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Abstract. The Euclidean space-time lattice regularization represents an excellent frame-

work for a non-perturbative study of QCD. The main goal in lattice hadron spectroscopy

is to reproduce the experimentally observed properties of the hadrons by a first principle

computation, in order to verify QCD and gain a deeper understanding of strong interac-

tions.

The ambitious task of this thesis is to drift from the traditional path of lattice hadron

spectroscopy and analyze the spectrum of N and ∆ by taking into account their resonant

nature. The products of their decays are pion-nucleon systems in S and P wave, which

represent the main subject of investigation of this work.

The energy spectrum is evaluated using the variational method and the distillation ap-

proach. Great interest is also addressed to the phase shift analysis and the possibility of

extracting the resonances parameters such as mass and width is explored.

This study sheds some light on different spin and isospin sectors of the QCD baryon

spectrum and provides new insight on multi-particle lattice studies, which still constitute

an outstanding challenge in lattice QCD.



Zusammenfassung. Die Formulierung auf einem euklidischen Raum-Zeit Gitter ist

eine hervorragende Methode um Gitter QCD nicht-perturbativ zu untersuchen. Das

hauptsächliche Ziel der Gitter Hadron-Spektroskopie ist, die experimentell beobachteten

Eigenschaften der Hadronen in einer ab-initio Rechnung zu bestätigen, um so die QCD

zu verifizieren und ein tieferes Verständnis der starken Wechselwirkung zu gewinnen.

Die ehrgeizige Aufgabe dieser Dissertation ist es, den traditionellen Zugang der Gitter

Hadron-Spektroskopie zu erweitern und das Energiespektrum von Nukleon und Delta

unter Berücksichtigung ihrer Resonanz-Eigenschaft zu studieren. Ihre Zerfallskanäle sind

das Pion-Nukleon System in S und P Welle; dies ist das Hauptthema der vorgelegten

Arbeit.

Das Energiespektrum wird mittels der Variationsmethode und der sogenannten Distilla-

tionsmethode bestimmt. Ein Schwerpunkt ist dabei die Analyse der Phasenverschiebung

und daraus die Ermittlung der Resonanzparameter wie Masse und Halbwertsbreite.

Diese Studie liefert Informationen über Spin und Isospin der QCD Baryonen und gibt

Einblicke zum Problem von gekoppelten Mehrteilchenkanälen, das noch immer eine

Herausforderung in der Gitter QCD darstellt.
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Introduction

The 20th century has been the arena of revolutionary discoveries in particle physics. In

1919 Rutherford reported the first experimental evidences of the existence of the proton,

a suitable candidate for being an elementary particle. In the following decades, with the

invention of the bubble chamber, a wide variety of particles was discovered: the hadron

spectrum [2] started to be explored and it soon became clear that these particles could

not be all fundamental.

The properties of the hadron spectrum led to the conjecture of underlying degrees of

freedom: the quarks [3] [4], bound together into the observable states by the strong force.

The strong interaction, carried by massless vector bosons called gluons, is encoded in the

Quantum Chromodynamics (QCD) action, a non-abelian quantum gauge field theory of

the SU(3) gauge group. QCD was introduced in 1973 and it became soon part of the

Standard Model, a theory which merges electromagnetic, strong and weak interactions.

Even though QCD seems to explain the structure of the observable matter, an analytic

solution has not yet been found. Many different strategies are available, most of them

based on a perturbative approach, which requires a small coupling and therefore not

suitable for the description of the hadron creation process, where a strong coupling is

involved. An alternative approach was introduced by Wilson [5] in 1974 and concerns

the study of QCD on a discretized space-time grid: the lattice. The lattice regularization

provides an efficient method for ab-initio calculations and a valid way to obtain predic-

tions starting from the QCD action.

In this work we focus our attention on the properties of the hadrons, which are nothing

but excited states in the QCD vacuum, and we study them with the help of the lattice dis-

cretization. Lattice hadron spectroscopy has so far obtained extraordinary results in the

reproduction of the particle spectrum observed in nature. However these studies have

been limited as the particles were traditionally treated as stable states. Even considering

only strong interactions, most of the hadrons are unstable. Their resonant nature and

their coupled decay channels have to be taken into account if a reliable picture wants

to be achieved. Formally we would expect that mesons and baryons would couple to

their decay states via dynamical vacuum loops generated from the dynamical action,

1



Introduction 2

however in realistic simulations such intermediate channels are not observed (see, e.g.,

[6–11] for baryon correlation studies) and it seems necessary to explicitly introduce the

interpolators of the decay channels. In the last years, thanks to the development of

new techniques for the evaluation of correlation functions (e.g. the distillation method

[12]) and the extraction of energy states on the lattice (such as the variational method

[13–16]), hadron-hadron states have been explicitly included in hadron calculations

demonstrating their crucial influence on the observed spectrum (e.g. meson resonance

studies [17–22]).

The interplay between resonance levels and hadron-hadron states has been studied in

details by Lüscher [14, 23–25], who developed an approach that relates the energy levels

in a finite spatial volume to the elastic scattering phase shift in the continuum. Using this

approach the parameters of the resonance, such as mass and width, can be extracted.

The energy levels on finite volumes can also be obtained starting from a continuum

model for the scattering process [26–29] and allowing a comparison with lattice results.

Alternative methods for the identification of the resonance parameters have been also

discussed in [26, 30, 31].

Two particle states on the lattice require special care, in particular when moving frames

are required [32–36]. Mixing between different partial waves and the opening of further

inelastic channels can additionally complicate the situation.

In this work we have investigated pion-nucleon systems coupled with different reso-

nances of the low lying baryon spectrum. An interesting case is the negative parity

nucleon channel. The two low lying resonances N∗(1535) and N∗(1650) couple to Nπ

in S-wave and so far all the lattice simulations that explored this channel included only

3-quark interpolators [9–11]. These studies do not lead to completely satisfactory results:

two low lying energy levels are identified and assigned to the two negative parity reso-

nances. However, the lower of the two levels lies below the N∗(1535) even at unphysical

pion masses. In order to clarify the situation we study the coupled system of a nucleon

and a pion-nucleon in S-wave.

Another outstanding dilemma in particle physics is represented by the Roper resonance

[37]. Effective models with a confining interaction between quarks in light and strange

baryons imply a very characteristic mass ordering: the spectrum of the light baryons is

expected to be arranged into a succession of positive and negative parity states. However

the spectrum of the nucleon, differently from the Λ-hyperon, does not follow this pattern

and brings into question the hypothesis of a flavor-blind gluon exchange mechanism

[38].

Lattice calculations so far did not manage to shed light on this issue [39–42]: the mass

of the Roper resonance appears to be higher than the first negative nucleon state and

the nature of this resonance is still unknown. N(1440) decays into Nπ states in P-wave.

Therefore we perform a coupled system study in order to investigate this sector of the
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nucleon spectrum.

The pion-nucleon P-wave is also the main decay channel of the ∆-baryon, whose res-

onant nature has only recently been considered in lattice studies [43]. We study the

{∆, Nπ} system and extract information on the resonance.

Note that in our study we take into account only contributions from the Nπ decay chan-

nel. Further inelastic decays are expected not to play a role on our lattice due to the

unphysical pion mass. It also has to be kept in mind that all the results presented in

this thesis are obtained from a discretized version of the QCD action with two light

mass-degenerate quarks in finite volume. The effects of electroweak interactions and

isospin symmetry breaking are not taken into account.

This thesis is structured as follows: in Chapter 1 and Chapter 2 we briefly introduce

the basic concepts of QCD and its discretization on the lattice. In Chapter 3 we list the

tools at the basis of lattice hadron spectroscopy. Chapter 4 is devoted to the analysis of

multi-particle states setup and the effects of non-rest frames on the symmetries of the

system. After a summary of the calculation setup, we display the results of this work.

In Chapter 5 we present the outcome of the pion-nucleon scattering in S-wave, which

couple to the negative parity sector of the nucleon. Chapter 6 and Chapter 7 are focused

on the Nπ system in P-wave. The results for the Roper sector and the Delta baryon are

shown. Appendices A, B and C include details about the structure of the interpolators,

such as their properties under parity transformations and the isospin structure, while

in Appendix D we list all the Wick contractions that have been evaluated in the lattice

calculations.





Chapter 1

Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory of strong interactions between quarks

and gluons and it was introduced in 1973 [44] in order to explain the properties of the

proton and the whole variety of experimentally observed hadrons. The theory is based

on an exact SU(3) color symmetry and the gluon fields, the gauge bosons of QCD, act as

vectors of the interaction.

QCD can be formulated in a compact way and it is completely specified by very few

parameters: the number of quark flavors with their mass and one coupling constant

which determines the strength of the interaction. The main features that characterize

the theory are its asymptotic freedom at high energies together with the confinement

(not yet rigorously proven), which explains the fact that only color neutral states are

observed.

Despite its elegance and the presence of only few parameters, obtaining predictions

starting from the QCD action is not an easy task due to the fact that an analytic solution

of the theory is still missing. Most of the approaches that are used to deal with QCD

are based on perturbation theory: an expansion at small couplings. However, they

are destined to fail in the description of the process which leads the generation of the

hadrons, since it involves a strong coupling interaction. A possible way to overcome the

problem is the lattice discretization.

In this chapter we introduce the QCD action and we briefly list properties and symmetries

of the theory in order to prepare the ground for its discretization, which will be discussed

in Chapter 2.

5



Chapter 1. Quantum Chromodynamics 6

1.1 The theory in the continuum

The QCD action can be written as a sum of two parts

SQCD = SF + SG, (1.2)

which encode different kind of interactions: the fermionic and the gauge action.

The fermionic action is written in terms of quark fields: massive fermions defined as

Dirac 4-spinors

ψ(f)(x)α
c
, (1.3)

where f = 1..6 is the flavor index, c = 1, 2, 3 is a color index and α = 1..4 is a Dirac

index. SF is a bilinear functional of the quark fields

SF [ψ̄, ψ,A] =

Nf∑
f=1

∫
d4xψ̄(f)(x)

[
iγµDµ(x)−m(f)

]
ψ(f)(x), (1.4)

where γµ are (4 × 4) matrices (a representation in Euclidean space can be found in

Appendix A). The covariant derivative is defined as

Dµ(x) = ∂µ − iAµ(x), (1.5)

with Aµ(x)cd being the gluon field: a vector field which carries a Lorenz index µ. The

QCD action is required to be invariant under local rotations of the quark color indices,

which constrains Aµ to be an element of the su(3) algebra. For the same reason it is

necessary to introduce a gauge action of the form

SG =
1

2g2

∫
d4xTr

[
Fµν(x)Fµν(x)

]
, (1.6)

where g is the QCD coupling constant, while the trace over color indices guarantees the

gauge invariance. The definition of Fµν hides the main differences between QCD and

QED:

Fµν(x) = i[Dµ(x), Dν(x)] =

= ∂µAν(x)− ∂νAµ(x) + i[Aµ(x), Aν(x)],
(1.7)

where the commutator does not vanish since su(3) is non-abelian. The main consequence

on the action is the presence of cubic and quartic terms of self interaction among gluons,

which are mainly responsible for confinement and determine the non-triviality of QCD.
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In the functional integral formalism of QCD the action enters the partition function as

Z =

∫
D[Aµ]D[ψ̄]D[ψ]eiSQCD , (1.8)

affecting its convergence in different ways. The introduction of the lattice regularization

is in fact determined by the necessity of dealing with this Z:

• Due to the gauge symmetry, the integral in Eq. (1.8) results in a sum of infinitely

many copies which can be eliminated by fixing the gauge. However, on a finite

lattice this integral is finite and there is no need for gauge fixing as long as gauge

invariant quantities are computed.

• The integral in Eq. (1.8) diverges due to quantum fluctuations and has to be

regularized. A renormalization of the parameters is also needed and their depen-

dence on the scale makes perturbation theory approaches only valid in restricted

ranges. The lattice is not affected by this problem thanks to its non-perturbative

nature, giving access to different aspects of QCD including the mass generation

mechanism.

As we will see in the next chapter, the discretization of QCD is a non trivial process. The

hardest task will be to resemble as good as possible the symmetries that characterize

QCD in the continuum:

• Poincaré invariance, which includes Lorenz and translational invariance;

• Gauge invariance;

• Symmetries under discrete transformations such as parity, time-reversal and charge

conjugation;

• Chiral symmetry realized for massless quarks;

• Flavor symmetry for mass-degenerate quarks.

1.2 QCD hadron spectrum

As we have seen, the building blocks of QCD are the gluons together with 6 flavors of

quarks. Due to the confinement property of the theory, these blocks must be combined

in colorless structures which are the only objects that can be observed: the hadrons [2].

The symmetry pattern of the observed hadron spectrum has inspired the constituent

quark model [3? ]: an underlying flavor SU(3) symmetry imposes strong constraints on

the composition of the hadrons (see Fig. 1.1):
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FIGURE 1.1: A schematic representation of the baryon octet and decuplet: the particles
are organized following an underlying SU(3) flavor symmetry.

Hadron Quark content Group representation

meson q̄ q 3⊗ 3̄ = 8⊕ 1

baryon q q q 3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1

However in the experimentally measured spectrum there are some resonances that do

not fit in the quark model as well as aspects that are still unclear.

An example is the (J = 1/2, I = 1/2) sector: the nucleon spectrum.

FIGURE 1.2: Experimental values of the low-lying spectra of nucleon, ∆-resonance
and Λ-hyperon. The red lines represent states with positive parity and the blue lines
are negative parity states. Note the different ordering between the spectra of baryons
constituted by light quarks (N and ∆) compared to the spectrum of the Λ, which

contains a strange quark.
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A simple model with a confining and color-blind interaction would imply that in the

baryon spectrum masses of positive and negative parity alternate [38]. This is the case

for the Λ-hyperion, but not for the nucleon: the Roper resonance N+(1440) lies below

N−(1550) breaking the expected pattern. The reverse mass ordering observed in nature

might be a hint for the exotic nature of the Roper resonance: a pentaquark composition

would place it out of the scheme and explain the unconventional mass [45–48]. Another

possibility is the assumption of a flavor-spin dependent interaction between valence

quarks of the Goldstone boson exchange type [49–51]. A Roper-like behavior is actually

observed also in the Delta spectrum triggering similar questions.

Other areas of the spectrum might hint the presence of non QCD-like objects such as

glueballs, hybrids, tetraquarks and the aforementioned pentaquarks. A further inspection

of the QCD spectrum is hopefully going to shed some light on the nature of the states. At

the same time it becomes crucial to find an approach that can systematically test whether

QCD can predict all the properties of the resonances, among which the mass and the

width.





Chapter 2

QCD on the Lattice

In this chapter we explain how to discretize the QCD action on the lattice and which are

the main properties and symmetries of the resulting framework. Since many books and

reviews are available [52–59], we will just provide a short overview in order to make

this text self contained.

Lattice QCD represents an ideal ground for testing non-perturbative QCD phenomena

despite its limits, which can be summarized in

• unphysical pion mass,

• finite volume effects,

• explicit chiral and Poincaré symmetry breaking.

In order to understand these issues we will briefly explain how to rewrite the QCD

action on a discrete Euclidean lattice and which are advantages and disadvantages of

this procedure.

2.1 The discretized action

Considerable steps forward in the understanding of the mass generation have been

made thanks to Chiral Perturbation Theory studies [60, 61] as well as models based

on dynamical symmetry breaking [62, 63], however none of them includes quarks and

gluons as fundamental degrees of freedom. Introduced in 1974 by K.G. Wilson [5], the

lattice discretization represents a valid tool to perform ab-initio calculations using quarks

and gluons as building blocks.

11
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FIGURE 2.1: A sketch of the discretization of QCD on a cubic lattice.

Lattice QCD is formulated on a discrete Euclidean space-time grid (the lattice Λ) where

the minimum distance a is the lattice spacing. Every fermionic degree of freedom is

assigned to a site of the lattice, while the gluons are placed on the links (see Fig. (1.1)).

As a consequence

• the lattice spacing serves as natural ultraviolet cutoff;

• due to its discrete nature, lattice quantum field theories can be simulated on a

computer with the same techniques used in Statistical Mechanics.

A naive discretization with the substitution of the derivatives in the continuum expression

for SF gives

S
(0)
F [ψ̄, ψ] = a4

∑
n∈Λ

ψ̄(n)

∑
µ

γµ
Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2a
+mψ(n)

 , (2.1)

where the requirement to preserve the gauge symmetry leads to the introduction of the

gluon fields Uµ. The link variables are oriented (from n to n+ µ̂) and they are elements

of the group SU(3).

The simplest gauge invariant object that can be constructed on the lattice coincides with

a closed loop of 4 gauge links

Uµν(n) = Uµ(n)Uν(n+ µ̂)Uµ(n+ ν̂)†U †ν (n), (2.2)
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and Uµν is called plaquette. A function of the plaquette is defined as the discretized

version of the gauge action

SG[U ] =
2

g2

∑
n∈Λ

∑
µ<ν

Re Tr[1− Uµν(n)], (2.3)

which approaches its continuum counterpart for a→ 0 with corrections O(a2).

The fermionic action as defined in Eq. (2.3) suffers from the doubling problem: when

inverting the Dirac operator, one obtains a quark propagator which has 15 extra poles,

in addition to the original one. In order to get rid of these copies (the doublers) Wilson

suggested to add an O(a−1) term which corresponds to adding an extra mass to the

doublers mass: in the continuum limit these artificial copies of the original fermion

decouple from the rest of the theory due to their extremely heavy mass. This term is

added to the naive version of the fermion action so that

Sf [ψ̄, ψ, U ] = a4
∑
n,m∈Λ

ψ̄(n)D(n|m)ψ(m), (2.4)

with

D(f)(n|m) =

(
m(f) +

4

a
δnm

)
δnm −

1

2a

±4∑
µ=±1

(1− γµ)Uµ(n)δn+µ̂,m, (2.5)

which is γ5-hermitian since

(γ5D)† = γ5D. (2.6)

This property implies that the determinant of the Dirac operator is real, which is crucial

for Monte Carlo simulations.

2.1.1 Symmetries

The symmetries appear to play a decisive role since they define universality classes:

different theories belonging to the same universality class are expected to provide the

same predictions for physical observables when the limit a→ 0 is performed. The final

action conserves many of the symmetry properties of the continuum action: the gauge

symmetry, together with the discrete symmetries under parity and charge conjugation

are preserved. On the other hand chiral symmetry, which requires

Dγ5 + γ5D = 0, (2.7)

is explicitly broken for Wilson fermions even at vanishing quark masses due to the term

that has been introduced to remove the doublers. The well known No-Go Theorem by
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FIGURE 2.2: The symmetries of the sphere O(3) are transformed in the symmetries of a
hypercube Oh when the space is discretized.

Nielsen and Ninomiya [64] states the impossibility of defining a discretized version of the

fermionic action which has no doublers and at the same time preserves chiral symmetry.

Ginsparg and Wilson formulated [65] a new definition of chiral symmetry on the lattice

as

Dγ5 + γ5 = aDγ5D, (2.8)

which reduces to the definition in the continuum for a→ 0.

Another symmetry that does not survive after the discretization is the Poincaré symmetry

SU(2) (double cover of SO(3) which includes half integer spin representations): it is

broken to a discrete subgroup 2O (double cover of the octahedral group O). The break-

ing of the Poincaré symmetry determines complications in the definition of spin on the

lattice, affecting the construction of the interpolators (see Section 3.2).

2.1.2 Wilson clover action and HYP smearing

Other possibilities for the lattice action exist: as long as the final action belongs to the

same universality class and therefore gives the same predictions in the continuum limit,

new terms can be included in the action to improve its scaling behavior and reduce

discretization errors.

A common approach is smearing: links and/or quark sources are redefined as functions

of the neighboring variables. In this section we define the two types of smearing that are

used in the action which enters in the calculations of the current work: a Wilson Clover

action with HYP smearing [66, 67].
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FIGURE 2.3: Lattice representation of the clover term Fµν .

The link smearing consists in averaging each link with a specified selection of neighboring

links, usually the staple Sµ(n) defined as

Sµ(n) =
∑
ν=±µ

Uν(n)Uµ(n+ ν̂)Uν(n+ µ̂)†. (2.9)

The APE smearing was the first to be introduced [68] and defines the new link as

Vµ(n) = PSU(3)

[
(1− α)Uµ(n) +

α

6
Sµ(n)

]
, (2.10)

with α to be tuned. PSU(3) represents the projection onto SU(3). The HYP [69] smearing

used for our action is a generalization of the APE smearing in all the directions

Ūµ,νσ(n) = PSU(3)

(a− α3)Uµ(n) +
α3

2

∑
ρ6=±(µ,ν,σ)

Sρ(n)

 , (2.11)

Ũµ,ν(n) = PSU(3)

(a− α2)Uµ(n) +
α2

4

∑
σ 6=±(µ,ν)

S̄σ(n)

 , (2.12)

Vµ(n) = PSU(3)

(a− α1)Uµ(n) +
α1

6

∑
ν 6=±µ

S̃ν(n)

 , (2.13)

where S̄ is built from Ū using Eq. (2.9) and S̃ is defined from Ũ . Other smearing

solutions can be found, for example, in [70–76].

Wilson fermions are affected by discretization errors determined by a non-negligible

cut-off. An O(a) improvement is obtained by adding to the Wilson action a clover term,

where Fµν is a lattice version of the field strength tensor (Fig. 2.3) [77]

Simp = SW + a5
∑
x

cSW ψ̄(x)
1

8i
[γµ, γν ]Fµν(x)ψ(x), (2.14)
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with

Fµν(x) =
1

2
(Pµν(x)− P †µν(x)) (2.15)

and

Pµν(x) = Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν (x)

+ Uν(x)U †µ(x− µ̂+ ν̂)U †ν (x− µ̂)Uµ(x− µ̂)

+ U †µ(x− µ̂)U †ν (x− µ̂− ν̂)Uµ(x− µ̂− ν̂)Uν(x− ν̂)

+ U †ν (x− ν̂)Uµ(x− ν̂)Uν(x+ µ̂− ν̂)U †µ(x).

(2.16)

Other types of quark smearing exist. Among them the distillation method plays a crucial

role in modern calculations and will be extensively discussed in Section 3.4.

2.2 Monte Carlo

The discretization on a Euclidean space-time has the advantage of reducing the quantum

fields of the original theory to a countable number of classical variables. Even though so-

phisticated algorithms and vast computing resources are needed, a numerical evaluation

of the discretized QCD path integral becomes possible.

The vacuum expectation values are written as

〈O〉 =
1

Z

∫
D[U ]D[ψ̄ψ]O[U, ψ̄, ψ]eSG[U ]eSF [ψ̄,ψ], (2.17)

with

Z =

∫
D[U ]D[ψ̄ψ]eSG[U ]eSF [ψ̄,ψ], (2.18)

where the path integral is computed as integral over all the possible field configurations.

This sum is approximated using Monte Carlo methods [78], where the fermion and gluon

actions are the weight factors that enter the importance sampling when the Markov chain

of configurations is generated.

The fermion action, however, requires a special treatment: the quark fields are spinors

obeying the Pauli principle and have to be treated as Grassmann variables, which are not

very suitable for computer simulations. It is crucial to notice that SF is bilinear in ψ and

ψ̄, which can be integrated out analytically so that

ZF [U ] =

∫
D[ψψ̄]e−

∑
f ψ̄D[U ]ψ = detDNf [U ] (2.19)
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and in general

Z =

∫
D[U ]ZQ[U ]e−SG[U ] =

∫
D[U ]e−SG[U ] (detD[U ])Nf . (2.20)

For Nf = 2 degenerate fermions the term (detD)2 is always positive, therefore it can

be included in the importance sampling, even though the simulation becomes very

expensive in terms of computational time due to the non-locality of the Dirac operator.

2.3 Advantages and disadvantages of the discretization

The lattice discretization provides a non-perturbative regularization of QCD, where the

lattice spacing serves as ultraviolet cut-off and a numerical evaluation of the path inte-

gral is possible. Therefore Lattice QCD (LQCD) allows to calculate predictions from first

principles: the only parameters that have to be fixed are the number and the mass of the

quark flavors, together with the coupling constant.

Even if LQCD represents a powerful tool, it is affected by limitations that have to be

kept in mind when a physical interpretation of the results is done. The main limita-

tion to LQCD calculations is connected to the availability of computer resources and

the efficiency of the algorithms: they determine the size of the systematic errors (finite

volume, large lattice spacing, unphysical quark masses) and statistical errors (Monte

Carlo integration) and therefore the possibility of producing reliable predictions.

In the last three decades the field experienced revolutionary improvements: large ded-

icated high performance computers became available, time-effective algorithms were

developed and a deeper understanding of the limitations of the method made LQCD one

of the most powerful approaches for the study of QCD.

One of the aspects where great interest is devoted is the study of the QCD spectrum,

its excited states and the decays processes. The ingredients that are needed in a lattice

hadron spectroscopy study are

• an observable that can be measured on the lattice with statistical precision;

• techniques that allow to produce high resolution data;

• an approach that allows to transform the results obtained from lattice calculations

into data which can be compared with experiments such as mass and width;

and will be explained in details in Chapter 3 and Chapter 4.





Chapter 3

Hadron spectroscopy on the lattice

3.1 Euclidean correlation function

Due to the finiteness of the spatial volume the energy spectrum of the correlation func-

tions is discrete. The energy levels corresponding to the eigenstates of the Hamiltonian

on the lattice can be determined by evaluating the following observable:

C(t) = 〈O(t)O(0)〉 , (3.1)

the Euclidean correlation function between the initial state at time t = 0 (source) created

by the operatorO(0) and the final state which is annihilated byO(t) (sink). Each operator

(in this context called interpolator) lives on the corresponding Euclidean time slice.

The contribution from each state of the spectrum can be visualized by inserting a com-

plete set of eigenstates of the Hamiltonian in Eq. (3.1), with the corresponding eigenval-

ues

C(t) = 〈O(t)O(0)〉 =
∑
n

〈O(t)|n〉e−Ent〈n|O(0)〉 , (3.2)

where the sum runs over all the states with the same quantum numbers of the source/sink

operators.

Due to the form of Eq. (3.2), which involves an exponential decay in the time direction,

the contribution of different states |n〉 changes for different values of t:

C(t) = A0e
−E0t +A1e

−E1t +A2e
−E2t + ... (3.3)

from which is clear that the ground state dominates at large time extents, but at small

values of t the contributions from the higher states cannot be neglected. In Section 3.3

we will explain how to disentangle them. Now we focus on the ground state.

19
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FIGURE 3.1: The diagonal correlation function. We observe that C(t) is symmetric
for mesons (LHS) except for statistical fluctuations. In the case of baryon correlation
functions which have been parity projected (RHS) we observe the propagation of N+ in
t = (0 → Nt/2) and the propagation of N− in the opposite direction t = (N → Nt/2).

Note that the correlator is plotted in logarithmic scale.

For mesons the correlator shows a completely symmetrical behavior and the propagation

in t and NT − t is the same, except from a possible minus sign which depends on the

choice of the interpolators:

C(t) = A0 e
−E0t ±A0 e

−E0(NT−t). (3.4)

The baryon case is different: if a parity projection is performed on the interpolator (see

Appendix B), the correlator will be asymmetric, with one parity propagating in one

direction and its parity partner propagating in the opposite time direction (see Fig. 3.1)

C(t) = A+
0 e
−E+

0 t ±A−0 e
−E−0 (NT−t). (3.5)

The estimation of the eigenstates is made easier if the interpolators used in the evaluation

of the correlation function are constructed so that their overlap with the states of interest

is maximized. In this way the asymptotic behavior of the correlator starts at earlier time

enhancing the accuracy in the determination of the energies.

The construction of the interpolators has to follow some basic steps to guarantee correct

quantum numbers and the fulfilling of the spatial symmetries on the lattice. Nevertheless

a large amount of freedom is still left and it will be used in Section 3.4 to rewrite the

interpolators and combine the traditional approach with a new smearing technique.
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j Irrep

0 A1

1/2 G1

1 T1

3/2 H
2 E + T2

5/2 G2 + H

TABLE 3.1: Reduction of SU2 to 2Oh [79].

3.2 Interpolator design and momentum projection

The interpolators have to be constructed from gauge invariant object and they have to

resemble the properties of the particle that they are designed to represent.

The properties that the interpolators have to satisfy are:

• quark flavor content and spin structure;

• color singlet;

• transformations under C and P as defined in Appendix B;

• spin properties: they must transform following the correct scalar/spinorial irre-

ducible representation of the discrete symmetry group;

• definite momentum.

All the interpolators are designed to maximize the overlap with the physical states and

at the same time minimize the number of propagators involved in the calculation.

Using the quarks as building blocks we can easily define operators with the correct quark

content and isospin properties. The Dirac structure is chosen so that transformations

under parity and charge conjugation give the expected result (after the projection to zero

momentum is performed).

An example of a simple meson interpolator is

OM (n) = q̄(n)Γq(n) = q̄(n)(c)
α (Γ)αβ q(n)

(c)
β , (3.6)

where n = (n, n4) and the sum over color and Dirac indices is implied. It is a color singlet

and in the rest frame it transforms as an element of one of the irreducible representa-

tions of Oh (see Table 3.1). Its parity and charge conjugation properties are computed

explicitly in Appendix B.



Chapter 3. Hadron spectroscopy on the lattice 22

A meson correlator will have the form

〈OM (n)ŌM (m)〉 = 〈q̄1(n)Γq2(n)q̄2(m)Γq1(m)〉 =

= −Tr [ΓD−1
q1 (n|m)ΓD−1

q2 (m|n)],
(3.7)

where the evaluation of the propagators D−1 implies the inversion of the Dirac matrix

whose entries are NM = N3
S × NT × NC × ND (space, time, color and Dirac indices

respectively). The inverse of the Dirac operator (the quark propagator) is evaluated on

prepared quark sources and the inversion is obtained by solving iteratively

G = D−1S DG = S. (3.8)

Many different strategies have been developed for this purpose [80–83].

An analogous process can be followed to construct the baryon interpolators

OB(n) = εabc Γ(1) q1(n)a

(
q2(n)Tb Γ(2) q3(n)c

)
, (3.9)

where q2 and q3 are usually combined in a so called diquark which has no dynamical

meaning, but helps in defining the total isospin of the interpolator.

As a consequence the baryon correlator reads

〈OB(n)ŌB(m)〉 = 〈Γ(1) q1(n)
(
q2(n)T Γ(2) q3(n)

) (
q̄3(m)T Γ(2)† q̄2(m)

)
q̄1(m) Γ(1)† 〉 =

= Tr
[

Γ(1) Γ(1)†D−1
q1 (n|m)

(
D−1
q2 (n|m) Γ(2) Γ(2)†D−1

q3 (n|m)
) ]

.

(3.10)

The final step that has to be implemented is a momentum projection. The interpolator

with definite spatial momentum is obtained by Fourier transforming the original O(n)

O(p, nt) =
∑

n

O(n, nt) ei anp (3.11)

which is defined on each time slice nt.

3.3 Variational method

Extracting the energy levels from Eq. (3.2) can be done in different ways. If the interest

is focused on the ground state, which dominates the asymptotic behavior for large t, one

exponential fit to the correlator will be sufficient. However if excited states are subject

of study, different techniques have to be applied.
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For the evaluation of the spectrum in our work we use the variational method [13–

16] which is one of the most popular techniques used in hadron spectroscopy for the

extraction of a tower of excited energy states.

Other approaches are the Bayesian analysis [84–86] and the Maximum entropy method

[87]. However, they usually require data with higher statistics to produce solid results.

On the other hand the variational method works even if the quality of the data is not

excellent, which is the situation in most of the calculations in lattice QCD where the

evaluation of correlation functions is numerically extremely expensive.

The distinctive characteristic of the variational method is the requirement of evaluating

a matrix of cross correlators C(t) which spans over a set of different interpolators Oi(t)

Cij(t) = 〈Oi(t) Ōj(0)〉 =
∑
n

〈Oi|n〉e−Ent〈n|Ōj〉 , (3.12)

The choice of the number and the type of the interpolators has to be made carefully.

The interpolators at sink and source respectively must have the same quantum number,

in other words they should couple to the same state or eventually its decay product,

otherwise Cij will be statistically compatible with zero. The cross correlation matrix is

diagonalized to extract different eigenstates, i.e., energy levels of the selected sector of

the spectrum. In principle if many interpolators are used in the analysis, many excited

states will be computed. In reality using a too wide basis of interpolators introduces

additional noise. An equilibrate choice has to be made.

Once Cij is computed, we need to solve the generalized eigenvalue problem

C(t)~un(t) = λn(t)C(t0)~un(t), (3.13)

to disentangle the eigenstates |n〉 with the eigenvalues

λn(t, t0) ∼ e−En(t−t0)
(

1 +O(e−∆En(t−t0))
)
, (3.14)

where ∆En is the gap between the energy level En and the next. The energy values

are extracted using correlated fits of the eigenvalues to one or two exponentials. The

two exponential fits start at smaller t and are meant to verify that the extracted levels

agree with the results obtained from one-exponential fits starting at larger t: there

is the possibility that contributions from higher states of the spectrum bias the one

exponential fit and what is thought to be an asymptotic behavior might be in reality

only an intermediate plateau. On the other hand, if the signal drops early in time (the

statistical quality of C(t) is often an issue), a two exponential fit might not be possible.

The reliability of the evaluated energy levels decreases for higher |n〉, the ground state

being the most reliable one.
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FIGURE 3.2: Example of the variational method steps for the determination of the pion
mass. (1) Top-left: the diagonal correlation function is evaluated. It has the expected
exponential decay behavior. (2) Top-right: from the diagonalization of the correlation
matrix it is possible to plot the eigenvalues relative to different eigenstates. Here we
show those for the lower level. The fit (orange band) that leads to the final result is
performed on the eigenvalues. (3) Bottom-left: the effective masses are plotted. They
serve to guide the eye in the choice of the fit range and to locate the plateau. (4)
Bottom-right: a physical interpretation for the observed state can be inferred from the

study of the eigenvectors.

A source of systematic error is the choice of the fit range in t. In order to guide the eye

in the choice of the fit range we plot the so-called effective energies

En(t) = log
λn(t)

λn(t+ 1)
, (3.15)

which we expect to exhibit a plateau-like behavior.

The final check is done with the eigenvector composition of each state: ideally each

interpolator couples to one state and it is orthogonal to the others. In reality it might

happen that each state has contributions from different interpolators.

The eigenvector analysis provides information concerning the nature of the state, which

can be inferred from the interpolators it couples to. We expect one state to be well

defined and identifiable where its eigenvectors composition is stable. The fit range will

be chosen to fulfill this requirement (see Fig. 3.2 for an example of the whole process).
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3.4 Distillation method

As we have just seen, the physically relevant signal in the correlation function evaluated

on the lattice has an exponential decay that makes the evaluation of the energy levels

hard if not impossible, due to the fact that the statistical fluctuations of the Monte Carlo

calculation completely dominate over the signal. Since we are interested in extracting

excited states, the quality of the signal plays a fundamental role and a solution has to be

found. A way to overcome the problem, or at least to improve the quality of the signal,

is to make use of smearing techniques. In this section we will see that a specific kind

of non-local smearing can be applied to the quark fields in the interpolators in order to

improve the evaluation of the spectrum [12].

The main features that make this technique an extremely powerful approach and an

extraordinary useful tool in our study can be summarized as follows:

• the procedure is numerically accessible and flexible: all the information relative to

the specific form of the interpolator are factored out;

• it projects onto the lowest part of the spectrum, which is the one we are interested

in;

• thanks to this approach the evaluation of the correlation function becomes easier.

The point-to-all is replaced by a propagators where the whole time-slice contributes.

This improves the statistics and allows the evaluation of disconnected diagrams.

The role of this method called Distillation is to provide a shortcut for the evaluation

of the correlators and therefore allow demanding calculations that would be otherwise

not accessible. This method has been successfully applied in several studies, including

baryon correlation functions [8, 9, 17, 20, 21, 88, 89].

Lattice calculations are in general extremely expensive in CPU time and an improvement

in the computation approach can make the difference between a project which has to be

discarded as impossible due to computing resources reasons and a project that can be

actually realized.

As discussed in Section 3.1 the freedom in the choice of the interpolators allows us,

for instance, to apply a smearing operator to the quark fields before the interpolator is

constructed.

The distillation process consists in applying a smoothing function which is chosen to be

a truncated expansion of the three dimensional Laplacian operator. The Laplacian is
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defined on our lattice as

−∇2
xy(t) = 6 δxy −

3∑
j=1

(
Ũj(x, t) δx+ĵ,y + Ũ †j (x− ĵ, t) δx−ĵ,y

)
, (3.16)

where Ũ are the gauge fields.

Once the Laplacian operator is defined, a smearing operator can be constructed as

Jσ,nσ(t) =

(
1 +

σ∇2(t)

nσ

)nσ
→ (nσ→∞)→ exp

(
σ∇2(t)

)
, (3.17)

where σ and nσ are parameters to be fixed. It is clear that for high nσ the highest

modes of the Laplacian operator are mainly suppressed due to the exponential, therefore

replacing ∇ with its truncated expansion (discarding the highest modes) represents a

good approximation and fits in the definition of smearing as a tool to suppress the non

relevant contributions. The distillation operator is therefore defined as

2xy(t) =

Nv∑
k=1

v(k)
x (t) v(k)

y

†
(t), (3.18)

and it projects the fields onto the subspace spanned by the first Nv eigenvectors of the

Laplacian (sorted by eigenvalue). Note that summing over all eigenvectors reproduces

the delta function, the spectral representation of unity.

The distillation operator can in principle be constructed starting from the truncated

representation of any lattice operator, however using the Laplacian operator guarantees

that all the symmetry properties of the original interpolator are conserved after the

distillation process, thanks to the fact that ∇ transforms as a scalar under rotations, it is

invariant under P and C transformations and it is gauge covariant.

In that way we introduce on each given time slice a set of separable quark smearing

sources in the form

qc,α(~x)→
∑
~x′

2cd(~x, ~x
′)qd,α(~x′)

≡
∑
~x′

Nv∑
i

vic(~x)vi∗d (~x′)qd,α(~x′), (3.19)

where c, d and α denote color and Dirac indices and summation over the paired indices

is implied. The value of Nv depends on the physical size of the lattice and values in the

range Nv = (32− 96) were found suitable for our lattice setup [17].

Instead of quark propagators Gcµ;dν(x, x0) from one source located at x0 to other points

on the lattice we are now computing propagators between eigenmode sources, so-called
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FIGURE 3.3: Graphic explanation of the differences between a traditional one-to-all
approach and the distillation method. Left: the one-to-all approach works very well
with connected diagrams. The quark lines are estimated using one fixed source and all
the time-slices as sink. When a backtracking loop has to be estimated, however, the
approach transforms into a one-to-one method and it does not give statistically reliable
results. Right: after distillation each time-slice results globally smeared and the eigen-
vectors which enter the smearing process are used as source/sink of the propagators. In

this way an all-to-all approach becomes affordable.

perambulators (see Fig. 3.3)

τµν(j, tsnk; i, tsrc) ≡ vj∗d (~x, tsnk)Gdµ;cν(~x, ~y)vic(~y, tsrc) . (3.20)

The computation of the propagators becomes much more affordable: instead of inverting

the entire Dirac matrix of size NM = NT N
3
S NC (where NC is the number of colors, NS

is the spatial size of the lattice and NT the temporal one), thanks to the distillation

technique only ND = NTNv inversions are needed. The gain is evident once one notices

that

N3
S ∼ 12000, Nv = 32, 64, 96. (3.21)

It should be pointed out that the suitable value of Nv has to be estimated independently

for each lattice and it unfortunately scales with the physical volume N3
S , therefore for

large lattices this method has to be combined with different techniques like the stochastic

estimation of the eigenvectors [90, 91].

A meson correlation function can be written as

C(tsnk, tsrc) =〈OM (tsnk)O†M (tsrc)〉

=φµν(n, k; tsrc)τνα(k, tsrc; i, tsnk)φαβ(i, j; tsnk)τβµ(j, tsnk;n, tsrc), (3.22)

where OM is given in Eq. (3.6). Summation over the source indices (i, j, k, n) pairs and

the Dirac indices (α, β, µ, ν) pairs is implicit. Due to γ5-hermiticity of the Dirac action
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FIGURE 3.4: Connected and disconnected diagrams for a meson correlator.

the perambulator for sink to source can be expressed in terms of the one connecting the

two time-slices in the opposite direction:

τνα(k, tsrc; i, tsnk) = γ5,αα′τ
†
α′ν′(i, tsnk; k, tsrc)γ5,ν′ν . (3.23)

All the details concerning the type of meson interpolator are specified in the function φ,

which is defined for each time-slice and has indices running over the eigenvectors used

for the distillation smearing

φαβ(i, j; t) = Dαβ

∑
~x,~y

vi∗d (~y)Fdc(~y, ~x)vjc(~x)

≡ Dαβ φ̂(i, j; t) . (3.24)

The factors D and F represent the Dirac structure and momentum projection or deriva-

tive terms related to the quantum numbers of the meson.

The advantage of the distillation approach lies in its versatility. The interpolator structure

results completely decoupled from the calculation of the perambulators, which can be

therefore computed only once and then used to explore the whole hadron spectrum by

recombining them in different Wick contractions and different Dirac structures.

The final meson correlator relative to a connected diagram (Fig. 3.4 (a)) will have the

form

CM (tsnk, tsrc) = Tr[φ(tsnk)τ(tsnk, tsrc)φ(tsrc)τ(tsrc, tsnk)], (3.25)

while for backtracking loops (Fig. 3.4 (b)) the correlator splits into two independent

traces to be evaluate at tsrc and tsnk respectively

CM (tsnk, tsrc) = Tr[φ(tsrc)τ(tsrc, tsrc)]Tr[φ(tsnk)τ(tsnk, tsnk)]. (3.26)
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For baryon interpolators, which involve combinations of 3-quarks, the φ are rewritten in

a different form and the contribution to the correlation function are of the type

Cµν(tsnk, tsrc) = 〈Nµ(tsnk)Nν(tsrc)〉

= φµαβγ(i, j, k; tsnk) ταα′(i, tsnk; i′, tsrc) τββ′(j, tsnk; j′, tsrc)

τγγ′(k, tsnk; k′, tsrc)φ
†
να′β′γ′(i

′, j′, k′; tsrc) . (3.27)

For an interpolator N (without derivatives) as in Eq. (3.10) φ assumes the form

φναβγ(i, j, k; t) = Dναβγ

∑
~x

εabcv
i
a(~x)vjb(~x)vkc (~x)F (~x)

≡ Dναβγφ̂(i, j, k; t) . (3.28)

Again D carries the Dirac structure and F possible total momentum projection factors.

The evaluation of correlation functions where meson-baryon states are included, involves

terms obtained by the combination of the meson and the baryon contribution. Each

correlator can be schematically written in the general form

CM (tsnk, tsrc) = Tr[φM (tsnk)φB(tsnk)τ(tsnk, tsrc)τ(tsrc, tsnk) (3.29)

τ(tsnk, tsrc)τ(tsrc, tsnkτ(tsnk, tsrc)φM (tsrc)φ
†
B(tsrc)], (3.30)

where φM (t) and φB(t) are the functions φ for meson and baryon respectively. This is

how all the results presented in this work have been obtained.

3.5 Lattice artifacts

The hadron spectrum evaluated from lattice calculations cannot be directly compared

with experiments. The lattice setup affects the final results in different ways that we now

try to summarize.

• Unphysical pion mass: Lattice calculations are usually characterized by large quark

masses and therefore large pion masses. It is observed that this leads to an upwards

shift of the whole spectrum. The only way to have a complete control of this

phenomenon is to perform the same calculation for different mπ and extrapolate

to a physical pion mass.

• Continuum limit: A mass measured on the lattice depends on the lattice spacing a

M(a) = Mphys(1 +O(aα)), (3.31)
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where all the quantities are expressed in physical units and the exponent α depends

on the action. In the case of Wilson fermions it has been found in [92] that a

quadratic contribution has to be expected.

• Finite size: All the lattice simulations are obviously performed at finite volumes.

Usually the time extent is chosen big enough so that finite size effects in this

direction (i.e., finite temperature effects) are negligible. The limited spatial extent

affects the wave functions, which are squeezed in the small volume, leading to a

shift of the evaluated mass. In addition the masses are affected by corrections of

the order O (exp(−Lmπ)) due to the leading pion-interaction around the spatial

torus.

It has to be mentioned that sometimes finite volume properties happen to be a

useful tool to extract additional information from the calculation. An example is

the Lüscher formula (see Chapter 4).



Chapter 4

Multi-particle states on the lattice

Hadron spectroscopy in lattice QCD is a well established research field, but many steps

forward still need to be done in order to have a complete understanding of the baryon

resonances in the QCD spectrum.

Traditionally in LGT all the particles have been treated as stable states, even though most

of the components of the hadron spectrum are not asymptotic states: they are resonances

and they decay into two or more lighter particles.

As long as quenched configurations, small volumes and considerably high pion masses are

used in the lattice calculations, many resonances are indeed stable states. However when

the pion mass becomes low enough to allow the decay, a study of the coupled scattering

system is needed in order to obtain results that can be compared with experiments.

Due to practical reasons, lattice simulations are restricted to relatively small volumes,

usually few times the interaction length. As a consequence the observation of freely

propagating intermediate states is in reality not possible, but an indirect study based on

finite size effects can be performed.

In this chapter all the issues concerning the presence of two particle on our lattice will be

considered. A method to extract the phase shift from the lattice data (originally proposed

by Lüscher) is introduced and a summary of the steps of our study is presented.

4.1 Energy levels in a finite volume

The eigenstates of the Hamiltonian in finite space are the asymptotic states of the field

theory (namely the final decay product), and the energy spectrum measured on the

lattice is a characteristic of the spatial volume.

In the energy region of the resonance, where the scattering phase shift assumes the value

of π/2, the so-called avoided level crossing can be observed (see Fig. 4.1): the energy

31
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levels of the finite volume system are rearranged in a way that depends on the volume.

This phenomenon can serve as a marker for the presence of the resonance.

Lüscher introduced a method to derive the infinite volume phase shift from the study

of the two-particle energy spectrum in a finite size system [14, 23–25]. The finiteness

of the volume is no more a disadvantage, but an effective tool to extract the phase shift

and consequently the resonance mass and width, which can be finally compared with

experiments without uncontrolled finite size effects.

After Lüscher’s proposal, many other works extended the approach to non zero momen-

tum [19, 32, 35, 36, 93], with the advantage that a larger set of data points can be

extracted from one single lattice, overcoming the necessity of using many ensembles

with different volumes. Another advantage of using non-zero momentum frames is con-

nected to the fact that the avoided level crossing in P-wave occurs at a much smaller

volume, making it more accessible than the p = 0 case (see Fig.(4.2)).

The main disadvantage of studying the scattering of two particles with different masses

and non-vanishing momenta is that the evaluation of the phase shift becomes extremely

complicated up to the point that a rigorous analysis in certain cases might not be possible:

partial waves of different scattering channels and different spin sectors might mix. In

these cases what can be done is a qualitative analysis of the measured energy levels.

4.2 Two particles in finite volume

Let us consider a cubic lattice with periodic boundary conditions, spatial volume L3 and

infinite time extent.

The finiteness of the box and its boundary condition require the total momentum of the

system to be quantized

Ptot = p1 + p2 =
2π

L
d, d ∈ Z3. (4.1)

In the above equation all the quantities are expressed in terms of the laboratory frame

(i.e. the lattice box) which moves with a velocity equal to

v =
Ptot

E
, γ =

1√
1− v2

, (4.2)

with respect to the center of mass frame (CMF or ∗). Being able to rewrite all the

quantities measured on the lattice in terms of CMF quantities turns out to be crucial for

the study of the phase shift δl.
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FIGURE 4.1: On the top a sketch of the avoided level crossing is presented: in the area
influenced by the resonance (blue horizontal band), the levels are distorted. On the
bottom we can observe how the phase shift of an elastic scattering behaves in presence

of a resonance: δ(E) rapidly crosses the value π/2 at the resonance mass.

4.2.1 Non-interacting case

The non-interacting case is trivial: the individual momenta of the two particles indepen-

dently satisfy the imposed boundary condition with

E =

2∑
i=1

√
pi

2 +m2
i , Ptot =

2∑
i=1

pi, pi =
2π

L
ni, ni ∈ Z3 (4.3)

and the spectrum is computed by summing the single particle energies. The CMF energy

squared of the system can be easily estimated as

s = E2 − P 2, (4.4)

and it provides relevant information about the energy region interested by the scattering

state. As mentioned in (4.1), the presence of the resonance alters the position of the

energy levels in its vicinity. In order to reliably extract the phase shift from the energy
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levels En measured on the lattice, we need these to be in the interesting kinematic region,

which we define as mR ± Γ where Γ is the physical width of the resonance and mR is its

mass (it corresponds to the blue band in Fig. 4.1).

This approach will be used in Chapter 5, 6 and 7 in order to justify the choice of the

momenta made for the evaluation of the spectrum in S- and P-wave.

Before concluding this section it is useful to write an explicit expression for the quantized

momenta in the CM frame, since they will define the mesh that determines the residual

discrete symmetries in the non-vanishing total momentum case and they will enter the

final formula for the evaluation of the phase shift

p∗ = p1
∗ = −p2

∗, (4.5)

using basic Lorenz transformations

p∗ = γ−1p1 − vE∗1 = γ−1(p1 − γ
2π

L

E∗

2E
[1 +

m2
1 −m2

2

E∗2
]d) = γ−1(p1 −

1

2
APtot) , (4.6)

where we defined the coefficient A as

A = 1 +
m2

1 −m2
2

E∗2
, (4.7)

which differs from 1 in the case of two particles with different masses and it plays

a relevant role when studying the symmetries of the system and the transformation

properties of the interpolators (see Section 6.4).

If we define the CMF momenta in terms of the dimensionless quantity q

p∗ =
2π

L
q , (4.8)

then the quantization constraint on q (i.e. the allowed values in the box for the non

interacting case) is

q = r with r ∈ Pd =

{
r|r = γ−1(n− 1

2
Ad)

}
, n ∈ Z3, (4.9)

where Pd is the set of vectors which define the mesh and the consequent symmetries.

4.2.2 Interacting case

In case of two interacting particles the picture changes: the energy levels are shifted due

to the presence of the potential V (x∗) which depends on the relative distance between

the two particles.
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FIGURE 4.2: The energy levels of the non-interacting pion-nucleon system in different
momentum setups calculated on our lattice: mπ = 266 MeV, mπ = 1080 MeV, a =
0.1239, L = 16. In blue the energy levels for the total momentum P = 0 and in
red the energy levels corresponding to P = (0, 0, 1). The blue band crossing the plot
horizontally represents the location of the expected Roper resonance (shifted up w.r.t.
the physical one due to the unphysical pion mass). It is clear that a non-rest frame is
needed if one is interested in exploring the positive parity excitation of the nucleon: the

spectrum is more dense, increasing the probability of hitting the interesting region.

In QCD the interacting potential is not known and the eigenstates of the Hamiltonian

Hψ(x1, x2) = Eψ(x1, x2) (4.10)

cannot be calculated ab initio. However some considerations on the scattering theory

can lead to a relation between the scattering phase shift and the spectrum evaluated in

a box, based on the constraints imposed by the boundary condition.

The traditional approach to a scattering study consists in considering the initial and final

states as asymptotically free states. We assume that in the exterior region the potential

vanishes

V (x∗) = 0 for |x∗| > R and R < L/2, (4.11)

where we required the interaction range to be considerably smaller than the lattice

size. In this region the solution of the Helmholtz equation provides a description of the

scattering without interaction

(∇2 + p∗2)φCM (x∗) = 0 x∗ > R , (4.12)
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E∗ =
√

(p∗)2 +m2
1 +

√
(p∗)2 +m2

2 = γ−1E . (4.13)

The solution φCM (x∗) will depend on the phase shifts δl(p∗) between the initial and the

final state of the scattering process. The phase shift encodes the unknown information

concerning the interaction.

In a finite box the solution φCM (x∗) has to satisfy the d-periodic boundary conditions (a

derivation can be found in [35])

φCM (x∗) = (−1)AndφCM (x∗ + γnL) n ∈ Z3 , (4.14)

where d is the normalized total momentum. Solutions to this condition have been

computed in [25], [32], [34] and can be re expressed as a condition on the phase shift

(which φ depends on).

According to [25] the scattering phase shifts δ can be evaluated solving the determinant

equation for meson or baryon resonances

det(M − cot δ) = 0 , (4.15)

where for simplicity all the indices have been suppressed. This equation relates the phase

shift δ in the infinite volume to the energy levels of the lattice Hamiltonian in a finite

cubic box. The matrix M and the matrix cot (δ) have the form

Mlm,l′m′ = Md
lm,l′m′

(q2) , cot(δ)lm,l′m′ = cot(δl(p
∗))δll′ δmm′ (4.16)

and the indices (l,m) run over different partial waves (l) and spins (m). It has to be

noticed that in case of small p∗ the high partial waves can be neglected since δ(p∗) ∝
(p∗)2l+1. In general only S, P and D wave are considered, however in many channels

D-waves are not present in the lower part of the spectrum.

The matrix M can be evaluated once the symmetry group and the specific irreducible

representation involved are known, for each different little group of symmetry defined

by the deformed mesh due to the non-vanishing total momentum. The elements of M

are normally expressed in terms of

wlm =
1

π3/2
√

2l + 1

1

γql+1
Zd
lm(1; q2) , (4.17)

where the modified zeta functions are defined as

Zd
lm(s; q2) =

∑
r∈Pd

Ylm(r)

(r2 − q2)s
(4.18)
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FIGURE 4.3: The difference between the energy evaluated via Eq. (4.3) and Eq. (4.20)
is presented as a ratio over the mass. On the horizontal line the mass is given in lattice
units. The selected range covers the energy region where the nucleon excited states are
expected: between 950 and 2300 MeV. The discrepancy lies below 8% for most of the

cases, being therefore comparable to the statistical error of our calculations.

and

Ylm(x) = xlYlm(θφ) , (4.19)

with Ylm being the spherical harmonics. The evaluation of the coefficients can be found

in [35, 36].

The quantization condition of the momenta in the finite box establishes a relation be-

tween the phase shift [23] and the spectrum of the finite size system which holds up

to O
(
e−mπL

)
. Therefore a strict requirement for this setup to work is that mπL >> 1.

It also has to be reminded that the current considerations are for a finite box in a con-

tinuum theory and the lattice artifacts might appear as O(a2) corrections. A dispersion

relation different from Eq.(4.3) should be used when large momenta are involved. For

Wilson fermions we use [32]

coshE(p)− coshm =

3∑
i=1

(1− cos pi) (4.20)

and we note that the results in our setup become sensitive to this distinction only for

high masses and high momenta, as shown in Fig. 4.3.

4.3 Consequences of Ptot 6= 0

In case of non-zero total momentum, the lattice mesh is distorted due to relativistic

effects and part of the cubic symmetry is broken. The residual symmetry group is called

little group and it can be determined once ~Ptot is known.

The symmetry group plays an important role for two main reasons:



Chapter 4. Multi-particle states on the lattice 38

• We require the interpolators to transform under a well defined irreducible repre-

sentation of the symmetry group of our system in order to mimic the properties of

the corresponding operators in the continuum. If the symmetry group changes due

to ~Ptot 6=0, then a redefinition of the interpolators might be needed.

• We mentioned that the evaluation of M and the final form of Lüscher’s formula

depend on the symmetries of the system, therefore we will have different equations

to be solved for different total momenta.

When ~Ptot is non zero (see Chapter 6), a projection of the interpolators to a definite spin

and partial wave sector is not possible. This brings complications in the evaluation of the

spectrum: extracting many excited states is a delicate procedure and the superposition

of different sectors of the QCD spectrum might affect the possibility of identifying the

states that are measured.

4.4 Conclusions

Let us summarize the steps that have to be followed in order to guarantee a coherent

treatment of the two particle system on our lattice and the possibility to obtain informa-

tion on the resonances.

• The presence of a resonance affects the distribution of the energy levels in a finite

box and generates the avoided level crossing phenomenon. This happens in the

vicinity of the resonance, while the rest of the spectrum is left invariant. It is

important to identify the interesting region to make sure that we are exploring the

correct area of the spectrum.

• Due to the kinematics of the available lattice, the momenta are quantized and very

often the smallest momentum is already considerably large. As a consequence

the two particle energy levels are largely spaced from each other. This reduces

enormously the chances of hitting the interesting region. Taking into account ~Ptot 6=
0 helps in making the two particle spectrum more dense and increase the number of

possible choices. The disadvantage is that systems in non-rest frames have reduced

symmetries and this has to be carefully taken into account.

• Our task is to compute correlation matrices of systems that include both one and

two particle states. We require that the two interpolators have the same quantum

numbers and transform under the same irreducible representation. Constructing

the correct operator is essential for a reliable extraction of the spectrum.



Setup

All the lattice simulations are performed using an ensemble of 280 approximately in-

dependent gauge configurations with nf = 2 mass degenerate dynamical quarks of

improved Wilson-Clover type, with gauge links smeared using one level of normalized

hypercubic smearing (nHYP smearing). The valence u/d quarks have the same mass as

the sea u/d quarks. The pion mass is mπ = 266 MeV and the 163×32 lattices have spatial

extent of 1.98 fm with Lmπ ∼ 2.68 (for details see Table 4.1 and [17, 20]).

These configurations have been generated for the study of re-weighting techniques

[66, 67] and they have been generously provided by the authors.

N3
S ×NT β a[fm] L[fm] Lmπ #configs mπ[MeV]

163 × 32 7.1 0.1239(13) 1.98 2.68 280 266(3)(3)

TABLE 4.1: Parameters of the configurations used for the current study. N3
S × NT

denote the volume of the lattice, and L = NSa is the spatial size in physical units.

Two main consequences of this choice have to be noticed:

• The mass of the pion is unphysical (roughly 130 MeV higher than the physical one),

therefore we expect all the estimated masses to be shifted upwards with respect to

their experimental values.

• The value Lmπ ∼ 2.7 is relatively small and might produce finite size effects.

Both the finite size effects and the consequences of working with an unphysical pion

mass cannot be identified in this study, since only one set of lattice configurations is

available.
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Chapter 5

N∗: Pion - Nucleon scattering in

S-wave

The negative parity sector of the nucleon spectrum couples to the pion-nucleon system in

S-wave and isospin I = 1/2. Lattice simulations of Nπ scattering have been performed

for two flavors of mass degenerate light quarks.

The novelty of this calculation is represented by the fact that for the first time meson-

baryon (4+1)-quark interpolators enter the correlation matrix together with the standard

3-quarks baryon operators. The distillation method and the variational analysis are used

to determine the energy levels of the spectrum in the specified (I, JP ) sector and a

clearer picture of the negative parity nucleon spectrum emerges.

The results of the study published in [94] are presented in this chapter.

5.1 N− sector

The negative parity N∗ channel becomes quickly inelastic (see, e.g., [95–98]). According

to the Particle Data Group [2]

N∗(1535) N∗(1650)

−→ Nπ (35− 55)% −→ Nπ (50− 90)%

−→ Nη (10− 42)% −→ Nπ (5− 15)%

−→ ΛK (3− 11)%

−→ Nππ (1− 10)% −→ Nππ (10− 20)%

41
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FIGURE 5.1: The energy levels of two-particle states estimated with the parameters
of our lattice are compared with the mass of the two resonances N∗ which have been
shifted up of ∆E ∼ 130 MeV according to the expected behavior. In blue the Nπ S-wave
states: both particles at rest and with back to back unit momenta. In addition Nη (red)
and ΛK (green) have been plotted. All the energies have been estimated starting from

the values of mπ and mN measured on our lattice.

the main decay channel is Nπ, followed by Nη and ΛK for for N∗(1650). In addition the

inelastic channel Nππ plays an important role for both the resonances. For a calculation

with a fine lattice and physical quark masses all these channels should be included, but

this is not the case in our setup.

On our lattice (see section 4.4), where only two degenerate valence quarks are present,

the pseudoscalar meson η manifests itself in one state with a mass larger than 800 MeV

[99, 100]. In addition Λ and K would have masses larger than 1600 MeV and 600 MeV

respectively [101]. With the parameters of the lattice used in the current study the

before mentioned channels would have too high threshold to be involved in the decay

of N∗ and will be therefore discarded. The same argument holds for Nππ and for any

S-wave which involves non-vanishing momenta such as N(p)π(−p) (see Fig. 5.1).

Thus we consider the neglection of such interpolators safe: the energies of these two

particle states are far from the energy region interested by N∗ and their absence in the

calculation is not affecting a reliable interpretation of the measured states.
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5.2 Interpolators

In the current chapter our attention is focused on JP = 1/2− and I = 1/2: the N−

sector. In order to guarantee the effectiveness of the variational method, we are required

to compute a correlation matrix where only the interpolators with the correct quantum

numbers are taken into account. For this reason the construction of the Nπ interpolator

requires special care.

For the charged nucleon 3-quark interpolator at zero momentum we use the operator

(N
(i)
± )µ =

∑
~x

εabc

(
P± Γ

(i)
1 ua(~x)

)
µ

(
uTb (~x) Γ

(i)
2 dc(~x)

)
(5.1)

on every given time slice. The neutral nucleon has the same form, but a different quark

composition: u, u, d is replaced by d, u, d. The combination (Γ1,Γ2) can assume the

three values (1, Cγ5), (γ5, C) and (i1, Cγtγ5) for i = 1, 2, 3. P± = 1
2(1± γt) denotes the

parity projector, C is the charge conjugation matrix and γt the Dirac matrix in the time

direction. The projection onto definite zero momentum is guaranteed by the sum over

all points of each time slice. In addition, summation over the color indices a, b, c and the

implicit Dirac indices is implied. No isospin symmetrization is implemented since all the

quark fields are subject to the same smearing (see Appendix C).

Since the distillation approach is implemented (see Section 3.4), all the quark sources

are additionally smeared combining a different number Nv of eigenvectors. For the

3-quark nucleon interpolators we use Nv = 32 and Nv = 64 (corresponding to different

smearing widths) for each of the three N (i), obtaining a total of six operators.

The meson-baryon interpolators are built starting from the single particle interpolators{
π±, π0, N (i)

}
, which have to be appropriately projected onto the right parity and isospin

channel.

The pion interpolators read

π+(~p = 0) =
∑
~x

da(~x)γ5ua(~x) ,

π0(~p = 0) =
∑
~x

1√
2

(
ua(~x)γ5ua(~x)− da(~x)γ5da(~x)

)
, (5.2)

where summation over the color index a and the Dirac indices is implied.

The simulations are performed considering the Nπ system in the rest frame where the

leading S-wave contribution is expected to come from the interpolator with both particles

at rest, namely

(Nπ)(i)(~p = 0) = γ5N
(i)
+ (~p = 0)π(~p = 0) , (5.3)
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FIGURE 5.2: Left: Different types of contributions included in the correlation matrix.
Connected diagrams (a),(c); partially disconnected diagrams (b), (d).

Right: Normalized contribution of the disconnected diagrams (d) to the total correlation
function 〈Nπ|Nπ〉.

where i = {1, 2, 3}, N (i)
+ denotes the positive parity nucleon and the factor γ5 ensures

that the Nπ interpolators transform as N− under parity transformations (for details

about the effects of parity transformations on the interpolators see Appendix B).

In the context of the distillation approach we smear every quark source of the Nπ(i)

interpolators with Nv = 32 so that, thanks to the different Dirac structures, three two-

particle interpolators are included into the correlation matrix .

One last step is required in order to obtain the final form for the Nπ interpolator: the

isospin projection.

The Nπ system is a superposition of isospin 1
2 and 3

2 states and, in order to select the

N−(I = 1
2) states we project to isospin 1

2 by choosing the combination (see Appendix C)

ONπ(I =
1

2
, I3 =

1

2
) = pπ0 +

√
2nπ+ , (5.4)

with p and n denoting the charged and the neutral nucleon according to (5.1).

5.3 Evaluation of the correlation matrix

Including the (4+1) quark interpolators provides new information on the states of

the nucleon spectrum in the negative parity channels, but it requires the evaluations of

partially disconnected diagrams (see Fig. 5.2, LHS) which are computationally extremely

expensive: for a statistically significant computation of the latter, evaluations at many

different tsnk and tsrc turn out to be necessary.

The relevance of these diagrams is however seen by a simple comparison of the discon-

nected vs connected contributions (see Fig. 5.2, RHS): the contribution of diagrams

involving backtracking loops over the total correlator 〈Nπ|Nπ〉 is between 20 and 30%,

so it cannot be neglected.
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Thanks to the distillation method, which allows to reorganize the terms in the correlation

function and save a considerably amount of CPU time, we explicitly evaluate all the

diagrams (i.e. Wick contractions) which contribute to the total correlator (see Appendix

D) including 〈N |N〉, 〈Nπ|N〉 and 〈N |Nπ〉 .

5.4 Effective masses: N

The spectrum of the positive and negative parity nucleon is first determined via the

analysis of a set of six 3-quarks interpolators with the variational method, as discussed

in Section 3.3.

O1, O2, O3 = N (1), N (2), N (3) with Nv = 32 ,

O4, O5, O6 = N (1), N (2), N (3) with Nv = 64, (5.5)

where the parity is defined performing a parity projection (see Appendix B).

5.4.1 N+ spectrum

In the positive parity sector we can extract at least two stats with good reliability. The

first state is without doubts the ground state nucleon and it couples exclusively to N (1)

type operators. It is evident from the effective masses plateau behavior (Fig. 5.3) that the

signal is stable and its energy can be extracted with high precision, being independent of

the choice of one or two exponential fit. Our best estimate for the ground state nucleon

is amN = 0.672(4), which is equivalent to mN = 1068(6) MeV in physical units. Due

to the fact that only one lattice ensemble is available, an extrapolation to physical pion

mass is not possible. However this result is in agreement with other studies which use

configurations with similar parameters [101]. The mass of the nucleon on this specific

lattice is ∼ 130 MeV higher than the physical one, following the behavior of the pion

mass. Based on this consideration, we will expect the whole spectrum to be shifted up

of roughly the same quantity.

The first excited state observed in this sector mainly couples with N (2) and it is consid-

erably higher than the expected Roper resonance. This observation is shared by other

studies (see, e.g., [6, 9]) but disputed [7, 42]. One of the reasons of this result may

be connected to the nature of the Roper resonance and it might suggest that different

interpolators should be included in order to enhance the coupling with this state.

This possibility will be discussed in Chapter 6.
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FIGURE 5.3: LHS: The effective energy values for the N( 1
2

+
) channel (with 3-quark

interpolators) in lattice units. RHS: Comparison between the experimental values of
the N+ low-lying spectrum and the results obtained in this study.

5.4.2 N− spectrum

The negative parity sector of the nucleon spectrum can also be computed from a correla-

tion matrix that includes only 3-quark baryon interpolators.

Let us first consider results for the subset of 3-quark interpolators {O1 −O6}: it seems

that including the interpolators of type N (3)
− does not improve the quality of the diago-

nalization results. We therefore use only the subset {(O1,O2,O4,O5)}.
We reproduce the usual (see, e.g. [9, 10]) pattern of energy levels (see left hand plot

of Fig. 5.6): we observe two energy levels: at 1.359(43) GeV (exponential fit, fit range

6− 10) and 1.709(29) GeV (fit range 4− 9). The situation is shown in Fig. 5.7 (middle).

This picture might, at first sight, look satisfying: in the experiments two resonances are

detected in this sector, N(1535) and N(1650) [2]. However some details must be noticed:

in Fig. 5.7 (two leftmost columns) we compare the value of the state measured on the

lattice in physical units, with the corresponding experimental values.

The lowest measured energy state lies below the experimental value and very close to

the non-interacting Nπ state (red dashed line in the rightmost column).

In addition it has been observed in [101] that towards small pion masses the lower
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level moves close to the expected Nπ threshold and thus unexpectedly lower than the

experimental mass of N∗(1535).

A possible explanation for the observed spectrum might be that 3-quark interpolators are

not sufficient to describe the physics of the system: the resonant nature of the N∗ states

is not taken into account and the inclusion of Nπ interpolators might completely change

the picture.

5.5 Effective masses: Nπ

The masses of the free pion and the ground state nucleon N(1
2

+
) have to be estimated

with very high precision in order to perform the subsequent analysis. For the gauge

configurations used here the pion was carefully studied in [17, 20]. We use the result of

that analysis: the pion mass in lattice units corresponds to amπ = 0.1673(2).

In the following sections the results of the two particle system are presented.

5.5.1 Pion and nucleon, non-interacting

In order to test the method and the technical basis which are used to study the coupled

(N,Nπ) system, we first study the pion-nucleon system in a non-interacting regime.

We evaluate the correlation function

C(t, t0) = 〈ONπ(t)|ONπ(t0)〉, (5.6)

using only the two diagrams (Appendix D, diagrams D1,D2) where the two particles

propagate independently, i.e., the quark lines exclusively connect quarks that belong to

the same hadron.

Fig. 5.4 represents a valid consistency check: the non-interacting pion-nucleon system

behaves exactly as expected: the effective masses computed using Eq.(5.6) converge to

the same energy level which represents the value of the pion and the nucleon masses

naively summed. We can be confident that the chosen theoretical setup is well under-

stood and it guarantees a good control of the physical problem.

In Fig. 5.5 we compare the energy levels obtained from a single particle study in the N−

energy levels: the latter appears to be close enough to the first N− measured level to

allow doubts concerning the nature of this state. On the right hand side of the figure we

show the eigenvector composition of these two states.
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FIGURE 5.4: The effective energy values for the pion and the ground states nucleon,
compared to the values computed from the evaluation of Eq.(5.6) (blue triangles). The
green diamonds represent the naive sum of the effective masses of the pion and the

nucleon for each time separation. All values are expressed in lattice units.

5.5.2 Interacting Nπ system

The final step consists in the computation of the full correlation matrix for the following

operators:

O1, O2, O3 = N
(1)
− , N

(2)
− , N

(3)
− with Nv = 32 ,

O4, O5, O6 = N
(1)
− , N

(2)
− , N

(3)
− with Nv = 64 ,

O7, O8, O9 = O
(1)
Nπ, O

(2)
Nπ, O

(3)
Nπ with Nv = 32 . (5.7)

with the definition from (5.1) and (5.3). The results are presented in Fig. 5.6.

The right hand plot shows the effective energy levels resulting from the analysis of a

(7×7) correlation matrix, where {O1,O2,O4,O5,O7,O8,O9} are included. The outcome

of the exponential fits and the corresponding energy levels in physical units are listed in

Table 5.1.

On the left hand side of Fig. 5.7 the effective masses extracted from the single particle

analysis are shown for a comparison.

When the two particle interpolators are included in the study, the energy levels appear

rearranged. A new plateau appears in the energy region of interest and the signals

are affected by consistently less fluctuations, allowing a more reliable extraction of the

energy values.
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FIGURE 5.5: The effective energy values for the N( 1
2

−
) channel (with 3-quark interpo-

lators) in lattice units. The blue line represents the energy value of the non-interacting
pion-nucleon system. On the right hand side the eigenvector composition of these two

states is shown.

level fit aEn = a
√
s E =

√
s χ2

d.o.f. a p∗ δ
n range [GeV] [degrees]
1 6-12 0.800(5) 1.272(8) 6.12/5 0.0985(57) i 68(59)i
2 4-8 1.045(19) 1.662(30) 2.46/3 0.2726(155) 89(9)
3 4-8 1.127(18) 1.792(29) 0.67/3 0.3362(134) 47(10)

TABLE 5.1: Final results for the lowest three energy levels of the coupled Nπ system
with the interpolators O1,O2,O4,O5,O7,O8,O9. For the values given in GeV we use

the lattice spacing a = 0.1239 fm (Sommer parameter r0 = 0.48 fm).

In order to clarify the features emerging from the two particle system study, we now

focus on Fig. 5.7: the experimental values (left) of the N∗ are compared to the results of

the 3-quark interpolators case (middle) and the combined analysis of 3 and (4+1) quark

interpolators (right).

The results of the central column display a clear discrepancy with the experimental

values, while the (4+1) quark study shows a much more reliable picture with three states

which can be identified as the two-particle state, N(1535) and N(1650) respectively.

The lowest level lies slightly below threshold, a feature typical for attractive S-wave [20,

21]. As we explained in Chapter 4 the levels distribution is modified by the interaction

and the presence of a resonance.
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FIGURE 5.6: Effective energy values without Nπ contribution (Left) and including Nπ
interpolators (Right). The horizontal broken line indicates the threshold value mN+mπ.

All the masses are given in lattice units.

The next two levels are characterized by energies lying approximately 130 MeV above

the physical resonance positions of N∗(1535) and N∗(1650), which agrees with the

behavior of the ground state nucleon. This interpretation for the measured spectrum is

also supported by the analytic analysis which will be presented in Section 5.6 and Fig.

5.9, where a single elastic resonance parameterization has been used, shows excellent

agreement for the lowest two energy levels.

A further inspection of the states can be performed studying the eigenvectors. The

eigenvectors describe the coupling of each state with the different interpolators. Ideally

each state should mainly couple to only one interpolator and the fit range for each state

should be chosen so that the eigenvector composition remains stable: in this way one

can be sure to identify one definite state.

Once it is known which are the interpolators that a certain state couples with, a physical

interpretation of the state can be carried out.

Fig. 5.5 shows that when only 3-quark interpolators are used, each measured state

has contributions from different interpolators, some of which vanish just at large time

scales, while the picture changes when ONπ are included: Fig. 5.8 shows the eigenvector

components of the three lowest eigenstates. Note that the eigenvectors have unit norm,

but the absolute normalization of the (4+1)-quark operators compared to the 3-quark

ones is not known. For this reason only the comparison between different levels holds a

physical meaning.
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FIGURE 5.7: Comparison of the energy levels. Left: physical mass values (experiment).
Middle: result when using only 3-quark interpolators. Right: result when including

pion-nucleon interpolators.

The ONπ contribution to the ground state is significantly larger than the higher levels,

supporting the identification of this state with the two-particle state.

The second state is clearly dominated by N (2)
− type interpolators, with a contribution

from two particle N (2)
− π interpolators.

The third state is predominantly a N (1)
− state.

The comparison of Fig. 5.7 combined with the newly acquired knowledge on the com-

position of each state suggests that the incompleteness of the picture arising from the

3-quark analysis is due to the incompleteness of the interpolator basis. It seems that

the two lowest states of the 3-quark system interpolate between the three lowest states

of the complete system. This would explain the instability of the signal and the mixed

eigenvector composition of the states. A realistic picture can be reconstructed only when

the Nπ system is explicitly taken into account.

5.6 Interpretation of the energy levels

As discussed in Chapter 4, the Lüscher type approach allows to extract the values of the

phase shift in the continuum, starting from the spectrum of a finite volume system, but Eq.

(4.15) can be inverted and used to predict the expected levels, once a parametrization

for the phase shift is available.
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FIGURE 5.8: The (normalized) eigenvector components for the lowest three observed
eigenstates to be compared with the eigenvectors of the states computed in the 3-quark
sector (Fig. 5.5). In the legends the operator numbers according to Eq. (5.7) are given.

.

For each energy value that is measured on our lattice we compute the total energy of the

system as

E =
√
s =

√
(pN + pπ)2 =

√
p∗2 +m2

π +
√
p∗2 +m2

N (5.8)

and we extract the momentum p∗ = |p∗| in the CMF with

p∗2 =
[s− (mN +mπ)2][s− (mN −mπ)2]

4s
, (5.9)

which will be used to relate the discrete spectrum to the phase shift.

For a system of non-interacting pions and nucleons and a given lattice size, the energy

levels can be straightforwardly computed (dotted lines in Fig. 5.9).

In presence of interaction these levels are modified and their behavior is encoded in

the Lüscher formula under the constraint of elastic region and localized interaction

[14, 23–25]

tan δ(q) =
π3/2q

Z00(1; q2)
for P = 0 , (5.10)

where q is the dimensionless product of the momentum and the spatial lattice size defined

in Eq. (4.9). The generalized zeta functions Zlm are defined in Eq. (4.18) and computed

in [24].
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FIGURE 5.9: Lowest energy levels vs. the spatial lattice size (both in units of the
pion mass). Left: physical pion, nucleon and N∗(1535) masses, comparing the non-
interacting levels (dotted) with the levels distorted due to interaction (full lines); the
broken horizontal line indicates the threshold, the horizontal thick line the N∗(1535)-
mass; the N∗ is parametrized as an elastic resonance with a decay width of 150 MeV.
Right: Unphysical values for mπ = 266 MeV, mN = 1068 MeV; for N∗ the mass is chosen
as 1670 MeV without changing the coupling strength. In both cases the lowest possible
state is N(0)π(0), which coincides with the threshold in the non-interacting case. For
attractive interaction the level moves slightly below the threshold to negative values of

q2.

Considering the actual parameters of the simulations we may assume an elastic S-wave

scattering and then derive the corresponding values of the phase shift.

The S-wave amplitude can be written as

T = eiδ sin δ =
1

cot δ − i
, (5.11)

and, using the effective range parametrization near threshold, we obtain

√
s ρ0(s) =

1

a0
+O(p∗2) , (5.12)

where a0 is the scattering length and we also define conveniently

ρ0(s) =
p∗√
s

cot δ =
2Z00(1; q2)

L
√
sπ

, (5.13)

The N(1
2

−
) (s-wave) scattering amplitude is shown in the data analysis of [95] and has

an intricate behavior, becoming quickly inelastic and hard to reliably parametrize.

One possibility to simplify the problem consists in taking into account only the first of

the two resonances as a Breit Wigner resonance and focus on the energy region in its
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vicinity. In this case ρ0 can be approximated linearly,

ρ0(s) =
1

γ
(sR − s), (5.14)

where sR denotes the resonance position and γ is related to the width and to the coupling

constant

Γ =
p∗(sR)

sR
γ, γ = g2/6π. (5.15)

Assuming a phase shift parameterization, one can numerically invert Eq. (5.10) and

obtain the spectrum of the interacting system with the modified energy levels due to the

avoided level crossing.

On the left hand side of Fig. 5.9 the distribution of the energy levels in the physical case

can be observed: a resonance of mass mR = 1535 MeV and Γ = 150 MeV has been used

to model the phase shift and obtain the spectrum in finite volume. On the right hand

side of Fig. 5.9 we present the analogous case with parameters that have been adjusted

to coincide with our setup: the mass of the pion is set to mπ = 266 MeV (which is used

as unit mass in the plot), the ground state nucleon has mass mN = 1068 MeV (as earlier

evaluated) and the resonance lies on mR = 1670 MeV. The coupling strength γ at the

resonance position is unchanged.

Let us now focus on Lmπ = 2.7 (the value corresponds to our lattice parameters) and

compare the two pictures.

If physical masses are involved, different combinations of N(p)π(−p) would be eligible

for coupling with the resonance. However in the real case (RHS) only N(0)π(0) lies

below mR. In the non-interacting case the Nπ level coincides with the threshold, while

for attractive interaction the level moves slightly below the threshold.

The two lowest energy levels can be related to ρ0 and therefore to the scattering length.

In Table 5.1 the values of ρ0 from Eq. (5.13) can be found together with the resulting

values of the phase shift, assuming elasticity. The second energy level lies close to the

point where the phase shift crosses π/2 (this value is included within the errorbars). As

discussed, the kinematic situation (pion mass and lattice size) allows the assumption

to be in the elastic domain and thus one is tempted to assume validity of Eq. (5.14).

The zero of the line connecting the values of ρ0 at the two lowest energy levels gives

the resonance position a2sR = 1.114(135) corresponding to a resonance mass mR =

1.678(99) GeV. This is ∼ 140 MeV above the physical value, but not surprising due to

the unphysical pion and nucleon masses, in fact, a similar shift as for the nucleon. Also

note, that the Nπ system in nature is already inelastic and the linearity assumption not

justified in that case.
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The third eigenstate has a phase shift of 47◦ (' 227◦, since the arctan is defined modulo

180◦), indicating a resonance lying closely above that energy value of 1.79 GeV – again

under the unphysical assumption of elastic scattering.

Due to the closeness of the threshold to the resonance in our setting as compared to

nature, we cannot expect physical values for scattering length or decay width. With Eq.

(5.12) we can estimate the scattering length from the point close below threshold sthr.

We find a value a0 ' 5.3(±1.4) GeV−1 roughly four times larger than, e.g., the leading

order Chiral Perturbation Theory value mπ/(4πF
2
π ) [102, 103].

Choosing interpolators with non-zero total momentum allows in principle to obtain

further energy levels and thus additional values of the phase shift. However, as seen in

Chapter 3 and further explored in Chapter 5, when Ptot 6= 0 new complications emerge

and the mixing of different spin and momenta makes the high precision determination

of the spectrum a computationally demanding task.

It might be also argued that the level N(1)π(−1) is close enough to the second N∗

resonance and should be included for a convincing analysis of the spectrum. However

from the eigenvectors analysis of the combined 3 and 5 quark correlation matrix there is

no hint that the third measured level might be trying to interpolate between two different

states: the eigenvector composition results are stable in the fit range.

Note that Lüscher’s relation holds in the elastic region. Most often inelasticity sets in

early due to coupled channels. The presently pursued alternative is the inverse proce-

dure, starting with a (unitarized) coupled channel parameterization of the scattering

matrix in the continuum and then determining the expected discrete energy levels on

finite volumes, see, e.g., [26–29]. The lattice results for the energy levels then can be

interpreted along these lines.

5.7 Conclusions

In this chapter we presented the study of the Nπ scattering in the negative parity, isospin
1
2 sector in an ab initio lattice QCD calculation. We use both 3-quark and meson-baryon

(5 quark) interpolators , highlighting the significant differences between the two different

setups.

The overall behavior reminds to what has been found in other meson-meson studies,

[20, 21]: when the two-particle interpolators are included in the variational analysis, the

energy levels are rearranged in a way that better describes the experimental observations.

This work represents a first step into that direction. More data (moving frames, different
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volumes, further coupled channels) would fill the gap between elastic and inelastic

threshold and allow the comparison with experiment and continuum models.



Chapter 6

Nπ scattering in P-wave: the Roper

sector

After the study of the Nπ scattering in S-wave, we face the challenge of the P-wave in

the same spin and isospin channel.

We will explain which are the main difficulties that have to be overcome, connected to

the choice of a non-rest frame due to kinematic considerations.

As we have seen in Chapter 4, being in a rest frame allows to avoid problems related to

the reduced symmetry group and the subsequent properties of the interpolators. How-

ever sometimes a Ptot = 0 is not a possible choice.

6.1 P-wave kinematics

The task of the current study is to explore the positive parity sector of the nucleon

spectrum including the Nπ system in the analysis. This approach provides interesting

information only if the pion-nucleon lower energy levels lie in the interesting region

defined in Chapter 4.

Let us now explore the kinematics of different momenta combinations on our lattice and

find an answer for the following questions:

• Which choice of the momenta is in agreement with our interesting region constraint

combined with the necessity of a P-wave?

• Which are the properties of the symmetry groups in the selected moving frame?

57
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• How do we write the Nπ interpolator so that it transforms as the single particle

operator?

From parity conservation considerations it is clear that the N+ sector couples to the

pion-nucleon system in P-wave:

PTOT = P1 × P2 × (−1)L , (6.1)

with

P (N+) = +1 P (π) = −1 , (6.2)

which requires

L = 1 −→ P -wave . (6.3)

Let us now have a look at the energy levels of the different P-waves that can be generated

on our lattice.

The parameters of our lattice

mN = 1080 MeV , mπ = 266 MeV , a = 0.1239 L = 16 ,

pLab = |p|2π
L

197

0.1239
, (6.4)

imply that the smallest momentum available is pLab = 624 MeV. It drastically restricts

our possible choices.

EiLab =
√
m2
i + p2

i , ECM =
√
E2

Lab − p
2
Lab , (6.5)

where ECM is the energy of the non interacting system and ELab = EN + Eπ .

Here follows a list and a graphic representation of possible momenta combinations (see

Fig. 6.1). Only those inside the energy region of our interest are actually listed. Note that

the following results are only meant as a rough estimate of the energy region involved

and are computed using naive kinematics formulas valid in the continuum.
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FIGURE 6.1: Pion-nucleon system energy levels in the CMF estimated on our lattice (left)
compared with the expected nucleon spectrum (right). The dashed lines correspond to

the levels with the pion at rest.

~d ~pN ~pπ ECM

(0, 0, 0) (0, 0, 1) (0, 0,−1) 1926 MeV

(0, 0, 1) (0, 0, 1) (0, 0, 0) 1379 MeV

(0, 0, 1) (0, 0, 0) (0, 0, 1) 1644 MeV

(0, 1, 1) (0, 1, 1) (0, 0, 0) 1407 MeV

(0, 1, 1) (0, 0, 1) (0, 1, 0) 1711 MeV

(1, 1, 1) (1, 1, 1) (0, 0, 0) 1431 MeV

Table: Pion-nucleon system energy levels in the CMF. ~Ptot = 2π/L~d. The momenta of

the pion and the nucleon are given in 2π/L units.

It is obvious that Ptot = (0, 0, 0) does not allow us to access the information we are

interested in, therefore a non-rest frame has to be chosen.

The Roper resonance has mass m = 1440 MeV and width Γ = 300 MeV and its main

decay channel is Nπ in P-wave (55− 75%).

Since we are working at unphysical pion mass and our nucleon has a mass that is roughly

130 MeV higher than the experimental one, we can naively expect that the same applies

to the other particles (see also Chapter 5). We would therefore expect the Roper to have
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a mass around 1570 MeV on our lattice.

This implies that the interesting region lies between 1420 MeV and 1720 MeV. Choosing

any of the low lying setup should guarantee to observe one or more states in the right

energy region.

6.2 Non-rest frames

In the case of ~d 6= (0, 0, 0), the symmetry Oh of the lattice is partially broken and we are

left with a smaller symmetry group, the Little group (see Chapter 4).

Group d Little group

(0, 0, 1) C4v

Oh (1, 1, 0) C2v

(1, 1, 1) C3v

(0, 0, 1) 2C4v

2Oh (1, 1, 0) 2C2v

(1, 1, 1) 2C3v

For different little groups, the mesh (our lattice grid, deformed due to non zero CM

velocity) is invariant under a different subgroup of transformations and the interpolators

have to be constructed so that they transform under irreducible representation of the

new symmetry group [36].

6.2.1 d = (0, 0, 1) → 2C4v

The entries of M in Eq.(4.15) can be computed from the transformation properties of

the interpolators. For each (JP , I) combination we need to list the irreducible represen-

tations according to which the interpolators transform.

In the case of 2C4v for spin 1
2 the representations Γ(l) available for the l-wave are

Γ(0) = G1 ,

Γ(1) = G1 ,
(6.6)
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while for spin 3
2 we have

Γ(1) = G1 ⊕G2 ,

Γ(2) = G1 ⊕G2 ,
(6.7)

Interpolators of particles with different spins transform according to the same irreducible

representations (Irreps). To be more precise [36]

Γ dimΓ J l

G1 2 1
2 0

G1 2 1
2 1

G1 2 3
2 1

G2 2 3
2 1

G1 2 3
2 2

G2 2 3
2 2

Therefore the two irreducible matrices MΓ for a generic Irrep will have entries for spin
1
2 and 3

2 , together with contributions from S- and P-waves, while D-waves (l = 2) will be

from now on neglected due to the fact that we do not expect substantial contributions in

the lower part of the spectrum.

This results in

MΓ
Jl,J ′l′ =


M 1

2
0, 1

2
0 M 1

2
0, 1

2
1 M 1

2
0, 3

2
1

M 1
2

1, 1
2

0 M 1
2

1, 1
2

1 M 1
2

1, 3
2

1

M 3
2

1, 1
2

0 M 3
2

1, 1
2

1 M 3
2

1, 3
2

1

 , (6.8)

with

MG1 =


w00 iw10 i

√
2w10

−iw10 w00

√
2w20

−i
√

2w10

√
2w20 w00 + w20

 , (6.9)
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6.2.2 d = (1, 1, 0) → 2C2v

In this case there is a strong mixing between partial waves and different spin states, since

all the half-integer spin operators transform under G1.

Here follows a table that shows the correspondence between particles and Irreps (as

already mentioned, the D-waves are not taken into account).

Γ dimΓ J l

G1 2 1
2 0

G1 2 1
2 1

G1 2 3
2 1

G1 2 3
2 1

Given the irreducible representation Dl of the rotation group of total angular momentum

l, the irreducible representation G1 occurs twice in D1 for J = 3
2 (with two different

couples of basis vector which are listed in [36]). This explains why G1 is listed twice in

the lower part of the Table.

The matrix MG1 reads

MG1

Jl[n],J ′l′[n′] =


M 1

2
0, 1

2
0 M 1

2
0, 1

2
1 M 1

2
0, 3

2
11 M 1

2
0, 3

2
12

M 1
2

1, 1
2

0 M 1
2

1, 1
2

1 M 1
2

1, 3
2

11 M 1
2

1, 3
2

12

M 3
2

11, 1
2

0 M 3
2

11, 1
2

1 M 3
2

11, 3
2

11 M 3
2

11, 3
2

12

M 3
2

12, 1
2

0 M 3
2

12, 3
2

2 M 3
2

12, 3
2

11 M 3
2

12, 3
2

12

 , (6.10)

where n, n′ are running from 1 to 2 in the case of G1 (l = 1, J = 3/2) for the reason

explained before.

6.2.3 d = (1, 1, 1) → 2C3v

Here we present the correspondence between spin, partial waves and Irreps for 2C3v.
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Γ dimΓ J l

G1 2 1
2 0

G1 2 1
2 1

G1 2 3
2 1

K1 1 3
2 1

K2 1 3
2 1

In this case the matrix MΓ has the following entries.

MΓ
Jl,J ′l′ =


M 1

2
0, 1

2
0 M 1

2
0, 1

2
1 M 1

2
0, 3

2
1

M 1
2

1, 1
2

0 M 1
2

1, 1
2

1 M 1
2

1, 3
2

1

M 3
2

1, 1
2

0 M 3
2

1, 1
2

1 M 3
2

1, 3
2

1

 , (6.11)

with

MG1 =


w00

√
6

2 (1− i)w10 i
√

6w10√
6

2 (1 + i)w10 w00

√
6(1 + i)w22

−i
√

6w10

√
6(1− i)w22 w00 − i

√
6w22

 . (6.12)

6.3 Nπ: the favorable channels

The choice of the momenta setup has to be carefully made. Due to the large amount of

CPU time that the simulations require, only few setups can be evaluated.

It has been seen in the previous section that the reduced symmetry affects the properties

of the interpolators: it is not possible to construct a spin 1/2 interpolator that disentangles

spin and S/P-waves. As a consequence we expect that different sectors of the spectrum

will appear in our measurements on the lattice, since some of the quantum numbers of

the interpolator are not well defined.

A closer look to the experimental spectrum of the nucleon sector turns out to be helpful

in understanding the problem.

It is clear from Fig.6.2 that the first (J = 3/2, l = 1) state lies far above the energy region

of our interest. Therefore it is reasonable to neglect its contribution and its influence on
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FIGURE 6.2: Nucleon states in different spin and parity sectors. The error bars represent
the experimental widths.

the lower part of the spectrum [36]. On the other hand (J = 3/2, l = 0) states do not

mix with (J = 1/2, l = 1) and do not represent a reason of concern.

As seen in the previous section, however, the two resonances N(1440) and N(1535), in

P and S wave respectively, cannot be disentangled from each other neither from analyti-

cal considerations (every G1 interpolator mixes the two waves) based on experimental

evidences (the two resonances lie too close to each other to neglect the contribution of

one of them).

In order to extract reliable information we need to compute the energy levels for both

the S-wave and the P-wave of this channel.

Let us go through case by case and explicitly write the Lüscher’s formula for the different

momenta, keeping in mind that we neglect the J = 3/2 contribution:
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d = (0,0,1)

det

w00 − cot δ 1
2

0 iw10

−iw10 w00 − cot δ 1
2

1

 = 0. (6.13)

d = (1,1,0)

det

w00 − cot δ 1
2

0

√
2(i− 1)r11

√
2(i+ 1)r11 w00 − cot δ 1

2
1

 = 0, (6.14)

where r11 = Re(w11).

d = (1,1,1)

det

w00 − cot δ 1
2

0

√
6

2 (1− i)w10
√

6
2 (1 + i)w10 w00 − cot δ 1

2
1

 = 0. (6.15)

Independently of the setup, we have to solve a similar equation which involves both δ 1
2

1

and δ 1
2

0. Computing high quality data on both of the phase shifts in order to perform the

Lüscher analysis seems nowadays beyond our possibility (see the attempt made for the

S-wave), therefore we will focus on a qualitative study of the energy levels, keeping in

mind that the numerical values might be shifted due to the level crossing and this shift

cannot be now estimated.

6.4 Nπ interpolators

We chose to use ~d 6= ~0 and we need to write an interpolator which describes the two par-

ticle states and transforms according to the same Irrep of the single particle interpolator

ON .

We will explicitly study the case ~d = (0, 0, 1), ~pN = (0, 0, 1), ~pπ = (0, 0, 0).

For d = (0, 0, 1) the little group is C4v for integer spin and its double cover 2C4v for

half-integer spin. ON transforms like G1 and we will construct a Nπ operator with the

same properties under group transformations.

Let us call R̂ a transformation belonging to the little group and Ω a transformation in its

double cover. The behavior of the interpolators under these transformation will tell us

about the irreducible representation they belong to.

The pion interpolator transforms according to A1:

π(x, t) = ψ̄(x, t)γ5ψ(x, t), (6.16)
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π(p, t) =
∑
x

e−ipxπ(x, t), (6.17)

π(p, t) −→ π(R̂p, t). (6.18)

The Nucleon interpolator transforms under G1:

Nα(x, t) = Γαβ(ψ(x, t)ψ(x, t)Γψ(x, t))β, (6.19)

Nα(p, t) =
∑
x

e−ipxNα(x, t), (6.20)

Nα(p, t) −→ Ωαβ Nβ(R̂p, t). (6.21)

The pion-nucleon interpolator is

Oα(ptot,p, t) = Nα(p, t)π(ptot − p, t) =
∑
x,y

e−i(ptot−p)x−ipyπ(x, t)N(y, t). (6.22)

It transforms as

Oα(ptot,p, t) −→ Ωαβ Oβ(R̂ptot, R̂p, t) (6.23)

and from the definition of O = Nπ

ROα(ptot,p, t)R
−1 = RNβ(R̂p, t)R−1 Rπ(R̂ (ptot − p), t)R−1. (6.24)

The correct transformation properties of the interpolators can be easily shown if the

momenta of the two particles are written as a sum of a vector parallel to the unitary

boost vector d and one perpendicular u ⊥ d.

In general we would have

ptot = d, pN = d + u, pπ = −u. (6.25)

then

O(ptot) = N(d + u)π(−u) (6.26)

In the CM frame

p∗ = γ−1(pN−
1

2
A(pN + pπ)) = γ−1(d + u− 1

2
Ad) = γ−1(Λd + u) = αd +βu, (6.27)

where A,Λ, α, β are coefficients which depend on the masses of the two particles and

the momentum.
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The Nπ interpolator in the CMF

OCM = N(αd + βu)π(−(αd + βu)) (6.28)

and we want to understand how it transforms under the transformations of 2C4v:

→ RO(R̂d, R̂u)R−1. (6.29)

Our case is trivial:

ptot ∝ d = (0, 0, 1), pN ∝ d, pπ = 0, (6.30)

then

O(ptot,p) = N(d)π(0)), (6.31)

but, since in this case u = 0, then

p∗ = αd (6.32)

and

OCM = N(αd)π(−αd)). (6.33)

Since d is invariant under R̂ and so is π(p) (which transforms as A1), then

R̂O(d,u)R̂−1 = R̂N(d)π(−d)R̂−1 = R̂N(d)R̂−1R̂π(−d)R̂−1 = R̂N(d)R̂−1π(−d),

(6.34)

from which it is clear that O(d,u) transform exactly like N(d), which is in G1. In

other words, with a pion at rest we can only build operators transforming according to

G1 ⊗A1 = G1.

To summarize: for d = (0, 0, 1), given that the pion is at rest, any interpolator

ONπ(p, t) = N(p, t)π(0, t) (6.35)

will always transform under G1. The same result would have been obtained if the pion

had non zero momentum, but still parallel to d.

An analogous result is obtained for interpolators transforming under G1 in 2C2v or 2C3v.
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6.5 Effective masses

We have studied the spectrum of the nucleon for one-particle and two-particle systems

in moving frames, namely Ptot = (0, 0, 1) and Ptot = (1, 1, 1) (with suitable symmetriza-

tion in the spatial directions).

As mentioned in the previous sections, a definite parity projection of the interpolators

is not possible (see Appendix B, therefore we compute the spectrum using unprojected

operators and taking into account that a superposition of the N+ and N− spectrum has

to be expected.

For the analysis we use a set of 6 interpolators:

O1, O2 = N (1), N (2) with Nv = 32,

O4, O5 = N (1), N (2) with Nv = 64,

O7, O8 = OπN(1) , OπN(2) with Nv = 32, (6.36)

with 3 and (4+1) quarks. Interpolators of type N (3) or πN (3) have been discarded since

they did not bring any improvement in the diagonalization of the correlation matrix.

6.5.1 Single particle spectrum for Ptot = (0, 0, 1)

In Fig. 6.3 (on the left hand side) we present the results due to the diagonalization of a

(4× 4) correlation matrix, where only 3-quark interpolators have been used. We observe

three states: two of them are relatively stable, while the third signal is quickly decaying

and it will not be considered in the further analysis, but it will serve as reference point

for the comparison with the two-particle system.

The lowest state is without doubts the ground state nucleon. It mainly couples to in-

terpolators of type N (1) (see Fig. 6.4 LHS) and its mass in the CMF in physical units

corresponds to 1040(6) MeV, very close to the evaluation made for ~Ptot = (0, 0, 0) (see

Chapter 5).

The second state corresponds to 1538(42) MeV in the CMF and could be either a positive

or a negative nucleon excitation. Having a closer look at the results of the previous

chapter helps us in identifying this state. In Fig. 5.3 we present the 3-quark interpolators

spectrum for N+ and ~Ptot = (0, 0, 0). We observe a ground state nucleon followed by a

state which is far above the energy region that we are now inspecting. The only differ-

ence between those results and the ones presented now in Fig. 6.3 consists in a different

total momentum and we do not expect that this could be responsible for a complete rev-

olution in the spectrum. Therefore we assume that this state is not a 3-quark N+ state.
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FIGURE 6.3: Comparison between the effective masses evaluated in the 3-quark setup
and the result of the 5-quark system setup for ~Ptot = (0, 0, 1). All the masses are given in
lattice units. Note that when the (4 + 1) quark interpolators are included in the analysis

two more states appear: the magenta and the blue state.

Let us now have a look at the first N− state measured in the 3-quark sector (see Fig.

5.5): similarly to the state that we are now analyzing, that state has an energy that lies

below the N(1535) and it mainly couples to N (2) type interpolators. Another common

feature is the instability of the eigenvectors composition observed in both Fig. 5.5 (RHS)

and Fig. 6.4 if compared with the results obtained in the 5-quark case. Therefore we

identify this state (the red one in Fig. 6.3 LHS) as a N− state.

6.5.2 Two-particle spectrum

When two-particle interpolators are included in the analysis, some unexpected modifica-

tions to the spectrum are observed (see Fig. 6.3 RHS): not only one, but two new levels

appear. The analysis of the eigenvectors composition is crucial for the interpretation of

the energy levels.

1st state

The first lower state can be clearly interpreted as the ground state nucleon: it mainly

couples to N (1) type interpolators and its mass in the CMF is compatible with the corre-

sponding level computed in the previous chapter for ~Ptot = ~0.
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FIGURE 6.4: Eigenvectors of the first and second state of the spectrum evaluated from
a 3quark interpolators and ~Ptot = (0, 0, 1). Remember that no parity projection is per-
formed and the evaluated states can be either positive or negative parity. Interpolators

{1, 7} are of type N (1), while interpolators {2, 8} are of type N (2).

2nd state

The second state has a very stable signal and its energy can be evaluated with high

precision (see Fig. 6.6). Its eigenvector composition leaves no doubts about its nature:

this state is clearly a pion-nucleon state: it is dominated by πN (1) type interpolators,

with an additional small coupling with N (1). This behavior has already been observed

in the S-wave analysis. From Fig. 6.6 we see that in the CMF this state lies below

the Nπ threshold, however it is not surprising for a two particle system with attractive

interaction (the same happens for S-wave).

3rd state

This state seem to correspond to the first N− state. The main contribution to this level

are from N (2) interpolators, with a minor contribution from πN (2). This is exactly the

same signature of the state measured in the previous chapter (see Fig. 5.6 RHS 2nd state

and Fig. 5.8). The eigenvector composition of this level shows good stability as compared

with the 3-quark case and the same pattern can be recognized in the previous chapter.

It has to be kept in mind that, due to the reduced choice in irreducible representations

for the interpolators and the absence of a coherent parity projection, a mix of S and P

wave in this channel is expected, therefore it is not surprising that also the N− sector is

affected by the coupling with the pion-nucleon system.

4th state

The most interesting state in our study is the fourth state measured in this (J, I) sector.

This state appears when pion-nucleon interpolators are included and it was absent in the
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FIGURE 6.5: Eigenvectors of the four lowest states of the spectrum of the coupled
{N,Nπ} system with Ptot = (0, 0, 1). Interpolators {1, 4} are of type N (1), interpo-
lators {2, 5} are of type N (2) and interpolators {7, 8} are of type (N (1)π) and (N (2)π)

respectively.

one-particle study of the same problem. From Fig. 6.5 we see that it mainly couples to

(4 + 1) interpolators of type πN (2), plus additional contributions from N (2) interpolators.

In order to interpret this state we will go through different hypothesis and the already

known information that are available on the nucleon spectrum thanks to our previous

study.

The possibility of this state to correspond to N−(1650) has to be excluded: in Chapter

5 we have seen that this state couples to N (1) and mildly with πN (1). Obviously some

fluctuations in the eigenvectors composition could be admitted as possible, however a

coupling with completely different interpolators is not an option when the only differ-

ence in the setup is the total momentum.

Another possibility for this state, due to the fact that it couples to two particle inter-

polators, is to be a pion-nucleon state with different momenta than those assigned by

hand in our simulations. In Fig. 6.6 LHS we see that the state N(0)π(0, 0, 1) lies in the

same energy region (middle green dashed line in Fig. 6.6 leftmost column). This state

is a combination of a pion with a ground state nucleon and the ground state nucleon is
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FIGURE 6.6: Results obtained in the CMF on our lattice compared with the expected val-
ues (i.e. the physical values of the masses are shifted up of ∆E ∼ 130 MeV and the error
bars correspond to the experimental width [2]). The green dashed lines correspond to
the expected energy values of the non-interacting Nπ system on our lattice: from lower
to higher values of the energy we find {N(0, 0, 1)π(0), N(0)π(0, 0, 1), N∗(0, 0, 1)π(0)}
for ~Ptot = (0, 0, 1) (left) and {N(1, 1, 1)π(0), N(1, 1, 0)π(0, 0, 1), N∗(1, 1, 1)π(0)} for
~Ptot = (1, 1, 1) (right). Note that in the expected values column N∗(1650) has not been
plotted since our interest is focused in the lower part of the spectrum and from the
analysis of the eigenvectors it is clear that none of the energy levels plotted the the

Lattice column can be associate to the resonance.

not affected at all by N (2) interpolators, therefore N(0)π(0, 0, 1) would couple to πN (1)

interpolators, which is not the case for the state we observe.

Due to the eigenvector signature of the observed level, it might be argued that this state

could be a πN(1535) state, the energy value of which is plotted in Fig. 6.6 (highest green

dashed line in the leftmost column). Due to the fact that it is considerably high with

respect to our 4th state, we consider it safe to exclude this option.

A possible interpretation for this state is its identification with the Roper resonance. The

nature of this state has been discussed in many different contexts [45–48] [49–51] and

one of the hypothesis suggests a pentaquark nature for this resonance. This picture is

supported by the fact that the contribution of the (4 + 1)quark interpolator to this state is

considerably higher than the other single particle states and we excluded the possibility



Chapter 6. Nπ scattering in P-wave 73

for it to be a Nπ state. In addition this would explain the fact that the N+ spectrum

measured using 3-quark interpolators does not provide any candidate for this resonance.

It has to be noticed that the interpolators have no absolute normalization, therefore a

statement concerning the dominance of one compared to two particle interpolators can-

not be done. Nevertheless a comparison with the other states of the observed spectrum

is allowed.

This study has also been performed for a different total momentum: ~Ptot = (1, 1, 1) and

the results are plotted in the right hand side of Fig. 6.6. Due to the instability of the

signal, obtaining a high precision estimation for the different energy levels is beyond

the possibility of this study, however it is clear that the emerging picture is completely

compatible with the ~Ptot = (0, 0, 1) study. The states appear with the same ordering

and the same eigenvector composition, therefore all the considerations just made for the

other momentum setup hold also in this case.

The evaluation of the spectrum for two different total momenta is important to exclude

mistakes in the interpretation of the states. The fact that the states appear with the same

order and the same eigenvector signature supports our conclusions.

6.6 Conclusions

We have computed the pion-nucleon spectrum using nucleon interpolators and pion-

nucleon in non zero total momentum. With this choice S and P waves (and therefore

positive and negative parity) are mixed and the interpretation of the evaluated energy

levels has to be done with special care.

We observe, as expected, that including the two-particle interpolators determines the

presence of a πN state with a clear and stable signal. However also the rest of the

spectrum is subject to a major modification: a new state appears. This state strongly

couples to the (4+1)quark interpolators, but it seems not to be compatible with any

2-particle state. A possible interpretation consists in connecting this state to the Roper

resonance. The state, however, still appears above the state identified as the N(1535).

It is possible that an extrapolation to physical masses leads to the inversion of the mass

ordering, however this cannot be done in the context of the current study.
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∆−Nπ coupled system

Following the pattern already explained in the previous chapters, we now study the

delta baryon ∆(1232) treating the particle as a resonance, therefore including the pion-

nucleon system in the analysis.

The delta couples to an Nπ system in P-wave and a non-vanishing total momentum is

required for kinematic reasons. All the tools developed in Chapter 6 concerning the

study of resonances in a finite box for non-rest frame will be applied to this case.

7.1 Kinematics and favorable channels

The delta ∆(1232) is a resonance and it decays almost exclusively into a pion-nucleon

P-wave. It has a very narrow width of Γ ∼ 120 MeV and a very characteristic phase

shift (see Fig. (7.1)), therefore we expect its features to be detectable with a phase shift

analysis of the coupled ∆−Nπ system.

First of all an analysis of the kinematics of the system on our lattice is necessary: we

need to detect the energy region that is interested by the presence of the resonance and

therefore useful for the extraction of the resonance parameters.

Due to the unphysical pion mass we expect an overall shift up of the hadron spectrum

that we measure on our lattice. We fix this shift to ∆E = 130 MeV in order to compute a

rough estimate of the expected energy levels.

Assuming that the delta will manifest itself at roughly 1232 MeV + ∆E = 1362 MeV, we

compute the possible momenta combinations for the pion-nucleon system in order to hit

the interesting energy region which we define as

m∆ ± Γ ∼ [1300− 1420] MeV. (7.1)

75
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FIGURE 7.1: Phase shift of the P33 wave of the pion-nucleon system from [1].

The pion-nucleon systems that have compatible energies are

Little group ~d ~pN ~pπ ECM
2C4v (0, 0, 1) (0, 0, 1) (0, 0, 0) 1379 MeV
2C2v (0, 1, 1) (0, 1, 1) (0, 0, 0) 1407 MeV
2C3v (1, 1, 1) (1, 1, 1) (0, 0, 0) 1431 MeV

Tab. A: Pion-nucleon system energy levels in the CMF. ~Ptot = 2π/L~d. The momenta of

the pion and the nucleon are given in units of 2π/L.

All the combinations that involve a pion with non-zero momentum are far above the

energy region of interest.

We now analyze the consequences of the broken symmetries in non-rest frames in order

to find the most favorable channels for our calculation. This information is essential in

the construction of the interpolators.

Little group Irreps compatible with ∆ : (J,l)
2C4v G1 : (1/2, 0), (1/2, 1), (3/2, 2)..., G2 : (3/2, 1), (3/2, 2)

2C2v G1 : (1/2, 0), (1/2, 1), (3/2, 2)...

2C3v K1 : (3/2, 1), (3/2, 2)..., K2 : (3/2, 1), (3/2, 2)..., G1 : (1/2, 0), (1/2, 1), (3/2, 2)...

Tab. B: This table is extrapolated from the information found in [36].

In all the three little groups the (3
2

+
) sector is involved in mixing of spins or partial waves.

Some of the irreducible representations (see Tab. B) do not mix states with different spin.
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FIGURE 7.2: Experimental energies of the ∆ spectrum. The error bars represent the
experimental width. Note that the J = 3/2 l = 0 states shown in the last column never
happen anyway to mix with the other states in the formulas for the evaluation of the

phase shift.

Unfortunately it is not possible to construct an interpolator which transforms according

to any of these Irreps: their properties under symmetry transformations would require

interpolators with a pion not at rest, which is not an available choice. The coarseness of

our lattice is such that the Nπ energy levels would lie too far above the resonance to be

of any interest. The only suitable possibility is G1.

The irreducible representation G1 implies, in all the little groups, a mixing among all the

channels. As a consequence solving the phase shift equation

det(cot δ −M) = 0 (7.2)

results to be a hard challenge: the presence of several unknown variables (the differ-

ent δlm) would prevent from achieving a numerically reliable result. Eq.(7.2) can be

nevertheless simplified by looking at the experimental spectrum of the delta baryon.

In Fig. (7.2) we present the energy levels of the delta in various channels. The ground

state delta ∆(1232) lies far below all the other resonances and, considering its very

narrow width it is unlikely that any of the other states can have any influence on the

phase shift of the low lying delta. (The same argument is used in [36] for the Roper

resonance).

If we assume that in the region of interest the phase shift of the pion-nucleon P33 wave

is only determined by the presence of the ∆(1232), the terms in the Lüscher’s formula
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which depend on the other resonances can be dropped. A setup like d = (0, 0, 1) which

seemed unfavorable from a merely analytic point of view, reveals itself to be a good

choice for the study of this resonance.

7.2 Phase shift

Here follows a summary of the simplified phase shift formulas. They are obtained by

taking into account the isolation of the ∆(1232) in its energy region. The contributions

from the rest of the spectrum are neglected and the only term that survives in the phase

shift formula is the (J = 3/2, l = 1) one.

• d = (0, 0, 1)

The phase shift equation reduces to

w00 + w20 − cot δ 3
2

1 = 0. (7.3)

• d = (1, 1, 0)

Due to the double occurrence of G1, the matrix M cannot be reduced completely

and it therefore represents a non-favorable channel.

• d = (1, 1, 1)

In this sector, once we project the ∆ interpolator on the representation G1 we are

left with

w00 − i
√

6w22 − cot δ 3
2

1 = 0, (7.4)

which is another favorable option.

7.3 G1 Interpolators

Due to the forced choice of having a pion at rest, we are restricted to pion-nucleon

interpolators in G1 (see Chapter 6 for further discussion on the topic and an explicit

derivation of the ONπ properties under discrete transformations). We need to construct

a two-particle interpolator and a single particle interpolator with the same quantum

numbers in order to guarantee compatibility and a non-zero correlation function.
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7.3.1 Nπ

In Chapter 6 we have shown that any interpolator of the type

ONπ(p, t) = N(p, t)π(0, t) (7.5)

transforms according to G1 in all the three Little Groups of interest: 2C4v,
2C2v,

2C3v.

As mentioned in Chapter 6 and explained in Appendix B, the parity of an operator in a

moving frame is not a well defined property, therefore we do not introduce any parity

projection in the construction of our interpolators.

The isospin projection is also trivial in this case: we chose (I = 3/2, I3 = 3/2) so that

ONπ = pπ+ , (7.6)

where p is the positive charged nucleon (with quark content (uud)). In the two-particle

sector we use in total three pion-nucleon interpolators:

O3, O4, O5 = OπN(1) , OπN(2) , OπN(3) , with Nv = 32. (7.7)

7.3.2 ∆

The delta interpolator is usually defined as

∆i
α = εabcP

±
αβψ

a
β ψ

b
γ(Cγi)γδ ψ

c
δ. (7.8)

Due to its 3/2 spin, a Rarita-Schwinger projection is needed. The interpolator ∆(i) is

multiplied by the projector

P 3/2
µν (p) = δµν −

1

3
γmuγν −

1

3p2

(
γ · pγµpν + pµγnuγ · p

)
, (7.9)

where p is the four-momentum of the particle. The projector reduces to a trivial combi-

nation of gamma matrices for a particle at rest (p = 0) since the explicit momenta in the

third term of Eq.(7.9) cancels out.

When the three-momentum is different from zero, however, the p2 term does not cancel

and it determines the impossibility of a well defined projection.

Not performing a Rarita-Schwinger projection implies that the mixing between spin 1/2

and spin 3/2 states cannot be avoided. However, as discussed in Section 7.1, the ground

state delta ∆(1232) lies far below all the other (I = 3/2) states in the different channels

and an interpolator which mixes the sectors is not supposed to affect the extraction of

the low lying energy value.
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FIGURE 7.3: Comparison of the signal of the ground state obtained with different delta
interpolators. No difference is manifest.

In order to support this assumption we have performed the calculation of a simple

diagonal correlator relative to a single particle interpolator for the ∆ with and without

Rarita projection in total zero momentum. The results can be seen in Fig. (7.3): there is

no sensible difference between the state extracted from the interpolator which has been

projected to spin 3/2 and the results relative to the operator defined in Eq.(7.8) with

spin mixing. No significant difference arises from the comparison. Another interesting

fact is that the
(∑3

i=1 ∆(i)
)

signal is compared with ∆(1) and again no evident difference

is manifest. All the differences (if any) are washed away by the statistical error, giving

high quality and compatible results for the fit of all the four signals.

Considering what we have just observed in the rest frame, we have no reason to assume

that the situation in a non-rest frame would be different, therefore we use as single

particle interpolator

O1,O2 = ∆(z) with Nv = 32, 64, (7.10)

where ∆(z) is the third component of Eq.(7.8) without parity projection and it corre-

sponds to the third component of the delta interpolator projected onto G1 (see [36] for

details).
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FIGURE 7.4: Effective masses measured in the ∆ channel coupled to Nπ in P-wave for
different values of the total momentum.

.

7.4 The ∆(1232) resonance

In this section we present the analysis of the energy levels extracted from the study of the

coupled ∆−Nπ system in P-wave, performed using five interpolators {O1,O2,O3,O4,O5}
as defined in Eq.(7.7) and Eq.(7.10). For the calculation all the possible Wick contrac-

tions have been taken into account (see Appendix D for a comprehensive list).

We have evaluated the first two energy levels of the low lying spectrum of the ∆→ Nπ

system in two different total momentum frames: d = (0, 0, 1) and d = (1, 1, 1).

The eigenvector composition and the numerical values of these energy levels leave no

doubts about their nature: we are looking at ∆(1232) (black signal in Fig.7.4) and the

Nπ in P33 wave (red signal in Fig. 7.4). When the Nπ interpolators are included the

Nπ level appears and no sensible shift on the other state is observed (as on the contrary

was observed for the N∗ states in Chapter 5).

The values of En measured on the lattice (see Table 7.1) are plugged into the phase shift

equations computed in Section 7.2 and the phase shift is extracted.

Using a Breit Wigner parametrization of the resonance we can now proceed to extract

its parameters, even though it is clear from the phase shift behavior (see Fig. 7.5) that

the width will be much smaller than the experimental one.

The resonance appears to be extremely narrow and squeezed at the right end of the

expected interesting region. This can be explained with the fact that, due to the kinematics
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~d level aEn a2s fit χ2

d.o.f. ρ δ
range [rad]

d = (0, 0, 1) 1st 0.927(5) 0.725 2-10 7.8/5 0.014(12) 0.016(2)
d = (0, 0, 1) 2nd 0.968(3) 0.805 2-9 4.1/4 -0.009(4) 2.867(33)
d = (1, 1, 1) 1st 1.088(10) 0.794 2-9 10.7/6 -0.0021(1) 2.38(16)
d = (1, 1, 1) 2nd 1.139(8) 0.915 2-9 1.93/5 – –

TABLE 7.1: Final results for the lower two energy levels of the coupled ∆−Nπ system
(relative to two exponential fits). The values of s have been computed using the lattice
dispersion relation of Eq. (4.20). The last state is not included in the phase shift analysis
since it is too far from the energy region of interest. The second and third state enter

the analysis with the real part of the phase shift.

FIGURE 7.5: Values of the phase shift computed using the phase shift formula (black
points). The green horizontal arrow indicates the energy range that we identified as the

interesting energy region. The red vertical dashed line represents the Nπ threshold.

of our system and the unphysical pion mass, the ∆ resonance lies too close to the Nπ

threshold, which artificially affect its properties.

For convenience we define

ρ(s) =
(p∗)3

√
s

cot(δ) (7.11)

from which we extract the value of the resonance mass mR = 1396(19) MeV.

The value of the coupling constant is computed as

g2 = (sR − s)
6π

ρ(s)
(7.12)

and leads to the value gNπ∆ = 9.2(4) which is 40% off from the physical value (gphys) ∼
16. As a consequence the width computed from

Γ =
(p∗)3(sR)

sR

g2

6π
(7.13)

turns out to be too narrow as expected (∼ 11 MeV).
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FIGURE 7.6: Values of ρ(s). The red line represents the fit we have used to extract the
resonance parameters.

To conclude we perform an effective range parametrization near threshold form which

we extract the P33 scattering length (or more appropriately scattering volume)

√
s ρ(s) =

1

a
+O(p∗2) (7.14)

and we obtain the value of a33m
2
π = 0.29(5) which is compatible with the experimental

one: a33m
2
π = 0.214.

7.5 Conclusions

In this chapter we have presented the results of the study of the coupled ∆−Nπ channel.

The two-particle P-wave is introduced in the system and the resulting spectrum is used

to evaluate the properties of the ∆ resonance as well as the scattering length. We obtain

a physical value for a33, while the picture arising from the study of the resonance is

unphysical: what we observe on the lattice is a very narrow resonance squeezed at the

far upper end of the energy region which we expected to be influenced by the resonance

(the interesting region: M ± Γ/2), considering its experimental width. The reason for

this behavior could be hidden in the kinematics of the system: due to our unphysical

pion mass and the coarseness of our lattice, the Nπ threshold lies too close to the ∆

resonance to give a realistic picture of the latter. Additional studies on different ensemble

would be needed to extract the physical value Γ. Nevertheless the assumption made in

Sections 7.1 and 7.2 concerning the possibility of simplifying the phase shift seems to

lead to a valid picture of the system and can be used in further studies, since it implies a

considerable cut in the computational costs.





Summary

In this work we have focused our attention on the study of the pion-nucleon system in the

context of lattice QCD, which allows to perform ab initio calculation and compute pre-

dictions starting from a discretized version of Quantum Chromodynamics. The interest

in the Nπ system is due to its role as decay product of most of the baryon resonances in

the low lying energy spectrum of QCD. These resonances have been traditionally treated

as stable states in lattice studies and here for the first time we explicitly include their

decay product in the analyzed system.

The process of extracting resonance parameters on the lattice is extremely difficult: it

requires the determination of the phase shift from the discrete spectrum, which turns

out to be a hard task due to the few available data points and the complications due to

eventual moving frames. Despite the technical limits of the approach, we study three

different (J, I) channels and we shed some light on diverse properties of the studied

resonances.

In the negative parity nucleon sector (see Chapter 5) we show that the inclusion of

(4 + 1)-quark interpolators is crucial for a reliable picture of the spectrum: using only

3-quark operator is not sufficient for describing the N∗ states.

In Chapter 6 we study the pion-nucleon scattering in S-wave and we perform a quali-

tative analysis of the results. We observe the presence of an unexpected energy level

when Nπ interpolators are included in the analysis and we explain that this could be a

candidate for the Roper resonance.

Chapter 7 is devoted to the study of the ∆(1232) resonance. The vicinity between the

resonance and the Nπ threshold (due to the unphysical pion mass) determines a squeez-

ing of the resonance width, however the mass extracted is compatible with the expected

value.

This work is meant to be a first step in the direction of reproducing the properties of

baryon resonances in LQCD, which still represents an outstanding challenge.
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Appendix A

Dirac matrices

The Dirac matrices on a four dimensional Euclidean space can be derived from the

Minkowski gamma matrices. They obey the anti-commutation relation

{γµ, γν} = 2gµν1, (A.1)

where gµν = δµν in the Euclidean space and µ = 1, 2, 3, 4 (the fourth component repre-

sents by convention the temporal direction). The gamma matrices obey

γµ = γ†µ = γ−1
µ . (A.2)

We adopt the chiral representation of the gamma matrices where

γ5 = γ1γ2γ3γ4 (A.3)

is diagonal. In addition we recall that

γ2
5 = 1 and {γ5, γµ} = 0 ∀µ. (A.4)

The charge conjugation matrix is defined as

C = iγ2γ4, (A.5)

with

CγµC
−1 = −γmuT . (A.6)
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In the chiral representation the gamma matrices read

γ1 =


0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

 , γ2 =


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

 , γ3 =


0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0

 ,

γ4 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , γ5 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 .



Appendix B

Interpolator properties under parity

transformations

The action of the parity transformation P on the fermionic fields is defined as follows

ψ(~x) −→ γ4ψ(−~x), (B.1)

ψ̄(~x) −→ ψ̄(−~x)γ4. (B.2)

The effect of P on different particle interpolators has to be computed case by case in

order to ensure that the chosen operator has the correct quantum numbers of the particle

it couples to.

B.0.1 The 3-quark N interpolator

We define the nucleon interpolator as

N (i)(~x) = Γ
(i)
1 u(~x)uT (~x) Γ

(i)
2 d(~x). (B.3)

With different Dirac structures (i.e. different combinations of (Γ1,Γ2)), antisymmetriza-

tion on the (omitted) color indices and eventual isospin symmetrization are implied.

Under parity transformation it transforms as

P : N (i)(~x) −→Γ
(i)
1 γ4u(−~x)uT (−~x)γ4 Γ

(i)
2 γ4d(−~x) = (B.4)

=s1s2 γ4Γ
(i)
1 u(−~x)uT (−~x) Γ

(i)
2 d(−~x), (B.5)
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where

Γ1γ4 = s1γ4Γ1 and Γ2γ4 = s2γ4Γ2. (B.6)

(B.7)

To summarize

P : N (i)(~x) −→ γ4N
(i)(−~x). (B.8)

It is only the momentum projection to ~p = ~0 that ensures parity to be a definite quantum

number for this interpolator:

N(~p) =
∑
x

e−ipxN(~x) −→γ4

∑
x

eipxN(~x), (B.9)

N(~0) −→γ4N(~0). (B.10)

Therefore the interpolators for positive and negative parity nucleons at rest read

(N
(i)
± )µ =

∑
~x

εabc

(
P± Γ

(i)
1 ua(~x)

)
µ
uTb (~x) Γ

(i)
2 dc(~x), (B.11)

with P± = (1± γ4)/2.

An analogous calculation can be done for the delta baryon interpolator leading to the

same results.

B.0.2 The Nπ interpolator with zero momentum

The Nπ interpolator is constructed from the single particle N and π interpolators.

The pion interpolator transforms under parity as

π(~x) = ū(~x)γ5d(~x) −→ −ū(−~x)γ5d(−~x) (B.12)

and after zero momentum projection π(~p) has definite negative parity

P : π(~p) −→ −π(~p). (B.13)

The pion-nucleon interpolator can be naively written as

ONπ(~p) =
∑
x

N(~x)e−ipx
∑
y

π(~x)e−ipy (B.14)
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which, after projection to zero momentum, transforms under parity as

ONπ(~0) −→ −γ4N(~0)π(~0), (B.15)

or equivalently

O±Nπ = P∓Nπ. (B.16)

Since we aim to evaluate the correlation function of the coupled system {N,Nπ}, we

need ONπ to transform under parity in the same way of N , otherwise the off diagonal

terms of the correlation function will artificially vanish due to the mutual annihilation

of the parity projectors. For example the matrix element related to the negative parity

nucleon would read

〈P−N |P+Nπ〉 = 0. (B.17)

We decide to insert an extra γ5 in our definition of ONπ so that it transforms according

to N under parity transformations:

O±Nπ = P±γ5Nπ. (B.18)

In this way the diagonal two-particle correlator stays unchanged and the off-diagonal

terms do not vanish:

〈P+Nπ|P+Nπ〉 = 〈P−γ5Nπ|P−γ5Nπ〉, (B.19)

〈P−N |P−γ5Nπ〉 6= 0. (B.20)

B.0.3 Parity transformations in non-rest frame

We have already mentioned that parity represents a good quantum number only af-

ter a projection to zero momentum. Now we address the issue of defining a particle

interpolator in a non-rest frame.

For single particle interpolators we have seen that

N(~p) −→ γ4N(−~p) and π(~p) −→ −π(−~p) (B.21)

do not have definite parity. The same happens to two-particle interpolators with non-zero

momenta:

N(~p1)π(~p2) −→ −γ4N(−~p1)π(−~p2). (B.22)

If the system is in a rest-frame and ~p1 = −~p2 then

N(~p1)π(−~p1) + γ4N(−~p1)π(~p1) (B.23)
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still has definite parity. In all the other cases it is not possible to find a combination of

interpolators that preserves such properties. For this reason we avoid parity projection

in all the studies which involve moving systems.



Appendix C

Isospin projection

C.1 Isospin states

We define the appropriate isospin operators

I+, I−, I3 (C.1)

via their commutation relations

[I+, I−] = 2I3, [I3, I±] = ±I± (C.2)

and their action on the quantum states

I+|u〉 = 0 I−|u〉 = |d〉 I3|u〉 =
1

2
|u〉

I+|d〉 = |u〉 I−|d〉 = 0 I3|d〉 = −1

2
|d〉

I+|d̄〉 = 0 I−|d̄〉 = −|ū〉 I3|d̄〉 =
1

2
|d̄〉

I+|ū〉 = −|d̄〉 I−|ū〉 = 0 I3|ū〉 = −1

2
|ū〉.

(C.3)

The properties of isospin states arise from the commutation relation and can be classified

in multiplets of 2I + 1 states |I, I3〉 which are simultaneous eigenstates of the operators

I3 and

I2 =
1

2
[I+I− + I−I+] + I2

3 , (C.4)

so that

I2|I, I3〉 = I(I + 1)|I, I3〉, I3|I, I3〉 = I3|I, I3〉. (C.5)
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We define the basic quark and antiquark isodublet

(u, d) (d̄,−ū) (C.6)

as

|u〉 = |1
2
.
1

2
〉 |d〉 = |1

2
.− 1

2
〉 (C.7)

|d̄〉 = |1
2
.
1

2
〉 |ū〉 = −|1

2
.− 1

2
〉. (C.8)

The pions form an isotriplet of states with I = 1 and I3 = {1, 0,−1}.
We start constructing the first state of the isotriplet with the largest value of I3

|1, 1〉 = d̄u, (C.9)

then we use the operator I− to decrease I3 and we obtain the next state:

I−|1, 1〉 =
√

2|1, 0〉, (C.10)

I−(d̄u) = I−(d̄)u+ d̄I−(u) = −ūu+ d̄d, (C.11)

|1, 0〉 =
1√
2

(d̄d− ūu). (C.12)

Acting again on both sides with I− leads to

|1,−1〉 = ūd. (C.13)

Note that an overall sign can be arbitrarily added.

Each state is assigned to one of the pions

π+ = d̄u, π0 =
1√
2

(ūu− d̄d), π− = ūd, (C.14)

and the isotriplet reads

(π+,−π0, π−). (C.15)

We use the same approach to define the I = 1/2 baryons as

P = uud = |1
2
,
1

2
〉, N = dud = |1

2
,−1

2
〉, (C.16)

where P and N are respectively the proton (with electric charge +1) and the neutron

(neutral electric charge).

Analogously the I = 3/2 states are
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∆++ = |3
2
,
3

2
〉, ∆+ = |3

2
,
1

2
〉, (C.17)

∆0 = |3
2
,−1

2
〉, ∆− = |3

2
,−3

2
〉. (C.18)

The total isospin (as well as the angular momentum) can be expanded as

|(j1, j2), J,M〉 =
∑
m1,m2

〈j1m1; j2m2|JM〉|j1m1j2m2〉, (C.19)

where |j1m1j2m2〉 = |j1m1〉|j2m2〉 and CG(j1,m1, j2,m2) = 〈j1m1; j2m2|JM〉 are the

Clebsch-Gordan coefficients.

In this convention the proton couples to

|1
2
,
1

2
〉 =

√
2

3
π+N +

√
1

3
π0P, (C.20)

while the delta couples to

|3
2
,
3

2
〉 = π+P. (C.21)

C.2 Isospin symmetrization

In our calculation we have always used interpolators for the nucleon which are not

isospin symmetrized. This follows from some considerations concerning the symme-

tries of the gamma matrices. If the quarks u and d are smeared in different ways, the

interpolator for the charged nucleon would read

Nα
± = εabc(P±Γ(1)ua)

α(ubβ Γ
(2)
βγ dcγ − dbβ Γ

(2)
βγ ucγ). (C.22)

On the contrary no isospin symmetrization is needed if the fermionic fields are all subject

to the same type of smearing: the second term results identical to the first due to

−εabc dbβ Γ
(2)
βγ ucγ = εabc ucγ Γ

(2)
βγ dbβ = εacb ubγ Γ

(2)
βγ dcβ = −εabc ubγ Γ

(2)
βγ dcβ = (C.23)

−εabc ubβ Γ
(2)
γβ dcγ = −εabc ubβ Γ

(2)
βγ

T
dcγ = εabc ubβ Γ

(2)
βγ dcγ , (C.24)

which has been obtained using the following steps: Grassmann variables properties,

color anti-symmetry, renaming of the Dirac indices and antisymmetry of Γ(2) (valid for

every N (i) in this work).





Appendix D

Wick contractions

Notation for the perambulators used in this section: τ (t, t′, a, a′, α, α′) denotes the per-

ambulator ταα′(a, t; a′, t′) from (3.20), i.e., from source at t′ (source vector a′, Dirac

index α′) to the sink at t (source vector a, Dirac index α).

Each source/sink nucleon contributes a factor of the form φ̂N (a, b, c), which is con-

structed from the Laplacian eigenvectors. For a given time slice we have

φ̂snkN (a, b, c) =
∑
~x,i,j,k

εijkv
i
a(~x)vjb(~x)vkc (~x) , (D.1)

where ε denotes the Levi-Civita symbol, v are the Laplacian eigenvectors, and the sum

runs over all sites of the time slice and over the color indices i, j, k. The corresponding

factor for the pion φ̂π(a, b) on a given time slice reads

φ̂snkπ (a, b) =
∑
~x,i,j

δijv
i∗
a (~x)vjb(~x) . (D.2)

By permuting and renaming the Dirac indices α, β, γ, . . . and the eigenvector indices

a, b, c, . . . we group the different contractions such that they have a common prefac-

tor. There also the gamma matrices of the nucleon and pion and the parity projection

operators P± are located.
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D.1 Nucleon (I = 1/2)

D.1.1 N → N

This entry has the form

ΓAα′µP
±
µνΓA†ναΓBβγΓB†γ′β′ φ̂

snk
N (a, b, c)φ̂srcN (a′, b′, c′)

2∑
i=1

Ai , (D.3)

where summation over index pairs is implied.

Sink Source

NN

A1 Sink Source

NN

A2

FIGURE D.1: Terms A1 and A2 contributing to N → N .

A1 = τ
(
t, t′, c, c′, γ, γ′

)
τ
(
t, t′, a, b′, α, β′

)
τ
(
t, t′, b, a′, β, α′

)
A2 = −τ

(
t, t′, a, a′, α, α′

)
τ
(
t, t′, b, b′, β, β′

)
τ
(
t, t′, c, c′, γ, γ′

)
(D.4)

D.1.2 N → Nπ

This matrix element has 4 terms contributing:

1√
2

ΓA†α′µP
±
µνΓAναΓBβγΓB†γ′β′Γ

π
δεφ̂

snk
N (a, b, c) φ̂snkπ (e, g)φ̂srcN (a′, b′, c′)

4∑
i=1

Bi , (D.5)

where summation over index pairs is implied.

Sink Source

Π

NN

B1 Sink Source

Π

NN

B2

Sink Source

Π

NN

B3 Sink Source

Π

NN

B4

FIGURE D.2: Terms B1 −B4 contributing to N → Nπ.
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B1 = 3 τ (t, t, b, e, β, ε) τ
(
t, t′, a, c′, α, γ′

)
τ
(
t, t′, g, a′, δ, α′

)
τ
(
t, t′, c, b′, γ, β′

)
B2 = −3 τ

(
t, t′, b, b′, β, β′

)
τ
(
t, t′, c, c′, γ, γ′

)
τ (t, t, a, e, α, ε) τ

(
t, t′, g, a′, δ, α′

)
B3 = −3 τ (t, t, c, e, γ, ε) τ

(
t, t′, b, a′, β, α′

)
τ
(
t, t′, a, c′, α, γ′

)
τ
(
t, t′, g, b′, δ, β′

)
B4 = 3 τ

(
t, t′, c, c′, γ, γ′

)
τ (t, t, a, e, α, ε) τ

(
t, t′, b, a′, β, α′

)
τ
(
t, t′, g, b′, δ, β′

)
(D.6)

D.1.3 Nπ → N

This matrix element has 4 terms contributing:

1√
2

ΓA†α′µP
±
µνΓAναΓBβγΓB†γ′β′Γ

π†
ε′δ′ φ̂

snk
N (a, b, c)φ̂srcN (a′, b′, c′)φ̂srcπ (g′, e′)

4∑
i=1

Ci , (D.7)

where summation over index pairs is implied.

Sink Source

Π

NN

C1 Sink Source

Π

NN

C2

Sink Source

Π

NN

C3 Sink Source

Π

NN

C4

FIGURE D.3: Terms C1 − C4 contributing to Nπ → N .

C1 = 3 τ
(
t, t′, b, b′, β, β′

)
τ
(
t, t′, c, c′, γ, γ′

)
τ
(
t′, t′, e′, a′, ε′, α′

)
τ
(
t, t′, a, g′, α, δ′

)
C2 = −3 τ

(
t, t′, c, c′, γ, γ′

)
τ
(
t, t′, a, b′, α, β′

)
τ
(
t′, t′, e′, a′, ε′, α′

)
τ
(
t, t′, b, g′, β, δ′

)
C3 = −3 τ

(
t, t′, c, a′, γ, α′

)
τ
(
t, t′, a, g′, α, δ′

)
τ
(
t, t′, b, c′, β, γ′

)
τ
(
t′, t′, e′, b′, ε′, β′

)
C4 = 3 τ

(
t, t′, a, b′, α, β′

)
τ
(
t, t′, c, a′, γ, α′

)
τ
(
t, t′, b, g′, β, δ′

)
τ
(
t′, t′, e′, c′, ε′, γ′

)
(D.8)

D.1.4 Nπ → Nπ (I = 1/2)

Here 19 terms contribute:

1

2
ΓA†α′µP

±
µνΓAναΓBβγΓB†γ′β′Γ

π
δεΓ

π†
ε′δ′ φ̂

snk
N (a, b, c)φ̂snkπ (e, g)φ̂srcN (a′, b′, c′)φ̂srcπ (g′, e′)

19∑
i=1

Di ,

(D.9)
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Sink Source

ΠΠ

NN

D1 Sink Source

ΠΠ

NN

D2

Sink Source

ΠΠ

NN

D3 Sink Source

ΠΠ

NN

D4

Sink Source

ΠΠ

NN

D5 Sink Source

ΠΠ

NN

D6

Sink Source

ΠΠ

NN

D7

FIGURE D.4: Terms D1 −D7 contributing to Nπ → Nπ.

where summation over index pairs is implied.

D1 = 3 τ
(
t, t′, b, b′, β, β′

)
τ
(
t, t′, c, c′, γ, γ′

)
τ
(
t′, t, e′, e, ε′, ε

)
τ
(
t, t′, a, g′, α, δ′

)
τ
(
t, t′, g, a′, δ, α′

)
D2 = −3 τ

(
t′, t, e′, e, ε′, ε

)
τ
(
t, t′, a, b′, α, β′

)
τ
(
t, t′, g, a′, δ, α′

)
τ
(
t, t′, b, c′, β, γ′

)
τ
(
t, t′, c, g′, γ, δ′

)
D3 = −3 τ

(
t′, t, e′, e, ε′, ε

)
τ
(
t, t′, c, a′, γ, α′

)
τ
(
t, t′, a, g′, α, δ′

)
τ
(
t, t′, b, c′, β, γ′

)
τ
(
t, t′, g, b′, δ, β′

)
D4 = 9 τ

(
t′, t, e′, e, ε′, ε

)
τ
(
t, t′, a, c′, α, γ′

)
τ
(
t, t′, c, a′, γ, α′

)
τ
(
t, t′, b, g′, β, δ′

)
τ
(
t, t′, g, b′, δ, β′

)
D5 = −6 τ

(
t, t′, a, a′, α, α′

)
τ
(
t′, t, e′, e, ε′, ε

)
τ
(
t, t′, b, c′, β, γ′

)
τ
(
t, t′, g, b′, δ, β′

)
τ
(
t, t′, c, g′, γ, δ′

)
D6 = −6 τ

(
t′, t, e′, e, ε′, ε

)
τ
(
t, t′, g, g′, δ, δ′

)
τ
(
t, t′, b, a′, β, α′

)
τ
(
t, t′, a, c′, α, γ′

)
τ
(
t, t′, c, b′, γ, β′

)
D7 = 6 τ

(
t, t′, a, a′, α, α′

)
τ
(
t, t′, b, b′, β, β′

)
τ
(
t, t′, c, c′, γ, γ′

)
τ
(
t′, t, e′, e, ε′, ε

)
τ
(
t, t′, g, g′, δ, δ′

)
(D.10)
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Sink Source

ΠΠ

NN

D8 Sink Source

ΠΠ

NN

D9

Sink Source

ΠΠ

NN

D10 Sink Source

ΠΠ

NN

D11

Sink Source

ΠΠ

NN

D12 Sink Source

ΠΠ

NN

D13

FIGURE D.5: Terms D8 −D13 contributing to Nπ → Nπ

D8 = −9 τ (t, t, c, e, γ, ε) τ
(
t, t′, a, c′, α, γ′

)
τ
(
t′, t′, e′, a′, ε′, α′

)
τ
(
t, t′, b, g′, β, δ′

)
τ
(
t, t′, g, b′, δ, β′

)
D9 = 9 τ

(
t, t′, c, c′, γ, γ′

)
τ (t, t, a, e, α, ε) τ

(
t′, t′, e′, a′, ε′, α′

)
τ
(
t, t′, b, g′, β, δ′

)
τ
(
t, t′, g, b′, δ, β′

)
D10 = 9 τ

(
t, t′, g, g′, δ, δ′

)
τ (t, t, b, e, β, ε) τ

(
t, t′, a, c′, α, γ′

)
τ
(
t′, t′, e′, a′, ε′, α′

)
τ
(
t, t′, c, b′, γ, β′

)
D11 = −9 τ

(
t, t′, b, b′, β, β′

)
τ
(
t, t′, c, c′, γ, γ′

)
τ
(
t, t′, g, g′, δ, δ′

)
τ (t, t, a, e, α, ε) τ

(
t′, t′, e′, a′, ε′, α′

)
D12 = −3 τ (t, t, c, e, γ, ε) τ

(
t, t′, a, g′, α, δ′

)
τ
(
t, t′, g, a′, δ, α′

)
τ
(
t, t′, b, c′, β, γ′

)
τ
(
t′, t′, e′, b′, ε′, β′

)
D13 = 3 τ (t, t, b, e, β, ε) τ

(
t, t′, a, c′, α, γ′

)
τ
(
t, t′, g, a′, δ, α′

)
τ
(
t′, t′, e′, b′, ε′, β′

)
τ
(
t, t′, c, g′, γ, δ′

)
(D.11)

Sink Source

ΠΠ

NN

D14 Sink Source

ΠΠ

NN

D15

Sink Source

ΠΠ

NN

D16 Sink Source

ΠΠ

NN

D17

Sink Source

ΠΠ

NN

D18 Sink Source

ΠΠ

NN

D19

FIGURE D.6: Terms D14 −D19 contributing to Nπ → Nπ
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D14 = 3 τ (t, t, c, e, γ, ε) τ
(
t, t′, b, a′, β, α′

)
τ
(
t, t′, a, g′, α, δ′

)
τ
(
t′, t′, e′, b′, ε′, β′

)
τ
(
t, t′, g, c′, δ, γ′

)
D15 = 6 τ

(
t, t′, a, a′, α, α′

)
τ (t, t, c, e, γ, ε) τ

(
t′, t′, e′, b′, ε′, β′

)
τ
(
t, t′, b, g′, β, δ′

)
τ
(
t, t′, g, c′, δ, γ′

)
D16 = −3 τ

(
t, t′, g, g′, δ, δ′

)
τ (t, t, c, e, γ, ε) τ

(
t, t′, b, a′, β, α′

)
τ
(
t, t′, a, c′, α, γ′

)
τ
(
t′, t′, e′, b′, ε′, β′

)
D17 = −6 τ

(
t, t′, a, a′, α, α′

)
τ
(
t, t′, g, g′, δ, δ′

)
τ (t, t, c, e, γ, ε)

τ
(
t, t′, b, c′, β, γ′

)
τ
(
t′, t′, e′, b′, ε′, β′

)
D18 = 9 τ

(
t, t′, g, g′, δ, δ′

)
τ (t, t, a, e, α, ε) τ

(
t, t′, c, a′, γ, α′

)
τ
(
t, t′, b, c′, β, γ′

)
τ
(
t′, t′, e′, b′, ε′, β′

)
D19 = −9 τ (t, t, a, e, α, ε) τ

(
t, t′, c, a′, γ, α′

)
τ
(
t, t′, b, g′, β, δ′

)
τ
(
t, t′, g, b′, δ, β′

)
τ
(
t′, t′, e′, c′, ε′, γ′

)
(D.12)

D.2 Delta (I = 3/2)

D.2.1 ∆→ ∆

This entry has the form

P±α′αΓ∆
βγΓ∆†

γ′β′ φ̂
snk
∆ (a, b, c)φ̂src∆ (a′, b′, c′)

2∑
i=1

Ai , (D.13)

where summation over index pairs is implied.

FIGURE D.7: Terms A1 and A2 contributing to N → N .

A1 = 4τ
(
t, t′, c, c′, γ, γ′

)
τ
(
t, t′, a, b′, α, β′

)
τ
(
t, t′, b, a′, β, α′

)
A2 = −2τ

(
t, t′, a, a′, α, α′

)
τ
(
t, t′, b, b′, β, β′

)
τ
(
t, t′, c, c′, γ, γ′

)
(D.14)



Appendix D. Wick contractions 103

D.2.2 ∆→ Nπ

This matrix element has 3 terms contributing:

1√
2
P±α′νΓAναΓBβγΓ∆†

γ′β′Γ
π
δε φ̂

snk
N (a, b, c)φ̂snkπ (e, d)φ̂src∆ (a′, b′, c′)

3∑
i=1

Bi , (D.15)

where summation over index pairs is implied.

FIGURE D.8: Terms B1 −B3 contributing to N → Nπ.

B1 = 2 τ (t, t, c, e, γ, ε) τ
(
t, t′, a, c′, α, γ′

)
τ
(
t, t′, b, b′, β, β′

)
τ
(
t, t′, d, a′, δ, α′

)
B2 = −2 τ (t, t, c, e, γ, ε) τ

(
t, t′, a, c′, α, γ′

)
τ
(
t, t′, b, a′, β, α′

)
τ
(
t, t′, d, b′, δ, β′

)
B3 = 2 τ (t, t, c, e, γ, ε) τ

(
t, t′, a, c′, α, γ′

)
τ
(
t, t′, b, c′, β, γ′

)
τ
(
t, t′, d, b′, δ, β′

)
(D.16)

D.2.3 Nπ → ∆

This matrix element has 3 terms contributing:

1√
2

ΓA†α′µP
±
µαΓ∆

βγΓB†γ′β′Γ
π†
δ′ε′ φ̂

snk
N (a, b, c)φ̂srcN (a′, b′, c′)φ̂srcπ (d′, e′)

3∑
i=1

Ci , (D.17)

where summation over index pairs is implied.

FIGURE D.9: Terms C1 − C3 contributing to Nπ → N .
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C1 = 2 τ
(
t, t′, a, d′, α, δ′

)
τ
(
t, t′, b, b′, β, β′

)
τ
(
t, t′, c, a′, γ, α′

)
τ
(
t′, t′, e′, c′, ε′, γ′

)
C2 = −2 τ

(
t, t′, a, b′, α, β′

)
τ
(
t, t′, b, d′, β, δ′

)
τ
(
t, t′, c, a′, γ′, α′

)
τ
(
t′, t′, e′, c′, ε′, γ′

)
C3 = 2 τ

(
t, t′, a, a′, α, α′

)
τ
(
t, t′, b, d′, β, δ′

)
τ
(
t, t′, c, b′, γ, β′

)
τ
(
t′, t′, e′, c′, ε′, γ′

)
(D.18)

D.2.4 Nπ → Nπ (I = 3/2)

Here 12 terms contribute:

1

2
ΓA†α′µP

±
µνΓAναΓBβγΓB†γ′β′Γ

π
δεΓ

π†
ε′δ′ φ̂

snk
N (a, b, c)φ̂snkπ (e, d)φ̂srcN (a′, b′, c′)φ̂srcπ (d′, e′)

12∑
i=1

Di ,

(D.19)

where summation over index pairs is implied.

FIGURE D.10: Terms D1 −D6 contributing to Nπ → Nπ.
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D1 = + τ
(
t, t′, a, d′, α, δ′

)
τ
(
t, t′, b, b′, β, β′

)
τ
(
t, t′, c, c′, γ, γ′

)
τ
(
t′, t, e′, e, ε′, ε

)
τ
(
t, t′, d, a′, δ, α′

)
D2 = − τ

(
t, t′, a, b′, α, β′

)
τ
(
t, t′, b, d′, β, δ′

)
τ
(
t, t′, c, c′, γ, γ′

)
τ
(
t′, t, e′, e, ε′, ε

)
τ
(
t, t′, d, a′, δ, α′

)
D3 = − τ

(
t, t′, a, d′, α, δ′

)
τ
(
t, t′, b, a′, β, α′

)
τ
(
t, t′, c, c′, γ, γ′

)
τ
(
t′, t, e′, e, ε′, ε

)
τ
(
t, t′, d, b′, δ, β′

)
D4 = + τ

(
t, t′, a, a′, α, α′

)
τ
(
t, t′, b, d′, β, δ′

)
τ
(
t, t′, c, c′, γ, γ′

)
τ
(
t′, t, e′, e, ε′, ε

)
τ
(
t, t′, d, b′, δ, β′

)
D5 = + τ

(
t, t′, a, b′, α, β′

)
τ
(
t, t′, b, a′, β, α′

)
τ
(
t, t′, c, c′, γ, γ′

)
τ
(
t′, t, e′, e, ε′, ε

)
τ
(
t, t′, d, d′, δ, δ′

)
D6 = − τ

(
t, t′, a, a′, α, α′

)
τ
(
t, t′, b, b′, β, β′

)
τ
(
t, t′, c, c′, γ, γ′

)
τ
(
t′, t, e′, e, ε′, ε

)
τ
(
t, t′, d, d′, δ, δ′

)
(D.20)

FIGURE D.11: Terms D7 −D12 contributing to Nπ → Nπ.
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D7 = − τ (t, t, c, e, γ, ε) τ
(
t, t′, a, d′, α, δ′

)
τ
(
t, t′, b, b′, β, β′

)
τ
(
t, t′, d, a′, δ, α′

)
τ
(
t′, t′, e′, c′, ε′, γ′

)
D8 = + τ (t, t, c, e, γ, ε) τ

(
t, t′, a, b′, α, β′

)
τ
(
t, t′, b, d′, β, δ′

)
τ
(
t, t′, d, a′, δ, α′

)
τ
(
t′, t′, e′, c′, ε′, γ′

)
D9 = + τ (t, t, c, e, γ, ε) τ

(
t, t′, a, d′, α, δ′

)
τ
(
t, t′, b, a′, β, α′

)
τ
(
t, t′, d, b′, δ, β′

)
τ
(
t′, t′, e′, c′, ε′, γ′

)
D10 = − τ (t, t, c, e, γ, ε) τ

(
t, t′, a, a′, α, α′

)
τ
(
t, t′, b, d′, β, δ′

)
τ
(
t, t′, d, b′, δ, β′

)
τ
(
t′, t′, e′, c′, ε′, γ′

)
D11 = − τ (t, t, c, e, γ, ε) τ

(
t, t′, a, b′, α, β′

)
τ
(
t, t′, b, a′, β, α′

)
τ
(
t, t′, d, d′, δ, δ′

)
τ
(
t′, t′, e′, c′, ε′, γ′

)
D12 = + τ (t, t, c, e, γ, ε) τ

(
t, t′, a, a′, α, α′

)
τ
(
t, t′, b, b′, β, β′

)
τ
(
t, t′, d, d′, δ, δ′

)
τ
(
t′, t′, e′, c′, ε′, γ′

)
(D.21)
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