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Abstract

Stabilizing quantum states in physical qubits quantum computers has been a widely

explored topic in the Noisy Intermediate-Scale Quantum era. However, much of this

work has focused on simulation rather than practical implementation. In this study, an

experimental advancement in Bell state stabilization is presented, which utilizes surface

codes for quantum error correction across three quantum computers: ibm_fez, ibm_torino,

and ibm_brisbane. Our findings indicate that error correction produces an improvement of

approximately 3% in accuracy for 127-qubit systems while demonstrating a more significant

enhancement of around 20% for 156-qubit systems in stabilizing the Bell state with fidelity

up to 0.6 in all the experiments. This paper outlines the methodology for implementing

this strategy in other applications, offering a pathway to improve results (≈ 20%) when

experimenting with superconducting quantum computers.

Keywords: quantum state stabilization; surface codes; bell state; IBM quantum devices

MSC: 81-05

1. Introduction

In this manuscript, Section 1 contextualizes the problem of quantum error correction

in real devices [1] and defines the logical Bell state as the case study; Section 2 reviews

prior feedback-based and topological-code approaches for Bell-state stabilization on super-

conducting hardware; Section 3 details the design of surface code patches, the selection of

physical qubits, and the experimental protocol implemented on the ibm_fez, ibm_torino,

and ibm_brisbane devices; Section 4 presents fidelity and accuracy data with and without

error correction, showing improvements of 10–20%; Section 5 analyzes how the benefit

of QEC varies with hardware generation and extracts lessons for higher-distance codes;

Section 6 summarizes the key findings and suggests directions for future work in the NISQ

era [2,3].

Quantum error correction (QEC) [4] is universally acknowledged as an indispensable

ingredient for scalable quantum computation since it enables the preservation of delicate

superposition and entanglement against decoherence and imperfect gate operations [5]. A

canonical benchmark for QEC schemes is the logical Bell state,

|Φ+
L ⟩ =

|0L0L⟩+ |1L1L⟩√
2

, (1)
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where {|0L⟩, |1L⟩} spans the logical qubit Hilbert subspace. In the simple repetition code of

length n, one encodes

|0L⟩ = |0⟩⊗n, |1L⟩ = |1⟩⊗n,

thereby detecting up to ⌊(n− 1)/2⌋ bit-flip errors at the expense of an n-fold physical-qubit

overhead [6]. However, repetition codes cannot address simultaneous bit- and phase-

flip errors.

Surface codes transcend this limitation by arranging qubits on a two-dimensional

lattice and introducing two commuting stabilizer families [7,8]:

As = ∏
i∈star(s)

Xi, Bp = ∏
i∈plaquette(p)

Zi,

where Xi and Zi denote Pauli operators on physical qubit i. The protected code subspace

is the common +1 eigenspace of all As and Bp. Logical operators arise as non-trivial

homological cycles [9],

X = ∏
i∈γX

Xi, Z = ∏
i∈γZ

Zi,

with intersection γX ·γZ = 1 (mod 2), ensuring {X, Z} = 0. The minimal weight of such

cycles defines the code distance d [10].

Surface codes thus offer simultaneous protection against bit- and phase-flip errors

with asymptotically favorable scaling, making them prime candidates for near-term fault-

tolerant architectures.

For the design of surface-code patches, the qubit coupling maps of ibm_fez (graph

G1), ibm_torino (G2) and ibm_brisbane (G3) are modeled as undirected connected graphs

Gi = (Vi, Ei), i ∈ {1, 2, 3},

where |Vi| is the number of physical qubits and |Ei| the number of couplings. These

topologies remain static during our February 2025 experiments, allowing precomputation

of their binary cycle-space dimension

dim H1(Gi,Z2) = |Ei| − |Vi|+ 1

which counts all independent simple cycles [11]. Although every simple cycle lies in this

space, only chordless 4-cycles (plaquettes) aligned with the heavy-hex layout serve as valid

stabilizer patches [12]. Geometrically, each such plaquette is a rhombus (a square rotated by

45◦) because the hexagonal lattice does not admit axis-aligned squares. Figure 1a highlights

one rhombic plaquette on the 127-qubit ibm_brisbane device, with its vertex set {a, b, c, d}
traced in black.

Each plaquette cycle [γ] defines a Pauli–X stabilizer

SP = ∏
q∈γ

Xq,

and its dual plaquette produces a Pauli–Z stabilizer. The full set of these 4-cycle equivalence

classes generates the first homology group

H1(Gi,Z) ∼= Z
|Ei |−|Vi |+1,

which captures both the count and orientation of independent plaquette windings [13]. In

this homological framework, each class [γ] corresponds to one logical operator: its integer

winding number identifies a distinct logical-qubit degree of freedom.
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Mathematically, each plaquette P in a distance-d surface code defines a four-qubit

stabilizer operator

SP = ∏
i∈P

Xi = Xa Xb Xc Xd,

where {a, b, c, d} are the vertices of the 4-cycle [γ] ⊂ G and Xi is the Pauli-X acting on qubit

i. The dual plaquettes similarly produce Z-stabilizers SZ
P = ∏i∈P Zi. Collectively, these

operators generate the Abelian stabilizer group [14]

S =
〈

{SX
P } ∪ {SZ

P}
〉

,

whose common +1 eigenspace is the logical code subspace C. A logical Bell state |ΦL⟩
satisfies

S |ΦL⟩ = |ΦL⟩ ∀S ∈ S .

Error syndromes are obtained by projective measurement of each stabilizer. A Pauli

error E anticommutes with those S ∈ S for which

{E, S} = 0,

yielding an outcome −1 and thereby flagging a defect. The vector of measurement out-

comes s ∈ {0, 1}|S| is decoded (e.g. via minimum-weight perfect matching) [15] to infer a

correction operator C ∈ Pn such that

C E ∈ ⟨S⟩,

restoring the state to C without disturbing |ΦL⟩. This procedure guarantees that all

residual errors lie in the stabilizer group and thus act trivially on the encoded logical

information [16,17].

In Figure 1a, the single plaquette cycle [γ1], based at x0 ∈ {a, b, c, d}, realises the

logical operators

X1 = ∏
i∈γ1

Xi, Z1 = ∏
i∈γ∗1

Zi,

whose common +1 eigenstate is the encoded qubit |ΦL1
⟩. In Figure 1b, two disjoint 4-cycles

[γ1] and [γ2] (anchored at x0 ∈ {a, b, c, d} and y0 ∈ {d, e, f , g}, respectively) define two

logical qubits with operators {X1, Z1} and {X2, Z2}. By preparing their joint state in the

simultaneous +1 eigenspace of X1X2 and Z1Z2, the surface code directly encodes the

two-qubit Bell state

|ΦL1L2
⟩ = |0L1

0L2
⟩+ |1L1

1L2
⟩√

2
,

thus demonstrating entanglement at the logical level. Since [γi] ∈ π1(G, xi), these logical

operators inherit the homotopy-class structure of the underlying graph, guaranteeing

topological protection against local errors [18,19].
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(a) Single logical qubit over a single plaquette. (b) Two logical qubits over two plaquettes.

Figure 1. Plaquette surfaces and cycles over the heavy-hex ibm_brisbane topology. The red sur-

faces, in (a,b), represents the plaquettes to encode information and the black arrow-circumference

denotes cycles.

2. Related Work

Quantum Bell-state stabilization on superconducting hardware [20] has developed

along two complementary tracks: feedback-based control and topological error-correcting

codes. The first clear demonstration of real-time feedback employed an ancillary transmon

to perform repeated parity measurements, achieving fidelities of F ≈ 74% over twelve

stabilization cycles and proving that stabilizer protocols can be executed within qubit

coherence times [21]. Subsequent work integrated table-lookup decoders directly into

cryogenic control stacks, enabling fully autonomous state locking.

A second line of research exploits the passive robustness of topological modes. Jin and

Greplova [22] showed that edge states of a superconducting resonator chain can stabilize

entanglement against local parameter noise, providing a hardware-efficient route to long-

lived two-qubit correlations. Most recently, Hetényi and Wootton overlaid a surface code

with a Bacon–Shor code on a 133-qubit heavy-hex device [21], producing logical Bell pairs

with code distance d = 2 and a post-selected fidelity of 94% after five rounds of syndrome

extraction in simulation [19].

Previous studies either remained confined to few-qubit demonstrations or focused

on a single processor architecture; reported gains are typically quoted at the logical level,

obscuring the physical-qubit overhead.

A cross-platform implementation of surface code Bell-state stabilization is reported

across three IBM Quantum processors—ibm_fez, ibm_torino, and ibm_brisbane—featuring

127 and 156 physical qubits. In contrast to the overlay approach of [23], every qubit partici-

pates in a single distance-d surface code whose syndrome extraction runs within coherence-

time budgets. Averaged over five error-correction rounds, a physical-state fidelity F≈0.60

was achieved, and net accuracy improvements of 10% on 127-qubit lattices and 20% on

156-qubit lattices relative to uncorrected runs were measured. The protocol relies only

on nearest-neighbor CZ connectivity, is fully open-sourced, and can be ported to other

superconducting platforms, thereby narrowing the gap between numerical benchmarks

and hardware practice.

3. Materials and Methods

Two entangled logical qubits are implemented using a distance-d = 4 topological

code [4] on three IBM quantum processors—ibm_fez (156 qubits), ibm_torino (133 qubits)

and ibm_brisbane (127 qubits).
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This implementation requires carefully selecting appropriate physical qubits to form

the surface code [24] patches where quantum information will be encoded. Due to the

quantum computer’s topology, the best-case scenario allows for the creation of a maximum

of three entangled logical qubit pairs. This limitation arises from the graph’s structure:

15 physical qubits are required in a specific configuration to generate a single logical

entangled resource pair (ERP) [25]. This exemplifies one of the key disadvantages of

working with logical qubits. Consequently, a 156-physical-qubit processor may effectively

be reduced to just 6 logical qubits, highlighting the current limitations of the NISQ era for

executing large-scale, deep quantum circuits [26].

To create the first logical qubit, four physical qubits in a diamond arrangement are

entangled. The entanglement was achieved by applying Hadamard gates (H) followed by

Controlled-NOT (CNOT) gates between each adjacent pair of qubits in a clockwise manner,

establishing cyclic entanglement [27]. The same procedure was repeated for the second

logical qubit, starting from the bottom qubit. Subsequently, one qubit from the first patch

was entangled with another from the second patch to establish logical-qubit entanglement.

This procedure was executed on actual quantum hardware, requiring a transpilation

process to adapt the quantum operations to each computer’s native gate set. The transpi-

lation automatically identifies equivalent gate sequences, a process facilitated by Qiskit’s

qiskit.transpiler module and its transpile() function.

The detailed methodological procedure can be seen in the following algorithm

(Algorithm 1):

Algorithm 1 Quantum Circuit for Entangling Logical Qubits Process

1: Input: num_qubits, num_logical_qubits, ancillas_config
2: Initialize qubits in |0⟩ state.
3: Initialize quantum circuit qc with num_qubits and classical bits.
4: Define logical qubits: qubitL_i for i = 1 to num_logical_qubits

5: Define ancillas for parity measurement using ancillas_config

6: Prepare logical qubits:
7: for each logical qubit set qubitL_i do
8: for each qubit q in qubitL_i do
9: Apply Hadamard gate H(q)

10: end for
11: end for
12: Entangle qubits within each logical group:
13: for each logical qubit set qubitL_i do
14: for j = 1 to size(qubitL_i)− 1 do
15: Apply CNOT: CX(qubitL_i[j], qubitL_i[j + 1])
16: end for
17: end for
18: Apply cross-connections and entanglement between logical qubits.
19: procedure MEASURE_PARITY_Z(logical, ancillas, bit_start)
20: bit_index ← bit_start
21: for each (qubit, (a1, a2)) in ancillas do
22: Apply CNOT: CX(qubit, a1) and CX(qubit, a2)
23: Measure a1→ clbit[bit_index]
24: Measure a2→ clbit[bit_index + 1]
25: bit_index ← bit_index + 2
26: end for
27: end procedure
28: procedure CORRECT_ERRORS_X(logical, ancillas, bit_start)
29: bit_index ← bit_start
30: for each (qubit, (a1, a2)) in ancillas do
31: Apply conditional X gate if clbit[bit_index] = 1 or clbit[bit_index + 1] = 1
32: bit_index ← bit_index + 2
33: end for
34: end procedure
35: Apply parity measurement and error correction for all logical qubits.
36: Final measurements:
37: for each logical qubit set qubitL_i do
38: for k = 0 to size(qubitL_i)− 1 do
39: Measure qubitL_i[k]→ clbit[result_start + k]
40: end for
41: end for
42: Print the final circuit diagram.

As shown in Figure 2, the pairs of entangled logical qubits can be clearly identified.

While their exact positions vary slightly across different quantum processors, their relative
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locations remain similar due to the comparable topologies of the IBM quantum computers.

Each diamond-shaped pair represents an entangled qubit pair (ERP) encoded on the surface

code lattice.

Figure 2. Two-entangled logical qubits over ibm_fez, ibm_torino, and ibm_brisbane topologies [21].

Red qubits represent the data-qubits, and the black qubits represent ancilla-qubits used for measuring

the parity between qubits to detect and correct the errors [28].

This structure enables the detection and correction of bit-flip errors through the sta-

bilizer operators SP = XaXbXcXd, where Xi represents a Pauli-X operation on the i-th

qubit. Bit-flip errors constitute one of the predominant noise sources in current NISQ-era

quantum computers [29].

4. Testing and Results

The results are obtained by executing the quantum circuit using 15 physical qubits,

with a total of 10,000 circuit repetitions (shots). Measurements are performed after applying

quantum error correction to each physical qubit, and the outcomes are stored as classical

bit strings.

During the post-processing stage, intermediate states that introduced measurement

noise are filtered out. The cleaned measurement data was subsequently analyzed to identify

instances in which the encoded logical qubit pairs corresponded to either the |0L0L⟩ or

|1L1L⟩ states.

The analysis is expected to produce a histogram with two prominent peaks—one at

|0L0L⟩ and the other at |1L1L⟩. In an ideal Bell state, these outcomes each appear with 50%

probability. This characteristic bimodal distribution provides a clear indicator of successful

logical encoding and error-correction procedures.

Figure 3a–c present a comparative analysis of quantum state preparation accuracy

with (blue) and without (red) Quantum Error Correction (QEC). The accuracy metric was

computed by evaluating the deviation from the ideal 50%–50% distribution between the

logical states |0L0L⟩ and |1L1L⟩ using the symmetric ratio:

A = min
( n

m
,

m

n

)

∈ [0, 1] (2)

where n and m represent the measured counts of |0L0L⟩ and |1L1L⟩ states respectively. This

accuracy measure reaches unity when perfect balance (n = m) is achieved and decreases as

the distribution becomes more skewed.
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(a) (b) (c)

Figure 3. Comparative analysis of quantum error correction (QEC) performance across three logical

qubit pairs, showing accuracy improvements (∆A) in all cases. Blue bars represent results with active

QEC (AQEC), while red bars show baseline measurements without error correction (A0). Each dataset

comprises 10000 circuit executions. Error bars represent the standard deviation of five independent

experimental runs. (a) ibm_fez accuracies: AQEC = 0.89 vs. baseline: A0 = 0.69 (∆A = +0.20).

(b) ibm_torino accuracies: AQEC = 0.88 vs. baseline: A0 = 0.76 (∆A = +0.12). (c) ibm_brisbane

accuracies: AQEC = 0.90 vs. baseline: A0 = 0.87 (∆A = +0.03).

However, what is particularly interesting is identifying where the use of QEC becomes

truly necessary. In the case shown in Figure 3c, the difference is minimal compared to the

other two cases, which shows that quantum error correction has a limited impact in this

specific scenario where the number of qubits is lower.

While this metric effectively quantifies the proximity to the target logical EPR state,

experimental implementations often encounter superposition states that may affect the

results [30]. For instance, the |Ψ+⟩ Bell state represents a scenario where the logical qubits

are in opposite states rather than the desired correlated configuration. This necessitates the

use of quantum state fidelity, which provides a rigorous comparison between the desired

and obtained density matrices.

For this case, according to [31,32], the orthogonality between |Φ+⟩ and |Ψ+⟩ the

fidelity can be written as the probability (pφ) of obtaining the target state |Φ+⟩:

F(ρ, σ) =

(

Tr

√√
σρ
√

σ

)2

= ⟨Φ+|ρ|Φ+⟩ = pφ (3)

where

• σ = |Φ+⟩⟨Φ+| is the target density matrix

• ρ is the experimentally obtained density matrix

• pφ represents the probability of measuring the desired |Φ+⟩ state

Figure 4 presents the summarized accuracy results across quantum computers. The

most significant improvement was observed in ibm_fez (156 physical qubits), which at the

time of writing (April 2025) represents IBM’s largest superconducting quantum proces-

sor. This indicates that newer quantum hardware may require more sophisticated qubit

stabilization techniques compared to more mature systems like ibm_brisbane.

The results obtained in Table 1 highlight that error correction methods remain valuable

for improving computational accuracy, particularly in newer quantum processors. How-

ever, it is emphasized that these experiments only provide evidence for the preservation of

a well-understood quantum state (the logical EPR state), and further research is required to

generalize these findings to more complex quantum states and operations.
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Figure 4. Comparison of state preparation accuracy with and without error correction for Bell state

stabilization across three quantum processing units (QPUs). The results demonstrate the effectiveness

of quantum error correction (QEC) in different quantum hardware generations.

Table 1. Comparative of experimental results across three quantum computing devices. The table

shows quantum state fidelity (F) and state preparation accuracy (A) both with and without quantum

error correction (QEC).

Quantum Computer Fidelity F(ρ, σ) A % with QEC A % without QEC

ibm_fez 0.6432 89.14 69.49
ibm_torino 0.6517 88.09 76.22

ibm_brisbane 0.6438 90.44 87.47

5. Discussion

The experimental results presented in this work reveal several important insights about

quantum error correction [30] performance across different generations of IBM quantum

processors. The Bell-state fidelity measurements demonstrate that, while QEC provides

measurable improvements in all tested systems, the magnitude of these improvements

depends strongly on device size and maturity.

To contextualize these results, Table 2 juxtaposes our hardware-based surface-code

stabilization against the simulation study by Hetényi & Wootton. Their work achieves

a post-selected logical Bell-state fidelity of 0.94 for distance-2 codes in silico with five

measurement rounds but reports no pre- or post-correction accuracy baseline. In contrast,

this study implements a distance-4 surface code on three IBM heavy-hex devices, where

the accuracy pre/post-QEC of 0.87→ 0.90 on 127 qubits, 0.76→ 0.88 on 133 qubits, and

0.69→ 0.89 on 156 qubits. Bell-state fidelity after correction ∼ 0.60 in all three cases.

These improvements under NISQ-era noise confirm consistent accuracy gains, while

the fidelity metric highlights the remaining challenge: a contribution factor of ∼ 0.6 still

lies below the ideal threshold region (≈ 0.7–0.9) for scalable surface-code architectures [14].

The most substantial QEC benefits are observed in ibm_fez with 156 qubits, where

error correction improved state-preparation accuracy by

∆A = +0.20 (from 0.69 to 0.89).

This significant enhancement suggests that larger, newer quantum processors may initially

require error-correction strategies to compensate for nascent qubit-stabilization techniques.

The post-correction fidelity of 0.89 approaches the threshold commonly cited for fault-

tolerant surface code implementations in superconducting hardware.
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Table 2. Comparison of logical Bell-state stabilization between this work and Hetényi & Wootton.

Study Device (qubits) Implementation Code Type Distance d Accuracypre Accuracypost Fidelitypost

Hetényi & Wootton [21] ibm_torino (133) Simulation Bacon–Shor/Surface 2, 3 N/A N/A 0.94
Present work ibm_brisbane (127) Hardware Surface 4 0.87 0.90 0.64
Present work ibm_torino (133) Hardware Surface 4 0.76 0.88 0.65
Present work ibm_fez (156) Hardware Surface 4 0.69 0.89 0.64

Conversely, the ibm_brisbane system with 127 qubits showed smaller but still mean-

ingful improvements,

∆A = +0.03 (from 0.87 to 0.90),

reflecting a higher baseline accuracy that likely arises from accumulated engineering

improvements in qubit design and control electronics.

The intermediate case of ibm_torino with 133 qubits presents a transitional perfor-

mance profile, with QEC providing

∆A = +0.12 (from 0.76 to 0.88).

This suggests that ibm_torino benefits from partial integration of advanced error-

mitigation techniques, sitting between the earlier and later generations of devices.

Despite these advances, this contribution remains ∼ 0.6 across all three processors.

For comparison, the recent on-hardware magic-state injection study reports fidelities of

0.8806± 0.0002 and 0.8665± 0.0003 [29]. Simulation-based work in a heavy-hex lattice

reports similar contribution factors but lacks real-device validation [21].

A contribution factor of∼ 0.6 still falls below the ideal threshold region (≈0.7–0.9) [28]

required for scalable surface code architectures. This gap is attributed to the following:

1. Residual correlated errors not fully captured by the basic surface code syndrome

extraction.

2. Circuit depth overhead, where additional syndrome-measurement layers introduce

new opportunities for decoherence and gate infidelity.

3. Measurement and reset errors in ancilla qubits, which degrade the effectiveness of

repeated syndrome-extraction cycles.

These results demonstrate that, although on-hardware QEC and magic-state proto-

cols achieve thresholds and fidelities beyond prior benchmarks, further improvements

in device coherence, decoding algorithms, and error-suppression techniques are essen-

tial to elevate the contribution factor into the regime necessary for fully fault-tolerant

quantum computation.

To further elucidate the hardware coherence limitations on ibm_brisbane, this analysis

examines qubit relaxation (T1) and dephasing (T2) times as reported in IBM’s backend

specifications [33]:

• T1 (Relaxation Time): The average duration a qubit remains in the excited state |1⟩
before decaying to the ground state |0⟩, characterizing energy relaxation (units: µs).

• T2 (Dephasing Time): The timescale over which a qubit maintains phase coherence

between |0⟩ and |1⟩, accounting for both relaxation and pure dephasing processes

(units: µs).

Measured values are significantly lower on ibm_brisbane (T1 = 80µs, T2 = 60µs)

compared to ibm_torino (T1 = 105µs, T2 = 85µs) and ibm_fez (T1 = 120µs, T2 = 95µs).

These reduced coherence times directly correlate with the smaller error-correction gains

observed on ibm_brisbane, indicating that its engineering optimizations—while en-
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hancing gate performance—also produce shorter qubit lifetimes that constrain overall

QEC effectiveness.

6. Conclusions

Based on the experimental implementation of surface code quantum error correction

(QEC) across multiple IBM quantum processors, the key conclusions are as follows:

• The surface code implementation demonstrated significant error correction capability,

particularly for larger processors like ibm_fez (156 qubits), where accuracy improved

from 69.49% to 89.14%.

• The effectiveness of QEC varies substantially with processor architecture and qubit

count, showing diminishing returns in more mature systems like ibm_brisbane

(127 qubits).

• The achieved fidelities around 0.6 for the logical Bell state |Φ+
L ⟩ indicate that while

QEC improves operational accuracy, maintaining high-quality entanglement re-

mains challenging.

• The results indicate that optimal QEC strategies should be tailored to specific pro-

cessor generations, thus balancing between error correction overhead and native

hardware performance.

These findings provide valuable insights for developing quantum algorithms that

must negotiate the trade-offs between error correction benefits and their computational

overhead in near-term quantum devices.

7. Future Work

In future work, a larger subset of the heavy-hex lattice will be leveraged by incorporat-

ing additional physical qubits into dedicated bit-flip error-correction routines. A tailored

noise-mitigation module, such as dynamical decoupling sequences or probabilistic error

cancellation, will be integrated directly into the logical encoding pipeline. Preliminary

simulations indicate that extending bit-flip correction across this expanded qubit region and

applying noise-mitigation protocols could boost logical-Bell fidelity by up to 0.8 compared

to the current implementation. Systematic experimental validation on each backend will

be required to quantify the combined impact of these optimizations and to fine-tune the

trade-off between code complexity and noise resilience.
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