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Abstract. Our current knowledge of the Equation of State of asymmetric nuclear matter around saturation den-
sity and of the energy of the Isobaric Analog State in a heavy nucleus such as 2’*Pb seem to be in contradiction.
In Ref. [1], the problem has been highlighted and a solution has been proposed. In the present contribution, we
overview the aforementioned work by giving some new details not previously published.

1 Introduction

One of the most outstanding problems in nuclear physics is
the accurate determination of the nuclear equation of state
(EoS) [2, 3]. The nuclear symmetry energy is one of the
fundamental ingredients to describe the EoS when dealing
with isospin asymmetric matter [4, 5] and its determina-
tion may entail profound consequences in our understand-
ing of heavy-ion reactions [6], neutron stars [7], or of the
Standard Model via atomic parity violation [8].

Specifically, the symmetry energy is the energy per
particle needed to change protons into neutrons in uniform
matter at a given density p. At saturation density of sym-
metric matter, pg ~ 0.16 fm™3, its value is estimated to be
between 28-35 MeV [3]. If B is the local neutron-proton
asymmetry, 5 = (p, —pp)/p, the energy per particle in mat-
ter having neutron-proton imbalance is a function %(p, B).
Such function can be expanded in even powers of S owing
to isospin symmetry (the Coulomb force has to be taken
out when dealing with a uniform system). By retaining
only the quadratic term we can write

E _ E _ >
7B =2.=0)+S()5". ey

This equation defines the symmetry energy S (o), that is,
the difference between the energy per particle £ /A in neu-
tron and symmetric matter.

It is customary to expand Eq. (1) around saturation
density as

2
p—po), 1 P =Po
S(p)=J+L —Koym | —— 2
) +(3p0)+2y(3p0)+ 2

where different parameters have been defined, namely
J = S(pO)s L = 3/00 S’(Po), and Ksym = 9p(2) S"(PO)~
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Predictions on these parameters based on different nu-
clear models has been documented along the years. While
K¢ym is basically not known, the error on L, referred to
as the “slope parameter”, is believed to be still signif-
icantly larger than the error on J: ranges between 30-
90 MeV approximatelly [2, 3, 9-11]. Many authors have
pointed out a correlation between L and the neutron skin
ARy, = (rﬁ)l/2 - (rlz,)l/2 of a heavy nucleus like 208pp 12—
15]. Accurate measurements of the neutron skin are still
required to pin down the value of L [16-20].

The difficulties in determining the symmetry energy
are essentially associated with our incomplete understand-
ing of the strong interaction in the low-energy regime.
Therefore, to find a connection with an observable that is
not sensitive to the strong force becomes an asset. The
Isobaric Analog State (IAS) is one of the well established
properties of nuclei that is measured accurately, and is only
sensitive to the isospin symmetry breaking (ISB) in the nu-
clear medium due to Coulomb interaction and, to a lesser
extent, the other effects discussed below.

At present, nuclear Energy Density Functionals
(EDFs), based on the Density Functional Theory, consti-
tute the only theoretical framework in which the neutron
skins and the IAS energies can be consistently calculated
from a microscopic perspective, in medium-heavy nuclei
[21]. There exist different types of EDFs. In particular,
results from the Skyrme and covariant density dependent
type of functionals will be presented here. Those are based
on the Hartree-Fock (HF) and Hartree approaches, respec-
tively, for the desncription of ground-state properties; and,
self-consistently, on the charge-exchange Random Phase
Approximation (RPA) for the study of nuclear collective
excitations [22, 23].

Within the Skyrme functionals, SAMi [24] has been
shown to be specially accurate in the description of charge-
exchange resonances. In Refs. [1, 25], it is shown that
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Figure 1. Energy of the IAS as a function of AR,,. The arrows
indicate the experimental results from polarized proton elastic
scattering [29], parity violating elastic electron scattering [19],
and from the electric dipole polarizability [30]. Figure is taken
from Ref. [1].

families of functionals, based either on SAMi [26] or on
the covariant functional DD-ME [27], in which J and L
vary systematically, provide predictions for the TAS en-
ergy, Eias, as a function of ARy, in ®Pb that follow a
linear correlation. For the sake of completeness, results
associated with other Skyrme interactions are also plot-
ted. Such correlation can be understood in simple physical
terms. The excitation energy Ejas is defined as the energy
difference between the analog state |A) and the parent state
|0). The parent state is an eigenstate of the Hamiltonian
with N neutrons and Z protons and the analog state can
be defined as |A) = T_|0)O0|T,T_|0)""/2 (cf. in Ref. [28]).

Hence,
OIT,[H, T_]|0)
Eips = (AIHIA) = O|H|I0) = —————— (@3
1as = (A|H|A) - (OIH]|0) OIT.T_0) 3)
and assuming good isospin in the parent state (0|7, 7_|0) =
N-Z+{OT_-T,|0)=N-2Z,
1
Eias = ﬁ(ol[ﬁ, [H, T-1110). 4

Due to the structure of Eq. (3), E1as depends on isospin
breaking parts of the { only. In nuclear physics, the main
isospin breaking term is known to be due to the Coulomb
interaction. Therefore, the bulk contribution to Eq. (3)
will be due to the difference in the expectation value of
the Coulomb matrix elements between proton and neutron
distributions. That is, for the direct Coulomb term assum-
ing an independent particle model

1 ; S
s = o (o -] v ar, o

where Uc(7,7) is the direct part of the Coulomb en-
ergy potential generated by the electric charge distribution

pCh(f!)»
ydire ) = f (T ©)

bulk part of Ejas in terms of physical quantities

C,direct
EIAS ~ EJ 1AS

6z (1_1 N Rn—Rp)

5R,\ 2N-Z R,
N 6 Z€2 5 N ARnp (7)
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that is, the IAS energy should decrease with increasing
neutron skin thickness, ARy, = V3/3(R, — R,). For ex-
ample, for the case of 2%8Pb Eq. (7) Ejas ~ 20.9 — 5.7AR,,
which is in reasonable agreement with the result of the lin-
ear fit in Fig. 1, which gives Ejag =~ 19.9(8) — 5.0(2)AR,,
and a linear correlation coefficient r = —0.985.

In Fig. 1, it is also shown that the model predictions are
not compatible with our present knowledge on the studied
observables. The experimental IAS energy [31] is shown
(horizontal dashed line) in the figure, and a simple extrapo-
lation implies ARy, = 0.07(2) fm. This value is incompat-
ible with previous studies [9, 11, 32]. As a reference, re-
cent experimental constraints from polarized proton elastic
scattering [29], parity violating elastic electron scattering
[19], and electric dipole polarizability [30], are indicated
in the bottom part of Fig. 1.

To solve this puzzle, we have reconsidered in Ref. [1]
all possible contributions to the IAS energy that have not
been considered with sufficient care in self-consistent cal-
culations. Those effects are briefly discussed in what fol-
lows and have been implemented within a Skyrme func-
tional. Note that none of the new terms impacts to the
proton-neutron RPA residual force.

2 Electromagnetic spin-orbit

The electromagnetic spin-orbit correction to the nucleon
single-particle (sp) energy can be written within a non-
relativistic approximation as follows:

drdU u
pei= o [ TE0. ®

where i labels the i—th nucleon quantum numbers, m; is
the neutron or proton mass, Uc is the Coulomb energy
potential — calculated at the HF level or tree level — and
x; is equal to g, — 1 for protons and g, for neutrons;
gn = —3.82608545(90) and g, = 5.585694702(17) are the
neutron and proton g-factors, respectively [33]. The total
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energy correction to the binding energy of a nucleus will
be then AEqnso = Z}L g™, The effect of this term can
be treated perturbatively since it produces a change in the
nucleon single particle energies of tens of keV and, thus,
negligible in the single particle wave functions.

As an exercise, assuming a uniformly charged sphere
of radius R¢ one can estimate the energy correction to the
single particle energies [34]

e Za o

g;emso ~ 2m C4 R3 <l sl>xl . (9)

3 Coulomb exchange

In connection with the Skyrme interaction, it is customary
to adopt the so-called Slater approximation for the calcula-
tion of the Coulomb exchange. The Slater approximation
is local and, hence, it does not break the assumption of
zero-range; thus, it allows the use of simpler codes when
working in coordinate space. The direct part reads

s 2 p 7
Uglr'(?)go;(?) — %faﬁr/ é‘l_(r’?,)l(pi(ﬂ’ (10)

while the exchange part within the Slater approximation is

1/3
x,Slater _ 62 3 1/3
U™ iP) = Sz Proel (), (1)

where e is the elementary electric charge, p), is the proton
density and ¢; is the single particle wave function of the

i—th nucleon. The exact exchange has instead the well-
known non-local form

@57 )p;(P)

X,exact 62
Ue ¢i(73=—5fdr T

Since the early pioneering calculations done with the
Skyrme force, the Slater approximation has been known
to work quite well. In particular, the relative difference
between the exact total energy and that calculated with
the Slater approximation has been found to be of the or-
der of 3-6% in Ref. [35]. Thus, we may expect that the
effects arising from the replacement of the Slater approxi-
mation by the exact exchange can be treated in a perturba-
tive prescription described below. Our strategy is that we
replace the single particle energies with those calculated
with exact Coulomb matrix elements, but do not change
the HF wave functions calculated by the Slater approxi-
mation. While the Coulomb interaction contributes to the
HF field, the Coulomb residual interaction have no contri-
bution to charge-exchange RPA matrix elements.

In practice, the HF equation has been firstly solved
within the Slater approximation

@) (12)

[H + UE + US| @i = eigi. (13)

Then, in a second step, the single-particle energies &; have
been corrected perturbatively, namely new energies &; have
been extracted from

=g+ fd rQO, r—,») ( xexact _ UXS]ater)QDI(?) (14)

The single-particle energies undergo small changes
due to the correction AU = Ug exact Ué’smer, that is hun-
dreds of keV at most (see for example [25]). Thus, con-
sidering the wave functions as unchanged is a fairly good
assumption. We, therefore, will perform RPA with exact
Coulomb exchange by just replacing proton single-particle

energies g; with their new values &;.

4 Vacuum polarization correction

The lowest order correction in the fine-structure constant
to the Coulomb potential eZ/r is estimated via the vacuum
polarization correction. The vacuum polarization modifies
the charge of the proton over a range of the order of the
electron Compton wavelength. The virtual emission and
absorption of an electron-positron pair gives rise to a re-
pulsive potential Vy, that corrects the Coulomb repulsion
of two protons. Taking into account the finite size of the
nucleus, the correction potential can be written as follows:
[36]:

2 ae? L ()
Yo =37 | IR

where e is the fundamental electric charge, a the fine-
structure constant, 1, the reduced Compton electron wave-
length and

Ki(x) = fm dte_x’(tl + %) Viz 1. (16)
1

Ki (—I F=7 I) 15)

5 Finite size effects

The electric charge distribution is calculated and consis-
tently used in the HF calculation of the Coulomb potential
by taking into account the effect of the neutron and pro-
ton electromagnetic form factors and the electromagnetic
spin-orbit. Two approaches are used that give rise to the
same root mean square charge radius of the nucleus under
study. The first approach consist in doing the actual cal-
culation with realistic proton and neutron electromagnetic
form factors convoluted by using the proton and neutron
point like densities, respectively. That is, up to order 1/m?
and assuming spherical symmetry [37]

2

penlq) = ( 8q 2) |Ge(@0p(@) + GEnla)pon(@)]
;qz 26467 - Gen( )| (T $Hx

Lt
\fdﬂ@%mwﬂ%aﬂ
0 qx

where Gg v is taken from [38].

The second approach is phenomenological and takes
into account —on average— the previously mentioned con-
tributions by convoluting the proton point like density with
a gaussian form factor with a conveniently chosen range

pen(q) = G(@Pp,(q), (18)

where the G(¢?) takes a gaussian form with range y =
0.65 fm.
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6 Charge symmetry breaking and charge
independence breaking potentials

A charge symmetry breaking potential can be generally
defined as Vcsg = Vi — V), while a charge independence
breaking potential can be generally defined as Ve =
% (V,m + V,,,,) — Vpe. So an effective nucleon-nucleon po-
tential can be build on three parts: the charge independent
part (isospin symmetry is fully preserved) plus the two pre-
viously defined breaking terms.

Following [39] [cf. Egs. (18)-(21)] one can define
Skyrme-like CSB and CIB potentials as follows:

2> 2 1
Vess(r1.72) = 7 [(1) + 7(2)] {So(1 +yoPs)
1 12 oo = - = 2
+ 5510 +y1Py) X [P0 — ) + 6, — )P
+ 52(1 + 2 P)P - 8(7 - 72)13} (19)
and
2> 2 ]
Ves(F1,72) = ETZ(I)TZ(Z) uo(1 + zoPy)
1 12 oo - - 2 2
+ 51+ 21Py) X [P0, - 72) + 67, — )P
+ (1 +22P,)P - 5(7 - ?2)13} . (20)
where P = %(61 - 62) acts on the right and P’ is its com-
plex conjugate acting on the left and P/, are the usual
projector operators in isospin and spin spaces.

The Hartree-Fock energy density associated to the
CSB and CIB potentials is

so(1 —yo)
Hesg = OTyO(P% —p?))
S](l - yl) 3 3
+ T - Epnvzpn + Eppvzpp

+ 2puTa = pp7p) + (I = T7)

1
§(an2,0n - vazpp)

3
+ 55‘2(1 + yz)

1
+ 2tupn = Tppp) = 3 = )| @1

1
Hems = 3 [Mo(l - 20)(0; +Pi) —2up(2 + zo)Pan]

1

3
+ 3_2{ - 5”](1 - Z1) (PnV2Pn +ppV2pp)

3

+ 5@+ 20 (00, + 9,V pn)
+2u1(1—21) (Tnpn + Tppp)
= 2u1(2+z1) (Tnpp + Tppn)

+u(l-z)(J; + 1)+ 2u1z1J_,),J_;,}

Table 1. Effect of the different contributions from isospin
breaking (including both CSB and CIB) mentioned in the text
on the IAS energy in 2°*Pb. Corrections are basically
model-independent except the last one.

Eas [MeV]  Corr. [keV]
No corrections 18.31
Exact Coulomb exchange 18.41 +100
n/p mass difference 18.44 +30
Electromagnetic spin-orbit 18.45 +10
Finite size effects 18.40 -50
Vacuum polarization (V) 18.53 +130
Isospin symmetry breaking 18.80 +270

1
+ —

3
| 312+ 2 (0aV0n + £, Vp))

1
- Zu2(2 +22) (vazpn + PpVZPn)
+ 3us (1 + 22) (Tnpn + Tppp)

(2 +22) (Tnpp + Tppn)

1 7 7 Py
- Euz(l +22) (J,, + J,,) + MzZanJ,,] . (22)

7 Results

The contributions in Sec. 2-5, produce an overall — model
independent — upward shift of the IAS energy for the
straight line that connects the points of Fig. 1. In Table 1,
we can see that this shift, by adding also the small effect of
the neutron-proton mass difference, amounts to ~ 220 keV.
This is too small in order to let the line intersect the experi-
mental value for the IAS energy at a point that corresponds
to a realistic range of ARy, (indicated by the horizontal
bars in Fig. 1).

CSB and CIB effects have been widely discussed in the
literature (see, for example, Refs. [40—42]). Recently, the
isospin mixing in ®Be was studied based on the Green’s
function Monte Carlo method by including the CSB in-
teraction [43]. Although it is known for many years that
CSB-CIB forces must be taken into account to reproduce
the so-called Nolen-Schiffer anomaly along the nuclear
chart, the information on CSB-CIB forces in the nuclear
medium is scarce. The nuclear shell model has been em-
ployed for quite some time to analyze the energies along
the isobaric multiplets [34]. In the same context, it has
been noticed that CSB-CIB interactions needed to explain
the data are not consistent with those in the vacuum [44].
Similar conclusions have been drawn in Ref. [45].

In the present work we have kept our description sim-
ple. We considered only the terms in sy and ug (see
Sec. 6) to be different from zero with y and zo fixed to
—1. The momentum-dependent terms have not been con-
sidered, under the rationale that the information that we
have at our disposal is not sufficient to pin down the val-
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Table 2. SAMi-ISB parameter set. The statistical errors o are

given in parenthesis. See text for details. . ) )
Funding from the European Union’s Horizon 2020 research and

value(o) innovation programme under grant agreement No 654002 is ac-
to —-2098.3(149.3) MeV fm’ knowledged.
t 394.7(15.8) MeV fm’
t -136.4(10.8) MeV fm’
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