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1 Introduction

The K → ππ process involves a delicate interplay between the electroweak and strong

forces [1]. At short distances the decay occurs through W exchange, giving rise to a

low-energy interaction between two charged weak currents. The subtleties of the strong
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dynamics are, however, key for understanding the decay amplitudes, even at the qualitative

level, since gluonic interactions are responsible for the empirical ∆I = 1/2 rule that governs

the measured non-leptonic decay rates, i.e., a huge enhancement of the isoscalar K → ππ

amplitude over the isotensor one, 16 times larger than the naive expectation without QCD.

Effective Field Theory (EFT) provides a powerful tool to analyze this complex dynamics,

where widely separated energy scales (Mπ < MK < mc � MW ) become relevant. In

particular, Chiral Perturbation Theory (χPT), the EFT of the strong interactions in the

low-energy regime, is ideally suited to describe K decays. This work, which presents an

updated study with respect to ref. [2], uses this powerful EFT as theoretical framework.

While isospin symmetry is an excellent approximation for most phenomenological ap-

plications, the isospin violations induced by the quark mass difference mu −md and the

electromagnetic interaction can get strongly enhanced in some observables [2, 3], owing to

the ∆I = 1/2 rule, when a tiny isospin-violating correction to the dominant amplitude

feeds into the suppressed one. This is certainly the case in the direct CP-violating ratio

ε′/ε, where a subtle numerical cancellation between the two isospin contributions takes

place [4]. The current theoretical efforts to predict this observable with a precision sim-

ilar to the experimental one [4–6] require an improved understanding of isospin-breaking

effects [2, 3, 7, 8].1 This would allow one to test many possible New Physics (NP) sce-

narios that have been recently advocated [14–41]. Re-assessing the role of the different

isospin-breaking corrections is one of the main motivations of this work.

Using an isospin decomposition, the K → ππ decay amplitudes can be written as2 [2]

A(K0 → π+π−) = A1/2 +
1√
2

(
A3/2 +A5/2

)
= A0 e

iχ0 +
1√
2
A2 e

iχ2 ,

A(K0 → π0π0) = A1/2 −
√

2
(
A3/2 +A5/2

)
= A0 e

iχ0 −
√

2A2 e
iχ2 , (1.1)

A(K+ → π+π0) =
3

2

(
A3/2 −

2

3
A5/2

)
=

3

2
A+

2 e
iχ+

2 ,

where the three complex quantities A∆I are generated by the ∆I = 1/2, 3/2, 5/2 compo-

nents of the electroweak effective Hamiltonian, in the limit of isospin conservation. In that

limit, A0 and A2 = A+
2 denote the decay amplitudes into (ππ)I states with I = 0 and 2,

while the phases χ0 and χ2 = χ+
2 are the S-wave ππ scattering phase shifts at

√
s = MK .

By definition, the amplitudes AI are real and positive in the CP-conserving limit. From

the measured K → ππ branching ratios, one finds [42]

A0 = (2.704± 0.001) · 10−7 GeV,

A2 = (1.210± 0.002) · 10−8 GeV, (1.2)

χ0 − χ2 = (47.5± 0.9)◦.

1For early work on this topic see refs. [9–13].
2Including electromagnetic corrections, this parametrization holds for the infrared-finite amplitudes after

the Coulomb and infrared parts are removed and treated in combination with real photon emission [2].
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When CP violation is turned on, the amplitudes A0, A2 and A+
2 acquire imaginary

parts and ε′ is given to first order in CP violation by

ε′ = − i√
2
ei(χ2−χ0)ω

[
ImA0

ReA0
− ImA2

ReA2

]
= − i√

2
ei(χ2−χ0)ω

ImA0

ReA0

(
1− 1

ω

ImA2

ImA0

)
. (1.3)

Then, ε′ is suppressed by the ratio ω ≡ ReA2/ReA0 ≈ 1/22 and ε′/ε is approximately real,

since χ2−χ0−φε ≈ 0, being φε the superweak phase. Moreover, the last expression makes

manifest the important potential role of isospin-breaking effects. Any small correction to

the ratio ImA2/ImA0 gets amplified by the large value of ω−1.

It is well known that the further chiral enhancement of the electromagnetic penguin

contributions to ImA2 makes compulsory taking them into account for any reliable estimate

of ε′/ε, in spite of the fact that they are isospin-violating corrections. Futhermore, eq. (1.3)

contains a delicate numerical balance between the two isospin contributions, making the

result very sensitive to any additional isospin-breaking corrections. Indeed, simplified esti-

mates of ImAI result in a strong cancellation between the two terms, leading to very low

values for ε′/ε [43–51]. A critique of these approaches has been recently presented in ref. [4].

A proper assessment of the isospin-violating contributions to the K → ππ amplitudes is

then a compulsory requirement for making reliable predictions of ε′/ε.

A detailed study of isospin-breaking effects in K → ππ was performed in refs. [2, 7, 8].

While the analytical calculations reported in these references remain valid nowadays, mean-

while there have been many relevant improvements in the needed inputs that make worth

to perform an updated analysis of their phenomenological implications. The much better

precision achieved in the determination of quark masses allows now for improved estimates

of the penguin matrix elements. Moreover, we have at present a better understanding

of several non-perturbative ingredients such as the chiral Low-Energy Constants (LECs),

which govern the χPT K → ππ amplitudes [52–69]. Implementing those improvements by

updating ref. [2] is one of the main motivation for this work.

In section 2, we review the different low-energy Lagrangians involved in the K → ππ

process. We describe the structure of the amplitudes at next-to-leading order (NLO) in

χPT, including isospin-breaking corrections, in section 3. The main limitation of the χPT

approach originates in the not very well-known LECs that encode dynamical information

from the non-perturbative QCD scale ∼ 1 GeV. Our current knowledge on those LECs

is compiled in section 4. Section 5 gives the chiral expansion of the different isospin

amplitudes to first order in isospin-breaking and CP violation. Finally, we present the

numerical results in section 6 and discuss their impact on ε′/ε in section 7. We provide

some technical details in a set of appendices.

2 Effective field theory description

At the electroweak scale, the ∆S = 1 transition is described in terms of quarks and gauge

bosons. Owing to the different mass scales involved, the gluonic corrections are amplified

with large logarithms, such as log(MW /mc) ∼ 4, that can be summed up all the way down

to scales µSD < mc, using the Operator Product Expansion (OPE) and the Renormalization
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Group Equations (RGEs). One obtains in this way a short-distance effective ∆S = 1

Lagrangian, defined in the three-flavour theory [70],

L∆S=1
eff = −GF√

2
Vud V

∗
us

10∑
i=1

Ci(µSD)Qi(µSD) , (2.1)

which is a sum of local four-quark operators Qi, weighted by Wilson coefficients Ci(µSD).

that are functions of the heavy masses (MZ ,MW ,mt,mb,mc) and CKM parameters:

Ci(µSD) = zi(µSD) + τ yi(µSD) , τ = − VtdV
∗
ts

VudV ∗us
. (2.2)

The CP-violating effects originate in the CKM ratio τ and are thus governed by the

yi(µSD) short-distance coefficients, while the K → ππ amplitudes are fully dominated

by the CP-conserving factors zi(µSD). These Wilson coefficients are known to NLO [71–

74], which includes all corrections of O(αns t
n) and O(αn+1

s tn) with t ≡ log (M1/M2) the

logarithm of any ratio of heavy mass scales. The complete calculation of next-to-next-to-

leading (NNLO) QCD corrections is expected to be finished soon [75–77].

The renormalization scale (µSD) and scheme dependence of the Ci(µSD) coefficients

should exactly cancel with a corresponding dependence of the hadronic matrix elements

〈ππ|Qi(µSD)|K〉. Unfortunately, a rigorous analytic evaluation of these non-perturbative

matrix elements, keeping full control of the QCD renormalization conventions, remains still

a very challenging task. Nevertheless, we can take advantage of the symmetry properties of

the four-quark operators to build their low-energy realization within the χPT framework.

The difference Q− ≡ Q2−Q1 and the QCD penguin operators Q3,4,5,6 induce pure ∆I = 1
2

transitions and transform as (8L, 1R) under chiral SU(3)L ⊗ SU(3)R flavour transforma-

tions. Transition amplitudes with ∆I = 3
2 can only be generated by the complementary

combination Q(27) ≡ 2Q2 + 3Q1 − Q3, which transforms as a (27L, 1R) operator and can

also induce ∆I = 1
2 transitions. The electroweak penguin operators do not have definite

isospin and chiral quantum numbers, due to their explicit dependence on the light-quark

electric charges eq. Q7 and Q8 can be split into combinations of (8L, 1R) and (8L, 8R)

pieces, while Q9 and Q10 contain (8L, 1R) and (27L, 1R) components.

2.1 χPT formulation

Chiral symmetry allows one to formulate another EFT, χPT, that is valid at the kaon

mass scale where perturbation theory cannot be trusted. The Goldstone nature of the

lightest octet of pseudoscalar mesons strongly constrains their interactions [78], providing

a very powerful tool to describe kaon decays in a rigorous way [1]. Knowing the symmetry

properties of the relevant QCD amplitudes, one can build their effective χPT realization

in terms of the pseudoscalar meson fields as systematic expansions in powers of momenta,

p2, quark masses, mq, and electric charges, e2
q . According to the Weinberg power-counting

theorem [79], loop corrections introduce extra powers of p2, so that they enter at the

same level as higher-order operators. All the short-distance information about the heavy

particles that have been integrated out of the low-energy EFT is encoded in the LECs of

the χPT Lagrangian.
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In the following, we compile the relevant effective Lagrangians associated to the dif-

ferent interactions entering in our K → ππ analysis. Further details about the strong

Lagrangian up to O(p8) [80–83], the nonleptonic weak Lagrangian to O(GF p
4) [84–87],

the electromagnetic Lagrangian to O(e2p2) [53, 88] and the electroweak Lagrangian to

O(e2G8p
2) [3, 89, 90] can be found in the quoted references.

The strong χPT Lagrangian is given by3

Lstrong =
F 2

4
〈DµUD

µU † + χU † + χ†U〉+
10∑
i=1

LiO
p4

i + F−2
90∑
i=1

XiO
p6

i +O(p8) , (2.3)

where U(x) ≡ exp {iλaφa(x)/F} is the SU(3) unitary matrix that parametrizes the pseu-

doscalar fields, DµU is the covariant derivative matrix, χ ≡ 2B0M takes into account the

explicit chiral symmetry breaking through the quark mass matrix M = diag(mu,md,ms),

and 〈· · · 〉 indicates an SU(3) flavour trace. The different pieces correspond, respectively, to

O(p2), O(p4) and O(p6) in the chiral expansion. Notice how the number of LECs increases

with the χPT order.

To O(GF p
4), the nonleptonic ∆S = 1 weak interactions are described by

L∆S=1 = G8 F
4 〈λDµU †DµU〉+G8 F

2
22∑
i=1

NiO
8
i

+G27 F
4

(
Lµ23L

µ
11 +

2

3
Lµ21L

µ
13

)
+G27 F

2
28∑
i=1

DiO
27
i +O(GF p

6) , (2.4)

where λ = (λ6− i λ7)/2 projects onto the s̄→ d̄ transition and Lµ = i U †Dµ U represents

the octet of V − A currents to lowest order in derivatives. Under chiral transformations,

the first and the second lines of eq. (2.4) transform as (8L, 1R) and (27L, 1R), respectively,

providing the effective low-energy realization of the Qi≤6 components in eq. (2.1). The

first term of each line corresponds to O(GF p
2), while the second one to O(GF p

4). The

explicit list of relevant operators O8
i and O27

i for K → ππ can be found in the appendix A

of ref. [2]. Furthermore, to simplify the notation, we introduce the dimensionless couplings

g8 and g27, defined as

G8,27 ≡ −
GF√

2
VudV

∗
us g8,27. (2.5)

In eq. (2.4), there are 52 dimensionless LECs: g8, g27, Ni and Di. In section 4, we will

explain how to estimate these couplings using large-NC techniques.

The electromagnetic Lagrangian starts at O(e2p0). Including O(e2p2) terms, one has:

Lelm = e2 Z F 4 〈QU †QU〉+ e2 F 2
14∑
i=1

KiO
e2p2

i +O(e2p4) . (2.6)

where Q = diag(2/3, −1/3, −1/3) is the quark charge matrix and Z is the lowest-order

LEC that is related, up to O(e2mq) corrections, to the pion mass difference

Z ≈ 1

8παF 2
(M2

π± − M2
π0) ≈ 0.8 . (2.7)

3The O(p6) LECs are usually denoted Ci ≡ F−2Xi. We have changed the notation to avoid possible

confusions with the short-distance Wilson coefficients.
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The NLO LECs Ki are dimensionless and explicit expressions for those operators Oe
2p2

i

that are relevant in K → ππ can be found in the appendix A of ref. [2].

Finally, the relevant ∆S = 1 electroweak Lagrangian contains O(e2GF p
0) and

O(e2GF p
2) terms:

L∆S=1
EW = e2G8 gewk F

6 〈λU †QU〉+ e2G8 F
4

14∑
i=1

ZiO
EW
i +O(GF e

2p4) . (2.8)

This Lagrangian transforms as (8L, 8R) under chiral transformations and provides the

needed low-energy realization of the electromagnetic penguin operators in eq. (2.1). No-

tice that we will not include isospin-violating corrections for the 27-plet amplitudes and,

therefore, the electroweak (27L, 1R) chiral structures are not needed. The LECs Zi are

dimensionless and the associated operators OEWi are collected in appendix A of ref. [2].

At the chiral order we are working in, all loop divergences are reabsorbed by the

previous LECs (Ci = Li, Ni, Di, Ki, Zi), which have to be renormalized. At one-loop, they

can be expressed as

Ci = Cri (νχ) + ci Λ(νχ) , (2.9)

where νχ is the chiral renormalization scale and the divergence is included in the factor

Λ(νχ) =
νd−4
χ

(4π)2

{
1

d− 4
− 1

2

[
log(4π) + Γ′(1) + 1

]}
. (2.10)

The divergent parts of all these couplings (ci = Γi, ni, di, κi, zi) are known and can be

found in refs. [3, 80, 85, 86, 88], respectively.

3 K → ππ amplitudes up to NLO

Once the different effective chiral Lagrangians involved in K → ππ have been introduced,

we are in position to obtain the physical amplitudes, using the χPT power-counting rules.

For the isospin conserving parts, i.e., when e2 = mu −md = 0, the O(GF p
2) contributions

to the A∆I amplitudes defined in eq. (1.1) are given by

A1/2 = −
√

2G8F
[ (
M2
K −M2

π

) ]
−
√

2

9
G27F

(
M2
K −M2

π

)
,

A3/2 = −10

9
G27F

(
M2
K −M2

π

)
, (3.1)

A5/2 = 0 .

Using the measured amplitudes in eq. (1.2), one immediately obtains the tree-level deter-

minations g8 = 5.0 and g27 = 0.25 for the octet and 27-plet chiral couplings, respectively.

The large numerical difference between these two LECs reflects the smallness of the mea-

sured ratio

ω =
A3/2

A1/2
≈ 1

22
, (3.2)

known as the ∆I = 1/2 rule.
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In this work, we use the full O(GF p
4) expressions for the isospin-conserving parts of

the amplitudes. Isospin-breaking corrections are accounted only at first order, i.e., only

corrections of O(e2(md −mu)0) and O(e0(md −mu)) are considered. Additionally, owing

to the very small value of g27/g8, and the fact that Im(g27) = 0 in the large-NC limit, we

neglect isospin-breaking corrections proportional to g27, which have been calculated in [91].

We outline below the relevant sources of isospin breaking up to NLO in χPT.

3.1 Leading order

To lowest order in the number of derivatives and quark mass insertions the sources of

isospin breaking are (i) the term in Lstrong with one quark mass insertion; (ii) the non-

derivative term in Lelm, proportional to e2Z; and (iii) the non-derivative term in L∆S=1
EW ,

proportional to e2G8 gewk. Sources (i) and (ii) affect the pseudoscalar meson mass matrix

generating two effects:

• π0 − η mixing, due to non-diagonal terms coupling the SU(3) fields π3 and η8:(
π3

η8

)
=

(
1 −ε(2)

ε(2) 1

) (
π0

η

)
. (3.3)

The tree-level mixing angle is given by

ε(2) =

√
3

4

md −mu

ms − m̂
≡
√

3

4R
= (1.137± 0.045) · 10−2 , (3.4)

where m̂ = (mu + md)/2. We have extracted the numerical value from the most

recent FLAG average of lattice determinations of light-quark masses, with Nf = 2+1

dynamical fermions, which quotes R = 38.1± 1.5 [92].

• Mass splitting between charged and neutral mesons, due to both the light quark mass

difference and electromagnetic contributions. Following ref. [2], we choose to express

all masses in terms of those of the neutral kaon and pion (denoted from now on as

MK and Mπ, respectively). In terms of quark masses and LO couplings (B0 is related

to the quark condensate in the chiral limit by 〈0|qq|0〉 = −F 2B0), up to corrections

of O(m2
q , e

2mq) the pseudoscalar meson masses read:

M2
π = 2B0 m̂ ,

M2
π± = M2

π + 2 e2ZF 2 ,

M2
K = B0 (ms +md) , (3.5)

M2
K± = M2

K −
4 ε(2)

√
3
B0(ms − m̂) + 2 e2ZF 2 ,

M2
η =

1

3

(
4M2

K −M2
π

)
− 8 ε(2)

3
√

3
B0(ms − m̂) .

The above choice defines a specific “isospin limit scheme”, which is however arbitrary.

In appendix D we explore another quite natural scheme and quantify the impact of
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such scheme dependence on ε′/ε. We find that the scheme dependence is well below

the current theoretical uncertainties.

The sources of isospin breaking described above induce corrections to the K → ππ

amplitudes of O(ε(2)G8 p
2) and O(e2G8 p

0). Explicitly, the three independent K → ππ

amplitudes in the isospin basis read:

A1/2 = −
√

2

9
G27F

(
M2
K −M2

π

)
−
√

2G8F

[(
M2
K −M2

π

)(
1− 2

3
√

3
ε(2)

)
− 2

3
e2F 2 (gewk + 2Z)

]
,

A3/2 = −10

9
G27F

(
M2
K −M2

π

)
−G8F

[(
M2
K −M2

π

) 4

3
√

3
ε(2) − 2

3
e2F 2 (gewk + 2Z)

]
,

A5/2 = 0 . (3.6)

The parameter F can be identified with the pion decay constant Fπ at this order. The

effect of strong isospin breaking (proportional to ε(2)) is entirely due to π0 − η mixing,

through expressing all interaction vertices in terms of mass eigenfields. Electromagnetic

interactions contribute through mass splitting in the external legs (terms proportional to

Z) and insertions of gewk.

3.2 Next-to-leading order

NLO isospin-breaking corrections due to loops and effective Lagrangians with additional

powers of derivatives and quark mass insertions (O(ε(2)G8p
4, e2G8p

2)) generate many new

contributions:

• O(ε(2)G8 p
4). One has:

– π0− η mixing at NLO. Identical to the previous correction but changing ε(2) →
ε

(4)
S [2, 93],

ε
(4)
S = − 2 ε(2)

3(4πF )2(M2
η −M2

π)

{
(4π)2 64 [3L7 + Lr8(νχ)] (M2

K −M2
π)2

−M2
η (M2

K −M2
π) log

M2
η

ν2
χ

+M2
π(M2

K − 3M2
π) log

M2
π

ν2
χ

−2M2
K(M2

K − 2M2
π) log

M2
K

ν2
χ

− 2M2
K(M2

K −M2
π)

}
. (3.7)

– Diagrams with isospin-conserving vertices and isospin-breaking corrections to

the pseudoscalar masses, either in the propagators or the on-shell external legs.

– Diagrams analogous to the isospin-conserving ones, but with vertices obtained

after applying the rotation of eq. (3.3), so that one of the vertices introduces an

ε(2) factor.
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• O(e2G8 p
2), entering through:

– π0 − η mixing at NLO. Identical to the strong isospin-breaking correction but

with ε(2) → ε
(4)
EM [2, 94],

ε
(4)
EM =

2
√

3α

108π (M2
η −M2

π)

{
− 9M2

KZ

(
log

M2
K

ν2
χ

+ 1

)
+2M2

K(4π)2
[
2U r2 (νχ) + 3U r3 (νχ)

]
+M2

π(4π)2
[
2U r2 (νχ) + 3U r3 (νχ)− 6U r4 (νχ)

]}
, (3.8)

where U ri (νχ) are linear combinations of the Kr
i LECs defined in eq. (2.6),

U1 = K1 +K2 , U2 = K5 +K6 ,

U3 = K4 − 2K3 , U4 = K9 +K10 . (3.9)

– Loop corrections with one g8 gewk vertex.

– Again, diagrams with isospin-conserving vertices and isospin-breaking correc-

tions to the pseudoscalar masses either in the propagators or the external legs.

– Electromagnetic loop corrections with one g8 vertex and virtual photon prop-

agators. In order to cancel the infrared divergences, one must also add the

corresponding calculation of the K → ππγ rates [2].

– Tree-level diagrams with at least one electroweak vertex and a NLO insertion.

3.3 Structure of the amplitudes up to NLO

Taking into account the previous discussion, the isospin amplitudes An (n = 1/2, 3/2, 5/2)

can be expressed as

An = −G27 Fπ

(
M2
K −M2

π

)
A(27)
n −G8 Fπ

(
M2
K −M2

π

)[
A(8)
n + ε(2)A(ε)

n

]
+ e2G8 F

3
π

[
A(γ)
n + ZA(Z)

n + gewkA(g)
n

]
, (3.10)

where A(ε)
n refers to the strong isospin-breaking contributions, A(g)

n and A(Z)
n are the con-

tributions with an insertion of gewk and Z vertices, and A(γ)
n are the contributions induced

by the photon loops. In eq. (3.10), we have replaced the Goldstone coupling F by Fπ, the

physical pion decay constant at NLO. These two parameters are related through [80, 95]

F = Fπ

{
1− 4

F 2

[
Lr4(νχ)

(
M2
π + 2M2

K

)
+ Lr5(νχ)M2

π

]

+
1

2(4π)2F 2

[
2M2

π log

(
M2
π

ν2
χ

)
+M2

K log

(
M2
K

ν2
χ

)]
+

2 ε(2)

√
3

(
M2
K −M2

π

) [8Lr4(νχ)

F 2
− 1

2(4π)2F 2

(
1 + log

(
M2
K

ν2
χ

))]}
, (3.11)

so that those corrections get reabsorbed into the different NLO terms.
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n (27) (8) (ε) (Z) (g)

1/2
√

2
9

√
2 − 2

3

√
2√
3

4
√

2
3

2
√

2
3

3/2 10
9 0 4

3
√

3
4
3

2
3

Table 1. LO contributions a
(X)
n for n = 1/2, 3/2. a

(X)
5/2 = 0 for all X and a

(γ)
n = 0 for all n.

Each amplitude A(X)
n in eq. (3.10) can be decomposed as

A(X)
n =

 a
(X)
n

[
1 + ∆LA(X)

n + ∆CA(X)
n

]
, if a

(X)
n 6= 0 ,

∆LA(X)
n + ∆CA(X)

n , if a
(X)
n = 0 ,

(3.12)

with a
(X)
n , ∆LA(X)

n and ∆CA(X)
n being the LO, NLO loop and NLO local contributions,

respectively.4 The amplitudes A(X)
n and their components a

(X)
n , ∆LA(X)

n and ∆CA(X)
n are

dimensionless by construction. In table 1, we give the values of the LO factors a
(X)
n . The

loop corrections ∆LA(X)
n account for the requirements of unitarity and analyticity; these

non-local contributions are fully predicted in terms of the pseudoscalar masses and the

pion decay constant. The local components ∆CA(X)
n contain the explicit dependence on

the NLO LECs that renormalize the ultraviolet loop divergences. Therefore, both ∆LA(X)
n

and ∆CA(X)
n depend on the χPT renormalization scale, but this dependence exactly cancels

in their sum. The full expressions for ∆LA(X)
n and ∆CA(X)

n can be found in appendix B

and in section 4.4, respectively, of ref. [2].

4 Determination of chiral LECs

In the last section, we have introduced the general structure of the K → ππ amplitudes

up to NLO. The only remaining ingredients are the χPT LECs, which are not fixed by

symmetry considerations.

In figure 1, we show schematically how the flavour-changing transitions are described at

two different energy scales: at short distances one employs the effective ∆S = 1 Lagrangian

given by eq. (2.1), while at very low energies the χPT formalism introduced in section 2

is more appropriate. The short-distance Lagrangian can only be used at scales where

perturbation theory is well-defined, i.e., µSD & 1 GeV. On the other hand, the chiral

framework is valid in the non-perturbative regime, where all the fields of the heavy particles

have been integrated out, but paying the price of having a large number of unknown

χPT couplings. These LECs must be determined either from data or using theoretical

considerations. In the latter case, one needs to match both EFTs in a common region

of validity. Unfortunately, performing consistently this non-perturbative matching is still

very challenging [4–6]. However, in the limit of a large number NC of QCD colours, the

4Strictly speaking, by expressing the tree-level amplitudes in terms of physical meson masses and Fπ, the

term dubbed as “LO” contains NLO chiral corrections. While the splitting of LO and NLO terms is indeed

ambiguous, our amplitudes are correct up to and including terms of order GF p
4, GF ε

(2)p4, and GF e
2p2.
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Energy Fields Effective Theory
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W,Z, γ,Ga
τ, µ, e, νi

t, b, c, s, d, u

Standard Model

<∼ mc
γ,Ga ; µ, e, νi

s, d, u
LNf=3

QCD , L∆S=1,2
eff

MK
γ ; µ, e, νi
π,K, η

χPT

?

?

OPE

NC →∞

Figure 1. Evolution from MW to the kaon mass scale.

T-product of two colour-singlet quark currents factorizes and, since the quark currents have

a well-known representation in terms of the Nambu-Goldstone bosons, one can make this

matching at leading order in an expansion in powers of 1/NC . As a result, we obtain the

electroweak chiral couplings (g8, g27, g8 gewk, g8Ni, g27Di, g8Zi) in terms of the strong and

electromagnetic LECs of O(pn) with n = 2, 4, 6 and O(e2p2), respectively.

4.1 Weak couplings at O(GFp
2) and O(e2G8p

0)

At leading order in 1/NC , the chiral couplings of the nonleptonic electroweak Lagrangians

of O(GF p
2) and O(e2G8 p

0), given by eqs. (2.4) and (2.8), take the values [2, 96]

g∞8 = −2

5
C1(µSD) +

3

5
C2(µSD) + C4(µSD)− 16L5B(µSD)C6(µSD) ,

g∞27 =
3

5

[
C1(µSD) + C2(µSD)

]
, (4.1)

(e2g8 gewk)∞ = −3B(µSD)C8(µSD)− 16

3
B(µSD)C6(µSD) e2 (K9 − 2K10) ,

where

B(µSD) ≡
[

M2
K

(ms +md)(µSD)Fπ

]2
[

1−
16M2

K

F 2
π

(2L8 − L5) +
8M2

π

F 2
π

L5

]
. (4.2)
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These large-NC expressions imply5

g∞8 =
(

1.15 + 0.07
− 0.12 µSD

± 0.02L5,8 ± 0.01ms

)
+ τ

(
0.78 + 0.09

− 0.08 µSD
± 0.10L5,8 ± 0.03ms

)
, (4.3)

g∞27 = 0.46 ± 0.01µSD , (4.4)

(g8 gewk)∞ =
(
−1.57 + 1.00

− 0.51 µSD
± 0.14L5,8 ± 0.18Ki ± 0.05ms

)
+ τ

(
−20.4 + 1.6

− 1.7 µSD
± 1.8L5,8 ± 0.85Ki ± 0.7ms

)
, (4.5)

where the first uncertainty has been estimated through the variation of the scale µSD be-

tween 0.9 GeV and 1.2 GeV, while the second and third ones reflect the current errors on

the strong LECs of O(p4) and the electromagnetic couplings of O(e2p2). The last error

indicates the parametric uncertainty induced by the quark mass factor, which has been

taken within the range (ms + md)(µSD = 1 GeV) = 131.8 ± 2.2 MeV.6 Furthermore, we

have computed the Wilson coefficients with two different definitions of γ5 within dimen-

sional regularisation, the Naive Dimensional Regularisation (NDR) and ’t Hooft-Veltman

(HV) [98] schemes, and have used an average of the two results. When computing physical

amplitudes we have included a conservative error to account for this scheme dependence

(see appendix C).7 Notice that we take into account the full evolution from the electroweak

scale to µSD, without any unnecessary expansion in powers of 1/NC ; otherwise one would

miss the large short-distance logarithms encoded in Ci(µSD) for i 6= 6, 8. The large-NC

approximation is only applied to the matching process between the short-distance and

χPT descriptions.

The numerical results in eqs. (4.3) and (4.4) are quite far from their phenomenologically

extracted values, including chiral loop corrections, g8 ≈ 3.6 and g27 ≈ 0.29 [1]. This large

deviation can be understood when one realizes how those operators that dominate the

contributions to g∞8 and g∞27 have vanishing associated anomalous dimension in the large-

NC limit. Relevant information on these anomalous dimensions that should be reflected in

the hadronic matrix elements is then lost in this limit. This fact indicates the importance

of O(1/NC) corrections in the CP-conserving amplitudes. Many efforts to estimate these

contributions have been attempted in the past [100–120], but a proper NLO matching in

1/NC within a well-defined EFT framework is still lacking. In section 6.2, we will perform

a fit to K → ππ data in order to obtain reliable predictions for the CP-conserving parts of

g8 and g27.

Fortunately, this problem does not arise for the CP-odd contributions. The anomalous

dimensions of the leading operators, Q6 and Q8, survive when NC → ∞, allowing us to

5The numerical inputs for L5, K9 and K10 are presented below.
6Using as inputs the values of αs(MZ) = 0.11823 ± 0.00081, md(Nf = 3) = 4.67 ± 0.09 MeV and

ms(Nf = 4) = 93.44 ± 0.68 MeV at µSD = 2 GeV, plus m̄Q(µSD = m̄Q) for the heavy quarks from [92],

we use RunDec [97] to decouple the fourth flavour (ms(Nf = 3) = 93.56 ± 0.68 MeV) and to obtain the

quark masses at 1 GeV, finding ms(µSD = 1 GeV) = 125.6 ± 0.9ms ± 1.9αs MeV and md(µSD = 1 GeV) =

6.27± 0.12md ± 0.09αs MeV.
7With respect to ref. [4], we have updated the values of the quark masses and the strong coupling, using

inputs from ref. [92] and the recent ATLAS determination of the running top quark mass [99].
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keep track of all large logarithms. Therefore, the χPT evaluation of both operators in

the large-NC limit provides the correct dependence on the short-distance renormalization

scale µSD, given by B(µSD) ∼ (1/(ms+md)(µSD))2 ∼ (αs(mc)/αs(µSD))9/11, which exactly

cancels the µSD dependence of C6,8(µSD) at large NC . As a consequence, we have a much

better control on the ImAI amplitudes, which makes their large-NC estimates more reliable

than their CP-conserving counterparts.

The qualitative difference between theoretical calculations of the CP-even and CP-

odd amplitudes can be already appreciated at the inclusive level through the analysis of

the two-point correlation function ψ(q2) = i
∫
d4x eiqx〈0|T (L∆S=1

eff (x)L∆S=1
eff (0)†)|0〉, which

involves all possible two-point function correlators among the different four-quark operators

ψij(q
2) ∼ 〈Qi(x)Qj(0)†〉. The absorptive part of ψ(q2) corresponds to the sum of matrix

elements squared for all possible states generated by L∆S=1
eff . The complete (scale and

scheme invariant) NLO calculation, without electroweak penguins (i.e., with e = 0), was

accomplished in refs. [101, 103] and gave quite striking results. The CP-conserving part

is dominated, as expected, by the current-current operators Q± = Q2 ± Q1 and receives

very sizeable NLO contributions: Imψ±±(t) ∼ αs(t)2γ
(1)
± /β1 [1 + 3

4
αs(t)
π NCK±]. In the large-

NC limit, γ
(1)
± = 0, K+ = K− = 1 [104], and there is no difference between the ∆I = 1

2

(Q−) and ∆I = 3
2 (Q+) components. However, the physical calculation at NC = 3 results

in a large and positive value of K− ≈ 5.0 and a negative and much smaller value of

K+ ≈ −1.0 [101, 103], reinforcing the trend triggered by the LO term through the power

2γ
(1)
− /β1 = −2γ

(1)
+ /β1 = 24/27 and clearly exhibiting the dynamical ∆I = 1

2 rule [104]. The

failure of the NC →∞ approximation is obviously associated with the missing anomalous

dimensions in this limit.

A different behaviour was observed in the CP-odd component of the two-point corre-

lator, which is fully dominated by the strong penguin operator. The NLO correction to

ψ66(t) is positive and even larger than the ψ−−(t) one by a factor close to two, but in this

case the large-NC limit gives a very good approximation to the exact result [101, 103].

Since γ66 is well reproduced at large NC , the difference between the NLO corrections to

ψ66(t) at NC =∞ and NC = 3 is just a numerically-small subleading term.

Notice that the LECs are process-independent quantities and, therefore, the previous

inclusive argument directly applies to them. Although the electroweak penguin operators

have not yet been analyzed at the inclusive level, it is reasonable to expect a similar be-

haviour. In fact, using soft-pion techniques and the measured τ hadronic spectral functions,

the K → ππ matrix element of Q8 can be estimated at zero momenta [111, 115, 118]. This

is equivalent to a direct determination g8gewk [117]. The resulting phenomenological value

nicely agrees (within errors) with the large-NC result [121].

4.2 Weak couplings at O(GFp
4) and O(e2G8p

2)

At NLO, the large-NC matching fixes the couplings G8Ni, G27Di and G8Zi of the non-

leptonic weak and electroweak Lagrangians (2.4) and (2.8). In this section, we compile the
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results obtained in ref. [2]. Taking the definitions,

C̃1(µSD) ≡ −2

5
C1(µSD) +

3

5
C2(µSD) + C4(µSD) , (4.6)

C̃2(µSD) ≡ +
3

5
C1(µSD)− 2

5
C2(µSD) + C3(µSD)− C5(µSD) , (4.7)

the non-vanishing LECs contributing to the K → ππ amplitudes can be parametrized as

follows:

(g27D4)∞ = 4L5 g
∞
27 , (4.8)

(g8Ni)
∞ = ni L5 C̃1(µSD) + XiB(µSD)C6(µSD)

= ni L5

(
g∞8 + B(µSD)C6(µSD)

[
16L5 +

Xi
ni L5

])
, (4.9)

with ni and Xi given in table 10 of appendix A as functions of the LECs of eq. (2.3), and

(g8 Zi)
∞ = K(1)

i C̃1(µSD) +K(2)
i C̃2(µSD) + K(3)

i B(µSD)C6(µSD) (4.10)

+
1

e2

{
K(4)
i C7(µSD) +K(5)

i B(µSD)C8(µSD) +K(6)
i C9(µSD) +K(7)

i C10(µSD)
}
,

where the constants K(k)
i are given in table 11 of appendix A.

The dependence on the χPT renormalization scale νχ is of O(1/NC) and, therefore, is

absent from these large-NC expressions. To account for this systematic uncertainty, we will

vary νχ between 0.6 GeV and 1 GeV in the loop contributions and the resulting numerical

fluctuations will be added as an additional error in the predicted amplitudes.

4.3 Strong couplings of O(p4) and O(p6)

The K → ππ amplitudes have an explicit dependence on some LECs of the O(p4) strong

Lagrangian, in the large-NC limit. We have already set L∞4 = L∞6 = 0, which are rigorous

QCD results at NC → ∞. The large-NC estimates based on resonance saturation are

known to provide an excellent description of the Li couplings at νχ ∼ Mρ [55]. For the

LECs that are relevant here, they give [53, 55]

L∞5 =
8

3
L∞8 = −4 (2L8 − L5)∞ =

F 2
π

4M2
S

≈ 1.0 · 10−3 , (4.11)

and

L∞7 = − F 2
π

48M2
η1

≈ −0.27 · 10−3 , (4.12)

with Fπ = 92.1 MeV, MS ≈ 1500 MeV and Mη1 = 804 MeV [53]. In table 2 we compare

this numerical estimate with the LECs extracted from the most recent O(p4) and O(p6)

χPT fits to kaon and pion data [67], and with the values of Lr5(Mρ) and Lr8(Mρ) advocated

in the current FLAG compilation of lattice results [92], which have been obtained by the

HPQCD collaboration [122] analyzing the kaon and pion decay constants at different quark
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Lr5(Mρ) Lr8(Mρ) (2Lr8 − Lr5)(Mρ) L7

Large-NC estimate 1.0 0.4 −0.2 −0.27

O(p4) χPT fit 1.2± 0.1 0.5± 0.2 −0.2± 0.4 −0.3± 0.2

O(p6) χPT fit 1.01± 0.06 0.47± 0.10 −0.07± 0.18 −0.34± 0.09

Lattice 1.19± 0.25 0.55± 0.15 −0.10± 0.20 —

Table 2. Comparison of the large-NC estimates for the relevant strong LECs of O(p4) [55] with the

values extracted from O(p4) and O(p6) χPT fits [67] and the lattice results [92, 122]. All numbers

are given in units of 10−3.

masses with Nf = 2 + 1 + 1 dynamical flavours. All these determinations are in excellent

agreement with the large-NC estimates. Although much more precise, the O(p6) χPT

values of Lr5(Mρ) and Lr8(Mρ) are sensitive to assumptions concerning the O(p6) LECs.

L7 has not been yet extracted from lattice data but, fortunately, its χPT value remains

very stable under different fit conditions. Note that L7 does not depend on the χPT

renormalization scale. In our numerical analysis, we will adopt the values:

Lr5(Mρ) = (1.20± 0.10) · 10−3 , Lr8(Mρ) = (0.53± 0.11) · 10−3 ,

(2 Lr8 − Lr5)(Mρ) = (−0.15± 0.20) · 10−3 , L7 = (−0.32± 0.10) · 10−3 .
(4.13)

The chosen ranges for the nearly uncorrelated (in the different fits) LECs L5 and

2L8 −L5 result from averaging the central lattice and O(p4) χPT values, rounding-up the

uncertainties so that they are not smaller than the most precise value. L8 is obtained

from the previous two values, neglecting their small correlation. For L7 we have applied

the same prescription to the O(p4) and O(p6) chiral results, but slightly rounding-up the

O(p6) uncertainty.

The strong LECs of the O(p6) Lagrangian enter into the amplitudes through the coeffi-

cients Xi of eq. (4.9), which only depend on X12, X14−20, X31, X33, X34, X37, X38, X91 and

X94. The dependence on X37 and X94 exactly cancels, however, in all ∆CA(X)
n amplitudes;

thus these couplings are not needed. Using Resonance Chiral Theory (RχT) [53, 54], these

LECs can be estimated in terms of meson resonance parameters, through the tree-level

exchange of the lightest resonance states. This amounts to perform the matching between

the χPT and RχT Lagrangians at leading order in 1/NC , in the single-resonance approx-

imation. An analysis of all resonance contributions to the Xi couplings can be found in

ref. [56]. Furthermore, a complete analysis of the η1 contributions to the chiral low-energy

constants of O(p6) was presented in ref. [57]. Combining both results, we obtain the values

given in table 3.

As expected for the K → ππ amplitudes, the relevant couplings do not receive con-

tributions from vector and axial-vector exchanges. Moreover, all η1 contributions coming

from the X̃η1
i factors in table 3 cancel also in the combinations Xi that govern the (g8Ni)

∞

LECs (see appendix A), as it should. The exchange of η1 mesons can only contribute

indirectly to K → ππ, through the dependence on L7 of the π0 − η mixing correction ε
(4)
S

in eq. (3.7), which gives rise to the term proportional to L7L8 in X13. This unique η1
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Xi/F
2 Large-NC prediction

12 − cd cm
2M4

S

14 − d2m
4M4

P
+ (λ̄SS1 )′ + 2 cd

cm
(λ̄SS3 )′

15 0

16 0

17 − d2m
4M4

P
+ λ̄SS2

18 X̃η1
18

19 cd cm
27M4

S
+

λ̄S4
9 + (λ̄SS3 )′ + X̃η1

19

20 − cd cm
18M4

S
− λ̄S4

6 + X̃η1
20

31 − d2m
2M4

P
− 7

18
cd cm
M4
S

+
λ̄S4
3 − 2 (λ̄SP2 )′ + X̃η1

31

33
d2m

6M4
P

+ 2
9
cd cm
M4
S

+
λ̄S4
6 + λ̄S5 − λ̄P3 + X̃η1

33

34
d2m

2M4
P

+ cd cm
2M4

S
+

c2m
2M4

S
− d2m

M2
P M

2
S

38 − d2m
2M4

P
+

c2m
2M4

S

91 2
d2m
M4
P

Table 3. Large-NC predictions for the relevant strong LECs of O(p6), in F 2 units [56].

contribution appears in the NLO local corrections ∆CA(ε)
1/2,3/2 and represents one of the

largest sources of uncertainty in our numerical results.

Thus, only contributions from scalar and pseudoscalar resonance-exchange enter into

the relevant Xi LECs in table 3. The LO RχT couplings have been determined within the

single-resonance approximation, which gives the relations [55]:

cm = cd =
√

2 dm = Fπ/2 , MP =
√

2MS . (4.14)

These couplings correspond to O(p2) chiral structures with Goldstone fields coupled to a

single resonance multiplet, either scalar (cd,m) or pseudoscalar (dm). The table contains,

in addition, contributions from O(p4) chiral structures with one resonance (λ̄Ri ) and O(p2)

terms with two resonances (λ̄RR
′

i ) that are currently unknown. We are only aware of one

estimate of λSS3 ≡ λ̄SS3 M4
S/c

2
m, determined from the scalar resonance spectrum [123], which

we update in appendix B. We obtain:

MS = 1478 MeV , λSS3 = 0.1548 . (4.15)

In the absence of better information, we will take null values for the unknown λ̄Ri and

λ̄RR
′

i couplings. In order to estimate the size of uncertainties in any observable F associated

to the LECs Xi, we will take:

error of F =
|F (Xi)− F (0)|

NC
. (4.16)
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4.4 Electromagnetic couplings of O(e2p2)

The electromagnetic LECs Ki can be expressed as convolutions of QCD correlators with

a photon propagator [124], and their evaluation involves an integration over the virtual

photon momenta. Therefore, they have an explicit dependence on the χPT renormaliza-

tion scale νχ, already at leading order in 1/NC . In ref. [125], the couplings Kr
1−6 have

been estimated by computing 4-point Green functions (two currents and two electromag-

netic spurion fields) in χPT and matching them with their RχT estimates (neglecting

pseudoscalar contributions). The RχT couplings are obtained by imposing short-distance

constraints. They find

Kr
1(Mρ) = −Kr

3(Mρ) = −2.71 · 10−3 , Kr
5(Mρ) = 11.59 · 10−3 ,

Kr
2(Mρ) =

1

2
Kr

4(Mρ) = 0.69 · 10−3 , Kr
6(Mρ) = 2.77 · 10−3 . (4.17)

The remaining couplings can be accessed through the study of two- and three-point

functions. Kr
7,8 turn out to be 1/NC suppressed, i.e., Kr

7(Mρ) ≈ Kr
7(Mρ) ≈ 0 [124]. Kr

9−13

are gauge dependent, while Kr
9−12 depend also on the short-distance renormalization scale

µSD. Those dependences cancel with the photon loop contributions in the physical decay

amplitudes. The explicit values we quote below refer to the Feynman gauge (ξ = 1) and

µSD = 1 GeV [2, 124–127]:

Kr
9(Mρ) = 2.2 · 10−3 , Kr

10(Mρ) = 6.5 · 10−3 ,

Kr
11(Mρ) = 1.26 · 10−3 , Kr

12(Mρ) = − 4.2 · 10−3 , Kr
13(Mρ) = 4.7 · 10−3 . (4.18)

The uncertainties associated with these LECs will be also estimated following the

method indicated in eq. (4.16).

5 Anatomy of isospin-breaking parameters in ε′

At first order in isospin corrections, eq. (1.3) can be written as [2, 7]

ε′ = − i√
2
ei(χ2−χ0) ω+

[
ImA

(0)
0

ReA
(0)
0

(1 + ∆0 + f5/2)− ImA2

ReA
(0)
2

]
, (5.1)

where the superscript (0) denotes the isospin limit, and the different sources of isospin-

breaking effects are made explicit. From the measured K+ → π+π0 and K0 → ππ rates,

one actually determines the ratio

ω+ =
ReA+

2

ReA0
= ω

{
1 + f5/2

}
, (5.2)

which differs from ω = ReA2/ReA0 by the small electromagnetic correction f5/2. The

breaking of isospin in the leading I = 0 amplitude is parametrized through

∆0 =
ImA0

ImA
(0)
0

ReA
(0)
0

ReA0
− 1 , (5.3)
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while we can approximate ReA2 ≈ ReA
(0)
2 because ImA2 is already an isospin-

breaking correction.

In order to determine these corrections, it is useful to write the CP-violating ampli-

tudes as

A0 e
iχ0 = A(0)

1/2 + δA1/2,

A2 e
iχ2 = A(0)

3/2 + δA3/2 +A5/2 , (5.4)

where δA1/2,3/2 and A5/2 are first order in isospin violation. The amplitudes A∆I have

both absorptive (Abs A∆I) and dispersive (Disp A∆I) parts. Therefore, the loop-induced

phases χI have to be carefully separated from the CP-violating ones. Expanding to first

order in CP and isospin violation, one finds [2]:

ImA
(0)
0 =

∣∣∣A(0)
1/2

∣∣∣−1 {
Im[DispA(0)

1/2] Re[DispA(0)
1/2] + Im[AbsA(0)

1/2] Re[AbsA(0)
1/2]
}
, (5.5)

ImA2 =
∣∣∣A(0)

3/2

∣∣∣−1 {
Im[Disp

(
δA3/2 +A5/2

)
] Re[DispA(0)

3/2]

+ Im[Abs
(
δA3/2 +A5/2

)
] Re[AbsA(0)

3/2]
}
, (5.6)

∆0 = −2
∣∣∣A(0)

1/2

∣∣∣−2 (
Re[DispA(0)

1/2] Re[Disp δA1/2] + Re[AbsA(0)
1/2] Re[Abs δA1/2]

)
+
[
Im[DispA(0)

1/2] Re[DispA(0)
1/2] + Im[AbsA(0)

1/2] Re[AbsA(0)
1/2]
]−1

×
{

Im[Disp δA1/2] Re[DispA(0)
1/2] + Im[DispA(0)

1/2] Re[Disp δA1/2]

+ Im[Abs δA1/2] Re[AbsA(0)
1/2] + Im[AbsA(0)

1/2] Re[Abs δA1/2]
}
, (5.7)

f5/2 =
5

3

∣∣∣A(0)
3/2

∣∣∣−2 {
Re[DispA(0)

3/2] Re[DispA5/2] + Re[AbsA(0)
3/2] Re[AbsA5/2]

}
. (5.8)

It is convenient to separate the electroweak penguin contribution to ImA2 from the

isospin-breaking effects generated by other four-quark operators:

ImA2 = ImAemp
2 + ImAnon−emp

2 . (5.9)

This separation depends on the renormalization scheme,8 but allows one to identify the

terms that are enhanced by the ratio 1/ω and write them explicitly as corrections to the

I = 0 side through the parameter

ΩIB =
ReA

(0)
0

ReA
(0)
2

· ImAnon−emp
2

ImA
(0)
0

. (5.10)

The splitting is easily performed at leading order in 1/NC through the matching procedure

between the short-distance and χPT descriptions. The electroweak LECs in ImAnon−emp
2

8Only the electromagnetic contribution is scheme dependent. We use the MS scheme with both NDR

and HV prescriptions, assigning an extra uncertainty due to the very small resulting differences.
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are calculated by setting to zero the Wilson coefficients C7−10 of the electroweak penguin

operators. We can then write ε′ as

ε′ = − i√
2
ei(χ2−χ0) ω+

[
ImA

(0)
0

ReA
(0)
0

(1− Ωeff)− ImAemp
2

ReA
(0)
2

]
, (5.11)

with

Ωeff = ΩIB −∆0 − f5/2 . (5.12)

6 Numerical results

At this point, we have all the theoretical ingredients to provide a numerical prediction for

the isospin-breaking effects in K → ππ. In the following subsections, we present each of

the numerical results that enter in the estimation of these corrections.

6.1 Amplitudes at NLO

In this subsection, we present the numerical results of the different isospin amplitudes, An
with n = 1/2, 3/2 and 5/2. Tables 4, 5 and 6, which supersede tables 1, 2 and 3 of ref. [2],

display the following information:

• The type of contribution (X) in the first column.

• The LO contributions a
(X)
n in the second column.

• The NLO loop contributions ∆LA(X)
n , with the absorptive and dispersive compo-

nents, in the third column. Absorptive contributions are independent on the chiral

renormalization scale νχ. For the dispersive contributions, νχ is fixed to 0.77 GeV.

• The NLO local corrections to the CP-even and CP-odd amplitudes, [∆CA(X)
n ]+ and

[∆CA(X)
n ]− respectively in the last columns, where

[∆CA(X)
n ]± =



Re
Im

(
G27 ∆CA(27)

n

)
Re
Im(G27)

X = 27,

Re
Im

(
G8gewk ∆CA(g)

n

)
Re
Im(G8gewk)

X = g,

Re
Im

(
G8 ∆CA(X)

n

)
Re
Im(G8)

X = 8, Z, ε, γ .

(6.1)

The estimation of NLO local contributions represents the main uncertainty in our

results. In tables 4, 5 and 6, we quote two different sources of uncertainties. The

first error is related with the lack of cancellation of the short-distance scale µSD.

We estimate it by varying this scale from 0.9 GeV to 1.2 GeV. The second error is

associated to the missed logarithmic corrections due to applying the large-NC limit.

– 19 –



J
H
E
P
0
2
(
2
0
2
0
)
0
3
2

(X) a
(X)
1/2 ∆LA(X)

1/2 [∆CA(X)
1/2 ]+ [∆CA(X)

1/2 ]−

27
√

2
9 1.03 + 0.47 i 0.01 +0.00

−0.00
+0.65
−0.62 0.01 +0.00

−0.00
+0.65
−0.62

8
√

2 0.27 + 0.47 i 0.02 +0.00
−0.00

+0.05
−0.05 0.10 +0.00

−0.00
+0.05
−0.05

ε − 2
√

2
3
√

3
0.26 + 0.47 i −0.37 +0.04

−0.10
+0.05
−0.06 1.39 +0.02

−0.02
+0.05
−0.06

γ — −1.39 −0.47 +0.18
−0.08

+0.26
−0.27 −10.67 +0.88

−0.81
+0.26
−0.27

Z 4
√

2
3 −1.07 + 0.80 i −0.11 +0.00

−0.01
+0.17
−0.18 0.13 +0.00

−0.00
+0.17
−0.18

g 2
√

2
3 0.28 + 0.47 i −0.19 +0.00

−0.00
+0.01
−0.01 −0.19 +0.00

−0.00
+0.01
−0.01

Table 4. NLO loop and local counterterm amplitudes A1/2. The two uncertainties in the local

amplitudes are associated with the variations of the short-distance scale µSD and the chiral scale

νχ, respectively.

(X) a
(X)
3/2 ∆LA(X)

3/2 [∆CA(X)
3/2 ]+ [∆CA(X)

3/2 ]−

27 10
9 −0.04− 0.21 i 0.01 +0.00

−0.00
+0.05
−0.05 0.01 +0.00

−0.00
+0.05
−0.05

ε 4
3
√

3
−0.70− 0.21 i −0.35 +0.04

−0.11
+0.48
−0.50 1.50 +0.02

−0.02
+0.48
−0.50

γ — −0.47 0.40 +0.09
−0.04

+0.08
−0.09 −0.09 +0.14

−0.10
+0.08
−0.09

Z 4
3 −0.87− 0.79 i 0.01 +0.00

−0.00
+0.32
−0.33 0.07 +0.00

−0.00
+0.32
−0.33

g 2
3 −0.50− 0.21 i −0.19 +0.00

−0.00
+0.19
−0.20 −0.19 +0.00

−0.00
+0.19
−0.20

Table 5. NLO loop and local counterterm amplitudes A3/2. The two uncertainties in the local

amplitudes are associated with the variations of the short-distance scale µSD and the chiral scale

νχ, respectively.

(X) a
(X)
5/2 ∆LA(X)

5/2 [∆CA(X)
5/2 ]+ [∆CA(X)

5/2 ]−

γ — −0.51 −0.15 +0.02
−0.01

+0.10
−0.11 −0.54 +0.00

−0.00
+0.10
−0.11

Z — −0.93− 1.16 i −0.17 +0.01
−0.01

+0.41
−0.43 0.09 +0.00

−0.00
+0.41
−0.43

Table 6. NLO loop and local counterterm amplitudes A5/2. The two uncertainties in the local

amplitudes are associated with the variations of the short-distance scale µSD and the chiral scale

νχ, respectively.

In order to estimate them, we vary the chiral renormalization scale between 0.6 and

1 GeV. In most of the cases, this non-perturbative error dominates over the first one.

The various LECs have been set to their central values.

The numerical results displayed in the tables are in good agreement with the findings of

ref. [2]. While the underlying physics behind the large values of ∆LA(Z)
1/2,3/2 and [∆CA(γ)

1/2]−

is well understood (related to the absorptive cut in the amplitudes), the larger than ex-

pected [∆CA(ε)
1/2,3/2]− values, very sensitive to the L7 input, are not. It might be conse-

quence of a numerical accident. While the size of the couplings g8N
r
i is not larger than

expected, their role appears enhanced in the amplitudes with large numerical prefactors.
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6.2 χPT fit to K → ππ data

In subsection 4.1, we have seen the price of taking the large-NC limit in the CP-even sector,

reflected in an unphysical short-distance scale dependence for the observables. The large-

NC estimate is unable to correctly predict the CP-conserving parts of g8 and g27. However,

one can fit them to data. Since we include electromagnetic effects to first order in α, we

must consider the inclusive sum of the K → ππ and K → ππγ decay rates. We denote

by Γn with n = +−, 00,+0 the corresponding observable widths into the different ππ final

states and define the ratios [2]

Cn =

(
2
√
sn Γn

G̃n Φn

)1/2

, (6.2)

where
√
sn is the center-of-mass energy (the physical kaon mass) and Φn the appropriate

two-body phase space. The infrared-finite factors G̃n = 1 +O(α), which take into account

the inclusive sum of virtual and real photons, are given in ref. [2]. The quantities Cn are

directly related to the isospin amplitudes defined in eq. (1.1):

A+
2 =

2

3
C+0 ,

(A0)2 + (A2)2 =
2

3
C2

+− +
1

3
C2

00 ,

A2

A0
cos(χ0 − χ2) =

r − 1 + (A2
A0

)2(2 r − 1
2)

√
2 (1 + 2 r)

, (6.3)

where r ≡ (C+−/C00)2.

Extracting the Cn factors from the measured partial widths Γ+−,00,+0 [128] and using

the χPT representation of the AI amplitudes, we can perform a fit to g8, g27 and the phase

difference χ0 − χ2. We leave χ0 − χ2 as an additional free parameter to be determined by

the fit because an accurate χPT prediction of the phase-shift difference would require the

inclusion of higher-loop corrections [8, 129].

Assuming isospin conservation, we obtain the results shown in table 7, from LO and

NLO fits. The values of ReA0, ReA2 and χ0 − χ2 are directly determined from the Cn
ratios and, therefore, are the same in both fits. The first errors originate in the experimental

inputs, while the second ones in g8 and g27 reflect the sensitivity to the χPT scale νχ. The

octet coupling is also sensitive to the short-distance renormalization scale µSD (third error).

One observes a sizeable difference between the LO and NLO fitted values of g8, while g27

remains stable. This just illustrates the much larger size of the chiral loop corrections to

the octet amplitude. Since the O(p4) corrections are positive (negative) in the octet (27)

amplitude, the extracted value of g8 (g27) decreases (slightly increases) at NLO.

Including the isospin-breaking corrections, one obtains the results given in table 8. The

primary fitted quantities Re g8, Re g27 and χ0−χ2, as well as the derived quantities (such as

ReA0,2), depend now on the adopted χPT approximation, LO or NLO. The experimental

uncertainties are again indicated by the first errors. Moreover, the presence of an O(e2p0)

electromagnetic-penguin contribution makes the LO fit also sensitive to the short-distance
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LO fit NLO fit

Re g8 4.985± 0.002exp 3.601± 0.001exp
+ 0.139
− 0.135 νχ

+ 0.010
− 0.004 µSD

Re g27 0.286± 0.001exp 0.288± 0.001exp ± 0.014 νχ

χ0 − χ2 (44.78± 0.98exp)◦

ReA0 (2.711± 0.001exp) · 10−7 GeV

ReA2 (1.212± 0.003exp) · 10−8 GeV

ReA0/ReA2 22.36± 0.05exp

Table 7. LO and NLO fits to the K → ππ amplitudes in the limit of isospin conservation.

LO fit NLO fit

Re g8 5.002± 0.002 exp
+ 0.008
− 0.004 µSD

3.582± 0.001 exp
+ 0.144
− 0.141 νχ

+ 0.016
− 0.006 µSD

Re g27 0.251± 0.001 exp
+ 0.007
− 0.003 µSD

0.297± 0.001 exp
+ 0.000
− 0.001 νχ

+ 0.006
− 0.002 µSD

χ0 − χ2 (◦) 47.97± 0.92 exp
+ 0.08
− 0.16 µSD

51.396± 0.806 exp
+ 1.041
− 1.051 νχ

+ 0.017
− 0.003 µSD

ReA0 (10−7 GeV) 2.704± 0.001 exp 2.704± 0.001 exp

ReA2 (10−8 GeV) 1.222± 0.003 exp
+ 0.002
− 0.004 µSD

1.317± 0.003 exp
+ 0.033
− 0.031 νχ

+ 0.001
− 0.000 µSD

f5/2 0 0.0852± 0.0002 exp
+ 0.0239
− 0.0250 νχ

+ 0.0001
− 0.0004 µSD

ReA0/ReA2 22.13± 0.05 exp
+ 0.07
− 0.04 µSD

20.54± 0.04 exp
+ 0.50
− 0.50 νχ

+ 0.00
− 0.01 µSD

ReA0/ReA+
2 22.13± 0.05 exp

+ 0.07
− 0.04 µSD

22.28± 0.05 exp
+ 0.01
− 0.06 νχ

+ 0.00
− 0.02 µSD

Table 8. LO and NLO fits to the K → ππ amplitudes, including isospin breaking.

scale µSD (second errors). Our LO results are in agreement with the Flavianet averages [42]

in eq. (1.2). At the NLO, the presence of the electromagnetic correction f5/2 implies that

ReA+
2 6= ReA2. The NLO results have explicit dependencies on both renormalization

scales, νχ (second errors) and µSD (third errors). Notice that the isotensor amplitude and

g27 are quite sensitive to the isospin-breaking corrections.

The results in tables 7 and 8 supersede the values obtained in ref. [2]. The main

differences originate in the more precise experimental data now available.

6.3 Isospin-breaking parameters in the CP-odd sector

We have now all the needed ingredients to compute the different isospin-breaking (IB)

parameters in the CP-odd sector, defined in section 5. The resulting values are displayed in

table 9 at different levels of approximation. The first two columns show the results obtained

with α = 0 at LO and NLO, respectively; i.e. they refer to strong isospin violation only

(mu 6= md). The impact of electromagnetic corrections is shown in the last two columns,

which contain the complete results including electromagnetic corrections.

In appendix C we provide a detailed comparison with the results of refs. [2, 7], analyzing

the impact of the different updated inputs in the final NLO values. The most significant
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α = 0 α 6= 0

LO NLO LO NLO

ΩIB 13.7 15.9± 8.2 19.5± 3.9 24.7± 7.8

∆0 −0.002 −0.49± 0.13 5.6± 0.9 5.6± 0.9

f5/2 0 0 0 8.2 + 2.3
− 2.5

Ωeff 13.7 16.4± 8.3 13.9± 3.7 11.0 + 9.0
− 8.8

Table 9. Isospin-violating corrections for ε′/ε in units of 10−2.

-0.50 -0.45 -0.40 -0.35 -0.30 -0.25 -0.20

0.05

0.10

0.15

0.20

Figure 2. Central value of Ωeff as a function of L7. The dotted vertical lines indicate the range of

L7 in eq. (4.13), while the red line is the large-NC value from eq. (4.12).

changes are a slight reduction of the IB correction to A0, δ∆0 ≈ −0.028, induced by the

numerical changes in L5 and the Wilson coefficients, and an increased value of ΩIB, δΩIB ≈
0.020, which is mostly driven by L7 (there are also sizeable changes from L5, Ki and ε(2) that

cancel among them to a large extent). The net combined effect is a larger central value of the

global correction δΩeff ≈ 0.05. The largest sources of uncertainty turn out to be the input

values of the strong LECs L7, L5 and L8 (parametric) and the dependence on the chiral

renormalization scale νχ (a “systematic error” induced by the large-NC approximation).

Appendix C contains a detailed description of the different errors.

The final prediction for Ωeff is very sensitive to the input value of L7. Figure 2 illustrates

the strong dependence of the central value of Ωeff with L7. The dashed vertical line indicates

the value of L7 in eq. (4.13) [67], with its error range (dotted lines). The red line is the

large-NC prediction for L7 in eq. (4.12).

We conclude this section by discussing the applicability of our results on isospin-

breaking effects in ε′, obtained in the framework of χPT, to other non-perturbative meth-

ods, that typically estimate hadronic matrix elements in the isospin limit (see for example

refs. [5, 51]). Our two main observations are:

• First, ∆0 is largely dominated by electromagnetic penguin contributions. Therefore,

in those theoretical calculations of ε′ where electromagnetic penguin contributions

are explicitly included in A0, one should remove their effect from the quantity ∆0,

keeping only the strong isospin-breaking contributions to this quantity. This amounts
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Figure 3. SM prediction for Re (ε′/ε) (red dashed line) as a function of Ωeff. The red band has

been obtained adding all sources of uncertainty in quadrature for a fixed value of Ωeff . The vertical

dashed line indicates the central value of Ωeff in (7.1) and the blue horizontal band the measured

value of Re (ε′/ε).

to the replacement Ωeff → Ω̂eff with [2, 51]

Ω̂eff ≡ ΩIB − ∆0|α=0 − f5/2 , (6.4)

since ∆0 is the only contribution proportional to ImA0. The updated value is

Ω̂eff = (17.0 +9.1
−9.0) · 10−2 , (6.5)

which can be directly extracted from table 9. The final error has been obtained taking

into account the correlation among those values.

• Second, in applying isospin-breaking corrections one needs to keep track of how

isospin-symmetric QCD is defined in each calculation. This intrinsically implies a

scheme dependence (see [92, 130] and references therein). In appendix D we have

presented the separation scheme adopted in this work (following [2]) and a possible

alternative scheme. We have then discussed the implications of scheme dependence

for Ωeff , finding that, for the two schemes considered, the numerical effect is well

below current theoretical uncertainties.

7 Updated SM prediction for ε′/ε

The improved knowledge on many of the inputs entering the calculation of isospin-breaking

corrections to the K → ππ amplitudes has allowed us to perform a thorough numerical

update of the pioneering analysis of refs. [2, 7]. We have presented in this paper a com-

prehensive review of the theoretical approach and have discussed in detail the different

parametric improvements and their impact on the relevant isospin-breaking contributions.

Our final result for the key parameter in the CP-odd sector is (see eqs. (5.11), (5.12) and

table 9):

Ωeff = (11.0 + 9.0
− 8.8) · 10−2 , (7.1)
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Figure 4. SM prediction for Re (ε′/ε) (red dashed line) as a function of L5. The value of L8 has

been fixed in terms of L5, using their relation in eq. (4.13). The red band has been obtained adding

all sources of uncertainty in quadrature for a fixed value of L5. The black dashed vertical lines

represent the central value of Lr5(Mρ) with its error, given in eq. (4.13). The blue horizontal band

is the measured value of Re (ε′/ε).

where the final uncertainty has been obtained adding all errors in quadrature.

Figure 3 shows the dependence of Re (ε′/ε) on Ωeff. Taking into account the updated

value of this parameter, our SM prediction for Re (ε′/ε),

Re
(
ε′/ε
)

=
(

13.8 + 0.5
− 0.4ms

+ 1.7
− 1.3 µSD

+ 3.1
− 3.2 νχ

± 1.3 γ5 ± 2.1L5,8 ± 1.3L7 ± 0.2Ki ± 0.3Xi

)
· 10−4

= (14 ± 5) · 10−4 , (7.2)

is in excellent agreement with the experimental world average [131–139],

Re
(
ε′/ε
)

exp
= (16.6± 2.3) · 10−4 . (7.3)

In eq. (7.2), we display the different sources of uncertainty in Re (ε′/ε). The first

error represents the sensitivity to the input quark masses. Our ignorance about 1/NC-

suppressed contributions in the matching region is parametrized through the second and

third errors, which have been estimated through the variation of µSD and νχ in the intervals

[0.9, 1.2] GeV and [0.6, 1] GeV, respectively. The fourth error reflects the choice of scheme

for γ5. The fifth and sixth errors originate from the input values of the strong LECs

L5,7,8, given by eq. (2), and the last two errors correspond to the uncertainties of the NLO

electromagnetic LECs Ki and the NNLO strong couplings Xi; they have been estimated

using eq. (4.16).

The updated value of Ωeff has a relatively small numerical impact on the final pre-

diction for ε′/ε, giving a central value slightly smaller than the one obtained in ref. [4]

with the old IB inputs. The large theoretical uncertainty in (7.2), mostly coming from our

ignorance of non-perturbative effects in the matching region and the strong dependence on

the parameter L5 (see figure 4), has been estimated conservatively and could be reduced in

the future. A detailed discussion of other possible improvements was presented in ref. [4].
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i ni Xi

5 −2 −16X14 + 32X17 − 24X38 − 4X91

6 4 −32X17 − 32X18 + 32X37 + 16X38

7 2 −32X16 − 16X17 + 8X38

8 4 −16X15 − 32X17 + 16X38

9 0 −64L5 L8 − 8X34 + 8X38 + 4X91

10 0 −48X19 − 8X38 − 2X91 − 4X94

11 0 −32X20 + 4X94

12 0 128L8 L8 + 16X12 − 16X31 + 8X38 − 2X91 − 4X94

13 0 256L7 L8 − 32
3 X12 − 16X33 + 16X37 + 4

3 X91 + 4X94

Table 10. Parameters ni and Xi entering the prediction of the LECs (g8 Ni)
∞ in eq. (4.9).
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A Parameters of large-NC matching at NLO

Table 10 compiles the values of ni and Xi that parametrize the large-NC predictions for

the weak LECs (g8Ni)
∞ in eq. (4.9). The Xi parameters are functions of the strong O(p6)

couplings Xi. The LEC X94 only appears in Xi for i = 10, 11, 12, 13. The corresponding

couplings Ni contribute to ∆CA(8)
1/2 and ∆CA(ε)

1/2,3/2, but always in combinations of the

form
∑13

i=10 aiNi with a10 +a12 = a11 +a13. Thus, X94 drops completely from the K → ππ

amplitudes. The same happens with X37, because X6 and X13 only enter through the

combination N r
6 − 2N r

13.

The large-NC predictions for the O(p6) LECs Xi were estimated in ref. [56] through

resonance exchange. The role of the η1 meson in these LECs was further analyzed in
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i K(1)
i K(2)

i K(3)
i K(4)

i K(5)
i K(6)

i K(7)
i

1 1
3 K12 −K13 0 64L8 (− 1

3 K9 + 5
3 K10 +K11) 0 −24L8 0 0

2 4
3 K13 0 − 256

3 L8 (K10 +K11) 0 0 0 0

3 K13 0 −64L8 (K10 +K11) 0 0 0 0

4 −K13 0 64L8 (K10 +K11) 0 0 0 0

5 4
3 (4K1 + 3K5 + 3K12) 0 − 64

3 L5 (2K7 +K9) 0 0 0 1

6 − 2
3 (K5 +K6) + 2 (K12 +K13) 0 − 32

3 L5 (K9 +K10 + 3K11) 0 −12L5 0 0

7 8K2 + 6K6 − 4K13 0 −32L5 (2K8 +K10 +K11) 0 0 0 0

8 8
3 K3 + 4K12

4
3 K5 0 0 0 3

2
3
2

9 − 4
3 (K4 +K12 +K13) 4

3 K5 0 − 3
2 0 0 0

10 −2K13 4K6 0 0 0 0 0

11 2 (K4 +K13) 0 0 0 0 0 0

12 −4K3 0 0 0 0 0 0

Table 11. Large-NC parameters K(k)
i of the (g8 Zi)

∞ LECs in eq. (4.10).

ref. [57]. The only η1-exchange contributions to the K → ππ amplitudes are

X̃η1
18 = 3 X̃η1

19 = − 2 X̃η1
20 = X̃η1

31 =
L∞7
M2
η1

, X̃η1
33 = 0 . (A.1)

The large-NC predictions for the electroweak LECs (g8 Zi)
∞ in eq. (4.10) are governed

by the constants K(k)
i , compiled in table 11. They are functions of the electromagnetic and

strong χPT couplings Ki and Li, respectively.

B Updated estimate of λSS3

The RχT coupling λSS3 splits the masses of the different isospin components of the scalar-

resonance nonet multiplet through the term

Lmass
S = −

M2
S

2
〈S2〉+ λSS3 4B0 〈S2M〉 . (B.1)

The common multiplet mass and λSS3 can then be determined through the relations [123]:

λSS3 =
M2
I=1 − M2

I=1/2

4 (M2
K − M2

π)
, M2

S = M2
I=1 +

M2
π (M2

I=1 − M2
I=1/2)

M2
K − M2

π

, (B.2)

with MI the mass of the scalar meson with isospin I.

In order to identify the members of the scalar resonance nonet, we must exclude the

lightest observed scalars that are well understood as dynamically-generated poles arising

from 2-Goldstone scattering: f0(500) (σ), K∗0 (700) (κ), a0(980) and f0(980) [140–144].

The I = 1/2 and I = 1 members of the resonance nonet are identified without controversy

with K∗0 (1430) and a0(1450) respectively. For the I = 0 states, we have three possible
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Set-up ∆0 f5/2 ΩIB Ωeff

Old value [2] 0.08346 0.08360 0.2267 0.05967

New value 0.05578 0.08168 0.2470 0.1095

∆WC −0.11 −0.0008 0.0017 0.013

∆L5
−0.017 0.0009 −0.032 −0.016

∆L8 0.0028 0.0012 −0.0060 −0.010

∆L7
−0.0006 0.0000 0.029 0.029

∆Ki 0.0012 −0.0036 0.022 0.024

∆Xi 0.0017 0.0001 −0.0011 −0.0029

∆ε(2) −0.0003 0.0000 0.011 0.011

∆B(µSD) −0.0049 0.0005 −0.0066 −0.0021

Table 12. NLO central values for α 6= 0 and impact of the different modified inputs.

candidates: f0(1370), f0(1500) and f0(1710). Thus, there are two possible scenarios:

A : f0(1370), K∗0 (1430), a0(1450), f0(1500).

B : f0(1370), K∗0 (1430), a0(1450), f0(1710).

One can figure out the favoured dynamical option, comparing these candidates with the

predicted isosinglet masses. Using the relation [123],

M2
L,H = M2

I=1/2 ∓ |M
2
I=1/2 − M2

I=1| , (B.3)

we find ML = 1374 MeV and MH = 1474 MeV for the lighter and heavier isosinglet scalar

states, respectively. Therefore, we can conclude that the lightest scalar-resonance nonet

is given by the scenario A. Moreover, since the values of ML,H are very close to the mea-

sured masses, additional nonet-symmetry-breaking corrections to the scalar masses can be

neglected (i.e., kRm = γR = 0, in ref. [123]). Inserting the scalar resonance masses in the

relations (B.2), one finally finds the values of MS and λSS3 given in eq. (4.15).

C Parametric uncertainties in Ωeff , ΩIB, ∆0 and f5/2

Since this work is an update of refs. [2, 7], it is worth to compare the impact of the different

updated inputs in the final (central) values of the IB parameters. This is shown in table 12

for the results of the complete NLO analysis with α 6= 0. The quantities ∆i correspond to

the difference between the updated result and the one obtained with the old input for the

variable i (i = WC stands for Wilson Coefficients). The impact of the different changed

inputs is comparable in size, and typically slightly smaller than the central values. In

particular, the sensitivity to L7 is remarkable.
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Set-up ∆0 f5/2 ΩIB Ωeff

Central −0.0049 0.0 0.159 0.164

σµSD

+ 0.0001
− 0.0002 0.0 + 0.001

− 0.001
+ 0.001
− 0.001

σνχ 0.0001 0.0 + 0.048
− 0.047

+ 0.048
− 0.047

σγ5 0.0004 0.0 0.001 0.002

σL5,8 0.0001 0.0 0.015 0.015

σL7
0.0012 0.0000 0.065 0.066

σXi 0.0000 0.0 0.007 0.007

Table 13. NLO central values for α = 0 and their parametric errors.

Set-up ∆0 f5/2 ΩIB Ωeff

Central 0.0557 0.0 0.195 0.139

σµSD

+ 0.0003
− 0.0000 0.0 + 0.001

− 0.001
+ 0.001
− 0.001

σνχ 0.0000 0.0 0.000 0.000

σγ5 0.0066 0.0 0.001 0.006

σL5,8
0.0053 0.0 0.010 0.005

σKi 0.0021 0.0 0.038 0.036

Table 14. LO central values for α 6= 0 and their parametric errors.

In tables 13, 14 and 15 we detail the different sources of parametric uncertainties for

∆0, f5/2, ΩIB, and Ωeff at both LO and NLO, and for α = 0 and α 6= 0. We consider the

following uncertainties:

• σµSD and σνχ . Uncertainties associated to the large-NC matching procedure, which

leads to ambiguities when setting both the short-distance (µSD) and the chiral (νχ)

scales. They are estimated by varying them in the intervals µSD ∈ [0.9, 1.2] GeV and

νχ ∈ [0.6, 1] GeV.

• σγ5 . Uncertainty associated with the choice of renormalization prescription for γ5.

We have taken the difference between the results obtained using the HV and NDR

schemes.

• σL5,7,8 . Uncertainties from the input values of the strong LECs L5,7,8 in eq. (2).

• σKi and σXi . Uncertainties associated, respectively, with the NLO electromagnetic

LECs Ki and the NNLO strong couplings Xi.
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Set-up ∆0 f5/2 ΩIB Ωeff

Central 0.0558 0.0817 0.247 0.110

σµSD

+ 0.0014
− 0.0011

+ 0.0002
− 0.0006

+ 0.002
− 0.002

+ 0.000
− 0.000

σνχ
+ 0.0017
− 0.0016

+ 0.0232
− 0.0243 0.034 + 0.057

− 0.055

σγ5 0.0066 0.0008 0.001 0.005

σL5,8 0.0053 0.0009 0.017 0.015

σL7
0.0012 0.0000 0.065 0.066

σKi 0.0019 0.0031 0.018 0.013

σXi 0.0020 0.0003 0.003 0.005

Table 15. NLO central values for α 6= 0 and their parametric errors.

D Exploring dependence on “isospin scheme”

In this appendix we explore the dependence of Ωeff on the scheme-dependent definition

of isospin limit in QCD. For recent developments on the definition of “isospin-symmetric

QCD” on the lattice, we refer the reader to refs. [92, 130] and references therein. In our

work we use as reference scheme (“Scheme I”) the one adopted in ref. [2], in which the

meson masses in the isospin limit are taken as follows:

M2
π ≡ M2

π0 , (D.1)

M2
K ≡ M2

K0 . (D.2)

The LO meson masses with inclusion of isospin breaking then read:

M2
π0 = M2

π , (D.3)

M2
π± = M2

π + 2e2ZF 2 , (D.4)

M2
K0 = M2

K , (D.5)

M2
K± = M2

K −
4 ε(2)

√
3

(
M2
K −M2

π

)
+ 2e2ZF 2 , (D.6)

where we used B0(ms − m̂) = M2
K −M2

π + O(ε(2)) in the second term of M2
K± . In the

hadronic schemes of refs. [92, 130] this would correspond to defining iso-symmetric QCD

by fixing m̂ and ms from the physical values of Mπ0 and MK0 .

We will contrast the above scheme to “Scheme II”, which treats the kaon masses more

symmetrically. In this scheme we take the meson masses in the isospin limit to be as follows:

M2
π ≡ M2

π0 , (D.7)

M2
K ≡

1

2

{
M2
K± +M2

K0 − (M2
π± −M

2
π0)
}
. (D.8)
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The LO meson masses with isospin breaking are then

M2
π0 = M2

π , (D.9)

M2
π± = M2

π + 2e2ZF 2 , (D.10)

M2
K0 = M2

K +
2 ε(2)

√
3

(
M2
K −M2

π

)
, (D.11)

M2
K± = M2

K −
2 ε(2)

√
3

(
M2
K −M2

π

)
+ 2e2ZF 2 , (D.12)

where again we used B0(ms− m̂) = M2
K −M2

π +O(ε(2)) to re-write the terms proportional

to ε(2). In the hadronic schemes of refs. [92, 130], this would correspond to defining iso-

symmetric QCD by fixing m̂ and ms from the physical values of Mπ0 and the combination

MK defined by eq. (D.8). Note that in Scheme II, to LO in the chiral expansion, m̂ and

ms take the same value in both full QCD and iso-symmetric QCD. This is not the case in

Scheme I.

D.1 Leading-order analysis

After putting the external legs on the appropriate mass-shells, the tree-level amplitudes are:

A+− = −
√

2G8 F
(
M2
K0 −M2

π± − e
2F 2gewk

)
, (D.13)

A00 = −
√

2G8 F
(
M2
K0 −M2

π0

)(
1− 2√

3
ε(2)

)
, (D.14)

A+0 = −G8 F
(
M2
π0 −M2

π± − e
2Fgewk

)
−G8 F

{
M2
K± −M

2
π0 +

1

2

(
M2
π± −M

2
π0

)} 2√
3
ε(2) , (D.15)

where the explicit terms involving ε(2) arise from π0-η mixing. Using the two schemes

defined above for the mesons masses, we can split the amplitudes as follows

Aij = A
(0)
ij + δAij , (D.16)

where A
(0)
ij represents the “isospin limit” result and δAij the deviation from that limit.

Both terms in the above decomposition are scheme dependent.

The isospin-limit amplitudes have the same form in both schemes:

A
(0)
+− = A

(0)
00 = −

√
2G8 F (M2

K −M2
π) , A

(0)
+0 = 0 . (D.17)

The scheme dependence is due to the fact that M2
K takes different values in the two schemes.

Using Scheme I, the deviations from the isospin limit are:

δA
(I)
+− =

√
2G8 F (e2F 2) (2Z + gewk) , (D.18)

δA
(I)
00 =

√
2G8 F (M2

K −M2
π)

2√
3
ε(2) , (D.19)

δA
(I)
+0 = G8F (e2F 2)(2Z + gewk)−G8F (M2

K −M2
π)

2√
3
ε(2) . (D.20)
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Using Scheme II we find:

δA
(II)
+− = δA

(I)
+− −

√
2G8 F (M2

K −M2
π)

2√
3
ε(2) , (D.21)

δA
(II)
00 = δA

(I)
00 −

√
2G8 F (M2

K −M2
π)

2√
3
ε(2) = 0 , (D.22)

δA
(II)
+0 = δA

(I)
+0 . (D.23)

For the isospin-basis amplitudes of interest in ε′ we then have:

δA
(II)
0 = δA

(I)
0 −

√
2G8 F (M2

K −M2
π)

2√
3
ε(2) , (D.24)

δA
(II)
2 = δA

(I)
2 , (D.25)

δA
+(II)
2 = δA

+(I)
2 . (D.26)

Let us now discuss the implications of the above scheme dependence. First, note that

since δA
(II)
2 = δA

(I)
2 , the fit to Re g27, controlled by the K± → π±π0 rate, is essentially

unchanged.

For the CP-violating sector, we need to study the scheme dependence of ΩIB, ∆0, and

f5/2, that appear as correction factors in the formula for ε′, namely:

ΩIB =
ReA

(0)
0

ReA
(0)
2

· Im δAnon−emp
2

ImA
(0)
0

, (D.27)

∆0 =
Im δA0

ImA
(0)
0

− Re δA0

ReA
(0)
0

, (D.28)

f5/2 =
5

3

ReA5/2

ReA
(0)
3/2

. (D.29)

The above quantities are of first order in isospin-breaking parameters (ε(2) and e2). Now

note that the scheme dependence of the “isospin-limit” quantities denoted by the super-

script “(0)” is itself of first order in isospin breaking. Therefore we conclude that, to first

order in isospin breaking the scheme dependence of ΩIB, ∆0, and f5/2 is controlled by the

scheme dependence of δA0, δAnon−emp
2 , and A5/2. From the amplitude shifts given above,

we therefore conclude that to leading order in the chiral expansion

Ω
(II)
IB = Ω

(I)
IB , (D.30)

f
(II)
5/2 = f

(I)
5/2 = 0 , (D.31)

∆
(II)
0 = ∆

(I)
0 +

Im(δA
(II)
0 − δA(I)

0 )

ImA
(0)
0

− Re(δA
(II)
0 − δA(I)

0 )

ReA
(0)
0

. (D.32)

Using eq. (D.24), the explicit form of A
(0)
0 to leading order

A
(0)
0 = −

√
2F (M2

K −M2
π)

(
G27

9
+G8

)
, (D.33)
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and the fact that ImG27 = 0, we find

∆
(II)
0 −∆

(I)
0 =

2 ε(2)

√
3

(
1− 1

1 + 1
9

Re g27
Re g8

)
' 2 ε(2)

√
3
× 1

9

Re g27

Re g8
∼ 8.5× 10−5 . (D.34)

The “isospin-scheme” dependence is comparable to the LO central value induced by strong

isospin breaking using Scheme I, namely ∆
(I)
0

∣∣
LO, α=0

= −4×10−5 [2]. Including EM effects

one has ∆
(I)
0

∣∣
LO

= (8.7 ± 3.0) × 10−2, implying that the scheme dependence in ∆0 and

therefore in Ωeff (see eq. (5.12)) is completely negligible compared to other uncertainties.

D.2 Beyond leading order

As for the LO analysis, we focus on the comparison of “Scheme I” and “Scheme II” only.

We note that to first order in isospin breaking and any order in the chiral expansion the

only amplitudes that can possibly differ between Scheme I and Scheme II are A(ε)
1/2 and

A(ε)
3/2. Based on this observation we already conclude that

f
(II)
5/2 = f

(I)
5/2 (D.35)

holds beyond leading order. In order to quantify the isospin-scheme dependence of A(ε)
1/2,3/2

at NLO, we need to consider three effects:

1. Expressing F in terms of Fπ in the tree-level amplitudes;

2. Counterterm amplitudes proportional to G8Ni;

3. Loop amplitudes with G8 insertions and isospin breaking only in the masses (internal

and external).

In what follows we discuss the first two effects. For this discussion, let us recall the relevant

terms in eq. (3.10)

An ⊃ −G8 Fπ (M2
K −M2

π)
[
A(8)
n + ε(2)A(ε)

n

]
, n = 1/2, 3/2 . (D.36)

D.2.1 Expressing F in terms of Fπ in the tree-level amplitudes

The relation between F and Fπ takes the form

F = Fπ

{
1 + f (s)(M2

K ,M
2
π) + ε(2) g(s)(M2

K ,M
2
π)
}
, s = I, II , (D.37)

where f (s)(x, y) and g(s)(x, y) are scheme-dependent functions of the meson masses arising

from loops and counterterms, and M2
K and M2

π denote the isospin-limit masses in the

chosen scheme. Using the expression of Fπ in terms of the quark masses [80], one obtains

f (I)(x, y) = f (II)(x, y) = f(x, y) , (D.38)

g(I)(x, y) = g(x, y) =
2√
3

(x− y)

[
8Lr4(µ)

F 2
− 1

2(4πF )2

(
1 + log

x

µ2

)]
, (D.39)

g(II)(x, y) = 0 , (D.40)

and the form of f(x, y) is irrelevant for our discussion.
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Upon making the substitutions (D.37) in the tree-level amplitudes, one obtains

A(ε)
n = Ā(ε)

n

[
1 + f (s)(M2

K ,M
2
π)
]

+ a(8)
n g(s)(M2

K ,M
2
π) , (D.41)

where Ā(ε)
n is the strong isospin-violating amplitude before making the replacement F →

Fπ. The term involving f(M2
K ,M

2
π) is scheme independent to first order in isospin breaking

(recall that A(ε)
n is already multiplied by ε(2), so changing the value of the masses in the

argument of f(x, y) leads to higher-order effects in isospin breaking). The term proportional

to g(x, y) is scheme dependent. So one gets

A(ε),(I)
n −A(ε),(II)

n = a(8)
n g(M2

K ,M
2
π) . (D.42)

Recalling that

a
(8)
1/2 =

√
2 , a

(8)
3/2 = 0 , (D.43)

then one sees that there is no scheme dependence in the ∆I = 3/2 amplitudes, while there

is a residual scheme dependence in the ∆I = 1/2 amplitude, namely:

δA
(ε),(II)
2 = δA

(ε),(I)
2 , (D.44)

δA
(ε),(II)
0 = δA

(ε),(I)
0 + ε(2)

√
2G8 Fπ (M2

K −M2
π) g(M2

K ,M
2
π) . (D.45)

The above results lead to:

Ω
(II)
IB = Ω

(I)
IB , (D.46)

∆
(II)
0 −∆

(I)
0 = ε(2) g(M2

K ,M
2
π)

(
1− 1

1 + 1
9

Re g27
Re g8

)

' ε(2) g(M2
K ,M

2
π)

1

9

Re g27

Re g8
∼ 10−6. (D.47)

This is to be compared to the NLO results [2] ∆
(I)
0

∣∣
NLO,α=0

= −(5.1 ± 1.2) × 10−3 and

∆
(I)
0

∣∣
NLO

= (5.7 ± 1.7) × 10−2, showing again that the scheme dependence of ∆0 and,

therefore, Ωeff (see eq. (5.12)) is well below current uncertainties in ∆0 and Ωeff .

D.2.2 Contributions proportional to G8Ni

These amplitudes have the structure:

A ∝
9∑
i=5

Ni

(∑
q

AiqB0mq

)(∑
ab

Bab pa · pb

)

+

13∑
i=10

Ni

(∑
q

CiqB0mq

)(∑
q

DiqB0mq

)
, (D.48)

where pn are the external particle momenta. The “isospin scheme” dependence arises when

expressing pi · pj and B0mq in terms of the meson masses.
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Expanding the amplitudes in the two schemes one can check that δA+− and δA00 are

shifted by the same amount, so only δA0 can depend on the scheme. Explicitly we find

δA
(ε),(II)
2 = δA

(ε),(I)
2 , (D.49)

δA
(ε),(II)
0 = δA

(ε),(I)
0 − 4 ε(2)

√
3

√
2Fπ (M2

K −M2
π) ∆̃ , (D.50)

∆̃ =
1

F 2
π

G8

[
M2
K (2N5 − 4N7 + 4N8 + 2N9)

+ M2
π (N5 + 6N7 −N8 −N9 − 2N10 − 4N11 − 2N12)

]
. (D.51)

As before, the implications for ε′ are that ΩIB is scheme independent (up to second

order in isospin breaking) while ∆0 is scheme dependent. Using the above expressions, the

scheme dependence of ∆0 can be estimated as follows:

∆
(II)
0 −∆

(I)
0 = ε(2)

 Im(∆̃)

ImG8
− Re(∆̃)

ReG8

(
1 + 1

9
Re g27
Re g8

)
 ' 10−3 , (D.52)

still well below the total uncertainty of ∆0 and Ωeff .
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