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Abstract. Our current knowledge of the Equation of State of asymmetric nuclear matter around saturation den-
sity and of the energy of the Isobaric Analog State in a heavy nucleus such as 208Pb seem to be in contradiction.
In Ref. [1], the problem has been highlighted and a solution has been proposed. In the present contribution, we
overview the aforementioned work by giving some new details not previously published.

1 Introduction

One of the most outstanding problems in nuclear physics is
the accurate determination of the nuclear equation of state
(EoS) [2, 3]. The nuclear symmetry energy is one of the
fundamental ingredients to describe the EoS when dealing
with isospin asymmetric matter [4, 5] and its determina-
tion may entail profound consequences in our understand-
ing of heavy-ion reactions [6], neutron stars [7], or of the
Standard Model via atomic parity violation [8].

Specifically, the symmetry energy is the energy per
particle needed to change protons into neutrons in uniform
matter at a given density ρ. At saturation density of sym-
metric matter, ρ0 ≈ 0.16 fm−3, its value is estimated to be
between 28-35 MeV [3]. If β is the local neutron-proton
asymmetry, β ≡ (ρn−ρp)/ρ, the energy per particle in mat-
ter having neutron-proton imbalance is a function E

A (ρ, β).
Such function can be expanded in even powers of β owing
to isospin symmetry (the Coulomb force has to be taken
out when dealing with a uniform system). By retaining
only the quadratic term we can write

E
A

(ρ, β) =
E
A

(ρ, β = 0) + S (ρ)β2. (1)

This equation defines the symmetry energy S (ρ), that is,
the difference between the energy per particle E/A in neu-
tron and symmetric matter.

It is customary to expand Eq. (1) around saturation
density as

S (ρ) = J + L
(
ρ − ρ0

3ρ0

)
+

1
2

Ksym

(
ρ − ρ0

3ρ0

)2
+ . . . , (2)

where different parameters have been defined, namely
J ≡ S (ρ0), L ≡ 3ρ0 S ′(ρ0), and Ksym ≡ 9ρ2

0 S ′′(ρ0).
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Predictions on these parameters based on different nu-
clear models has been documented along the years. While
Ksym is basically not known, the error on L, referred to
as the “slope parameter”, is believed to be still signif-
icantly larger than the error on J: ranges between 30-
90 MeV approximatelly [2, 3, 9–11]. Many authors have
pointed out a correlation between L and the neutron skin
∆Rnp ≡ 〈r2

n〉1/2 − 〈r2
p〉1/2 of a heavy nucleus like 208Pb [12–

15]. Accurate measurements of the neutron skin are still
required to pin down the value of L [16–20].

The difficulties in determining the symmetry energy
are essentially associated with our incomplete understand-
ing of the strong interaction in the low-energy regime.
Therefore, to find a connection with an observable that is
not sensitive to the strong force becomes an asset. The
Isobaric Analog State (IAS) is one of the well established
properties of nuclei that is measured accurately, and is only
sensitive to the isospin symmetry breaking (ISB) in the nu-
clear medium due to Coulomb interaction and, to a lesser
extent, the other effects discussed below.

At present, nuclear Energy Density Functionals
(EDFs), based on the Density Functional Theory, consti-
tute the only theoretical framework in which the neutron
skins and the IAS energies can be consistently calculated
from a microscopic perspective, in medium-heavy nuclei
[21]. There exist different types of EDFs. In particular,
results from the Skyrme and covariant density dependent
type of functionals will be presented here. Those are based
on the Hartree-Fock (HF) and Hartree approaches, respec-
tively, for the desncription of ground-state properties; and,
self-consistently, on the charge-exchange Random Phase
Approximation (RPA) for the study of nuclear collective
excitations [22, 23].

Within the Skyrme functionals, SAMi [24] has been
shown to be specially accurate in the description of charge-
exchange resonances. In Refs. [1, 25], it is shown that
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Figure 1. Energy of the IAS as a function of ∆Rnp. The arrows
indicate the experimental results from polarized proton elastic
scattering [29], parity violating elastic electron scattering [19],
and from the electric dipole polarizability [30]. Figure is taken
from Ref. [1].

families of functionals, based either on SAMi [26] or on
the covariant functional DD-ME [27], in which J and L
vary systematically, provide predictions for the IAS en-
ergy, EIAS, as a function of ∆Rnp in 208Pb that follow a
linear correlation. For the sake of completeness, results
associated with other Skyrme interactions are also plot-
ted. Such correlation can be understood in simple physical
terms. The excitation energy EIAS is defined as the energy
difference between the analog state |A〉 and the parent state
|0〉. The parent state is an eigenstate of the HamiltonianH
with N neutrons and Z protons and the analog state can
be defined as |A〉 ≡ T−|0〉〈0|T+T−|0〉−1/2 (cf. in Ref. [28]).
Hence,

EIAS = 〈A|H|A〉 − 〈0|H|0〉 =
〈0|T+[H , T−]|0〉
〈0|T+T−|0〉

(3)

and assuming good isospin in the parent state 〈0|T+T−|0〉 =
N − Z + 〈0|T−T+|0〉 = N − Z,

EIAS =
1

N − Z
〈0|[T+, [H , T−]]|0〉. (4)

Due to the structure of Eq. (3), EIAS depends on isospin
breaking parts of theH only. In nuclear physics, the main
isospin breaking term is known to be due to the Coulomb
interaction. Therefore, the bulk contribution to Eq. (3)
will be due to the difference in the expectation value of
the Coulomb matrix elements between proton and neutron
distributions. That is, for the direct Coulomb term assum-
ing an independent particle model

EC,direct
IAS =

1
N − Z

∫ [
ρn(�r) − ρp(�r)

]
Udirect

C (�r)d�r , (5)

where UC(�r1,�r2) is the direct part of the Coulomb en-
ergy potential generated by the electric charge distribution
ρch(�r),

Udirect
C (�r) =

∫
e2

|�r1 − �r|
ρch(�r1)d�r1 . (6)

The Coulomb exchange contribution can be evaluated in
an analogous way but will be much smaller than the
Coulomb direct part.

In order to understand in simple terms the relation be-
tween the EIAS and ∆Rnp we will evaluate Eq. (5) within a
simple yet physical model. Assuming a uniform neutron
and proton distributions of radius Rn and Rp respectively,
one can evaluate the Coulomb energy potential as

Udirect
C (�r) =


Ze2

2Rp

(
3 − r2

R2
p

)
for r < Rp

Ze2

r for r > Rp

and, therefore, obtain a simple formula for estimating the
bulk part of EIAS in terms of physical quantities

EIAS ≈ EC,direct
IAS

≈ 6
5

Ze2

Rp

(
1 − 1

2
N

N − Z
Rn − Rp

Rp

)

≈ 6
5

Ze2

r0A1/3

1 −
√

5
12

N
N − Z

∆Rnp

r0A1/3

 , (7)

that is, the IAS energy should decrease with increasing
neutron skin thickness, ∆Rnp ≡

√
3/5(Rn − Rp). For ex-

ample, for the case of 208Pb Eq. (7) EIAS ≈ 20.9− 5.7∆Rnp
which is in reasonable agreement with the result of the lin-
ear fit in Fig. 1, which gives EIAS ≈ 19.9(8) − 5.0(2)∆Rnp
and a linear correlation coefficient r = −0.985.

In Fig. 1, it is also shown that the model predictions are
not compatible with our present knowledge on the studied
observables. The experimental IAS energy [31] is shown
(horizontal dashed line) in the figure, and a simple extrapo-
lation implies ∆Rnp = 0.07(2) fm. This value is incompat-
ible with previous studies [9, 11, 32]. As a reference, re-
cent experimental constraints from polarized proton elastic
scattering [29], parity violating elastic electron scattering
[19], and electric dipole polarizability [30], are indicated
in the bottom part of Fig. 1.

To solve this puzzle, we have reconsidered in Ref. [1]
all possible contributions to the IAS energy that have not
been considered with sufficient care in self-consistent cal-
culations. Those effects are briefly discussed in what fol-
lows and have been implemented within a Skyrme func-
tional. Note that none of the new terms impacts to the
proton-neutron RPA residual force.

2 Electromagnetic spin-orbit

The electromagnetic spin-orbit correction to the nucleon
single-particle (sp) energy can be written within a non-
relativistic approximation as follows:

∆εi =
�2c2

2m2c4 xi〈�li · �si〉
∫

dr
r

dUCoul

dr
u2

i (r), (8)

where i labels the i−th nucleon quantum numbers, mi is
the neutron or proton mass, UC is the Coulomb energy
potential – calculated at the HF level or tree level – and
xi is equal to gp − 1 for protons and gn for neutrons;
gn = −3.82608545(90) and gp = 5.585694702(17) are the
neutron and proton g-factors, respectively [33]. The total
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Figure 1. Energy of the IAS as a function of ∆Rnp. The arrows
indicate the experimental results from polarized proton elastic
scattering [29], parity violating elastic electron scattering [19],
and from the electric dipole polarizability [30]. Figure is taken
from Ref. [1].

families of functionals, based either on SAMi [26] or on
the covariant functional DD-ME [27], in which J and L
vary systematically, provide predictions for the IAS en-
ergy, EIAS, as a function of ∆Rnp in 208Pb that follow a
linear correlation. For the sake of completeness, results
associated with other Skyrme interactions are also plot-
ted. Such correlation can be understood in simple physical
terms. The excitation energy EIAS is defined as the energy
difference between the analog state |A〉 and the parent state
|0〉. The parent state is an eigenstate of the HamiltonianH
with N neutrons and Z protons and the analog state can
be defined as |A〉 ≡ T−|0〉〈0|T+T−|0〉−1/2 (cf. in Ref. [28]).
Hence,

EIAS = 〈A|H|A〉 − 〈0|H|0〉 =
〈0|T+[H , T−]|0〉
〈0|T+T−|0〉

(3)

and assuming good isospin in the parent state 〈0|T+T−|0〉 =
N − Z + 〈0|T−T+|0〉 = N − Z,

EIAS =
1

N − Z
〈0|[T+, [H , T−]]|0〉. (4)

Due to the structure of Eq. (3), EIAS depends on isospin
breaking parts of theH only. In nuclear physics, the main
isospin breaking term is known to be due to the Coulomb
interaction. Therefore, the bulk contribution to Eq. (3)
will be due to the difference in the expectation value of
the Coulomb matrix elements between proton and neutron
distributions. That is, for the direct Coulomb term assum-
ing an independent particle model

EC,direct
IAS =

1
N − Z

∫ [
ρn(�r) − ρp(�r)

]
Udirect

C (�r)d�r , (5)

where UC(�r1,�r2) is the direct part of the Coulomb en-
ergy potential generated by the electric charge distribution
ρch(�r),

Udirect
C (�r) =

∫
e2

|�r1 − �r|
ρch(�r1)d�r1 . (6)

The Coulomb exchange contribution can be evaluated in
an analogous way but will be much smaller than the
Coulomb direct part.

In order to understand in simple terms the relation be-
tween the EIAS and ∆Rnp we will evaluate Eq. (5) within a
simple yet physical model. Assuming a uniform neutron
and proton distributions of radius Rn and Rp respectively,
one can evaluate the Coulomb energy potential as

Udirect
C (�r) =


Ze2

2Rp

(
3 − r2

R2
p

)
for r < Rp

Ze2

r for r > Rp

and, therefore, obtain a simple formula for estimating the
bulk part of EIAS in terms of physical quantities

EIAS ≈ EC,direct
IAS

≈ 6
5

Ze2

Rp

(
1 − 1

2
N

N − Z
Rn − Rp

Rp

)

≈ 6
5

Ze2

r0A1/3

1 −
√

5
12

N
N − Z

∆Rnp

r0A1/3

 , (7)

that is, the IAS energy should decrease with increasing
neutron skin thickness, ∆Rnp ≡

√
3/5(Rn − Rp). For ex-

ample, for the case of 208Pb Eq. (7) EIAS ≈ 20.9− 5.7∆Rnp
which is in reasonable agreement with the result of the lin-
ear fit in Fig. 1, which gives EIAS ≈ 19.9(8) − 5.0(2)∆Rnp
and a linear correlation coefficient r = −0.985.

In Fig. 1, it is also shown that the model predictions are
not compatible with our present knowledge on the studied
observables. The experimental IAS energy [31] is shown
(horizontal dashed line) in the figure, and a simple extrapo-
lation implies ∆Rnp = 0.07(2) fm. This value is incompat-
ible with previous studies [9, 11, 32]. As a reference, re-
cent experimental constraints from polarized proton elastic
scattering [29], parity violating elastic electron scattering
[19], and electric dipole polarizability [30], are indicated
in the bottom part of Fig. 1.

To solve this puzzle, we have reconsidered in Ref. [1]
all possible contributions to the IAS energy that have not
been considered with sufficient care in self-consistent cal-
culations. Those effects are briefly discussed in what fol-
lows and have been implemented within a Skyrme func-
tional. Note that none of the new terms impacts to the
proton-neutron RPA residual force.

2 Electromagnetic spin-orbit

The electromagnetic spin-orbit correction to the nucleon
single-particle (sp) energy can be written within a non-
relativistic approximation as follows:

∆εi =
�2c2

2m2c4 xi〈�li · �si〉
∫

dr
r

dUCoul

dr
u2

i (r), (8)

where i labels the i−th nucleon quantum numbers, mi is
the neutron or proton mass, UC is the Coulomb energy
potential – calculated at the HF level or tree level – and
xi is equal to gp − 1 for protons and gn for neutrons;
gn = −3.82608545(90) and gp = 5.585694702(17) are the
neutron and proton g-factors, respectively [33]. The total

energy correction to the binding energy of a nucleus will
be then ∆Eemso =

∑A
i=1 ε

emso
i . The effect of this term can

be treated perturbatively since it produces a change in the
nucleon single particle energies of tens of keV and, thus,
negligible in the single particle wave functions.

As an exercise, assuming a uniformly charged sphere
of radius RC one can estimate the energy correction to the
single particle energies [34]

εemso
i ≈ − �

3c3

2m2
i c4

Zα
R3

C

〈�li · �si〉xi . (9)

3 Coulomb exchange

In connection with the Skyrme interaction, it is customary
to adopt the so-called Slater approximation for the calcula-
tion of the Coulomb exchange. The Slater approximation
is local and, hence, it does not break the assumption of
zero-range; thus, it allows the use of simpler codes when
working in coordinate space. The direct part reads

Udir.
C (�r)ϕi(�r) =

e2

2

∫
d3r′

ρp(�r′)
|�r − �r′|ϕi(�r), (10)

while the exchange part within the Slater approximation is

Ux,Slater
C ϕi(�r) = −e2

2

(
3
π

)1/3
ρ1/3

p ϕi(�r), (11)

where e is the elementary electric charge, ρp is the proton
density and ϕi is the single particle wave function of the
i−th nucleon. The exact exchange has instead the well-
known non-local form

Ux,exact
C ϕi(�r) = −e2

2

∫
d3r′

ϕ∗j(�r
′)ϕ j(�r)

|�r − �r′| ϕi(�r′). (12)

Since the early pioneering calculations done with the
Skyrme force, the Slater approximation has been known
to work quite well. In particular, the relative difference
between the exact total energy and that calculated with
the Slater approximation has been found to be of the or-
der of 3-6% in Ref. [35]. Thus, we may expect that the
effects arising from the replacement of the Slater approxi-
mation by the exact exchange can be treated in a perturba-
tive prescription described below. Our strategy is that we
replace the single particle energies with those calculated
with exact Coulomb matrix elements, but do not change
the HF wave functions calculated by the Slater approxi-
mation. While the Coulomb interaction contributes to the
HF field, the Coulomb residual interaction have no contri-
bution to charge-exchange RPA matrix elements.

In practice, the HF equation has been firstly solved
within the Slater approximation

[
H + Udir.

C + Ux,Slater
C

]
ϕi = εiϕi. (13)

Then, in a second step, the single-particle energies εi have
been corrected perturbatively, namely new energies ε̃i have
been extracted from

ε̃i = εi +

∫
d3rϕi(�r)∗

(
Ux,exact

C − Ux,Slater
C

)
ϕi(�r) . (14)

The single-particle energies undergo small changes
due to the correction ∆U ≡ Ux,exact

C − Ux,Slater
C , that is hun-

dreds of keV at most (see for example [25]). Thus, con-
sidering the wave functions as unchanged is a fairly good
assumption. We, therefore, will perform RPA with exact
Coulomb exchange by just replacing proton single-particle
energies εi with their new values ε̃i.

4 Vacuum polarization correction

The lowest order correction in the fine-structure constant
to the Coulomb potential eZ/r is estimated via the vacuum
polarization correction. The vacuum polarization modifies
the charge of the proton over a range of the order of the
electron Compton wavelength. The virtual emission and
absorption of an electron-positron pair gives rise to a re-
pulsive potential Vvp that corrects the Coulomb repulsion
of two protons. Taking into account the finite size of the
nucleus, the correction potential can be written as follows:
[36]:

Vvp(�r) =
2
3
αe2

π

∫
d�r′
ρ(�r′)
|�r − �r′|K1

(
2
�e
|�r − �r′|

)
, (15)

where e is the fundamental electric charge, α the fine-
structure constant, �e the reduced Compton electron wave-
length and

K1(x) ≡
∫ ∞

1
dte−xt

(
1
t2 +

1
2t4

) √
t2 − 1 . (16)

5 Finite size effects

The electric charge distribution is calculated and consis-
tently used in the HF calculation of the Coulomb potential
by taking into account the effect of the neutron and pro-
ton electromagnetic form factors and the electromagnetic
spin-orbit. Two approaches are used that give rise to the
same root mean square charge radius of the nucleus under
study. The first approach consist in doing the actual cal-
culation with realistic proton and neutron electromagnetic
form factors convoluted by using the proton and neutron
point like densities, respectively. That is, up to order 1/m2

and assuming spherical symmetry [37]

ρch(q) =
(
1 − q2

8m2

) [
GE,p(q2)ρp(q) +GE,n(q2)ρn(q)

]

− πq
2

2m2

∑
l,t

[
2GM,t(q2) −GE,t(q2)

]
〈�l · �s〉×

∫ ∞
0

dx
j1(qx)

qx
|Rn,l, j(x)x2|2, (17)

where GE,M is taken from [38].
The second approach is phenomenological and takes

into account –on average– the previously mentioned con-
tributions by convoluting the proton point like density with
a gaussian form factor with a conveniently chosen range

ρch(q) = G(q2)ρp(q), (18)

where the G(q2) takes a gaussian form with range µ =
0.65 fm.

3
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6 Charge symmetry breaking and charge
independence breaking potentials

A charge symmetry breaking potential can be generally
defined as VCSB = Vnn − Vpp while a charge independence
breaking potential can be generally defined as VCIB =
1
2

(
Vnn + Vpp

)
− Vpn. So an effective nucleon-nucleon po-

tential can be build on three parts: the charge independent
part (isospin symmetry is fully preserved) plus the two pre-
viously defined breaking terms.

Following [39] [cf. Eqs. (18)-(21)] one can define
Skyrme-like CSB and CIB potentials as follows:

VCSB(�r1,�r2) ≡ 1
4
[
τz(1) + τz(2)

] {
s0(1 + y0Pσ)

+
1
2

s1(1 + y1Pσ) ×
[
P′2δ(�r1 − �r2) + δ(�r1 − �r2)P2

]

+ s2(1 + y2Pσ)�P′ · δ(�r1 − �r2)�P
}

(19)

and

VCIB(�r1,�r2) ≡ 1
2
τz(1)τz(2)

{
u0(1 + z0Pσ)

+
1
2

u1(1 + z1Pσ) ×
[
P′2δ(�r1 − �r2) + δ(�r1 − �r2)P2

]

+ u2(1 + z2Pσ)�P′ · δ(�r1 − �r2)�P
}
, (20)

where �P ≡ 1
2i (�∇1 − �∇2) acts on the right and P′ is its com-

plex conjugate acting on the left and Pτ/σ are the usual
projector operators in isospin and spin spaces.

The Hartree-Fock energy density associated to the
CSB and CIB potentials is

HCSB =
s0(1 − y0)

8
(ρ2

n − ρ2
p)

+
s1(1 − y1)

32

[
− 3

2
ρn∇2ρn +

3
2
ρp∇2ρp

+ 2(ρnτn − ρpτp) +
(
�J2
n − �J2

p

) ]

+
3

32
s2(1 + y2)

[
1
2

(ρn∇2ρn − ρp∇2ρp)

+ 2(τnρn − τpρp) − 1
3

( �J2
n − �J2

p)
]
. (21)

HCIB =
1
8

[
u0(1 − z0)(ρ2

n + ρ
2
p) − 2u0(2 + z0)ρnρp

]

+
1

32

{
− 3

2
u1(1 − z1)

(
ρn∇2ρn + ρp∇2ρp

)

+
3
2

u1(2 + z1)
(
ρn∇2ρp + ρp∇2ρn

)

+ 2u1(1 − z1)
(
τnρn + τpρp

)

− 2u1(2 + z1)
(
τnρp + τpρn

)

+ u1(1 − z1)
(
�J2
n +
�J2

p

)
+ 2u1z1 �Jn �Jp

}

Table 1. Effect of the different contributions from isospin
breaking (including both CSB and CIB) mentioned in the text

on the IAS energy in 208Pb. Corrections are basically
model-independent except the last one.

EIAS [MeV] Corr. [keV]
No corrections 18.31
Exact Coulomb exchange 18.41 +100
n/p mass difference 18.44 +30
Electromagnetic spin-orbit 18.45 +10
Finite size effects 18.40 -50
Vacuum polarization (Vch) 18.53 +130
Isospin symmetry breaking 18.80 +270

+
1
16

[
3
4

u2(1 + z2)
(
ρn∇2ρn + ρp∇2ρp

)

− 1
4

u2(2 + z2)
(
ρp∇2ρn + ρp∇2ρn

)

+ 3u2(1 + z2)
(
τnρn + τpρp

)

− u2(2 + z2)
(
τnρp + τpρn

)

− 1
2

u2(1 + z2)
(
�J2
n +
�J2

p

)
+ u2z2 �Jn �Jp

]
. (22)

7 Results

The contributions in Sec. 2-5, produce an overall – model
independent – upward shift of the IAS energy for the
straight line that connects the points of Fig. 1. In Table 1,
we can see that this shift, by adding also the small effect of
the neutron-proton mass difference, amounts to ≈ 220 keV.
This is too small in order to let the line intersect the experi-
mental value for the IAS energy at a point that corresponds
to a realistic range of ∆Rnp (indicated by the horizontal
bars in Fig. 1).

CSB and CIB effects have been widely discussed in the
literature (see, for example, Refs. [40–42]). Recently, the
isospin mixing in 8Be was studied based on the Green’s
function Monte Carlo method by including the CSB in-
teraction [43]. Although it is known for many years that
CSB-CIB forces must be taken into account to reproduce
the so-called Nolen-Schiffer anomaly along the nuclear
chart, the information on CSB-CIB forces in the nuclear
medium is scarce. The nuclear shell model has been em-
ployed for quite some time to analyze the energies along
the isobaric multiplets [34]. In the same context, it has
been noticed that CSB-CIB interactions needed to explain
the data are not consistent with those in the vacuum [44].
Similar conclusions have been drawn in Ref. [45].

In the present work we have kept our description sim-
ple. We considered only the terms in s0 and u0 (see
Sec. 6) to be different from zero with y0 and z0 fixed to
−1. The momentum-dependent terms have not been con-
sidered, under the rationale that the information that we
have at our disposal is not sufficient to pin down the val-
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6 Charge symmetry breaking and charge
independence breaking potentials

A charge symmetry breaking potential can be generally
defined as VCSB = Vnn − Vpp while a charge independence
breaking potential can be generally defined as VCIB =
1
2

(
Vnn + Vpp

)
− Vpn. So an effective nucleon-nucleon po-

tential can be build on three parts: the charge independent
part (isospin symmetry is fully preserved) plus the two pre-
viously defined breaking terms.

Following [39] [cf. Eqs. (18)-(21)] one can define
Skyrme-like CSB and CIB potentials as follows:

VCSB(�r1,�r2) ≡ 1
4
[
τz(1) + τz(2)

] {
s0(1 + y0Pσ)

+
1
2

s1(1 + y1Pσ) ×
[
P′2δ(�r1 − �r2) + δ(�r1 − �r2)P2

]

+ s2(1 + y2Pσ)�P′ · δ(�r1 − �r2)�P
}

(19)

and

VCIB(�r1,�r2) ≡ 1
2
τz(1)τz(2)

{
u0(1 + z0Pσ)

+
1
2

u1(1 + z1Pσ) ×
[
P′2δ(�r1 − �r2) + δ(�r1 − �r2)P2

]

+ u2(1 + z2Pσ)�P′ · δ(�r1 − �r2)�P
}
, (20)

where �P ≡ 1
2i (�∇1 − �∇2) acts on the right and P′ is its com-

plex conjugate acting on the left and Pτ/σ are the usual
projector operators in isospin and spin spaces.

The Hartree-Fock energy density associated to the
CSB and CIB potentials is

HCSB =
s0(1 − y0)

8
(ρ2

n − ρ2
p)

+
s1(1 − y1)

32

[
− 3

2
ρn∇2ρn +

3
2
ρp∇2ρp

+ 2(ρnτn − ρpτp) +
(
�J2
n − �J2

p

) ]

+
3

32
s2(1 + y2)

[
1
2

(ρn∇2ρn − ρp∇2ρp)

+ 2(τnρn − τpρp) − 1
3

( �J2
n − �J2

p)
]
. (21)

HCIB =
1
8

[
u0(1 − z0)(ρ2

n + ρ
2
p) − 2u0(2 + z0)ρnρp

]

+
1

32

{
− 3

2
u1(1 − z1)

(
ρn∇2ρn + ρp∇2ρp

)

+
3
2

u1(2 + z1)
(
ρn∇2ρp + ρp∇2ρn

)

+ 2u1(1 − z1)
(
τnρn + τpρp

)

− 2u1(2 + z1)
(
τnρp + τpρn

)

+ u1(1 − z1)
(
�J2
n +
�J2

p

)
+ 2u1z1 �Jn �Jp

}

Table 1. Effect of the different contributions from isospin
breaking (including both CSB and CIB) mentioned in the text

on the IAS energy in 208Pb. Corrections are basically
model-independent except the last one.

EIAS [MeV] Corr. [keV]
No corrections 18.31
Exact Coulomb exchange 18.41 +100
n/p mass difference 18.44 +30
Electromagnetic spin-orbit 18.45 +10
Finite size effects 18.40 -50
Vacuum polarization (Vch) 18.53 +130
Isospin symmetry breaking 18.80 +270

+
1

16

[
3
4

u2(1 + z2)
(
ρn∇2ρn + ρp∇2ρp

)

− 1
4

u2(2 + z2)
(
ρp∇2ρn + ρp∇2ρn

)

+ 3u2(1 + z2)
(
τnρn + τpρp

)

− u2(2 + z2)
(
τnρp + τpρn

)

− 1
2

u2(1 + z2)
(
�J2
n +
�J2

p

)
+ u2z2 �Jn �Jp

]
. (22)

7 Results

The contributions in Sec. 2-5, produce an overall – model
independent – upward shift of the IAS energy for the
straight line that connects the points of Fig. 1. In Table 1,
we can see that this shift, by adding also the small effect of
the neutron-proton mass difference, amounts to ≈ 220 keV.
This is too small in order to let the line intersect the experi-
mental value for the IAS energy at a point that corresponds
to a realistic range of ∆Rnp (indicated by the horizontal
bars in Fig. 1).

CSB and CIB effects have been widely discussed in the
literature (see, for example, Refs. [40–42]). Recently, the
isospin mixing in 8Be was studied based on the Green’s
function Monte Carlo method by including the CSB in-
teraction [43]. Although it is known for many years that
CSB-CIB forces must be taken into account to reproduce
the so-called Nolen-Schiffer anomaly along the nuclear
chart, the information on CSB-CIB forces in the nuclear
medium is scarce. The nuclear shell model has been em-
ployed for quite some time to analyze the energies along
the isobaric multiplets [34]. In the same context, it has
been noticed that CSB-CIB interactions needed to explain
the data are not consistent with those in the vacuum [44].
Similar conclusions have been drawn in Ref. [45].

In the present work we have kept our description sim-
ple. We considered only the terms in s0 and u0 (see
Sec. 6) to be different from zero with y0 and z0 fixed to
−1. The momentum-dependent terms have not been con-
sidered, under the rationale that the information that we
have at our disposal is not sufficient to pin down the val-

Table 2. SAMi-ISB parameter set. The statistical errors σ are
given in parenthesis. See text for details.

value(σ)
t0 −2098.3(149.3) MeV fm3

t1 394.7(15.8) MeV fm5

t2 −136.4(10.8) MeV fm5

t3 11995(686) MeV fm3+3α

x0 0.242(9)
x1 −0.17(33)
x2 −0.470(4)
x3 0.32(21)
W0 294(6)
W ′0 −367(12)
α 0.223(31)
s0 −26.3(7) MeV fm3

u0 25.8(4) MeV fm3

ues of all parameters of a general interaction with several
partial waves.

In Ref. [46], ISB contributions to the energy per parti-
cle of symmetric nuclear matter have been studied within
the Brueckner-Hartree-Fock theory based on AV18 realis-
tic potential [47]. We have determined a new Skyrme pa-
rameter set named SAMi-ISB, using the same fitting pro-
tocol of SAMi but including CSB-CIB contributions (see
Ref. [1] and supplemental material). We have first started
from existing parameters of SAMi and fixed the values
of s0 and u0 by requiring a reproduction of the results of
Ref. [46] and the value of the IAS energy in 208Pb. Then,
the standard Skyrme parameters have been refitted to en-
sure the realiability of the isospin conserving part of the
Skyrme functional. This has been done in two steps since
CSB/CIB affect the binding energies and charge radii only
by a few per mil or per cent.

The values of the SAMi-ISB parameters are provided
in Table 2. As seen in Fig. 1, with SAMi-ISB, the IAS
energy of 208Pb is predicted at EIAS = 18.80(5) MeV
(Eexp

IAS = 18.826 ± 0.010 MeV [31]) with the neutron skin
∆Rnp= 0.151(7) fm, which is within the realistic range de-
duced from the three experiments. Moreover, we have
checked the predictive power of SAMi-ISB by calculating
the IAS energy in other nuclei (see supplemental material
in Ref. [1]).

In conclusion, SAMi-ISB is a new parameterization of
a Skyrme-like energy density functional (EDF) that recon-
cile standard nuclear properties (saturation density, bind-
ing energy and charge radii of finite nuclei) with both our
current understanding of the density behavior of the sym-
metry energy and the reproduction of the IAS energy of
208Pb. To achieve that, we have self-consistently included
for the first time within the HF+RPA framework all known
contributions that break the isospin symmetry. All of these
contributions are calculated in a model-independent way,
except the CSB-CIB contribution. We have fixed only two
free parameters in the CSB-CIB terms, and we have shown
that this allows reproducing at the same time BHF calcu-
lations based on AV18, and the IAS energy of a heavy nu-
cleus such as 208Pb without compromising the other prop-
erties of nuclear matter and finite nuclei.
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