two-qubit gate. However, in this device, the dots D1L

and D1U formed a symmetric P-donor cluster con�guration and thus, yielded no

accessible singlet-triplet transitions. As expected, the asymmetric P-donor clusters

on dots D2L and D2U enabled access to a singlet-triplet transition. However, the

inter-dot tunnel coupling was overshot at 39 GHz implying that the exchange J could

not be turned o� with reasonable voltage pulses. The magnitude of the voltage pulse

to set J = ∆Bz is given by Equation 2.6 (used during the design discussion in Section

2.2.3):
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VHadamard =

∣∣∣∣
4∆B2

z − t2c
2∆Bze∆α

∣∣∣∣ . (2.17)

Note that VHadamard is the lower-bound to reaching J ≈ 0; a lower bound that was

found to be ∼2.2 V when taking ∆Bz ≈ 29 MHz and the di�erential lever-arm for the

designated control gate G2 of ∆αG2 = 0.05. With the gate voltage ranges (before

gate-to-gate leakage occurs) usually below 1 V, the required voltage pulse to turn J

o� is therefore unrealistic. Had the inter-dot tunnel coupling (between dots D2L and

D2U) been close to 10 GHz, the required voltage would have been experimentally

realisable at 180 mV. Thus, in the future regarding a scalable array, research and

experimental development is required in creating accurately reproducible inter-dot

tunnel couplings. Other system parameters, such as the inter-qubit coupling ∆∆, are

not signi�cantly altered by small perturbations in the device geometry and should

be reliably reproduced.

Although a qubit was not realised in the experiments run during the thesis, there

were several positive results regarding the design, fabrication and characterisation of

the quadruple quantum dot device:

� General geometric layout enabled electrons to be loaded onto four quadruple

quantum dots

� TJCS T2 showed good charge sensitivity, including the ability to detect charge

transitions on dots up to 160 nm.

� Electrostatic models showed exceptional validity in matching the experimental

measured lever-arms and inter-qubit coupling

� A triangulation technique was developed to match the measured charge transi-

tions to the patterned dots on the device. The triangulation technique should

prove useful in the future when diagnosing defect sites that give rise to un-

intentional charge traps such as the lithographic defect triangulated in this

experiment.

� The large inter-qubit coupling of 5 GHz measured in the experiment veri�ed

that large non-perturbative (with respect to the tunnel coupling) inter-qubit

couplings between singlet-triplet qubits can be realised when using Si-P quan-

tum dots.

Despite these positive results, we did not observe a singlet-triplet qubit as J could

not be turned o� due to the large 39 GHz inter-dot tunnel coupling. However, the



70 Chapter 2. Architectures for singlet-triplet qubits in Si-P

experiment did provide some key focus points regarding the next device. Although

one may take the optimal distances in the context of a large-scale architecture as

discussed in Section 5, the next device should utilise similar geometric parameters to

the current device. That is, one should opt for a large gate voltage ranges and exper-

imental �exibility when there are many unknown parameters (as discussed below)

still remaining in the system as opposed to using the tighter dimensions that require

precise donor numbers and inter-dot tunnel couplings. Nonetheless, the geometric

parameters that may remain the same for the next device (based on the results of

this experiment) are:

� TJCS to dot distance: 80 nm. The TJCS appeared to be sensitive enough to

detect all four dots alone from this distance. There is no need to change this

distance.

� Primary TJCS dimensions: 10.8 nm gap size and 8.8 nm gap width. The TJCS

T2 yielded a good charge sensor with the ability to sense electrons on all four

dots.

� Dot-to-reservoir distance: did = 17 nm. As discussed in the characterisation

of the single-gate RF sensor later in Section 4.2.2, there was no evidence of a

strongly coupled reservoir (inducing cotunnelling processes) causing small spin

life times (speci�cally the s0 → t− relaxation time that limited the available

qubit readout time). In fact, the spin life time was 2 ms [29] instead of the

previously measured 60 ns [30]. Thus, the dot-to-reservoir distance shall remain

the same.

The measured inter-qubit coupling matched the electrostatic predictions. Given

that one may now trust the simulations, one may reproduce the strong inter-qubit

coupling of above 5 GHz for any dot angle ϑ by bringing the inter-qubit distance to

60 nm (as shown in Figure 2.7). Note that this change may reduce the gate voltage

range and remove experimental �exibility in accessing useful even parity inter-dot

charge transitions. However, by relaxing the angle from ϑ = 135◦ to ϑ = 90◦, where

the dots are vertical, one may enhance the di�erential lever-arms of the control gate

and reservoir. Thus, some recommended changes to the geometry include:

� Inter-qubit distance diq = 60 nm. The gate voltage range may drop slightly,

but one would be able to retain the large ∆∆ > 5 GHz for any dot angle.

� Dot angle 90◦ < ϑ < 135◦. Pushing the dots to be vertical will enable the

largest di�erential lever-arm on the qubit control gates. A larger di�erential
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lever-arm increases the safety net on the maximum inter-dot tunnel coupling

that can be used to form a qubit.

� Dot-to-gate distance: dg = 45 nm. In the next device one of the control gates

could be brought closer by 5 nm to enhance the di�erential lever-arm. One

should take note of the resulting lower gate voltage range and observe if the

electrostatic accessibility of even parity inter-dot transitions is a�ected. If the

accessibility is not a�ected, then one may continue bringing the control gates

closer to the dots in future devices for a greater di�erential lever-arm.

� Secondary TJCS dimensions: 8 nm gap size and 6 nm lead width. The TJCS

T1 was too Ohmic. Thus, the gap size can be widened to investigate the

possibility of a more conductive TJCS than the sensor T2 in this experiment.

With the gap size above 6 nm, the aspect ratio (gap width divided by gap size)

is below one. Thus, one would expect gap-like behaviour once more [100].

In DC pulsing we aim to turn o� the exchange coupling within an experimentally

realisable value of the pulse amplitude. If one wishes to manipulate the singlet-triplet

states via AC driving, as opposed to the faster 2-qubit gates investigated in Chapter

5, the inter-qubit coupling must be made perturbative with respect to the gigahertz

tunnel coupling between the individual double quantum dots: ∆∆ � 1 GHz. The

perturbative coupling is required to satisfy the perturbative approximation29 used

in deriving the AC-driven two-qubit gate [14, 34, 35]. AC driving also requires

operation at J close to zero (as required to precess about the Pauli-x axis whereby

Pauli-z rotations are realised with AC driving of the detuning). To achieve this

in singlet-triplet donor qubits we could �rst set the dot angle to ϑ = 90◦ (that

is, making the double quantum dots parallel to their respective gates) to maximise

the di�erential lever-arm of the control gates with respect to their double quantum

dots and subsequently maximising the ability to turn o� J . Then one may set

the inter-qubit distance to be greater than 120 nm to give inter-qubit couplings less

than 1 GHz. To �nd the distances for smaller inter-qubit couplings, we note the

approximate ∆∆∼1/d3
iq dependence seen in the numerical simulations when setting

ϑ = 90◦.

The �nal geometric parameter is the inter-dot distance (did), which is set more

speci�cally by the inter-dot tunnel coupling. An inter-dot tunnel coupling below

10 GHz is desirable for qubit control. However, the inter-dot tunnel coupling is

29The inter-qubit coupling needs to be much smaller than the driving AC amplitude ∆∆ � ∆ac.
To satisfy the rotating wave approximation, the driving amplitude must be smaller than the tunnel
coupling ∆ac < tc.
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a non-trivial function of the P-donor dot size, con�guration of the donors within

each dot, electron number and the inter-dot distance. Unfortunately the amount

of data we currently have is insu�cient to estimate the optimal distances given the

large size of the parameter space. Since the tunnel coupling changes with the P-

donor dot sizes and the con�guration of the donors within the dot, the inter-dot

distance should remain at 12.5 nm. Setting a constant distance will at least enable a

controlled experimental study. Regarding the choice of 12.5 nm, one should consider

the fact that a 22 GHz tunnel coupling was observed for a 4-electron 2P-3P double

quantum dot separated by did = 11.5 nm. Given the ideal double quantum dot is to

be 1P-2P for the ease in electrostatic accessibility (from the simulations in Section

2.2.3), the tunnel coupling would have been much higher than 22 GHz for 4 electrons.

Thus, increasing the distance to 12.5 nm would be advisable. Although the current

experiment should have yielded a smaller tunnel coupling given the larger inter-dot

distance and larger dot sizes, the larger electron number may have enhanced the

tunnel coupling to be a higher value. Therefore, there is no reason to recommend a

di�erent distance for the next device.

In the vain of achieving higher device reproducibility, the ability to access even

parity inter-dot charge transitions (by ensuring asymmetric P-donor dots) and op-

timising the tunnel coupling; any techniques to guarantee the P-donor dot sizes on

fabrication would be welcome. That is, the development of on-site incorporation such

as tip-induced incorporation [106] to guarantee the P-donor dot con�guration and

size would be bene�cial in developing a many singlet-triplet qubit device. In addi-

tion, easy access to tight-binding simulations on optimal donor con�gurations would

help with faster prototyping by being able to produce deterministic experimental

designs for devices.



Chapter3
Compact RF sensors for Si-P qubits

One of the key criteria for a working quantum computer is its ability to readout the

state of its qubits [107]. It becomes di�cult to reserve space for the qubit readout sen-

sors in a scalable array of qubits when the spin qubits themselves need to be spaced

at distances in the order of 10-100 nm required for electron-electron exchange and

electron-electron dipole interactions typically used in two-qubit gates [28, 34, 78, 108].

One method to overcome the di�culty in placing the qubit sensors is to reduce the

lead count by replacing the conventional 3-lead (and one quantum dot) single elec-

tron transistor (SET) sensor with a single-lead-quantum-dot (SLQD) sensor capable

of reading out both single-spin and singlet-triplet qubits [31]. The SLQD sensor

requires the detection of a small AC `quantum capacitance' using an RF resonator.

Thus, an exact analytic model (expressed in terms of purely experimentally measur-

able parameters such as the parasitic capacitance, internal quality factor and external

quality factor) of the resonator was �rst developed. This circuit model description

of the readout signal strength was also applicable to the quantum capacitance mea-

surements using the more compact single-gate RF sensor discussed later in Chapter

4 [32]. The SLQD sensor was then investigated theoretically using rate equation

models. In particular, this model investigated the SLQD operation in the nonlin-

ear regime and made the �rst analytic predictions of the peak saturation of the RF

readout signal strength at high input RF powers compared to previous similar works

in the literature [109, 110]. In addition, this model was experimentally veri�ed via a

SLQD sensor fabricated in Si-P. This chapter also outlines the new techniques devel-

oped to both operate and characterise the SLQD sensor (for example, the reservoir to

dot lever-arms in the SLQD cannot be deduced via conventional Coulomb oscillation

techniques as there are no source and drain leads).

73
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3.1 Overview of RF qubit sensors

RF qubit sensors have been implemented to sense solid state qubits for almost two

decades. The evolution of RF qubit sensors started with simple enhancements on

conventional charge sensors to unique single-gate sensors. The prior development of

RF sensors shall be summarised in this section.

3.1.1 Overview of conventional charge sensors

Conventional solid-state sensors rely on detecting the charge state of a quantum

dot (that is, the presence or absence of an electron) to measure the qubit state.

Charge detection is su�cient for qubit-readout as most solid-state qubit states can be

mapped onto a charge state [12, 13, 80, 111, 112]. For example, in the case of charge

qubits, a charge sensor that senses the location of the electron immediately measures

the qubit state [58]. In the case of two-electron singlet-triplet qubits, one utilises

`Pauli-spin blockade readout' where the electric potential across the two quantum

dots is tilted such that both electrons are forced onto the same dot. The charge

sensor must distinguish between the singlet state s0 which allows both electrons to

enter the same dot, with the triplet t0 state where both electrons remain on separate

dots due to Pauli-blockade [12�14].

To read the qubit state for single-spin qubits, one utilises a spin-to-charge con-

version process by �rst aligning the energy level of the dot (holding the electron spin

to be measured) to the Fermi level of its reservoir and then applying a magnetic

�eld. The resulting Zeeman splitting of the electron implies that a spin-up electron

(now higher than the Fermi-level) may tunnel o� the dot (onto the reservoir) while a

spin-down electron remains on the dot and may not tunnel o� the dot as the corre-

sponding states on the reservoir are �lled. Detecting this change in the charge state

of the dot when a spin-up electron tunnels o� the dot enables single-shot single-spin

readout [18, 80, 111].

An alternative method to measure single-spins using a charge sensor is to use a

double quantum dot where the �rst dot holds a spin-down electron and the target

electron is held on the second dot. On performing readout, the electric potential

is tilted across the two quantum dots to bring both electrons onto the same dot.

If the target electron is spin-down, then the resulting two-electron spin state is the

t− = |↓↓〉 state which forbids both electrons entering the same dot due to Pauli-

blockade. If the target electron is spin-up, the resulting two-electron spin state |↑↓〉
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maps onto the singlet s0 state where both electrons may enter the same dot1. Thus,

by mapping the single-spin state onto a two-electron singlet-triplet state one may

employ Pauli-blockade readout to readout single-spin qubits [108, 113, 114].

Given that a charge state measurement can measure electron spins, it is important

to review viable charge sensors. Several solid-state charge sensors have been realised

experimentally to infer the charge state of a given dot. The earliest solid-state

charge sensor is the single-electron-transistor or SET [115]. The SET consists of a

large quantum dot tunnel-coupled to `source' and `drain' leads. Current �ows from

source to drain via the quantum dot when one applies a small bias voltage to the

source lead. However, due to the discrete energy levels on the quantum dot, current

may only �ow when the energy level of the quantum dot is in between the the source

and drain Fermi-levels as shown in Figure 3.1a. When no SET quantum dot energy

level is in between the source and drain energy levels, the lack of current �ow is

termed `Coulomb blockade'. A third gate lead is required to apply a potential on

the quantum dot to tune its energy levels such that the SET is in a conductive state

(when current �ows) or in a `Coulomb blockade' state (when no current �ows). Just

as the SET gate may tune the energy levels on the quantum dot, the scalar potential

of electrons on a target dot can also shift the energy level of the SET quantum dot.

When electrons enter or leave the target dot, the electrons' scalar potential �eld will

shift the energy level of the SET quantum dot. The electrostatic coupling between

the SET quantum dot and the dot hosting the target electron must be strong enough

to toggle the SET into conduction and Coulomb blockade modes when changing the

charge state on the target dot to yield a su�cient signal to noise ratio in the current

readout signal.

Figure 3.1b shows a typical SET (seen by the quantum dot labelled SET along

with its three leads SRC, DRN and GSET) designed to sense single electron spins on a

nearby P-donor dot (as seen by the quantum dot labelled D along with its control gate

GDOT). Using the spin-to-charge conversion technique, spin-up electrons (Zeeman

split into the higher energy level placed above the Fermi-level) are detected via the

electron tunnelling o� the P-donor dot and onto the SET quantum dot and �nally

the drain lead. A spin-down electron, being Zeeman split below the Fermi-level,

1The four basis spin states, ordered in terms of energy levels, map onto the singlet-triplet states
as follows: (|↓↓〉 , |↓↑〉 , |↑↓〉 , |↑↑〉) → (t−, s0, t0, t+). To ensure that |↑↓〉 maps onto the singlet s0

state on tilting the electric potential, as opposed to the |↓↑〉 state, |↑↓〉 is made lower in energy by
directing the magnetic �eld gradient across the two dots to be stronger on the �rst dot (holding the
spin-down electron). The singlet s0 state is electrostatically lower in energy than the triplet state
t0, when both electrons enter the same dot on tilting the electric potential. Thus, on an adiabatic
ramp where electrons initially separated are brought together onto the same dot, the lower energy
state |↓↑〉 maps adiabatically maps onto the s0 state.
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(a) SET operation
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Figure 3.1: Single-electron-transistor measuring single spins in Si-P. (a) The
single-electron-transistor consists of a source SRC, drain DRN, a gate GSET and a quantum
dot labelled SET. The SET energy level can be tuned via a gate or a nearby charge transfer
to bring it into the conduction regime (when a SET energy level is in-between the SRC
and DRN energy levels) and the blockade regime where there is no current �ow (there are
no SET energy levels in-between the SRC and DRN energy levels). (b) STM image of the
�rst SET to perform single-spin readout on electrons hosted on STM patterned P-donor
dots [80]. The yellow regions highlight regions of P-doping. (c) Resulting time-traces of the
SET current ISD [80]. If the electron on dot D is spin-up, the electron tunnels out and a new
electron tunnels in to �ll the lower spin-down state on dot D to create a blip in the current
during the read phase. If the electron on dot D is spin-down, no charge transfer occurs and
the read signal remains constant near zero as the SET is tuned into Coulomb blockade.

may not tunnel o� the P-donor dot. Thus, only spin-up electrons cause a change

in the SET current as seen by the current moving away from zero, during the read-

phase in Figure 3.1c, for a spin-up electron while remaining zero for the spin-down

electron. The non-zero current for a spin-up electron returns back to zero current as

a spin-down electron eventually tunnels onto the P-donor dot to bring the SET back

into Coulomb blockade. If the time-frame of the non-zero current is too small, one

may not have su�cient time to detect the presence of the spin-up electron over the

background noise. Thus, one may extend the time of this non-zero current signal via

a `latched-readout' mechanism which utilises an extra quantum dot (tunnel coupled
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to the main quantum dot holding the target electron). The extra quantum dot has

a slow tunnel rate to its reservoir and thus, electrons may only enter this auxiliary

quantum dot via the main quantum dot. By utilising the resulting hysteresis e�ect,

similar to that observed in the fabricated 4-dot device discussed in Section 2.2.5, one

may trap spin-up electrons onto the auxiliary quantum dot upon which one has a

longer time to read out the presence of a spin-up electron [104]. The latched readout

mechanism thus, relaxes the high bandwidth requirements to enable high-�delity

sensing of high tunnel rate (between the reservoir and the main quantum dot) spin-

up electrons that register fast blips in the current signals. A fast electron tunnel rate

between the reservoir and the main quantum dot is desirable in the context of fast

qubit state initialisation.

The second prominent charge sensor used to detect electron spins in solid-state

quantum dots is the quantum-point-contact (QPC). The QPC consists of a source

lead, drain lead and a tuning gate. The leads are setup such that there is ballistic

conduction between the source and drain leads on applying a voltage bias across the

two leads. A third lead is used to tune the sensitivity of the QPC by changing the

electrostatic barrier of the constriction. At low temperatures, on changing the gate

voltage, quantised steps are observed in the conductance with the separation given by

the conductance quantum 2e2/h as shown in Figure 3.2a [116]. For high sensitivity

spin readout, the abrupt change in the QPC current at the step-edge between two

quantised current steps is used for charge sensing. When a electron enters or leaves

the target quantum dot, the resulting change in the electrostatic potential at the

QPC pushes the QPC into one of the two quantised steps in conductance. Thus, the

QPC current can be mapped to the charge state on a quantum dot. When combined

with single-spin to charge conversion or the two-electron Pauli-blockade readout, the

QPC can be used to measure single or two electron spin states [12�14, 111, 117].

A critical requirement of a QPC is the requirement for ballistic conduction across

its channel to form the discrete steps in the current. For ballistic conduction to

occur the channel length must be much shorter than the mean free path of the

electron [116, 118�120]. The electron mean free path in 2D GaAs systems have

been shown to range from 1µm to 1000µm [121]. However, 2D Si-P δ-layers are

disordered conductors where conduction occurs directly through the dopants and as

a consequence have a shorter mean free path of 4-6µm [122]. An alternative sensor

similar to a QPC, available in Si-P systems, is the tunnel junction charge sensor

(TJCS). The TJCS has two leads: source and drain. However, the electron transport

across the gap gives rise to a tunnel resistance rather than quantised current steps

seen in the operation of a QPC. The conductance of a TJCS is sensitive to the
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(a) QPC response to gate voltages
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Figure 3.2: Comparing gate responses of quantum-point-contacts and tunnel-
junction-charge-sensors. (a) Gate voltage conductance (after subtracting contact resis-
tance) of a QPC formed across a GaAs 250 nm-wide channel [118]. The signature response
is the quantised conductance steps to which one tunes when using a QPC as a charge sensor.
(b) Minimum conductance (with respect to the source-drain voltage across the TJCS) of
the TJCS T2 in the fabricated 4-dot device discussed in Section 2.2.4 as a function of the
voltage applied on R2.

local electrostatic environment as seen by the typical conductance response shown

in Figure 3.2b of a TJCS when sweeping the voltage on a gate close to the tunnel

junction. Thus, any charges entering or leaving nearby quantum dots perturb the

conductance of the tunnel barrier in the TJCS. As there is no quantised step to

which one must tune the TJCS, there is no need for a third gate; leaving the TJCS

a two-lead sensor [29, 99]. However, the sensitivity is much lower as the change in

conductance is gradual rather than abrupt like with a QPC as shown in Figure 3.2.

3.1.2 Development of RF qubit sensors

Resolution of the qubit state must be performed at high speed as the measurement

must occur at time-scales much shorter than the qubit decoherence time T ∗2 . In the

context of modern error correction codes that rely on multiple measurements on the

qubits, the measurement time must be much faster than the average qubit error rate

to enable one to detect the single qubit errors as they occur [8]. Conventional charge

sensors, like the SET or QPC, which rely on measuring DC current across two junc-

tions have their measurement speeds limited by the parasitic capacitance of the wire

loom inside the cryogenic dilution refrigerator. The measured DC current is band-

width limited as the signal must travel up a wire loom over a few metres before it can

be ampli�ed at room temperature. This wire loom has a parasitic capacitance of ap-
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proximately 2 nF with junction resistances of an SET or QPC ranging approximately

100 kΩ [86, 118]. Since the transimpedance ampli�er to convert the current signal

into a readable voltage signal is outside the dilution fridge, the measurement band-

width is approximately 800 Hz. One strategy to overcome the bandwidth limitation

is to place the transimpedance ampli�er before the wire loom by using a cryogenic

DC transimpedance ampli�er (with a low output impedance) near the device [123].

One could additionally use a lock-in ampli�er to move the signal bandwidth to a

region of low noise to improve the signal to noise ratio (SNR); thereby unlocking

greater measurement bandwidths [124, 125]. An alternate strategy that achieves

equivalent gains in SNR (in combining a cryogenic ampli�er with a lock-in ampli�er)

is to use RF readout where one may utilise the coaxial cables in the dilution fridge

as opposed to the DC wire loom to pass the measurement signals [117, 126, 127]. To

utilise RF readout, one attaches an LC (inductor-capacitor) resonator to the lead

that one would typically utilise to measure DC current of the charge sensor. The res-

onator acts as a bandpass �lter that only allows signals in the range ω0±∆ω (where

ω0 is the resonant frequency of the resonator and ∆ω is the resonator bandwidth).

On applying an RF excitation at frequency ω0 to the resonator, the RF signal enters

the lead associated with the charge sensor and causes the electrons to oscillate across

the tunnel junction (whether it is an SET or a QPC). The dissipation caused by the

electron oscillations across the resistive tunnel junction changes the quality factor of

the resonator to result in a change in the RF signal re�ectance. The resonator helps

match the charge sensor's impedance to the coaxial line and thereby circumvents any

bandwidth issues that would be present when using the DC loom. Low-noise cold

ampli�cation2 can be achieved via readily available cryogenic RF ampli�ers [128].

The use of a high frequency resonator upconverts the signal information to a high

frequency region given by the passband of the resonator and thereby achieves the

lock-in e�ect.

The dominant mechanism at play in the use of RF resonators with conventional

DC charge sensors is the change in the quality factor due to the resistive load of

the nano-scale charge sensor. As a resistive load, the applied AC voltage is in phase

with the current as shown in Figure 3.3a. The tunnel rate of the electrons across

the junction of the charge sensor (for example, the tunnel rate across the source

2The purpose of the low-temperature ampli�cation here is not to overcome bandwidth restrictions
like with the DC loom, but rather the second use of cryogenic ampli�ers. Johnson noise is lower
at lower temperatures and thus, the same signal would have a larger SNR at lower cryogenic
temperatures when compared to that in room temperature. A cryogenic ampli�er helps maintain
the larger SNR by amplifying the signal at lower temperatures before the signal arrives at room
temperature.
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and drain leads in a QPC) is slow when compared to the RF voltage input drive.

Thus, the lagging charge movement yields a current (time-derivative of charge) in-

phase with the input voltage; a dissipative AC circuit element modelled well via

the `Sisyphus' resistance [109, 110]. However, a di�erent mode of operation is to

consider nano-scale sensors that have the current 90◦ out of phase with the voltage

to create a non-dissipative, but reactive load as shown in Figure 3.3b. Here the

tunnel rate of the electron oscillation between two sites (for example, between two

dots) is much faster than the driving frequency of the input voltage drive. Thus,

the charge movement is in-phase with the voltage drive and therefore, the current

leads the voltage drive by 90◦; modelled well with an AC `quantum capacitance'

circuit element Cq. Conceptually one may consider this AC capacitance to be a

perturbation on the capacitor in the LC resonator circuit causing a change in the

resonant frequency from 1
√
LC to a lower 1

√
L(C + Cq). When sending in a voltage

signal tuned to the original resonant frequency, the resulting shift in the resonant

frequency (due to the electron oscillations) causes a change in the re�ectance as

the initial probe signal at the resonant frequency is now o�-resonant to the shifted

resonant frequency. Readout by probing shifts in the reactance of the resonator

was �rst applied in superconducting qubits where the qubit perturbs the inductance

of the LC resonator [129], while in solid-state qubits, the perturbation is on the

capacitance of the LC resonator in the form of a quantum capacitance [30, 32, 57].

One class of sensors utilising the quantum capacitance is the single-lead-quantum-

dot (SLQD) sensors where the applied RF voltage oscillates electrons between a

reservoir lead and a quantum dot [31, 109, 110, 130]. The SLQD sensor can be used

as a charge sensor where, similar to an SET or QPC, nearby charging events tune

the dot's energy level away from the reservoir Fermi-level to disable the electron

oscillations. Thus, measuring the presence of the oscillations or the lack thereof, via

the signal re�ectance, one may infer charging events which leads to spin detection

via spin to charge conversion methods discussed in Section 3.1.1. The advantage

of the SLQD sensor is that it only requires one dedicated quantum dot and one

reservoir lead and thereby has reduced the lead count from the conventional SET or

QPC from three to one. In addition, the inherent heat dissipation of these sensors is

lower than that in a SET as the equivalent load presented by the sensor is typically

capacitive rather than the dissipative resistive loads presented by the SET or QPC.

The development, optimisation and experimental demonstration of the SLQD sensor

in P-doped silicon is discussed in Sections 3.3 and 3.4.

A variation in the SLQD method is to use the reservoir lead strongly tunnel-

coupled to one of the two quantum dots hosting a two-electron singlet-triplet qubit (as
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(a) Sisyphus resistance
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Figure 3.3: Tunnel rates of nano-scale sensor giving rise to AC resistive or
capacitive responses. The nano-scale sensors are probed with an RF voltage drive V of
frequency ω. The resulting charge movement Q and the current I ≡ Q′ are then plotted
alongside. (a) For typical charge sensors, the RF response in the current is resistive where
the current is in phase with the voltage. The charge movement lags the voltage pulse due
to a slow tunnel rate of the oscillating electrons (for example, the junction tunnel rate
for a QPC). (b) When probing typical gate-based sensors, the electron tunnel rate (for
example, that between two dots) is much faster than the driving frequency. Thus, the
charge movement is in phase with the probe voltage drive. Here, the current leads the
voltage by 90◦; therefore, one may consider the equivalent circuit element of the nano-scale
sensor as an AC capacitance.

opposed to a dedicated quantum dot) to perform singlet-triplet qubit readout [130].

Here, electrons on a singlet-triplet qubit are pushed onto the �rst dot conditional on

the electrons being in a singlet state to enable a third electron to oscillate between

a nearby reservoir and the second dot. A possible disadvantage of using the SLQD

sensor to probe singlet-triplet states is that the strong tunnel coupling between the

reservoir to the second quantum dot, required for the sensor to ensure the fast tun-

nel rates to obtain the quantum capacitance, may degrade the qubit lifetimes and

coherence times as observed in a previous experiment [30]. Nonetheless, the SLQD

sensor has been shown to perform spin readout at temperatures of up to 1 K [130]

(note that if a high-�delity qubit can be formed at 1 K, this negates the need for a

dilution fridge to operate the devices).

The �nal class of sensors that take advantage of the quantum capacitance is

the single-gate RF sensor which requires no dedicated quantum dot and is used

to detect the two-electron singlet-triplet qubit state hosted across two quantum

dots [29, 30, 57, 105, 131, 132]. Single-gate RF sensors require no additional con-

trol leads and integrate into existing single gates in the device (for example, gates

required to form or tune the qubit). The input RF voltage oscillates one of the

two electrons (forming the singlet-triplet qubit) between the two quantum dots to
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Figure 3.4: Comparing the tunnelling and quantum capacitance modes of opera-
tion for single-gate RF readout. The energy diagrams show the singlet branches relevant
for single-gate RF readout (triplets forbid electron oscillations) where electrons may oscillate
by moving between the s11 and s02 charge states. (a) Quantum capacitance mode of oper-
ation where one adiabatically oscillates between the two ground states about either side of
zero detuning. (b) Tunnelling capacitance mode of operation where one oscillates between
the two charge states via the ground and excited states.

separate and bring both electrons onto the same dot. The oscillations only occur, to

form the quantum capacitance, if the qubit is in the singlet state as the triplet state

forbids the electrons entering the same dot due to Pauli spin blockade. The electrons

oscillated by switching between the two singlet-charge states s11 and s02 as shown

in the simpli�ed energy diagrams (triplet states omitted for clarity) in Figure 3.4.

Typical operation of the single-gate RF sensor operates in the `adiabatic quantum

capacitance' regime shown in Figure 3.4a. Here, one adiabatically cycles between

the two charge states via the ground state eigenstate; a technique that has success-

fully demonstrated single-shot spin readout [32, 132]. The single-gate RF sensor

has also been shown to operate in the 'tunnelling capacitance' mode shown in Fig-

ure 3.4b where one resonantly drives the electrons between the ground and excited

charge states. The resonant tunnelling method has been used to show single-shot

qubit readout using SiGe quantum dots [133]. The advantages and experimental

implications of using the two di�erent modes are discussed in Section 4.1.2.

For completeness one should note the cQED (circuit quantum electrodynamics)

implementations of the single-gate RF sensors that are desirable by-products in im-

plementing single photon mediated long-distance qubit couplers. Here, one couples

the charge state of an electron across two quantum dots, an electric dipole, to a sin-

gle photon inside a resonant RF cavity [134, 135]. The disadvantage of this method

is the need for high quality factor resonators (>5000 [136]) and quantum-limited

ampli�ers (as a noisy ampli�er will destroy the coherence of the single photon in
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the cavity). High quality factor resonators and quantum-limited ampli�ers typically

tend to use superconducting circuitry that cannot operate at the high magnetic �elds

required for spin qubit operation. Nonetheless, if one could utilise the long-distance

spin-photon coupling across two double-quantum-dots, the qubits could be spaced

further apart, making it easier to connect to the leads for qubit control [70].

A convenience of using RF re�ectometry, common across all the summarised sen-

sor types, is that the input and output signal lines can be combined into a single line

via frequency multiplexing [29, 31, 57, 137]. That is, each qubit sensor (to be mea-

sured with RF re�ectometry) is attached to a separate LC resonator with a di�erent

resonant frequency. All the resonators are then connected onto a single transmission

line. If one wishes to address a given sensor, then the Rf input voltage is sent to

match the frequency of the resonator attached to the sensor. The other resonators

will block this RF input voltage signal as the frequency is o�-resonant, or out of band,

to their LC resonators. Since the probe signals encode information across di�erent

frequencies, one may probe multiple frequencies (to address di�erent resonators) to

perform simultaneous readout across gates connected to multiple resonators via a

single pair of coaxial cables routed to the mixing chamber.

The �rst long-term challenge of using RF qubit sensors is the construction of low-

loss (high quality factor) resonators required for high-�delity readout. The accepted

solution for low-loss resonators is to use superconducting inductors [32, 138]). In

addition to the low-loss superconducting resonator, one needs to engineer matching

circuitry (for example, via a parallel capacitor [139]) to ensure that there is not a

large impedance mismatch between the superconducting resonator (interfacing with

the nano-scale device) and the input transmission line to ensure su�cient signal can

enter the nano-scale device (via the resonator). Collectively the superconducting

resonator and its matching circuitry take up large footprints (∼4 mm2) mainly due

to the need for bond-pads [32, 137, 138]. Therein lies the second long-term challenge

of using RF qubit sensors over a large network of multiplexed resonators. That

is, larger resonators imply that the resonators will inevitably be further away from

the nano-scale device due to the packing geometries. It is important to have the

resonators close to the device to avoid large geometric parasitic capacitances that

reduce RF readout sensitivity as discussed later in Section 3.2. The proposed solution

is to use multilayer lithography and superconducting vias, where it is predicted that

one should be able to pattern the resonators with thinner tracks and tighter spacings

to achieve a density of thousands of resonators per square centimeter [137].
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3.1.3 Comparison of readout �delities of solid-state qubit sensors

When operating a quantum processor via modern error correction codes, the need

for fast high-�delity single-shot measurements is desirable. Single-shot readout refers

to the immediate resolution of a given qubit state in one measurement as opposed

to taking the average state over many measurements. In the latter case, one will

need to prepare the state identically many times in order to perform the multiple

measurements. In general, there are implementations that suggest that one repeats

the quantum algorithm and averages the read state over many repetitions to ob-

tain the solution such as the quantum computing proposals using linear quantum

optics [140, 141]. However, most modern proposals for universal quantum comput-

ers rely on real-time detection of qubit errors and thus, require single-shot detec-

tion [8, 142]. The measurement �delity of a single-shot measurement is the average

probability of correctly resolving the basis qubit states3. That is, the measurement

�delity is de�ned as:

Fmeas =
F|0〉 + F|1〉

2
, (3.1)

where F|0〉 is the probability of correctly measuring the basis state |0〉 given a qubit

in state |0〉 and F|1〉 is the probability of correctly measuring the basis state |1〉 given
a qubit in state |1〉. Here, |0〉/|1〉 are the measurement basis states for the qubit

(for example, |↓〉/|↑〉 for single-spin qubits and singlet-s0/triplet-t0 for singlet-triplet

qubits). Given fault tolerant measurement �delities above 99.9%, it is additionally

important that the readout time is as fast as possible; speci�cally, the measurement

time must be faster than the average qubit error rate to enable one to enable the real-

time error detection required by modern error-correction codes [142]. Table 3.1 lists

the �delities and measurement times of some common experimental demonstrations

of single-shot readout in solid-state quantum dots.

The �rst experimental demonstration of single-shot spin readout in solid-state

quantum dots was achieved using a DC-QPC in GaAs where single electron spin-

states were resolved with an average measurement �delity of 83% [111]. Later in an

ion-implanted Si-P quantum dot system, a DC-SET implementation achieved a mea-

surement �delity of 96% [112]. Further work in STM-patterned SETs in Si-P pushed

the measurement �delity of single-spins towards the required fault-tolerant levels (for

example, in a surface code) at 99.8% [56]. The measurement �delity of single-spin

readout using the spin-to-charge conversion method shown in Figure 3.1 is given by

3That is, the states are not some superposition of the basis states. Thus, only the basis states
which do not change on applying the collapse operator shall be considered
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the electrical visibility and the tunnelling statistics of the electron between its reser-

voir and its hosted quantum dot. The electrical visibility refers to the SNR (of the

SET or QPC output) of the charge transfer signal (when an spin-up electron tunnels

o� the quantum dot and a spin-down electron tunnels onto the quantum dot) of a

spin-up electron when compared to the steady background that occur on detecting

a spin-down electron. The visibility can be improved by increasing the electrostatic

coupling between the charge sensor and the quantum dot hosting the target electron

spin. That is, a stronger electrostatic coupling implies a larger shift in the tuning on

the charge sensor to thereby better utilise the full signal contrast; the full signal con-

trast is between conduction and blockade in the context of SETs and that between

two quantised current steps in the context of QPCs. The electrostatic coupling can

be increased by bringing the target quantum dot closer to the charge sensor. One of

the reasons why STM-patterned Si-P quantum dots can achieve near fault-tolerant

measurement �delities is because of the ability to place the target quantum dot closer

to the charge sensor (up to ∼20 nm in distance) to achieve a large electrostatic cou-

pling between the SET and the target quantum dot, such that the charge-transfer

signal brings the SET into complete Coulomb blockade and maximum conduction

Sensor Platform Type Leads Fidelity tmeas SNR

DC-QPC GaAs Single-spin 3 83% [111] 500µs 3

RF-QPC GaAs Singlet-triplet 3 97-98% [14] 1µs 3

DC-SET Si-P Single-spin 3* 96% [112] 100µs 4

DC-SET Si-P Single-spin 3* 93% [80] 40 ms 5

DC-SET Si-P Single-spin 3* 98.4% [143] 1 ms 5

DC-SET Si-P Single-spin 3* 99.8% [56] 55-65 ms 3

RF-SET Si-P Single-spin 3* 91% [96] 15 ms 12

SLQD Si-P Single-spin 1* N/A [31] < 1µs 1-2

SLQD Si-MOS Singlet-triplet 1† 98% [130] 500µs 2

SG-RF(a) Si-P Singlet-triplet 1† 83% [32] 300µs 2

SG-RF(a) Si-MOS Singlet-triplet 1† 73% [132] 2 ms 1

SG-RF(t) SiGe Singlet-triplet 1† 98% [133] 6µs 2

Table 3.1: Experimentally measured spin-readout �delities in quantum dot sys-
tems. The reported results are listed across di�erent platforms. The sensor types in-
clude quantum-point-contact (QPC), single-electron-transistor (SET), single-lead-quantum-
dot (SLQD) and the single-gate RF (SG-RF) sensors. Note that the lead counts with ∗
indicate an extra dedicated quantum dot for the sensor. The † on the lead counts indicates
leads that are multi-purposed and must already be present for qubit control. The listed �-
delities are that for single-shot spin readout, while tmeas is the associated measurement time
and SNR is the approximate signal-to-noise ratio. SG-RF(a) refers to the use of adiabatic
quantum capacitance while SG-RF(t) refers to the use of the tunnelling capacitance.
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regimes unlike gate-de�ned quantum dots (>100 nm). An additional improvement

to the visibility can come from low-temperature DC ampli�cation4 or via the use of

a cryogenic RF ampli�er coupled to an RF-SET [96]. High electron visibility implies

high SNR and thus, one may increase the measurement speed (with the noise scaling

by square-root of the bandwidth, one may increase the bandwidth as long as SNR

is much larger than one). However, the measurement �delity and readout times are

also a function of the tunnelling statistics. For example, the measurement �delity

will be limited if the electron charge transfer signal is too short to resolve in time

given the available bandwidth due to fast electron tunnel rates between the quantum

dot and its associated reservoir. Similarly, long tunnel times between the quantum

dot and its associated reservoir implies that one needs to wait longer to ensure that

any spin-up electrons have tunnelled o� the quantum dot. Therefore, high-speed,

high-�delity measurements of single-spin electrons requires optimisation of the elec-

tron tunnel rates (between its host quantum dot and reservoir), maximisation of the

electrostatic coupling (between the quantum dot and the charge sensor) and max-

imisation of the available signal to noise ratio on the charge sensor (either via larger

charge sensor conductivity or using specialised circuitry like that in an RF-SET).

The SET and QPC have large lead counts and require an extra dedicated quantum

dot in the case of the SET. To reduce the lead count (to make it easier on scaling

up to many qubits), one may use the SLQD sensor (with a dedicated quantum dot)

which has shown the capability to achieve high electron visibility in under 1µs in

the context of spin-readout as shown by the results discussed in this thesis in Section

3.4 [31]. Experimental demonstration of single-shot single-spin readout with a SLQD

sensor has recently been demonstrated by a current PhD student Mark R. Hogg.

High-�delity singlet-triplet readout for the two-electron spin state hosted across

two quantum dots has also been experimentally demonstrated. In GaAs, RF-QPCs

have been shown measurement �delities of up to 98% with measurement times of

1µs by using standard Pauli-spin blockade techniques [14]. In reducing the lead

counts from 3 dedicated leads to a single multi-purposed lead (that is, integrat-

ing the sensor into a mandatory control gate), the single-gate RF (using adiabatic

quantum capacitance) sensor successfully showed single-shot readout in Si-P at a

measurement �delity of 83% [32]. Single-gate RF sensing (using adiabatic quantum

capacitance) was also shown in Si-MOS with a measurement �delity of 73% [132].

By using the tunnelling capacitance mode of measurement, single-gate RF sensing

was also shown in single-shot using SiGe quantum dots at a measurement �delity of

4Johnson noise increases with temperature. Thus, to maintain good SNR, the signal should be
ampli�ed while in the low-temperature environment.
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98% [133]. By utilising the SLQD sensor in Si-MOS where the sensor dot was one

of the two dots hosting the singlet-triplet qubit, a measurement �delity of 98% has

also been recently demonstrated [130], as predicted by previous experiments [31].

The SLQD sensor operating in the con�guration using the quantum dot hosting the

singlet-triplet qubit may not a desirable long-term solution as the strong reservoir to

dot coupling required in operating the SLQD sensor may degrade the singlet-triplet

qubit coherence times [30]. Thus, the single-gate RF sensor is proposed in large-

scale architectures5 [29, 108]. As discussed in this thesis, the physics governing the

SLQD sensor is di�erent to that of the single-gate RF sensor and thus, optimisa-

tion is di�erent. Nonetheless, to improve the single-gate RF sensor measurement

�delities towards fault-tolerance, a simple change is to utilise resonators with high

quality factors (such as resonators using low-loss superconducting inductors instead

of PCB surface-mount chip inductors [32, 138]). A high quality factor resonator

implies a narrow peak and thus, any shift in the resonance peak due to the quantum

capacitance will cause a larger shift in the signal re�ectance as discussed in the next

section.

3.2 Resonance circuitry for detecting quantum capaci-

tance

Before designing or operating the low-lead count SLQD and single-gate RF sensors,

it is useful to separate the PCB electronics from the quantum physics governing the

nano-scale qubit sensor when trying to maximise the measurement �delities. As both

the SLQD and single-gate RF sensors utilise a quantum capacitance during readout,

the actual circuit model description is universal across both sensors. That is, the

qubit sensors produce an AC quantum capacitance that is detected via resonator

circuitry external to the nano-scale device. Thus, the resulting circuit model (of

the macroscopic resonator and quantum capacitance from the nano-scale device)

enables one to design with optimal resonator parameters (for example, overall quality

factor or the resonant frequency) to maximise the measurement �delity by only

considering the PCB electronics. Finally, on building the equivalent circuit model

of the surrounding PCB electronics, proper methods of analysis shall be established

to clarify misconceptions that may be gathered from literature. For example, the

5The SLQD can still operate as a high-�delity qubit sensor (for both single-spin qubits via spin-
to-charge conversion or singlet-triplet qubits via Pauli blockade) when using a dedicated quantum
dot. However, its use for singlet-triplet readout when using one of the dots forming the singlet-triplet
qubit is not considered a long-term solution.
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proper de�nition of the RF readout signal shall be discussed in terms of the IQ

plane [29, 31, 32, 57, 139] rather than the phase response alone as implied in previous

works found in the literature [30, 105, 110, 131, 132].

3.2.1 Equivalent circuit model of resonator and quantum dot

To create the electron oscillations that yield a measurable quantum capacitance,

an RF voltage drive must be injected into the corresponding lead of the device to

electrostatically drive the electron between the two sites (reservoir and quantum dot

in the case of a SLQD sensor and between two quantum dots in the case of the single-

gate RF sensor). To measure the small AC quantum capacitance, one attaches an

LC resonator to the gate lead as shown in Figure 3.5. The resonator is typically

implemented by connecting an inductor L between the coaxial line and the device

lead. The capacitance element Cp of the LC resonator comes from the geometric

parasitic capacitance of the inductor rather than that of a physical dedicated circuit

element. The resonator will have internal losses modelled via a series resistance

R. In the case of surface mount inductors, R is dominated by the resistance of

the wire winding in the inductor. One may reduce the internal losses R, by using

superconducting inductors. In the case of superconducting inductors R is dominated

by dielectric losses, radiative losses and/or defects in the superconducting �lms [144,

145]. Finally, the discussion in Section 3.1.2 highlighted that from the tunnelling

response of electrons between two sites can lead to a resistive circuit element (in

the case of tunnel rates being slower than the input voltage drive frequency) and a

capacitive element. Thus, in general the current response of the nano-scale sensor

is best modelled via a resistor Rq and capacitor Cq as shown in Figure 3.5. Note

that the entire circuit is the equivalent6 AC-domain circuit involving the resonator

interfacing between the coaxial lines in the fridge to the lead corresponding to the

nano-scale sensor.

3.2.2 Using the resonator to detect electron oscillations

Given the equivalent circuit model of the resonator and the nano-scale sensor in

Figure 3.5, this section will discuss how the resonator apparatus can be used to detect

electron oscillations. It is �rst instructive to study the characteristics of the interface

6Note that this circuit model is simply the application of linear circuit theory where this is the
equivalent circuit model for the system at hand. Thus, any details such as resistive losses in the
inductor, stray capacitances and other minor corrections are absorbed into this single equivalent
model.
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Vin →

← Vout

R L

Cp Cq Rq

Gate
sensor

Figure 3.5: Equivalent circuit model of a resonator used to detect single electron
oscillations in a nano-scale device. The resonator consists of the inductor L and its
associated capacitor, typically parasitic due to the resonator geometry, Cp. The resistance
R represents internal losses intrinsic to the resonator itself. The resonator attaches itself to
a transmission line from which one sends or receives RF voltage signals. One connects the
resonator (via bond wires) to the gate lead of a nano-scale device (for example, a SLQD
sensor or a single-gate RF sensor). The resulting electron oscillations can be modelled via a
quantum capacitance Cq (for electron oscillation currents leading the RF input voltage by
90◦) and the Sisyphus resistance Rq (for electron oscillation currents in-phase with the RF
input voltage).

between the coaxial line and the resonator in terms of quality factors. Quality factors

are directly measurable quantities of a resonator that abstract away the values of

individual circuit elements. This simpli�cation enables the experimenter to design

and characterise resonators using general quantities that are agnostic to the many

ways one may model the equivalent circuit of the resonator on the PCB [30, 109,

110, 146]. The choice of quality factors (internal and external) strongly in�uences

the measured readout signal strength as discussed below. It is important to realise

how the choice of quality factors give rise fo the di�erent operating regimes.

Now consider a general series RLC circuit (a resistor, inductor and capacitor

connected in series). By de�nition the quality factor Q is 2π times the ratio of

the energy stored to the power dissipated per cycle. Thus, one notes that Q ≡
ω · Energy Stored

Power Loss . For a series RLC circuit, the energy stored is 1
2LI

2 and the power

loss is I2R. Thus, the quality factor for a series RLC circuit is:

Q =
ω0L

R
, (3.2)

where ω0 = 1/
√
LC is the resonant frequency of the RLC resonant circuit. The

resulting bandwidth of the bandpass �lter formed by the RLC circuit can be shown

to be ∼ω0/Q. Thus, a high quality factor implies that the signal bandwidth will be

restricted (that is, a narrow peak in the frequency response transfer function). In

experiments the RLC resonator circuit shown in Figure 3.5 is connected an external
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transmission line. Upon loading the RLC circuit to a transmission line of impedance7

Ze, the `e�ective quality factor' (taking into account the total impedance of the

circuit8) is now:

Qe� =
ω0L

R+ Ze
. (3.3)

Now one distinguishes the `internal' quality factor Qint and the `external' quality

factor Qext as follows:

Qint ≡
ω0L

R
(3.4)

Qext ≡
ω0L

Ze
(3.5)

Q−1
e� = Q−1

int + Q−1
ext. (3.6)

Qe� ≡
QextQint

Qext + Qint

. (3.7)

The internal quality factor Qint represents the total losses within the resonator circuit

itself, with a low internal quality factor representing high internal losses. The external

quality factor relates to the coupling interface between the resonator circuit and

the external transmission line. The signi�cance of the external quality factor Qext

is best understood in terms of the circuit re�ectance. That is, any AC voltage

signal sent through the transmission line will observe an impedance presented by

the resonator circuit. An impedance mismatch will result in signal re�ection while

perfect impedance matching results in the AC signal getting completely absorbed by

the resonant circuit. In the context of getting the RF signal to enter the gate lead

of the qubit sensor, one should be close to perfect impedance matching. However,

as discussed below, perfect impedance matching may not be desirable in the context

of obtaining maximal readout signal strength for high �delity qubit readout. Now

noting the impedance of a series RLC circuit Z = R+ jωL+ 1
jωC and the de�nition

of voltage re�ectance ρ ≡ Z−Ze
Z+Ze

, it is easily shown that:

ρ ≡ −
1− Qext

Qint

(
1 + jQint

(
ω
ω0
− ω0

ω

))

1 + Qext

Qint

(
1 + jQint

(
ω
ω0
− ω0

ω

)) . (3.8)

7It is stressed that this is not necessarily the characteristic 50 Ω-impedance of the transmission
line but the net impedance of the object to which the resonator couples. In practice, the coupling to
the external transmission line may be modi�ed via the resonator geometry or adding extra circuit
elements such as a parallel capacitor [139, 146].

8The external impedance is considered to have a negligible reactance term in this analysis.
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The re�ectance is given as a complex phasor where the real and imaginary parts are

termed the in-phase (I) and quadrature-phase (Q) components. The magnitude of

the complex vector is the amplitude of the re�ected voltage signal with respect to the

input voltage signal, while the complex argument is the phase of the re�ected voltage

signal with respect to the input voltage signal. The resulting re�ectance responses

are plotted in Figure 3.6. The plots show, as a function of input signal frequency,

the re�ected amplitude and phase responses. The phasor representations of the

amplitude and phase values are also plotted in the IQ-plane. Now one may investigate

three regimes where the resonator is to be termed `under-coupled' if Qext > Qint,

`critically-coupled' if Qext = Qint and `over-coupled' if Qext < Qint [147]. Note that

the e�ective quality factors are kept the same in all three regimes for clarity.

The �rst regime shown in Figure 3.6a is the under-coupled regime. Here the

external quality factor dominates the internal quality factor and thus, implies that

the losses in the resonator are much greater than the equivalent external losses to

the transmission line. Equivalently stated, the impedance of the resonator is much

greater than that of the transmission line. In the extreme limit where Qext � Qint,

the resonator circuit looks like an open circuit termination to the transmission line.

The boundary condition for an open-circuit termination is given by Kircho�'s current

law which states that current cannot escape; thus, the re�ected current (moving in

the opposite direction to the incident current) must be equal in amplitude and phase

to the incident current yield zero net current. As voltage along the transmission

line is proportional to the current, the voltage must also be equal in amplitude and

phase to the incident voltage signal. Thus, at resonance, one expects the relative

phase di�erence between the incident and re�ected voltage signals to be zero. Due to

the impedance mismatch, the resonator does not show full absorption (that is, zero

amplitude response) at resonance. The characteristic signature of the under-coupled

regime is the positive phase slope at resonance.

The second regime shown in Figure 3.6b is the critically-coupled regime. Here,

the internal and external quality factors are equal and thus, due to the impedances

being matched, there is no signal re�ection at boundary between the transmission

line and the resonator circuit when at resonance. The characteristic signature of the

critically-coupled regime is the zero re�ected amplitude response at resonance. The

phase is unde�ned in the critically coupled regime due to the null re�ected signal.

The third regime shown in Figure 3.6c is the over-coupled regime. Here, the in-

ternal quality factor dominates the external quality factor. Equivalently stated, the

impedance of the resonator is much smaller than that of the transmission line. In

the extreme limit where Qint � Qext, the resonator circuit looks like a short circuit
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(c) Over-cpl. Qint > Qext
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Figure 3.6: Resonator re�ectance for di�erent quality factor coupling regimes.
For each coupling regime, the re�ected amplitude and phase responses are plotted as a
function of frequency. The IQ associated response is then plotted on the IQ-plane. The
resonators have a resonant frequency ω0. The resonator only undergoes full absorption of the
input signal at resonance if the impedances of the transmission line and the resonator match;
that is, at critical coupling when Qint = Qext. The black dot indicates the resonant frequency
in each plot, while the red and blue dots indicate the lower and upper frequency bands when
the amplitude is half-way between its minimum re�ection and maximum re�ection of unity.
Note that the e�ective quality factor is kept the same across all three regimes for clarity.
(a) Under-coupled regime where the external quality factor dominates the internal quality
factor. A characteristic signature of the under-coupled regime is the positive phase slope
at resonance. (b) Critically-coupled regime where the internal and external quality factors
match. Here the phase at resonance is unde�ned. (c) Over-coupled regime where the
internal quality factor dominates the external quality factor. A characteristic signature of
the over-coupled regime is the negative phase slope at resonance.
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termination to the transmission line. The boundary condition for a grounded ter-

mination is that the voltages must sum to zero. Unlike the open-circuit termination

where the voltage at the end is twice that of the input voltage (as the re�ected signal

has the same phase as the input signal), the re�ected voltage must be the negation

of the incident voltage wave. A negated voltage translates to a phase change of

π as seen by the IQ curves encircling the origin in the IQ plane unlike that in the

under-coupled regime in Figure 3.6a. Due to the impedance mismatch, the resonator

does not show full absorption (that is, zero amplitude response) at resonance. The

characteristic signature of the over-coupled regime is the negative phase slope at

resonance.

For each regime in Figure 3.6, there are red and blue dots indicating the points

in the IQ plane where the amplitude response is at half its peak height. One must

note that although the e�ective quality factors are the same in the plots showing

the under-coupled and over-coupled regimes, the resonator response traces out wider

margins in the IQ-plane for the over-coupled case. The wider spread of the over-

coupled response on the IQ-plane is important as shown later when selecting the

best quality factors in detecting a quantum capacitance.

When using the resonator with a device, the nano-scale sensor either degrades

the internal quality factor on presenting a Sisyphus resistance or shifts the resonant

frequency due to a quantum capacitance. In the case of a Sisyphus resistance (for

example, that presented by a SET or QPC), the junction resistance itself will degrade

the internal quality factor of the resonator and more so when the junction becomes

conductive. Typically one uses matching capacitors to tune the external quality fac-

tor to match the degraded internal quality factor (to ensure maximal signal transfer

to the device lead) when no electrons shuttle across the junction and there is minimal

junction conduction [31, 139, 146]. On achieving junction conduction, the internal

quality factor degrades further (due to the dissipation across the tunnel junction)

and the RF readout signal contrast moves from the critically-coupled regime to the

under-coupled regime. That is, the readout signal decreases along the I-axis on the

IQ plane and there is no phase change (as the resonant frequency of the resonator

circuit remains unperturbed). Thus, one typically only measures the reduction in

the re�ected amplitude response [14, 33, 109].

However, in the case of measuring a quantum capacitance, there is no dissipa-

tion to perturb the resonator quality factor. Nonetheless, the resonant frequency

is instead perturbed to a lower frequency by δω. The resulting shift in the signal

re�ectance ∆ρ is proportional to the qubit readout signal strength Υ given an input

incident voltage signal of amplitude Vin:
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(d) Over-cpl. Qint � Qext
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(e) Re�ectance shift in IQ plane
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Figure 3.7: Shift in re�ectance when measuring quantum capacitance over di�er-
ent quality factor coupling regimes. For each coupling regime, the re�ected amplitude
and phase responses are plotted as a function of frequency. The resonators have a resonant
frequency ω0 which shifts to ω0 − δω on detecting a quantum capacitance as shown by the
dashed curves. The markers indicate the shift in the re�ected response on measuring a
quantum capacitance while continuing to probe the incident voltage signal at ω0. Note that
the e�ective quality factor is kept the same across all four regimes for clarity (thus, the
peak widths are all the same). (a) Under-coupled regime where the external quality factor
dominates the internal quality factor. (b) Critically-coupled regime where the internal and
external quality factors match. (c) Over-coupled regime where the internal quality factor
dominates the external quality factor. (d) Far over-coupled regime where the internal qual-
ity factor is much higher than the external quality factor. (e) The responses in (a)-(d) are
plotted in the IQ plane. The curves indicate the possible shifts in the re�ectance that may
occur for di�erent frequency shifts. The markers indicate a typical shift with circles indi-
cating the typical noise cloud measured in the I and Q channels. The SNR is proportional
to the net change in the re�ectance ∆ρ on the IQ plane.
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Υ = Vin∆ρ. (3.9)

Since the input voltage signal is still at the initial resonant frequency, the re�ected

amplitude and phase responses e�ectively trace out the amplitude and phase re-

sponses at ω0 + δω as shown in Figure 3.7. The shift in the re�ected response for the

di�erent quality factor regimes are shown in Figure 3.7a-c, with Figure 3.7d showing

the extreme case when the internal quality factor is much higher than the external

quality factor where the initial response (when no quantum capacitance is present)

lies in (I,Q) = (−1, 0) on the IQ-plane. The combined shifted response in the am-

plitude and phase is best viewed in the IQ plane. When no quantum capacitance

is present, the re�ected signal (noting that the incident voltage input is set to the

original resonant frequency ω0) remains on the I-axis. The shaded circles illustrate

the level of expected noise that would be typically seen in the I and Q channels

during experiments9. The curves in the IQ-plane in Figure 3.7e show the points in

which the shifted response may move on the IQ-plane due to a shift in the resonant

frequency from a quantum capacitance. A larger quantum capacitance (larger shift

in the resonant frequency) or a higher e�ective quality factor (a narrow peak) implies

that the contrast in shifted re�ected response is greater with the largest shift ending

up at (I,Q) = (1, 0). As there will still be noise at the shifted point, there are shaded

circles drawn there too. The e�ective signal to noise ratio is the distance moved in

the IQ-plane divided by the noise standard deviation in the IQ plane. For the same

e�ective quality factor, the IQ plane responses from Figure 3.7a-c clearly show that

having the external quality factor dominate the internal quality factor is undesirable

as the shift in the re�ectance is the smallest.

In the over-coupled regime (where the internal quality factor dominates the ex-

ternal quality factor), a small shift in the resonant frequency results in a shift in the

re�ected response that traverses a small portion of the semi-circles in the IQ-plane

(purple and light blue curves in Figure 3.7e), with the amplitude remaining mostly

unperturbed while the changes mostly occur in the phase. This leads to many au-

thors only looking at the shifted phase response [30, 105, 110, 131, 132]. However,

maximal signal strength is obtained when observing the overall shift in the re�ected

signal in the IQ-plane [29, 31, 32, 57, 139]. In addition, by only looking at the phase

shift, one would incorrectly declare that being close to the critically coupled regime

9The noise comes from typical thermal Johnson noise, stochastic tunnelling noise [110, 148] or
photon shot noise [149]. Photon shot noise a�ects the phase of the input RF voltage signal to cause
noise in the phase relationship between the voltage and current signals (which gives rise to the
quantum capacitance) to create a source of phase noise in the qubit readout signal.



96 Chapter 3. Compact RF sensors for Si-P qubits

yields the maximal signal response. For example, consider the over-coupled response

given in purple with the severely over-coupled response in light blue given in Fig-

ure 3.7e. The purple curve has a greater phase signal response (approximately 49%

more at 95.1◦ for the purple curve verses 63.7% for the light blue curve), but the

light-blue curve has a greater shift (and thus, a greater signal to noise ratio) on the

IQ-plane (approximately 52% more at 0.69 for the purple curve verses the 1.05 light

blue curve).

As the shift in re�ectance ∆ρ on the IQ-plane relates to the readout signal

strength Υ, it is useful to �nd an analytic expression to use in �nding the opti-

mal quality factors for a given experiment. Now if a quantum capacitance Cq were

present, due to electron oscillations between two sites, the resonant frequency will

shift from 1/
√
LCp to 1/

√
L(Cp + Cq). Taking this shift in resonant frequency to be

perturbative, the change in re�ectance, derived in Appendix D.1, is approximately:

∆ρ =
2QextQ

2
int

(Qext + Qint)
2 ·

Cq
Cp
. (3.10)

Thus, for an input signal voltage amplitude of Vin, the measured change in the

re�ected response is:

Υ = KηlossVin ·
2QextQ

2
int

(Qext + Qint)
2 ·

Cq
Cp
. (3.11)

Here ηloss is the factor of the signal amplitude that remains when entering the reso-

nant circuit and K is the net gain on the re�ected signal ampli�cation chain. One

may obtain the measured signal response from the IQ demodulator. The point where

there is no quantum capacitance, in the IQ plane, will shift by distance Υ upon its

presence. Equation 3.11 neatly highlights the signi�cance of reducing the parasitic

capacitance Cp (due to Υ ∝ 1/Cp) and the bene�ts of having a high e�ective qual-

ity factor. However, in order to decide the optimal choice in quality factors, it is

important to consider the role of quality factors when considering the net RF sig-

nal that reaches the gate lead of the nano-scale sensor Vac. Finding the voltage on

the device lead is also useful when calculating the quantum capacitance, as shown

in later sections, since the quantum capacitance is nonlinear and depends on the

voltage amplitude at the gate Vac.

In the circuit model, Vac is equivalent to the voltage division across the capacitor.

To �nd the load voltage, consider the `load' to be the entire RLC circuit. Taking the

spatial phase as zero across the RLC circuit element (treated as a lumped element

as the size of this circuit element is much smaller than the wavelength of the RF
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drive), the total voltage deposited upon this load will be given by Vin(1 + ρ), where

ρ is the re�ection coe�cient [150]. Now given the voltage across the lumped load,

the voltage drop across the capacitor can be shown to be boosted by Qint. Thus,

writing ρ in terms of Qint and Qext, the voltage at the gate of the device is:

Vac = 2ηlossQe�Vin. (3.12)

One immediate use for this equation is that one can calibrate the losses in sending a

voltage signal to a given gate in the nano-scale device. That is, the RF broadening

of a charge transition gives the voltage amplitude Vac on the device lead for a given

input voltage amplitude Vin. Thus, as the e�ective quality factor is known from

characterising the resonator, the loss can be found by �tting the linear relation

between Vac and Vin.

Finally note that although the heavily over-coupled regime gives larger shifts in

re�ectance, one should not achieve this regime by solely decreasing Qext to zero for

that would imply that no signal enters the resonant circuit to trigger the electron

oscillations required to manifest the quantum capacitance. Figure 3.7d clearly shows

that the majority of the input voltage signal does not reach the device in the severely

over-coupled regime as most of the signal is re�ected at resonance. If the severely

over-coupled regime were to be reached by setting the external quality factor to

zero, the e�ective quality factor becomes zero and by Equation 3.12, the voltage

signal amplitude on the gate lead is zero. Thus, one typically sets the internal

quality factor to be as high as physically possible in the over-coupled regime (usually

via the use of low-resistance inductors such as superconducting inductors). The

external quality factor is set as high as possible (by impedance matching the external

transmission line to the resonator via capacitance networks [137, 139, 146]) with

the limit set by the required circuit bandwidth, which approximately relates to the

quality factor via BW∼ω0/Qe� [147]. That is, having too high an e�ective quality

factor limits the bandwidth of the readout signal to which one may measure. Given

that the T ∗2 is expected to be in the order of 10−7-10−6 s [17, 34, 69], in the context

of performing error detection, the readout time must be faster than 1µs, leading to

required bandwidths in the order of 1-10 MHz. Thus, with a resonant frequency of

100 MHz, the e�ective quality factor must not exceed 100. Note that the bandwidth

cannot be readily increased by increasing the resonant frequency as the electron

tunnel rates (whether in a SLQD or a single-gate RF sensor) may not be fast enough

to respond such that the charge is perfectly in phase with the voltage to get a good

quantum capacitance as shown in Figure 3.3. However, in the case of a single-gate RF
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sensor operating in the tunnelling capacitance regime as shown in Figure 3.4, one may

have resonant frequencies in the order of 5 GHz (to match the tunnel-coupling [133])

and thus, achieve 10 MHz bandwidths by using an e�ective quality factor of 500.

3.2.3 Summary of design considerations

The analysis presented in this section place certain design guidelines regarding opti-

mal RF readout. The key guidelines are:

� The geometric parasitic capacitance Cp of the resonator must be made as small

as possible. That is, the greatest percent change in the resonant frequency

1/
√
LCp due to a quantum capacitance comes from making Cp small. One can

minimise Cp by reducing the inductor footprint, reducing substrate electric

permittivity and removing nearby copper ground planes.

� The internal quality factor Qint must be made as large as possible (see below).

� The external quality factor Qext is set to the maximum value such that one

still retains the required measurement bandwidth (given by the e�ective quality

factor Qe�) while remaining in the over-coupled regime.

To increase the internal quality factor (for maximum readout signal strength), one

usually reduces the resistance of the inductor. One may make the resistance zero

by using a superconducting inductor, in which case, the losses limiting the internal

quality factor are:

� Dielectric losses - RF signals interacting with the surrounding dielectric will

undergo dissipation. One can reduce dielectric losses by etching away the

surrounding substrate dielectric around the inductor [151].

� Radiative losses - source of loss due to the large inductor footprint acting as an

antenna to radiate RF signals away. One can reduce radiative losses by using

a smaller inductor footprint [145].

� Defects in �lm - source of loss due the RF signal exciting pools of charge trapped

within substrate defects. Low defect superconducting �lms can be optimised

at the fabrication level by varying the growth and etching strategies [144].

� Magnetic �elds - large magnetic �elds (as required for the typical operation of

spin qubits) can cause the substrate electrons to align with the magnetic �eld

and thus break superconductivity. One can reduce the impact of magnetic
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�elds by placing the superconducting inductor parallel with the magnetic �eld

and by using a superconductor with a high critical �eld (maximum magnetic

�eld before superconductivity breaks) such as NbTiN. In addition, the critical

�eld is inversely proportional to the superconducting �lm thickness. Thus, thin

NbTiN �lms are a good candidate for the detection resonators [152�154].

� Abrikosov vortices - stray magnetic �elds can cause supercurrent vortices within

the superconducting �lm that cause resistive losses and degrade the supercon-

ductivity. One may disrupt the formation of Abrikosov vortices by patterning

meshed grids on the superconductor [154].

3.3 Theoretical model of a single-lead-quantum-dot sen-

sor (SLQD)

Whilst the proposed singlet-triplet architecture aims to use single-gate RF sensors

integrated into pre-existing gates for singlet-triplet readout, the utility of a charge

sensor was highlighted in Figure 2.2.5 in the context of device characterisation and

veri�cation10. Thus, it is desirable to have compact charge sensors in the design

of the overall architecture to act as diagnostic probes. The SLQD sensor can be

inserted into Si-P devices without taking much space real-estate as it requires only

one dedicated lead. In the scope of this thesis, the development of the SLQD sensor

has paved the pathway to optimise the RF circuitry for the single-gate RF sensor.

In order to better understand the optimal operating conditions and the impact

of all SLQD parameters (such as electron tunnel rates Γ0, resonant frequency ω0,

input voltage amplitude Vin, resonator quality factors and electron temperature),

an analytic model was built on previous theoretical ideas where one considers a rate

equation describing the dot to reservoir electron oscillations in the SLQD sensor [109].

The key points addressed and improved in the modelling of the SLQD sensor, when

compared to previous literature, include:

� A better metric for SLQD sensitivity. Previous works on the SLQD sensor

have been in the context of `charge-sensitivity' in detecting electrons oscillating

between a reservoir and a dot in the SLQD sensor [109, 110]. However, the

`charge-sensitivity' metric is not the main metric in the context of qubit readout

10Single-gate RF sensors require fast electron tunnel rates. By design, to help isolate the double-
dots hosting the singlet-triplet qubit, the only charge transition with a su�cient electron tunnel
rate is the inter-dot transition. Thus, if one wished to count the electron number on the dots or
view all charge transitions in general, a charge sensor is useful in the near vicinity.
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where one is concerned with the ability to sense charge directly on nearby

quantum dots rather than that solely across the reservoir and the quantum

dot in the SLQD sensor. That is, nearby charging events shift the potential of

the quantum dot in the SLQD sensor such that electron oscillations no longer

occur directly on the SLQD. In the context of charge sensing (for example, in

high-�delity single-spin readout using spin-to-charge conversion), one therefore

becomes more interested in the resulting signal contrast.

� Development of a full analytic model, including the readout signal strength

at high powers in the nonlinear regime. Previous experiments typically oper-

ated at lower input powers < −100 dBm and did not explore the high power

nonlinear regime. This is because previous theory stated (correctly) that the

quantum capacitance indeed reaches a peak value with respect to the input

voltage amplitude Vin, such that the optimal readout signal might be obtained

by setting Vin to maximise the quantum capacitance. However, our analytic

modelling showed that the readout signal in fact, monotonically saturates at

higher input voltage amplitudes rather than peaking - a fact that was experi-

mentally veri�ed as shown later in Section 3.4 [31]. This better understanding

of the SLQD led to better optimisation and characterisation techniques (also

discussed in Section 3.4).

� SLQD response at high powers in the nonlinear regime. The analytic solution

also predicted high frequency harmonic nonlinearities in the re�ected readout

signal. One could exploit these nonlinearities to build exotic RF components

such as an RF mixer as subsequently veri�ed experimentally by a current PhD

student, Mark R. Hogg [155].

This section will derive the analytic model for the SLQD sensor while discussing the

theoretical predictions regarding the optimal operation of the SLQD sensor.

3.3.1 Developing a semi-classical model of the SLQD sensor

The operation of the SLQD sensor was modelled via a semi-classical rate equation

as proposed previously in the literature. Here the solutions were found analytically

to better study the functional trends in the SLQD parameters rather than simple

numerical simulations [109, 110]. The analytic solution was found via a Fourier se-

ries. The Fourier series solution yielded the average steady state electron occupation

probability, from which one �nds the current and subsequently the nonlinear quan-
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tum capacitance. This section shall present the Fourier series solution, while the

following sections discuss the trends in key system parameters.

Now consider a quantum dot tunnel-coupled to a reservoir. The reservoir has a

continuum of states with the electron �lling probabilities given by the Fermi-Dirac

distribution function. States below the reservoir's Fermi level are mostly �lled while

states above the Fermi level are mostly empty. By changing the voltage on a gate, one

may periodically raise or lower the dot's energy level with respect to its reservoir's

Fermi level as depicted in Figure 3.8. When the dot's energy level is above the

Fermi level (I), the probability of �nding an empty state on the reservoir with the

dot's energy level is high, so the electron on the dot tunnels onto the reservoir. On

lowering the dot's energy level to the reservoir's Fermi-level (II), the probability of

�nding a �lled state with a free electron on the reservoir is 50% and the dot typically

remains empty. On lowering the dot's energy level below the Fermi level (III), the

probability of �nding an electron with the same energy level as the dot is high and

thus, an electron tunnels onto the dot from the reservoir. On raising the dot's

energy level (IV), the probability of �nding an empty state on the reservoir is 50%

and the electron typically remains on the dot. The cycle repeats on raising the dot's

energy level above the reservoir Fermi-level once more (I) to result in cyclic electron

oscillations between the dot and its reservoir in synchrony with the input voltage

signal. By considering the resulting current on the reservoir lead and its relationship

to the input voltage signal, one may �nd the resulting AC quantum capacitance.

The schematic shown in Figure 3.8 can be realised mathematically via a classical

rate equation. Now the electron tunnelling events are stochastic by nature with the

rate given by the Fermi's golden rule. However, one may investigate the average

steady-state behaviour over many cycles by considering the average tunnel rates of

electrons moving from the reservoir to the dot Γ+ and electrons moving from the dot

to the reservoir Γ−. Now one may write the classical rate equation governing the

electron state probabilities (Pe being the probability that of an electron occupies the

dot and P0 being the probability that the dot is empty):

{
d
dtPe = Γ+P0 − Γ−Pe
d
dtP0 = Γ−Pe − Γ+P0

. (3.13)

The idea is that the change in the occupation probability changes with the tunnel

rates. For example, the probability of occupying the dot Pe increases by the reservoir

to dot tunnel rate if empty and decreases by the dot-to-reservoir tunnel-rate if full.

Since probabilities must sum to unity, the equations simplify into:
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Figure 3.8: Electron oscillations between a reservoir and a quantum dot in a
SLQD sensor. Electrons in the reservoir (shaded areas) are given by the Fermi-dirac
distribution in which states below the Fermi level EF are �lled and states above are mostly
empty. The dot has one discrete energy level to which the electron may occupy. The input
voltage is applied to the reservoir lead; thus, positive voltages, push dot's energy level above
the reservoir Fermi level. In the positive portion of the voltage cycle (top), the electron on
the dot tunnels o� the dot and onto the reservoir. On lowering the dot's energy level to the
Fermi-level (right), no new electrons enter the dot as most of the states on the reservoir are
�lled. On lowering the dot's energy level below the Fermi-level (bottom), an electron tunnels
onto the dot. Finally, the electron remains on the dot (left) on raising the dot's energy level
back to the reservoir Fermi-level. On repeating the four stages, electrons oscillate between
the reservoir and dot periodically with the incident voltage signal.



3.3. Theoretical model of a single-lead-quantum-dot sensor (SLQD) 103

d
dtPe = Γ+(1− Pe)− Γ−Pe = Γ+ − (Γ+ + Γ−)Pe. (3.14)

To �nd the tunnel rates, one applies Fermi's golden rule which states that trans-

mission occurs when the two states (an electron state on the reservoir and the dot's

energy state) are equal in energy. On applying Fermi's golden rule for a continuum

of states in the reservoir and the single discrete state on the dot, one may calculate

Γ+ and Γ− as derived in Appendix B.1:

Γ± =
Γ0

1 + exp
(
± ∆E
kBT

) , (3.15)

where Γ0 is twice the average tunnel rate of electrons through the tunnel barrier in

between the reservoir and the dot. ∆E is the energy di�erence between the outer

energy level on the dot (into and from which the electron tunnels) and the reservoir

Fermi level. Since algebraically one notes that Γ++Γ− = Γ0, the ordinary di�erential

equation given in Equation 3.14 becomes:

dPe
dt

+ Γ0Pe =
Γ0

1 + exp
(

∆E
kBT

) . (3.16)

Now consider the dot's energy level to be aligned with the reservoir Fermi-level.

By applying a voltage ∆V to a given gate in the device (with a lever-arm αg to

the quantum dot), one can change the energy level on the quantum dot by ∆E ≡
−eαg∆V (as shown by Equation A.8 in Appendix A.1). However, if the gate one

which is changing the voltage is the reservoir itself, then the reservoir energy level

must be drained of electrons and thus, the Fermi-level changes by −e∆V . Thus, in
the case of applying the voltage to the reservoir, the net change in ∆E is e(1−αg)∆V .
In summary:

∆E = eαrg∆V

αrg =

{
1− αg Gate g is reservoir to dot

−αg Gate g is not reservoir to dot

. (3.17)

Note that in typical operation of the SLQD, one will be applying the voltage signal

to the reservoir (that is, αrg = 1 − αg). However, if one were to feed the voltage

signal via a di�erent gate lead, then one should note this subtlety. Now the system

shall be detuned (via manipulation of the gates) such that when V = 0, the reservoir

and dot energy levels are degenerate. Now one applies a RF input voltage:
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V (t) = V0 + Vac cos(ωt), (3.18)

where V0 is the DC voltage o�set from the degeneracy point, Vac is the RF driving

amplitude and ω is the angular frequency of the RF drive. Note that Vac & V0 for

one cannot cyclically tunnel an electron on and o� the dot without letting the dot's

energy level cross the below and above Fermi-level respectively. Applying this RF

excitation to the rate equation in Equation 3.16 yields:

dPe
dt

+ Γ0Pe =
Γ0

1 + exp
(
eαrg
kBT

(V0 + Vac cos(ωt))
) . (3.19)

Now the right hand side is clearly periodic in time. Thus, the steady-state a.c.

solution to this ordinary di�erential equation is naturally written in the Fourier basis

as shown in Appendix B.2. Given the solution Pe(t), one may construct the charge

occupancy by simply noting that Q(t) = −ePe(t). To calculate the resulting current
through the gate (to which the voltage signal is applied) one needs to calculate the

charge per unit time on the gate Qg(t). Appendix A.1.6 explains how compensating

charges must �ow into gates when the charge state of a dot changes. First consider

the case where the voltage signal is applied to the reservoir of the dot itself. In this

case, the reservoir loses an electron each time an electron occupies the dot: Q(t).

However, on occupying the dot, a compensating charge of opposite sign must also

�ow: −αgQ(t). This yields a net (1 − αg)Q(t) ≡ αrgQ(t). In the case of applying

the voltage a gate lead that is not the reservoir of the dot, the only charge �ow

that occurs is the compensating charge: −αgQ(t) ≡ αrgQ(t). Thus, in all cases, the

net charge �ow into the gate, to which the resonator is attached, is: −eαrgPe(t).
Noting that the steady state current is simply the time-derivative of the charge, the

probability of occupation and the currents are given as:

Pe(t) =
∑∞

n=0An(p) cos(nωt+ φn(p))



An(p) = 1√
Γ2

0+(nω)2
· −eαrgΓ0Vac

4nkBT
· F
(
eαrg
2kBT

Vac,
eαrg
2kBT

V0, n
)

φn(p) = − arctan
(
nω
Γ0

) , (3.20)

I(t) =
∑∞

n=1An(I) sin(nωt+ φn(I))



An(I) =
eαrgω

2 · Γ0√
Γ2

0+(nω)2
· eαrg2kBT

Vac · F
(
eαrg
2kBT

Vac,
eαrg
2kBT

V0, n
)

φn(I) = π − arctan
(
nω
Γ0

) , (3.21)

where F (x, y, n) is de�ned in Appendix B.2.2:
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F (x, y, n) ≡ 1

π

∫ π

−π

sin(t) sin(nt)

cosh2 (y + x cos(t))
dt. (3.22)

That is, for an injected voltage signal V (t), the current response is nonlinear and

has an in�nite set of sinusoidal waveforms of frequency nω. Before discussing the

properties of the AC current response in the next section, it is instructive to calculate

the RF signal strength that would manifest when using a SLQD sensor. To �nd the

response, the equivalent AC impedance must be found. Now expanding the current

given in Equation 3.21 via the compound angle identity yields two orthogonal terms

that will help �nd the e�ective capacitance and resistance of the dot:

In(t) ≡ −An(I)
Γ0√

Γ2
0 + (nω)2

︸ ︷︷ ︸
Capacitive

sin(nωt) +An(I)
nω√

Γ2
0 + (nω)2

︸ ︷︷ ︸
Resistive

cos(nωt), (3.23)

where one notes the identities: cos(arctan(a/b)) ≡ b/
√
a2 + b2 and sin(arctan(a/b)) ≡

a/
√
a2 + b2. The currents' phase relationship with the injected voltage wave V (t)

are `capacitive' and `resistive'. Note that the phase relationships only have meaning

for the �rst harmonic n = 1. In the case of the `capacitive' portion, taking A1(I) to

be positive, is the portion of the current that `leads' the voltage by 90◦, while the

`resistive' portion of the current is in phase with the voltage. Thus, in a circuit-model

description, the device acts as an AC capacitance and resistor in parallel11. It is of

interest to note that the phase term φ1(I) dictates the capacitive or resistive nature

of the quantum dot to reservoir system. When Γ0 � ω, the dot-to-reservoir system

is AC capacitive in nature and resistive otherwise. Now the equivalent nonlinear AC

capacitance is given by: 1
nω ·

I(nω)
V (nω) . Thus the `quantum capacitance' is:

Cq(n)(Vac, V0) =
e2α2

rg

4nkBT
· Γ2

0

Γ2
0 + (nω)2

· F
(
eαrg
2kBT

Vac,
eαrg
2kBT

V0, n

)
, (3.24)

where V (nω) ≡ Vac. Note that the voltage at nω is zero for all n > 1; thus,

this e�ective capacitance at n > 1 is a harmonic-based distortion metric showing

the ratio of the current response, to a given voltage input, at some higher frequency.

Now similarly, one may �nd the equivalent nonlinear AC resistance by taking: V (nω)
I(nω) .

Thus, by utilising the same methods, the `Sisyphus resistance' is:

11Note that for n > 1, this description is the current response at a given frequency nω for an
injected voltage wave of frequency ω
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Rq =

[
e2α2

rg

4kBT
· nω2Γ0

Γ2
0 + (nω)2

· F
(
eαrg
2kBT

Vac,
eαrg
2kBT

V0, n

)]−1

, (3.25)

The quantum dot thus, acts as a capacitor Cq in parallel with a resistor Rq due to the

quantum capacitance and Sisyphus resistance respectively. Under typical operation

of the SLQD sensor in Si-P, the quantum capacitance term dominates the mostly

negligible Sisyphus resistance. For example, consider some typical experimental pa-

rameters [30, 31, 155]: f = 250 MHz, Γ = 10 GHz, αrg = 0.5, T = 0.25. Taking

V0 = Vac = 0 to give the maximum quantum capacitance (since the integral of sine-

squared is π, F (0, 0, 1) = 1) of Cq ≈ 460 aF (an AC impedance of 1/(ωCq) = 1.4 MΩ)

and a Sisyphus resistance of Rq ≈ 55 MΩ. Thus, the Sisyphus resistance is an or-

der of magnitude larger than the AC impedance of the quantum capacitance term.

Thus, the SLQD sensor predominantly operates in the quantum capacitance regime

and one may ignore the Sisyphus resistance term when calculating the readout sig-

nal strength as done so in the previous calculations in Section 3.2. Nonetheless, the

Sisyphus resistance is important when calculating the power dissipation of the SLQD

sensor as discussed in Section 3.3.4.

Finally, one may input the expression for Cq into Equation 3.11 to obtain the

RF signal strength as discussed in the next section. It shall be shown that the point

of maximum quantum capacitance is not necessarily the point of maximum readout

signal strength.

3.3.2 Quantum capacitance and measured RF signal response

The quantum capacitance given in Equation 3.24 (taken for n = 1) has several

key factors. The Γ2
0/(Γ

2
0 + ω2) factor implies that the quantum capacitance is only

signi�cant when the tunnel rate is much greater than the driving frequency: Γ0 � ω.

Another key factor is the spectral function F (x, y, 1) de�ned in Equation 3.22. The

spectral function, plotted in Figure 3.9a, governs the nonlinearity as a function of

the detuning o�set V0 and the input voltage amplitude Vac. The spectral response

is non zero within the conical region de�ned by Vac > V0 as expected when realising

that the voltage amplitude Vac must be large enough to sweep past the degeneracy

point V0 = 0 during each cycle. Similarly, as expected the quantum capacitance

peaks at zero voltage o�set (V0 = 0) for this maximally cycles the voltage into

the regions where electrons are more likely to move onto and o� the quantum dot

as illustrated in Figure 3.8. The spectral function drops the quantum capacitance

monotonically downwards with increasing Vac as shown in Figure 3.9b when plotting
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Figure 3.9: Theoretical model of the quantum capacitance of a SLQD sensor
as a function of DC o�set from Fermi-level V0 and RF voltage amplitude Vac.
(a) The quantum capacitance drops monotonically with increasing RF voltage amplitude.
The peak quantum capacitance (plotted in proportion to the maximum capacitance that
occurs when Vac → 0) occurs when the quantum dot in the SLQD sensor is aligned with the
reservoir Fermi-level: V0 = 0. The quantum capacitance is null outside the cone Vac > |V0|
as the RF voltage amplitude must be large enough to sweep the dot's energy level past the
Fermi-level to oscillate electrons on and o� the dot in the SLQD sensor. (b) The quantum
capacitance shows a monotonic decrease when plotting of the peak capacitance (at V0 = 0)
as a function of increasing RF voltage amplitude Vac.

the peak response at V0 = 0. Most papers in the literature declared that the best

response therefore, occurred with perturbative input voltage amplitudes (Vac → 0),

in which the capacitance maximum is approximately constant with Vac (the linear

regime). A consequence of this viewpoint is that one may inde�nitely obtain a larger

signal response (by maximising the capacitance) by setting the temperature T close

to zero (as Cq ∝ 1/T ).

It is important to understand that the quantum capacitance should not be con-

sidered by itself in isolation as maximising the capacitance does not give the best

results. One should instead maximise the readout signal strength Υ (as it directly re-

lates to signal to noise ratio of the sensor readout and ultimately the �delity of qubit

readout). By taking the expression for the quantum capacitance in Equation 3.24

and substituting it into the expression for the readout signal strength in Equation

3.11, one obtains:

Υ =
2QextQ

2
int

(Qext + Qint)
2 ·

Kηloss
Cp

· Γ2
0

Γ2
0 + ω2

·
e2α2

rgVin

4kBT
· F
(
eαrg
2kBT

Vac,
eαrg
2kBT

V0, 1
)
. (3.26)
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The �rst factor expresses the resonator circuit parameters where one maximises the

internal quality factor and sets the external quality factor to suit the desired circuit

bandwidth as discussed in Section 3.2.2. Similarly, the gainK, input cable loss factor

ηloss and the parasitic capacitance Cp are separate circuit parameters concerning the

resonator. The second factor signi�es the degree to which the SLQD sensor provides

a capacitive load with Γ0 � ω being the limit where the factor becomes unity.

To better view the trends in the readout signal strength, one may write the input

voltage amplitude Vin in terms of the input voltage amplitude on the gate of the

SLQD sensor:

Υ =
Qint

Qext + Qint

· K
Cp
· eαrg

2
· Γ2

0

Γ2
0 + ω2

· eαrg
2kBT

Vac · F
(
eαrg
2kBT

Vac,
eαrg
2kBT

V0, 1
)
. (3.27)

Now the �rst factor now clearly highlights how a large ratio of the internal to external

quality factors is favourable for maximal readout signal strength. With the second

factor being similar to before, the last factor is of interest. The spectral function is

now in the form of x · F (x, y, 1) as plotted in Figure 3.10a. As with the quantum

capacitance trends, the peak readout signal strength occurs at V0 = 0 with the

non-zero response being approximately within the cone Vac > V0. The readout

signal strength however, in contrast to before with the quantum capacitance, does

not monotonically decrease but in fact, monotonically increases and saturates at

high Vac as shown by the plot in Figure 3.10b (cutting the maximal response across

V0 = 0).

The saturating response of the readout signal strength at high RF input voltage

amplitude is contrary to that discussed in prior literature [110]. When considering

the diagram of the SLQD sensor's operation in Figure 3.8, on each cycle of the input

voltage signal, one needs to bring the dot's energy level well above the reservoir

Fermi level to ensure the electron can tunnel o� the dot and well below the reservoir

Fermi level to ensure a new electron can tunnel onto the dot. The voltage amplitude

therefore must be large enough such that one sweeps past the smearing of the Fermi-

level due to a �nite temperature. Thus, the ratio of the swept energy scale eαrgVac

must be greater than the temperature-smeared energy scale 2kBT on the reservoir.

Table 3.2 highlights some ratios of the two energy scales (RF amplitude sweeping

the dot's chemical potential eαrgVac to the thermal energy of the electrons in the

reservoir 2kBT ) and the resulting fraction of the maximum possible signal. When

the voltage amplitude energy scale (to which the dot energy levels move) equals the
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Figure 3.10: Theoretical model of the RF readout signal strength of a SLQD
sensor as a function of DC o�set from Fermi-level and RF voltage amplitude. (a)
The readout signal strength (plotted as a function of the maximum possible signal strength)
increases monotonically with increasing RF voltage amplitude. The peak readout signal
occurs when the quantum dot in the SLQD sensor is aligned with the reservoir Fermi-level:
V0 = 0. The readout signal is null outside the cone Vac > |V0| as the RF voltage amplitude
must be large enough to sweep the dot's energy level past the Fermi-level to oscillate electrons
on and o� the dot in the SLQD sensor. Note that the factor of π/4 is to normalise the peak
signal strength since lim

x→∞
x · F (x, 0, 1) = 4/π as shown in Appendix B.2.3. (b) The RF

readout signal shows a monotonic increase when plotting of the peak RF readout signal (at
V0 = 0) as a function of increasing RF voltage amplitude Vac.
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thermal energy smearing of the reservoir, the signal is only 64% of its maximum

possible value, while having the voltage amplitude being 4 times larger yields a

fraction of approximately 97%. Typically in experiments one would not want to

inde�nitely increase the input voltage as the charge transition would continually

broaden as shown in Figure 3.10 across the V0 axis. A broader charge transition

implies that charge detection (on a nearby quantum dot) would require a larger shift

in the SLQD quantum dot's transition peak (that is, a need for stronger electrostatic

coupling which would typically reduces the range of the SLQD sensor).

Ratio
eαrg
2kBT

Vac Υpeak/Υmax

1 0.637

4 0.972

7 0.991

21 0.999

Table 3.2: Obtaining the maximum possible readout signal strength by increas-
ing the input RF voltage with respect to the electron temperature. The ratios
of the peak RF readout signal Υpeak (which occurs at V0 = 0) and the maximum possible
readout signal Υmax (which occurs at V0 = 0 and Vac → ∞) are calculated by noting that
the form of the RF response at V0 = 0 is xF (x, 0, 1) where x = (eαrgVac)/(2kBT ) with the
maximum value being 4/π.

At low RF input voltages, the RF readout response holds information that may

be used to extract experimental parameters. At low voltage amplitudes, the RF

response is linear with respect to the input voltage amplitude:

Υ

Vac
=

Qint

Qext + Qint

· K
Cp
· Γ2

0

Γ2
0 + ω2

·
e2α2

rg

4kBT
· sech2

(
eαrg
2kBT

V0

)
, Vac → 0. (3.28)

In this limit, the spectral function gives a pro�le for the SLQD charge transition. The

width of the RF readout response across V0 follows the usual sech2(eαrgV0/2kBT )

relationship expected with Coulomb peaks inferred with DC readout [31, 156, 157].

One may take the low Vac pro�les across V0 and �t a sech2 function to deduce the

ratio αrg/T . Analysing αrg/T across a range of temperatures enables one to deduce

αrg as shown later in the experimental demonstration in Section 3.4.2. Another

feature of the linear regime (but not that of the maximum response) is that the

gradient is inversely proportional to the temperature. Thus, a linearly decreasing

Vac o�sets the response peak height at lower temperatures as discussed earlier.

At large input voltage amplitudes, the RF readout response follows a cone-like

shape as seen by the semi-circular pro�le at large values of Vac:
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Υlarge =
Qint

Qext + Qint

· K
Cp
· 2eαrg

π
· Γ2

0

Γ2
0 + ω2

·
√

1−
(
V0

Vac

)2

, Vac →∞. (3.29)

If one takes the maximal response at V0 = 0, voltage amplitudes much larger than the

temperature energy scale and tunnel rates much larger than the driving frequency;

the readout signal strength tends to:

Υmax =
Qint

Qext + Qint

· K
Cp
· 2eαrg

π
,

eαrg
2kBT

Vac � 1. (3.30)

The �rst two factors once again simply involve circuit elements describing the res-

onator. The third factor describes a fundamental limit that states that the readout

response will be limited to the current of a single electron moving between the reser-

voir and the quantum dot of the SLQD sensor. The lever-arm factor αrg < 1 simply

states that the readout signal is proportional to the gate's coupling to the quantum

dot.

The analysis in this section has a few key conclusions regarding the optimal

readout signal strength:

� The fundamental limit to the readout signal strength is limited by the current

of a single electron moving between the reservoir and the quantum dot in the

SLQD sensor: Υmax ∝ eαrg.

� Maximal signal strength is obtained when eαrgVac � 2kBT with eαrgVac =

8kBT yielding 97.2% the maximum signal strength.

� The maximal signal strength can be obtained at lower input voltage amplitudes

if the one engineers the electron temperature on the reservoir to be proportion-

ally smaller. However, the value of the maximum readout signal strength does

not change with temperature.

� One should not keep increasing Vac as the SLQD peak broadens by Vac. Thus,

if the shift in the SLQD peak due to sensing charging event is small, one may

not obtain su�cient contrast in the qubit readout signal.

The analytic solution additionally yielded predictions on the nonlinearities of the

SLQD current as well as the eventual power dissipation of the SLQD sensor as

discussed in the following sections.
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3.3.3 Nonlinear current response of the SLQD sensor

The nonlinear harmonics in the current do not a�ect the SLQD readout strength as

the resonator's band-pass �ltering e�ectively removes the higher harmonics. Whilst

it is not the outcome of the thesis, the results became useful in guiding future experi-

ments (involving the use of the higher harmonics for an on-chip frequency multiplier)

done by a PhD student in UNSW: Mark R. Hogg [155].

The current harmonics of the SLQD system are proportional to the spectral

function in the form:

In(t) = An(I) cos(nωt+ φn(I))



An(I) =
eαrgω

2 · Γ0√
Γ2

0+(nω)2
· eαrg2kBT

Vac · F
(
eαrg
2kBT

Vac,
eαrg
2kBT

V0, n
)

φn(I) = π
2 − arctan

(
nω
Γ0

) (3.31)

Figure 3.11 shows the harmonic behavior of the current. Similar to the RF readout

signal, all the current harmonics tend to zero outside the voltage cone when Vac <

|V0|. That is, when one tunes the degeneracy point V0 (where the dot's energy level

equals the Fermi-level) beyond the voltage oscillation amplitude Vac, one will not

cycle between the two states (electron on or o� the dot) to create current �ow. With

the higher harmonics n, there are n lobes in the current response which change sign.

At high input voltage amplitudes, the current lobes saturate to values given by the

Chebyshev polynomial of the second kind Un(x) enveloped by a semi-circular cone

like with the RF readout response:

In(large) =
2eαrg
π
· ωΓ0√

Γ2
0 + (nω)2

·
√

1−
(
V0

Vac

)2

· Un−1

(
V0

Vac

)
, Vac →∞. (3.32)

The current is also attenuated at higher harmonics via the second factor ∼1/(nω)

as expected for otherwise the sum of all the current harmonics would be divergent.

Albeit, the factor saturates at larger drive frequencies. Asymptotic zeroes (shown

by the dashed lines in Figure 3.11) occur at the higher current harmonics along lines

given by the zeroes of the Chebyshev polynomial of the second kind Un−1(V0/Vac):

V0 = Vac cos

(
kπ

n

)
, k < n, k ∈ N, Vac →∞, (3.33)

with the peak current on each lobe (enumerated by k < n) being:



3.3. Theoretical model of a single-lead-quantum-dot sensor (SLQD) 113

(a) n = 1

−20−10 0 10 20
0

5

10

15

20

eαrg

2kBT
V0

eα
r
g

2
k
B
T
V
a
c

0 0.25 0.5 0.75 1

(b) n = 2

−20−10 0 10 20
0

5

10

15

20

eαrg

2kBT
V0

−0.2 0 0.2

(c) n = 3

−20−10 0 10 20
0

5

10

15

20

eαrg

2kBT
V0

−0.2 0 0.2

(d) n = 4

−20−10 0 10 20
0

5

10

15

20

eαrg

2kBT
V0

eα
r
g

2
k
B
T
V
a
c

−0.2 0 0.2

(e) n = 5

−20−10 0 10 20
0

5

10

15

20

eαrg

2kBT
V0

−0.1 0 0.1

(f) n = 6

−20−10 0 10 20
0

5

10

15

20

eαrg

2kBT
V0

−0.1 0 0.1

Figure 3.11: Higher harmonics in the SLQD current. The plots show the spectral
function shaping the �rst 6 harmonics in the current response; speci�cally π

4 ·
eαrg

2kBT
Vac ·

F
(
eαrg

2kBT
Vac,

eαrg

2kBT
V0, n

)
. The net current across the SLQD tunnel junction is the sum of

all Fourier harmonics n. The harmonics all have non-zero responses within the cone Vac>V0
.

The dashed lines indicate the slopes of the asymptotic zeroes in the current response at
Vac →∞.
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Ipeak-kn =
2eαrg
π
· ωΓ0√

Γ2
0 + (nω)2

· (−1)k−1, k < n, k ∈ N, Vac →∞. (3.34)

In the context of exploiting higher current harmonics, it is clear that the maximal

current occurs at the lobes closer to V0 = 0 as expected by the semi-circular envelope.

3.3.4 Power dissipation of the SLQD sensor

A parameter rarely considered in the design of qubit sensors is the subsequent power

dissipation of the qubit sensor. If one were to place 108 qubit sensors (for modest

qubit numbers prescribed by the surface code [8]) on the nano-scale device (operating

to sense single-spin qubits via spin-to-charge conversion), the total power dissipation

must be considered in the context of having su�cient cooling power in the dilution

refrigerator to ensure that the electron temperatures remain low for high-�delity

qubits. The SLQD sensor operated in a capacitive regime (Γ0 � ω) o�ers the

possibility of low power dissipation (as capacitive AC loads do not dissipate real

power) and thus, is a viable candidate for large scale implementation [109, 110].

This section will outline the equation for the power dissipation of the SLQD sensor

to show that the power dissipation is indeed low.

The power dissipation is de�ned as the average AC power per cycle:

Pac =
1

T

∫ T

0
Vac(t) · Iac(t)dt (3.35)

where T is the time for one period T = 2π/ω. For example, if the load is purely

capacitive, the net power dissipation is zero as there is no component of the current

that is in phase with the voltage. Noting the orthogonality of sine and cosine, the

only term that persists is the �rst harmonic of the current and speci�cally its in-phase

component given by the Sisyphus resistance:

Pavg =
1

2
· Vac ·

eαrg
2
· ω2Γ0

Γ2
0 + ω2

· eαrg
2kBT

Vac · F
(
eαrg
2kBT

Vac,
eαrg
2kBT

V0, 1

)
. (3.36)

Like the current, the power saturates with increasing ω, however, the asymptotic

form of the power grows linearly with increasing voltage amplitude Vac:

Pasym. =
eαrg
π
· ω2Γ0

Γ2
0 + ω2

· Vac,
eαrg
2kBT

Vac � 1. (3.37)
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However, the net power dissipation is in fact very low [110]. For example, consider a

setup with Γ0 = 2π·10 GHz, ω0 = 2π·1 GHz and αrg = 0.1. With a voltage amplitude

at the gate set to 45µV, for a low temperature the power dissipation is approximately

1 fW. Thus, with 108 SLQD charge sensors, the average power dissipation would be

approximately 100 nW. Thus, the nano-scale device contribution to the dissipated

power is much less than the typical >1µW cooling power at the mixing chamber of

a dilution fridge. Whereas, if one were to use 108 SET sensors the net dissipation

is an order of magnitude higher at 4.6µW (taking the source-drain bias voltage and

current of 170µV and 270 pA respectively for a typical Si-P SET [56]) and may

exceed the cooling power of the dilution fridge.

3.4 Experimental demonstration of the SLQD

Section 3.3 has described the modelling behind the SLQD sensor by considering dot-

to-reservoir transitions probed with RF re�ectometry. A SLQD device was created

both to demonstrate the operation of the SLQD sensor in Si-P devices and to ver-

ify the theoretical predictions. The theoretical framework has provided a pathway

for SLQD device characterisation and optimisation. The techniques developed in

characterising the SLQD sensor were di�erent to that used in conventional charge

sensors [31, 86, 101]. For example, the technique of Coulomb diamonds to deduce

the lever-arm of the gate to the quantum dot in a SET cannot work with a charge

sensor that does not contain source and drain leads.

To demonstrate the operation of the SLQD sensor an STM-patterned Si-P device

was fabricated by Matthias Koch and Eldad Peretz. Characterisation of the RF

circuitry involving the resonators attached to SLQD sensor was performed by Ian S.

Bartlett as a part of his honours thesis. The characterisation of the SLQD sensor

using the theory developed in the previous section was performed by the author with

valuable assistance from Ian S. Bartlett.

3.4.1 SLQD device design

The STM image of the fabricated SLQD device is shown in Figure 3.12a. The lighter

regions in the STM image indicate regions that were P-doped. The Si-P device had

two charge sensors: the SLQD (consisting of reservoir R and the SLQD quantum

dot) and the SET (consisting of a SET quantum dot, source S, drain D and tuning

gate G). The SLQD charge sensor can be used to detect charge transitions onto the

SET and vice versa to enable one to compare the conventional three-lead sensor
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with the more compact SLQD sensor. The dimensions of the SET were taken from

previously working SET designs [80]. The SET quantum dot was 10 × 24 nm in

size with a 15 nm separation between the SET quantum dot and its source/drain

leads. The dimensions of the SLQD sensor were taken to be nominally the same

geometry as the SET quantum dot and its source. That is, the SLQD quantum dot

was 10 × 24 nm in size with a 15 nm separation between itself and the reservoir R.

The electron states of the SLQD and SET were probed via re�ectometry on two

LC resonators multiplexed onto a single RF line [31, 139]. The resonator on its

own was characterised by Ian S. Bartlett as a part of a honours thesis. For the

resonator connected to the reservoir R, the resonant frequency was 244.8 MHz with

an e�ective quality factor of approximately 100. The parasitic capacitance Cp, was

thus 0.68 pF. For the second resonator connected to the source terminal S, the

resonant frequency was 283.6 MHz with an e�ective quality factor of approximately

45 (lower than that of R due to the dissipative nature of the SET). The parasitic

capacitance was thus, 0.67 pF. Unlike the quality factors, which were di�erent due

to the resistive load of the SET, the parasitic capacitances were consistent. This

suggests that the parasitic capacitances mainly depended on the surrounding PCB

geometry (for example, nearby copper ground planes or a high electric permittivity

PCB laminate both increase Cp) as opposed to the sensor on the device to which the

associated inductor was connected.

On sending in a 244 MHz RF voltage signal to address the resonator attached to

gate R, there was change in the re�ectance when sweeping the gate voltages on R

and G. Figure 3.12b shows the resulting RF response measured on the output of the

IQ demodulator. The dataset has had its background subtracted, in both the I and

Q channels individually, by taking an average of a region far from charge transitions

(as seen bright lines). Then the RF response plot was generated by via
√
I2 +Q2;

that is, one is interested in the net change (relative to the default background level)

in the RF response in the IQ plane on measuring a charge transition between R and

the SLQD quantum dot as opposed to naively observing the amplitude and phase

response alone.

The bright lines in Figure 3.12b indicate a change in the signal re�ectance caused

by electron oscillations occurring when the given quantum dot (SLQD or SET) aligns

with its reservoir Fermi-level such that the input RF voltage sweeps the dot's energy

level above and below its Fermi-level (as shown in Figure 3.8). The vertical lines

indicate charge transitions of positive slope and thus, indicate that the electrons came

from either G or R; in this case it is R as indicated by the steep slope indicating a

stronger coupling to gate R (the gate on the x-axis). On crossing a SLQD transition
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Figure 3.12: Demonstration of a SLQD sensor in a Si-P device. (a) STM image of
the device. The lighter regions highlighted on the STM image were dosed with phosphine
to incorporate P-donors. The terrace steps on the image are di�erent layers of the silicon
substrate. The SLQD sensor was formed by a reservoir R patterned 15 nm away from a large
quantum dot SLQD (10 × 24 nm in size). The SLQD sensor detected electrons �lling onto
the SET quantum dot (10 × 24 nm in size; tuned via its source S and drain D leads each
spaced 15 nm away and a gate G). The state of the SLQD and SET was sensed using RF
re�ectometry via two chip-inductor LC resonators multiplexed onto a single input RF line.
Bias tees were placed on each resonator to set the DC voltage on the gates R and S. (b)
Charge stability diagram, of the SLQD and SET charge transitions, using the RF response
on resonator R. The vertical lines indicate charge transitions onto the SLQD quantum dot,
while the faint horizontal lines indicate charge transitions onto the SET quantum dot. The
ordered pairs indicate the ground-state charge states of the SLQD and SET quantum dots
respectively in the charge-stable regions. The shift of ∆VR = 1.1 mV along VR in the SLQD
line indicates the ability of the SLQD sensor to detect the presence of charge entering or
leaving the SET quantum dot.
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line to a more negative voltage on the reservoir, more electrons enter the SLQD dot.

The resonator also detects electron movement between the SET and its source/drain

leads as seen by the horizontal lines of negative slope. Electrons enter the SET

quantum dot when crossing the SET charge transition line to a more positive voltage

on the reservoir R (or SET gate G). The RF response is weaker (fainter) on the SET

charge transitions as the lever-arm α of reservoir R to the SET quantum dot is lower

when compared to the SLQD which is of closer proximity. It would appear that

there is a line linking the SET and SEB lines like that of an inter-dot transition.

However, the distance between the SET and SLQD would prohibit the fast tunnel

rates (greater than the driving frequency) required for RF readout. Thus, the inter-

linking transition line is attributed to simultaneous charge movement between the

SLQD to its reservoir R and the SET to its source/drain leads.

One key �gure of merit is the shift in the SLQD charge transition ∆VR due to the

detection of nearby charge movement; in this case that is the addition of charge in the

SET quantum dot. Using the shift in the charge transition to detect nearby charges

is identical to the operation of an SET or QPC as a charge detector [12, 80, 111, 112].

That is, one sets the voltages on R and G such that one probes the maximum point in

the SLQD transition. On a charging event causing a shift in the SLQD line, one then

measures the background level. The resulting change in the readout signal strength

indicates the presence of a real-time charging event.

Now to maximise the e�cacy of the SLQD sensor, the two parameters that need

optimising are the shift in the SLQD charge transition (1.1 mV along the VR axis

on sensing charge movement on the SET quantum dot as shown in Figure 3.12b)

and the magnitude of the peak RF response of the SLQD charge transition. The

shift in the SLQD charge transition must be at least beyond that of the half peak

width of the SLQD charge transition (approximately the amplitude of the sweeping

RF voltage Vac) as otherwise the contrast on detecting charge will not be that of the

peak RF response and the zero background level, but rather some �nite non-zero

value above the background level. The larger magnitude in the peak RF response

implies more signal (a greater signal to noise ratio implies faster measurement times).

Optimisation of the peak RF amplitude requires characterisation of the SLQD sensor

to maximise the peak height (as discussed in Section 3.4.2) and careful device design

to maximise the peak shift (as discussed in Section 3.4.3).
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3.4.2 Demonstration and characterisation of the SLQD sensor

This section looks to maximise the readout signal strength by optimising the RF

input power upon measurement of the SQLD reservoir-to-dot lever-arm and the

electron temperature of the electrons in the reservoir (since the two parameters give

the ratio (eαrgVac) / (2kBT ) as discussed in Table 3.2). The outlined methods �rst

consider the readout signal strength as a function of input RF power; from which

one may estimate the net loss in the transmission lines from the room temperature

apparatus to the device. The net attenuation is an important parameter to diagnose.

If the attenuation is much higher than expected, this could imply a broken coaxial

cable or RF signal leakage. On measuring the power dependence, one measures the

SLQD peak pro�les at low powers over di�erent temperatures to deduce the electron

temperature and SLQD reservoir-to-dot lever-arm. Finally, given all the system

parameters, one may estimate the signal's return gain. Once again, if the return

gain is lower than expected, the diagnostic suggests that there may be a broken

coaxial line or a malfunctioning ampli�er. In the end, one obtains a calibrated RF

peak height and peak width as a function of input voltage amplitude; an important

calibration plot one may use in optmising the SLQD sensor. Knowing this, one can

tune the input RF power to attain the maximum possible signal without inputting

too much RF power that broadens the SLQD peak.

Now the input RF power sent to the PCB can be calculated by considering the

di�erent intentional attenuations [139]. The RF source (a SRS SG386 ) was set

to output 11 dBm. The RF signal was sent through a splitter to yield the 5 dBm

coherent local reference required for the IQ demodulator. The second portion of the

split signal, 5 dBm, was sent to the device via a 30 dB Minicircuits attenuator and

a variable Pasternack PE7033 attenuator (that could be tuned from 0-90 dB over

1 dB steps) to help tune the input RF amplitude. The signal was then sent through

a directional coupler that additionally couples the signal down by another 14.7 dB.

Summing all the attenuations, the estimated signal power in dBm fed into device

PCB was:

Pin(est) = −39.7−AS , (3.38)

where AS is the attenuator setting on the tunable attenuator. Noting that the

signal generator is connected to a 50 Ω line, the estimated voltage level sent at the

transmission line before the resonant circuit is12:

12Found by noting that P = V 2/Z where Z = 50 Ω is the transmission line impedance.
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Figure 3.13: RF response of the SLQD sensor as a function of RF input power.
(a)-(c) The stability diagram in Figure 3.12b can be plotted for di�erent input attenuations
AS . With lower attenuation, as the RF input power increases, the RF response gets larger
and broadens as seen by the thicker lines. (d) The SLQD response peak across VR plotted
as a function of V0 (VR o�set to zero at the peak for clarity) and the estimated input
voltage amplitude at the resonant circuit. The RF response saturates as expected. (e)
The RF response pro�le plotted as a function of V0 for selected input voltage amplitudes
as highlighted in (d). The black lines indicate the RF response �tting function shown in
Equation 3.40. The datasets are o�set by 3 mV for clarity. (f) From the �ts in (e), one
may infer the RF voltage amplitude at the reservoir R itself: Vac. From the linear �t in
red, it is possible to estimate the RF input losses ηloss by noting the slope dVac/dVin(est) =
2ηlossQe� = 31.1.
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Vin-(est) =
√

50Pin-(est). (3.39)

Figures 3.13a-c show charge stability diagrams, when setting the tunable attenuator

AS to 56 dB, 44 dB and 38 dB respectively. From the three plots, it is clear that the

peak RF response of the SLQD transition line increases with increasing RF input

power. However, as discussed in Section 3.3, the peak RF response of the SLQD

charge transition must saturate with increasing RF input power as the fundamental

limit to the maximal response is that when shuttling one electron between the reser-

voir and the SLQD quantum dot. One reaches the saturation in the RF response

once the RF input voltage amplitude is large enough to start sweeping the SLQD

energy level far beyond that of the temperature smearing on the reservoir. Figure

3.13d shows the measured saturating behaviour via a 3D plot of the RF response (of

the SLQD peak) as a function of V0 (the voltage o�set tuning the SLQD energy level

away from its reservoir Fermi-level13) and the estimated input voltage at the PCB

Vin-(est). The sliced pro�les of the 3D plot (across V0) at selected input Vin-(est) values

are shown in Figure 3.13e. As predicted, on increasing the RF input power, the peak

RF response Υ saturates, while the peak width across V0 continues to increase on

increasing the RF input power. The RF signal response is non-zero when the RF

voltage can sweep SLQD dot past the Fermi-level of its reservoir. Thus, the peak

width (at larger input voltage amplitudes) is proportional to the extent to which

the RF voltage moves the SLQD energy level and as expected, the peak width will

continue to increase inde�nitely with increasing RF input power.

The black �tting lines plotted on the RF response in Figures 3.13e were created

by �tting the RF response for a given RF input power to the �ve parameter �tting

function where V0 is the dependent variable:

Υ = a0

∫ π

−π

sin2(τ)

cosh2 (aw (V0 − aδ + aac cos(τ)))
dτ + ac. (3.40)

This function comes from the analytic model for the RF response developed in Section

3.3.2 (speci�cally Equation 3.27). The �tting parameter aδ may be zeroed if the

dataset for the charge transition peak is post-processed such that it is centred at

V0 = 0. In addition, ac may be zeroed if the RF response background level has been

properly zeroed. The parameter a0 determines peak RF response at V0 = 0. The

parameter aw is the eαrg/(2kBT ) factor common to V0 and Vac in the RF response.

Thus, aac is the AC voltage amplitude at the gate used to move electrons between

13V0 is simply VR shifted such that V0 = 0 at the peak of the RF response pro�le.
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the SLQD dot and its reservoir. Since aac is the actual measured voltage at the

gate of the device aac ≡ Vac, one may infer the extra losses in the transmission of

the RF input signal by comparing the �tted Vac with the estimated voltage at the

PCB Vin-(est). Figure 3.13f shows a plot of Vac as a function of Vin(est). Now given

the voltage amplitude input at the PCB Vin(est) (that is, before the resonator), the

expected voltage on the device gate is given by Equation 3.12:

Vac(est) = 2ηlossQe� · Vin(est) (3.41)

Since the e�ective quality factor of the resonator connected to R was approximately

100 [139], the slope of the �tted line (approximately 31.1) in Figure 3.13f is 200ηloss.

Thus, the measured voltage amplitude loss factor was ηloss = 0.16 (or approximately

16.1 dB in power loss). The transmission line loss was attributed to possible insertion

losses at the PCB and general losses in the coaxial cable. One can obtain the actual

input RF power at the PCB (that is, before the resonator) by subtracting loss ηloss

from the estimated power:

Pin = Pin(est) − 16.1, (3.42)

with all powers given in dB or dBm.

Using a similar approach, the return gain can also be calibrated if one knows the

reservoir-to-SLQD lever-arm αR. Usually with a SET sensor, the gate lever-arm to

the sensor quantum dot can be found via Coulomb diamond measurements [15, 156].

Coulomb diamonds yield gate lever-arms by matching the known source-drain voltage

bias to the SET quantum dot's energy level being tuned by a gate voltage via the

gate lever-arm. However, for the SLQD sensor, there are no source-drain leads to

provide a local energy reference. An alternate energy reference to which one may

calibrate the gate lever-arm αR is the temperature of the electrons in the reservoir.

The reservoir electron temperature experimentally manifests as a broadening of the

measured SLQD charge transition. As discussed before in Section 3.3.2 (speci�cally

Equation 3.28), in the limit of low input voltage amplitudes (the so-called linear

regime), the pro�le of the RF response as a function of V0 tends towards a shape of

constant width broadened by the temperature:

Υ
Vac

= b0 · sech2
(
V0
bw

)



b0 =

(
Qint

Qext+Qint
· e(1−αR)K

2Cp
· Γ2

0

Γ2
0+ω2

)
· e(1−αR)

2kBTe

1
bw

= e(1−αR)
2kBTe

(3.43)
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(a) RF response pro�les across V0
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Figure 3.14: Temperature variation of the RF response in the linear regime used
to determine the reservoir lever-arm and electron temperature. The RF response
in the linear regime (low-Vac) measured as a function of the mixing chamber temperature
Tmc to deduce the lever-arm αrg and the reservoir electron temperature Te. (a) The RF
response pro�les are plotted over di�erent mixing chamber temperatures. The �tted curves
shown in black use the ∼ sech2 function given in Equation 3.43. The curves are o�set by
0.6 mV for clarity. (b) The �tted widths, proportional to Tmc/αrg, are then plotted as
a function of temperature. When the mixing chamber temperature exceeds the electron
temperature of the reservoir lead, the electrons equilibrate with the mixing chamber and
thus, the peak widths linearly follow the mixing chamber temperature. The red line shows
the linear �t for the portion of the data following the mixing chamber temperature; this
yields αrg = 0.46. The blue line shows the linear �t for the widths when Te > Tmc to
extract the reservoir electron temperature of 270 mK.
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where b0 controls the height of the �tted peak and bw controls the peak width. Note

that Te is the temperature of the electrons in the reservoir R. Figure 3.14a shows

this �tting function applied to the low-power RF response pro�les14 over di�erent

mixing chamber temperatures Tmc. Note that the peak RF response drops with

higher temperatures as the RF response has a 1/T dependence (as shown in Section

3.3.2 when discussing the equation for the RF response Υ). Noting the expression for

bw, one may plot Tmc/(1−αR) as a function of the mixing chamber temperature Tmc

as shown in Figure 3.14b. In the bath-temperature raising experiment, the electron

temperature Te is typically higher than the mixing chamber temperature Tmc due to

the di�culty in fully thermalising the silicon crystal with the mixing chamber when

warm electrons are �owing into the device from the room temperature apparatus.

Thus, for mixing chamber temperatures below the minimum temperature of the

electrons in the reservoir, the peak width of the RF response remains constant as

highlighted by the solid blue constant line �tted to the �rst six points. Eventually the

mixing chamber temperature rises above the electron temperature and the reservoir

electrons now become thermally excited by both the wires (the SMA cables and looms

connected to the device) and the mixing chamber itself. The minimum reservoir

electron temperature is no longer limited by the wires and thus, it equilibrates to

the mixing chamber temperature as indicated by the linear trend �tted by the red

line. The intersection point where the electron temperature starts to follow the

mixing chamber temperature is taken to be the minimum electron temperature:

Te = 270 mK [31, 112]. That is, the reservoir electron temperature is Te = 270 ±
30 mK even when the fridge is set to its minimum mixing chamber temperature of

approximately 50 mK. Since the gradient of the �tted points along the linear trend

(in red) is 1/(1− αR), the reservoir lever-arm was extracted: 1− αR = 0.54± 0.05.

With the gate lever-arm known, one may calibrate the return signal gain by

investigating the RF response in the linear response regime (with Tmc = 50 mK).

Here, one �rst considers the peak height of the �tted RF response (shown in the

power dependence shown in Figure 3.13e) over di�erent RF input voltage amplitudes

at the reservoir lead Vac. The peak RF response is plotted via the green markers in

Figure 3.15. Taking the points for low values of Vac in the linear regime15, one may

�t the line shown in blue. The gradient of the peak RF response with respect to Vac

in the linear regime was discussed in Section 3.3.2 (speci�cally Equation 3.28):

14The low amplitude power (in which the peak width was dominated by temperature rather than
the RF input voltage amplitude) applied at the PCB was Pin = −131 dBm

15Many papers in the prior literature only considered the RF voltage amplitude in the linear
regime [110] instead of exploring the RF response at higher input powers as discussed in our pa-
per [31].
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Figure 3.15: Experimentally measured RF response peak height (green) and
peak width (magenta) of the SLQD sensor as a function of the input voltage
amplitude. All the data points come from �tting the RF responses shown in Figures
3.13d-e as a function of Vac. The magenta data points (with the left y-axis) indicate the
half-width of each peak across V0 where the response drops to 25% of the peak maximum
for a given value of Vac. The magenta line is the Vac = V0 line that indicates the asymptotic
peak width as Vac → ∞. The green data points (with the right y-axis) indicate the peak
RF response (at V0 = 0) at any given value of Vac. The solid green line is given by the
�tting function in Equation 3.45. The slope of the peak RF response in the linear regime
is highlighted by the blue line with the linear regime approximately stopping at the point
where eαrgVac = 2kBT . The minimum width of the RF response due to thermal broadening
is also shown with ∆V0(min) = 0.133 mV.



126 Chapter 3. Compact RF sensors for Si-P qubits

Υmax

Vac
=

Qint

Qext + Qint

· K
Cp
· Γ2

0

Γ2
0 + ω2

·
e2α2

rg

4kBT
≈ Qint

Qext + Qint

· K
Cp
·
e2α2

rg

4kBT
. (3.44)

The approximation in the second equality assumes that the electron tunnel rate is

much larger than the driving frequency Γ0 � ω, where the SLQD operates mostly

in the capacitive regime. The measured gradient of the RF response Υ with respect

to Vac in the linear regime was 25.256. Noting that, (1 − αR)/T = 0.46/0.270,

Qint = 253 and Qext = 165 [139], the voltage gain factor K is approximately 78000

or 97.8 dB gain in terms of power. The measured return gain of 97.8 dB was close to

the expected gain in the ampli�er chain, which was calculated to include 35 dB from

the cryogenic ampli�er in the fridge, 50 + 20 dB via room temperature ampli�ers

and a 7.5 dB conversion loss in the IQ demodulator to yield approximately 97.5 dB

in net signal gain. Thus, from the return gain diagnostic, one can conclude that the

ampli�ers (speci�cally the cryogenic ampli�er) were properly functioning without

any unexpected measurable signal loss. To capture the nonlinear regime (in the RF

response) as predicted by the theoretical models in Section 3.3, the peak heights were

�tted with the green line Figure 3.15 using the �tting function:

Υmax = k0kwVacF (kwVac, 0, 1), (3.45)

where k0 controls the magnitude of the overall RF response (as it saturates with

increasing Vac) while kw = e(1−αR)/(kBT ) controls the point in which the peak RF

response leaves the linear regime as highlighted by the dashed line where eαrgVac =

2kBT . Similarly, at approximately eαrgVac = 4(2kBT ), the peak RF response reaches

97.2% of the maximum possible value (with minimal peak broadening) as predicted

previously by the analytic model in Table 3.2.

In the context of detecting nearby charges with the SLQD, it is desirable to know

both the RF signal strength (peak height) as well as the peak half-width for a given

input voltage amplitude16. Thus, Figure 3.15 shows the peak half-widths (taking it

as the half-width when the function was 25% of its maximum value to better gauge

the width of the peak with respect to the background noise) as a function of Vac via

the magenta markers. The lowest RF response peak half-width, when in the linear

regime, is given by Equation 3.43:

16Noting that the peak height increases the readout SNR while the peak half-width needs to be
smaller than the peak-shift that occurs when sensing nearby charge to obtain full contrast between
the peak RF signal strength and the zero background level.
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∆V0(min) =
2kBT

e(1− αR)
arcsech

(
1
2

)
= 0.133 mV, (3.46)

with the measured electron temperature of electrons in the reservoir as 270± 30 mK

and the reservoir lever-arm αR = 0.54 ± 0.05. The linear trend shown in magenta

highlights the asymptotic trend when eαrgVac � kBT . That is, the half-width of

the response peak tends towards the RF input drive amplitude (noting that the RF

response is non-zero when Vac > V0 to ensure that the SLQD dot's energy level

sweeps past the reservoir Fermi-level). The extra width of the SLQD peak is due to

the temperature broadening of the reservoir electrons. Otherwise, the RF response

is approximately zero outside V0 > Vac for large Vac, as discussed in the analytic

models.

As noted before, the maximum readout signal contrast of the SLQD charge sensor

requires the SLQD charge transition to shift by at least half its peak width on sensing

charge on the target dot. In this experiment, the SLQD peak shifted by 1.1 mV on

sensing electrons on the SET as shown in Figure 3.12. This is important as one can

use this peak shift to bound the maximum peak width of the RF response to be below

1.1 mV. Thus, the maximum input RF voltage amplitude at the reservoir Vac will be

approximately 1.1 mV; an input amplitude far into the nonlinear saturation regime.

From Equation 3.45, at this amplitude, one reaches 99.7% of the maximum possible

RF readout signal strength. Note that if one were content with 97.2% (approximate

minimum amplitude to reach the peak signal strength in the nonlinear regime while

minimising peak broadening) of the maximum possible signal strength (Vac = 0.4 mV

in this experiment), then the peak shift on sensing charges can be as low as 0.4 mV.

3.4.3 Improving the SLQD sensor

In the previous section, speci�cally Figure 3.12, the relationship between the SLQD

response peak width and height was explored as a function of the input voltage

amplitude. The model, veri�ed experimentally, predicts that one requires e(1 −
αR)Vac(sat) = 4(2kBT ), to achieve 97.2% of the maximum possible RF response.

However, at this mostly saturated RF input amplitude Vac(sat), the peak half-width

will also be approximately ∆V0 ≈ Vac(sat). Noting that the peak shift due to sensing

nearby charge must be greater than the response peak half-width (to ensure maximal

readout signal contrast between the peak height and the zero background level), one

requires that:
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∆V0 ≈ Vac(sat) =
8kBT

e(1− αR)
< ∆VSLQD (3.47)

where ∆VSLQD is the peak shift of the SLQD charge transition on sensing nearby

charge. Now the shift one obtains on sweeping a given gate is given by Equation

A.20 in Appendix A:

∆VSLQD =
e(C−1

DD)SLQD-Dot
1− αR

, (3.48)

where (C−1
DD)SLQD-Dot relates to the mutual capacitance between the SLQD dot and

the target dot. The mutual capacitance quantity relates to the shift in the SLQD's

energy on placing a charge on the target dot. In the context of this experiment,

∆VSLQD = 1.1 mV and Vac(sat) = ∆V0 = 0.4 mV. The mutual capacitance factor rolls

o� approximately as the inverse of the distance between the SLQD and the target dot

(the SET placed approximately 44 nm). Therefore, one could approximately double

the distance between the SLQD and the SET to 120 nm and still achieve full signal

contrast in the charge sensing RF readout signal without any loss in the signal to

noise ratio. When comparing the range of the SLQD sensor to the size of a typical

double-quantum dot in Si-P (12 nm), a sensor range of 120 nm yields a normalised

range of 10. The normalised range is large when compared against the normalised

range of 1-2 when using QPCs with GaAs or SiGe quantum dots [14, 17]. With such

large charge sensing ranges (above 50 nm), the SLQD therefore serves as an excellent

diagnostic charge sensor that can be discreetly placed in a large scale architecture.

Now combining the previous two equations, one can obtain the ultimate require-

ment in achieving full contrast in the RF signal strength when sensing charge move-

ment:

kBT <
e2

8
(C−1

DD)SLQD-Dot. (3.49)

Satisfying this inequality implies that one makes maximal use of the available RF

readout signal strength when charge sensing. To satisfy this inequality one may

increase the mutual capacitance CDD between the SLQD and the target dot by

shaping the SLQD dot to cover more parallel area with the dot. In addition, one may

better thermalise the reservoir of the SLQD to the mixing chamber of the dilution

fridge17. With lower temperatures, one can start maximally oscillating electrons in

17Typical thermalising strategies seek to thermally contact the inner core of the coaxial lines
(carrying the signals) onto the cooling plates of the dilution fridge [33, 34]. Usual methods include
multiple stages of attenuators and feeding the signal over gold striplines on a sapphire block strapped
to the mixing chamber plate (as sapphire is a good thermal conductor while being a good electrical
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the SLQD at lower RF input voltage amplitudes and thus, minimally broaden the

RF peak response.

Note that on satisfying the inequality above, one should also increase the maxi-

mum possible RF signal strength. From the discussions in Section 3.3.2, the funda-

mental maximum peak signal strength is:

Υpeak =
Qint

Qext + Qint

· K
Cp
· 2e(1− αR)

π
,

e(1− αR)

2kBT
Vac � 1. (3.50)

The �rst method to approach the fundamental maximum is to increase the internal

quality factor of the resonator18 as discussed in Section 3.2.3. The second method

to approach the fundamental maximum signal strength is to decrease the reservoir

to gate lever-arm by increasing the mutual capacitance between the SLQD dot and

its target dot (an approach implemented in a later experiment performed by Mark

R. Hogg [155]). Finally, like with all signals transmitted from a nano-scale device to

the room temperature apparatus, greater signal to noise ratios can be realised via

cryogenic ampli�cation at even lower temperatures (Johnson noise is lower at lower

temperatures).

3.5 Future of the SLQD sensor

Theoretical and experimental developments in the design and implementation of a

SLQD sensor in Si-P yielded the following key results:

� A SLQD sensor (fabricated in Si-P) was successfully characterised and shown

to sense charge movement on a SET patterned 44 nm away. The SLQD peak

shifting ∆VR = 1.1 mV due to charge movement on the SET.

� The theoretical methods developed to characterise the SLQD sensor enabled

us to determine the RF input losses, RF return gain, SLQD reservoir-to-dot

lever-arm (αR = 0.54± 0.05) and the temperature of electrons in the reservoir

(Te = 270± 30 mK).

� The predicted saturation of the RF response with increasing RF power (beyond

the linear regime) was veri�ed experimentally; reaching 97.2% of the peak RF

response, as predicted, when setting the voltage amplitude at the reservoir

of the SLQD to Vac = 4(2kBT )/(eαrg). In this experiment for an electron

insulator).
18The circuit model assumes that the load is purely capacitive. To make the SLQD act capacitive,

the electron tunnel rate must be much larger than the driving frequency
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temperature of Te = 270±30 mK and the reservoir lever-arm αR = 0.54±0.05,

the optimal RF amplitude for peak RF response was Vac = 0.4 mV.

� With a ∆VR = 1.1 mV shift in the SLQD peak, the SLQD sensor was capable

of detecting charges approximately up to 120 nm with full signal contrast in the

RF response, given that the RF voltage amplitude only needed to be 0.4 mV

in this experiment.

The detection distance of the SLQD sensor with respect to the target quantum dot

can be further increased by increasing the detection sensitivity of the resonator via

the methods discussed in Section 3.2.3:

� Increasing the internal quality factor with respect to the external quality factor.

� Lowering the parasitic capacitance.

However, some SLQD speci�c improvements include:

� Lowering the electron temperature via better thermalisation of the device to

the dilution fridge.

� Lowering the reservoir-to-dot lever-arm by increasing the mutual capacitance

between the SLQD dot and the target quantum dot. One can increase the

mutual capacitance by increasing the parallel area between the two dots by

reshaping the dot during fabrication.

The results also highlighted that the SLQD sensor can not only be used as a compact

diagnostic probe, but also be used as a single-spin qubit sensor (via the spin-to-charge

conversion method) that could replace the 3-lead SET. A current PhD student Mark

R. Hogg continued this project and has already shown high-�delity single-shot single-

spin readout of single spin electrons via a SLQD sensor. Therefore, the SLQD sensor

is a viable replacement for the larger SET sensor and should therefore be considered

in future architectures using single-spin electron qubits in Si-P.



Chapter4
Integrating RF singlet-triplet sensors

for scalability

Although the SLQD sensor (outlined in Section 3) is compact, it still requires a

dedicated gate and quantum dot1. A more compact sensor that integrates directly

into a pre-existing gate in the device is the single-gate RF sensor as proposed for the

scalable single-triplet architecture in this thesis. The single-gate RF sensor oscillates

of one the two electron (of the singlet-triplet qubit) across the two dots hosting the

qubit, with oscillations only occurring if the electrons are in a singlet state (lifting of

Pauli blockade). As discussed in Section 3, resonant circuitry is used to detect an AC

quantum capacitance resulting from the electron oscillations. There are two modes of

inter-dot electron oscillations that may occur: tunnelling capacitance (electron oscil-

lations via the ground and excited charge states) and adiabatic quantum capacitance

(electron oscillations via adiabatic transfer across the ground-state eigenstates). The

section will �rst model the single-gate RF sensor to investigate the optimal system

parameters and tradeo�s of the two modes of operation with the the result that the

adiabatic quantum capacitance is seen as the better pathway until further research

is done on the tunnelling capacitance mode in the context of P-donor dots (for ex-

ample, a su�ciently long excited singlet state coherence and spin lifetime to ensure a

long enough measurement time). In particular, the modelling outlined in this section

is performed to investigate the full nonlinearity of the quantum capacitance in the

1Although there was a demonstration of the SLQD taking form of one of the quantum dots
hosting the singlet-triplet qubit and its reservoir, the implementation is not favourable in the long
term [130]. This is because the large reservoir to dot tunnel rate required for SLQD operation
will couple the quantum dot too strongly to its reservoir, thereby shortening the spin lifetime and
coherence of the singlet-triplet qubit [30].

131
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regime of higher RF powers as with the SLQD sensor. Although the RF power in fact

decays at higher input RF powers (unlike the saturation that occurs with the SLQD

sensor), the models help place bounds on the experimental parameters that are useful

when operating in the tunnelling capacitance (driving frequency must match twice

the tunnel coupling frequency) and adiabatic quantum capacitance regimes (driving

frequency must be much less than the tunnel coupling frequency).

The device fabricated in Chapter 2 was then characterised using a single-gate RF

sensor implemented with a chip-inductor resonator [29]. It was shown that the mea-

surement time limiting singlet to triplet-t− relaxation time was 2 ms. The value was

many orders of magnitude better than a previous experiment which measured 60 ns

due to the strong coupling of the dots to their reservoirs. This was weakened in the

current experiment by moving the reservoirs further away (as discussed in the opti-

misation of the dot-to-reservoir distance dr in Section 2.2.3). With long spin lifetime

of 2 ms demonstrated, it was predicted that single-shot readout should be possible

given an optimised setup. One of the key requirements to achieve high-�delity single-

gate RF readout was to utilise a resonator with a high internal quality factor. Thus,

the chip-inductor resonator used in the initial device characterisation [29] was re-

placed with a low-loss superconducting inductor [32]. The single-gate RF sensor was

then further optimised during the experiment (for example, by �nding the optimal

readout points). It was additionally shown that the single-gate RF sensor did not sig-

ni�cantly a�ect the dynamics of the spins under measurement (important property

of a qubit sensor is make a faithful representation of the qubit under measurement).

Ultimately, the optimisation led to the �rst demonstration single-shot single-gate RF

spin readout [32].

4.1 Modelling the single-gate RF sensor

The concept of a single-gate RF sensor has been demonstrated in gate-de�ned quan-

tum dots (at 0 T [57] and 200 mT [105]) and recently with Si-P quantum dots [30]

(at 2 T). Although the previous results showed spin-readout, the measurements were

not achieved in single-shot. Nevertheless, the �rst attempt to use a single-gate RF

sensor in a 4-dot device2 yielded no RF signal response when activating the single-

gate RF sensor as the electron tunnel rate between the two dots was too low when

2This was a device that was fabricated before the device discussed in Chapter 2. The device
was fabricated as a training exercise and had a double quantum dot (approximately 2P-3P in size)
with an inter-dot distance of 14 nm. The resulting tunnel coupling was too small to measure with
the single-gate RF sensor using the adiabatic quantum capacitance mode.
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compared to the driving frequency of 460 MHz. However, the exact conditions under

which the single-gate RF sensor fails to produce a signal was unclear. As such, a

better theoretical understanding of the single-gate RF sensor was needed to provide

insights for future device designs, optimisations and experiments. It was hoped that

by gaining a similar understanding to the e�ect of the nonlinear capacitances in the

SLQD sensor experiments, the elusive single-shot readout with the single-gate RF

sensor would be achievable.

The SLQD system was modelled using a rate equation that described the electron

oscillations between a discrete state on a quantum dot and a continuum of states on

the reservoir. However, with the single-gate RF sensor, the two sites are both discrete

energy levels on separate quantum dots. Thus, the rate equation model is insu�cient

and the single-gate RF sensor must be modelled as a quantum system using the two-

level system formalism. Although driven systems have been well-studied in the �eld

of quantum optics, the application of the driven two-level system in the context of

single-gate RF sensing leads to slightly di�erent analytic techniques in �nding the

required solutions. For example, typically one is interested in the overall system

dynamics in the rotating frame. However, in the context of single-gate RF sensing,

one is interested in the probability density (proportional to the charge movement

between the dots) at a particular frequency ω to then �nd the resulting current and

quantum capacitance.

Our attempts at modelling the single-gate RF sensor started with perturbative

methods (based on the rotating wave approximation) that revealed details surround-

ing the `tunnelling capacitance' mode (where one utilises excited charge states to

oscillate the electrons between the two dots). It was found that the perturbative

methods could not capture the nonlinearities at higher RF input voltages and thus,

a semi-quantum ansatz was used to analytically model the nonlinear capacitance

when operating in the `quantum capacitance' mode (where one adiabatically oscil-

lates between the charge ground states to oscillate the electrons between the two

dots). Collectively the modelling (developed in this thesis) provided insights into

the conditions required to realise the single-gate RF sensor. These theoretical re-

sults helped pave the way to optimise the single-gate RF sensor in order to achieve

single-shot single-gate RF spin readout as discussed in later in Section 4.2.

4.1.1 Initial Hamiltonian construction

The full Hamiltonian for a singlet-triplet qubit, derived in Appendix E, involves

two electrons across two quantum dots in which the electrons interact via a tunnel
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coupling term, the potentials across the dots may be tilted and magnetic �elds break

key spin degeneracies. However, in the context of single-gate RF readout, one may

consider one of the electrons to remain on the second dot, while the other electron

moves freely between the two dots if the electrons form a singlet state. If the electrons

are in a triplet state, the electrons must remain on separate dots due to Pauli spin

blockade. Thus, the analysis only considers the singlet state. Under the basis s11

(electrons on separate dots) and s02 (electrons both on the same dot), one may write

the e�ective charge qubit Hamiltonian Hid [57, 158]:

Hid =

(
∆ −tc
−tc −∆

)
≡ ∆σz − tcσx, (4.1)

where tc is the inter-dot tunnel coupling and ∆ is the detuning. The detuning is

a tilting potential. The detuning is de�ned as half the energy splitting when the

electrons (in the absence of a tunnel coupling), for a given applied voltage ∆Vg on

gate g satis�es:

2∆ = −eαg1∆Vg + eαg2∆Vg ≡ e∆α ·∆V, (4.2)

where αg1 and αg2 are the gate lever-arms to the �rst and second dots respectively,

with ∆α termed the di�erential lever-arm. The di�erential lever-arm is a geometric

factor that is greater than zero and at most one (it is typically 5-10% in planar

Si-P devices [82, 86, 92]). In the context of single-gate RF readout, the detuning is

varied sinusoidally with a gate voltage amplitude of Vac and frequency ω along with

a possible detuning o�set voltage V0:

∆ = e∆α
2 (V0 + Vac cos(ωt)) ≡ V ′0 + V ′ac cos (ωt) . (4.3)

When the detuning drive causes the electron to oscillate adiabatically between the

two ground-state charge states, one operates in the `quantum capacitance' mode of

operation shown in Figure 3.4a. When the detuning drive causes the electron to

oscillate between the ground and excited charge states, one operates in the `tun-

nelling capacitance' mode of operation shown in Figure 3.4b. The goal is to �nd

the quantum capacitance and �nd the resulting readout signal strength in the two

modes of operation. To �nd the quantum capacitance, the solution �rst �nds the

probability of occupation p(t) at frequency ω. Similar to the modelling of the SLQD

in Section 3.3, here we can obtain the charge occupation Q(t) = e · p(t). Noting

that the current can be obtained by taking the time-derivative of the charge, one

can obtain the quantum capacitance Cq by noting that Vac/Iac = 1/(ωCq) (where



4.1. Modelling the single-gate RF sensor 135

Vac and Iac are the voltage and current amplitudes at frequency ω). The solutions

to the Hamiltonian in Equation 4.1 are given in Appendix C with the tunnelling

capacitance behaviour solved via the rotating wave approximation and the adiabatic

quantum capacitance behaviour solved via a semi-quantum approach. The next sec-

tion summarises the key results from the theoretical modelling in the context of �nal

design considerations along with the advantages and disadvantages of the adiabatic

quantum capacitance and tunnelling capacitance modes.

4.1.2 Summary of design considerations for single-gate RF sensing

Two modes were explored in the theoretical study: the resonant `tunnelling capac-

itance' and the adiabatic `quantum capacitance'. Both modes require di�erent LC

resonator frequencies to achieve maximal RF readout signal strength. That is, the

adiabatic quantum capacitance mode requires a resonator frequency much lower than

the tunnel coupling frequency, while the tunnelling capacitance mode requires the

driving frequency to match two times the tunnel coupling frequency.

The �rst mode of operation investigated was the tunnelling capacitance regime.

Operation in the tunnelling capacitance regime requires voltage amplitudes V ′ac to

be perturbative with respect to the tunnel coupling tc to satisfy the rotating wave

approximation. The RF readout signal for the resonant tunnelling mode of operation

was found to be:

Υres. tunl. =
Qint

Qext + Qint

· K
Cp
· e∆α

2
· tc√

V ′20 + t2c
(4.4)

with the resonant frequency ω of the RF drive set to the energy splitting:

~ω = 2
√
t2c + V ′20 (4.5)

Maximal RF signal strength is clearly obtained when V ′0 = 0. That is, the reso-

nant frequency should match twice the tunnel coupling frequency: ω = 2tc. Since,

singlet-triplet qubit operation in Si-P (as discussed in Section 2.2.3) requires a large

tunnel coupling of at least 1-2 GHz, operation in the tunnelling capacitance regime

will require large resonant frequencies. Therefore, the required inductances for the

resonators will be smaller by approximately a factor of ten3. A smaller inductance

usually implies smaller footprint inductors (when using high-quality factor super-

3Current resonators operate at approximately ∼100 MHz [29�31]. An increase in ω to 1-10 GHz
will result in (noting that ω = 1/

√
LC) an smaller inductance by a factor of approximately 10 (if

the parasitic capacitance is approximately the same order of magnitude).
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conducting inductors) and subsequently lower parasitic capacitances Cp (therefore,

greater RF readout signal strength). From a scalability perspective a smaller induc-

tor footprint is desirable. However, one should note that one of the key challenges is

that the resonant frequency must precisely match 2tc as any non-zero adjustments on

the detuning o�set V ′0 to bring the RF drive into resonance will diminish the readout

signal strength. For Si-P systems where the tunnel coupling is �xed on fabrication,

one will require extremely precise tunnel couplings to match the resonant frequencies

of the fabricated resonators. If one �nds a precise regime where the qubits' tunnel

couplings are all uniform, resonator multiplexing will be an issue as the resonant

frequencies will not be di�erent (as required for individual frequency addressibility).

One solution to this conundrum is to set the resonant frequencies of adjacent res-

onators to progressively higher resonant frequencies (as V ′0 can be adjusted to achieve

resonance). That is, one can sacri�ce readout signal strength to achieve frequency

multiplexing. Finally, one needs to balance the possibly lower measurement times

that may occur due to the fast decay and decoherence of the excited charge states

(although not measured in Si-P, one may expect decoherence times of 100 ns-1µs

when comparing results from SiGe quantum dots [135]). Thus, as a long-term solu-

tion, the tunnelling capacitance mode was not recommended for the singlet-triplet

architecture proposed in this thesis. However, the precise nature of the resonant tun-

nelling method gives an idea of why the tunnelling capacitance was not detected in

the �rst quadruple quantum dot device. Here, the tunnel couplings were too small

to be measured via the adiabatic quantum capacitance mode and most likely did

not match half the driving frequency 460 MHz, to enable the tunnelling capacitance

mode of operation.

The second mode of operation investigated (to �nd the conditions for peak RF

readout signal strength) was the adiabatic quantum capacitance regime. Note that

the readout point is set to zero detuning (V ′0 = 0) to obtain the maximum readout

signal strength. Here, the initial charge state of the qubit (that is, the superposition

of s11 and s02) was shown to a�ect the measured RF readout signal strength. If

one starts in the exact ground state on initiating readout, the resulting RF readout

strength is:

Υg =
Qint

Qext + Qint

· K
Cp
· e∆α

2
· V ′ac√

t2c + V ′ac

(
1− exp

(
t2c

ωV ′ac/
√

2

))
. (4.6)

Disregarding the �nal factor (the LZSM envelope), the readout signal strength in-

creases and saturates at input voltage amplitudes V ′ac larger than the tunnel coupling
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tc. A similar RF response occurs when the initial state of the qubit is fully in s11

charge state (as might be the case when performing singlet-triplet qubit operations),

but slightly smaller at lower RF input amplitudes:

Υ0 =
Qint

Qext + Qint

· K
Cp
· e∆α

2
· V ′2ac
t2c + V ′2ac

(
1− exp

(
t2c

ωV ′ac/
√

2

))
. (4.7)

The slightly smaller response should be noted if one is optimising the signal to

noise ratio (for example, using lower input RF powers to lower photon shot noise).

One may mitigate the smaller readout signal strength by adiabatically moving (with

respect to the tunnel coupling) from the qubit operating point to the readout point at

zero detuning to ensure that one starts in the true charge ground state (at detuning

∆ = −V ′ac) at the beginning of the RF cycle. However, if one starts in |−〉 =

(s11 − s02)/
√

2 (the ground state found at zero detuning; that is, starting with the

ground state 90◦ out of phase with the detuning of the RF drive), the readout signal

strength reaches a peak at V ′ac = tc:

Υ− =
Qint

Qext + Qint

· K
Cp
· e∆α

2
· V ′actc
t2c + V ′2ac

(
1− exp

(
t2c

ωV ′ac/
√

2

))
. (4.8)

The maximum RF response is in fact half the maximum possible peak value when

compared to loading the state completely in s11. Physically one may visualise this

as a 50% e�ciency in the electron oscillations. That is, when starting with the

oscillating electron partially on both dots, the detuning sweep e�ectively oscillates

only half an electron every cycle. Finally, in all cases, the readout signal strength

for the adiabatic quantum capacitance mode of operation has a LZSM factor which

places an upper bound on the resonant frequency of the LC resonator. Here, to

maintain adiabatic operation, one must ensure that ω � tc to ensure that the LZSM

envelope appears at much higher values of V ′ac such that one may successfully �nd

a point close to the fundamental maximum (that is, by satisfying ω � tc, one

adiabatically stays in the ground state):

Υmax =
Qint

Qext + Qint

· K
Cp
· e∆α

2
. (4.9)

Note that the fundamental maximum is the same for both the resonant tunnelling

(which occurs when exactly at resonance) and adiabatic modes of operation. The

fundamental limit in the RF readout response occurs when oscillating a single elec-

tron between two dots and may be achieved in the two modes via:
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� Tunnelling capacitance - setting ω = 2tc and V
′
ac � tc.

� Adiabatic quantum capacitance - setting ω � tc and V ′ac & tc. In addition,

one must ensure that the RF drive begins readout with the singlet state close

to the true ground singlet charge state.

The remaining experimental considerations required to reach the fundamental limit of

the RF readout response (for both the adiabatic quantum capacitance and tunnelling

capacitance modes) are similar to the SLQD sensor. That is, one should increase the

internal quality factor with respect to the external quality factor and use cryogenic

ampli�cation at lower temperatures (where Johnson noise is smaller) to obtain larger

signal to noise ratios as discussed in Section 3.2.3.

4.2 Single-gate RF characterisation and single-shot spin

readout

The singlet-triplet architecture proposed in this thesis uses the compact single-gate

RF sensor (which probes electron oscillations between the two dots hosting the qubit)

for qubit readout. Although the single-gate RF sensor had been demonstrated be-

fore [30, 57, 105], it had not yet performed single-shot readout due to an insu�cient

RF readout signal to noise ratio. Experiments performed on the Si-P quadruple

quantum dot device (characterised in Section 2.2.4) suggested that single-shot read-

out should be viable given that the available measurement time, set by the singlet

to triplet t− relaxation time (that is, the qubit decaying away from the qubit sub-

space), was 2 ms [29]. From the theory outlined in the previous sections, it was

shown that to enhance the readout sensitivity for single-shot readout, it was impor-

tant to increase the resonator's internal quality factor. The internal quality factor

of the chip-inductor resonator (used initially for the electrostatic characterisation of

the device) was Qint = 370. This was increased in this chapter to Qint = 750 by

replacing the surface mount chip inductor with a NbTiN superconducting spiral in-

ductor. The following sections highlight the experimental development in achieving

single-shot single-gate RF spin readout as well as techniques for characterising both

the RF circuitry and the double quantum dot hosting the singlet-triplet spin state.
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4.2.1 Improving the resonator

To achieve single-shot readout, the spin readout signal strength needed to be max-

imised. For a LC resonator, as discussed in Section 3.2.2, the readout signal strength

can be maximised by minimising the parasitic capacitance Cp of the resonator and

maximising the internal quality factor Qint. The LC resonator used in the initial

experiment was formed by a Coilcraft 1206CS-821XJE surface mount chip-inductor

(speci�ed to be 820 nH at 35 MHz) along with the resulting geometric parasitic ca-

pacitance. The geometric parasitic capacitance Cp was reduced by removing all

copper tracks and ground planes near the inductor and by using a thinner 0.5 mm

Rogers RO4003C PCB laminate with a lower relative permittivity of 3.38 as op-

posed to 1 mm FR4 laminates (with a relative permittivity of 4.7) in previous exper-

iments [159]. The changes collectively resulted in a drop in the parasitic capacitance

from ∼0.72 pF to 0.45 pF, to yield an approximately 60% increase in the readout

signal strength.
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Figure 4.1: Resonator responses when using a surface mount and a supercon-
ducting inductors. The curves show the re�ected amplitude and phase as a function of
frequency about the respective resonant frequencies. (a) The resonator re�ectance when
using a SMD inductor. The resonant frequency was 261.5 MHz while the internal and exter-
nal quality factors were 370 and 570 respectively. The inset shows an optical image of the
SMD inductor. (b) The resonator re�ectance when using the NbTiN superconducting spi-
ral inductor. The resonant frequency was 339.5 MHz while the internal and external quality
factors were 750 and 350 respectively. The di�erence in the external quality factors is likely
to be due to the di�erent geometry in coupling the inductor to the transmission line. The
inset shows an optical false-colour image of the NbTiN superconducting inductor.
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When �tting the re�ectance (the methods discussed in Appendix D) response of

the chip-inductor LC circuit, in Figure 4.1a, the internal and external quality factors

were measured to be 370 and 570 respectively. The internal quality factor of the chip-

inductor LC circuit was limited by the resistance of its coil windings. A natural step

to reduce the coil resistance is to replace the chip-inductor with a super-conducting

inductor which should have zero resistance in principle. Thus, the second round of

experiments had the chip-inductor replaced by a 100 nm thick NbTiN, on Si subtrate,

superconducting spiral inductor. The superconducting inductor was a 14-turn spiral,

with a length of 78 mm, trace width of 10µm and a trace gap of 30µm between each

turn. Typically superconducting lines lose their superconductivity, degrading the in-

ternal quality factor, when applying magnetic �elds past their critical �eld. As spin

qubits typically require high magnetic �eld operation, the substrate was chosen to be

NbTiN due to its high critical �eld and subsequent ability to retain superconductiv-

ity when applying the magnetic �elds parallel with the substrate [144, 154, 160, 161].

The inductor was fabricated by Takashi Kobayashi with a nominal geometric induc-

tance of 440 nH and kinetic inductance of 98 nH. With the resonant frequency of

the LC circuit measured to be 339.5 MHz, as shown in Figure 4.1b, the resulting

parasitic capacitance was approximately 0.4 pF. The internal and external quality

factors were approximately 750 and 350 respectively. Given the Qint/(Qint + Qext)

pre-factor in the RF readout signal strength, one would expect a signal increase of

approximately 73% when replacing the SMD chip inductor with the superconducting

spiral inductor.

4.2.2 Characterisation of the singlet-triplet state hosted on P-

donor dots

Before performing spin readout on a singlet-triplet state hosted on a double quantum

dot, one needs to calibrate the energy landscape of the electrons on the double

quantum dot. The two relevant parameters that required characterisation were the

inter-dot tunnel coupling tc and the inter-dot di�erential gate lever-arm ∆α.

To demonstrate a single-gate RF sensor, there needs to be a double quantum dot

hosting a singlet-triplet state. Two possible candidates were present in the quadru-

ple quantum dot device characterised in Section 2.2.5 (the double quantum dots

D1L/D1U and D2L/D2U). However, the �rst pair of dots D1L/D1U formed an ap-

proximately symmetric 2P-2P double quantum dot and thus, presented no acces-

sible singlet-triplet charge states (that is, even parity inter-dot transitions) within

the available range of gate voltages. The second pair dots D2L/D2U (forming an
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(a) RF-TJCS T2

2, 4

3, 3

3, 4

2, 3

−20 0 20

−50

0

50

∆VR2 (mV)

∆
V
G
2

(m
V

)

0 0.5 1

Lock-in (V)

(b) R2 (chip inductor)

−20 0 20

−50

0

50

∆VR2 (mV)

0 5 10 15 20

Υ (µV)

(c) R2 (S.C. inductor)

∆

−20 0 20

−50

0

50

∆VR2 (mV)

0 0.5 1 1.5

Υ (mV)

(d) B-�eld dependence to determine tunnel coupling and di�erential lever-arm

s02 s11

s11 s02

t0

t+

t+ t−

t−

2∆RF

tc

−300 −200 −100 0 100 200 300

−400

−200

0

200

400

∆ (µeV)

E
(µ

eV
)

1.41 T

3 T

−4 −2 0 2 4

1

2

3

∆VR2 (mV)

B
z
(T

)

0

200

400

600

800
R
F
re
sp
o
n
se

(µ
V

)

Figure 4.2: Single-gate RF sensor measurements with di�erent inductors and
device tunnel-coupling characterisation. The measurements concern the (3, 3)↔ (2, 4)
inter-dot transition (across dots D2L/D2U shown in Figure 2.10) observed on sweeping the
gate voltages on R2 and G2. (a) Di�erential TJCS response taken with the T2 sensor
as measured with a 4 mV lock-in excitation applied to R2. (b) Single-gate RF response
Υ of R2 using the chip-inductor at a resonant frequency of 261.5 MHz [29]. (c) Single-
gate RF response Υ of R2 using the superconducting inductor at a resonant frequency of
339.5 MHz [32]. The direction of positive detuning ∆ is labelled on the inter-dot transition.
(d) Response when taking a 1D cut of the inter-dot transition from the single-gate RF
response across R2 as shown in (c) and changing the magnetic �eld (applied in-plane as
shown in Figure 2.10). A scale energy diagram is shown to highlight the energy scale and
distribution of singlet-triplet energy states. ∆RF is the input RF signal amplitude. The
magnetic �eld dependence yields the tunnel coupling 39 ± 6 GHz as seen by the t− triplet
line at 1.41 T and di�erential lever-arm of R2 from �tting the envelope (the s0/t− anti-
crossing like in a spin-funnel).
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approximately asymmetric 3P-4P double quantum dot) provided several accessible

singlet-triplet charge states (the electrostatic rationale is discussed in Section 2.2.3).

Here, we accessed the inter-dot singlet-triplet transition across the dots D2L/D2U

with the minimum number of electrons4 in which single-gate RF readout was still

possible (that is, a large enough tunnel coupling to yield a non-zero RF response).

This was the (3, 3) ↔ (2, 4) transition (with the electron numbers given for dots

D2L and D2U respectively). Note that the 6-electron transition is equivalent to the

(1, 1)↔ (0, 2) transition with two spin-paired electrons on each dot not a�ecting the

singlet-triplet state formed by the valence electrons. The (3, 3) ↔ (2, 4) inter-dot

transition was �rst realised in a charge stability diagram, taken by sweeping the

designated gates R2 and G2, using the charge sensor T2 as shown in Figure 4.2a

(the electrons were counted via the characterisation techniques discussed in Section

2.2.5). The charge sensor response was useful due to the ability to show charge

transitions of electrons leaving or entering the double quantum dot D2L/D2U. For

example, the dashed magenta and green lines show electrons moving onto/from the

reservoir from/to the dots D2L and D2U respectively. Figure 4.2b shows the same

stability diagram taken using the single-gate RF sensor formed by the chip-inductor

on R2 [29]. The RF stability diagram was taken with the input RF signal switched

on while sweeping the gate voltages on the axes and measuring the re�ected RF

response. When the voltages are set to points across charge transitions, the input

RF voltage can cause electrons to oscillate between a reservoir and a dot like in a

SLQD sensor or between dots like that in a single-gate RF sensor. However, only

the inter-dot charge transition is observed. By noting the SLQD theory from the

previous sections, one readily con�rms that by design the charge loading lines are

not seen due to reservoir-to-dot tunnel rates being much smaller than the driving

resonator frequency of 261.5 MHz. When switching to the superconducting inductor,

there was a marked improvement in the signal strength as shown in Figure 4.2c where

the peak RF readout signal strength of the inter-dot transition after ampli�cation

on average went from ∼20µV to ∼800µV [32].

Single-gate RF readout on the inter-dot transition can be used to measure the

inter-dot tunnel coupling and the gates' di�erential lever-arm. The di�erential lever-

arm calibrates the applied gate voltage to the shift in the electron's energy and when

combined with the extracted inter-dot tunnel coupling, one may evaluate the po-

tential to form a qubit as well as provide experimental guidance in future device

4The higher electron transitions were not chosen as increasing the electron number causes weaker
con�nement. Long spin lifetimes are found with tighter con�nement of electrons onto their quantum
dots as the electrons will interact less with the surrounding environment [56].
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fabrication. To �nd the tunnel-coupling, one typically requires an absolute energy

scale such as the bath temperature or magnetic �eld as a reference. Typically for

singlet-triplet states measured with a charge sensor, one performs a so-called `spin-

funnel' measurement where one tracks the s0-t− anti-crossing as a function of mag-

netic �eld [13, 162, 163]. A similar spin-funnel measurement can be obtained using

single-gate RF spin readout [29, 30, 105]. Here, one �rst takes a line-cut across the

inter-dot crossing by sweeping one gate across the inter-dot crossing in the direction

of positive detuning ∆ (that is, towards the region where both valence electrons

are brought onto the same quantum dot) as shown in Figures 4.2c. Now consider

the energy diagram in Figures 4.2d when the applied �eld is 0 T. The triplet t+

and t− states are degenerate with the t0 energy eigenstate and the singlet branch

(shown in red) is the ground state. When one places the DC o�set in ∆ at the zero-

detuning position, the RF voltage oscillates between positive and negative detuning

and thereby oscillates the electrons between the two singlet states s11 and s02. That

is, there is a non-zero RF response at low magnetic �elds as the singlet ground state

allows one of the electrons to oscillate between both dots. The width of the RF

response is given by the RF amplitude ∆RF. The non-zero RF response requires

electron oscillations and thereby requires the full cycle of the RF voltage to pass

zero detuning to ensure that one cycles between the two singlet states s11 and s02; a

condition only satis�ed if the DC o�set in detuning is less than the RF amplitude.

Now consider the magnetic �eld being slowly increased with each line-scan across

detuning. Due to Zeeman splitting, the triplet degeneracy breaks and the triplet t−
state eventually becomes the ground state (as shown by the blue line at 3 T). Due

to Pauli blockade, the triplet states prevent electrons oscillating between dots and

thus, the RF response is null. The smoothly varying trajectory of the RF response

going from low to high magnetic �elds thus, tracks the t−/s0 anti-crossing just like a

spin-funnel. However, since the zero-detuning point is well-known, one may �nd the

point where the RF response is partitioned equally into a region of null response and

non-zero response as shown by the green triplet lines at 1.41 T. Here, the Zeeman

splitting of the triplet t− line equals the energy splitting of the singlet branches;

that is, the inter-dot tunnel-coupling. Now the Zeeman splitting for two spin-down

electrons (that is, a triplet t− state) is:

Et− = 2 · 1
2geµeBz, (4.10)

where ge = 2 is the gyromagnetic ratio of electrons in silicon [16, 38, 50] and

µe = 13.996 GHz/T is the Bohr magneton. Thus, taking the triplet t− Zeeman
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splitting at 1.41 T, the tunnel-coupling of the inter-dot transition was measured to

be approximately 39± 6 GHz. Now the boundary between null response and a non-

zero response, that is the spin-funnel, is found by solving the intersection between

the singlet energies and the triplet t− energies:

Bz =
1

geµe

(
∆ +

√
∆2 + t2c

)
. (4.11)

Note that the detuning relates to the applied voltage on R2 via:

2∆ = e∆αR2∆VR2, (4.12)

where αR2 is the di�erential lever-arm of R2 across the dots D2L/D2U and ∆VR2 is

the voltage distance from the zero-detuning point pointed towards the charge state

where both valence electrons reside on the same dot (that is, the (2, 4) charge state).

Thus, one may relate the s0/t− anti-crossing trajectory (the boundary shaving o�

the signal in the magnetic �eld dependence in Figure 4.2) to the inter-dot di�erential

lever-arm of R2 given that the tunnel coupling is known. The curve of best �t yielded

αR2 = 0.13 ± 0.05. The energy scale linking the applied gate voltage to the qubit

detuning is important when gauging qubit control. For example, in this device, the

tunnel-coupling and di�erential lever-arm parameters were not favourable for qubit

control as the Hadamard point (where the qubit axis on the Bloch sphere is at least

tilted to 45◦ from the z-axis) requires voltage pulses of up to 480 mV (if one were to

send fast pulses on R2). In this device, the tunnel-coupling was too big for viable

qubit control as the required voltage pulses of 480 mV was too large (that is, the

tunnel coupling needed to be smaller). However, the tunnel coupling of 39 GHz

was certainly much larger than the driving resonator frequency 339.5 MHz and thus,

presented itself as a viable candidate for RF spin readout in the adiabatic quantum

capacitance mode. Note that the tunnel coupling need not be that large; that is,

one could have gotten the same high-�delity spin readout with a tunnel coupling of

5 GHz� 339.5 MHz.

Although the large inter-dot tunnel coupling makes the inter-dot crossing a viable

candidate for single-gate RF spin readout, one still requires a su�cient measurement

time to make a judgement on whether the two-electron spin state is a singlet or

triplet. The relevant time scale is set by the s0 → t− relaxation time as t− is the

ground state. The t− is the relevant ground state when the system is readied for qubit

operations; that is, applying a magnetic �eld to break the triplet degeneracy and to

place the s0/t− anti-crossing away from negative detuning such that it does not

interfere with single-qubit gate operations. In addition, the s0/t− anti-crossing must
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be placed away from the RF amplitude window about zero detuning for one should

not mix the spin state via the s0/t− anti-crossing during the measurement [40]. Thus,

on applying a magnetic �eld the triplet t− is now the ground state and the singlet-

state is now a higher energy state at zero detuning. Thus, with the measurements

occurring at zero detuning (to oscillate the singlet state between the s11 and s02

states), one needs to ensure that any relaxation mechanisms that bring the singlet

state into the lower triplet t− state occur at a su�ciently long time scale in order

to perform spin readout. In previous experiments (where the double quantum dots

were approximately 11.7 nm from their reservoirs) the s0 → t− relaxation time at

zero detuning was 60 ns due to the quantum dots having too strong a coupling to

their reservoirs [30]. To weaken the coupling of the dots to their reservoirs, the

control gates (G1 and G2) were made further away from the dots (52 nm and 55 nm

respectively) and the reservoirs (R1 and R2) were placed further away from the

dots (18 nm and 17 nm respectively). Although one may not assert that the changes

resulted in an improvement (to the measured s0 → t− relaxation time), the measured

relaxation time of 2 ms [29] in this experiment was many orders of magnitude larger

than the previously measured time of 60 ns [30].

Figure 4.3 shows the singlet to triplet t− relaxation that limits the measurement

time. In the initial experiment, using the chip inductor for the resonator, the singlet

states were loaded by pulsing (1D pulses on gate G2) into point L 100 mV into

positive detuning for 100µs and then pulsing back to zero detuning to perform the

single-gate RF spin measurement as shown in Figure 4.3a. When taking 105 time

averages, one obtains an ensemble decay that is attributed to the singlet states

relaxing into the triplet t− spin states at zero detuning. The �tted decay time

was approximately 2 ms allowing us to show that with a better resonator single-

shot single-gate RF spin readout should be possible [29]. The device was therefore

taken out and the inductor was replaced with a superconducting spiral inductor as

described in Section 4.2.1. The device reproduced the same stability diagrams with

identical inter-dot crossings and singlet triplet relaxation times as shown in Figure

4.3b. This suggests that the relaxation mechanism is intrinsic to the P-donors rather

than the surrounding environment. Nonetheless, the signal to noise ratio was much

better as the trace in Figure 4.3b only required 104 averages to resolve.

4.2.3 Optimising the input RF amplitude

To achieve maximal signal strength in the readout signal of the single-gate RF sen-

sor, the input voltage amplitude was optimised. When operating in the adiabatic
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Figure 4.3: Singlet to triplet-t− relaxation time (limits spin readout time). The
insets show the pulse sequence on the charge stability diagram used to load singlet states at
point L (for 100µs) by moving into a region of positive detuning where the ground state is
s02 and measuring the spin state at M (for 4 ms) at zero detuning. The resulting ensemble
decay in the singlet readout signal Υ, using the single-gate RF sensor on R2, is due to the
relaxation of the singlet state into the triplet t− state. (a) First experiment performed with
the surface mount (SMD) inductor. The spin trace shown is the average of 105 time traces
and the �tted decay time was approximately 2 ms [29]. (b) Second experiment performed
using a superconducting (S.C.) inductor reproduces the same decay but with a better signal
to noise ratio. The time trace was taken with only 104 averages. In the second experiment
with the superconducting inductor, the loading pulse was only 26 mV (instead of 100 mV
as in (a)) into positive detuning since moving further into the (3, 4) charge state does not
aid in speeding up the singlet initialisation (as discussed later when measuring the singlet-
initialisation �delity in Section 4.2.6).
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quantum capacitance regime, the theory outlined previously in Section 4.1 suggested

optimising the power to obtain the peak readout signal. The measured peak RF

response is plotted (black markers) in Figure 4.4. The RF input voltage amplitude

V ′ac on the x-axis was calibrated from the injected RF powers by considering the

peak width at zero magnetic �eld in Figure 4.2d.
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Figure 4.4: Finding the optimal RF input voltage amplitude V ′ac to achieve the
maximal RF readout signal strength Υ. The measurements taken at zero magnetic
�eld. The black markers show the measured peak height in the RF response (at zero de-
tuning). The lines indicate the RF response as expected from the theory developed in
Section 4.1 with the tunnel coupling taken as 39 GHz (161µeV). The three lines (blue,
green and red) are those when taking the initial state (before performing readout) to be
|−〉 = (s11 − s02)/

√
2, s11 and ψg (the ground-state eigenstate on starting readout). IP

labels the approximation of the in�ection point in the RF response.

From Figure 4.4, one observes that the RF response appears to have an in�ection

point (shown by the label IP) before coming to a maximum value at approximately

the tunnel coupling energy of approximately 161µeV before dropping. To under-

stand this measured response, the data was analysed using three di�erent theoretical

models developed for the adiabatic quantum capacitance operation in Section C.5.

All three �tting functions for the adiabatic quantum capacitance readout involve a

LZSM factor that could explain the drop in the RF response at higher amplitudes.

However, at 39 GHz and a driving frequency of 339.5 MHz, the LZSM envelope is

irrelevant until the RF amplitudes exceed 10 meV. That is, the tunnel coupling was

large enough (compared to the drive frequency) to ensure adiabatic passage (during

readout) for voltage drive amplitudes of up to 10 meV. Thus, for the three possible

initial conditions on performing readout (|−〉 = (s11 − s02)/
√

2, s11 and ψg), the

�tting functions were taken to be:
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Υ− = A0
V ′actc

t2c + V ′2ac
(4.13)

Υ0 = A0
V ′2ac

t2c + V ′2ac
(4.14)

Υg = A0
V ′ac√
t2c + V ′2ac

. (4.15)

Υ− is the peak RF response when the initial state is the |−〉 state, Υ0 is the peak RF

response when the initial state is s11 and Υg is the RF response when the electrons

take on the ground-state eigenstate before performing readout. In the �tting func-

tions, the tunnel-coupling was �xed at 39 GHz. Thus, the only �tting parameter was

A0; which was �tted to be 1.4 mV across all three curves. The �tting function taking

the initial state to be s11 (green) appears to explain the RF response at lower RF

amplitudes. At higher input RF amplitudes, the response maximum and subsequent

downward trend appears to be better explained when taking the initial state to be

the |−〉 (blue). The red curve, which assumes that the electrons always occupy the

ground-state charge state, appears to not explain the data at all.

The conclusion we can make about which charge state initialisation we should

employ needs to consider the manner in which the dataset was taken. The peak

response was found by taking the RF response (with the RF drive continuously

switched on) whilst sweeping the gate VR2 at approximately 1.5 mV/s. On sweeping

the voltage past zero detuning, the initial state (at far negative detuning) will be

s11. At low amplitudes, the initial state is most likely s11 and thus, the green �tted

curve explains the data in Figure 4.4. However, at higher amplitudes, on sweeping

towards zero detuning, the large RF drive will sample zero detuning before the DC

o�set voltage has reached zero detuning. In doing so, there is the possibility that

any excited charge state (with a larger energy splitting than at zero detuning) far

from zero detuning (as the DC voltage has not reached zero detuning yet) quickly

decays into the average ground-state eigenstate closer to zero detuning (the |−〉
state) explaining the transition to the blue curve as V ′ac & 100µeV. Higher RF

amplitudes could not be accessed as the RF drive starts to be strong enough to start

sweeping the dots' energy levels above and below their Fermi-level. Broadening of

the charge loading lines is undesirable as one opens up the possibility of exchanging

electrons with the reservoir R2 (thereby, destroying the spin-state of interest). The

RF power was thus, set to ∼160µeV for the maximal signal strength obtained in

this experiment.
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4.2.4 Optimising the signal to noise ratio

Even with the improved resonator yielding greater signal strength, as seen in Figures

4.2 and 4.3, single-shot readout was still elusive due to technical noise found in the

apparatus surrounding the dilution fridge. Thus, several measures were taken to

improve the SNR and eliminate the detection of technical noise not pertaining to the

device under test.

The �rst source of technical noise was found when performing measurements

via re�ectometry using the directional coupler where the RF readout signal showed

periodic oscillations at the same frequency as the pulse tubes. Although the true

source was never diagnosed de�nitively, a trick to eliminate detection of the pulse

tubes arose from discussions with Lucas Orona (from Harvard) when measuring a

similar Si-P quadruple quantum dot device. The trick was to not send the RF input

voltage signal via re�ectometry (that is, via the directional coupler), but rather via

the nearby gate G2 designed to send in high frequency pulses. The RF voltage

signal sent through G2 will still oscillate the detuning across the dots to induce

electron oscillations; the resulting current is picked up via the resonator and readout

is performed as in re�ectometry. The act of bypassing the directional coupler resulted

in no pulse tube oscillations coupling into the measurements.

The second source of technical noise resulted in high frequency peaks present in

the laboratory presumably due to power supply peaks induced by the pulse tube

compressors (of the dilution fridge) linked to the same power supply circuit as the

measurement apparatus. The straightforward method to eliminate these noise peaks

was to move the signal bandwidth to frequencies far from the technical noise peaks via

a lock-in ampli�er. The input voltage signal was �rst modulated with a 21.361 kHz

excitation. Any signal changes (for example, the presence or lack of a quantum

capacitance due to a singlet or triplet) are now mapped around the lock-in frequency.

The readout signal was then demodulated with the lock-in ampli�er to extract the

required singlet-triplet readout signal. The lock-in ampli�er was �ltered with a

3.3 kHz bandwidth and thus, the detection of technical noise peaks was eliminated.

Note that the measurement bandwidth was not limited by the high quality factor of

the superconducting resonator but was set below the 1.4 MHz limit to enhance the

signal-to-noise ratio.
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4.2.5 Optimising the readout position

On optimising the overall SNR of the readout signal, the �nal parameter to optimise

was the optimal readout position in detuning. This section highlights how spin

relaxation times were investigated as a function of detuning to �nd the optimal

readout position. It will also be shown that the RF qubit sensor does not interfere

with the spin dynamics of the spin state under measurement.

On choosing the optimal power from the previous section, the optimal position in

detuning was also investigated. Since the RF readout signal is stronger with larger

electron oscillations, one intuitively expects the optimal readout signal to occur at

around zero detuning where the applied RF voltage maximally oscillates the detuning

equally towards the s11 and s02 eigenstates. However, the readout signal strength

should be considered along with the available measurement time (limited by the

s0 → t− decay discussed the in previous section in Figure 4.3). Assuming additive

white Gaussian noise, SNR is proportional to the square root of the measurement

time. That is, one may �lter the signal to a lower cut-o� frequency to lower the

overall noise power. Thus, the s0 → t− decay was investigated along with the singlet

readout signal strength as a function of detuning ∆ as shown in Figure 4.5.

The pulse sequence used to measure the s0 → t− decay as a function of detuning,

shown in Figure 4.5a, was similar to that performed in the previous experiment

shown in Figure 4.3. However, in this experiment, the signi�cance of the t− → s02

decay time was realised. That is, on repeating the pulse sequence, the measurement

phase leaves the spin-state in the t− ground state. Thus, to load a new singlet, one

needs to wait at point L, for the triplet t− state (now an excited state in far positive

detuning) to decay into the singlet s02 ground state. As shown later, waiting at point

L (far positive detuning) for approximately 4 ms was su�cient to ensure high singlet

initialisation probabilities. The pulse sequence then proceeds into the measurement

phase at point M where upon the singlet spin state decays into the triplet t− state.

Point M was varied around zero detuning and the subsequent decays are shown in

Figure 4.5b. The top plot shows a scale energy diagram about zero detuning, while

the centre plot shows the singlet population (given by a non-zero RF readout signal)

during the measurement phase as a function of detuning (position of point M) and

time waited at point M. Each vertical time averaged time trace (over 10,000 shots)

was �tted to an exponential curve and the resulting �tting parameters are shown in

the bottom plot: the peak RF readout signal strength in black and the relaxation

times shown in orange. As expected zero detuning yielded the peak signal strength.

However, the relaxation time was shown to decrease when moving towards positive
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(a) Measurement pulse sequence

2, 4

3, 3

3, 4

2, 3

M L

−200 0 200

−40

−20

0

20

40

∆VG1 (mV)

∆
V
G
2
(m

V
)

0

1

L
o
ck
-i
n
(V

)

∆

E

L
o
a
d
(4
.0

96
m

s)

∆

E

M
ea
su
re

(1
2.

28
8

m
s)

(b) Decay times as a function of ∆

s02 s11

s11 s02

t0

t+

t−
tc

−200

0

200

E
(µ

eV
)

0

5

10
t
(m

s)

0

5

10

15

R
F
re
sp
o
n
se

(m
V

)

−100 0 100
0

5

10

15

∆ (µeV)

s 0
→
t −

d
ec
a
y
ti
m
e

(m
s)

0

5

10

15

R
F
re
sp
o
n
se

(m
V

)

Figure 4.5: Finding the optimal measurement point in detuning. Di�erent mea-
surement points about zero detuning o�ered a compromise in the readout signal strength
and available measurement time. (a) Repeated pulse sequence on the charge stability di-
agram. The load phase was performed in positive detuning with a 4.096 ms wait time (to
ensure that the spins decay to the singlet s02 ground state, if the spins were in t− due to
the previous measurement phase). The measurement phase was performed at zero detuning,
where the singlet spin-state decayed into the triplet t− ground state, thereby limiting the
measurement time of the singlet spin-state. (b) The measurement point M was varied about
zero detuning to obtain the decay times as a function of detuning ∆. The top section shows
a to-scale energy diagram of the spin states, the middle section shows the singlet-population
as a function of detuning at point M and the time waited at point M (each vertical time
trace is an average of 10,000 shots), while the bottom section shows the associated �tted
exponential decay times (orange) and the peak RF singlet readout signals (black). Peak
RF readout signal occurs at zero-detuning, while the available measurement time appears
to reduce towards positive detuning and increase when moving towards negative detuning.
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Figure 4.6: Singlet to triplet relaxation time when switching o� the RF input
voltage. The same pulse sequence used in Figure 4.5a was applied with the exception that
the RF input voltage was only switched on during the measurement phase after waiting
a certain time τwait at zero-detuning. The resulting measurement signal for a given wait-
time was �tted with an exponential decay and the maximum readout signal (like in Figure
4.5bn) was extracted. Thus, the resulting trend in the singlet readout signal as a function
of τwait indicates the s0 → t− decay in the absence of an applied RF input voltage. The
resulting decay was still �tted to be approximately 2 ms; thus, the RF input voltage did not
signi�cantly a�ect the spin dynamics of the sensed electrons.

detuning due to the RF voltage signal now sweeping the detuning past the s02/t−
anti-crossing and accelerating the decay to the t− ground state via s0/t− mixing [97].

Although the decay time increases when moving towards negative detuning, the RF

signal strength diminishes at a rate such that the SNR remains approximately the

same. Thus, the optimal readout position was chosen to remain at zero detuning.

Before one can utilise the optimised single-gate RF sensor for spin readout, it is

important to verify that the sensor is not a�ecting the spin-dynamics of the system

under measurement. That is, one may posit that the s0 → t− decay was due to

the RF voltage used by the RF readout sensor. To verify that the sensor was non-

invasive, the measurement protocol was modi�ed such that the RF input voltage was

only switched on during the measurement phase and only after waiting a certain time

period at point M (in all results shown so far, the RF input voltage was permanently

switched on). The idea was that one idly waits a certain time period at point M

to give the opportunity for the singlet spin-state to decay into the triplet t− ground

state before switching on the RF input voltage signal to execute the measurement.

On measuring the peak RF readout signal as a function of the time waited at point M

(before executing the measurement), one can observe the bare relaxation time when

no RF excitation is applied to the electrons. If the s0 → t− decay was due to the

single-gate RF sensor's input RF voltage excitation, the bare relaxation time should

be longer. However, the bare relaxation time, plotted in Figure 4.6, was shown to be

the same approximate 2 ms are zero detuning. Thus, one a�rms that the single-gate

RF sensor does not a�ect the spin dynamics of the qubit under measurement.
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4.2.6 Single-shot spin readout using the single-gate RF sensor

With the single-gate RF sensor calibrated and optimised, the sensor was set to

perform single-shot spin readout. Triplet t− states were measured by simply waiting

at zero detuning (where the ground state is t−) as shown in Figure 4.7a. The readout

signal for triplet states remained at the zero background level. Singlet states were

measured using the same pulse sequence in Figure 4.5a. That is, to measure singlet

states, the detuning was pulsed into positive-detuning by applying 150 mV on G2

for 4.096 ms and then pulsing to zero detuning to perform the measurement. The

singlet traces, as shown in Figure 4.7b, initially displayed a signal above the zero

background level indicating the presence of a quantum capacitance (that is, electron

oscillations between the dots due to the lifting of Pauli-blockade). The readout signal

later drops back to the zero background level indicating the measurement of triplet

states. That is, the singlet traces show the time-resolved stochastic decay of singlet

spins into the triplet t− ground state.

To quantify the �delity of the single-shot spin readout, one must discriminate

between a fully null signal (triplet) and one with a non-zero readout signal (singlet).

The singlet signal on average follows an exponential decay function and thus, the

singlet signal contrast is concentrated at the beginning of the measurement. Thus,

an exponential window was applied over the portion of the signal where the measure-

ment began and a histogram was compiled of the maximum value of each trace [164].

The histogram shown in Figure 4.7c was created from 10,000 traces taken after wait-

ing at point L for 4.096 ms (initialising singlet) and without pulsing to L (initialising

triplet t−) to measure the distribution for singlets and triplets respectively. Taking

a threshold (shown by the dotted line in Figure 4.7c) to optimally partition the dis-

tributions such that values above are assigned as singlet states and values below are

triplet states. This yielded an average single-shot readout �delity of 85.77% (where

the singlet and triplet readout �delities were 80.02% and 91.52% respectively). The

�delities were in fact higher than that quoted in the publication as the exponential

window was not adjusted for the line delays in acquisition and triggering [32]. That

is, the analysis in the publication applied the exponential window approximately

75µs too early. Thus, the maximum signal strength of the singlet signals were pre-

maturely attenuated by 4% (that is, exp(−75/2000) ≈ 0.96). The lower singlet signal

(due to the exponential window �lter) led to a slightly smaller singlet-triplet signal

contrast and thus, a lower �delity. The analysis here correctly accounts for the 75µs

line delay between setting the pulse generator to zero detuning (for readout) and the

actual point in time, during the signal acquisition, when readout truly begins.
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(a) Five triplet t− measurements
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(c) Histogram of the maximum value of 10000 singlet (red)
and triplet t− (blue) measurements
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Figure 4.7: Single-shot single-spin readout. Using the superconducting resonator on
R2, single spin states could be resolved with single shot. (a) Single-shot traces measuring
a single spin in the singlet state when waiting at L for 4.1 ms. (b) Single-shot spin traces
measuring triplet states where the detuning was never pulsed to L. (c) A histogram (a
probability density function (PDF) from 10,000 traces) of the maximum value of the RF
response when waiting at point L for 0 s and 4.1 ms shown in blue and red respectively. The
dashed line shows the selected threshold that maximises the readout �delity at 85.77%.
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(a) Waiting 0.7 ms at point L
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(c) Measuring initialisation �delity
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Figure 4.8: Observing singlet initialisation via the triplet t− to singlet decay.
(a) 250 single shot traces when waiting at the loading point L were taken after waiting
at the loading point L (see Figure 4.5) for 0.7 ms to partially load singlet states. The
traces indicate singlet states (yellow blips) decaying into triplet states (purple) during the
measurement stage. (b) More singlet counts are present when waiting at point L for for
4.1 ms to fully load singlet states. The shorter wait time at L yields lower singlet counts as
insu�cient time was given for the t− state to decay into the s0 state before measurement. (c)
To observe the dependence on wait time at L 1000 single-shot traces were taken, using the
optimal readout threshold, to measure the singlet population on varying the time spent at
point L. The exponential �t of the t− to s0 relaxation time at ∆ ∼ 1 meV was approximately
0.62 ms.
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With single-shot readout sensor characterised, the singlet initialisation was inves-

tigated in detail by measuring the t− to s0 decay at far positive detuning ∆ = 1 meV

by varying the time the pulse spends at point L. After every measurement at point M,

the electrons decay into the triplet t− state. On initially pulsing to point L, the elec-

trons remain in t− via the (3, 3) charge state. Since the electron tunnel rate from R2

to D2U is slow, the system cannot immediately enter the (3, 4) charge ground state.

The triplet t− state must decay into the singlet state (the (2, 4) charge state) before

an electron can move from R2 to D2L to leave system in the (3, 4) state [29, 102].

Figure 4.8a shows 250 traces taken when waiting 0.7 ms at point L while Figure 4.8b

250 traces when waiting 4.1 ms at point L. The lengths of each non-zero signal are

exponentially distributed with a time constant of 2 ms and represent singlet states

(yellow) decaying into triplet t− states (purple). When waiting a lower time at L,

there is clearly a smaller proportion of singlet states. Figure 4.8c shows the singlet

counts over 1000 traces taken at di�erent wait times at point L. When viewing the

singlet counts as a function of the wait time at point L and �tting to the resulting

exponential rise in the singlet counts, the decay time was measured to be 0.62 ms.

Thus, waiting 4.1 ms at point L ensures high-�delity initialisation of singlet states.

Note that the approximately 100-count o�set at zero wait time and 200-count o�set

at high wait times (as opposed to 0 counts and 1000 counts) is due to the readout

in�delities of detecting triplets and singlets respectively (that is, dark counts where

triplets are incorrectly declared as singlets and missed counts where singlet states

are incorrectly declared as triplets).

4.3 Outlook

Key results came together to culminate in single-shot readout of the single-gate RF

sensor:

� The theory was developed to better understand the conditions required for

maximal readout signal strength when using the adiabatic quantum capaci-

tance (ω � tc) and tunnelling capacitance regimes (ω ≈ tc). After fully op-

timising the resonant circuitry and the tunnel couplings, the readout strength

was ultimately found to be limited by the movement of a single electron be-

tween two quantum dots.

� The modelling suggested that increasing the internal quality factor aids in

increasing the readout signal strength. Thus, the surface mount chip inductor

(Q = 370) was replaced with a NbTiN spiral inductor (Q = 750).
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� The single-gate RF sensor was shown to operate without signi�cantly a�ecting

the spin state under measurement. That is, the s0 → t− relaxation time of

2 ms (which limits the available readout time) was not due to the RF drive of

the single-gate RF sensor.

� Single-shot electron spin readout in the singlet-triplet basis was demonstrated

for the �rst time using a single-gate RF sensor5 with an average readout �delity

of 85.77% (where the singlet and triplet readout �delities were 80.02% and

91.52% respectively) at a 3.3 kHz measurement bandwidth.

The result forms a key pillar in the proposed singlet-triplet architecture by prov-

ing that single-shot readout (required for real-time error correction in modern error

correction codes) is possible using the compact integrated single-gate RF sensor.

The average �delity was measured to be 85.77% at a 3.3 kHz measurement band-

width. The �delity can be improved in future experiments by the usual techniques

discussed in Section 3.2.3. This includes:

� Increasing the internal quality factor, which may be limited by dielectric losses,

radiative losses and/or defects in the 100 nm NbTiN �lms. These parameters

can be improved by using an uniform NbTiN �lm and substrate [144] and by

reducing the overall size of the inductor [145].

� The external quality factor can be optimized by re-designing the supercon-

ducting resonator geometry to achieve the ideal coupling to the transmission

line [165].

One of the challenges in scaling to many qubits using superconducting resonators is

the space real-estate needed for the extra matching circuitry. Whilst the results in

this thesis used a superconducting spiral inductor of a fairly large footprint (4 mm2),

the size was mainly limited by the need for a central bond pad and to keep the fabri-

cation simple (that is, not using multi-layer superconducting inductors in which the

bond pad can be placed away from the centre of the inductor spiral). Recent propos-

als have shown that the superconducting spiral inductors can be further scaled with

thinner tracks and tighter spacings to achieve a density of thousands of resonators

per square centimeter [137]. Another option is to use higher inductor frequencies if

one commits to using resonant tunnelling capacitance readout as opposed to adia-

batic quantum capacitance readout. Future work in developing the single-gate RF

sensor include:
5Other groups have since posted single-shot single-gate RF spin readout results [132, 133] with

one group using a SLQD sensor [130].
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� Increase the internal quality factor to approximately above 1600 to push the

readout �delity past 99%.

� Investigate the spin life-times for lower electron numbers. With tighter electron

con�nement, one may indeed get singlet to triplet t− lifetimes beyond 2 ms,

thereby yielding longer integration times and thus, greater readout �delity.

� Investigate the feasibility of the tunnelling capacitance mode of operation using

high-frequency resonators in Si-P quantum dots (for example, the spin lifetimes

and coherence times must be long enough to resolve the spin state with the

single-gate RF sensor). If one can attain high �delity readout with smaller

inductances, the smaller footprint alone may warrant its use in the singlet-

triplet architecture. Given that for N qubits, one requires N coaxial lines for

the control gate lines, an extra N non-multiplex lines may be a worthwhile

compromise.

� Implementing a digital solution to the RF electronics when simultaneously

addressing a multiplexed array of resonators. The current analogue RF elec-

tronics enabled adequate RF signal synthesis and demodulation. However, if

one performs simultaneous RF readout across more than N qubits, one will

require N separate IQ demodulators and N separate signal generators. The

separate signal generators are required (as opposed to outputting the summed

waveform) as each frequency tone needs to provide a coherent local oscillator

source for the IQ demodulator. A digital solution will enable synthesis via a

single DAC (outputting the summed waveform) and demodulation via a sin-

gle ADC as the digital fabric can keep track of the phase of each tone in the

summed output signal.



Chapter5
A scalable singlet-triplet quantum

information processor

The phosphorus in silicon system in the form of Si-P quantum dots o�er unique ad-

vantages for hosting singlet-triplet qubits ranging from low lead counts (2 per qubit)

to stronger inter-qubit couplings (exceeding order of typical tunnel couplings of sev-

eral gigahertz). Ultimately it is important to show the feasibility in leveraging these

advantages to create a large-scale many-qubit quantum processor. The geometric

architecture shown in Section 2 highlighted how a 4-dot device can work towards

the demonstration of a coupled singlet-triplet two-qubit gate using only two gates

per qubit. However, this particular design has �aws when attempting to tessellate

the qubit unit-cell across a larger array of qubits. Ultimately, one must consider the

optimal choice of the system parameters, such as inter-qubit coupling and tunnel

coupling, to achieve high-�delity two-qubit gates. In particular these parameters are

required to be optimised for a high-�delity CZ gate (since a high �delity CZ or CX

gate can ultimately be used to perform the parity measurements required for the

surface code). During the time-frame of this thesis, parallel results from our group

also demonstrated the ability to perform atomic-scale multi-layer Si-P fabrication,

opening up the possibility for more complex singlet-triplet architecture proposals

beyond that of a 1D linear array [76]. This chapter covers the following topics:

� Section 5.1 gives an overview of methods proposed to scale up solid state qubits.

� Section 5.2 shows the conversion of the fundamental double dot Hamiltonian

(Hubbard model) into the singlet-triplet qubit Hamiltonian. This overview

highlights the importance of a large tunnel coupling of at least 1 GHz (to over-

159
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come thermal excitations), the minimum distance between dots to ensure the

exchange J can be turned o� and the role of global magnetic �elds in isolating

the singlet and triplet-t0 qubit subspace.

� Section 5.3 gives an overview of the operation of single-qubit gates using singlet-

triplet qubits. The analysis shows how the minimum exchange J for an accurate

Pauli-z gate (as a non-zero ∆Bz will always tilt the qubit rotation axis away

from the Pauli-z axis) is 810 MHz (for a typical ∆Bz = 29 MHz expected for

a 1P-2P double dot in Si-P). The analysis concludes with an upper bound

on the tunnel coupling of approximately 10 GHz for Si-P as beyond this, the

voltage pulses required for qubit gate control (to toggle between Pauli-z and

Pauli-x rotations) will be too large. In addition, the in�uence of charge noise

on the Pauli-z gate is discussed where one �nds that if we operate in negative

detuning (where dJ/d∆ is small), high-�delity Pauli-z gates should be possible

as previously observed in singlet-triplet qubit experiments in GaAs [34].

� Section 5.4 gives an overview of the requirements for a singlet-triplet two-

qubit gate in Si-P in the presence of strong inter-qubit coupling. The CZ gate

is presented with an analysis of charge noise (taken as a Gaussian variation

on the qubit detuning). The analysis concludes that the regime of optimal

operation (with worst case error rates below the fault-tolerant threshold of

0.5% and largest tolerance to noise of up to 810 neV detuning noise) is when the

inter-qubit coupling is approximately six times the tunnel coupling, giving an

optimal tunnel coupling of ∼6.5 GHz and an inter-qubit coupling of ∼39 GHz.

The native CX and CH gates (although not required as there is a high-�delity

CZ gate) are brie�y discussed for completeness.

� Section 5.5 �nally concludes with an electrostatic optimisation of a linear 1D

array of singlet-triplet qubits that can implement a high-�delity CZ gate be-

tween adjacent singlet-triplet qubits. By appealing to recent developments in

multilayer Si-P fabrication, electrostatic optimisation was also performed, in

3D, for the 2D surface code architecture in which one stacks many 1D arrays

on top of one another.

5.1 Scalable architecture proposals for solid-state qubits

The promised speed-up in solving a certain class of algorithms that a quantum pro-

cessor may provide, hinges on the Quantum Fourier transform (for example, in Shor's
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integer factorisation algorithm [3]) and, to a lesser extent, the amplitude ampli�ca-

tion algorithm [166] (as used in the Grover's search algorithm [4]). The algorithms

are well-understood in terms of the operations that need to be performed over a few

qubits [167]. Indeed a proof of concept of the Grover's search algorithm was recently

demonstrated on a two-qubit processor using two single-spin qubits [55]. One may

envisage extending the two-qubit demonstration to a 1D array of qubits to run multi-

qubit algorithms. However, in practice device performance will be compromised by

imperfect qubits. Qubit errors comprise of control errors (yielding imperfect qubit

rotations), bit-�ip errors (state changing due to a T1 relaxation mechanism) and

phase-errors (due to T ∗2 processes that cause random �uctuations in the precession

frequency). To summarise the impact of all these in�delities of qubit operations, one

can introduce the quantity called the operational �delity:

F = |〈ψm | ψe〉|2 , (5.1)

where ψe is the expected state, while ψm is the measured state. The �delity is the

probability that one arrives at the correct resulting state. The qubit error rate per

qubit operation (or per unit time) is the worst case in�delity (1− F ).
One may improve operational �delity due to control errors from imperfect control

pulses via pulse compensation [66, 168�170]. The pulse imperfections arise from �nite

output bandwidth, voltage resolution and sample rates of the waveform generators.

By realising that the phase accumulation of a qubit is given by both the qubit

precession frequency and the time spent performing the gate, one may adjust the

qubit precession frequency by pushing the qubit into a region of faster or slower

frequency to account for the discrete time-base given by the sample rate.

One may improve operational �delity due to bit-�ip and phase errors by using

qubits with longer lifetimes. Within the realm of solid-state spin qubits, P-donor

qubits have demonstrated extremely long T1 times. Electrons hosted on P-donor dots

have been shown to have lifetimes (speci�cally the spin-up to spin-down relaxation

time of single electron spins) of up to 30 s [56]. Theoretical predictions suggest that

by correctly orienting the global magnetic �eld with respect to the electric �eld in

the device, spin-orbit coupling can be minimised giving rise to spin lifetimes as long

as 18 minutes [171, 172].

Although the T1 time places an upper bound on T ∗2 , this longer spin lifetime is

irrelevant if the decoherence times are much shorter than T1, causing phase errors to

dominate the overall error rate. Precession due to magnetic �elds (such as the global

magnetic �eld used for Pauli-z rotations in single-spin qubits or the magnetic �eld
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gradient used for Pauli-x rotations on singlet-triplet qubits) can have noise due to

non-zero nuclear spins in the substrate. Some solutions to mitigating the magnetic

�eld noise, discussed in Section 2.1.6, include dynamic nuclear spin polarisation as

demonstrated in GaAs qubits where nuclear spin isotopes are present in both Ga and

As [40, 41]. A solution for qubits in silicon is to use isotopic puri�cation of the nuclear

spins by using 28Si instead of natural silicon [16, 39]. When using isotopically puri�ed

silicon, the single electron spin decoherence time T ∗2 increased from 55 ns to 270µs.

Singlet-triplet decoherence times1 for Pauli-x rotations (mediated by ∆Bz) have yet

to be measured in isotopically puri�ed silicon. However, GaAs implementations have

noted that when stabilising the background nuclear spins, the singlet-triplet qubit's

T ∗2 increased from 10 ns [13] to 2µs [41] and the intrinsic charge noise becomes the

dominating factor for operational qubit �delities [69]. That is, by stabilising the

nuclear spins (and using AC driving of the singlet-triplet qubit) GaAs singlet-triplet

qubits showed single-qubit gate �delities of up to 99.3%, but the two-qubit gate

�delity was limited to 90% by charge noise [34].

Even with these mitigation strategies, solid-state quantum dot qubits currently

do not have su�ciently low error rates (both for single qubit and two qubit gates) to

perform useful algorithms. Thus, one appeals to facets of classical error correction

theory in telecommunication channels by utilising information redundancy. That is,

one utilises multiple qubits to represent the information of a single `logical qubit'.

Given the proposal highlighted in Figure 2.1 in Section 2, one could envision extend-

ing the singlet-triplet qubit unit-cell (requiring two gates per qubit) into a linear

array of singlet triplet qubits. Here a given qubit's state can be protected by redun-

dant ancilla qubits on either side. However, previous research has shown that for this

to work, qubit error rate thresholds need to be in the range of 10−7 to 10−5 [173].

Given that, for solid-state spin qubits, the best single qubit gate error rates are ap-

proaching ∼10−3 [18, 34] and two-qubit gate error rates (limited by charge noise)

ranging 0.02-0.10 [34, 66], a 1D array will not be compatible with a many-qubit

processor.

The state-of-the-art implementation of a logical qubit architecture revolves around

the use of a 2D array of qubits. Here, additional redundancy in the number of phys-

ical qubits helps overcome the individual qubit error rates, while logical qubits are

formed as topological particle excitations (or holes) in the code. The logical qubits

are then moved around in braiding operations to perform two-qubit gates [174]. Com-

1It is not trivial to convert single spin coherence times into two electron singlet-triplet qubit
coherence times. This is because the coupling of magnetic �eld noise couple directly to single-spin
qubits, while singlet-triplet qubits couple to magnetic �eld gradient noise while rejecting global
magnetic �eld noise.
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(a) Arrangement of qubits and stabilisers in
the surface code [8]

(b) Operation of the ZZZZ and XXXX sta-
bilisers [8]

Figure 5.1: Arrangement of qubits in forming the 2D surface code. The white
dots represent physical data qubits, while the black dots represent physical measurement (or
ancilla) qubits. The green plaquettes represent 4-fold ZZZZ parity measurement cycle, while
the yellow plaquettes represent 4-fold XXXX parity measurements. (a) The measurement
qubits are interleaved with the data qubits such that each measurement qubit has four
surrounding data qubits. (b) The ZZZZ parity measurement is performed via 4 CNOT
gates in which the measurement qubit (initialised to spin-down) is �ipped for every spin-up
data qubit. The XXXX parity measurement is similar with the exception of the Hadamard
gates in the beginning and end required to tip and un-tip the spins onto/o� the Pauli-x axis
before performing the Pauli-z axis measurement.

mon implementations include the colour code (following anyon physics [175]) and the

surface code [8, 176]. Due to the ease of realising local nearest neighbour interac-

tions arranged in a square grid, solid-state qubit proposals have typically adopted

the surface code. The surface code consists of a network of X and Z stabilisers (a

stabiliser constituting a parity measurement along the Pauli-x or Pauli-z axes be-

tween two qubits) as shown in Figure 5.1a. In simple terms, one realises that to

protect a qubit state, one must protect two degrees of freedom. Thus, one may use

redundant qubits to test for qubit errors along the X and Z axes. For example, if

two qubits were set to |↑〉 and a bit-�ip error occurred, a weak parity2 measurement

along the Pauli-z axis would yield a change in the parity from even to odd; thus, the

detection of an error. In addition, the ZZ-parity measurement is a weak measure-

ment3 that will likely project the state back into |↑〉 if a small error had accumulated

to rotate the qubit from the main state. To enhance redundancy, one may stabilise

2A parity measurement measures whether, for a given set of qubits, an odd or even number of
qubits are in |0〉 or |1〉. A ZZ-parity measure distinguishes the parity along the Pauli-z axis (|0〉
or |1〉) while an XX-parity measurement measures along the Pauli-x axis (counting the number of
qubits in the (|0〉+ |1〉)/

√
2 or (|0〉 − |1〉)/

√
2 states).

3A weak measurement on a set of qubits extracts information without fully collapsing the qubit
states. For example, a parity measurement between two qubits gives information on the relative
qubit orientations (parallel/even or anti-parallel/odd) but not the individual state of the qubits.
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a given qubit with many Z-stabilisers along one axis and many X-stabilisers along

an orthogonal axis. Then the new qubits (placed to stabilise the initial qubit) need

to be also individually stabilised; upon which one attains a grid. The surface code

continually stabilises its qubits via repeated stabiliser measurements. Figure 5.1b

shows how the measurement (or ancilla) qubits (highlighted as black dots) are inter-

leaved in between the data qubits (highlighted in white dots) to continually perform

ZZZZ (green plaquettes) or XXXX (yellow plaquettes) parity measurements. The

ZZZZ-parity measurement consists of a series of CNOT gates (or CZ gates preceded

and followed by Hadamard gates [167]) where the measurement qubit (initialised as

spin-down) is �ipped for every data qubit that is spin-up. If �nal the state of the

measurement qubit is spin-up, then the data qubits have an odd parity of spins,

while spin-down indicates that the data qubits have an even parity of spins. Note

that the XXXX stabiliser also has Hadamard gates to tip/un-tip the spin onto/o�

the Pauli-x axis as the measurements are performed on the Pauli-z axis.

Note that the the qubit errors only need to be detected and catalogued. After a

given algorithm ends, one must then infer the true qubit states given the catalogued

errors. As detailed in the Fowler review [8], logical qubits can be formed by stopping

the stabiliser at a given point in the surface code to create a `hole' or topological

particle in the code. Gate operations between logical qubits are performed by moving

the qubits (a qubit at a given site is moved by stopping the stabiliser on the adjacent

site and starting the stabiliser on the current site) along the grid relative to each other

to perform topologically braided operations. The basic X, Y, Z and CNOT gates

may be performed by braiding the qubits. However, by the Gottesman-Knill theorem,

stabilisers yielding such a gate-set can be e�ciently simulated in polynomial time by

a classical computer and thus, one needs to have qubit operations that take the qubit

state away from the the Pauli x, y and z axes [177]. To generate states away from

the Pauli basis, one needs to generate the qubit state via an iterative probabilistic

`magic state distillation' where upon each iteration, one distils the states converging

towards the intended target state [178]. The cost of magic state distillation (in

lowering the number of iterations to attain the target state) severely increases the

required physical qubit count. For example, for a processor demonstrating the Shor's

algorithm to factorise a 2000-bit number, one requires ∼108 physical qubits at an

error rate of 0.001-0.005 (to form approximately 4000 logical qubits). Therefore,

with physical qubit error rates starting to reach 0.005, there is a greater focus on

creating large scalable 2D arrays of solid-state qubits.

One of the earliest 2D array proposals was to use GaAs singlet-triplet qubits

coupled over a long-distance via metallic �oating gates [179]. The metallic �oating
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Figure 5.2: Surface code with GaAs singlet-triplet qubits and metallic �oating
gates [179]. A 2D grid of singlet triplet qubits (shown as the white disks) can exist despite
the large gate-density of 11 gates per qubit (see Figure 2.3a) as the qubits are spaced apart
thanks to the metallic �oating-gates (orange) mediating the electric dipole coupling of the
qubits to enable two-qubit gates over a longer distance.

gates, shown in orange in Figure 5.2, sought to extend the distance of the electric

dipole coupling (between qubits) used in two-qubit gates [14]. However, the long-

distance coupling was never realised experimentally since the metallic nature of the

gates caused signi�cant charge noise and decoherence. That is, a perturbation of an

electron on one singlet-triplet qubit would be ideally transferred to the next qubit via

the �oating gate. However, the resulting charge rearrangement (of the many electrons

in the metallic gate) causes the �rst singlet-triplet qubit to entangle information

onto many electrons in the metal with resulting information loss. If one replaces

the metallic gate with a single macroscopic wavefunction like a superconductor, then

the �oating gate approach might work while potentially o�ering stronger inter-qubit

couplings for higher �delity two-qubit gates [70].

A later proposal for a 2D surface code using single spin qubits in silicon involved

the use of STM-patterned donor qubits measured with SETs [28]. The device has

three layers as shown in Figure 5.3. The middle layer consists of SET islands, each

surrounded by 4 P-donors. Here, the physical qubits for the surface code comprise

of the P-donor nuclear spins, while the electrons on the donors are used to perform

parity operations between adjacent qubits. The parity measurements between the

nuclear spins occur by �rst transferring the information to the electron spins via

global ESR/NMR pulses [39]. Since the global ESR/NMR pulses address the energy

splittings given by the electron Zeeman splitting plus/minus the hyper�ne splitting,

the P-nucleus is only addressed when an electron resides on the donor. To perform

the parity measurement between two electrons on adjacent P-donors (holding the

nuclear spin information), one relies on the magnetic dipole exchange interaction.

The top and bottom layers have source and drain terminals, for the SET islands,
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Figure 5.3: 2D Surface code with multi-layer STM-patterned Si-P single-spin
qubits [28]. The device has three vertically separated layers. The middle layer consists of
a grid of P-donors separated by ∼30 nm to form the physical qubits for the surface code.
SET islands interleaved within the grid enable spin readout. The SET quantum dots (shown
as the small squares) share criss-crossed source (along a column) and drain (along a row)
leads with other SET quantum dots. The source and drain leads are interleaved with gate
leads to enable gate control for qubits along a given row or column. The P-nuclei act as the
physical qubits while the electrons are used for inter-qubit interactions and qubit readout.
Single-qubit operations are performed via global ESR/NMR pulses, while two-qubit gates
are ultimately mediated via the magnetic dipole interaction between two electron spins.

interleaved with control gates. Each SET island can be addressed by using the

associated source and drain lines. During typical operation, multiple qubits along a

given row are controlled via a single gate and similarly read-out via a single drain

lead. The readout is performed by time-correlating the current signals on the source

and drain leads with coincidences on multiple SETs eliminated via multiple qubit

measurements. The advantage of this proposal is that the gate density scales as 2
√
N

for an N qubits arranged in a square. Thus, the resulting wire density per qubit is

smaller than one and results in favourable routing topologies [37]. However, several

issues remain in this architecture. Firstly, the ability to globally address all the spins

via a single ESR/NMR antenna requires uniform �eld homogeneity (across the full

2D array of qubits) that has not yet been demonstrated experimentally. Secondly,

the individual electrons on the P-donors must have the same hyper�ne splitting; that

is, if the wavefunction on any given donor is perturbed, it might not be addressed

resonantly via a single global ESR/NMR frequency. Thirdly, the sharing of the gate

leads across many qubits and SETs requires a large degree of uniformity where there

are no local charge traps or background potentials that may shift the dot's energies.

The necessity for uniformity enables one to have less than one lead for every dot
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in the system with a corresponding sacri�ce in tunability. Finally, the architecture

requires the so-called phase-matched loading. Here when electrons are loaded on

the P-nuclei, the nuclear spins precess at a di�erent frequency compared to when

there are no electrons. Thus, when electrons are being read via the SET (via the

spin to charge conversion method as discussed in the overview of conventional charge

sensors in Section 3.1.1), the stochastic tunnelling process of some electrons hopping

o� the P-donor dots before others leads to nuclei, with electrons still on their dots,

accumulating a phase di�erence; that is, performing an unintentional Pauli-z gate.

A solution for this, as outlined in the original proposal, is to pulse the gates into the

readout point (where an electron may unload) periodically (in time) at multiples of

the precession frequency. Now the window for electrons to hop o� the dot is only

allowed when the net phase accumulation is a multiple of a full rotation. Whilst

a novel concept, the concept of phase-matched loading to eliminate unintentional

phase accumulation has also not yet been demonstrated.

(a) Device structure [180] (b) Parity measurement [180]

Figure 5.4: Surface code with a grid of electrons on P-donors (separated by
400±12 nm) measured with a piezoelectric stage holding a grid of NV centres [180].
(a) Electrons hosted on a grid of ion-planted P-donors form the slab of data qubits, while a
grid of NV-centres magnetically probe the data qubit spins. (b) The data qubits are spaced
400 nm. The magnetic probe (moved via piezoelectric actuators) interacts with the electron
spins via a magnetic dipole moment to accumulate a state-dependent phase to be used in
the parity measurement.

A later proposal using donors (note this could be P or any other donor) considered

using a moveable stage [180]. Here, a grid of donors was implanted into a silicon

substrate as shown in Figure 5.4a. Another grid of magnetic probes (for example, NV

centres) lies parallel above the grid of donors. The magnetic probes are movable via

a piezoelectric stage (as in a STM). Using the magnetic dipole moment interaction

between two spins, one may move the magnetic probe around four donor spins while

accumulating a state-dependent phase on the magnetic probe spin to thereby perform

the required parity measurement as sketched in Figure 5.4b. The spacings between

donor qubits is more relaxed so that one may use ion implantation techniques. Here,
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the proposed spacing between the implanted donors is 400 nm as opposed to the

∼30 nm required for the P-donor SET proposal above. This is important for this

proposal, as the lasers used for readout are at a wavelength (250 nm) within the

di�raction limit for this spacing. Nonetheless, the allowable inaccuracy in placement

must be better than 11.7 nm to enable su�cient coupling to the associated NV centre

on the moving stage during the parity measurement shown in Figure 5.4b. The

2D surface code device in Figure 5.3 requires atomic precision placement of the

donors with nanometre accuracy of the control electrodes; both of which are within

experimental capability [15, 27]. The moveable stage proposal hints that one may

also use atomic precision hydrogen mask STM patterning of donors onto the silicon

substrate (instead of ion implantation) for accuracies much better than 11.7 nm.

However, one of the challenges of this proposal is that the NV centres must also have

a similar implantation accuracy. The proposal states that the current state of the art

NV centre implantation methods are not accurate enough with lateral accuracies of

±12 nm at depths of 8±3 nm. In addition, the implantation probability is below 30%

and thus, there will be many dead-pixels in the magnetic probe. Thus, one requires

further evolution in the technologies surrounding the implantation of NV centres

in diamond. Other logistical issues with the moving stage is that the piezoelectric

stage may cause frictional heating that will raise the operating temperature above

the required temperature, of 100 mK, to ensure high-�delity qubit operation.

Figure 5.5: Surface code with a grid of gate-de�ned MOS quantum dots coupled
to implanted Bi-donors [181]. The 2D grid consists of gate-de�ned MOS quantum dots
(holding the electron data qubits) interleaved with Bi-donors. The Bi-donors hold an electron
which has an exchange interaction with the MOS dot's electron controlled via a back-gate.
The donors (and their hosted electrons) provide a method to perform CNOT gates on the
data qubits; reading out the donor electron spin completes the parity measurement. CCD
gates enable loading and moving of electrons on the MOS quantum dots across rows of
qubits.

Another scalable architecture proposal involving donor qubits utilises a hybrid

approach using Bi-donors and gate-de�ned quantum dots [181]. Here, MOS quan-
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tum dots (quantum dots formed near the silicon oxide interface) act as data qubits,

while interleaved with implanted Bi-donors that act as ancilla measurement qubits as

shown in Figure 5.5. To perform a parity measurement, electrons on a row of quan-

tum dot qubits are selectively moved in unison towards the Bi-donor dot's electron

via CCD gates. The gate de�ned quantum dot electrons form a singlet-triplet state

with the donor-con�ned electron such that one may adiabatically transfer spin infor-

mation to perform a microwave-driven CNOT gate where the donor and its electron

act as the target qubit. The CNOT mechanism involves the use of the back-gate

(on the back of the silicon-on-insulator wafer) to control the exchange interaction

between the donor electron and the MOS dot electron. The resulting exchange cre-

ates a singlet-triplet state [182]. When combined with the clock transitions of the

Bi-donor (hyper�ne transitions that are insensitive to magnetic �eld �uctuations),

a subspace forms where donor electron spin �ips are either allowed or forbidden.

The three-spin system (MOS dot electron, donor dot electron and the donor nuclear

spin) results in a controlled SWAP gate where the nuclear spin is the control qubit.

When combined with a microwave �eld, one realises a CNOT gate. The advantages

of using implanted Bi-donors is the back-gate mediated selective activation of the

qubit measurement and the potential high-�delity of the CNOT gate due to the qubit

subspace being resistant to electric and magnetic �eld noise. The proposal allows

the potential of high-�delity readout of a donor electron spin when using a local

SET and the spin-to-charge conversion method [112]. The SET should be possible

to place near the donor dots as the qubits are spaced (that is, the distance between

the MOS dot and the donor dots) by approximately 1µm. The back-gates globally

address a row of qubits by noting that the qubit subspaces do not require exact

tuning of the exchange; thus, two discrete back-gate voltages indeed su�ce in tuning

all the qubits. Nevertheless, there is yet to be any experimental demonstration of

the required Bi-donor control and the complex CNOT gate mechanism given in this

proposal.

There is also a recent proposal extending the Kane mechanism to realise long-

distance couplings between ion-implanted P-donor qubits by using electric dipole

(rather than exchange) couplings [38, 78]. Here, the donors are implanted close

to the surface of the silicon substrate as shown in Figure 5.6. Surface gates are

then used to distort the electron cloud on the P-donor dot, without ionising it, to

form a electron mushroom. The resulting hyper�ne tuning leads to a second order

ESR-driven �ip-�op qubit where the qubit subspace (for electron spin ↓ / ↑ and

nuclear spin ⇑ / ⇓) consists of |↓⇑〉 and |↑⇓〉. Similar to the single-spin qubit, the

second-order driving yields Pauli-x rotations while o�-resonant driving yields Pauli-z
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(a) Flip-�op qubit formed between an electron and an
implanted P-donor [78]

(b) Grid of �ip-�op qubit cells interconnected with superconducting
resonators [78]

Figure 5.6: Surface code with a grid of ion-implanted P-donor �ip-�op qubits [78].
The �ip-�op qubit (for electron spin ↓ / ↑ and P-donor nuclear spin ⇑ / ⇓) is a qubit formed
on the subspace: |↓⇑〉 and |↑⇓〉. (a) Each �ip-�op qubit is tuned via a surface gate. The
mushroom-like orbital state of the electron helps form an electric-dipole that can be used
to couple adjacent qubits (spaced 100-500 nm apart) and perform a two-qubit gate. (b)
Smaller grids of �ip-�op qubits coupled via the electric dipole coupling are linked together
via superconducting resonators (spaced 1µm-1 cm apart) to form a large 2D array of qubits
for the surface code.

rotations. When driving the qubit o�-resonantly, one tunes the hyper�ne splitting

(between the P-donor nuclear spin and its electron) away from the resonant sweet-

spot causing a change in height of the electron mushroom (with the ground and

excited qubit states taking form of orbital wavefunctions being near the donor dot

and the top of the mushroom respectively). To perform two-qubit gates, the proposal

suggests using a similar electric dipole mechanism to that used with the singlet-triplet

qubits in this thesis. That is, one pushes the qubits to an o�-resonant drive where

the electron (in the excited state) is spatially far from the P-donor dot and thus,

forms a large electric dipole to the adjacent qubit. The electric dipole causes the

adjacent qubit to have its o�-resonant detuning shifted (to cause a change in its

precession frequency) on the condition that the �rst qubit is in the excited state.

Due to the long range of the electric dipole coupling due to the electron mushroom,

the proposed distance between donors is in the range of 100-500 nm giving rise to

an equivalent inter-qubit coupling is 10-100 MHz as opposed to the large gigahertz

couplings targeted in this thesis. However, when one considers the density of local
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surface gates and SET structures (to readout the electron spin to infer the state of the

�ip-�op qubit), it becomes di�cult to route large arrays of �ip-�op qubits. Thus, the

proposal relies on using superconducting couplers (to extend the range of the electric

dipole �eld), which have a coupling strength of 3 MHz, to interlink smaller arrays

of �ip-�op qubits. At the time of publishing this thesis, this proposal still required

experimental demonstration of smooth hyper�ne tuning with an electric �eld (that is,

not immediately ionising the P-donor dot), before the subsequent demonstration of

the �ip-�op qubit. Afterwards, the electric-dipole coupling between adjacent �ip-�op

qubits must be shown to be su�cient to perform a two-qubit gate. Similarly, there

needs to be experimental demonstration of the required cavity coupling between a

�ip-�op qubit and a superconducting resonator.

Figure 5.7: Surface code with in a silicon CMOS architecture [108]. The multi-
layered CMOS architecture creates a 2D array of single-spin electron qubits (in gate-de�ned
quantum dots) addressed via gates structured with addressable bit lines like in DRAM.
Single-qubit gates and two-qubit gates are performed via ESR (with the exchange coupling
J used to couple adjacent qubits). Qubit readout is done via single-gate RF sensors. The
minimum feature size required for this architecture is ∼7 nm.

Finally, another potentially scalable solid-state qubit architecture proposal is the

gate-de�ned quantum dot CMOS fabrication compatible qubit processor [108]. The

proposal here forms an amalgamation of many previous concepts. That is, the pro-

cessor, comprises single-spin electron qubits in a MOS architecture, utilises ESR for

single-spin operations [52] and direct electron exchange J (along with ESR) for two-

qubit (CX and CZ) operations [67]. With single-shot, single-gate RF readout recently

demonstrated in solid-state qubits, the proposed readout structures use spin-down

electron ancilla qubits to which one performs a singlet-triplet parity measurement

to infer the single spin. These readout structures have also been recently demon-

strated in single-shot [32, 132]. The proposal highlights a large scale 2D array of

qubits in which di�erent qubits are addressed via shared global transistor switched

arrays similar to the addressing structure of DRAM modules in classical comput-

ing memory. The major hurdle in the realisation of this proposal is the required
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Proposal Qubits
Qubit
spacing

Key bene�ts Open issues

GaAs
�oating

gates [179]
(s0/t0)GD ∼1µm

� Large spacing
between qubits

� Full individual
qubit control

� Charge noise from
substrate limits
two-qubit gate �deties

� Charge noise from
metallic �oating gates

STM P-
donors [28]

D: (⇑ / ⇓)P
M: (↑ / ↓)P ∼30 nm

� Low gate
density

� Long coherence
times for
P-nuclei

� Uniformity of
ESR/NMR frequencies
for all qubits

� Gate limited tunability
of dots

� Phase-matched loading

P-donors
and NV-
centres [180]

D: (↑ / ↓)P
M: (↑ / ↓)NV ∼400 nm

� Large qubit
spacing

� No leads

� Implantation
inaccuracies in P-donors
and NV-centres

� Non uniform implanted
dopant activation

� Frictional heating of
moving stage

MOS dots
and Bi-

donors [181]

D: (↑ / ↓)GD
M: (↑ / ↓)Bi
M: (⇑ / ⇓)Bi

∼1µm

� Large CCD
gate spacing

� CNOT gates
are resistant to
magnetic �eld
and electric
�eld noise

� The CNOT mechanism
is unproven

� Coherence times of the
MOS dots may be low

� Bi-donor control
unproven

P-donor
�ip-

�op [78]
(↑⇓ / ↓⇑)P

∼100-
500 nm

&
∼1µm-

1 cm

� Large qubit
spacing

� Resistant to
electric �eld
noise near
sweet-spot

� Full individual
qubit control

� Hyper�ne tuning with a
gate is unproven

� Flip-�op qubit is
unproven

� Cavity coupling is
unproven

CMOS [108] (↑ / ↓)GD ∼60 nm

� Compatible
with CMOS
fabrication

� Full individual
qubit control

� Simultaneous
high-�delity single-qubit
and two-qubit gates
unproven

� Multilayer CMOS
fabrication requires
7 nm feature sizes

� High gate density

Table 5.1: Summary of the 2D surface code proposals in solid-state qubits. The
proposals are given in terms of their key bene�ts and open issues. The ↑ / ↓ signi�es
electron spin qubits while ⇑ / ⇓ nuclear spin qubits. The subscripts signify the hosted
location: GD=gate-de�ned quantum dot, P=P-donor nuclear spin, NV=NV-centre, Bi=Bi-
donor. For some proposals, di�erent qubit types act as the data (D) and measurement (M)
qubits. Note that `unproven' implies `not realised experimentally'.
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simultaneous fault-tolerant levels in both single and two qubit gate �delities [66].

In fact, the proposed two-qubit gate is still limited by charge noise (as with most

proposals highlighted above which rely also on speci�c values of direct exchange J).

In addition, to claim compatibility with industrial CMOS fabrication techniques, the

fabrication pipeline will require ∼7 nm feature sizes to cater for the smaller DRAM

cells and gate structures.

A summary of the key 2D surface code proposals in semiconductor qubits are

shown in Table 5.1. For quantum dot architectures which require many leads per

qubit, one can observe a trend in the push for exploiting long-distance mechanisms

to space the qubits further apart. Many of the proposals sacri�ce individual qubit

control to achieve lower gate-densities such as the STM P-donor and the MOS/Bi-

donor proposals. The 2D array of singlet-triplet qubits proposed later in this chapter

looks to retain individual qubit control while minimising gate-densities by exploiting

the natural features of P-donor qubits (such as free-con�nement).

5.2 Singlet-Triplet Hamiltonian from the Hubbard model

The singlet-triplet Hamiltonian describes the blueprint for the double quantum dot

system in which a qubit is to be formed. In order to appreciate control operations

required for full qubit control, it is useful to brie�y overview the origin of the singlet-

triplet Hamiltonian. The derivation of the Hamiltonian along with the functional

properties are discussed in Appendix E. In this section, the Hamiltonians are dis-

cussed with emphasis on qubit gate operations.

5.2.1 Double quantum dots described by the Hubbard model

A singlet-triplet qubit is formed by taking the concatenated spin state of two electrons

trapped across two adjacent quantum dots. To build up the Hamiltonian describing

such a system it is useful to �rst consider the charge qubit Hamiltonian which consists

of one electron across two quantum dots. The electron may reside on dot 1 or dot 2

(denoted by the wavefunctions ϕ1 and ϕ2). The associated potential energy of the

electron when in either dot may be controlled by varying the electrostatic potential

of the dots via local gate electrodes. The detuning parameter ε here shall be de�ned

as half the energy separation between the two dots' potential energies as shown in

Figure 5.8a-c. A negative ε implies that dot 1 is of lower energy, a positive detuning

implies that 2 is of lower energy and zero detuning implies that both dots have equal

potential energies.
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(a) ε < 0 (b) ε = 0 (c) ε > 0

(d) Charge qubit energy spectrum

ϕ1ϕ2

ϕ2ϕ1

2tc ε

E

Figure 5.8: Charge qubit energy spectrum for the Hamiltonian given in Equation 5.2.
(a)-(c) The structure of the electrostatic potential energy levels of electrons on the dots
for di�erent values of detuning ε. The two columns in each diagram re�ect the energy level
of dots 1 and 2 respectively. (d) The resulting energy diagram for a charge qubit. The
dotted lines indicate the asymptotic energy levels when the tunnel coupling tc is zero. The
labels ϕ1 and ϕ2 indicate the approximate asymptotic energy eigenstates (electron residing
entirely in dot 1 or dot 2 respectively) in those regions of detuning with the smaller energy
diagrams showing the dot energy levels and the location of the electron given by the black
dots.

Given the de�nition of ε, the excited and ground state energy levels would vary

linearly as shown by the dotted lines in Figure 5.8d. However, this is only the case

when the dots are well isolated and completely uncoupled. Now the energy eigen-

states of the Hamiltonian are de�ned as those that are invariant under time evolution.

If the two dots in the charge-qubit Hamiltonian were uncoupled (equivalently stated

as the electron tightly con�ned to a given dot without any in�uence of the other

dot's potential well), the electron on any given dot will remain there forever. How-

ever, with a non-zero tunnel coupling term tc (equivalently stated as the electron

wavefunction spreading onto the other dot such that it no longer solely occupies a

single dot), the energies will be perturbed by virtue of the electron wavefunction

overlapping with the other dot's potential landscape. When setting the voltages on

the gates such that the detuning is negative, with zero tunnel coupling, ϕ1 is the

ground state as dot 1 is of lower energy. With a non-zero tunnel coupling, a wave-

function solely occupying ϕ1 cannot be the stable ground state eigenstate (for the



5.2. Singlet-Triplet Hamiltonian from the Hubbard model 175

ground state eigenstate would need to overlap with dot 2). Thus, if it were to be dot

1 and solely in ϕ1, then it would be of a higher energy4. Thus, the energy of the ϕ1

eigenstate must be an upper bound to the ground eigenstate. By similar argument,

the excited state energy lower bounds the true excited energy eigenstate. Therefore,

even at zero detuning, the energies may never be degenerate unless the coupling is

zero. This avoided crossing or level repulsion is similar to that seen in coupled Har-

monic oscillators. The continuous lines in Figure 5.8d illustrate this avoided crossing

of energy levels across di�erent values of the detuning ε. The dotted lines show the

energy levels when the tunnel coupling is zero and how they form asymptotic bounds

to the energy levels when the tunnel coupling is non-zero as shown by the two hy-

perbolas. The associated Hamiltonian (for the charge qubit) is derived in Appendix

E.1:

HCQ = −tcσx + εσz. (5.2)

The tunnel coupling tc is given by the energy overlap integral, a `tunnelling ampli-

tude', for the electron between the two dots and tends to be negative for Coulombic

potential wells. The negative sign on the tunnel coupling is there for convenience so

that tc can be quoted as a positive value. The detuning is associated with the Pauli-z

operator σz as it aligns with the measurement basis chosen to be the electron either

in dot 1 or dot 2. The tunnel-coupling couples the two states via a Pauli-x term

σx. At zero detuning, therefore, one obtains Pauli-x rotations while at far detuning

|ε| � 0, one obtains Pauli-z rotations.

To complete the singlet-triplet Hamiltonian, one adds a second electron. When

considering that there are two electron spins (that may each be spin-up or spin-

down), two sites for each electron to reside, there are up to 16 possible spatial

and spin state con�gurations. However, as shown in Appendix E.2, with no orbital

degrees of freedom5, the Pauli-exclusion principle places symmetry constraints on the

16 possible states so that the only states that have a non-zero probability density

are the six electron singlet triplet states. The �rst three states are the three spatial

singlet states s20, s02, s11. These states have the electron anti-symmetric (entangled)

4This is simply a consequence of the spectral theorem. The two states (ground and excited)
states are orthogonal and cover all possible states. Any state is therefore a linear combination of
the ground and excited state and thus, bound between the two energy levels.

5An orbital degree of freedom means that the electrons may enter di�erent electron orbital
states to satisfy overall symmetry or anti-symmetry of the electron wavefunction [34, 42, 183]. For
P-donors the higher orbital states are more than 10 meV higher in energy (the so-called 2p0 state)
and are very short-lived at approximately 200 ps [184�187]. Thus, the orbital states are ignored in
this analysis.
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singlet spin con�guration 1√
2

(|↑↓〉 − |↓↑〉). The indices indicate the two electron

charge state on dots 1 and 2. That is, s20 indicates that both electrons are on dot 1,

s02 indicates that both electrons are on dot 2, while s11 indicates that both electrons

are on separate dots6. The remaining three states are the triplet states t0, t− and

t+. With no orbital degrees of freedom, the electrons in triplet states always remain

on separate dots7.

When the electron spins couple to external magnetic �elds, the Hamiltonian

is adjusted to include these magnetic �eld terms. The �rst magnetic �eld term

is the globally applied, to both dots, magnetic �eld B0. By choosing the z-axis

as the direction of the average magnetic �eld (that is, the applied global magnetic

�eld), there are no common-mode (same across both dots) magnetic �eld components

perpendicular to B0. The remaining di�erential magnetic �eld across the two dots

is de�ned as ∆B = B1 − B2 = (∆Bx,∆By,∆Bz) (with B1 and B2 denoting the

net magnetic �elds on dots 1 and 2 respectively). The portion of ∆B parallel with

the globally applied magnetic �eld is ∆Bz while the di�erential �eld component

perpendicular to the globally applied magnetic �eld is:

∆B⊥ =
∆Bx + i∆By√

2
. (5.3)

The di�erential magnetic �elds (∆Bz and ∆B⊥) come from the local magnetic �eld

interactions on the two dots. For example, they can be formed via the polarisation

of a bath of surrounding nuclear spins or from the addition of a local permanent

micro-magnet as discussed in Section 2.1.5.

Figure 5.9 shows a sketch of the double quantum dot system with all the relevant

double-dot interaction (tc), two-electron repulsion (U02), magnetic �eld (B0, ∆Bz

and ∆B⊥) and detuning terms. The blue line highlights the approximate potential

landscape of the dots con�ning the electrons and how the individual potentials can be

manipulated via the tilting potentials given by the detuning ε. The full Hamiltonian

including all the outlined terms above is (noting that the overbar implies complex

conjugation):

6Note that s11 is in a symmetric spatial state across the two dots as discussed in Appendix E.2
7Triplets have anti-symmetric spatial states across the two dots as discussed in Appendix E.2
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Dot 1 Dot 2

tc

2ε 2∆

U02

U02

∆B⊥ = B1⊥ −B2⊥
∆Bz = B1z −B2z

B0

B1

B1⊥

B1z

B2

B2⊥

B2z

Figure 5.9: Schematic of two tunnel-coupled quantum dots (1P-2P) under di�er-
ent magnetic �elds. The approximate potential landscape con�ning the electrons across
two dots is sketched by the blue curve while the black dots represent electrons occupying
the energy states on the dots (separated by the electron repulsion energy U02). The dots
are detuned by ε and ∆, and tunnel coupled via tc. The average magnetic �eld across both
dots is the global applied �eld B0. Each dot has nuclear spins (in this example for Si-P, the
�rst dot has 1 P-donor and the second dot has 2 P-donors) that when polarised produce net
magnetic �elds on each dot: B1 and B2 (the local magnetic �eld vectors omit B0 in this
diagram for clarity). The residual di�erential magnetic �elds across both dots (∆Bz and
∆B⊥) can be decomposed (with respect to the global magnetic �eld vector) into parallel
components (B1z and B2z) and perpendicular components (B1⊥ and B2⊥).

HST ≡




U02 + 2ε 0 −
√

2tc 0 0 0

0 U02 − 2ε −
√

2tc 0 0 0

−
√

2tc −
√

2tc 0 ∆Bz ∆B⊥ −∆B⊥
0 0 ∆Bz 0 0 0

0 0 ∆B⊥ 0 −2B0 0

0 0 −∆B⊥ 0 0 2B0




. (5.4)

under the basis of states: s20, s02, s11, t0, t− and t+. U02 is the on-site electron-to-

electron repulsion energy. That is, U02 is the extra repulsive electrostatic potential

energy that must be overcome to place two electrons on the same dot. The
√

2

factor that appears next to the tunnel coupling tc (in the matrix) is signi�cant as the

tunnelling amplitude tc was initially calculated for one electron across two dots. The

inter-dot tunnelling event now couples entangled two-electron states across two dots

and thus, requires a further two-body interaction to move the electrons between the

spatial singlet states s02 ↔ s11 and s20 ↔ s11 [188]. The magnetic coupling terms

∆B⊥ couples the singlet s11 state to the triplet states t+ and t− (as seen by the o�-

diagonal positions). To suppress these couplings (between the qubit state s11 and the
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non-qubit leakage states t− and t+) the Pauli-z like interaction B0 must be set much

larger than ∆B⊥ to suppress the interaction term ∆B⊥. That is, the rotation axis

between the states s11 ↔ t− and s11 ↔ t+ will point towards the Pauli-z axis when

B0 � ∆B⊥ where no population is interchanged between the states. Nonetheless,

the presence of the ∆B⊥ coupling is important when considering dynamic nuclear

spin polarisation protocols where nuclear spins are controllably �ipped via adiabatic

sweeps across the s11-t− anti-crossing [40, 41]. Finally, the last term ∆Bz couples

the singlet s11 to triplet t0 and is important in performing Pauli-x rotations in the

s0/t0 qubit subspace.

The Hamiltonian shown in Equation 5.4 contains states that will not be accessed

in practice. In typical con�gurations, when the system is tuned between a (1, 1)

to (0, 2) charge transition, the (2, 0) state is separated very far from the charge

transition. For example, the electron repulsion term U02 is approximately ∼1meV in

GaAs quantum dots [189], ∼10meV for SiGe quantum dots [55], ∼10meV for Si-MOS

quantum dots [132], and ∼100 meV for Si-P quantum dots [81]. The energy scale

of U02 is much larger than the other dynamic parameters in the Hamiltonian. For

example, the energy scale of tunnel couplings in quantum dot systems (for hosting

singlet-triplet qubits or for performing two-qubit gates across two single-spin qubits)

range at most tc ∼ 100µeV [14, 17, 29, 30, 55, 82]. Similarly, at the larger magnetic

�elds used in typical experiments of 1 T yield energy scales of B0 ∼ 100µeV. Thus,

the dynamics surrounding s11, t0 and s02 typically do not require consideration of

s20 (in many cases, it may be inaccessible with the available range in gate voltages).

Thus, without loss in generality, the s20 is culled from the Hamiltonian given in

Equation 5.4 and the detuning ε shall be rede�ned (to ∆) to only consider to the

local s11-s02 anti-crossing:

2∆ ≡ 2ε− U02, (5.5)

as shown by the labels in Figure 5.9. Although the tunnel coupling is referred to the

wavefunction overlap integral, in the context of qubit control and typical experiments,

one is more interested in the actual singlet-triplet energy splitting (when the magnetic

�elds are zeroed) at zero detuning [29, 30, 82]. Thus, the tunnel coupling is rescaled

from
√

2tc to just tc. In addition, the Hamiltonian is further simpli�ed by taking

one portion of ∆ out of the Hamiltonian as a global o�set ∆ · I6 does not a�ect the

qubit dynamics. The simpli�ed Hamiltonian takes the following form [13, 14]:
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HST ≡




−∆ −tc 0 0 0

−tc ∆ ∆Bz ∆B⊥ −∆B⊥
0 ∆Bz ∆ 0 0

0 ∆B⊥ 0 ∆− 2B0 0

0 −∆B⊥ 0 0 ∆ + 2B0



, (5.6)

under the basis states: s02, s11, t0, t− and t+.

Although the Hamiltonians (in Equations 5.4 and 5.6) describe the same physics,

the distinction between ε and ∆ must be considered when viewing the shape of

the resulting energy spectra. The energy eigenvalues of the Hamiltonians given in

Equations 5.4 and 5.6 are plotted (with respect to ε and ∆ respectively) in Figure

5.10. When plotting against ε, at zero detuning, the lowest energy levels on the

respective dots are aligned as shown in Figure 5.10a. As one pushes ε away from

zero, the electrons eventually occupy a single dot. Note that the higher energy level

for a given dot is only considered when the lower electron energy level is �lled. That

is, this higher energy level is the Coulombic repulsion that one must overcome when

spin-pairing two electrons (in the singlet state) onto the same dot8. The two anti-

crossings mediated by the tunnel coupling are found either side of zero detuning:

s20-s11 and s11-s02. The anti-crossings are separated by 2U02. Another important

anti-crossing is that between t0 and s11 (coupled via ∆Bz to form Pauli-x rotations

in singlet-triplet qubits) as seen in Figure 5.10b, while not visibly clear (as an `anti-

crossing') in the energy diagram when plotting against ∆ as seen in Figures 5.10d.

Nonetheless, when plotting against ∆, the super�uous s20 state disappears and one

obtains the main inter-dot anti-crossing s11-s02 symmetrically about zero detuning

(∆ = 0). In both cases, changing the detuning (either ε or ∆) changes the energy

splitting between the lowest energy singlet state and the triplet t0 state. As shown

later, tuning this splitting (termed J) is important when toggling between Pauli-x

and Pauli-z rotations.

5.2.2 Importance of tunnel coupling and temperature

The tunnel coupling tc separates the ground and excited singlet states as shown in

Figures 5.10c-d. One typically operates near zero-detuning ∆ = 0 when performing

8Electrons must be in an overall anti-symmetric state in order to obey the Pauli exclusion
principle. Therefore, triplet states with both electrons on the same dot require an anti-symmetric
orbital degree of freedom (typically too high in energy and subsequently discarded for Si-P quantum
dots as discussed in Appendix E.2) as two electrons on the same dot in the triplet state implies
that the both the spatial and spin states are symmetric (thus, the overall state is still symmetric).
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(a) Energy plotted on ε with ∆Bz = B0 = 0
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(b) Same as (a), but ∆Bz > 0 and B0 > 0
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(c) Energy plotted on ∆ with ∆Bz = B0 = 0
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(d) Same as (c), but ∆Bz > 0 and B0 > 0
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Figure 5.10: Energy spectra of the double quantum dot Hamiltonian for di�erent
detuning parameters ε and ∆. (a)-(b) Energy diagram given in terms of ε. The smaller
energy level diagrams highlight the energy levels on the dots for di�erent singlet states (s20,
s11 and s02) across di�erent points in detuning. (c)-(d) Energy diagram given in terms
of the rescaled detuning ∆ where the state s20 is discarded. Note that the state labels in
all diagrams indicate the approximate asymptotic eigenstates. The magnetic �eld gradient
across the dots ∆Bz creates an anti-crossing between the singlet s11 and triplet t0 states as
seen by the gap between s11 and t0 at ε = 0 in (b) compared to (a). The global magnetic
�eld B0, Zeeman splits the triplet t− and t+ by 2B0. Note that the energy level t indicates
three degenerate triplet states (t−, t0 and t+) which split in a magnetic �eld B0 > 0 in (b)
and (d).
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qubit operations and single-gate RF readout (where as discussed in Section 4.1, one

oscillates between the s11 and s02 singlet ground states). In both cases, one needs

to remain in the ground-state singlet state9. In this section, the role of the tunnel

coupling in preventing thermal excitations into the excited singlet-state shall be

investigated.

During the operation of the qubit, phonons in the lattice may excite the electron

into the excited state at some prescribed rate. These electrons in the excited state

would then decay at some prescribed rate. The phonon interaction can be modelled

via the detailed balance equation [190] where the steady-state distribution is the

de�nition of `temperature' (used in statistical mechanics) of the electrons on the

double-dot system (not necessarily the same `temperature' of the electrons in the

gate electrodes and perhaps closer to the lattice temperature). The ground state

population distribution in this case is that akin to the Boltzmann distribution, where

the population proportion of electrons in the ground state is given by [191]:

Pground =
exp

(
− Eg
kBT

)

exp
(
− Eg
kBT

)
+ exp

(
− Ee
kBT

) , (5.7)

where T is the temperature of the electrons, while Eg and Ee are the ground and

excited state energies of the system. Taking the minimum gap in the singlet energy

states (phonon excitation and decay does not change the spin state of the electrons),

one may write Eg = −tc and Ee = tc. Thus, the population becomes:

Pground =
1

1 + exp
(
− 2tc
kBT

) . (5.8)

Figure 5.11 shows the ground state population probabilities over di�erent temper-

atures and tunnel couplings. Clearly low temperatures are required to obtain high

ground state probabilities. Qubit devices usually operate in liquid helium dilution

fridges that run at base temperatures as low as 10 mK. However, this temperature

assumes perfect thermalisation of the silicon wafer with the mixing chamber of the

fridge and perfect isolation from room temperature cabling connecting to the device.

Thus, to maintain population probabilities above 99.5 %, a safe minimum bound for

the tunnel coupling is 1 GHz, with 5 GHz comfortably reaching this probability at

temperatures close to 100 mK.

9One may technically perform qubit operations if completely in the excited singlet branch. How-
ever, short excited state lifetimes and the stochastic nature of entering and leaving the excited state
due to thermal e�ects makes it undesirable to use it in the qubit subspace.
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Figure 5.11: Importance of tunnel coupling and temperature on qubit operation.
The plot shows the singlet ground state probability as a function of the electron temperature
on the double quantum dot over di�erent tunnel couplings as described by Equation 5.8.
Larger ground state probabilities (> 99.9%) are realised with lower temperatures (at least
∼1 GHz if the dilution fridge thermalises the device at 10 mK-20 mK) and higher tunnel
couplings (for example, 5 GHz relaxes the maximum temperature to approximately 70 mK).

5.2.3 Double-dot to singlet-triplet qubit Hamiltonian

The full double-quantum dot Hamiltonian describes the dynamics of all four possible

singlet-triplet states s0, t0, t− and t+. However, the singlet-triplet qubit is only

formed on the s0-t0 subspace and thus, this section constructs a reduced Hamiltonian

that can be used when evaluating gate operations and �delities on singlet-triplet

qubits.

Singlet-triplet qubits operate in the s0-t0 subspace. Thus, the coupling of the

singlet-s11 state to the triplet t− and t+ states via the perpendicular magnetic �eld

∆B⊥ is undesirable as one will have state leakage away from the qubit subspace.

To suppress these ∆B⊥ terms, one controls the on-diagonal Pauli-z terms given

by the applied magnetic �eld B0. By taking B0 � |∆B⊥|, one can suppress spin

precession away from the qubit subspace into the triplet t− and t+ states. In typical

experiments, ∆B⊥ is upper bounded by the magnitude of ∆Bz as the spins are likely

to polarise and align mostly with the globally applied magnetic �eld. With ∆Bz

typically in the order of ∼10-100 MHz for P-donors [50, 83] (as discussed earlier in

Section 2.1.5), ∆B⊥ is approximately10 ∼10 mT. With most spin qubit experiments

10The equivalent magnetic �eld is found by noting the Zeeman splitting of a single electron spin:
EB⊥ = 1

2
geµe∆B⊥. Here ge = 2 and EB⊥ = 100 MHz.



5.2. Singlet-Triplet Hamiltonian from the Hubbard model 183

setting B0 > 100 mT to break the triplet degeneracy [14, 17, 29, 30, 55, 82], one

can ignore the in�uence of B⊥ in the following calculations. Note that the s11-t−
anti-crossing (where the precession axis is such that the singlet may still interact

and precess into the triplet t−) is still useful in the context of dynamic nuclear spin

polarisation where one may utilise the singlet state to �ip nuclear spins to con�gure

the value of ∆Bz [40, 41].

On suppressing the in�uence of ΣB⊥, the triplet t− and t+ states do not par-

ticipate in the qubit dynamics. This leaves three states of interest: s02, s11 and t0.

The eventual qubit state is between the singlet s0 and triplet t0 states (with z-basis

measurements performed along s0 and t0). However, the singlet state s0 subdivides

into two separate charge states (s02, s11), which makes it di�cult to interpret the

subspace as a two-level system as normally required for a qubit. To deduce the

e�ective qubit state, the following analysis will look into the analytic eigenstates

of the system. This is because the Hamiltonian eigenstates are invariant over time

evolution. Since, two-level systems will inde�nitely precess a given qubit state about

a rotation axis given by the Pauli decomposition of the Hamiltonian, �nding the

eigenstates yields the rotation axes. From the rotation axes, one may deduce the

e�ective two-level system Hamiltonian between the singlet s0 and triplet t0 states.

Now the tunnel coupling tc is considered to be much larger in magnitude than

the magnetic �eld gradient. In this regime tc � ∆Bz, the eigenvalue-eigenvector

pairs are:





λt− = ∆− 2B0 |t−〉
λt+ = ∆ + 2B0 |t+〉
λt0 = ∆ |t0〉
λs+ =

√
∆2 + t2c

√
1
2 − ∆

2
√
t2c+∆2

|s02〉 − tc√
2
(
t2c+∆2−∆

√
t2c+∆2

) |s11〉

λs− = −
√

∆2 + t2c

√
1
2 + ∆

2
√
t2c+∆2

|s02〉+ tc√
2
(
t2c+∆2+∆

√
t2c+∆2

) |s11〉

(5.9)

The triplet states all remain on the E = ∆ line with the t± states Zeeman split by

2B0. The singlet eigenstates split into excited and ground state branches with the

eigenvalues λs+ and λs− respectively. Taking the qubit state to be either in t0 or

the singlet ground state (s11-s02), the singlet-triplet splitting or `exchange energy' is

given by:

J ≡ ∆ +
√

∆2 + t2c , (5.10)
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where J is the energy splitting between the two eigenstates lined up across the

Pauli-z axis of the Bloch sphere. That is, it's the energy splitting attributed to a

Pauli-z operator: 1
2Jσz. To deduce the qubit coupling term (between the singlet

and triplet-t0) one typically must go near the anti-crossing where the eigenstates fall

onto the x-y plane on the Bloch sphere. From Figure 5.10d, this would be when

∆→ −∞. Thus, consider the eigendecomposition performed on Equation 5.6 at the

far negative detuned region. Taking the characteristic polynomial and |∆| � tc, the

eigenvalue-eigenvector pairs are:





λ0 = −∆ |s02〉
λ− = ∆−∆Bz

1√
2

(|t0〉 − |s11〉) ≡ |↓↑〉
λ+ = ∆ + ∆Bz

1√
2

(|t0〉+ |s11〉) ≡ |↑↓〉
(5.11)

The eigenvalues for the triplet t− and t+ have been omitted as they are the same as

those in Equation 5.9. Clearly at far negative detuning, s02 is the excited state (that

is, s02 is the highest energy state). The degeneracy between the two, lower energy,

singlet s11 and triplet t0 states is broken by the magnetic �eld gradient between the

dots to create a splitting of: 2∆Bz. Now this splitting is between two eigenstates

that line up along the x-axis of the Bloch sphere11. Thus, this is the energy splitting

attributed to a Pauli-x operator. Therefore, in the subspace restricted to t0 and s0,

the two-level qubit sub-system of the singlet-triplet qubit Hamiltonian is:

HSTQ ≡
1

2
Jσz + ∆Bzσx =

(
1
2J ∆Bz

∆Bz −1
2J

)
. (5.12)

The associated Bloch sphere for this qubit Hamiltonian is shown in Figure 5.12a.

Typically the magnetic �eld gradient ∆Bz set to some �xed value. For example, if

we use an integrated micro-magnet (fabricated by evaporating cobalt in a magnetic

�eld), then the gradient will retain a �xed gradient [17, 47, 85]. In Si-MOS quantum

dots, a di�erence in the on-site spin-orbit term interaction term (for example, due

to local strain, local electric �elds or oxides on the silicon crystal step edges on the

surface) can give an e�ective ∆Bz-like term (albeit, due to spin-orbit contributions

rather than magnetic �elds) that is �xed on fabrication with slight tunability with

applied electric �elds [64, 192, 193]. In GaAs quantum dots, the substrate provides

a bath of nuclear spins that one may polarise to create an in-situ magnetic �eld

gradient; a technique known as `dynamic nuclear spin polarisation' or DNP [40, 41].

It is proposed that a similar technique be employed to polarise the phosphorus nuclei

11These are the usual plus and minus qubit states. Note that this is also seen by the fact that in
this regime of ∆→ −∞, the Pauli-z tends to zero for J → 0 as seen by Equation 5.10
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used to create quantum dots in Si-P systems [29]. However, the polarisation sequence

used in DNP is much slower than the time-scale of individual qubit gate operations.

Thus, ∆Bz can be considered to be �xed over a single qubit gate operation.

The rotation axis in a singlet-triplet qubit is therefore tuned purely by changing

J , which is directly controlled by manipulating ∆ or tc as shown in Equation 5.10 and

illustrated in Figure 5.12b. This manipulation of the rotation axis enables x-rotations

when J ≈ 0 at far negative detunings and z-rotations when J � ∆Bz. Thus, one

achieves `all-electrical single-qubit control' in the sense that qubit rotations can be

steered purely by applying a voltage on a local gate electrode. Importantly, the qubit

rotations are not limited by slower magnetic �eld control in contrast to single-spin

qubits [16].

5.2.4 Summary

Before one investigates the property of single-qubit gates with singlet-triplet qubits,

it is important to note the required properties in attaining a singlet-triplet qubit

across two P-donor quantum dots:

� The tunnel coupling tc must be large enough to prevent thermal excitations

into excited singlet-states. To maintain ground state probabilities above 99.9%,

the tunnel coupling must be at least 1 GHz if the dilution fridge thermalises

the device at 10 mK and 5 GHz if thermalised at 70 mK.

� The residual exchange J must be zero when the electrons are in separate dots

(ε = 0) as otherwise one cannot turn o� J (known as the weakly interacting

tight-binding limit). For Si-P, the dots must be at least 9-10 nm apart (so that

J is below the P-donor induced ∆Bz∼10-100 MHz [50, 83]) as estimated from

numerical simulations of 1P-1P and 1P-2P double quantum dots [81, 84, 194].

� One must apply a global magnetic �eld B0 to split the degeneracy of the three

triplet states and ensure that the s0-t− anti-crossing is away from all single-

qubit gate operating points to prevent state leakage into the triplet t− and

t+ states. In experiments involving Si-P quantum dots, one typically needs

B0 � 10 mT.
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(b) Energy diagram of a 2-electron singlet-triplet across two quantum dots

t−

|↓↑〉 s02

s11

|↑↓〉

t0

|↑↓〉

t+

s02

|↓↑〉

2∆Bz

J

2tc

J � ∆Bz

J ≈ 0 ∆

E

x y

|t0〉

|s0〉

x y

|t0〉

|s0〉

Figure 5.12: Singlet-triplet Hamiltonian qubit subspace and energy diagram. (a)
Singlet-triplet qubit Bloch subspace mediated by J (twice the magnitude of red arrow) for
Pauli-z rotations and ∆Bz (magnitude of the blue arrow) for Pauli-x rotations. Typically
∆Bz is �xed and J is tuned to change the qubit precession angle θ. (b) Energy spectrum of
the double quantum dot Hamiltonian described in Equation 5.6. The state labels indicate
the approximate eigenstate of the energy eigenvalue line at di�erent points in detuning ∆.
The tunnel coupling tc highlights the singlet charge state anti-crossing. The label 2∆Bz
indicates the anti-crossing seen clearly in Figure 5.10. In this region, the Hamiltonian is set
for Pauli-x rotations as J ≈ 0. At detunings away from far-negative detuning, J becomes
appreciably larger than ∆Bz and subsequently, the system undergoes Pauli-z rotations.
The dotted lines are guides that show the asymptotes and the small curvature seen in the
t0 eigenstate as it deviates from a simple linear trend.
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5.3 Single-qubit gates on singlet-triplet qubits

Figure 5.12 shows the singlet-triplet qubit Hamiltonian on the Bloch sphere with J/2

yielding Pauli-z rotations and ∆Bz yielding Pauli-x rotations. The spherical angle

(or the complementary angle of the altitude angle) of the rotation vector is simply:

θ ≡ arctan

(
2∆Bz
J

)
= arctan

(
2∆Bz

∆ +
√

∆2 + t2c

)
. (5.13)

Evidently, one can smoothly toggle between Pauli-x rotations (θ = 90◦) and Pauli-z

(θ = 0◦) by moving between J ≈ 0 or J � ∆Bz respectively. With the speed of the

precession, given by Equation 5.12:

ωp =
2

~

√
∆B2

z + 1
4J

2, (5.14)

one may also tune the precession frequency by changing J . In this section, each

single-qubit gate shall be discussed in detail and then the optimal choice of J is

discussed under the presence of charge noise.

5.3.1 Realising Pauli-x rotations via ∆Bz in Si-P

At large negative detunings where J is close to zero, the rotation axis points along

the x-axis. The speed is �xed at approximately 2
~∆Bz. The magnitude of ∆Bz

is taken to be 29 MHz as estimated for a 1P-2P double quantum dot (with the

2P donor dot holding two spin-paired electrons below the valence electron forming

the singlet-triplet state). The 1P-2P con�guration using the (1, 3) ↔ (0, 4) singlet-

triplet inter-dot crossing was shown in Section 2.2.3 to be favourable in the context

of electrostatic control required to perform a singlet-triplet two-qubit gate. With

one electron on the �rst dot, the hyper�ne interaction of a 1P donor contributes

approximately 29 MHz [50, 83]. With two electrons spin-paired below the valence

electron on the 2P donor dot, one expects a small contribution that will shift ∆Bz

by ±5.25 MHz. Thus, the average ∆Bz will be taken to be approximately 29 MHz

for the remainder of this thesis.

Now clearly J = 0 (as required for a Pauli-x gate) never happens as going to

∆ → −∞ will push the electrons towards the s20 state. By inspection of the full

energy spectrum shown in Figure 5.10a and the Hamiltonian in Equation 5.4, the

minimum singlet-triplet splitting J , occurring at ε = 0, is12:

12Note that the equation for J given in Equation 5.10 cannot be directly applied for large negative
detunings as it does not account for the extra tc term coupling s11 and s20.
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Jmin =
−U02

2
+

1

2

√
8t2c + U2

02, (5.15)

where tc refers to the rescaled version outlined in Equation 5.6. The minimum

detuning one may traverse is:

∆min = −U02

2
. (5.16)

At detunings below this point, the exchange J increases as the electrons start entering

the s20 state. This minimum exchange puts an upper bound on the angle of the

rotation axis θ. In Si-P, taking U02∼100 meV and tc = 5 GHz, the minimum J

is approximately 2.1 MHz. Given a typical ∆Bz of 29 MHz from a 1P donor (as

discussed in Section 2.1.5), the maximum rotation angle is thus, approximately θ =

87.95◦. That is, one may need to compensate the slight inaccuracy in the Pauli-x

rotations via echoes or dynamical decoupling pulse sequences to enhance the single-

qubit gate �delity [195, 196].

Finally in the context of setting up experiments, it is useful to gauge the mag-

nitude of the voltage pulses to perform the gate operations. One useful measure is

to �nd the detuning required to perform a Hadamard operation where J/2 = ∆Bz

(θ = 45 ◦). If the Hadamard operation is accessible, then one may still attain Pauli-x

rotations by appending Hadamard operations before and after a Pauli-z gate [167].

Using the expression for J in terms of ∆, the detuning point for a Hadamard gate

is:

∆Hadamard =
2∆B2

z − t2c
4∆Bz

. (5.17)

Noting that 2∆ = e∆αg∆Vg, one may �nd the required amplitude of the voltage

pulse ∆Vg (when applied on gate g with a di�erential lever-arm ∆αg):

∆Vg =
4∆B2

z − t2c
2e∆αg ·∆Bz

. (5.18)

Taking ∆Bz ≈ 29 MHz and a typical di�erential lever-arm of 5% (expected for the

control gates in the proposed singlet-triplet architecture in this thesis), one �nds

that the tunnel coupling strongly a�ects the range of voltages one needs to pulse to

achieve the Hadamard gate. For example, with a tunnel couplings of 5 GHz, 10 GHz

and 30 GHz, the required voltage amplitudes reach −36 mV, −140 mV and −1.3 V

respectively. High-speed arbitrary waveform generators have a limited voltage range

of typically ±1.5 V with the range further limited to approximately ±470 mV due
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to the minimum recommended 10 dB of thermalising attenuators placed along the

coaxial lines going into the dilution fridge [33]. In addition, large voltage pulses

near 1 V may cause gate-to-gate leakage current in the device. Thus, large tunnel

couplings (above 10 GHz) make it di�cult to perform Hadamard operations due to

both equipment and device limitations.

5.3.2 Requirements for Pauli-z rotations

For approximate Pauli-z rotations, one may set J � ∆Bz with the speed of preces-

sion approximately at J/~. When the qubits are idle, one sets them to precess about

the Pauli-z axis. Here, the qubit population will not shift and no gates are induced

as long as all qubits precess at the same frequency J/~. A high-�delity idle (or iden-

tity) gate is important in a many qubit processor. The gate here can be imperfect

as a non-zero ∆Bz will tilt the rotation axis away from the Pauli-z axis. One can

calculate the loss in �delity due to imperfect Pauli-z gates13. The �delity shall be

taken as the projection of the �nal state upon the intended state. Consider a state

ψi on the xy-plane of the Bloch sphere. Now a Z gate (a Pauli-z gate) with a �nite

J and ∆Bz shall be performed by waiting π/ωp while at J � ∆Bz. Geometrically,

the phase rotation is perfect, but the state is now slightly o� the xy-plane. For an

axis rotation angle of θ, this imperfect state ψf is o� the xy-plane by 2θ. Thus,

taking the states on the Bloch sphere, converting to vector notation and taking the

projection probability |〈ψactual | ψideal〉|2, the Fidelity is simply:

FZ = cos2(θ) ≡ J2

J2 + (2∆Bz)2
. (5.19)

Solving for J , one may then relate the required exchange to reach a certain �delity

threshold:

Jreq = 2∆Bz

√
FZ

1− FZ
. (5.20)

Table 5.2 lists the required ratio of J/∆Bz to reach given Z-gate �delities. Note that

these �delities arise simply from gate control when using J and do not yet consider

the additional contribution from charge noise.

Given the values in Table 5.2, for a given ∆Bz, one may identify the minimum

J required to realise to enable Pauli-z gates. As shown later, when considering the

13One could recast the algorithms to utilise the imperfect gates θ 6= 0. The approach taken here
is to achieve the conventional X and Z gate sets to later aid in performing the required surface code
parity operations.
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Z Fidelity J/∆Bz θ (◦)
90 % 6 18

99 % 20 5.7

99.5 % 28 4.1

99.9 % 63 1.8

99.99 % 200 0.57

99.999 % 632 0.18

Table 5.2: Imperfection in Pauli-z rotations due to ∆Bz. For given Z (that is, a
180◦ Pauli-z rotation) �delities, the required ratio of exchange to the magnetic �eld gradient
J/∆Bz are listed along with their associated spherical rotation angles. Note that θ = 0
points along the z-axis of the Bloch sphere.

presence of charge noise in two-qubit gates in Section 5.4, the minimum J is also

important since it impacts the choice in the tunnel coupling and the inter-qubit

coupling. From Table 5.2, the exchange J would need to be 28 times bigger than the

magnetic �eld gradient ∆Bz = 29 MHz for Pauli-z gates with 99.5% �delity. That

is, the exchange when the qubit is in its idle Pauli-z rotating state must be at least

Jidle = 810 MHz.

5.3.3 Impact of charge noise on Pauli-z gates

The precession frequency of a singlet-triplet qubit given in Equation 5.14 is a function

of J and ∆Bz. Any shot-to-shot perturbations on these parameters will cause the

qubit precession frequency to alter from one logic gate to the next. Thus, for example,

if one waits the nominal time for a π rotation, there will be instances where the

trajectory either overshoots or undershoots the required rotation angle. Decoherence

describes the ensemble average of the state vector as it is pushed away from the pure

states. Mitigation of `charge noise' a�ecting J and magnetic �eld gradient noise

a�ecting ∆Bz is important when considering these qubits in the context of a large

scale 2D surface-code quantum processor where qubit error rates must be at least

below 0.5 % to achieve fault tolerance [8]. Magnetic �eld gradient noise can be

mitigated by using isotopically puri�ed 28Si which has a low concentration of non-

zero spins from 29Si nuclei. The signi�cant limiter for conventional solid state spin

qubits (such as singlet-triplet qubits) is charge noise [34, 69]. Thus, this section will

focus on the in�uence of charge noise that a�ects J . The results will show that it is

desirable to keep the operating points far in negative detuning (∆ < 0) to minimise

decoherence of the qubits.

Qubit operations are controlled by changing ∆ to control the exchange J as
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shown in Sections 5.2 and 5.3. In this section, it is assumed that one is performing

Pauli-z rotations, where J � ∆Bz and ωp ≈ J . The noise source shall perturb

∆ as any source of charge noise will fundamentally manifest as a perturbation on

the dots' local electric �elds resulting in an experimentally measurable shift in the

detuning [17, 64, 197]. The electric �eld perturbation could be either due to noise

on the gates (producing the tilting electric �elds) or due to intrinsic charge �uctu-

ators within the crystal; nonetheless, the source and its characteristics is a topic of

ongoing research [18, 69]. This noise source shall be taken to be a Gaussian distribu-

tion14 centred about the target detuning ∆µ with a standard deviation `amplitude'

parameter ∆σ:

PZ(∆) = A0 exp

(
−(∆−∆µ)2

2∆2
σ

)
, (5.21)

where A0 parametrically normalises the distribution. Note if the noise standard

deviation ∆σ tends towards zero, one has a dirac-delta like frequency peak about

the intended detuning ∆µ, leading towards zero deviation in J as required for stable

and coherent gate operations. Now given this probability distribution in terms of ∆,

one may recast it in terms of J :

PZ(J) = A0 exp


−

(
J2−t2c

2J −∆µ

)2

2∆2
σ


 . (5.22)

The asymptotic forms away from zero detuning are:

PZ(J) ≈





A0 exp
(
− (J−2∆µ)2

2(2∆σ)2

)
∆µ � tc

A0 exp


−

(
J+

t2c
2∆µ

)2

2

(
tc

2∆2
µ

∆σ

)2


 ∆µ � −tc

. (5.23)

This provides an approximate functional upper bound that overestimates the spread

of the distribution. Although the asymptotic forms are approximated with Gaus-

sians, the original distribution is asymmetric (seen easily by noting that one maps

∆ ∈ [−∞,∞] to J ∈ [0,∞]). From the asymptotic approximations, it is clear that

the Gaussian standard deviation in J for working points on positive and negative

detunings are:

14If the actual noise distributed itself via a di�erent shape, one can tweak ∆σ to match the actual
distribution to ensure it overestimates the noise distribution, as the aim of this analysis is to give
an worst-case upper-bound while using a typical realistic distributions.
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Jσ ≈





2∆σ ∆µ � tc

tc
2∆2

µ
∆σ ∆µ � −tc

. (5.24)

Here Jσ represents the spread of Pauli-z precession frequencies one may expect if

taking an ensemble of many measurements. Since the inverse Fourier transform of

a Gaussian is a Gaussian, the resulting precession in the time-domain rotations will

have a decaying Gaussian envelope. The decay time-constant is the characteristic

coherence time T ∗2∼Jσ. At positive detunings (∆ > 0), the coherence time saturates

to a constant value as the gradient in J (that is, dJ/d∆), is constant. When going

deeper into negative detuning, the coherence time gets larger as the change in J with

respect to detuning tends to zero: dJ/d∆∼0. The gate �delity relates to the loss

in population due to decoherence; that is, the gate �delity relates to the number of

possible gates one may perform (at a rate given by the mean J) within the given

coherence time:

J

Jσ
≈





∆µ

∆σ
∆µ � tc

tc
∆σ

∆µ � −tc
. (5.25)

The �delity estimate implies that one may in fact, increase the gate �delity when

working away from zero detuning (either at positive or negative detuning). When

going further into positive detuning, the speed of the gate increases while the ex-

change noise standard deviation Jσ saturates to a constant value. Thus, one may

inde�nitely increase the gate �delity by going into positive detuning. However, ex-

perimental limitations limit the speed of J and thus, the maximum detuning ∆µ.

These experimental di�culties arise from the precise timing required for gate times

below 1 ns (the state of the art arbitrary waveform generator at the time of writing

this thesis was limited to 20 ps pulses). Whereas when working deeper into negative

detuning, the gate speed can remain slow enough to be experimentally feasible (as

∆ < 0 implies that J < tc = 5 GHz, the pulses can be made much slower than 200 ps)

and one may increase the tunnel coupling tc to increase the gate �delity. Larger

tunnel couplings give larger gate �delities as the desired J now appears deeper in

negative detuning where dJ/d∆ is smaller and thus, variations in J are smaller for

a given noise standard deviation ∆σ.

The intuition from the analytic formulation above was con�rmed with numerical

simulations of the gate �delities shown in Figure 5.13. The gate �delities were calcu-

lated numerically using the method described in Appendix F. The method �rst takes

a noise standard deviation ∆σ and a nominal choice in Jµ to construct the proba-
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Figure 5.13: Fidelity of a single-qubit Z gate as a function of exchange Jµ and
noise standard deviation ∆σ. The plot shows the worst-case Z gate �delities across
di�erent operating points Jµ and charge noise, given as the standard deviation in detuning,
∆σ. The parameters are normalised to the tunnel coupling tc. The dark lines signify the
contours for �delities of 95 %, 99.5 % and 99.99 %.

bility distribution of the precession frequency J given in Equation 5.22. It is noted

that one may normalise J and ∆σ conveniently in terms of the tunnel coupling tc to

reduce the parameter space. Given the spread in the precession frequency (that is,

the spread in J), one may take the inverse Fourier transform to obtain the decaying

cosine wave that represents the average loss in the coherence due to stochastic shot-

to-shot perturbations in the precession frequency J . The worst case Z gate �delity

was extracted from the decay at one full period of rotation to both conservatively

underestimate the π-rotation �delity and to get the idle qubit �delity. The idle qubit

�delity is a 2π Pauli-z rotation (or two Z gates) where the qubit performs an identity

operation.

Figure 5.13 shows the resulting �delities when varying the exchange J/tc and

noise standard deviation ∆σ/tc. Here Jµ is the precession frequency as expected

when setting the associated point in detuning ∆µ to perform the Pauli-z gate15.

The key feature is that at zero detuning (J = tc), the �delities dramatically drop.

As one traverses further into positive detuning, the saturation of the noise in J

and the increasing precession frequency yields a monotonic increase in the resulting

15Here Jµ is not necessarily the mean J given the distribution of J from the Gaussian spread in
∆. As one may not be necessarily sampling the true mean frequency in J , the �delity estimates
underestimate the gate �delity.
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�delities (as realised by the analytic asymptotic expressions for the gate �delities).

Similarly, as expected, at negative detuning (J < tc), the Z-gate �delities start to

increase. The 99.5 % contour represents a hard boundary in which devices must

satisfy by design and operation in order to satisfy the error thresholds for scalable

quantum computing qubit arrays.

Now considering the minimum tunnel coupling bound of ∼5 GHz (for a general

double quantum dot system measured in a typical dilution fridge), one would need

the detuning noise standard deviation ∆σ to be approximately 0.02tc = 400 neV

to work at zero detuning. To date, ∆σ has been experimentally measured to be

5µeV in GaAs [197], 6.4µeV in SiGe [17] and 2µeV in Si-MOS [64] quantum dots.

Although a recent experiment in Si-P reported a relatively large detuning noise

of ∼10µeV [198], the device operated close to voltages that would cause gate-to-

gate leakage. In general, the noise in Si-P has been shown to be lower given that

the P-donor qubits are embedded within an epitaxially grown bulk crystal far from

the surface where there may be charge traps due to the oxide interface [199]. In

addition, the smaller size of the qubits (12.5 nm as opposed to 70-100 nm of gate-

de�ned quantum dots [14]) should also provide lower noise given that any electric

�eld �uctuation from a source far away may not be necessarily di�erent across the

dots. That is, detuning noise requires a tilting of the dot's energy levels as op-

posed to raising or lowering both dots' energy levels simultaneously. In addition, the

noise from any charge �uctuations in the nearby gates in P-doped delta layers have

been measured to be much lower (3 orders of magnitude lower) compared to other

wires in semiconductor systems [199, 200]. Thus, P-donor dots should approach the

theoretical prediction of the background detuning noise in silicon of approximately

100-1000 neV [18, 201, 202]. Although 400 neV is above the theoretical minimum,

it would be advisable to set J to negative detuning to obtain higher �delities. For

example, if one sets J = 0.1tc = 1 GHz, the allowable charge noise to obtain 99.5%

�delity is approximately ∆σ = 0.1tc ≈ 2µeV.

5.3.4 Summary

The discussion of single-qubit operation sets important experimental bounds on the

choice of device parameters operating conditions. These key concepts include:

� The tunnel coupling should not exceed 10 GHz as typical values of ∆Bz =

29 MHz (estimated for a 1P-2P double quantum dot) and ∆α = 5% (typical

control gate di�erential lever-arms for the proposed singlet-triplet architecture)

yield voltage pulses of −140 mV to perform a Hadamard gate (the pulses need
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to be larger to reach J ≈ 0). The voltage range is limited by the equipment

to approximately ∼± 0.5 V if using a typical waveform generator fed through

attenuated coaxial cables in a dilution fridge. It is also limited by the device

since large pulses of ±1 V will likely cause gate-to-gate current leakage.

� The minimum J is approximately 810 MHz (given that ∆Bz = 29 MHz) if one

wishes to produce Pauli-z gates with 99.5% accuracy.

� Typical operation for maximal Pauli-z gate �delity would involve setting the

qubits to negative detuning. Negative detuning o�ers a smaller �uctuation in

J for a given �uctuation in the detuning (that is, a small dJ/d∆).

� High-�delity (greater than 99.5%) Pauli-z gates should be possible given typical

detuning noise. For example, if one takes tc = 5 GHz and sets J = 0.1tc =

1 GHz, the detuning noise needs to be below ∆σ = 0.1tc ≈ 2µeV.

5.4 Two-Qubit gates on Si-P Singlet-Triplet qubits

The mainstream proposal for two-qubit gates amongst singlet-triplet qubits in the

literature utilises electric dipole couplings also termed `capacitive coupling' [14, 34,

42, 203]. Here the basic concept is that the triplet state always remains in a (1, 1)

charge state with respect to detuning ∆, while the singlet state can change between

charge states s11 and s02 with respect to ∆. This means that above zero detuning

(∆ > 0), a singlet-state will have most of its electric charge transferred onto a

single dot, while for the same detuning, a triplet t0 state will have both electrons

occupying separate dots. The di�erence in charge state on the `control' qubit will

have a state-dependent di�erence in electric �eld on a second `target' qubit. If

con�gured correctly, this electric �eld can manipulate the ∆ of the `target' qubit to

either precess faster along the z-axis or change its gate type from Pauli-z to a Pauli-x

gate. The advantage of the electric-dipole induced two-qubit gate (adopted in the

proposals in this thesis) is that the individual double dots forming the singlet-triplet

qubits may be spaced far apart (more than an order of magnitude further than the

individual dot-to-dot separation distance within a single singlet-triplet qubit). Thus,

the method is conducive for a scalable architecture as the routing of control lines is

less di�cult since the qubits are not so tightly packed.

The two-qubit gates discussed and later optimised in this chapter utilise DC

pulsing in the presence of large inter-qubit couplings (as opposed to the preturbative

inter-qubit couplings required for AC-driven singlet-triplet qubits operating at J∼0)
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to realise faster high-�delity two-qubit gates. Note that from previous works [34, 35],

a perturbative inter-qubit coupling, conducive with AC-driven singlet-triplet qubits,

in P-donor qubits can be realised by spacing the double-quantum-dots more than

120 nm apart as discussed in Section 2.3.

There is also a two-qubit gate proposal that utilises direct exchange between all

four quantum dots forming the two singlet-triplet qubits [204]. Although this method

promises faster gates, not only must it handle the higher probability of entering

leakage states (that is, not in the s0-t0 subspace) but the fact that the dots must

be exchange coupled implies that the double-dot singlet-triplet qubits need to be in

close proximity (in the order of the individual dot-to-dot separation distance within

a single singlet-triplet qubit). Such strongly coupled exchange-based singlet-triplet

qubits are not considered in the large scale architecture proposals in this thesis.

5.4.1 CZ Gate

The CZ gate performs a Pauli-z rotation (by angle π) on the target qubit conditional

on the state of the control qubit. The two qubits, control and target, are initially

biased such that J � ∆Bz; that is, performing a Pauli-z gate at the same frequency

(thereby performing a mere identity operation every full rotation about the z-axis).

Figure 5.14 shows how when biasing the control qubit towards positive detuning,

the control qubit remains in the remains in the (1, 1) charge state if in the triplet t0

state (a) due to Pauli-spin blockade. However, if the control qubit is in the singlet

s11 state (b), it may enter the (0, 2) charge state via s02. On the target qubit, there

is no change if the control qubit is in the triplet t0 state. However, if the control

qubit is in the singlet s02 state, the target qubit's detuning shifts to a point of higher

J and thus, a faster z-axis precession frequency. Thus for example, if one tunes this

shift in J to double the precession frequency, then on waiting for a π z-axis rotation

(with the control qubit in the t0 state) would become an identity operation with the

control qubit in the s0 state as the rotation angle will be 2π. The resulting gate

operation is a CZ gate where the target qubit undergoes a π rotation about the

Pauli-z axis conditional on the control qubit being in the triplet t0 state.

Ultimately for the CZ gate one needs to �nd the optimal choice in physical (tunnel

coupling and inter-qubit coupling set by geometry upon fabrication) and operational

parameters (exchange J on the qubits tuned by the voltages set on the gates) to

maximise the two-qubit gate �delity. The operation of a CZ gate depends on the

following parameters (the optimal choice in the parameters for Si-P will be found in

the end of the noise analysis in Section 5.4.2):
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(a) CZ-Gate with control qubit in the triplet t0 state.

t−

t+

t0

s02s11

s02 s11

∆

E

t−

t+

t0

s02s11

s02 s11

∆

E

Control Target

t−

t+

t0

s02s11

s02 s11

∆

E

t−

t+

t0

s02s11

s02 s11

∆

E

Control Target

x y

|t0〉

|s0〉
J = J0

(b) CZ-Gate with control qubit in the singlet s0 state.
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Figure 5.14: CZ gate for electric-dipole coupled singlet-triplet qubits. The energy
diagrams (see Figure 5.12) and double-dots (red dots representing the two electrons forming
each singlet-triplet qubit) represent the individual singlet-triplet qubits: the control and
target qubits. To activate the gate, the control qubit is biased towards the region of positive
detuning, where a triplet t0 remains in the (1, 1) charge state as shown in (a), while the
singlet enters the (0, 2) charge state (via s02) as shown in (b). A control qubit in the singlet
state causes the target qubit's detuning to shift and subsequently its exchange J increases
from J0 to 2J0. For a �xed time, this greater J causes a faster rotation, which if tuned right
can yield an identity operation on the target qubit if the control qubit is a singlet and a
Pauli-z �ip if the control qubit is a triplet t0. The Bloch spheres represent the operation
performed on the target qubit with the red arrow representing the target qubit's J while
the blue arrow represents its ∆Bz vector.
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� Idle-qubit exchange Jt (set by idle-qubit detuning ∆t). The qubits in their

default idle state (and thus, the target qubit's initial state) is when J = Jt �
∆Bz.

� Control-qubit exchange Jc (set by control-qubit detuning ∆c). The exchange

to which one sets on the control qubit to initiate the two-qubit coupling to run

the CZ gate.

� Inter-qubit coupling ∆∆. The shift in the target qubit's detuning when com-

pletely moving the control qubit from (1, 1) to (0, 2) charge states. Note that

the actual shift in the target qubit's detuning is p02 · ∆∆ (where p02 is the

fractional probability of being in the (0, 2) charge state as given in Equation

5.28).

Now when a CZ gate is performed between two qubits, one biases the control and

target qubits to Jc and Jt respectively, where if the control qubit were in the singlet-

state, the target qubit becomes biased at Jt + ∆J . Thus, as one waits a certain

period of time τ , the target qubit will accumulate phase at a di�erent rate with the

relative di�erence in phase being (taking Equation 5.14 for the qubit z-precession

frequency):

∆υz =
Jt + ∆J

~
τ − Jt

~
τ =

∆J

~
τ. (5.26)

When the relative phase is π, then the gate is a CZ gate where one waits τCZ:

τCZ =
h

2∆J
. (5.27)

Before calculating ∆J , one needs to �nd the shift in the target qubit's detuning via

∆∆. The shift in the target qubit's detuning only occurs when the control qubit is

in the singlet s02 charge state. One can estimate the net shift to be p02 ·∆∆, where

p02 is the fraction of the control qubit in the s02 state [42]. One can �nd the fraction

of the control qubit in the singlet s02 charge state via the eigendecomposition given

in Equation 5.9:

p02 =
1

2
+

∆

2
√
t2c + ∆2

≡ J2

J2 + t2c
. (5.28)

Evidently at zero detuning, the dipole strength will be a half, maximal at an in-

�nite positive detuning and nulli�ed at in�nite negative detuning. The change in

exchange ∆J due to the shift in the target qubit's detuning can be calculated from

the de�nition of J in Equations 5.10:
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∆J =

(
∆t + p02∆∆ +

√
(∆t + p02∆∆)2 + t2c

)
−
(

∆t +
√

∆2
t + t2c

)
. (5.29)

That is, the shifted value of J is at the detuning ∆t + p02∆∆ where p02 is a scaling

factor that determines the probability proportion of the control qubit in the (0, 2)

charge state. Since, p02 is a function of Jc, one may rewrite the target qubit's

exchange interaction in terms of Jc (noting tunnel-coupling normalised parameters:

∆J ′ = ∆J/tc, J
′
c = Jc/tc, ∆′t = ∆t/tc and ∆′∆ = ∆∆/tc):

∆J ′ =
J ′c

2

J ′c
2 + 1

∆′∆ +

√√√√1 +

(
J ′t

2 − 1

2J ′t
+

J ′c
2

J ′c
2 + 1

∆′∆

)2

− J ′2t + 1

2J ′t
(5.30)

The equation for ∆J ′ gives the relative speed of the gate given J ′c, J
′
t and ∆′∆.

Figures 5.15a-c show the gate speeds for di�erent inter-qubit couplings as a func-

tion of exchange on the control and target qubits. For all inter-qubit couplings,

the larger CZ gate speeds appear at positive detuning on the control qubit (that is,

Jc & tc) as one needs to be near positive detuning where the control qubit starts to

enter the s02 charge state to activate the electric dipole required to trigger the CZ

gate.

To interpret the trends in Jt consider an activated CZ gate where Jc > 1. At

negative detuning on the target qubit (Jt � 1), the variation in J with respect to

the target qubit detuning dJ/d∆t is small resulting in a small ∆J when shifting from

∆t to ∆t + p02 ·∆∆. At positive detuning on the target qubit (Jt � 1), the target

qubit exchange linearly increases to result in a constant dJ/d∆t. Thus, at positive

detuning, the gate speed ∆J is constant when shifting from ∆t to ∆t + p02 ·∆∆.

For larger inter-qubit couplings (such as ∆∆ = tc and ∆∆ = 10tc in Figures

5.15b-c), the gate speeds start to saturate to the maximum speed at Jt < 1 as the

larger jump in detuning enables a large change in the target qubit exchange. That

is, the larger ∆J occurs when shifting from Jt ≈ 0 at negative detuning to Jt � 0

at positive detuning. Finally, since Jt monotonically increases with detuning ∆t, a

larger inter-qubit coupling enables a larger change in Jt and thus, gate speeds in

general increase with larger inter-qubit couplings as seen by the scale-bars in Figures

5.15a-c. As with the analysis of Pauli-z gate �delities, the area of maximum gate

speed does not guarantee maximal gate �delities when considering the presence of

charge noise.
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Figure 5.15: CZ gate speeds as a function of control qubit exchange Jc, target
qubit exchange Jt and inter-qubit coupling ∆∆. The plots (a)-(c) show the CZ gate
speeds, for di�erent inter-qubit couplings ∆∆, normalised to the tunnel coupling: ∆J/tc
(note the di�erent colour scales: 0.15, 1.5 and 15). Each plot shows the CZ gate speed as a
function of the control and target qubit exchange (both normalised to the tunnel coupling).
The CZ gate speed is close to zero for Jc < 1 as the CZ gate is inactive (as the control qubit
is biased in negative detuning and thus, in the s11 state). The CZ gate speed only becomes
non-zero when Jc > 1 (to activate the gate) and when there is an appreciable change in
Jt when shifting the target detuning by p02∆∆ (dJt/d∆t∼0 at far negative detuning). The
general trend is that the CZ gate speed increases when increasing both Jc and Jt.
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Figure 5.16: The ability to turn o� the CZ gate by observing the phase accumu-
lation υt from unintentional CPHASE gates on adjacent qubits. The plot shows the
phase accumulation (over one full rotation at frequency Jidle) υt in radians, given in Equa-
tion 5.31, of a qubit due to an unintentional CHPASE gate with an adjacent qubit. A small
phase accumulation implies a greater ability to switch o� the CZ gate as the qubit remains
idle without accumulating any Pauli z-axis phase due to the state of adjacent qubits. The
phase accumulation is plotted against the idle point of exchange Jidle � ∆Bz and the shift
in qubit detuning ∆∆ when the adjacent qubit is in the (0, 2) charge state as opposed to
the (1, 1) charge state. Both parameters are normalised to the tunnel coupling tc. The dark
lines signify the contours for idle qubit �delities (that is, a measure of the qubits retaining
their initial state) of 95 % and 99.5 %. Note that the diagram takes the shift in detuning
(when the adjacent qubit enters the (0, 2) charge state) to be from ∆ to ∆ + p02 ·∆∆. For
∆∆ < 0, one simply waits at the idle ∆ + |∆∆| to be shifted to ∆ to result in the same
phase accumulation listed on the plot.
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However, before investigating the in�uence of charge noise (to �nd the appropri-

ate choices in Jc, Jt and ∆∆) in Section 5.4.2, it is important to realise the conditions

in which the CZ gate may be completely toggled on and o�. Now consider a set of

many singlet-triplet qubits in the quantum processor. If the qubits were in the idle

state, there should be no change in local qubit populations. Thus, one nominally

places the qubits in the Paul-z rotation regime (J � ∆Bz). All idle qubits must

be tuned to the same frequency Jidle as any di�erences in the precession frequency

results in an unintentional Pauli-z gate. To ensure no spurious gate, let alone entan-

gling, operations occur, one must choose a qubit biasing position where no inter-qubit

interactions are present. However, electric dipoles (used for the CZ gate) of other

qubits will shift the detuning in adjacent qubits to an exchange away from Jidle and

thereby initiate local CPHASE gates (a phase rotation on the target qubit dependent

on the control-qubit-state). Since the induced CPHASE gate will accumulate phase

at the speed ∆J , the unintentional CPHASE rotation on the target qubit over one

qubit Pauli-z rotation (at speed Jidle) is:

υt
2π

=
∆J

Jidle
=

J ′

1 + J ′2
∆′∆ −

1 + J ′2

2J ′2
+

1

J ′

√
1 +

(
J ′2 − 1

2J ′
+

J ′2

1 + J ′2
∆′∆

)2

(5.31)

where J ′ ≡ Jidle/tc and ∆′∆ = ∆∆/tc. Figure 5.16 shows a plot of the phase ac-

cumulation of the unintentional CPHASE gates for di�erent Jidle and inter-qubit

couplings ∆∆. The sensitivity to nearby qubits' electric-dipoles drops as one moves

deeper into negative detuning (Jidle � tc). That is, even at strong electric-dipole

strengths, the state-dependent shift in detuning ∆∆ causes too small a change in

Jidle to result in signi�cant phase accumulation. Similarly when traversing deep into

positive detuning (Jidle � tc), Jidle increases rapidly such that the percent change in

Jidle due to the shift in detuning ∆∆ is once again too small to result in phase accu-

mulation per single rotation at Jidle. In general having larger inter-qubit couplings

requires one to set the idle qubit Jidle to be further into negative detuning Jidle = 1

(as positive detuning yields Pauli-z precession frequencies too fast for the voltage

pulse generators to track as discussed Section 5.3.4).

The unintentional CPHASE gate will not impact target qubits if the target qubit

state is purely in either singlet or triplet-t0 (as a Pauli-z rotation will not change the

state). The worst case impact of the unintentional CPHASE gate will be when the

adjacent qubit is in a state perpendicular to the Pauli-z axis, in which case the idle

qubit �delity (that is, the drop in �delity due to an intentional phase accumulation
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taking the qubit away from its initial state) is:

Fidle = cos2
(υt

2

)
. (5.32)

For the adjacent qubit to remain in the initial state to within 95% and 99.5% �-

delity, the CPHASE must not accumulate above 25.8◦ and 8.1◦ respectively. Figure

5.16 plots the 99.5% and 95% idle qubit �delity contours. The 99.5% contour (at

Jidle < 1), for a given inter-qubit coupling, presents the minimum operating point

in exchange for all qubits to ensure that the unintentional CPHASE gate does not

move the adjacent qubits' states away from their initial states to within 99.5% �-

delity. For example, in a Si-P device, if the tunnel coupling were 5 GHz, and the

inter-qubit coupling was 0.035tc = 175 MHz (like the perturbative tunnel couplings

seen in GaAs experiments [14]), then one may set the idle qubit exchange freely

without worrying about loss in �delity (below 99.5%) due to unintentional CPHASE

gates. If the inter-qubit coupling was however, above 5 GHz, then one must set the

idle qubit exchange below approximately Jidle < 0.23tc = 1.15 GHz. Similarly, if

the inter-qubit coupling were 40 GHz, then the idle qubit exchange must be below

Jidle < 0.11tc = 550 MHz to avoid unintentional CPHASE gates.

5.4.2 Impact of charge noise on CZ gate �delities

With the CZ gate speed given by ∆J , one may investigate the in�uence of charge

noise on the two-qubit gate �delities. The two-qubit gate �delity is taken as the

product of the control and target qubit �delities. Thus, the investigation of the CZ

gate-�delity is broken up into two contributing elements:

� Fc - gate �delity of Pauli-z rotations on the control qubit under the presence

of charge noise (local to the control qubit) perturbing the value of Jc.

� Ft - gate �delity of Pauli-z rotations on the target qubit under the presence

of charge noise perturbing the value of Jt + ∆J . Here, the charge noise is

due to two sources. The �rst source is local charge noise on the target qubit

perturbing the value of Jt. The second source is the local charge noise on the

control qubit (that is, charge noise on Jc) perturbing the value of ∆J .

Note that the charge noise on the control and target qubits are assumed to be

independent (that is, uncorrelated noise) with a Gaussian noise standard deviation

∆σ. If the noise were correlated (that is, any perturbations on the control qubit is

applied equally on the target qubit), then one can exploit standard echoing techniques
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to enhance the gate �delity [14, 39]. In the following numerical simulations, Fc and

Ft are calculated numerically assuming the worst case scenarios to �nd a lower-

bound estimate on the overall �delity (with the intent to create a more robust design

that maximises the worst-case �delities). In addition, the numerical simulations

may leave the qubits in a di�erent phase (as the simulations simply consider the

optimal pathway that yields a π phase shift on the target qubit conditional on the

control qubit state); thus, one will need to apply high-�delity corrective single-qubit

rotations to compensate.

This section will �rst calculate the CZ gate �delities for a variety of operating

points for the control and target qubit exchanges (Jc and Jt) and inter-qubit cou-

plings ∆∆ (both positive and negative). The results will then be put in the context of

Si-P dots to �nd the optimal choices in Jc, Jt, ∆∆ and the inter-dot tunnel coupling

tc.

Charge noise local to the control qubit: Fc

The �rst factor for the CZ gate �delity is Fc due to local noise on the control qubit.

Here, the control qubit precesses about the Pauli-z axis over the duration of the

CZ gate and will decohere as single-qubit Pauli-z gate rotations. The simulations

are identical to that used to gauge the gate �delities of Pauli-z rotations in Section

5.3.3. However, the time waited for the gate, is taken to be that of the CZ gate

time given by ∆J (for the choice of exchange on the control Jc and target Jt qubits).

Figure 5.17a shows the control qubit �delities across a range of Jc and Jt for ∆∆ = tc

and ∆σ = 0.01tc. There appears to be a monotonic increase in the �delities when

increasing the target qubit exchange Jt. One may interpret this as a shortening of

the gate time (as seen by the increasing speed on moving to larger Jt in Figure 5.15)

counteracting the larger J-noise at positive detunings (Jt > 1). There is also a partial

increase in the �delities on moving towards positive control qubit exchange Jc (as

seen by the curving down of the 99.5% �delity contour at Jc > 1), which once again

can be attributed to larger gate speeds on increased CZ gate activation. That is, p02

tends to unity for large Jc � 1 (in positive detuning) as there is a larger proportion

of the control qubit in the (0, 2) charge state. Although Figure 5.15 shows that the

gate speed decreases when moving to negative control qubit detunings (Jc < 1), the

control qubit's resistance to charge noise in negative detuning due to the smaller

dJc/d∆c (as described in Section 5.3.3 in the context of Pauli-z gates) still yields a

high control qubit �delity.

The 99.5% contour in Figure 5.17a highlights the boundary for a fault-tolerant
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(a) Fidelity for ∆∆ = tc and ∆σ = 0.01tc
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(d) Fidelity for ∆∆ = −tc and ∆σ = 0.01tc
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Figure 5.17: Fidelity of the control qubit (Fc) when performing a CZ gate. All
plots are taken over exchange on the control and target qubits (Jc and Jt). (a) Contour plot
of the control qubit �delities (with the 95% and 99.5% contours highlighted). Fault tolerant
�delities are found above the 99.5% line at higher values of Jt. (b)-(c) Plots showing the
99.5% contour, shown in (a), for di�erent noise amplitudes ∆σ/tc (as labelled on the lines).
Higher inter-qubit couplings ∆∆ push the 99.5% contours deeper into negative detunings on
both the control (Jc < 1) and target (Jt < 1) qubits. (d)-(f) Same plots as in (a)-(c) but
with negative inter-qubit couplings.
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control qubit. For Jt above the contour the control qubit �delity is larger than 99.5%

(as indicated by the 95% contour below the 99.5% contour for reference). With the

knowledge that the 99.5% contour shows the minimum Jt one may reach for fault

tolerance, it is useful to investigate the trend in the 99.5% contour over di�erent

inter-qubit couplings and noise amplitudes. Figures 5.17b-c show the 99.5% contour

lines for di�erent inter-qubit couplings ∆∆/tc (across the plots) and noise-amplitudes

∆σ/tc as shown by the labelled lines. Note that the lines indicate the minimum Jt

boundary whereupon one still achieves fault-tolerance. Clearly on increasing the

inter-qubit coupling, the 99.5% contour lines move downwards into more negative

detuning (Jt < 1) on the target qubit. Similarly, the increased �delity trend across

Jc, seen in Figures 5.17a, becomes more exaggerated as seen by the lines curving

downwards further into negative target qubit detuning (Jt < 1) in Figures 5.17c

for ∆∆ = 4tc. Note that although the faster gate speeds yield higher �delities for

Jc � 1, the gate speeds may become too fast for the waveform generators similar to

the discussion of Pauli-z gates in Section 5.3.3.

Figure 5.17d shows the same plot as in Figure 5.17a, but with a negative inter-

qubit coupling ∆∆ = −tc. That is, when the control qubit moves into a singlet

state, the target qubit shifts to a lower detuning. The functional trend appears to

be similar at Jc � 1. However, the �delities decrease on increasing Jc as seen by

the curving up of the 99.5% �delity contour. One may attribute the lower �delity to

the smaller change in ∆J for the same Jt when shifting to a lower value of detuning

as opposed to shifting to a higher value of detuning as with a positive inter-qubit

coupling. Figures 5.17e-f similarly highlight the same trend where at Jc � 1, one

needs to operate at a higher Jt to access the region of fault-tolerant control qubit

�delities (for a given detuning noise amplitude). Since the gate times may become

too fast to experimentally realise in positive detuning (Jc > 1), one will typically

operate in negative detuning where the control qubit appears to have similar �delities

for both the positive and negative inter-qubit couplings.

Charge noise on the target qubit: Ft

The second factor for the CZ gate �delity is Ft. Here, the decoherence due to

local noise on the target qubit and the local noise on the control qubit (resulting in

noise on p02∆∆) are both considered. As shown in Appendix F, the gate �delities

can be found from the probability distribution of the precession frequencies N(ω).

One �nds N(ω) by �rst computing the probability distribution of detunings on the

target qubit ∆′t and then converting it into the associated distribution in J . The
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(a) Fidelity for ∆∆ = 4tc and ∆σ = 0.04tc
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(d) Fidelity for ∆∆ = −4tc and ∆σ = 0.04tc
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Figure 5.18: Fidelity of the target qubit (Ft) when performing a CZ gate. All
plots are taken over exchange on the control and target qubits (Jc and Jt). (a) Contour plot
of the control qubit �delities (with the 95% and 99.5% contours highlighted). Fault tolerant
�delities are found above the 99.5% line at higher values of Jc. (b)-(c) Plots showing the
99.5% contour, shown in (a), for di�erent noise amplitudes ∆σ/tc (as labelled on the lines).
Higher inter-qubit couplings ∆∆ push the 99.5% contours deeper into negative detunings on
the target qubit. (d)-(f) Same plots as in (a)-(c) but with negative inter-qubit couplings.
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probability distribution of the target-qubit detuning due to local noise (on the target

qubit) is once again treated as a Gaussian distribution about target qubit detuning

∆′t ≡ ∆t/tc to get a set of points:

Nlocal(∆
′
(t)) ∼

(
∆′(t), PG(∆′,∆′t,∆

′
σ)
)
, (5.33)

where PG(∆′(t), µ, σ) is a normal distribution with mean µ and standard deviation

σ. Note that ∆′(t) represents a varying parameter across the target qubit detuning

(divided by the tunnel coupling), ∆′t represents the nominal mean value one sets on

the target qubit detuning and ∆′σ ≡ ∆σ/tc is the noise standard deviation. To �nd

the probability distribution on the target qubit due to noise from the control qubit,

one starts with a normal distribution of points representing the detuning �uctuations

on the control qubit:

Ninter(∆
′
(c)) ∼

(
∆′(c), PG(∆′(c),∆

′
c,∆

′
σ)
)
. (5.34)

Note that ∆′(c) represents a continuous parameter along the control qubit detuning

(divided by the tunnel coupling) while ∆′c ≡ ∆c/tc represents the nominal mean

value one sets on the control qubit detuning. From Equation 5.28, one may convert

the detuning ∆′(c) into points in the target qubit's detuning ∆′(t) (that is, the resulting

shifts in the target qubit's detuning) via p02∆′∆ (where ∆′∆ ≡ ∆∆/tc):

∆′(t) =


1

2
+

∆′(c)

2
√

1 + ∆′2(c)


∆′∆ (5.35)

to get the distribution of noise �uctuations on the target qubit due to the control

qubit:

Ninter(∆
′
(t)) ∼

(
∆′(t), PG(∆′(c),∆

′
c,∆

′
σ)
)
. (5.36)

Now given the two distributions, one needs to combine them to get the net �uctua-

tions on the target qubit's detuning. Noting that the probability distribution of the

sum of two random variables16 is the convolution, one may �nd the net probability

distribution of the target qubit's detuning via:

Ntarget(∆
′
(t)) = Nlocal(∆

′
(t)) ∗Ninter(∆

′
(t)) (5.37)

16In this case Nlocal is a probability distribution centred on ∆′t with a spread due to charge noise
local to the target qubit, while Ninter is centred on p02∆′∆ with a spread due to charge noise local on
the control qubit. Adding the two distributions yields a new distribution centred on ∆′t + p02∆′∆,
with the combined spread of Nlocal and Ninter.
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where the convolutions were taken numerically from the interpolated probability

distributions. Given the distribution across ∆′(t), one may �nd the distribution in

the target qubit's exchange J by taking ∆′(t) +
√

1 + ∆′2(t) and subsequently calculate

the target qubit �delities as shown in Figure 5.18. Note that to calculate the worst-

case �delities, the initial state on the target qubit is taken to be perpendicular to the

Pauli-z axis. During the CZ gate, the target qubit may precess in two modes where

the target qubit's exchange is either Jt (when control qubit is t0) or Jt + ∆J (when

control qubit is s0). When the control qubit is t0, the noise on the target qubit is

only given by Nlocal(∆
′
(t)) as the control qubit remains in the (1, 1) charge state to

result in no inter-qubit detuning shift on the target qubit. When the control qubit is

s0, the noise on the target qubit is given by Ntarget(∆
′
(t)). To obtain the worst-case

CZ gate �delity, the numerical simulations in Figure 5.18 take the minimum �delity

of the two possible cases (for every point in Jc and Jt).

Figure 5.18a shows the target qubit �delity as a function of Jc and Jt for a positive

inter-qubit coupling ∆∆ = 4tc and detuning noise amplitude ∆σ = 0.01tc. There is

a general monotonic increase in the target qubit �delity on increasing Jc as seen by

the 95% and 99.5% �delity contours. One can attribute the �delity increase to the

faster gate speeds resulting in the full activation of the CZ gate (that is, bringing

the control qubit into a more s02-like state to realise a stronger shift on the target-

qubit's detuning). A more subtle feature is the �delity minima across Jt similar to

that seen with the �delity of single-qubit Pauli-z gates in Figure 5.13. Here, the

minimum is formed at Jt < tc because Ntarget(∆
′
(t)) dominates when the inter-qubit

shift places the target qubit exchange at Jt + ∆J near at the zero-detuning point

(Jt = 1) where single-qubit Pauli-z gate �delities are minimal. Figures 5.18b-c show

the 99.5% contours (which indicate the minimum Jc to which one can realise a fault-

tolerant target-qubit) as a function of the inter-qubit coupling across the plots and

the detuning noise amplitude as shown by the labelled lines within the plots. A

clear feature is that on increasing the inter-qubit coupling (here from ∆∆ = 0.5tc to

∆∆ = 4tc), the 99.5% �delity contours move to lower values of Jc. In addition, the

point in which the 99.5% �delity contour curves across Jc (due to a �delity minimum

across Jt) shifts to a lower value of Jt corresponding to the point where Jt + ∆J is

near zero-detuning.

Figure 5.18d shows the same target qubit �delity plot as in Figure 5.18a but

for a negative inter-qubit coupling ∆∆ = −4tc. There is still an overall monotonic

increase in the target qubit �delity with increasing Jc (as seen by the 95% and

99.5% contours). However, the target qubit �delity minimum (across Jt) now occurs

at zero detuning because Nlocal(∆
′
(t)) dominates Ntarget(∆

′
(t)) at zero detuning as
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Jt+∆J shifts the target qubit deep into negative detuning where single-qubit Pauli-

z gates operate at a high �delity. Figures 5.18e-f show the trend in the 99.5% �delity

contours (which once again signi�es the minimum Jc in which one can obtain fault-

tolerant target qubit �delities) as a function of di�erent inter-qubit couplings (across

the plots) and detuning noise as shown by the labelled lines in the plots. Once

again, a larger magnitude in the inter-qubit coupling (here from ∆∆ = −0.5tc to

∆∆ = −4tc) pushes the 99.5% �delity contours to lower values of Jc. The �delity

minimum across Jt however, remains close to zero detuning as seen by the 99.5%

�delity contours curving away at Jt∼tc.

Total impact of charge noise on the CZ gate

The overall CZ gate �delity is taken to be the product of the worst-case control qubit

and target qubit �delities:

FCZ = FcFt (5.38)

The CZ gate �delities are plotted in Figure 5.19. Figure 5.19a shows the CZ �delity

as a function of Jc and Jt for a positive inter-qubit coupling ∆∆ = 4tc and detuning

noise amplitude ∆σ = 0.04tc. Clearly, staying deep in negative detuning on either

of the two qubits (Jc < 1 and Jt < 1) yields poor CZ gate �delities due to the gates

being too slow in overcoming the decoherence rates. Note that the bottom-left patch

of 25% �delity is due to 50% gate �delities in both the target and control qubits as

seen in Figures 5.17 and 5.18. Similarly, the top-left and bottom-right patches of

50% are due to the 50% �delity in the target and control qubits respectively. There

is nonetheless, a monotonic increase in FCZ when increasing Jc and Jt as seen by

the 95% and 99.5% �delity contours. The trends in the 99.5% �delity contour lines

(here bounding the region of fault-tolerant operation to the upper-right quadrant)

are shown in Figures 5.19b-c as a function of inter-qubit coupling (across the plots)

and the detuning noise as shown by the labelled lines in the plots. A clear feature

seen on increasing the inter-qubit coupling (here from ∆∆ = 0.5tc to ∆∆ = 4tc), is

that the 99.5% �delity contours move to lower values of Jc and Jt.

Figure 5.19d shows the same plot as in Figure 5.19a, but with a negative inter-

qubit coupling ∆∆ = −4tc. Once again, there is a monotonic rise in FCZ with

increasing Jc and Jt. Figures 5.19e-f show the trends in the 99.5% �delity contour

lines (once again bounding the region of fault-tolerant operation to the upper-right

quadrant) as a function of inter-qubit coupling (across the plots) and the detuning

noise as shown by the labelled lines in the plots. On increasing the magnitude of
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(a) Fidelity for ∆∆ = 4tc and ∆σ = 0.04tc
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(c) ∆∆ = 4tc
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(d) Fidelity for ∆∆ = −4tc and ∆σ = 0.04tc
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(f) ∆∆ = −4tc
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Figure 5.19: Total CZ gate Fidelity (FCZ) due to charge noise. All plots are taken
over exchange on the control and target qubits (Jc and Jt). (a) Contour plot of the control
qubit �delities (with the 95% and 99.5% contours highlighted). Fault tolerant �delities are
found above the 99.5% line at higher values of Jc. (b)-(c) Plots showing the 99.5% contour,
shown in (a), for di�erent noise amplitudes ∆σ/tc (as labelled on the lines). Higher inter-
qubit couplings ∆∆ push the 99.5% contours deeper into negative detunings on the target
qubit. (d)-(f) Same plots as in (a)-(c) but with negative inter-qubit couplings.
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the inter-qubit coupling (here from ∆∆ = −0.5tc to ∆∆ = −4tc), the 99.5% �delity

contours move to lower values of Jc and Jt. A key di�erence when compared against

the positive inter-qubit coupling of ∆∆ = 4tc in Figure 5.19c is that the regions of

99.5% fault-tolerant operation are concentrated along the Jc = Jt line (rather than,

for example, regions of low Jt and high Jc or vice versa).

Impact on CZ gate �delities on the device parameters

Given the trends in the CZ gate �delities (as a function of Jc, Jt, ∆∆ and ∆σ), it is

now possible to identify and optimise critical device parameters (both a�ecting the

geometry and experimental device operation) such as the tunnel coupling tc and the

inter-qubit coupling ∆∆. One may utilise the plots of the 99.5% �delity contours in

Figure 5.19 with additional overlays to account for the feasibility of operating under

di�erent inter-qubit couplings as shown in Figure 5.20:

� Preventing unintentional CPHASE gates (red) - overlay shows regions where

the target-qubit would trigger unintentional CPHASE gates with its adjacent

qubits (as discussed in Section 5.4.1). That is, assuming that all the qubits are

coupled with the same inter-qubit coupling ∆∆, setting too high a Jt on the

target qubit will trigger unintentional CPHASE gates on all adjacent qubits.

Since unintentional CPHASE gates are undesirable, the operating points (Jc

and Jt) must be outside the red region.

� Preventing pulses from being too fast for current waveform generators (grey

ruled lines) - overlay shows regions where the gate times are below 20 ps. The

gate times (and thus, the voltage pulse times) were calculated via the equation

for ∆J for a nominal tunnel coupling of 5 GHz. In the ruled region, the pulse

generators will need to output detuning pulses faster than the best waveform

generators. The dashed line indicates the boundary in which operating points

above it (in the top-right quadrant) require pulse widths less than 1 ns (easily

achieved with waveform generators).

Noting the minimum tunnel coupling of 5 GHz set to prevent thermal excitations

destroying the singlet-triplet qubit (as discussed in Section 5.2.4), if the noise ampli-

tude is 1% of the tunnel coupling (that is, ∆σ = 0.01tc), then the resulting noise is

200 neV. Since this noise amplitude is extremely close to the theoretical minimum of

100 neV predicted in previous papers for silicon [18, 201, 202], at a bare minimum,

one should select qubit operating points where the maximum allowable noise ∆σ is

well above 0.01tc. That is, one needs the 99.5% �delity contours for larger noise
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(c) ∆∆ = 6tc
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(d) ∆∆ = 10tc
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(e) ∆∆ = −10tc
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Figure 5.20: Finding the optimal choice of ∆∆ that is most resistant to charge
noise. (a)-(e) are plots of the 99.5 % CZ gate �delity boundary contours as a function of
the control and target qubit exchanges (Jc and Jt) for di�erent inter-qubit couplings ∆∆.
The solid contour lines (plotted for di�erent noise amplitudes ∆σ/tc) represent the boundary
enclosing regions (the top-right quadrant) where the CZ gate �delity exceeds 99.5%. Thus,
lower noise amplitudes ∆σ enclose larger regions. The red region indicates restricted regions
where the target qubit will start inadvertently forming two-qubit gates with adjacent qubits.
The grey ruled region (bound by the dotted line) is a restricted domain where voltage pulses
are too fast (quicker than 20 ps) given the current state of the art equipment (for a minimal
tunnel coupling of 5 GHz). The dashed lines enclose a region where the voltage pulses are
shorter than 1 ns. (c) shows the best operating regime with ∆∆ = 6tc as one can access
feasible regions (white) where the noise amplitude can be as large as ∆σ = 0.05tc without
the voltage pulses being prohibitively fast like in (d) where ∆∆ = 10tc.
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amplitudes in the feasible (white) region. Note that the labelled contours (signifying

the noise amplitude ∆σ/tc) each signify the minimum Jc and Jt in which one may

operate given the noise amplitude. That is, lower noise amplitudes enable smaller

operating points in Jc and Jt.

The optimal choice in inter-qubit coupling (with respect to the tunnel coupling)

is one where there are feasible operating points (for >99.5% �delity, fault tolerant

CZ gates) that can tolerate noise well above ∆σ = 0.01tc. Figures 5.20a-b show

that all feasible operating points require the noise to be below 0.02tc for inter-qubit

couplings up to ∆∆ = 4tc. Figure 5.20d shows that ∆∆ = 6tc is the optimal choice as

it o�ers good operating points where the noise amplitudes can be up to ∆σ = 0.05tc.

Going to higher inter-qubit couplings of ∆∆ = 10tc yield no additional bene�ts as the

gate times become too fast (below 20 ps) to be experimentally feasible. Finally, for

negative inter-qubit couplings, all feasible operating points require noise amplitudes

to be below ∆σ = 0.01tc even with strong inter-qubit couplings of ∆∆ = −10tc as

shown in Figure 5.20e. Thus, ∆∆ = 6tc is a good choice for the inter-qubit coupling

as it yields a good margin for noise amplitudes as large as ∆σ = 0.05tc. Now we can

map the feasible operating points to physical device parameters.

The maximum value of Jt/tc that one may obtain from Figure 5.20d (for ∆∆ =

6tc) is 0.124. One should operate near the red region in order to be within the

boundaries set by the 99.5% �delity contours for ∆σ = 0.02-0.03tc in order to be

maximally robust to charge noise. Given the minimum Jt = 810 MHz set to obtain

accurate Pauli-z gates (given the typical ∆Bz = 29 MHz as discussed in Section

5.3.1), one obtains the required tunnel coupling to be tc = 0.810/0.124 = 6.5 GHz.

Thus, the required inter-qubit coupling is ∆∆ = 6tc = 39 GHz. From Figure 5.20d,

one may choose the operating point near Jc∼2tc (where the detuning noise needs to

be approximately ∆σ = 0.02tc-0.03tc), thereby requiring a maximum charge noise

amplitude of ∆σ = 540-810 neV. This is approximately 8 times the theoretical

minimum expected charge noise in silicon [18, 201, 202]. Therefore, by utilising

strong inter-qubit couplings (∆∆ = 39 GHz for tc = 6.5 GHz), one may construct

fault tolerant (>99.5% �delity) CZ gates between singlet-triplet qubits in P-donor

quantum dots.

5.4.3 CX Gate

Although a CX gate operation (as required for the surface code) can be formed via

a CZ gate sandwiched between two single-qubit Hadamard gates as shown in Figure

5.21 [167], it is interesting to investigate whether a high-�delity native CX can be
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performed especially if it provides improvements to the geometry (for example, larger

spacing between the leads due to the lower inter-qubit coupling required).

|C〉

H Z H|T 〉

|C〉

X|T 〉

≡

Figure 5.21: Circuit conversion of a CZ gate into a CX gate. The CX gate can be
formed by concatenating two Hadamard gates (H) onto a CZ gate (for control and target
qubits |C〉 and |T 〉).

The CZ gate discussed in Section 5.4.1 relied on ∆∆ being small enough such

that it did not tilt the singlet-triplet rotation axis. However, if ∆∆ � tc, then the

target detuning could shift far enough to make the rotation axis tilt away from the

z-axis and point along the x-axis to help form a native CX gate. Figure 5.22 shows

the operation of a two-qubit gate where one chooses a working point on the target

qubit such that Jt = J0 � ∆Bz. If the control qubit were in the triplet t0 state,

the target qubit's axis of rotation remains along the z-axis. However, if the control

qubit were in the singlet state, the electrostatic shift on the target qubit is to push

it to a regime J � ∆Bz. Now the target qubit undergoes Pauli-x rotations (giving

rise to a CX gate) at a gate time given by Equation 5.14; thus, the gate time τx for

a Pauli-x π-rotation is:

τx =
h

4∆Bz
. (5.39)

Here J ≈ 0 for all detunings ∆� ∆Bz. Thus, there is very little impact in shifting

the initial point's detuning ∆ where J = J0. This is important for J0 must be

carefully selected such that:

J0

4∆Bz
∈ Z. (5.40)

That is, J0 is chosen such that if the control qubit is in the triplet state, the target

qubit undergoes exactly an integer number of full rotations to ensure that an identity

operation is performed.

To physically perform the native CX gate, the inter-qubit shift ∆∆ must be large

enough to tilt the singlet-triplet qubit axis of precession from the z-axis onto the

x-axis. Now from Table 5.2, a ratio of J to ∆Bz of 28 yields 99.5% �delity in the

accuracy of z-rotations. Similarly a ratio of ∆Bz to J being 28 yields 99.9% �delity x-

rotations. The shift required in the target qubit detuning ∆t to perform the CX gate
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(a) CX-Gate with control qubit in the triplet t0 state.
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(b) CX-Gate with control qubit in the singlet s0 state.
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Figure 5.22: The native CX gate for singlet-triplet qubits. The energy diagrams
(see Figure 5.12) and double-dots represent the individual singlet-triplet qubits: the control
and target qubits. To activate the CX gate, the control qubit is biased towards the region of
positive detuning, where a triplet t0 remains in the (1, 1) charge state as shown in (a), while
the singlet s11 takes upon a s02-like character to partially enter the (0, 2) charge state as
shown in (b). Note that in this example, the (0, 2) charge state on the control qubit moves
the electron away target qubit. A control qubit in the singlet state causes the target qubit's
detuning to shift and subsequently its exchange J decreases from J0 to approximately zero.
Now the wait-time is set to be the x-axis π-rotation time mediated by the �xed ∆Bz. The
choice of J0 must be such that during this time, an integer number of full rotations about the
z-axis is performed if the control qubit is in the triplet state. Thus, if tuned right the above
example yields an identity operation on the target qubit if the control qubit is a triplet and
a Pauli-x �ip otherwise. The Bloch spheres represent the operation performed on the target
qubit with the red arrow representing the target qubit's J while the blue arrow represents
its ∆Bz vector.
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(a) CX Gate
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(b) CH Gate

10−2 10−1 100 101

100

101

102

103

104

tc (GHz)

10MHz

30MHz

50MHz

100MHz

200MHz

500MHz

Figure 5.23: Required inter-qubit couplings to achieve native CX and CH gates.
The plots show the required inter-qubit coupling ∆∆ as a function of the inter-dot tunnel
coupling tc on the target qubit. The di�erent curves on each plot represent di�erent values
of ∆Bz as shown in the legends. (a) The required ∆∆ for a CX gate. Given that tc needs
to be at least 1 GHz to prevent thermal excitations (discussed in Section 5.2.2), the required
inter-qubit coupling becomes prohibitively large (∼1 THz) for the expected ∆Bz = 29 MHz.
(b) The required inter-qubit coupling for the CH (controlled-Hadamard) gate is however
lower with inter-qubit couplings as low as 17 GHz if one selects a tunnel coupling of 1 GHz.

can be calculated by taking the di�erence in detuning when J = 28·∆Bz (performing

a Pauli-z gate on target qubit) and J = ∆Bz/28 (performing a Pauli-z gate on target

qubit). Figure 5.23a shows a plot of the required inter-qubit couplings as a function

of the target qubit tunnel coupling. The di�erent curves represent di�erent values of

∆Bz (arising from the di�erent number of P-donors in the quantum dots as discussed

in Section 5.3.1). From Figure 5.11, it is noted that if the base temperature of the

fridge were 10-20 mK, to achieve 99.9% ground state probability, the tunnel coupling

must be at least 1 GHz. It is clear from Figure 5.23a that for even 500 MHz magnetic

�eld gradients, the required inter-qubit couplings exceed 70 GHz. Thus, the CX

gate yields no improvement to the device geometry when considering the analysis in

Section 2.2.3 as a 70 GHz coupling (being much larger than 39 GHz proposed for the

CZ gate) would require closer inter-qubit distances. Thus, it is better to simply use

CZ gates and Hadamard gates to realise a CX gate.
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However, if one were to relax the need for a CX gate into a CH gate (a controlled-

Hadamard gate shown in Figure 5.24), then the inter-qubit shift only needs to move J

from J = 28∆Bz (for accurate Pauli-z gates) to J = ∆Bz to perform the Hadamard

gate. Thus, one requires smaller inter-qubit couplings ∆∆ (to tilt the rotation axis

from the Pauli-z axis to the 45◦ axis as opposed to all the way onto the Pauli-

x axis). The required inter-qubit coupling ∆∆ at 1 GHz is approximately 17 GHz

for ∆Bz = 29 MHz as plotted in Figure 5.23b. Although the smaller inter-qubit

coupling can yield larger gate distances, one needs to analyse the CH gate under the

presence of both charge noise and magnetic �eld noise. As the nature of magnetic

�eld gradient noise is yet to be measured (for example, whether it is simply Gaussian

�uctuations or large discrete jumps due to P-nuclei �ips) in Si-P, the noise analysis

is outside the scope of this thesis. If native CH gates are found to be feasible in

the future, the geometry could be enhanced with larger gate distances (due to larger

inter-qubit distances).

|C〉

H|T 〉

Figure 5.24: Circuit diagram of a controlled Hadamard gate. The CH gate is shown
for control and target qubits |C〉 and |T 〉.

5.4.4 Summary

Consideration of the two-qubit gate mechanisms and their susceptibility to charge

noise yielded optimal parameters to use in the design of a large-scale singlet-triplet

processor using Si-P. The key results include:

� Negative inter-qubit couplings yield no feasible working points for CZ gates

as the required CZ operating points (in control and target qubit exchange:

Jc and Jt) fall in regions where the qubits will start performing unintentional

CPHASE gates.

� An inter-qubit coupling of ∆∆ = 6tc yielded feasible CZ operating points (in

control and target qubit exchange: Jc∼2tc and Jt = 0.124tc) where the detun-

ing noise can be up to ∆σ = 0.02tc-0.03tc, while triggering no unintentional

CPHASE gates with adjacent qubits. Any higher inter-qubit coupling would
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require voltage pulses that are faster than the state-of-the-art benchtop equip-

ment (less than 20 ps).

� Given J = 810 MHz (for an accurate Pauli-z gate discussed in Section 5.3.4),

for >99.5% �delity CZ gates, the optimal tunnel coupling was found to be

tc = 6.5 GHz with an inter-qubit coupling of ∆∆ = 39 GHz. The maximum

detuning noise must be below ∆σ = 540-810 neV; approximately 8 times the

theoretical minimum expected charge noise in silicon [18, 201, 202]

� The native CX gate (that is, not using a CZ gate sandwiched between two

Hadamard gates applied on the target qubit) was found to require inter-qubit

couplings in excess of 100 GHz and thus, discarded as an option for the �nal

architecture.

� The native CH (controlled-Hadamard) gate was found to be technically feasible

with inter-qubit couplings that can be made as low as ∆∆ = 17 GHz for a 1 GHz

tunnel coupling and ∆Bz = 29 MHz. The lower inter-qubit coupling yields

the promise of spacing the qubits further apart than the CZ gate. However,

further experimental work is required to characterise the magnetic �eld gradient

noise and charge noise before the CH gate can be considered for a large-scale

architecture.

5.5 Optimising the 1D and 2D singlet-triplet qubit ar-

rays

The device described in Chapter 2 demonstrated a quadruple quantum dot device

that could eventually be used to host singlet-triplet qubits. The device parameters

originally chosen in the design of this 4-dot architecture were from insights provided

from previous published data and experiments. During the experimental investiga-

tions, the theoretical framework of singlet-triplet qubits in Si-P (based on models

from �rst principles) was further developed and, as outlined in this chapter, place

more stringent bounds on device parameters. From this modelling, updated de-

vice parameters have been extracted for maximum resistance to charge noise when

implementing the CZ gate (for an inter-qubit coupling much larger than the tunnel

coupling). This section now collates the results from both Chapters 2 and 5 to design

an optimal architecture for a 1D array of coupled singlet-triplet qubits.
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Parameter Value Reason

B0 �10 mT
Magnetic �eld must be large enough to suppress qubit
state leakage via s0-t− and s0-t+ couplings.

P-donors 1P-2P

Asymmetric 1P-2P dots enable simultaneous access to
even parity inter-dot transitions, (1, 3) ↔ (0, 4), on
adjacent qubits (as required for a two-qubit gate), with
minimal voltages applied to the gates (to prevent gate-
to-gate current leakage).

∆Bz 29 MHz
Expected gradient from approximate hyper�ne split-
tings for a 1P-2P cluster (with 2 spin-paired electrons
in the 2P cluster as discussed in Section 5.3.1)

Jz 810 MHz
Jz > 28∆Bz for 99.5% accurate z-rotations (see Table
5.2)

tc 6.5 GHz
Approximate minimum tc and ∆∆, where the CZ
gate can be turned o� while enabling high �delity CZ
gates with ∆σ . 0.03-0.05tc, is when ∆∆ = 6tc and
Jz = 0.124tc (see Figure 5.20.)

∆∆ 39 GHz

Table 5.3: Summary of physical parameters constraining the scalable qubit unit-
cell. The physical parameters include the magnetic �eld gradient across the double-dot pair
∆Bz, the exchange Jz when doing z-rotations on the qubit, the inter-dot tunnel coupling tc
and the inter-qubit coupling ∆∆. The distances drc is the distance from the reservoir and
the nearest dot in unit-cell c. ∆σ denotes the noise standard deviation on the detuning.

5.5.1 Summary of optimal device parameters

The previous sections in this chapter covered modelling of the double quantum dots,

single-qubit gates and two-qubit gates. The key collective results that now set future

fabrication and operational device conditions are shown in Table 5.3.

The �rst parameter is an operational parameter that indicates that for singlet-

triplet qubits, one needs to apply a global magnetic �eld to suppress s0-t− and s0-t+

coupling parameters given by the di�erential magnetic �eld ∆B⊥ perpendicular to

the Pauli-z axis (chosen to be the direction of the applied magnetic �eld B0). This is

necessary to avoid qubit state leakage (into non-qubit states t− and t+). The second

parameter is the number of P-donors in the individual dots. Electrostatic simulations

in Section 2.2.3 showed that a 1P-2P double quantum dot enables simultaneous

access of even-parity inter-dot charge transitions (speci�cally the (1, 3) ↔ (0, 4)

charge transition) on adjacent qubits (as required for a two-qubit gate). The 1P-2P

con�guration enables us to reach the even-parity inter-dot transitions with minimal
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voltages applied to the gates, thereby preventing gate-to-gate current leakage. The

third parameter is the nominal magnetic �eld gradient estimated from the hyper�ne

splittings of a 1P-2P double quantum dot; ∆Bz = 29 MHz (when one electron is

on the 1P dot and 3 electrons occupy the 2P dot) as discussed in Section 5.3.1.

The fourth parameter is the minimum exchange Jz required for accurate Pauli-z

gates. That is, at Jz = 810 MHz, the exchange J is su�ciently larger than ∆Bz to

obtain 99.5% accurate Pauli-z rotations. The �nal two parameters (tunnel coupling

tc = 6.5 GHz and inter-qubit coupling ∆∆ = 39 GHz) were obtained by considering

the CZ gate �delities under the in�uence of charge noise. The values obtained were

those most resistant to charge noise; while still being able to turn o� the CZ gate;

and experimentally realise the gate operation with currently available voltage pulse

generation technology (that is, the gates require voltage pulse times much larger than

the fastest pulse time of 20 ps). Given these optimal parameters, one may redesign

the geometry of the singlet-triplet qubit array.

5.5.2 Overcoming the shortcomings of the previous geometry to

create a 1D qubit array

The overall geometric design in Section 2.2.3 was adequate for realising a two-qubit

gate if the tunnel coupling and inter-qubit coupling were optimised. However, when

expanding this 1D design (that is, the double-quantum dots splayed away from one

another with a wedge angle ϑ) for an inter-qubit coupling of 39 GHz, the distance

between adjacent unit-cell control gate leads (G2 and G3) becomes too small as

shown in Figure 5.25a. Although small distances between reservoirs can be slightly

tolerated (as they are usually �xed at similar voltages as shown in the stability

diagram simulation in Figure 2.9), the control gates need to have maximal �exibility

in voltage pulses of approximately ±0.5 V (without entering gate-to-gate current

leakage) and thus, need to be uniformly spaced far apart. For example, consider 3

qubit unit-cells tessellated using the previous design as shown in Figure 5.25a. The

gates G1 and G2 are spaced far apart while G2 and G3 are close together (vice

versa for the reservoirs). Figure 5.25b shows the required lead distances (between

adjacent reservoirs and adjacent control gates) to achieve 39 GHz for di�erent double-

dot angles ϑ (taken from the previous numerical simulations shown in Figure 2.7).

Although for large angles (ϑ > 90◦), the control gates could be well-separated, they

will be too close when considering the next unit-cell. For example, at ϑ = 135◦,

the control gates are separated by 50 nm, but in the next unit-cell (with an angle

of ϑ = 45◦) these control gates become less than 30 nm apart. Figure 5.25b shows
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(a) 3 qubit unit-cells using the previous design for the singlet-triplet qubit array
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(b) Shortcoming of the previous architecture due to small inter-lead distances
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Figure 5.25: The shortening distances between control gates in the previous
design for the singlet-triplet qubit unit-cell. (a) The previous design is illustrated
for 3 qubit unit-cells with reservoirs (R1, R2 and R3), double quantum dots (D1L/D1U,
D2L/D2U and D3L/D3U) and control gates (G1, G2 and G3). The dot angle ϑ and inter-
qubit distance diq are left as free parameters as the inter-qubit coupling needs to be changed
to ∆∆ = 39 GHz. The key issue here is that although G1 and G2 are spaced far apart, the
distance between the control gates on the next unit-cell (G2 and G3) become too small. (b)
The resulting plot of the lead distances (between adjacent reservoirs and adjacent control
gates) required to generate an inter-qubit coupling of ∆∆ = 39 GHz. The distances were
calculated from the numerical FEA simulation shown in Figure 2.7c. This is seen by the
asymmetry about ϑ1 = 90◦.
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that the gates may be separated by a minimum of 34.8 nm when using the angle

of ϑ = 90◦ (to achieve an inter-qubit coupling of 39 GHz). Noting that the singlet-

triplet qubits are still separated further than the previous Si-P architecture proposal,

at 30 nm [28], this separation may be adequate and is worth future work.

However, a more critical issue is that the inter-qubit coupling ∆∆ for the previous

design is always negative (that is, when the control qubit enters s02, the target qubit

shifts to a lower detuning). Here we pattern all dots further from their reservoir to

be a 2P dot and the ones closer to their reservoir to be a 1P dot. We could instead

make the inter-qubit coupling positive (as required for the proposed CZ gate) by

alternating the dot which holds both electrons in the s02 charge state from qubit

to qubit. One may achieve this by alternating the dot that is 2P across each qubit

unit-cell (that is, the individual double quantum dots would be fabricated as: 1P-

2P, 2P-1P, 1P-2P etc.). With this alternating donor size arrangement, the (0, 2)

charge state in each qubit will also alternate in direction (towards the 2P cluster

as shown in the previous stability diagram simulations Figure 2.9). However, unlike

the previous arrangement of P-donors (where the electrons were pushed in the same

direction to enter the s02 charge state), the new P-donor arrangement will require

large di�erential voltages between reservoirs and control gates to push electrons in

di�erent directions from qubit to qubit to obtain the s02 charge states simultaneously.

That is, one can tolerate smaller distances between adjacent reservoirs and control

gates if the adjacent reservoirs and gates are set to similar voltages as when pushing

the electrons in the same direction across all qubit unit-cells. Thus, below we consider

an alternate geometry for the 1D array.

Figure 5.26a shows an alternate geometry where the double quantum dots are

arranged in an parallel Echelon formation. Due to the geometric similarities with the

wedge-formation geometry, the results from the previous electrostatic optimisation

carry over from Section 2.2.3. That is, the distances for the individual qubit unit-cell

remain the same (that is, reservoir distance dr = 17 nm, gate distance dg = 45 nm and

inter-dot distance did = 12.5 nm). The parameters that we change are the dot angle

ϑ and the inter-qubit distance diq which, as with the previous optimisation, are set by

the inter-qubit coupling which needs to be 39 GHz. Again we compare an analytic

model of the inter-qubit coupling against the numeric �nite-element simulations.

Here we consider the four dots to be sites for electrons to occupy and subsequently

calculate the inter-qubit coupling for dots arranged in the Echelon formation:
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(a) Parametrised unit-cell for qubits in the Echelon formation
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(c) Inter-qubit coupling ∆∆ (FEA Simulation)
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Figure 5.26: Optimising the inter-qubit distance diq and dot angle ϑ to achieve
an inter-qubit coupling of ∆∆ = 39 GHz on a more scalable singlet-triplet qubit
unit-cell. (a) An improved qubit unit-cell structure with the dots in an Echelon formation.
The key parameters to optimise are the inter-qubit distance diq and the dot-pair angle ϑ.
The other distances are from optimisations performed in Section 2.2.3. (b) Plot of the
analytic approximation of the inter-qubit coupling ∆∆ given by using Coulomb's law in
Equation 2.9 over di�erent inter-qubit distances diq and dot-pair angles ϑ1. The contours,
highlighted for clarity, give the inter-qubit coupling in gigahertz. (c) Plot of the inter-qubit
coupling when running a FEA simulation with an encapsulation layer thickness of 45 nm.
Like in (b), the contours give the inter-qubit coupling in gigahertz. The dashed lines are
contours from the analytic approximation in (b). The analytic model captures the FEA
simulation at low angles where the contours overlap, while there is a slight discrepancy at
higher angles where the analytic approximation overestimates the inter-qubit coupling for a
given distance (since the numerical simulation captures the screening e�ect of the metallic
reservoirs).
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∆∆(E) =
e2
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
 1√

d2
iq + d2

id − 2diqdid cos(ϑ)
+

1√
d2
iq + d2

id + 2diqdid cos(ϑ)
− 2

diq


 ,

(5.41)

Figure 5.26b shows a plot of the inter-qubit coupling as predicted by the analytical

model. The inter-qubit coupling does in fact change sign. To observe the reason for

the change in sign, consider the two extremes ϑ = 90◦ and ϑ = 0◦. At ϑ = 90◦

the geometry is the same as the simulations performed on the previous design and

thus, the sign of the inter-qubit coupling is already negative. However, at the other

extreme ϑ = 0◦, if one enters the s02 charge states by either pushing both electrons

onto D1L/D2L or D1U/D2U, the sign of the inter-qubit coupling will be positive as

discussed earlier in Table 2.2.

The change in sign of the inter-qubit coupling leads to a region of null coupling

as shown by the ∆∆ = 0 contour in Figure 5.26b. When comparing against the

numeric simulations in Figure 5.26c, the analytic model correctly predicts the inter-

qubit coupling for low dot angles (as seen by the overlap of the analytic contours

overlaid with the dashed lines). However, at larger angles, the screening e�ect of the

dots' metallic reservoirs (in this case R1 and R2) perturbs the inter-qubit coupling

away from the analytic approximation as seen by the numeric simulations which

suggest that one needs to bring the dots closer than that predicted by the analytic

model for larger angles (ϑ & 50◦). Taking a nominal 40 nm separation between

adjacent double quantum dots (10 nm more qubit and gate separation than that

suggested previously in the single-spin Si-P architecture [28]), one can avoid gate-

to-gate current leakage and choose the optimal angle (from Figure 5.26c) to achieve

∆∆ = 39 GHz of ϑ = 32◦.

Figure 5.27 shows the geometry of the newly proposed 1D array of singlet-triplet

qubits. The tighter angle of ϑ = 32◦ gives rise to a lower di�erential lever-arm

(de�ned as αD1L − αD1U), when compared to ϑ = 45◦, from approximately −3.2%

to −2.6% for the control gates and 8.6% to 7.5% for the reservoirs. The lower

di�erential lever-arms however do not necessarily give concern as there are many

control gates in close proximity to the qubits and one will likely obtain a greater

e�ective di�erential lever-arm by using a linear combination of all the control gates;

as found with gate-de�ned quantum dots [33, 55]. Nonetheless, one should verify

that the new geometry can still obtain the required charge states to form the singlet-

triplet qubit. That is, whether one can access the even-parity inter-dot crossings to

form singlet-triplet states across the individual double quantum dots.
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Reservoirs (to load electrons)

Detuning gates (to control qubits)
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ϑ = 32◦

did = 12.5 nm
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dr = 17nm
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Figure 5.27: Proposed 1D array of singlet-triplet qubits using Si-P quantum
dots. The double-quantum dots hosting the electrons for the singlet-triplet qubits are
arranged vertically to maximise the di�erential lever-arms on the gates. The bigger dot
(indicated by the larger circle) in each double-quantum dot is a 2P donor dot (holding both
electrons when the qubit enters the s02 charge state) while the other dot is a 1P donor.
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(a) Simulated device
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Figure 5.28: Stability diagram simulations for the newly proposed geometry for
a 1D array of singlet-triplet qubits. The goal is to overlap singlet-triplet transitions
on adjacent double quantum dots (red and blue and labelled EP) to setup a two-qubit gate.
The electron numbers on dots are shown as (D1L, D1U, D2L, D2U). The simulated dots are
colour-coded with the electron charge transitions the stability diagram. (a) Two adjacent
qubit unit-cells sandwiched by two extra unit-cells used in the simulation. The reservoirs
are shown in orange, while the control gates are shown in light blue. The dots close to their
reservoirs are 1P, while the dots further from their reservoirs are 2P. The voltages on the
gates required to overlap the inter-dot crossings are labelled along with the voltages swept in
the simulated charge stability diagram (gate voltages Vx and Vy). (b) The resulting charge
stability diagram where the even parity inter-dot crossings are made to overlap as required
to perform two-qubit gates between singlet-triplet qubits hosted on the double quantum
dots D1L/D1U and D2L/D2U.
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To simulate the electrostatic accessibility, the newly proposed 1D array was sim-

ulated in FEA and analysed via the custom charge-stability diagram simulator de-

scribed in Appendix A. Figure 5.28a shows an array of 4 qubit unit-cells in the

proposed Echelon formation geometry. The model was numerically simulated, using

the proposed geometric parameters, as before to obtain the capacitance matrix, from

which we obtained the charge stability diagram shown in Figure 5.28b. The charge

stability diagram shows the charge regions for the four interior dots D1L, D1U, D2L

and D2U. The aim of the simulation is to show that one can obtain the required

singlet-triplet charge states for qubits within the 1D array with all the gates set to

similar voltage conditions. Here we remember that large di�erential voltages between

adjacent gates can cause gate-to-gate current leakage. The simulations show that

one can overlap the singlet-triplet inter-dot charge crossings required to perform two-

qubit gates as discussed in the previous simulations in Section 2.2.3. The voltages

required on the reservoirs close to the simulated qubits are similar at ∼0.36-0.37 V.

Similarly the voltages on the control gates are a few 100 mV. The comparable volt-

age ranges not only ensure low lead-to-lead di�erential voltages (between adjacent

control gates and reservoirs), but also con�rms that one can �nd a stable pattern of

voltages along the array when forming all the adjacent singlet-triplet qubits. The

voltages on the reservoirs are mostly negative as expected to enable electrons to load

the dots (a negative voltage applied on a reservoir brings down the dots' energy lev-

els with respect to the reservoir), while the control gates perform �ne corrections to

obtain the required charge con�gurations. We note that the leads at the ends of the

array (for example, x and y as swept on the stability diagram) require larger voltages

(approximately ±200 mV di�erent for the reservoirs and −0.3 V for the control gate)

as the translational symmetry of the qubit unit-cells along the array breaks down.

Since the simulation suggests that the leads towards the end of the array may require

large voltages to sustain the singlet-triplet charge states, the ends of the 1D array

should be terminated with large gates to o�set the lack of leads at the end of the

array. One could in fact, use TJCS structures as used in the experiments in Section

2.2.4 to function as both diagnostic probes and as biasing gates for qubits near the

end of the array [29].

5.5.3 A 2D singlet-triplet qubit array

The 1D array proposed in Section 5.5.2 provides a blue-print to further extend the

proposal into a 2D array as required in forming a fault-tolerant quantum processor

using a surface code. To translate the 1D array into a 2D array, one appeals to recent
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(a) Schematic of double quantum dots translated to multiple
layers
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(c) vz = 37 nm
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Figure 5.29: Analytic simulations of the inter-qubit couplings ∆∆ between dou-
ble quantum dots across di�erent vertically separated STM-patterned layers. (a)
Two double quantum dots D1L/D1U and D2L/D2U adopting the geometry of the proposed
1D array are spaced apart via a translation vector vl = (vx, vy, vz). The reservoirs (orange)
and gates (light blue) are shown for reference but not included in the analytic calculation.
(b) Plot of the inter-qubit coupling (as a function of the planar translation vector (vx, vy))
for vertically stacked layers separated by 20 nm of epitaxial silicon; the maximum separation
where there is are regions where ∆∆ = 39 GHz as required for the CZ gate. (c) Plot of the
inter-qubit coupling for layers separated by 37 nm; the maximum separation in which one
can access the region −39 GHz. Although the sign (of the −39 GHz contour) is wrong, the
arrangement of the dots proves useful in creating the �nal geometry due to the larger spac-
ing (37 nm as opposed to 20 nm) between layers (important in reducing lead-to-lead current
leakage between leads across adjacent vertically separated layers).
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advancements in multilayer STM lithography developed in our group by Matthias

Koch [76]. Here, the key advancement was that one can now perform lithography

on the multiple vertically separated layers, as we have already shown on one layer of

the silicon crystal. Previously, when encapsulating the �rst layer with silicon, it was

found that the second layer was too rough to perform feasible lithography. However,

with rapid-thermal-anneals (optimised via thermal Monte-Carlo simulations and ex-

perimental growth studies) performed on encapsulating the �nal few monolayers of

silicon, one can �atten the second layer (ideal for lithography) without di�using the

incorporated phosphorus atoms in the �rst layer. In addition, it has been shown

that one can indeed image buried P-dopants to help align the second layer with

the layer below via lock-in excitations applied to the tip during the imaging pro-

cess [205]. With advancements in feasible multilayer lithography, one can propose a

multi-layered architecture where one stacks many 1D arrays on top of one another to

create a 2D array of singlet-triplet qubits. Here, each qubit in the next layer interacts

not only with its adjacent two qubits in its layer, but also the qubits directly above

and below its layer.

The individual 1D arrays (one per layer) can retain the geometry of the optimised

1D array in Section 5.5.2. One method to stack the arrays is to simply translate the

second layer from the �rst layer via the vector vl = (vx, vy, vz) as shown in Figure

5.29a. Here, if one investigates the 1D array, the vector is vl = (±diq, 0, 0). The goal

is to �nd a vector in a layer above vz > 0 such that the double quantum dots are as

far apart as possible to reduce the possibility of lead-to-lead current leakage. One

can analytically investigate the inter-qubit coupling ∆∆ between vertically separated

layers via the coordinate positions of the dots D1L/D1U and D2L/D2U (where the

reservoirs shown in orange is near D1L and D2L, while the gates shown in blue are

further away and closer to D1U and D2U) via Equation 2.12 as plotted in Figures

5.29b-c for di�erent layer separations vz. At a layer separation of 20 nm, shown in

Figure 5.29b, there are two loci in (vx, vy) shown by the 39 GHz contours where one

can achieve the desired inter-qubit coupling. Note that the 39 GHz loci disappear

at vz = 21 nm. However, in choosing any of the positions (along the the 39 GHz

loci), one has a lead-to-lead distance of approximately 28 nm (taking 20 nm across

x and 20 nm across z) which may be too close to avoid lead-to-lead current leakage.

Thus, we investigate another z-layer separation of 37 nm shown in Figure 5.29c. Here

there is a region of −39 GHz coupling which disappears at 38 nm vertical separation.

One can overcome the negative sign of the −39 GHz inter-qubit coupling if the s02

charge state occupies the dots further from the reservoir (D2U) in the second layer

while occupying the dots closer to the reservoir in the �rst layer (D1L). One may
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(a) Final alternative geometry
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Figure 5.30: Numeric simulations of the inter-qubit couplings between double
quantum dots across di�erent vertically separated STM-patterned device layers
in an alternating 1D array geometry. (a) Two double quantum dots D1L/D1U and
D2L/D2U adopting the geometry of the proposed 1D array are spaced apart via a translation
vector vl = (vx, vy, vz). The reservoirs (orange) and gates (light blue) are to alternate over
every layer. The alternating geometry is used to help achieve a positive inter-qubit coupling
without changing the, already optimised, electrostatic control amongst the individual 1D
layers. (b) Plot of the FEA calculations of the inter-qubit coupling (as a function of the
planar translation vector (vx, vy)) for layers separated by 35 nm; the maximum separation
where there is are regions where ∆∆ = 39 GHz as required for the CZ gate. The star
highlights the �nal geometry (vx, vy, vz) = (5, 0, 35) nm.

achieve this alternating charge state between layers, by alternating the dots that are

2P over every vertically separated layer (for example, D1L and D2U can be made

2P while D1U and D2L can be made 1P). Although electrostatically one may obtain

the required interactions for qubits within the same layer, the swapped positions

of the (0, 2) charge state between layers make it di�cult to tune the control gates

to perform a two-qubit gate across two qubits on di�erent layers. An alternative

solution is to swap the positions of the reservoirs and gates on alternating layers by

e�ectively �ipping the 1D array from layer to layer.

Figure 5.30a shows a solution to achieve a positive inter-qubit coupling at larger

vertical separations by swapping the positions of the reservoirs and gates on alter-

nating layers. Note that D1L and D2L are 1P dots close to their respective reservoirs

(orange) at a distance of dr = 17 nm. The dots D1U and D2U are 2P dots further

from their respective reservoirs with inter-dot separations (between D1L/D1U and
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between D2L/D2U) of did = 12.5 nm. The dot to gate (light blue) separations are

still 45 nm. To simulate the presence of the gates, the analytic approximation was

replaced by a numeric simulation where for given vector translations vl, capacitance

matrices were calculated like with the all the previous electrostatic simulations and

the inter-qubit coupling was extracted from the capacitances via Equation 2.9. Note

that there was no encapsulation layer in these simulations (that is, the device was

immersed in in�nite silicon) as the di�erent layers are buried deep in the bulk silicon.

Figure 5.30b shows the result of the numeric simulations with a vertical sepa-

ration of 35 nm. Note that at vertical separations greater than 35 nm, there was

no loci along the xy-plane on the second layer where the inter-qubit coupling was

39 GHz. The lower vertical separation required to retain 39 GHz (when compared

to numerical simulations suggesting 37 nm in Figure 5.29b) is due to the screening

e�ect of the nearby reservoir leads causing a lower inter-qubit coupling. The cho-

sen vector translation to get 39 GHz for the second layer was vl = (5, 0, 35) nm as

marked by the black star. Finally, one must ensure that the residual couplings to

qubits adjacent to the �rst layer have a weak inter-qubit coupling with the qubit on

D2U/D2L to avoid unintentional two-qubit gates. The inter-qubit coupling of the

qubit on D2U/D2L with the qubits (spaced by diq = 40 nm) either side of that hosted

on D1U/D1L can be found by translating the vl by ±40 nm. The stray inter-qubit

couplings of D2L/D2U with the qubits to the right and left (positive and negative

x-axes) of D1L/D2U are −1.0 GHz and −2.6 GHz respectively. From Figure 5.16

showing the regions where where the target qubit exchange Jt may reside such that

(for a given inter-qubit coupling) there is no two-qubit gate with at least 99.5% �-

delity, the bounds on Jt to prevent unintentional two-qubit gates are subsequently

Jt < 3.1 GHz and J < 2.1 GHz respectively. From Table 5.3, the CZ gate and idle

qubit states are optimally at a lower exchange of 810 MHz. Thus, the stray couplings

do not present signi�cant unintentional two-qubit gates that will a�ect fault-tolerant

control.

With su�cient inter-qubit couplings for the proposed geometry, it is important

to show that one may perform a CZ gate via the overlap of even-parity charge tran-

sitions across adjacent qubits on di�erent layers. Figure 5.31a shows two double

quantum dots D1L/D2U and D2L/D2U across two layers. To simulate the trans-

lational symmetry of qubits deep within the 2D grid, the two vertically separated

qubits are surrounded by six double quantum dots and gates. The layers follow the

proposed geometry; that is, each layer (separated by 35 nm) has the reservoirs (or-

ange) and gates (light blue) alternating while being shifted horizontally by 5 nm. For

each quantum dot, the dot close to the reservoir is a 1P donor while the dot further
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(a) Schematic of the simulated portion of the 2D array
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Figure 5.31: Stability diagram simulations of the proposed geometry for the
2D array of singlet-triplet qubits. The goal is to overlap singlet-triplet transitions on
adjacent double quantum dots (red and blue and labelled EP) to setup a two-qubit gate.
The electron numbers on dots are shown as (D1L, D1U, D2L, D2U). The simulated dots are
colour-coded with the electron charge transitions the stability diagram. (a) Two adjacent
qubit unit-cells (across di�erent layers) are sandwiched by six extra unit-cells used in the
simulation. The simulation used the six extra pairs of gates to emulate the translational
symmetry of two vertically separated qubits within the 2D array. The reservoirs are shown in
orange, while the gates are shown in light blue. The dots close to their reservoirs are 1P, while
the dots further from their reservoirs are 2P. The voltages on the gates required to overlap
the inter-dot crossings are labelled along with the voltages swept in the simulated charge
stability diagram (gate voltages Vx and Vy). (b) The resulting charge stability diagram
where the even parity inter-dot crossings are made to overlap as required to perform two-
qubit gates between singlet-triplet qubits hosted on the double quantum dots D1L/D1U and
D2L/D2U.
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from the reservoir is a 2P donor dot. The device was once again simulated without

an encapsulation layer (that is, immersed in in�nite silicon) to create a capacitance

matrix with the resulting simulated stability diagram on tuning the gate voltages

is shown in Figure 5.31b. The two even-parity transitions on dots D1L/D1U and

D2L/D2U (shown in blue and red) are overlapped such that one may perform a CZ

gate. The reservoirs on the middle two layers are approximately −0.3 V with the

gates set to approximately 0.3 V. Similar to the simulations on the 1D array, the

reservoirs and gates on the ends require large negative voltages of up to −0.6 V. Once

again, a larger array will stabilise the voltages to lower values as one can use more

adjacent gates down the array to help tune the double quantum dots. However, one

should note that the gates on the top and bottom of the stack of many layers may

require extreme voltages when compensating for the lack of gates from further layers

above or below the stack. Therefore, it is advisable to pattern gates (or diagnostic

TJCS structures [29]) on the top and bottom layers that one may utilise the biasing

gates for optimal qubit tuning of the inner layers.

Given the 2D grid of qubits, it is important to overview the typical operation

in making the parity measurements. A unique feature of the proposed architecture

is the ability to perform four CZZZZ gates; that is, on initiating a control qubit,

the four adjacent qubits (along the left, right, top and bottom directions) will act

as simultaneous target qubits upon which to perform the CZ gate. Noting that the

surface code requires controlled phase �ips on the auxiliary qubit given the state of

its surrounding data qubits. The proposed mechanism to perform the CZ gate does

not facilitate simultaneous CZ gates on the same target qubit. Thus, one requires

four cycles of CZ operations to perform one cycle of the surface code as described

by the quantum circuit diagrams in Figure 5.1b. In each cycle, a given data qubit

will perform a CZ gate on four di�erent auxiliary target qubits. Since the proposed

architecture does not yet employ native CX gates, one needs to utilise the CZ gates

sandwiched with Hadamard gates.

5.5.4 Summary

The design work outlined in this section were simply the application of the electro-

static models (developed in the previous sections) for the proposed optimal param-

eters in implementing the CZ gate. The theoretical simulations performed for the

design of the newly proposed 1D array (a single row of the 2D grid) resulted in a few

key observations:

� The previous 1D array design in Chapter 2, in which four quantum dots were
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placed in a wedge formation, was shown to be inadequate for creating a scal-

able 1D array of singlet-triplet qubits as the lead distances (between adjacent

reservoirs and adjacent control gates) become too small. In addition, the sign

of the inter-qubit coupling was always negative (unless one alternated the dot

containing the 2 P-donors for each qubit).

� The superior design choice was to place the double quantum dots in a parallel

Echelon formation. With the inter-qubit distance (and subsequently the dis-

tance between adjacent leads) set to diq = 40 mV, the double-dot angles were

set to ϑ = 32◦ to obtain the required 39 GHz inter-qubit coupling.

� Capacitance model simulations showed that the Echelon arrangement still en-

ables electrostatic accessibility of the even parity inter-dot transitions as re-

quired to form singlet-triplet qubits. In addition, the even parity inter-dot

transitions amongst adjacent qubits could be overlapped as required to per-

form two-qubit gates.

� The capacitance model simulation suggested that the two ends of the 1D qubit

arrays should be terminated with extra control gates to ensure that the required

charge states on the dots can be achieved with as low a voltage on the control

gates (to avoid gate-to-gate current leakage). One could implement the extra

gates via TJCS structures to not only provide a biasing gate, but also on-board

charge sensing diagnostics like with the quadruple quantum device experiment

discussed in Section 2.2.4.

� A 2D grid of qubits for a surface code was investigated. It was shown that by

stacking multiple 1D arrays in layers separated by 35 nm and o�set horizontally

by 5 nm, it was possible to extend this architecture into a 2D array of singlet-

triplet qubits. To ensure that the sign of the inter-qubit coupling was positive,

the 1D array was �ipped (so that the side with the reservoirs and gates are

alternated) over each subsequent layer. Similar to the 1D array, the top and

bottom layers of the stack may need to be supplemented with additional gates

to enable ease in electrostatic accessibility.

� Both the 1D and 2D qubit arrays have 2 gates per qubit. Therefore, unlike

architectures that share one gate across many qubits [28], if there are nonuni-

form sections in the fabricated device (for example, a charge trap shifting the

potentials of a cluster of qubits), one has enough gates to tune the device into

satisfactory operation.
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Although the theoretical designs described above show feasibility, there are certain

long-term experimental challenges and milestones that must be met:

� Control of the nuclear spin dynamics of P-donor dots in forming a stable ∆Bz

(over the course of a set of gate operations) must be shown experimentally.

For example, recent results have shown that simply placing an electron on a P-

donor dot decreases its nuclear spin coherence time and can a�ect the nuclear

spin states by either tilting or �ipping the nuclear spins [39, 50].

� High �delity CZ gates (above 99.5%) must be shown across a 1D array of

at least two singlet-triplet qubits. In addition, the high-�delity CX gate (as

required for the surface code) must be demonstrated (likely using isotopically

puri�ed 28Si) using a CZ gate sandwiched in between two Hadamard gates.

� When stacking multiple 1D arrays, it must �rst be shown that there is su�cient

gate voltage range between gates across adjacent vertical layers without gate-

to-gate current leakage.

� If stacking multiple layers proves to be experimentally feasible (for example,

su�cient gate voltage range before reaching gate-to-gate current leakage), one

needs to address the contacting of the deep P-doped leads to the surface Ohmic

gates. That is, typically the encapsulation layer in Si-P devices is ∼40 nm.

However, if one were to make a 100 × 100 array of singlet-triplet qubits, the

100 vertical layers result in 3500 nm of encapsulated silicon that one must

penetrate to contact the bottom layer.

Finally, if the proposed vertical layer separation results in gate-to-gate current leak-

age, one could investigate the applicability of slower AC driving techniques [33�35]

where the inter-qubit couplings can be in the perturbative regime (with respect to

the tunnel coupling). Thus, one may radically increase the separation between qubits

both across the horizontal 1D array as well as the vertical separation in the 2D array.
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Conclusion and outlook

This thesis sought to develop a singlet-triplet unit-cell for a scalable singlet-triplet

qubit architecture by leveraging the low gate densities provided by Si-P quantum

dots with single-gate RF sensors. The thesis is set around three theoretical devel-

opments along with experimental demonstrations of RF control in the Si-P qubit

system, allowing us to propose a scalable singlet-triplet architecture in the �nal re-

sults chapter.

The �rst set of results concentrated on the demonstration of a quadruple quantum

dot device for hosting two singlet-triplet qubits [29]. Here we showed the following

results:

� The development of a capacitance model tailored to Si-P quantum dots includ-

ing a charge stability diagram simulator to simulate the impact of di�erent

P-donor dot sizes in silicon.

� The fabrication of a quadruple quantum dot Si-P device where 2P-2P and

3P-4P double quantum dots were separated by 75 nm.

� The successful cryogenic measurement to characterise the donor number and

electronic charge states of a quadruple quantum dot device using a TJCS

(tunnel-junction-charge-sensor) and single-gate RF sensor.

� The development of a triangulation technique to successfully pinpoint the exact

locations of the four patterned P-donor dots in the device. This model was

also used to identity the location and source of an unintentional charge trap;

highlighting the utility of the model.

237
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� Following this we successfully veri�ed and benchmarked the electrostatic model

via measurements of the gate lever-arms and inter-qubit coupling.

� We were able to experimentally extract the inter-qubit coupling of 5 GHz in

agreement with theoretical capacitance models. Such a large inter-qubit cou-

pling is important for fast high-�delity CZ gates using Si-P quantum dots.

However, the key shortcoming in the experiment was the inter-dot tunnel coupling

being too large to enable qubit control. Thus, the near-term pathway to be recti�ed

in future experiments include:

� Demonstration of a singlet-triplet qubit. The tunnel coupling was too large at

39 GHz to enable one to tilt the qubit precession axis away from the Pauli-z

axis. Further fabricated devices still had too large a tunnel coupling or too

small a tunnel coupling. Nonetheless, the singlet-triplet qubit should be possi-

ble to realise if one can fabricate a device with the inter-dot tunnel coupling as

it was partially demonstrated (Pauli-z rotation control) recently by members

of the Simmons group [198].

� Demonstration of a two-qubit gate between singlet-triplet qubits.

� Benchmarking the AC driven two-qubit gate and the proposed CZ gate to

determine the pathway to take in implementing the many-qubit architecture.

The second set of results concerned the development of a more compact charge

sensor via RF re�ectometry where the conventional 3-lead (and quantum dot) SET

sensor was reduced to a single-lead quantum dot (SLQD) sensor. The key develop-

ments include [31]:

� An analytic model of the SLQD sensor, using previous works done using rate

equations, extended to the nonlinear regime. The peak RF signal strength was

predicted to saturate at higher RF input powers (beyond the linear capacitance

regime). In addition, the model gave a better understanding of the nonlinear-

ities in the SLQD current (exploited later by Mark R. Hogg in the context of

an RF mixer [155]) and the low power dissipation of the SLQD sensor.

� Fabrication and successful model veri�cation of the SLQD sensor. The SLQD

sensor showed the response predicted by the theoretical modelling.

� Development of new characterisation techniques to measure the reservoir-to-

dot lever arm (in the SLQD) and the electron temperature. Conventionally
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with an SET, the lever-arms were measured via Coulomb oscillations, but the

SLQD lacks the source and drain contacts to perform this measurement. Thus,

the analytic responses developed in the SLQD theory (for example, the conical

shape of the RF readout signal strength with respect to the input RF voltage

amplitude), were applied to the experiment to deduce the reservoir-to-dot lever-

arm, electron temperature, input RF power loss and net output return gain.

� Successful detection of electron charge movement (at peak RF signal strength)

over 44 nm away from the SLQD sensor with predicted ranges exceeding 100 nm.

Noting that the size of Si-P qubits is less than 12.5 nm, the normalised range

(ratio of sensor range to the qubit size) in which one can still perform high-

�delity spin readout is far greater than qubits in gate-de�ned quantum dots (10

as opposed to 1-2). That is, the SLQD sensor leads to a signi�cant reduction

in gate density as the sensor does not need to be too close to the qubits.

The work done in this thesis paved the way for further experimental development

of the SLQD sensor as shown by a current PhD student Mark R. Hogg. Here, the

SLQD nonlinearities were used to create an RF mixer device along with single-shot

readout of single electron spins using a SLQD sensor.

The third results chapter further developed the compact single-gate RF sensor by

removing the dedicated lead and quantum dot (in comparison to the SLQD sensor).

The sensor was once again �rst modelled to �nd the optimal modes of operation and

then demonstrated experimentally. The key results include [32]:

� Hamiltonian modelling to better understand the operation of the SLQD sensor.

The model covered the operation in both the tunnelling capacitance and adi-

abatic quantum capacitance regimes. One unique trait of the models (similar

to the SLQD modelling) is that the quantum capacitance was investigated in

the regime of large RF input powers (where the readout response was found to

eventually decay) to better understand the optimal operating regimes.

� By replacing the surface mount chip inductor (internal quality factor of ∼370)

used in previous experiments with a low-loss NbTiN superconducting inductor

(internal quality factor of ∼800), we were able to improve the readout signal

strength.

� Successful characterisation of the RF sensor in measuring key qubit parameters

such as the inter-dot tunnel coupling of 39 GHz and singlet to triplet-t− lifetime

as a function of detuning (2 ms at zero detuning). In addition, the single-gate
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RF sensor was shown to make faithful measurements of the electron spins

without a�ecting the dynamics of the spins under measurement.

� First experimental demonstration of single-shot, single-gate RF spin readout.

The average readout �delity was 85.77% at a 3.3 kHz measurement bandwidth.

The �delity of single-shot single-gate RF spin readout was still limited by the internal

quality factor of the resonator and thus, the next steps in improving the sensor involve

the engineering, development and integration of higher quality internal factor (above

1600) superconducting spiral inductors with the Si-P quantum dots.

Finally, the last results chapter undertakes theoretical modelling of single and

two qubit gates in singlet-triplet qubits that integrate in a scalable Si-P architecture.

Particular attention was paid to the CZ gate under the in�uence of charge noise due

to its importance in the surface code in performing the required XX and ZZ parity

measurements. The key highlights of this work were:

� Development of simple noise models to optimise the device parameters for high-

�delity CZ gates. The modelling looked at the CZ gate �delities when applying

Gaussian charge noise on the qubit detuning. The modelling was unique in that

it investigates the CZ gates in the strong inter-qubit coupling (with respect to

the inter-dot tunnel coupling) regime to realise CZ gates with worst-case error

rates smaller than 0.5%.

� Combining the noise and electrostatic models, we showed the way to create a

scalable 1D array of singlet-triplet qubits in Si-P.

� Combining recent developments in 3D multi-layer Si-P fabrication to stack 1D

arrays vertically above each other, we showed an architecture containing a large

2D array of singlet-triplet qubits that can implement a fault-tolerant surface

code. Unlike previous single-spin qubit proposals in Si-P [28], gates are not

shared amongst qubits. Since each qubit in the 2D grid can be individually

tuned, one can actively counter potential o�sets due to fabrication defects.

Given the success of the results to date, several key objectives remain in order to

realise the singlet-triplet architecture proposed in this thesis:

� The measurement of charge noise spectra a�ecting the qubit detuning. The

actual magnitude (that is, measurement of ∆σ) and possible noise distribution

helps evaluate and �ne-tune the feasibility of the CZ gate.
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� The measurement of the stability of the magnetic �eld gradient ∆Bz when

using the P-donor dots and possible demonstration of dynamic nuclear spin

polarisation. No experiments to date have exploited the use of P-donors to form

a magnetic �eld gradient. It will be important to see if one can form a stable

and repeatable magnetic �eld gradient across the P-donor dot qubits. Recent

experiments have shown that nuclear spins can �ip when loading electrons onto

the dots, thus, further investigation is required [39, 50].

� The measurement of coherence times and spin lifetimes. Evidently any long-

term proposal requires long spin coherence times and lifetimes.

� The development of higher internal quality factor (above 1600) superconduct-

ing resonators for high �delity single-gate RF spin readout along with their

eventual miniaturisation to ensure many superconducting resonators can �t

near the device.

� The development of deterministic incorporation techniques will enable repro-

ducible dots, reliable dot sizes and precise locations of individual P-donors. In

achieving all three facets, one should be able to reliably set the tunnel couplings

on all qubits during fabrication.

� The experimental measurement of gate-to-gate current leakage pro�les for leads

across multiple vertically separated device layers as proposed for the 2D array.

If the available gate voltage range is consistently too small, then one needs to

redesign the proposed architecture.

� The experimental measurement of the gate lever-arms and potential o�sets

due to di�erent P-donor clusters and distances from their reservoir. Better

modelling of the o�sets and gate lever-arms will enable more optimal geometries

with smaller voltages on the gates to access the required charge states for qubit

operation.

Despite the many experimental milestones that lie ahead, the results and theoretical

work in this thesis have validated the feasibility in pursuing a many-qubit singlet-

triplet architecture using Si-P quantum dots.
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AppendixA
Electrostatic simulations of Si-P devices

STM-patterned Si-P devices o�er a reduced gate density when compared to gate-

de�ned quantum dots because of the free con�nement potential from the P-donor

dots. As with all quantum dot devices, the device operation relies on achieving

particular charge states (number of electrons) on the individual dots (for example,

an even-parity inter-dot transition for a singlet-triplet qubit). To achieve a given

charge state in a Si-P device, one manipulates the potentials on the P-donor dots

by applying voltages to the local metallic P-doped leads. However, the voltages

between leads should not exceed ±1 V as typical lead structures (spaced apart by

∼50 nm) will undergo gate-to-gate device leakage [86, 92, 101]. Thus, it is of interest

to fabricate devices that can achieve the desired charge states with a minimal voltage

applied to the gates. The simulation methods highlighted in this section adopt �nite

element solvers to calculate a capacitance matrix. From the capacitance matrix, one

can extract key device parameters and simulate a charge stability diagram to test

whether one can achieve the desired charge states with minimal voltages.

This section shall highlight key details of the electrostatic modelling adapted and

improved upon for Si-P dots:

� Appendix A.1 gives an overview of the capacitance matrix and links it to

physical electrostatic device parameters (such as gate to dot lever-arms and

mutual capacitance) that one may utilise in designing Si-P devices.

� Appendix A.2 highlights the stability diagram simulator developed in this the-

sis. Here, one feeds a capacitance matrix (describing the dots and gates in

the Si-P device) and the gate voltages set on the individual gates to obtain

a simulated charge stability diagram. In addition, this section highlights how
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one may simulate the e�ect of di�erent P-donor dot sizes by feeding in data

from previous tight-binding simulations [81].

� Appendix A.3 describes the improved method in �nding the capacitance ma-

trices via a FEA simulation. Here, the method no longer simulates P-donors

as metallic spheres like in previous device designs [86, 92, 157] as P-donor

dots will most likely not display the electrostatic screening as seen by perfect

metallic spheres. The lever-arms to the P-donors are inferred from electrostatic

potential simulations.

A.1 Electrostatic parameters from capacitance matrix

The capacitance matrix describes the geometric network of dots and local metallic

gates in the Si-P device via a circuit network of capacitors as discussed in Section

2.2.2. One can simulate the capacitance matrix via �nite element solvers such as

COMSOL or FastCap [86, 92, 157]. A better methodology in simulating the capaci-

tance matrix is described later in Appendix A.3, whereas this section highlights the

key experimental device parameters that one may extract from a simulated capaci-

tance matrix.

A.1.1 De�nition of the Maxwell's capacitance matrix

The capacitance matrix derived here is that well-established in literature [206]. It

is an algebraic construct that has strong analogues to the scalar equation Q = CV

that relates charge and the voltage across a capacitor. Now consider a network of N

nodes with nodal voltages given by the vector V with its components labelled as Vi

(with 0 < i 6 N). Consider a network of interlinking capacitors between all node cij

where i = j is the self capacitance of node i to ground while i 6= j is the interlinking

capacitance between nodes i and j. Now taking the charges on the nodes to be the

vector Q with its components given by Qi, the charge on a given node is simply

given summing all the charges on the capacitors (noting that Q = CV ):

Qi = ciiVi +

N∑

j=1,j 6=i
cij(Vi − Vj) =




N∑

j=1

cij


Vi +

N∑

j=1,j 6=i
(−cij)Vj . (A.1)

By de�nition of matrix multiplication, one may write:
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Q = CV (A.2)

Cij =





∑N
j=1 cij i = j

−cij i 6= j
. (A.3)

That is, the diagonal components of the capacitance matrix C are the sum of all

capacitances stemming o� the node (including the self-capacitance), while the o�-

diagonal components are the negation of the inter-nodal capacitances.

A.1.2 Energy Di�erence between two charge states

The charge-stable ground state is the charge con�guration on the dots (for a given

set of gate voltages) that minimises the global potential energy. However, when

considering charge transitions, it is useful to know the energy di�erence between

the two charge states. As discussed later in Appendix A.2, the charge transition

occurs along the set of voltages where the energy di�erence between two charge

con�gurations is zero.

A network of quantum dots and voltage sources (powering the gates, source or

drain electrodes) can be modelled as an interconnected capacitive network [89]. The

network is de�ned by the capacitance matrix C linking the node voltages V and node

charges Q as Q = CV as discussed in Appendix A.1.1. Now the components of V

are partitioned into the dot voltages VD, o�set voltages VO and the applied voltages

VG. The o�set voltages correspond to the unintentional links from the given node

to some nearby defect (for example, a charge trap from an oxide defect). Thus, one

gets:




QD

QO

QG


 =




CDD CDO CDG

COD COO COG

CGD CGO CGG







VD

VO

VG


 . (A.4)

Now the dot voltages may be found (by considering that Q = CV) via the following

relation:

VD = C−1
DD (QD −CDOVO −CDGVG) , (A.5)

where QD is the charge in the dots. Let the addition or removal of charges on the

dots be given as: ∆Q = QD(f) −QD(i) (where QD(i) and QD(f) are the initial and
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�nal charge states on the dots). All analysis from now on presume that the total

charge di�erence is at most 1 electron1. Taking the charge o�set voltages VO and

VG to be constant on the transfer of charges on the dots (as the voltage sources will

sustain a constant voltage on the gates), the net work done to move charges onto

the dots is:

∆U =

∫ QD(f)

QD(i)

VD(QD)dQD. (A.6)

Noting some simple matrix calculus2, this integral evaluates to:

∆U =
QT
D(f)

C−1
DD

QD(f)−QT
D(i)

C−1
DD

QD(i)

2 −
(
VT

OCOD + VT
GCGD

)
C−1
DD∆Q, (A.7)

noting that the second term has been transposed for notational convenience. Now

taking V0 ≡ C−1
DDCDOVO (where the parameter V0 is a voltage o�set vector that

adds to the energy when adding an electron to a given dot), the equation for ∆U

takes a simpler form:

∆U = 1
2

(
QT
D(f)C

−1
DDQD(f) −QT

D(i)C
−1
DDQD(i)

)
+ VT

Gα∆Q−VT
0 ∆Q. (A.8)

The �rst (bracketed) term is due to the intrinsic electrostatic charging energies of

loading an electron onto the dots. That is, the repulsive energy due to electrons on

other dots and the charging energy due to the dot's self-capacitance. The second

term describes the energy shift due to electric �elds from the gates, where α is the

gate-to-dot lever-arm matrix discussed in the next section. The third term describes

the o�set energies on the dots.

A.1.3 Gate to dot lever-arm matrix

Given a dot d and a gate g, the lever-arm α is de�ned as:

αgd =
1

−e ·
∆Ud
∆Vg

, (A.9)

1The assumption here is that the thermal energies and electron momenta are small. Consider a
dot of capacitance C. The charging energy is Ec = e2/(2C), where the electron energies must be
lower than twice the charging energy to ensure only one electron enters the dot at a time: E < 2Ec.
Thus, the thermal energy must be smaller than the charging energy: 1

2
kBT � 2Ec. Similarly,

electron tunnel rates Γ onto the dot must obey the Heisenberg limit: ~
2
Γ� 2Ec.

2That is, ∂
∂x

(
xTMx

)
= (M + MT )x = 2Mx (if M is symmetric).
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where ∆Ud is the change in the potential energy of the dot (with respect to its

Fermi level) on changing the gate voltage by ∆Vg. Now Equation A.7, gives the

energy requirement ∆U for a given charge transition ∆Q and a gate voltages VG.

The energy shifts when changing VG to VG + ∆V (due to the in�uence of the gate

voltages). Subtracting the two energies now yields the energy di�erence due to the

change in gate voltages:

∆U∆V = ∆VT (−CGDC−1
DD)∆Q. (A.10)

By selecting charge vectors ∆Q to be the change of one electron on dot d so that is is

simply a vector of zeroes except for the −e in the dth entry, one realises by Equation

A.9 that the lever-arm matrix is simply:

α = −CGDC−1
DD, (A.11)

where the number of rows in α equals the number of gates and the number of columns

in α equals the number of dots. The entry αgd in the matrix α is the lever-arm of

gate g to dot d.

A.1.4 Finding the charge transition hyperplanes

To �nd the charge transition boundaries, it is important to realise the signi�cance

of ∆U . A negative ∆U implies that the �nal charge state is electrostatically lower

in energy and thus favourable (once again noting that ∆Q is restricted to at most

one unit of charge in total). Thus, the region described by ∆U < 0 would be that

where QD(f) is the ground state charge state. Thus, ∆U = 0 describes the charge

transition boundary. However, ∆U = 0 is only the charge transition boundary if

the electron added or removed comes from an in�nite distance away, or equivalently

the zero-potential ground, and thereby describing the Fermi level (of the reservoir

holding the electrons) to be at zero potential. Now consider the possibility that the

electron in fact came from a reservoir that is one of the gates in the system. By the

electrostatic superposition principle, one can decompose the energy change for an

electron entering the dot from the reservoir to be the di�erence between adding the

electron (from zero-potential ground) to the dot against adding it to the reservoir

EF . The energy required to add charge onto the reservoir is given by (noting that

the potential energy is simply the product of potential and charge):

∆Ures = VT
GK∆Q. (A.12)
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The number of rows and columns in K equals the number of gates and dots respec-

tively. The entry Kmn is 1 if the lead m is tunnel coupled to dot n (that is, charges

can jump onto or o� this dot n from the given reservoir m) and 0 otherwise. For

the charge transition boundary, if adding the electron to the dot lowers the system

energy more than adding it to the reservoir, then an electron will �ow from the

reservoir onto the dot to enter the lower ground-state charge state (∆U < ∆Ures).

Thus, by Equation A.8

1
2

(
QT
D(f)C

−1
DDQD(f) −QT

D(i)C
−1
DDQD(i)

)
+ VT

G (α−K) ∆Q−VT
0 ∆Q 6 0. (A.13)

The inequality gives a region bounded by a voltage hyperplane where the �nal charge

con�guration QD(f) is of a lower energy than the charge con�guration QD(i).

Note that by de�nition K only a�ects the charge transition boundary when the

charge transition involves a new addition or removal of an electron onto the dot

from its reservoir. For example, if there is an inter-dot transition between two dots

(both individually loaded or unloaded from the same reservoir), the contribution of

K cancels out. However, if there is an inter-dot transition between two dots in which

each dot has a di�erent reservoir, then the position of the charge transition boundary

becomes non-trivial as it is not possible to distinguish the original reservoir of that

electron. In fact, there is no unique ground-state charge stability diagram as the

stability diagram becomes hysteretic. That is, the position of the charge transitions

will now depend on the history regarding the order in which one loads or moves the

electrons in the network of quantum dots and their reservoirs. In the scope of devices

simulated in this thesis, all inter-dot transitions are between dots that share the same

reservoir. Thus, the charge transition boundaries are well-de�ned and unique.

A.1.5 Virtual gates

For a given device, the lever-arm matrix α links the input gate voltages to the dot

energies. Ideally, the gate voltages should independently a given dot's energy without

a�ecting the other dots. However, since there will always be cross-coupling between

gates and dots, one will need to use a linear combination of gate voltages to create a

set of `virtual gates' where each individual virtual gate only a�ects one dot [14, 55].

Now consider the total energy shift for a given network of gates and dots on changing

the voltages on the gates by ∆VG:

∆Ud = ∆VT
Gα∆Q. (A.14)
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Now to have independent access such that the voltage in a virtual gate directly

changes the energy if an electron is in that associated dot, one can immediately

de�ne the virtual gates to be:

∆V′T = ∆VT
Gα. (A.15)

Where changing the voltage of the nth virtual gate in ∆V′ only shifts the energy

of the nth dot. Now one needs to solve for ∆VG to �nd the physical voltages to

apply on the gates for a given set of virtual gate voltages ∆V′. Now if the number

of gates is less than the number of dots, there system does not have enough degrees

of freedom to control the potentials of all the dots independently. However, if the

number of gates equals the number of dots, then one may simply invert the lever-arm

matrix to obtain:

∆VT = ∆V′Tα−1. (A.16)

If the number of gates exceeds the number of dots, then α is no longer a square

matrix. In this case, one may �nd the optimal usage of the gates (to tune the dots'

potentials individually) in a least-squares sense by �rst taking the singular value

decomposition (SVD) of α:

α = XΣY∗, (A.17)

where X is a G×G matrix, Σ is a G×D matrix and Y is a D ×D matrix (for G

gates and D dots). Now one may apply the pseudo-inverse of α to �nd the optimal

set of physical gate voltages to realise a set of virtual gates:

∆VT = ∆V′Tα+ ≡ ∆V′TYΣ+X∗, (A.18)

where Σ+ indicates usual the transpose matrix of the reciprocal singular values.

A.1.6 Charge transitions causing compensating charge �ow in gates

For a network of gates (connected to voltage sources) and dots, the device operates

such that voltage sources keep the gates at a �xed potential and charges move to

minimise the total potential energy of the system. Now consider the case where one

electron moves onto the dot. By de�nition of the electrostatic potential (that is, the

energy required to move a unit test charge from in�nity to a given point) of a given

gate must change due to the presence of said electron (as the positive unit test charge
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moved from in�nity will require less energy due to the electric �eld of the electron).

Since the voltage sources must maintain a �xed potential on all gates, compensating

charge must �ow from the sources onto the gates to counter the e�ect of the electron

(so that the energy required to move the test charge to the given gate remains the

same). This compensating charge can be found by considering Equations A.4, A.5

and A.11; the change in the gate charge is:

∆QG = CGDC−1
DDQD ≡ −α∆Q, (A.19)

given that the change in the gate and o�set voltages is zero on some charge transfer

∆Q onto the dots. Now the implication is that gates far away from the in�uence of a

given dot require less compensating charge as the potential environment around that

gate is less a�ected. In addition, the negative sign implies that the compensating

charge must be of opposite sign to counteract the electrostatic potential of charges

entering or leaving the dots.

A.1.7 Mutual capacitance

Now given a transition line for an electron entering a given dot, it is interesting to

note the shift in this transition line, in voltage space, on adding an electron to a

neighbouring dot. To �nd this shift, consider the two hyperplanes describing the

charge transitions (0, 0)↔ (1, 0) and (1, 0)↔ (1, 1) with the numbers indicating the

number of electrons in dots m and n. Note that the net change in charge is (1, 0)

with the only di�erence being the presence of charge in dot n in the second case. By

Equation A.13, on walking across a voltage unit-vector Vvec, the distance between

the two hyperplanes across this vector is:

∆V =
e(C−1

DD)mn
VT

vec(α∗m −K∗m)
. (A.20)

Thus, the distance is large if the gates used along the voltage vector Vvec have weak

lever-arm α values as a greater voltage swing is required to exact the required change

in energy. However, the key element of concern is the mutual capacitance between

dots m and n.

A.1.8 On-site interaction

The inter-dot charge crossing is that when an electron hops between two dots. One

particular archetype is of heavy interest is the singlet-triplet crossing where one



A.1. Electrostatic parameters from capacitance matrix 277

investigates a charge crossing of (1, 1) to (0, 2). Now taking Equation A.13, the

hyperplane for a (1, 1) to (0, 2) inter-dot transition on dots m and n is:

VT
G ((α)∗n − (α)∗m) =

(
VT

0

)
n

+ e2
(
C−1
DD

)
mn
− 1

2e
2
(
C−1
DD

)
nn

+ 1
2e

2
(
C−1
DD

)
mm

,

(A.21)

where (α)∗d is the list of lever-arm alphas of all the gates to dot d,
(
VT

0

)
n
is the

voltage o�set placed upon dot n and
(
C−1
DD

)
mn

is the mn-component of C−1
DD. Note

that for the sake of having a memoryless stability diagram in which the electrons

on both dots load from the same reservoir, the terms involving K disappear. Now

taking the hyperplane for the (1, 1) to (2, 0) transition, the distance between said

hyperplanes (that is, the two inter-dot transitions) is:

V0,2↔2,0 =

∣∣(VT
0

)
n

+
(
VT

0

)
m

+ 2e2
(
C−1
DD

)
mn

∣∣
‖(α)∗n − (α)∗m‖

. (A.22)

Now evident from the plane equations (with respect to VG):

n0,2↔2,0 =
(α)∗n − (α)∗m
‖(α)∗n − (α)∗m‖

(A.23)

is the normal vector. Thus, from Equation A.11, it is clear that the total energy

spent in moving between the two hyperplanes is:

U0,2↔2,0 = e
∣∣(VT

0

)
n

+
(
VT

0

)
m

+ 2e2
(
C−1
DD

)
mn

∣∣ . (A.24)

A.1.9 Electrostatic detuning

The detuning ∆ in this section shall be that de�ned in Section 5.2. The detuning is

de�ned as zero at the (1, 1) to (0, 2) charge anti-crossing where both charge states

are degenerate (under the constant interaction model where interaction terms are

considered to be zero). Away from inter-dot charge crossing, the detuning is the

energy separation between the (1, 1) and (0, 2) charge states with positive detuning

being when (0, 2) is the lower energy state. By Equation A.8, the change in energy

(or rather the energy splitting between the two charge states) is:

2∆ = −e(VG −Vid)T ((α)∗m − (α)∗n) = e(VG −Vid)T ((α)∗n − (α)∗m) , (A.25)
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where the voltage vector Vid is that when the detuning is zero. That is, Vid is

any point on the inter-dot crossing hyperplane (in gate voltage space) where the

energy splitting between the the (1, 1) and (0, 2) charge states is zero. Note that

it matters not where Vid is chosen. The indices m and n represent the dots upon

which n is the dot where both electrons reside when in the (0, 2) state. Finally note

that the splitting is 2∆ if taking the simpli�ed singlet-triplet Hamiltonian de�nition

introduced in Section 5.2 where the energy di�erence between the (1, 1) and (0, 2)

charge states is 2∆.

A.1.10 Summary

A summary of the physical parameters (derived in this section) that one may extract

from the capacitance matrix is given in Table A.1. The corresponding summary of

the physical parameters (such as the on-site interaction or the electrostatic detuning)

speci�c to double quantum dots is given in Table A.2.

Parameter Expression

Capacitance matrix Cij =

{∑N
m=1 cim i = j

−cij i 6= j

Lever-arm alpha
α = −CGDC−1

DD

αij = α of gate i to dot j

Charging energies diag
(

1
2e

2C−1
DD

)

Virtual gates to physical gates ∆VT =

{
∆V′Tα−1 G = D

∆V′Tα+ G > D

Mutual capacitance voltage shift ∆V =
e(C−1

DD)mn
VT

vec(α∗m −K∗m)

Table A.1: Summary of the capacitance model parameters derived in Appendix
A. The capacitances cij are raw capacitances between nodes i and j, while cii is the
capacitance of the node to ground. In all expressions it is presumed that there are G gates
and D dots for a total of N = G + D elements. Note that CGD is a G × D matrix block
matrix from C where each entry ij is the negation of the capacitance between gate i and dot
j. Similarly, CDD is the D×D capacitance block matrix of the dots. The charging energies
are given as a D-vector where diag takes the diagonal elements of a matrix. The change in
the virtual gate voltage vector ∆V′ (a D-dimensional vector) corresponds to the change in
the physical gate vector ∆V (also a D-dimensional vector). The mutual capacitance voltage
shift (when moving in the direction of the unit-vector Vvec in voltage space) is the shift in
the charge transition on dot m due to an electron entering another dot n.
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Parameter Expression

On-site interaction U02 = e
∣∣(VT

0

)
n

+
(
VT

0

)
m

+ 2e2
(
C−1
DD

)
mn

∣∣

Detuning

∆ = e
2∆V ·VT

vec∆α ≡ e
2∆V∆αe�{

∆V ·Vvec = VG −Vid

∆α = (α)∗n − (α)∗m

Hadamard Detuning ∆VHadamard =
4∆B2

z − t2c
2e∆Bz∆αe�

Table A.2: Relating the double quantum dot parameters to physical parameters
in the capacitance model as derived in Appendix A. The capacitances cij are raw
capacitances between nodes i and j, while cii is the capacitance of the node to ground. In
all expressions it is presumed that there are G gates and D dots for a total of N = G + D
elements. CDD is the D × D capacitance block matrix of the dots while α is the lever-
arm matrix de�ned in Table A.1. VG is a G-vector for an arbitrary con�guration of gate
voltages while Vid is a G-vector representing any point on the (1, 1) to (0, 2) inter-dot
crossing hyperplane on dots m and n where n is the dot where both electrons reside when in
the (0, 2) charge state. Vvec is the unit-vector of the voltage direction in which one pulses
to alter the detuning with αe� being the e�ective di�erential lever-arm when pulsing along
this direction.

A.2 Charge stability diagram simulator

A.2.1 Finding charge stable regions

Now Equation A.13 describes the hyperplane for a given charge transition. A charge

stable region QD(f) is simply the feasible region that results in satisfying all the

hyperplane inequalities over all neighbouring charge states QD(i) (that is, the net

change in charge is at most 1 unit charge). For the sake of generating 2D stability

diagrams where one sweeps two gates, it is useful to write down the line inequalities.

Without loss of generality, let the �rst two entries in VG be the sweeping gates on

the x and y axes in the charge stability diagram3. Let the gate voltages and the

reservoir matrix be partitioned as follows:

3One may always permute the indices in the capacitance matrix to make other gates be the
sweeping gates
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VG =




gx

gy

VN


 (A.26)

α =



αx

αy

αN


 (A.27)

K =




Kx

Ky

KN


 . (A.28)

Here (gx, gy) are the sweeping gate voltages on the 2D stability diagram. αm is a row

vector containing the lever arm alphas of gate m to all the dots along its columns.

Km is a row vector that contains zeroes and one if dot corresponding to the column

is coupled to gate m. Note that N enumerates all the remaining gates that are held

constant over the 2D charge stability diagram. The line inequalities are thus:

a · gx + b · gy > c



a = (Kx −αx) ∆Q

b = (Ky −αy) ∆Q

c =
QT
D(f)

C−1
DD

QD(f)−QT
D(i)

C−1
DD

QD(i)

2 −
(
VT

N (KN −αN) + VT
0

)
∆Q

. (A.29)

A.2.2 Simulating di�erent P-donor dot sizes

The parameter V0 is a voltage o�set designated for other charge sources in the

device (for example, unintentional `charge traps'). However, one may utilise the

o�set to simulate the charge transition o�sets due to di�erent P-donor dot sizes by

decomposing the o�set voltage vector into V0 into two parts:

V0 = Vct + Vpdd, (A.30)

where Vct is the o�set due to unintentional charge reservoirs and Vpdd is the o�set

due to the number of P-donors in a given dot. In the simulations, Vct is set to zero.

However, the potential o�set Vpdd can be matched to be the charging energies one

would expect for the an electron loaded onto a P-donor dot with m electrons (where

m > 0). The associated potential energy o�set Upd(m) for the (m + 1)th electron
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loaded onto a P-donor d can be found via Equation A.8 (taking the voltages on the

gates to be zeroed, QD(f) to be a zero vector with −(m + 1)e in the dth entry and

to be QD(i) a zero vector with −me in the dth):

Updd(m) = e2

2 (2m+ 1)
(
C−1
DD

)
dd

+ e(VT
pdd)d, (A.31)

where (VT
pdd)d is the d

th entry in the voltage o�set vector Vpdd. Note that the asso-

ciated voltage o�set Vpdd does not negate the mutual charging energies. That is, the

voltage o�set e�ectively overwrites the charging energy value from the capacitance

matrix to equal the expected potential o�set Upd(m).

No. Donors Updd(CB)(0) (meV) Updd(0) (meV)

1 −50 45

2 −150 −55

3 −285 −190

4 −425 −330

Table A.3: The estimated potential energy o�sets for the �rst electron loaded
onto di�erent P-donor dots. The quantity Updd(CB)(0) refers to the potential energy
(from tight-binding simulations) of the electron as referenced to the conduction band, while
Updd(0) refers to the approximate potential energy referenced to the Fermi-level.

Tight-binding simulations of di�erent P-donor sized dots (averaged over many

P-donor arrangements for dots larger than 1 P-donor) give estimations of the o�set

potential energy [81] with respect to the conduction band Updd(CB)(m) as shown in

Table A.3 form = 0. To calibrate the o�set potential energies to the conduction band

o�set, a standard calibration was used from the single-donor transport device that

had reproducible o�sets between multiple cool-downs in the dilution fridge [15]. Here,

for a 1P dot, the �rst electron only entered the dot when applying 0.45 V onto the

gates with an e�ective lever-arm of 0.1 [101]. Thus, the absolute energy o�set for the

�rst electron maps (from the zero-potential energy point) maps to Upd = 45 meV as

shown in Table A.3. Thus, from the simulations, one may recalibrate the approximate

energy o�sets that one may measure for di�erent P-donor dot sizes via:

Updd(m) = 95 + Updd(CB)(m), (A.32)

where the units are in meV. Assuming that the conduction band o�set is the same for

all P-donor dot sizes (can be individually calibrated via further experimental data

on di�erent donor cluster sizes), one may take the remaining potential energy o�sets
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(from tight-binding simulations [81]) for di�erent electron numbers on di�erent sizes

of P-donor dots to get the expected potential energy o�sets for di�erent electron

numbers as shown in Table A.4. That is, for a given charge transition, the entries in

VT
pdd are varied appropriately to match Updd(m) given m electrons on a given dot.

No. Donors Updd(0) (meV) Updd(1) (meV) Updd(2) (meV) Updd(3) (meV)

1 45 75 - -

2 −55 20 70 90

3 −190 −55 15 65

4 −330 −165 −80 −15

Table A.4: Estimated potential energy o�sets of P-donor dots as a function of
electron number. The quantities Updd(m) were calculated by simply adding 95 meV to
the average potential energies (from tight-binding simulations) referenced to the conduction
band [81] to reference them to the Fermi-level as before in Table A.3. Note that the data
for a 1P donor is restricted to just 2 electrons.

A.2.3 Tracing the Charge Con�guration Regions

With the constructions in the previous sections, one may now generate the stability

diagram given a capacitance matrix. The algorithm takes the capacitance matrix and

four inequalities bounding the gate range of gx and gy to simulate. Then one starts

with a state QD(f) that exists within the gate voltage space (for example, the state

with zero electrons on all the dots). Since, the stability diagram assumes that all

charge transitions have their total electron numbers di�er by at most one electron4,

the state will be bound by the charge transitions to the states QD(i) that di�er by

one electron in total. That is, one has a set of inequalities to the neighbouring charge

states via Equation A.29. The convex polygon forming the charge stable region QD(f)

satis�es all the inequalities (both from the four voltage bounds and the neighbouring

charge transitions) and can be found via typical algorithms designed to �nd convex

polytopes [207, 208]. On �nding the polygon to the current charge stable region, one

may iterate over all neighbouring charge regions (that clearly exist within the current

gate voltage space) to �nd the resulting polygons of those charge stable regions until

the gate voltage space is �lled with all possible charge stable regions.

4Thus, this includes cases where the electrons may shift and enter the dots simultaneously (for
example, (0, 1, 0)→ (1, 0, 1))
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A.3 Numerically generating the capacitance matrix

The self capacitances and inter-element capacitances of the gates and dots in the

device can be numerically simulated via any �nite element solver. To simulate Si-

P gates, the individual structures are considered to be planar structures with a

thickness of 3.6 nm. The thickness derives from the e�ective Bohr radius of electrons

on phosphorus atoms in a silicon crystal [94, 95]. The gates in the simulations

are considered to be perfect electrical conductors as veri�ed experimentally by the

metallic nature of densely doped phosphorus gates [15, 27, 81]. For large quantum

dots, one may apply a similar treatment to the gates. To improve the accuracy for

smaller dots, one may model the P-donor dots as metallic spheres with a radius chosen

to match the experimentally measured charging energy. That is, the equivalent self-

capacitance of a single P-donor dot for a nominal 45 meV charging energy is:

Cdonor =
e2

2U
=

e2

2 · 45 · 10−3 · e ≈ 1.8 aF. (A.33)

Using the equation for the self-capacitance of a sphere, the e�ective radius of the

metallic sphere is:

rdonor =
Cdonor

4πε0εSi
≈ 1.4 nm, (A.34)

where εSi = 11.7 is the relative permittivity of the silicon crystal surrounding the P-

donor. This yields results should yield accurate results when estimating the lever-arm

alphas between the surrounding gates to the P-donor dot. However, model becomes

inaccurate when multiple P-donor dots are lined up in a row. This is because the dots,

simulated as metallic spheres, start screening adjacent dots from other gates' electric

�elds for the electric �eld inside a metallic sphere must be zero. This distortion of

the electrostatic scalar potential around the dots is illustrated in Figure A.1a where

the potential on the dots is �xed at a nominal 0 V, while the potential on the gate

is set to 1 V. Figure A.1b shows the resulting electrostatic scalar potential when

ignoring the presence of the dots.

Now the P-donor dots are not metallic structures that will distort the electric

�elds in such a manner. In fact, the dots are structurally the same size as neigh-

bouring silicon atoms when no electrons are trapped within them. Thus, it is more

appropriate to consider the scalar potential �eld strengths at the positions of the

dots in the absence of the dots to infer the associated gate to dot couplings. This

point-like approximation holds when considering small donor clusters. In fact, the

following analysis shows that one only needs to �nd the lever-arm matrix α and the



284 Appendix A. Electrostatic simulations of Si-P devices

(a) Dots treated as conductors
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Figure A.1: Screening e�ects seen when modelling dots as perfect electrical
conductors. The white lines show the meshing of the gate below and the two dots above.
The two plots show a top view of the electrostatic scalar potential maps when applying 1 V
to a 3.6 nm thick metallic gate (on the bottom) in the presence of the two dots. (a) shows
the potential map when treating the dots as metallic spheres, while (b) ignores the presence
of the dots. Clearly treating the dots as metallic spheres causes the potential �eld bend
around the bottom dot such that the potential at the top dot is much lower than that when
ignoring the presence of the bottom dot. Treating the dots as metallic spheres in this case
leads to underestimations of the lever-arm alpha of the top dot with respect to the gate
below.
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inverse inter-dot matrix C−1
DD as explained in Section A.2.1. The gate-to-gate cou-

plings are irrelevant to the electrostatics of electrons on the quantum dots. Thus,

one need not simulate the gate structures beyond the close proximity of the quantum

dots. That is, structures far away from the dots will not contribute to the gate to

dot capacitances or a�ect the inter-dot capacitances.

In the following simulations, the gates and large quantum dots (such as an SET

which will likely retain its metallic and subsequent electric-�eld screening properties)

are simulated with the same parameters as the previous capacitance simulations.

Thus, for this section, CDD refers to the inter-dot matrix between the small P-donor

clusters only. To infer the large quantum dot to P-donor cluster capacitances in the

CDD matrix, one needs to consider the entries of the inferred CGD matrix where

the `gate' in this case is the large quantum dot (that is, one iterates over the large

quantum dots as though they were gates). However, the dots are completely omitted

and replaced with point charges when appropriate.

A.3.1 Numerically simulating α for P-donor clusters

To infer the gate-to-dot couplings, one �rst generates potential maps for every gate

g. In each map associated with gate g, one applies 1 V to gate g and 0 V to all

remaining gates. Now consider a potential map when 1 V is applied to gate g; the

potential energy to bring one electron from an in�nite distance away (zero potential

reference) to a site where a P-donor cluster dot d resides, is simply eφg(r = rd)

(where φg(r = rd) is the potential at site g). Taking Equation A.11 (with ∆Q

having 1e for dot index d and 0 for all other entries and ∆V having 1 for gate index

g and 0 elsewhere), it becomes evident that:

αgd = φg(r = rd). (A.35)

Although it is not required in generating stability diagrams, one may generate CGD

by simply considering the de�nition of α in Equation A.11.

A.3.2 Numerically simulating C−1
DD for P-donor clusters

Now from Equation A.8, when the gate voltages and o�sets are zeroed:

∆UV=0 = 1
2

(
QT
D(f)C

−1
DDQD(f) −QT

D(i)C
−1
DDQD(i)

)
. (A.36)

Now taking the initial charge state to be empty on all the dots (that is, QD(i) = 0)

and the �nal charge state to individually populate each dot d, the resulting energy
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change is:

∆Ud = 1
2e

2
(
C−1
DD

)
dd
. (A.37)

This is in fact the charging energy of the dot5 and set to be ∆Ud = 45 meV (the

o�sets for other dot sizes are taken care of by the o�sets on V0).

Now to �nd the o�-diagonal components, consider the same process as before

(that is, an electron enters dot d) but with another dot c 6= d occupied during the

entire transaction. The resulting energy change (with all voltages gate zeroed as

before) is:

∆Ucd = 1
2e

2
(
C−1
DD

)
dd

+ e2
(
C−1
DD

)
cd
, (A.38)

where one makes use of the symmetry of the capacitance matrix. Now the energy

shift considered here is that when moving an electron to dot d in the presence of

an electron on dot c. That is, one calculates the potential map due to an electron

situated at dot c and evaluates it at the point on dot d: φdc. Now the energy payment

is simply eφdc. Note that the charging energy term also contributes an additional

45 meV. Thus:

e2
(
C−1
DD

)
cd

= eφdc. (A.39)

Thus, one can evaluate all the terms in the matrix C−1
DD; the inverse yielding CDD

as required.

A.3.3 Summary of the FEA method

To incorporate the methods shown in the previous section, one translates the de-

vice to be modelled into a FEA software package such as COMSOL. The gates are

modelled as perfect electrical conductors. That is, the electric �eld inside the gates

is zero and it matters not what material type is set on the surface and within the

gate structures. The gates reside in material silicon with the key parameter being

the relative permittivity of 11.7. The device plane is separated from the surface via

an encapsulation layer of silicon and then vacuum (relative permittivity of 1). This

simulates the e�ect of the �nite encapsulation layer thickness on the devices. Finally,

the zero potential boundary condition is set at all elements an in�nite distance away

5This has been posited to be a function of intrinsic nature of phosphorus in bulk as well as the
nearby gate geometry [98]. Such e�ects may only be captured in a full tight-binding simulation and
therefore, the simulations here utilise the nominal value taken from experimental results [15].
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(a) FEA Model

Gates

Si

Vacuum

Infinite-element-domain

Outer edge of solver (0 V)

(b) FEA Model in COMSOL

Figure A.2: The electrostatic FEA model used to generate the capacitance
matrix. (a) Schematic of the cuboid to be modelled. The cuboid is subdivided into a
silicon and vacuum portion to simulate the �nite encapsulation layer on the device. Gates
are modelled as perfect electrical conductors. The outer boundary is set to zero potential
and exists at an in�nite distance away from the inner cuboid of the model via an in�nite-
element-domain boundary condition. (b) An example FEA model done in COMSOL with
the vacuum portion of the device highlighted for convenience.

from the device as shown in Figure A.2a. If this were not set, the elements will have

zero self-capacitance and thus, provide incorrect entries to a Maxwellian capacitance

matrix [206]. The in�nite distance is simulated via a special in�nite-element-domain

boundary condition [209]. Figure A.2b shows the associated model in COMSOL.

With the model set up with the appropriate boundary conditions in Figure A.2,

the algorithm to integrate the methods of the previous sections is as follows:

1: procedure CAPMAT({g1, ..., gG}, {r1, ...rD}). G gates and D dot coordinates
2: C← 0(G+D)×(G+D)

3: ZeroAllGates . Set all gates to 0 V
4: CDD-INV ← 0D×D
5: for m← 1 to D do . Compute C−1

DD

6: ClearPointCharges . Clear all point charges in model
7: PointCharge(e,rm) . Place 1e of charge at dot rm
8: for n← 1 to D, n 6= m do

9: SolveFEA . Mesh and solve model
10: CDD-INV(m,n)← φ(rn)/e . Take electrostatic potential at rn

11: CDD-INV(m,m)← 2× 45/e

12: ClearPointCharges

13: α← 0G×D
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14: for m← 1 to G do . Compute α-matrix
15: ZeroAllGates

16: GateVoltage(m,1 V) . Set gate m to 1 V
17: SolveFEA

18: for n← 1 to D do

19: α(m,n)← φ(rn)

20: C(1..G, 1..D)← −α×CDD-INV

21: C((G+ 1)..(G+D), 1..G)← (−α×CDD-INV)T

22: C((G+ 1)..(G+D), (G+ 1)..(G+D))← (CDD-INV)−1

23: return C

The algorithm is divided into three sections. The �rst section (lines 5-11) calculates

C−1
DD using the methods outlined in Section A.3.2. The second section (lines 14-19)

calculates the alpha matrix α using the methods outlined in Section A.3.1. The

�nal section (lines 20-22) computes the required elements to �ll in the capacitance

matrix. Note that the inter-element matrix between the gate elements CGG is left

zeroed for this does not a�ect the electrostatics of electrons loading or unloading

onto the quantum dots.



AppendixB
RF probing of nonlinear capacitance

between reservoir and dot

The SLQD sensor involves the RF probing of electron oscillations between a reservoir

and a quantum dot as discussed in Chapter 3. This appendix details the solutions

surrounding the resulting RF response of the electrons (across the reservoir and

quantum dot) by solving the corresponding rate equation discussed in Section 3.3.

B.1 Tunnel rates from Fermi's golden rule

Now consider an electron entering the dot from the reservoir. The tunnel rate,

equivalently the transition probability per unit time, as given by the Fermi's golden

rule is:

ΓD↔R =
2π

~
T 2
DRδ (ED − ER) , (B.1)

where ER is the energy of electrons in the reservoir and TDR is the transmission

probability of an electron tunnelling between the reservoir to the dot. ED is the

lowest un�lled energy level in the quantum dot; that is, all energy levels below ED

are assumed to be �lled (that is, the dot is in its ground state). Thus, ED is the

energy of the electron once it tunnels onto the dot. Note that the net tunnel rate

is given as a Dirac δ-function for tunnelling only occurs between two states of the

same energy.

The energy states in the reservoir and the dot may follow a weighted probabil-

ity distribution. Thus, to get the net tunnel-rate, one must sum over all possible

289
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reservoir and dot energy states. Thus, letting gD and gR be the state energy density

distributions of the electrons in the dot and reservoir respectively, the net tunnel

rate is:

Γ = Γ0

+∞∫

−∞

+∞∫

−∞

gD(Ed)gR(Er)δ (Ed − Er) dEr dEd, (B.2)

where one assumes that the transmission probability is constant over all state tran-

sitions; thus, all the constants are compactly de�ned as Γ0 ≡ 2π
~ T

2
DR. The energy

states on the reservoir are given by the Fermi-Dirac distribution (with gR(±) being

that when electrons move onto and o� the dot respectively):





gR(+)(E) ≡ 1

1+exp

(
E−EF
kBT

)

gR(−)(E) ≡ 1− 1

1+exp

(
E−EF
kBT

) = 1

1+exp

(
−E−EFkBT

)
, (B.3)

where kB is the Boltzmann constant, T is the temperature of the electrons in the

reservoir and EF is the reservoir Fermi-Energy level (tunable by the voltage applied

to the reservoir). Now gR(+) describes the �lled energy states (mostly �lled below

the Fermi-level ER and mostly empty above the Fermi level) on the reservoir from

which an electron may tunnel onto the dot. The distribution is inverted for gR(−) to

describe the empty energy states to which the electron may occupy when moving o�

the dot. Now by Equation B.2 the tunnel rates for an electrons moving on or o� the

dot (de�ned as Γ+ and Γ− respectively) are:

Γ± = Γ0

+∞∫

−∞

gD(Ed)

1 + exp
(
±Ed−EF

kBT

)dEd. (B.4)

Note that one assumes that the variation between the Fermi-level and a given dot

energy state is small enough such that only one energy state, in the dot, crosses

the Fermi-level. All dot states below this state remain �lled. As there is only one

available energy level on the dot, the distribution of states (assuming no lifetime

broadening) is gD(Ed) ≡ δ(Ed −ED) where ED is the energy of the energy electron

when it tunnels onto the dot. Thus, the net tunnel rates are given by:

Γ± =
Γ0

1 + exp
(
±ED−EF

kBT

) . (B.5)
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B.2 Solving the rate equation

Electrons oscillating between a dot-to-lead transition can be modelled via a simple

ordinary di�erential equation as described in Section 3.3.1. As the ODE is periodic,

the natural solution is a Fourier series as shown in this section.

B.2.1 Main solution

Applying a sinusoidal gate voltage on a gate can induce shuttling of an electron

between a reservoir and a quantum dot. Now the ODE governing the electron occu-

pation is given by Equation 3.19 (constructed in Section 3.3.1):

dPe
dt

+ Γ0Pe =
Γ0

1 + exp
(
eαrg
kBT

(V0 + Vac cos(ωt))
) ≡ Γ+(t) (B.6)

As the right hand side is clearly periodic, the natural basis to write the steady-state

solution is the Fourier basis:

Pe(t) =

∞∑

n=1

Pn ≡
∞∑

n=1

An(p) cos
(
nωt+ φn(p)

)
(B.7)

Γ+(t) =
∞∑

n=1

Fn ≡
∞∑

n=1

(
ω

π

∫ π
ω

−πω
Γ+ cos(nωτ)dτ

)
· cos (nωt) (B.8)

Note that Γ+(t) is an even function and thus, expressible as a Fourier cosine series.

Now noting the linearity of the ODE and orthogonality of cosines, one may write

an equation concerning the nth harmonic by simply matching the coe�cients of the

cosines:

An(p)

(
Γ0 cos

(
nωt+ φn(p)

)
− nω sin

(
nωt+ φn(p)

))
= Fn cos (nωt) (B.9)

Now by the compound trigonometric identity:

An(p)

√
Γ2

0 + (nω)2 cos
(
nωt+ φn(p) + arctan

(
nω
Γ0

))
= Fn cos (nωt) (B.10)

The integral Fn on the right hand side is solved in Section B.2.2. Now one may

match the amplitude and phase terms on both sides (noting that the phase o�set on
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the RHS is zero) to yield the probability of the electron being on the dot:

Pn = An(p) cos(nωt+ φn(p)), n ∈ N



An(p) = 1√
Γ2

0+(nω)2
· −eαrgΓ0Vac

4nkBT
· F
(
eαrg
2kBT

Vac,
eαrg
2kBT

V0, n
)

φn(p) = − arctan
(
nω
Γ0

) . (B.11)

B.2.2 Special function F (x, y, n)

A particular function required in solving the ODE given in Equation 3.19 shall be

constructed in this section. Now the integral of concern is:

Fn =
ω

π

∫ π
ω

−πω

Γ0 cos(nωt)

1 + exp
(
eαrg
kBT

(V0 + Vac cos(ωt))
)dt (B.12)

Using integration by parts1:

Fn =
Γ0

nπ
·


 sin(nωt)

1 + exp
(
eαrg
kBT

(V0 + Vac cos(ωt))
)




π
ω

−πω

− Γ0

nπ

∫ π
ω

−πω

− sin(nωt) exp
(
eαrg
kBT

(V0 + Vac cos(ωt))
)
−eωαrgVac

kBT
sin(ωt)

(
1 + exp

(
eαrg
kBT

(V0 + Vac cos(ωt))
))2 dt

= 0− eωαrgΓ0Vac
4nkBT

· 1

π

∫ π
ω

−πω

sin(nωt) sin(ωt)

cosh2
(
eαrg
2kBT

(V0 + Vac cos(ωt))
)dt

(B.13)

Applying the transformation: ωt→ t yields:

Fn =
−eαrgΓ0Vac

4nkBT
· 1

π

∫ π

−π

sin(nt) sin(t)

cosh2
(
eαrg
2kBT

(V0 + Vac cos(t))
)dt (B.14)

≡ −eαrgΓ0Vac
4nkBT

· F
(
eαrg
2kBT

Vac,
eβ

2kBT
V0, n

)
, (B.15)

where the function F (x, y, n) is de�ned as:

1Taking u =
(

1 + exp
(
eαrg

kBT
(V0 + Vac cos (ωt))

))−1

and dv = cos(nωt)
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F (x, y, n) ≡ 1

π

∫ π

−π

sin(t) sin(nt)

cosh2 (y + x cos(t))
dt. (B.16)

The behaviour of this function is shown below in Figure B.1.
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Figure B.1: Plot of F (x, y, n) over n = 1 to n = 6. Note that both the quantum
capacitance and Sisyphus resistance terms are proportional to ∼ F (Vac, V0, n).

B.2.3 Properties of F (x, y, n)

The special function F (x, y, n) is plotted in Figure B.1. The �rst harmonic shows

a monotonic decrease with increasing x, while the higher harmonics show peaking

responses. The function also changes sign along the y = 0 for every odd harmonic

while being zero for the even harmonics. Finally, the function accumulates a number
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of lobes (that alternate in sign) equal to the harmonic number with the overall height

of the lobes decreasing monotonically with harmonic number.

Now taking x→ 0, the special function F in Equation B.16 for n = 1 becomes:

lim
x→0

F (x, y, 1) ≡ 1

π

∫ π

−π

sin2(t)

cosh2 (y)
dt ≡

∫ π

−π

1− cos(2t)

2π cosh2 (y)
dt = sech2(y). (B.17)

Similarly, one may take the limit x→∞:

x · F (x, y, n) =
2

π

∫ y+x

y−x
sin(nt)

cosh2(u)
du =

2

π

∫ y+x

y−x

√
1−
(u−y

x

)2
Un−1

(u−y
x

)
cosh2(u)

du, (B.18)

where the substitution u = y + x cos(t) was made and one realises that F is even.

In addition, one realises that sin(nt) ≡ sin(t) · Un−1(cos(t)) with Un(t) being the

Chebyshev polynomial of the second kind. Now separately letting u vary �nitely,

while letting x tend to in�nity (with y being allowed to vary in a similar order of

magnitude) yields:

lim
x→∞

x ·F (x, y, n) =
2

π

∫ ∞

−∞

√
1−
( y
x

)2
Un−1

(−y
x

)
cosh2(u)

du =
4
√

1−
( y
x

)2
Un−1

(−y
x

)

π
. (B.19)

Thus, the asymptotic pro�le of xF (x, y, n) over y is a Chebyshev polynomial with

a circularly envelope. Now to �nd the asymptotic zeroes (that is, points of null

response), one may expand Un−1:

lim
x→∞

x · F (x, y, n) =
4
√

1−
( y
x

)2

π
2n−1

n−1∏

k=1

(−y
x
− cos

(
kπ

n

))
(B.20)

Now in the integral, the �rst fraction is always positive. Thus, if any zeroes exist, it

must be due to the product on the right:

y = −x cos

(
kπ

n

)
, k < n, k ∈ N. (B.21)

Note that the minus sign can be dropped on noting the symmetry of the cosine and

F (x, y, n) about x and y. An intriguing idea now is that the saturating extrema of

x · F (x, y, n) as x → ∞ are centred on yk0 = −x cos((k0 + 1
2)π/n) for 0 6 k < n.
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Taking this value for y and substituting it into Equation B.19 yields:

lim
x→∞

x · F (x, yk0 , n) =

4 sin

(
(k0+

1
2 )π

n

)
Un−1

(
cos

(
(k0+

1
2 )π

n

))

π
, (B.22)

Applying the properties of Un, this limit simpli�es to:

lim
x→∞

x · F (x, yk0 , n) =
4 sin

(
(k0 + 1

2)π
)

π
=

4

π
(−1)k0 , k < n, k ∈W. (B.23)

B.3 Summary

Table B.1 shows a summary of the physical parameters surrounding the SLQD sensor

on combining the discussions in this appendix and in Section 3.3.
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Parameter Expression

Spectral
Function

F (x, y, n) ≡ 1
π

∫ π
−π

sin(t) sin(nt)

cosh2(y+x cos(t))
dt

Gate
voltage

V (t) = V0 + Vac cos(ωt)

Current

I(t) =
∑∞

n=1An(I) cos(nωt+ φn(I))



An(I) =
eαrgω

2 · Γ0√
Γ2

0+(nω)2
· eαrg2kBT

Vac · F
(
eαrg
2kBT

Vac,
eαrg
2kBT

V0, n
)

φn(I) = π
2 − arctan

(
nω
Γ0

)

Maximum
current
(V0 = 0)

Imaxn =





2eαrg
π · ωΓ0√

Γ2
0+(nω)2

· (−1)
n−1

2 n ∈ Nodd

0 n ∈ Neven

, Vac →∞

High
power
current

An(I) =
2eαrg
π · ωΓ0√

Γ2
0+(nω)2

·
√

1−
(
V0
Vac

)2
· Un−1

(
V0
Vac

)
, Vac →∞

Peak lobe
current

Ipeak-kn =
2eαrg
π · ωΓ0√

Γ2
0+(nω)2

· (−1)k−1, k < n, k ∈ N, Vac →∞

Zeroes in
In

V0 = Vac cos
(
kπ
n

)
, k < n, k ∈ N, Vac →∞

RF
response

Υ = Vin · 2QextQ
2
int

(Qext+Qint)
2 · KηlossCp

· e
2α2
rg

4kBT
· Γ2

0

Γ2
0+ω2 · F

(
eαrg
2kBT

Vac,
eαrg
2kBT

V0, 1
)

Υ = Qint

Qext+Qint
· KCp ·

eαrg
2 · Γ2

0

Γ2
0+ω2 · eαrg2kBT

Vac · F
(
eαrg
2kBT

Vac,
eαrg
2kBT

V0, 1
)

Υlarge = Qint

Qext+Qint
· KCp ·

2eαrg
π · Γ2

0

Γ2
0+ω2 ·

√
1−

(
V0
Vac

)2
, Vac →∞

Max. RF
response

Υmax = Qint

Qext+Qint
· KCp ·

2eαrg
π · Γ2

0

Γ2
0+ω2 ,

eαrg
2kBT

Vac � 1

Linear RF
response

Υ
Vac

= Qint

Qext+Qint
· KCp ·

Γ2
0

Γ2
0+ω2 ·

e2α2
rg

4kBT
· sech2

(
eαrg
2kBT

V0

)
, Vac → 0

Power Pavg = 1
2 · Vac ·

eαrg
2 · ω2Γ0

Γ2
0+ω2 · eαrg2kBT

Vac · F
(
eαrg
2kBT

Vac,
eαrg
2kBT

V0, 1
)

Asymptotic
Power

Pasym. =
eαrg
π · ω2Γ0

Γ2
0+ω2 · Vac, eαrg

2kBT
Vac � 1

Table B.1: Comparison of the experimentally deduced α values with an FEA simulation.
The experimental measurements were only possible on the right-hand dot pair D2L and
D2U. The di�erential alpha ∆αG for a given gate G is de�ned as Vac = ηlossQe�Vin

.
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RF probing of nonlinear capacitance

between two quantum dots

Section 4.1.1 introduced a Hamiltonian construction describing a double quantum

dot system being measured with a single-gate RF sensor:

Hid =

(
∆ −tc
−tc −∆

)
≡ ∆σz − tcσx, (C.1)

∆ = e∆α
2 (V0 + Vac cos(ωt)) ≡ V ′0 + V ′ac cos (ωt) . (C.2)

where tc is the inter-dot tunnel coupling, ∆ is the detuning and ∆α is the di�erential

lever-arm. The applied voltage (at the gate of the device) is a sum of the detuning

o�set voltage V0 (voltage o�set from the inter-dot crossing where ∆ = 0) and the

applied RF sensor drive amplitude Vac. The aim is to �nd the probability of occu-

pation with respect to time p(t). From which one obtains the current to ultimately

deduce the quantum capacitance.

Given the foundation laid out by the Hamiltonian, the following sections outline

the pathway taken to �nd the quantum capacitance:

� Appendix C.1 gives a general overview for the solution by the rotating wave

approximation. The general solution is applicable to other driven systems (for

example, ESR on single-spin qubits [16, 50] or AC driving of singlet-triplet

qubits [34]).

� Appendix C.2 outlines a solution to the Hamiltonian using the rotating wave

approximation (RWA). Given the periodic Hamiltonian, this seemed to be a

297
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natural approach. This section highlights a general solution utilised by the

following two sections.

� Appendix C.3 applies the RWA solution to the resonant tunnelling capacitance

regime where the driving frequency matches the energy splitting between the

ground and excited states. The solution yielded conditions required for maxi-

mum readout signal strength when using the tunnelling capacitance mode.

� Appendix C.4 brie�y discusses the limitation of RWA when applied to the

adiabatic quantum capacitance mode.

� Appendix C.5 thus provides a semi-classical approach to solving the Hamilto-

nian for the adiabatic quantum capacitance mode of operation.

C.1 Rotating wave approximation

In this section, one shall consider a common time-dependent Hamiltonian on a two-

level system and the subsequent rotating wave approximation [210�213]. The Hamil-

tonian is a sum of a bare Hamiltonian (free precession due to a z-directional magnetic

�eld) and that of a driving Hamiltonian:

H =
Ez
2
σz + Hdrive, (C.3)

where the driving Hamiltonian Hdrive is de�ned as the sum of two orthogonal time-

dependent �elds (that are also orthogonal to the z-axis; thus, chosen to be along the

x and y axes):

Hdrive(±) =
Eac
2

(cos(ωt)σx ± sin(ωt)σy) =
Eac
2

(
0 e∓iωt

e±iωt 0

)
(C.4)

The two orthogonal driving �elds create two circularly polarised driving �elds termed

co-rotating for Hdrive(+) and counter-rotating for Hdrive(−). The co-rotating term

follows the rotation prescribed by the bare Pauli-z rotation term. In resonant driving

(where the frequency of the drive equals the Pauli-z energy splitting) if one were in

the rotating frame that followed the co-rotating term, the Pauli-z term will e�ectively

disappear to enable a simple solution that yields x-rotations.

Now consider the co-rotating drive. To solve the behaviour of the co-rotating

component, it is convenient to work in the frame that rotates with the circularly

polarised axis:
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T+ = Rz(−ωt) = ei
ωt
2 σz . (C.5)

The applied transformation makes the co-rotating circularly polarised vector ap-

pear to be of a constant magnitude without any oscillations; the removal of the

time-dependence enables a simple solution. Now applying the transformation to the

Schrödinger's equation yields:

i~T+
∂
∂t

(
T†+T+Ψ

)
= T+Hdrive(+)T

†
+T+Ψ. (C.6)

Simplifying the equation while taking taking Ψ′ = T+Ψ to be the transformed state

vector, one may write the e�ective Hamiltonian in the co-rotating frame to be:

H+(rot) =
Ez − ~ω

2
σz +

Eac
2
σx. (C.7)

The co-rotating Hamiltonian describes a simple two level system where the precession

in the rotating frame is purely about the x-axis when Ez = ~ω. That is, one

resonantly drives the two-level system at a frequency matching the splitting given

by Ez. If the driving frequency ω fails to match Ez/~, then the rotation axis tilts as

per the detuning Ez − ~ω compared with Eac.

Now consider the driving �eld being counter-rotating circularly polarised �eld.

It is convenient to work in the frame that rotates with the circularly polarised axis:

T− = Rz(ωt) = e−i
ωt
2 σz . (C.8)

Similar to before, applying the rotating transformation removes the oscillatory time

dependence of the counter-rotating term. Applying the transformation to the Schrödinger's

equation like before, taking Ψ′ = T−Ψ to be the transformed state vector and simpli-

fying the resulting equation yields the e�ective Hamiltonian in the counter-rotating

frame to be:

H−(rot) =
Ez + ~ω

2
σz +

Eac
2
σx. (C.9)

The counter-rotating Hamiltonian describes a simple two level system where the

precession in the rotating frame now lies on an axis prescribed by Eac and Ez + ~ω.
One could induce pure x-rotations by using −ω, but this is trivially the de�nition of

the co-rotating waveform described in the previously.

During resonant driving (~ω = Ez), the co-rotating solution yields neat rotations,

while the counter-rotating solution yields rotates about an axis given by Eac and



300 Appendix C. RF probing of nonlinear capacitance between two quantum dots

Ez + ~ω. It is as if one drives the co-rotating solution resonantly (~ω = Ez), while

driving the counter-rotating solution a detuning away from the splitting at twice the

z-splitting. That is, the axis of rotation for the counter-rotating solution is given by

Eac and 2~ω. Now assume that one drives the two-level system resonantly with ~ω =

Ez. One way to get good rotations about the x-axis would be if the counter-rotating

solution were to produce clean rotations about the x-axis with Eac ≫ Ez +~ω; that
is, the `strong driving regime'. An alternative method is to suppress all rotations,

then one can work in the regime where Eac ≪ Ez + ~ω; that is, the `weak driving

regime'. The weak driving regime is the basis of the `rotating wave approximation'

where one neglects this high frequency z-axis contribution.

(a) Decomposing the drive

x

z

r0
2 r0racrac

rac sin(ϕ)r⊥

ϕ

(b) Net AC signal

x

y

z

r0r0
2

r⊥r⊥

nac

ψ0

Figure C.1: Bloch sphere representation of the general rotating wave Hamil-
tonian. Here, the driving term rac (the cos(ωt) is omitted for clarity) is non-orthogonal
to the stationary term r0/2. (a) Under a perturbative approximation, the component of
the driving term parallel with the stationary term can be ignored to leave rac sin(ϕ)r⊥ be
the only time-dependent term taken into consideration. (b) The net dynamics is that of
precession about the axis nac, noting that nac is parallel to r⊥ if driven at resonance, and
then precession at frequency ω about the stationary axis r0.

A more general problem is when the driving term is not orthogonal to the main

stationary component. Figure C.1a describes one such Hamiltonian where the sta-

tionary term sets the axis of rotation at σ0 at a precession frequency of r0/2. The

driving term racσac/2 is applied at an angle ϕ from the stationary term. The full

non-orthogonal Hamiltonian is:
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HNO =
r0

2
σ0 + rac cos(ωt)σac ≈

r0

2
σ0 + rac sin(ϕ) cos(ωt)σac. (C.10)

Note that σ0 and σac are the Pauli vector matrices corresponding to the rotation

vectors r0 and rac respectively. The approximation made here is that the driving

amplitude rac is pertubative and thus, does not signi�cantly a�ect the magnitude

stationary term. Therefore, one may simply consider the portion of the driving

term orthogonal to the stationary term. Taking the frame co-rotating about σ0 and

applying the rotating wave approximation, the dynamics are given approximately by

rotations about the axis (the magnitude relating to the frequency of precession):

nac =
r0 − ~ω

2
r0 +

rac sin(ϕ)

2
r⊥. (C.11)

In the lab frame, the dynamics translate to nutation akin to a precessing gyroscope.

That is, the initial state vector ψ0, highlighted in Figure C.1b, precesses about nac

(the nutation) while the axis itself precesses about r0 (the overall precession) at

frequency ω.

C.2 Solving the Hamiltonian using RWA

The periodic driving of the Hamiltonian given by the detuning drive in Equation

C.1 lends itself to the application of the rotating wave approximation. However,

the driving term is not necessarily orthogonal to the stationary term as illustrated in

Bloch sphere diagrams in Figure C.2. The driving term (shown in blue) of amplitude

V ′ac occurs along the Pauli-z axis. The stationary term (shown in red) is given by the

tunnel coupling along the Pauli-x axis and the detuning o�set V ′0 along the Pauli-z

axis. Thus, the stationary term is not orthogonal to the driving term and forms an

angle ϕ with the driving term as shown in Figure C.2a.

Now one invokes a perturbative approximation where only the orthogonal compo-

nent of the driving term r⊥ is considered for the precession dynamics. As discussed

in Appendix C.1, the remaining component (the portion of the driving term parallel

with r0) will not a�ect the dynamics if the stationary term r0 is really large. Experi-

mentally, this implies that the voltage amplitude of the RF drive V ′ac is perturbative

with respect to the energy splitting (if V ′0 = 0, it implies that V ′ac � tc as seen

in previous experiments [133]). Now the orthogonal component of the driving term

(shown in green) is:
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(a) Decomposing the driving term

x

z

r0 = (−tc, 0, V ′
0)

(0, 0, V ′
ac)

r⊥

ϕ

(b) Rotating frame dynamics of the state vector

x

z

r0
r⊥

nac

ψ0

κ

ξ

Figure C.2: Bloch sphere representation of a driving Hamiltonian modelling
single-gate RF readout. The driving term V ′ac (the cos(ωt) is omitted for clarity) is
non-orthogonal to the stationary term r0. (a) Under a perturbative approximation, the
component of the driving term parallel with the stationary term can be ignored to leave
V ′ac sin(ϕ)r̂⊥ be the only time-dependent term taken into consideration. (b) The axis of
rotation in the rotating frame (rotated about the stationary axis r0) is given by the driving
amplitude and the amount the driving frequency is o� resonant from the tunnel coupling as
given in Equation C.13 (nac is parallel to r⊥ if driven at resonance). The net result is that
the initial state precesses about the axis nac in the rotating frame. When returning to the
lab frame (by rotating about the axis r0), said precession becomes a nutation to the overall
precession at frequency ω about the stationary axis r0.

r⊥ ≡ V ′ac sin(ϕ) · (V ′0 , 0, tc)√
t2c + V ′20

=
V ′actc

t2c + V ′20

·
(
V ′0 , 0, tc

)
. (C.12)

Now one enters the frame that rotates about the stationary term r0 (the rotating

frame) as shown in Figure C.2b. From Equation C.11, the time-dependent dynamics

are such that the initial state vector ψ0 precesses about the rotation axis (in the

frame rotating about the r0-axis):

nac =
2
√
t2c + V ′20 − ~ω

2
r0 +

V ′actc
2
√
t2c + V ′20

r⊥. (C.13)

Note that the result is the same as in any driving system; that is, the rotations are

purely about the r0-axis if one drives resonantly and matches the energy splitting of

the stationary term ~ω = 2
√
t2c + V ′20 . Nonetheless, in the rotating frame, ψ0 rotates

about nac at an angle ξ. Back in the lab-frame, the resulting dynamics is precession
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of the initial state vector ψ0 about nac (the nutation) and precession about the vector

r0. Decomposing ψ0 into a parallel and orthogonal component with respect to nac,

the parts orthogonal to nac will produce oscillations at ω ± |nac|, while the parallel
component will oscillate at ω (the frequency of concern when deducing the eventual

quantum capacitance).The component of the state vector parallel with the rotation

axis (in the rotating frame) is ψ‖ = cos(ξ). The parallel component then precesses

about r0 in the lab frame; the circular trajectory can be described as:

ψ‖(t) = cos(ξ) sin(κ)

(
cos(ωt)

r⊥
|r⊥|

+ sin(ωt)(0, 1, 0)

)
(C.14)

Given the relevant trajectory at ω, one simply needs to �nd the z-probability of

occupying the charge state s11. Now consider the associated 2× 2 density matrix in

the rotating frame for a Bloch vector P: P ≡ 1
2(I2 + σ • P), with the elements Pij

(for row i and column j). Measuring along |0〉, the probability of occupation is:

p(t) ≡ tr

(
P ·
(

1 0

0 0

))
= P11 ≡

1

2
+
Pz
2
, (C.15)

where Pz is the z-component of P. Thus, only the z-component matters; isolating

the z component of the Bloch vector evolution:

pω(t) =
1

2
+

cos(ξ) sin(κ)

2
· tc√

V ′20 + t2c
· cos(ωt), (C.16)

where one may note that:

sin(κ) =

V ′actc
2
√
t2c+V

′2
0√(

V ′actc
2
√
t2c+V

′2
0

)2

+

(
2
√
t2c+V

′2
0 −~ω

2

)2
. (C.17)

Now similar to the SLQD analysis, one may calculate the net charge �ow into the

gate, to which the resonator is attached: −e∆α · pe(t). Thus, the current, the

derivative of the charge �ow, on the lead is:

Iω(t) = eω∆α · cos(ξ) sin(κ)

2
· tc√

V ′20 + t2c
· sin(ωt). (C.18)

The resulting ac capacitance1 shall be de�ned, like in the SLQD analysis, crudely as
1
ω · I

Vac
:

1If the term turns out to be negative, then one may �nd the equivalent inductance by taking
L ≡ − 1

ω2Cq
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Cq =
e∆α

Vac
· cos(ξ) sin(κ)

2
· tc√

V ′20 + t2c
. (C.19)

With the ac capacitance known, one may deduce the RF readout signal strength. The

following sections shall investigate two di�erent operating conditions: the resonant

tunnelling capacitance mode and the adiabatic quantum capacitance mode.

C.3 Resonant tunnelling capacitance

Towards the end of the thesis, single-shot single-gate RF spin readout was shown

using the tunnelling capacitance mode [133]. The experiment reported an RF drive

frequency of 5.7 GHz with an inter-dot tunnel coupling of only 2 GHz. With the

drive frequency greater than the tunnel coupling, electrons on the double quantum

dot will be too slow to respond to the fast drive frequency to operate in the adiabatic

quantum capacitance regime. Thus, the experimenters declared that they operated

in the tunnelling capacitance regime. This raised two key questions:

� If one can operate at frequencies higher than the tunnel coupling via the tun-

nelling capacitance regime, why did initial experiments on a quadruple quan-

tum dot device (where the drive frequency was much higher than the tunnel

coupling) yield zero RF response?

� What are the conditions that must be satis�ed to operate in the tunnelling

capacitance regime?

To better understand the high-frequency operation of the single-gate RF sensor in

the tunnelling capacitance regime, the RWA solution from the previous section was

solved for the resonant tunnelling capacitance regime.

For resonant tunnelling, one sets the detuning o�set, tunnel-coupling and drive-

frequency such that:

~ω = 2
√
t2c + V ′20 (C.20)

The resonant condition simpli�es the required trigonometric terms in equation for

the ac capacitance given in Equation C.19 to:

sin(κ) = 1 (C.21)

cos(ξ) = 1. (C.22)
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Note that κ = π/2 is self-evident given that one demands resonant driving implies

that nac is parallel with r⊥. Similarly, ξ = 0 implies that the initial state vector

settles onto the eigenstate2 given by r⊥. The quantum capacitance is thus:

Cq =
e∆α

Vac
· 1

2
· tc√

V ′20 + t2c
. (C.23)

Thus, given the ac capacitance term, the equation for RF readout signal strength

can be found via Equation 3.11:

Υ =
Qint

Qext + Qint

· K
Cp
· e∆α

2
· tc√

V ′20 + t2c
. (C.24)

The peak RF readout response is similar to that of the SLQD system; the readout

signal strength is ultimately limited by the charge movement of a single electron

between the two dots. The tc/
√
V ′20 + t2c factor becomes unity when tc � V ′0 . That

is, the working point for readout is ideally close to zero detuning when compared to

the tunnel coupling. Thus, if one wishes to use the resonant tunnelling capacitance to

perform single-gate RD readout, the driving frequency must be as close as possible to

the tunnel coupling frequency. Note that if the driving frequency is below the tunnel

coupling, one cannot achieve the resonance condition and thus, the RF readout signal

is further diminished. That is, if the drive frequency is above the tunnel coupling, one

can adjust V ′0 to increase the energy splitting and bring the RF drive into resonance.

Finally, the readout signal strength has no dependence on the input voltage

amplitude. However, to minimise decoherence (important when driving between

excited states of a short-lived charge-qubit states), one should minimise photon shot-

noise by operating at as low a signal strength as possible.

C.4 Adiabatic quantum capacitance - limitation of RWA

In the adiabatic quantum capacitance mode (as demonstrated and optimised in this

thesis) shown in Figure 3.4b, one stays in the ground state as much as possible.

Thus, to ensure adiabatic passage between the two charge states (that is, the electron

moving between the two sites), one drives the qubit with as slow a driving frequency

as possible via: ~ω � tc. As in the previous section, the required trigonometric

terms in equation for the ac capacitance given in Equation C.19 become:

2In the case tc � V ′0 , the stationary term r0 lies on the Pauli-x axis, while the driving term r⊥
lies on the z-axis. Thus, one starts fully in the s11 or s02 charge states to make ξ = 0.
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sin(κ) =
V ′ac√

4(t2c+V ′0)
2

t2c
+ V ′2ac

(C.25)

cos(ξ) = 1. (C.26)

Once again, ξ = 0 implies that the initial state vector settles onto the nac. The

quantum capacitance is thus:

Cq =
eα∆

Vac
· 1

2
· V ′ac√

4(t2c+V ′0)
2

t2c
+ V ′2ac

· tc√
V ′20 + t2c

. (C.27)

Thus, by Equation 3.11, the RF readout signal strength is:

Υ =
Qint

Qext + Qint

· K
Cp
· eα∆

2
· V ′ac√

4(t2c+V ′0)
2

t2c
+ V ′2ac

· tc√
V ′20 + t2c

. (C.28)

Now the maximum readout signal is achieved at around zero-detuning where V ′0 = 0

as expected since this equally oscillates the electrons completely into both dots. In

addition, however the readout signal strength now depends on the driving voltage

amplitude V ′ac with the prediction that the maximal readout signal strength occurs

at in�nitely large amplitudes. The perturbative approximation required for RWA

used here however, breaks down at large voltage amplitudes V ′ac & tc. In fact,

the predicted response does not match numerical Hamiltonian simulations at non-

perturbative powers. Thus, we have adapted a di�erent approach in the next section

to �nd the readout signal strength at higher RF powers.

C.5 Adiabatic quantum capacitance - semi-classical so-

lution

The response given by Equation C.28 only applies for perturbative input voltage

amplitudes; speci�cally V ′ac � tc. However, larger input voltage amplitudes (at a

magnitude equal to or exceeding the tunnel coupling) have been shown to yield better

RF responses [29�31]. Whilst the model using the RWA mimics the appropriate

functional trend, there are incorrect factors that makes the model fail in replicating

numeric simulations when using large input voltage amplitudes. However, the RWA

model does provide useful insights that may help derive a more accurate model. The
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adiabatic quantum capacitance approach seeks to track the ground-state eigenstate

(in the s11-s02 basis):

ψg =



√√√√1

2

(
1− ∆√

t2c + ∆2

)
,

√√√√1

2

(
1 +

∆√
t2c + ∆2

)
 . (C.29)

One can intuitively break down the eigenvector by realising that the ground state is

s11 when ∆→ −∞ and s02 when ∆→∞. Now one sets the detuning o�set to zero

(V ′0 = 0) for maximal RF readout response as suggested by the previous analysis.

When the voltage signal sweeps the detuning sinusoidally one enters the s11 and s02

ground-state charge-states. The extent in probability to which one reaches one of

the charge states varies sinusoidally with the variation being largest at the trough

and peak in the detuning. Now the probability of being in s11 is |〈s11 | ψ0〉|2. Taking
the di�erence in probabilities at ∆ = −V ′ac and ∆ = V ′ac and halving the result (to

�nd the amplitude), the probability pω(t) oscillates at frequency ω:

pω(t) =
1

2
+

V ′acχgs
2
√
t2c + V ′2ac

· cos(ωt). (C.30)

The χgs term describes the degree to which one is in the ground state (as to be

discussed later). Here, χgs = 1 implies that one has settled onto the ground-state

eigenstate before performing the measurement. Thus, as before, one may calculate

the current and �nd the quantum capacitance to be:

Cq =
e∆α

Vac
· V ′acχgs

2
√
t2c + V ′2ac

. (C.31)

Thus, as before, the readout signal strength can be found:

Υ =
Qint

Qext + Qint

· K
Cp
· e∆α

2
· V ′acχgs√

t2c + V ′ac
. (C.32)

One may set χgs = 1 and obtain an initial solution to the readout response. However,

the readout signal strength on setting χgs = 1 has two important caveats. Firstly,

the initial charge state is presumed to be the ground-state eigenstate and secondly,

the apparent saturation of the RF readout signal at high V ′ac is unphysical (in�nitely

large V ′ac will result in an in�nitely faster Landau velocity at zero detuning; thus,

the state no longer adiabatically tracks the ground state). The �rst case shall be

addressed before alleviating the second issue.

Now if one starts with an arbitrary initial state ψi, if the electrons start fully in

the ground state, the electron oscillations at frequency ω will fully contribute to the
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readout signal. On the other extreme, if the electrons were fully in the excited state,

then the resulting current will be 180◦ out of phase when comparing to the current

resulting from being in the ground state. The phase di�erence occurs because the

charge is 180◦ out of phase with the voltage. That is, when the detuning is set

such that the electron should enter a given dot, the electron enters the opposite

dot. Now a 180◦ phase di�erence is a destructive interference e�ect. Assuming that

the electrons move between eigenstates states (on negative and positive detuning)

adiabatically (therefore, maintaining ground and excited state probabilities), the

ground-state factor χgs describes the diminishing readout signal (due destructive

interference from being partially in the excited state) via:

χgs = Pgs − Pex, (C.33)

where Pex and Pgs are the excited and ground-state probabilities at the start of the

readout cycle. The parameter χgs shall be calculated for the two cases where the

initial ground state is |s11〉 (as expected if one has performed singlet-triplet qubit

operations with the electrons in the s11 state) and |−〉 (the ground state at zero

detuning). Thus, calculating the ground-state factor via |〈ψi | ψg〉| where ψg is the
ground state on initiating readout at ±V ′ac:





χgs = V ′ac√
t2c+V

′2
ac

, ψi = s11

χgs = tc√
t2c+V

′2
ac

, ψi = |−〉 = 1√
2

(s11 − s02)
(C.34)

Thus, if the initial states were s11 or |−〉 respectively, the RF readout response is:

Υ0 =
Qint

Qext + Qint

· K
Cp
· e∆α

2
· V ′2ac
t2c + V ′2ac

(C.35)

Υ− =
Qint

Qext + Qint

· K
Cp
· e∆α

2
· V ′actc
t2c + V ′2ac

. (C.36)

The RF response appears to monotonically saturate at large V ′ac if the initial state is

|s11〉. However, the RF response has a maximum at V ′ac = tc if the initial state is the

superposed ground-state eigenstate at zero detuning: |−〉. Now for the case where

the initial state is |s11〉 (relevant when performing readout immediately after singlet-

triplet qubit operations), the readout signal Υ0 appears to be similar monotonic

response to when χgs = 1. However, at lower voltage amplitudes, the RF readout

response is lower; a fact must note if one wishes to use smaller RF drive powers to

lower the photon shot noise. The issue is that on moving to the readout point at
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zero-detuning, the state |s11〉 will have a non-zero probability of being in the excited

state and thus, χgs < 1. One may enter the true ground state (to make χgs = 1)

by using adiabatic sweeps to arrive at the readout point to ensure that the singlet

is completely in the ground state charge state. However, one should note that using

too slow an adiabatic sweep may lead to unwanted qubit evolution (thereby changing

the qubit state) before performing readout.

The second caveat to address is that one intrinsically assumes that the RF read-

out keeps the electrons in the ground state even at high input voltage amplitudes.

Although the input drive frequency ω is still taken to be smaller than the tun-

nel coupling tc, a large voltage amplitude will lead to faster detuning sweeps that

will make the passage non-adiabatic. To account for the non-adiabatic progressions

at higher input voltage amplitudes, one may use the formula for linear sweeps in

Landau-Zener-Stuckelberg-Majorana interferometry [214�218]:

Υ =
Qint

Qext + Qint

· K
Cp
· e∆α

2
· V ′acχgs√

t2c + V ′ac

(
1− exp

(
t2c

ωV ′ac/
√

2

))

︸ ︷︷ ︸
LZSM factor

. (C.37)

Here, the LZSM factor involves an exponential where the sweeping velocity was ap-

proximated as the gradient of a cosine curve: ωV ′ac. The LZSM factor is an empirical

factor that ensures that any solution for the RF response obeys the adiabatic approx-

imation. The LZSM factor requires that the driving frequency is much lower than

the tunnel coupling in order for the exponential envelope to start its attenuation

(of the RF response) beyond the voltage amplitudes where the RF readout signal

either saturates to its maximum value (for example, in the case where the initial

state upon readout is |s11〉) or reaches a maximum (in the case where the initial

state upon readout is |−〉).





AppendixD
RF Re�ectometry

This appendix outlines the methods used to derive the equations describing the

resonant circuit used in RF re�ectometry. Section D.1 outlines the derivation for

the equation describing the RF readout signal strength given circuit parameters

of the resonant circuit (such as, the resonator quality factors, geometric parasitic

capacitance and the quantum capacitance). Section D.2 highlights the method used

to �t the RF re�ectance curves to extract the appropriate internal and external

quality factors.

D.1 Change in the re�ectance

Now consider the re�ectance de�ned in Equation 3.8 for the RLC circuit coupled to

a transmission line shown in Figure 3.5:

ρ ≡ −
1− Qext

Qint

(
1 + jQint

(
ω
ω0
− ω0

ω

))

1 + Qext

Qint

(
1 + jQint

(
ω
ω0
− ω0

ω

)) , (D.1)

where Qint and Qext are the internal and external quality factors. Now on measuring

the quantum dot's response, one tunes the circuit to resonance at ω0 = 1/
√
LCp.

Then as the quantum capacitance manifests, the resonant frequency is ωc = 1/
√
LCc

(where Cc ≡ Cp +Cq). Now during this change, the quality factors remain constant.

Thus, the shift in re�ectance is:
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∆ρ = −
1− Qext

Qint

(
1 + jQint

(
ω
ωc
− ωc

ω

))

1 + Qext

Qint

(
1 + jQint

(
ω
ωc
− ωc

ω

)) +
1− Qext

Qint

(
1 + jQint

(
ω
ω0
− ω0

ω

))

1 + Qext

Qint

(
1 + jQint

(
ω
ω0
− ω0

ω

)) . (D.2)

Note that the �rst term contains ωc for that is the resonant frequency in that case.

Now one drives the circuit with the initially tuned frequency ω = ω0. Now simplifying

the expression yields:

∆ρ =
2QextQ

2
int

(Qext + Qint)
2 + Q2

extQ
2
intν

2
(Qe�ν + j) ν, (D.3)

where ν = ω0/ωc − ωc/ω0. Now noting that the change in the resonant frequency

δω ≡ ω0−ωc is very small compared to the numerical value of the resonant frequency

itself:

ν ≡ δω

ω0
+

δω

ω0 − δω0
≈ 2δω

ω0
= 2

(
1− ωc

ω0

)
. (D.4)

Now expressing the change in frequency via the circuit parameters:

ν = 2

(
1−

√
LCp

L(Cp + Cq)

)
= 2− 2√

1 +
Cq
Cp

≈ 2− 2

(
1− Cq

2Cp

)
=
Cq
Cp
, (D.5)

where one utilises the Binomial approximation after noting that Cq � Cp. Since

Cp ∼ 1000Cq, ν ∼ 10−3. Taking Q in the order of 100 (both internal and external),

this implies that Qν ∼ 0.1. Thus, the �rst term in the denominator is approximately

100 times greater than the second term. Thus, the change in the re�ection coe�cient

simpli�es to approximately:

∆ρ ≈ 2Qe�Qint

Qext + Qint

(
Qe�

(
Cq
Cp

)2

+ j

(
Cq
Cp

))
. (D.6)

Note that the real part (in-phase) is of a much smaller magnitude than the imaginary

part (quadrature-phase) due to the squaring of the quantum capacitance term. In

addition, note that for a �xed internal quality factor, the (tunable) external quality

factor must be equal for a maximal dispersive (that is, the quadrature component)

signal1. However, an optimal dissipative signal (that is, the in-phase component)

1Seen by noting: FQ = Qe�Qint

(Qint+Qext)
2 ,

∂FQ

∂Qext

=
Q2
int

(Qint+Qext)
2 − 2QextQ

2
int

(Qint+Qext)
3 = 0 =⇒ Qext = Qint
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occurs when the external quality factor is twice that of the internal quality factor2.

Now given equal quality factors, where typical experiments operate, the imaginary

term is at least, 10 times greater than the real part. Thus, in further analysis, only

the imaginary part shall be considered. That is, for a signal of amplitude Vin injected

into the circuit, the resulting measured response is simply given by the magnitude

of the re�ectance:

Υ = KηlossVin ·
2QextQ

2
int

(Qext + Qint)
2 ·

Cq
Cp
, (D.7)

where ηloss is the factor of the signal amplitude that remains when entering the

resonant circuit and K is the net gain on the re�ected signal ampli�cation chain.

D.2 Analysing RF Re�ectometry Data

This section outlines an automated �tting method to analyse the measured in-phase

and quadrature phase (that is, I and Q) signals to extract the internal circuit qual-

ity factor Qint, the external quality factor Qext and the resonant frequency of the

resonant circuit ω0.

D.2.1 The Fitting Model

Now from Equation 3.8, the re�ectance of a resonant circuit of resonance ω0 coupled

to a transmission line of impedance Ze can be given in terms of the internal and

external quality factors (Qint and Qext respectively):

ρ ≡ −
1− Qext

Qint

(
1 + jQint

(
ω
ω0
− ω0

ω

))

1 + Qext

Qint

(
1 + jQint

(
ω
ω0
− ω0

ω

)) . (D.8)

Now this provides the re�ectance when the viewer treats the transmission line as a

lumped element, when in fact the transmission line length L is much greater than

the typical wavelength of the signal. In addition, the measured data appears as a

complex voltage vector that must be scaled (to convert to ρ) by a reference voltage

amplitude of the injected signal. Thus, model to which one �ts the data is:

V = −k ·
1− Qext

Qint

(
1 + jQint

(
ω
ω0
− ω0

ω

))

1 + Qext

Qint

(
1 + jQint

(
ω
ω0
− ω0

ω

)) · ej 2ωL
c , (D.9)

2Seen by noting: FI =
Q2
e�

Qint

(Qint+Qext)
2 ,

∂FI
∂Qext

=
2QextQ

3
int

(Qint+Qext)
3 − 3Q2

ext
Q3
int

(Qint+Qext)
4 = 0 =⇒ Qext = 2Qint
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where k is a positive real-valued scaling factor and c is the speed of light. Now since

this is a nonlinear �t, one utilises a simple least-squares minimiser3. The minimiser

requires good initial conditions to ensure convergence. The following section will

show how one may obtain good guesses for the initial parameters.

D.2.2 Parameter Estimation

Now the initial estimate for ω0 can be done by simply taking the frequency at which

the amplitude plot is at a minimum. Similarly, one may estimate k by taking the

maximum magnitude of measured voltage4. Now ignoring the e�ect of L (that is,

take L = 0), one may estimate Qint and Qext by observing the derivative of the phase

plot at the resonant frequency and the peak height in the amplitude plot. Now one

shall �rst note that the derivative of the phase φ ≡ arg(V ) is:

p =
dφ

dω

∣∣∣∣
ω=ω0

=
QextQ

2
int

ω0

(
Q2
ext −Q2

int

) , (D.10)

while the peak height (that is, the vertical size of the peak when viewing the plot of

|ρ| vs. ω) is given as:

h =
2Qint

Qint + Qext

. (D.11)

Now one may algebraically solve this to obtain the internal and external quality

factors. Noting that the quality factor must be positive:

Qext =

{
− (h−1)ω0

h2 · dφdω
dφ
dω > 0

(h−1)ω0

(h−2)2 · dφdω
dφ
dω < 0

(D.12)

Qint =

{
(h−1)ω0

h(h−2) ·
dφ
dω

dφ
dω > 0

− (h−1)ω0

h(h−2) ·
dφ
dω

dφ
dω < 0

. (D.13)

It is worth noting that the phase slope indicates whether the external transmission

line is `over-coupled' ( dφdω > 0), `under-coupled' ( dφdω < 0) or `critically-coupled' ( dφdω =

0). Finally, to estimate L, one may look at the phase slope and algebraically show

that when taking the limit where ω � ω0:

3The actual minimisation of the kernel can be done via any of the common methods such as
Monte-Carlo, Simplex sampling, Steepest-Descent etc.

4This can be further normalised by referencing it to the value when one can ensure that it
corresponds to nearly perfect re�ection like that when tuning the bias of a varactor connected in
parallel to the RLC circuit to e�ectively negate the presence of the RLC circuit.
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L = lim
ω→0

c

4π
· dφ
dω
. (D.14)

Table D.1 summarises the procedures used to �nd the initial estimates.

Parameter Estimation

ω0 ω that minimises |V (ω)|

k max |V |

h 1
k · (max |V | −min |V |)

p Finite Di�erence about ω0

Qint
(h−1)ω0

h(h−2) · |p|

Qext




− (h−1)ω0

h2 · p p > 0

(h−1)ω0

(h−2)2 · p p < 0

p0 Finite Di�erence about ω � ω0

L c
4π · p0

Table D.1: Initial parameter estimates when �tting the RF re�ectometry reso-
nance data to the model in Equation D.9.





AppendixE
Derivation of the Singlet-Triplet qubit

Hamiltonian

I remember that when someone had started to teach me about creation

and annihilation operators, that this operator creates an electron, I said,

�how do you create an electron? It disagrees with the conservation of

charge", and in that way, I blocked my mind from learning a very practical

scheme of calculation.

- Richard P. Feynman, Nobel Lecture 1965

In this section, the singlet-triplet Hamiltonian of interest shall be constructed in

simple language without invoking any second quantisation formalism1. The singlet-

triplet qubit is formed by taking the e�ective spin state between two electrons settled

across two quantum dots. Sections E.1, E.2 and E.3 build up the associated Hamil-

tonian from simple fundamental arguments and left there for completeness and left

for interested readers. Section E.4 brings all the derivations together to build up a

general model for singlet-triplet states across two dots. The details of qubit operation

are discussed in Chapter 5.

E.1 One electron, two dots - charge qubit Hamiltonian

Consider an electron that resides in a Coulombic potential well V (r− r1) centred at

r1 due to a quantum dot. The electron is in the ground state orbital level of the dot.

1For a more complete overview that includes silicon valley contributions, refer to Fang's the-
sis [219]
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The Hamiltonian of an electron on this single dot is thus:

H1e,r1 =
−~2

2me
∇2 + V (r− r1), (E.1)

where ∇2 =
(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
is the Laplacian operator, me is the e�ective mass of

the electron when interacting with the dot and the surrounding crystal. Now con-

sider an identical potential well centred at r2. Although the potential wells tightly

con�ne the electrons, the wavefunction probability of the electron is still �nite ev-

erywhere and thus, non-zero at r2. The tight-binding approximation demands that

the wavefunction probability at this point is small and that the new wavefunction is

still the original wavefunction that solves H1e,r1 , but with a slight perturbation in

the energy of the electron due to V (r− r2):

H1e,r1,r2 =
−~2

2me
∇2 + V (r− r1) + V (r− r2). (E.2)

Now consider the basis of states to be the wavefunctions when the electron resides in

either dot2 1 or 2 to be ϕ1(r) and ϕ2(r). Now one can �nd the two-level Hamiltonian

describing such an interaction3:





〈ϕ1|H1e,r1,r2 |ϕ2〉 = −tc
〈ϕ1|H1e,r1,r2 |ϕ1〉 = U1 ≡ U0 + ε

〈ϕ2|H1e,r2,r2 |ϕ2〉 = U2 ≡ U0 − ε
. (E.3)

Note that U1 and U2 may not be necessarily equal. The inequality stems from

di�ering on-site electrostatic potentials created by an electric �eld from a local gate.

In the literature, the idea of using a gate to create a di�erence in the on-site potentials

is termed a `tilting potential' or `tilting gate'. The, resulting the Hamiltonian over

the ϕ1, ϕ2 basis is the `charge-qubit' Hamiltonian [57, 58, 220]:

HCQ = U0I2 − tcσx + εσz. (E.4)

Under the charge state basis, one has full-axis control of the resulting two-level

system by tuning the so-called `detuning' parameter ε and the tunnel coupling tc.

2That is, ϕi(r) solves H1e,ri and gets perturbed by the potential V (r−rj) of the other dot j 6= i.
3Note that the Bra-Ket notation implies: 〈ϕ1 | ϕ2〉 ≡

∫
ϕ1(r)ϕ2(r)dr
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E.2 Two electrons, two dots

Now one considers adding another electron to this double-well system. This adds

an electron-electron interaction term Vee(r1, r2) ∝ 1/ |r2 − r1| to the Hamiltonian to

give a complete two-electron, two-dot Hamiltonian:

HDQD =
−~2

2me
∇2 + V (r− r1) + V (r− r2) + Vee(r1, r2). (E.5)

To �nd the two-electron wavefunction that solves this Hamiltonian, one considers

that, individually, each electron will have a spatial component (it either resides in

dot 1 or 2) and a spin component; the product of which must yield a wavefunction

that is antisymmetric under exchange4. With two possible sites (ϕ1 and ϕ2) per

dot and two spins (↑ and ↓) per electron, this yields a state space of 16 possible

states. Now before proceeding, one shall label the states as |Φξ〉, where Φ and ξ are

the combined spatial and spin states of the two electrons respectively (formally the

tensor product of the individual spatial and spinful states: Φ1 ⊗ Φ2 ⊗ ξ1 ⊗ ξ2). The

combined spatial or spin states shall be in the eigenbasis suitable for the application

of the particle-exchange operator; namely the singlet-triplet basis:

|Φ〉 ∈





Φ− = 1√
2

(|ϕ1ϕ2〉 − |ϕ2ϕ1〉)
Φ+ = 1√

2
(|ϕ1ϕ2〉+ |ϕ2ϕ1〉)

Φ1 = |ϕ1ϕ1〉
Φ2 = |ϕ2ϕ2〉

|ξ〉 ∈





s0 = 1√
2

(|↑↓〉 − |↓↑〉)
t0 = 1√

2
(|↑↓〉+ |↓↑〉)

t− = |↓↓〉
t+ = |↑↑〉

, (E.6)

where the two labels Φ and ξ in each Ket refer to the spatial or spin state of the

�rst and second electrons respectively. The electron spin state s0 is termed the

`singlet' state while t0, t+ and t− are termed the `triplet' states. With 16 states,

there are 256 terms in the Hamiltonian. However, when one demands the property

of antisymmetry, many of the states will become zero. For example, |Φ1t−〉 involves
a symmetric spatial state and a symmetric triplet spin state; thus, under exchange

4By the spin-statistics theorem, the application of the particle exchange operator, where one
exchanges two particles in the system, must result in an eigenvalue of −1 if the particles are
Fermions.
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such a state will be symmetric and thus, the probability density of such a state must

be zero or equivalently of in�nite energy5. Now the states with non-zero probability

density are: |Φ1s0〉, |Φ2s0〉, |Φ+s0〉 and |Φ−t〉 (where t refers to any triplet spin

state). Under the |Φξ〉 basis, the Hamiltonian can be recast as the charge qubit

Hamiltonian acting individually on each electron (that is, the �rst three terms in

HDQD are single-electron terms) coupled with a multi-electron interaction term:

HDQD = HCQ ⊗ I2 ⊗ I2 ⊗ I2 + I2 ⊗HCQ ⊗ I2 ⊗ I2 + Vee. (E.7)

On expanding the tensor products, the resulting energy-o�set terms (diagonal matrix

components) are:

〈Φ1s0|HDQD |Φ1s0〉 = 2U0 + 2ε+ U02 (E.8)

〈Φ2s0|HDQD |Φ2s0〉 = 2U0 − 2ε+ U02 (E.9)

〈Φ+s0|HDQD |Φ+s0〉 = 2U0 − 2tc 〈ϕ1 | ϕ2〉+ U11 + J12 (E.10)

〈Φ−t|HDQD |Φ−t〉 = 2U0 + 2tc 〈ϕ1 | ϕ2〉+ U11 − J12. (E.11)

The term U11 ≡ 〈ϕ1ϕ2|Vee |ϕ1ϕ2〉 ≡ 〈ϕ2ϕ1|Vee |ϕ2ϕ1〉 is taken to be independent of

the spin state of the electrons for the charge states are equal and the term simply

describes the energy due to electrostatic repulsion between the two electrons. Sim-

ilarly, J12 ≡ 〈ϕ1ϕ2|Vee |ϕ2ϕ1〉 ≡ 〈ϕ2ϕ1|Vee |ϕ1ϕ2〉 describes the shift in the energy

due to spatial wavefunction overlap between the two electrons (that is, the amount

the electron wavefunction occupies a given point in space if swapped and made to

live in the adjacent potential well). The interaction term J12 is described in litera-

ture as the `electron-exchange interaction' term that breaks the degeneracy between

the singlet and triplet spin states of electrons amongst adjacent potential wells and

leads to the origin of ferromagnetism in metals [221�223]. However, in the case

of operating singlet-triplet qubits in quantum dots, this intrinsic exchange term is

taken to be zero as one places the dots su�ciently far apart in order to operate in

the `tight-binding' limit where the individual electron wavefunctions ϕ1 and ϕ2 have

negligible overlap. In this limit, one formally takes:

5One can make this probability density non-zero (hence of �nite energy) if one introduces an
anti-symmetric (or symmetric) orbital state where one of the electrons may occupy a higher orbital
to still obey the overall antisymmetry for electrons [34, 42, 183]. This is ignored in this analysis
as the orbital energy spacing in phosphorus is large and if an electron somehow enters the higher
orbital state (the so-called 2p0 state which is more than 10 meV higher), it is very short lived at
approximately 200 ps [184�187]
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U11 ≈ 0 (E.12)

J12 ≈ 0 (E.13)

〈ϕ1 | ϕ2〉 ≈ 0. (E.14)

With this approximation, it remains that the only two-electron term that manip-

ulates the z-energy splitting is U02 ≡ 〈ϕ1ϕ1|Vee |ϕ1ϕ1〉 ≡ 〈ϕ2ϕ2|Vee |ϕ2ϕ2〉, which
describes the energy due to the strong electrostatic repulsion between two electrons

on the same dot. Thus, this Hamiltonian has a ground state where the electrons

prefer to be in separate dots, while the two excited states has them both occupying

one of the two dots.

Now continuing the expansion of the tensor products, one may �nd the interacting

terms (o�-diagonal matrix components) of the Hamiltonian:

〈Φ1s0|HDQD |Φ+s0〉 =
√

2(U0 + 2ε) 〈ϕ1 | ϕ2〉 −
√

2tc ≈ −
√

2tc (E.15)

〈Φ2s0|HDQD |Φ+s0〉 =
√

2(U0 − 2ε) 〈ϕ1 | ϕ2〉 −
√

2tc ≈ −
√

2tc (E.16)

〈Φ1s0|HDQD |Φ2s0〉 = −2tc 〈ϕ1 | ϕ2〉 ≈ 0 (E.17)

〈Φ1s0|HDQD |Φ−t〉 = 0 (E.18)

〈Φ2s0|HDQD |Φ−t〉 = 0 (E.19)

〈Φ+s0|HDQD |Φ−t〉 = 0. (E.20)

Note that the contributions of Vee are not seen here because 〈ϕiϕi|Vee |ϕiϕj〉 �
U11 ≈ 0 (for i 6= j). This is simply a statement that the spatial overlap between

wavefunctions of electrons on separate dots is negligible. Now noting the charge

state of triplet states is always Φ± have one electron on each dot, for simplicity the

labels are rewritten in terms of charge states in the subscripts (where i, j refers to

the number of electrons in dot 1 and 2 respectively):

|Φ1s0〉 ≡ s20 (E.21)

|Φ2s0〉 ≡ s02 (E.22)

|Φ+s0〉 ≡ s11. (E.23)

For the triplet states t0, t+ and t−, the charge states are dropped and implicitly
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presumed to be in the (1, 1) charge state. With that, the full double-dot Hamiltonian

can be rewritten in its matrix form over the basis of states s20, s02, s11, t0, t− and

t+ as:

HDQD ≡ 2U0I6 +




2ε+ U02 0 −
√

2tc

0 −2ε+ U02 −
√

2tc 03

−
√

2tc −
√

2tc 0

03 03



, (E.24)

where 03 is a 3 × 3 matrix of zeroes. This Hamiltonian corresponds to the basic

tight-binding or Hubbard model [221, 222, 224].

E.3 Adding in a Magnetic Field

The general singlet-triplet Hamiltonian refers to a two-electron double-dot system

immersed in a magnetic �eld. Now the Hamiltonian for a spin in a magnetic �eld is:

HB =
geµe

2
B(r) • (σ1 + σ2), (E.25)

where ge is the electron Landé g-factor, µe is the Bohr Magneton and σ1|2 are the

Pauli spin operators for the �rst and second electrons across x, y and z (or simply

(σx, σy, σz) in the up-down spin basis). Note that the magnetic �eld vector B(r)

is not necessarily homogeneous across both dots and the `dot-product' is merely

abuse of notation for convenience (that is, not a scalar inner product). In fact, the

Hamiltonian above is an abbreviation for the following:

HB ≡
geµe

2

[
|ϕ1〉 〈ϕ1| ⊗ I2 ⊗ (B1(x)σx +B1(y)σy +B1(z)σz)⊗ I2+

|ϕ2〉 〈ϕ2| ⊗ I2 ⊗ (B2(x)σx +B2(y)σy +B2(z)σz)⊗ I2+

I2 ⊗ |ϕ1〉 〈ϕ1| ⊗ I2 ⊗ (B1(x)σx +B1(y)σy +B1(z)σz)+

I2 ⊗ |ϕ2〉 〈ϕ2| ⊗ I2 ⊗ (B2(x)σx +B2(y)σy +B2(z)σz)
]
.

(E.26)

The result is that electrons on the �rst dot experience a di�erent magnetic �eld

vectors to that in the second dot:
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B1 =
geµe

2
(B1(x), B1(y), B1(z)) (E.27)

B2 =
geµe

2
(B2(x), B2(y), B2(z)). (E.28)

The magnetic �eld contribution to the overall system Hamiltonian is relatively per-

turbative in that the states already relegated from the analysis of HDQD need not

be considered. Before continuing it's useful to write down the spin component of the

Hamiltonian in the Singlet-Triplet basis6 (|s0〉, |t0〉, |t−〉, |t+〉):

B1 •σ1 +B2 •σ2 =




0 ∆Bz
∆Bx−i∆By√

2
−∆Bx+i∆By√

2

∆Bz 0
ΣBx−iΣBy√

2

ΣBx+iΣBy√
2

∆Bx+i∆By√
2

ΣBx+iΣBy√
2

−ΣBz 0

−∆Bx−i∆By
2

ΣBx−iΣBy√
2

0 ΣBz



, (E.29)

where B1 • σ1 ≡ (B1 • σ) ⊗ I2, B1 • σ2 ≡ I2 ⊗ (B2 • σ), ∆B = B1 − B2 and

ΣB = B1 + B2. Expanding the tensor products once more to �nd the matrix terms

yields:

〈Φ−t|HB |Φ+s0〉 ≈ 1
2 〈t| (B1 • σ1 + B2 • σ2)− (B2 • σ1 + B1 • σ2) |s0〉 (E.30)

〈Φ−t|HB

∣∣Φ−t′
〉
≈ 1

2 〈t| (B1 • σ1 + B2 • σ2) + (B2 • σ1 + B1 • σ2)
∣∣t′
〉

(E.31)

〈Φms0|HB |Φ−t〉 ≈ 0 (E.32)

〈Φms0|HB |Φ+s0〉 ≈ 0 (E.33)

〈Φms0|HB |Φns0〉 ≈ 0, (E.34)

where t, t′ ∈ {t0, t−, t+} and Φm,Φn ∈ {Φ1,Φ2}. The approximations invoke 〈ϕ1 | ϕ2〉 ≈
0 as discussed in Section E.2. The matrix forms of the non-zero terms yields the mag-

netic �eld contribution:

6Apply the transformation: THT−1 to convert from the computational (|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉)

basis to singlet-triplet (|s0〉, |t0〉, |t−〉, |t+〉) basis, where T =


0 1/

√
2 −1/

√
2 0

0 1/
√

2 1/
√

2 0
0 0 0 1
1 0 0 0


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〈t|HB |s11〉 = 〈t|




0 ∆Bz
∆Bx−i∆By√

2
−∆Bx+i∆By√

2

∆Bz 0 0 0
∆Bx+i∆By√

2
0 0 0

−∆Bx−i∆By
2 0 0 0



|s0〉 (E.35)

〈t|HB

∣∣t′
〉

= 〈t|




0 0 0 0

0 0
ΣBx−iΣBy√

2

ΣBx+iΣBy√
2

0
ΣBx+iΣBy√

2
−ΣBz 0

0
ΣBx−iΣBy√

2
0 ΣBz



∣∣t′
〉
. (E.36)

Note that only the states in the (1,1) charge state have non-zero magnetic �eld

contributions. The physical interpretation for the zero coupling term between S02

or S20 and t is the state transition requires two events to occur: a change in angular

momentum and a change in the charge state. Since quantum tunnelling is generally

spin-conserving, this sort of transition would require a second-order e�ect and thus,

one would expect such couplings to be zero. Similarly, the coupling between singlet

states is purely a tunnelling e�ect (captured by the analysis in section Section E.2).

Finally, an important point of interest is that the coupling terms between the singlet

s11 and t0 has no dependence on the overall magnetic �eld and instead just the

di�erence in the magnetic �elds across the two dots.

E.4 The general singlet-triplet Hamiltonian

The full singlet-triplet Hamiltonian is the sum of double-dot tunnelling physics HDQD

and the magnetic �eld contributions HB:

HST = HDQD + HB. (E.37)

To investigate the behaviour of the singlet-triplet Hamiltonian, �rst consider a zero

magnetic �eld environment in which the Hamiltonian is simply the pure double-

quantum dot Hamiltonian given in Equation E.24. Figure E.1a shows the resulting

energy spectrum when the two-electron on-site energy U02 is four times larger than

the tunnel coupling tc. In this regime, there is a gap between the two highest energy

eigenstates at zero detuning due to an anti-crossing between the s20 and s02 states.

Similarly there is a large non-zero energy gap between the two lowest energy states

due to an anti-crossing between the s11 and the three degenerate triplet states t.
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(a) Very large tunnel-coupling with U02 = 4tc

s02s20

s11

t
s11s11

s20 s02
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√
2tc

U02

1
2U02

J
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(b) Small tunnel-coupling with U02 = 10tc
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t s11s11

s20 s02

s02 s20

U02

ε

E

Figure E.1: The energy spectrum of the double quantum dot Hamiltonian given in Equa-
tion E.24. The singlet labels (s11, s20 and s02) indicate the approximate asymptotic eigen-
state of the energy eigenvalue line at di�erent points in detuning ε. The triplet label t
indicates all three degenerate triplet states (t0, t− and t+) that remain invariant with ε and
stay at the zero energy line. Two points of interest are the s11-s02 and s11-s20 anti-crossings;
both split by 2tc. J is the exchange energy (or the singlet-triplet splitting) and is appreciable
across all points in detuning in (a) where U02/tc = 4. However, in (b), J tends towards zero
at zero detuning as opposed to approximately 0.449tc like in (a) as given by Equation 5.15.
The global o�sets have been omitted for clarity.

The gap between the singlet ground state and the triplet state is the `singlet-triplet

splitting' (also by de�nition the `exchange coupling' or `exchange energy' in the

literature) and symbolised with J . In the regime where the tunnel coupling tc is

comparable in magnitude to the two-electron on-site energy U02, the singlet-triplet

splitting J does not approach zero; even at zero detuning. This is because the weak

con�nement energy U02, when compared to the tunnel coupling tc, leads to a stronger

interaction (and greater wavefunction overlap) between the two electrons across the

two quantum dots.

However, in practice, the system usually operates with U02 � tc and thus, J can

tend towards zero when taken at zero detuning as shown in Figure E.1b. This is

because the eventual qubit control relies on the ability to tune the exchange J to

zero. Now consider the magnetic �eld contributions. In the matrix form this is:
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HST ≡




U02 + 2ε 0 −
√

2tc 0 0 0

0 U02 − 2ε −
√

2tc 0 0 0

−
√

2tc −
√

2tc 0 ∆Bz ∆B⊥ −∆B⊥
0 0 ∆Bz 0 ΣB⊥ ΣB⊥
0 0 ∆B⊥ ΣB⊥ −2B0 0

0 0 −∆B⊥ ΣB⊥ 0 2B0




, (E.38)

once again under the basis of states: s20, s02, s11, t0, t− and t+. The global o�set

2U0 has been omitted for clarity and holds no signi�cance in the system dynamics.

For clarity the following substitutions were made:

∆B⊥ =
∆Bx + i∆By√

2
(E.39)

ΣB⊥ =
ΣBx + iΣBy√

2
(E.40)

B0 =
ΣBz

2
. (E.41)

The system shall have its quantisation z-axis aligned parallel with an externally

applied magnetic �eld. Note that the quantisation axis is taken to be in the direction

of the net common-mode �eld across the two dots. That is, the net �eld (summing

the individual �eld vectors on both dots) along the x-y plane given by ΣBx and ΣBy

is zero. This leaves the magnetic �eld component ∆B⊥ which is the contribution

perpendicular to the main applied �eld B0. In addition, there is a magnetic �eld

gradient ∆Bz in the direction of the applied �eld across the two dots. The non-zero

∆Bz creates an anti-crossing between the t0 and s11 states as shown in Figure E.2a.

A large ∆Bz compared to the tunnel coupling tc causes multiple anti-crossings and

the t0 state starts to mix heavily with the other states causing it to have a strong

dependence on the detuning ε as shown in Figure E.2b. As shown later, this regime

is undesirable and the system is usually tuned to tc � ∆Bz. In all cases, the global

�eld B0 breaks the triplet degeneracy by only a�ecting the energy of the triplet t−
and t+ states (`Zeeman splitting').

A non-zero ∆B⊥ yields an anti-crossing between the s11 and the triplet states:

t+ and t−. The triplets do not couple to the singlet s02 and s20 states and thus, form

no anti-crossing7.

7There can however, be an anti-crossing mediated by another Hamiltonian term such as a spin-
orbit coupling term that links between the electron charge states and spin states [192].
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(a) U02 = 10tc = 2.5B0 = 25∆Bz

t−
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(b) U02 = 10tc = 2.5B0 = 5∆Bz
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Figure E.2: The energy spectrum of the double quantum dot Hamiltonian given in Equa-
tion E.38. The state labels indicate the approximate asymptotic eigenstate of the energy
eigenvalue line at di�erent points in detuning ε. The magnetic �eld gradient across the
dots ∆Bz creates an anti-crossing between the singlet s11 and triplet t0 states, while the
global magnetic �eld Zeeman splits the triplet t− and t+ by 2B0. In (a), tc = 2.5∆Bz and
the t0 eigenstate has very little dependence with ε. However, when ∆Bz = 2tc, multiple
anti-crossings form on the t0 state causing a strong detuning dependence on the t0 eigenstate.





AppendixF
Numerical simulations of gate �delity

Numerical methods were used to evaluate the approximate �delities for the single

and two-qubit gates under the in�uence of charge noise. The basic method shall be

discussed in this section.

Consider a qubit rotation such as that described in Figure F.1a where one rotates

an initial state about some axis by π from ψ0 to ψπ. One calculates the time re-

quired to achieve a π rotation by taking the nominal precession frequency. However,

noise in the environment may randomly perturb the precession frequency such that

one sometimes undershoots the �nal state rotation (if the frequency is too slow) or

overshoots the �nal state rotation (if the frequency is too fast). If one takes the

average of all the randomly distributed �nal states, one gets an average state ψav

that is no longer a pure state (that is, unit magnitude on the Bloch sphere). The

decay of the Bloch vector is termed information loss due to decoherence. One may

plot the z-projection of the averaged �nal state vector as shown in Figure F.1b. One

can convert the z-projection pz into a measurement probability via:

Pz =
1

2
(1 + pz) ≡

1

2
(1 + γ(t) · cos(ωpt)) , (F.1)

where ωp is the average precession frequency and γ(t) is the decay function describing

the average information loss due to perturbations in ωp. The metric to describe the

decay of the state vector into the centre of the Bloch sphere (that is, a measurement

probability of 1/2) is typically a sinc, Gaussian or exponential decay envelope where

T ∗2 is the time-constant. The �tted envelope depends on the distribution of the

precession frequencies as given by the noise distribution (for example, a Gaussian

distribution of precession frequencies yields a Gaussian envelope in the time-domain

probabilities). One may attach �delities to the decay by noting that a gate operation

329
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(a) Shot-to-shot variations in gates

x

z

ψ0

UndershotOvershot

ψπ

ψav

(b) Average z-projection and probability

−1
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tpz

1

t
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(c) Decoherence on an arbitrary axis

x

y

z
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Figure F.1: Visualising decoherence and the resulting link to gate �delities.
Decoherence is decay of the state vector when taking the average of many gate operation
events where the precession frequency randomly varies each time due to noise. (a) In a simple
example, the initial state ψ0 is to rotate from the z-axis by π to ψπ. However, sometimes the
gate will under-rotate (precession frequency too slow) or over-rotate (precession frequency
too fast) with the average state vector being ψav. (b) The z projection of the average state
vector (in blue) over time is shown relative to the intended state vector (in red). The average
state vector is the weighted sum of all other state vector trajectories when the precession
frequency is too fast or slow (lighter red). The resulting z-probability measurement Pz,
when compared against the ideal probability yields the �delity. For example, the stars and
circles indicate the state vectors on π and 2π rotations respectively (with the ideal state
vectors in red and the decohered state vectors signifying the �delity in blue). (c) Given that
the worst-case �delity is the projection of a state vector ψ0 perpendicular to the rotation
axis r̂ as measured along the ψ0-axis, one may simply �nd the decay envelope to estimate
the resulting gate �delities.
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should yield ψπ for π-rotations (shown by the red stars) and ψ0 for 2π-rotations

(shown by the red circles), but instead yield the trajectory given by the ensemble

average ψav (the blue stars and circles); the resulting �delity estimates are:

Fπ = |〈ψav | ψπ〉|2 ≡ 1− Pz (F.2)

F2π = |〈ψav | ψ0〉|2 ≡ Pz. (F.3)

Note that the 2π rotations are important when considering identity or idle operations

on the qubits. Now the z-projection is simply that of a cosine wave at a frequency

given by the precession frequency and a decay given by the decay due to decoherence.

The decay of the cosine wave at a half rotation is the gate �delity. One may extend

this �delity calculation to any arbitrary axis of rotation. For example, consider an

arbitrary rotation axis r̂ given in Figure F.1c. Now take any pure state ψ0 on the

plane perpendicular to the rotation axis. The state must be perpendicular to achieve

the worst-case �delity estimate (a state parallel with the rotation axis will undergo

no precession and thus, no su�ers decoherence). Now to �nd the �delity, one can

take the inner-product along the ψ0-axis to realise that the �delity is simply the

decay envelope γ(t) evaluated at t = tπ (the time taken to perform a half rotation

as given by the precession frequency):

Fπ =
1

2
(1 + γ(tπ)) (F.4)

F2π =
1

2
(1 + γ(2tπ)) . (F.5)

Thus, estimation of the decay envelope given the distribution of precession frequen-

cies directly yields the �delities.

Now one seeks the decay envelope in the time-domain given a probability distri-

bution of precession frequencies. Note that taking the inverse Fourier transform of

the probability spread of precession frequencies in the frequency domain yields the

average time-domain decaying cosine wave as required when averaging many shot-to-

shot variations in the precession frequency. Now consider a probability distribution of

the precession frequencies N(ω) where the distribution is symmetric N(−ω) = N(ω)

and has a mean frequency of interest at ω = ωp. Now taking the inverse Fourier

transform to get the time-domain decaying sine wave:
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p0(t) = F−1[N(ω)] =
1

2π

∫ ∞

−∞
eiωtN(ω)dω =

1

π

∫ ∞

0
cos(ωt)N(ω)dω. (F.6)

The cosine integral was numerically evaluated using a 1000-point trapezium rule

across the probability distribution N(ω). The resulting function p0(t) is a decaying

sine wave with frequency ωp. The decay associated envelope can be found by simply

taking:

γ(tπ) =
p0(tπ)

p0(0)
(F.7)

γ(2tπ) =
p0(2tπ)

p0(0)
. (F.8)

From the decay function, one may immediately extract the gate �delities as shown

above.
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