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Abstract

A scalable quantum computer requires high-fidelity qubits arranged in a 2D array
to form a fault-tolerant quantum error correction code. One of the challenges in
implementing such a system is the large number of leads per qubit used to create,
control and readout the qubit. By utilising the natural confinement potential of
P-donors in silicon, we can integrate single-gate RF readout into existing control
gates with a minimum gate density of 2 gates per qubit. This thesis investigates the
realisation of singlet-triplet qubits in silicon using P-donor qubits with minimal gate
density.

We created a coupled singlet-triplet Si-P qubit device with scanning tunnelling
microscope (STM) lithography with only 2 gates per qubit. Using a custom designed
electrostatic model with a charge-stability diagram simulator we designed and char-
acterised electrostatic couplings in this device. Using a triangulation technique, we
not only verified the physical locations of the dots but were able to identify the loca-
tion of charge traps in the device and correlate them with STM images to determine
their cause. Using single lead RF read-out we demonstrated an inter-dot tunnel cou-
pling of 39 GHz, with a so-t_ decay time of 2ms, and a large inter-qubit coupling of
5 GHz.

We then focused on the development of two compact RF sensors. The first, an
RF single-lead quantum dot (SLQD) sensor used the nonlinear quantum capacitance
to detect charge movement ~100 nm away. A nanoscale Si-P SLQD patterned using
STM-lithography demonstrated a sensitivity equivalent to an integration time of
550 ns to detect a single charge with a signal-to-noise ratio of 1. We then extended
this work to a single-gate RF sensor and demonstrated single-gate single-shot RF
spin readout for the first time. We achieved a readout fidelity of 85.77% at a 3.3 kHz
bandwidth and showed how to extend this to >99% fidelity.

Finally, we discussed the theoretical development of scalable singlet-triplet archi-
tectures using P-donor qubits. We focussed on specific device parameters required
for high-fidelity single and two qubit gates and how to integrate these into 1D and
2D arrays.
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Chapter

Motivation and thesis organisation

Chemical sciences has a great impact on human society by providing exotic technolo-
gies ranging from contributions such as that in renewables, medicine and agriculture.
However, the methods to create new materials with exotic properties tend to be em-
pirical and employ random heuristics. It is difficult to know the optimal chemical
compositions required for specific outcomes as simulations tend to be computation-
ally expensive. In fact, even the simple crystalline unit-cell cannot be solved or
simulated exactly given current computational technologies. For example, consider
a 3 x 3 x 3 cube of atoms that may represent a cubic unit-cell in a crystal. If one
were to study the magnetic properties and dynamics of strongly interacting electrons

227 values to represent the answer and an

on all 27 atoms, then one needs to store
additional 227 x 227 values to store the matrix that needs to be diagonalised dur-
ing the computation. The raw memory usage to store the matrix of values is 64
petabytes (if using 32-bit floating-point numbers); approximately quarter the 250
petabyte storage capacity of the most powerful supercomputer at the time of writing
the thesis'. With the computational complexity of diagonalisation using SVD (sin-
gular value decomposition) being O(n3) [1], one would require in the order of 200
days of computation time?. With nonlinear dynamics of general molecules requiring
multiple diagonalisations, the idea of exactly simulating larger and more complex
chemical compounds a priori using conventional computers is unrealistic. The rea-
son for the large computational complexity is a result of the large state-space that
a heavily entangled quantum state may traverse during its time evolution. Thus,

the solution to solve systems governed by quantum mechanics is to build a computer

!The data is based on the top supercomputer Summit as catalogued by the TOP500 project
2An optimistic lower bound estimate given the approximately 148.6 petaflops in computation
speed (1 FLOP is one floating point operation per second) of the fastest supercomputer Summit.
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that specifically exploits quantum mechanics to solve computational problems as first
proposed by Feynman [2|. Further interest gathered in quantum computing when
explicit algorithms were developed to solve a certain class of useful problems; most
notably the Shor’s algorithm [3] for integer factorisation and Grover’s algorithm [4].
Experimental work to date has shown the formation and control of qubits (a two-
level system representing a unit of quantum information) with some cases explicitly
implementing the Shor’s algorithm to factorise small integers [5-7|. However, no-
body has created a full-scale quantum computer that can solve useful commercial
problems that cannot be achieved on a classical computer. One of the key issues is
that quantum information is difficult to isolate as any interaction the qubit has with
another particle from its environment will disperse its quantum information. Thus,
a lot of effort goes into the research and development of creating isolated qubits and
then having them interact to perform inter-qubit gate operations without interact-
ing with the environment. However, even with the creation of high quality isolated
qubits, the required error rates to compute useful algorithms with multiple qubits
is prohibitively low and thus, one requires many qubits to build up redundancy
and lower the effective error rate. Current state-of-the-art quantum error correction
codes propose up to 10® qubits, where the redundant physical qubits collectively form
approximately 4000 logical qubits to demonstrate Shor’s algorithm in factorising a
2000-bit number [8]. A current challenge in creating a useful quantum processor
therefore lies in creating high fidelity qubits that are isolated from their environment
and high-fidelity two-qubit gate operations that can scale up to millions or billions
of interconnected physical qubits. There are now signs of significant investment into
the realisation of a useful quantum processor with higher qubit numbers reported.
A startup IonQ has claimed up to 160 qubits [9] in a trapped ion quantum computer
while IBM and Google have claimed up to 50 qubits [10] and 72 qubits [11] when us-
ing superconducting transmon qubits. Despite this, a fault-tolerant implementation
where the use of redundant qubits showed a dramatic decrease in the qubit error

rates is yet to be demonstrated.

One possible approach in which to eventually realise a scalable and useful quan-
tum computer is to make qubits using electron spins trapped in nano-scale quantum
dot structures [12-18]. With the electron spins operated under cryogenic temper-
atures, one suppresses interactions the qubits may have with their environment.
Quantum dot implementations are in their infancy requiring the latest nanofabri-
cation technologies to reach device sizes <10-100nm. As such, they have not yet
shown low enough qubit error rates as seen in their trapped ion systems or supercon-

ducting counterparts. Experimental and theoretical results however suggest that the



strong interactions between qubits, unique to quantum dots due to the close prox-
imity of the qubits [19], should enable error rates comparable to that of trapped ion
implementations while allowing fast gate operations comparable to that found with
transmon qubits. As with ion traps and superconducting qubits, quantum dots do
not have a straightforward method to scale up to many qubits. One significant ob-
stacle is the gate density required to create and control the small nano-scale qubits.
For example, with gate-defined GaAs quantum dots the gate density can extend up
to 11 gates per qubit [14]. However, a class of quantum dots using atoms such as
P-donors in silicon do not require extra confining gates to create the quantum well
that traps the electron spin qubit and offers a pathway to significantly reduce the
gate density. Whilst the use of atomic qubits is still in its infancy, a lot of effort has
been made to develop the fabrication techniques to be able to atomically place both
single and multiple P-donors in quantum dot qubits in specific locations in silicon
using hydrogen-mask STM (scanning-tunnelling-microscope) lithography [15, 20-27].
Utilising the advantages of the lower gate density in P-donor qubits, a pathway has
been mapped out to scale up to many qubits in a 2D array with gate densities of \/n
for n qubits |28|. This 2D Si-P surface code architecture requires great uniformity of
qubit placement as the low gate density was achieved by sharing a given gate across
many qubits.

This thesis considers an alternate proposal using two-electron singlet-triplet qubits
(rather than single-spin qubits) in which one may scale up to many qubits using
atomic qubits in silicon with a gate density of two gates per qubit. Since every qubit
has its own set of control gates, the fabrication precision of the qubits is relaxed
as each qubit can be independently tuned to overcome potential offsets or device
defects. Furthermore, a key development in the thesis was the reduction of the gate
density by replacing the conventional 3-lead qubit sensor (the single electron tran-
sistor) with a single-gate RF (radio frequency) sensor that takes up no additional
space real-estate in the nano-scale device as it integrates directly into pre-existing
control gates in the device. Here, we demonstrated single-shot single-gate RF spin
readout for the first time.

The thesis is divided into four main results chapters including a theoretical pro-

posal for a scalable singlet-triplet qubit architecture. These are outlined below:

e Design and realisation of a quadruple quantum dot device in Si-P
capable of hosting two singlet-triplet qubits [29]. This chapter covers
the theoretical modelling and optimisation of a coupled singlet-triplet device.

Capacitance modelling simulations and a custom charge stability diagram sim-
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ulator were used to simulate multiple P-donor quantum dots in silicon. A
quadruple quantum dot device designed to host 2 singlet-triplet qubits (across
2P-2P and 3P-4P donor double quantum dots) was then fabricated in Si-P
using STM lithography and measured in a dilution fridge. The device was
characterised using a TJCS (tunnel junction charge sensor) and a single-gate
RF sensor. A triangulation technique using charge stability diagrams and
finite-element models was developed to verify the location of all four quan-
tum dots. Interestingly, this technique was also used to identify the location
and source of a nearby charge trap; something that will provide useful infor-
mation in fabricating further devices. A singlet-triplet spin state was formed
between the 3P-4P dots and the singlet to triplet-t_ lifetime (which limits
the available RF sensor measurement time) was measured to be 2ms; much
larger than previously measured (60 ns [30]), owing to our design to reduce the
coupling of the quantum dots to their reservoirs. Furthermore, the improved
electrostatic model for larger P-donor quantum dots was successfully bench-
marked against experimental measurements of the gates’ differential lever-arms
and the inter-qubit coupling. The device provided a large inter-qubit coupling
of 5 GHz, optimised for fast high-fidelity two-qubit gate control. We found
that the device had too transparent a tunnel barrier between the dots hosting
the singlet-triplet qubit such that the exchange J between the dots could not
be turned off. However, the electrostatic control demonstrated in this device
suggested that with inter-dot tunnel couplings less than 10 GHz, it would be
possible to use this design to achieve a high-fidelity singlet-triplet qubit.

Theoretical and experimental development of a compact RF SLQD
(single-lead-quantum-dot) charge sensor [31]. This chapter outlines the
advantages of RF techniques, and the possibility to reduce the lead count of a
conventional SET charge sensor to a single lead with a dedicated quantum dot.
The operation of the SLQD was first modelled theoretically to both under-
stand the nonlinear components of the SLQD response and to find the optimal
regimes of operation. This includes the first predictions of a saturation in the
SLQD response at high input RF powers away from the linear regime to achieve
larger readout signal strengths. The SLQD sensor was then fabricated using
STM lithography to pattern a Si-P device and the theoretical predictions were
experimentally verified. The SLQD sensor was shown to operate with peak
sensitivity (using a 244.8 MHz RF resonator with an effective quality factor

of approximately 100) and shown to detect charge movement approximately



44nm away. Indeed we show how the SLQD can act as a long range (~100 nm)
compact high-fidelity charge sensor for P-donor qubits in silicon where typical

qubit sizes are within 12 nm.

Theoretical and experimental development of a scalable single-gate
RF singlet-triplet sensor [32]. Following on from the SLQD sensor we out-
line the developments of a single-gate RF sensor that requires no dedicated
lead (and in this case no dedicated quantum dot) and integrates directly into
the pre-existing control gates within the device. To understand the optimal
operating regimes, the single-gate RF sensor was modelled theoretically using
Hamiltonian modelling of the ‘adiabatic quantum capacitance’ and ‘tunnelling
capacitance’ modes of operation. A unique feature of this modelling is the
investigation into the use of larger input RF voltage amplitudes to enter the
nonlinear capacitance regime. Although the RF response does not saturate
as with the SLQD sensor, the analytic models provided important bounds for
optimal operation in both the adiabatic quantum capacitance (where the driv-
ing frequency must be much smaller than the tunnel coupling frequency) and
in the tunnelling capacitance (driving frequency must match twice the tunnel
coupling frequency) regimes. The single-gate RF sensor was used to measure
a 6-electron singlet-triplet state with a 39 GHz tunnel coupling across a 3P-4P
double quantum dot separated by approximately 12.5nm. The device design
allowed us to extend to the singlet to triplet-t_ relaxation time to 2ms. The
resonator circuit was then optimised for maximal readout signal strength, by
increasing the internal quality factor of the RF resonator by replacing the
surface mount chip inductor with a custom low-loss NbTiN superconducting
inductor with an internal quality factor of ~800. Using this single-gate RF sen-
sor, we achieved single-shot readout for the first time with a fidelity of 85.77%
at a 3.3kHz readout bandwidth; thereby confirming we could make sensitive
measurements of the electron spins without affecting the spin dynamics of the
qubit state under measurement. The results implied the compatibility of the
single-gate RF sensor with the large-scale qubit architectures proposed in this

thesis.

Fundamental design and optimisation of high-fidelity single and two
qubit gates for scalable 1D and 2D arrays of singlet-triplet qubits
using Si-P. In the final results chapter, we use the detailed understanding of
Si-P devices obtained from experimentally benchmarked electrostatic models

to optimise critical device parameters (such as the inter-dot tunnel coupling,
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the inter-qubit coupling and the operational points in qubit exchange) for one
and two qubit gates using singlet-triplet qubits. We focus on the CZ gate fi-
delity under the presence of charge noise, since it can be used to realise both the
77 and XX parity measurements required in the fault-tolerant surface code.
A unique aspect of the modelling developed, lies in the exploitation of the
large inter-qubit couplings present in Si-P quantum dots due to their small
size and close packing when compared to equivalent gate-defined quantum dot
implementations. Most works in the literature involving two-qubit gates with
singlet-triplet qubits have been in the pertubative (with respect to the inter-dot
tunnel coupling) inter-qubit coupling regime [33-35]. Using the electrostatic
models developed with the optimal device parameters established for high fi-
delity single and two qubit gates, we propose scalable 1D and 2D singlet-triplet

qubit arrays using P-donors in silicon.

Looking forwards, we have proposed scalable designs that require 2 gates per qubit
with each qubit hosted on asymmetric 1P-2P donor quantum dots. It is important to
investigate the nuclear spin dynamics in P-donors to ensure a stable magnetic field
gradient (across the quantum dots) and that the system migrates to isotopically
purified 22Si to minimise magnetic noise from the substrate. Whilst there are still
technical challenges, this thesis provides both a guide and critical understanding
in the choice of device parameters required for scalable singlet-triplet architectures

using P-donors in silicon and provides a roadmap ahead.



Chapter

Architectures for singlet-triplet qubits
in Si-P

In developing a scalable architecture for a solid-state quantum computer, a qubit
structure with a low lead density is desirable as it reduces the interconnect crosstalk
and complexity [36, 37]. Solid state qubits exist on the nano-scale and must be placed
in close proximity to each other at the nano-scale to enable high-fidelity inter-qubit
gate operations. Typically, each solid state qubit requires leads to perform qubit
operations, qubit initialisation, qubit readout and, in some systems, to form the
qubit trapping potential itself. This can lead to a very large lead density with
challenges to route all gate electrodes under the constraints of limited space and

reduce inter-lead crosstalk.

The qubit unit-cell proposed in this thesis eliminates the need for additional
confining gates (to form the qubit trapping potential) by using P-donors in sili-
con. The P-donors’ Coulombic potential well naturally confines the qubit electrons.
The nuclear spin-half P-donors can also be used to encode long-lived qubit informa-
tion [38, 39]. Additionally, the spin-half P-donor nuclei can be polarised to form local
magnetic field gradients for qubit control [40, 41]. Importantly, the gates required for
conventional qubit sensing structures are eliminated by integrating the sensor into
one of the pre-existing mandatory gates in the device (see Section 3). The result is
a linear array of qubit unit-cells that only requires two leads per qubit as shown in
Figure 2.1. Since each quantum dot in this unit-cell has a matching gate, one has
a full degree of freedom in controlling the electrostatic potentials of each individual
dot. Thus, the proposed qubit architecture does not compromise qubit tunability or

require the large device uniformity of architectures where any single gate is tasked

7
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Detuning gates (to control qubits)
Qubit

Unit-cell

quantum dots

(to host qubits)®

Double ° |
° |

Reservoirs (to load electrons)

Figure 2.1: Proposed architecture to host a linear array of singlet-triplet qubits
using Si-P quantum dots. The qubits are arranged in a linear array of qubit unit-cells
each consisting of a reservoir (to load electrons), a detuning gate (for qubit control) and
a double-quantum dot to host a two-electron singlet-triplet spin qubit. Single qubit gates
are performed by moving electrons between a given double-quantum dot (Pauli-z rotations
when the electrons are on separate dots and Pauli-z rotations when the electrons are pushed
towards the same dot) while two-qubit gates are mediated via the electric dipole coupling
between adjacent double quantum dots.

with controlling many quantum dots simultaneously [28]. The singlet-triplet qubit
unit-cell was developed in this thesis by taking advantage of the features unique to
STM patterned P-donor dots'. An initial geometry was investigated using a simple
electrostatic model. Based on these simulations, a quadruple quantum dot device
was fabricated using P-donor quantum dots in silicon [29]. To characterise the de-
vice, an electrostatic triangulation method was developed and implemented to verify
that the four P-donor dots were present. The geometry enabled independent control
of all four dots with the ability to load electrons onto each of the four dots. In addi-
tion, the proposed unit-cell geometry was shown to be compatible with a linear array
of singlet-triplet qubits by demonstrating a strong inter-qubit coupling (required for
two-qubit gates) of 5 GHz between adjacent double quantum dots. Finally, a singlet-
triplet spin state across one of the double quantum dots was read out in single-shot

using RF technology as discussed later in Section 3.

!The small size of the P-donor dots enables close qubit packing, thereby allowing stronger inter-
qubit interactions. In addition, local P-doped leads patterned as close as 11 nm to the quantum
dots enables greater gate tunability (in the form of a greater gate-to-dot lever-arm «) of electrons
on the quantum dots when compared to larger gate-defined quantum dot counterparts.
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2.1 Introduction to quantum dot spin qubits

A qubit is a controllable two-level quantum system where information is embed-
ded into the overall, possibly superposed, quantum state. In spin-based quantum
computing, the two-level system is that due to the particle’s spin. For example, in
single-spin qubit proposals, the two-level system is an electron or nuclear spin that is
either aligned or anti-aligned with an applied magnetic field. One may concatenate
multiple spinful particles to create a larger state-space upon which a two-dimensional
subspace acts as an enhanced qubit such as the singlet-triplet qubit which has a qubit
subspace protected from global magnetic field noise [12-14, 42|. In all cases, there is

a need to trap and isolate a single spin from the environment.

2.1.1 Confinement potential for qubits

It can be shown from Maxwell’s equations that electrostatic fields cannot have a
global minimum upon which charge may settle; coined Earnshaw’s theorem [43].
However, one may still have saddle points, which if rotated (via two orthogonal coils
producing AC sinusoidal electric fields in a configuration known as a ‘rotating Paul-
trap’) can form an electric field minimum that may trap charge [44-46]. Another
method to circumvent Earnshaw’s theorem is to restrict the degrees of freedom in
which the electron may reside. In the case of gate-defined quantum dots such as that
in GaAs or SiGe, a thin doped layer within the heterostructure creates a plane of high
electron mobility in which electrons are restricted to form a two-dimensional-electron-
gas (2DEG). With one degree of confinement provided freely by the heterostructure
formed on the semiconductor substrate, one may use surface gates (on a layer above
the 2DEG) to provide static electric fields that confine the electrons laterally in the
2D plane to a small area [13, 17, 47]. On tuning the gates, the confinement potential
of the quantum dot can be modified to allow a single electron to be trapped. The
nearby gates can then be used to shape the confinement potential to manipulate the
electron spin qubits and couple adjacent qubits. In this way, gate defined quantum
dots offer tunability in terms of system parameters such as electron-electron exchange
coupling J, but come with the disadvantage that they have a high gate densities that
can tally up to 11 gates per qubit [14]. Ultimately, the higher the gate density, the
more likely there will be a problem in scaling up to many qubits due to the fanning
out of the large number of gate lines.

One method to reduce the gate density in semiconductor qubits is to use atom

donors in the silicon substrate. The donors naturally trap electrons in their atomic
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valence bands of Coulombic potentials. However, this advantage comes at the cost of
reduced qubit tunability. For example, the inter-dot tunnel rate between two donor
quantum dots is set upon fabrication and cannot be strongly tuned using a gate like
with gate-defined quantum dots [13, 14]. This is because the inter-dot distances for
donor quantum dots are in the order of 12nm and thus, any gate that tunes the
tunnel barrier (and not the on-site potentials of the dots) will need to be near the
centre of the double quantum dot; at this point the gate is too close to the quantum

dots and the gate electrons will interfere with the qubit state.

2.1.2 Types of quantum dot spin qubits

With the electrons confined within their Coulomb potential wells, one must create a
two-level system in which to manipulate. One simple two-level system is to apply a
magnetic field. The electron spin will Zeeman split into two states to form a ‘single-
spin’ qubit: an excited state with the spin anti-aligned with the magnetic field and
the lower energy ground state aligned with the magnetic field. This magnetic field
naturally gives a Hamiltonian with a Pauli-z term that lets it precess the spin about
the z-axis (defined as the direction of the applied magnetic field). To get Pauli-z
terms in a similar way, one would need to tilt the magnetic field. However, magnetic
fields are generated by large coils which will have large inductances that forbid quick
changes in the magnetic field. A more elegant solution is to create the magnetic field
via an electromagnetic wave, for RF pulses can be switched on and off quickly. Known
as electron spin resonance (ESR), a sinusoidal time-varying perpendicular magnetic
field, which if the frequency matches the Zeeman energy splitting, performs Pauli-z
operations [48]. This yields the spin-qubit Hamiltonian:
Gelte B: Yelte Bz

Hspin—qubit = 5 o, + 5 COS(WOt)O'm, (2.1)

where g. is the gyromagnetic ratio for electron spins, u. is the Bohr magneton,

B, is the orthogonal magnetic field strength, B, is the global magnetic field and
wp is the driving frequency of the orthogonal RF drive. When the drive frequency
matches the Zeeman splitting, hiwg = gepteB,/2, the Hamiltonian yields pure z-
rotations when the system is in the so-called ‘weak-driving’ regime [49]: gepte Br <
Jelte B2 + hwg = 2gepte B,. In the case of semiconductor quantum dots, this involves
integrating a metal antenna in close proximity to the qubits [16, 50]. Similar qubit
control has been shown using low-loss superconducting coplanar striplines where the
ability to achieve higher current densities in the antenna enables larger amplitude

driving fields [51]. The challenge in using antennas lies in obtaining a large enough
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magnetic drive amplitude at the location of the electron spin (typically only up to
~1MHz [52]). The difficulty in gathering a large drive amplitude arises from the
RF engineering challenge for the high frequencies involved?. The coaxial lines go-
ing into the fridge must be thermalised via attenuators and this sets a limit on the
maximum signal that may physically reach the device for a given high frequency
microwave generator. In addition, large RF powers sent to the antenna cause dis-
sipative heating that may warm the device and increase thermal excitations on the
spin qubit. Thus, given a limited input power, the challenge for ESR driven spin
rotations lies in shaping the antenna such that it converts as much of the RF power
into an orthogonal magnetic field that can drive coherent rotations [53]. As the drive
amplitude, gepeB;/2, determines the precession frequency of the Pauli-z gate, this
limits the gate speed. Nonetheless, antenna-based driving of electron spins hyperfine-
coupled to nuclei (such as ion-implanted P-donors) to drive nuclear spin qubits has
yielded a promising route to single qubit control with long coherence times® of up to
T5 = 600 ms for the nuclear spins as opposed to T35 = 270 us measured for electron
spin qubits on P-donors [39].

One approach taken to overcome the slow speed of the magnetic drive (in the
order of a few megahertz) when using antennas, is to use micromagnets [18, 47,
54, 55|. Here, groups typically evaporate cobalt under a magnetic field to create a
patch of magnetised material near the quantum dots. When engineered properly,
the micromagnet produces a magnetic field gradient (perpendicular to the globally
applied magnetic field) across the quantum dot. Now using the control gates to
shape the potential well, the electron can be physically moved sinusoidally back and
forth within this magnetic field gradient (or forced between different spatial orbital
states [47]). This means that the electron feels a sinusoidal time-varying magnetic
field that can be used to perform resonant Pauli-x gates as before, but with much
larger driving amplitudes of up to 40 MHz [18].

The long-term issue with single-spin implementations is that they easily decohere
in the presence magnetic field noise since all the Hamiltonian components strongly

couple to external magnetic fields as seen in Equation 2.1. To combat this issue and

2The frequencies range to 40 GHz as the single spin readout mechanism requires a large Zeeman
splitting for high-fidelity state readout. This leads to choosing the maximum workable frequency,
when using coaxial cables, at approximately 40 GHz [16]

3The coherence time is the exponential time constant in which the spin population, when under-
going free precession (that is, identity operations), on average drops by 1/e. The drop in population
is due to the shot-to-shot inconsistencies in the precession frequency (for example, due to noise in
the B-field for single spin qubits). The coherence time effectively limits the number of possible
consecutive gate operations one may perform before the qubit. Thus, the ratio of the coherence
time to the gate operation time is ideally large for a high-fidelity qubit.
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thereby avoid the hassle of patterning micromagnets or antennas, aligned to the single
spin qubits, initial semiconductor spin qubits were also created by concatenating two
different electron spins to form a ‘singlet-triplet qubit’ [12—-14]. The two-spin Hilbert

space can be decomposed into the singlet-triplet basis:

= 73 (1) = 141)
= % (I14) +141)) 22)
= 1)
ty = |11)

\
The arrows indicate the state of the individual electron spins (up or down). The first
two states, sg and tg, form the two-level system subspace for the qubit, while the final
two states, t_ and ¢, are considered leakage states. Notice that the qubit subspace
has anti-aligned spins and thus, the full Zeeman splitting is zero as these spins have
an overall zero z-spin-projection. Thus, these qubits are immune to global common-
mode (that is, the magnetic field component common to both dots) magnetic field
noise. In addition, they allow full electrical control in the sense that there is no need
for a high-frequency driving magnetic field using an antenna or waveguide. In fact,
qubit control lies in establishing a magnetic field gradient AB, and controlling the

two-electron spin exchange J:

1
Hqr = §JO'Z + AB,o,. (23)

That is, in the singlet-triplet basis, sg and tg, the singlet-triplet Hamiltonian offers x
rotations mediated by AB, and z-rotations via the exchange J. The exchange refers
to the singlet-triplet energy splitting that manifests from energy considerations as
two electron spins are forcibly overlapped via electric fields from local gates. The
magnetic field gradient AB, arises from a difference in the local magnetic fields
across the two dots. This gradient can be formed by many methods ranging from
the polarisation of a bath nuclear spins [40] to the placement of a permanent micro-

magnet [17] as discussed in Section 2.1.5.

For completeness, when discussing semiconductor qubits, it is worth noting the
existence of charge qubits. These qubits ignore the spin of the electron and place the
electron charge across two dots with the two qubit levels being the occupancy of the
first or second dot. Spin qubits are often chosen over charge qubits since their qubit
lifetimes (or T3) are significantly longer. For example, electron and nuclear spin

qubits have had lifetimes in the order of tens of seconds to minutes compared with a
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few nanoseconds as seen with charge qubits [39, 56, 57]. However, the gate operations
on charge qubits are typically much faster with gate operations times ranging in the
order of several gigahertz [58]. Thus, there are proposals where one concatenates
three electron spins across two dots to form the ‘exchange-only qubit’ [59], ‘hybrid
qubit’ [60] or the ‘quadrupole qubit’ [61]. A key feature of these qubits is that like
single-spin qubits, they are immune to electric field noise (singlet-triplet qubits are
susceptible to electric field noise as discussed later in Section 5.4 for CZ gates in
the strong inter-qubit coupling regime) and like singlet-triplet qubits they are also
immune to global magnetic field noise. However, the qubit subspaces, for these
more exotic qubits, typically require manipulation of sensitive silicon valley coupling
terms*, which may become increasingly difficult when having to simultaneously tune
and control many qubits. In addition, the two-qubit gates for these exotic qubit types
involve many additional subsidiary gate operations which may negate the advantage
gained by having enhanced noise immunity (that is, the gained coherence time via
operation in the low-noise regimes may be negated by the longer net gate times).
Thus, given all the advantages and disadvantages of different qubit types, this thesis
will focus on quantum computing architecture proposals incorporating the singlet-

triplet qubit both for its simplicity of design and operation.

2.1.3 Two qubit gates

In Section 2.1.2, the spin qubits were discussed in terms of single-qubit gates and
qubit lifetimes. However, another important criterion for a qubit processor is its
ability to perform multi-qubit entangling operations. Although the development of
fault-tolerant two-qubit gates are yet to be demonstrated in quantum dots, there has
been recent progress in increasing the two-qubit gate fidelities [14, 34, 54, 55, 66].
For single spin qubits, the mechanism for a two qubit gate utilises the same setup
as that used for single-qubit operations on a singlet-triplet qubit. That is, one sets
up a magnetic field gradient between the two dots hosting the single-spin qubits upon
which to perform the two-qubit gate. To run the actual two-qubit gate, one increases
the electron-electron exchange J between the two spin qubits to perturb the energy
level splitting such that there is a different ESR frequency between the |]]) and |1])
states® when compared to that between the states [11) and |}1). Thus, for example
if one probes the ESR frequency between the |11) and |]1) states, the first electron

4The valley coupling terms have been shown to be sensitive to crystal strain [62], local electric
fields [52, 63], oxide interface engineering [64], silicon interface roughness [65]

*Without loss in generality, ||) is taken to be lower than ||1) as the magnetic field gradient is
directed such that it is stronger on the right dot
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spin only rotates if the second electron spin is spin-up. This operation is a controlled
Pauli-z gate (or CX gate) and often labelled as the CROT gate. The gate was first
demonstrated in Si-MOS quantum dot devices [67]. Later the CROT gate was again
demonstrated with higher fidelities of approximately 78-85% in SiGe [54, 55] and
up to 98% in Si-MOS [66]. The dominant issue to overcome in the two-qubit gate

6. Although single qubit gates for

performance is decoherence due to charge noise
single spin qubits are predominantly limited by magnetic field noise, the reliance
on J to perform the two-qubit gate operations ultimately makes charge noise the
limiting factor in scaling up to many single spin qubits since J is sensitive to the

electric field gradient across the quantum dots.

For singlet-triplet qubits, two qubit gates have been successfully demonstrated
in GaAs quantum dots via the electric dipole interaction between adjacent singlet-
triplet qubits [14|. This mechanism utilises Pauli-spin blockade between the two
electrons hosted on the double quantum dot. That is, only the singlet state allows
both electrons to occupy a single quantum dot (the two electrons must reside on
separate dots when in the triplet ¢y state). In addition, note that J is a function of the
electric field around the double quantum dot. Thus, one may arrange adjacent singlet
triplet qubits (that is, two double quantum dots) such that there is a significant
difference in the electric field sensed by the ‘target’ qubit when the ‘control’” qubit
is in the singlet state (both electrons occupy one of the dots in the control qubit’s
double quantum dot) and the triplet state (both electron separated across the dots
in the control qubit’s double quantum dot). The resulting difference in electric fields
(around the target qubit) due to the control-qubit’s electric dipole yields a state-
dependent perturbation on the target qubit’s J. As J mediates Pauli-z rotations,
the electric-dipole interaction can be used to form a CZ gate. In the regime of weak
electric dipole coupling with respect to the speed of J-mediated Pauli-z gates (for
example, when J was set to ~300 MHz for Pauli-z rotations in GaAs quantum dots,
a 1 MHz shift was present in J [14]), one may utilise AC driving methods [34, 35|. In
the AC drive method, one sinusoidally drives J to perform Pauli-z rotations (similar
to the AC driving used in electron spin resonance experiments). The advantage of
AC driving is that the net working point in J is set to J a 0 and thereby reduces the
impact of charge noise as charge noise is minimal at J ~ 0 [17, 34, 69]. AC driving
has been used to demonstrate two-qubit gates with fidelities of up to 90% for GaAs

quantum dots. The idea of using large, non-perturbative inter-qubit couplings (large

5The exact source of charge noise is still unknown. However, there are speculations that the
noise is due to intrinsic ‘two-level fluctuators’ caused by electrons hopping between two sites; for
example, crystal or interface defects [18, 68, 69].
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shifts in target qubit’s J with respect to the target qubit’s J used for Pauli-z gates)
has not been studied in detail as it is difficult to realise in gate-defined quantum dot
structures. The reason why larger shifts are a challenge in gate-defined structures,
compared to Si-P structures, is because the dots cannot be brought close enough to
realise a large enough electric dipole. Thus, to enhance the inter-qubit coupling in
gate-defined structures, one needs to utilise more exotic schemes such as coupling
two GaAs singlet-triplet qubits via a superconducting resonator [70]. The strong
inter-qubit coupling regime realisable in atomic scale qubits will be a focus of this
thesis as large inter-qubit couplings in excess of 5 GHz have been measured in Si-P
quantum dots [29]. A large inter-qubit coupling implies the potential to realise faster,

therefore higher fidelity, two-qubit gates.

2.1.4 Using P-donors in silicon as a qubit platform

Singlet-triplet qubits in semiconductors have been demonstrated in gate-defined
quantum dots in both GaAs and SiGe [14, 17]. However, these implementations
typically require a large gate density, of up to 11 gates per qubit, since singlet-triplet
qubits require two dots per qubit. The two electrons forming the singlet-triplet
qubit are confined across the two dots, where upon the electron-electron exchange J
(required for Pauli-z qubit rotations) is tuned by bringing both electrons onto one
dot (large J) or separating them onto separate dots (low .J). To have full indepen-
dent control of the potentials on the dots, one requires a minimum of two gates per
qubit’. Some of the additional gates in the gate-defined implementations are present
to help create the confinement potential; these gates can be eliminated in P-donor
architectures in silicon. Since the phosphorus atoms naturally confine electrons in
their valence bands, it shall be shown in this thesis, that it is be possible to reduce
the number of required gates down to two gates per qubit. The remaining gates in
gate-defined quantum dots are typically present for the qubit sensor. These gates
can also be eliminated (in both donor quantum dots and gate-defined quantum dots)
by utilising a single-gate RF sensor that integrates into the pre-existing mandatory
control gates in the device as discussed further in Section 3.

Donor based Si-P quantum dots can be created in multiple ways: one is via ion-
implantation and another via STM (scanning tunnelling microscope) lithography.
In ion-implantation one implants phosphorus ions into a silicon crystal at ~keV

energies and then anneals the substrate to remove the damage caused by the passage

"Sometimes full independent control is not necessary to achieve all required control on the
quantum computer, for one exploits geometric symmetries like in one of the surface code proposals
using single-spin qubits [28]
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of the phosphorus ions below the silicon surface. To manipulate the implanted P-
donor potentials, one incorporates metallic gates patterned on the surface of the
silicon crystal via EBL (electron-beam-lithography) on a SEM (scanning-electron-
microscope).

With STM lithography one can place individual P-donors in silicon [15, 20-22,
25|. Here, one starts creates a hydrogen mask where each silicon atom on the surface
is bonded to one hydrogen atom. One can remove hydrogen atoms by pulsing a high
voltage on the STM tip, causing vibrational excitation, in sites where one wishes
to place phosphorus donors. The wafer is exposed to phosphine gas which binds
to non-hydrogen-passivated sites. Upon heating the wafer to approximately 320 °C,
the phosphorus donors incorporate into the top layer of the silicon surface within
the patterned regions. Finally the wafer is encapsulated with an approximately
40nm layer of silicon via a silicon-sublimation source. Unlike ion-implantation, the
control gate leads are patterned on the same atomic plane as the dopants using
STM lithography. The metallic gates are formed by creating large patches of highly
P-doped silicon with a large density of states. One connects to these buried P-
doped silicon patches via conventional metallic electrodes patterned on the top of

the encapsulated silicon.

A critical advantage of STM lithography is that one can place the P-donors in
silicon with atomic precision while ion implantation introduces errors in the lateral
position and depth that depend on the energy of the implantation process. The
typical error in depth is approximately 8 nm when using 12keV. In addition, the
implanted ions can channel back to the surface and become electrically inactive, such
that multiple donors need to be implanted to ensure that there is a viable donor to
form a qubit [71]. A possible disadvantage of STM lithography is that the silicon
encapsulation layer must be grown at low temperatures to avoid dopant diffusion.
It remains an open question if low temperature epitaxial growth, required to avoid
dopant diffusion, affects the crystalline quality of the encapsulation layer. It is pos-
sible that defects may occur during the low temperature growth that can potentially
form sites to trap charge that may arbitrarily charge or discharge. This can be-
come a source of noise (where one will have diminished stability in the control of the
electron spin states) in the system in the form of random electric field fluctuations.
Typically the creation of a low-defect silicon surface requires annealing temperatures
reaching 1100 °C. However, temperatures above 450 °C during incorporation causes
loss of phosphorus on the surface via PHy — PHs recombination [72, 73]. In ad-
dition, higher temperatures lead to the formation of electrically inactive Py dimers.

Any excess heating will cause diffusion and segregation of the phosphorus atoms



2.1. Introduction to quantum dot spin qubits 17

that scramble the locations of the placed phosphorus atoms [74]. Diffusion refers to
the random movement of the highly energetic phosphorus atoms through the silicon
crystal. Segregation refers to the steady-state configuration where the phosphorus
atom, given enough energy, may switch places with the silicon atom above it to enter
a lower energy state in the lattice. Thus, while diffusion can occur over all directions,
segregation is a vertical movement towards the surface of the silicon crystal. Current
fabrication processes have optimised the growth rates and temperatures to minimise
dopant diffusion and segregation whilst achieving full dopant activation. One can
grow at higher temperatures to ensure a low-defect encapsulation layer by making use
of ‘locking layers’ which reduce the impact of segregation and diffusion [75]. Locking
layers are silicon encapsulated using low temperatures for the first few nanometres
of encapsulation while heating remaining layers to the higher temperatures required
for the formation of a low-defect silicon crystal. In fact, applying rapid thermal
anneals after growing approximately 70 nm, required for creating a new flat surface
for multilayer STM lithography, show strong indications of preserving the integrity
of the buried device layer [76].

Although ion-implanted and STM fabricated architectures share some similari-
ties, it is of note that the systems operate under different physical conditions. For
example, in the case of ion-implanted donors, the donors are very close to the surface
(up to approximately 20nm). Thus, one needs to consider surface effects while STM
patterned donors can be patterned either close to the surface or further away where
they can be considered to be P-donors in an effectively bulk silicon crystal. Donors
near the surface have the potential of better tuning of the hyperfine interaction (pro-
portional to the electron wavefunction overlap with the phosphorus nucleus) when
compared to isolated donors in a bulk crystal® [77]. However, this has yet to be

confirmed experimentally.

In this thesis, STM lithography was used to reliably place multiple donors with
atomic precision and control every aspect of the Si-P device geometry, in contrast to
ion-implantation techniques. In addition, the atomic precision in placement of the

metallic phosphorus control gates allows for greater flexibility in the shape, size and

8This is because the electrons on a donor are tightly confined to the potential well formed by
the phosphorus nucleus (an s-orbital in the ground state). When applying a strong electric field,
the actual perturbations on the wavefunction are small before the electron becomes free from the
donor’s potential (that is, ionisation). Having a strong barrier potential nearby (such as that of
donors placed near the surface) allows one to exceed the ionisation energy to yield wavefunctions
that have a large probability density near the barrier while retaining a smaller probability density
across the nucleus. Note that the transition in hyperfine tuning is still a steep function that changes
rapidly with electric field when near the ionisation energy [38, 77, 78]
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placement of the gates while, MOS gates are limited to 10 nm in precision®. At the
time of publishing this thesis, the technology for atomic-scale fabrication was well-
developed and therefore appropriate to enable the demonstration of unit-cells capable
of hosting singlet-triplet qubits. Previous results include the activation of a single-
donor transistor device [15] and successful demonstration of phosphorus wires that
are as thin as 2 atomic rows [27, 79]. Spinful behaviour of electrons confined within
the phosphorus doped quantum dots had also been successfully demonstrated |50, 80—
82]. An additional advantage of STM lithography, compared to ion implantation,
is the ability to pack multiple donors into a single dot; thereby strengthening the
quantum dot’s confinement potential. This offers the advantage of better electro-
static tunability (lower voltage required on gates to move electrons onto or between
quantum dots) and provides more local P-nuclei for stronger or tunable hyperfine
interactions [40, 83, 84].

2.1.5 Generating AB, for singlet-triplet qubits

As shown in Section 5.3, singlet-triplet qubits require a magnetic field gradient AB,
across the two dots to enable Pauli-x rotations. Such a magnetic field gradient has
been realised in SiGe systems via micromagnets, where one evaporates ferromagnetic
material (for example, cobalt) while under a magnetic field [17, 85|. However, this
gradient is fixed on fabrication. An alternate approach is to use dynamic nuclear spin
polarisation (DNP) where one may controllably polarise the nuclear spins within the
substrate to realise a tunable magnetic field gradient like that shown in GaAs [40,
41]. By running a similar DNP protocol in Si-P, the polarisation of the phosphorus
donors used to create the very dots themselves could create the required magnetic
field gradient. This is because the confined electrons on the respective dots will
experience a different hyperfine interaction depending on the nuclear spin state of the
phosphorus donors in the different dots. A strong magnetic field gradient is desirable
as it gives rise to faster Pauli-z gates. Therefore, dots with larger clusters of P-nuclei
dot could prove useful for producing large magnetic field gradients. However, to
date it remains unknown if larger P-donor dots can produce a stable AB, since the
dots may contain many spin configurations. It should be noted that the hyperfine
interaction is of the form AI, e S (where I, is the nuclear spin operator, S is the
electron spin operator and A is the contact hyperfine constant that is proportional to

the electron wavefunction overlap with the nuclear spin). Thus, any changes in the

9The MOS gates however, can handle larger voltages between adjacent gates without current
leaking between them due to the presense of an insulating oxide layer
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electron spin, even when not intentionally performing DNP, will impact the nuclear
spin. In the case of a micromagnet, one flipped spin in the magnetic domain will
not significantly impact the AB, (and this spin will likely flip back on its own due
to thermal statistics). However, a flipped nuclear spin in a gradient formed by P-
donors will strongly impact the AB,. In addition, it has recently been shown that
the act of placing an electron on a P-donor dot decreases its nuclear spin coherence
time and can affect the nuclear spin states by either tilting or flipping the nuclear
spins [39, 50]. The net impact of nuclear spin dynamics remains an area of ongoing

research and remains outside the scope of this thesis.

The expected magnitude of AB, due to the different number of P-nuclei in each
dot can be estimated from electron spin resonance (ESR) experiments that probe the
hyperfine energy splitting of electrons confined to P-donor dots of differing number
of P-nuclei [39, 50]. For the first electron the hyperfine splitting (that is, between
the nuclear spin pointing up and down) of a single electron on a 1P donor dot is
approximately 58 MHz [50]. Thus, a 1P donor dot will contribute exactly have this
value (that is, 29 MHz) to the magnetic field gradient. Therefore, between two 1P
donors, if the nuclei are anti-parallel, the magnitude of the magnetic field gradient will
be 58 MHz. For larger dot clusters created from more than one P-donor, the hyperfine
interaction depends on the configuration of the phosphorus nuclei within the dot. For
example, in a 2P cluster, if the nuclei are anti-parallel, the magnetic field contribution
is approximately zero. If both P-nuclei are parallel, the field contribution of a 2P
dot is approximately double that of a 1P dot at 58§ MHz. However, this is strongly
dependent on the spatial arrangement of the two P-donors within the silicon lattice
with variations ranging from 71.9 MHz to 14.3 MHz when varying donor separation
(~0.5-5nm) and arrangement with respect to the Si crystal axis [83]. Similarly larger
3P or 4P clusters can yield magnetic field contributions of up to triple or quadruple
that of a 1P cluster for the first electron (for example, ~87 MHz when arranging 4
donors in a tightly packed square). When adding more electrons to the dot, the outer
valence electron is more weakly bound and thus, its probability density is lower at
the site of the P-nuclei. Thus, the valence electron has a weaker hyperfine coupling
and therefore, a significantly lower magnetic field contribution. It was shown in a
simulation that a 2P cluster in a given arrangement in the silicon lattice can yield
up to 50.9MHz in the magnetic field contribution for the first electron. However,
when adding 3 electrons to the dot, the outer valence electron yielded a magnetic
field contribution of 5.25 MHz. This lower hyperfine contribution on adding more
electrons could in fact, be used as an additional strategy to guarantee a stable non-

zero magnetic field gradient. For example, one could have a double dot where the
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donor clusters are 1P and 2P respectively. By loading one electron onto the 1P dot
and three electrons onto the 2P dot, the difference in the magnetic field gradients

could be approximately 24 MHz or 35 MHz given the spin of the nuclei.

2.1.6 Magnetic field noise in the substrate

Single-spin qubits utilise global magnetic fields for Pauli-z rotations while singlet
triplet qubits utilise local magnetic field gradients for Pauli-z rotations. Due to
this reliance on magnetic fields, any stochastic noise in the magnetic fields that
fluctuate the magnetic field values will become a source of decoherence. To reduce
magnetic field noise from the global magnet, affecting single-spin qubits, one may
decouple the magnet from its power supply by placing it in persistence mode where
the coil currents keep circulating due to the superconducting state of the magnet.
However, magnetic field fluctuations may also come from the substrate. For example,
GaAs has different isotopes containing non-zero nuclear spins that create magnetic
field fluctuations which manifest as magnetic field noise. In the case of singlet-
triplet qubits, this changes the magnetic field gradient across the two quantum dots
causing decoherence in the Pauli-x qubit operations. The magnetic field gradient
noise can be countered by making the value of the magnetic field gradient large (to
reduce the fraction of the magnetic field gradient noise standard deviation to the
overall magnetic field gradient) via dynamic nuclear spin polarisation [40|. When
dynamically measuring the magnetic field gradient and setting up a feedback loop to
stabilise the gradient, one can also reduce long-term fluctuations [41|. The success of
using DNP in GaAs has been highlighted as the magnetic field noise no longer limits
qubit fidelities. That is, single-qubit fidelities have exceeded 99% while the two-qubit
gate fidelity currently remains limited to 90% due to intrinsic charge noise [34, 69].

A materials-level solution to overcome the fluctuating nuclear spins in the sub-
strate is to utilise silicon; a substrate that has naturally fewer non-zero nuclear spins
present. Approximately 5% of natural silicon ("'Si) consists of 2?Si atoms which
have a nuclear spin of 1/2. This is known to be a source of decoherence for single
spin electron qubits in silicon [16, 50]. Although singlet-triplet qubits reject global
magnetic field noise (unlike their single-spin qubit counterparts), they are still sus-
ceptible to close range 2?Si nuclei in the form of magnetic field gradient noise as in
GaAs. The long term solution is to utilise isotopically purified ?8Si (Si nuclei with
zero spin). Single-spin ESR experiments have shown that the bare decoherence time
(T3) of single-spin qubits rose from 55ns to 270 us when changing the host mate-

rial from "2'Si to 28Si [39]. Thus, one may posit that isotopically purified silicon
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can lead to large coherence times in singlet-triplet qubits when performing Pauli-z
rotations without the need for specialised nuclear spin polarisation protocols like in
GaAs (although not a technical hindrance, the DNP sequences will add an extra

layer of complexity to the control protocols).

2.2 Design and demonstration of a Si-P singlet-triplet

unit-cell

Before optimising the qubit unit-cell for a many-qubit processor in Si-P, it is impor-
tant to verify that the one can control electrons across two P-donor quantum dots
to form a singlet-triplet qubit. For a singlet-triplet qubit, formed by two electrons
across two quantum dots, one drives Pauli-z rotations by tuning the electron-electron
exchange J to J =~ 0 where the electrons reside on separate dots. To drive Pauli-z
rotations, one applies gate voltages to ensure J > AB, where both electrons start
to reside on the same dot. Therefore, for full qubit control, one needs to be able
to controllably add one electron to each quantum dot with the ability to indepen-
dently move one of the electrons to join the other electron on the adjacent quantum
dot; a level of controllability that has already been demonstrated in Si-P quantum
dots [81, 86]. However, the electrostatic controllability must be demonstrated on a
device geometry that is compatible, in the long-term, with a scalable many-qubit
architecture. That is, one needs to demonstrate an array of qubit unit-cells with
the level of control required for individual qubit operations along with the ability to
perform two-qubit operations between adjacent qubits.

The initial geometry to demonstrate a singlet-triplet qubit unit-cell using P-
donors in silicon was designed using finite-element electrostatic models. The re-
sulting design was then fabricated in Si-P using STM lithography and subsequently

characterised in a dry dilution refrigerator [29].

2.2.1 Overview of techniques for modelling quantum dots

Electrostatic control of Si-P quantum dots fundamentally requires control of the elec-
tron occupancy on the quantum dots. The charge occupancy of the quantum dots
is controlled by tuning the electrostatic potentials on the dots via voltages applied
to local gates. Applying a voltage on a given gate creates a non-zero electrostatic
potential on the entire structure. Tuning the electrostatic potential on the site of

a quantum dot directly tunes its energy level. The general methodology to relate
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the applied voltages on all the gates to the electrostatic potentials at the sites of
the quantum dots and thus, the resulting charge occupancy requires one to solve a
‘tight-binding’ problem [81, 84, 87]. In the tight-binding method, one first calcu-
lates the electrostatic potential due to the gates and any other sources (for example,
phosphorus donors provide a Coulombic potential well) by numerically solving the
Poisson’s equation. Then one solves the Schrédinger’s equation with the interac-
tion terms (such as the inter-site tunnel coupling, on-site potentials and electrostatic
inter-electron terms) discussed in Appendices E.1 and E.2. To simplify the spin
components, one can separately solve each of the singlet-triplet states while taking
care to write the wavefunction solutions in the appropriate symmetric or antisym-
metric manner to satisfy the overall antisymmetry of the wavefunction. The spatial
wavefunction solutions may be found numerically solving the Schrodinger’s equa-
tion. Now individual electrons also have electric fields that will affect the overall
confinement of the other electrons. One calculates the resulting Coulombic poten-
tials from the electrons (achieved by integrating the Coulomb potential of a point
charge across the wavefunction’s probability density) to create a new confinement
potential. Finally, one solves the Schrodinger’s equation as before and iterates until
the electron wavefunction no longer changes as the trial solution has found a fixed
point. The wavefunction solution can be used to extract the charge occupancy on
the dots given the initial set of gate voltages. One may enhance the analysis by intro-
ducing an orbital component to the wavefunction where the basis of wavefunctions
would be a linear combination of atomic orbitals (LCAO!Y). One may also include
silicon valley contributions and lattice strain effects [15, 27]. This self-consistent
Poisson-Schrédinger solver, especially when tempered with experimental data, pro-
vides the most accurate simulation of a device. However, this approach is very time
consuming and only provides the electron occupancy solution for one combination of
gate voltages. This makes resulting simulation of ‘gate maps’ (electron occupancy
as a continuous function of two gate voltages) extremely time consuming. Thus, one
typically adopts a semi-classical approach known as the ‘constant interaction model’

or the ‘capacitance model’ [88-90].

107 no electric fields are to be considered, the initial ground-state wavefunction can be found by
weighting the orbital wavefunctions and finding the weights that minimise the overall energy
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2.2.2 Adapting capacitance modelling for Si-P quantum dot de-

vices

In a simple capacitance model, one ignores strong electron-electron interactions. In
fact, only electrostatic contributions due to the gates’ electric fields are considered
while electron tunnelling and spin effects (that is, due to the Pauli exclusion principle)
are discarded. Note that if the tunnelling and spin interaction strengths (of electrons
between quantum dots) are much stronger than the typical on-site confinement po-
tentials (termed ‘strongly interacting systems’), this model is not applicable!! [91].
In the capacitance model, one finds the relationship between the gate voltages and
the electrostatic potentials on the dots along with the strength of electrostatic re-
pulsion amongst electrons between every pair of dots. The natural abstraction to
convert the voltages on the gates to the resulting charge states on the dots is to
treat the transfer of an electron to a dot (or between any two dots) as the charging
of a capacitor. A zero capacitance implies that no matter what voltage is applied
to the gate, there is no interaction or relationship between the gate and the dot’s
voltage. On constructing capacitors for all interlinking nodes (gates and dots), one
obtains a capacitance network. Figure 2.2 shows one such example for a double-dot
system (D1 and D2) controlled by two gate leads (G1 and G2). Due to the high
carrier density of P-doped silicon, the gates and dots can be considered as metallic
objects upon which one applies a voltage [27]. All capacitances shown in Figure
2.2b are geometric capacitances that may be found in a numeric simulation via FEA

(finite-element analysis).

Figure 2.2¢ shows the resulting capacitance matrix. As shown in Appendix A.1.1,
this matrix has algebraic properties that relate the node voltages V to the nodal
charges Q starting with: Q = CV. Appendix A.1 shows how, after some basic
algebra, the capacitance matrix can be used to find the energies on the dots given
the electron occupancies and gate voltages. The electron occupancy that yields the
lowest energy, for a given set of gate voltages, is the ground-state charge state of
interest. Subsequently, one may find hyperplanes in gate-voltage space that divide
two charge states and thus, one may simulate the charge transitions (transfer of
electrons onto or off the dots) that would occur on sweeping the gate voltages. Given
simulations of the charge transitions with respect to the voltages on the gates, one

may optimise device geometries (of the P-doped leads and P-donor quantum dots)

1 As shown in Appendix E.2, it is clear that if the interacting terms are removed from the singlet-
triplet Hamiltonian, the solutions to the Hamiltonian describing the double quantum dot system
become diagonal; that is, the dot energies are all independent and linear.
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(a) Example double-quantum dot device (b) Equivalent capacitance network
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Figure 2.2: An example of converting a device to an equivalent capacitance
model. (a) shows the top-down view of an example device that consists of a two dots
(D1 and D2) and two gates (G1 and G2). The voltages on the gates are tuned by voltages
sources Va1 and Vige. Applying different voltages on the gates changes the electrostatic
potential environment around the dots and thus, tunes their energy levels. (b) shows the
equivalent capacitance network that helps analyse the dots’ energy levels. The key concept
is that all nodes in the network represent dots or gates from the original device. (c) shows
the equivalent capacitance matrix where the on-diagonal components indicate the total
capacitance branching off a given node while the off-diagonal components indicate the inter-
nodal capacitances. The intra-gate capacitances are irrelevant (as the charges on the gates
will be actively compensated by the voltage sources to ensure they remain at a fixed voltage)
in the context of device operation and left at zero for convenience.
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to achieve the charge states required for the electrostatic control required to perform
singlet-triplet operations.

One of the important device parameters to consider is the gate lever-arm ayq.
The lever-arm is a dimensionless scaling factor that links the energy change AUy on

dot d to the change in a applied voltage V, on gate g via:

AUd = —eagdAV;;. (2.4)

The lever-arm ag4q is a geometric scaling factor between 0 and 1. One may calculate

the matrix of lever-arms using the capacitance matrix via:

where Cgp is the block matrix in C describing the capacitances between the gate
indices G and the dot indices D, while Cpp is the inter-capacitance block matrix
between the quantum dots. The element a4 in « is the lever-arm between the gate g
and dot d. By its definition, it is easy to show that the sum of lever-arms for a given
dot is also bound by 1. For example, if two gates are symmetrically arranged close to
a dot, the gates individually have a lever-arm of at most 0.5. However, if these gates
are at a larger distance away from the dot (such that the dot’s self-capacitance starts
to greatly dominate the gate-to-dot capacitances), then the gate lever-arms on the
dot tend to zero. It is important to maximise the lever-arm of a gate designated to
control a given dot as this minimises the required voltage swing to bring the dot to
the desired energy level. A lower voltage range (needed to control the quantum dot)
is important as the available range of gate voltages is limited by gate-to-gate current
leakage. However, a higher lever-arm implies that the gates are in closer proximity
to the dots and thus, ideally one needs to optimise the distance between the dot
and gates to achieve an acceptable voltage range without current leakage. Currently,
there exists no model to predict the gate voltage range in which no current leakage
occurs. Therefore, one must rely on current leakage data from previous devices to
optimise the device geometry and operating conditions.

In addition to the charge stability diagram simulations, it is of note that the
electrostatic simulations used to generate the capacitance matrix differs from that
used previously to model Si-P devices [28, 86, 92, 93|. The capacitance matrix
was previously generated from electrostatic finite-element simulations of the device
geometries where the leads were treated as planar metallic elements with a thickness
of 3.6nm (taken from the simulated Bohr radius of P-donors in silicon [94, 95])

while the donor dots were treated as metallic spheres with a radius of 1.4nm to
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match the 45 meV charging energy of single P-donors [15]|. The finite-element solver
then calculates the resulting capacitances between all gates and dots to generate
the capacitance matrix. However, with double quantum dots and gates placed in
a line (like in Figure 2.2a), the model will underestimate the lever-arm of the gate
with the opposite dot due to the electrostatic screening of the second dot in between
as discussed in Appendix A.3 (for example, in Figure 2.2a, dot D1 will screen dot
D2 from gate G1 and thus the capacitive model will underestimate the gate lever-
arm of G1 to dot D2). However, a charge neutral P-donor could be inferred to be
similar to that of a nearby silicon atom; that is, the P-donor may not necessarily
act as a metallic sphere (specifically a perfect electrical conductor in a continuous
silicon dielectric as in previous simulations). Thus, the electrostatic simulations were
modified to remove the dots’ screening effects by removing the dots from the FEA
simulation. Here, one infers the gate lever-arms by considering the electrostatic
potentials of the gates at the positions of the dots. That is, since the dots are point-
like objects, the potential energy change on a given dot is indeed proportional to
the electrostatic potential (of the gate) at the dot’s position on applying a given
voltage on the gate. Compilation of all the lever-arms can be used to generate the
gate-to-dot capacitance block matrix Cgp via Equation 2.5. Similarly, the potential
energy shifts on one dot when loading electrons to the other dots can be inferred by
viewing the shift in the dot’s potential energy due to the electrostatic potential of
an electron charge placed on the other dots. On compiling all the potential energy
shifts between all pairs of dots one may generate the dot-to-dot capacitance block
matrix Cpp. The mathematical details along with the exact algorithm used in the
modified capacitance model simulations (of Si-P quantum dots near P-doped leads)

shown in this thesis are discussed in Appendix A.3.

2.2.3 Electrostatic design of a Si-P singlet-triplet qubit unit-cell

The proposed scalable singlet-triplet unit-cell contains two gates per qubit hosted
on a double quantum dot. A two-qubit gate between two singlet-triplet qubits has
already been shown in GaAs and thus, aspects of that experiment’s particular device
design were worth investigating. As shown in Figure 2.3a, the two GaAs singlet
triplet qubits (hosted on the double quantum dots LL/LR and RL/RR) are arranged
in a line to maximise the inter-qubit coupling. For example, consider a singlet-triplet
spin state hosted on the dots LL/LR. When moving both electrons onto the dot LR
(note this only occurs if the electron spins are in the singlet state), the repulsive force

(of both electrons on LR) would maximally push the electrons across the singlet-
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triplet state on RL/RR (to cause a maximal shift in J on the singlet-triplet qubit
hosted on RL/RR). Thus, having the four dots in a linear geometry maximises the
inter-qubit coupling. A key observation in the GaAs device architecture is the gate
density of 11 gates per qubit (counting the gates for the RF-QPC qubit readout
sensors in red and the blue gates reserved for confinement and qubit control). This
large gate density (of more than 1 gate per qubit) may ultimately create challenges

in qubit scale-up [37].

One method to reduce the gate density is to replace the gate-defined dots (which
require many confinement gates) with P-donor dots which provide free self-confinement,
such as the device shown in Figure 2.3b. Here, the device consists of a double quan-
tum dot (D1 and D2) with the resulting singlet-triplet state loaded and measured via
a SET charge sensor (source S, drain D and tuning gate GSET). The dots’ potentials
are tuned via the gates G1, G2 and GT. As a long-term scalable unit-cell beyond
two singlet-triplet qubits, the geometry is not ideal due to the space taken up by the
three-lead sensor. Thus, the geometry used in this thesis was adapted from a different
Si-P double quantum dot device (shown in Figure 2.3c) designed to measure electrons
in transport [81]. The transport device loaded electrons onto the dots (D1 and D2)
to form the singlet-triplet state via electron transport through the source and drain
leads (S and D respectively). To tune the two dots’ potentials, two extra gates (G1
and G2) were required as using S and D to manipulate the dots’ potentials would
cause electron current flow. Unlike the GaAs device shown in Figure 2.3a or the SET
Si-P device shown in Figure 2.3b, there were no charge sensors patterned nearby and
thus, the spin states were deduced via electron transport [81, 86, 89, 92]. Later a
resonator was attached on the drain lead to measure the two-electron singlet-triplet
state via RF reflectometry [30]. In the reflectometry experiment, it was successfully
shown that the single-gate RF sensor (that integrates onto a pre-existing lead in the
device; in this case, the drain lead D) could indeed measure the singlet-triplet spin
state hosted across the double quantum dot. However, the immediate geometry was
not ideal to use as a scalable unit-cell design for two reasons. The first reason was
that the design required four leads to form and control the singlet triplet state (for
example, a single-spin qubit hosted on a P-donor dot and measured with a three-
lead SET would require the same number of leads per qubit). More importantly,
the second reason was that the strong coupling of the dots to their reservoirs (S and
D) resulted in very low spin life times of 60ns. That is, the large tunnel rate of
electrons between the dots and their nearby reservoirs caused one of the electrons in
the singlet-triplet state to swap with electrons in the reservoir (via a second order

quantum co-tunnelling process) thereby destroying the initial two-electron singlet-
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(a) Quadruple quantum dot GaAs device used
to show coupled singlet-triplet qubits [14, 34]

200nm .
Confinement and conti;l gates RF-QPC

(b) Double quantum dot Si-P device mea- (c) Double quantum dot Si-P device measured
sured with an SET [86] with a single-gate RF sensor [30, 81]

Figure 2.3: Previous devices to consider when designing a quadruple quantum
dot device in Si-P. With the aim to demonstrate a scalable singlet-triplet qubit unit-
cell in Si-P, it was important to look at previous designs. (a) A 4-dot gate-defined GaAs
device used to show high fidelity two-qubit gates between two singlet-triplet qubits [14, 34].
The red structures highlight two RF-QPC sensors used to read out the qubit states, while
the blue structures indicate confinement and qubit control gates. The green dots indicate
approximate locations of the four dots. (b) A 2-dot Si-P device (D1 and D2) used to
measure singlet-triplet spins via a SET (source S, drain D and SET tuning gate GSET).
The dots’ potentials are tuned via gates G1, G2 and GT. The SET acts as a reservoir for
the two P-donor dots with a dot-to-reservoir distance of d,.~21nm and d,~22nm for D1
and D2 respectively. The inter-dot distance was d; = 20nm. (c) A 2-dot Si-P device used
to measure singlet-triplet spins in transport [81]. The dots were loaded with source (S) and
drain (D) leads. The dots’ energies were tuned via gates G1 and G2. The singlet-triplet
spin states hosted across the dots D1 and D2 were later measured with RF reflectometry
with a resonator attached to D [30].
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G1 G2

Figure 2.4: Schematic of the 4-dot device with minimal gate leads to host two
singlet-triplet qubits. The qubits are to be hosted on the double quantum dot pairs
D1L/D1U and D2L/D2U. Each double quantum dot is separated by the inter-dot distance
d;q and tilted at an angle . Electrons are loaded onto the two qubits via reservoirs R1 and
R2 spaced d, away from the double quantum dots. Control gates G1 and G2 are placed
d, away from the double quantum dots to perform qubit operations via fast voltage pulses.
The double quantum dots are separated by the inter-qubit distance d;q.

triplet spin state. The singlet to triplet ¢_ lifetime of 60ns was a time-frame too
short for both qubit readout (via single-gate RF sensors) and high-fidelity qubit gate
operations (with Pauli-z gate times expected to be ~30ns). The following discus-
sion highlights the conversion of this Si-P device, designed predominantly to measure
electrons in transport, into a low lead-count device where the double-dots could be
used to host singlet-triplet qubits while working towards the demonstration of the
singlet-triplet two-qubit gate previously shown using GaAs quantum dots. The main
change (per singlet-triplet qubit hosted on a double quantum dot) was to remove the
tuning gates (G1 and G2) and designate the S and D leads as the new qubit tuning
gates. To disable direct electron transport through the dots, the source lead S was
pulled away from the dots. The drain lead was kept close to the dots (still much
further than 11.7nm to avoid spin lifetime-limiting cotunnelling processes) to act as
a reservoir of electrons to load onto the dots.

Figure 2.4 shows a schematic of the initial device design in a wedge formation.
Each unit-cell has two dots to host the two electrons for the singlet-triplet qubit
(the pairs D1L/D1U and D2L/D2U), a reservoir (R1 and R2) to provide electrons
to load onto the quantum dots and a qubit control gate (Gl and G2) to tune the
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charge occupancy on the quantum dots (required for qubit gate operations). The
double-quantum dots (hosting the qubits) are placed on a wedge formation at an
angle ¥ from the line forming the linear array. An angle of 0° would replicate the
inter-qubit coupling geometry utilised in the GaAs coupled singlet-triplet qubit ex-
periments shown in Figure 2.3a. If the angle were at 90°, then one would expect
maximal differential gate lever-arms (defined as the difference in a gate’s lever-arms
across both dots) in which the tuning gates would be able to maximally tilt the
potential across the dots to better tune the electron-electron exchange J (that is,
moving from the state where electrons are on separate dots to both electrons being
on the same dot). The optimisation procedure requires that there is sufficient elec-
trostatic control to access the required singlet-triplet states while ensuring maximal
inter-qubit coupling (required for two-qubit gates) and differential gate lever-arms
(required for single-qubit control). The geometric distances that need to be optimised
include the gate-to-dot distance dy, inter-dot distance d;q, reservoir-to-dot distance
d, and the inter-qubit distance d;q. Each of these parameters were originally chosen
from a combination of new electrostatic simulations and the results from previous
experiments performed on Si-P devices.

The inter-dot distance (within a double quantum dot hosting a singlet-triplet
qubit) d;q is an important parameter since it determines the tunnel coupling of
electrons between the two quantum dots'?. The inter-dot tunnel coupling impacts
both qubit control and readout. A device with too small an inter-dot tunnel coupling
impedes one from obtaining coherent qubit operations due to charge noise. The
issue is that too small an inter-dot tunnel rate makes the qubit exchange sensitive to
small fluctuations in gate voltages. Ideally, one smoothly varies the electron-electron
exchange J when moving both electrons, initially on separate dots, onto the same
dot. A large tunnel coupling ensures a smooth transition in J with respect to the
applied gate voltage (as there will be residual electron wavefunction overlap even
when the electrons are on separate dots), rather than a sudden change in J when the
electrons both enter the same dot. In previous experiments using Si-P quantum dots,
the tunnel coupling was too small, at <100 MHz, for coherent interactions between
two single-spin electrons'®. Numerical simulations have predicted that the required
tunnel coupling to achieve coherent Pauli-z rotations must be at least 2 GHz [82].
In this device [82], similar to that shown in Figure 2.3b, the dots were comprised

of 1P and 2P P-donor dots (separated by 16 nm) with a tunnel coupling of under

12The inter-dot tunnel coupling is half the minimum energy splitting between the ground and
excited singlet charge states.

!3The goal was to show a two-qubit SWAP gate between two single-spin qubits. Nonetheless, the
physical mechanism is the same as z-rotations for a singlet-triplet qubit.
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100 MHz. In addition to qubit control, the inter-dot tunnel coupling is important in
obtaining qubit readout using a single-gate RF sensor (as required by the architecture
proposal where the sensors integrate into pre-existing leads in the device). As with
the adiabatic quantum capacitance approach (discussed in detail when modelling
the single-gate RF sensor in Section 3.3), the inter-dot tunnel rate (between the two
dots in the singlet-triplet qubit) must be much larger than the RF driving frequency
(typically in the order of 100 MHz) to enable the singlet-triplet qubit to respond
to the RF drive. A large tunnel coupling in a Si-P device (for compatibility with
single-gate RF readout) was demonstrated in the device shown in Figure 2.3c. Here,
the Si-P device had 2P and 3P P-donor dots separated by 11.5nm to give a tunnel
coupling of 22 GHz [30, 81|. However, it is noted that if the tunnel coupling is too
large it will impede qubit control as one may not be able to switch off J as the
electrons are now too strongly interacting across the two dots. One can estimate the
lower bound in the required voltage magnitude to turn off J by considering how far
one must pulse (in gate voltage space) to tilt the singlet-triplet qubit’s axis to 45°
(the Hadamard point) where J = AB,. As derived later, the voltage pulse required

to reach this Hadamard point is:
” _ |4ABZ —¢2
Hadamard — 29AB.eAa
Taking AB, ~ 29 MHz (the hyperfine interaction of a 1P donor dot) and the param-

eters from the Si-P experiment (22 GHz tunnel coupling and differential lever-arm of

. (2.6)

A« = 0.16 [30]), the required voltage magnitude to reach the Hadamard point would
have been 220mV. Noting that one would need to pulse further to apply a large
enough electric field to separate the electrons enough to make J < AB,, the tunnel
coupling in this device would appear to be too large as the large amplitude voltage
pulses are not only impractical when considering the experimental apparatus, but
one also risks entering a voltage region where current starts to leak between leads in
the device. With no physical reason to have such a large tunnel coupling, the initial
device was designed to aim for a slightly smaller tunnel coupling of approximately
10 GHz. To lower the tunnel coupling'®, the dots were set to a nominal distance of

12.5nm with the idea to iterate over multiple devices to obtain the optimal tunnel

'4The tunnel coupling is a non-trivial function of the P-donor dot sizes, the number of electrons
forming the equivalent singlet-triplet state and the inter-dot distance. However, one may approx-
imately note that the inter-dot tunnel coupling increases with decreasing inter-dot distance (the
electron wavefunctions increase overlap between dots), increasing electron numbers on the dots
(weaker confinement of the outer electron yields greater interaction between dots) and decreasing
the P-donor dot sizes (larger dots have greater confinement leading to lesser electron wavefunction
overlap between dots).
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coupling. The chosen distance was to ensure that the inter-dot tunnel rate was above
1-2 GHz while not being so large (that is, > 22 GHz) that one cannot turn off J.

d, (nm) | No. donors | No. electrons | Tunnel rate
21 3 1 480 Hz [86]
92 ) 1 170 Hz [86]
21 3 2 > 500 kHz [36]
29 9 2 9.6 kHz [36]
99 P 3 > 250 kHz [S6]
18 1 1 50 Hz [82]
18 2 1 240 Hz [82]
17 2.3 1 50 kHz [96]

11.6 2 1 1 GHz [81]

11.8 3 1 250 MHz [81]
11.8 3 3 11 GHz [81]
11.8 3 4 22 GHz [81]

Table 2.1: Reservoir-to-dot electron tunnel rates of previously measured Si-P
devices. The table shows tunnel rates for P-donor dots at different distances from their
reservoirs d,., different dot sizes and a different number of electrons on the dot (the number
of electrons refers to the valence electron; for example, 3 electron implies the 2 <+ 3 electron
charge transition). Note that all data above d, = 16 nm had the SET quantum dot act as
the reservoir for the dot.

The distance d,., from the reservoir to the dot, is important as it determines the
time taken to load new electrons onto the dots. That is, a closer distance between
the dot and the reservoir (for example, R1 and D1L) yields a faster tunnel rate and
thereby a faster loading time. Faster loading times are beneficial if one desires to
utilise dynamic nuclear spin polarisation (DNP) to set and stabilise magnetic field
gradients across the two quantum dots during qubit operation [40, 41|. However,
the DNP pulse sequence must be run over many cycles per second to overcome the
rate of thermal diffusion of the nuclear spins resetting the magnetic field gradients.
By considering the cycle rates used in GaAs and noting that DNP requires one to
freshly load new electron spins onto the quantum dots, one can estimate that the
tunnel rate needs to be at least 1 MHz. However, too large a tunnel rate implies

a stronger coupling of the electron wavefunction on the dot to its reservoir which
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Figure 2.5: Plot of the reservoir-to-dot electron tunnel rates of previously mea-
sured and published Si-P devices. The tunnel rates are plotted against the dot to
reservoir distance d,.. The labels show the number of donors in the P-donor dot and the
number of electrons on the dot (the number of electrons refers to the valence electron; for ex-
ample, le implies the 0 +» 1 electron charge transition). Note that all data above d,, = 16 nm
had the SET quantum dot act as the reservoir for the dot. The star indicates the point to
aim for the first iteration of the quadruple quantum dot device. The colours indicate the
different devices and publications from which the data points were extracted: green [81],
red [96], blue [82], purple [86].

could lead to second order co-tunnelling effects where an electron on the quantum
dot swaps with that in the reservoir. The co-tunnelling destroys the coherent singlet-
triplet qubit state before operations can occur or indeed before the qubit state can
be detected by read-out. A lower qubit lifetime due to a large reservoir to dot tunnel
rate was observed in the 2P-3P device shown in Figure 2.3c where the reservoir-to-
dot distances were 11.6nm and 11.8nm [30, 92]. The measured singlet to triplet
lifetime for reservoir-dot tunnel rates in the order of ~1-10 GHz was 60ns; a figure
much lower than the typically long spin state lifetimes of ~1s expected for electrons
hosted on P-donors in silicon [56, 97|. Thus, tunnel rates well below 1GHz are
desired. The reservoir to dot tunnel rates previously measured in other Si-P devices
are shown in Table 2.1 with the plot of the data shown in Figure 2.5. The tunnel rates
gathered from the linear transport device (with d, = 11.6-11.8 nm) were estimated
from transport measurements and by noting the tunnel rate dependence on the RF

readout signal strength when using the single-lead-quantum-dot (SLQD) sensor!?.

15 As discussed in the modelling of the SLQD sensor in Section 3.3, the RF readout signal strength
for reservoir-to-dot transitions has a I'§/(T'3 + w?) factor where I'y is the reservoir-to-dot tunnel
rate and w is the driving frequency of the resonator.
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Here, for a 2P donor dot 11.6 nm from its reservoir (the source S), the tunnel rate was
1 GHz. For a 3P cluster at a similar distance from its reservoir (11.8 nm from drain
D), the tunnel rate was lower at 250 MHz as expected from the tighter confinement
offered by a larger P-donor dot. The reservoir-to-dot tunnel rate increased with
increasing electron number with the tunnel rate reaching 22 GHz at 4 electrons on
the dot.

The remaining samples employed an SET to perform single-spin readout via the
spin-to-charge conversion method on devices with the geometry given in Figure 2.3b.
Here, the SET acts as a reservoir for electrons to load onto the P-donor dots. At a
reservoir-to-dot distance of 21 nm, the tunnel rate on a 3P dot started from 480 Hz
for the first electron and rose beyond 500 kHz after adding 2 electrons [86]. For a 2P
dot at a distance of 22 nm, the tunnel rates started from 170 Hz for the first electron
and rose beyond 250kHz only after adding 3 electrons [86]. From that device, it
was not clear whether the dot size or the distance from the reservoir that played a
significant factor in the tunnel rate. However, there was a clear monotonic increase
in the tunnel rate on adding more electrons to the dot. On another similar device
with 1P and 2P donor dots both placed 18 nm from the reservoir, the tunnel rates
were 50 Hz and 240 Hz respectively [82]. The result appears counter-intuitive as the
2P cluster would be expected to confine the electron more tightly, resulting in a
much slower tunnel rate to the reservoir. However, the two tunnel rates were within
an order of magnitude of each other and there may have been slight differences in
the distances with regards to the position where the electron was confined on each
dot. Finally, on another similar device; for a 2-3P P-donor dot at a distance of 17 nm
from the reservoir, the tunnel rate was above 50 kHz for the first electron [96]. Thus,
with the desired tunnel rate being 1 MHz (a nominal value much lower than 1 GHz
where cotunnelling effects may start, but fast enough to perhaps run DNP), d, was
set to 17nm as pinned by the star in Figure 2.5. Noting the non-trivial spread of
tunnel rates (highlighted in Figure 2.5), given electron number and dot sizes, one
may start to optimise the distances in future device iterations as more devices are
fabricated and measured.

With the parameters d;; and d, set by estimations from previous experimental
results, the geometry only requires one to optimise the gate-to-dot distance dg, the
dot-pair angle ¥ and the inter-qubit distance d;;. These three geometric parameters
need to be optimised to maximise electrostatic tunability of electrons across the in-
dividual double quantum dots for single qubit operations while maintaining a strong
inter-qubit coupling for two-qubit gates.

The first investigation used the improved electrostatic modelling (as discussed
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in Appendix A) to study the impact of the parameters d, and ¥ on maximising
the differential lever-arm of gates and reservoirs onto the double quantum dot. The
differential lever-arm measures the difference in energy across a double quantum dot
on changing the voltage on a gate. A large differential lever-arm implies that one
can better tilt the potential across the double quantum dot given the same voltage
change on the gate. Therefore, the differential lever-arm is important in the context
of qubit control as it describes the ability to bring the electrons together onto one dot
(J > AB, for Pauli-z rotations) and separate them (J ~ 0 for Pauli-x rotations).
The smaller voltage range required to achieve both qubit operations, offered by a
large differential lever-arm, is desirable as one can better avoid gate-to-gate current
leakage and having large voltage pulses sent down the fridge. Gate-to-gate current
leakage is undesirable as direct current flowing across the device will certainly disrupt
or destroy any electron qubit formed on the dots [86, 92|. Regarding large high-
speed voltage pulses, arbitrary waveform generators have a limited voltage range of
typically £1.5V; the range is further limited (to approximately +470mV) due to
the thermalising attenuators (minimum recommended 10dB [33]) placed along the
coaxial lines going into the dilution fridge. In addition to a strong gate differential
lever-arm (needed for good qubit control), a strong reservoir differential lever-arm is
desirable as one attaches the resonator of the single-gate RF sensor to the reservoir.
When oscillating electrons between the dots (when the electrons are in a singlet
state), a current forms on the reservoir that is picked up by the resonator. The current
on the reservoir (proportional to the reservoir differential lever-arm as discussed in
the modelling of the single-gate RF sensor in Section 4.1) is proportional to the
readout signal strength and thus, a large differential lever-arm on the reservoir is

desirable for maximal readout fidelity.

Capacitance model simulations were used to generate the differential lever-arms
for the reservoir R and control gate G. Since the gates from adjacent unit-cells are
required to be set further than 30 nm away (the typical minimum distance between
device leads to avoid significant gate-to-gate current leakage), the electric fields from
adjacent unit-cells’ gates will not significantly perturb the final differential lever-
arms of the reservoir and gate within a given qubit unit-cell. Thus, the capacitance
matrices, used to extract the reservoir and gate differential lever-arms, were simulated
for a single unit-cell model shown in Figure 2.6a; from which the differential lever-
arms (defined for a lead as apip, — apjy) were extracted. The trends in the reservoir
and gate differential lever-arms are shown in Figures 2.6b-c. Note that by definition
of the differential lever-arm and noting that R has a stronger lever-arm to D1L, the

differential lever-arms will be positive for R. Similarly, noting that G has a stronger
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Figure 2.6: Differential lever-arm simulations on a single qubit unit-cell used to
fix the gate to dot distance. The simulations used d,, = 17nm and an encapsulation
layer thickness of 45nm. (a) shows the parametrised model used in the simulation. (b)
shows the differential lever-arm for the reservoir R (Aag) as a function of the gate distance
d, and inter-dot angle ¢, while (c) shows the same variation for the differential lever-arm
of the control gate G (Aag). The contours in both plots are shown for clarity. Note that
differential lever-arm for a lead (R or G) is defined as apir, — apiy. Since the coupling of
the bottom dot D1L is stronger to R1 (and the top dot D1U is stronger to G1), the sign
of the differential lever-arm is positive for the reservoir and negative for the gate. Note
that 90° < ¢ < 180° is not shown as this region is geometrically equivalent to 180° — 4.
The dotted lines on both plots indicate the 40 nm gate distance. At 40nm, the reservoir
differential lever-arms (for a given 1) start to approach the maximum value with respect to
increasing dg.
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lever-arm to D1U, the differential lever-arms will be negative for G.

Increasing the gate distance d, causes a decrease in the control gate (G) differ-
ential lever-arm (seen in Figure 2.6¢) as the larger distance lowers the magnitude
of the lever-arms of G onto both dots. The reservoir (R) differential lever-arm re-
mains mostly constant (as the geometric distance to the dots remains the same) with
slightly lower differential lever-arms when the gate G comes into closer proximity (at
dg < 30nm) and perturbs the electric fields of reservoir R as shown in Figure 2.6b.
For both the reservoir and the gate (R and G), the differential lever-arm has a strong
dependence on the inter-dot angle 9. At a flat angle ¥ = 0, both dots are closer to
being equidistant to either R and G and thus, the differential lever-arms are close to
zero. At 9 = 90°, the individual leads have the largest difference in the individual
lever-arms to the dots due to the geometry placing the dots parallel with both leads.
The simulations however show no true optimal point for the differential lever-arm.
In fact, the simulations suggest to bring the gate G indefinitely closer (to the dots)
while setting the angle at ¥ = 90° to maximise the differential lever-arms on the con-
trol gate G. Nonetheless, at d, = 45 nm (indicated by the dashed line), the reservoir
differential lever-arm approaches a maximum (required for high-fidelity single-gate
RF readout) before becoming indifferent to the gate distance as seen by the con-
tours flattening. In addition, at d, = 45nm, the tunnel rate between the dots and
the gate G will be negligible (that is, the electrons will only load from reservoir R)
as required to prevent accidental electron transport between R and G. In addition,
dy = 451nm should provide a sufficient distance to avoid gate leakage between R and
G [86, 92]. It is noted that if there was a model for gate leakage, then one would be
able to truly optimise the maximal qubit control (that is, the increasing differential
lever-arm) with the decreasing gate voltage range as gate G is brought closer to the
dots. Although one could set ¥ = 90° for maximal differential lever-arms on both G

and R, one also needs to consider the inter-qubit coupling.

The inter-qubit distance d;q and the dot-pair angle ) are optimised in the context
of two-qubit control. The key parameter of interest is the inter-qubit coupling Aa
between two adjacent singlet-triplet qubits. To describe the significance of Aa, one
needs to consider the concept of detuning on each qubit A. The detuning describes
the qubit electrons’ shift in potential energy as one moves between the charge states
where electrons are separated on each dot (with the (1,1) charge occupancy across
the two dots where J ~ 0) to the electrons being on the same dot (with the (0,2)
charge occupancy across the two dots where J > AB,). Specifically the detuning on
each qubit is the energy level separation from when the two states (electrons together

on the same dot (0,2) and when fully separated (1,1)) are degenerate:
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AU ; U(0,2) @)

where U(m,n) is the total potential energy when there are m electrons on the first

dot and n electrons on the second dot. The inter-qubit coupling Aa is the change in
detuning A on a ‘target’ qubit when one moves an electron between the two dots in
the adjacent ‘control” qubit unit-cell. That is, Aa is the change in the target qubit’s
detuning when the control qubit changes from the (1, 1) triplet state (the triplet is
(1,1) due to Pauli spin blockade) to the (0,2) singlet state. The shift in detuning
mediated by A causes a shift in J to create an entangling gate [14, 42]. One may
determine Aa by calculating the shift in detuning when the control qubit is in the
triplet state (the (0,2) charge state) and singlet state (the (1,1) charge state):

U(0,2,1,1) = U(0,2,0,2 U1,1,1,1) - U(1,1,0,2
pa= |UO2LD V0202 |UGLLLD-U0102)| oy

~
Target A when control is singlet Target A when control is triplet

Here the potential energies U are given as a function of the number of electrons in
the dots (D1L, D1U, D2L, D2U), with the control qubit hosted across D1L/D1U
and the target qubit hosted across D2L/D2U. Note that all device gates are held at
a constant voltage and thus, the influence of gate voltages cancel out when taking
the differences in the energies. An important property of Aa is that it is symmetric
about both qubits. That is, the coupling parameter is invariant if the control and
target qubits were swapped!S. In addition, Ax will flip in sign if the dot in which
both electrons are held in the (0,2) charge state for the target or control qubit were
to be changed, while Aa remains invariant if the dots holding both electrons in the
(0,2) charge state were swapped for both qubits as illustrated in Table 2.2 for ¥ = 0.
This is because the direction in which the control qubit pushes the target qubit’s
electrons (whether it is towards the (1,1) or (0,2) charge state on the target qubit)

changes in sign when changing the dot with both electrons occupied.

From the potential energy difference given in Equation A.8 (derived in Appendix

A.1), A can be written in terms of the capacitance model parameters:

2
e 1 ) . .
An = 9 ((Cob)1a— (Cop)is = (Cob)as + (Cop)as) - (2.9)
Consider the target and comtrol qubits being swapped: 2(AaA)swap = [U(1,1,0,2) —

U(0,2,0,2)] — [U(1,1,1,1) — U(0,2,1,1)] = 2Ax.
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Control (0,2) | Target (0,2) Configuration Ap

DIL D2U @9(9 ®9® |AA|
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Table 2.2: How charge configurations on each dot determine the sign of the
inter-qubit coupling. The configurations are arranged when ¢ = 180°. The control (0, 2)
indicates the dot in which both electrons are occupied when the control qubit is in the
singlet state. The target (0,2) indicate the dot both electrons occupy when in the (0,2)
charge state. The red arrow indicates the direction the electrons move when the control
qubit is in the singlet state (with the electrons remaining separated on different dots when
in the triplet state). The black arrow indicates the direction both electrons move to occupy
the (0,2) charge state on the target qubit. The resulting inter-qubit coupling Ax is purely
dependent on the geometry, but it changes in sign as given by the dot to which both electrons
occupy in the respective qubits (as determined by the voltages set on the gates).

where C]S]l) is the inverse of the 4 x4 inter-dot capacitance matrix of the four dots. For
clarity the indices (1,2, 3,4) indicate the dots (D1L, D1U, D2L, D2U). Once again,
note that the coupling may have a change in sign depending on the orientation of the
(0,2) charge states on the qubits as shown in Table 2.2. As described in Appendix
A.3, P-donor dots are point-like objects in which one may rewrite the inter-dot

capacitances in terms of scalar potentials:

Ap = g (P14 — P13 — P24 + P23) , (2.10)

where ¢, denotes the electrostatic potential on dot n when placing one electron
on dot m. Now the potential of a single electron at a distance r is well-known via

Coulomb’s law:

(&

br (2.11)

- Amege,r’
where ¢, is the relative permittivity (approximately 11.7 in silicon). Under the
assumption that the nearby leads are far away from the dots such that their effect on
the electrostatic potentials is weakly perturbative, one may simply use Coulomb’s

law to calculate the inter-qubit couplings without resorting to long finite element
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simulations. That is, the coupling can be approximated as:

2

1 1 1 1

Ap =" (——+>, (2.12)
8meper \T14  T13  T24 723

where 7,,, is the distance between dots m and n. Substituting the geometric dis-
tances from Figure 2.4, the coupling strengths (under the Coulomb’s law approxi-

mation) gives:

2d,,

Ap = —
87raoar \/d2 + 2, sin?(¥) d?q — d?, cos?(¥)

(2.13)

Taking the inter-dot distance of d;q = 12.5 nm, the inter-qubit coupling is plotted as a
function of the inter-qubit distance d;; and the double dot angle ¥ in Figure 2.7a. The
inter-qubit coupling is non-zero over the parameter space with the magnitude being
approximately inversely proportional to the inter-qubit distance d;q. The inter-qubit
coupling is also negative (when taking D1U and D2U to be the dots being occupied
when the first and second qubits enter the (0,2) charge state). The negative inter-
qubit coupling is best seen geometrically when considering the configuration with
the double quantum dots being horizontal at ¥ = 180° like with the diagram in
the second row of Table 2.2. That is, moving one of the two qubits into the (0,2)
charge state lowers the detuning on the other dot unless the (0,2) charge state has
the electrons gathering in D1L for the first qubit and D2U for the second qubit (or

vice versa).

By inspection of Figure 2.4, for a constant d;, (measured between the centres
of each double-dot), the inter-qubit coupling is symmetric about the angle ¥ = 90°
as the dot positions are geometrically mirrored (the pivot position for the angles is
taken at the centre of each double dot pair). However, the analytic formula assumes
that there are no electric field perturbations from metallic structures like the nearby
reservoirs. Using a reservoir to dot distance of 17nm and a gate-to-dot distance of
40nm, the inter-qubit coupling was extracted numerically using Equation 2.9 from
FEA simulations as shown in Figure 2.7b. The contours from the analytic model
are overlaid with the numeric model (the dashed lines) and one observes a small
departure from the symmetry about 9 = 90°. In addition, the numeric simulations
differ at the larger angles ¢ > 90°, where the reservoirs are arranged near the two
inner dots. The angular asymmetry in the inter-qubit coupling can be explained by
the reservoirs perturbing the electrons’ electric fields (more pronounced when near

the inner two electrons for ¥ > 90°). Otherwise, the analytic model neatly captures
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(a) Inter-qubit coupling A (Analytical) (b) Inter-qubit coupling Ax (FEA Simulation)
180
135
< 90
D
45
0 0
40 60 80 100 40 60 80 100
diq (nm) diq (nm)
HE HE
—150 —-100 —50 —150 —-100 —50

Inter-qubit coupling (GHz) Inter-qubit coupling (GHz)

Figure 2.7: Optimising the inter-qubit coupling (Aa) as a function of inter-qubit
distance (d;;) and the double quantum dot angle. Previous experiments in GaAs
had Aa~300MHz [14]. (a) Plot of the analytic approximation of the inter-qubit coupling
A given by using Coulomb’s law in Equation 2.13 over different inter-qubit distances d;q
and dot-pair angles 9. The contours, highlighted for clarity, give the inter-qubit coupling
in gigahertz. (b) Plot of the inter-qubit coupling when running a FEA simulation with
d, = 17nm, d;q = 12.5nm, d; = 45nm and an encapsulation layer thickness of 45 nm. Asin
(a), the contours give the inter-qubit coupling in gigahertz. The dashed lines are contours
from the analytic approximation in (b). The analytic model captures the FEA simulation
at low angles where the contours overlap, while there is a slight discrepancy at higher angles
where the analytic calculation overestimates the inter-qubit coupling for a given distance
due to the electron’s electric fields being perturbed by the reservoir leads.
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the behaviour of the inter-qubit coupling especially at lower angles. Nonetheless, the
suggested inter-qubit couplings are all in the order of many gigahertz; a figure much
larger than the approximately ~300 MHz (perturbative with respect to a ~5GHz
tunnel coupling) measured in previous GaAs devices [14]. The larger inter-qubit
coupling, seen in the simulations here, is likely due to the smaller inter-dot spacing
(12.5nm as opposed to ~100 nm in GaAs quantum dots) and the smaller inter-qubit
spacing (of approximately ~30-100 nm as opposed to 100-200 nm in GaAs quantum
dots). The inter-qubit coupling is maximal when the dots are lined up at ¢ = 0°
in an arrangement similar to the previous GaAs device shown in Figure 2.3a [14].
Nonetheless, a flat angle of 1 = 0° is not ideal for the proposed Si-P qubit unit-cell
as the gates’ differential lever-arms tend to zero as shown in Figure 2.6, thereby
weakening gate control on the qubits (that is, one will need to apply larger voltage
pulses to perform qubit gate operations). If one were to operate in the low inter-
qubit coupling regime as in the previous GaAs experiments, one may set the dots to
be vertical at 1 = 90° and separate the qubits by over 80 nm to experience maximal
ease in routing the leads and a generally larger gate voltage range before gate-to-
gate current leakage occurs. However, with the aim of achieving strong inter-qubit
couplings (with the intent to achieve faster high-fidelity two-qubit gate operations),
the region with inter-qubit couplings below 5 GHz was avoided. To ensure that the
device was above the 5 GHz contour, the inter-qubit distance was nominally set to
60nm and the dot angle was set to 135°. Note that whilst 135° is equivalent to
45°; the angle 45° was not chosen to ensure that the control gates (G1 and G2 in
Figure 2.4) could be far apart as possible to ensure maximal gate voltage range when
attempting to perform qubit operations. An angle of 135° also compromises (for the
first iteration) between having a large the differential gate lever-arm (close to 90°
for good gate control) and a large inter-qubit coupling (close to 0° to ensure fast
two-qubit gates).

With the geometric parameters optimised (summary given in Table 2.3), it is im-
portant to ensure that the device can indeed achieve the required charge occupancies
on the dots before fabricating the device. Specifically, each pair of dots must achieve
the (1,1) and (0,2) charge states'” with the ability to change both charge states via
the inter-dot crossing®. To control electron numbers on quantum dots, one controls
the electrostatic potentials on the dots by applying the appropriate voltages to the

gates. In large gate-defined quantum dots which have dots spaced approximately

"Note that the dot in the (0,2) charge state to which both qubit electrons occupy may be either
of the two dots.

'8 A nice introduction to inter-dot charge crossings and the resulting ’honeycomb’ structures is
given in a review by W. G. van der Wiel [89]
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Parameter Value Key considerations

Tunnel coupling needs to be 1 GHz < t. < 22 GHz
12.5nm | to enable qubit control, single-gate RF readout and
tunability of J [27, 82, 86].

Inter-dot
distance (d;q)

Reservoir-to-dot tunnel rate must be less than
~1GHz to ensure cotunneling does not degrade
qubit lifetimes. Qubit reloading times need to be at
least ~1 MHz for DNP [14, 27, 30, 40, 82, 86, 96].

Dot-to-
reservoir 17nm
distance (d,)

A gate distance above ~45nm gives close to max-

Dot-to-gate A5 am imal reservoir differential lever-arm. Any further

distance (dg) simply degrades the control gate lever-arm (see Fig-
ure 2.6).

Inter-qubit Chosen to guarantee at least 5 GHz to large with

60 nm respect to a ~5GHz tunnel coupling (see Figure

distance (d;q) 27)

Chosen as a compromise in giving as large a dif-
ferential lever-arms (on reservoir and gate) while
Dot angle () | 135° ensuring inter-qubit coupling is larger than 5 GHz
and control gates are maximally spaced for maxi-
mum gate voltage range (see Figure 2.7).

Table 2.3: Summary of design parameters optimised for the initial two qubit
singlet-triplet device. The design parameters are drawn on the schematic in Figure 2.4.
The extended discussion on the reasons is given in Section 2.2.3.

100nm in scale, it is possible to pattern additional gates in between and near indi-
vidual dots such that the gates can independently shape the electrostatic potentials
on given dots without affecting adjacent dots'®. Thus, one can easily adjust the
potential to move electrons between dots. With Si-P quantum dots, the spacing
between quantum dots is approximately 12.5nm and thus, it is not easy to place
gates such that the electrostatic potentials on the dots can be individually controlled
(equivalently stated, it is difficult to achieve a large differential lever-arm on all the
gates). Thus, inter-dot charge transitions like the singlet-triplet (1,1)-(0,2) may
not be as easily accessible within the voltage range available on all the gates. One
method to overcome this limitation is to realise that only certain charge states need
to be accessed for full qubit operation. It is then possible to engineer different sized

P-donor dots (that is, dots with more than one P-donor) such that the required

9There is still finite back-action of these gates to other dots to which one must compensate [55]
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inter-dot transitions can be reached with minimal voltage ranges on the gates.
Consider a symmetric double quantum dot system in the 1P-1P configuration
such as that shown in Figure 2.8a (the geometry is used to illustrate the advantage
of using asymmetric P-donor dots). Here, the in-plane gates give a certain degree of
independent control across the dots since any voltage applied to a gate is likely bring
the potentials of both dots downwards and thus, electrons enter both the dots. One
can see the symmetric loading of electrons onto the dots in the numerically simulated
stability diagram?’ in Figure 2.8b by noting that at 0V on the left and right gates (L
and R), the charge state (on the dots DL and DR) is (0,0). On increasing the voltage
on both gates equally one enters the (1, 1) charge state. With slight increases on the
left or right gate voltages, one may enter the (1, 1) via the (1,0) or (0, 1) charge states
respectively. However, there is a large energy penalty, specifically Upz/2, that must
be paid to move electrons into the singlet-triplet subspace: the (1,1)-(0,2) charge
transition (requiring differential gate voltages, between gates L and R, above 0.5V
where gate-to-gate current leakage may start to occur as highlighted by the green
window). To overcome the lack of differential gate lever-arms, one may engineer the
dots to provide an extra tilting potential by adding a P-donor to the second dot to
make it a 2P [82, 84|. Figure 2.8c shows the stability diagram for 1P-2P configuration
where a combination of the dots’ tilting potential and the lowering Upe with higher
electron numbers results in an even parity transition (1, 3) <> (2, 2) accessible within
the 0.5V differential gate voltage window. The (1, 3) < (2,2) transition is equivalent
to the (1,1) <> (2,0) singlet-triplet subspace (two spin-paired electrons on the right
dot do not affect the valence electrons across the two dots forming the singlet-triplet
state). Note that the ultimate goal is to find inter-dot transitions where one has
one electron on each dot that may interact to form the required singlet-triplet state.
Thus, by using a combination of different P-donor dot sizes and electron numbers,
it is possible to engineer inter-dot crossings of even parity; that is, a transition
where the number of electrons on both dots sum to an even number. With all
lower energy electrons spin-paired (thus, not participating in the electron-electron
physics), one may form a singlet-triplet state with the outer valence electron on each
dot. Finally, to perform two qubit gates, it is important to be able to simultaneously
form two singlet-triplet qubits (each formed by accessing the singlet-triplet spin

state) on adjacent double-quantum dots. This implies that for a given set of voltages

20The stability diagrams are inferred from the capacitance matrix extracted from a numerical FEA
solver as described in Appendix A. As described in the derivation of the stability diagram simulator,
the capacitance matrix holds information regarding the placement of the charge transitions [89].
Different donor cluster sizes were simulated by taking the potential offsets resulting from tight-
binding calculations [81].
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(a) Simple double-dot P-donor device (two dots and 2 gates)
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Figure 2.8: Using different P-donor dot sizes to access singlet-triplet states on a
simple double quantum dot system in Si-P. (a) Schematic of a simple double quantum
dot system under simulation. The device includes a double quantum dot (formed by P-donor
dots DL and DR) and two control gates (L and R). (b) Simulated stability diagram when
sweeping the voltages on the gates L and R. The ordered pairs in each charge-stable region
indicate the electron numbers on DL and DR. Here, the dots DL and DR are both taken to be
1P donor dots. The green window indicates the region where the differential voltage between
the gates is L and R is within 0.5V. The even-parity inter-dot transitions ((0,2) < (1,1)
and (2,0) < (1,1)) require differential gate voltages above 0.5V. (¢) When replacing DR
with a 2P donor dot, the even parity inter-dot transition (1,3) <> (2,2) is now accessible
within the 0.5V differential voltage window with (V1,, Vi) ~ (690,220) mV. Note that both
stability diagram simulations limit the electron numbers to be a maximum of 2 for 1P dots
and 4 for 2P dots.
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applied to the gates, one must be able to overlap the inter-dot crossings for each
singlet-triplet pair.

Figure 2.9 shows some simulated stability diagrams for the quadruple quantum
dot device (schematic shown in Figure 2.4 and geometric parameters summarised in
Table 2.3) under different P-donor dot sizes. The electron numbers of each charge
stable region in voltage space is given as a quadruplet for the number of electrons
in the dots D1L, D1U, D2L and D2U respectively. Figure 2.9a-b show simulated
stability diagrams for a symmetric 1P-1P-1P-1P cluster configuration. With all
the gates set to zero voltage, there are no two even parity inter-dot transitions?!
and two odd parity inter-dot transitions (labelled EP and OP respectively) visible
on sweeping the gates Viz; and Vgs. One can only overlap adjacent even parity
transitions (labelled EP in Figure 2.9b), required to perform a two-qubit gate, on
tuning the other gates and ultimately setting the gate voltages up to 1.25V. Such
high gate voltages will give rise to current leakage between the gates and thus, the
1P-1P-1P-1P arrangement is not a feasible configuration to observe gates between
multiple singlet-triplet qubits.

Figures 2.9c-d show the stability diagrams when using asymmetric numbers of
P-donors within the quantum dots where each double-dot pair is in the 1P-2P con-
figuration. Figure 2.9¢ shows two even-parity inter-dot transitions (labelled EP)
within the gate voltage space. With mild tuning of the gate voltages on R1 and
R2, one may overlap even parity transitions across the two different singlet-triplet
qubits, required for the two-qubit gate. The simulation shows that one may achieve
the charge configuration for a two-qubit gate with all the gate voltages within 0.7V
in magnitude as shown in Figure 2.9d. For the even parity transitions overlapped
in Figure 2.9d, both dot pairs are in the equivalent singlet-triplet (1,3)-(0,4) inter-
dot charge transition. Here, two electrons on the 2P dot spin-pair, while a third
(valence) electron interacts with the single electron on the 1P dot to form a singlet-
triplet spin state. Thus, the 1P-2P donor-dot was the chosen candidate for achieving
a singlet-triplet two-qubit gate. The inset in Figure 2.9d shows the zoomed over-
lap of the inter-dot crossings and the subsequent points of interest when performing
qubit operations. For this device, the bottom-left quadrant represents the (1, 3,1, 3)
charge state where both qubits have their electrons on separate dots. The inter-dot
transitions (1,3,1,3) <> (0,4, 1,3) (in blue) and the (1,3,1,3) <> (1,3,0,4) (in red)

210dd parity inter-dot crossings are those where the sum of the electrons across both dots adds
to an odd number. Here, all electrons are spin-paired and one valence electron moves between the
dots; thereby not forming a two-electron singlet-triplet state. Even parity transitions have an even
number of electrons both dots in which one valence electron on each dot come together to interact
and form a singlet-triplet state
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(a) 1P-1P-1P-1P, (Vi1, Vka) = (0,0) V (b) 1P-1P-1P-1P, (Vi1, Vis) = (271,271) mV
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Figure 2.9: Stability diagram simulations for different P-donor cluster config-
urations. The goal is to overlap two even-parity singlet-triplet inter-dot transitions on
adjacent dots (D1L/D1U in blue and D2L/D2U in red) to setup a two-qubit gate. The
electron numbers on dots are shown as (D1L, D1U, D2L, D2U). The inter-dot transitions of
odd parity are labelled OP while the transitions of even parity (for singlet-triplet operation)
are labelled EP. (a)-(b) A symmetric donor cluster arrangement where each dot within the
double-dot pair has the same number of P-donors. In order to overlap adjacent singlet-triplet
charge transitions, one must apply voltages of up to 1.25V on the gates. (c)-(d) However,
when using asymmetric dot sizes such as a 1P-2P on each double-dot pair, the two-qubit
gate charge transition can be set with all gate voltages below 0.7V in magnitude. The inset
in (d) shows the qubit operating points when overlapping of the inter-dot transitions. For
single-qubit operations, Z is the qubit idle point for both qubits while X; and X5 are the
operating points for Pauli-x operations for the first and second qubit respectively. For a
two-qubit CZ gate, one moves to G; or Go if choosing the first or second qubit to be the
control qubit respectively. The red and blue dotted lines show the zero-detuning line of the
second and first qubits when using the first and second qubits as the control qubits in the
triplet state respectively. The solid lines indicate the zero-detuning positions for the target
qubit when the respective control qubit is in the singlet state.
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represent the nominal zero-detuning position for the first and second qubit respec-
tively. Slightly into the (1,3,1,3) charge region, where the electrons are separated,
one chooses the idle point Z where J > AB, for both qubits. At point Z, the qubits
rotate about their respective Pauli-z axes. To perform individual single qubit Pauli-
x rotations, one must keep the detuning on the other qubit constant, while moving
the current qubit’s detuning towards negative detuning where the electrons are fully
separated to achieve J =~ 0. Thus, one moves from point Z to X; (parallel with the
red inter-dot line to ensure the second qubit is left untouched kept rotating about its
Pauli-z axis at the same frequency) to perform Paui-z operations on the first qubit.
Similarly, one moves to Xo to perform Paui-z operations on the second qubit. To
perform a simple two-qubit gate, one needs to first select a control qubit. Without
loss of generality, consider the first qubit to be the control qubit. One moves to
point G; where the first qubit is pushed into positive detuning. If the first qubit
is in the triplet state (electrons are on separate dots due to Pauli-blockade), then
the distance from G; to the zero detuning line for the second qubit (red dotted line
labelled T') remains the same as that at point Z and thus, the second qubit continues
to precess about the Pauli-z axis at the same frequency. If the first qubit were in
a singlet state, both electrons in the first qubit may enter the same dot. Thus, the
non-zero inter-qubit coupling manifests in a shift in the second qubit’s detuning (red
line labelled S) shifting to a lower value (the distance from G; has increased) where
the new J is lower (noting that Ax < 0 for the simulated design) and thus, the
second qubit now precesses at a lower frequency. Waiting for a fixed period of time,
if the difference in frequencies causes a 7 phase shift to occur on the second qubit
conditional on the first qubit being in the singlet or triplet state, one has a CZ gate.
Using a similar argument, one can perform a CZ gate where the second qubit is the
control qubit by moving to point Go. Note that here, the first qubit’s zero-detuning
remains the same at the blue dotted line labelled T if the second qubit is in the
triplet state and moves to the solid blue line labelled S if the second qubit is in the

singlet state.

It should be noted that the simulated voltage offsets on the charge transition
lines given by different P-donor sizes (manifested for example as the ‘y-intercept’
in the stability diagram) vary significantly when the donor dots are placed close
to reservoirs. For example, D1L is placed close to the reservoir while D1U is far
from its reservoir. Thus, experimental measurements of the gate voltage offset on
the D1L charging lines may differ from the theoretical estimates and thereby the
predicted positions of the line intersections, where the inter-dot charge crossings

form, may differ. The experimental differences in the gate voltage offsets is due to
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the breakdown of the metallic lead approximation where one needs to consider the
individual P-donors in the leads [15, 98]. Here, there is a possibility that on applying
a positive voltage to the reservoir, the reservoir becomes depleted of electrons. The
extent of the metallic region of the gate changes, resulting in a lower lever-arm on
the dot and thus, a different voltage will be required to charge or discharge the dot.
The influence of the reservoir on the voltage offsets could be empirically modelled via
experimental data with different P-donor dots near reservoirs or via time-consuming
tight-binding models. Nonetheless, the theoretical simulations suggest that the donor
dots must contain a different number of P-donors in each dot within a given qubit
unit-cell’s double quantum dot to ensure electrostatic accessibility of the required

singlet-triplet inter-dot charge transitions.

2.2.4 Fabrication of a quadruple Si-P quantum-dot device

To experimentally demonstrate the electrostatic operation of a single singlet-triplet
unit-cell along with its interaction with an adjacent singlet-triplet unit-cell, a Si-
P quadruple quantum dot device was created using the parameters estimated by
the simulations. The device shown in Figure 2.10 was created using standard Si-P
fabrication techniques. The wafers were Si-100 with a 0.1° cut, P-type boron doped
and had an approximate resistivity of 5-10 2cm. Registration markers were created
on the wafer using EBL and a TMAH wet-etch after which they were cleaned with SP
(sulphuric acid and hydrogen peroxide) and RCA2 (hydrochloric acid and hydrogen
peroxide). The wafer was then taken into an STM. After outgassing the wafer via
direct current heating, the wafer was direct current flash annealed to 1100°C with
surface reconstruction at approximately 780°C. The surface was then passivated
with monatomic hydrogen. Using the STM tip at low current (~70pA), the surface
can be imaged, while applying larger currents of ~8nA can vibrationally excite the
hydrogen off the silicon surface to create openings. These patterned structures appear
as lighter regions as seen in the STM image in Figure 2.10 due to the height of the
dangling bonds out of the surface. Small openings (for example, D1L, D2U, D2L
and D2U) make space to form small P-donor dots while larger openings are used to
form metallic leads via the tight packing of many P-donors. The opened regions were
filled with phosphorus by dosing the wafer with phosphine gas. The incorporation
of the phosphorus into the silicon crystal was performed via another small direct
current heating anneal. The surface was then encapsulated with 47 £ 3 nm of silicon
via a silicon sublimation source (SUSI) at a temperature of 250°C and growth rate

of 0.131 nm/min. The P-doped leads were contacted to ohmic pads on the surface of



50 Chapter 2. Architectures for singlet-triplet qubits in Si-P

the silicon via standard cleanroom processing. Holes were etched into the phosphorus
pad via a SFg reactive ion etcher and then contacted to aluminium Ohmic surface
contacts via physical vapour deposition. The sample was then transferred onto a

PCB and bonded via an ultrasonic Al wedge bonder.

To aid in the electrostatic characterisation of the 4-dot device, the 2 x 1 array
of double-dots was terminated, on both ends, with tunnel junction charge sensors
(TJCS) [99]. The TJCS works by applying a voltage across the tunnel junction such
that any changes in the electrostatic environment around the tunnel junction will
affect the tunnel barrier and thereby cause a change in the current through the TJCS.
Although in the long term, a full-scale singlet-triplet architecture will not have space
(or indeed require the extra charge sensors), the two TJCSs in this particular device
provide a useful diagnostic tool to characterise the device since they are sensitive
to all charge transitions within the device. Note that in general the single-gate
RF sensors are only sensitive to transitions with fast tunnel rates as the electrons
must respond in time with the high frequency RF excitation as discussed in Section
3. The TJCS structures were placed approximately 80 nm away from the singlet-
triplet dots as shown in Figure 2.10. The TJCS distance was chosen to ensure that
the TJCS structures did not strongly affect the local electric fields around the dots
(that is, these structures are further away than adjacent unit-cells in a larger array)
while ensuring sufficient signal for charge detection. Previous experiments using
TJCSs [99] showed a signal to noise ratio of approximately 15-20 at a distance of
50 nm; so it is estimated that the same sensor at 80 nm would yield enough signal to
detect all charge transitions onto the four quantum dots with a signal to noise ratio of
approximately 10-14. The TJCS dimensions were chosen to yield a greater junction
conductivity from the previous TJCS experiment (8.5 nm lead width and 17.2 nm gap
size) by lowering the gap size to ensure sufficient sensitivity [99]. However, previous
studies on tunnel gaps have shown that the gap resistance varies over eight orders
of magnitude when changing the gap aspect ratio (lead width divided by gap size)
from approximately 0.5 to 3.0 [100]. Thus, two TJCS structures were deliberately
patterned with different gap sizes to provide additional redundancy. In the end,
the 5.6 nm lead width and 5.8 nm gap size of T1 was too conductive and failed to
show gap-like behaviour as shown in Figure 2.10. However, T2 (8.8 nm lead width
and 10.8 nm gap size) showed gap-like behaviour; since this gap could be tuned via
electric fields, T2 functioned as a TJCS. The maximum resistance of the TJCS T2
was 600 k€2; more than three orders of magnitude lower than the previously published

TJCS with a maximum gap resistance of 1 G [99].

The fabricated device was patterned with the geometric distances suggested by
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Figure 2.10: Donor based quadruple quantum dot device with multiplexed RF
resonator readout. The STM image shows the silicon surface lithography where the lighter
regions have been desorbed from the lithographic hydrogen mask. These areas are dosed
with phosphorus to form metallic electrodes [27]. Zoomed images of the four dots (D1U,
D1L, D2U and D2L) before the dosing of phosphine are shown in the insets. Two of the
frequency multiplexed line of resonators, connected to R1 and R2, measure the singlet-triplet
states across their respective dot pairs, while the remaining two lines are connected to tunnel
junction charge sensors T1 and T2. Reservoirs R1 and R2 are used to load their respective
pairs of dots with electrons while the gates G1 and G2 are used to manipulate the singlet-
triplet detuning of the dot pairs. C highlights a lithographic defect where a portion of the
tungsten STM tip deposited on the surface. The vector B is the direction of the in-plane
magnetic field applied on the device during measurements in the dilution refrigerator.
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(a) IV-curve for T1 (TJCS gap Ohmic)  (b) IV-curve for T2 (TJCS shows gap behaviour)
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Figure 2.11: IV curves of TJCSs T1 and T2 in the fabricated 4-dot device. At
a temperature of 4 K, the current response as a function of the voltage across the TJCS
was taken for T1 and T2 shown in Figure 2.10. (a) T1 (STM image shown in inset) was
found to be too Ohmic with a resistance of ~60k2. (b) T2 (STM image shown in inset)
showed gap-like behaviour (with a maximum resistance of ~600k(2) that could be tuned
with electric fields and thus, appropriate for charge sensing [99].

the simulations in Section 2.2.3 with additional increases in the distance between
leads (approximately above 50 nm) to be able to attain larger gate voltage ranges
(before gate-to-gate current leakage occurs) as summarised in Table 2.4. The extra
gate-range was to provide a buffer if there were any unpredicted offset potentials that
shifted the even parity singlet-triplet inter-dot charge transitions. The parameters
that were left unchanged (with any differences due to unintentional variations in
the STM fabrication) were the the inter-dot distances d;q (both at 12.5nm), the
dot-to-reservoir distances d, (18 nm and 17nm for the first and second unit-cells)
and the dot angles ¥ (128° and 139° for the first and second unit-cells). The dot-
to-gate distances d, were increased from 45nm to 52nm and 55nm (for the first
and second unit-cells). The increased distance from 40 nm was predicted to result
in an approximately 1% drop in the differential lever-arm for the gate as shown by
the simulations in Figure 2.6. The inter-qubit distance d;,was increased to 75nm to
ensure that the reservoir leads (the closest leads) were spaced by at least 50 nm. At
this greater inter-qubit distance the simulations shown in Figure 2.7 still suggest an
inter-qubit coupling of ~5 GHz as desired for non-perturbative inter-qubit couplings.

Since the state of the art (at the time of publishing this thesis) method to in-
corporate P-donors in silicon was stochastic, the exact donor numbers could not
be precisely controlled within the P-donor dots. That is, previous heuristic studies

showed that the incorporation by heating yields a histogram of possible P-donor dot



2.2. Design and demonstration of a Si-P singlet-triplet unit-cell 53

Parameter | Simulation Fabrication Reason for change
didq 12.5nm 12.5nm and 12.5nm | N/A
d, 17nm 18 nm and 17 nm Unintentional.
9 135° 128° and 139° Unintentional.
dg 45nm 52nm and 55nm Intentional.
diq 60 nm 75nm Intentional.
P-Donors 1P-2P ~2P-2P and ~3P-4P | Unintentional

Table 2.4: Summary of changes to the geometry made during fabrication. The
simulation column refers to the parameters suggested by simulations in Table 2.3. The
fabrication column refers to the parameters measured from the STM image of the fabri-
cated device with dual entries referring to the parameters in the first and second unit-cells
(D1L/D1U and D2L/D2U respectively). The final column describes the reasons for the dis-
crepancies where ‘unintentional’ refers to variations in the STM patterning of the fabricated
device while ‘intentional’ refers to increases in the geometric distances to reduce gate-to-gate
current leakage.

sizes depending on the temperature of incorporation and the size of the lithographic
patch opened on the hydrogen mask [86, 101]. Thus, the dots were patterned to be
asymmetric (as required for feasible electrostatic access of the even parity inter-dot
charge transitions) 1P-2P donor dots. From the size of the openings on the hydrogen
mask for dots (from the STM images in the insets of Figure 2.10), one may make the
initial estimate of the dot sizes to be 2-6P, 1-4P, 2-6P, 2-6P (for the dots D1L, D1U,
D2L and D2U respectively) given previous statistical studies performed on the incor-
porated P-donor dot sizes [101]. The final estimations on the size of the fabricated
P-donor dots came from counting the number of charge transitions in the stability
diagrams and the positions of inter-dot transitions in the gate voltage space. That
is, if N electron transitions onto a dot are seen, then the dot has at least N/2 donors.
In addition, as discussed in the next section, the electrostatic inaccessibility of the
even parity inter-dot transitions on the first double quantum dot (D1L and D1U)
suggest that the dots D1L and D1U have the same number of P-donors and thus,
are symmetric. The ease in electrostatic accessibility of the even parity transitions
on the second double quantum dot (D2L and D2U) suggest an asymmetric number
of donors on these dots. Thus, the eventual dot sizes were estimated to be 2P, 2P,
3P and 4P for dots D1L, D1U, D2L and D2U respectively.
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2.2.5 Electrostatic triangulation and verification of the P-donor
dots

The first task when electrostatically characterising devices is to ensure that all four
quantum dots are present. This is to both verify the success of fabrication process and
provide statistics to benchmark the ‘atomic engineerability’ of the STM fabrication
process. The presence and location of the dots can be verified by observing multiple
charge transitions in the device when electrons are added onto the dots when changing
the electrostatic potential around the dots by changing the voltages applied on the
gates. The charge transitions on each dot can be detected using the TJCS T2
by measuring fluctuations in its junction DC current. The TJCS was measured
using RF reflectometry due to the enhanced signal to noise ratio comparable to that
when using a DC cold amplifier and a lock-in amplifier as outlined in Section 3.1.2.
The LC' resonator was created via a Coilcraft 1206CS-122XJE surface mount chip
inductor (the capacitance being created via the geometric parasitic capacitance of

the inductor) with a resonant frequency?? of 215.4 MHz.

On measuring the RF response of T2 while sweeping the voltages on the reser-
voirs, Vg1 and Vgro, one obtains the charge stability diagram shown in Figure 2.12.
When sweeping any gate, R1 or R2, the tunnel barrier T2 is continuously changed
by the electric fields on the gates, while the presence of electron charging events
discretely shift the barrier strength. To highlight the charge transitions in the RF
response of T2 from the linear background caused by the swept gate voltages, a
numerical derivative was taken along both the x and y axes. Charge transitions
belonging to the same dot have the same slope as highlighted by the presence of
sets of parallel lines. The two sets of steeper lines (indicating a stronger coupling to
R1 when compared to R2) highlighted by blue and dark green correspond to charge
transitions on dots D1U and DI1L respectively. The two sets of shallower lines (in-
dicating a stronger coupling to R2 when compared to R1) highlighted by green and
magenta correspond to charge transitions on D2L and D2U respectively. As both
axes correspond to voltages being swept on the dots’ reservoirs, electrons leave the
dot when applying a more positive voltage. Thus, the top-right quadrant is labelled
nominally as the (0,0,0,0) charge state (assuming no further charge transitions are
to follow). The separation of the lines (in gate voltage space) is proportional to a

non-trivial function of the electron charging energies on each donor dot. The initial

22The resonant frequency was selected for compatibility with on-site IQ demodulator used in the
room temperature RF circuitry. The Polyphase AD0105B 1Q demodulator was specified to work
for frequencies from 100-500 MHz
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(a) Backward scan (+) to empty electrons from dots (D2L,D2U)

—04 T "\ " T
D1U ll' 'l'
—0.5| |
S f/0
. —0.6 | . . .
\>/ "' "l
S S .
—08p T2 respons'e (LV/V) )
I
—1 0 1
=091 | N | ! \ | | |
—-0.7 —-0.65 —0.6 —0.55 —0.5 —0.45 —-0.4 —-0.35

Vr1 (V)
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Figure 2.12: Charge stability diagram of all four dots in the 4-dot device taken
using the TJCS T2. A numerical derivative of the RF response was taken along the x
and y axes. The electron numbers for different charge stable regions in voltage space are
shown for the dots (D1L, D1U, D2L, D2U). The two sets of steeper lines highlighted by blue
and dark green represent transitions onto the dots D1U and D1L respectively. Similarly,
the shallower green and magenta lines are due to electrons hopping on or off the right
hand dots D2L and D2U. The lines labelled H; and Hy are due to hysteretic transitions
onto the dots D1U and D2U respectively. They match the slopes of D1L and D2L, due
to the slow tunnel rates (of the first few electrons) from the reservoir onto the dots D1U
and D2U causing them to load through the dots D1L and D2L respectively [102]. (a) and
(b) show the reverse (adds electrons onto D1L/D1U and empties electrons on D2L/D2U)
and forward (adds electrons onto D2L/D2U and empties electrons on D1L/D1U) scans
where each horizontal line was scanned (taking 10.5s per line direction) by decreasing and
increasing Vg;. C is an unintended charge trap. The voltages on the other gates were:
Va1, Vaz, Ve, Vire) = (—0.1,0.0,-0.2, —0.13) V.



56 Chapter 2. Architectures for singlet-triplet qubits in Si-P

electrons have a larger separation between charge transitions (with larger separations
for larger P-donor dots) while the lowering confinement strength of later electrons
usually yields smaller charging energies [81]. The stability diagram shows hysteretic
behaviour where the charge transitions look different (or go off the scanning range)
depending on the voltage scan direction. The hysteretic lines occur as there are
dots further away from the reservoir (labelled Hy and Hs for transitions onto D1U
and D2U respectively), which have slow dot-to-reservoir tunnel-rates that exceed the
scanning time. Thus, the far dots (D1U and D2U) are charged and discharged by
having electrons flow through the near dots (D1L and D2L). Note the charge transi-
tions on the dots near the reservoirs have fast electron tunnel rates to the reservoir
and do not exhibit hysteresis in the forward and reverse scans. Since the dot-to-
reservoir tunnel rates increase when more electrons on the dots, the hysteresis effect
disappears for higher electron transitions (for example, the two D2U lines in the
bottom of each scan). The hysteresis is discussed in detail later in this section with
details shown in Figure 2.14. Finally, there is a charge transition highlighted by C
which was due to a charge-trap caused by a lithographic defect in Figure 2.10. The
detailed justification of the charge stability diagram also includes the triangulation
of the charge transition lines to the four patterned dots and the recognition of the
charge-state hysteresis on dots D1U and D2U.

To verify that the multiple charge transition lines are due to electrons moving on
the same quantum dot, many stability diagrams with a different combination of gate
voltages (on the axes) were taken. The slope of the charge transition line indicates a
ratio of the lever-arm of the gates (on the z and y axes) to the quantum dot associated
with the charge transition line. Since the lever-arms relate to the gate geometry,
the slopes remain invariant with electron number. Thus, multiple charge transition
lines onto a given dot should remain parallel across different stability diagrams. By
taking groups of transition lines with the same slope and verifying that they still
had matching slopes over different stability diagrams, a family of four parallel lines
of different slope were shown to arise from the four separate quantum dots as shown
in Figure 2.12 under the colour-coded labels for D1L, D2U, D2L and D2U. A fifth
line, that did not consistently match the slopes of the four families of transition lines
across all stability diagrams, is marked C. An electrostatic triangulation method was
then employed to infer the origin of the transition lines to the patterned quantum
dots.

The slopes of charge transition lines on a given charge stability diagram yield in-
formation on the dot couplings of the gates swept along the x and y axes respectively.

All charge transition lines were observed over multiple stability diagrams taken with
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a different combination of gate voltages swept along the x and y axes. From Equa-
tion A.29 in Appendix A.2.1, the gradient of a charge transition line, when sweeping
the gate voltages V, and V, on the z and y axes respectively, is:

vy K, —a,

= 2.14
R e (2.14)

where o, and o are the gate lever-arms to the dot associated with the transition
line for the gates x and y respectively. The constants K, and K, are 1 if the gate (x
or y respectively) is the reservoir for the given dot and 0 otherwise?®. As long as the
dot does not have multiple reservoirs?®, it is evident from this equation that charge
transitions lines for a given dot have negative gradient if, and only if, the gates used
on the z and y axes are not reservoirs for the given dot. For example, the positive
slope of the charge transitions suggest that R1 and R2 are reservoirs for the given
quantum dots as expected (R1 is the reservoir for dots D1L and D1U while R2 is
the reservoir for dots D2L and D2U).

Given a family of lines from the same dot (each line corresponds to an electron
moving onto the dot), it is important to verify that the charging site is one of the
intentional quantum dots (as opposed to unintentional quantum dots that can occur
for example in MOS type devices [55, 103]) patterned during fabrication. Equation
2.14 shows that the slope of the charge transition line when sweeping the gates =
and y (on the z and y axes respectively) that are not reservoirs for a given dot
is —ag/ay. That is, the slope is the ratio of the gates’ electrostatic influence on
the given quantum dot. Now the lever-arm of a gate due to a point-like quantum
dot (like a small P-donor dots in silicon) is numerically equal to the electrostatic
potential due to the gate at the position of the quantum dot when applying 1V
to the gate (as discussed in further detail Appendix A.3.1 in the context of better
capacitance matrix simulations). Therefore, the slope of a charge transition line
on a stability diagram is indeed equal to the ratio of the electrostatic potentials
of the gates (when individually applying some voltage V' and grounding all other
gates) at the site of the dot. By taking the exact structure of the gates from the
STM image in Figure 2.10 and transferring it into a FEA simulation (as discussed

in detail in Appendix A.3.3), one may simulate the electrostatic potentials of the

B K,, accounts for the changing level of the reservoir on sweeping a reservoir’s voltage. That
is, a more positive voltage on a gate will lower the dot’s energy level: AU; = —eagqAV, but
leave the reservoir untouched. However, a change the voltage on the reservoir itself lowers the
reservoir energy level by eAV,, thereby raising the dot’s energy level with respect to its reservoir
by AUq = e(1 — aga) AV

#Devices are typically designed to have single reservoirs to avoid current flow through the dots
via multiple reservoirs [86, 92].
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Figure 2.13: Electrostatic triangulation to verify the locations of the STM-
patterned P-donor quantum dots. Each map shows the triangulation of the origin
of each transition line observed in Figure 2.12. The black regions in each map represent
electrodes in the device, while the four black dots represent the patterned locations of the
dots in the STM. Each map, for a given dot, shows four shaded regions generated by taking
the slopes of the dot transition over four different gate map combinations. The red cross
marked on the final map represents the location where a lithographic defect due to a piece of
the tip on the surface was observed in the STM image. The loci were generated by matching
the ratio of slopes across different gate maps with simulated ratios of electrostatic potentials.
Taking a 10% uncertainty in the measured slope, the regions were given a Gaussian spatial
uncertainty.




2.2. Design and demonstration of a Si-P singlet-triplet unit-cell 99

individual gates and then calculate the locus of all points where the ratio of the
electrostatic potentials of gates « and y match the slope dV,/dV, of the transition
line in a given stability diagram. One may repeat this for the same transition line
slope across different stability diagrams (taken with a different combination of gates
on the z and y axes) to generate multiple loci and effectively triangulate the position
of the quantum dot as shown in Figure 2.13. The loci are intentionally smeared by
considering a 10% uncertainty in the measured slopes of the charge transition lines
in the charge stability diagrams. That is, the intensity of each coloured locus at

position r is given by a Gaussian distribution:

0(r) = exp [2012 (j:gr; _ |s|> ] , (2.15)

where oy is the standard uncertainty in the transition line slope s. The position

dependent functions ¢, and ¢, are the electrostatic potentials when applying 1V
to gates x and y respectively (while grounding all other gates in each case). Note
that the combinations of gates used for each transition line were chosen to give
lines of negative slope; that is, the gates swept along the x and y axes in the charge
stability diagrams were not the reservoir for the dot under concern. This was to avoid
complications that may arise when the simple electrostatic model does not accurately
predict the lever-arm of a given dot when in close proximity to the reservoir [98].
Importantly, our results show that this technique, using the four loci for each family
of transition lines, successfully triangulates the position of the measured dots to the
positions of the four STM patterned dots as shown in Figure 2.13. In addition,
this technique has the added advantage of being able to triangulate unintentional
quantum dots (also known as ‘charge traps’). In this case the transition line, marked
C in Figure 2.12, is consistently triangulated to the position of a lithographic defect
that occurred during fabrication before dosing as shown in the STM image of the
device in Figure 2.10 by the label C. In the future, this triangulation technique can
be iterated over new devices, so that the location and origin of unintentional charge
traps can be identified, leading to a better understanding and subsequent elimination
of such defects.

With the charge transitions successfully matched to the location of the STM-
patterned dots in the device, one can label the electron charge state in the regions
between the charge transition lines. To deduce the side (left/right or above/below a
given charge transition line) with more electrons, one may examine the action of the
gates. When increasing the voltage on a gate, the electrostatic potential on the dot

becomes more positive and thus, electrons enter the dot. However, when increasing
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the voltage on a reservoir, electrons deplete from the reservoir and lower the overall
Fermi-level. Consequently, increasing the voltage on a reservoir effectively raises the
dot’s energy level (with respect to its reservoir) and thereby depletes charge on the
dot. As shown by Equation 2.14, one may easily deduce that one of the gates being
swept in the charge stability diagram is a reservoir to the dot if the slope of the
charge transition line is positive. All lines in the stability diagram in Figure 2.12
are of positive slope. Thus, the dots all have R1 or R2 as their electron reservoirs.
To deduce which of the gates (R1 or R2) is the reservoir for a given dot, one needs
to consider the geometry. As Rl is closer, than R2, to dots D1U and D1L, R1 is
the reservoir to the dots D1L and D1U. Similarly, R2 is the reservoir to the dots
D2L and D2U. Thus, the region in the top-right corner of the stability diagram
in Figure 2.12 with the most positive gate voltage on R1 and R2, has no further
charge transition lines present and corresponds to the depleted charge region with
the electron numbers labelled as (0,0,0,0) on all four dots?*. When moving to more
negative voltages on R1, one crosses charging lines on D1L or D1U as electrons are
added to the respective dot. Since R2 is not a reservoir to the dots D1L and D1U,
an electron is only added when crossing the charge transition line at a more positive
gate voltage. Similarly, moving to more negative voltages on R2 loads electrons onto

the dots D2L and D2U while a more negative voltage on R1 depletes those dots.

Finally, on labelling all the charge transitions and electron numbers from the
depleted charge state, it is of note that two sets of transition lines in Figure 2.12,
labelled with H; and Hso, changed slopes and positions depending on the direction
of the voltage scan. Although the lines labelled H; and Hg in the reverse scan in
Figure 2.12a share the same slope as the the bottom dots in the reverse scan (for
example, H; has the same slope as D1L and Hy has the same slope as D2L), the
slopes do not remain the same as the bottom dots’ slopes in the forward scan in
Figure 2.12b. This charge hysteresis effect is better observed in a simpler case when
probing the first electron on the dots D2L and D2U (seen in Figure 2.12) using the
gates R2 and G2 in Figure 2.14. The charge transition lines in both charge stability
diagrams are positively sloped as R2 is the reservoir for the dots D2L and D2U.
The two stability diagrams were taken by decreasing the voltage on R2 (reverse
scan where electrons are added to the dots) and increasing R2 voltage (forward scan
where electrons are depleted on the dots) with the charge stable regions labelled as

the number of electrons in (D2L, D2U) respectively.

Z5Note that there may be more electrons present in the dots D1U and D2U. They may indeed
never fully deplete due to their slow tunnel rates to their respective reservoirs. Thus, the exact
electron numbers still remain as estimates.
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(a) Reverse scan («+) to load electrons onto dots (D2L,D2U)
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Figure 2.14: Hysteresis in the charge stability diagram, taken with sensor T2,
due to asymmetric coupling of the dots D2L and D2U to reservoir R2. The
tunnel rate from the reservoir R2 to dot D2U is extremely slow (compared to the tunnel
rate between R2 and D2L) and thus, electrons emptying or loading dot D2U must move
through dot D2L. This leads to a different slope for the D2U charge transition line when
taking the gate map by scanning backwards (a) and forwards (b). The slope of D2U
transition (green) does not follow the expected slope (black lines), but instead follows the
slope of the D2L transition line (magenta) or the inter-dot transition line (pink) depending
on the required configuration of the D2L energy level to load or empty electrons on D2U.
The labelled ordered pairs represent the number of electrons, in D2L and D2U, in the given
charge stable regions. The energy diagrams have three columns representing the energy
levels of the Fermi-level reservoir R2, dot D2L and dot D2U. The voltages on the other
gates were set to 0V except Vg1 = —0.2V. To process the data from T2, a numerical
derivative was taken along the z-axis. Note that a high RF power was used in this gate
map scan and thus, charge transitions involving R2-D2L (magenta) and D2L-D2U (white)
were broadened as a result. Charge transitions on D2U were not broadened as the electron
may not move back and forth once the charge transition has occurred due to the charge
state hysteresis. The small horizontal lines seen in the (1,1) charge region in (b) are due to
another charge transition.
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By tuning the voltage on G2 one may change the dots’ energy levels such that
one adds or removes electrons (in the forward or reverse scans) onto the dots D2L
and D2U as seen by the magenta (0,0) — (1,0) and green (0,0) — (0,1) charge
transition lines respectively. On moving to lower voltages on R2, the dot that wasn’t
initially loaded receives an electron to finally enter the (1,1) charge state. The
intermediate region between which one loads to the D2L or D2U first is the odd-parity
(1,0) <> (0,1) inter-dot crossing shown in white where an electron moves between
the dots. The black lines indicate the expected slope of charge transitions on D2U.
However, there is a hysteresis effect where the slopes of the charge transition onto
dot D2U (green) has a slope depending on the direction of the voltage scan. The gate
voltage hysteresis effect has been previously observed in systems with asymmetric
tunnel rates of two quantum dots to their reservoir [102| with some groups exploiting
the hysteresis to prolong spin states for higher fidelity readout [104]. In our case, the
tunnel rate between the reservoir R2 and D2U is too slow to load or empty directly in
the time-frame of the gate map scans (approximately 56 s per line for a given scan).
Thus, D2U can only be loaded or depleted by moving the electrons through D2L
(instead of loading directly from the reservoir as seen by the grey panels I and II).
However, D2L can be loaded fast directly (when the dot energy level aligns with the
reservoir Fermi-level as seen in the magenta panels IIT and TV) and thus, the charge

transition lines do not undergo any hysteresis.

Figure 2.14a shows electrons being added onto the dots. On the charge transition
(0,0) — (0,1), the electron on the reservoir cannot enter D2U through D2L as D2L
is too high in energy (grey panel I). On moving collinear with the (0,0) — (1,0)
charge transition line, D2L is aligned with the Fermi-level on reservoir R2. Thus,
electrons may now move onto D2U via D2L (green panel V). Similarly, on the charge
transition (1,0) — (1,1), the electron on D2L cannot move onto D2U until D2U
lowers its energy level to match that of D2L (grey panel II). Thus, this charge
transition adopts the same slope as the inter-dot transition line (1,0) <> (0,1) (green
panel VI).

Figure 2.14b shows the case when removing electrons on the dots. On the (1,1) —
(1,0) transition, the electron may not directly tunnel through D2L as the electron
on D2L cannot tunnel out as the associated energy level on R2 is filled (grey panel
IT). In order to have two electrons on the dot D2L, the electron on D2U will need
to tunnel onto a much higher energy level on D2L. Thus, the level on D2L must be
raised such that it is at least in line with the Fermi-level on reservoir R2 (green panel
VI). Thus, the slope of the charge transition is co-linear with the D2L transition line
(1,1) — (0,1). Finally, on the (0,1) — (0, 0) charge transition line, D2L is once more
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too high in energy for the electron to tunnel out (grey panel I). Thus, the energy
level on D2U must be raised align with the energy level on D2L (green panel V).
Therefore, the charge transition line adopts the same slope as the inter-dot transition
line (1,0) <> (0,1).

By grouping the charge transition lines that remain parallel across multiple gate
maps, then triangulating the transitions to match them to the dots and identifying
the hysteresis effects on multiple reservoirs, one can completely label the charge
stable states shown in Figure 2.12. Note we assume that the dots are capable of
being fully depleted and all resulting electrons entering the dots were observed in

the stability diagrams.

2.2.6 Effectiveness of electrostatic simulations in predicting differ-

ential gate lever-arm and inter-qubit couplings

Control of electron-electron exchange J in a singlet-triplet qubit (achieved by sepa-
rating or moving both electrons together across the double quantum dot) of a given
gate is gauged by the gate’s differential lever-arm across the two quantum dots host-
ing the singlet-triplet qubit as discussed in Section 2.2.3. It is important to verify
that the differential lever-arms match simulations in order to confidently optimise
more complex singlet-triplet qubit systems. The differential lever-arm across two
quantum dots can be inferred by mapping out the singlet-triplet electron energy
levels as a function of magnetic field using the single-gate RF sensor [29, 30, 105].
Detailed discussion of the characterisation and optimisation of the single-gate RF
sensor on R2 and the subsequent magnetic field measurements are shown later in
Section 4.2.2. Nonetheless, the RF sensor requires inter-dot tunnel rates (for elec-
trons in the singlet-triplet state across the two quantum dots) to be much larger
than the driving frequencies of ~100 MHz set by the resonators?® connected to the
reservoirs R1 and R2. The inter-dot tunnel rates across dots D1L and D1U were
found to be too slow to respond to the drive frequencies of the single-gate RF sen-
sors on R1 and R2 of 300.1 MHz and 261.5 MHz respectively. Thus, the differential
lever-arms of the gates were only measured with respect to the dots D2L and D2U
where the inter-dot tunnel coupling was approximately 39 GHz when measured using
the (3,3) <> (2,4) charge transition (for electrons on D2L and D2U respectively).

26 As discussed in the design of RF readout sensors in Section 3, the readout sensor must be fast
with respect to the qubit error rate to enable error detection and correction (approximately ~270 ps
for single-spin qubits; so error rates are ~100kHz). High fidelity readout requires high resonator
quality factors Q > 100. Noting that the readout resonator bandwidth is ~fo/Q (fo the resonant
frequency of resonator), 100 MHz at least yields up to 1 MHz of usable bandwidth.
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Lever-arm « | Experimental Value | Model
Aaga 0.13 £0.05 0.12
Aags —0.05£0.02 —0.03
Aagy 0.02 £0.01 0.01
Aag —0.008 = 0.005 —0.006

QR1-D2L 0.12 £0.07 0.07
QR1-D2U 0.10+0.05 0.06
aG1-D2L 0.08 +0.04 0.04
QG1-D2U 0.08 £0.04 0.05
QR2-D2L 0.5+0.2 0.34
O'R2-D2U 04+£0.2 0.22
aG2-D2L 0.11 £ 0.07 0.07
aGa2-D2U 0.16 £ 0.07 0.10

Table 2.5: Comparison of experimentally measured gate lever-arms with predic-
tions from electrostatic simulations. The experimental measurements were only possi-
ble on the right-hand dot pair D2L and D2U. For a given gate G, the differential lever-arm
ag (defined as ag.par, — ag.p2u) was measured directly from magnetic field measurements,
while the remaining absolute lever-arms onto the dots were inferred by considering the dif-
ferential lever-arms in conjunction with the slopes of the charge transition lines in the charge
stability diagrams. The ‘model’” refers to the predictions made when importing the STM
image into a FEA simulation and then calculating the expected gate to dot lever-arms as
discussed in Appendix A.3.

From the magnetic field measurements shown later in Section 4.2.2, the differen-
tial lever-arms of the reservoir R2 and gate G2 were ags.por, — ar2.poy = 0.13£0.05
and aga.par, —aga-p2u = —0.04£0.02 respectively. The ratio of the differential lever-
arms for the gates R2 and G2 (0.13/0.04) is consistent with the slope of the inter-dot
charge transition across dots D2L and D2U in the stability diagram (with R2 and G2
on the z and y axes) of 2.6+0.03 seen in Figure 2.14. The individual gate lever-arms
can be found by taking the slopes of the transition lines in stability diagrams and
applying Equation 2.14 which links the slopes to the ratio of lever-arm alphas. For
example, the slopes of the D2L. and D2U transitions on a R2-G2 stability diagram
were (1 — ago.por)/aGe.por, = 4.67 £ 0.05 and (1 — aropov)/age.pey = 4.01 +0.05
respectively. Thus, knowing the differential lever-arm (from the magnetic field mea-
surements) and the ratio of lever-arms (taken from the slopes of transition lines in the
stability diagrams), one may solve a linear system of equations to find the absolute

lever-arms of the gates to each individual dot:
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1 -1 0 0 AQR2-D2L 0.13
0 0 1 -1 . —0.05
| @r2D2U [ ' (2.16)
1 0 4.67 0 aGo2-D2L 1
0 1 0 4.01 aG2-D2U 1

By repeating this process for all the gates, one may infer the absolute lever-arms of
all the gates R1, R2, G1 and G2 to the dots D2L and D2U as shown in Table 2.5.

The measured lever-arms on the dots D2L and D2U were compared with elec-
trostatic simulations. The electrostatic model was the same model used in Section
2.2.5 but now the real device geometry (from the STM image in Figure 2.10) was
imported into the simulation. The lever-arms were extracted from the simulations
using the methods outlined in Appendix A.3. From Table 2.5, it would appear that
the electrostatic FEA model predicts the differential lever-arm alphas correctly to
within experimental uncertainty®’. In addition, the FEA model correctly predicts
the absolute lever-arm alphas within experimental uncertainty. However, the FEA
model appears to slightly underestimate (although captured within uncertainty) the
absolute lever-arms for R2 (ag2.par, and agrs.poy); a lead that is in close proximity to
the dots. When considered with the peculiarity that dot D2L (with approximately 3
P-donors) is depleted at 0V and requires —0.28 V on R2 to fill with the first electron
(3P dots in previous devices have shown at least one electron on the dot when setting
all gate voltages to zero [81]), the explanation may require tight-binding simulations
(beyond the scope of this thesis).

The final important parameter to be characterised in this device was the inter-
qubit coupling Aa required for two-qubit gates. The coupling strength is defined
as the shift in the target qubit’s detuning when the control qubit moves from the
(1,1) charge state into the (0,2) charge state (if in the singlet state and remains
in (1,1) otherwise). Thus, to operate the two qubit-gate one must simultaneously
realise singlet triplet states on both pairs of quantum dots; that is, overlapping the
inter-dot charge transitions across both dot pairs in voltage space as discussed in
Section 2.2.3. Thus, to measure the inter-qubit coupling, one aligns the two inter-
dot crossings across the dot pairs D1L/D1U and D2L/D2U respectively on top of
one another to observe the resulting shift in the target-qubit’s inter-dot crossing (as
in the simulated charge stability diagrams in Figure 2.9). However, while the inter-

dot crossing across dots D2L/D2U could be viewed via the single-gate RF sensor

2"The uncertainties were calculated using standard propagation of uncertainties. The experi-
mental uncertainties include the uncertainties in measured charge transition slopes (approximately
10%) in the stability diagrams and the uncertainties in the best-fit curves from the magnetic field
measurements (for example, in Figure 4.2d) discussed in Section 4.2.2.
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R2 and the TJCS T2, there was no mechanism to view the inter-dot crossing across
the dots dots D1L/D1U. That is, the single-gate RF sensors R1 and R2 could not
measure inter-dot crossings across D1L/D1U as the inter-dot tunnel rate was too
slow to respond to the drive frequencies of the single-gate RF sensors on R1 and R2
of 300.1 MHz and 261.5 MHz respectively?®. In addition, the charge sensor T2 could
not detect the inter-dot transition as the dots (D1L and D1U) was too far from the
sensor to detect the small electric dipole. However, the inter-qubit coupling could
still be measured by the shift in detuning induced on the adjacent qubit. Here, the
shift in the right qubit’s detuning due to an inter-dot transition on the left qubit is
equivalent to the difference in the charge shifts on freshly introducing an electron
onto the dots DIL and D1U respectively (since by the electrostatic superposition
principle, the shift is equivalent to an inter-dot charge shift on the left qubit). That
is, the inter-qubit coupling (given by Equation 2.8 in the design discussions in Section
2.2.3) is defined as the shift in the right qubit’s detuning (hosted on D2L/D2U) on
shifting the left qubit from the singlet to triplet state (that is, moving a charge
between the dots D1L and D2U).

Since the right qubit’s shift in detuning is required, the even parity singlet-triplet
inter-dot charge transition (3,3) <> (2,4) (across the dots D2L and D2U) was chosen
for the measurement. The singlet-triplet inter-dot crossing on the right qubit was
aligned with two charging lines on the dots D1L and D1U as shown in Figure 2.15a.
The stability diagram was taken using a lock-in amplifier to enhance the signal and
automatically take the derivative of the signal by applying the lock-in excitation on
top of the voltage applied to R2. When individually moving an electron onto D1L
and D1U, the right qubit’s singlet-triplet inter-dot crossing shifted by 702wV and
529 1V respectively (along the R2 voltage axis). Note that the shift that occurs due
to electrons moving onto D1U is smaller (than the shift due to D1U) by virtue that
D1U is further away from the dots D210 and D2U. The difference in the shifts on
right qubit’s inter-dot crossing was 170460 uV. Taking the experimentally measured
differential lever-arm for R2 across the dots D2L and D2U (ags = 0.13 4 0.05), the
resulting energy shift is Ax = 5 +£ 2GHz. Using the electrostatic model of the
device based directly on the STM image to calculate the capacitance matrix and
thus, the resulting inter-qubit coupling (given in Equation 2.9), the estimated inter-
qubit coupling from the electrostatic simulations was Aax = 4.25 GHz. Thus, the
expected value was within the bounds of experimental uncertainty. Thus, once again

the validity of the model was verified and predicted that even at inter-qubit distances

*The single-gate RF sensor requires the tunnel rate needs to be much larger than the drive
frequency as discussed in Section 4.1.2.
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Figure 2.15: Experimental measurement the inter-qubit coupling Ax. (a) Stability
diagram measured with T2 showing charge transitions onto all four dots. The response of
T2 was measured with a lock-in amplifier. The horizontal lines represent charge transition
transfer lines onto the dots D1L and D1U while the vertical lines represent that onto the
dots D2L and D2U. The stability diagrams shown represent the response of the T2 sensor as
measured with a 4 mV lock-in excitation applied to R2. The quadruplets show the electron
numbers as in Figure 2.12. The white line represents an inter-dot singlet-triplet transition
on the right hand dot pair. The voltages on the other gates were: (Va1, Voo, Vri1, Vr2) =
(0.05,-0.13,—-0.05,—0.023) V. (b) Aligning charge transitions onto D1L and D1U on top of
the white inter-dot transition line. Charge transitions onto D1L and D1U shift the inter-dot
line by 702 uV and 529 uV respectively. The difference in the shifts in detuning is gives the
inter-qubit coupling (that is, the shift in the target qubit’s detuning when the control qubit
moves both electrons onto the same dot when shifting from the triplet to singlet state).
The resulting difference was 170 + 60 uV; which translated to an inter-qubit coupling of
5+ 2 GHz. Note that the all the charge transition lines in this stability diagram, unlike that
in (a), were broadened heavily, to ensure an adequate signal strength, achieved by applying
the lock-in excitation to both R1 and R2.
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of dj; = 75nm, one may obtain inter-qubit couplings in the excess of a few gigahertz.
The verification of the model is important as it predicts that one may obtain larger
inter-qubit couplings if desired for faster two-qubit gate operations (for example,
inter-qubit couplings of 45 GHz and above can be achieved if the dots were brought
closer at 40nm as shown in Figure 2.7). Alternatively, one may place the qubits
further apart if one wishes to operate the singlet-triplet qubits in the perturbative
regime with AC driving as in previous experiments performed in GaAs [34, 35].
Increasing the spacing between qubits would have the advantage of reducing the
complexity of lead fan-out and increasing the gate voltage range before current leaks

between the leads.

2.3 Summary and outlook for future devices

Basic electrostatic modelling of Si-P devices using realistic experimental parame-
ters yielded a device design to form four quantum dots with accessible even parity
singlet-triplet inter-dot transitions as required for the demonstration of a two-qubit
gate between two singlet-triplet qubits. This modelling matched the experimentally
measured results by correctly predicting key system parameters, while noting the
subtle discrepancies for dots placed in close proximity to the reservoirs. In addition,
the models and measured data indicate strong inter-qubit couplings that were not
possible to realise in previous quantum dot experiments in other systems such as
GaAs. The smaller inter-qubit coupling of gate-defined quantum dot systems likely
arises from the lower electric dipole coupling caused by the ~100 nm size of the dou-
ble dots (unlike 12.5nm), being spaced further apart at approximately 100-200 nm
unlike 30-100 nm here with Si-P dots. The utilisation of this strong inter-qubit cou-
pling (with respect to the inter-dot tunnel coupling) to perform two qubit gates is
discussed in later in the development of the proposed singlet-triplet architecture in
Section 5.

Further experimental development requires the realisation of adjacent singlet
triplet qubits to perform a two-qubit gate. However, in this device, the dots D1L
and D1U formed a symmetric P-donor cluster configuration and thus, yielded no
accessible singlet-triplet transitions. As expected, the asymmetric P-donor clusters
on dots D2L and D2U enabled access to a singlet-triplet transition. However, the
inter-dot tunnel coupling was overshot at 39 GHz implying that the exchange J could
not be turned off with reasonable voltage pulses. The magnitude of the voltage pulse
to set J = AB, is given by Equation 2.6 (used during the design discussion in Section
2.2.3):
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4AB? — 2

2AB.eAa |’ (2.17)

VHadamard = ‘

Note that Vitadamard is the lower-bound to reaching J ~ 0; a lower bound that was
found to be ~2.2'V when taking AB, ~ 29 MHz and the differential lever-arm for the
designated control gate G2 of Aage = 0.05. With the gate voltage ranges (before
gate-to-gate leakage occurs) usually below 1V, the required voltage pulse to turn .J
off is therefore unrealistic. Had the inter-dot tunnel coupling (between dots D2L and
D2U) been close to 10 GHz, the required voltage would have been experimentally
realisable at 180mV. Thus, in the future regarding a scalable array, research and
experimental development is required in creating accurately reproducible inter-dot
tunnel couplings. Other system parameters, such as the inter-qubit coupling A, are
not significantly altered by small perturbations in the device geometry and should
be reliably reproduced.

Although a qubit was not realised in the experiments run during the thesis, there
were several positive results regarding the design, fabrication and characterisation of

the quadruple quantum dot device:

e General geometric layout enabled electrons to be loaded onto four quadruple

quantum dots

e TJCS T2 showed good charge sensitivity, including the ability to detect charge

transitions on dots up to 160 nm.

e Electrostatic models showed exceptional validity in matching the experimental

measured lever-arms and inter-qubit coupling

e A triangulation technique was developed to match the measured charge transi-
tions to the patterned dots on the device. The triangulation technique should
prove useful in the future when diagnosing defect sites that give rise to un-
intentional charge traps such as the lithographic defect triangulated in this

experiment.

e The large inter-qubit coupling of 5 GHz measured in the experiment verified
that large non-perturbative (with respect to the tunnel coupling) inter-qubit
couplings between singlet-triplet qubits can be realised when using Si-P quan-

tum dots.

Despite these positive results, we did not observe a singlet-triplet qubit as J could

not be turned off due to the large 39 GHz inter-dot tunnel coupling. However, the
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experiment did provide some key focus points regarding the next device. Although
one may take the optimal distances in the context of a large-scale architecture as
discussed in Section 5, the next device should utilise similar geometric parameters to
the current device. That is, one should opt for a large gate voltage ranges and exper-
imental flexibility when there are many unknown parameters (as discussed below)
still remaining in the system as opposed to using the tighter dimensions that require
precise donor numbers and inter-dot tunnel couplings. Nonetheless, the geometric
parameters that may remain the same for the next device (based on the results of

this experiment) are:

e TJCS to dot distance: 80nm. The TJCS appeared to be sensitive enough to
detect all four dots alone from this distance. There is no need to change this

distance.

e Primary TJCS dimensions: 10.8 nm gap size and 8.8 nm gap width. The TJCS
T2 yielded a good charge sensor with the ability to sense electrons on all four
dots.

e Dot-to-reservoir distance: d;; = 17nm. As discussed in the characterisation
of the single-gate RF sensor later in Section 4.2.2, there was no evidence of a
strongly coupled reservoir (inducing cotunnelling processes) causing small spin
life times (specifically the sy — ¢_ relaxation time that limited the available
qubit readout time). In fact, the spin life time was 2ms [29] instead of the
previously measured 60 ns [30]. Thus, the dot-to-reservoir distance shall remain

the same.

The measured inter-qubit coupling matched the electrostatic predictions. Given
that one may now trust the simulations, one may reproduce the strong inter-qubit
coupling of above 5 GHz for any dot angle 9 by bringing the inter-qubit distance to
60nm (as shown in Figure 2.7). Note that this change may reduce the gate voltage
range and remove experimental flexibility in accessing useful even parity inter-dot
charge transitions. However, by relaxing the angle from ¢ = 135° to ¥ = 90°, where
the dots are vertical, one may enhance the differential lever-arms of the control gate

and reservoir. Thus, some recommended changes to the geometry include:

e Inter-qubit distance d;; = 60nm. The gate voltage range may drop slightly,
but one would be able to retain the large Ax > 5 GHz for any dot angle.

e Dot angle 90° < ¢ < 135°. Pushing the dots to be vertical will enable the

largest differential lever-arm on the qubit control gates. A larger differential
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lever-arm increases the safety net on the maximum inter-dot tunnel coupling

that can be used to form a qubit.

e Dot-to-gate distance: d, = 45nm. In the next device one of the control gates
could be brought closer by 5nm to enhance the differential lever-arm. One
should take note of the resulting lower gate voltage range and observe if the
electrostatic accessibility of even parity inter-dot transitions is affected. If the
accessibility is not affected, then one may continue bringing the control gates

closer to the dots in future devices for a greater differential lever-arm.

e Secondary TJCS dimensions: 8 nm gap size and 6 nm lead width. The TJCS
T1 was too Ohmic. Thus, the gap size can be widened to investigate the
possibility of a more conductive TJCS than the sensor T2 in this experiment.
With the gap size above 6 nm, the aspect ratio (gap width divided by gap size)

is below one. Thus, one would expect gap-like behaviour once more [100].

In DC pulsing we aim to turn off the exchange coupling within an experimentally
realisable value of the pulse amplitude. If one wishes to manipulate the singlet-triplet
states via AC driving, as opposed to the faster 2-qubit gates investigated in Chapter
5, the inter-qubit coupling must be made perturbative with respect to the gigahertz
tunnel coupling between the individual double quantum dots: Ax < 1GHz. The
perturbative coupling is required to satisfy the perturbative approximation®® used
in deriving the AC-driven two-qubit gate [14, 34, 35]. AC driving also requires
operation at J close to zero (as required to precess about the Pauli-z axis whereby
Pauli-z rotations are realised with AC driving of the detuning). To achieve this
in singlet-triplet donor qubits we could first set the dot angle to ¥ = 90° (that
is, making the double quantum dots parallel to their respective gates) to maximise
the differential lever-arm of the control gates with respect to their double quantum
dots and subsequently maximising the ability to turn off J. Then one may set
the inter-qubit distance to be greater than 120nm to give inter-qubit couplings less
than 1 GHz. To find the distances for smaller inter-qubit couplings, we note the
approximate Ax~1/ d?q dependence seen in the numerical simulations when setting
¥ = 90°.

The final geometric parameter is the inter-dot distance (d;q), which is set more
specifically by the inter-dot tunnel coupling. An inter-dot tunnel coupling below

10 GHz is desirable for qubit control. However, the inter-dot tunnel coupling is

29The inter-qubit coupling needs to be much smaller than the driving AC amplitude Ax < Aqe.
To satisfy the rotating wave approximation, the driving amplitude must be smaller than the tunnel
coupling Age < te.
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a non-trivial function of the P-donor dot size, configuration of the donors within
each dot, electron number and the inter-dot distance. Unfortunately the amount
of data we currently have is insufficient to estimate the optimal distances given the
large size of the parameter space. Since the tunnel coupling changes with the P-
donor dot sizes and the configuration of the donors within the dot, the inter-dot
distance should remain at 12.5nm. Setting a constant distance will at least enable a
controlled experimental study. Regarding the choice of 12.5 nm, one should consider
the fact that a 22 GHz tunnel coupling was observed for a 4-electron 2P-3P double
quantum dot separated by d;; = 11.5nm. Given the ideal double quantum dot is to
be 1P-2P for the ease in electrostatic accessibility (from the simulations in Section
2.2.3), the tunnel coupling would have been much higher than 22 GHz for 4 electrons.
Thus, increasing the distance to 12.5nm would be advisable. Although the current
experiment should have yielded a smaller tunnel coupling given the larger inter-dot
distance and larger dot sizes, the larger electron number may have enhanced the
tunnel coupling to be a higher value. Therefore, there is no reason to recommend a
different distance for the next device.

In the vain of achieving higher device reproducibility, the ability to access even
parity inter-dot charge transitions (by ensuring asymmetric P-donor dots) and op-
timising the tunnel coupling; any techniques to guarantee the P-donor dot sizes on
fabrication would be welcome. That is, the development of on-site incorporation such
as tip-induced incorporation [106] to guarantee the P-donor dot configuration and
size would be beneficial in developing a many singlet-triplet qubit device. In addi-
tion, easy access to tight-binding simulations on optimal donor configurations would
help with faster prototyping by being able to produce deterministic experimental

designs for devices.



Chapter

Compact RF sensors for Si-P qubits

One of the key criteria for a working quantum computer is its ability to readout the
state of its qubits [107]. It becomes difficult to reserve space for the qubit readout sen-
sors in a scalable array of qubits when the spin qubits themselves need to be spaced
at distances in the order of 10-100 nm required for electron-electron exchange and
electron-electron dipole interactions typically used in two-qubit gates |28, 34, 78, 108].
One method to overcome the difficulty in placing the qubit sensors is to reduce the
lead count by replacing the conventional 3-lead (and one quantum dot) single elec-
tron transistor (SET) sensor with a single-lead-quantum-dot (SLQD) sensor capable
of reading out both single-spin and singlet-triplet qubits [31]. The SLQD sensor
requires the detection of a small AC ‘quantum capacitance’ using an RF resonator.
Thus, an exact analytic model (expressed in terms of purely experimentally measur-
able parameters such as the parasitic capacitance, internal quality factor and external
quality factor) of the resonator was first developed. This circuit model description
of the readout signal strength was also applicable to the quantum capacitance mea-
surements using the more compact single-gate RF sensor discussed later in Chapter
4 [32]. The SLQD sensor was then investigated theoretically using rate equation
models. In particular, this model investigated the SLQD operation in the nonlin-
ear regime and made the first analytic predictions of the peak saturation of the RF
readout signal strength at high input RF powers compared to previous similar works
in the literature [109, 110]. In addition, this model was experimentally verified via a
SLQD sensor fabricated in Si-P. This chapter also outlines the new techniques devel-
oped to both operate and characterise the SLQD sensor (for example, the reservoir to
dot lever-arms in the SLQD cannot be deduced via conventional Coulomb oscillation

techniques as there are no source and drain leads).

73
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3.1 Overview of RF qubit sensors

RF qubit sensors have been implemented to sense solid state qubits for almost two
decades. The evolution of RF qubit sensors started with simple enhancements on
conventional charge sensors to unique single-gate sensors. The prior development of

RF sensors shall be summarised in this section.

3.1.1 Overview of conventional charge sensors

Conventional solid-state sensors rely on detecting the charge state of a quantum
dot (that is, the presence or absence of an electron) to measure the qubit state.
Charge detection is sufficient for qubit-readout as most solid-state qubit states can be
mapped onto a charge state [12, 13, 80, 111, 112]. For example, in the case of charge
qubits, a charge sensor that senses the location of the electron immediately measures
the qubit state [58]. In the case of two-electron singlet-triplet qubits, one utilises
‘Pauli-spin blockade readout’ where the electric potential across the two quantum
dots is tilted such that both electrons are forced onto the same dot. The charge
sensor must distinguish between the singlet state syp which allows both electrons to
enter the same dot, with the triplet ¢y state where both electrons remain on separate
dots due to Pauli-blockade [12-14].

To read the qubit state for single-spin qubits, one utilises a spin-to-charge con-
version process by first aligning the energy level of the dot (holding the electron spin
to be measured) to the Fermi level of its reservoir and then applying a magnetic
field. The resulting Zeeman splitting of the electron implies that a spin-up electron
(now higher than the Fermi-level) may tunnel off the dot (onto the reservoir) while a
spin-down electron remains on the dot and may not tunnel off the dot as the corre-
sponding states on the reservoir are filled. Detecting this change in the charge state
of the dot when a spin-up electron tunnels off the dot enables single-shot single-spin
readout 18, 80, 111].

An alternative method to measure single-spins using a charge sensor is to use a
double quantum dot where the first dot holds a spin-down electron and the target
electron is held on the second dot. On performing readout, the electric potential
is tilted across the two quantum dots to bring both electrons onto the same dot.
If the target electron is spin-down, then the resulting two-electron spin state is the
t_ = ||l) state which forbids both electrons entering the same dot due to Pauli-

blockade. If the target electron is spin-up, the resulting two-electron spin state |[1])



3.1. Overview of RF qubit sensors 75

maps onto the singlet sy state where both electrons may enter the same dot'. Thus,
by mapping the single-spin state onto a two-electron singlet-triplet state one may
employ Pauli-blockade readout to readout single-spin qubits [108, 113, 114].

Given that a charge state measurement can measure electron spins, it is important
to review viable charge sensors. Several solid-state charge sensors have been realised
experimentally to infer the charge state of a given dot. The earliest solid-state
charge sensor is the single-electron-transistor or SET [115]. The SET consists of a
large quantum dot tunnel-coupled to ‘source’ and ‘drain’ leads. Current flows from
source to drain via the quantum dot when one applies a small bias voltage to the
source lead. However, due to the discrete energy levels on the quantum dot, current
may only flow when the energy level of the quantum dot is in between the the source
and drain Fermi-levels as shown in Figure 3.1a. When no SET quantum dot energy
level is in between the source and drain energy levels, the lack of current flow is
termed ‘Coulomb blockade’. A third gate lead is required to apply a potential on
the quantum dot to tune its energy levels such that the SET is in a conductive state
(when current flows) or in a ‘Coulomb blockade’ state (when no current flows). Just
as the SET gate may tune the energy levels on the quantum dot, the scalar potential
of electrons on a target dot can also shift the energy level of the SET quantum dot.
When electrons enter or leave the target dot, the electrons’ scalar potential field will
shift the energy level of the SET quantum dot. The electrostatic coupling between
the SET quantum dot and the dot hosting the target electron must be strong enough
to toggle the SET into conduction and Coulomb blockade modes when changing the
charge state on the target dot to yield a sufficient signal to noise ratio in the current
readout signal.

Figure 3.1b shows a typical SET (seen by the quantum dot labelled SET along
with its three leads SRC, DRN and Gggr) designed to sense single electron spins on a
nearby P-donor dot (as seen by the quantum dot labelled D along with its control gate
Gpor)- Using the spin-to-charge conversion technique, spin-up electrons (Zeeman
split into the higher energy level placed above the Fermi-level) are detected via the
electron tunnelling off the P-donor dot and onto the SET quantum dot and finally

the drain lead. A spin-down electron, being Zeeman split below the Fermi-level,

!The four basis spin states, ordered in terms of energy levels, map onto the singlet-triplet states
as follows: (|44), 41, [T, [T1)) — (t—, so,to,t+). To ensure that |1)) maps onto the singlet so
state on tilting the electric potential, as opposed to the |1) state, |1]) is made lower in energy by
directing the magnetic field gradient across the two dots to be stronger on the first dot (holding the
spin-down electron). The singlet s¢ state is electrostatically lower in energy than the triplet state
to, when both electrons enter the same dot on tilting the electric potential. Thus, on an adiabatic
ramp where electrons initially separated are brought together onto the same dot, the lower energy
state |/ 1) maps adiabatically maps onto the sq state.
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(a) SET operation (b) STM image of a SET and P-donor dot in Si-P
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Figure 3.1: Single-electron-transistor measuring single spins in Si-P. (a) The
single-electron-transistor consists of a source SRC, drain DRN, a gate Gsgr and a quantum
dot labelled SET. The SET energy level can be tuned via a gate or a nearby charge transfer
to bring it into the conduction regime (when a SET energy level is in-between the SRC
and DRN energy levels) and the blockade regime where there is no current flow (there are
no SET energy levels in-between the SRC and DRN energy levels). (b) STM image of the
first SET to perform single-spin readout on electrons hosted on STM patterned P-donor
dots [80]. The yellow regions highlight regions of P-doping. (c) Resulting time-traces of the
SET current Igp [80]. If the electron on dot D is spin-up, the electron tunnels out and a new
electron tunnels in to fill the lower spin-down state on dot D to create a blip in the current
during the read phase. If the electron on dot D is spin-down, no charge transfer occurs and
the read signal remains constant near zero as the SET is tuned into Coulomb blockade.

may not tunnel off the P-donor dot. Thus, only spin-up electrons cause a change
in the SET current as seen by the current moving away from zero, during the read-
phase in Figure 3.1c, for a spin-up electron while remaining zero for the spin-down
electron. The non-zero current for a spin-up electron returns back to zero current as
a spin-down electron eventually tunnels onto the P-donor dot to bring the SET back
into Coulomb blockade. If the time-frame of the non-zero current is too small, one
may not have sufficient time to detect the presence of the spin-up electron over the
background noise. Thus, one may extend the time of this non-zero current signal via

a ‘latched-readout’ mechanism which utilises an extra quantum dot (tunnel coupled
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to the main quantum dot holding the target electron). The extra quantum dot has
a slow tunnel rate to its reservoir and thus, electrons may only enter this auxiliary
quantum dot via the main quantum dot. By utilising the resulting hysteresis effect,
similar to that observed in the fabricated 4-dot device discussed in Section 2.2.5, one
may trap spin-up electrons onto the auxiliary quantum dot upon which one has a
longer time to read out the presence of a spin-up electron [104]. The latched readout
mechanism thus, relaxes the high bandwidth requirements to enable high-fidelity
sensing of high tunnel rate (between the reservoir and the main quantum dot) spin-
up electrons that register fast blips in the current signals. A fast electron tunnel rate
between the reservoir and the main quantum dot is desirable in the context of fast

qubit state initialisation.

The second prominent charge sensor used to detect electron spins in solid-state
quantum dots is the quantum-point-contact (QPC). The QPC consists of a source
lead, drain lead and a tuning gate. The leads are setup such that there is ballistic
conduction between the source and drain leads on applying a voltage bias across the
two leads. A third lead is used to tune the sensitivity of the QPC by changing the
electrostatic barrier of the constriction. At low temperatures, on changing the gate
voltage, quantised steps are observed in the conductance with the separation given by
the conductance quantum 2e2/h as shown in Figure 3.2a [116]. For high sensitivity
spin readout, the abrupt change in the QPC current at the step-edge between two
quantised current steps is used for charge sensing. When a electron enters or leaves
the target quantum dot, the resulting change in the electrostatic potential at the
QPC pushes the QPC into one of the two quantised steps in conductance. Thus, the
QPC current can be mapped to the charge state on a quantum dot. When combined
with single-spin to charge conversion or the two-electron Pauli-blockade readout, the

QPC can be used to measure single or two electron spin states [12-14, 111, 117].

A critical requirement of a QPC is the requirement for ballistic conduction across
its channel to form the discrete steps in the current. For ballistic conduction to
occur the channel length must be much shorter than the mean free path of the
electron [116, 118-120]. The electron mean free path in 2D GaAs systems have
been shown to range from 1um to 1000 um [121]. However, 2D Si-P §-layers are
disordered conductors where conduction occurs directly through the dopants and as
a consequence have a shorter mean free path of 4-6 um [122|. An alternative sensor
similar to a QPC, available in Si-P systems, is the tunnel junction charge sensor
(TJCS). The TJCS has two leads: source and drain. However, the electron transport
across the gap gives rise to a tunnel resistance rather than quantised current steps

seen in the operation of a QPC. The conductance of a TJCS is sensitive to the
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(a) QPC response to gate voltages (b) TJCS response to gate voltages
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Figure 3.2: Comparing gate responses of quantum-point-contacts and tunnel-
junction-charge-sensors. (a) Gate voltage conductance (after subtracting contact resis-
tance) of a QPC formed across a GaAs 250 nm-wide channel [118]. The signature response
is the quantised conductance steps to which one tunes when using a QPC as a charge sensor.
(b) Minimum conductance (with respect to the source-drain voltage across the TJCS) of
the TJCS T2 in the fabricated 4-dot device discussed in Section 2.2.4 as a function of the
voltage applied on R2.

local electrostatic environment as seen by the typical conductance response shown
in Figure 3.2b of a TJCS when sweeping the voltage on a gate close to the tunnel
junction. Thus, any charges entering or leaving nearby quantum dots perturb the
conductance of the tunnel barrier in the TJCS. As there is no quantised step to
which one must tune the TJCS, there is no need for a third gate; leaving the TJCS
a two-lead sensor [29, 99]. However, the sensitivity is much lower as the change in

conductance is gradual rather than abrupt like with a QPC as shown in Figure 3.2.

3.1.2  Development of RF qubit sensors

Resolution of the qubit state must be performed at high speed as the measurement
must occur at time-scales much shorter than the qubit decoherence time 7%. In the
context of modern error correction codes that rely on multiple measurements on the
qubits, the measurement time must be much faster than the average qubit error rate
to enable one to detect the single qubit errors as they occur [8]. Conventional charge
sensors, like the SET or QPC, which rely on measuring DC current across two junc-
tions have their measurement speeds limited by the parasitic capacitance of the wire
loom inside the cryogenic dilution refrigerator. The measured DC current is band-
width limited as the signal must travel up a wire loom over a few metres before it can

be amplified at room temperature. This wire loom has a parasitic capacitance of ap-
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proximately 2 nF with junction resistances of an SET or QPC ranging approximately
100kS2 [86, 118]. Since the transimpedance amplifier to convert the current signal
into a readable voltage signal is outside the dilution fridge, the measurement band-
width is approximately 800 Hz. One strategy to overcome the bandwidth limitation
is to place the transimpedance amplifier before the wire loom by using a cryogenic
DC transimpedance amplifier (with a low output impedance) near the device [123].
One could additionally use a lock-in amplifier to move the signal bandwidth to a
region of low noise to improve the signal to noise ratio (SNR); thereby unlocking
greater measurement bandwidths [124, 125]. An alternate strategy that achieves
equivalent gains in SNR (in combining a cryogenic amplifier with a lock-in amplifier)
is to use RF readout where one may utilise the coaxial cables in the dilution fridge
as opposed to the DC wire loom to pass the measurement signals [117, 126, 127]. To
utilise RF readout, one attaches an LC (inductor-capacitor) resonator to the lead
that one would typically utilise to measure DC current of the charge sensor. The res-
onator acts as a bandpass filter that only allows signals in the range wp + Aw (where
wp is the resonant frequency of the resonator and Aw is the resonator bandwidth).
On applying an RF excitation at frequency wg to the resonator, the RF signal enters
the lead associated with the charge sensor and causes the electrons to oscillate across
the tunnel junction (whether it is an SET or a QPC). The dissipation caused by the
electron oscillations across the resistive tunnel junction changes the quality factor of
the resonator to result in a change in the RF signal reflectance. The resonator helps
match the charge sensor’s impedance to the coaxial line and thereby circumvents any
bandwidth issues that would be present when using the DC loom. Low-noise cold
amplification? can be achieved via readily available cryogenic RF amplifiers [128].
The use of a high frequency resonator upconverts the signal information to a high
frequency region given by the passband of the resonator and thereby achieves the

lock-in effect.

The dominant mechanism at play in the use of RF resonators with conventional
DC charge sensors is the change in the quality factor due to the resistive load of
the nano-scale charge sensor. As a resistive load, the applied AC voltage is in phase
with the current as shown in Figure 3.3a. The tunnel rate of the electrons across

the junction of the charge sensor (for example, the tunnel rate across the source

2The purpose of the low-temperature amplification here is not to overcome bandwidth restrictions
like with the DC loom, but rather the second use of cryogenic amplifiers. Johnson noise is lower
at lower temperatures and thus, the same signal would have a larger SNR at lower cryogenic
temperatures when compared to that in room temperature. A cryogenic amplifier helps maintain
the larger SNR by amplifying the signal at lower temperatures before the signal arrives at room
temperature.
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and drain leads in a QPC) is slow when compared to the RF voltage input drive.
Thus, the lagging charge movement yields a current (time-derivative of charge) in-
phase with the input voltage; a dissipative AC circuit element modelled well via
the ‘Sisyphus’ resistance [109, 110]. However, a different mode of operation is to
consider nano-scale sensors that have the current 90° out of phase with the voltage
to create a non-dissipative, but reactive load as shown in Figure 3.3b. Here the
tunnel rate of the electron oscillation between two sites (for example, between two
dots) is much faster than the driving frequency of the input voltage drive. Thus,
the charge movement is in-phase with the voltage drive and therefore, the current
leads the voltage drive by 90°; modelled well with an AC ‘quantum capacitance’
circuit element Cj. Conceptually one may consider this AC capacitance to be a
perturbation on the capacitor in the LC resonator circuit causing a change in the
resonant frequency from 1v/LC to a lower 1\/m . When sending in a voltage
signal tuned to the original resonant frequency, the resulting shift in the resonant
frequency (due to the electron oscillations) causes a change in the reflectance as
the initial probe signal at the resonant frequency is now off-resonant to the shifted
resonant frequency. Readout by probing shifts in the reactance of the resonator
was first applied in superconducting qubits where the qubit perturbs the inductance
of the LC resonator [129], while in solid-state qubits, the perturbation is on the

capacitance of the LC resonator in the form of a quantum capacitance [30, 32, 57].

One class of sensors utilising the quantum capacitance is the single-lead-quantum-
dot (SLQD) sensors where the applied RF voltage oscillates electrons between a
reservoir lead and a quantum dot [31, 109, 110, 130]. The SLQD sensor can be used
as a charge sensor where, similar to an SET or QPC, nearby charging events tune
the dot’s energy level away from the reservoir Fermi-level to disable the electron
oscillations. Thus, measuring the presence of the oscillations or the lack thereof, via
the signal reflectance, one may infer charging events which leads to spin detection
via spin to charge conversion methods discussed in Section 3.1.1. The advantage
of the SLQD sensor is that it only requires one dedicated quantum dot and one
reservoir lead and thereby has reduced the lead count from the conventional SET or
QPC from three to one. In addition, the inherent heat dissipation of these sensors is
lower than that in a SET as the equivalent load presented by the sensor is typically
capacitive rather than the dissipative resistive loads presented by the SET or QPC.
The development, optimisation and experimental demonstration of the SLQD sensor

in P-doped silicon is discussed in Sections 3.3 and 3.4.

A variation in the SLQD method is to use the reservoir lead strongly tunnel-

coupled to one of the two quantum dots hosting a two-electron singlet-triplet qubit (as
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Figure 3.3: Tunnel rates of nano-scale sensor giving rise to AC resistive or
capacitive responses. The nano-scale sensors are probed with an RF voltage drive V' of
frequency w. The resulting charge movement @) and the current I = @’ are then plotted
alongside. (a) For typical charge sensors, the RF response in the current is resistive where
the current is in phase with the voltage. The charge movement lags the voltage pulse due
to a slow tunnel rate of the oscillating electrons (for example, the junction tunnel rate
for a QPC). (b) When probing typical gate-based sensors, the electron tunnel rate (for
example, that between two dots) is much faster than the driving frequency. Thus, the
charge movement is in phase with the probe voltage drive. Here, the current leads the
voltage by 90°; therefore, one may consider the equivalent circuit element of the nano-scale
sensor as an AC capacitance.

opposed to a dedicated quantum dot) to perform singlet-triplet qubit readout [130].
Here, electrons on a singlet-triplet qubit are pushed onto the first dot conditional on
the electrons being in a singlet state to enable a third electron to oscillate between
a nearby reservoir and the second dot. A possible disadvantage of using the SLQD
sensor to probe singlet-triplet states is that the strong tunnel coupling between the
reservoir to the second quantum dot, required for the sensor to ensure the fast tun-
nel rates to obtain the quantum capacitance, may degrade the qubit lifetimes and
coherence times as observed in a previous experiment [30]. Nonetheless, the SLQD
sensor has been shown to perform spin readout at temperatures of up to 1K [130]
(note that if a high-fidelity qubit can be formed at 1K, this negates the need for a

dilution fridge to operate the devices).

The final class of sensors that take advantage of the quantum capacitance is
the single-gate RF sensor which requires no dedicated quantum dot and is used
to detect the two-electron singlet-triplet qubit state hosted across two quantum
dots [29, 30, 57, 105, 131, 132]. Single-gate RF sensors require no additional con-
trol leads and integrate into existing single gates in the device (for example, gates
required to form or tune the qubit). The input RF voltage oscillates one of the

two electrons (forming the singlet-triplet qubit) between the two quantum dots to
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(a) Adiabatic quantum capacitance (b) Tunnelling capacitance
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Figure 3.4: Comparing the tunnelling and quantum capacitance modes of opera-
tion for single-gate RF readout. The energy diagrams show the singlet branches relevant
for single-gate RF readout (triplets forbid electron oscillations) where electrons may oscillate
by moving between the s1; and sgo charge states. (a) Quantum capacitance mode of oper-
ation where one adiabatically oscillates between the two ground states about either side of
zero detuning. (b) Tunnelling capacitance mode of operation where one oscillates between
the two charge states via the ground and excited states.

separate and bring both electrons onto the same dot. The oscillations only occur, to
form the quantum capacitance, if the qubit is in the singlet state as the triplet state
forbids the electrons entering the same dot due to Pauli spin blockade. The electrons
oscillated by switching between the two singlet-charge states si;; and sgy as shown
in the simplified energy diagrams (triplet states omitted for clarity) in Figure 3.4.
Typical operation of the single-gate RF sensor operates in the ‘adiabatic quantum
capacitance’ regime shown in Figure 3.4a. Here, one adiabatically cycles between
the two charge states via the ground state eigenstate; a technique that has success-
fully demonstrated single-shot spin readout [32, 132]. The single-gate RF sensor
has also been shown to operate in the tunnelling capacitance’ mode shown in Fig-
ure 3.4b where one resonantly drives the electrons between the ground and excited
charge states. The resonant tunnelling method has been used to show single-shot
qubit readout using SiGe quantum dots [133]. The advantages and experimental
implications of using the two different modes are discussed in Section 4.1.2.

For completeness one should note the cQED (circuit quantum electrodynamics)
implementations of the single-gate RF sensors that are desirable by-products in im-
plementing single photon mediated long-distance qubit couplers. Here, one couples
the charge state of an electron across two quantum dots, an electric dipole, to a sin-
gle photon inside a resonant RF cavity [134, 135]. The disadvantage of this method
is the need for high quality factor resonators (>5000 [136]) and quantum-limited

amplifiers (as a noisy amplifier will destroy the coherence of the single photon in
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the cavity). High quality factor resonators and quantum-limited amplifiers typically
tend to use superconducting circuitry that cannot operate at the high magnetic fields
required for spin qubit operation. Nonetheless, if one could utilise the long-distance
spin-photon coupling across two double-quantum-dots, the qubits could be spaced

further apart, making it easier to connect to the leads for qubit control [70].

A convenience of using RF reflectometry, common across all the summarised sen-
sor types, is that the input and output signal lines can be combined into a single line
via frequency multiplexing [29, 31, 57, 137]. That is, each qubit sensor (to be mea-
sured with RF reflectometry) is attached to a separate LC resonator with a different
resonant frequency. All the resonators are then connected onto a single transmission
line. If one wishes to address a given sensor, then the Rf input voltage is sent to
match the frequency of the resonator attached to the sensor. The other resonators
will block this RF input voltage signal as the frequency is off-resonant, or out of band,
to their LC' resonators. Since the probe signals encode information across different
frequencies, one may probe multiple frequencies (to address different resonators) to
perform simultaneous readout across gates connected to multiple resonators via a

single pair of coaxial cables routed to the mixing chamber.

The first long-term challenge of using RF qubit sensors is the construction of low-
loss (high quality factor) resonators required for high-fidelity readout. The accepted
solution for low-loss resonators is to use superconducting inductors |32, 138|). In
addition to the low-loss superconducting resonator, one needs to engineer matching
circuitry (for example, via a parallel capacitor [139]) to ensure that there is not a
large impedance mismatch between the superconducting resonator (interfacing with
the nano-scale device) and the input transmission line to ensure sufficient signal can
enter the nano-scale device (via the resonator). Collectively the superconducting
resonator and its matching circuitry take up large footprints (~4 mm?) mainly due
to the need for bond-pads [32, 137, 138]. Therein lies the second long-term challenge
of using RF qubit sensors over a large network of multiplexed resonators. That
is, larger resonators imply that the resonators will inevitably be further away from
the nano-scale device due to the packing geometries. It is important to have the
resonators close to the device to avoid large geometric parasitic capacitances that
reduce RF readout sensitivity as discussed later in Section 3.2. The proposed solution
is to use multilayer lithography and superconducting vias, where it is predicted that
one should be able to pattern the resonators with thinner tracks and tighter spacings

to achieve a density of thousands of resonators per square centimeter [137].
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3.1.3 Comparison of readout fidelities of solid-state qubit sensors

When operating a quantum processor via modern error correction codes, the need
for fast high-fidelity single-shot measurements is desirable. Single-shot readout refers
to the immediate resolution of a given qubit state in one measurement as opposed
to taking the average state over many measurements. In the latter case, one will
need to prepare the state identically many times in order to perform the multiple
measurements. In general, there are implementations that suggest that one repeats
the quantum algorithm and averages the read state over many repetitions to ob-
tain the solution such as the quantum computing proposals using linear quantum
optics [140, 141]. However, most modern proposals for universal quantum comput-
ers rely on real-time detection of qubit errors and thus, require single-shot detec-
tion |8, 142]|. The measurement fidelity of a single-shot measurement is the average
probability of correctly resolving the basis qubit states®. That is, the measurement
fidelity is defined as:

Foess = 22210, (3.1)
where Flgy is the probability of correctly measuring the basis state [0) given a qubit
in state [0) and Fjyy is the probability of correctly measuring the basis state [1) given
a qubit in state |1). Here, |0)/|1) are the measurement basis states for the qubit
(for example, ||)/|1) for single-spin qubits and singlet-sq /triplet-to for singlet-triplet
qubits). Given fault tolerant measurement fidelities above 99.9%, it is additionally
important that the readout time is as fast as possible; specifically, the measurement
time must be faster than the average qubit error rate to enable one to enable the real-
time error detection required by modern error-correction codes [142]. Table 3.1 lists
the fidelities and measurement times of some common experimental demonstrations
of single-shot readout in solid-state quantum dots.

The first experimental demonstration of single-shot spin readout in solid-state
quantum dots was achieved using a DC-QPC in GaAs where single electron spin-
states were resolved with an average measurement fidelity of 83% [111]. Later in an
ion-implanted Si-P quantum dot system, a DC-SET implementation achieved a mea-
surement fidelity of 96% [112]|. Further work in STM-patterned SETs in Si-P pushed
the measurement fidelity of single-spins towards the required fault-tolerant levels (for
example, in a surface code) at 99.8% [56]. The measurement fidelity of single-spin

readout using the spin-to-charge conversion method shown in Figure 3.1 is given by

3That is, the states are not some superposition of the basis states. Thus, only the basis states
which do not change on applying the collapse operator shall be considered
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the electrical visibility and the tunnelling statistics of the electron between its reser-
voir and its hosted quantum dot. The electrical visibility refers to the SNR (of the
SET or QPC output) of the charge transfer signal (when an spin-up electron tunnels
off the quantum dot and a spin-down electron tunnels onto the quantum dot) of a
spin-up electron when compared to the steady background that occur on detecting
a spin-down electron. The visibility can be improved by increasing the electrostatic
coupling between the charge sensor and the quantum dot hosting the target electron
spin. That is, a stronger electrostatic coupling implies a larger shift in the tuning on
the charge sensor to thereby better utilise the full signal contrast; the full signal con-
trast is between conduction and blockade in the context of SETs and that between
two quantised current steps in the context of QPCs. The electrostatic coupling can
be increased by bringing the target quantum dot closer to the charge sensor. One of
the reasons why STM-patterned Si-P quantum dots can achieve near fault-tolerant
measurement fidelities is because of the ability to place the target quantum dot closer
to the charge sensor (up to ~20nm in distance) to achieve a large electrostatic cou-
pling between the SET and the target quantum dot, such that the charge-transfer

signal brings the SET into complete Coulomb blockade and maximum conduction

Sensor Platform Type Leads Fidelity tmeas SNR
DC-QPC GaAs Single-spin 3 83% [111] 500 ps 3
RF-QPC GaAs | Singlet-triplet 3 97-98% [14] 1 us 3
DC-SET Si-P Single-spin 3* 96% [112] 100 ps 4
DC-SET Si-P Single-spin 3* 93% [80] 40 ms 5
DC-SET Si-P Single-spin 3* 1 98.4% [143] 1ms 5
DC-SET Si-P Single-spin 3* 99.8% [56] | 55-65ms | 3
RF-SET Si-P Single-spin 3* 91% [96] 15ms 12

SLQD Si-P Single-spin 1* N/A [31] < 1uys 1-2

SLQD Si-MOS | Singlet-triplet | 1T 98% [130] | 500 ps 2
SG-RF (a) Si-P Singlet-triplet | 17 83% [32] 300 ps 2
SG-RF(a) | Si-MOS | Singlet-triplet 17 73% [132] 2ms 1
SG-RF(t) SiGe | Singlet-triplet | 1T 98% [133] 6 us 2

Table 3.1: Experimentally measured spin-readout fidelities in quantum dot sys-
tems. The reported results are listed across different platforms. The sensor types in-
clude quantum-point-contact (QPC), single-electron-transistor (SET), single-lead-quantum-
dot (SLQD) and the single-gate RF (SG-RF) sensors. Note that the lead counts with x
indicate an extra dedicated quantum dot for the sensor. The T on the lead counts indicates
leads that are multi-purposed and must already be present for qubit control. The listed fi-
delities are that for single-shot spin readout, while ¢yea5 is the associated measurement time
and SNR is the approximate signal-to-noise ratio. SG-RF(a) refers to the use of adiabatic
quantum capacitance while SG-RF(t) refers to the use of the tunnelling capacitance.
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regimes unlike gate-defined quantum dots (>100nm). An additional improvement
to the visibility can come from low-temperature DC amplification® or via the use of
a cryogenic RF amplifier coupled to an RF-SET [96]. High electron visibility implies
high SNR and thus, one may increase the measurement speed (with the noise scaling
by square-root of the bandwidth, one may increase the bandwidth as long as SNR
is much larger than one). However, the measurement fidelity and readout times are
also a function of the tunnelling statistics. For example, the measurement fidelity
will be limited if the electron charge transfer signal is too short to resolve in time
given the available bandwidth due to fast electron tunnel rates between the quantum
dot and its associated reservoir. Similarly, long tunnel times between the quantum
dot and its associated reservoir implies that one needs to wait longer to ensure that
any spin-up electrons have tunnelled off the quantum dot. Therefore, high-speed,
high-fidelity measurements of single-spin electrons requires optimisation of the elec-
tron tunnel rates (between its host quantum dot and reservoir), maximisation of the
electrostatic coupling (between the quantum dot and the charge sensor) and max-
imisation of the available signal to noise ratio on the charge sensor (either via larger
charge sensor conductivity or using specialised circuitry like that in an RF-SET).
The SET and QPC have large lead counts and require an extra dedicated quantum
dot in the case of the SET. To reduce the lead count (to make it easier on scaling
up to many qubits), one may use the SLQD sensor (with a dedicated quantum dot)
which has shown the capability to achieve high electron visibility in under 1 us in
the context of spin-readout as shown by the results discussed in this thesis in Section
3.4 [31]. Experimental demonstration of single-shot single-spin readout with a SLQD
sensor has recently been demonstrated by a current PhD student Mark R. Hogg.
High-fidelity singlet-triplet readout for the two-electron spin state hosted across
two quantum dots has also been experimentally demonstrated. In GaAs, RF-QPCs
have been shown measurement fidelities of up to 98% with measurement times of
1ps by using standard Pauli-spin blockade techniques [14]. In reducing the lead
counts from 3 dedicated leads to a single multi-purposed lead (that is, integrat-
ing the sensor into a mandatory control gate), the single-gate RF (using adiabatic
quantum capacitance) sensor successfully showed single-shot readout in Si-P at a
measurement fidelity of 83% [32]. Single-gate RF sensing (using adiabatic quantum
capacitance) was also shown in Si-MOS with a measurement fidelity of 73% [132].
By using the tunnelling capacitance mode of measurement, single-gate RF sensing

was also shown in single-shot using SiGe quantum dots at a measurement fidelity of

*Johnson noise increases with temperature. Thus, to maintain good SNR, the signal should be
amplified while in the low-temperature environment.
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98% [133]. By utilising the SLQD sensor in Si-MOS where the sensor dot was one
of the two dots hosting the singlet-triplet qubit, a measurement fidelity of 98% has
also been recently demonstrated [130], as predicted by previous experiments [31].
The SLQD sensor operating in the configuration using the quantum dot hosting the
singlet-triplet qubit may not a desirable long-term solution as the strong reservoir to
dot coupling required in operating the SLQD sensor may degrade the singlet-triplet
qubit coherence times [30]. Thus, the single-gate RF sensor is proposed in large-
scale architectures® [29, 108]. As discussed in this thesis, the physics governing the
SLQD sensor is different to that of the single-gate RF sensor and thus, optimisa-
tion is different. Nonetheless, to improve the single-gate RF sensor measurement
fidelities towards fault-tolerance, a simple change is to utilise resonators with high
quality factors (such as resonators using low-loss superconducting inductors instead
of PCB surface-mount chip inductors [32, 138|). A high quality factor resonator
implies a narrow peak and thus, any shift in the resonance peak due to the quantum
capacitance will cause a larger shift in the signal reflectance as discussed in the next

section.

3.2 Resonance circuitry for detecting quantum capaci-

tance

Before designing or operating the low-lead count SLQD and single-gate RF sensors,
it is useful to separate the PCB electronics from the quantum physics governing the
nano-scale qubit sensor when trying to maximise the measurement fidelities. As both
the SLQD and single-gate RF sensors utilise a quantum capacitance during readout,
the actual circuit model description is universal across both sensors. That is, the
qubit sensors produce an AC quantum capacitance that is detected via resonator
circuitry external to the nano-scale device. Thus, the resulting circuit model (of
the macroscopic resonator and quantum capacitance from the nano-scale device)
enables one to design with optimal resonator parameters (for example, overall quality
factor or the resonant frequency) to maximise the measurement fidelity by only
considering the PCB electronics. Finally, on building the equivalent circuit model
of the surrounding PCB electronics, proper methods of analysis shall be established

to clarify misconceptions that may be gathered from literature. For example, the

"The SLQD can still operate as a high-fidelity qubit sensor (for both single-spin qubits via spin-
to-charge conversion or singlet-triplet qubits via Pauli blockade) when using a dedicated quantum
dot. However, its use for singlet-triplet readout when using one of the dots forming the singlet-triplet
qubit is not considered a long-term solution.
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proper definition of the RF readout signal shall be discussed in terms of the 1Q
plane [29, 31, 32, 57, 139] rather than the phase response alone as implied in previous
works found in the literature [30, 105, 110, 131, 132].

3.2.1 Equivalent circuit model of resonator and quantum dot

To create the electron oscillations that yield a measurable quantum capacitance,
an RF voltage drive must be injected into the corresponding lead of the device to
electrostatically drive the electron between the two sites (reservoir and quantum dot
in the case of a SLQD sensor and between two quantum dots in the case of the single-
gate RF sensor). To measure the small AC quantum capacitance, one attaches an
LC resonator to the gate lead as shown in Figure 3.5. The resonator is typically
implemented by connecting an inductor L between the coaxial line and the device
lead. The capacitance element C), of the LC resonator comes from the geometric
parasitic capacitance of the inductor rather than that of a physical dedicated circuit
element. The resonator will have internal losses modelled via a series resistance
R. In the case of surface mount inductors, R is dominated by the resistance of
the wire winding in the inductor. One may reduce the internal losses R, by using
superconducting inductors. In the case of superconducting inductors R is dominated
by dielectric losses, radiative losses and /or defects in the superconducting films [144,
145]. Finally, the discussion in Section 3.1.2 highlighted that from the tunnelling
response of electrons between two sites can lead to a resistive circuit element (in
the case of tunnel rates being slower than the input voltage drive frequency) and a
capacitive element. Thus, in general the current response of the nano-scale sensor
is best modelled via a resistor R, and capacitor C; as shown in Figure 3.5. Note
that the entire circuit is the equivalent AC-domain circuit involving the resonator
interfacing between the coaxial lines in the fridge to the lead corresponding to the

nano-scale sensor.

3.2.2  Using the resonator to detect electron oscillations

Given the equivalent circuit model of the resonator and the nano-scale sensor in
Figure 3.5, this section will discuss how the resonator apparatus can be used to detect

electron oscillations. It is first instructive to study the characteristics of the interface

5Note that this circuit model is simply the application of linear circuit theory where this is the
equivalent circuit model for the system at hand. Thus, any details such as resistive losses in the
inductor, stray capacitances and other minor corrections are absorbed into this single equivalent
model.
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Figure 3.5: Equivalent circuit model of a resonator used to detect single electron
oscillations in a nano-scale device. The resonator consists of the inductor L and its
associated capacitor, typically parasitic due to the resonator geometry, C},. The resistance
R represents internal losses intrinsic to the resonator itself. The resonator attaches itself to
a transmission line from which one sends or receives RF voltage signals. One connects the
resonator (via bond wires) to the gate lead of a nano-scale device (for example, a SLQD
sensor or a single-gate RF sensor). The resulting electron oscillations can be modelled via a
quantum capacitance Cy (for electron oscillation currents leading the RF input voltage by
90°) and the Sisyphus resistance R, (for electron oscillation currents in-phase with the RF
input voltage).

between the coaxial line and the resonator in terms of quality factors. Quality factors
are directly measurable quantities of a resonator that abstract away the values of
individual circuit elements. This simplification enables the experimenter to design
and characterise resonators using general quantities that are agnostic to the many
ways one may model the equivalent circuit of the resonator on the PCB [30, 109,
110, 146]. The choice of quality factors (internal and external) strongly influences
the measured readout signal strength as discussed below. It is important to realise

how the choice of quality factors give rise fo the different operating regimes.

Now consider a general series RLC' circuit (a resistor, inductor and capacitor
connected in series). By definition the quality factor Q is 27 times the ratio of

the energy stored to the power dissipated per cycle. Thus, one notes that Q =

. Energy Stored
Power Loss

loss is I2R. Thus, the quality factor for a series RLC circuit is:

. For a series RLC circuit, the energy stored is %L[ 2 and the power

o (.L)[)L

where wp = 1/ VLC is the resonant frequency of the RLC resonant circuit. The
resulting bandwidth of the bandpass filter formed by the RLC circuit can be shown
to be ~wp/Q. Thus, a high quality factor implies that the signal bandwidth will be
restricted (that is, a narrow peak in the frequency response transfer function). In

experiments the RLC' resonator circuit shown in Figure 3.5 is connected an external



90 Chapter 3. Compact RF sensors for Si-P qubits

transmission line. Upon loading the RLC circuit to a transmission line of impedance”
Z., the ‘effective quality factor’ (taking into account the total impedance of the

circuit®) is now:

o woL
- R+ 7.

Now one distinguishes the ‘internal’ quality factor Q;,, and the ‘external’ quality

Qeff (33)

factor Q. as follows:

L
Qe = 5~ (3.4)
L
Quxt = 7 (3.5)
Quf = Qint + Qaaai- (3.6)
_ QextQint
= == 3.7
Qeﬂ Qext + Qint ( )

The internal quality factor Q;,; represents the total losses within the resonator circuit
itself, with a low internal quality factor representing high internal losses. The external
quality factor relates to the coupling interface between the resonator circuit and
the external transmission line. The significance of the external quality factor Q.
is best understood in terms of the circuit reflectance. That is, any AC voltage
signal sent through the transmission line will observe an impedance presented by
the resonator circuit. An impedance mismatch will result in signal reflection while
perfect impedance matching results in the AC signal getting completely absorbed by
the resonant circuit. In the context of getting the RF signal to enter the gate lead
of the qubit sensor, one should be close to perfect impedance matching. However,
as discussed below, perfect impedance matching may not be desirable in the context
of obtaining maximal readout signal strength for high fidelity qubit readout. Now
noting the impedance of a series RLC circuit Z = R+ jwL + Jw% and the definition

of voltage reflectance p = g;gz, it is easily shown that:
Qex ( ; w wo
- (14 jQu (2 - 2))
o= - im MA@ )) (3.8)

in

te G (1 g0m (5 - 2))

"It is stressed that this is not necessarily the characteristic 50 Q-impedance of the transmission
line but the net impedance of the object to which the resonator couples. In practice, the coupling to
the external transmission line may be modified via the resonator geometry or adding extra circuit
elements such as a parallel capacitor [139, 146].

8The external impedance is considered to have a negligible reactance term in this analysis.
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The reflectance is given as a complex phasor where the real and imaginary parts are
termed the in-phase (I) and quadrature-phase (@) components. The magnitude of
the complex vector is the amplitude of the reflected voltage signal with respect to the
input voltage signal, while the complex argument is the phase of the reflected voltage
signal with respect to the input voltage signal. The resulting reflectance responses
are plotted in Figure 3.6. The plots show, as a function of input signal frequency,
the reflected amplitude and phase responses. The phasor representations of the
amplitude and phase values are also plotted in the [Q-plane. Now one may investigate
three regimes where the resonator is to be termed ‘under-coupled’ if Q. > Qint,
‘critically-coupled’ if Qu = Qi and ‘over-coupled’ if Qg < Qine [147]. Note that
the effective quality factors are kept the same in all three regimes for clarity.

The first regime shown in Figure 3.6a is the under-coupled regime. Here the
external quality factor dominates the internal quality factor and thus, implies that
the losses in the resonator are much greater than the equivalent external losses to
the transmission line. Equivalently stated, the impedance of the resonator is much
greater than that of the transmission line. In the extreme limit where Qq > Qi)
the resonator circuit looks like an open circuit termination to the transmission line.
The boundary condition for an open-circuit termination is given by Kirchoff’s current
law which states that current cannot escape; thus, the reflected current (moving in
the opposite direction to the incident current) must be equal in amplitude and phase
to the incident current yield zero net current. As voltage along the transmission
line is proportional to the current, the voltage must also be equal in amplitude and
phase to the incident voltage signal. Thus, at resonance, one expects the relative
phase difference between the incident and reflected voltage signals to be zero. Due to
the impedance mismatch, the resonator does not show full absorption (that is, zero
amplitude response) at resonance. The characteristic signature of the under-coupled
regime is the positive phase slope at resonance.

The second regime shown in Figure 3.6b is the critically-coupled regime. Here,
the internal and external quality factors are equal and thus, due to the impedances
being matched, there is no signal reflection at boundary between the transmission
line and the resonator circuit when at resonance. The characteristic signature of the
critically-coupled regime is the zero reflected amplitude response at resonance. The
phase is undefined in the critically coupled regime due to the null reflected signal.

The third regime shown in Figure 3.6c is the over-coupled regime. Here, the in-
ternal quality factor dominates the external quality factor. Equivalently stated, the
impedance of the resonator is much smaller than that of the transmission line. In

the extreme limit where Q;; > Q.:, the resonator circuit looks like a short circuit
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Figure 3.6: Resonator reflectance for different quality factor coupling regimes.
For each coupling regime, the reflected amplitude and phase responses are plotted as a
function of frequency. The IQ associated response is then plotted on the IQ-plane. The
resonators have a resonant frequency wg. The resonator only undergoes full absorption of the
input signal at resonance if the impedances of the transmission line and the resonator match;
that is, at critical coupling when Q;,, = Q.. The black dot indicates the resonant frequency
in each plot, while the red and blue dots indicate the lower and upper frequency bands when
the amplitude is half-way between its minimum reflection and maximum reflection of unity.
Note that the effective quality factor is kept the same across all three regimes for clarity.
(a) Under-coupled regime where the external quality factor dominates the internal quality
factor. A characteristic signature of the under-coupled regime is the positive phase slope
at resonance. (b) Critically-coupled regime where the internal and external quality factors
match. Here the phase at resonance is undefined. (c) Over-coupled regime where the
internal quality factor dominates the external quality factor. A characteristic signature of
the over-coupled regime is the negative phase slope at resonance.
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termination to the transmission line. The boundary condition for a grounded ter-
mination is that the voltages must sum to zero. Unlike the open-circuit termination
where the voltage at the end is twice that of the input voltage (as the reflected signal
has the same phase as the input signal), the reflected voltage must be the negation
of the incident voltage wave. A negated voltage translates to a phase change of
m as seen by the IQ curves encircling the origin in the IQ) plane unlike that in the
under-coupled regime in Figure 3.6a. Due to the impedance mismatch, the resonator
does not show full absorption (that is, zero amplitude response) at resonance. The
characteristic signature of the over-coupled regime is the negative phase slope at
resonance.

For each regime in Figure 3.6, there are red and blue dots indicating the points
in the IQ plane where the amplitude response is at half its peak height. One must
note that although the effective quality factors are the same in the plots showing
the under-coupled and over-coupled regimes, the resonator response traces out wider
margins in the IQ-plane for the over-coupled case. The wider spread of the over-
coupled response on the IQ-plane is important as shown later when selecting the
best quality factors in detecting a quantum capacitance.

When using the resonator with a device, the nano-scale sensor either degrades
the internal quality factor on presenting a Sisyphus resistance or shifts the resonant
frequency due to a quantum capacitance. In the case of a Sisyphus resistance (for
example, that presented by a SET or QPC), the junction resistance itself will degrade
the internal quality factor of the resonator and more so when the junction becomes
conductive. Typically one uses matching capacitors to tune the external quality fac-
tor to match the degraded internal quality factor (to ensure maximal signal transfer
to the device lead) when no electrons shuttle across the junction and there is minimal
junction conduction [31, 139, 146]. On achieving junction conduction, the internal
quality factor degrades further (due to the dissipation across the tunnel junction)
and the RF readout signal contrast moves from the critically-coupled regime to the
under-coupled regime. That is, the readout signal decreases along the I-axis on the
IQ plane and there is no phase change (as the resonant frequency of the resonator
circuit remains unperturbed). Thus, one typically only measures the reduction in
the reflected amplitude response [14, 33, 109].

However, in the case of measuring a quantum capacitance, there is no dissipa-
tion to perturb the resonator quality factor. Nonetheless, the resonant frequency
is instead perturbed to a lower frequency by dw. The resulting shift in the signal
reflectance Ap is proportional to the qubit readout signal strength YT given an input

incident voltage signal of amplitude Viy:
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Figure 3.7: Shift in reflectance when measuring quantum capacitance over differ-
ent quality factor coupling regimes. For each coupling regime, the reflected amplitude
and phase responses are plotted as a function of frequency. The resonators have a resonant
frequency wg which shifts to wg — dw on detecting a quantum capacitance as shown by the
dashed curves. The markers indicate the shift in the reflected response on measuring a
quantum capacitance while continuing to probe the incident voltage signal at wy. Note that
the effective quality factor is kept the same across all four regimes for clarity (thus, the
peak widths are all the same). (a) Under-coupled regime where the external quality factor
dominates the internal quality factor. (b) Critically-coupled regime where the internal and
external quality factors match. (¢) Over-coupled regime where the internal quality factor
dominates the external quality factor. (d) Far over-coupled regime where the internal qual-
ity factor is much higher than the external quality factor. (e) The responses in (a)-(d) are
plotted in the IQ plane. The curves indicate the possible shifts in the reflectance that may
occur for different frequency shifts. The markers indicate a typical shift with circles indi-
cating the typical noise cloud measured in the I and @Q channels. The SNR is proportional
to the net change in the reflectance Ap on the IQ plane.
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T = Vi Ap. (3.9)

Since the input voltage signal is still at the initial resonant frequency, the reflected
amplitude and phase responses effectively trace out the amplitude and phase re-
sponses at wg + dw as shown in Figure 3.7. The shift in the reflected response for the
different quality factor regimes are shown in Figure 3.7a-c, with Figure 3.7d showing
the extreme case when the internal quality factor is much higher than the external
quality factor where the initial response (when no quantum capacitance is present)
lies in (/,Q) = (—1,0) on the IQ-plane. The combined shifted response in the am-
plitude and phase is best viewed in the IQQ plane. When no quantum capacitance
is present, the reflected signal (noting that the incident voltage input is set to the
original resonant frequency wp) remains on the I-axis. The shaded circles illustrate
the level of expected noise that would be typically seen in the I and @) channels
during experiments?. The curves in the IQ-plane in Figure 3.7e show the points in
which the shifted response may move on the IQ-plane due to a shift in the resonant
frequency from a quantum capacitance. A larger quantum capacitance (larger shift
in the resonant frequency) or a higher effective quality factor (a narrow peak) implies
that the contrast in shifted reflected response is greater with the largest shift ending
up at (I, Q) = (1,0). As there will still be noise at the shifted point, there are shaded
circles drawn there too. The effective signal to noise ratio is the distance moved in
the IQ-plane divided by the noise standard deviation in the IQ plane. For the same
effective quality factor, the 1QQ plane responses from Figure 3.7a-c clearly show that
having the external quality factor dominate the internal quality factor is undesirable

as the shift in the reflectance is the smallest.

In the over-coupled regime (where the internal quality factor dominates the ex-
ternal quality factor), a small shift in the resonant frequency results in a shift in the
reflected response that traverses a small portion of the semi-circles in the IQ-plane
(purple and light blue curves in Figure 3.7e), with the amplitude remaining mostly
unperturbed while the changes mostly occur in the phase. This leads to many au-
thors only looking at the shifted phase response [30, 105, 110, 131, 132]. However,
maximal signal strength is obtained when observing the overall shift in the reflected
signal in the IQ-plane [29, 31, 32, 57, 139]. In addition, by only looking at the phase

shift, one would incorrectly declare that being close to the critically coupled regime

9The noise comes from typical thermal Johnson noise, stochastic tunnelling noise [110, 148] or
photon shot noise [149]. Photon shot noise affects the phase of the input RF voltage signal to cause
noise in the phase relationship between the voltage and current signals (which gives rise to the
quantum capacitance) to create a source of phase noise in the qubit readout signal.
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yields the maximal signal response. For example, consider the over-coupled response
given in purple with the severely over-coupled response in light blue given in Fig-
ure 3.7e. The purple curve has a greater phase signal response (approximately 49%
more at 95.1° for the purple curve verses 63.7% for the light blue curve), but the
light-blue curve has a greater shift (and thus, a greater signal to noise ratio) on the
IQ-plane (approximately 52% more at 0.69 for the purple curve verses the 1.05 light

blue curve).

As the shift in reflectance Ap on the IQ-plane relates to the readout signal
strength T, it is useful to find an analytic expression to use in finding the opti-
mal quality factors for a given experiment. Now if a quantum capacitance C; were
present, due to electron oscillations between two sites, the resonant frequency will

shift from 1/,/LC) to 1//L(Cp + Cy). Taking this shift in resonant frequency to be
perturbative, the change in reflectance, derived in Appendix D.1, is approximately:

2
2QextQ1nt . ﬁ (310)

a (Qext + Qint)2 Cp

Thus, for an input signal voltage amplitude of Vi,, the measured change in the

reflected response is:

) 2
T = Knlossvin : 4QeXtth : & (3.11)

(Qext + Qint)2 Cp

Here 11455 is the factor of the signal amplitude that remains when entering the reso-
nant circuit and K is the net gain on the reflected signal amplification chain. One
may obtain the measured signal response from the 1Q) demodulator. The point where
there is no quantum capacitance, in the IQ plane, will shift by distance Y upon its
presence. Equation 3.11 neatly highlights the significance of reducing the parasitic
capacitance Cp (due to T o 1/C),) and the benefits of having a high effective qual-
ity factor. However, in order to decide the optimal choice in quality factors, it is
important to consider the role of quality factors when considering the net RF sig-
nal that reaches the gate lead of the nano-scale sensor V.. Finding the voltage on
the device lead is also useful when calculating the quantum capacitance, as shown
in later sections, since the quantum capacitance is nonlinear and depends on the
voltage amplitude at the gate Vig,.

In the circuit model, V,. is equivalent to the voltage division across the capacitor.
To find the load voltage, consider the ‘load’ to be the entire RLC circuit. Taking the
spatial phase as zero across the RLC circuit element (treated as a lumped element

as the size of this circuit element is much smaller than the wavelength of the RF
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drive), the total voltage deposited upon this load will be given by Vi, (1 4 p), where
p is the reflection coefficient [150]. Now given the voltage across the lumped load,
the voltage drop across the capacitor can be shown to be boosted by Q. Thus,

writing p in terms of Q;,; and Q.;, the voltage at the gate of the device is:

Vae = 2nlossQeﬂVin~ (3'12)

One immediate use for this equation is that one can calibrate the losses in sending a
voltage signal to a given gate in the nano-scale device. That is, the RF broadening
of a charge transition gives the voltage amplitude V. on the device lead for a given
input voltage amplitude Vi,. Thus, as the effective quality factor is known from
characterising the resonator, the loss can be found by fitting the linear relation
between V. and Vi,.

Finally note that although the heavily over-coupled regime gives larger shifts in
reflectance, one should not achieve this regime by solely decreasing Q.,; to zero for
that would imply that no signal enters the resonant circuit to trigger the electron
oscillations required to manifest the quantum capacitance. Figure 3.7d clearly shows
that the majority of the input voltage signal does not reach the device in the severely
over-coupled regime as most of the signal is reflected at resonance. If the severely
over-coupled regime were to be reached by setting the external quality factor to
zero, the effective quality factor becomes zero and by Equation 3.12, the voltage
signal amplitude on the gate lead is zero. Thus, one typically sets the internal
quality factor to be as high as physically possible in the over-coupled regime (usually
via the use of low-resistance inductors such as superconducting inductors). The
external quality factor is set as high as possible (by impedance matching the external
transmission line to the resonator via capacitance networks [137, 139, 146]) with
the limit set by the required circuit bandwidth, which approximately relates to the
quality factor via BW~wq/Qg [147]. That is, having too high an effective quality
factor limits the bandwidth of the readout signal to which one may measure. Given
that the T is expected to be in the order of 1077-107%s [17, 34, 69], in the context
of performing error detection, the readout time must be faster than 1 us, leading to
required bandwidths in the order of 1-10 MHz. Thus, with a resonant frequency of
100 MHz, the effective quality factor must not exceed 100. Note that the bandwidth
cannot be readily increased by increasing the resonant frequency as the electron
tunnel rates (whether in a SLQD or a single-gate RF sensor) may not be fast enough
to respond such that the charge is perfectly in phase with the voltage to get a good

quantum capacitance as shown in Figure 3.3. However, in the case of a single-gate RF
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sensor operating in the tunnelling capacitance regime as shown in Figure 3.4, one may
have resonant frequencies in the order of 5 GHz (to match the tunnel-coupling [133])

and thus, achieve 10 MHz bandwidths by using an effective quality factor of 500.

3.2.3 Summary of design considerations

The analysis presented in this section place certain design guidelines regarding opti-

mal RF readout. The key guidelines are:

e The geometric parasitic capacitance C), of the resonator must be made as small
as possible. That is, the greatest percent change in the resonant frequency
1/ \/TCP due to a quantum capacitance comes from making (), small. One can
minimise C}, by reducing the inductor footprint, reducing substrate electric

permittivity and removing nearby copper ground planes.
e The internal quality factor Q;,, must be made as large as possible (see below).

e The external quality factor Q. is set to the maximum value such that one
still retains the required measurement bandwidth (given by the effective quality

factor Q.g) while remaining in the over-coupled regime.

To increase the internal quality factor (for maximum readout signal strength), one
usually reduces the resistance of the inductor. One may make the resistance zero
by using a superconducting inductor, in which case, the losses limiting the internal

quality factor are:

e Dielectric losses - RF signals interacting with the surrounding dielectric will
undergo dissipation. One can reduce dielectric losses by etching away the

surrounding substrate dielectric around the inductor [151].

e Radiative losses - source of loss due to the large inductor footprint acting as an
antenna to radiate RF signals away. One can reduce radiative losses by using

a smaller inductor footprint [145].

e Defects in film - source of loss due the RF signal exciting pools of charge trapped
within substrate defects. Low defect superconducting films can be optimised

at the fabrication level by varying the growth and etching strategies [144].

e Magnetic fields - large magnetic fields (as required for the typical operation of
spin qubits) can cause the substrate electrons to align with the magnetic field

and thus break superconductivity. One can reduce the impact of magnetic
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fields by placing the superconducting inductor parallel with the magnetic field
and by using a superconductor with a high critical field (maximum magnetic
field before superconductivity breaks) such as NbTiN. In addition, the critical
field is inversely proportional to the superconducting film thickness. Thus, thin
NbTiN films are a good candidate for the detection resonators [152-154].

e Abrikosov vortices - stray magnetic fields can cause supercurrent vortices within
the superconducting film that cause resistive losses and degrade the supercon-
ductivity. One may disrupt the formation of Abrikosov vortices by patterning

meshed grids on the superconductor [154].

3.3 Theoretical model of a single-lead-quantum-dot sen-
sor (SLQD)

Whilst the proposed singlet-triplet architecture aims to use single-gate RF sensors
integrated into pre-existing gates for singlet-triplet readout, the utility of a charge
sensor was highlighted in Figure 2.2.5 in the context of device characterisation and

verification!?

. Thus, it is desirable to have compact charge sensors in the design
of the overall architecture to act as diagnostic probes. The SLQD sensor can be
inserted into Si-P devices without taking much space real-estate as it requires only
one dedicated lead. In the scope of this thesis, the development of the SLQD sensor
has paved the pathway to optimise the RF circuitry for the single-gate RF sensor.
In order to better understand the optimal operating conditions and the impact
of all SLQD parameters (such as electron tunnel rates I'g, resonant frequency wy,
input voltage amplitude Vi, resonator quality factors and electron temperature),
an analytic model was built on previous theoretical ideas where one considers a rate
equation describing the dot to reservoir electron oscillations in the SLQD sensor [109].
The key points addressed and improved in the modelling of the SLQD sensor, when

compared to previous literature, include:

e A better metric for SLQD sensitivity. Previous works on the SLQD sensor
have been in the context of ‘charge-sensitivity’ in detecting electrons oscillating
between a reservoir and a dot in the SLQD sensor [109, 110]. However, the

‘charge-sensitivity’ metric is not the main metric in the context of qubit readout

198ingle-gate RF sensors require fast electron tunnel rates. By design, to help isolate the double-
dots hosting the singlet-triplet qubit, the only charge transition with a sufficient electron tunnel
rate is the inter-dot transition. Thus, if one wished to count the electron number on the dots or
view all charge transitions in general, a charge sensor is useful in the near vicinity.
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where one is concerned with the ability to sense charge directly on nearby
quantum dots rather than that solely across the reservoir and the quantum
dot in the SLQD sensor. That is, nearby charging events shift the potential of
the quantum dot in the SLQD sensor such that electron oscillations no longer
occur directly on the SLQD. In the context of charge sensing (for example, in
high-fidelity single-spin readout using spin-to-charge conversion), one therefore

becomes more interested in the resulting signal contrast.

Development of a full analytic model, including the readout signal strength
at high powers in the nonlinear regime. Previous experiments typically oper-
ated at lower input powers < —100dBm and did not explore the high power
nonlinear regime. This is because previous theory stated (correctly) that the
quantum capacitance indeed reaches a peak value with respect to the input
voltage amplitude Vi, such that the optimal readout signal might be obtained
by setting Vi, to maximise the quantum capacitance. However, our analytic
modelling showed that the readout signal in fact, monotonically saturates at
higher input voltage amplitudes rather than peaking - a fact that was experi-
mentally verified as shown later in Section 3.4 [31]|. This better understanding
of the SLQD led to better optimisation and characterisation techniques (also

discussed in Section 3.4).

SLQD response at high powers in the nonlinear regime. The analytic solution
also predicted high frequency harmonic nonlinearities in the reflected readout
signal. One could exploit these nonlinearities to build exotic RF components
such as an RF mixer as subsequently verified experimentally by a current PhD
student, Mark R. Hogg [155].

This section will derive the analytic model for the SLQD sensor while discussing the

theoretical predictions regarding the optimal operation of the SLQD sensor.

3.3.1 Developing a semi-classical model of the SLQD sensor

The operation of the SLQD sensor was modelled via a semi-classical rate equation

as proposed previously in the literature. Here the solutions were found analytically

to better study the functional trends in the SLQD parameters rather than simple

numerical simulations [109, 110]. The analytic solution was found via a Fourier se-

ries. The Fourier series solution yielded the average steady state electron occupation

probability, from which one finds the current and subsequently the nonlinear quan-
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tum capacitance. This section shall present the Fourier series solution, while the

following sections discuss the trends in key system parameters.

Now consider a quantum dot tunnel-coupled to a reservoir. The reservoir has a
continuum of states with the electron filling probabilities given by the Fermi-Dirac
distribution function. States below the reservoir’s Fermi level are mostly filled while
states above the Fermi level are mostly empty. By changing the voltage on a gate, one
may periodically raise or lower the dot’s energy level with respect to its reservoir’s
Fermi level as depicted in Figure 3.8. When the dot’s energy level is above the
Fermi level (I), the probability of finding an empty state on the reservoir with the
dot’s energy level is high, so the electron on the dot tunnels onto the reservoir. On
lowering the dot’s energy level to the reservoir’s Fermi-level (II), the probability of
finding a filled state with a free electron on the reservoir is 50% and the dot typically
remains empty. On lowering the dot’s energy level below the Fermi level (III), the
probability of finding an electron with the same energy level as the dot is high and
thus, an electron tunnels onto the dot from the reservoir. On raising the dot’s
energy level (IV), the probability of finding an empty state on the reservoir is 50%
and the electron typically remains on the dot. The cycle repeats on raising the dot’s
energy level above the reservoir Fermi-level once more (I) to result in cyclic electron
oscillations between the dot and its reservoir in synchrony with the input voltage
signal. By considering the resulting current on the reservoir lead and its relationship

to the input voltage signal, one may find the resulting AC quantum capacitance.

The schematic shown in Figure 3.8 can be realised mathematically via a classical
rate equation. Now the electron tunnelling events are stochastic by nature with the
rate given by the Fermi’s golden rule. However, one may investigate the average
steady-state behaviour over many cycles by considering the average tunnel rates of
electrons moving from the reservoir to the dot I'y and electrons moving from the dot
to the reservoir I'_. Now one may write the classical rate equation governing the
electron state probabilities (P, being the probability that of an electron occupies the
dot and Py being the probability that the dot is empty):

d
LP.=1T,.P—T_P
{ dattle +40 e (313)

4Py=T_P.—-T,P

The idea is that the change in the occupation probability changes with the tunnel
rates. For example, the probability of occupying the dot P, increases by the reservoir
to dot tunnel rate if empty and decreases by the dot-to-reservoir tunnel-rate if full.

Since probabilities must sum to unity, the equations simplify into:
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Figure 3.8: Electron oscillations between a reservoir and a quantum dot in a
SLQD sensor. Electrons in the reservoir (shaded areas) are given by the Fermi-dirac
distribution in which states below the Fermi level Er are filled and states above are mostly
empty. The dot has one discrete energy level to which the electron may occupy. The input
voltage is applied to the reservoir lead; thus, positive voltages, push dot’s energy level above
the reservoir Fermi level. In the positive portion of the voltage cycle (top), the electron on
the dot tunnels off the dot and onto the reservoir. On lowering the dot’s energy level to the
Fermi-level (right), no new electrons enter the dot as most of the states on the reservoir are
filled. On lowering the dot’s energy level below the Fermi-level (bottom), an electron tunnels
onto the dot. Finally, the electron remains on the dot (left) on raising the dot’s energy level
back to the reservoir Fermi-level. On repeating the four stages, electrons oscillate between
the reservoir and dot periodically with the incident voltage signal.
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ip =T7,(1-P)-T_P, =T, —(I'y +T_)P.. (3.14)

To find the tunnel rates, one applies Fermi’s golden rule which states that trans-
mission occurs when the two states (an electron state on the reservoir and the dot’s
energy state) are equal in energy. On applying Fermi’s golden rule for a continuum
of states in the reservoir and the single discrete state on the dot, one may calculate

'+ and I'_ as derived in Appendix B.1:

Lo
1+exp (ié—%)

ry = (3.15)
where ['g is twice the average tunnel rate of electrons through the tunnel barrier in
between the reservoir and the dot. AF is the energy difference between the outer
energy level on the dot (into and from which the electron tunnels) and the reservoir
Fermi level. Since algebraically one notes that I'y +I'_ = I'g, the ordinary differential

equation given in Equation 3.14 becomes:

dP, T
- TyP. = 0

dt 14 exp (é—’?p)

Now consider the dot’s energy level to be aligned with the reservoir Fermi-level.

(3.16)

By applying a voltage AV to a given gate in the device (with a lever-arm ag4 to
the quantum dot), one can change the energy level on the quantum dot by AE =
—eagAV (as shown by Equation A.8 in Appendix A.1). However, if the gate one
which is changing the voltage is the reservoir itself, then the reservoir energy level
must be drained of electrons and thus, the Fermi-level changes by —eAV. Thus, in
the case of applying the voltage to the reservoir, the net change in AE is e(1—ay)AV.

In summary:

AE = eo, AV
1— a4 Gate g is reservoir to dot . (3.17)
(8% =
" —ay  Gate g is not reservoir to dot

Note that in typical operation of the SLQD, one will be applying the voltage signal
to the reservoir (that is, a,q = 1 — oy). However, if one were to feed the voltage
signal via a different gate lead, then one should note this subtlety. Now the system
shall be detuned (via manipulation of the gates) such that when V' = 0, the reservoir

and dot energy levels are degenerate. Now one applies a RF input voltage:
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V(t) = Vo + Ve cos(wt), (3.18)

where Vj is the DC voltage offset from the degeneracy point, V. is the RF driving
amplitude and w is the angular frequency of the RF drive. Note that V,. 2 Vj for
one cannot cyclically tunnel an electron on and off the dot without letting the dot’s
energy level cross the below and above Fermi-level respectively. Applying this RF

excitation to the rate equation in Equation 3.16 yields:

dPe + TP, Lo
T 0Lf'e = .
1+ exp <22T:;i (Vo + Vae cos(wt)))

= (3.19)

Now the right hand side is clearly periodic in time. Thus, the steady-state a.c.
solution to this ordinary differential equation is naturally written in the Fourier basis
as shown in Appendix B.2. Given the solution P.(t), one may construct the charge
occupancy by simply noting that Q(t) = —eP.(t). To calculate the resulting current
through the gate (to which the voltage signal is applied) one needs to calculate the
charge per unit time on the gate Q4(t). Appendix A.1.6 explains how compensating
charges must flow into gates when the charge state of a dot changes. First consider
the case where the voltage signal is applied to the reservoir of the dot itself. In this
case, the reservoir loses an electron each time an electron occupies the dot: Q(t).
However, on occupying the dot, a compensating charge of opposite sign must also
flow: —ayQ(t). This yields a net (1 — ay)Q(t) = a,gQ(t). In the case of applying
the voltage a gate lead that is not the reservoir of the dot, the only charge flow
that occurs is the compensating charge: —ayQ(t) = a¢@Q(t). Thus, in all cases, the
net charge flow into the gate, to which the resonator is attached, is: —ecyqPe(t).
Noting that the steady state current is simply the time-derivative of the charge, the

probability of occupation and the currents are given as:

P(t) =30, Ay (p) €08(nWt + ¢ ()

Ay = e it - F (s Vae segt Vo) (320)
Gn(p) = — arctan %

I(t) = > 02 Angry sin(nwt + ép(p)
Anny = 5 s g Ve F (gt Ve S Von) | (3.21)

— nw
Gn(r) = T — arctan "

where F'(z,y,n) is defined in Appendix B.2.2:
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1 (™  sin(t)sin(nt)
F(a,y,n) = m /_,T cosh? (y + xcos(t))dt' (3-22)

That is, for an injected voltage signal V'(t), the current response is nonlinear and
has an infinite set of sinusoidal waveforms of frequency nw. Before discussing the
properties of the AC current response in the next section, it is instructive to calculate
the RF signal strength that would manifest when using a SLQD sensor. To find the
response, the equivalent AC impedance must be found. Now expanding the current
given in Equation 3.21 via the compound angle identity yields two orthogonal terms

that will help find the effective capacitance and resistance of the dot:

nw

I)\/I‘%jt nw)? \/F%+(nw)2

Capacitive Resistive

I,(t) = cos(nwt), (3.23)

sin(nwt) + Ay(n)

where one notes the identities: cos(arctan(a/b)) = b/v/a2? 4 b2 and sin(arctan(a/b)) =
a/va? + b2, The currents’ phase relationship with the injected voltage wave V()
are ‘capacitive’ and ‘resistive’. Note that the phase relationships only have meaning
for the first harmonic n = 1. In the case of the ‘capacitive’ portion, taking Ay to
be positive, is the portion of the current that ‘leads’ the voltage by 90°, while the
‘resistive’ portion of the current is in phase with the voltage. Thus, in a circuit-model
description, the device acts as an AC capacitance and resistor in parallel'!. It is of
interest to note that the phase term ¢,y dictates the capacitive or resistive nature
of the quantum dot to reservoir system. When I'g > w, the dot-to-reservoir system
is AC capacitive in nature and resistive otherwise. Now the equivalent nonlinear AC

capacitance is given by: -1 ‘I/((Zw)) Thus the ‘quantum capacitance’ is:

2.2 2
e“a I'; ex ea
C Vae, Vi L - F Ve, —=Vo, 1 | , 3.24

am) (Vae: Vo) = o 7 I2 ( w)? 2%kpT “ 2kpT " (3:24)
where V(nw) = V,.. Note that the voltage at nw is zero for all n > 1; thus,
this effective capacitance at n > 1 is a harmonic-based distortion metric showing
the ratio of the current response, to a given voltage input, at some higher frequency.
Now similarly, one may find the equivalent nonlinear AC resistance by taking: V((W))

Thus, by utilising the same methods, the ‘Sisyphus resistance’ is:

"Note that for n > 1, this description is the current response at a given frequency nw for an
injected voltage wave of frequency w
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-1
, (3.25)

2.2

e« nw?T ex eq
R, = 9. - F Y Ve —2 V),
T 1 4kpT T3+ (nw)? <2kBT “ 2%epT "

The quantum dot thus, acts as a capacitor C, in parallel with a resistor R, due to the
quantum capacitance and Sisyphus resistance respectively. Under typical operation
of the SLQD sensor in Si-P, the quantum capacitance term dominates the mostly
negligible Sisyphus resistance. For example, consider some typical experimental pa-
rameters [30, 31, 155]: f = 250 MHz, I' = 10 GHz, a,y = 0.5, T' = 0.25. Taking
Vo = Ve = 0 to give the maximum quantum capacitance (since the integral of sine-
squared is 7, '(0,0,1) = 1) of C; ~ 460 aF (an AC impedance of 1/(wCj) = 1.4 MQ)
and a Sisyphus resistance of R, ~ 55M(). Thus, the Sisyphus resistance is an or-
der of magnitude larger than the AC impedance of the quantum capacitance term.
Thus, the SLQD sensor predominantly operates in the quantum capacitance regime
and one may ignore the Sisyphus resistance term when calculating the readout sig-
nal strength as done so in the previous calculations in Section 3.2. Nonetheless, the
Sisyphus resistance is important when calculating the power dissipation of the SLQD
sensor as discussed in Section 3.3.4.

Finally, one may input the expression for Cj; into Equation 3.11 to obtain the
RF signal strength as discussed in the next section. It shall be shown that the point
of maximum quantum capacitance is not necessarily the point of maximum readout

signal strength.

3.3.2 Quantum capacitance and measured RF signal response

The quantum capacitance given in Equation 3.24 (taken for n = 1) has several
key factors. The I'2/(T'3 + w?) factor implies that the quantum capacitance is only
significant when the tunnel rate is much greater than the driving frequency: I'g > w.
Another key factor is the spectral function F(z,y, 1) defined in Equation 3.22. The
spectral function, plotted in Figure 3.9a, governs the nonlinearity as a function of
the detuning offset V4 and the input voltage amplitude V.. The spectral response
is non zero within the conical region defined by V,. > Vj as expected when realising
that the voltage amplitude V,. must be large enough to sweep past the degeneracy
point Vp = 0 during each cycle. Similarly, as expected the quantum capacitance
peaks at zero voltage offset (Vo = 0) for this maximally cycles the voltage into
the regions where electrons are more likely to move onto and off the quantum dot
as illustrated in Figure 3.8. The spectral function drops the quantum capacitance

monotonically downwards with increasing V. as shown in Figure 3.9b when plotting
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Figure 3.9: Theoretical model of the quantum capacitance of a SLQD sensor
as a function of DC offset from Fermi-level V; and RF voltage amplitude V..
(a) The quantum capacitance drops monotonically with increasing RF voltage amplitude.
The peak quantum capacitance (plotted in proportion to the maximum capacitance that
occurs when V,. — 0) occurs when the quantum dot in the SLQD sensor is aligned with the
reservoir Fermi-level: V5 = 0. The quantum capacitance is null outside the cone V. > |Vo]
as the RF voltage amplitude must be large enough to sweep the dot’s energy level past the
Fermi-level to oscillate electrons on and off the dot in the SLQD sensor. (b) The quantum
capacitance shows a monotonic decrease when plotting of the peak capacitance (at Vo = 0)
as a function of increasing RF voltage amplitude V..

the peak response at Vj = 0. Most papers in the literature declared that the best
response therefore, occurred with perturbative input voltage amplitudes (V. — 0),
in which the capacitance maximum is approximately constant with V. (the linear
regime). A consequence of this viewpoint is that one may indefinitely obtain a larger
signal response (by maximising the capacitance) by setting the temperature T close
to zero (as Cq < 1/T).

It is important to understand that the quantum capacitance should not be con-
sidered by itself in isolation as maximising the capacitance does not give the best
results. One should instead maximise the readout signal strength T (as it directly re-
lates to signal to noise ratio of the sensor readout and ultimately the fidelity of qubit
readout). By taking the expression for the quantum capacitance in Equation 3.24
and substituting it into the expression for the readout signal strength in Equation

3.11, one obtains:

2Qext Qi2nt K7710ss I‘(2) 620‘39 Vin e ea
— : : : F( o TgV,l). 3.26
(Qext + Qint)2 Cp F(2) + w? 4kiBT‘ 2kpT "¢ 2kpT 0 ( )

| R |
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The first factor expresses the resonator circuit parameters where one maximises the
internal quality factor and sets the external quality factor to suit the desired circuit
bandwidth as discussed in Section 3.2.2. Similarly, the gain K, input cable loss factor
Moss and the parasitic capacitance C), are separate circuit parameters concerning the
resonator. The second factor signifies the degree to which the SLQD sensor provides
a capacitive load with I'g > w being the limit where the factor becomes unity.
To better view the trends in the readout signal strength, one may write the input
voltage amplitude Vi, in terms of the input voltage amplitude on the gate of the
SLQD sensor:

ant K €Ellrg I‘(2) €Qrg eay eay
G tGn G 2 W akr e P E e 1) 627
[ | | L |

Now the first factor now clearly highlights how a large ratio of the internal to external
quality factors is favourable for maximal readout signal strength. With the second
factor being similar to before, the last factor is of interest. The spectral function is
now in the form of x - F(x,y,1) as plotted in Figure 3.10a. As with the quantum
capacitance trends, the peak readout signal strength occurs at Vj = 0 with the
non-zero response being approximately within the cone V,. > V. The readout
signal strength however, in contrast to before with the quantum capacitance, does
not monotonically decrease but in fact, monotonically increases and saturates at
high V. as shown by the plot in Figure 3.10b (cutting the maximal response across
Vo =0).

The saturating response of the readout signal strength at high RF input voltage
amplitude is contrary to that discussed in prior literature [110]. When considering
the diagram of the SLQD sensor’s operation in Figure 3.8, on each cycle of the input
voltage signal, one needs to bring the dot’s energy level well above the reservoir
Fermi level to ensure the electron can tunnel off the dot and well below the reservoir
Fermi level to ensure a new electron can tunnel onto the dot. The voltage amplitude
therefore must be large enough such that one sweeps past the smearing of the Fermi-
level due to a finite temperature. Thus, the ratio of the swept energy scale eay4 Ve
must be greater than the temperature-smeared energy scale 2kpT" on the reservoir.
Table 3.2 highlights some ratios of the two energy scales (RF amplitude sweeping
the dot’s chemical potential ea,4Vs. to the thermal energy of the electrons in the
reservoir 2kgT) and the resulting fraction of the maximum possible signal. When

the voltage amplitude energy scale (to which the dot energy levels move) equals the
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Figure 3.10: Theoretical model of the RF readout signal strength of a SLQD
sensor as a function of DC offset from Fermi-level and RF voltage amplitude. (a)
The readout signal strength (plotted as a function of the maximum possible signal strength)
increases monotonically with increasing RF voltage amplitude. The peak readout signal
occurs when the quantum dot in the SLQD sensor is aligned with the reservoir Fermi-level:
Vo = 0. The readout signal is null outside the cone V. > |Vp| as the RF voltage amplitude
must be large enough to sweep the dot’s energy level past the Fermi-level to oscillate electrons
on and off the dot in the SLQD sensor. Note that the factor of /4 is to normalise the peak
signal strength since Tli_}n;oq,' - F(x,0,1) = 4/7 as shown in Appendix B.2.3. (b) The RF
readout signal shows a monotonic increase when plotting of the peak RF readout signal (at
Vo = 0) as a function of increasing RF voltage amplitude V..
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thermal energy smearing of the reservoir, the signal is only 64% of its maximum
possible value, while having the voltage amplitude being 4 times larger yields a
fraction of approximately 97%. Typically in experiments one would not want to
indefinitely increase the input voltage as the charge transition would continually
broaden as shown in Figure 3.10 across the Vj axis. A broader charge transition
implies that charge detection (on a nearby quantum dot) would require a larger shift
in the SLQD quantum dot’s transition peak (that is, a need for stronger electrostatic

coupling which would typically reduces the range of the SLQD sensor).

Ratio ;ar Vae | Tpeak/Tmax
1 0.637
4 0.972
7 0.991
21 0.999

Table 3.2: Obtaining the maximum possible readout signal strength by increas-
ing the input RF voltage with respect to the electron temperature. The ratios
of the peak RF readout signal Tpeax (which occurs at Vp = 0) and the maximum possible
readout signal Yp,.x (which occurs at Vo = 0 and V,,. — oo) are calculated by noting that
the form of the RF response at Vy = 0 is xF(x,0,1) where = (ea,4Vac)/(2kpT) with the
maximum value being 4 /7.

At low RF input voltages, the RF readout response holds information that may
be used to extract experimental parameters. At low voltage amplitudes, the RF

response is linear with respect to the input voltage amplitude:

2 2
T QK I Y9 och? < Qrg

- = . Vi 1 0. (3.28
Vae  Qext + Qine Cp T2+ w? 4kpT 2kpT °> ac =7 (3.28)

In this limit, the spectral function gives a profile for the SLQD charge transition. The
width of the RF readout response across Vp follows the usual sech2(eaTg% /2kpT)
relationship expected with Coulomb peaks inferred with DC readout [31, 156, 157].
One may take the low V. profiles across Vj and fit a sech? function to deduce the
ratio oy /T. Analysing a,.,/T across a range of temperatures enables one to deduce
arg as shown later in the experimental demonstration in Section 3.4.2. Another
feature of the linear regime (but not that of the maximum response) is that the
gradient is inversely proportional to the temperature. Thus, a linearly decreasing
Vi, offsets the response peak height at lower temperatures as discussed earlier.

At large input voltage amplitudes, the RF readout response follows a cone-like

shape as seen by the semi-circular profile at large values of V,.:
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If one takes the maximal response at Vj = 0, voltage amplitudes much larger than the
temperature energy scale and tunnel rates much larger than the driving frequency;

the readout signal strength tends to:

Qing K 2eany €Qrg
Qext + Qint CP T ’ QkBT

The first two factors once again simply involve circuit elements describing the res-

Y max = Vae > 1. (3.30)

onator. The third factor describes a fundamental limit that states that the readout
response will be limited to the current of a single electron moving between the reser-
voir and the quantum dot of the SLQD sensor. The lever-arm factor o,y < 1 simply
states that the readout signal is proportional to the gate’s coupling to the quantum
dot.

The analysis in this section has a few key conclusions regarding the optimal

readout signal strength:

e The fundamental limit to the readout signal strength is limited by the current
of a single electron moving between the reservoir and the quantum dot in the

SLQD sensor: Timax X €tyg.

e Maximal signal strength is obtained when eay,¢Voe > 2kgT with ea,qVye =
8kpT yielding 97.2% the maximum signal strength.

e The maximal signal strength can be obtained at lower input voltage amplitudes
if the one engineers the electron temperature on the reservoir to be proportion-
ally smaller. However, the value of the maximum readout signal strength does

not change with temperature.

e One should not keep increasing V,. as the SLQD peak broadens by V,.. Thus,
if the shift in the SLQD peak due to sensing charging event is small, one may

not obtain sufficient contrast in the qubit readout signal.

The analytic solution additionally yielded predictions on the nonlinearities of the
SLQD current as well as the eventual power dissipation of the SLQD sensor as

discussed in the following sections.
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3.3.3 Nonlinear current response of the SLQD sensor

The nonlinear harmonics in the current do not affect the SLQD readout strength as
the resonator’s band-pass filtering effectively removes the higher harmonics. Whilst
it is not the outcome of the thesis, the results became useful in guiding future experi-
ments (involving the use of the higher harmonics for an on-chip frequency multiplier)
done by a PhD student in UNSW: Mark R. Hogg [155].

The current harmonics of the SLQD system are proportional to the spectral

function in the form:

In(t) = Ap(ry cos(nwt + ¢n (1))
e, gw

F T T T
Ann) = 555 iy gt Vee F (56 Ve 3zt Vo) (3.31)

T _ nw
¢n(r) = 5 — arctan T

Figure 3.11 shows the harmonic behavior of the current. Similar to the RF readout
signal, all the current harmonics tend to zero outside the voltage cone when V. <
|Vo|. That is, when one tunes the degeneracy point Vj (where the dot’s energy level
equals the Fermi-level) beyond the voltage oscillation amplitude V., one will not
cycle between the two states (electron on or off the dot) to create current flow. With
the higher harmonics n, there are n lobes in the current response which change sign.
At high input voltage amplitudes, the current lobes saturate to values given by the
Chebyshev polynomial of the second kind U, (z) enveloped by a semi-circular cone

like with the RF readout response:

2ea, wloy / Vo \? Vo
In(large) = T . 5 41— (V) -Up—1 <V , Ve — 00. (332)
/I‘g + (nw) ac ac

The current is also attenuated at higher harmonics via the second factor ~1/(nw)

as expected for otherwise the sum of all the current harmonics would be divergent.
Albeit, the factor saturates at larger drive frequencies. Asymptotic zeroes (shown
by the dashed lines in Figure 3.11) occur at the higher current harmonics along lines
given by the zeroes of the Chebyshev polynomial of the second kind U,,_1(Vy/Vie):

n

k
Vo = Ve cos <7T> . k<nkeN,V,. — oo, (3.33)

with the peak current on each lobe (enumerated by k < n) being:
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Figure 3.11: Higher harmonics in the SLQD current. The plots show the spectral
function shaping the first 6 harmonics in the current response; specifically 7 - 575

2kpT Vac’
F (%Vac, %Vo,n . The net current across the SLQD tunnel junction is the sum of

all Fourier harmonics n. The harmonics all have non-zero responses within the cone V,c>v; .
The dashed lines indicate the slopes of the asymptotic zeroes in the current response at
Ve — 00.
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2eaug wly

T 2+ (nw)?

Ipeakk — (=DM k<nk €N Ve s oo (334)

In the context of exploiting higher current harmonics, it is clear that the maximal

current occurs at the lobes closer to V = 0 as expected by the semi-circular envelope.

3.3.4 Power dissipation of the SLQD sensor

A parameter rarely considered in the design of qubit sensors is the subsequent power
dissipation of the qubit sensor. If one were to place 10% qubit sensors (for modest
qubit numbers prescribed by the surface code [8]) on the nano-scale device (operating
to sense single-spin qubits via spin-to-charge conversion), the total power dissipation
must be considered in the context of having sufficient cooling power in the dilution
refrigerator to ensure that the electron temperatures remain low for high-fidelity
qubits. The SLQD sensor operated in a capacitive regime (I'g > w) offers the
possibility of low power dissipation (as capacitive AC loads do not dissipate real
power) and thus, is a viable candidate for large scale implementation {109, 110].
This section will outline the equation for the power dissipation of the SLQD sensor
to show that the power dissipation is indeed low.

The power dissipation is defined as the average AC power per cycle:

Pa= /0 Vael®) - et (3.35)

where T is the time for one period T' = 27 /w. For example, if the load is purely
capacitive, the net power dissipation is zero as there is no component of the current
that is in phase with the voltage. Noting the orthogonality of sine and cosine, the
only term that persists is the first harmonic of the current and specifically its in-phase

component given by the Sisyphus resistance:

1 eo w?Ty eo eo eq,
Pug == Voer —2- —2 Vo F 2V, Vo, 1). (336
BT M2 TZ2pw? 2kpT 2%kpT " 2kpT " (3:36)
Like the current, the power saturates with increasing w, however, the asymptotic
form of the power grows linearly with increasing voltage amplitude Vg:
€Qrg w2l €rg

Pasym. = 20y, T 1. .
asym. T F%+w2 QkBTVa‘C>> (3 37)
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However, the net power dissipation is in fact very low [110]. For example, consider a
setup with I'y = 27-10 GHz, wg = 27-1 GHz and o,y = 0.1. With a voltage amplitude
at the gate set to 45 uV, for a low temperature the power dissipation is approximately
1fW. Thus, with 108 SLQD charge sensors, the average power dissipation would be
approximately 100nW. Thus, the nano-scale device contribution to the dissipated
power is much less than the typical >1 uW cooling power at the mixing chamber of
a dilution fridge. Whereas, if one were to use 10® SET sensors the net dissipation
is an order of magnitude higher at 4.6 uW (taking the source-drain bias voltage and
current of 170 uV and 270 pA respectively for a typical Si-P SET [56]) and may

exceed the cooling power of the dilution fridge.

3.4 Experimental demonstration of the SLQD

Section 3.3 has described the modelling behind the SLQD sensor by considering dot-
to-reservoir transitions probed with RF reflectometry. A SLQD device was created
both to demonstrate the operation of the SLQD sensor in Si-P devices and to ver-
ify the theoretical predictions. The theoretical framework has provided a pathway
for SLQD device characterisation and optimisation. The techniques developed in
characterising the SLQD sensor were different to that used in conventional charge
sensors [31, 86, 101]. For example, the technique of Coulomb diamonds to deduce
the lever-arm of the gate to the quantum dot in a SET cannot work with a charge
sensor that does not contain source and drain leads.

To demonstrate the operation of the SLQD sensor an STM-patterned Si-P device
was fabricated by Matthias Koch and Eldad Peretz. Characterisation of the RF
circuitry involving the resonators attached to SLQD sensor was performed by lan S.
Bartlett as a part of his honours thesis. The characterisation of the SLQD sensor
using the theory developed in the previous section was performed by the author with

valuable assistance from Ian S. Bartlett.

3.4.1 SLQD device design

The STM image of the fabricated SLQD device is shown in Figure 3.12a. The lighter
regions in the STM image indicate regions that were P-doped. The Si-P device had
two charge sensors: the SLQD (consisting of reservoir R and the SLQD quantum
dot) and the SET (consisting of a SET quantum dot, source S, drain D and tuning
gate G). The SLQD charge sensor can be used to detect charge transitions onto the

SET and vice versa to enable one to compare the conventional three-lead sensor
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with the more compact SLQD sensor. The dimensions of the SET were taken from
previously working SET designs [80]. The SET quantum dot was 10 x 24nm in
size with a 15nm separation between the SET quantum dot and its source/drain
leads. The dimensions of the SLQD sensor were taken to be nominally the same
geometry as the SET quantum dot and its source. That is, the SLQD quantum dot
was 10 X 24 nm in size with a 15nm separation between itself and the reservoir R.
The electron states of the SLQD and SET were probed via reflectometry on two
LC resonators multiplexed onto a single RF line [31, 139]. The resonator on its
own was characterised by Ian S. Bartlett as a part of a honours thesis. For the
resonator connected to the reservoir R, the resonant frequency was 244.8 MHz with
an effective quality factor of approximately 100. The parasitic capacitance C), was
thus 0.68 pF. For the second resonator connected to the source terminal S, the
resonant frequency was 283.6 MHz with an effective quality factor of approximately
45 (lower than that of R due to the dissipative nature of the SET). The parasitic
capacitance was thus, 0.67 pF. Unlike the quality factors, which were different due
to the resistive load of the SET, the parasitic capacitances were consistent. This
suggests that the parasitic capacitances mainly depended on the surrounding PCB
geometry (for example, nearby copper ground planes or a high electric permittivity
PCB laminate both increase C}) as opposed to the sensor on the device to which the

associated inductor was connected.

On sending in a 244 MHz RF voltage signal to address the resonator attached to
gate R, there was change in the reflectance when sweeping the gate voltages on R
and G. Figure 3.12b shows the resulting RF response measured on the output of the
IQ demodulator. The dataset has had its background subtracted, in both the I and
Q channels individually, by taking an average of a region far from charge transitions
(as seen bright lines). Then the RF response plot was generated by via \/lﬁQ2 ;
that is, one is interested in the net change (relative to the default background level)
in the RF response in the IQ plane on measuring a charge transition between R and
the SLQD quantum dot as opposed to naively observing the amplitude and phase

response alone.

The bright lines in Figure 3.12b indicate a change in the signal reflectance caused
by electron oscillations occurring when the given quantum dot (SLQD or SET) aligns
with its reservoir Fermi-level such that the input RF voltage sweeps the dot’s energy
level above and below its Fermi-level (as shown in Figure 3.8). The vertical lines
indicate charge transitions of positive slope and thus, indicate that the electrons came
from either G or R; in this case it is R as indicated by the steep slope indicating a

stronger coupling to gate R (the gate on the z-axis). On crossing a SLQD transition
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Figure 3.12: Demonstration of a SLQD sensor in a Si-P device. (a) STM image of
the device. The lighter regions highlighted on the STM image were dosed with phosphine
to incorporate P-donors. The terrace steps on the image are different layers of the silicon
substrate. The SLQD sensor was formed by a reservoir R patterned 15 nm away from a large
quantum dot SLQD (10 x 24nm in size). The SLQD sensor detected electrons filling onto
the SET quantum dot (10 x 24nm in size; tuned via its source S and drain D leads each
spaced 15nm away and a gate G). The state of the SLQD and SET was sensed using RF
reflectometry via two chip-inductor LC' resonators multiplexed onto a single input RF line.
Bias tees were placed on each resonator to set the DC voltage on the gates R and S. (b)
Charge stability diagram, of the SLQD and SET charge transitions, using the RF response
on resonator R. The vertical lines indicate charge transitions onto the SLQD quantum dot,
while the faint horizontal lines indicate charge transitions onto the SET quantum dot. The
ordered pairs indicate the ground-state charge states of the SLQD and SET quantum dots
respectively in the charge-stable regions. The shift of AV = 1.1mV along Vg in the SLQD
line indicates the ability of the SLQD sensor to detect the presence of charge entering or
leaving the SET quantum dot.
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line to a more negative voltage on the reservoir, more electrons enter the SLQD dot.
The resonator also detects electron movement between the SET and its source/drain
leads as seen by the horizontal lines of negative slope. Electrons enter the SET
quantum dot when crossing the SET charge transition line to a more positive voltage
on the reservoir R (or SET gate G). The RF response is weaker (fainter) on the SET
charge transitions as the lever-arm « of reservoir R to the SET quantum dot is lower
when compared to the SLQD which is of closer proximity. It would appear that
there is a line linking the SET and SEB lines like that of an inter-dot transition.
However, the distance between the SET and SLQD would prohibit the fast tunnel
rates (greater than the driving frequency) required for RF readout. Thus, the inter-
linking transition line is attributed to simultaneous charge movement between the
SLQD to its reservoir R and the SET to its source/drain leads.

One key figure of merit is the shift in the SLQD charge transition AVy due to the
detection of nearby charge movement; in this case that is the addition of charge in the
SET quantum dot. Using the shift in the charge transition to detect nearby charges
is identical to the operation of an SET or QPC as a charge detector [12, 80, 111, 112].
That is, one sets the voltages on R and G such that one probes the maximum point in
the SLQD transition. On a charging event causing a shift in the SLQD line, one then
measures the background level. The resulting change in the readout signal strength

indicates the presence of a real-time charging event.

Now to maximise the efficacy of the SLQD sensor, the two parameters that need
optimising are the shift in the SLQD charge transition (1.1 mV along the Vi axis
on sensing charge movement on the SET quantum dot as shown in Figure 3.12b)
and the magnitude of the peak RF response of the SLQD charge transition. The
shift in the SLQD charge transition must be at least beyond that of the half peak
width of the SLQD charge transition (approximately the amplitude of the sweeping
RF voltage V,.) as otherwise the contrast on detecting charge will not be that of the
peak RF response and the zero background level, but rather some finite non-zero
value above the background level. The larger magnitude in the peak RF response
implies more signal (a greater signal to noise ratio implies faster measurement times).
Optimisation of the peak RF amplitude requires characterisation of the SLQD sensor
to maximise the peak height (as discussed in Section 3.4.2) and careful device design

to maximise the peak shift (as discussed in Section 3.4.3).
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3.4.2 Demonstration and characterisation of the SLQD sensor

This section looks to maximise the readout signal strength by optimising the RF
input power upon measurement of the SQLD reservoir-to-dot lever-arm and the
electron temperature of the electrons in the reservoir (since the two parameters give
the ratio (ea,¢Vac) / (2kpT') as discussed in Table 3.2). The outlined methods first
consider the readout signal strength as a function of input RF power; from which
one may estimate the net loss in the transmission lines from the room temperature
apparatus to the device. The net attenuation is an important parameter to diagnose.
If the attenuation is much higher than expected, this could imply a broken coaxial
cable or RF signal leakage. On measuring the power dependence, one measures the
SLQD peak profiles at low powers over different temperatures to deduce the electron
temperature and SLQD reservoir-to-dot lever-arm. Finally, given all the system
parameters, one may estimate the signal’s return gain. Once again, if the return
gain is lower than expected, the diagnostic suggests that there may be a broken
coaxial line or a malfunctioning amplifier. In the end, one obtains a calibrated RF
peak height and peak width as a function of input voltage amplitude; an important
calibration plot one may use in optmising the SLQD sensor. Knowing this, one can
tune the input RF power to attain the maximum possible signal without inputting
too much RF power that broadens the SLQD peak.

Now the input RF power sent to the PCB can be calculated by considering the
different intentional attenuations [139]. The RF source (a SRS SG386) was set
to output 11dBm. The RF signal was sent through a splitter to yield the 5dBm
coherent local reference required for the 1QQ demodulator. The second portion of the
split signal, 5dBm, was sent to the device via a 30dB Minicircuits attenuator and
a variable Pasternack PE7033 attenuator (that could be tuned from 0-90dB over
1dB steps) to help tune the input RF amplitude. The signal was then sent through
a directional coupler that additionally couples the signal down by another 14.7 dB.
Summing all the attenuations, the estimated signal power in dBm fed into device
PCB was:

Pinesty = —39.7 — As, (3.38)

where Ag is the attenuator setting on the tunable attenuator. Noting that the
signal generator is connected to a 502 line, the estimated voltage level sent at the

transmission line before the resonant circuit is'?:

2Found by noting that P = V?/Z where Z = 50 is the transmission line impedance.
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Figure 3.13: RF response of the SLQD sensor as a function of RF input power.
(a)-(c) The stability diagram in Figure 3.12b can be plotted for different input attenuations
Ag. With lower attenuation, as the RF input power increases, the RF response gets larger
and broadens as seen by the thicker lines. (d) The SLQD response peak across Vi plotted
as a function of Vy (Vg offset to zero at the peak for clarity) and the estimated input
voltage amplitude at the resonant circuit. The RF response saturates as expected. (e)
The RF response profile plotted as a function of Vj for selected input voltage amplitudes
as highlighted in (d). The black lines indicate the RF response fitting function shown in
Equation 3.40. The datasets are offset by 3mV for clarity. (f) From the fits in (e), one
may infer the RF voltage amplitude at the reservoir R itself: V,.. From the linear fit in
red, it is possible to estimate the RF input losses nss by noting the slope dVie/dVip(est) =
2Mioss Qer = 31.1.
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VEn—(est) - 50Pin—(est) : (3'39)

Figures 3.13a-c show charge stability diagrams, when setting the tunable attenuator
Ag to 56 dB, 44 dB and 38 dB respectively. From the three plots, it is clear that the
peak RF response of the SLQD transition line increases with increasing RF input
power. However, as discussed in Section 3.3, the peak RF response of the SLQD
charge transition must saturate with increasing RF input power as the fundamental
limit to the maximal response is that when shuttling one electron between the reser-
voir and the SLQD quantum dot. One reaches the saturation in the RF response
once the RF input voltage amplitude is large enough to start sweeping the SLQD
energy level far beyond that of the temperature smearing on the reservoir. Figure
3.13d shows the measured saturating behaviour via a 3D plot of the RF response (of
the SLQD peak) as a function of Vj (the voltage offset tuning the SLQD energy level
away from its reservoir Fermi-level'?) and the estimated input voltage at the PCB
Vin-(est)- The sliced profiles of the 3D plot (across Vp) at selected input Vin-(est) values
are shown in Figure 3.13e. As predicted, on increasing the RF input power, the peak
RF response Y saturates, while the peak width across Vj continues to increase on
increasing the RF input power. The RF signal response is non-zero when the RF
voltage can sweep SLQD dot past the Fermi-level of its reservoir. Thus, the peak
width (at larger input voltage amplitudes) is proportional to the extent to which
the RF voltage moves the SLQD energy level and as expected, the peak width will
continue to increase indefinitely with increasing RF input power.

The black fitting lines plotted on the RF response in Figures 3.13e were created
by fitting the RF response for a given RF input power to the five parameter fitting

function where 1} is the dependent variable:

4 sin?(7)
T — dr + a.. 3.40
0 /_7T cosh? (aw (Vo — a5 + agecos(T))) T ( )

This function comes from the analytic model for the RF response developed in Section
3.3.2 (specifically Equation 3.27). The fitting parameter a5 may be zeroed if the
dataset for the charge transition peak is post-processed such that it is centred at
Vo = 0. In addition, a. may be zeroed if the RF response background level has been
properly zeroed. The parameter ag determines peak RF response at V = 0. The
parameter a,, is the eo,4/(2kpT) factor common to Vj and V,. in the RF response.

Thus, agqc is the AC voltage amplitude at the gate used to move electrons between

13V4 is simply Vi shifted such that Vo = 0 at the peak of the RF response profile.
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the SLQD dot and its reservoir. Since a4, is the actual measured voltage at the
gate of the device aqe = Vie, one may infer the extra losses in the transmission of
the RF input signal by comparing the fitted V. with the estimated voltage at the
PCB Viy (est)- Figure 3.13f shows a plot of Vi as a function of Viy(esr). Now given
the voltage amplitude input at the PCB Viy(es) (that is, before the resonator), the
expected voltage on the device gate is given by Equation 3.12:

Vac(est) = 27Mioss Qefr - Vin(est) (3.41)

Since the effective quality factor of the resonator connected to R was approximately
100 [139], the slope of the fitted line (approximately 31.1) in Figure 3.13f is 20074gs.
Thus, the measured voltage amplitude loss factor was 7,55 = 0.16 (or approximately
16.1dB in power loss). The transmission line loss was attributed to possible insertion
losses at the PCB and general losses in the coaxial cable. One can obtain the actual
input RF power at the PCB (that is, before the resonator) by subtracting loss 70ss

from the estimated power:

P = f)in(est) —16.1, (3.42)

with all powers given in dB or dBm.

Using a similar approach, the return gain can also be calibrated if one knows the
reservoir-to-SLQD lever-arm ag. Usually with a SET sensor, the gate lever-arm to
the sensor quantum dot can be found via Coulomb diamond measurements [15, 156].
Coulomb diamonds yield gate lever-arms by matching the known source-drain voltage
bias to the SET quantum dot’s energy level being tuned by a gate voltage via the
gate lever-arm. However, for the SLQD sensor, there are no source-drain leads to
provide a local energy reference. An alternate energy reference to which one may
calibrate the gate lever-arm agp is the temperature of the electrons in the reservoir.
The reservoir electron temperature experimentally manifests as a broadening of the
measured SLQD charge transition. As discussed before in Section 3.3.2 (specifically
Equation 3.28), in the limit of low input voltage amplitudes (the so-called linear
regime), the profile of the RF response as a function of Vj tends towards a shape of

constant width broadened by the temperature:

Y 2 (Vo
Vi = by - sech <bw)

= Qiy e(l—op)K _T§ e(l—ar)
bo = (Qext"’_éint e, Fg+0w2) T (3.43)

1 _ e(l-ag)
bw ~  2kpTe
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Figure 3.14: Temperature variation of the RF response in the linear regime used
to determine the reservoir lever-arm and electron temperature. The RF response
in the linear regime (low-V,.) measured as a function of the mixing chamber temperature
Time to deduce the lever-arm o, and the reservoir electron temperature 7,. (a) The RF
response profiles are plotted over different mixing chamber temperatures. The fitted curves
shown in black use the ~ sech? function given in Equation 3.43. The curves are offset by
0.6mV for clarity. (b) The fitted widths, proportional to T,./crg, are then plotted as
a function of temperature. When the mixing chamber temperature exceeds the electron
temperature of the reservoir lead, the electrons equilibrate with the mixing chamber and
thus, the peak widths linearly follow the mixing chamber temperature. The red line shows
the linear fit for the portion of the data following the mixing chamber temperature; this
yields o,y = 0.46. The blue line shows the linear fit for the widths when T, > T}, to
extract the reservoir electron temperature of 270 mK.
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where bg controls the height of the fitted peak and b,, controls the peak width. Note
that T¢ is the temperature of the electrons in the reservoir R. Figure 3.14a shows
this fitting function applied to the low-power RF response profiles'* over different
mixing chamber temperatures 7,,.. Note that the peak RF response drops with
higher temperatures as the RF response has a 1/T" dependence (as shown in Section
3.3.2 when discussing the equation for the RF response Y). Noting the expression for
by, one may plot T;,./(1—agr) as a function of the mixing chamber temperature 7},
as shown in Figure 3.14b. In the bath-temperature raising experiment, the electron
temperature T is typically higher than the mixing chamber temperature 7},. due to
the difficulty in fully thermalising the silicon crystal with the mixing chamber when
warm electrons are flowing into the device from the room temperature apparatus.
Thus, for mixing chamber temperatures below the minimum temperature of the
electrons in the reservoir, the peak width of the RF response remains constant as
highlighted by the solid blue constant line fitted to the first six points. Eventually the
mixing chamber temperature rises above the electron temperature and the reservoir
electrons now become thermally excited by both the wires (the SMA cables and looms
connected to the device) and the mixing chamber itself. The minimum reservoir
electron temperature is no longer limited by the wires and thus, it equilibrates to
the mixing chamber temperature as indicated by the linear trend fitted by the red
line. The intersection point where the electron temperature starts to follow the
mixing chamber temperature is taken to be the minimum electron temperature:
T. = 270mK [31, 112]. That is, the reservoir electron temperature is T, = 270 +
30mK even when the fridge is set to its minimum mixing chamber temperature of
approximately 50 mK. Since the gradient of the fitted points along the linear trend
(in red) is 1/(1 — ag), the reservoir lever-arm was extracted: 1 —agr = 0.54 £ 0.05.

With the gate lever-arm known, one may calibrate the return signal gain by
investigating the RF response in the linear response regime (with T,,. = 50 mK).
Here, one first considers the peak height of the fitted RF response (shown in the
power dependence shown in Figure 3.13e) over different RF input voltage amplitudes
at the reservoir lead V.. The peak RF response is plotted via the green markers in
Figure 3.15. Taking the points for low values of V. in the linear regime'®, one may
fit the line shown in blue. The gradient of the peak RF response with respect to V.

in the linear regime was discussed in Section 3.3.2 (specifically Equation 3.28):

"The low amplitude power (in which the peak width was dominated by temperature rather than
the RF input voltage amplitude) applied at the PCB was P, = —131dBm

5Many papers in the prior literature only considered the RF voltage amplitude in the linear
regime [110] instead of exploring the RF response at higher input powers as discussed in our pa-
per [31].
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Figure 3.15: Experimentally measured RF response peak height (green) and
peak width (magenta) of the SLQD sensor as a function of the input voltage
amplitude. All the data points come from fitting the RF responses shown in Figures
3.13d-e as a function of V... The magenta data points (with the left y-axis) indicate the
half-width of each peak across Vp where the response drops to 25% of the peak maximum
for a given value of V.. The magenta line is the V. = V} line that indicates the asymptotic
peak width as V,. — oo. The green data points (with the right y-axis) indicate the peak
RF response (at Vy = 0) at any given value of V,.. The solid green line is given by the
fitting function in Equation 3.45. The slope of the peak RF response in the linear regime
is highlighted by the blue line with the linear regime approximately stopping at the point
where ea,¢Voe = 2kpT. The minimum width of the RF response due to thermal broadening
is also shown with AVj(pin) = 0.133mV.



126 Chapter 3. Compact RF sensors for Si-P qubits

Tmax _ Qint . 5 . I‘(2) . 62@72"9 ~ Qint . £ X eQa?Q”Q
Vac Qext"’Qint CP F%+w2 4kBT Qext+Qint Cp 4kBT'

(3.44)

The approximation in the second equality assumes that the electron tunnel rate is
much larger than the driving frequency I'g > w, where the SLQD operates mostly
in the capacitive regime. The measured gradient of the RF response T with respect
to Ve in the linear regime was 25.256. Noting that, (1 — ag)/T = 0.46/0.270,
Qine = 253 and Qg = 165 [139], the voltage gain factor K is approximately 78000
or 97.8dB gain in terms of power. The measured return gain of 97.8dB was close to
the expected gain in the amplifier chain, which was calculated to include 35dB from
the cryogenic amplifier in the fridge, 50 + 20dB via room temperature amplifiers
and a 7.5dB conversion loss in the 1Q demodulator to yield approximately 97.5dB
in net signal gain. Thus, from the return gain diagnostic, one can conclude that the
amplifiers (specifically the cryogenic amplifier) were properly functioning without
any unexpected measurable signal loss. To capture the nonlinear regime (in the RF
response) as predicted by the theoretical models in Section 3.3, the peak heights were
fitted with the green line Figure 3.15 using the fitting function:

Tmax = kOkaacF(kaacv 07 1)’ (345)

where ko controls the magnitude of the overall RF response (as it saturates with
increasing V) while k,, = e(1—ag)/(kgT) controls the point in which the peak RF
response leaves the linear regime as highlighted by the dashed line where ea,. Vo =
2kpT. Similarly, at approximately ecy.q Vo = 4(2kpT), the peak RF response reaches
97.2% of the maximum possible value (with minimal peak broadening) as predicted

previously by the analytic model in Table 3.2.

In the context of detecting nearby charges with the SLQD, it is desirable to know
both the RF signal strength (peak height) as well as the peak half-width for a given
input voltage amplitude'®. Thus, Figure 3.15 shows the peak half-widths (taking it
as the half-width when the function was 25% of its maximum value to better gauge
the width of the peak with respect to the background noise) as a function of V. via
the magenta markers. The lowest RF response peak half-width, when in the linear

regime, is given by Equation 3.43:

5Noting that the peak height increases the readout SNR while the peak half-width needs to be
smaller than the peak-shift that occurs when sensing nearby charge to obtain full contrast between
the peak RF signal strength and the zero background level.
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2kpT

A . =
%(mln) 6(1 — aR)

arcsech (%) =0.133mV, (3.46)

with the measured electron temperature of electrons in the reservoir as 270 4+ 30 mK
and the reservoir lever-arm ar = 0.54 4+ 0.05. The linear trend shown in magenta
highlights the asymptotic trend when ea;.4V,e > kpT. That is, the half-width of
the response peak tends towards the RF input drive amplitude (noting that the RF
response is non-zero when V,. > Vj to ensure that the SLQD dot’s energy level
sweeps past the reservoir Fermi-level). The extra width of the SLQD peak is due to
the temperature broadening of the reservoir electrons. Otherwise, the RF response
is approximately zero outside Vjy > V. for large V.., as discussed in the analytic

models.

As noted before, the maximum readout signal contrast of the SLQD charge sensor
requires the SLQD charge transition to shift by at least half its peak width on sensing
charge on the target dot. In this experiment, the SLQD peak shifted by 1.1 mV on
sensing electrons on the SET as shown in Figure 3.12. This is important as one can
use this peak shift to bound the maximum peak width of the RF response to be below
1.1mV. Thus, the maximum input RF voltage amplitude at the reservoir V. will be
approximately 1.1 mV; an input amplitude far into the nonlinear saturation regime.
From Equation 3.45, at this amplitude, one reaches 99.7% of the maximum possible
RF readout signal strength. Note that if one were content with 97.2% (approximate
minimum amplitude to reach the peak signal strength in the nonlinear regime while
minimising peak broadening) of the maximum possible signal strength (V. = 0.4mV

in this experiment), then the peak shift on sensing charges can be as low as 0.4mV.

3.4.3 Improving the SLQD sensor

In the previous section, specifically Figure 3.12, the relationship between the SLQD
response peak width and height was explored as a function of the input voltage
amplitude. The model, verified experimentally, predicts that one requires e(1 —
R )Vacat) = 4(2kT), to achieve 97.2% of the maximum possible RF response.
However, at this mostly saturated RF input amplitude Vj(sat), the peak half-width
will also be approximately AVp & V. (sar). Noting that the peak shift due to sensing
nearby charge must be greater than the response peak half-width (to ensure maximal
readout signal contrast between the peak height and the zero background level), one

requires that:
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8kpT

AVo = Vie(sat) = e(l—an)

< AVSLQD (3.47)

where AVgrqp is the peak shift of the SLQD charge transition on sensing nearby
charge. Now the shift one obtains on sweeping a given gate is given by Equation
A .20 in Appendix A:

e(Cpb)sLQD-Dot
1-— aR

AVgrgp = (3.48)

where (CB}D)SLQD_DM relates to the mutual capacitance between the SLQD dot and
the target dot. The mutual capacitance quantity relates to the shift in the SLQD’s
energy on placing a charge on the target dot. In the context of this experiment,
AVsLgp = 1.1mV and V sar) = AVp = 0.4mV. The mutual capacitance factor rolls
off approximately as the inverse of the distance between the SLQD and the target dot
(the SET placed approximately 44nm). Therefore, one could approximately double
the distance between the SLQD and the SET to 120nm and still achieve full signal
contrast in the charge sensing RF readout signal without any loss in the signal to
noise ratio. When comparing the range of the SLQD sensor to the size of a typical
double-quantum dot in Si-P (12nm), a sensor range of 120 nm yields a normalised
range of 10. The normalised range is large when compared against the normalised
range of 1-2 when using QPCs with GaAs or SiGe quantum dots [14, 17]. With such
large charge sensing ranges (above 50 nm), the SLQD therefore serves as an excellent
diagnostic charge sensor that can be discreetly placed in a large scale architecture.
Now combining the previous two equations, one can obtain the ultimate require-
ment in achieving full contrast in the RF signal strength when sensing charge move-

ment:

2
kpT < & (Cph)siqn-or (3.49)
Satisfying this inequality implies that one makes maximal use of the available RF
readout signal strength when charge sensing. To satisfy this inequality one may
increase the mutual capacitance Cpp between the SLQD and the target dot by
shaping the SLQD dot to cover more parallel area with the dot. In addition, one may
better thermalise the reservoir of the SLQD to the mixing chamber of the dilution

fridge!”. With lower temperatures, one can start maximally oscillating electrons in

" Typical thermalising strategies seek to thermally contact the inner core of the coaxial lines
(carrying the signals) onto the cooling plates of the dilution fridge [33, 34]. Usual methods include
multiple stages of attenuators and feeding the signal over gold striplines on a sapphire block strapped
to the mixing chamber plate (as sapphire is a good thermal conductor while being a good electrical
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the SLQD at lower RF input voltage amplitudes and thus, minimally broaden the
RF peak response.

Note that on satisfying the inequality above, one should also increase the maxi-
mum possible RF signal strength. From the discussions in Section 3.3.2, the funda-

mental maximum peak signal strength is:

Qint K 2(l—agr) e(l-—oar)
Qext T Qine Cp T 7 2kpT

The first method to approach the fundamental maximum is to increase the internal

Tpeak = Vae > 1. (350)

quality factor of the resonator'® as discussed in Section 3.2.3. The second method
to approach the fundamental maximum signal strength is to decrease the reservoir
to gate lever-arm by increasing the mutual capacitance between the SLQD dot and
its target dot (an approach implemented in a later experiment performed by Mark
R. Hogg [155]). Finally, like with all signals transmitted from a nano-scale device to
the room temperature apparatus, greater signal to noise ratios can be realised via
cryogenic amplification at even lower temperatures (Johnson noise is lower at lower

temperatures).

3.5  Future of the SLQD sensor

Theoretical and experimental developments in the design and implementation of a
SLQD sensor in Si-P yielded the following key results:

e A SLQD sensor (fabricated in Si-P) was successfully characterised and shown
to sense charge movement on a SET patterned 44 nm away. The SLQD peak
shifting AVg = 1.1mV due to charge movement on the SET.

e The theoretical methods developed to characterise the SLQD sensor enabled
us to determine the RF input losses, RF return gain, SLQD reservoir-to-dot
lever-arm (ag = 0.54 = 0.05) and the temperature of electrons in the reservoir
(T, = 270 + 30 mK).

e The predicted saturation of the RF response with increasing RF power (beyond
the linear regime) was verified experimentally; reaching 97.2% of the peak RF
response, as predicted, when setting the voltage amplitude at the reservoir
of the SLQD to Vi = 4(2kgT)/(ea,q). In this experiment for an electron

insulator).
8The circuit model assumes that the load is purely capacitive. To make the SLQD act capacitive,
the electron tunnel rate must be much larger than the driving frequency
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temperature of T, = 270+ 30 mK and the reservoir lever-arm ag = 0.5440.05,
the optimal RF amplitude for peak RF response was V,. = 0.4mV.

e With a AVx = 1.1 mV shift in the SLQD peak, the SLQD sensor was capable
of detecting charges approximately up to 120 nm with full signal contrast in the
RF response, given that the RF voltage amplitude only needed to be 0.4mV

in this experiment.

The detection distance of the SLQD sensor with respect to the target quantum dot
can be further increased by increasing the detection sensitivity of the resonator via
the methods discussed in Section 3.2.3:

e Increasing the internal quality factor with respect to the external quality factor.

e Lowering the parasitic capacitance.
However, some SLQD specific improvements include:

e Lowering the electron temperature via better thermalisation of the device to
the dilution fridge.

e Lowering the reservoir-to-dot lever-arm by increasing the mutual capacitance
between the SLQD dot and the target quantum dot. One can increase the
mutual capacitance by increasing the parallel area between the two dots by

reshaping the dot during fabrication.

The results also highlighted that the SLQD sensor can not only be used as a compact
diagnostic probe, but also be used as a single-spin qubit sensor (via the spin-to-charge
conversion method) that could replace the 3-lead SET. A current PhD student Mark
R. Hogg continued this project and has already shown high-fidelity single-shot single-
spin readout of single spin electrons via a SLQD sensor. Therefore, the SLQD sensor
is a viable replacement for the larger SET sensor and should therefore be considered

in future architectures using single-spin electron qubits in Si-P.



Chapter

Integrating RF singlet-triplet sensors
for scalability

Although the SLQD sensor (outlined in Section 3) is compact, it still requires a
dedicated gate and quantum dot'. A more compact sensor that integrates directly
into a pre-existing gate in the device is the single-gate RF sensor as proposed for the
scalable single-triplet architecture in this thesis. The single-gate RF sensor oscillates
of one the two electron (of the singlet-triplet qubit) across the two dots hosting the
qubit, with oscillations only occurring if the electrons are in a singlet state (lifting of
Pauli blockade). As discussed in Section 3, resonant circuitry is used to detect an AC
quantum capacitance resulting from the electron oscillations. There are two modes of
inter-dot electron oscillations that may occur: tunnelling capacitance (electron oscil-
lations via the ground and excited charge states) and adiabatic quantumn capacitance
(electron oscillations via adiabatic transfer across the ground-state eigenstates). The
section will first model the single-gate RF sensor to investigate the optimal system
parameters and tradeoffs of the two modes of operation with the the result that the
adiabatic quantum capacitance is seen as the better pathway until further research
is done on the tunnelling capacitance mode in the context of P-donor dots (for ex-
ample, a sufficiently long excited singlet state coherence and spin lifetime to ensure a
long enough measurement time). In particular, the modelling outlined in this section

is performed to investigate the full nonlinearity of the quantum capacitance in the

! Although there was a demonstration of the SLQD taking form of one of the quantum dots
hosting the singlet-triplet qubit and its reservoir, the implementation is not favourable in the long
term [130]. This is because the large reservoir to dot tunnel rate required for SLQD operation
will couple the quantum dot too strongly to its reservoir, thereby shortening the spin lifetime and
coherence of the singlet-triplet qubit [30].
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regime of higher RF powers as with the SLQD sensor. Although the RF power in fact
decays at higher input RF powers (unlike the saturation that occurs with the SLQD
sensor), the models help place bounds on the experimental parameters that are useful
when operating in the tunnelling capacitance (driving frequency must match twice
the tunnel coupling frequency) and adiabatic quantum capacitance regimes (driving
frequency must be much less than the tunnel coupling frequency).

The device fabricated in Chapter 2 was then characterised using a single-gate RF
sensor implemented with a chip-inductor resonator [29]. It was shown that the mea-
surement time limiting singlet to triplet-¢_ relaxation time was 2ms. The value was
many orders of magnitude better than a previous experiment which measured 60 ns
due to the strong coupling of the dots to their reservoirs. This was weakened in the
current experiment by moving the reservoirs further away (as discussed in the opti-
misation of the dot-to-reservoir distance d, in Section 2.2.3). With long spin lifetime
of 2ms demonstrated, it was predicted that single-shot readout should be possible
given an optimised setup. One of the key requirements to achieve high-fidelity single-
gate RF readout was to utilise a resonator with a high internal quality factor. Thus,
the chip-inductor resonator used in the initial device characterisation [29] was re-
placed with a low-loss superconducting inductor [32]. The single-gate RF sensor was
then further optimised during the experiment (for example, by finding the optimal
readout points). It was additionally shown that the single-gate RF sensor did not sig-
nificantly affect the dynamics of the spins under measurement (important property
of a qubit sensor is make a faithful representation of the qubit under measurement).
Ultimately, the optimisation led to the first demonstration single-shot single-gate RF
spin readout [32].

4.1 Modelling the single-gate RF sensor

The concept of a single-gate RF sensor has been demonstrated in gate-defined quan-
tum dots (at 0T [57] and 200mT [105]) and recently with Si-P quantum dots [30]
(at 2T). Although the previous results showed spin-readout, the measurements were
not achieved in single-shot. Nevertheless, the first attempt to use a single-gate RF
sensor in a 4-dot device? yielded no RF signal response when activating the single-

gate RF sensor as the electron tunnel rate between the two dots was too low when

2This was a device that was fabricated before the device discussed in Chapter 2. The device
was fabricated as a training exercise and had a double quantum dot (approximately 2P-3P in size)
with an inter-dot distance of 14nm. The resulting tunnel coupling was too small to measure with
the single-gate RF sensor using the adiabatic quantum capacitance mode.
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compared to the driving frequency of 460 MHz. However, the exact conditions under
which the single-gate RF sensor fails to produce a signal was unclear. As such, a
better theoretical understanding of the single-gate RF sensor was needed to provide
insights for future device designs, optimisations and experiments. It was hoped that
by gaining a similar understanding to the effect of the nonlinear capacitances in the
SLQD sensor experiments, the elusive single-shot readout with the single-gate RF
sensor would be achievable.

The SLQD system was modelled using a rate equation that described the electron
oscillations between a discrete state on a quantum dot and a continuum of states on
the reservoir. However, with the single-gate RF sensor, the two sites are both discrete
energy levels on separate quantum dots. Thus, the rate equation model is insufficient
and the single-gate RF sensor must be modelled as a quantum system using the two-
level system formalism. Although driven systems have been well-studied in the field
of quantum optics, the application of the driven two-level system in the context of
single-gate RF sensing leads to slightly different analytic techniques in finding the
required solutions. For example, typically one is interested in the overall system
dynamics in the rotating frame. However, in the context of single-gate RF sensing,
one is interested in the probability density (proportional to the charge movement
between the dots) at a particular frequency w to then find the resulting current and
quantum capacitance.

Our attempts at modelling the single-gate RF sensor started with perturbative
methods (based on the rotating wave approximation) that revealed details surround-
ing the ‘tunnelling capacitance’ mode (where one utilises excited charge states to
oscillate the electrons between the two dots). It was found that the perturbative
methods could not capture the nonlinearities at higher RF input voltages and thus,
a semi-quantum ansatz was used to analytically model the nonlinear capacitance
when operating in the ‘quantum capacitance’ mode (where one adiabatically oscil-
lates between the charge ground states to oscillate the electrons between the two
dots). Collectively the modelling (developed in this thesis) provided insights into
the conditions required to realise the single-gate RF sensor. These theoretical re-
sults helped pave the way to optimise the single-gate RF sensor in order to achieve

single-shot single-gate RF spin readout as discussed in later in Section 4.2.

4.1.1 Initial Hamiltonian construction

The full Hamiltonian for a singlet-triplet qubit, derived in Appendix E, involves

two electrons across two quantum dots in which the electrons interact via a tunnel
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coupling term, the potentials across the dots may be tilted and magnetic fields break
key spin degeneracies. However, in the context of single-gate RF readout, one may
consider one of the electrons to remain on the second dot, while the other electron
moves freely between the two dots if the electrons form a singlet state. If the electrons
are in a triplet state, the electrons must remain on separate dots due to Pauli spin
blockade. Thus, the analysis only considers the singlet state. Under the basis s1;
(electrons on separate dots) and sga (electrons both on the same dot), one may write
the effective charge qubit Hamiltonian Hiq [57, 158]:

A —lc
Hid = ( _tc _tA ) = AO’Z —tCO'x, (4:].)

where t. is the inter-dot tunnel coupling and A is the detuning. The detuning is
a tilting potential. The detuning is defined as half the energy splitting when the
electrons (in the absence of a tunnel coupling), for a given applied voltage AV on

gate g satisfies:

2A = —eag1 AVy + eagppAVy = eAa - AV, (4.2)

where g1 and a2 are the gate lever-arms to the first and second dots respectively,
with A« termed the differential lever-arm. The differential lever-arm is a geometric
factor that is greater than zero and at most one (it is typically 5-10% in planar
Si-P devices [82, 86, 92]). In the context of single-gate RF readout, the detuning is
varied sinusoidally with a gate voltage amplitude of V. and frequency w along with

a possible detuning offset voltage Vj:

A = B (Vg + Vae cos(wt)) = Vi + Vi cos (wt) (43)

When the detuning drive causes the electron to oscillate adiabatically between the
two ground-state charge states, one operates in the ‘quantum capacitance’ mode of
operation shown in Figure 3.4a. When the detuning drive causes the electron to
oscillate between the ground and excited charge states, one operates in the ‘tun-
nelling capacitance’ mode of operation shown in Figure 3.4b. The goal is to find
the quantum capacitance and find the resulting readout signal strength in the two
modes of operation. To find the quantum capacitance, the solution first finds the
probability of occupation p(t) at frequency w. Similar to the modelling of the SLQD
in Section 3.3, here we can obtain the charge occupation Q(t) = e - p(t). Noting
that the current can be obtained by taking the time-derivative of the charge, one

can obtain the quantum capacitance Cy; by noting that Vg./Io. = 1/(wCy) (where
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Vae and I, are the voltage and current amplitudes at frequency w). The solutions
to the Hamiltonian in Equation 4.1 are given in Appendix C with the tunnelling
capacitance behaviour solved via the rotating wave approximation and the adiabatic
quantum capacitance behaviour solved via a semi-quantum approach. The next sec-
tion summarises the key results from the theoretical modelling in the context of final
design considerations along with the advantages and disadvantages of the adiabatic

quantum capacitance and tunnelling capacitance modes.

4.1.2 Summary of design considerations for single-gate RF sensing

Two modes were explored in the theoretical study: the resonant ‘tunnelling capac-
itance’ and the adiabatic ‘quantum capacitance’. Both modes require different LC
resonator frequencies to achieve maximal RF readout signal strength. That is, the
adiabatic quantum capacitance mode requires a resonator frequency much lower than
the tunnel coupling frequency, while the tunnelling capacitance mode requires the
driving frequency to match two times the tunnel coupling frequency.

The first mode of operation investigated was the tunnelling capacitance regime.
Operation in the tunnelling capacitance regime requires voltage amplitudes V. to
be perturbative with respect to the tunnel coupling t. to satisfy the rotating wave
approximation. The RF readout signal for the resonant tunnelling mode of operation
was found to be:

. K eA
G K cda  fe (4.4)

Tres. tunl. = ~—— ~—
e Qext + Qint CP 2 V ‘/6/2 + t%
with the resonant frequency w of the RF drive set to the energy splitting:

hw = 24/12 + V2 (4.5)

Maximal RF signal strength is clearly obtained when Vj = 0. That is, the reso-

nant frequency should match twice the tunnel coupling frequency: w = 2t.. Since,
singlet-triplet qubit operation in Si-P (as discussed in Section 2.2.3) requires a large
tunnel coupling of at least 1-2 GHz, operation in the tunnelling capacitance regime
will require large resonant frequencies. Therefore, the required inductances for the
resonators will be smaller by approximately a factor of ten?. A smaller inductance

usually implies smaller footprint inductors (when using high-quality factor super-

3Current resonators operate at approximately ~100 MHz [29-31]. An increase in w to 1-10 GHz
will result in (noting that w = 1/v/ LC) an smaller inductance by a factor of approximately 10 (if
the parasitic capacitance is approximately the same order of magnitude).
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conducting inductors) and subsequently lower parasitic capacitances C, (therefore,
greater RF readout signal strength). From a scalability perspective a smaller induc-
tor footprint is desirable. However, one should note that one of the key challenges is
that the resonant frequency must precisely match 2t. as any non-zero adjustments on
the detuning offset Vjj to bring the RF drive into resonance will diminish the readout
signal strength. For Si-P systems where the tunnel coupling is fixed on fabrication,
one will require extremely precise tunnel couplings to match the resonant frequencies
of the fabricated resonators. If one finds a precise regime where the qubits’ tunnel
couplings are all uniform, resonator multiplexing will be an issue as the resonant
frequencies will not be different (as required for individual frequency addressibility).
One solution to this conundrum is to set the resonant frequencies of adjacent res-
onators to progressively higher resonant frequencies (as Vjj can be adjusted to achieve
resonance). That is, one can sacrifice readout signal strength to achieve frequency
multiplexing. Finally, one needs to balance the possibly lower measurement times
that may occur due to the fast decay and decoherence of the excited charge states
(although not measured in Si-P, one may expect decoherence times of 100 ns-1 us
when comparing results from SiGe quantum dots [135]). Thus, as a long-term solu-
tion, the tunnelling capacitance mode was not recommended for the singlet-triplet
architecture proposed in this thesis. However, the precise nature of the resonant tun-
nelling method gives an idea of why the tunnelling capacitance was not detected in
the first quadruple quantum dot device. Here, the tunnel couplings were too small
to be measured via the adiabatic quantum capacitance mode and most likely did
not match half the driving frequency 460 MHz, to enable the tunnelling capacitance

mode of operation.

The second mode of operation investigated (to find the conditions for peak RF
readout signal strength) was the adiabatic quantum capacitance regime. Note that
the readout point is set to zero detuning (Vj = 0) to obtain the maximum readout
signal strength. Here, the initial charge state of the qubit (that is, the superposition
of s11 and sg2) was shown to affect the measured RF readout signal strength. If
one starts in the exact ground state on initiating readout, the resulting RF readout

strength is:

. / 2
T, = _ Qe K eda Vo <1 — exp <tc>> ) (4.6)
Qext + Qint Cp 2 vV t?; + Va/c anlc/\/5

Disregarding the final factor (the LZSM envelope), the readout signal strength in-

creases and saturates at input voltage amplitudes V/, larger than the tunnel coupling
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t.. A similar RF response occurs when the initial state of the qubit is fully in s11
charge state (as might be the case when performing singlet-triplet qubit operations),

but slightly smaller at lower RF input amplitudes:

Qing K eAa V? ( ( t2 >>
Yg= — .. R S - ¢ . 4.7
0 Qext + Qint CP 2 tz + Va/?: P W‘/a/c/\/§ ( )

The slightly smaller response should be noted if one is optimising the signal to

noise ratio (for example, using lower input RF powers to lower photon shot noise).
One may mitigate the smaller readout signal strength by adiabatically moving (with
respect to the tunnel coupling) from the qubit operating point to the readout point at
zero detuning to ensure that one starts in the true charge ground state (at detuning
A = —V!) at the beginning of the RF cycle. However, if one starts in |—) =
(511 — s02)/v/2 (the ground state found at zero detuning; that is, starting with the
ground state 90° out of phase with the detuning of the RF drive), the readout signal

strength reaches a peak at V, = t.:

Qint K eAa V]t < < t2 ))
T_ = — . ac 1—e —c . 4.8
Qext + Qint Cp 2 t<2: + Va{g Xp wvalc/\/i ( )

The maximum RF response is in fact half the maximum possible peak value when
compared to loading the state completely in s1;. Physically one may visualise this
as a 50% efficiency in the electron oscillations. That is, when starting with the
oscillating electron partially on both dots, the detuning sweep effectively oscillates
only half an electron every cycle. Finally, in all cases, the readout signal strength
for the adiabatic quantum capacitance mode of operation has a LZSM factor which
places an upper bound on the resonant frequency of the LC' resonator. Here, to
maintain adiabatic operation, one must ensure that w < ¢, to ensure that the LZSM
envelope appears at much higher values of V. such that one may successfully find
a point close to the fundamental maximum (that is, by satisfying w < t., one

adiabatically stays in the ground state):

Qint K eAa
Tinax = — . 4.9
¢ Qext + Qint Cp 2 ( )

Note that the fundamental maximum is the same for both the resonant tunnelling

(which occurs when exactly at resonance) and adiabatic modes of operation. The
fundamental limit in the RF readout response occurs when oscillating a single elec-

tron between two dots and may be achieved in the two modes via:
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e Tunnelling capacitance - setting w = 2t. and V/, < t..

e Adiabatic quantum capacitance - setting w < t. and V/. 2 t.. In addition,
one must ensure that the RF drive begins readout with the singlet state close

to the true ground singlet charge state.

The remaining experimental considerations required to reach the fundamental limit of
the RF readout response (for both the adiabatic quantum capacitance and tunnelling
capacitance modes) are similar to the SLQD sensor. That is, one should increase the
internal quality factor with respect to the external quality factor and use cryogenic
amplification at lower temperatures (where Johnson noise is smaller) to obtain larger

signal to noise ratios as discussed in Section 3.2.3.

4.2 Single-gate RF characterisation and single-shot spin

readout

The singlet-triplet architecture proposed in this thesis uses the compact single-gate
RF sensor (which probes electron oscillations between the two dots hosting the qubit)
for qubit readout. Although the single-gate RF sensor had been demonstrated be-
fore |30, 57, 105], it had not yet performed single-shot readout due to an insufficient
RF readout signal to noise ratio. Experiments performed on the Si-P quadruple
quantum dot device (characterised in Section 2.2.4) suggested that single-shot read-
out should be viable given that the available measurement time, set by the singlet
to triplet ¢_ relaxation time (that is, the qubit decaying away from the qubit sub-
space), was 2ms [29]. From the theory outlined in the previous sections, it was
shown that to enhance the readout sensitivity for single-shot readout, it was impor-
tant to increase the resonator’s internal quality factor. The internal quality factor
of the chip-inductor resonator (used initially for the electrostatic characterisation of
the device) was Qi = 370. This was increased in this chapter to Q,, = 750 by
replacing the surface mount chip inductor with a NbTiN superconducting spiral in-
ductor. The following sections highlight the experimental development in achieving
single-shot single-gate RF spin readout as well as techniques for characterising both

the RF circuitry and the double quantum dot hosting the singlet-triplet spin state.
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4.2.1 Improving the resonator

To achieve single-shot readout, the spin readout signal strength needed to be max-
imised. For a LC resonator, as discussed in Section 3.2.2, the readout signal strength
can be maximised by minimising the parasitic capacitance C}, of the resonator and
maximising the internal quality factor Q... The LC resonator used in the initial
experiment was formed by a Coilcraft 1206CS-821XJE surface mount chip-inductor
(specified to be 820nH at 35 MHz) along with the resulting geometric parasitic ca-
pacitance. The geometric parasitic capacitance C), was reduced by removing all
copper tracks and ground planes near the inductor and by using a thinner 0.5 mm
Rogers RO4003C PCB laminate with a lower relative permittivity of 3.38 as op-
posed to 1 mm FR4 laminates (with a relative permittivity of 4.7) in previous exper-
iments [159]. The changes collectively resulted in a drop in the parasitic capacitance
from ~0.72pF to 0.45pF, to yield an approximately 60% increase in the readout
signal strength.

(a) Surface mount inductor [29] (b) Superconducting inductor [32]
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Figure 4.1: Resonator responses when using a surface mount and a supercon-
ducting inductors. The curves show the reflected amplitude and phase as a function of
frequency about the respective resonant frequencies. (a) The resonator reflectance when
using a SMD inductor. The resonant frequency was 261.5 MHz while the internal and exter-
nal quality factors were 370 and 570 respectively. The inset shows an optical image of the
SMD inductor. (b) The resonator reflectance when using the NbTiN superconducting spi-
ral inductor. The resonant frequency was 339.5 MHz while the internal and external quality
factors were 750 and 350 respectively. The difference in the external quality factors is likely
to be due to the different geometry in coupling the inductor to the transmission line. The
inset shows an optical false-colour image of the NbTiN superconducting inductor.
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When fitting the reflectance (the methods discussed in Appendix D) response of
the chip-inductor LC circuit, in Figure 4.1a, the internal and external quality factors
were measured to be 370 and 570 respectively. The internal quality factor of the chip-
inductor LC' circuit was limited by the resistance of its coil windings. A natural step
to reduce the coil resistance is to replace the chip-inductor with a super-conducting
inductor which should have zero resistance in principle. Thus, the second round of
experiments had the chip-inductor replaced by a 100 nm thick NbTiN, on Si subtrate,
superconducting spiral inductor. The superconducting inductor was a 14-turn spiral,
with a length of 78 mm, trace width of 10 um and a trace gap of 30 um between each
turn. Typically superconducting lines lose their superconductivity, degrading the in-
ternal quality factor, when applying magnetic fields past their critical field. As spin
qubits typically require high magnetic field operation, the substrate was chosen to be
NbTiN due to its high critical field and subsequent ability to retain superconductiv-
ity when applying the magnetic fields parallel with the substrate [144, 154, 160, 161].
The inductor was fabricated by Takashi Kobayashi with a nominal geometric induc-
tance of 440nH and kinetic inductance of 98 nH. With the resonant frequency of
the LC circuit measured to be 339.5 MHz, as shown in Figure 4.1b, the resulting
parasitic capacitance was approximately 0.4 pF. The internal and external quality
factors were approximately 750 and 350 respectively. Given the Qip/(Qint + Qext)
pre-factor in the RF readout signal strength, one would expect a signal increase of
approximately 73% when replacing the SMD chip inductor with the superconducting

spiral inductor.

4.2.2 Characterisation of the singlet-triplet state hosted on P-

donor dots

Before performing spin readout on a singlet-triplet state hosted on a double quantum
dot, one needs to calibrate the energy landscape of the electrons on the double
quantum dot. The two relevant parameters that required characterisation were the
inter-dot tunnel coupling t. and the inter-dot differential gate lever-arm Ac.

To demonstrate a single-gate RF sensor, there needs to be a double quantum dot
hosting a singlet-triplet state. Two possible candidates were present in the quadru-
ple quantum dot device characterised in Section 2.2.5 (the double quantum dots
D1L/D1U and D2L/D2U). However, the first pair of dots D1L/D1U formed an ap-
proximately symmetric 2P-2P double quantum dot and thus, presented no acces-
sible singlet-triplet charge states (that is, even parity inter-dot transitions) within

the available range of gate voltages. The second pair dots D2L/D2U (forming an
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Figure 4.2: Single-gate RF sensor measurements with different inductors and
device tunnel-coupling characterisation. The measurements concern the (3,3) <> (2,4)
inter-dot transition (across dots D2L/D2U shown in Figure 2.10) observed on sweeping the
gate voltages on R2 and G2. (a) Differential TJCS response taken with the T2 sensor
as measured with a 4mV lock-in excitation applied to R2. (b) Single-gate RF response
T of R2 using the chip-inductor at a resonant frequency of 261.5 MHz [29]. (c) Single-
gate RF response T of R2 using the superconducting inductor at a resonant frequency of
339.5 MHz [32]. The direction of positive detuning A is labelled on the inter-dot transition.
(d) Response when taking a 1D cut of the inter-dot transition from the single-gate RF
response across R2 as shown in (¢) and changing the magnetic field (applied in-plane as
shown in Figure 2.10). A scale energy diagram is shown to highlight the energy scale and
distribution of singlet-triplet energy states. Agyp is the input RF signal amplitude. The
magnetic field dependence yields the tunnel coupling 39 4+ 6 GHz as seen by the ¢_ triplet
line at 1.41T and differential lever-arm of R2 from fitting the envelope (the so/t_ anti-
crossing like in a spin-funnel).



142 Chapter 4. Integrating RF singlet-triplet sensors for scalability

approximately asymmetric 3P-4P double quantum dot) provided several accessible
singlet-triplet charge states (the electrostatic rationale is discussed in Section 2.2.3).
Here, we accessed the inter-dot singlet-triplet transition across the dots D2L/D2U

4 in which single-gate RF readout was still

with the minimum number of electrons
possible (that is, a large enough tunnel coupling to yield a non-zero RF response).
This was the (3,3) <> (2,4) transition (with the electron numbers given for dots
D2L and D2U respectively). Note that the 6-electron transition is equivalent to the
(1,1) <> (0,2) transition with two spin-paired electrons on each dot not affecting the
singlet-triplet state formed by the valence electrons. The (3,3) < (2,4) inter-dot
transition was first realised in a charge stability diagram, taken by sweeping the
designated gates R2 and G2, using the charge sensor T2 as shown in Figure 4.2a
(the electrons were counted via the characterisation techniques discussed in Section
2.2.5). The charge sensor response was useful due to the ability to show charge
transitions of electrons leaving or entering the double quantum dot D2L/D2U. For
example, the dashed magenta and green lines show electrons moving onto/from the
reservoir from/to the dots D2L and D2U respectively. Figure 4.2b shows the same
stability diagram taken using the single-gate RF sensor formed by the chip-inductor
on R2 [29]. The RF stability diagram was taken with the input RF signal switched
on while sweeping the gate voltages on the axes and measuring the reflected RF
response. When the voltages are set to points across charge transitions, the input
RF voltage can cause electrons to oscillate between a reservoir and a dot like in a
SLQD sensor or between dots like that in a single-gate RF sensor. However, only
the inter-dot charge transition is observed. By noting the SLQD theory from the
previous sections, one readily confirms that by design the charge loading lines are
not seen due to reservoir-to-dot tunnel rates being much smaller than the driving
resonator frequency of 261.5 MHz. When switching to the superconducting inductor,
there was a marked improvement in the signal strength as shown in Figure 4.2c where
the peak RF readout signal strength of the inter-dot transition after amplification
on average went from ~20uV to ~800uV [32].

Single-gate RF readout on the inter-dot transition can be used to measure the
inter-dot tunnel coupling and the gates’ differential lever-arm. The differential lever-
arm calibrates the applied gate voltage to the shift in the electron’s energy and when
combined with the extracted inter-dot tunnel coupling, one may evaluate the po-

tential to form a qubit as well as provide experimental guidance in future device

“The higher electron transitions were not chosen as increasing the electron number causes weaker
confinement. Long spin lifetimes are found with tighter confinement of electrons onto their quantum
dots as the electrons will interact less with the surrounding environment [56].
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fabrication. To find the tunnel-coupling, one typically requires an absolute energy
scale such as the bath temperature or magnetic field as a reference. Typically for
singlet-triplet states measured with a charge sensor, one performs a so-called ‘spin-
funnel” measurement where one tracks the sg-t_ anti-crossing as a function of mag-
netic field [13, 162, 163]. A similar spin-funnel measurement can be obtained using
single-gate RF spin readout [29, 30, 105]. Here, one first takes a line-cut across the
inter-dot crossing by sweeping one gate across the inter-dot crossing in the direction
of positive detuning A (that is, towards the region where both valence electrons
are brought onto the same quantum dot) as shown in Figures 4.2c. Now consider
the energy diagram in Figures 4.2d when the applied field is 0 T. The triplet ¢
and t_ states are degenerate with the ¢y energy eigenstate and the singlet branch
(shown in red) is the ground state. When one places the DC offset in A at the zero-
detuning position, the RF voltage oscillates between positive and negative detuning
and thereby oscillates the electrons between the two singlet states s1; and sg2. That
is, there is a non-zero RF response at low magnetic fields as the singlet ground state
allows one of the electrons to oscillate between both dots. The width of the RF
response is given by the RF amplitude Agp. The non-zero RF response requires
electron oscillations and thereby requires the full cycle of the RF voltage to pass
zero detuning to ensure that one cycles between the two singlet states s11 and sgo; a
condition only satisfied if the DC offset in detuning is less than the RF amplitude.
Now consider the magnetic field being slowly increased with each line-scan across
detuning. Due to Zeeman splitting, the triplet degeneracy breaks and the triplet ¢_
state eventually becomes the ground state (as shown by the blue line at 3T). Due
to Pauli blockade, the triplet states prevent electrons oscillating between dots and
thus, the RF response is null. The smoothly varying trajectory of the RF response
going from low to high magnetic fields thus, tracks the t_ /sy anti-crossing just like a
spin-funnel. However, since the zero-detuning point is well-known, one may find the
point where the RF response is partitioned equally into a region of null response and
non-zero response as shown by the green triplet lines at 1.41T. Here, the Zeeman
splitting of the triplet ¢_ line equals the energy splitting of the singlet branches;
that is, the inter-dot tunnel-coupling. Now the Zeeman splitting for two spin-down

electrons (that is, a triplet ¢t_ state) is:

By =2-1g.u.B., (4.10)

where g. = 2 is the gyromagnetic ratio of electrons in silicon [16, 38, 50] and
te = 13.996 GHz/T is the Bohr magneton. Thus, taking the triplet {_— Zeeman
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splitting at 1.41 T, the tunnel-coupling of the inter-dot transition was measured to
be approximately 39 + 6 GHz. Now the boundary between null response and a non-
zero response, that is the spin-funnel, is found by solving the intersection between

the singlet energies and the triplet ¢{_ energies:

B.— . <A+\/m>. (4.11)

Gelle
Note that the detuning relates to the applied voltage on R2 via:

2A = BAQRQAVRQ, (412)

where ags is the differential lever-arm of R2 across the dots D2L/D2U and AVgs is
the voltage distance from the zero-detuning point pointed towards the charge state
where both valence electrons reside on the same dot (that is, the (2,4) charge state).
Thus, one may relate the sg/t_ anti-crossing trajectory (the boundary shaving off
the signal in the magnetic field dependence in Figure 4.2) to the inter-dot differential
lever-arm of R2 given that the tunnel coupling is known. The curve of best fit yielded
arz = 0.13 £ 0.05. The energy scale linking the applied gate voltage to the qubit
detuning is important when gauging qubit control. For example, in this device, the
tunnel-coupling and differential lever-arm parameters were not favourable for qubit
control as the Hadamard point (where the qubit axis on the Bloch sphere is at least
tilted to 45° from the z-axis) requires voltage pulses of up to 480 mV (if one were to
send fast pulses on R2). In this device, the tunnel-coupling was too big for viable
qubit control as the required voltage pulses of 480mV was too large (that is, the
tunnel coupling needed to be smaller). However, the tunnel coupling of 39 GHz
was certainly much larger than the driving resonator frequency 339.5 MHz and thus,
presented itself as a viable candidate for RF spin readout in the adiabatic quantum
capacitance mode. Note that the tunnel coupling need not be that large; that is,
one could have gotten the same high-fidelity spin readout with a tunnel coupling of
5GHz > 339.5 MHz.

Although the large inter-dot tunnel coupling makes the inter-dot crossing a viable
candidate for single-gate RF spin readout, one still requires a sufficient measurement
time to make a judgement on whether the two-electron spin state is a singlet or
triplet. The relevant time scale is set by the sg — t_ relaxation time as ¢_ is the
ground state. The ¢_ is the relevant ground state when the system is readied for qubit
operations; that is, applying a magnetic field to break the triplet degeneracy and to
place the so/t_ anti-crossing away from negative detuning such that it does not

interfere with single-qubit gate operations. In addition, the so/¢_ anti-crossing must
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be placed away from the RF amplitude window about zero detuning for one should
not mix the spin state via the sg/t_ anti-crossing during the measurement [40]. Thus,
on applying a magnetic field the triplet ¢t_ is now the ground state and the singlet-
state is now a higher energy state at zero detuning. Thus, with the measurements
occurring at zero detuning (to oscillate the singlet state between the s1; and sg2
states), one needs to ensure that any relaxation mechanisms that bring the singlet
state into the lower triplet ¢_ state occur at a sufficiently long time scale in order
to perform spin readout. In previous experiments (where the double quantum dots
were approximately 11.7nm from their reservoirs) the sg — ¢_ relaxation time at
zero detuning was 60ns due to the quantum dots having too strong a coupling to
their reservoirs [30]. To weaken the coupling of the dots to their reservoirs, the
control gates (G1 and G2) were made further away from the dots (52nm and 55 nm
respectively) and the reservoirs (R1 and R2) were placed further away from the
dots (18 nm and 17 nm respectively). Although one may not assert that the changes
resulted in an improvement (to the measured sy — ¢_ relaxation time), the measured
relaxation time of 2ms [29] in this experiment was many orders of magnitude larger
than the previously measured time of 60ns [30].

Figure 4.3 shows the singlet to triplet {_ relaxation that limits the measurement
time. In the initial experiment, using the chip inductor for the resonator, the singlet
states were loaded by pulsing (1D pulses on gate G2) into point L 100mV into
positive detuning for 100 us and then pulsing back to zero detuning to perform the
single-gate RF spin measurement as shown in Figure 4.3a. When taking 10° time
averages, one obtains an ensemble decay that is attributed to the singlet states
relaxing into the triplet ¢_ spin states at zero detuning. The fitted decay time
was approximately 2ms allowing us to show that with a better resonator single-
shot single-gate RF spin readout should be possible [29]. The device was therefore
taken out and the inductor was replaced with a superconducting spiral inductor as
described in Section 4.2.1. The device reproduced the same stability diagrams with
identical inter-dot crossings and singlet triplet relaxation times as shown in Figure
4.3b. This suggests that the relaxation mechanism is intrinsic to the P-donors rather
than the surrounding environment. Nonetheless, the signal to noise ratio was much

better as the trace in Figure 4.3b only required 10* averages to resolve.

4.2.3 Optimising the input RF amplitude

To achieve maximal signal strength in the readout signal of the single-gate RF sen-

sor, the input voltage amplitude was optimised. When operating in the adiabatic
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(a) SMD inductor (100 ps at L, 4ms at M) (b) S.C. inductor (100 pus at L, 4ms at M)
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Figure 4.3: Singlet to triplet-t_ relaxation time (limits spin readout time). The
insets show the pulse sequence on the charge stability diagram used to load singlet states at
point L (for 100 us) by moving into a region of positive detuning where the ground state is
so2 and measuring the spin state at M (for 4ms) at zero detuning. The resulting ensemble
decay in the singlet readout signal Y, using the single-gate RF sensor on R2, is due to the
relaxation of the singlet state into the triplet ¢_ state. (a) First experiment performed with
the surface mount (SMD) inductor. The spin trace shown is the average of 10° time traces
and the fitted decay time was approximately 2ms [29]. (b) Second experiment performed
using a superconducting (S.C.) inductor reproduces the same decay but with a better signal
to noise ratio. The time trace was taken with only 10* averages. In the second experiment
with the superconducting inductor, the loading pulse was only 26 mV (instead of 100 mV
as in (a)) into positive detuning since moving further into the (3,4) charge state does not
aid in speeding up the singlet initialisation (as discussed later when measuring the singlet-
initialisation fidelity in Section 4.2.6).
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quantum capacitance regime, the theory outlined previously in Section 4.1 suggested
optimising the power to obtain the peak readout signal. The measured peak RF
response is plotted (black markers) in Figure 4.4. The RF input voltage amplitude
V!. on the z-axis was calibrated from the injected RF powers by considering the

peak width at zero magnetic field in Figure 4.2d.
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Figure 4.4: Finding the optimal RF input voltage amplitude V. to achieve the
maximal RF readout signal strength Y. The measurements taken at zero magnetic
field. The black markers show the measured peak height in the RF response (at zero de-
tuning). The lines indicate the RF response as expected from the theory developed in
Section 4.1 with the tunnel coupling taken as 39 GHz (161 ueV). The three lines (blue,
green and red) are those when taking the initial state (before performing readout) to be
|-) = (511 — s02)/V/2, 511 and 1y (the ground-state eigenstate on starting readout). IP
labels the approximation of the inflection point in the RF response.

From Figure 4.4, one observes that the RF response appears to have an inflection
point (shown by the label IP) before coming to a maximum value at approximately
the tunnel coupling energy of approximately 161 ueV before dropping. To under-
stand this measured response, the data was analysed using three different theoretical
models developed for the adiabatic quantum capacitance operation in Section C.5.
All three fitting functions for the adiabatic quantum capacitance readout involve a
LZSM factor that could explain the drop in the RF response at higher amplitudes.
However, at 39 GHz and a driving frequency of 339.5 MHz, the LZSM envelope is
irrelevant until the RF amplitudes exceed 10 meV. That is, the tunnel coupling was
large enough (compared to the drive frequency) to ensure adiabatic passage (during
readout) for voltage drive amplitudes of up to 10 meV. Thus, for the three possible
initial conditions on performing readout (|—) = (s11 — s02)/Vv/2, s11 and 1g), the

fitting functions were taken to be:
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VIt
T =A% (4.13)
2+ V2
Vae
!/
T, = Ag—vac (4.15)

Y _ is the peak RF response when the initial state is the |—) state, Tq is the peak RF
response when the initial state is s1; and Y, is the RF response when the electrons
take on the ground-state eigenstate before performing readout. In the fitting func-
tions, the tunnel-coupling was fixed at 39 GHz. Thus, the only fitting parameter was
Ap; which was fitted to be 1.4mV across all three curves. The fitting function taking
the initial state to be s11 (green) appears to explain the RF response at lower RF
amplitudes. At higher input RF amplitudes, the response maximum and subsequent
downward trend appears to be better explained when taking the initial state to be
the |—) (blue). The red curve, which assumes that the electrons always occupy the

ground-state charge state, appears to not explain the data at all.

The conclusion we can make about which charge state initialisation we should
employ needs to consider the manner in which the dataset was taken. The peak
response was found by taking the RF response (with the RF drive continuously
switched on) whilst sweeping the gate Vro at approximately 1.5mV/s. On sweeping
the voltage past zero detuning, the initial state (at far negative detuning) will be
s11- At low amplitudes, the initial state is most likely s1; and thus, the green fitted
curve explains the data in Figure 4.4. However, at higher amplitudes, on sweeping
towards zero detuning, the large RF drive will sample zero detuning before the DC
offset voltage has reached zero detuning. In doing so, there is the possibility that
any excited charge state (with a larger energy splitting than at zero detuning) far
from zero detuning (as the DC voltage has not reached zero detuning yet) quickly
decays into the average ground-state eigenstate closer to zero detuning (the |—)
state) explaining the transition to the blue curve as V. 2 100 peV. Higher RF
amplitudes could not be accessed as the RF drive starts to be strong enough to start
sweeping the dots’ energy levels above and below their Fermi-level. Broadening of
the charge loading lines is undesirable as one opens up the possibility of exchanging
electrons with the reservoir R2 (thereby, destroying the spin-state of interest). The
RF power was thus, set to ~160 ueV for the maximal signal strength obtained in

this experiment.
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4.2.4  Optimising the signal to noise ratio

Even with the improved resonator yielding greater signal strength, as seen in Figures
4.2 and 4.3, single-shot readout was still elusive due to technical noise found in the
apparatus surrounding the dilution fridge. Thus, several measures were taken to
improve the SNR and eliminate the detection of technical noise not pertaining to the

device under test.

The first source of technical noise was found when performing measurements
via reflectometry using the directional coupler where the RF readout signal showed
periodic oscillations at the same frequency as the pulse tubes. Although the true
source was never diagnosed definitively, a trick to eliminate detection of the pulse
tubes arose from discussions with Lucas Orona (from Harvard) when measuring a
similar Si-P quadruple quantum dot device. The trick was to not send the RF input
voltage signal via reflectometry (that is, via the directional coupler), but rather via
the nearby gate G2 designed to send in high frequency pulses. The RF voltage
signal sent through G2 will still oscillate the detuning across the dots to induce
electron oscillations; the resulting current is picked up via the resonator and readout
is performed as in reflectometry. The act of bypassing the directional coupler resulted

in no pulse tube oscillations coupling into the measurements.

The second source of technical noise resulted in high frequency peaks present in
the laboratory presumably due to power supply peaks induced by the pulse tube
compressors (of the dilution fridge) linked to the same power supply circuit as the
measurement apparatus. The straightforward method to eliminate these noise peaks
was to move the signal bandwidth to frequencies far from the technical noise peaks via
a lock-in amplifier. The input voltage signal was first modulated with a 21.361 kHz
excitation. Any signal changes (for example, the presence or lack of a quantum
capacitance due to a singlet or triplet) are now mapped around the lock-in frequency.
The readout signal was then demodulated with the lock-in amplifier to extract the
required singlet-triplet readout signal. The lock-in amplifier was filtered with a
3.3kHz bandwidth and thus, the detection of technical noise peaks was eliminated.
Note that the measurement bandwidth was not limited by the high quality factor of
the superconducting resonator but was set below the 1.4 MHz limit to enhance the

signal-to-noise ratio.
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4.2.5 Optimising the readout position

On optimising the overall SNR of the readout signal, the final parameter to optimise
was the optimal readout position in detuning. This section highlights how spin
relaxation times were investigated as a function of detuning to find the optimal
readout position. It will also be shown that the RF qubit sensor does not interfere

with the spin dynamics of the spin state under measurement.

On choosing the optimal power from the previous section, the optimal position in
detuning was also investigated. Since the RF readout signal is stronger with larger
electron oscillations, one intuitively expects the optimal readout signal to occur at
around zero detuning where the applied RF voltage maximally oscillates the detuning
equally towards the s1; and sgo eigenstates. However, the readout signal strength
should be considered along with the available measurement time (limited by the
so — t_ decay discussed the in previous section in Figure 4.3). Assuming additive
white Gaussian noise, SNR is proportional to the square root of the measurement
time. That is, one may filter the signal to a lower cut-off frequency to lower the
overall noise power. Thus, the sg — ¢{_ decay was investigated along with the singlet

readout signal strength as a function of detuning A as shown in Figure 4.5.

The pulse sequence used to measure the s — t_ decay as a function of detuning,
shown in Figure 4.5a, was similar to that performed in the previous experiment
shown in Figure 4.3. However, in this experiment, the significance of the t_ — sgo
decay time was realised. That is, on repeating the pulse sequence, the measurement
phase leaves the spin-state in the ¢_ ground state. Thus, to load a new singlet, one
needs to wait at point L, for the triplet £_ state (now an excited state in far positive
detuning) to decay into the singlet sgo ground state. As shown later, waiting at point
L (far positive detuning) for approximately 4 ms was sufficient to ensure high singlet
initialisation probabilities. The pulse sequence then proceeds into the measurement
phase at point M where upon the singlet spin state decays into the triplet £_ state.
Point M was varied around zero detuning and the subsequent decays are shown in
Figure 4.5b. The top plot shows a scale energy diagram about zero detuning, while
the centre plot shows the singlet population (given by a non-zero RF readout signal)
during the measurement phase as a function of detuning (position of point M) and
time waited at point M. Each vertical time averaged time trace (over 10,000 shots)
was fitted to an exponential curve and the resulting fitting parameters are shown in
the bottom plot: the peak RF readout signal strength in black and the relaxation
times shown in orange. As expected zero detuning yielded the peak signal strength.

However, the relaxation time was shown to decrease when moving towards positive
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(a) Measurement pulse sequence (b) Decay times as a function of A
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Figure 4.5: Finding the optimal measurement point in detuning. Different mea-
surement points about zero detuning offered a compromise in the readout signal strength
and available measurement time. (a) Repeated pulse sequence on the charge stability di-
agram. The load phase was performed in positive detuning with a 4.096 ms wait time (to
ensure that the spins decay to the singlet sgo ground state, if the spins were in ¢_ due to
the previous measurement phase). The measurement phase was performed at zero detuning,
where the singlet spin-state decayed into the triplet ¢_ ground state, thereby limiting the
measurement time of the singlet spin-state. (b) The measurement point M was varied about
zero detuning to obtain the decay times as a function of detuning A. The top section shows
a to-scale energy diagram of the spin states, the middle section shows the singlet-population
as a function of detuning at point M and the time waited at point M (each vertical time
trace is an average of 10,000 shots), while the bottom section shows the associated fitted
exponential decay times (orange) and the peak RF singlet readout signals (black). Peak
RF readout signal occurs at zero-detuning, while the available measurement time appears
to reduce towards positive detuning and increase when moving towards negative detuning.
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Figure 4.6: Singlet to triplet relaxation time when switching off the RF input
voltage. The same pulse sequence used in Figure 4.5a was applied with the exception that
the RF input voltage was only switched on during the measurement phase after waiting
a certain time Tyaj; at zero-detuning. The resulting measurement signal for a given wait-
time was fitted with an exponential decay and the maximum readout signal (like in Figure
4.5bn) was extracted. Thus, the resulting trend in the singlet readout signal as a function
of Tyai¢y indicates the sg — ¢_ decay in the absence of an applied RF input voltage. The
resulting decay was still fitted to be approximately 2 ms; thus, the RF input voltage did not
significantly affect the spin dynamics of the sensed electrons.

detuning due to the RF voltage signal now sweeping the detuning past the sp2/t_
anti-crossing and accelerating the decay to the t_ ground state via sg/t— mixing [97].
Although the decay time increases when moving towards negative detuning, the RF
signal strength diminishes at a rate such that the SNR remains approximately the

same. Thus, the optimal readout position was chosen to remain at zero detuning.

Before one can utilise the optimised single-gate RF sensor for spin readout, it is
important to verify that the sensor is not affecting the spin-dynamics of the system
under measurement. That is, one may posit that the sg — t_ decay was due to
the RF voltage used by the RF readout sensor. To verify that the sensor was non-
invasive, the measurement protocol was modified such that the RF input voltage was
only switched on during the measurement phase and only after waiting a certain time
period at point M (in all results shown so far, the RF input voltage was permanently
switched on). The idea was that one idly waits a certain time period at point M
to give the opportunity for the singlet spin-state to decay into the triplet t_ ground
state before switching on the RF input voltage signal to execute the measurement.
On measuring the peak RF readout signal as a function of the time waited at point M
(before executing the measurement), one can observe the bare relaxation time when
no RF excitation is applied to the electrons. If the sg — ¢_ decay was due to the
single-gate RF sensor’s input RF voltage excitation, the bare relaxation time should
be longer. However, the bare relaxation time, plotted in Figure 4.6, was shown to be
the same approximate 2 ms are zero detuning. Thus, one affirms that the single-gate

RF sensor does not affect the spin dynamics of the qubit under measurement.
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4.2.6 Single-shot spin readout using the single-gate RF sensor

With the single-gate RF sensor calibrated and optimised, the sensor was set to
perform single-shot spin readout. Triplet ¢t_ states were measured by simply waiting
at zero detuning (where the ground state is ¢t_) as shown in Figure 4.7a. The readout
signal for triplet states remained at the zero background level. Singlet states were
measured using the same pulse sequence in Figure 4.5a. That is, to measure singlet
states, the detuning was pulsed into positive-detuning by applying 150 mV on G2
for 4.096 ms and then pulsing to zero detuning to perform the measurement. The
singlet traces, as shown in Figure 4.7b, initially displayed a signal above the zero
background level indicating the presence of a quantum capacitance (that is, electron
oscillations between the dots due to the lifting of Pauli-blockade). The readout signal
later drops back to the zero background level indicating the measurement of triplet
states. That is, the singlet traces show the time-resolved stochastic decay of singlet

spins into the triplet ¢_ ground state.

To quantify the fidelity of the single-shot spin readout, one must discriminate
between a fully null signal (triplet) and one with a non-zero readout signal (singlet).
The singlet signal on average follows an exponential decay function and thus, the
singlet signal contrast is concentrated at the beginning of the measurement. Thus,
an exponential window was applied over the portion of the signal where the measure-
ment began and a histogram was compiled of the maximum value of each trace [164].
The histogram shown in Figure 4.7c was created from 10,000 traces taken after wait-
ing at point L for 4.096 ms (initialising singlet) and without pulsing to L (initialising
triplet t_) to measure the distribution for singlets and triplets respectively. Taking
a threshold (shown by the dotted line in Figure 4.7¢) to optimally partition the dis-
tributions such that values above are assigned as singlet states and values below are
triplet states. This yielded an average single-shot readout fidelity of 85.77% (where
the singlet and triplet readout fidelities were 80.02% and 91.52% respectively). The
fidelities were in fact higher than that quoted in the publication as the exponential
window was not adjusted for the line delays in acquisition and triggering [32]. That
is, the analysis in the publication applied the exponential window approximately
75 us too early. Thus, the maximum signal strength of the singlet signals were pre-
maturely attenuated by 4% (that is, exp(—75/2000) ~ 0.96). The lower singlet signal
(due to the exponential window filter) led to a slightly smaller singlet-triplet signal
contrast and thus, a lower fidelity. The analysis here correctly accounts for the 75 us
line delay between setting the pulse generator to zero detuning (for readout) and the

actual point in time, during the signal acquisition, when readout truly begins.



154 Chapter 4. Integrating RF singlet-triplet sensors for scalability
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Figure 4.7: Single-shot single-spin readout. Using the superconducting resonator on
R2, single spin states could be resolved with single shot. (a) Single-shot traces measuring
a single spin in the singlet state when waiting at L for 4.1 ms. (b) Single-shot spin traces
measuring triplet states where the detuning was never pulsed to L. (¢) A histogram (a
probability density function (PDF) from 10,000 traces) of the maximum value of the RF
response when waiting at point L for Os and 4.1 ms shown in blue and red respectively. The
dashed line shows the selected threshold that maximises the readout fidelity at 85.77%.
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(a) Waiting 0.7 ms at point L (b) Waiting 4.1 ms at point L
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Figure 4.8: Observing singlet initialisation via the triplet /_ to singlet decay.
(a) 250 single shot traces when waiting at the loading point L were taken after waiting
at the loading point L (see Figure 4.5) for 0.7ms to partially load singlet states. The
traces indicate singlet states (yellow blips) decaying into triplet states (purple) during the
measurement stage. (b) More singlet counts are present when waiting at point L for for
4.1ms to fully load singlet states. The shorter wait time at L yields lower singlet counts as
insufficient time was given for the ¢_ state to decay into the sq state before measurement. (c)
To observe the dependence on wait time at L 1000 single-shot traces were taken, using the
optimal readout threshold, to measure the singlet population on varying the time spent at
point L. The exponential fit of the ¢_ to sy relaxation time at A ~ 1 meV was approximately
0.62 ms.
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With single-shot readout sensor characterised, the singlet initialisation was inves-
tigated in detail by measuring the t_ to sg decay at far positive detuning A = 1 meV
by varying the time the pulse spends at point L. After every measurement at point M,
the electrons decay into the triplet t_ state. On initially pulsing to point L, the elec-
trons remain in ¢_ via the (3, 3) charge state. Since the electron tunnel rate from R2
to D2U is slow, the system cannot immediately enter the (3,4) charge ground state.
The triplet ¢_ state must decay into the singlet state (the (2,4) charge state) before
an electron can move from R2 to D2L to leave system in the (3,4) state [29, 102].
Figure 4.8a shows 250 traces taken when waiting 0.7 ms at point L while Figure 4.8b
250 traces when waiting 4.1 ms at point L. The lengths of each non-zero signal are
exponentially distributed with a time constant of 2ms and represent singlet states
(yellow) decaying into triplet ¢t states (purple). When waiting a lower time at L,
there is clearly a smaller proportion of singlet states. Figure 4.8c shows the singlet
counts over 1000 traces taken at different wait times at point L. When viewing the
singlet counts as a function of the wait time at point L and fitting to the resulting
exponential rise in the singlet counts, the decay time was measured to be 0.62 ms.
Thus, waiting 4.1 ms at point L ensures high-fidelity initialisation of singlet states.
Note that the approximately 100-count offset at zero wait time and 200-count offset
at high wait times (as opposed to 0 counts and 1000 counts) is due to the readout
infidelities of detecting triplets and singlets respectively (that is, dark counts where
triplets are incorrectly declared as singlets and missed counts where singlet states

are incorrectly declared as triplets).

4.3 Outlook

Key results came together to culminate in single-shot readout of the single-gate RF

Sensor:

e The theory was developed to better understand the conditions required for
maximal readout signal strength when using the adiabatic quantum capaci-
tance (w < t.) and tunnelling capacitance regimes (w = t.). After fully op-
timising the resonant circuitry and the tunnel couplings, the readout strength
was ultimately found to be limited by the movement of a single electron be-

tween two quantum dots.

e The modelling suggested that increasing the internal quality factor aids in
increasing the readout signal strength. Thus, the surface mount chip inductor
(Q = 370) was replaced with a NbTiN spiral inductor (Q = 750).



4.3. Outlook 157

e The single-gate RF sensor was shown to operate without significantly affecting
the spin state under measurement. That is, the sy — ¢_ relaxation time of
2ms (which limits the available readout time) was not due to the RF drive of

the single-gate RF sensor.

e Single-shot electron spin readout in the singlet-triplet basis was demonstrated
for the first time using a single-gate RF sensor® with an average readout fidelity
of 85.77% (where the singlet and triplet readout fidelities were 80.02% and
91.52% respectively) at a 3.3 kHz measurement bandwidth.

The result forms a key pillar in the proposed singlet-triplet architecture by prov-
ing that single-shot readout (required for real-time error correction in modern error
correction codes) is possible using the compact integrated single-gate RF sensor.
The average fidelity was measured to be 85.77% at a 3.3 kHz measurement band-
width. The fidelity can be improved in future experiments by the usual techniques

discussed in Section 3.2.3. This includes:

e Increasing the internal quality factor, which may be limited by dielectric losses,
radiative losses and/or defects in the 100nm NbTiN films. These parameters
can be improved by using an uniform NbTiN film and substrate [144| and by

reducing the overall size of the inductor [145].

e The external quality factor can be optimized by re-designing the supercon-
ducting resonator geometry to achieve the ideal coupling to the transmission
line [165].

One of the challenges in scaling to many qubits using superconducting resonators is
the space real-estate needed for the extra matching circuitry. Whilst the results in
this thesis used a superconducting spiral inductor of a fairly large footprint (4 mm?),
the size was mainly limited by the need for a central bond pad and to keep the fabri-
cation simple (that is, not using multi-layer superconducting inductors in which the
bond pad can be placed away from the centre of the inductor spiral). Recent propos-
als have shown that the superconducting spiral inductors can be further scaled with
thinner tracks and tighter spacings to achieve a density of thousands of resonators
per square centimeter [137|. Another option is to use higher inductor frequencies if
one commits to using resonant tunnelling capacitance readout as opposed to adia-
batic quantum capacitance readout. Future work in developing the single-gate RF

sensor include:

®Other groups have since posted single-shot single-gate RF spin readout results [132, 133] with
one group using a SLQD sensor [130].
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e Increase the internal quality factor to approximately above 1600 to push the

readout fidelity past 99%.

Investigate the spin life-times for lower electron numbers. With tighter electron
confinement, one may indeed get singlet to triplet ¢_ lifetimes beyond 2ms,

thereby yielding longer integration times and thus, greater readout fidelity.

Investigate the feasibility of the tunnelling capacitance mode of operation using
high-frequency resonators in Si-P quantum dots (for example, the spin lifetimes
and coherence times must be long enough to resolve the spin state with the
single-gate RF sensor). If one can attain high fidelity readout with smaller
inductances, the smaller footprint alone may warrant its use in the singlet-
triplet architecture. Given that for N qubits, one requires IV coaxial lines for
the control gate lines, an extra N non-multiplex lines may be a worthwhile

compromise.

Implementing a digital solution to the RF electronics when simultaneously
addressing a multiplexed array of resonators. The current analogue RF elec-
tronics enabled adequate RF signal synthesis and demodulation. However, if
one performs simultaneous RF readout across more than N qubits, one will
require N separate 1Q demodulators and N separate signal generators. The
separate signal generators are required (as opposed to outputting the summed
waveform) as each frequency tone needs to provide a coherent local oscillator
source for the IQ demodulator. A digital solution will enable synthesis via a
single DAC (outputting the summed waveform) and demodulation via a sin-
gle ADC as the digital fabric can keep track of the phase of each tone in the

summed output signal.



Chapter

A scalable singlet-triplet quantum

information processor

The phosphorus in silicon system in the form of Si-P quantum dots offer unique ad-
vantages for hosting singlet-triplet qubits ranging from low lead counts (2 per qubit)
to stronger inter-qubit couplings (exceeding order of typical tunnel couplings of sev-
eral gigahertz). Ultimately it is important to show the feasibility in leveraging these
advantages to create a large-scale many-qubit quantum processor. The geometric
architecture shown in Section 2 highlighted how a 4-dot device can work towards
the demonstration of a coupled singlet-triplet two-qubit gate using only two gates
per qubit. However, this particular design has flaws when attempting to tessellate
the qubit unit-cell across a larger array of qubits. Ultimately, one must consider the
optimal choice of the system parameters, such as inter-qubit coupling and tunnel
coupling, to achieve high-fidelity two-qubit gates. In particular these parameters are
required to be optimised for a high-fidelity CZ gate (since a high fidelity CZ or CX
gate can ultimately be used to perform the parity measurements required for the
surface code). During the time-frame of this thesis, parallel results from our group
also demonstrated the ability to perform atomic-scale multi-layer Si-P fabrication,
opening up the possibility for more complex singlet-triplet architecture proposals

beyond that of a 1D linear array [76]. This chapter covers the following topics:

e Section 5.1 gives an overview of methods proposed to scale up solid state qubits.

e Section 5.2 shows the conversion of the fundamental double dot Hamiltonian
(Hubbard model) into the singlet-triplet qubit Hamiltonian. This overview
highlights the importance of a large tunnel coupling of at least 1 GHz (to over-
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come thermal excitations), the minimum distance between dots to ensure the
exchange J can be turned off and the role of global magnetic fields in isolating

the singlet and triplet-ty qubit subspace.

e Section 5.3 gives an overview of the operation of single-qubit gates using singlet-
triplet qubits. The analysis shows how the minimum exchange J for an accurate
Pauli-z gate (as a non-zero AB, will always tilt the qubit rotation axis away
from the Pauli-z axis) is 810 MHz (for a typical AB, = 29 MHz expected for
a 1P-2P double dot in Si-P). The analysis concludes with an upper bound
on the tunnel coupling of approximately 10 GHz for Si-P as beyond this, the
voltage pulses required for qubit gate control (to toggle between Pauli-z and
Pauli-z rotations) will be too large. In addition, the influence of charge noise
on the Pauli-z gate is discussed where one finds that if we operate in negative
detuning (where d.JJ/dA is small), high-fidelity Pauli-z gates should be possible

as previously observed in singlet-triplet qubit experiments in GaAs [34].

e Section 5.4 gives an overview of the requirements for a singlet-triplet two-
qubit gate in Si-P in the presence of strong inter-qubit coupling. The CZ gate
is presented with an analysis of charge noise (taken as a Gaussian variation
on the qubit detuning). The analysis concludes that the regime of optimal
operation (with worst case error rates below the fault-tolerant threshold of
0.5% and largest tolerance to noise of up to 810 neV detuning noise) is when the
inter-qubit coupling is approximately six times the tunnel coupling, giving an
optimal tunnel coupling of ~6.5 GHz and an inter-qubit coupling of ~39 GHz.
The native CX and CH gates (although not required as there is a high-fidelity

CZ gate) are briefly discussed for completeness.

e Section 5.5 finally concludes with an electrostatic optimisation of a linear 1D
array of singlet-triplet qubits that can implement a high-fidelity CZ gate be-
tween adjacent singlet-triplet qubits. By appealing to recent developments in
multilayer Si-P fabrication, electrostatic optimisation was also performed, in
3D, for the 2D surface code architecture in which one stacks many 1D arrays

on top of one another.

5.1 Scalable architecture proposals for solid-state qubits

The promised speed-up in solving a certain class of algorithms that a quantum pro-

cessor may provide, hinges on the Quantum Fourier transform (for example, in Shor’s
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integer factorisation algorithm [3]) and, to a lesser extent, the amplitude amplifica-
tion algorithm [166] (as used in the Grover’s search algorithm [4]). The algorithms
are well-understood in terms of the operations that need to be performed over a few
qubits [167]. Indeed a proof of concept of the Grover’s search algorithm was recently
demonstrated on a two-qubit processor using two single-spin qubits [55]. One may
envisage extending the two-qubit demonstration to a 1D array of qubits to run multi-
qubit algorithms. However, in practice device performance will be compromised by
imperfect qubits. Qubit errors comprise of control errors (yielding imperfect qubit
rotations), bit-flip errors (state changing due to a 7; relaxation mechanism) and
phase-errors (due to T4 processes that cause random fluctuations in the precession
frequency). To summarise the impact of all these infidelities of qubit operations, one

can introduce the quantity called the operational fidelity:

F = |(tm | ve)]?, (5.1)

where 1), is the expected state, while v, is the measured state. The fidelity is the
probability that one arrives at the correct resulting state. The qubit error rate per

qubit operation (or per unit time) is the worst case infidelity (1 — F').

One may improve operational fidelity due to control errors from imperfect control
pulses via pulse compensation [66, 168-170]. The pulse imperfections arise from finite
output bandwidth, voltage resolution and sample rates of the waveform generators.
By realising that the phase accumulation of a qubit is given by both the qubit
precession frequency and the time spent performing the gate, one may adjust the
qubit precession frequency by pushing the qubit into a region of faster or slower

frequency to account for the discrete time-base given by the sample rate.

One may improve operational fidelity due to bit-flip and phase errors by using
qubits with longer lifetimes. Within the realm of solid-state spin qubits, P-donor
qubits have demonstrated extremely long 77 times. Electrons hosted on P-donor dots
have been shown to have lifetimes (specifically the spin-up to spin-down relaxation
time of single electron spins) of up to 30s [56]. Theoretical predictions suggest that
by correctly orienting the global magnetic field with respect to the electric field in
the device, spin-orbit coupling can be minimised giving rise to spin lifetimes as long
as 18 minutes [171, 172].

Although the 77 time places an upper bound on T3, this longer spin lifetime is
irrelevant if the decoherence times are much shorter than 77, causing phase errors to
dominate the overall error rate. Precession due to magnetic fields (such as the global

magnetic field used for Pauli-z rotations in single-spin qubits or the magnetic field
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gradient used for Pauli-z rotations on singlet-triplet qubits) can have noise due to
non-zero nuclear spins in the substrate. Some solutions to mitigating the magnetic
field noise, discussed in Section 2.1.6, include dynamic nuclear spin polarisation as
demonstrated in GaAs qubits where nuclear spin isotopes are present in both Ga and
As [40, 41]. A solution for qubits in silicon is to use isotopic purification of the nuclear
spins by using ?8Si instead of natural silicon [16, 39]. When using isotopically purified
silicon, the single electron spin decoherence time 75 increased from 55ns to 270 ps.
Singlet-triplet decoherence times' for Pauli-z rotations (mediated by AB,) have yet
to be measured in isotopically purified silicon. However, GaAs implementations have
noted that when stabilising the background nuclear spins, the singlet-triplet qubit’s
T3 increased from 10ns [13]| to 2us [41] and the intrinsic charge noise becomes the
dominating factor for operational qubit fidelities [69]. That is, by stabilising the
nuclear spins (and using AC driving of the singlet-triplet qubit) GaAs singlet-triplet
qubits showed single-qubit gate fidelities of up to 99.3%, but the two-qubit gate
fidelity was limited to 90% by charge noise [34].

Even with these mitigation strategies, solid-state quantum dot qubits currently
do not have sufficiently low error rates (both for single qubit and two qubit gates) to
perform useful algorithms. Thus, one appeals to facets of classical error correction
theory in telecommunication channels by utilising information redundancy. That is,
one utilises multiple qubits to represent the information of a single ‘logical qubit’.
Given the proposal highlighted in Figure 2.1 in Section 2, one could envision extend-
ing the singlet-triplet qubit unit-cell (requiring two gates per qubit) into a linear
array of singlet triplet qubits. Here a given qubit’s state can be protected by redun-
dant ancilla qubits on either side. However, previous research has shown that for this
to work, qubit error rate thresholds need to be in the range of 10~7 to 107> [173].
Given that, for solid-state spin qubits, the best single qubit gate error rates are ap-
proaching ~1073 [18, 34] and two-qubit gate error rates (limited by charge noise)
ranging 0.02-0.10 [34, 66], a 1D array will not be compatible with a many-qubit
processor.

The state-of-the-art implementation of a logical qubit architecture revolves around
the use of a 2D array of qubits. Here, additional redundancy in the number of phys-
ical qubits helps overcome the individual qubit error rates, while logical qubits are
formed as topological particle excitations (or holes) in the code. The logical qubits

are then moved around in braiding operations to perform two-qubit gates [174]|. Com-

1Tt is not trivial to convert single spin coherence times into two electron singlet-triplet qubit
coherence times. This is because the coupling of magnetic field noise couple directly to single-spin
qubits, while singlet-triplet qubits couple to magnetic field gradient noise while rejecting global
magnetic field noise.
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(a) Arrangement of qubits and stabilisers in
the surface code [§]

(b) Operation of the ZZZZ and XXXX sta-

bilisers [8]
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Figure 5.1: Arrangement of qubits in forming the 2D surface code. The white
dots represent physical data qubits, while the black dots represent physical measurement (or
ancilla) qubits. The green plaquettes represent 4-fold ZZZZ parity measurement cycle, while
the yellow plaquettes represent 4-fold XXXX parity measurements. (a) The measurement
qubits are interleaved with the data qubits such that each measurement qubit has four
surrounding data qubits. (b) The ZZZZ parity measurement is performed via 4 CNOT
gates in which the measurement qubit (initialised to spin-down) is flipped for every spin-up
data qubit. The XXXX parity measurement is similar with the exception of the Hadamard
gates in the beginning and end required to tip and un-tip the spins onto/off the Pauli-z axis
before performing the Pauli-z axis measurement.

mon implementations include the colour code (following anyon physics [175]) and the
surface code |8, 176]. Due to the ease of realising local nearest neighbour interac-
tions arranged in a square grid, solid-state qubit proposals have typically adopted
the surface code. The surface code consists of a network of X and Z stabilisers (a
stabiliser constituting a parity measurement along the Pauli-z or Pauli-z axes be-
tween two qubits) as shown in Figure 5.1a. In simple terms, one realises that to
protect a qubit state, one must protect two degrees of freedom. Thus, one may use
redundant qubits to test for qubit errors along the X and Z axes. For example, if
two qubits were set to |1) and a bit-flip error occurred, a weak parity? measurement
along the Pauli-z axis would yield a change in the parity from even to odd; thus, the
detection of an error. In addition, the ZZ-parity measurement is a weak measure-
ment? that will likely project the state back into |1) if a small error had accumulated

to rotate the qubit from the main state. To enhance redundancy, one may stabilise

2A parity measurement measures whether, for a given set of qubits, an odd or even number of
qubits are in |0) or |1). A ZZ-parity measure distinguishes the parity along the Pauli-z axis (]0)
or |1)) while an XX-parity measurement measures along the Pauli-z axis (counting the number of
qubits in the (|0) + |1))/v/2 or (]0) — [1))/v/2 states).

A weak measurement on a set of qubits extracts information without fully collapsing the qubit
states. For example, a parity measurement between two qubits gives information on the relative
qubit orientations (parallel/even or anti-parallel/odd) but not the individual state of the qubits.
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a given qubit with many Z-stabilisers along one axis and many X-stabilisers along
an orthogonal axis. Then the new qubits (placed to stabilise the initial qubit) need
to be also individually stabilised; upon which one attains a grid. The surface code
continually stabilises its qubits via repeated stabiliser measurements. Figure 5.1b
shows how the measurement (or ancilla) qubits (highlighted as black dots) are inter-
leaved in between the data qubits (highlighted in white dots) to continually perform
2777 (green plaquettes) or XXXX (yellow plaquettes) parity measurements. The
Z777-parity measurement consists of a series of CNOT gates (or CZ gates preceded
and followed by Hadamard gates |167]) where the measurement qubit (initialised as
spin-down) is flipped for every data qubit that is spin-up. If final the state of the
measurement qubit is spin-up, then the data qubits have an odd parity of spins,
while spin-down indicates that the data qubits have an even parity of spins. Note
that the XXXX stabiliser also has Hadamard gates to tip/un-tip the spin onto/off

the Pauli-z axis as the measurements are performed on the Pauli-z axis.

Note that the the qubit errors only need to be detected and catalogued. After a
given algorithm ends, one must then infer the true qubit states given the catalogued
errors. As detailed in the Fowler review [8], logical qubits can be formed by stopping
the stabiliser at a given point in the surface code to create a ‘hole’ or topological
particle in the code. Gate operations between logical qubits are performed by moving
the qubits (a qubit at a given site is moved by stopping the stabiliser on the adjacent
site and starting the stabiliser on the current site) along the grid relative to each other
to perform topologically braided operations. The basic X, Y, Z and CNOT gates
may be performed by braiding the qubits. However, by the Gottesman-Knill theorem,
stabilisers yielding such a gate-set can be efficiently simulated in polynomial time by
a classical computer and thus, one needs to have qubit operations that take the qubit
state away from the the Pauli z, y and z axes [177]. To generate states away from
the Pauli basis, one needs to generate the qubit state via an iterative probabilistic
‘magic state distillation” where upon each iteration, one distils the states converging
towards the intended target state [178]. The cost of magic state distillation (in
lowering the number of iterations to attain the target state) severely increases the
required physical qubit count. For example, for a processor demonstrating the Shor’s
algorithm to factorise a 2000-bit number, one requires ~108 physical qubits at an
error rate of 0.001-0.005 (to form approximately 4000 logical qubits). Therefore,
with physical qubit error rates starting to reach 0.005, there is a greater focus on

creating large scalable 2D arrays of solid-state qubits.

One of the earliest 2D array proposals was to use GaAs singlet-triplet qubits

coupled over a long-distance via metallic floating gates [179]. The metallic floating
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Figure 5.2: Surface code with GaAs singlet-triplet qubits and metallic floating
gates [179]. A 2D grid of singlet triplet qubits (shown as the white disks) can exist despite
the large gate-density of 11 gates per qubit (see Figure 2.3a) as the qubits are spaced apart
thanks to the metallic floating-gates (orange) mediating the electric dipole coupling of the
qubits to enable two-qubit gates over a longer distance.

gates, shown in orange in Figure 5.2, sought to extend the distance of the electric
dipole coupling (between qubits) used in two-qubit gates [14]. However, the long-
distance coupling was never realised experimentally since the metallic nature of the
gates caused significant charge noise and decoherence. That is, a perturbation of an
electron on one singlet-triplet qubit would be ideally transferred to the next qubit via
the floating gate. However, the resulting charge rearrangement (of the many electrons
in the metallic gate) causes the first singlet-triplet qubit to entangle information
onto many electrons in the metal with resulting information loss. If one replaces
the metallic gate with a single macroscopic wavefunction like a superconductor, then
the floating gate approach might work while potentially offering stronger inter-qubit
couplings for higher fidelity two-qubit gates [70].

A later proposal for a 2D surface code using single spin qubits in silicon involved
the use of STM-patterned donor qubits measured with SETs [28]. The device has
three layers as shown in Figure 5.3. The middle layer consists of SET islands, each
surrounded by 4 P-donors. Here, the physical qubits for the surface code comprise
of the P-donor nuclear spins, while the electrons on the donors are used to perform
parity operations between adjacent qubits. The parity measurements between the
nuclear spins occur by first transferring the information to the electron spins via
global ESR/NMR pulses [39]. Since the global ESR/NMR pulses address the energy
splittings given by the electron Zeeman splitting plus/minus the hyperfine splitting,
the P-nucleus is only addressed when an electron resides on the donor. To perform
the parity measurement between two electrons on adjacent P-donors (holding the
nuclear spin information), one relies on the magnetic dipole exchange interaction.

The top and bottom layers have source and drain terminals, for the SET islands,
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Figure 5.3: 2D Surface code with multi-layer STM-patterned Si-P single-spin
qubits [28]. The device has three vertically separated layers. The middle layer consists of
a grid of P-donors separated by ~30nm to form the physical qubits for the surface code.
SET islands interleaved within the grid enable spin readout. The SET quantum dots (shown
as the small squares) share criss-crossed source (along a column) and drain (along a row)
leads with other SET quantum dots. The source and drain leads are interleaved with gate
leads to enable gate control for qubits along a given row or column. The P-nuclei act as the
physical qubits while the electrons are used for inter-qubit interactions and qubit readout.
Single-qubit operations are performed via global ESR/NMR pulses, while two-qubit gates
are ultimately mediated via the magnetic dipole interaction between two electron spins.

interleaved with control gates. Each SET island can be addressed by using the
associated source and drain lines. During typical operation, multiple qubits along a
given row are controlled via a single gate and similarly read-out via a single drain
lead. The readout is performed by time-correlating the current signals on the source
and drain leads with coincidences on multiple SETs eliminated via multiple qubit
measurements. The advantage of this proposal is that the gate density scales as 2/ N
for an N qubits arranged in a square. Thus, the resulting wire density per qubit is
smaller than one and results in favourable routing topologies [37]. However, several
issues remain in this architecture. Firstly, the ability to globally address all the spins
via a single ESR/NMR antenna requires uniform field homogeneity (across the full
2D array of qubits) that has not yet been demonstrated experimentally. Secondly,
the individual electrons on the P-donors must have the same hyperfine splitting; that
is, if the wavefunction on any given donor is perturbed, it might not be addressed
resonantly via a single global ESR/NMR frequency. Thirdly, the sharing of the gate
leads across many qubits and SETs requires a large degree of uniformity where there
are no local charge traps or background potentials that may shift the dot’s energies.

The necessity for uniformity enables one to have less than one lead for every dot
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in the system with a corresponding sacrifice in tunability. Finally, the architecture
requires the so-called phase-matched loading. Here when electrons are loaded on
the P-nuclei, the nuclear spins precess at a different frequency compared to when
there are no electrons. Thus, when electrons are being read via the SET (via the
spin to charge conversion method as discussed in the overview of conventional charge
sensors in Section 3.1.1), the stochastic tunnelling process of some electrons hopping
off the P-donor dots before others leads to nuclei, with electrons still on their dots,
accumulating a phase difference; that is, performing an unintentional Pauli-z gate.
A solution for this, as outlined in the original proposal, is to pulse the gates into the
readout point (where an electron may unload) periodically (in time) at multiples of
the precession frequency. Now the window for electrons to hop off the dot is only
allowed when the net phase accumulation is a multiple of a full rotation. Whilst
a novel concept, the concept of phase-matched loading to eliminate unintentional

phase accumulation has also not yet been demonstrated.

(a) Device structure [180] (b) Parity measurement [180]

Figure 5.4: Surface code with a grid of electrons on P-donors (separated by
400+12nm) measured with a piezoelectric stage holding a grid of NV centres [180].
(a) Electrons hosted on a grid of ion-planted P-donors form the slab of data qubits, while a
grid of NV-centres magnetically probe the data qubit spins. (b) The data qubits are spaced
400 nm. The magnetic probe (moved via piezoelectric actuators) interacts with the electron
spins via a magnetic dipole moment to accumulate a state-dependent phase to be used in
the parity measurement.

A later proposal using donors (note this could be P or any other donor) considered
using a moveable stage [180]. Here, a grid of donors was implanted into a silicon
substrate as shown in Figure 5.4a. Another grid of magnetic probes (for example, NV
centres) lies parallel above the grid of donors. The magnetic probes are movable via
a piezoelectric stage (as in a STM). Using the magnetic dipole moment interaction
between two spins, one may move the magnetic probe around four donor spins while
accumulating a state-dependent phase on the magnetic probe spin to thereby perform
the required parity measurement as sketched in Figure 5.4b. The spacings between

donor qubits is more relaxed so that one may use ion implantation techniques. Here,
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the proposed spacing between the implanted donors is 400 nm as opposed to the
~30nm required for the P-donor SET proposal above. This is important for this
proposal, as the lasers used for readout are at a wavelength (250 nm) within the
diffraction limit for this spacing. Nonetheless, the allowable inaccuracy in placement
must be better than 11.7 nm to enable sufficient coupling to the associated NV centre
on the moving stage during the parity measurement shown in Figure 5.4b. The
2D surface code device in Figure 5.3 requires atomic precision placement of the
donors with nanometre accuracy of the control electrodes; both of which are within
experimental capability [15, 27]. The moveable stage proposal hints that one may
also use atomic precision hydrogen mask STM patterning of donors onto the silicon
substrate (instead of ion implantation) for accuracies much better than 11.7nm.
However, one of the challenges of this proposal is that the NV centres must also have
a similar implantation accuracy. The proposal states that the current state of the art
NV centre implantation methods are not accurate enough with lateral accuracies of
+12nm at depths of 8+3 nm. In addition, the implantation probability is below 30%
and thus, there will be many dead-pixels in the magnetic probe. Thus, one requires
further evolution in the technologies surrounding the implantation of NV centres
in diamond. Other logistical issues with the moving stage is that the piezoelectric
stage may cause frictional heating that will raise the operating temperature above

the required temperature, of 100 mK, to ensure high-fidelity qubit operation.

Figure 5.5: Surface code with a grid of gate-defined MOS quantum dots coupled
to implanted Bi-donors [181]. The 2D grid consists of gate-defined MOS quantum dots
(holding the electron data qubits) interleaved with Bi-donors. The Bi-donors hold an electron
which has an exchange interaction with the MOS dot’s electron controlled via a back-gate.
The donors (and their hosted electrons) provide a method to perform CNOT gates on the
data qubits; reading out the donor electron spin completes the parity measurement. CCD
gates enable loading and moving of electrons on the MOS quantum dots across rows of
qubits.

Another scalable architecture proposal involving donor qubits utilises a hybrid

approach using Bi-donors and gate-defined quantum dots [181]. Here, MOS quan-
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tum dots (quantum dots formed near the silicon oxide interface) act as data qubits,
while interleaved with implanted Bi-donors that act as ancilla measurement qubits as
shown in Figure 5.5. To perform a parity measurement, electrons on a row of quan-
tum dot qubits are selectively moved in unison towards the Bi-donor dot’s electron
via CCD gates. The gate defined quantum dot electrons form a singlet-triplet state
with the donor-confined electron such that one may adiabatically transfer spin infor-
mation to perform a microwave-driven CNOT gate where the donor and its electron
act as the target qubit. The CNOT mechanism involves the use of the back-gate
(on the back of the silicon-on-insulator wafer) to control the exchange interaction
between the donor electron and the MOS dot electron. The resulting exchange cre-
ates a singlet-triplet state [182]. When combined with the clock transitions of the
Bi-donor (hyperfine transitions that are insensitive to magnetic field fluctuations),
a subspace forms where donor electron spin flips are either allowed or forbidden.
The three-spin system (MOS dot electron, donor dot electron and the donor nuclear
spin) results in a controlled SWAP gate where the nuclear spin is the control qubit.
When combined with a microwave field, one realises a CNOT gate. The advantages
of using implanted Bi-donors is the back-gate mediated selective activation of the
qubit measurement and the potential high-fidelity of the CNOT gate due to the qubit
subspace being resistant to electric and magnetic field noise. The proposal allows
the potential of high-fidelity readout of a donor electron spin when using a local
SET and the spin-to-charge conversion method [112]. The SET should be possible
to place near the donor dots as the qubits are spaced (that is, the distance between
the MOS dot and the donor dots) by approximately 1 um. The back-gates globally
address a row of qubits by noting that the qubit subspaces do not require exact
tuning of the exchange; thus, two discrete back-gate voltages indeed suffice in tuning
all the qubits. Nevertheless, there is yet to be any experimental demonstration of
the required Bi-donor control and the complex CNOT gate mechanism given in this

proposal.

There is also a recent proposal extending the Kane mechanism to realise long-
distance couplings between ion-implanted P-donor qubits by using electric dipole
(rather than exchange) couplings [38, 78]. Here, the donors are implanted close
to the surface of the silicon substrate as shown in Figure 5.6. Surface gates are
then used to distort the electron cloud on the P-donor dot, without ionising it, to
form a electron mushroom. The resulting hyperfine tuning leads to a second order
ESR-driven flip-flop qubit where the qubit subspace (for electron spin | / 1 and
nuclear spin {} / {}) consists of |/{) and [ft|}). Similar to the single-spin qubit, the

second-order driving yields Pauli-x rotations while off-resonant driving yields Pauli-z
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(a) Flip-flop qubit formed between an electron and an
implanted P-donor [78]

(b) Grid of flip-flop qubit cells interconnected with superconducting
resonators [78]

Figure 5.6: Surface code with a grid of ion-implanted P-donor flip-flop qubits [78§].
The flip-flop qubit (for electron spin | / 1 and P-donor nuclear spin 1} / |}) is a qubit formed
on the subspace: |[f) and [1]}). (a) Each flip-flop qubit is tuned via a surface gate. The
mushroom-like orbital state of the electron helps form an electric-dipole that can be used
to couple adjacent qubits (spaced 100-500 nm apart) and perform a two-qubit gate. (b)
Smaller grids of flip-flop qubits coupled via the electric dipole coupling are linked together
via superconducting resonators (spaced 1 pm-1cm apart) to form a large 2D array of qubits
for the surface code.

rotations. When driving the qubit off-resonantly, one tunes the hyperfine splitting
(between the P-donor nuclear spin and its electron) away from the resonant sweet-
spot causing a change in height of the electron mushroom (with the ground and
excited qubit states taking form of orbital wavefunctions being near the donor dot
and the top of the mushroom respectively). To perform two-qubit gates, the proposal
suggests using a similar electric dipole mechanism to that used with the singlet-triplet
qubits in this thesis. That is, one pushes the qubits to an off-resonant drive where
the electron (in the excited state) is spatially far from the P-donor dot and thus,
forms a large electric dipole to the adjacent qubit. The electric dipole causes the
adjacent qubit to have its off-resonant detuning shifted (to cause a change in its
precession frequency) on the condition that the first qubit is in the excited state.
Due to the long range of the electric dipole coupling due to the electron mushroom,
the proposed distance between donors is in the range of 100-500 nm giving rise to
an equivalent inter-qubit coupling is 10-100 MHz as opposed to the large gigahertz

couplings targeted in this thesis. However, when one considers the density of local
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surface gates and SET structures (to readout the electron spin to infer the state of the
flip-flop qubit), it becomes difficult to route large arrays of flip-flop qubits. Thus, the
proposal relies on using superconducting couplers (to extend the range of the electric
dipole field), which have a coupling strength of 3 MHz, to interlink smaller arrays
of flip-flop qubits. At the time of publishing this thesis, this proposal still required
experimental demonstration of smooth hyperfine tuning with an electric field (that is,
not immediately ionising the P-donor dot), before the subsequent demonstration of
the flip-flop qubit. Afterwards, the electric-dipole coupling between adjacent flip-flop
qubits must be shown to be sufficient to perform a two-qubit gate. Similarly, there
needs to be experimental demonstration of the required cavity coupling between a

flip-flop qubit and a superconducting resonator.

Figure 5.7: Surface code with in a silicon CMOS architecture [108]. The multi-
layered CMOS architecture creates a 2D array of single-spin electron qubits (in gate-defined
quantum dots) addressed via gates structured with addressable bit lines like in DRAM.
Single-qubit gates and two-qubit gates are performed via ESR (with the exchange coupling
J used to couple adjacent qubits). Qubit readout is done via single-gate RF sensors. The
minimum feature size required for this architecture is ~7 nm.

Finally, another potentially scalable solid-state qubit architecture proposal is the
gate-defined quantum dot CMOS fabrication compatible qubit processor [108]. The
proposal here forms an amalgamation of many previous concepts. That is, the pro-
cessor, comprises single-spin electron qubits in a MOS architecture, utilises ESR. for
single-spin operations [52| and direct electron exchange J (along with ESR) for two-
qubit (CX and CZ) operations [67]. With single-shot, single-gate RF readout recently
demonstrated in solid-state qubits, the proposed readout structures use spin-down
electron ancilla qubits to which one performs a singlet-triplet parity measurement
to infer the single spin. These readout structures have also been recently demon-
strated in single-shot [32, 132]. The proposal highlights a large scale 2D array of
qubits in which different qubits are addressed via shared global transistor switched
arrays similar to the addressing structure of DRAM modules in classical comput-

ing memory. The major hurdle in the realisation of this proposal is the required
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Proposal Qubits sg;c]?;ltg Key benefits Open issues
floating (s0/to)ap ~1 pm betwle n q.ublts two-qubit gate fideties
ates [179] e Full individual )
& ubit control e Charge noise from
1 metallic floating gates
o Low gate e Uniformity of
STM P D, densi%y ESR/ NMR frequencies
- : M/ 4p ~30nm | o Long coherence for all qubits
donors [28] | M: (T /)p times for e Gate limited tunability
. of dots
P-nuclei e Phase-matched loading
e Implantation
inaccuracies in P-donors
P-donors D: (1/)p e Large qubit and NV-centres
and NV- M: (1 / Dnv ~400 nm spacing e Non uniform implanted
centres [180] e No leads dopant activation
e Frictional heating of
moving stage
¢ ESEEZp(;SiEg e The CNOT mechanism
MOS dots | D: (1 /})ep e CNOT gates 15 unproven
and Bi- M: (t/)Bi | ~1lpm are resistant to | Coherence times of the
donors [181] | M: (1t / 4)si magnetic field MOS dots may be low
and electric e Bi-donor control
field noise unproven
e Large qubit
~100- spacing e Hyperfine tuning with a
P-donor 500nm | ® Resistant to gate is unproven
flip- A/ e & electric field e Flip-flop qubit is
flop [78] ~1 um- noise near unproven
1 cm sweet-spot e Cavity coupling is
e Full individual unproven
qubit control
e Simultaneous
e Compatible high-fidelity single-qubit
withpCM 0S and two-qubit gates
CMOS [108]| (1 /{)ep ~60 nm fabrication proven
o Full individual | ® MUltilayer CMOS
ubit control fabrication requires
1 7nm feature sizes
e High gate density

Table 5.1: Summary of the 2D surface code proposals in solid-state qubits. The
proposals are given in terms of their key benefits and open issues. The 1 / | signifies
electron spin qubits while f} / |} nuclear spin qubits. The subscripts signify the hosted
location: GD=gate-defined quantum dot, P=P-donor nuclear spin, NV=NV-centre, Bi=Bi-
donor. For some proposals, different qubit types act as the data (D) and measurement (M)
qubits. Note that ‘unproven’ implies ‘not realised experimentally’.
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simultaneous fault-tolerant levels in both single and two qubit gate fidelities [66].
In fact, the proposed two-qubit gate is still limited by charge noise (as with most
proposals highlighted above which rely also on specific values of direct exchange J).
In addition, to claim compatibility with industrial CMOS fabrication techniques, the
fabrication pipeline will require ~7 nm feature sizes to cater for the smaller DRAM
cells and gate structures.

A summary of the key 2D surface code proposals in semiconductor qubits are
shown in Table 5.1. For quantum dot architectures which require many leads per
qubit, one can observe a trend in the push for exploiting long-distance mechanisms
to space the qubits further apart. Many of the proposals sacrifice individual qubit
control to achieve lower gate-densities such as the STM P-donor and the MOS/Bi-
donor proposals. The 2D array of singlet-triplet qubits proposed later in this chapter
looks to retain individual qubit control while minimising gate-densities by exploiting

the natural features of P-donor qubits (such as free-confinement).

5.2 Singlet-Triplet Hamiltonian from the Hubbard model

The singlet-triplet Hamiltonian describes the blueprint for the double quantum dot
system in which a qubit is to be formed. In order to appreciate control operations
required for full qubit control, it is useful to briefly overview the origin of the singlet-
triplet Hamiltonian. The derivation of the Hamiltonian along with the functional
properties are discussed in Appendix E. In this section, the Hamiltonians are dis-

cussed with emphasis on qubit gate operations.

5.2.1 Double quantum dots described by the Hubbard model

A singlet-triplet qubit is formed by taking the concatenated spin state of two electrons
trapped across two adjacent quantum dots. To build up the Hamiltonian describing
such a system it is useful to first consider the charge qubit Hamiltonian which consists
of one electron across two quantum dots. The electron may reside on dot 1 or dot 2
(denoted by the wavefunctions 1 and ¢9). The associated potential energy of the
electron when in either dot may be controlled by varying the electrostatic potential
of the dots via local gate electrodes. The detuning parameter ¢ here shall be defined
as half the energy separation between the two dots’ potential energies as shown in
Figure 5.8a-c. A negative € implies that dot 1 is of lower energy, a positive detuning
implies that 2 is of lower energy and zero detuning implies that both dots have equal

potential energies.
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(a) e<O (b)e=0 (c)e>0

(d) Charge qubit energy spectrum
N

Figure 5.8: Charge qubit energy spectrum for the Hamiltonian given in Equation 5.2.
(a)-(c) The structure of the electrostatic potential energy levels of electrons on the dots
for different values of detuning . The two columns in each diagram reflect the energy level
of dots 1 and 2 respectively. (d) The resulting energy diagram for a charge qubit. The
dotted lines indicate the asymptotic energy levels when the tunnel coupling ¢. is zero. The
labels 1 and 9 indicate the approximate asymptotic energy eigenstates (electron residing
entirely in dot 1 or dot 2 respectively) in those regions of detuning with the smaller energy
diagrams showing the dot energy levels and the location of the electron given by the black
dots.

Given the definition of ¢, the excited and ground state energy levels would vary
linearly as shown by the dotted lines in Figure 5.8d. However, this is only the case
when the dots are well isolated and completely uncoupled. Now the energy eigen-
states of the Hamiltonian are defined as those that are invariant under time evolution.
If the two dots in the charge-qubit Hamiltonian were uncoupled (equivalently stated
as the electron tightly confined to a given dot without any influence of the other
dot’s potential well), the electron on any given dot will remain there forever. How-
ever, with a non-zero tunnel coupling term t. (equivalently stated as the electron
wavefunction spreading onto the other dot such that it no longer solely occupies a
single dot), the energies will be perturbed by virtue of the electron wavefunction
overlapping with the other dot’s potential landscape. When setting the voltages on
the gates such that the detuning is negative, with zero tunnel coupling, ¢ is the
ground state as dot 1 is of lower energy. With a non-zero tunnel coupling, a wave-

function solely occupying ¢ cannot be the stable ground state eigenstate (for the
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ground state eigenstate would need to overlap with dot 2). Thus, if it were to be dot
1 and solely in 1, then it would be of a higher energy*. Thus, the energy of the ¢,
eigenstate must be an upper bound to the ground eigenstate. By similar argument,
the excited state energy lower bounds the true excited energy eigenstate. Therefore,
even at zero detuning, the energies may never be degenerate unless the coupling is
zero. This avoided crossing or level repulsion is similar to that seen in coupled Har-
monic oscillators. The continuous lines in Figure 5.8d illustrate this avoided crossing
of energy levels across different values of the detuning €. The dotted lines show the
energy levels when the tunnel coupling is zero and how they form asymptotic bounds
to the energy levels when the tunnel coupling is non-zero as shown by the two hy-
perbolas. The associated Hamiltonian (for the charge qubit) is derived in Appendix
E.1:

HCQ = —t.04 + €0,. (52)

The tunnel coupling t. is given by the energy overlap integral, a ‘tunnelling ampli-
tude’, for the electron between the two dots and tends to be negative for Coulombic
potential wells. The negative sign on the tunnel coupling is there for convenience so
that ¢, can be quoted as a positive value. The detuning is associated with the Pauli-z
operator o, as it aligns with the measurement basis chosen to be the electron either
in dot 1 or dot 2. The tunnel-coupling couples the two states via a Pauli-z term
0.. At zero detuning, therefore, one obtains Pauli-z rotations while at far detuning

le| > 0, one obtains Pauli-z rotations.

To complete the singlet-triplet Hamiltonian, one adds a second electron. When
considering that there are two electron spins (that may each be spin-up or spin-
down), two sites for each electron to reside, there are up to 16 possible spatial
and spin state configurations. However, as shown in Appendix E.2, with no orbital
degrees of freedom?, the Pauli-exclusion principle places symmetry constraints on the
16 possible states so that the only states that have a non-zero probability density
are the six electron singlet triplet states. The first three states are the three spatial

singlet states s20, So2, s11- These states have the electron anti-symmetric (entangled)

4This is simply a consequence of the spectral theorem. The two states (ground and excited)
states are orthogonal and cover all possible states. Any state is therefore a linear combination of
the ground and excited state and thus, bound between the two energy levels.

®An orbital degree of freedom means that the electrons may enter different electron orbital
states to satisfy overall symmetry or anti-symmetry of the electron wavefunction [34, 42, 183]. For
P-donors the higher orbital states are more than 10 meV higher in energy (the so-called 2po state)
and are very short-lived at approximately 200 ps [184-187]. Thus, the orbital states are ignored in
this analysis.
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singlet spin configuration —= (|1]}) — [{1)). The indices indicate the two electron

charge state on dots 1 and fThat is, S99 indicates that both electrons are on dot 1,
sp2 indicates that both electrons are on dot 2, while s11 indicates that both electrons
are on separate dots®. The remaining three states are the triplet states ¢, ¢t_ and
t+. With no orbital degrees of freedom, the electrons in triplet states always remain

on separate dots’.

When the electron spins couple to external magnetic fields, the Hamiltonian
is adjusted to include these magnetic field terms. The first magnetic field term
is the globally applied, to both dots, magnetic field By. By choosing the z-axis
as the direction of the average magnetic field (that is, the applied global magnetic
field), there are no common-mode (same across both dots) magnetic field components
perpendicular to By. The remaining differential magnetic field across the two dots
is defined as AB = B; — By = (AB,, AB,,AB;) (with By and By denoting the
net magnetic fields on dots 1 and 2 respectively). The portion of AB parallel with
the globally applied magnetic field is AB, while the differential field component
perpendicular to the globally applied magnetic field is:

AB, +iAB,
R

The differential magnetic fields (AB, and AB, ) come from the local magnetic field

interactions on the two dots. For example, they can be formed via the polarisation

AB,| = (5.3)

of a bath of surrounding nuclear spins or from the addition of a local permanent

micro-magnet as discussed in Section 2.1.5.

Figure 5.9 shows a sketch of the double quantum dot system with all the relevant
double-dot interaction (t.), two-electron repulsion (Upz), magnetic field (By, AB,
and AB)) and detuning terms. The blue line highlights the approximate potential
landscape of the dots confining the electrons and how the individual potentials can be
manipulated via the tilting potentials given by the detuning . The full Hamiltonian
including all the outlined terms above is (noting that the overbar implies complex

conjugation):

5Note that s1; is in a symmetric spatial state across the two dots as discussed in Appendix E.2
"Triplets have anti-symmetric spatial states across the two dots as discussed in Appendix E.2
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Figure 5.9: Schematic of two tunnel-coupled quantum dots (1P-2P) under differ-
ent magnetic fields. The approximate potential landscape confining the electrons across
two dots is sketched by the blue curve while the black dots represent electrons occupying
the energy states on the dots (separated by the electron repulsion energy Ups). The dots
are detuned by € and A, and tunnel coupled via ¢.. The average magnetic field across both
dots is the global applied field By. Each dot has nuclear spins (in this example for Si-P, the
first dot has 1 P-donor and the second dot has 2 P-donors) that when polarised produce net
magnetic fields on each dot: By and By (the local magnetic field vectors omit By in this
diagram for clarity). The residual differential magnetic fields across both dots (AB, and
AB]) can be decomposed (with respect to the global magnetic field vector) into parallel
components (Bj, and Bs,) and perpendicular components (By, and Bs) ).

Upz + 2¢ 0 —V2t. 0 0 0
0 Up —2 —V2t. 0 0 0
Hop = —V2t. =2t 0 AB, AB, —-AB, (5.4)
0 0 AB, 0 0 0
0 0 AB| 0 —2By 0
0 0 ~-AB; 0 0 2B,

under the basis of states: s9g, So2, S11, to, t— and t4. Uy is the on-site electron-to-
electron repulsion energy. That is, Upe is the extra repulsive electrostatic potential
energy that must be overcome to place two electrons on the same dot. The v/2
factor that appears next to the tunnel coupling ¢. (in the matrix) is significant as the
tunnelling amplitude . was initially calculated for one electron across two dots. The
inter-dot tunnelling event now couples entangled two-electron states across two dots
and thus, requires a further two-body interaction to move the electrons between the
spatial singlet states sp2 <> s11 and sgg <> s11 [188]. The magnetic coupling terms
AB; couples the singlet s11 state to the triplet states ¢4 and ¢_ (as seen by the off-

diagonal positions). To suppress these couplings (between the qubit state s;; and the
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non-qubit leakage states ¢t and ¢, ) the Pauli-z like interaction By must be set much
larger than AB, to suppress the interaction term AB;. That is, the rotation axis
between the states s11 <> t— and s1; <> t4 will point towards the Pauli-z axis when
By > AB, where no population is interchanged between the states. Nonetheless,
the presence of the AB, coupling is important when considering dynamic nuclear
spin polarisation protocols where nuclear spins are controllably flipped via adiabatic
sweeps across the sjj-t_ anti-crossing [40, 41|. Finally, the last term AB, couples
the singlet s11 to triplet tg and is important in performing Pauli-z rotations in the

50/to qubit subspace.

The Hamiltonian shown in Equation 5.4 contains states that will not be accessed
in practice. In typical configurations, when the system is tuned between a (1,1)
to (0,2) charge transition, the (2,0) state is separated very far from the charge
transition. For example, the electron repulsion term Ups is approximately ~1meV in
GaAs quantum dots [189], ~10meV for SiGe quantum dots [55], ~10meV for Si-MOS
quantum dots [132], and ~100meV for Si-P quantum dots [81]. The energy scale
of Upz is much larger than the other dynamic parameters in the Hamiltonian. For
example, the energy scale of tunnel couplings in quantum dot systems (for hosting
singlet-triplet qubits or for performing two-qubit gates across two single-spin qubits)
range at most t. ~ 100 ueV [14, 17, 29, 30, 55, 82]. Similarly, at the larger magnetic
fields used in typical experiments of 1T yield energy scales of By ~ 100 peV. Thus,
the dynamics surrounding s11, tg and sp2 typically do not require consideration of
s90 (in many cases, it may be inaccessible with the available range in gate voltages).
Thus, without loss in generality, the sog is culled from the Hamiltonian given in
Equation 5.4 and the detuning ¢ shall be redefined (to A) to only consider to the

local s11-sg2 anti-crossing:

2A = 2e — UOQ, (55)

as shown by the labels in Figure 5.9. Although the tunnel coupling is referred to the
wavefunction overlap integral, in the context of qubit control and typical experiments,
one is more interested in the actual singlet-triplet energy splitting (when the magnetic
fields are zeroed) at zero detuning [29, 30, 82]. Thus, the tunnel coupling is rescaled
from v/2t. to just t.. In addition, the Hamiltonian is further simplified by taking
one portion of A out of the Hamiltonian as a global offset A - I does not affect the
qubit dynamics. The simplified Hamiltonian takes the following form [13, 14]:
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-A . 0 0 0
-t A AB, AB| —~AB,|
Hsr=| 0 AB, A 0 0 , (5.6)
0 AB, 0 A-2B 0
0 —-AB, 0 0 A + 2By

under the basis states: sg2, s11, to, t— and .

Although the Hamiltonians (in Equations 5.4 and 5.6) describe the same physics,
the distinction between ¢ and A must be considered when viewing the shape of
the resulting energy spectra. The energy eigenvalues of the Hamiltonians given in
Equations 5.4 and 5.6 are plotted (with respect to e and A respectively) in Figure
5.10. When plotting against ¢, at zero detuning, the lowest energy levels on the
respective dots are aligned as shown in Figure 5.10a. As one pushes ¢ away from
zero, the electrons eventually occupy a single dot. Note that the higher energy level
for a given dot is only considered when the lower electron energy level is filled. That
is, this higher energy level is the Coulombic repulsion that one must overcome when
spin-pairing two electrons (in the singlet state) onto the same dot®. The two anti-
crossings mediated by the tunnel coupling are found either side of zero detuning:
s90-s11 and s11-sg2. The anti-crossings are separated by 2Uys. Another important
anti-crossing is that between tg and s11 (coupled via AB, to form Pauli-x rotations
in singlet-triplet qubits) as seen in Figure 5.10b, while not visibly clear (as an ‘anti-
crossing’) in the energy diagram when plotting against A as seen in Figures 5.10d.
Nonetheless, when plotting against A, the superfluous soq state disappears and one
obtains the main inter-dot anti-crossing s11-sg2 symmetrically about zero detuning
(A = 0). In both cases, changing the detuning (either £ or A) changes the energy
splitting between the lowest energy singlet state and the triplet to state. As shown
later, tuning this splitting (termed J) is important when toggling between Pauli-z

and Pauli-z rotations.

5.2.2 Importance of tunnel coupling and temperature

The tunnel coupling t. separates the ground and excited singlet states as shown in

Figures 5.10c-d. One typically operates near zero-detuning A = 0 when performing

8Electrons must be in an overall anti-symmetric state in order to obey the Pauli exclusion
principle. Therefore, triplet states with both electrons on the same dot require an anti-symmetric
orbital degree of freedom (typically too high in energy and subsequently discarded for Si-P quantum
dots as discussed in Appendix E.2) as two electrons on the same dot in the triplet state implies
that the both the spatial and spin states are symmetric (thus, the overall state is still symmetric).
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(a) Energy plotted on £ with AB, = Bo =0 (b) Same as (a), but AB. >0 and By > 0
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(c) Energy plotted on A with AB, = Bo =0 (d) Same as (c), but AB, >0 and By > 0
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Figure 5.10: Energy spectra of the double quantum dot Hamiltonian for different
detuning parameters ¢ and A. (a)-(b) Energy diagram given in terms of . The smaller
energy level diagrams highlight the energy levels on the dots for different singlet states (s20,
s11 and sg2) across different points in detuning. (c)-(d) Energy diagram given in terms
of the rescaled detuning A where the state soq is discarded. Note that the state labels in
all diagrams indicate the approximate asymptotic eigenstates. The magnetic field gradient
across the dots AB, creates an anti-crossing between the singlet s1; and triplet ¢y states as
seen by the gap between s1; and ¢y at € = 0 in (b) compared to (a). The global magnetic
field By, Zeeman splits the triplet ¢_ and ¢, by 2Bj. Note that the energy level ¢ indicates
three degenerate triplet states (t_, to and ¢4 ) which split in a magnetic field By > 0 in (b)
and (d).
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qubit operations and single-gate RF readout (where as discussed in Section 4.1, one
oscillates between the s11 and spg singlet ground states). In both cases, one needs
to remain in the ground-state singlet state?. In this section, the role of the tunnel
coupling in preventing thermal excitations into the excited singlet-state shall be

investigated.

During the operation of the qubit, phonons in the lattice may excite the electron
into the excited state at some prescribed rate. These electrons in the excited state
would then decay at some prescribed rate. The phonon interaction can be modelled
via the detailed balance equation [190] where the steady-state distribution is the
definition of ‘temperature’ (used in statistical mechanics) of the electrons on the
double-dot system (not necessarily the same ‘temperature’ of the electrons in the
gate electrodes and perhaps closer to the lattice temperature). The ground state
population distribution in this case is that akin to the Boltzmann distribution, where

the population proportion of electrons in the ground state is given by [191]:

Eq
exp | — .7
P, ground — E )
g Ee

where T is the temperature of the electrons, while £, and E. are the ground and

(5.7)

excited state energies of the system. Taking the minimum gap in the singlet energy
states (phonon excitation and decay does not change the spin state of the electrons),

one may write £, = —t. and E. = t.. Thus, the population becomes:

1
1+ exp (— kQ;CT)

Figure 5.11 shows the ground state population probabilities over different temper-

Pground = (58)

atures and tunnel couplings. Clearly low temperatures are required to obtain high
ground state probabilities. Qubit devices usually operate in liquid helium dilution
fridges that run at base temperatures as low as 10 mK. However, this temperature
assumes perfect thermalisation of the silicon wafer with the mixing chamber of the
fridge and perfect isolation from room temperature cabling connecting to the device.
Thus, to maintain population probabilities above 99.5 %, a safe minimum bound for
the tunnel coupling is 1 GHz, with 5 GHz comfortably reaching this probability at

temperatures close to 100 mK.

9One may technically perform qubit operations if completely in the excited singlet branch. How-
ever, short excited state lifetimes and the stochastic nature of entering and leaving the excited state
due to thermal effects makes it undesirable to use it in the qubit subspace.
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Figure 5.11: Importance of tunnel coupling and temperature on qubit operation.
The plot shows the singlet ground state probability as a function of the electron temperature
on the double quantum dot over different tunnel couplings as described by Equation 5.8.
Larger ground state probabilities (> 99.9%) are realised with lower temperatures (at least
~1GHz if the dilution fridge thermalises the device at 10 mK-20mK) and higher tunnel
couplings (for example, 5 GHz relaxes the maximum temperature to approximately 70 mK).

5.2.3 Double-dot to singlet-triplet qubit Hamiltonian

The full double-quantum dot Hamiltonian describes the dynamics of all four possible
singlet-triplet states sg, to, t— and t;. However, the singlet-triplet qubit is only
formed on the sg-tg subspace and thus, this section constructs a reduced Hamiltonian
that can be used when evaluating gate operations and fidelities on singlet-triplet
qubits.

Singlet-triplet qubits operate in the so-ty subspace. Thus, the coupling of the
singlet-s11 state to the triplet t_ and ¢, states via the perpendicular magnetic field
AB; is undesirable as one will have state leakage away from the qubit subspace.
To suppress these AB| terms, one controls the on-diagonal Pauli-z terms given
by the applied magnetic field By. By taking By > |AB,|, one can suppress spin
precession away from the qubit subspace into the triplet _ and ¢ states. In typical
experiments, AB | is upper bounded by the magnitude of AB, as the spins are likely
to polarise and align mostly with the globally applied magnetic field. With AB,
typically in the order of ~10-100 MHz for P-donors [50, 83] (as discussed earlier in
Section 2.1.5), AB, is approximately'® ~10mT. With most spin qubit experiments

0The equivalent magnetic field is found by noting the Zeeman splitting of a single electron spin:
FEp, = %gepeABl. Here g. = 2 and Ep; = 100 MHz.
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setting By > 100mT to break the triplet degeneracy [14, 17, 29, 30, 55, 82|, one
can ignore the influence of B in the following calculations. Note that the s11-t_
anti-crossing (where the precession axis is such that the singlet may still interact
and precess into the triplet ¢_) is still useful in the context of dynamic nuclear spin
polarisation where one may utilise the singlet state to flip nuclear spins to configure
the value of AB, [40, 41].

On suppressing the influence of B, the triplet t_ and t4 states do not par-
ticipate in the qubit dynamics. This leaves three states of interest: sg2, s11 and tp.
The eventual qubit state is between the singlet sg and triplet ¢o states (with z-basis
measurements performed along sy and tp). However, the singlet state sg subdivides
into two separate charge states (sg2, $11), which makes it difficult to interpret the
subspace as a two-level system as normally required for a qubit. To deduce the
effective qubit state, the following analysis will look into the analytic eigenstates
of the system. This is because the Hamiltonian eigenstates are invariant over time
evolution. Since, two-level systems will indefinitely precess a given qubit state about
a rotation axis given by the Pauli decomposition of the Hamiltonian, finding the
eigenstates yields the rotation axes. From the rotation axes, one may deduce the
effective two-level system Hamiltonian between the singlet sg and triplet t( states.

Now the tunnel coupling t. is considered to be much larger in magnitude than
the magnetic field gradient. In this regime ¢. > AB,, the eigenvalue-eigenvector

pairs are:

M- =A—2By  |t_)
>\t+ - A + 2B0 |t+>

)‘to =A ’t0>
— /A2 2 1 A . te (5.9)
)\s+ A + tc 2 42\/@ ’302> \/2<t2+A27A t2+A2> |311>
_ = —+/A2 2 1, A te
As e 2t 2¢/12+A2 [s02) + \/2<t§+A2+A\/t%+T> fs11)

The triplet states all remain on the £ = A line with the ¢4 states Zeeman split by
2By. The singlet eigenstates split into excited and ground state branches with the
eigenvalues A;; and Ag_ respectively. Taking the qubit state to be either in ¢y or
the singlet ground state (s11-S0p2), the singlet-triplet splitting or ‘exchange energy’ is

given by:

J=A+ A%+ 12, (5.10)



184 Chapter 5. A scalable singlet-triplet quantum information processor

where J is the energy splitting between the two eigenstates lined up across the
Pauli-z axis of the Bloch sphere. That is, it’s the energy splitting attributed to a
Pauli-z operator: %J 0,. To deduce the qubit coupling term (between the singlet
and triplet-t() one typically must go near the anti-crossing where the eigenstates fall
onto the z-y plane on the Bloch sphere. From Figure 5.10d, this would be when
A — —o0. Thus, consider the eigendecomposition performed on Equation 5.6 at the
far negative detuned region. Taking the characteristic polynomial and |A| > t., the

eigenvalue-eigenvector pairs are:

)\0 = —A ‘802>
A=A-AB. 5 ([to) = |s11)) = [41) (5.11)

M =A+AB. 5 (Jto) + |s11)) = [11)

The eigenvalues for the triplet ¢_ and ¢4 have been omitted as they are the same as
those in Equation 5.9. Clearly at far negative detuning, sg2 is the excited state (that
is, sp2 is the highest energy state). The degeneracy between the two, lower energy,
singlet s11 and triplet ¢g states is broken by the magnetic field gradient between the
dots to create a splitting of: 2AB,. Now this splitting is between two eigenstates
that line up along the z-axis of the Bloch sphere!'!. Thus, this is the energy splitting
attributed to a Pauli-z operator. Therefore, in the subspace restricted to ¢y and sq,

the two-level qubit sub-system of the singlet-triplet qubit Hamiltonian is:

1

Hgrq = %JUZ + AB.o, = <A2;z ffj) : (5.12)
The associated Bloch sphere for this qubit Hamiltonian is shown in Figure 5.12a.
Typically the magnetic field gradient AB, set to some fixed value. For example, if
we use an integrated micro-magnet (fabricated by evaporating cobalt in a magnetic
field), then the gradient will retain a fixed gradient |17, 47, 85|. In Si-MOS quantum
dots, a difference in the on-site spin-orbit term interaction term (for example, due
to local strain, local electric fields or oxides on the silicon crystal step edges on the
surface) can give an effective AB,-like term (albeit, due to spin-orbit contributions
rather than magnetic fields) that is fixed on fabrication with slight tunability with
applied electric fields [64, 192, 193]|. In GaAs quantum dots, the substrate provides
a bath of nuclear spins that one may polarise to create an in-situ magnetic field
gradient; a technique known as ‘dynamic nuclear spin polarisation’ or DNP [40, 41].

It is proposed that a similar technique be employed to polarise the phosphorus nuclei

"' These are the usual plus and minus qubit states. Note that this is also seen by the fact that in
this regime of A — —o0, the Pauli-z tends to zero for J — 0 as seen by Equation 5.10
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used to create quantum dots in Si-P systems [29]. However, the polarisation sequence
used in DNP is much slower than the time-scale of individual qubit gate operations.
Thus, AB, can be considered to be fixed over a single qubit gate operation.

The rotation axis in a singlet-triplet qubit is therefore tuned purely by changing
J, which is directly controlled by manipulating A or . as shown in Equation 5.10 and
illustrated in Figure 5.12b. This manipulation of the rotation axis enables z-rotations
when J = 0 at far negative detunings and z-rotations when J > AB,. Thus, one
achieves ‘all-electrical single-qubit control’ in the sense that qubit rotations can be
steered purely by applying a voltage on a local gate electrode. Importantly, the qubit
rotations are not limited by slower magnetic field control in contrast to single-spin
qubits [16].

5.2.4 Summary

Before one investigates the property of single-qubit gates with singlet-triplet qubits,
it is important to note the required properties in attaining a singlet-triplet qubit

across two P-donor quantum dots:

e The tunnel coupling t. must be large enough to prevent thermal excitations
into excited singlet-states. To maintain ground state probabilities above 99.9%,
the tunnel coupling must be at least 1 GHz if the dilution fridge thermalises
the device at 10 mK and 5 GHz if thermalised at 70 mK.

e The residual exchange J must be zero when the electrons are in separate dots
(e = 0) as otherwise one cannot turn off J (known as the weakly interacting
tight-binding limit). For Si-P, the dots must be at least 9-10 nm apart (so that
J is below the P-donor induced AB,~10-100 MHz |50, 83|) as estimated from
numerical simulations of 1P-1P and 1P-2P double quantum dots [81, 84, 194].

e One must apply a global magnetic field By to split the degeneracy of the three
triplet states and ensure that the so-t_ anti-crossing is away from all single-
qubit gate operating points to prevent state leakage into the triplet ¢t_ and
t4 states. In experiments involving Si-P quantum dots, one typically needs
By > 10mT.
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(a) Singlet-triplet qubit Bloch sphere

(b) Energy diagram of a 2-electron singlet-triplet across two quantum dots
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Figure 5.12: Singlet-triplet Hamiltonian qubit subspace and energy diagram. (a)
Singlet-triplet qubit Bloch subspace mediated by J (twice the magnitude of red arrow) for
Pauli-z rotations and AB, (magnitude of the blue arrow) for Pauli-x rotations. Typically
AB, is fixed and J is tuned to change the qubit precession angle 6. (b) Energy spectrum of
the double quantum dot Hamiltonian described in Equation 5.6. The state labels indicate
the approximate eigenstate of the energy eigenvalue line at different points in detuning A.
The tunnel coupling ¢. highlights the singlet charge state anti-crossing. The label 2AB,
indicates the anti-crossing seen clearly in Figure 5.10. In this region, the Hamiltonian is set
for Pauli-z rotations as J ~ 0. At detunings away from far-negative detuning, J becomes
appreciably larger than AB, and subsequently, the system undergoes Pauli-z rotations.
The dotted lines are guides that show the asymptotes and the small curvature seen in the
to eigenstate as it deviates from a simple linear trend.
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5.3 Single-qubit gates on singlet-triplet qubits

Figure 5.12 shows the singlet-triplet qubit Hamiltonian on the Bloch sphere with J/2
yielding Pauli-z rotations and AB, yielding Pauli-z rotations. The spherical angle

(or the complementary angle of the altitude angle) of the rotation vector is simply:

2AB 2AB
0 = arctan Z) =arctan [ ————— | . 5.13
( J <A+\/A2+t§ (5.13)
Evidently, one can smoothly toggle between Pauli-z rotations (6 = 90°) and Pauli-z

(0 = 0°) by moving between J ~ 0 or J > AB, respectively. With the speed of the

precession, given by Equation 5.12:

2
wp = ﬁ\/AB§+iJ2, (5.14)

one may also tune the precession frequency by changing J. In this section, each
single-qubit gate shall be discussed in detail and then the optimal choice of J is

discussed under the presence of charge noise.

5.3.1 Realising Pauli-x rotations via AB, in Si-P

At large negative detunings where J is close to zero, the rotation axis points along
the z-axis. The speed is fixed at approximately %ABZ. The magnitude of AB,
is taken to be 20 MHz as estimated for a 1P-2P double quantum dot (with the
2P donor dot holding two spin-paired electrons below the valence electron forming
the singlet-triplet state). The 1P-2P configuration using the (1,3) <> (0,4) singlet-
triplet inter-dot crossing was shown in Section 2.2.3 to be favourable in the context
of electrostatic control required to perform a singlet-triplet two-qubit gate. With
one electron on the first dot, the hyperfine interaction of a 1P donor contributes
approximately 29 MHz [50, 83]. With two electrons spin-paired below the valence
electron on the 2P donor dot, one expects a small contribution that will shift AB,
by 4+5.25 MHz. Thus, the average AB, will be taken to be approximately 29 MHz
for the remainder of this thesis.

Now clearly J = 0 (as required for a Pauli-z gate) never happens as going to
A — —oo will push the electrons towards the sop state. By inspection of the full
energy spectrum shown in Figure 5.10a and the Hamiltonian in Equation 5.4, the

minimum singlet-triplet splitting J, occurring at € = 0, is'?:

12Note that the equation for .J given in Equation 5.10 cannot be directly applied for large negative
detunings as it does not account for the extra t. term coupling s11 and sg0.
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Uy 1
Jimin = TOQ +5/8i2 + U, (5.15)

where t. refers to the rescaled version outlined in Equation 5.6. The minimum

detuning one may traverse is:

Uz
3

At detunings below this point, the exchange J increases as the electrons start entering

Amin = — (5.16)

the s9o state. This minimum exchange puts an upper bound on the angle of the
rotation axis 6. In Si-P, taking Up~100meV and ¢, = 5GHz, the minimum J
is approximately 2.1 MHz. Given a typical AB, of 29 MHz from a 1P donor (as
discussed in Section 2.1.5), the maximum rotation angle is thus, approximately 6 =
87.95°. That is, one may need to compensate the slight inaccuracy in the Pauli-z
rotations via echoes or dynamical decoupling pulse sequences to enhance the single-
qubit gate fidelity [195, 196].

Finally in the context of setting up experiments, it is useful to gauge the mag-
nitude of the voltage pulses to perform the gate operations. One useful measure is
to find the detuning required to perform a Hadamard operation where J/2 = AB,
(0 = 45°). If the Hadamard operation is accessible, then one may still attain Pauli-z
rotations by appending Hadamard operations before and after a Pauli-z gate [167].
Using the expression for J in terms of A, the detuning point for a Hadamard gate

1s:

2AB? — t2
4AB,
Noting that 2A = eAayAVy, one may find the required amplitude of the voltage

AHadama]rd = (517)

pulse AV, (when applied on gate g with a differential lever-arm Acy):

_ 4ABZ —¢2
~ 2eAay - AB,

Taking AB, ~ 29 MHz and a typical differential lever-arm of 5% (expected for the

control gates in the proposed singlet-triplet architecture in this thesis), one finds

AV, (5.18)

that the tunnel coupling strongly affects the range of voltages one needs to pulse to
achieve the Hadamard gate. For example, with a tunnel couplings of 5 GHz, 10 GHz
and 30 GHz, the required voltage amplitudes reach —36 mV, —140mV and —1.3V
respectively. High-speed arbitrary waveform generators have a limited voltage range

of typically 1.5V with the range further limited to approximately £470 mV due
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to the minimum recommended 10dB of thermalising attenuators placed along the
coaxial lines going into the dilution fridge [33]. In addition, large voltage pulses
near 1V may cause gate-to-gate leakage current in the device. Thus, large tunnel
couplings (above 10 GHz) make it difficult to perform Hadamard operations due to

both equipment and device limitations.

5.3.2 Requirements for Pauli-z rotations

For approximate Pauli-z rotations, one may set J > AB, with the speed of preces-
sion approximately at J/h. When the qubits are idle, one sets them to precess about
the Pauli-z axis. Here, the qubit population will not shift and no gates are induced
as long as all qubits precess at the same frequency J/h. A high-fidelity idle (or iden-
tity) gate is important in a many qubit processor. The gate here can be imperfect
as a non-zero AB, will tilt the rotation axis away from the Pauli-z axis. One can
calculate the loss in fidelity due to imperfect Pauli-z gates'®. The fidelity shall be
taken as the projection of the final state upon the intended state. Consider a state
1; on the zy-plane of the Bloch sphere. Now a Z gate (a Pauli-z gate) with a finite
J and AB, shall be performed by waiting m/w, while at J > AB,. Geometrically,
the phase rotation is perfect, but the state is now slightly off the xy-plane. For an
axis rotation angle of 6, this imperfect state ¢y is off the xy-plane by 26. Thus,
taking the states on the Bloch sphere, converting to vector notation and taking the

projection probability |(¥actual | 1/Jidea1>|2, the Fidelity is simply:

J2

Fy, = cos*(f) = NEENCTNAER

(5.19)

Solving for J, one may then relate the required exchange to reach a certain fidelity
threshold:

Fy
1—-F,°

Table 5.2 lists the required ratio of J/AB, to reach given Z-gate fidelities. Note that

these fidelities arise simply from gate control when using J and do not yet consider

Jreq = QABZ (520)

the additional contribution from charge noise.
Given the values in Table 5.2, for a given AB,, one may identify the minimum

J required to realise to enable Pauli-z gates. As shown later, when considering the

130ne could recast the algorithms to utilise the imperfect gates 6 # 0. The approach taken here
is to achieve the conventional X and Z gate sets to later aid in performing the required surface code
parity operations.
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7 Fidelity | J/AB. | 6(°)

90 % 6 18
99 % 20 0.7
99.5% 28 4.1
99.9% 63 1.8

99.99 % 200 0.57
99.999 % 632 0.18

Table 5.2: Imperfection in Pauli-z rotations due to AB,. For given Z (that is, a
180° Pauli-z rotation) fidelities, the required ratio of exchange to the magnetic field gradient
J/AB, are listed along with their associated spherical rotation angles. Note that 6 = 0
points along the z-axis of the Bloch sphere.

presence of charge noise in two-qubit gates in Section 5.4, the minimum J is also
important since it impacts the choice in the tunnel coupling and the inter-qubit
coupling. From Table 5.2, the exchange J would need to be 28 times bigger than the
magnetic field gradient AB, = 29 MHz for Pauli-z gates with 99.5% fidelity. That
is, the exchange when the qubit is in its idle Pauli-z rotating state must be at least
Jidle = 810 MHz.

5.3.3 Impact of charge noise on Pauli-z gates

The precession frequency of a singlet-triplet qubit given in Equation 5.14 is a function
of J and AB,. Any shot-to-shot perturbations on these parameters will cause the
qubit precession frequency to alter from one logic gate to the next. Thus, for example,
if one waits the nominal time for a 7 rotation, there will be instances where the
trajectory either overshoots or undershoots the required rotation angle. Decoherence
describes the ensemble average of the state vector as it is pushed away from the pure
states. Mitigation of ‘charge noise’ affecting J and magnetic field gradient noise
affecting AB, is important when considering these qubits in the context of a large
scale 2D surface-code quantum processor where qubit error rates must be at least
below 0.5% to achieve fault tolerance [8]. Magnetic field gradient noise can be
mitigated by using isotopically purified 28Si which has a low concentration of non-
zero spins from 2Si nuclei. The significant limiter for conventional solid state spin
qubits (such as singlet-triplet qubits) is charge noise [34, 69]. Thus, this section will
focus on the influence of charge noise that affects J. The results will show that it is
desirable to keep the operating points far in negative detuning (A < 0) to minimise
decoherence of the qubits.

Qubit operations are controlled by changing A to control the exchange J as
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shown in Sections 5.2 and 5.3. In this section, it is assumed that one is performing
Pauli-z rotations, where J > AB, and w, ~ J. The noise source shall perturb
A as any source of charge noise will fundamentally manifest as a perturbation on
the dots’ local electric fields resulting in an experimentally measurable shift in the
detuning [17, 64, 197|. The electric field perturbation could be either due to noise
on the gates (producing the tilting electric fields) or due to intrinsic charge fluctu-
ators within the crystal; nonetheless, the source and its characteristics is a topic of
ongoing research [18, 69]. This noise source shall be taken to be a Gaussian distribu-
tion'* centred about the target detuning A, with a standard deviation ‘amplitude’

parameter A,:

2
P;(A) = Agexp (W) , (5.21)

where Ay parametrically normalises the distribution. Note if the noise standard
deviation A, tends towards zero, one has a dirac-delta like frequency peak about
the intended detuning A, leading towards zero deviation in J as required for stable
and coherent gate operations. Now given this probability distribution in terms of A,

one may recast it in terms of J:

J2_42 2
<Tc - Au)

P, =A .22
Z(J) 0 €Xp 2Ag (5 )
The asymptotic forms away from zero detuning are:
_ 2
Ag exp (—%) Ay >t
2 \?
Py(J) ~ (J+2ACH) . (5.23)
Ag exp BT A, < —t,
2(altra)

This provides an approximate functional upper bound that overestimates the spread
of the distribution. Although the asymptotic forms are approximated with Gaus-
sians, the original distribution is asymmetric (seen easily by noting that one maps
A € [—00,00] to J € [0,00]). From the asymptotic approximations, it is clear that
the Gaussian standard deviation in J for working points on positive and negative

detunings are:

L41f the actual noise distributed itself via a different shape, one can tweak A, to match the actual
distribution to ensure it overestimates the noise distribution, as the aim of this analysis is to give
an worst-case upper-bound while using a typical realistic distributions.
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Jy & QtA"A i“ Zle (5.24)
ﬁ o p << —te
Here J, represents the spread of Pauli-z precession frequencies one may expect if
taking an ensemble of many measurements. Since the inverse Fourier transform of
a Gaussian is a Gaussian, the resulting precession in the time-domain rotations will
have a decaying Gaussian envelope. The decay time-constant is the characteristic
coherence time T4 ~.J,. At positive detunings (A > 0), the coherence time saturates
to a constant value as the gradient in J (that is, dJ/dA), is constant. When going
deeper into negative detuning, the coherence time gets larger as the change in J with
respect to detuning tends to zero: dJ/dA~0. The gate fidelity relates to the loss
in population due to decoherence; that is, the gate fidelity relates to the number of
possible gates one may perform (at a rate given by the mean J) within the given

coherence time:

A >t

J
— = 5.25
2 (5.25)

= AL —te '
The fidelity estimate implies that one may in fact, increase the gate fidelity when
working away from zero detuning (either at positive or negative detuning). When
going further into positive detuning, the speed of the gate increases while the ex-
change noise standard deviation J, saturates to a constant value. Thus, one may
indefinitely increase the gate fidelity by going into positive detuning. However, ex-
perimental limitations limit the speed of J and thus, the maximum detuning A,,.
These experimental difficulties arise from the precise timing required for gate times
below 1ns (the state of the art arbitrary waveform generator at the time of writing
this thesis was limited to 20 ps pulses). Whereas when working deeper into negative
detuning, the gate speed can remain slow enough to be experimentally feasible (as
A < 0 implies that J < t. = 5 GHz, the pulses can be made much slower than 200 ps)
and one may increase the tunnel coupling t. to increase the gate fidelity. Larger
tunnel couplings give larger gate fidelities as the desired J now appears deeper in
negative detuning where d.J/dA is smaller and thus, variations in J are smaller for
a given noise standard deviation A, .

The intuition from the analytic formulation above was confirmed with numerical
simulations of the gate fidelities shown in Figure 5.13. The gate fidelities were calcu-
lated numerically using the method described in Appendix F. The method first takes

a noise standard deviation A, and a nominal choice in J, to construct the proba-
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Figure 5.13: Fidelity of a single-qubit Z gate as a function of exchange J, and
noise standard deviation A,. The plot shows the worst-case Z gate fidelities across
different operating points J,, and charge noise, given as the standard deviation in detuning,
A,. The parameters are normalised to the tunnel coupling t.. The dark lines signify the
contours for fidelities of 95 %, 99.5 % and 99.99 %.

bility distribution of the precession frequency J given in Equation 5.22. It is noted
that one may normalise J and A, conveniently in terms of the tunnel coupling t. to
reduce the parameter space. Given the spread in the precession frequency (that is,
the spread in J), one may take the inverse Fourier transform to obtain the decaying
cosine wave that represents the average loss in the coherence due to stochastic shot-
to-shot perturbations in the precession frequency J. The worst case Z gate fidelity
was extracted from the decay at one full period of rotation to both conservatively
underestimate the m-rotation fidelity and to get the idle qubit fidelity. The idle qubit
fidelity is a 27 Pauli-z rotation (or two Z gates) where the qubit performs an identity
operation.

Figure 5.13 shows the resulting fidelities when varying the exchange J/t. and
noise standard deviation A,/t.. Here J,, is the precession frequency as expected
when setting the associated point in detuning A, to perform the Pauli-z gate!s.
The key feature is that at zero detuning (J = t.), the fidelities dramatically drop.
As one traverses further into positive detuning, the saturation of the noise in J

and the increasing precession frequency yields a monotonic increase in the resulting

5Here J,, is not necessarily the mean J given the distribution of J from the Gaussian spread in
A. As one may not be necessarily sampling the true mean frequency in J, the fidelity estimates
underestimate the gate fidelity.
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fidelities (as realised by the analytic asymptotic expressions for the gate fidelities).
Similarly, as expected, at negative detuning (J < t.), the Z-gate fidelities start to
increase. The 99.5% contour represents a hard boundary in which devices must
satisfy by design and operation in order to satisfy the error thresholds for scalable
quantum computing qubit arrays.

Now considering the minimum tunnel coupling bound of ~5 GHz (for a general
double quantum dot system measured in a typical dilution fridge), one would need
the detuning noise standard deviation A, to be approximately 0.02t. = 400neV
to work at zero detuning. To date, A, has been experimentally measured to be
5ueV in GaAs [197], 6.4 ueV in SiGe [17] and 2 peV in Si-MOS [64] quantum dots.
Although a recent experiment in Si-P reported a relatively large detuning noise
of ~10pneV [198], the device operated close to voltages that would cause gate-to-
gate leakage. In general, the noise in Si-P has been shown to be lower given that
the P-donor qubits are embedded within an epitaxially grown bulk crystal far from
the surface where there may be charge traps due to the oxide interface [199]. In
addition, the smaller size of the qubits (12.5nm as opposed to 70-100 nm of gate-
defined quantum dots [14]) should also provide lower noise given that any electric
field fluctuation from a source far away may not be necessarily different across the
dots. That is, detuning noise requires a tilting of the dot’s energy levels as op-
posed to raising or lowering both dots’ energy levels simultaneously. In addition, the
noise from any charge fluctuations in the nearby gates in P-doped delta layers have
been measured to be much lower (3 orders of magnitude lower) compared to other
wires in semiconductor systems [199, 200]. Thus, P-donor dots should approach the
theoretical prediction of the background detuning noise in silicon of approximately
100-1000neV [18, 201, 202]. Although 400neV is above the theoretical minimum,
it would be advisable to set J to negative detuning to obtain higher fidelities. For
example, if one sets J = 0.1, = 1 GHz, the allowable charge noise to obtain 99.5%
fidelity is approximately A, = 0.1f, = 2 peV.

5.3.4  Summary

The discussion of single-qubit operation sets important experimental bounds on the

choice of device parameters operating conditions. These key concepts include:

e The tunnel coupling should not exceed 10 GHz as typical values of AB, =
29 MHz (estimated for a 1P-2P double quantum dot) and Aa = 5% (typical
control gate differential lever-arms for the proposed singlet-triplet architecture)

yield voltage pulses of —140 mV to perform a Hadamard gate (the pulses need
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to be larger to reach J & 0). The voltage range is limited by the equipment
to approximately ~ 4+ 0.5V if using a typical waveform generator fed through
attenuated coaxial cables in a dilution fridge. It is also limited by the device

since large pulses of £1V will likely cause gate-to-gate current leakage.

e The minimum J is approximately 810 MHz (given that AB, = 29 MHz) if one

wishes to produce Pauli-z gates with 99.5% accuracy.

e Typical operation for maximal Pauli-z gate fidelity would involve setting the
qubits to negative detuning. Negative detuning offers a smaller fluctuation in

J for a given fluctuation in the detuning (that is, a small d.J/dA).

e High-fidelity (greater than 99.5%) Pauli-z gates should be possible given typical
detuning noise. For example, if one takes t. = 5GHz and sets J = 0.1t, =
1 GHz, the detuning noise needs to be below A, = 0.1, = 2 peV.

5.4 Two-Qubit gates on Si-P Singlet-Triplet qubits

The mainstream proposal for two-qubit gates amongst singlet-triplet qubits in the
literature utilises electric dipole couplings also termed ‘capacitive coupling’ [14, 34,
42, 203|. Here the basic concept is that the triplet state always remains in a (1,1)
charge state with respect to detuning A, while the singlet state can change between
charge states s11 and sps with respect to A. This means that above zero detuning
(A > 0), a singlet-state will have most of its electric charge transferred onto a
single dot, while for the same detuning, a triplet ty state will have both electrons
occupying separate dots. The difference in charge state on the ‘control’ qubit will
have a state-dependent difference in electric field on a second ‘target’ qubit. If
configured correctly, this electric field can manipulate the A of the ‘target’ qubit to
either precess faster along the z-axis or change its gate type from Pauli-z to a Pauli-z
gate. The advantage of the electric-dipole induced two-qubit gate (adopted in the
proposals in this thesis) is that the individual double dots forming the singlet-triplet
qubits may be spaced far apart (more than an order of magnitude further than the
individual dot-to-dot separation distance within a single singlet-triplet qubit). Thus,
the method is conducive for a scalable architecture as the routing of control lines is
less difficult since the qubits are not so tightly packed.

The two-qubit gates discussed and later optimised in this chapter utilise DC
pulsing in the presence of large inter-qubit couplings (as opposed to the preturbative

inter-qubit couplings required for AC-driven singlet-triplet qubits operating at J~0)
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to realise faster high-fidelity two-qubit gates. Note that from previous works [34, 35],
a perturbative inter-qubit coupling, conducive with AC-driven singlet-triplet qubits,
in P-donor qubits can be realised by spacing the double-quantum-dots more than
120 nm apart as discussed in Section 2.3.

There is also a two-qubit gate proposal that utilises direct exchange between all
four quantum dots forming the two singlet-triplet qubits [204]. Although this method
promises faster gates, not only must it handle the higher probability of entering
leakage states (that is, not in the sg-ty subspace) but the fact that the dots must
be exchange coupled implies that the double-dot singlet-triplet qubits need to be in
close proximity (in the order of the individual dot-to-dot separation distance within
a single singlet-triplet qubit). Such strongly coupled exchange-based singlet-triplet

qubits are not considered in the large scale architecture proposals in this thesis.

54.1 CZ Gate

The CZ gate performs a Pauli-z rotation (by angle ) on the target qubit conditional
on the state of the control qubit. The two qubits, control and target, are initially
biased such that J > AB,; that is, performing a Pauli-z gate at the same frequency
(thereby performing a mere identity operation every full rotation about the z-axis).
Figure 5.14 shows how when biasing the control qubit towards positive detuning,
the control qubit remains in the remains in the (1,1) charge state if in the triplet ¢
state (a) due to Pauli-spin blockade. However, if the control qubit is in the singlet
s11 state (b), it may enter the (0,2) charge state via sp2. On the target qubit, there
is no change if the control qubit is in the triplet ¢{g state. However, if the control
qubit is in the singlet sga state, the target qubit’s detuning shifts to a point of higher
J and thus, a faster z-axis precession frequency. Thus for example, if one tunes this
shift in J to double the precession frequency, then on waiting for a 7 z-axis rotation
(with the control qubit in the ¢y state) would become an identity operation with the
control qubit in the sy state as the rotation angle will be 2w. The resulting gate
operation is a CZ gate where the target qubit undergoes a m rotation about the
Pauli-z axis conditional on the control qubit being in the triplet ¢g state.
Ultimately for the CZ gate one needs to find the optimal choice in physical (tunnel
coupling and inter-qubit coupling set by geometry upon fabrication) and operational
parameters (exchange J on the qubits tuned by the voltages set on the gates) to
maximise the two-qubit gate fidelity. The operation of a CZ gate depends on the
following parameters (the optimal choice in the parameters for Si-P will be found in

the end of the noise analysis in Section 5.4.2):
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(a) CZ-Gate with control qubit in the triplet to state.
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(b) CZ-Gate with control qubit in the singlet so state.
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Figure 5.14: CZ gate for electric-dipole coupled singlet-triplet qubits. The energy
diagrams (see Figure 5.12) and double-dots (red dots representing the two electrons forming
each singlet-triplet qubit) represent the individual singlet-triplet qubits: the control and
target qubits. To activate the gate, the control qubit is biased towards the region of positive
detuning, where a triplet g remains in the (1,1) charge state as shown in (a), while the
singlet enters the (0,2) charge state (via sg2) as shown in (b). A control qubit in the singlet
state causes the target qubit’s detuning to shift and subsequently its exchange J increases
from Jy to 2Jy. For a fixed time, this greater J causes a faster rotation, which if tuned right
can yield an identity operation on the target qubit if the control qubit is a singlet and a
Pauli-z flip if the control qubit is a triplet 5. The Bloch spheres represent the operation
performed on the target qubit with the red arrow representing the target qubit’s J while
the blue arrow represents its AB, vector.
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e Idle-qubit exchange J; (set by idle-qubit detuning A;). The qubits in their
default idle state (and thus, the target qubit’s initial state) is when J = J; >
AB,.

e Control-qubit exchange J. (set by control-qubit detuning A.). The exchange
to which one sets on the control qubit to initiate the two-qubit coupling to run
the CZ gate.

e Inter-qubit coupling Aa. The shift in the target qubit’s detuning when com-
pletely moving the control qubit from (1, 1) to (0,2) charge states. Note that
the actual shift in the target qubit’s detuning is po2 - Aa (where pgy is the
fractional probability of being in the (0,2) charge state as given in Equation
5.28).

Now when a CZ gate is performed between two qubits, one biases the control and
target qubits to J. and J; respectively, where if the control qubit were in the singlet-
state, the target qubit becomes biased at J; + AJ. Thus, as one waits a certain
period of time 7, the target qubit will accumulate phase at a different rate with the
relative difference in phase being (taking Equation 5.14 for the qubit z-precession

frequency):
Av, = ——-T— —T=—T. (5.26)

When the relative phase is 7, then the gate is a CZ gate where one waits 7¢yz:

_h
C2AT°
Before calculating AJ, one needs to find the shift in the target qubit’s detuning via

TCZ (5.27)

AA. The shift in the target qubit’s detuning only occurs when the control qubit is
in the singlet sg2 charge state. One can estimate the net shift to be pgo - Aa, where
poz is the fraction of the control qubit in the sp2 state [42]. One can find the fraction
of the control qubit in the singlet sgo charge state via the eigendecomposition given

in Equation 5.9:

S N S J?
PRy i ar T Pt

Evidently at zero detuning, the dipole strength will be a half, maximal at an in-

(5.28)

finite positive detuning and nullified at infinite negative detuning. The change in
exchange AJ due to the shift in the target qubit’s detuning can be calculated from
the definition of J in Equations 5.10:
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AJ = <At + po2 A + \/(At —f—pQQAA)Q + t%) — (At + \/A? + tz> . (5.29)

That is, the shifted value of J is at the detuning A; + pgaAa where pg2 is a scaling
factor that determines the probability proportion of the control qubit in the (0,2)
charge state. Since, pp2 is a function of J., one may rewrite the target qubit’s

exchange interaction in terms of J. (noting tunnel-coupling normalised parameters:

AJ = AJ/te, J. = JoJte, Ny = Mg/t and Ay = Ap/te):

2
J? J? -1 J'? J? 11
A /: c A/ 1 t C A, _ t .
J T '\ + +< 27, +Jg2+1 '\ 5] (5.30)

The equation for AJ’ gives the relative speed of the gate given J., J; and Ay.

Figures 5.15a-c show the gate speeds for different inter-qubit couplings as a func-
tion of exchange on the control and target qubits. For all inter-qubit couplings,
the larger CZ gate speeds appear at positive detuning on the control qubit (that is,
Je 2 t.) as one needs to be near positive detuning where the control qubit starts to
enter the sgy charge state to activate the electric dipole required to trigger the CZ
gate.

To interpret the trends in J; consider an activated CZ gate where J. > 1. At
negative detuning on the target qubit (J; < 1), the variation in J with respect to
the target qubit detuning d.J/dA, is small resulting in a small AJ when shifting from
A¢ to Ay + po2 - Aa. At positive detuning on the target qubit (J; > 1), the target
qubit exchange linearly increases to result in a constant d.J/dA;. Thus, at positive
detuning, the gate speed AJ is constant when shifting from A; to A + po2 - AAa.

For larger inter-qubit couplings (such as Ax = t. and Ax = 10¢. in Figures
5.15b-c), the gate speeds start to saturate to the maximum speed at J; < 1 as the
larger jump in detuning enables a large change in the target qubit exchange. That
is, the larger AJ occurs when shifting from J; ~ 0 at negative detuning to J; > 0
at positive detuning. Finally, since J; monotonically increases with detuning A;, a
larger inter-qubit coupling enables a larger change in J; and thus, gate speeds in
general increase with larger inter-qubit couplings as seen by the scale-bars in Figures
5.15a-c. As with the analysis of Pauli-z gate fidelities, the area of maximum gate
speed does not guarantee maximal gate fidelities when considering the presence of

charge noise.



200 Chapter 5. A scalable singlet-triplet quantum information processor
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Figure 5.15: CZ gate speeds as a function of control qubit exchange J., target
qubit exchange J; and inter-qubit coupling Ax. The plots (a)-(c) show the CZ gate
speeds, for different inter-qubit couplings A, normalised to the tunnel coupling: AJ/t.
(note the different colour scales: 0.15, 1.5 and 15). Each plot shows the CZ gate speed as a
function of the control and target qubit exchange (both normalised to the tunnel coupling).
The CZ gate speed is close to zero for J. < 1 as the CZ gate is inactive (as the control qubit
is biased in negative detuning and thus, in the s1; state). The CZ gate speed only becomes
non-zero when J. > 1 (to activate the gate) and when there is an appreciable change in
J; when shifting the target detuning by po2Aa (dJ;/dA:~0 at far negative detuning). The
general trend is that the CZ gate speed increases when increasing both J. and J;.
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Figure 5.16: The ability to turn off the CZ gate by observing the phase accumu-
lation v; from unintentional CPHASE gates on adjacent qubits. The plot shows the
phase accumulation (over one full rotation at frequency Jigie) v; in radians, given in Equa-
tion 5.31, of a qubit due to an unintentional CHPASE gate with an adjacent qubit. A small
phase accumulation implies a greater ability to switch off the CZ gate as the qubit remains
idle without accumulating any Pauli z-axis phase due to the state of adjacent qubits. The
phase accumulation is plotted against the idle point of exchange Jigie > AB, and the shift
in qubit detuning A when the adjacent qubit is in the (0,2) charge state as opposed to
the (1,1) charge state. Both parameters are normalised to the tunnel coupling t.. The dark
lines signify the contours for idle qubit fidelities (that is, a measure of the qubits retaining
their initial state) of 95% and 99.5%. Note that the diagram takes the shift in detuning
(when the adjacent qubit enters the (0,2) charge state) to be from A to A + pgs - Aa. For
AA < 0, one simply waits at the idle A 4+ |Aa| to be shifted to A to result in the same
phase accumulation listed on the plot.
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However, before investigating the influence of charge noise (to find the appropri-
ate choices in J.., J; and Aa) in Section 5.4.2, it is important to realise the conditions
in which the CZ gate may be completely toggled on and off. Now consider a set of
many singlet-triplet qubits in the quantum processor. If the qubits were in the idle
state, there should be no change in local qubit populations. Thus, one nominally
places the qubits in the Paul-z rotation regime (J > AB,). All idle qubits must
be tuned to the same frequency Jige as any differences in the precession frequency
results in an unintentional Pauli-z gate. To ensure no spurious gate, let alone entan-
gling, operations occur, one must choose a qubit biasing position where no inter-qubit
interactions are present. However, electric dipoles (used for the CZ gate) of other
qubits will shift the detuning in adjacent qubits to an exchange away from Jig and
thereby initiate local CPHASE gates (a phase rotation on the target qubit dependent
on the control-qubit-state). Since the induced CPHASE gate will accumulate phase
at the speed AJ, the unintentional CPHASE rotation on the target qubit over one
qubit Pauli-z rotation (at speed Jige) is:

w AL, 147 1\/1+<J’2—1 7

2
- /
o - o T HJ,QAA) (5.31)

Je 1+J2°87 g2 T
where J' = Jige/te and A’y = Aa/t.. Figure 5.16 shows a plot of the phase ac-
cumulation of the unintentional CPHASE gates for different Jigie and inter-qubit
couplings Aa. The sensitivity to nearby qubits’ electric-dipoles drops as one moves
deeper into negative detuning (Jige < t.). That is, even at strong electric-dipole
strengths, the state-dependent shift in detuning Aa causes too small a change in
Jidle to result in significant phase accumulation. Similarly when traversing deep into
positive detuning (Jiqie > t¢), Jidle increases rapidly such that the percent change in
Jidle due to the shift in detuning A is once again too small to result in phase accu-
mulation per single rotation at Jige. In general having larger inter-qubit couplings
requires one to set the idle qubit Jige to be further into negative detuning Jige = 1
(as positive detuning yields Pauli-z precession frequencies too fast for the voltage

pulse generators to track as discussed Section 5.3.4).

The unintentional CPHASE gate will not impact target qubits if the target qubit
state is purely in either singlet or triplet-ty (as a Pauli-z rotation will not change the
state). The worst case impact of the unintentional CPHASE gate will be when the
adjacent qubit is in a state perpendicular to the Pauli-z axis, in which case the idle

qubit fidelity (that is, the drop in fidelity due to an intentional phase accumulation
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taking the qubit away from its initial state) is:

Fiqle = cos? (%) . (5.32)

For the adjacent qubit to remain in the initial state to within 95% and 99.5% fi-
delity, the CPHASE must not accumulate above 25.8° and 8.1° respectively. Figure
5.16 plots the 99.5% and 95% idle qubit fidelity contours. The 99.5% contour (at
Jigle < 1), for a given inter-qubit coupling, presents the minimum operating point
in exchange for all qubits to ensure that the unintentional CPHASE gate does not
move the adjacent qubits’ states away from their initial states to within 99.5% fi-
delity. For example, in a Si-P device, if the tunnel coupling were 5 GHz, and the
inter-qubit coupling was 0.035t. = 175 MHz (like the perturbative tunnel couplings
seen in GaAs experiments [14]), then one may set the idle qubit exchange freely
without worrying about loss in fidelity (below 99.5%) due to unintentional CPHASE
gates. If the inter-qubit coupling was however, above 5 GHz, then one must set the
idle qubit exchange below approximately Jige < 0.23ft. = 1.15 GHz. Similarly, if
the inter-qubit coupling were 40 GHz, then the idle qubit exchange must be below
Jidle < 0.11t, = 550 MHz to avoid unintentional CPHASE gates.

5.4.2 Impact of charge noise on CZ gate fidelities

With the CZ gate speed given by AJ, one may investigate the influence of charge
noise on the two-qubit gate fidelities. The two-qubit gate fidelity is taken as the
product of the control and target qubit fidelities. Thus, the investigation of the CZ

gate-fidelity is broken up into two contributing elements:

o [, - gate fidelity of Pauli-z rotations on the control qubit under the presence

of charge noise (local to the control qubit) perturbing the value of J..

e F} - gate fidelity of Pauli-z rotations on the target qubit under the presence
of charge noise perturbing the value of J; + AJ. Here, the charge noise is
due to two sources. The first source is local charge noise on the target qubit
perturbing the value of J;. The second source is the local charge noise on the

control qubit (that is, charge noise on J;) perturbing the value of AJ.

Note that the charge noise on the control and target qubits are assumed to be
independent (that is, uncorrelated noise) with a Gaussian noise standard deviation
A,. If the noise were correlated (that is, any perturbations on the control qubit is

applied equally on the target qubit), then one can exploit standard echoing techniques
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to enhance the gate fidelity [14, 39]. In the following numerical simulations, F,. and
F; are calculated numerically assuming the worst case scenarios to find a lower-
bound estimate on the overall fidelity (with the intent to create a more robust design
that maximises the worst-case fidelities). In addition, the numerical simulations
may leave the qubits in a different phase (as the simulations simply consider the
optimal pathway that yields a m phase shift on the target qubit conditional on the
control qubit state); thus, one will need to apply high-fidelity corrective single-qubit
rotations to compensate.

This section will first calculate the CZ gate fidelities for a variety of operating
points for the control and target qubit exchanges (J. and J;) and inter-qubit cou-
plings A (both positive and negative). The results will then be put in the context of
Si-P dots to find the optimal choices in J., J¢, Aa and the inter-dot tunnel coupling
t,.

Charge noise local to the control qubit: F,

The first factor for the CZ gate fidelity is F, due to local noise on the control qubit.
Here, the control qubit precesses about the Pauli-z axis over the duration of the
CZ gate and will decohere as single-qubit Pauli-z gate rotations. The simulations
are identical to that used to gauge the gate fidelities of Pauli-z rotations in Section
5.3.3. However, the time waited for the gate, is taken to be that of the CZ gate
time given by AJ (for the choice of exchange on the control J,. and target J; qubits).
Figure 5.17a shows the control qubit fidelities across a range of J. and J; for Ax = ¢,
and A, = 0.01¢.. There appears to be a monotonic increase in the fidelities when
increasing the target qubit exchange J;. One may interpret this as a shortening of
the gate time (as seen by the increasing speed on moving to larger J; in Figure 5.15)
counteracting the larger J-noise at positive detunings (J; > 1). There is also a partial
increase in the fidelities on moving towards positive control qubit exchange J. (as
seen by the curving down of the 99.5% fidelity contour at J. > 1), which once again
can be attributed to larger gate speeds on increased CZ gate activation. That is, poeo
tends to unity for large J. > 1 (in positive detuning) as there is a larger proportion
of the control qubit in the (0,2) charge state. Although Figure 5.15 shows that the
gate speed decreases when moving to negative control qubit detunings (J. < 1), the
control qubit’s resistance to charge noise in negative detuning due to the smaller
dJ./dA. (as described in Section 5.3.3 in the context of Pauli-z gates) still yields a
high control qubit fidelity.

The 99.5% contour in Figure 5.17a highlights the boundary for a fault-tolerant
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Figure 5.17: Fidelity of the control qubit (F.) when performing a CZ gate. All
plots are taken over exchange on the control and target qubits (J. and J;). (a) Contour plot
of the control qubit fidelities (with the 95% and 99.5% contours highlighted). Fault tolerant
fidelities are found above the 99.5% line at higher values of J;. (b)-(c) Plots showing the
99.5% contour, shown in (a), for different noise amplitudes A, /t. (as labelled on the lines).
Higher inter-qubit couplings Aa push the 99.5% contours deeper into negative detunings on
both the control (J. < 1) and target (J; < 1) qubits. (d)-(f) Same plots as in (a)-(c) but
with negative inter-qubit couplings.
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control qubit. For J; above the contour the control qubit fidelity is larger than 99.5%
(as indicated by the 95% contour below the 99.5% contour for reference). With the
knowledge that the 99.5% contour shows the minimum J; one may reach for fault
tolerance, it is useful to investigate the trend in the 99.5% contour over different
inter-qubit couplings and noise amplitudes. Figures 5.17b-c show the 99.5% contour
lines for different inter-qubit couplings Aa /t. (across the plots) and noise-amplitudes
A, /te as shown by the labelled lines. Note that the lines indicate the minimum J;
boundary whereupon one still achieves fault-tolerance. Clearly on increasing the
inter-qubit coupling, the 99.5% contour lines move downwards into more negative
detuning (J; < 1) on the target qubit. Similarly, the increased fidelity trend across
Je, seen in Figures 5.17a, becomes more exaggerated as seen by the lines curving
downwards further into negative target qubit detuning (J; < 1) in Figures 5.17c
for Ax = 4t.. Note that although the faster gate speeds yield higher fidelities for
Je. > 1, the gate speeds may become too fast for the waveform generators similar to
the discussion of Pauli-z gates in Section 5.3.3.

Figure 5.17d shows the same plot as in Figure 5.17a, but with a negative inter-
qubit coupling Apn = —t.. That is, when the control qubit moves into a singlet
state, the target qubit shifts to a lower detuning. The functional trend appears to
be similar at J. < 1. However, the fidelities decrease on increasing J. as seen by
the curving up of the 99.5% fidelity contour. One may attribute the lower fidelity to
the smaller change in AJ for the same J; when shifting to a lower value of detuning
as opposed to shifting to a higher value of detuning as with a positive inter-qubit
coupling. Figures 5.17e-f similarly highlight the same trend where at J. > 1, one
needs to operate at a higher J; to access the region of fault-tolerant control qubit
fidelities (for a given detuning noise amplitude). Since the gate times may become
too fast to experimentally realise in positive detuning (J. > 1), one will typically
operate in negative detuning where the control qubit appears to have similar fidelities

for both the positive and negative inter-qubit couplings.

Charge noise on the target qubit: F;

The second factor for the CZ gate fidelity is F;. Here, the decoherence due to
local noise on the target qubit and the local noise on the control qubit (resulting in
noise on ppaAa) are both considered. As shown in Appendix F, the gate fidelities
can be found from the probability distribution of the precession frequencies N (w).
One finds N (w) by first computing the probability distribution of detunings on the

target qubit A} and then converting it into the associated distribution in J. The
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Figure 5.18: Fidelity of the target qubit (F;) when performing a CZ gate. All
plots are taken over exchange on the control and target qubits (J. and J;). (a) Contour plot
of the control qubit fidelities (with the 95% and 99.5% contours highlighted). Fault tolerant
fidelities are found above the 99.5% line at higher values of J.. (b)-(c) Plots showing the
99.5% contour, shown in (a), for different noise amplitudes A, /t. (as labelled on the lines).
Higher inter-qubit couplings Aa push the 99.5% contours deeper into negative detunings on
the target qubit. (d)-(f) Same plots as in (a)-(c) but with negative inter-qubit couplings.
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probability distribution of the target-qubit detuning due to local noise (on the target
qubit) is once again treated as a Gaussian distribution about target qubit detuning

A} = Ay/t. to get a set of points:

Niocat (Aly)) ~ (A, Pa(a', A1, AL))) (5.33)

where P(;(A’(t), i, o) is a normal distribution with mean p and standard deviation
o. Note that A’(t) represents a varying parameter across the target qubit detuning
(divided by the tunnel coupling), A} represents the nominal mean value one sets on
the target qubit detuning and A/ = A, /t. is the noise standard deviation. To find
the probability distribution on the target qubit due to noise from the control qubit,
one starts with a normal distribution of points representing the detuning fluctuations
on the control qubit:

Ninier (Afy) ~ (Al Po(Ayy, AL AY)) (5.34)

Note that A’(C) represents a continuous parameter along the control qubit detuning
(divided by the tunnel coupling) while Al = A./t. represents the nominal mean
value one sets on the control qubit detuning. From Equation 5.28, one may convert
the detuning A’(C) into points in the target qubit’s detuning A’(t) (that is, the resulting
shifts in the target qubit’s detuning) via poe A’y (where A\ = Aa/t.):

/ 1 A/(C) /
A(t) =4+ —F———— | A\ (5.35)

2 2
2,/1+A @
to get the distribution of noise fluctuations on the target qubit due to the control

qubit:

Ninter () ~ (Afyys P(Aly, AL AL)) (5.36)

Now given the two distributions, one needs to combine them to get the net fluctua-
tions on the target qubit’s detuning. Noting that the probability distribution of the
sum of two random variables'® is the convolution, one may find the net probability

distribution of the target qubit’s detuning via:

Ntarget( /(t)) - Nlocal(Al(t)) * Ninter(A/(t)) (537)

161n this case Nigeal IS a probability distribution centred on A} with a spread due to charge noise
local to the target qubit, while Ninger is centred on po2 A’y with a spread due to charge noise local on
the control qubit. Adding the two distributions yields a new distribution centred on A} + po2A'a,
with the combined spread of Niocal and Ninter.
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where the convolutions were taken numerically from the interpolated probability

distributions. Given the distribution across A’(t), one may find the distribution in

the target qubit’s exchange J by taking A’( nt 1+ A %t) and subsequently calculate
the target qubit fidelities as shown in Figure 5.18. Note that to calculate the worst-
case fidelities, the initial state on the target qubit is taken to be perpendicular to the
Pauli-z axis. During the CZ gate, the target qubit may precess in two modes where
the target qubit’s exchange is either J; (when control qubit is ¢g) or J; + AJ (when
control qubit is sg). When the control qubit is ¢y, the noise on the target qubit is
only given by Nlocal(A/(t)) as the control qubit remains in the (1,1) charge state to
result in no inter-qubit detuning shift on the target qubit. When the control qubit is
Sp, the noise on the target qubit is given by Ntarget(A’(t)). To obtain the worst-case
CZ gate fidelity, the numerical simulations in Figure 5.18 take the minimum fidelity
of the two possible cases (for every point in J. and J;).

Figure 5.18a shows the target qubit fidelity as a function of J. and J; for a positive
inter-qubit coupling Aa = 4¢. and detuning noise amplitude A, = 0.01¢.. There is
a general monotonic increase in the target qubit fidelity on increasing J. as seen by
the 95% and 99.5% fidelity contours. One can attribute the fidelity increase to the
faster gate speeds resulting in the full activation of the CZ gate (that is, bringing
the control qubit into a more sg2-like state to realise a stronger shift on the target-
qubit’s detuning). A more subtle feature is the fidelity minima across J; similar to
that seen with the fidelity of single-qubit Pauli-z gates in Figure 5.13. Here, the
minimum is formed at J; < t. because Ntarget(A'(t)) dominates when the inter-qubit
shift places the target qubit exchange at J; + AJ near at the zero-detuning point
(Jy = 1) where single-qubit Pauli-z gate fidelities are minimal. Figures 5.18b-c show
the 99.5% contours (which indicate the minimum J,. to which one can realise a fault-
tolerant target-qubit) as a function of the inter-qubit coupling across the plots and
the detuning noise amplitude as shown by the labelled lines within the plots. A
clear feature is that on increasing the inter-qubit coupling (here from Aa = 0.5¢. to
A = 4t.), the 99.5% fidelity contours move to lower values of J.. In addition, the
point in which the 99.5% fidelity contour curves across J. (due to a fidelity minimum
across Jy) shifts to a lower value of J; corresponding to the point where J; + AJ is
near zero-detuning.

Figure 5.18d shows the same target qubit fidelity plot as in Figure 5.18a but
for a negative inter-qubit coupling Ax = —4t.. There is still an overall monotonic
increase in the target qubit fidelity with increasing J. (as seen by the 95% and
99.5% contours). However, the target qubit fidelity minimum (across J;) now occurs

at zero detuning because Nlocal(A’(t)) dominates Ntarget(A’(t)) at zero detuning as
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Ji + AJ shifts the target qubit deep into negative detuning where single-qubit Pauli-
z gates operate at a high fidelity. Figures 5.18e-f show the trend in the 99.5% fidelity
contours (which once again signifies the minimum J; in which one can obtain fault-
tolerant target qubit fidelities) as a function of different inter-qubit couplings (across
the plots) and detuning noise as shown by the labelled lines in the plots. Once
again, a larger magnitude in the inter-qubit coupling (here from Axn = —0.5¢. to
Aa = —4t.) pushes the 99.5% fidelity contours to lower values of J.. The fidelity
minimum across J; however, remains close to zero detuning as seen by the 99.5%

fidelity contours curving away at Jy~t..

Total impact of charge noise on the CZ gate

The overall CZ gate fidelity is taken to be the product of the worst-case control qubit
and target qubit fidelities:

Foy = F.F, (5.38)

The CZ gate fidelities are plotted in Figure 5.19. Figure 5.19a shows the CZ fidelity
as a function of J. and J; for a positive inter-qubit coupling Ax = 4t. and detuning
noise amplitude A, = 0.04t.. Clearly, staying deep in negative detuning on either
of the two qubits (J. < 1 and J; < 1) yields poor CZ gate fidelities due to the gates
being too slow in overcoming the decoherence rates. Note that the bottom-left patch
of 25% fidelity is due to 50% gate fidelities in both the target and control qubits as
seen in Figures 5.17 and 5.18. Similarly, the top-left and bottom-right patches of
50% are due to the 50% fidelity in the target and control qubits respectively. There
is nonetheless, a monotonic increase in Fryz when increasing J. and J; as seen by
the 95% and 99.5% fidelity contours. The trends in the 99.5% fidelity contour lines
(here bounding the region of fault-tolerant operation to the upper-right quadrant)
are shown in Figures 5.19b-c as a function of inter-qubit coupling (across the plots)
and the detuning noise as shown by the labelled lines in the plots. A clear feature
seen on increasing the inter-qubit coupling (here from A = 0.5t to Ax = 4t.), is
that the 99.5% fidelity contours move to lower values of J. and J;.

Figure 5.19d shows the same plot as in Figure 5.19a, but with a negative inter-
qubit coupling Ap = —4t.. Once again, there is a monotonic rise in Fgy with
increasing J. and J;. Figures 5.19e-f show the trends in the 99.5% fidelity contour
lines (once again bounding the region of fault-tolerant operation to the upper-right
quadrant) as a function of inter-qubit coupling (across the plots) and the detuning

noise as shown by the labelled lines in the plots. On increasing the magnitude of
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(d) Fidelity for Ax = —4t. and A, = 0.04¢.
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Figure 5.19: Total CZ gate Fidelity (Fcz) due to charge noise. All plots are taken
over exchange on the control and target qubits (J, and J;). (a) Contour plot of the control
qubit fidelities (with the 95% and 99.5% contours highlighted). Fault tolerant fidelities are
found above the 99.5% line at higher values of J.. (b)-(c) Plots showing the 99.5% contour,
shown in (a), for different noise amplitudes A, /t. (as labelled on the lines). Higher inter-
qubit couplings Aa push the 99.5% contours deeper into negative detunings on the target
qubit. (d)-(f) Same plots as in (a)-(c) but with negative inter-qubit couplings.
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the inter-qubit coupling (here from Ax = —0.5t, to Ax = —4t.), the 99.5% fidelity
contours move to lower values of J. and J;. A key difference when compared against
the positive inter-qubit coupling of Aa = 4¢. in Figure 5.19c is that the regions of
99.5% fault-tolerant operation are concentrated along the J. = J; line (rather than,

for example, regions of low J; and high J. or vice versa).

Impact on CZ gate fidelities on the device parameters

Given the trends in the CZ gate fidelities (as a function of J., Ji, Aa and A,), it is
now possible to identify and optimise critical device parameters (both affecting the
geometry and experimental device operation) such as the tunnel coupling ¢. and the
inter-qubit coupling Aa. One may utilise the plots of the 99.5% fidelity contours in
Figure 5.19 with additional overlays to account for the feasibility of operating under

different inter-qubit couplings as shown in Figure 5.20:

e Preventing unintentional CPHASE gates (red) - overlay shows regions where
the target-qubit would trigger unintentional CPHASE gates with its adjacent
qubits (as discussed in Section 5.4.1). That is, assuming that all the qubits are
coupled with the same inter-qubit coupling Aa, setting too high a J; on the
target qubit will trigger unintentional CPHASE gates on all adjacent qubits.
Since unintentional CPHASE gates are undesirable, the operating points (J.

and J;) must be outside the red region.

e Preventing pulses from being too fast for current waveform generators (grey
ruled lines) - overlay shows regions where the gate times are below 20 ps. The
gate times (and thus, the voltage pulse times) were calculated via the equation
for AJ for a nominal tunnel coupling of 5 GHz. In the ruled region, the pulse
generators will need to output detuning pulses faster than the best waveform
generators. The dashed line indicates the boundary in which operating points
above it (in the top-right quadrant) require pulse widths less than 1ns (easily

achieved with waveform generators).

Noting the minimum tunnel coupling of 5 GHz set to prevent thermal excitations
destroying the singlet-triplet qubit (as discussed in Section 5.2.4), if the noise ampli-
tude is 1% of the tunnel coupling (that is, A, = 0.01¢.), then the resulting noise is
200neV. Since this noise amplitude is extremely close to the theoretical minimum of
100neV predicted in previous papers for silicon [18, 201, 202|, at a bare minimum,
one should select qubit operating points where the maximum allowable noise A, is

well above 0.01t.. That is, one needs the 99.5% fidelity contours for larger noise
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Figure 5.20: Finding the optimal choice of A, that is most resistant to charge
noise. (a)-(e) are plots of the 99.5% CZ gate fidelity boundary contours as a function of
the control and target qubit exchanges (J. and J;) for different inter-qubit couplings Ax.
The solid contour lines (plotted for different noise amplitudes A, /t.) represent the boundary
enclosing regions (the top-right quadrant) where the CZ gate fidelity exceeds 99.5%. Thus,
lower noise amplitudes A, enclose larger regions. The red region indicates restricted regions
where the target qubit will start inadvertently forming two-qubit gates with adjacent qubits.
The grey ruled region (bound by the dotted line) is a restricted domain where voltage pulses
are too fast (quicker than 20 ps) given the current state of the art equipment (for a minimal
tunnel coupling of 5 GHz). The dashed lines enclose a region where the voltage pulses are
shorter than 1ns. (c) shows the best operating regime with Ax = 6¢. as one can access
feasible regions (white) where the noise amplitude can be as large as A, = 0.05t. without
the voltage pulses being prohibitively fast like in (d) where A = 10¢,.
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amplitudes in the feasible (white) region. Note that the labelled contours (signifying
the noise amplitude A, /t.) each signify the minimum J. and J; in which one may
operate given the noise amplitude. That is, lower noise amplitudes enable smaller
operating points in J. and J;.

The optimal choice in inter-qubit coupling (with respect to the tunnel coupling)
is one where there are feasible operating points (for >99.5% fidelity, fault tolerant
CZ gates) that can tolerate noise well above A, = 0.01t.. Figures 5.20a-b show
that all feasible operating points require the noise to be below 0.02t. for inter-qubit
couplings up to Ax = 4¢.. Figure 5.20d shows that Ax = 6t, is the optimal choice as
it offers good operating points where the noise amplitudes can be up to A, = 0.05¢..
Going to higher inter-qubit couplings of Ax = 10¢, yield no additional benefits as the
gate times become too fast (below 20 ps) to be experimentally feasible. Finally, for
negative inter-qubit couplings, all feasible operating points require noise amplitudes
to be below A, = 0.01¢. even with strong inter-qubit couplings of Ax = —10t. as
shown in Figure 5.20e. Thus, Aa = 6t, is a good choice for the inter-qubit coupling
as it yields a good margin for noise amplitudes as large as A, = 0.05¢.. Now we can
map the feasible operating points to physical device parameters.

The maximum value of J;/t. that one may obtain from Figure 5.20d (for Ax =
6t.) is 0.124. Ome should operate near the red region in order to be within the
boundaries set by the 99.5% fidelity contours for A, = 0.02-0.03t. in order to be
maximally robust to charge noise. Given the minimum J; = 810 MHz set to obtain
accurate Pauli-z gates (given the typical AB, = 29MHz as discussed in Section
5.3.1), one obtains the required tunnel coupling to be ¢, = 0.810/0.124 = 6.5 GHz.
Thus, the required inter-qubit coupling is Ax = 6t. = 39 GHz. From Figure 5.20d,
one may choose the operating point near J.~2t. (where the detuning noise needs to
be approximately A, = 0.02¢,-0.03t.), thereby requiring a maximum charge noise
amplitude of A, = 540-810neV. This is approximately 8 times the theoretical
minimum expected charge noise in silicon [18, 201, 202]. Therefore, by utilising
strong inter-qubit couplings (Aax = 39 GHz for t. = 6.5 GHz), one may construct
fault tolerant (>99.5% fidelity) CZ gates between singlet-triplet qubits in P-donor

quantum dots.

5.4.3 CX Gate

Although a CX gate operation (as required for the surface code) can be formed via
a CZ gate sandwiched between two single-qubit Hadamard gates as shown in Figure

5.21 [167], it is interesting to investigate whether a high-fidelity native CX can be
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performed especially if it provides improvements to the geometry (for example, larger

spacing between the leads due to the lower inter-qubit coupling required).

C)

7 X

Figure 5.21: Circuit conversion of a CZ gate into a CX gate. The CX gate can be
formed by concatenating two Hadamard gates (H) onto a CZ gate (for control and target
qubits |C) and |T)).

The CZ gate discussed in Section 5.4.1 relied on Aa being small enough such
that it did not tilt the singlet-triplet rotation axis. However, if A > t., then the
target detuning could shift far enough to make the rotation axis tilt away from the
z-axis and point along the z-axis to help form a native CX gate. Figure 5.22 shows
the operation of a two-qubit gate where one chooses a working point on the target
qubit such that J; = Jy > AB,. If the control qubit were in the triplet ¢y state,
the target qubit’s axis of rotation remains along the z-axis. However, if the control
qubit were in the singlet state, the electrostatic shift on the target qubit is to push
it to a regime J < AB,. Now the target qubit undergoes Pauli-z rotations (giving
rise to a CX gate) at a gate time given by Equation 5.14; thus, the gate time 7, for

a Pauli-x m-rotation is:

_h
- 4AB,’

Here J & 0 for all detunings A < AB,. Thus, there is very little impact in shifting

(5.39)

Tx

the initial point’s detuning A where J = Jy. This is important for Jy must be
carefully selected such that:

Jo
1AB.

That is, Jp is chosen such that if the control qubit is in the triplet state, the target

e 7. (5.40)

qubit undergoes exactly an integer number of full rotations to ensure that an identity
operation is performed.

To physically perform the native CX gate, the inter-qubit shift Aax must be large
enough to tilt the singlet-triplet qubit axis of precession from the z-axis onto the
z-axis. Now from Table 5.2, a ratio of J to AB, of 28 yields 99.5% fidelity in the
accuracy of z-rotations. Similarly a ratio of AB, to J being 28 yields 99.9% fidelity -
rotations. The shift required in the target qubit detuning A; to perform the CX gate
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(a) CX-Gate with control qubit in the triplet ¢o state.
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(b) CX-Gate with control qubit in the singlet so state.
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Figure 5.22: The native CX gate for singlet-triplet qubits. The energy diagrams
(see Figure 5.12) and double-dots represent the individual singlet-triplet qubits: the control
and target qubits. To activate the CX gate, the control qubit is biased towards the region of
positive detuning, where a triplet ¢, remains in the (1, 1) charge state as shown in (a), while
the singlet s1; takes upon a sge-like character to partially enter the (0,2) charge state as
shown in (b). Note that in this example, the (0, 2) charge state on the control qubit moves
the electron away target qubit. A control qubit in the singlet state causes the target qubit’s
detuning to shift and subsequently its exchange J decreases from Jy to approximately zero.
Now the wait-time is set to be the z-axis m-rotation time mediated by the fixed AB,. The
choice of Jy must be such that during this time, an integer number of full rotations about the
z-axis is performed if the control qubit is in the triplet state. Thus, if tuned right the above
example yields an identity operation on the target qubit if the control qubit is a triplet and
a Pauli-z flip otherwise. The Bloch spheres represent the operation performed on the target
qubit with the red arrow representing the target qubit’s J while the blue arrow represents
its AB, vector.
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Figure 5.23: Required inter-qubit couplings to achieve native CX and CH gates.
The plots show the required inter-qubit coupling A as a function of the inter-dot tunnel
coupling t. on the target qubit. The different curves on each plot represent different values
of AB, as shown in the legends. (a) The required A for a CX gate. Given that t. needs
to be at least 1 GHz to prevent thermal excitations (discussed in Section 5.2.2), the required
inter-qubit coupling becomes prohibitively large (~1THz) for the expected AB, = 29 MHz.
(b) The required inter-qubit coupling for the CH (controlled-Hadamard) gate is however
lower with inter-qubit couplings as low as 17 GHz if one selects a tunnel coupling of 1 GHz.

can be calculated by taking the difference in detuning when J = 28-AB, (performing
a Pauli-z gate on target qubit) and J = AB, /28 (performing a Pauli-z gate on target
qubit). Figure 5.23a shows a plot of the required inter-qubit couplings as a function
of the target qubit tunnel coupling. The different curves represent different values of
AB, (arising from the different number of P-donors in the quantum dots as discussed
in Section 5.3.1). From Figure 5.11, it is noted that if the base temperature of the
fridge were 10-20 mK, to achieve 99.9% ground state probability, the tunnel coupling
must be at least 1 GHz. It is clear from Figure 5.23a that for even 500 MHz magnetic
field gradients, the required inter-qubit couplings exceed 70 GHz. Thus, the CX
gate yields no improvement to the device geometry when considering the analysis in
Section 2.2.3 as a 70 GHz coupling (being much larger than 39 GHz proposed for the
CZ gate) would require closer inter-qubit distances. Thus, it is better to simply use

CZ gates and Hadamard gates to realise a CX gate.
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However, if one were to relax the need for a CX gate into a CH gate (a controlled-
Hadamard gate shown in Figure 5.24), then the inter-qubit shift only needs to move J
from J = 28AB, (for accurate Pauli-z gates) to J = AB, to perform the Hadamard
gate. Thus, one requires smaller inter-qubit couplings Aa (to tilt the rotation axis
from the Pauli-z axis to the 45° axis as opposed to all the way onto the Pauli-
x axis). The required inter-qubit coupling Aa at 1 GHz is approximately 17 GHz
for AB, = 29MHz as plotted in Figure 5.23b. Although the smaller inter-qubit
coupling can yield larger gate distances, one needs to analyse the CH gate under the
presence of both charge noise and magnetic field noise. As the nature of magnetic
field gradient noise is yet to be measured (for example, whether it is simply Gaussian
fluctuations or large discrete jumps due to P-nuclei flips) in Si-P, the noise analysis
is outside the scope of this thesis. If native CH gates are found to be feasible in
the future, the geometry could be enhanced with larger gate distances (due to larger

inter-qubit distances).

C)

I7) 1H]

Figure 5.24: Circuit diagram of a controlled Hadamard gate. The CH gate is shown
for control and target qubits |C) and |T').

5.4.4 Summary

Consideration of the two-qubit gate mechanisms and their susceptibility to charge
noise yielded optimal parameters to use in the design of a large-scale singlet-triplet

processor using Si-P. The key results include:

e Negative inter-qubit couplings yield no feasible working points for CZ gates
as the required CZ operating points (in control and target qubit exchange:
Je and J;) fall in regions where the qubits will start performing unintentional
CPHASE gates.

e An inter-qubit coupling of Ax = 6t yielded feasible CZ operating points (in
control and target qubit exchange: J.~2t. and J; = 0.124¢.) where the detun-
ing noise can be up to A, = 0.02t.-0.03t., while triggering no unintentional

CPHASE gates with adjacent qubits. Any higher inter-qubit coupling would
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require voltage pulses that are faster than the state-of-the-art benchtop equip-

ment (less than 20 ps).

e Given J = 810 MHz (for an accurate Pauli-z gate discussed in Section 5.3.4),
for >99.5% fidelity CZ gates, the optimal tunnel coupling was found to be
te = 6.5 GHz with an inter-qubit coupling of Ax = 39 GHz. The maximum
detuning noise must be below A, = 540-810neV; approximately 8 times the

theoretical minimum expected charge noise in silicon [18, 201, 202]

e The native CX gate (that is, not using a CZ gate sandwiched between two
Hadamard gates applied on the target qubit) was found to require inter-qubit
couplings in excess of 100 GHz and thus, discarded as an option for the final

architecture.

e The native CH (controlled-Hadamard) gate was found to be technically feasible
with inter-qubit couplings that can be made as low as Ay = 17 GHz for a 1 GHz
tunnel coupling and AB, = 29 MHz. The lower inter-qubit coupling yields
the promise of spacing the qubits further apart than the CZ gate. However,
further experimental work is required to characterise the magnetic field gradient
noise and charge noise before the CH gate can be considered for a large-scale

architecture.

5.5 Optimising the 1D and 2D singlet-triplet qubit ar-
rays

The device described in Chapter 2 demonstrated a quadruple quantum dot device
that could eventually be used to host singlet-triplet qubits. The device parameters
originally chosen in the design of this 4-dot architecture were from insights provided
from previous published data and experiments. During the experimental investiga-
tions, the theoretical framework of singlet-triplet qubits in Si-P (based on models
from first principles) was further developed and, as outlined in this chapter, place
more stringent bounds on device parameters. From this modelling, updated de-
vice parameters have been extracted for maximum resistance to charge noise when
implementing the CZ gate (for an inter-qubit coupling much larger than the tunnel
coupling). This section now collates the results from both Chapters 2 and 5 to design

an optimal architecture for a 1D array of coupled singlet-triplet qubits.
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Parameter | Value Reason

Magnetic field must be large enough to suppress qubit

B 10mT . .
0 >10m state leakage via so-t— and sp-t4 couplings.

Asymmetric 1P-2P dots enable simultaneous access to
even parity inter-dot tramsitions, (1,3) <> (0,4), on
P-donors 1P-2P adjacent qubits (as required for a two-qubit gate), with
minimal voltages applied to the gates (to prevent gate-
to-gate current leakage).

Expected gradient from approximate hyperfine split-
AB, 29 MHz tings for a 1P-2P cluster (with 2 spin-paired electrons
in the 2P cluster as discussed in Section 5.3.1)

J, > 28AB, for 99.5% accurate z-rotations (see Table

J 810 MHz 5.9)

¢ 6.5 Gz Approximate minimum t. and Aa, where the CZ

‘ ' gate can be turned off while enabling high fidelity CZ
A 39 GHz gates with A, < 0.03-0.05%., is when Ax = 6t. and

J, = 0.124t. (see Figure 5.20.)

Table 5.3: Summary of physical parameters constraining the scalable qubit unit-
cell. The physical parameters include the magnetic field gradient across the double-dot pair
AB,, the exchange J, when doing z-rotations on the qubit, the inter-dot tunnel coupling ¢,
and the inter-qubit coupling Aa. The distances d,.. is the distance from the reservoir and
the nearest dot in unit-cell ¢. A, denotes the noise standard deviation on the detuning.

5.5.1 Summary of optimal device parameters

The previous sections in this chapter covered modelling of the double quantum dots,
single-qubit gates and two-qubit gates. The key collective results that now set future

fabrication and operational device conditions are shown in Table 5.3.

The first parameter is an operational parameter that indicates that for singlet-
triplet qubits, one needs to apply a global magnetic field to suppress so-t— and sg-t4
coupling parameters given by the differential magnetic field AB, perpendicular to
the Pauli-z axis (chosen to be the direction of the applied magnetic field By). This is
necessary to avoid qubit state leakage (into non-qubit states ¢— and ¢). The second
parameter is the number of P-donors in the individual dots. Electrostatic simulations
in Section 2.2.3 showed that a 1P-2P double quantum dot enables simultaneous
access of even-parity inter-dot charge transitions (specifically the (1,3) < (0,4)
charge transition) on adjacent qubits (as required for a two-qubit gate). The 1P-2P

configuration enables us to reach the even-parity inter-dot transitions with minimal
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voltages applied to the gates, thereby preventing gate-to-gate current leakage. The
third parameter is the nominal magnetic field gradient estimated from the hyperfine
splittings of a 1P-2P double quantum dot; AB, = 29 MHz (when one electron is
on the 1P dot and 3 electrons occupy the 2P dot) as discussed in Section 5.3.1.
The fourth parameter is the minimum exchange J, required for accurate Pauli-z
gates. That is, at J, = 810 MHz, the exchange J is sufficiently larger than AB, to
obtain 99.5% accurate Pauli-z rotations. The final two parameters (tunnel coupling
t. = 6.5 GHz and inter-qubit coupling Ax = 39 GHz) were obtained by considering
the CZ gate fidelities under the influence of charge noise. The values obtained were
those most resistant to charge noise; while still being able to turn off the CZ gate;
and experimentally realise the gate operation with currently available voltage pulse
generation technology (that is, the gates require voltage pulse times much larger than
the fastest pulse time of 20 ps). Given these optimal parameters, one may redesign

the geometry of the singlet-triplet qubit array.

5.5.2  Overcoming the shortcomings of the previous geometry to

create a 1D qubit array

The overall geometric design in Section 2.2.3 was adequate for realising a two-qubit
gate if the tunnel coupling and inter-qubit coupling were optimised. However, when
expanding this 1D design (that is, the double-quantum dots splayed away from one
another with a wedge angle ¢) for an inter-qubit coupling of 39 GHz, the distance
between adjacent unit-cell control gate leads (G2 and G3) becomes too small as
shown in Figure 5.25a. Although small distances between reservoirs can be slightly
tolerated (as they are usually fixed at similar voltages as shown in the stability
diagram simulation in Figure 2.9), the control gates need to have maximal flexibility
in voltage pulses of approximately £0.5V (without entering gate-to-gate current
leakage) and thus, need to be uniformly spaced far apart. For example, consider 3
qubit unit-cells tessellated using the previous design as shown in Figure 5.25a. The
gates G1 and G2 are spaced far apart while G2 and G3 are close together (vice
versa for the reservoirs). Figure 5.25b shows the required lead distances (between
adjacent reservoirs and adjacent control gates) to achieve 39 GHz for different double-
dot angles ¥ (taken from the previous numerical simulations shown in Figure 2.7).
Although for large angles (¢ > 90°), the control gates could be well-separated, they
will be too close when considering the next unit-cell. For example, at ¥ = 135°,
the control gates are separated by 50 nm, but in the next unit-cell (with an angle

of ¥ = 45°) these control gates become less than 30 nm apart. Figure 5.25b shows
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(a) 3 qubit unit-cells using the previous design for the singlet-triplet qubit array
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Figure 5.25: The shortening distances between control gates in the previous
design for the singlet-triplet qubit unit-cell. (a) The previous design is illustrated
for 3 qubit unit-cells with reservoirs (R1, R2 and R3), double quantum dots (D1L/D1U,
D2L/D2U and D3L/D3U) and control gates (G1, G2 and G3). The dot angle ¥ and inter-
qubit distance d;q are left as free parameters as the inter-qubit coupling needs to be changed
to Aax = 39 GHz. The key issue here is that although G1 and G2 are spaced far apart, the
distance between the control gates on the next unit-cell (G2 and G3) become too small. (b)
The resulting plot of the lead distances (between adjacent reservoirs and adjacent control
gates) required to generate an inter-qubit coupling of Ax = 39 GHz. The distances were
calculated from the numerical FEA simulation shown in Figure 2.7c. This is seen by the

asymmetry about 97 = 90°.
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that the gates may be separated by a minimum of 34.8nm when using the angle
of ¥ = 90° (to achieve an inter-qubit coupling of 39 GHz). Noting that the singlet-
triplet qubits are still separated further than the previous Si-P architecture proposal,

at 30 nm [28], this separation may be adequate and is worth future work.

However, a more critical issue is that the inter-qubit coupling Aa for the previous
design is always negative (that is, when the control qubit enters spe, the target qubit
shifts to a lower detuning). Here we pattern all dots further from their reservoir to
be a 2P dot and the ones closer to their reservoir to be a 1P dot. We could instead
make the inter-qubit coupling positive (as required for the proposed CZ gate) by
alternating the dot which holds both electrons in the sgy charge state from qubit
to qubit. One may achieve this by alternating the dot that is 2P across each qubit
unit-cell (that is, the individual double quantum dots would be fabricated as: 1P-
2P, 2P-1P, 1P-2P etc.). With this alternating donor size arrangement, the (0, 2)
charge state in each qubit will also alternate in direction (towards the 2P cluster
as shown in the previous stability diagram simulations Figure 2.9). However, unlike
the previous arrangement of P-donors (where the electrons were pushed in the same
direction to enter the sp2 charge state), the new P-donor arrangement will require
large differential voltages between reservoirs and control gates to push electrons in
different directions from qubit to qubit to obtain the sg2 charge states simultaneously.
That is, one can tolerate smaller distances between adjacent reservoirs and control
gates if the adjacent reservoirs and gates are set to similar voltages as when pushing
the electrons in the same direction across all qubit unit-cells. Thus, below we consider

an alternate geometry for the 1D array.

Figure 5.26a shows an alternate geometry where the double quantum dots are
arranged in an parallel Echelon formation. Due to the geometric similarities with the
wedge-formation geometry, the results from the previous electrostatic optimisation
carry over from Section 2.2.3. That is, the distances for the individual qubit unit-cell
remain the same (that is, reservoir distance d, = 17nm, gate distance d, = 45 nm and
inter-dot distance d;y = 12.5nm). The parameters that we change are the dot angle
¥ and the inter-qubit distance d;q which, as with the previous optimisation, are set by
the inter-qubit coupling which needs to be 39 GHz. Again we compare an analytic
model of the inter-qubit coupling against the numeric finite-element simulations.
Here we consider the four dots to be sites for electrons to occupy and subsequently

calculate the inter-qubit coupling for dots arranged in the Echelon formation:
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(a) Parametrised unit-cell for qubits in the Echelon formation
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Figure 5.26: Optimising the inter-qubit distance d;; and dot angle ¥ to achieve
an inter-qubit coupling of Ax = 39 GHz on a more scalable singlet-triplet qubit
unit-cell. (a) An improved qubit unit-cell structure with the dots in an Echelon formation.
The key parameters to optimise are the inter-qubit distance d;; and the dot-pair angle 9.
The other distances are from optimisations performed in Section 2.2.3. (b) Plot of the
analytic approximation of the inter-qubit coupling Aa given by using Coulomb’s law in
Equation 2.9 over different inter-qubit distances d;; and dot-pair angles ¥;. The contours,
highlighted for clarity, give the inter-qubit coupling in gigahertz. (c) Plot of the inter-qubit
coupling when running a FEA simulation with an encapsulation layer thickness of 45 nm.
Like in (b), the contours give the inter-qubit coupling in gigahertz. The dashed lines are
contours from the analytic approximation in (b). The analytic model captures the FEA
simulation at low angles where the contours overlap, while there is a slight discrepancy at
higher angles where the analytic approximation overestimates the inter-qubit coupling for a
given distance (since the numerical simulation captures the screening effect of the metallic
reservoirs).
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Figure 5.26b shows a plot of the inter-qubit coupling as predicted by the analytical

An(g)

model. The inter-qubit coupling does in fact change sign. To observe the reason for
the change in sign, consider the two extremes ¥ = 90° and ¢ = 0°. At ¥ = 90°
the geometry is the same as the simulations performed on the previous design and
thus, the sign of the inter-qubit coupling is already negative. However, at the other
extreme ¥ = 0°, if one enters the sgo charge states by either pushing both electrons
onto D1L/D2L or D1U/D2U, the sign of the inter-qubit coupling will be positive as

discussed earlier in Table 2.2.

The change in sign of the inter-qubit coupling leads to a region of null coupling
as shown by the Aax = 0 contour in Figure 5.26b. When comparing against the
numeric simulations in Figure 5.26¢c, the analytic model correctly predicts the inter-
qubit coupling for low dot angles (as seen by the overlap of the analytic contours
overlaid with the dashed lines). However, at larger angles, the screening effect of the
dots’ metallic reservoirs (in this case R1 and R2) perturbs the inter-qubit coupling
away from the analytic approximation as seen by the numeric simulations which
suggest that one needs to bring the dots closer than that predicted by the analytic
model for larger angles (¢ 2 50°). Taking a nominal 40nm separation between
adjacent double quantum dots (10nm more qubit and gate separation than that
suggested previously in the single-spin Si-P architecture [28]), one can avoid gate-
to-gate current leakage and choose the optimal angle (from Figure 5.26¢) to achieve
Aa = 39GHz of ¥ = 32°.

Figure 5.27 shows the geometry of the newly proposed 1D array of singlet-triplet
qubits. The tighter angle of ¢ = 32° gives rise to a lower differential lever-arm
(defined as apir, — apiy), when compared to ¢ = 45°, from approximately —3.2%
to —2.6% for the control gates and 8.6% to 7.5% for the reservoirs. The lower
differential lever-arms however do not necessarily give concern as there are many
control gates in close proximity to the qubits and one will likely obtain a greater
effective differential lever-arm by using a linear combination of all the control gates;
as found with gate-defined quantum dots [33, 55]. Nonetheless, one should verify
that the new geometry can still obtain the required charge states to form the singlet-
triplet qubit. That is, whether one can access the even-parity inter-dot crossings to

form singlet-triplet states across the individual double quantum dots.
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Figure 5.27: Proposed 1D array of singlet-triplet qubits using Si-P quantum
dots. The double-quantum dots hosting the electrons for the singlet-triplet qubits are
arranged vertically to maximise the differential lever-arms on the gates. The bigger dot
(indicated by the larger circle) in each double-quantum dot is a 2P donor dot (holding both
electrons when the qubit enters the sga charge state) while the other dot is a 1P donor.
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(a) Simulated device (b) Simulated Stability diagram
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Figure 5.28: Stability diagram simulations for the newly proposed geometry for
a 1D array of singlet-triplet qubits. The goal is to overlap singlet-triplet transitions
on adjacent double quantum dots (red and blue and labelled EP) to setup a two-qubit gate.
The electron numbers on dots are shown as (D1L, D1U, D2L, D2U). The simulated dots are
colour-coded with the electron charge transitions the stability diagram. (a) Two adjacent
qubit unit-cells sandwiched by two extra unit-cells used in the simulation. The reservoirs
are shown in orange, while the control gates are shown in light blue. The dots close to their
reservoirs are 1P, while the dots further from their reservoirs are 2P. The voltages on the
gates required to overlap the inter-dot crossings are labelled along with the voltages swept in
the simulated charge stability diagram (gate voltages V,, and V). (b) The resulting charge
stability diagram where the even parity inter-dot crossings are made to overlap as required
to perform two-qubit gates between singlet-triplet qubits hosted on the double quantum
dots D1L/D1U and D2L/D2U.
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To simulate the electrostatic accessibility, the newly proposed 1D array was sim-
ulated in FEA and analysed via the custom charge-stability diagram simulator de-
scribed in Appendix A. Figure 5.28a shows an array of 4 qubit unit-cells in the
proposed Echelon formation geometry. The model was numerically simulated, using
the proposed geometric parameters, as before to obtain the capacitance matrix, from
which we obtained the charge stability diagram shown in Figure 5.28b. The charge
stability diagram shows the charge regions for the four interior dots D1L, D1U, D2L
and D2U. The aim of the simulation is to show that one can obtain the required
singlet-triplet charge states for qubits within the 1D array with all the gates set to
similar voltage conditions. Here we remember that large differential voltages between
adjacent gates can cause gate-to-gate current leakage. The simulations show that
one can overlap the singlet-triplet inter-dot charge crossings required to perform two-
qubit gates as discussed in the previous simulations in Section 2.2.3. The voltages
required on the reservoirs close to the simulated qubits are similar at ~0.36-0.37 V.
Similarly the voltages on the control gates are a few 100mV. The comparable volt-
age ranges not only ensure low lead-to-lead differential voltages (between adjacent
control gates and reservoirs), but also confirms that one can find a stable pattern of
voltages along the array when forming all the adjacent singlet-triplet qubits. The
voltages on the reservoirs are mostly negative as expected to enable electrons to load
the dots (a negative voltage applied on a reservoir brings down the dots’ energy lev-
els with respect to the reservoir), while the control gates perform fine corrections to
obtain the required charge configurations. We note that the leads at the ends of the
array (for example, 2 and y as swept on the stability diagram) require larger voltages
(approximately 200 mV different for the reservoirs and —0.3 V for the control gate)
as the translational symmetry of the qubit unit-cells along the array breaks down.
Since the simulation suggests that the leads towards the end of the array may require
large voltages to sustain the singlet-triplet charge states, the ends of the 1D array
should be terminated with large gates to offset the lack of leads at the end of the
array. One could in fact, use TJCS structures as used in the experiments in Section
2.2.4 to function as both diagnostic probes and as biasing gates for qubits near the
end of the array [29].

5.5.3 A 2D singlet-triplet qubit array

The 1D array proposed in Section 5.5.2 provides a blue-print to further extend the
proposal into a 2D array as required in forming a fault-tolerant quantum processor

using a surface code. To translate the 1D array into a 2D array, one appeals to recent
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(a) Schematic of double quantum dots translated to multiple
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Figure 5.29: Analytic simulations of the inter-qubit couplings Ap between dou-
ble quantum dots across different vertically separated STM-patterned layers. (a)
Two double quantum dots D1L/D1U and D2L/D2U adopting the geometry of the proposed
1D array are spaced apart via a translation vector v; = (vs, vy, v.). The reservoirs (orange)
and gates (light blue) are shown for reference but not included in the analytic calculation.
(b) Plot of the inter-qubit coupling (as a function of the planar translation vector (vg,vy))
for vertically stacked layers separated by 20 nm of epitaxial silicon; the maximum separation
where there is are regions where Ax = 39 GHz as required for the CZ gate. (c) Plot of the
inter-qubit coupling for layers separated by 37 nm; the maximum separation in which one
can access the region —39 GHz. Although the sign (of the —39 GHz contour) is wrong, the
arrangement, of the dots proves useful in creating the final geometry due to the larger spac-
ing (37nm as opposed to 20 nm) between layers (important in reducing lead-to-lead current
leakage between leads across adjacent vertically separated layers).
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advancements in multilayer STM lithography developed in our group by Matthias
Koch [76]. Here, the key advancement was that one can now perform lithography
on the multiple vertically separated layers, as we have already shown on one layer of
the silicon crystal. Previously, when encapsulating the first layer with silicon, it was
found that the second layer was too rough to perform feasible lithography. However,
with rapid-thermal-anneals (optimised via thermal Monte-Carlo simulations and ex-
perimental growth studies) performed on encapsulating the final few monolayers of
silicon, one can flatten the second layer (ideal for lithography) without diffusing the
incorporated phosphorus atoms in the first layer. In addition, it has been shown
that one can indeed image buried P-dopants to help align the second layer with
the layer below via lock-in excitations applied to the tip during the imaging pro-
cess [205]. With advancements in feasible multilayer lithography, one can propose a
multi-layered architecture where one stacks many 1D arrays on top of one another to
create a 2D array of singlet-triplet qubits. Here, each qubit in the next layer interacts
not only with its adjacent two qubits in its layer, but also the qubits directly above

and below its layer.

The individual 1D arrays (one per layer) can retain the geometry of the optimised
1D array in Section 5.5.2. One method to stack the arrays is to simply translate the
second layer from the first layer via the vector v; = (vg, vy, v.) as shown in Figure
5.29a. Here, if one investigates the 1D array, the vector is v; = (£dq,0,0). The goal
is to find a vector in a layer above v, > 0 such that the double quantum dots are as
far apart as possible to reduce the possibility of lead-to-lead current leakage. One
can analytically investigate the inter-qubit coupling Aa between vertically separated
layers via the coordinate positions of the dots D1L/D1U and D2L/D2U (where the
reservoirs shown in orange is near D1L and D2L, while the gates shown in blue are
further away and closer to D1U and D2U) via Equation 2.12 as plotted in Figures
5.29b-c for different layer separations v,. At a layer separation of 20 nm, shown in
Figure 5.29b, there are two loci in (vg,v,) shown by the 39 GHz contours where one
can achieve the desired inter-qubit coupling. Note that the 39 GHz loci disappear
at v, = 2lnm. However, in choosing any of the positions (along the the 39 GHz
loci), one has a lead-to-lead distance of approximately 28 nm (taking 20 nm across
x and 20 nm across z) which may be too close to avoid lead-to-lead current leakage.
Thus, we investigate another z-layer separation of 37 nm shown in Figure 5.29c. Here
there is a region of —39 GHz coupling which disappears at 38 nm vertical separation.
One can overcome the negative sign of the —39 GHz inter-qubit coupling if the sgo
charge state occupies the dots further from the reservoir (D2U) in the second layer

while occupying the dots closer to the reservoir in the first layer (D1L). One may
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Figure 5.30: Numeric simulations of the inter-qubit couplings between double
quantum dots across different vertically separated STM-patterned device layers
in an alternating 1D array geometry. (a) Two double quantum dots D1L/D1U and
D2L/D2U adopting the geometry of the proposed 1D array are spaced apart via a translation
vector v; = (vg, vy, v.). The reservoirs (orange) and gates (light blue) are to alternate over
every layer. The alternating geometry is used to help achieve a positive inter-qubit coupling
without changing the, already optimised, electrostatic control amongst the individual 1D
layers. (b) Plot of the FEA calculations of the inter-qubit coupling (as a function of the
planar translation vector (vg,v,)) for layers separated by 35nm; the maximum separation
where there is are regions where An = 39GHz as required for the CZ gate. The star
highlights the final geometry (vy,vy,v,) = (5,0,35) nm.

achieve this alternating charge state between layers, by alternating the dots that are
2P over every vertically separated layer (for example, D1L and D2U can be made
2P while D1U and D2L can be made 1P). Although electrostatically one may obtain
the required interactions for qubits within the same layer, the swapped positions
of the (0,2) charge state between layers make it difficult to tune the control gates
to perform a two-qubit gate across two qubits on different layers. An alternative
solution is to swap the positions of the reservoirs and gates on alternating layers by
effectively flipping the 1D array from layer to layer.

Figure 5.30a shows a solution to achieve a positive inter-qubit coupling at larger
vertical separations by swapping the positions of the reservoirs and gates on alter-
nating layers. Note that D1L and D2L are 1P dots close to their respective reservoirs
(orange) at a distance of d, = 17nm. The dots D1U and D2U are 2P dots further

from their respective reservoirs with inter-dot separations (between D1L/D1U and
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between D2L/D2U) of d;y = 12.5nm. The dot to gate (light blue) separations are
still 45nm. To simulate the presence of the gates, the analytic approximation was
replaced by a numeric simulation where for given vector translations v;, capacitance
matrices were calculated like with the all the previous electrostatic simulations and
the inter-qubit coupling was extracted from the capacitances via Equation 2.9. Note
that there was no encapsulation layer in these simulations (that is, the device was

immersed in infinite silicon) as the different layers are buried deep in the bulk silicon.

Figure 5.30b shows the result of the numeric simulations with a vertical sepa-
ration of 35nm. Note that at vertical separations greater than 35nm, there was
no loci along the xy-plane on the second layer where the inter-qubit coupling was
39 GHz. The lower vertical separation required to retain 39 GHz (when compared
to numerical simulations suggesting 37 nm in Figure 5.29b) is due to the screening
effect of the nearby reservoir leads causing a lower inter-qubit coupling. The cho-
sen vector translation to get 39 GHz for the second layer was v; = (5,0,35) nm as
marked by the black star. Finally, one must ensure that the residual couplings to
qubits adjacent to the first layer have a weak inter-qubit coupling with the qubit on
D2U/D2L to avoid unintentional two-qubit gates. The inter-qubit coupling of the
qubit on D2U/D2L with the qubits (spaced by d;; = 40 nm) either side of that hosted
on D1U/DIL can be found by translating the v; by £40nm. The stray inter-qubit
couplings of D2L/D2U with the qubits to the right and left (positive and negative
z-axes) of DIL/D2U are —1.0 GHz and —2.6 GHz respectively. From Figure 5.16
showing the regions where where the target qubit exchange J; may reside such that
(for a given inter-qubit coupling) there is no two-qubit gate with at least 99.5% fi-
delity, the bounds on J; to prevent unintentional two-qubit gates are subsequently
Jit < 3.1GHz and J < 2.1 GHz respectively. From Table 5.3, the CZ gate and idle
qubit states are optimally at a lower exchange of 810 MHz. Thus, the stray couplings
do not present significant unintentional two-qubit gates that will affect fault-tolerant

control.

With sufficient inter-qubit couplings for the proposed geometry, it is important
to show that one may perform a CZ gate via the overlap of even-parity charge tran-
sitions across adjacent qubits on different layers. Figure 5.31a shows two double
quantum dots D1L/D2U and D2L/D2U across two layers. To simulate the trans-
lational symmetry of qubits deep within the 2D grid, the two vertically separated
qubits are surrounded by six double quantum dots and gates. The layers follow the
proposed geometry; that is, each layer (separated by 35nm) has the reservoirs (or-
ange) and gates (light blue) alternating while being shifted horizontally by 5nm. For

each quantum dot, the dot close to the reservoir is a 1P donor while the dot further
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(a) Schematic of the simulated portion of the 2D array
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Figure 5.31: Stability diagram simulations of the proposed geometry for the
2D array of singlet-triplet qubits. The goal is to overlap singlet-triplet transitions on
adjacent double quantum dots (red and blue and labelled EP) to setup a two-qubit gate.
The electron numbers on dots are shown as (D1L, D1U, D2L, D2U). The simulated dots are
colour-coded with the electron charge transitions the stability diagram. (a) Two adjacent
qubit unit-cells (across different layers) are sandwiched by six extra unit-cells used in the
simulation. The simulation used the six extra pairs of gates to emulate the translational
symmetry of two vertically separated qubits within the 2D array. The reservoirs are shown in
orange, while the gates are shown in light blue. The dots close to their reservoirs are 1P, while
the dots further from their reservoirs are 2P. The voltages on the gates required to overlap
the inter-dot crossings are labelled along with the voltages swept in the simulated charge
stability diagram (gate voltages V, and V). (b) The resulting charge stability diagram
where the even parity inter-dot crossings are made to overlap as required to perform two-
qubit gates between singlet-triplet qubits hosted on the double quantum dots D1L/D1U and
D2L/D2U.
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from the reservoir is a 2P donor dot. The device was once again simulated without
an encapsulation layer (that is, immersed in infinite silicon) to create a capacitance
matrix with the resulting simulated stability diagram on tuning the gate voltages
is shown in Figure 5.31b. The two even-parity transitions on dots D1L/D1U and
D2L/D2U (shown in blue and red) are overlapped such that one may perform a CZ
gate. The reservoirs on the middle two layers are approximately —0.3V with the
gates set to approximately 0.3 V. Similar to the simulations on the 1D array, the
reservoirs and gates on the ends require large negative voltages of up to —0.6 V. Once
again, a larger array will stabilise the voltages to lower values as one can use more
adjacent gates down the array to help tune the double quantum dots. However, one
should note that the gates on the top and bottom of the stack of many layers may
require extreme voltages when compensating for the lack of gates from further layers
above or below the stack. Therefore, it is advisable to pattern gates (or diagnostic
TJCS structures [29]) on the top and bottom layers that one may utilise the biasing
gates for optimal qubit tuning of the inner layers.

Given the 2D grid of qubits, it is important to overview the typical operation
in making the parity measurements. A unique feature of the proposed architecture
is the ability to perform four CZZZZ gates; that is, on initiating a control qubit,
the four adjacent qubits (along the left, right, top and bottom directions) will act
as simultaneous target qubits upon which to perform the CZ gate. Noting that the
surface code requires controlled phase flips on the auxiliary qubit given the state of
its surrounding data qubits. The proposed mechanism to perform the CZ gate does
not facilitate simultaneous CZ gates on the same target qubit. Thus, one requires
four cycles of CZ operations to perform one cycle of the surface code as described
by the quantum circuit diagrams in Figure 5.1b. In each cycle, a given data qubit
will perform a CZ gate on four different auxiliary target qubits. Since the proposed
architecture does not yet employ native CX gates, one needs to utilise the CZ gates

sandwiched with Hadamard gates.

5.5.4  Summary

The design work outlined in this section were simply the application of the electro-
static models (developed in the previous sections) for the proposed optimal param-
eters in implementing the CZ gate. The theoretical simulations performed for the
design of the newly proposed 1D array (a single row of the 2D grid) resulted in a few

key observations:

e The previous 1D array design in Chapter 2, in which four quantum dots were



5.5. Optimising the 1D and 2D singlet-triplet qubit arrays 235

placed in a wedge formation, was shown to be inadequate for creating a scal-
able 1D array of singlet-triplet qubits as the lead distances (between adjacent
reservoirs and adjacent control gates) become too small. In addition, the sign
of the inter-qubit coupling was always negative (unless one alternated the dot

containing the 2 P-donors for each qubit).

e The superior design choice was to place the double quantum dots in a parallel
Echelon formation. With the inter-qubit distance (and subsequently the dis-
tance between adjacent leads) set to d;; = 40mV, the double-dot angles were

set to ¥ = 32° to obtain the required 39 GHz inter-qubit coupling.

e Capacitance model simulations showed that the Echelon arrangement still en-
ables electrostatic accessibility of the even parity inter-dot transitions as re-
quired to form singlet-triplet qubits. In addition, the even parity inter-dot
transitions amongst adjacent qubits could be overlapped as required to per-

form two-qubit gates.

e The capacitance model simulation suggested that the two ends of the 1D qubit
arrays should be terminated with extra control gates to ensure that the required
charge states on the dots can be achieved with as low a voltage on the control
gates (to avoid gate-to-gate current leakage). One could implement the extra
gates via TJCS structures to not only provide a biasing gate, but also on-board
charge sensing diagnostics like with the quadruple quantum device experiment

discussed in Section 2.2.4.

e A 2D grid of qubits for a surface code was investigated. It was shown that by
stacking multiple 1D arrays in layers separated by 35 nm and offset horizontally
by 5nm, it was possible to extend this architecture into a 2D array of singlet-
triplet qubits. To ensure that the sign of the inter-qubit coupling was positive,
the 1D array was flipped (so that the side with the reservoirs and gates are
alternated) over each subsequent layer. Similar to the 1D array, the top and
bottom layers of the stack may need to be supplemented with additional gates

to enable ease in electrostatic accessibility.

e Both the 1D and 2D qubit arrays have 2 gates per qubit. Therefore, unlike
architectures that share one gate across many qubits [28], if there are nonuni-
form sections in the fabricated device (for example, a charge trap shifting the
potentials of a cluster of qubits), one has enough gates to tune the device into

satisfactory operation.
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Although the theoretical designs described above show feasibility, there are certain

long-term experimental challenges and milestones that must be met:

e Control of the nuclear spin dynamics of P-donor dots in forming a stable AB,
(over the course of a set of gate operations) must be shown experimentally.
For example, recent results have shown that simply placing an electron on a P-
donor dot decreases its nuclear spin coherence time and can affect the nuclear

spin states by either tilting or flipping the nuclear spins [39, 50].

e High fidelity CZ gates (above 99.5%) must be shown across a 1D array of
at least two singlet-triplet qubits. In addition, the high-fidelity CX gate (as
required for the surface code) must be demonstrated (likely using isotopically

purified 28Si) using a CZ gate sandwiched in between two Hadamard gates.

e When stacking multiple 1D arrays, it must first be shown that there is sufficient
gate voltage range between gates across adjacent vertical layers without gate-

to-gate current leakage.

e If stacking multiple layers proves to be experimentally feasible (for example,
sufficient gate voltage range before reaching gate-to-gate current leakage), one
needs to address the contacting of the deep P-doped leads to the surface Ohmic
gates. That is, typically the encapsulation layer in Si-P devices is ~40nm.
However, if one were to make a 100 x 100 array of singlet-triplet qubits, the
100 vertical layers result in 3500 nm of encapsulated silicon that one must

penetrate to contact the bottom layer.

Finally, if the proposed vertical layer separation results in gate-to-gate current leak-
age, one could investigate the applicability of slower AC driving techniques [33-35]
where the inter-qubit couplings can be in the perturbative regime (with respect to
the tunnel coupling). Thus, one may radically increase the separation between qubits

both across the horizontal 1D array as well as the vertical separation in the 2D array.



Chapter

Conclusion and outlook

This thesis sought to develop a singlet-triplet unit-cell for a scalable singlet-triplet
qubit architecture by leveraging the low gate densities provided by Si-P quantum
dots with single-gate RF sensors. The thesis is set around three theoretical devel-
opments along with experimental demonstrations of RF control in the Si-P qubit
system, allowing us to propose a scalable singlet-triplet architecture in the final re-
sults chapter.

The first set of results concentrated on the demonstration of a quadruple quantum
dot device for hosting two singlet-triplet qubits [29]. Here we showed the following

results:

e The development of a capacitance model tailored to Si-P quantum dots includ-
ing a charge stability diagram simulator to simulate the impact of different

P-donor dot sizes in silicon.

e The fabrication of a quadruple quantum dot Si-P device where 2P-2P and
3P-4P double quantum dots were separated by 75 nm.

e The successful cryogenic measurement to characterise the donor number and
electronic charge states of a quadruple quantum dot device using a TJCS

(tunnel-junction-charge-sensor) and single-gate RF sensor.

e The development of a triangulation technique to successfully pinpoint the exact
locations of the four patterned P-donor dots in the device. This model was
also used to identity the location and source of an unintentional charge trap;
highlighting the utility of the model.
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e Following this we successfully verified and benchmarked the electrostatic model

via measurements of the gate lever-arms and inter-qubit coupling.

e We were able to experimentally extract the inter-qubit coupling of 5 GHz in
agreement with theoretical capacitance models. Such a large inter-qubit cou-

pling is important for fast high-fidelity CZ gates using Si-P quantum dots.

However, the key shortcoming in the experiment was the inter-dot tunnel coupling
being too large to enable qubit control. Thus, the near-term pathway to be rectified

in future experiments include:

e Demonstration of a singlet-triplet qubit. The tunnel coupling was too large at
39 GHz to enable one to tilt the qubit precession axis away from the Pauli-z
axis. Further fabricated devices still had too large a tunnel coupling or too
small a tunnel coupling. Nonetheless, the singlet-triplet qubit should be possi-
ble to realise if one can fabricate a device with the inter-dot tunnel coupling as
it was partially demonstrated (Pauli-z rotation control) recently by members

of the Simmons group [198].
e Demonstration of a two-qubit gate between singlet-triplet qubits.

e Benchmarking the AC driven two-qubit gate and the proposed CZ gate to

determine the pathway to take in implementing the many-qubit architecture.

The second set of results concerned the development of a more compact charge
sensor via RF reflectometry where the conventional 3-lead (and quantum dot) SET
sensor was reduced to a single-lead quantum dot (SLQD) sensor. The key develop-

ments include [31]:

e An analytic model of the SLQD sensor, using previous works done using rate
equations, extended to the nonlinear regime. The peak RF signal strength was
predicted to saturate at higher RF input powers (beyond the linear capacitance
regime). In addition, the model gave a better understanding of the nonlinear-
ities in the SLQD current (exploited later by Mark R. Hogg in the context of
an RF mixer [155]) and the low power dissipation of the SLQD sensor.

e Fabrication and successful model verification of the SLQD sensor. The SLQD

sensor showed the response predicted by the theoretical modelling.

e Development of new characterisation techniques to measure the reservoir-to-

dot lever arm (in the SLQD) and the electron temperature. Conventionally
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with an SET, the lever-arms were measured via Coulomb oscillations, but the
SLQD lacks the source and drain contacts to perform this measurement. Thus,
the analytic responses developed in the SLQD theory (for example, the conical
shape of the RF readout signal strength with respect to the input RF voltage
amplitude), were applied to the experiment to deduce the reservoir-to-dot lever-

arm, electron temperature, input RF power loss and net output return gain.

e Successful detection of electron charge movement (at peak RF signal strength)
over 44 nm away from the SLQD sensor with predicted ranges exceeding 100 nm.
Noting that the size of Si-P qubits is less than 12.5nm, the normalised range
(ratio of sensor range to the qubit size) in which one can still perform high-
fidelity spin readout is far greater than qubits in gate-defined quantum dots (10
as opposed to 1-2). That is, the SLQD sensor leads to a significant reduction

in gate density as the sensor does not need to be too close to the qubits.

The work done in this thesis paved the way for further experimental development
of the SLQD sensor as shown by a current PhD student Mark R. Hogg. Here, the
SLQD nonlinearities were used to create an RF mixer device along with single-shot
readout of single electron spins using a SLQD sensor.

The third results chapter further developed the compact single-gate RF sensor by
removing the dedicated lead and quantum dot (in comparison to the SLQD sensor).
The sensor was once again first modelled to find the optimal modes of operation and

then demonstrated experimentally. The key results include [32]:

e Hamiltonian modelling to better understand the operation of the SLQD sensor.
The model covered the operation in both the tunnelling capacitance and adi-
abatic quantum capacitance regimes. One unique trait of the models (similar
to the SLQD modelling) is that the quantum capacitance was investigated in
the regime of large RF input powers (where the readout response was found to

eventually decay) to better understand the optimal operating regimes.

e By replacing the surface mount chip inductor (internal quality factor of ~370)
used in previous experiments with a low-loss NbTiN superconducting inductor
(internal quality factor of ~800), we were able to improve the readout signal

strength.

e Successful characterisation of the RF sensor in measuring key qubit parameters
such as the inter-dot tunnel coupling of 39 GHz and singlet to triplet-f_ lifetime

as a function of detuning (2ms at zero detuning). In addition, the single-gate
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RF sensor was shown to make faithful measurements of the electron spins

without affecting the dynamics of the spins under measurement.

e First experimental demonstration of single-shot, single-gate RF spin readout.

The average readout fidelity was 85.77% at a 3.3 kHz measurement bandwidth.

The fidelity of single-shot single-gate RF spin readout was still limited by the internal
quality factor of the resonator and thus, the next steps in improving the sensor involve
the engineering, development and integration of higher quality internal factor (above
1600) superconducting spiral inductors with the Si-P quantum dots.

Finally, the last results chapter undertakes theoretical modelling of single and
two qubit gates in singlet-triplet qubits that integrate in a scalable Si-P architecture.
Particular attention was paid to the CZ gate under the influence of charge noise due
to its importance in the surface code in performing the required XX and ZZ parity

measurements. The key highlights of this work were:

e Development of simple noise models to optimise the device parameters for high-
fidelity CZ gates. The modelling looked at the CZ gate fidelities when applying
Gaussian charge noise on the qubit detuning. The modelling was unique in that
it investigates the CZ gates in the strong inter-qubit coupling (with respect to
the inter-dot tunnel coupling) regime to realise CZ gates with worst-case error

rates smaller than 0.5%.

e Combining the noise and electrostatic models, we showed the way to create a

scalable 1D array of singlet-triplet qubits in Si-P.

e Combining recent developments in 3D multi-layer Si-P fabrication to stack 1D
arrays vertically above each other, we showed an architecture containing a large
2D array of singlet-triplet qubits that can implement a fault-tolerant surface
code. Unlike previous single-spin qubit proposals in Si-P [28], gates are not
shared amongst qubits. Since each qubit in the 2D grid can be individually

tuned, one can actively counter potential offsets due to fabrication defects.

Given the success of the results to date, several key objectives remain in order to

realise the singlet-triplet architecture proposed in this thesis:

e The measurement of charge noise spectra affecting the qubit detuning. The
actual magnitude (that is, measurement of A,) and possible noise distribution

helps evaluate and fine-tune the feasibility of the CZ gate.



241

e The measurement of the stability of the magnetic field gradient AB, when
using the P-donor dots and possible demonstration of dynamic nuclear spin
polarisation. No experiments to date have exploited the use of P-donors to form
a magnetic field gradient. It will be important to see if one can form a stable
and repeatable magnetic field gradient across the P-donor dot qubits. Recent
experiments have shown that nuclear spins can flip when loading electrons onto

the dots, thus, further investigation is required [39, 50].

e The measurement of coherence times and spin lifetimes. Evidently any long-

term proposal requires long spin coherence times and lifetimes.

e The development of higher internal quality factor (above 1600) superconduct-
ing resonators for high fidelity single-gate RF spin readout along with their
eventual miniaturisation to ensure many superconducting resonators can fit

near the device.

e The development of deterministic incorporation techniques will enable repro-
ducible dots, reliable dot sizes and precise locations of individual P-donors. In
achieving all three facets, one should be able to reliably set the tunnel couplings

on all qubits during fabrication.

e The experimental measurement of gate-to-gate current leakage profiles for leads
across multiple vertically separated device layers as proposed for the 2D array.
If the available gate voltage range is consistently too small, then one needs to

redesign the proposed architecture.

e The experimental measurement of the gate lever-arms and potential offsets
due to different P-donor clusters and distances from their reservoir. Better
modelling of the offsets and gate lever-arms will enable more optimal geometries
with smaller voltages on the gates to access the required charge states for qubit

operation.

Despite the many experimental milestones that lie ahead, the results and theoretical
work in this thesis have validated the feasibility in pursuing a many-qubit singlet-

triplet architecture using Si-P quantum dots.
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Appendix

Electrostatic simulations of Si-P devices

STM-patterned Si-P devices offer a reduced gate density when compared to gate-
defined quantum dots because of the free confinement potential from the P-donor
dots. As with all quantum dot devices, the device operation relies on achieving
particular charge states (number of electrons) on the individual dots (for example,
an even-parity inter-dot transition for a singlet-triplet qubit). To achieve a given
charge state in a Si-P device, one manipulates the potentials on the P-donor dots
by applying voltages to the local metallic P-doped leads. However, the voltages
between leads should not exceed +1V as typical lead structures (spaced apart by
~50nm) will undergo gate-to-gate device leakage [86, 92, 101]. Thus, it is of interest
to fabricate devices that can achieve the desired charge states with a minimal voltage
applied to the gates. The simulation methods highlighted in this section adopt finite
element solvers to calculate a capacitance matrix. From the capacitance matrix, one
can extract key device parameters and simulate a charge stability diagram to test
whether one can achieve the desired charge states with minimal voltages.

This section shall highlight key details of the electrostatic modelling adapted and

improved upon for Si-P dots:

e Appendix A.l gives an overview of the capacitance matrix and links it to
physical electrostatic device parameters (such as gate to dot lever-arms and

mutual capacitance) that one may utilise in designing Si-P devices.

e Appendix A.2 highlights the stability diagram simulator developed in this the-
sis. Here, one feeds a capacitance matrix (describing the dots and gates in
the Si-P device) and the gate voltages set on the individual gates to obtain
a simulated charge stability diagram. In addition, this section highlights how

269
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one may simulate the effect of different P-donor dot sizes by feeding in data

from previous tight-binding simulations [81].

e Appendix A.3 describes the improved method in finding the capacitance ma-
trices via a FEA simulation. Here, the method no longer simulates P-donors
as metallic spheres like in previous device designs [86, 92, 157 as P-donor
dots will most likely not display the electrostatic screening as seen by perfect
metallic spheres. The lever-arms to the P-donors are inferred from electrostatic

potential simulations.

A.1 Electrostatic parameters from capacitance matrix

The capacitance matrix describes the geometric network of dots and local metallic
gates in the Si-P device via a circuit network of capacitors as discussed in Section
2.2.2. One can simulate the capacitance matrix via finite element solvers such as
COMSOL or FastCap [86, 92, 157]. A better methodology in simulating the capaci-
tance matrix is described later in Appendix A.3, whereas this section highlights the
key experimental device parameters that one may extract from a simulated capaci-

tance matrix.

A.1.1 Definition of the Maxwell’s capacitance matrix

The capacitance matrix derived here is that well-established in literature [206]. It
is an algebraic construct that has strong analogues to the scalar equation Q = CV
that relates charge and the voltage across a capacitor. Now consider a network of N
nodes with nodal voltages given by the vector V with its components labelled as V;
(with 0 <4 < N). Consider a network of interlinking capacitors between all node ¢;;
where i = j is the self capacitance of node i to ground while i # j is the interlinking
capacitance between nodes ¢ and j. Now taking the charges on the nodes to be the
vector Q with its components given by @;, the charge on a given node is simply

given summing all the charges on the capacitors (noting that Q = C'V):

N N N
Qi=caVi+ Y cj(Vi-Vy) =D ej | Vit Y (—e)Vi. (A.1)
j=1j#i j=1 j=1j#i

By definition of matrix multiplication, one may write:
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Q=CVv (A.2)
N

Oy = 21 = (A.3)
—Cij i#J

That is, the diagonal components of the capacitance matrix C are the sum of all
capacitances stemming off the node (including the self-capacitance), while the off-

diagonal components are the negation of the inter-nodal capacitances.

A.1.2 Energy Difference between two charge states

The charge-stable ground state is the charge configuration on the dots (for a given
set of gate voltages) that minimises the global potential energy. However, when
considering charge transitions, it is useful to know the energy difference between
the two charge states. As discussed later in Appendix A.2, the charge transition
occurs along the set of voltages where the energy difference between two charge
configurations is zero.

A network of quantum dots and voltage sources (powering the gates, source or
drain electrodes) can be modelled as an interconnected capacitive network [89]. The
network is defined by the capacitance matrix C linking the node voltages V and node
charges Q as Q = CV as discussed in Appendix A.1.1. Now the components of V
are partitioned into the dot voltages Vp, offset voltages Vo and the applied voltages
V. The offset voltages correspond to the unintentional links from the given node

to some nearby defect (for example, a charge trap from an oxide defect). Thus, one

gets:
Qp Cpp Cpo Cpa Vb
Qo | =] Cop Coo Coc Vo |- (A.4)
Qq Cap Cco Caa Vg

Now the dot voltages may be found (by considering that Q = CV) via the following
relation:
Vp = Cp}, (Qp — CnoVo — CpeVa) (A.5)

where Qp is the charge in the dots. Let the addition or removal of charges on the

dots be given as: AQ = Qpy) — Qp(;) (Where Qp(;) and Qp(y) are the initial and
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final charge states on the dots). All analysis from now on presume that the total

I Taking the charge offset voltages Vo and

charge difference is at most 1 electron
V¢ to be constant on the transfer of charges on the dots (as the voltage sources will
sustain a constant voltage on the gates), the net work done to move charges onto

the dots is:

Qo)
AU = / Vi (Qn)dQp. (A.6)
Qb

Noting some simple matrix calculus?, this integral evaluates to:

Q) CopQw(») ~ Q- ConpWw ()
AU = 5 —(

V§Cob + VECan) CppAQ,  (AT)
noting that the second term has been transposed for notational convenience. Now
taking Vo = CB]IDCDOVO (where the parameter V| is a voltage offset vector that
adds to the energy when adding an electron to a given dot), the equation for AU

takes a simpler form:

AU =} (Qb/Crh Qo) — Q5 Coh Qo ) + VEaAQ - VEAQ.  (A8)

The first (bracketed) term is due to the intrinsic electrostatic charging energies of
loading an electron onto the dots. That is, the repulsive energy due to electrons on
other dots and the charging energy due to the dot’s self-capacitance. The second
term describes the energy shift due to electric fields from the gates, where a is the
gate-to-dot lever-arm matrix discussed in the next section. The third term describes

the offset energies on the dots.

A.1.3 Gate to dot lever-arm matrix

Given a dot d and a gate g, the lever-arm « is defined as:

1 AUy

_—— A9
—e AV};’ ( )

Qgd =

!The assumption here is that the thermal energies and electron momenta are small. Consider a
dot of capacitance C. The charging energy is E. = e?/(2C), where the electron energies must be
lower than twice the charging energy to ensure only one electron enters the dot at a time: £ < 2F..
Thus, the thermal energy must be smaller than the charging energy: %k:BT < 2E.. Similarly,
electron tunnel rates I onto the dot must obey the Heisenberg limit: 2I' < 2E..

*That is, -2 (x"Mx) = (M + M")x = 2Mx (if M is symmetric).
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where AU, is the change in the potential energy of the dot (with respect to its
Fermi level) on changing the gate voltage by AV,. Now Equation A.7, gives the
energy requirement AU for a given charge transition AQ and a gate voltages V.
The energy shifts when changing V¢ to Vg + AV (due to the influence of the gate
voltages). Subtracting the two energies now yields the energy difference due to the

change in gate voltages:

AUav = AVT(-CapCpp)) AQ. (A.10)

By selecting charge vectors AQ to be the change of one electron on dot d so that is is
simply a vector of zeroes except for the —e in the d*™® entry, one realises by Equation

A.9 that the lever-arm matrix is simply:

a=-CapCpp, (A.11)

where the number of rows in a equals the number of gates and the number of columns
in a equals the number of dots. The entry agyq in the matrix o is the lever-arm of

gate g to dot d.

A.1.4 Finding the charge transition hyperplanes

To find the charge transition boundaries, it is important to realise the significance
of AU. A negative AU implies that the final charge state is electrostatically lower
in energy and thus favourable (once again noting that AQ is restricted to at most
one unit of charge in total). Thus, the region described by AU < 0 would be that
where Qp sy is the ground state charge state. Thus, AU = 0 describes the charge
transition boundary. However, AU = 0 is only the charge transition boundary if
the electron added or removed comes from an infinite distance away, or equivalently
the zero-potential ground, and thereby describing the Fermi level (of the reservoir
holding the electrons) to be at zero potential. Now consider the possibility that the
electron in fact came from a reservoir that is one of the gates in the system. By the
electrostatic superposition principle, one can decompose the energy change for an
electron entering the dot from the reservoir to be the difference between adding the
electron (from zero-potential ground) to the dot against adding it to the reservoir
Ep. The energy required to add charge onto the reservoir is given by (noting that
the potential energy is simply the product of potential and charge):

AUes = VLKAQ. A12
G



274 Appendix A. Electrostatic simulations of Si-P devices

The number of rows and columns in K equals the number of gates and dots respec-
tively. The entry K, is 1 if the lead m is tunnel coupled to dot n (that is, charges
can jump onto or off this dot n from the given reservoir m) and 0 otherwise. For
the charge transition boundary, if adding the electron to the dot lowers the system
energy more than adding it to the reservoir, then an electron will flow from the
reservoir onto the dot to enter the lower ground-state charge state (AU < AUbeg).
Thus, by Equation A.8

: (QS( »CobQb(s) — Qg(i)CB}DQD@)) +VE (- K)AQ - ViAQ <. (A13)

The inequality gives a region bounded by a voltage hyperplane where the final charge
configuration Qpy) is of a lower energy than the charge configuration Qp;).

Note that by definition K only affects the charge transition boundary when the
charge transition involves a new addition or removal of an electron onto the dot
from its reservoir. For example, if there is an inter-dot transition between two dots
(both individually loaded or unloaded from the same reservoir), the contribution of
K cancels out. However, if there is an inter-dot transition between two dots in which
each dot has a different reservoir, then the position of the charge transition boundary
becomes non-trivial as it is not possible to distinguish the original reservoir of that
electron. In fact, there is no unique ground-state charge stability diagram as the
stability diagram becomes hysteretic. That is, the position of the charge transitions
will now depend on the history regarding the order in which one loads or moves the
electrons in the network of quantum dots and their reservoirs. In the scope of devices
simulated in this thesis, all inter-dot transitions are between dots that share the same

reservoir. Thus, the charge transition boundaries are well-defined and unique.

A.1.5 Virtual gates

For a given device, the lever-arm matrix « links the input gate voltages to the dot
energies. Ideally, the gate voltages should independently a given dot’s energy without
affecting the other dots. However, since there will always be cross-coupling between
gates and dots, one will need to use a linear combination of gate voltages to create a
set of ‘virtual gates’ where each individual virtual gate only affects one dot [14, 55].
Now consider the total energy shift for a given network of gates and dots on changing

the voltages on the gates by AVg:

AUy = AVEaAQ. (A.14)
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Now to have independent access such that the voltage in a virtual gate directly
changes the energy if an electron is in that associated dot, one can immediately

define the virtual gates to be:

AV'T = AVi%a. (A.15)

Where changing the voltage of the n'' virtual gate in AV’ only shifts the energy
of the n't dot. Now one needs to solve for AV to find the physical voltages to
apply on the gates for a given set of virtual gate voltages AV’. Now if the number
of gates is less than the number of dots, there system does not have enough degrees
of freedom to control the potentials of all the dots independently. However, if the
number of gates equals the number of dots, then one may simply invert the lever-arm

matrix to obtain:

AVT = AVTa™L, (A.16)

If the number of gates exceeds the number of dots, then a is no longer a square
matrix. In this case, one may find the optimal usage of the gates (to tune the dots’
potentials individually) in a least-squares sense by first taking the singular value

decomposition (SVD) of a:

a=XSY* (A.17)

where X is a G x G matrix, ¥ is a G X D matrix and Y is a D x D matrix (for G
gates and D dots). Now one may apply the pseudo-inverse of a to find the optimal

set of physical gate voltages to realise a set of virtual gates:

AVT = AVTat = AVTYSTX*, (A.18)

where X% indicates usual the transpose matrix of the reciprocal singular values.

A.1.6 Charge transitions causing compensating charge flow in gates

For a network of gates (connected to voltage sources) and dots, the device operates
such that voltage sources keep the gates at a fixed potential and charges move to
minimise the total potential energy of the system. Now consider the case where one
electron moves onto the dot. By definition of the electrostatic potential (that is, the
energy required to move a unit test charge from infinity to a given point) of a given

gate must change due to the presence of said electron (as the positive unit test charge
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moved from infinity will require less energy due to the electric field of the electron).
Since the voltage sources must maintain a fixed potential on all gates, compensating
charge must flow from the sources onto the gates to counter the effect of the electron
(so that the energy required to move the test charge to the given gate remains the
same). This compensating charge can be found by considering Equations A.4, A.5

and A.11; the change in the gate charge is:

AQg = CepCppQp = —aAQ, (A.19)

given that the change in the gate and offset voltages is zero on some charge transfer
AQ onto the dots. Now the implication is that gates far away from the influence of a
given dot require less compensating charge as the potential environment around that
gate is less affected. In addition, the negative sign implies that the compensating
charge must be of opposite sign to counteract the electrostatic potential of charges

entering or leaving the dots.

A.1.7 Mutual capacitance

Now given a transition line for an electron entering a given dot, it is interesting to
note the shift in this transition line, in voltage space, on adding an electron to a
neighbouring dot. To find this shift, consider the two hyperplanes describing the
charge transitions (0,0) <> (1,0) and (1,0) <> (1,1) with the numbers indicating the
number of electrons in dots m and n. Note that the net change in charge is (1,0)
with the only difference being the presence of charge in dot n in the second case. By
Equation A.13, on walking across a voltage unit-vector Ve, the distance between

the two hyperplanes across this vector is:

e(CB%))mn
V\%c(a*m — Kim)

AV = (A.20)

Thus, the distance is large if the gates used along the voltage vector V. have weak
lever-arm « values as a greater voltage swing is required to exact the required change
in energy. However, the key element of concern is the mutual capacitance between

dots m and n.

A.1.8 On-site interaction

The inter-dot charge crossing is that when an electron hops between two dots. One

particular archetype is of heavy interest is the singlet-triplet crossing where one
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investigates a charge crossing of (1,1) to (0,2). Now taking Equation A.13, the

hyperplane for a (1,1) to (0,2) inter-dot transition on dots m and n is:

VE (@)an — (@)am) = (V) + ¢ (Cob),,,, — 3¢ (Cpb), + 26 (Cob),-
(A.21)
where (a).q is the list of lever-arm alphas of all the gates to dot d, (Vg )n is the
voltage offset placed upon dot n and (CB%))mn is the mn-component of C];]l). Note
that for the sake of having a memoryless stability diagram in which the electrons
on both dots load from the same reservoir, the terms involving K disappear. Now
taking the hyperplane for the (1,1) to (2,0) transition, the distance between said

hyperplanes (that is, the two inter-dot transitions) is:

(VD) + (VE) 26 (Cib), ]

Vo72 2,0 = (A.22)
- [(@)sn = (@) sl
Now evident from the plane equations (with respect to Vg):

1, =
P22 1 (@)un — ()uml]

is the normal vector. Thus, from Equation A.11, it is clear that the total energy

spent in moving between the two hyperplanes is:

U0,2<_>2,0 =e ‘ (Vg)n + (Vg)m + 2¢2 (Cgé)mn‘ . (A.24)

A.1.9 Electrostatic detuning

The detuning A in this section shall be that defined in Section 5.2. The detuning is
defined as zero at the (1,1) to (0,2) charge anti-crossing where both charge states
are degenerate (under the constant interaction model where interaction terms are
considered to be zero). Away from inter-dot charge crossing, the detuning is the
energy separation between the (1,1) and (0,2) charge states with positive detuning
being when (0, 2) is the lower energy state. By Equation A.8, the change in energy

(or rather the energy splitting between the two charge states) is:

2 = —e(V = Via)” ((@)umn — (@)en) = e(Ves = Vi) (@)un — (@)um), (A.25)
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where the voltage vector Viq is that when the detuning is zero. That is, Vig is
any point on the inter-dot crossing hyperplane (in gate voltage space) where the
energy splitting between the the (1,1) and (0,2) charge states is zero. Note that
it matters not where Vjq is chosen. The indices m and n represent the dots upon
which n is the dot where both electrons reside when in the (0,2) state. Finally note
that the splitting is 2A if taking the simplified singlet-triplet Hamiltonian definition
introduced in Section 5.2 where the energy difference between the (1,1) and (0, 2)
charge states is 2A.

A.1.10 Summary

A summary of the physical parameters (derived in this section) that one may extract
from the capacitance matrix is given in Table A.1. The corresponding summary of
the physical parameters (such as the on-site interaction or the electrostatic detuning)

specific to double quantum dots is given in Table A.2.

Parameter Expression
N . .
) . 1 Cim =]
Capacitance matrix Cij = 2=t Cim .
—Cij L7
a=—CapCpj,

Lever-arm alpha
aj; = o of gate i to dot j

Charging energies diag (%eQCB]B)

AVT — AVTq~l G=D
1AvVTat G>D

Virtual gates to physical gates

_ e(CBllj)mn
V%;C (a*m - K*m)

Mutual capacitance voltage shift | AV

Table A.1: Summary of the capacitance model parameters derived in Appendix
A. The capacitances c;; are raw capacitances between nodes ¢ and j, while c¢;; is the
capacitance of the node to ground. In all expressions it is presumed that there are G gates
and D dots for a total of N = G + D elements. Note that Cqp is a G x D matrix block
matrix from C where each entry 7j is the negation of the capacitance between gate i and dot
j. Similarly, Cpp is the D x D capacitance block matrix of the dots. The charging energies
are given as a D-vector where diag takes the diagonal elements of a matrix. The change in
the virtual gate voltage vector AV’ (a D-dimensional vector) corresponds to the change in
the physical gate vector AV (also a D-dimensional vector). The mutual capacitance voltage
shift (when moving in the direction of the unit-vector V. in voltage space) is the shift in
the charge transition on dot m due to an electron entering another dot n.
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Parameter Expression

On-site interaction Up=c¢ ‘(VOT)n + (V{{)m + 2¢2 (C]S]l))mn‘
A=AV - VI Aa = SAVAaeg

vec
Detuning {AV *Viee = Vg — Vig

Aa = (a)*n - (a)*m

4AB? — 2

Hadamard Detuning | AViadamard = 2eAB. Adg

Table A.2: Relating the double quantum dot parameters to physical parameters
in the capacitance model as derived in Appendix A. The capacitances c;; are raw
capacitances between nodes i and j, while ¢;; is the capacitance of the node to ground. In
all expressions it is presumed that there are G gates and D dots for a total of N = G+ D
elements. Cpp is the D x D capacitance block matrix of the dots while « is the lever-
arm matrix defined in Table A.1. V¢ is a G-vector for an arbitrary configuration of gate
voltages while Viq is a G-vector representing any point on the (1,1) to (0,2) inter-dot
crossing hyperplane on dots m and n where n is the dot where both electrons reside when in
the (0,2) charge state. Ve is the unit-vector of the voltage direction in which one pulses
to alter the detuning with aeg being the effective differential lever-arm when pulsing along
this direction.

A.2 Charge stability diagram simulator

A.2.1 Finding charge stable regions

Now Equation A.13 describes the hyperplane for a given charge transition. A charge
stable region Qp(y) is simply the feasible region that results in satisfying all the
hyperplane inequalities over all neighbouring charge states Qp; (that is, the net
change in charge is at most 1 unit charge). For the sake of generating 2D stability
diagrams where one sweeps two gates, it is useful to write down the line inequalities.
Without loss of generality, let the first two entries in Vg be the sweeping gates on

3

the z and y axes in the charge stability diagram®. Let the gate voltages and the

reservoir matrix be partitioned as follows:

30ne may always permute the indices in the capacitance matrix to make other gates be the
sweeping gates
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Vg (A.26)

I
)
<

a=| a (A.27)

K-| k, |. (A.28)

Here (g, gy) are the sweeping gate voltages on the 2D stability diagram. o, is a row
vector containing the lever arm alphas of gate m to all the dots along its columns.
K,, is a row vector that contains zeroes and one if dot corresponding to the column
is coupled to gate m. Note that N enumerates all the remaining gates that are held

constant over the 2D charge stability diagram. The line inequalities are thus:

a- gz + b- Gy 2 C
a = (K:Jc - aw) AQ
b= (K, — a,) AQ
. Q1) Cob(H =W, Cop Qi) (
= p

(A.29)

Vi (Ky —an) + V) AQ

A.2.2 Simulating different P-donor dot sizes

The parameter Vg is a voltage offset designated for other charge sources in the
device (for example, unintentional ‘charge traps’). However, one may utilise the
offset to simulate the charge transition offsets due to different P-donor dot sizes by

decomposing the offset voltage vector into Vj into two parts:

Vo = Ve + Vipad, (A.30)

where V; is the offset due to unintentional charge reservoirs and Vqq is the offset
due to the number of P-donors in a given dot. In the simulations, V¢ is set to zero.
However, the potential offset V,qq can be matched to be the charging energies one
would expect for the an electron loaded onto a P-donor dot with m electrons (where

m > 0). The associated potential energy offset Upq(m) for the (m + 1) electron
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loaded onto a P-donor d can be found via Equation A.8 (taking the voltages on the
gates to be zeroed, Qp(s) to be a zero vector with —(m + 1)e in the d"™ entry and

to be Qp;) a zero vector with —me in the d'™):

Upddem) = 5 2m +1) (Cph) 4y + e(VEia)a, (A.31)

where (ngd)d is the d*" entry in the voltage offset vector Vydd. Note that the asso-
ciated voltage offset V,qq does not negate the mutual charging energies. That is, the
voltage offset effectively overwrites the charging energy value from the capacitance

matrix to equal the expected potential offset Upq(m)-

No. Donors | Upqa(cs)o) (meV) | Upaa(o) (meV)
1 -50 45
2 —150 —55
3 —285 —190
4 —425 —330

Table A.3: The estimated potential energy offsets for the first electron loaded
onto different P-donor dots. The quantity Uyqq(cm)(o) refers to the potential energy
(from tight-binding simulations) of the electron as referenced to the conduction band, while
Updd(oy refers to the approximate potential energy referenced to the Fermi-level.

Tight-binding simulations of different P-donor sized dots (averaged over many
P-donor arrangements for dots larger than 1 P-donor) give estimations of the offset
potential energy [81] with respect to the conduction band Upgq(cB)(m) s shown in
Table A.3 for m = 0. To calibrate the offset potential energies to the conduction band
offset, a standard calibration was used from the single-donor transport device that
had reproducible offsets between multiple cool-downs in the dilution fridge [15]. Here,
for a 1P dot, the first electron only entered the dot when applying 0.45V onto the
gates with an effective lever-arm of 0.1 [101]. Thus, the absolute energy offset for the
first electron maps (from the zero-potential energy point) maps to Upq = 45meV as
shown in Table A.3. Thus, from the simulations, one may recalibrate the approximate

energy offsets that one may measure for different P-donor dot sizes via:

Updd(m) = 95 + Upda(cB)(m)» (A.32)

where the units are in meV. Assuming that the conduction band offset is the same for
all P-donor dot sizes (can be individually calibrated via further experimental data

on different donor cluster sizes), one may take the remaining potential energy offsets
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(from tight-binding simulations [81]) for different electron numbers on different sizes
of P-donor dots to get the expected potential energy offsets for different electron
numbers as shown in Table A.4. That is, for a given charge transition, the entries in

ngd are varied appropriately to match Up,qq(m) glven m electrons on a given dot.

No. Donors | Upad(o) (meV) | Upqaqry (meV) | Updaz) (meV) | Upaas)y (meV)
1 45 75 - -
2 —55 20 70 90
3 —190 —55 15 65
4 —330 —165 —80 —15

Table A.4: Estimated potential energy offsets of P-donor dots as a function of
electron number. The quantities Upgq(m) Were calculated by simply adding 95meV to
the average potential energies (from tight-binding simulations) referenced to the conduction
band [81] to reference them to the Fermi-level as before in Table A.3. Note that the data
for a 1P donor is restricted to just 2 electrons.

A.2.3 Tracing the Charge Configuration Regions

With the constructions in the previous sections, one may now generate the stability
diagram given a capacitance matrix. The algorithm takes the capacitance matrix and
four inequalities bounding the gate range of g, and g, to simulate. Then one starts
with a state Qp(y) that exists within the gate voltage space (for example, the state
with zero electrons on all the dots). Since, the stability diagram assumes that all
charge transitions have their total electron numbers differ by at most one electron?,
the state will be bound by the charge transitions to the states Qp;) that differ by
one electron in total. That is, one has a set of inequalities to the neighbouring charge
states via Equation A.29. The convex polygon forming the charge stable region Qpy)
satisfies all the inequalities (both from the four voltage bounds and the neighbouring
charge transitions) and can be found via typical algorithms designed to find convex
polytopes [207, 208]. On finding the polygon to the current charge stable region, one
may iterate over all neighbouring charge regions (that clearly exist within the current
gate voltage space) to find the resulting polygons of those charge stable regions until

the gate voltage space is filled with all possible charge stable regions.

*Thus, this includes cases where the electrons may shift and enter the dots simultaneously (for
example, (0,1,0) — (1,0,1))
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A.3  Numerically generating the capacitance matrix

The self capacitances and inter-element capacitances of the gates and dots in the
device can be numerically simulated via any finite element solver. To simulate Si-
P gates, the individual structures are considered to be planar structures with a
thickness of 3.6 nm. The thickness derives from the effective Bohr radius of electrons
on phosphorus atoms in a silicon crystal [94, 95]. The gates in the simulations
are considered to be perfect electrical conductors as verified experimentally by the
metallic nature of densely doped phosphorus gates [15, 27, 81|. For large quantum
dots, one may apply a similar treatment to the gates. To improve the accuracy for
smaller dots, one may model the P-donor dots as metallic spheres with a radius chosen
to match the experimentally measured charging energy. That is, the equivalent self-

capacitance of a single P-donor dot for a nominal 45meV charging energy is:

e? e?

2U ~ 2-45-10-3 - ¢

Using the equation for the self-capacitance of a sphere, the effective radius of the

Clionor = ~ 1.8 aF. (A.33)

metallic sphere is:

C
Tdonor = _—donor ~ 1.4nm, (A.34)
47T€0€Si

where €g; = 11.7 is the relative permittivity of the silicon crystal surrounding the P-
donor. This yields results should yield accurate results when estimating the lever-arm
alphas between the surrounding gates to the P-donor dot. However, model becomes
inaccurate when multiple P-donor dots are lined up in a row. This is because the dots,
simulated as metallic spheres, start screening adjacent dots from other gates’ electric
fields for the electric field inside a metallic sphere must be zero. This distortion of
the electrostatic scalar potential around the dots is illustrated in Figure A.la where
the potential on the dots is fixed at a nominal 0V, while the potential on the gate
is set to 1 V. Figure A.1b shows the resulting electrostatic scalar potential when
ignoring the presence of the dots.

Now the P-donor dots are not metallic structures that will distort the electric
fields in such a manner. In fact, the dots are structurally the same size as neigh-
bouring silicon atoms when no electrons are trapped within them. Thus, it is more
appropriate to consider the scalar potential field strengths at the positions of the
dots in the absence of the dots to infer the associated gate to dot couplings. This
point-like approximation holds when considering small donor clusters. In fact, the

following analysis shows that one only needs to find the lever-arm matrix o and the
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(a) Dots treated as conductors (b) Dots ignored in simulation
20 20
g g
= =
= 20 > 20
—40 —40
-20 -10 0 10 20 -20 -10 0 10 20

Figure A.1: Screening effects seen when modelling dots as perfect electrical
conductors. The white lines show the meshing of the gate below and the two dots above.
The two plots show a top view of the electrostatic scalar potential maps when applying 1V
to a 3.6 nm thick metallic gate (on the bottom) in the presence of the two dots. (a) shows
the potential map when treating the dots as metallic spheres, while (b) ignores the presence
of the dots. Clearly treating the dots as metallic spheres causes the potential field bend
around the bottom dot such that the potential at the top dot is much lower than that when
ignoring the presence of the bottom dot. Treating the dots as metallic spheres in this case
leads to underestimations of the lever-arm alpha of the top dot with respect to the gate
below.



A.3. Numerically generating the capacitance matrix 285

inverse inter-dot matrix 05113 as explained in Section A.2.1. The gate-to-gate cou-
plings are irrelevant to the electrostatics of electrons on the quantum dots. Thus,
one need not simulate the gate structures beyond the close proximity of the quantum
dots. That is, structures far away from the dots will not contribute to the gate to
dot capacitances or affect the inter-dot capacitances.

In the following simulations, the gates and large quantum dots (such as an SET
which will likely retain its metallic and subsequent electric-field screening properties)
are simulated with the same parameters as the previous capacitance simulations.
Thus, for this section, Cpp refers to the inter-dot matrix between the small P-donor
clusters only. To infer the large quantum dot to P-donor cluster capacitances in the
Cbp matrix, one needs to consider the entries of the inferred Cgp matrix where
the ‘gate’ in this case is the large quantum dot (that is, one iterates over the large
quantum dots as though they were gates). However, the dots are completely omitted

and replaced with point charges when appropriate.

A.3.1 Numerically simulating a for P-donor clusters

To infer the gate-to-dot couplings, one first generates potential maps for every gate
g. In each map associated with gate g, one applies 1V to gate g and 0V to all
remaining gates. Now consider a potential map when 1V is applied to gate g; the
potential energy to bring one electron from an infinite distance away (zero potential
reference) to a site where a P-donor cluster dot d resides, is simply egq(r = ry)
(where ¢4(r = rg) is the potential at site g). Taking Equation A.11 (with AQ
having le for dot index d and 0 for all other entries and AV having 1 for gate index

g and 0 elsewhere), it becomes evident that:

Qgq = gf)g(r = I'd). (A35)
Although it is not required in generating stability diagrams, one may generate Cgp

by simply considering the definition of e in Equation A.11.

A.3.2 Numerically simulating CB]B for P-donor clusters

Now from Equation A.8, when the gate voltages and offsets are zeroed:

AUy = % QB Cpb Qo) — Qb Coh Qo)) - (A.36)

Now taking the initial charge state to be empty on all the dots (that is, Qpu) = 0)
and the final charge state to individually populate each dot d, the resulting energy
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change is:

AUy = 2e* (Cpp) gu - (A.37)

This is in fact the charging energy of the dot® and set to be AUy = 45meV (the
offsets for other dot sizes are taken care of by the offsets on V).

Now to find the off-diagonal components, consider the same process as before
(that is, an electron enters dot d) but with another dot ¢ # d occupied during the
entire transaction. The resulting energy change (with all voltages gate zeroed as

before) is:

AUcq = %62 (Cﬁllj)dd +e’ (C]S]ID)CW (A.38)

where one makes use of the symmetry of the capacitance matrix. Now the energy
shift considered here is that when moving an electron to dot d in the presence of
an electron on dot c. That is, one calculates the potential map due to an electron
situated at dot ¢ and evaluates it at the point on dot d: ¢4.. Now the energy payment
is simply e¢q.. Note that the charging energy term also contributes an additional
45meV. Thus:

e* (Cpb) oy = €Pde- (A.39)

Thus, one can evaluate all the terms in the matrix 0511:)5 the inverse yielding Cpp

as required.

A.3.3 Summary of the FEA method

To incorporate the methods shown in the previous section, one translates the de-
vice to be modelled into a FEA software package such as COMSOL. The gates are
modelled as perfect electrical conductors. That is, the electric field inside the gates
is zero and it matters not what material type is set on the surface and within the
gate structures. The gates reside in material silicon with the key parameter being
the relative permittivity of 11.7. The device plane is separated from the surface via
an encapsulation layer of silicon and then vacuum (relative permittivity of 1). This
simulates the effect of the finite encapsulation layer thickness on the devices. Finally,

the zero potential boundary condition is set at all elements an infinite distance away

5This has been posited to be a function of intrinsic nature of phosphorus in bulk as well as the
nearby gate geometry [98]. Such effects may only be captured in a full tight-binding simulation and
therefore, the simulations here utilise the nominal value taken from experimental results [15].
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(a) FEA Model (b) FEA Model in COMSOL

Infinite-element-domain

Vacuum
Si

[
Gates

Outer edge of solver (0V)

Figure A.2: The electrostatic FEA model used to generate the capacitance
matrix. (a) Schematic of the cuboid to be modelled. The cuboid is subdivided into a
silicon and vacuum portion to simulate the finite encapsulation layer on the device. Gates
are modelled as perfect electrical conductors. The outer boundary is set to zero potential
and exists at an infinite distance away from the inner cuboid of the model via an infinite-
element-domain boundary condition. (b) An example FEA model done in COMSOL with
the vacuum portion of the device highlighted for convenience.

from the device as shown in Figure A.2a. If this were not set, the elements will have
zero self-capacitance and thus, provide incorrect entries to a Maxwellian capacitance
matrix [206]. The infinite distance is simulated via a special infinite-element-domain
boundary condition [209]. Figure A.2b shows the associated model in COMSOL.
With the model set up with the appropriate boundary conditions in Figure A.2,
the algorithm to integrate the methods of the previous sections is as follows:
1. procedure CAPMAT({g1,...,96},{r1,...rp})> G gates and D dot coordinates

22 C <« 04+p)x(G+D)

3: ZEROALLGATES > Set all gates to 0V
4: Cpp-inv < Opxp

5: for m <+ 1to D do > Compute CB]B
6: CLEARPOINTCHARGES > Clear all point charges in model
7: POINTCHARGE(e, ) > Place le of charge at dot 7,
8: for n < 1to D, n # m do

9: SOLVEFEA > Mesh and solve model
10: Cpop-inv(m,n) < ¢(ry)/e > Take electrostatic potential at rp,
11: CDD_INv(m, m) +— 2 X 45/6

12: CLEARPOINTCHARGES

13: a +— O0g«p
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14: for m < 1 to G do > Compute a-matrix
15: ZEROALLGATES

16: GATEVOLTAGE(m,1 V) > Set gate m to 1V
17: SoLvEFEA

18: for n<+ 1to D do

19: a(m,n) < ¢(ry)

20: C(1..G,1..D) + —a x Cpp.nv

21: C((G+1)..(G+ D),1..G) + (—a x Cpp.anv)?

22: C((G+1)..(G+D),(G+1)..(G+ D)) + (Cppanv) "

23: return C

The algorithm is divided into three sections. The first section (lines 5-11) calculates
Cpp, using the methods outlined in Section A.3.2. The second section (lines 14-19)
calculates the alpha matrix a using the methods outlined in Section A.3.1. The
final section (lines 20-22) computes the required elements to fill in the capacitance
matrix. Note that the inter-element matrix between the gate elements Cgq is left
zeroed for this does not affect the electrostatics of electrons loading or unloading

onto the quantum dots.



Appendix

RE probing of nonlinear capacitance

between reservoir and dot

The SLQD sensor involves the RF probing of electron oscillations between a reservoir
and a quantum dot as discussed in Chapter 3. This appendix details the solutions
surrounding the resulting RF response of the electrons (across the reservoir and

quantum dot) by solving the corresponding rate equation discussed in Section 3.3.

B.1 Tunnel rates from Fermi’s golden rule

Now consider an electron entering the dot from the reservoir. The tunnel rate,
equivalently the transition probability per unit time, as given by the Fermi’s golden

rule is:

2
I'por = %T%Ré (Ep — ER), (B.1)

where EpR is the energy of electrons in the reservoir and Tpp is the transmission
probability of an electron tunnelling between the reservoir to the dot. Ep is the
lowest unfilled energy level in the quantum dot; that is, all energy levels below Ep
are assumed to be filled (that is, the dot is in its ground state). Thus, Ep is the
energy of the electron once it tunnels onto the dot. Note that the net tunnel rate
is given as a Dirac §-function for tunnelling only occurs between two states of the
same energy.

The energy states in the reservoir and the dot may follow a weighted probabil-

ity distribution. Thus, to get the net tunnel-rate, one must sum over all possible

289
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reservoir and dot energy states. Thus, letting gp and gr be the state energy density
distributions of the electrons in the dot and reservoir respectively, the net tunnel

rate is:

+00 +00
=10 [ [ ap(Eign(E)6 (Eq - E.)dE, dEs (B.2)

—00 —00
where one assumes that the transmission probability is constant over all state tran-
sitions; thus, all the constants are compactly defined as I'g = Q%T [2) r- The energy
states on the reservoir are given by the Fermi-Dirac distribution (with gp(4) being

that when electrons move onto and off the dot respectively):

9r)(BE) = —— 5~
+) o 52F)

: (B.3)

Ir(—)(E) =1~

1 1

1+exp(Ek;?F) B 1+exp(—%)

where kg is the Boltzmann constant, T' is the temperature of the electrons in the
reservoir and Ep is the reservoir Fermi-Energy level (tunable by the voltage applied
to the reservoir). Now gr(+) describes the filled energy states (mostly filled below
the Fermi-level Er and mostly empty above the Fermi level) on the reservoir from
which an electron may tunnel onto the dot. The distribution is inverted for gp_) to
describe the empty energy states to which the electron may occupy when moving off
the dot. Now by Equation B.2 the tunnel rates for an electrons moving on or off the

dot (defined as I'y and T'_ respectively) are:

+o0 B

I, =T, 9p(Ea) dE,. (B.4)
Ey—E

1+ exp (:I: i;TF)

o0
Note that one assumes that the variation between the Fermi-level and a given dot
energy state is small enough such that only one energy state, in the dot, crosses
the Fermi-level. All dot states below this state remain filled. As there is only one
available energy level on the dot, the distribution of states (assuming no lifetime
broadening) is gp(Fq) = 6(Eq — Ep) where Ep is the energy of the energy electron

when it tunnels onto the dot. Thus, the net tunnel rates are given by:

Ly
1+ exp (i%)

Ty = (B.5)
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B.2 Solving the rate equation

Electrons oscillating between a dot-to-lead transition can be modelled via a simple
ordinary differential equation as described in Section 3.3.1. As the ODE is periodic,

the natural solution is a Fourier series as shown in this section.

B.2.1 Main solution

Applying a sinusoidal gate voltage on a gate can induce shuttling of an electron
between a reservoir and a quantum dot. Now the ODE governing the electron occu-

pation is given by Equation 3.19 (constructed in Section 3.3.1):

dP, r
2 T ToPe = T
1+ exp ( 2 (Vo + Ve cos(wt))

) =T4(t) (B.6)

As the right hand side is clearly periodic, the natural basis to write the steady-state

solution is the Fourier basis:

P.(t) = Z = Z Ay () cos (nwt + ¢y ) (B.7)
n=1 n=1
= ZFn = Z (: / r, cos(an)dT) - cos (nwt) (B.8)
n=1 n=1 w

Note that 'y (¢) is an even function and thus, expressible as a Fourier cosine series.
Now noting the linearity of the ODE and orthogonality of cosines, one may write
an equation concerning the n'* harmonic by simply matching the coefficients of the

cosines:

Anp) (Fo cos (nwt + qﬁn(p)) — nw sin (nwt + gbn(p))) = F,, cos (nwt) (B.9)

Now by the compound trigonometric identity:

A/ T5 + (nw)? cos (nwt + ¢ (p) + arctan (%)) = F), cos (nwt) (B.10)

The integral F), on the right hand side is solved in Section B.2.2. Now one may
match the amplitude and phase terms on both sides (noting that the phase offset on
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the RHS is zero) to yield the probability of the electron being on the dot

P, p) Cos(nwt + ¢ ),m € N
1 —earqgloVae e, elrg
kT (% Vac, 25,7 Vo, ) : (B.11)

n(p \/F(Z)—i— nw) '

Gn(p) = — arctan Fo

B.2.2 Special function F'(x,y,n)
A particular function required in solving the ODE given in Equation 3.19 shall be

constructed in this section. Now the integral of concern is

ks
oY /w Ty cos(nwt) i@t (B.12)
n — .
» 1+ exp <ea“7 (Vo + Vae cos(wt)))
Using integration by parts':
P Ty sin(nwt) N
A
nT ] 4 exp <3arq (Vo + Vae cos(aﬂt))) -
Tw

2 (Vo + Vac Cos(wt))) %’"jgﬂv‘“ sin(wt) "

T, = —sin(nwt) exp (ZOCBT
=" 5
= (1 + exp ( 2 (Vo + Ve cos(w t))))
_ o ewargloVae 1 /Z: sin(nwt) sin(wt) it
AnkpT T J-T cosh? (;k & (Vo + Vace cos(wt)))
(B.13)
Applying the transformation: wt — ¢ yields:
5 —corgToVae 1 / " sin(nt) sin(¢) dt (B.14)
AnkpT 7 ) _x cosh? (5;?,;% (Vo + Vae COS(t)))
(B.15)

_eargr()vac ear e

where the function F(z,y,n) is defined as:

2 (Vo + Vac cos (wt)))) and dv = cos(nwt)

1Taklng u = (1 + exp (
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1 (™ sin(t)sin(nt)
Fla,y,n) = ; /_,r cosh? (y + xcos(t))dt' (B-16)

The behaviour of this function is shown below in Figure B.1.

(a) n=1 (b) n =2 (c)n=3
10 10 10
8| | 8| | 8| |
6| | 6| | 6| |
4t | 4t | 4t |
21 | 21 | 21 |
0L— ob— ob—

10 -5 0 5 10 10 -5 0 5 10

(d) n= (e) n=5 (f) n="6
10 10 10

8 : 8 18 :
6 : 6 16 :
4t | 4t 1 4 |
2 : 2 12 :
0% =5 0 - 0% =5 0 - 070 =5 ¢

10 -5 0 &5 10

Figure B.1: Plot of F(x,y,n) over n = 1 to n = 6. Note that both the quantum
capacitance and Sisyphus resistance terms are proportional to ~ F'(Vg., Vo, n).

B.2.3 Properties of F(z,y,n)

The special function F(x,y,n) is plotted in Figure B.1. The first harmonic shows
a monotonic decrease with increasing x, while the higher harmonics show peaking
responses. The function also changes sign along the y = 0 for every odd harmonic

while being zero for the even harmonics. Finally, the function accumulates a number
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of lobes (that alternate in sign) equal to the harmonic number with the overall height
of the lobes decreasing monotonically with harmonic number.

Now taking x — 0, the special function F' in Equation B.16 for n = 1 becomes:

1 (™ sin®(t ™ 1—cos(2t
lim F(z,y,1) = / %dt = / LSQ()dt = sech?(y). (B.17)
z—0 7 J_x cosh® (y) —x 2w cosh” (y)

Similarly, one may take the limit z — oc:

+z +x YNy, (=Y
:U-F(:U,y,n):i/y Sm(nt)du:2/y - ( e ) . 1< >du, (B.18)
y y

2 2
. cosh”(u) T Jy—n cosh”(u)

where the substitution u = y + x cos(t) was made and one realises that F' is even.
In addition, one realises that sin(nt) = sin(t) - Up—1(cos(t)) with U,(t) being the
Chebyshev polynomial of the second kind. Now separately letting « vary finitely,
while letting = tend to infinity (with y being allowed to vary in a similar order of

magnitude) yields:

lim x-F(x,y,n / . o 1 Ty 4' Lo (%)QUnil (_Ty) (B.19)

2
7500 cosh (u) T

Thus, the asymptotic profile of zF(z,y,n) over y is a Chebyshev polynomial with
a circularly envelope. Now to find the asymptotic zeroes (that is, points of null

response), one may expand U, _:

lim z - F(z,y,n

T—00 n

) = Wi—G) 2" ! H ( (k”>) (B.20)

Now in the integral, the first fraction is always positive. Thus, if any zeroes exist, it

must be due to the product on the right:

k
Y = —x COoS (S) , k<nkeN (B.21)

Note that the minus sign can be dropped on noting the symmetry of the cosine and
F(z,y,n) about x and y. An intriguing idea now is that the saturating extrema of

z - F(z,y,n) as & — oo are centred on y, = —x cos((ko + 3)m/n) for 0 < k < n.
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Taking this value for y and substituting it into Equation B.19 yields:

l T l ™
4 sin <(k0—;2) > Un-1 <Cos <(k0—;2) >>
lim - F(z,yk,,n) = (B.22)

T—00 s
Applying the properties of U,, this limit simplifies to:
dsin (ko + $)m) 4

lim = - F(z,yg,,n) = =—(-Dk, k<nkeW. (B.23)
T

T—r00 T

B.3 Summary

Table B.1 shows a summary of the physical parameters surrounding the SLQD sensor

on combining the discussions in this appendix and in Section 3.3.
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Parameter Expression
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Table B.1: Comparison of the experimentally deduced « values with an FEA simulation

The experimental measurements were only possible on the right-hand dot pair D2L and
D2U. The differential alpha Aaq for a given gate G is defined as Vi = Mioss Qe Vin
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RE probing of nonlinear capacitance

between two quantum dots

Section 4.1.1 introduced a Hamiltonian construction describing a double quantum

dot system being measured with a single-gate RF sensor:

A _tc
Hiyy = ( . —A ) = Ao, — t.0g, (Cl)
A= EATQ (Vo + Ve cos(wt)) = Vg + V. cos (wt) . (C.2)

where t. is the inter-dot tunnel coupling, A is the detuning and A« is the differential
lever-arm. The applied voltage (at the gate of the device) is a sum of the detuning
offset voltage Vj (voltage offset from the inter-dot crossing where A = 0) and the
applied RF sensor drive amplitude V.. The aim is to find the probability of occu-
pation with respect to time p(¢). From which one obtains the current to ultimately
deduce the quantum capacitance.

Given the foundation laid out by the Hamiltonian, the following sections outline

the pathway taken to find the quantum capacitance:

e Appendix C.1 gives a general overview for the solution by the rotating wave
approximation. The general solution is applicable to other driven systems (for
example, ESR on single-spin qubits [16, 50| or AC driving of singlet-triplet
qubits [34]).

e Appendix C.2 outlines a solution to the Hamiltonian using the rotating wave

approximation (RWA). Given the periodic Hamiltonian, this seemed to be a

297
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natural approach. This section highlights a general solution utilised by the

following two sections.

e Appendix C.3 applies the RWA solution to the resonant tunnelling capacitance
regime where the driving frequency matches the energy splitting between the
ground and excited states. The solution yielded conditions required for maxi-

mum readout signal strength when using the tunnelling capacitance mode.

e Appendix C.4 briefly discusses the limitation of RWA when applied to the

adiabatic quantum capacitance mode.

e Appendix C.5 thus provides a semi-classical approach to solving the Hamilto-

nian for the adiabatic quantum capacitance mode of operation.

C.1 Rotating wave approximation

In this section, one shall consider a common time-dependent Hamiltonian on a two-
level system and the subsequent rotating wave approximation [210-213]. The Hamil-
tonian is a sum of a bare Hamiltonian (free precession due to a z-directional magnetic

field) and that of a driving Hamiltonian:

E
H = ?ZO-Z + Hayive, (03)

where the driving Hamiltonian Hygyive is defined as the sum of two orthogonal time-
dependent fields (that are also orthogonal to the z-axis; thus, chosen to be along the

x and y axes):

E(LC E[lC O :F’Lwt
Hrive(+) = 5 (cos(wt)oy £ sin(wt)oy) = —— < ¢ ) (C.4)

2 e:l:iwt 0

The two orthogonal driving fields create two circularly polarised driving fields termed
co-rotating for Hgyjye(4) and counter-rotating for Hgpjye(—y. The co-rotating term
follows the rotation prescribed by the bare Pauli-z rotation term. In resonant driving
(where the frequency of the drive equals the Pauli-z energy splitting) if one were in
the rotating frame that followed the co-rotating term, the Pauli-z term will effectively
disappear to enable a simple solution that yields x-rotations.

Now consider the co-rotating drive. To solve the behaviour of the co-rotating
component, it is convenient to work in the frame that rotates with the circularly

polarised axis:
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wt
Ty = R,(—wt) =¢€"27=. (C.5)

The applied transformation makes the co-rotating circularly polarised vector ap-
pear to be of a constant magnitude without any oscillations; the removal of the
time-dependence enables a simple solution. Now applying the transformation to the

Schrodinger’s equation yields:

0 (TLTJ) = T Hypjye() TL T4 0. (C.6)

Simplifying the equation while taking taking ¥/ = T, W to be the transformed state
vector, one may write the effective Hamiltonian in the co-rotating frame to be:
E, — hw E,

H o) = — 50 + 220, (ky
The co-rotating Hamiltonian describes a simple two level system where the precession
in the rotating frame is purely about the z-axis when E, = hw. That is, one
resonantly drives the two-level system at a frequency matching the splitting given
by E,. If the driving frequency w fails to match E,/h, then the rotation axis tilts as
per the detuning E, — hw compared with F,..

Now consider the driving field being counter-rotating circularly polarised field.

It is convenient to work in the frame that rotates with the circularly polarised axis:

. wt
T_ =R,(wt) =e "2 (C.8)
Similar to before, applying the rotating transformation removes the oscillatory time
dependence of the counter-rotating term. Applying the transformation to the Schrédinger’s
equation like before, taking ¥/ = T_W to be the transformed state vector and simpli-
fying the resulting equation yields the effective Hamiltonian in the counter-rotating
frame to be:
E, + hw E
H o) =~ + =0 (C.9)
The counter-rotating Hamiltonian describes a simple two level system where the
precession in the rotating frame now lies on an axis prescribed by F,. and E, + hw.
One could induce pure z-rotations by using —w, but this is trivially the definition of

the co-rotating waveform described in the previously.

During resonant driving (hw = E.), the co-rotating solution yields neat rotations,

while the counter-rotating solution yields rotates about an axis given by F,. and
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E, + hw. It is as if one drives the co-rotating solution resonantly (fuw = E.), while
driving the counter-rotating solution a detuning away from the splitting at twice the
z-splitting. That is, the axis of rotation for the counter-rotating solution is given by
F,. and 2hw. Now assume that one drives the two-level system resonantly with hw =
E,. One way to get good rotations about the x-axis would be if the counter-rotating
solution were to produce clean rotations about the z-axis with E,. >> FE, + hw; that
is, the ‘strong driving regime’. An alternative method is to suppress all rotations,
then one can work in the regime where F,. << E, + hw; that is, the ‘weak driving
regime’. The weak driving regime is the basis of the ‘rotating wave approximation’

where one neglects this high frequency z-axis contribution.

(a) Decomposing the drive (b) Net AC signal

AN AN

Figure C.1: Bloch sphere representation of the general rotating wave Hamil-
tonian. Here, the driving term r,. (the cos(wt) is omitted for clarity) is non-orthogonal
to the stationary term r¢/2. (a) Under a perturbative approximation, the component of
the driving term parallel with the stationary term can be ignored to leave r,.sin(p)r, be
the only time-dependent term taken into consideration. (b) The net dynamics is that of
precession about the axis n,., noting that n,. is parallel to r; if driven at resonance, and
then precession at frequency w about the stationary axis rg.

A more general problem is when the driving term is not orthogonal to the main
stationary component. Figure C.la describes one such Hamiltonian where the sta-
tionary term sets the axis of rotation at oo at a precession frequency of rg/2. The
driving term rq.04./2 is applied at an angle ¢ from the stationary term. The full

non-orthogonal Hamiltonian is:
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Hyo = %00'0 + Tae cOS(Wt) O e = %00'0 + Tac sin(p) cos(wt) o ge. (C.10)

Note that o9 and o4, are the Pauli vector matrices corresponding to the rotation
vectors rg and 74 respectively. The approximation made here is that the driving
amplitude rq. is pertubative and thus, does not significantly affect the magnitude
stationary term. Therefore, one may simply consider the portion of the driving
term orthogonal to the stationary term. Taking the frame co-rotating about o and
applying the rotating wave approximation, the dynamics are given approximately by

rotations about the axis (the magnitude relating to the frequency of precession):

o — hwr Tac Sin(p)
2 0 2

In the lab frame, the dynamics translate to nutation akin to a precessing gyroscope.

. (C.ll)

Nge =

That is, the initial state vector g, highlighted in Figure C.1b, precesses about ng.
(the nutation) while the axis itself precesses about ry (the overall precession) at

frequency w.

C.2 Solving the Hamiltonian using RWA

The periodic driving of the Hamiltonian given by the detuning drive in Equation
C.1 lends itself to the application of the rotating wave approximation. However,
the driving term is not necessarily orthogonal to the stationary term as illustrated in
Bloch sphere diagrams in Figure C.2. The driving term (shown in blue) of amplitude
V. occurs along the Pauli-z axis. The stationary term (shown in red) is given by the
tunnel coupling along the Pauli-z axis and the detuning offset V{j along the Pauli-z
axis. Thus, the stationary term is not orthogonal to the driving term and forms an
angle ¢ with the driving term as shown in Figure C.2a.

Now one invokes a perturbative approximation where only the orthogonal compo-
nent of the driving term r is considered for the precession dynamics. As discussed
in Appendix C.1, the remaining component (the portion of the driving term parallel
with rg) will not affect the dynamics if the stationary term r is really large. Experi-
mentally, this implies that the voltage amplitude of the RF drive V., is perturbative
with respect to the energy splitting (if Vj = 0, it implies that V], < . as seen
in previous experiments [133]). Now the orthogonal component of the driving term

(shown in green) is:
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(a) Decomposing the driving term (b) Rotating frame dynamics of the state vector
:\_ wo :\_
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Figure C.2: Bloch sphere representation of a driving Hamiltonian modelling
single-gate RF readout. The driving term V., (the cos(wt) is omitted for clarity) is
non-orthogonal to the stationary term ro. (a) Under a perturbative approximation, the
component of the driving term parallel with the stationary term can be ignored to leave
V! sin(p)#, be the only time-dependent term taken into consideration. (b) The axis of
rotation in the rotating frame (rotated about the stationary axis rg) is given by the driving
amplitude and the amount the driving frequency is off resonant from the tunnel coupling as
given in Equation C.13 (n,. is parallel to r  if driven at resonance). The net result is that
the initial state precesses about the axis n,. in the rotating frame. When returning to the
lab frame (by rotating about the axis rg), said precession becomes a nutation to the overall
precession at frequency w about the stationary axis rg.

(‘/8707t0) — VzctC
VETVE T BV

Now one enters the frame that rotates about the stationary term ry (the rotating

(V3,0 tc) . (C.12)

r, = V.. sin(p) -

frame) as shown in Figure C.2b. From Equation C.11, the time-dependent dynamics
are such that the initial state vector 1y precesses about the rotation axis (in the

frame rotating about the rg-axis):

2\/t2 + V17 — hw V! te
_ 2Vt W o+ ——e g (C.13)
2 20/t2 + V§?

Note that the result is the same as in any driving system; that is, the rotations are

nac

purely about the rg-axis if one drives resonantly and matches the energy splitting of
the stationary term fuw = 2,/t2 + VO’Q. Nonetheless, in the rotating frame, 1g rotates

about ng. at an angle £. Back in the lab-frame, the resulting dynamics is precession
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of the initial state vector 1)y about n,. (the nutation) and precession about the vector
ro. Decomposing g into a parallel and orthogonal component with respect to ng,
the parts orthogonal to ng. will produce oscillations at w + |ng.|, while the parallel
component will oscillate at w (the frequency of concern when deducing the eventual
quantum capacitance).The component of the state vector parallel with the rotation
axis (in the rotating frame) is 1j = cos(§). The parallel component then precesses

about rg in the lab frame; the circular trajectory can be described as:

V) (t) = cos(§) sin(k) <cos(wt)”‘ + sin(wt)(0, 1, O)> (C.14)

T
Given the relevant trajectory at w, one simply needs to find the z-probability of
occupying the charge state s;;. Now consider the associated 2 x 2 density matrix in
the rotating frame for a Bloch vector P: P = %(IQ + o o P), with the elements P;;

(for row ¢ and column j). Measuring along |0), the probability of occupation is:

p(t) = tr (P- ((1) 8)) =P = 3 + %, (C.15)

where P, is the z-component of P. Thus, only the z-component matters; isolating

—_

the z component of the Bloch vector evolution:

1 cos(§)sin(k) te
Pu(t) = 3 + 5 . \/m - cos(wt), (C.16)

where one may note that:

Va/ctc

sin(k) = 2VIEEVS . (C.17)

N 2 — 2
_Vaete ) [ AVEAHVET e
2/12+Vg? 2

Now similar to the SLQD analysis, one may calculate the net charge flow into the

gate, to which the resonator is attached: —eAa« - p.(t). Thus, the current, the

derivative of the charge flow, on the lead is:

I,(t) = ewAa - cos(&) sin(x) Le - sin(wt). (C.18)

2 vV T8

The resulting ac capacitance! shall be defined, like in the SLQD analysis, crudely as
1 I .

w Vg

'If the term turns out to be negative, then one may find the equivalent inductance by taking
L= L

—_—
w=Cyq
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eAa cos({)sin(k) . (C.19)

Vae 2 VVZE+E2

With the ac capacitance known, one may deduce the RF readout signal strength. The

Cq=

following sections shall investigate two different operating conditions: the resonant

tunnelling capacitance mode and the adiabatic quantum capacitance mode.

C.3 Resonant tunnelling capacitance

Towards the end of the thesis, single-shot single-gate RF spin readout was shown
using the tunnelling capacitance mode [133|. The experiment reported an RF drive
frequency of 5.7 GHz with an inter-dot tunnel coupling of only 2 GHz. With the
drive frequency greater than the tunnel coupling, electrons on the double quantum
dot will be too slow to respond to the fast drive frequency to operate in the adiabatic
quantum capacitance regime. Thus, the experimenters declared that they operated

in the tunnelling capacitance regime. This raised two key questions:

e If one can operate at frequencies higher than the tunnel coupling via the tun-
nelling capacitance regime, why did initial experiments on a quadruple quan-
tum dot device (where the drive frequency was much higher than the tunnel

coupling) yield zero RF response?

e What are the conditions that must be satisfied to operate in the tunnelling

capacitance regime?

To better understand the high-frequency operation of the single-gate RF sensor in
the tunnelling capacitance regime, the RWA solution from the previous section was
solved for the resonant tunnelling capacitance regime.

For resonant tunnelling, one sets the detuning offset, tunnel-coupling and drive-

frequency such that:

hw = 24/t2 + V2 (C.20)

The resonant condition simplifies the required trigonometric terms in equation for

the ac capacitance given in Equation C.19 to:

sin(k) =1 (C.21)
cos(§) = 1. (C.22)
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Note that k = 7/2 is self-evident given that one demands resonant driving implies
that ng. is parallel with r . Similarly, £ = 0 implies that the initial state vector

settles onto the eigenstate’ given by r|. The quantum capacitance is thus:

eAa 1 te
Vae 2 JVPZF+E2

Cy = (C.23)

Thus, given the ac capacitance term, the equation for RF readout signal strength
can be found via Equation 3.11:

Y U K eBa L (C.24)

B Qext + Qint CP 2 V ‘/82 + t(Z: .

The peak RF readout response is similar to that of the SLQD system; the readout

signal strength is ultimately limited by the charge movement of a single electron
between the two dots. The t.//V{? + ¢2 factor becomes unity when ¢, > V. That
is, the working point for readout is ideally close to zero detuning when compared to
the tunnel coupling. Thus, if one wishes to use the resonant tunnelling capacitance to
perform single-gate RD readout, the driving frequency must be as close as possible to
the tunnel coupling frequency. Note that if the driving frequency is below the tunnel
coupling, one cannot achieve the resonance condition and thus, the RF readout signal
is further diminished. That is, if the drive frequency is above the tunnel coupling, one
can adjust Vj to increase the energy splitting and bring the RF drive into resonance.

Finally, the readout signal strength has no dependence on the input voltage
amplitude. However, to minimise decoherence (important when driving between
excited states of a short-lived charge-qubit states), one should minimise photon shot-

noise by operating at as low a signal strength as possible.

C.4 Adiabatic quantum capacitance - limitation of RWA

In the adiabatic quantum capacitance mode (as demonstrated and optimised in this
thesis) shown in Figure 3.4b, one stays in the ground state as much as possible.
Thus, to ensure adiabatic passage between the two charge states (that is, the electron
moving between the two sites), one drives the qubit with as slow a driving frequency
as possible via: hw < t.. As in the previous section, the required trigonometric

terms in equation for the ac capacitance given in Equation C.19 become:

In the case t. > VJ, the stationary term ro lies on the Pauli-z axis, while the driving term r
lies on the z-axis. Thus, one starts fully in the s11 or so2 charge states to make £ = 0.
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sin(k) = Vae (C.25)

4(24v)?
\/ ( e 0) + Va{g

(&

cos(§) = 1. (C.26)

Once again, £ = 0 implies that the initial state vector settles onto the n,.. The

quantum capacitance is thus:

eapn 1 V! t
Cy = TR ; ac2 . V’;—i— o (C.27)
ac 4
\/4(tcj-zvo) Ly 0 ¢
Thus, by Equation 3.11, the RF readout signal strength is:
Qi K ean Vae . Le (C.28)

T = ‘
Qext + Qint Cp 2 \/4(15%_,_‘/0/ \/{/0’2 + tg
——g

L v
Now the maximum readout signal is achieved at around zero-detuning where Vj =0
as expected since this equally oscillates the electrons completely into both dots. In
addition, however the readout signal strength now depends on the driving voltage
amplitude V. with the prediction that the maximal readout signal strength occurs
at infinitely large amplitudes. The perturbative approximation required for RWA
used here however, breaks down at large voltage amplitudes V). > t.. In fact,
the predicted response does not match numerical Hamiltonian simulations at non-
perturbative powers. Thus, we have adapted a different approach in the next section

to find the readout signal strength at higher RF powers.

C.5 Adiabatic quantum capacitance - semi-classical so-

lution

The response given by Equation C.28 only applies for perturbative input voltage
amplitudes; specifically V. < t.. However, larger input voltage amplitudes (at a
magnitude equal to or exceeding the tunnel coupling) have been shown to yield better
RF responses [29-31]. Whilst the model using the RWA mimics the appropriate
functional trend, there are incorrect factors that makes the model fail in replicating
numeric simulations when using large input voltage amplitudes. However, the RWA

model does provide useful insights that may help derive a more accurate model. The
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adiabatic quantum capacitance approach seeks to track the ground-state eigenstate

(in the s11-s02 basis):

Vg = 1(1—A ) 1(1+A ) : (C.29)
T VaEre )\ T Ve e

One can intuitively break down the eigenvector by realising that the ground state is
s11 when A — —o0 and sgo when A — oco. Now one sets the detuning offset to zero
(Vg = 0) for maximal RF readout response as suggested by the previous analysis.
When the voltage signal sweeps the detuning sinusoidally one enters the s;; and sg2
ground-state charge-states. The extent in probability to which one reaches one of
the charge states varies sinusoidally with the variation being largest at the trough
and peak in the detuning. Now the probability of being in s1; is |(s11 | ¢o)|?. Taking
the difference in probabilities at A = =V, and A = V/_ and halving the result (to
find the amplitude), the probability p,(t) oscillates at frequency w:

!
pu(t) = 1 + _ Vackgs . cos(wt). (C.30)

2 2\/t2+ V7?2
The x4s term describes the degree to which one is in the ground state (as to be
discussed later). Here, x4s = 1 implies that one has settled onto the ground-state
eigenstate before performing the measurement. Thus, as before, one may calculate

the current and find the quantum capacitance to be:

eAa ‘ VieXgs

C, = = . C.31
T Ve 2/24VE2 (G:31)
Thus, as before, the readout signal strength can be found:
/
T = th . 5 X eAa . VacXHS (C32)

C Qext +Qie Cp 2 V2 + Va/c'

One may set x4s = 1 and obtain an initial solution to the readout response. However,
the readout signal strength on setting x4s = 1 has two important caveats. Firstly,
the initial charge state is presumed to be the ground-state eigenstate and secondly,
the apparent saturation of the RF readout signal at high V/, is unphysical (infinitely
large V.. will result in an infinitely faster Landau velocity at zero detuning; thus,
the state no longer adiabatically tracks the ground state). The first case shall be
addressed before alleviating the second issue.

Now if one starts with an arbitrary initial state 1);, if the electrons start fully in

the ground state, the electron oscillations at frequency w will fully contribute to the
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readout signal. On the other extreme, if the electrons were fully in the excited state,
then the resulting current will be 180° out of phase when comparing to the current
resulting from being in the ground state. The phase difference occurs because the
charge is 180° out of phase with the voltage. That is, when the detuning is set
such that the electron should enter a given dot, the electron enters the opposite
dot. Now a 180° phase difference is a destructive interference effect. Assuming that
the electrons move between eigenstates states (on negative and positive detuning)
adiabatically (therefore, maintaining ground and excited state probabilities), the
ground-state factor yg4s describes the diminishing readout signal (due destructive

interference from being partially in the excited state) via:

Xgs = Pgs - Peazv (033)

where P, and Py are the excited and ground-state probabilities at the start of the
readout cycle. The parameter 45 shall be calculated for the two cases where the
initial ground state is |s11) (as expected if one has performed singlet-triplet qubit
operations with the electrons in the si; state) and |—) (the ground state at zero
detuning). Thus, calculating the ground-state factor via |(1; | 14)| where 1), is the

ground state on initiating readout at £V :

!’

1%
Xgs = %=, ¥i=sn
v ti* Va2 (C.34)

Xgs = \/Wa Y = |—> = % (511 - 302)

Thus, if the initial states were s1; or |—) respectively, the RF readout response is:

Qint K eAa Va,?:

B Qext + Qint ?P 2 t% + Va/g

_ Qint E eAa Va,ctc (C 36)
B Qext + Qint CP 2 tg + Valg . -

To

(C.35)

The RF response appears to monotonically saturate at large V/, if the initial state is
|s11). However, the RF response has a maximum at V., = t. if the initial state is the
superposed ground-state eigenstate at zero detuning: |—). Now for the case where
the initial state is |s11) (relevant when performing readout immediately after singlet-
triplet qubit operations), the readout signal Ty appears to be similar monotonic
response to when x4s = 1. However, at lower voltage amplitudes, the RF readout
response is lower; a fact must note if one wishes to use smaller RF drive powers to

lower the photon shot noise. The issue is that on moving to the readout point at
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zero-detuning, the state |s11) will have a non-zero probability of being in the excited
state and thus, x4s < 1. One may enter the true ground state (to make ygs = 1)
by using adiabatic sweeps to arrive at the readout point to ensure that the singlet
is completely in the ground state charge state. However, one should note that using
too slow an adiabatic sweep may lead to unwanted qubit evolution (thereby changing
the qubit state) before performing readout.

The second caveat to address is that one intrinsically assumes that the RF read-
out keeps the electrons in the ground state even at high input voltage amplitudes.
Although the input drive frequency w is still taken to be smaller than the tun-
nel coupling t., a large voltage amplitude will lead to faster detuning sweeps that
will make the passage non-adiabatic. To account for the non-adiabatic progressions
at higher input voltage amplitudes, one may use the formula for linear sweeps in

Landau-Zener-Stuckelberg-Majorana interferometry [214-218|:

Qint K eAa VachgS < < tg ) )
Y= . . l—exp| —5=— . C.37
Qext + Qint CP 2 \V t% + Va/c P wvalc/\/i ( )

LZSM factor

Here, the LZSM factor involves an exponential where the sweeping velocity was ap-
proximated as the gradient of a cosine curve: wV,.. The LZSM factor is an empirical
factor that ensures that any solution for the RF response obeys the adiabatic approx-
imation. The LZSM factor requires that the driving frequency is much lower than
the tunnel coupling in order for the exponential envelope to start its attenuation
(of the RF response) beyond the voltage amplitudes where the RF readout signal
either saturates to its maximum value (for example, in the case where the initial
state upon readout is |s11)) or reaches a maximum (in the case where the initial

state upon readout is |—)).






Appendix

RE Reflectometry

This appendix outlines the methods used to derive the equations describing the
resonant circuit used in RF reflectometry. Section D.1 outlines the derivation for
the equation describing the RF readout signal strength given circuit parameters
of the resonant circuit (such as, the resonator quality factors, geometric parasitic
capacitance and the quantum capacitance). Section D.2 highlights the method used
to fit the RF reflectance curves to extract the appropriate internal and external

quality factors.

D.1 Change in the reflectance

Now consider the reflectance defined in Equation 3.8 for the RLC' circuit coupled to

a transmission line shown in Figure 3.5:

p: - Qext N w wo ’
L+ g (1 + JQint (JO - 7))

where Qy,; and Q. are the internal and external quality factors. Now on measuring

(D.1)

the quantum dot’s response, one tunes the circuit to resonance at wy = 1/4/LC).
Then as the quantum capacitance manifests, the resonant frequency is w. = 1/v/LC,
(where C. = C), + C;). Now during this change, the quality factors remain constant.

Thus, the shift in reflectance is:
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1= G (1 Qe (- %)) 1 G (1+7Qu (5 -

Ap=— Q . + Q . >) (D.2)
e (i (2-%)) 18 (i (5-2))

i

e|§

Note that the first term contains w. for that is the resonant frequency in that case.
Now one drives the circuit with the initially tuned frequency w = wg. Now simplifying

the expression yields:

2QextQi2nt
2
(Qext + Qint) + ngt Qi2ntV2

Ap = (Qeffy+j) v, (D3)
where v = wp/we — we/wp. Now noting that the change in the resonant frequency
0w = wo—w, is very small compared to the numerical value of the resonant frequency
itself:

yzéfw—{— ow %2&):2(1—%). (D.4)
wo wo — (5000 wo wo

Now expressing the change in frequency via the circuit parameters:

LC, 2 C, C,
v=2(1—,/—L— :2—@2—2<1—q>:q, D.5
( \/Z(C, + cq)> \/@ 20,) ~ C, (D.5)

where one utilises the Binomial approximation after noting that C;, < C,. Since
C, ~ 1000C,, v ~ 1073. Taking Q in the order of 100 (both internal and external),
this implies that Qv ~ 0.1. Thus, the first term in the denominator is approximately
100 times greater than the second term. Thus, the change in the reflection coefficient

simplifies to approximately:

. 2QuQiny <Oq>2 <O>
P Qext T Qing <Qeﬁ Cp " Cp . (D-6)

Note that the real part (in-phase) is of a much smaller magnitude than the imaginary
part (quadrature-phase) due to the squaring of the quantum capacitance term. In
addition, note that for a fixed internal quality factor, the (tunable) external quality
factor must be equal for a maximal dispersive (that is, the quadrature component)

signal!. However, an optimal dissipative signal (that is, the in-phase component)

1 N _ QenQint OFq __ Q2 _ 2Qet Qe _
Seen by noting: Fo = g 0™ 5y, g,y = @miann?  @miae® — 0 = Q

ext — Qint
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occurs when the external quality factor is twice that of the internal quality factor?.
Now given equal quality factors, where typical experiments operate, the imaginary
term is at least, 10 times greater than the real part. Thus, in further analysis, only
the imaginary part shall be considered. That is, for a signal of amplitude Vi, injected
into the circuit, the resulting measured response is simply given by the magnitude
of the reflectance:

T = Kigss Vin - MQIQMQ ) %7 (D.7)

(Qext + Qine)”™ G

where 70g5 18 the factor of the signal amplitude that remains when entering the

resonant circuit and K is the net gain on the reflected signal amplification chain.

D.2 Analysing RF Reflectometry Data

This section outlines an automated fitting method to analyse the measured in-phase
and quadrature phase (that is, I and Q) signals to extract the internal circuit qual-
ity factor Qy,, the external quality factor Q.. and the resonant frequency of the

resonant circuit wy.

D.2.1 The Fitting Model

Now from Equation 3.8, the reflectance of a resonant circuit of resonance wg coupled
to a transmission line of impedance Z. can be given in terms of the internal and

external quality factors (Q;,, and Q. respectively):
1= G (14 g0 (5 - )
e (170 (5 -2))

Now this provides the reflectance when the viewer treats the transmission line as a

(D.8)

lumped element, when in fact the transmission line length L is much greater than
the typical wavelength of the signal. In addition, the measured data appears as a
complex voltage vector that must be scaled (to convert to p) by a reference voltage

amplitude of the injected signal. Thus, model to which one fits the data is:
1_%<1+17Q. (&_ﬂ))

— SR (D.9)
L G (14 g0 (5 - 2))

2 ES, _ Qgﬁ'Qint OFr  __ 2QextQ?ﬂt _ SsztQ?nt _ _
Seen by noting: Fr = (g 8052, 50 = Qi tQ?® ~ @it =0 = Qe = 2Qing

V=—k
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where k is a positive real-valued scaling factor and c is the speed of light. Now since
this is a nonlinear fit, one utilises a simple least-squares minimiser®. The minimiser
requires good initial conditions to ensure convergence. The following section will

show how one may obtain good guesses for the initial parameters.

D.2.2 Parameter Estimation

Now the initial estimate for wg can be done by simply taking the frequency at which
the amplitude plot is at a minimum. Similarly, one may estimate k by taking the
maximum magnitude of measured voltage*. Now ignoring the effect of L (that is,
take L = 0), one may estimate Q;,, and Q.. by observing the derivative of the phase
plot at the resonant frequency and the peak height in the amplitude plot. Now one
shall first note that the derivative of the phase ¢ = arg(V) is:

2
d¢ Qe Qing (D.10)

B dw w=wp B wo (ngt - i2r1t)7

while the peak height (that is, the vertical size of the peak when viewing the plot of

p

|p| vs. w) is given as:

b= 2Qint
Qint + Qext

Now one may algebraically solve this to obtain the internal and external quality

(D.11)

factors. Noting that the quality factor must be positive:

_7(}17]5)0‘)0 . di(b dﬁ > 0
dw  d
Qext = (h—l)hwo . @w é (DIZ)
22 dw  dw <0
(h=Dwo _d¢ d¢
!
h(h—2) d d
Qi ={ Mo s (D13)
h(h—2)  dw dw

It is worth noting that the phase slope indicates whether the external transmission
line is ‘over-coupled’ (% > 0), ‘under-coupled’ (% < 0) or ‘critically-coupled’ (% =
0). Finally, to estimate L, one may look at the phase slope and algebraically show

that when taking the limit where w < wy:

3The actual minimisation of the kernel can be done via any of the common methods such as
Monte-Carlo, Simplex sampling, Steepest-Descent etc.

“This can be further normalised by referencing it to the value when one can ensure that it
corresponds to nearly perfect reflection like that when tuning the bias of a varactor connected in
parallel to the RLC circuit to effectively negate the presence of the RLC circuit.
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Table D.1 summarises the procedures used to find the initial estimates.

L—lim 5. %
w—0 41 dw

Parameter Estimation
wo w that minimises |V (w)]
k max | V|
h 2 - (max |V| — min|V])
P Finite Difference about wy
Qint G - Ipl
(h=1)wo
Qe e >0
G2 p p<0
Do Finite Difference about w < wy
L 1= Do

(D.14)

Table D.1: Initial parameter estimates when fitting the RF reflectometry reso-
nance data to the model in Equation D.9.






Appendix

Derivation of the Singlet-Triplet qubit

Hamiltonian

I remember that when someone had started to teach me about creation
and annihilation operators, that this operator creates an electron, I said,
“how do you create an electron? It disagrees with the conservation of
charge”, and in that way, I blocked my mind from learning a very practical

scheme of calculation.
- Richard P. Feynman, Nobel Lecture 1965

In this section, the singlet-triplet Hamiltonian of interest shall be constructed in
simple language without invoking any second quantisation formalism'. The singlet-
triplet qubit is formed by taking the effective spin state between two electrons settled
across two quantum dots. Sections E.1, E.2 and E.3 build up the associated Hamil-
tonian from simple fundamental arguments and left there for completeness and left
for interested readers. Section E.4 brings all the derivations together to build up a
general model for singlet-triplet states across two dots. The details of qubit operation

are discussed in Chapter 5.

E.1 One electron, two dots - charge qubit Hamiltonian

Consider an electron that resides in a Coulombic potential well V(r —ry) centred at

r; due to a quantum dot. The electron is in the ground state orbital level of the dot.

'For a more complete overview that includes silicon valley contributions, refer to Fang’s the-
sis [219]
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The Hamiltonian of an electron on this single dot is thus:

2

Hio = 5 V24 V-1, (B.1)
where V2 = (aa—; + E?—:Q + g—;) is the Laplacian operator, m. is the effective mass of
the electron when interacting with the dot and the surrounding crystal. Now con-
sider an identical potential well centred at ro. Although the potential wells tightly
confine the electrons, the wavefunction probability of the electron is still finite ev-
erywhere and thus, non-zero at ra. The tight-binding approximation demands that
the wavefunction probability at this point is small and that the new wavefunction is
still the original wavefunction that solves Hicr,, but with a slight perturbation in

the energy of the electron due to V(r — ra):

—_h?

le,ri,rg — 2

V24 V(r—r)+V(r—ry). (E.2)

me
Now consider the basis of states to be the wavefunctions when the electron resides in
either dot? 1 or 2 to be ¢1(r) and p2(r). Now one can find the two-level Hamiltonian

describing such an interaction?:

(@1l Hieyry vy [02) = —te

(1| Hiepira 1) =Ur =Us+¢ - (E.3)

(p2| Hicrpra [02) = U2 =Up — €
Note that U; and U may not be necessarily equal. The inequality stems from
differing on-site electrostatic potentials created by an electric field from a local gate.
In the literature, the idea of using a gate to create a difference in the on-site potentials

is termed a ‘tilting potential’ or ‘tilting gate’. The, resulting the Hamiltonian over

the o1, 9 basis is the ‘charge-qubit’ Hamiltonian [57, 58, 220|:

HCQ =Uply — t.op + €0, (E4)

Under the charge state basis, one has full-axis control of the resulting two-level

system by tuning the so-called ‘detuning’ parameter € and the tunnel coupling ¢..

*That is, @;(r) solves Hicr, and gets perturbed by the potential V (r —r;) of the other dot j # i.
*Note that the Bra-Ket notation implies: (1 | 2) = [ ¢1(r)p2(r)dr
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E.2 Two electrons, two dots

Now one considers adding another electron to this double-well system. This adds
an electron-electron interaction term Ve (r1,r2) o< 1/ |ry — ry| to the Hamiltonian to

give a complete two-electron, two-dot Hamiltonian:

2

Hpgp = 5

V24 V(r—r1) + V(r —ry) + Vee(ry, ra). (E.5)

me

To find the two-electron wavefunction that solves this Hamiltonian, one considers
that, individually, each electron will have a spatial component (it either resides in
dot 1 or 2) and a spin component; the product of which must yield a wavefunction
that is antisymmetric under exchange!. With two possible sites (¢1 and ¢3) per
dot and two spins (1 and |) per electron, this yields a state space of 16 possible
states. Now before proceeding, one shall label the states as |®&), where ® and & are
the combined spatial and spin states of the two electrons respectively (formally the
tensor product of the individual spatial and spinful states: ®1 ® P9 ® & ® &2). The
combined spatial or spin states shall be in the eigenbasis suitable for the application

of the particle-exchange operator; namely the singlet-triplet basis:

(<I>, = % (lp1p2) — l2001))
04 = I (le1p2) + lp2gn))
®1 = |p11)

Do = |p2¢02)
so =5 (1)) = [41)

(E.6)

€) € V2

\
where the two labels ® and £ in each Ket refer to the spatial or spin state of the
first and second electrons respectively. The electron spin state sg is termed the
‘singlet’ state while tg, ¢4 and t_ are termed the ‘triplet’ states. With 16 states,
there are 256 terms in the Hamiltonian. However, when one demands the property
of antisymmetry, many of the states will become zero. For example, |®1t_) involves

a symmetric spatial state and a symmetric triplet spin state; thus, under exchange

1By the spin-statistics theorem, the application of the particle exchange operator, where one
exchanges two particles in the system, must result in an eigenvalue of —1 if the particles are
Fermions.
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such a state will be symmetric and thus, the probability density of such a state must
be zero or equivalently of infinite energy®. Now the states with non-zero probability
density are: |®1s¢), |Pasg), |P+so) and |P_t) (where ¢ refers to any triplet spin
state). Under the |®¢) basis, the Hamiltonian can be recast as the charge qubit
Hamiltonian acting individually on each electron (that is, the first three terms in

Hpqp are single-electron terms) coupled with a multi-electron interaction term:

Hpop =Heq®@ L@ L ® I+ Is @ Hog ® Ia @ Iy + Vee. (E.7)

On expanding the tensor products, the resulting energy-offset terms (diagonal matrix

components) are:

(®150| Hpgp |®150) = 2Up + 2¢ + Upe (E.8)
(®2so| Hpgp |P2s0) = 2Up — 2e + Up (E.9)
(@ 50| Hpap |4.50) = 2Un — 2t (1 | @2) + Unt + Jiz (E.10)
(©_t[Hpqp [P—t) = 2Uo + 2tc (1 | p2) + U1 — Jro. (E.11)

The term U1 = (p1p2| Vee |0102) = (21| Vee |2¢1) is taken to be independent of
the spin state of the electrons for the charge states are equal and the term simply
describes the energy due to electrostatic repulsion between the two electrons. Sim-
ilarly, Ji2 = (p192| Vee |p2001) = (p201| Vee |p1p2) describes the shift in the energy
due to spatial wavefunction overlap between the two electrons (that is, the amount
the electron wavefunction occupies a given point in space if swapped and made to
live in the adjacent potential well). The interaction term Jyo is described in litera-
ture as the ‘electron-exchange interaction’ term that breaks the degeneracy between
the singlet and triplet spin states of electrons amongst adjacent potential wells and
leads to the origin of ferromagnetism in metals [221-223]. However, in the case
of operating singlet-triplet qubits in quantum dots, this intrinsic exchange term is
taken to be zero as one places the dots sufficiently far apart in order to operate in
the ‘tight-binding’ limit where the individual electron wavefunctions ¢ and @9 have

negligible overlap. In this limit, one formally takes:

®One can make this probability density non-zero (hence of finite energy) if one introduces an
anti-symmetric (or symmetric) orbital state where one of the electrons may occupy a higher orbital
to still obey the overall antisymmetry for electrons [34, 42, 183]. This is ignored in this analysis
as the orbital energy spacing in phosphorus is large and if an electron somehow enters the higher
orbital state (the so-called 2po state which is more than 10meV higher), it is very short lived at
approximately 200 ps [184-187]
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Jia =0 (E.13)
(o1 ] p2) = 0. (E.14)

With this approximation, it remains that the only two-electron term that manip-
ulates the z-energy splitting is Upz = (p101] Vee [p101) = (0202| Vee |p2¢p2), which
describes the energy due to the strong electrostatic repulsion between two electrons
on the same dot. Thus, this Hamiltonian has a ground state where the electrons
prefer to be in separate dots, while the two excited states has them both occupying

one of the two dots.

Now continuing the expansion of the tensor products, one may find the interacting

terms (off-diagonal matrix components) of the Hamiltonian:

= V2(Uo + 2¢) (1 | p2) — V2t = —V/2t, E.15
\/5([]0 —2¢) (1 | p2) — ﬁtc ~ —\@tc E.16

(®150| Hpgp [P+ 50 (E.15)
(E.16)
—2tc(p1 | p2) =0 (E-17)
(E.18)
(E.19)
(E.20)

(®aso| Hpgp |®+5s0
(®150| Hpgp [P250
(®1s0| Hpgp |P-t
(®2so| Hpgp |P-t
(®4s0| Hpgp |-t

E.18
E.19
E.20

~ s —~ -

0
0
0.

Note that the contributions of V.. are not seen here because (p;p;| Vee |90i90j> <
Uir = 0 (for i # j). This is simply a statement that the spatial overlap between
wavefunctions of electrons on separate dots is negligible. Now noting the charge
state of triplet states is always ®. have one electron on each dot, for simplicity the
labels are rewritten in terms of charge states in the subscripts (where i, j refers to

the number of electrons in dot 1 and 2 respectively):

[®150) = s20 (E.21)
|<I>280> = S02 (E22)
|(I)+So> = S11. (E23)

For the triplet states tg, t+ and t_, the charge states are dropped and implicitly
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presumed to be in the (1, 1) charge state. With that, the full double-dot Hamiltonian
can be rewritten in its matrix form over the basis of states sag, sg2, s11, to, t— and

ty as:

2e 4+ Upo 0 —V/2t,
0 —2e + Upyo —\/§tc 03
H = 2Uplg + , E.24
DQD 046 7\/§tc *\/ﬁtc 0 ( )
05 03

where 03 is a 3 x 3 matrix of zeroes. This Hamiltonian corresponds to the basic
tight-binding or Hubbard model [221, 222, 224|.

E.3 Adding in a Magnetic Field

The general singlet-triplet Hamiltonian refers to a two-electron double-dot system

immersed in a magnetic field. Now the Hamiltonian for a spin in a magnetic field is:

_ Gelle
2

where g, is the electron Landé g-factor, . is the Bohr Magneton and o5 are the

Hg

B(r)e (o1 + 02), (E.25)

Pauli spin operators for the first and second electrons across x, y and z (or simply
(02,0y,0,) in the up-down spin basis). Note that the magnetic field vector B(r)
is not necessarily homogeneous across both dots and the ‘dot-product’ is merely
abuse of notation for convenience (that is, not a scalar inner product). In fact, the

Hamiltonian above is an abbreviation for the following:

Hg = Qezlie [e1) (p1] @ o ® (Bi(2)0z + Biy)0y + Bi(z)02) ® o+

lp2) (p2| @ Iz @ (By(z) 0 + Bagyyoy + Baryos) @ Ip+
Iy @ 1) (01| ® I @ (By(ay0u + Bigy)oy + Bi(z)02)+
I @ [p2) (92| @ Iz @ (By(a) 0w + Bagy)oy + Ba(z)02)].

(E.26)

The result is that electrons on the first dot experience a different magnetic field

vectors to that in the second dot:



E.3. Adding in a Magnetic Field 323

Gelle

B1 ="~ (Bi(), Biy), Bi»)) (E.27)
Gelle

By = =5~ (Ba(w) Bay), Ba())- (E.28)

The magnetic field contribution to the overall system Hamiltonian is relatively per-
turbative in that the states already relegated from the analysis of Hpgp need not
be considered. Before continuing it’s useful to write down the spin component of the
Hamiltonian in the Singlet-Triplet basis® (|so), |to), [t—), [t+)):

ABy—iAB,  ABy+iAB
0 AB, 7 L — 7 Y
SB,—-iSB,  IB,+ivB
- AB, 0 7 v 7 Y
Bieo1+Byeos= | Ap,+iap, sB.+isB, _vp 0 » (E29)
z
ap2iag, s icn
_ x—1? y x—1 y
. 75 0 XB.

where Bioeo; = (Bieo)® [z, Bieoys = b ® (Byeo), AB = B; — By and
3B = B; + Bs. Expanding the tensor products once more to find the matrix terms

yields:

(P_t|Hp |P1s0) ~ & (t|(Bieo1 + Byeoy) — (Breoi +Bieos)|s) (E.30)
(P_t|Hp [®_t') ~ 1 (t|(Biooi +Byeoy)+ (Byeo; +Bieay)|t') (E.31)
(Prso| Hp [@-t) ~ 0 (E.32)
(Ppso| Hp [P4s0) = 0 (E.33)
(P s0| Hp |Py50) =~ 0, (E.34)

where t,t' € {tg,t_,t+} and ®,,,, D, € {®1, P2}. The approximations invoke (1 | p2)
0 as discussed in Section E.2. The matrix forms of the non-zero terms yields the mag-

netic field contribution:

SApply the transformation: THT ' to convert from the computational (|11), [11), [41), [44))
0 1/vV2 —1/vV2 0

0 1/v/2 1/V/2 0

0 0 0

basis to singlet-triplet (|so), [to), |t—), |t+)) basis, where T = 1
1 0 0 0

~
~
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AB,—iAB AB,+iAB,
0 AB, 7 v o 7 y
AB 0 0 0
(| Hp [s11) = (1] ABz+iZBy |so)  (E.35)
SEDSH 0 0 0
0 0 0 0
0 0 YB,—iSB, B, +iSB,
(HHp[¢) = (| | sp.tizs, —ng ) (30
0 LBy —iLBy 0 ZBZ

V2

Note that only the states in the (1,1) charge state have non-zero magnetic field
contributions. The physical interpretation for the zero coupling term between Spo
or Sy and t is the state transition requires two events to occur: a change in angular
momentum and a change in the charge state. Since quantum tunnelling is generally
spin-conserving, this sort of transition would require a second-order effect and thus,
one would expect such couplings to be zero. Similarly, the coupling between singlet
states is purely a tunnelling effect (captured by the analysis in section Section E.2).
Finally, an important point of interest is that the coupling terms between the singlet
s11 and tp has no dependence on the overall magnetic field and instead just the

difference in the magnetic fields across the two dots.

E.4 The general singlet-triplet Hamiltonian

The full singlet-triplet Hamiltonian is the sum of double-dot tunnelling physics Hpqp
and the magnetic field contributions Hy:

Hgr = HDQD + Hp. (E37)

To investigate the behaviour of the singlet-triplet Hamiltonian, first consider a zero
magnetic field environment in which the Hamiltonian is simply the pure double-
quantum dot Hamiltonian given in Equation E.24. Figure E.la shows the resulting
energy spectrum when the two-electron on-site energy Ups is four times larger than
the tunnel coupling ¢.. In this regime, there is a gap between the two highest energy
eigenstates at zero detuning due to an anti-crossing between the sog and sgy states.
Similarly there is a large non-zero energy gap between the two lowest energy states

due to an anti-crossing between the s1; and the three degenerate triplet states t.
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(a) Very large tunnel-coupling with Upz = 4t. (b) Small tunnel-coupling with Ups = 10t.

502 ™\ < 520 502 520

********** Uo2
520 502
s Ay N S e
S11 '
520 502

Figure E.1: The energy spectrum of the double quantum dot Hamiltonian given in Equa-
tion E.24. The singlet labels (s11, s20 and sg2) indicate the approximate asymptotic eigen-
state of the energy eigenvalue line at different points in detuning . The triplet label ¢
indicates all three degenerate triplet states (fo, t— and ¢) that remain invariant with ¢ and
stay at the zero energy line. Two points of interest are the s11-sg2 and s11-s2¢ anti-crossings;
both split by 2¢.. J is the exchange energy (or the singlet-triplet splitting) and is appreciable
across all points in detuning in (a) where Ups/t. = 4. However, in (b), J tends towards zero
at zero detuning as opposed to approximately 0.449¢. like in (a) as given by Equation 5.15.
The global offsets have been omitted for clarity.

The gap between the singlet ground state and the triplet state is the ‘singlet-triplet
splitting’ (also by definition the ‘exchange coupling’ or ‘exchange energy’ in the
literature) and symbolised with J. In the regime where the tunnel coupling t. is
comparable in magnitude to the two-electron on-site energy Ups, the singlet-triplet
splitting J does not approach zero; even at zero detuning. This is because the weak
confinement energy Upz, when compared to the tunnel coupling t., leads to a stronger
interaction (and greater wavefunction overlap) between the two electrons across the

two quantum dots.

However, in practice, the system usually operates with Uyo >> t. and thus, J can
tend towards zero when taken at zero detuning as shown in Figure E.1b. This is
because the eventual qubit control relies on the ability to tune the exchange J to

zero. Now consider the magnetic field contributions. In the matrix form this is:
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U2 + 2¢ 0 —V2t. 0 0 0
0 Upa — 2 —V2t, 0 0 0
Hgyr = Ve V2 0 AB. ABL —ABy , (E.38)
0 0 AB, 0 B, YB,
0 0 AB, YB, -2B, 0
0 0 ~-AB, ¥B, 0 2By

once again under the basis of states: sag, sg2, S11, to, t— and t4. The global offset
2Uy has been omitted for clarity and holds no significance in the system dynamics.

For clarity the following substitutions were made:

AB, +iAB
AB, = “:;gy (E.39)
$B, +iSB
$B, = x:;gy (E.40)
$B
By == z, (E.41)

The system shall have its quantisation z-axis aligned parallel with an externally
applied magnetic field. Note that the quantisation axis is taken to be in the direction
of the net common-mode field across the two dots. That is, the net field (summing
the individual field vectors on both dots) along the z-y plane given by 3B, and ¥B,
is zero. This leaves the magnetic field component AB,; which is the contribution
perpendicular to the main applied field By. In addition, there is a magnetic field
gradient AB, in the direction of the applied field across the two dots. The non-zero
AB, creates an anti-crossing between the tg and s1; states as shown in Figure E.2a.
A large AB, compared to the tunnel coupling t. causes multiple anti-crossings and
the ¢y state starts to mix heavily with the other states causing it to have a strong
dependence on the detuning € as shown in Figure E.2b. As shown later, this regime
is undesirable and the system is usually tuned to t. > AB,. In all cases, the global
field By breaks the triplet degeneracy by only affecting the energy of the triplet ¢_
and ¢ states (‘Zeeman splitting’).

A non-zero AB; yields an anti-crossing between the s11 and the triplet states:
ty and t_. The triplets do not couple to the singlet sgo and s9g states and thus, form

no anti-crossing’.

"There can however, be an anti-crossing mediated by another Hamiltonian term such as a spin-
orbit coupling term that links between the electron charge states and spin states [192].
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(a) U()2 = 10tc = 2.530 = 25ABZ (b) Uoz = 10tc = 2.530 = 5ABZ

802 E 820 802 E 820

ty
S02 520, 502
k S11 /1o S11
S11 e ) c
1 : /
S11 ~
2By , 2AB, v S11 ,
520 . $02 7S920 ; S02°

Figure E.2: The energy spectrum of the double quantum dot Hamiltonian given in Equa-
tion E.38. The state labels indicate the approximate asymptotic eigenstate of the energy
eigenvalue line at different points in detuning €. The magnetic field gradient across the
dots AB, creates an anti-crossing between the singlet s1; and triplet ¢ states, while the
global magnetic field Zeeman splits the triplet ¢_ and ¢4 by 2Bg. In (a), t. = 2.56AB, and
the ty eigenstate has very little dependence with ¢. However, when AB, = 2t., multiple
anti-crossings form on the ¢ty state causing a strong detuning dependence on the ¢y eigenstate.






Appendix

Numerical simulations of gate fidelity

Numerical methods were used to evaluate the approximate fidelities for the single
and two-qubit gates under the influence of charge noise. The basic method shall be
discussed in this section.

Consider a qubit rotation such as that described in Figure F.1la where one rotates
an initial state about some axis by 7 from %y to ¥,. One calculates the time re-
quired to achieve a 7 rotation by taking the nominal precession frequency. However,
noise in the environment may randomly perturb the precession frequency such that
one sometimes undershoots the final state rotation (if the frequency is too slow) or
overshoots the final state rotation (if the frequency is too fast). If one takes the
average of all the randomly distributed final states, one gets an average state 14,
that is no longer a pure state (that is, unit magnitude on the Bloch sphere). The
decay of the Bloch vector is termed information loss due to decoherence. One may
plot the z-projection of the averaged final state vector as shown in Figure F.1b. One

can convert the z-projection p, into a measurement probability via:

5 % (L4 ~(t) - cos(wpt)) , (F.1)

where w, is the average precession frequency and ~(t) is the decay function describing

1
P,==-(14p,) =

the average information loss due to perturbations in w,. The metric to describe the
decay of the state vector into the centre of the Bloch sphere (that is, a measurement
probability of 1/2) is typically a sinc, Gaussian or exponential decay envelope where
T5 is the time-constant. The fitted envelope depends on the distribution of the
precession frequencies as given by the noise distribution (for example, a Gaussian
distribution of precession frequencies yields a Gaussian envelope in the time-domain

probabilities). One may attach fidelities to the decay by noting that a gate operation
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(a) Shot-to-shot variations in gates (b) Average z-projection and probability
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Figure F.1: Visualising decoherence and the resulting link to gate fidelities.
Decoherence is decay of the state vector when taking the average of many gate operation
events where the precession frequency randomly varies each time due to noise. (a) In a simple
example, the initial state v is to rotate from the z-axis by 7 to 1. However, sometimes the
gate will under-rotate (precession frequency too slow) or over-rotate (precession frequency
too fast) with the average state vector being t,,. (b) The z projection of the average state
vector (in blue) over time is shown relative to the intended state vector (in red). The average
state vector is the weighted sum of all other state vector trajectories when the precession
frequency is too fast or slow (lighter red). The resulting z-probability measurement P,,
when compared against the ideal probability yields the fidelity. For example, the stars and
circles indicate the state vectors on 7 and 27 rotations respectively (with the ideal state
vectors in red and the decohered state vectors signifying the fidelity in blue). (c) Given that
the worst-case fidelity is the projection of a state vector vy perpendicular to the rotation
axis T as measured along the 1p-axis, one may simply find the decay envelope to estimate
the resulting gate fidelities.
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should yield ), for m-rotations (shown by the red stars) and gy for 27-rotations
(shown by the red circles), but instead yield the trajectory given by the ensemble

average g, (the blue stars and circles); the resulting fidelity estimates are:

Fﬂ: ’<wav ‘ ¢7r>’251_Pz
For = ‘(djav | 1/10>\2 =P,. (F3)

Note that the 27 rotations are important when considering identity or idle operations
on the qubits. Now the z-projection is simply that of a cosine wave at a frequency
given by the precession frequency and a decay given by the decay due to decoherence.
The decay of the cosine wave at a half rotation is the gate fidelity. One may extend
this fidelity calculation to any arbitrary axis of rotation. For example, consider an
arbitrary rotation axis r given in Figure F.1lc. Now take any pure state 1)y on the
plane perpendicular to the rotation axis. The state must be perpendicular to achieve
the worst-case fidelity estimate (a state parallel with the rotation axis will undergo
no precession and thus, no suffers decoherence). Now to find the fidelity, one can
take the inner-product along the t)p-axis to realise that the fidelity is simply the
decay envelope 7(t) evaluated at ¢t = ¢, (the time taken to perform a half rotation

as given by the precession frequency):

Fr = 5 (14 (t2)) (F.4)

For = = (14 7(2ty)). (F.5)

| =

Thus, estimation of the decay envelope given the distribution of precession frequen-

cies directly yields the fidelities.

Now one seeks the decay envelope in the time-domain given a probability distri-
bution of precession frequencies. Note that taking the inverse Fourier transform of
the probability spread of precession frequencies in the frequency domain yields the
average time-domain decaying cosine wave as required when averaging many shot-to-
shot variations in the precession frequency. Now consider a probability distribution of
the precession frequencies N (w) where the distribution is symmetric N(—w) = N(w)
and has a mean frequency of interest at w = w,. Now taking the inverse Fourier

transform to get the time-domain decaying sine wave:
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1 [ . 1 [
po(t) = FUN(W)] = / eI N(w)dw = / cos(wt)N (w)dw. (F.6)
2 J_ T Jo
The cosine integral was numerically evaluated using a 1000-point trapezium rule
across the probability distribution N(w). The resulting function py(t) is a decaying

sine wave with frequency w,. The decay associated envelope can be found by simply

taking:
(tr) = 200 (F.7)
eer) = B0 (©3)

From the decay function, one may immediately extract the gate fidelities as shown

above.
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