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Abstract. The influence of the extra dimensions on the equilibrium and radial pulsation of
a compact object is investigated. For such purpose, we solve the stellar structure equations
and radial pulsation equations, both modified from their original version to include the extra
dimensions (d ≥ 4) taking into account that spacetime outside the object is depicted by a
Schwarzschild-Tangherlini metric. In addition, we consider that the pressure and the energy
density are connected by a linear relation. Some properties of compact objects are analyzed,
such as mass and period of the fundamental mode and their dependencies with the spacetime
dimensions. We found that the maximum mass marks the begining of the instability, indicating
that in a sequence of equilibrium configurations, the regions constitute by stable and unstable
compact objects are distinguished by the relations dM/dρcd > 0 and dM/dρcd < 0, respectively.

1. Introduction
In the last years, as a result of a Kaluza-Klein theory [1], the idea that spacetime may have
extra dimensions has become accepted. This inspired some authors to analyze some physical
phenomena that arise in the study of compact objects, in both classical context and general
relativity framework in higher-dimensional spacetime. To name a few, in the frame of Newtonian
and Einstein gravity have been addresed the static equilibrium configurations of white dwarfs [2]
and the equilibrium configuration of incompressible objects [3, 4] in d dimensions, respectively.

In Newtonian frame, inspired in the Chandrasekhar’s seminal article [5], in [2] Chavanis
find that fermions stars are unstable in higher dimensional spacetime, since the pressure of
degenerate fermions that cannot counteract the gravitational force, leading to gravitational
collapse. In general relativity framework, the static equilibrium configuration of compact object
with constant central energy density in d dimensions [3, 4] is analyzed. Through the solution of
stellar structure equations for a higher-dimensional spacetime, in these works, it is shown how
the total mass depends of the dimensionality of the spacetime. Moreover, in [4] authors find
that the dimensionality affects mass but not the fluid pressure.

Motivated in these works, in this article, in a higher-dimensional general relativity context, we
study the equilibrium configurations and radial pulsations of objects composed by a fluid which a
energy density and pressure following a linear relation. This is realized by integrating the stellar
structure equations and radial pulsation equations. The dependence of some physical quantities
with the spacetime are investigated, such as the total mass and period of the fundamental mode.
The units c = 1 = G4 are considered throughout the work, with c and G4 being respectively the
speed of light and four-dimensional gravitational constant.
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2. General relativistic equations in d dimensions
2.1. Field equation, stress-energy tensor and the background spacetime
The compact objects properties in higher dimensional spacetime are investigated through the
d-dimensional Einstein field equation for d ≥ 4, which can be written into the form

Rµν −
1

2
gµνR =

d− 2

d− 3
Sd−2GdTµν , (1)

with the quantities Rµν , R and gµν being respectively the Ricci tensor, Ricci scalar and the

metric tensor. On the right-hand side of Eq. (1), Sd−2 = 2π(d−1)/2/Γ((d− 1)/2) represents the
area of unitary sphere Sd−2, with Γ being the usual gamma function, Gd the universal constant
which in four dimensions corresponds to the Newton’s gravitational constant G4 and the factor
(d − 2)GdSd−2/(d − 3) corresponds to the 8πG4 term in four dimensions (see [6]). Tµν is the
stress-energy tensor of a perfect fluid. It is given by

Tµν = (ρ0 + p0)UµUν + p0 gµν , (2)

with ρ0 being the energy density, p0 the pressure of the fluid and Uµ the velocity of the fluid
in the d-dimensional spacetime. In the definitions previously used, the Greek indexes µ, ν, etc.,
run from 0 to d− 1, where 0 represents the time, and the other d− 1 coordinates are spacelike.

We consider that the spherically symmetric distribution of the static fluid in the object is
described by the d-dimensional spacetime:

ds2 = −eν0(t,r) dt2 + eλ0(t,r) dr2 + r2
d−2∑
i=1

i−1∏
j=1

sin2 θj

 dθ2i . (3)

It is important to say that the metric functions ν0(t, r) and λ0(t, r) and the fluid variables
p0(t, r), ρ0(t, r) depend on the coordinates t and r. To analyze the stability against small radial
disturbances, both spacetime and fluid variables are perturbed. Following [7], we decompose
the variables depended on the coordinate t and r of the form:

f0(t, r) = f(r) + δf(t, r), (4)

where f(r) sets the unperturbed spacetime and physical quantities which depend on the radial
coordinate. On the other hand, δf(t, r) is the Eulerian perturbation. It depends on t and r.

2.2. Stellar structure equations
The field equation (1) and the line element (3), in the unperturbed system δf(t, r) = 0, lead to
derive the following ensemble relations:

dm

dr
= Sd−2ρd r

d−2, (5)

dpd
dr

= −(pd + ρd)Gd

[
Sd−2pd r

(d− 3)
+

m

rd−2

]
eλ, (6)

dν

dr
= − 2

(pd + ρd)

dpd
dr

, (7)

with the metric function e−λ =
(
1− 2mGd

(d−3)rd−3

)
. The function mGd/(d − 3) depicts the

gravitational mass in d-dimensional spacetime within the hypersphere radius r. Equation (6)
is TOV equation [8] modified from its standard form to consider the spacetime dimension [4].
Equations (5)-(7) are known like the stellar structure equations.
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To obtain static equilibrium solutions, the stellar structure equations, Eqs. (5)-(7), are
integrated from the center r = 0 to the star’s surface r = R. In r = 0, it is considered m(0) = 0,
λ(0) = 0, ν(0) = νc, pd(0)Gd = pcdGd, and ρd(0)Gd = ρcdGd. The constants pcdGd and ρcdGd
depict respectively central pressure and the central energy density. On the other hand, the star’s
surface is reached when pd(R)Gd = 0. At this point, the interior metric matches smoothly to
the exterior Schwarzschild-Tangherlini metric [9], where the interior and the exterior potential
metrics fulfill the equality eν(R) = e−λ(R) = 1− 2M Gd

(d−3)rd−3 , where M Gd/(d− 3) is the total mass.

2.3. Radial stability equations
To derive the equations that govern the stability against small radial perturbations, following [7],
both potential metric and fluid variables are divided into the form established in Eq. (4). These
variables are replaced into the Einstein equation components and the stress-energy tensor while
retaining only the first-order terms. For a system in a d-dimensional spacetime, the oscillation
equations can be placed into the form [10]:

dξ

dr
=
ξ

2

dν

dr
− 1

r

(
(d− 1)ξ +

∆pd
pdΓ1

)
, (8)

d∆pd
dr

=
ξreλ

eν
(pd + ρd)ω

2 +
(pd + ρd)rξ

4

(
dν

dr

)2

− 2Sd−2Gd(pd + ρd)e
λrξ

(
pd
d− 3

)
−
(
Sd−2Gd

reλ(pd + ρd)

d− 3
+

1

2

dν

dr

)
∆pd − 2(d− 2)ξ

dpd
dr

, (9)

where ξ denotes the relative radial displacement, ∆pd depicts the Lagrangian perturbation of

pressure, Γ1 =
(
pd+ρd
pd

)
dpd
dρd

represents the adiabatic index and ω the eigenfrequency of oscillation.

To study the radial stability, Eqs. (8) and (9) are integrated from the center toward the surface
of the object. In the center is demanded ∆pdGd = −(d− 1) (ξΓ1 pdGd)center. At this point, it is
required ξ(r = 0) = 1. In turn, at the surface of the hypersphere, we have (∆pdGd)surface = 0.

2.4. Equation of state
For the fluid, we consider that the pressure pd and energy density ρd are related of the form:

ρ(r) = (d− 1)p(r) + dBd, (10)

with Bd being a constant. In this work, we consider dBdGd = 240 [MeV/fm3].

3. Results
The changing of the total mass versus the central energy density ρcdGd is presented on the
left-hand side of panel Fig. 1 for four spacetime dimensions. The energy densities considered
are in the interval 250 ≤ ρcdGd ≤ 5000 [MeV/fm3]. At this range, we note the increment of
the total mass with the central energy density until reach the maximum mass point Mmax/M�,
marked by a triangle, hereafter, the mass decreases with the grow of the central energy density.
It is important to highlight that, in all cases, we obtain Mmax/M� at the zero eigenfrequency
of oscillation ω = 0 (τn=0 → ∞). From this we conclude that, in the sequence of equilibrium
configuration, the peak of maximum total mass marks the onset of the instability; in other
words, regions constituted by stable a unstable equilibrium configurations can be identify by
the conditions dM/dρcd > 0 and dM/dρcd < 0. In turn, the dependence of the period of the
fundamental mode τn=0 with the total mass is shown on the right-hand side of panel Fig. 1
for some spacetime dimensions. In all cases, we see the monotonic growth of the period of
the fundamental mode τn=0 with the total mass M/M�. From this we understand that more
massive objects demand more time to reach radial stability.
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Figure 1. Left panel: Total mass against the central energy density. Right panel: The period
of the fundamental oscillation mode versus the total mass. In both figures, four spacetime
dimensions are considered.

4. Conclusions
In this work, we investigated the equilibrium configurations and radial pulsations of compact
objects made of a fluid which follows a linear relation between the energy density and fluid
pressure in d dimensions. The configurations under analyzis have hyperspherically symmetry and
are connected to the exterior Schwarzschild-Tangherlini spacetime. The hydrostatic equilibrium
equations and radial pulsation equations were solved for some ρcdGd and d.

Through the fourth-order Runge-Kutta method implemented with the shooting method, we
found that the maximum mass point Mmax/M� and the zero eigenfrequency of the fundamental
mode ω (τn=0 → ∞) are derived with the same central energy density value. This indicates
that Mmax/M� marks the begining of the instability against small radial perturbations. I.e., in
sequence of equilibrium configurations, the conditions are dM/dρcd > 0 and dM/dρcd < 0 are
necessary and sufficient to recognize regions composed by stable and unstable objects. Moreover,
in each dimension d, we note that the period of the fundamental mode τn=0 grows with M/M�.
This indicate that more massive compact objects require more time to attain the radial stability.
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