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1 Introduction

The K — mw process involves a delicate interplay between the electroweak and strong

forces [1].

At short distances the decay occurs through W exchange, giving rise to a

low-energy interaction between two charged weak currents. The subtleties of the strong



dynamics are, however, key for understanding the decay amplitudes, even at the qualitative
level, since gluonic interactions are responsible for the empirical Al = 1/2 rule that governs
the measured non-leptonic decay rates, i.e., a huge enhancement of the isoscalar K — nrw
amplitude over the isotensor one, 16 times larger than the naive expectation without QCD.
Effective Field Theory (EFT) provides a powerful tool to analyze this complex dynamics,
where widely separated energy scales (M, < Mg < m. < My ) become relevant. In
particular, Chiral Perturbation Theory (yPT), the EFT of the strong interactions in the
low-energy regime, is ideally suited to describe K decays. This work, which presents an
updated study with respect to ref. [2], uses this powerful EFT as theoretical framework.

While isospin symmetry is an excellent approximation for most phenomenological ap-
plications, the isospin violations induced by the quark mass difference m, — mg and the
electromagnetic interaction can get strongly enhanced in some observables [2, 3], owing to
the AI = 1/2 rule, when a tiny isospin-violating correction to the dominant amplitude
feeds into the suppressed one. This is certainly the case in the direct CP-violating ratio
€' /e, where a subtle numerical cancellation between the two isospin contributions takes
place [4]. The current theoretical efforts to predict this observable with a precision sim-
ilar to the experimental one [4-6] require an improved understanding of isospin-breaking
effects [2, 3, 7, 8].! This would allow one to test many possible New Physics (NP) sce-
narios that have been recently advocated [14-41]. Re-assessing the role of the different
isospin-breaking corrections is one of the main motivations of this work.

Using an isospin decomposition, the K — w7 decay amplitudes can be written as? [2]

. 1 .
A(K0—>7T+7T_) :./41/2+ A3/2+A5/2) = A061X0+EA261X2,

-5
V2
AK® = 7%7°%) = Ayjg — V2 (Agja + Aspp) = Age™® — V2 AyeX2 (1.1)

3 2 3 it
AT = 7fn%) = 3 <A3/2 - 3A5/2> = §A;6X27

where the three complex quantities Aa; are generated by the AT =1/2, 3/2, 5/2 compo-
nents of the electroweak effective Hamiltonian, in the limit of isospin conservation. In that
limit, Ag and Ay = A; denote the decay amplitudes into (77); states with I = 0 and 2,
while the phases xo and y2 = X; are the S-wave 77 scattering phase shifts at /s = M.
By definition, the amplitudes A; are real and positive in the CP-conserving limit. From
the measured K — 7 branching ratios, one finds [42]

Ag = (2.70440.001) - 1077 GeV,
Ay = (1.210 £ 0.002) - 1078 GeV, (1.2)
Xo — X2 = (47.5£0.9)°.

'For early work on this topic see refs. [9-13].
2Including electromagnetic corrections, this parametrization holds for the infrared-finite amplitudes after
the Coulomb and infrared parts are removed and treated in combination with real photon emission [2].



When CP violation is turned on, the amplitudes Ay, Ao and A; acquire imaginary
parts and € is given to first order in CP violation by

= _ 4 ile—xo) ImAy _ ImAy — _ 1 i(xe—x0) ImAg 17l ImA, 1.3
‘ V2 ‘ “ [Rer ReAs V2 ¢ “ ReAy w ImAy ) (13)

Then, €’ is suppressed by the ratio w = ReAy/ReAy &~ 1/22 and €' /e is approximately real,
since x2 — X0 — ¢ ~ 0, being ¢, the superweak phase. Moreover, the last expression makes
manifest the important potential role of isospin-breaking effects. Any small correction to
the ratio ImAs/ImAg gets amplified by the large value of w™!.

It is well known that the further chiral enhancement of the electromagnetic penguin
contributions to Im A, makes compulsory taking them into account for any reliable estimate
of € /¢, in spite of the fact that they are isospin-violating corrections. Futhermore, eq. (1.3)
contains a delicate numerical balance between the two isospin contributions, making the
result very sensitive to any additional isospin-breaking corrections. Indeed, simplified esti-
mates of ImA; result in a strong cancellation between the two terms, leading to very low
values for €' /e [43-51]. A critique of these approaches has been recently presented in ref. [4].
A proper assessment of the isospin-violating contributions to the K — 7w amplitudes is
then a compulsory requirement for making reliable predictions of €'/e.

A detailed study of isospin-breaking effects in K — 7m was performed in refs. [2, 7, 8].
While the analytical calculations reported in these references remain valid nowadays, mean-
while there have been many relevant improvements in the needed inputs that make worth
to perform an updated analysis of their phenomenological implications. The much better
precision achieved in the determination of quark masses allows now for improved estimates
of the penguin matrix elements. Moreover, we have at present a better understanding
of several non-perturbative ingredients such as the chiral Low-Energy Constants (LECs),
which govern the xPT K — 7m amplitudes [52-69]. Implementing those improvements by
updating ref. [2] is one of the main motivation for this work.

In section 2, we review the different low-energy Lagrangians involved in the K — n7w
process. We describe the structure of the amplitudes at next-to-leading order (NLO) in
xPT, including isospin-breaking corrections, in section 3. The main limitation of the yPT
approach originates in the not very well-known LECs that encode dynamical information
from the non-perturbative QCD scale ~ 1 GeV. Our current knowledge on those LECs
is compiled in section 4. Section 5 gives the chiral expansion of the different isospin
amplitudes to first order in isospin-breaking and CP violation. Finally, we present the
numerical results in section 6 and discuss their impact on €' /e in section 7. We provide
some technical details in a set of appendices.

2 Effective field theory description

At the electroweak scale, the AS = 1 transition is described in terms of quarks and gauge
bosons. Owing to the different mass scales involved, the gluonic corrections are amplified
with large logarithms, such as log( My /m.) ~ 4, that can be summed up all the way down
to scales usp < me, using the Operator Product Expansion (OPE) and the Renormalization



Group Equations (RGEs). One obtains in this way a short-distance effective AS = 1
Lagrangian, defined in the three-flavour theory [70],

EAS:I _ _@

eff - \/§

which is a sum of local four-quark operators Q;, weighted by Wilson coefficients C;(usp).

10
ud VJS Z C’i(:U’SD) Qi(MSD) ) (21)
i=1

that are functions of the heavy masses (Mz, My, m¢, mp, m.) and CKM parameters:

_ ViV
VUdVJs ‘

Ci(psp) = zi(psp) + 7 yi(usp) (2.2)

The CP-violating effects originate in the CKM ratio 7 and are thus governed by the
yi(usp) short-distance coefficients, while the K — 77 amplitudes are fully dominated
by the CP-conserving factors z;(usp). These Wilson coefficients are known to NLO [71-
74], which includes all corrections of O(a”t") and O(a?1t") with t = log (M1 /Ms) the
logarithm of any ratio of heavy mass scales. The complete calculation of next-to-next-to-
leading (NNLO) QCD corrections is expected to be finished soon [75-77].

The renormalization scale (usp) and scheme dependence of the C;(usp) coefficients
should exactly cancel with a corresponding dependence of the hadronic matrix elements
(7m|Qi(usp)|K). Unfortunately, a rigorous analytic evaluation of these non-perturbative
matrix elements, keeping full control of the QCD renormalization conventions, remains still
a very challenging task. Nevertheless, we can take advantage of the symmetry properties of
the four-quark operators to build their low-energy realization within the xPT framework.
The difference Q— = Q2 — @1 and the QCD penguin operators Q)3 45 ¢ induce pure AI = %
transitions and transform as (8, 1r) under chiral SU(3); ® SU(3)g flavour transforma-
tions. Transition amplitudes with Al = % can only be generated by the complementary
combination Q") = 2Qs + 3Q; — Q3, which transforms as a (271, 1R) operator and can
also induce Al = % transitions. The electroweak penguin operators do not have definite
isospin and chiral quantum numbers, due to their explicit dependence on the light-quark
electric charges e;. Q7 and Qg can be split into combinations of (8z,1r) and (8z,8g)
pieces, while Q9 and @Q1¢ contain (8;,1g) and (271, 1r) components.

2.1 xPT formulation

Chiral symmetry allows one to formulate another EFT, xyPT, that is valid at the kaon
mass scale where perturbation theory cannot be trusted. The Goldstone nature of the
lightest octet of pseudoscalar mesons strongly constrains their interactions [78], providing
a very powerful tool to describe kaon decays in a rigorous way [1]. Knowing the symmetry
properties of the relevant QCD amplitudes, one can build their effective xYPT realization
in terms of the pseudoscalar meson fields as systematic expansions in powers of momenta,
p?, quark masses, mg, and electric charges, eg. According to the Weinberg power-counting
theorem [79], loop corrections introduce extra powers of p?, so that they enter at the
same level as higher-order operators. All the short-distance information about the heavy
particles that have been integrated out of the low-energy EFT is encoded in the LECs of
the xyPT Lagrangian.



In the following, we compile the relevant effective Lagrangians associated to the dif-
ferent interactions entering in our K — zm analysis. Further details about the strong
Lagrangian up to O(p®) [80-83], the nonleptonic weak Lagrangian to O(Gpp?) [84-87],
the electromagnetic Lagrangian to O(e?p?) [53, 88] and the electroweak Lagrangian to
O(e2Gsp?) [3, 89, 90] can be found in the quoted references.

The strong yPT Lagrangian is given by?

2 10 90
Larong = — (DUDUT 4 XU +x10) + 37 Ly o + F23 X, 0 + 0%, (2.3)
=1 =1

where U(z) = exp {iA*¢*(x)/F'} is the SU(3) unitary matrix that parametrizes the pseu-
doscalar fields, D,U is the covariant derivative matrix, x = 2ByM takes into account the
explicit chiral symmetry breaking through the quark mass matrix M = diag(m,, mq, ms),
and (- --) indicates an SU(3) flavour trace. The different pieces correspond, respectively, to
O(p?), O(p*) and O(p®) in the chiral expansion. Notice how the number of LECs increases
with the xPT order.
To O(Grp*), the nonleptonic AS = 1 weak interactions are described by
22
LA = Gy F* (\D*UTD,U) + Gs F* Y " N; Of
i=1

28
+Gor F4 <LH23L/f1 + ;LM21L¥3> + Go7 F2 Z D; 0127 + O(GFp6) , (24)

i=1
where A = (X\¢ — i A7)/2 projects onto the 5 — d transition and L, = iUT D, U represents
the octet of V — A currents to lowest order in derivatives. Under chiral transformations,
the first and the second lines of eq. (2.4) transform as (8, 1g) and (271, 1r), respectively,
providing the effective low-energy realization of the (Q;<¢ components in eq. (2.1). The
first term of each line corresponds to O(Grp?), while the second one to O(Gpp*). The
explicit list of relevant operators Of and O?7 for K — 77 can be found in the appendix A
of ref. [2]. Furthermore, to simplify the notation, we introduce the dimensionless couplings

gs and go7, defined as
Gr N
G8727 = _ﬁ Vuqus 98,27' (2.5)
In eq. (2.4), there are 52 dimensionless LECs: gg, g7, IV; and D;. In section 4, we will
explain how to estimate these couplings using large- No techniques.
The electromagnetic Lagrangian starts at O(e?p?). Including O(e?p?) terms, one has:
14
Law = ZFHQUIQU) + 2 F2 Y K007 1+ 0(p') . (2.6)
i=1
where Q = diag(2/3, —1/3, —1/3) is the quark charge matrix and Z is the lowest-order
LEC that is related, up to O(e2mq) corrections, to the pion mass difference
1 2 2

3The O(pG) LECs are usually denoted C; = F~2X;. We have changed the notation to avoid possible
confusions with the short-distance Wilson coefficients.




The NLO LECs K; are dimensionless and explicit expressions for those operators Of 7’
that are relevant in K — 7m can be found in the appendix A of ref. [2].

Finally, the relevant AS = 1 electroweak Lagrangian contains O(e?Gprp°) and
O(e?Gpp?) terms:
14
LR = € Gsgewk FONUTQU) + 2 G F* Y~ Z, 0F W + O(Gre?p?). (2.8)
i=1

This Lagrangian transforms as (8z,8g) under chiral transformations and provides the
needed low-energy realization of the electromagnetic penguin operators in eq. (2.1). No-
tice that we will not include isospin-violating corrections for the 27-plet amplitudes and,
therefore, the electroweak (27r,1g) chiral structures are not needed. The LECs Z; are

OFW are collected in appendix A of ref. [2].

dimensionless and the associated operators
At the chiral order we are working in, all loop divergences are reabsorbed by the
previous LECs (C; = L;, N;, D;, K;, Z;), which have to be renormalized. At one-loop, they

can be expressed as

Ci = Ci(vy) +cilN(vy), (2.9)

where vy is the chiral renormalization scale and the divergence is included in the factor
Ay = AL 1[1 (4m) + /(1) + 1] (2.10)

T Um? \d—a 2L ‘ ‘

The divergent parts of all these couplings (¢; = 'y, n;, d;, ki, 2) are known and can be
found in refs. [3, 80, 85, 86, 88], respectively.

3 K — 7w amplitudes up to NLO

Once the different effective chiral Lagrangians involved in K — w7 have been introduced,
we are in position to obtain the physical amplitudes, using the xPT power-counting rules.
For the isospin conserving parts, i.e., when e = m,, — mg = 0, the O(Grp?) contributions
to the Aar amplitudes defined in eq. (1.1) are given by

V2
9

10
Aszjo = *§G27F (M7 — MZ), (3.1)

Ayjy = —V2GsF [(MIQ( ~ M2 } GorF (MZ — M2),

A5/2 = 0

Using the measured amplitudes in eq. (1.2), one immediately obtains the tree-level deter-
minations gg = 5.0 and go7 = 0.25 for the octet and 27-plet chiral couplings, respectively.
The large numerical difference between these two LECs reflects the smallness of the mea-
sured ratio

_ Az 1

= ~ 3.2

known as the Al = 1/2 rule.



In this work, we use the full O(Gpp?) expressions for the isospin-conserving parts of
the amplitudes. Isospin-breaking corrections are accounted only at first order, i.e., only
corrections of O(e?(mg — my)°?) and O(e®(mg — my,)) are considered. Additionally, owing
to the very small value of g27/gs, and the fact that Im(g27) = 0 in the large- N limit, we
neglect isospin-breaking corrections proportional to ga7, which have been calculated in [91].
We outline below the relevant sources of isospin breaking up to NLO in xPT.

3.1 Leading order

To lowest order in the number of derivatives and quark mass insertions the sources of
isospin breaking are (i) the term in Lgtrong with one quark mass insertion; (ii) the non-
derivative term in Ley,, proportional to €2Z; and (iii) the non-derivative term in Eﬁ{?\,:l,
proportional to e2Gg gewk. Sources (i) and (ii) affect the pseudoscalar meson mass matrix

generating two effects:

e 7 — 5 mixing, due to non-diagonal terms coupling the SU(3) fields 73 and 7s:

s 1 —® 0
()= (&) () o

The tree-level mixing angle is given by

(2)_£md_m“:ﬁ: 1.137 + 0.045) - 10~2 4
e T = i = (L13T£0045) 107 (3.4)

where m = (m, + mg)/2. We have extracted the numerical value from the most
recent FLAG average of lattice determinations of light-quark masses, with Ny = 2+1
dynamical fermions, which quotes R = 38.1 + 1.5 [92].

e Mass splitting between charged and neutral mesons, due to both the light quark mass
difference and electromagnetic contributions. Following ref. [2], we choose to express
all masses in terms of those of the neutral kaon and pion (denoted from now on as
My and M, respectively). In terms of quark masses and LO couplings ( By is related
to the quark condensate in the chiral limit by (0|gq|0) = —F?By), up to corrections
of O(mg, e?m,) the pseudoscalar meson masses read:

M? = 2Bym,

M2 = MZ+2e*ZF?,

M3% = By (ms 4+ myg) , (3.5)
422
M2, = MZ - jg Bo(ms — ) + 22 ZF?
1 8e(
2 _ 2 2 ~
My =3 (AME — M?) — e Bo(ms — ) .

The above choice defines a specific “isospin limit scheme”, which is however arbitrary.
In appendix D we explore another quite natural scheme and quantify the impact of



such scheme dependence on € /e. We find that the scheme dependence is well below
the current theoretical uncertainties.

The sources of isospin breaking described above induce corrections to the K — nw
amplitudes of O(e(?) Ggp?) and O(e? Ggp°). Explicitly, the three independent K — 7
amplitudes in the isospin basis read:

V2

2 2
—V2GF | (M2 — M) (1 - 2@ ) - Z22F2 (gok + 27
VIGHF | =0a2) (1= 372 ) = S (o +22)|
10
Asjp = -9 GorF (M — M?2)

4 2
—GsF | (M2 — M2) —— @ — Z2F? (g, +22} ,
8 |:( K 7r)3\/§ 36 (g k )

The parameter F' can be identified with the pion decay constant F, at this order. The
effect of strong isospin breaking (proportional to £(?)) is entirely due to 7° — 7 mixing,
through expressing all interaction vertices in terms of mass eigenfields. Electromagnetic
interactions contribute through mass splitting in the external legs (terms proportional to
Z) and insertions of geyk-

3.2 Next-to-leading order

NLO isospin-breaking corrections due to loops and effective Lagrangians with additional
powers of derivatives and quark mass insertions (0(5(2)G8p4, e2Ggp?)) generate many new
contributions:

e 0@ Ggp*). One has:

— 7% — 5 mixing at NLO. Identical to the previous correction but changing £(2) —
e 2, 93,
2)
(4) _ 2¢ ) ) .
&g = _3(4.7TF)2(M$ — M%) {(47T) 64 [3L7 + Lg(yx)} (MK _ Mﬂ-)

M? 2

=M (M — M7)log — + Mz(Mj — 3My)log —

vy %

2 2 2 M?{ 9 9 )
M (Mg = 2Me)log =5 = 2Mje(Mic = Mﬁ} .6
X

— Diagrams with isospin-conserving vertices and isospin-breaking corrections to
the pseudoscalar masses, either in the propagators or the on-shell external legs.

— Diagrams analogous to the isospin-conserving ones, but with vertices obtained
after applying the rotation of eq. (3.3), so that one of the vertices introduces an
£ factor.



e O(e?Ggp?), entering through:
— 70 — 5 mixing at NLO. Identical to the strong isospin-breaking correction but

with ¢ — E%J)\/[ (2, 94],

L) _ 2V3a o2 M
“EM T 087 (M2 — M2) OMicZ | log V2 1

20 (4m)2 | 205 (1) + 3U5 ()|

FMARP 20300 + 30300 — 60T 0] . (38)
where U/ (vy) are linear combinations of the K] LECs defined in eq. (2.6),
U =K+ Kz, Us = K5 + K ,
Us =Ky —2Kjy, Uy = K9+ Kjp .- (39)

— Loop corrections with one gs gewi vertex.

— Again, diagrams with isospin-conserving vertices and isospin-breaking correc-
tions to the pseudoscalar masses either in the propagators or the external legs.

— Electromagnetic loop corrections with one gg vertex and virtual photon prop-
agators. In order to cancel the infrared divergences, one must also add the
corresponding calculation of the K — wmy rates [2].

— Tree-level diagrams with at least one electroweak vertex and a NLO insertion.
3.3 Structure of the amplitudes up to NLO

Taking into account the previous discussion, the isospin amplitudes A, (n =1/2, 3/2,5/2)
can be expressed as

Ay = = Gor Fr (M3 = M2) AP — Gy Fy (M7 — M2) [AD) + @) AP
+ 62 Gy F2 [AD) + Z AP + gec AP (3.10)

where Aﬁl refers to the strong isospin-breaking contributions, Aﬁlg ) and A%Z) are the con-
tributions with an insertion of gew, and Z vertices, and .A ™) are the contributions induced
by the photon loops. In eq. (3.10), we have replaced the Goldstone coupling F' by F, the
physical pion decay constant at NLO. These two parameters are related through [80, 95]

F=F, {1 — | Livy) (M2 +2M3) + Lg(uX)M,%]
1 M2 2
_ 2M21 M21 K
T Samzre [ o8 < % ) K Og( )]

)

so that those corrections get reabsorbed into the different NLO terms.
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Table 1. LO contributions aﬁf‘) forn=1/2, 3/2. aé)/(z) =0 for all X and a§7> =0 for all n.

Each amplitude A7(1X) in eq. (3.10) can be decomposed as

o A s acaM] i el 20,
A = (X) (X) e (X) (3.12)
AL A+ AcAy if a, =0,

with a,SX), AL.A%X) and ACAq(QX) being the LO, NLO loop and NLO local contributions,

respectively.* The amplitudes A%X) and their components agx), A LA%X) and ACA%X) are
dimensionless by construction. In table 1, we give the values of the LO factors a%X) . The
loop corrections A LA%X) account for the requirements of unitarity and analyticity; these
non-local contributions are fully predicted in terms of the pseudoscalar masses and the
pion decay constant. The local components ACA%X) contain the explicit dependence on
the NLO LECs that renormalize the ultraviolet loop divergences. Therefore, both A LAT(IX)
and AC.A%X) depend on the xPT renormalization scale, but this dependence exactly cancels
in their sum. The full expressions for A L.Ang) and AcAgX) can be found in appendix B
and in section 4.4, respectively, of ref. [2].

4 Determination of chiral LECs

In the last section, we have introduced the general structure of the K — w7 amplitudes
up to NLO. The only remaining ingredients are the yPT LECs, which are not fixed by
symmetry considerations.

In figure 1, we show schematically how the flavour-changing transitions are described at
two different energy scales: at short distances one employs the effective AS = 1 Lagrangian
given by eq. (2.1), while at very low energies the xPT formalism introduced in section 2
is more appropriate. The short-distance Lagrangian can only be used at scales where
> 1 GeV. On the other hand, the chiral

~

perturbation theory is well-defined, i.e., usp
framework is valid in the non-perturbative regime, where all the fields of the heavy particles
have been integrated out, but paying the price of having a large number of unknown
XxPT couplings. These LECs must be determined either from data or using theoretical
considerations. In the latter case, one needs to match both EFTs in a common region
of validity. Unfortunately, performing consistently this non-perturbative matching is still
very challenging [4-6]. However, in the limit of a large number N¢o of QCD colours, the

4Strictly speaking, by expressing the tree-level amplitudes in terms of physical meson masses and Fy, the
term dubbed as “LO” contains NLO chiral corrections. While the splitting of LO and NLO terms is indeed
ambiguous, our amplitudes are correct up to and including terms of order Grp*, GF5(2>p4, and Gre?p?.

~10 -
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Figure 1. Evolution from My, to the kaon mass scale.

T-product of two colour-singlet quark currents factorizes and, since the quark currents have
a well-known representation in terms of the Nambu-Goldstone bosons, one can make this
matching at leading order in an expansion in powers of 1/N¢c. As a result, we obtain the
electroweak chiral couplings (gs, 927, 98 gewk, 98Vi, 927D, gsZ;) in terms of the strong and
electromagnetic LECs of O(p") with n = 2, 4,6 and O(e?p?), respectively.

4.1 Weak couplings at O(Grp?) and O(e?Ggp?)

At leading order in 1/N¢, the chiral couplings of the nonleptonic electroweak Lagrangians
of O(Gp p?) and O(e? Ggp®), given by eqs. (2.4) and (2.8), take the values [2, 96]

2 3
95° = —% Calusp) + ¢ Colpsp) + Ca(usp) — 16 Ls B(uso) Co(usp)

3
927 = % [C1(usp) + Ca(psp)] (4.1)

16
(295 gewk)™ = —3 B(usp) Cs(usp) — 3 B(usp) Cs(psp) €* (Ko — 2K19)

where
M2 2 1602 SM2
B = K 1— — K OLg—Ls)+ —=Ls| . 4.2
09) = |y 7] |1 2 B4 S )

- 11 -



These large-N¢c expressions imply®

g = (1152090, #0025, + 0.01,,)

=012 5p
tor (0.78j8;8§“SD + 010, + 0.03m5), (4.3)
9% =046 £ 0.01 ., (4.4)
(g5 Gowtt)® = (—1.57té;g‘fMSD + 014, + 018k, + 0.05m5>
+r (—20.42{;'%]D + 187, + 085, + 0.7ms), (4.5)

where the first uncertainty has been estimated through the variation of the scale ugp be-
tween 0.9 GeV and 1.2 GeV, while the second and third ones reflect the current errors on
the strong LECs of O(p*) and the electromagnetic couplings of O(e?p?). The last error
indicates the parametric uncertainty induced by the quark mass factor, which has been
taken within the range (ms + mg)(usp = 1GeV) = 131.8 & 2.2 MeV.% Furthermore, we
have computed the Wilson coefficients with two different definitions of 75 within dimen-
sional regularisation, the Naive Dimensional Regularisation (NDR) and 't Hooft-Veltman
(HV) [98] schemes, and have used an average of the two results. When computing physical
amplitudes we have included a conservative error to account for this scheme dependence
(see appendix C).” Notice that we take into account the full evolution from the electroweak
scale to usp, without any unnecessary expansion in powers of 1/N¢; otherwise one would
miss the large short-distance logarithms encoded in C;(usp) for i # 6,8. The large-N¢
approximation is only applied to the matching process between the short-distance and
xPT descriptions.

The numerical results in egs. (4.3) and (4.4) are quite far from their phenomenologically
extracted values, including chiral loop corrections, gs &~ 3.6 and go7 ~ 0.29 [1]. This large
deviation can be understood when one realizes how those operators that dominate the
contributions to gg° and g5% have vanishing associated anomalous dimension in the large-
N¢ limit. Relevant information on these anomalous dimensions that should be reflected in
the hadronic matrix elements is then lost in this limit. This fact indicates the importance
of O(1/N¢) corrections in the CP-conserving amplitudes. Many efforts to estimate these
contributions have been attempted in the past [100-120], but a proper NLO matching in
1/N¢ within a well-defined EFT framework is still lacking. In section 6.2, we will perform
a fit to K — mm data in order to obtain reliable predictions for the CP-conserving parts of
gs and ga7.

Fortunately, this problem does not arise for the CP-odd contributions. The anomalous
dimensions of the leading operators, Q¢ and Qg, survive when No — oo, allowing us to

5The numerical inputs for Ls, K9 and Kjo are presented below.

6Using as inputs the values of as(Mz) = 0.11823 % 0.00081, ma(N; = 3) = 4.67 & 0.09MeV and
ms(Ny = 4) = 93.44 £ 0.68MeV at usp = 2GeV, plus mqg(usp = mq) for the heavy quarks from [92],
we use RunDec [97] to decouple the fourth flavour (ms(Ny = 3) = 93.56 + 0.68 MeV) and to obtain the
quark masses at 1 GeV, finding ms(usp = 1GeV) = 125.6 + 0.9,,,, + 1.9,, MeV and mg(usp = 1 GeV) =
6.27 £ 0.12,,, £ 0.094, MeV.

"With respect to ref. [4], we have updated the values of the quark masses and the strong coupling, using
inputs from ref. [92] and the recent ATLAS determination of the running top quark mass [99].
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keep track of all large logarithms. Therefore, the yPT evaluation of both operators in
the large-N¢ limit provides the correct dependence on the short-distance renormalization

scale pisp, given by B(usp) ~ (1/(ms+mq)(psp))? ~ (os(me)/as(psp))®/ M
cancels the pugp dependence of Cg g(psp) at large No. As a consequence, we have a much

, which exactly

better control on the ImA; amplitudes, which makes their large- N estimates more reliable
than their CP-conserving counterparts.

The qualitative difference between theoretical calculations of the CP-even and CP-
odd amplitudes can be already appreciated at the inclusive level through the analysis of
the two-point correlation function 1(q?) = i [ d*z e'*(0|T(L5°= (z) £57=1(0)1)|0), which
involves all possible two-point function correlators among the different four-quark operators
Vij(q?) ~ (Qi(2)Q;(0)T). The absorptive part of ¥(q?) corresponds to the sum of matrix
elements squared for all possible states generated by Eﬁ:fszl. The complete (scale and
scheme invariant) NLO calculation, without electroweak penguins (i.e., with e = 0), was
accomplished in refs. [101, 103] and gave quite striking results. The CP-conserving part
is dominated, as expected, by the current-current operators (Q+ = ()2 £+ Q1 and receives

€))
very sizeable NLO contributions: Imtps (£) ~ ag(t)27= /71 [1 + %as—(t)Nchi]. In the large-

N¢ limit, yg) =0, Ky = K- =1 [104], and there is no difference between the AT = %
(Q-) and Al = % (Q+) components. However, the physical calculation at No = 3 results
in a large and positive value of K_ =~ 5.0 and a negative and much smaller value of
K4+ ~ —1.0 [101, 103], reinforcing the trend triggered by the LO term through the power
27(_1)/B1 = —275_1)/& = 24/27 and clearly exhibiting the dynamical AI = 1 rule [104]. The
failure of the Ng — 0o approximation is obviously associated with the missing anomalous
dimensions in this limit.

A different behaviour was observed in the CP-odd component of the two-point corre-
lator, which is fully dominated by the strong penguin operator. The NLO correction to
1e6(t) is positive and even larger than the 1)__(¢) one by a factor close to two, but in this
case the large-N¢ limit gives a very good approximation to the exact result [101, 103].
Since ~gg is well reproduced at large N¢, the difference between the NLO corrections to
1e6(t) at No = oo and N¢ = 3 is just a numerically-small subleading term.

Notice that the LECs are process-independent quantities and, therefore, the previous
inclusive argument directly applies to them. Although the electroweak penguin operators
have not yet been analyzed at the inclusive level, it is reasonable to expect a similar be-
haviour. In fact, using soft-pion techniques and the measured 7 hadronic spectral functions,
the K — mm matrix element of Qg can be estimated at zero momenta [111, 115, 118]. This
is equivalent to a direct determination gggewx [117]. The resulting phenomenological value
nicely agrees (within errors) with the large- N¢ result [121].

4.2 Weak couplings at O(Grp?) and O(e2Ggp?)

At NLO, the large-N¢ matching fixes the couplings GgN;, GorD; and GgZ; of the non-
leptonic weak and electroweak Lagrangians (2.4) and (2.8). In this section, we compile the
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results obtained in ref. [2]. Taking the definitions,

Ca(psn) = —3Cilusp) + 3 Calusp) + Calpsp). (16)
Calps) = +3Cr(jsn) — =Calpsn) + Ci(ps) — C(is). (@7

the non-vanishing LECs contributing to the K — 7w amplitudes can be parametrized as
follows:

(927 D)™

(98 Ni)> = n; Ls C1 (usp) + &i B(usp) Cs(usp)

X;
= n; Ls <9§° + B(usp) Cs(psp) [16L5 + n~L5]) : (4.9)

with n; and X; given in table 10 of appendix A as functions of the LECs of eq. (2.3), and

(98 Z;)™ = K§” C1(usp) + ’CZ@) Ca(usp) + /ng)B(MSD) Cs(11sD) (4.10)

1
t3 {’C§4)C7(NSD) + /C§5)B(MSD) Cs(psp) + /CZ(G)Cg(MSD) + ’CZ(?)ClO(NSD)}a

where the constants ICZ(k) are given in table 11 of appendix A.

The dependence on the xyPT renormalization scale v, is of O(1/N¢) and, therefore, is
absent from these large- N¢ expressions. To account for this systematic uncertainty, we will
vary v, between 0.6 GeV and 1 GeV in the loop contributions and the resulting numerical

fluctuations will be added as an additional error in the predicted amplitudes.

4.3 Strong couplings of O(p*) and O(pb)

The K — mr amplitudes have an explicit dependence on some LECs of the O(p?*) strong
Lagrangian, in the large-N¢ limit. We have already set L3® = Lg°® = 0, which are rigorous
QCD results at No — oco. The large-N¢ estimates based on resonance saturation are
known to provide an excellent description of the L; couplings at v, ~ M, [55]. For the
LECs that are relevant here, they give [53, 55]

8 2
L =L =—-4(2Lg — L) = T ~1.0-1073 4.11
and
= 7% 0.27-1073 4.12
[S° = — ~ —0. . - .
7 487‘[31 5 ( )

with F; = 92.1MeV, Mg ~ 1500 MeV and M,,, = 804MeV [53]. In table 2 we compare
this numerical estimate with the LECs extracted from the most recent O(p?) and O(p®)
xPT fits to kaon and pion data [67], and with the values of Lf(M,) and Lg(M,) advocated
in the current FLAG compilation of lattice results [92], which have been obtained by the
HPQCD collaboration [122] analyzing the kaon and pion decay constants at different quark
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L5(M,) Lg(Mp) | (2Lg — Lg)(M,) Ly
Large-N¢ estimate 1.0 0.4 —0.2 —0.27
O(p*) xPT fit 1.2+£0.1 0.54+0.2 —-02+£04 —-0.3+£0.2
O(p%) xPT fit 1.01£0.06 | 0.47 +£0.10 —0.07+£0.18 —0.34 £ 0.09
Lattice 1.19+0.25 | 0.55+0.15 —0.10 £0.20 —

Table 2. Comparison of the large-N¢ estimates for the relevant strong LECs of O(p*) [55] with the
values extracted from O(p*) and O(p®) xPT fits [67] and the lattice results [92, 122]. All numbers
are given in units of 1073,

masses with Ny = 2 + 1 + 1 dynamical flavours. All these determinations are in excellent
agreement with the large-No estimates. Although much more precise, the O(p%) xPT
values of LL(M,) and Li(M,) are sensitive to assumptions concerning the O(p%) LECs.
L~ has not been yet extracted from lattice data but, fortunately, its yPT value remains
very stable under different fit conditions. Note that L; does not depend on the yPT
renormalization scale. In our numerical analysis, we will adopt the values:

LE(M,) = (1.2040.10) - 1073, Li(M,) = (0.53+£0.11) - 1073,
| (4.13)

p
(2 L; — LE)(M,) = (—0.15+0.20) - 1073, Ly = (—0.324+0.10) - 1073

The chosen ranges for the nearly uncorrelated (in the different fits) LECs Ly and
2Lg — Ls result from averaging the central lattice and O(p*) xPT values, rounding-up the
uncertainties so that they are not smaller than the most precise value. Lg is obtained
from the previous two values, neglecting their small correlation. For L; we have applied
the same prescription to the O(p*) and O(p®) chiral results, but slightly rounding-up the
O(p%) uncertainty.

The strong LECs of the O(p®) Lagrangian enter into the amplitudes through the coeffi-
cients Xi of €q. (4.9), which only depend on Xlg, X14_20, X31, X33, X34, )(7377 X38, X91 and
Xg4. The dependence on X37 and Xg4 exactly cancels, however, in all AC.A%X) amplitudes;
thus these couplings are not needed. Using Resonance Chiral Theory (RxT) [53, 54], these
LECs can be estimated in terms of meson resonance parameters, through the tree-level
exchange of the lightest resonance states. This amounts to perform the matching between
the xPT and RxT Lagrangians at leading order in 1/N¢, in the single-resonance approx-
imation. An analysis of all resonance contributions to the X; couplings can be found in
ref. [56]. Furthermore, a complete analysis of the 7; contributions to the chiral low-energy
constants of O(p%) was presented in ref. [57]. Combining both results, we obtain the values
given in table 3.

As expected for the K — 7 amplitudes, the relevant couplings do not receive con-
tributions from vector and axial-vector exchanges. Moreover, all 7, contributions coming
from the X ' factors in table 3 cancel also in the combinations X; that govern the (gsN;)>
LECs (see appendix A), as it should. The exchange of 7; mesons can only contribute
indirectly to K — 7, through the dependence on L7 of the 7° — 1 mixing correction 5%4)
in eq. (3.7), which gives rise to the term proportional to LyLg in Xj3. This unique 7
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X;/F? Large-N¢ prediction
" ~ St
2 — —

u — iy AP+ 28 085y
15 0
16 0

dz, 1SS
17 — a3
18 X3

3 S — ~
19 s+ 5+ 085 + X

NS ~
20 — e - X5
d2 . S\S 3 e
3L |~ — % i+ 3 - 28T+ XY
2 ) NS — — ~
33 i TR+ M - M+ XY
dy, . o dz,

34 2 M} + csz\C4§ + 2ME T ME M2
38 _dn oy

2ME 2 M2
91 2 diri

MP

Table 3. Large-N¢ predictions for the relevant strong LECs of O(p®), in F? units [56].
contribution appears in the NLO local corrections AcAg‘E/)Q 3/2 and represents one of the
largest sources of uncertainty in our numerical results.

Thus, only contributions from scalar and pseudoscalar resonance-exchange enter into
the relevant X; LECs in table 3. The LO RxT couplings have been determined within the

single-resonance approximation, which gives the relations [55]:
em=Cqa=V2dy, = Fr/2, Mp =2 Ms. (4.14)

These couplings correspond to O(p?) chiral structures with Goldstone fields coupled to a
single resonance multiplet, either scalar (cq,,) or pseudoscalar (d,,). The table contains,
in addition, contributions from O(p*) chiral structures with one resonance (A*) and O(p?)
terms with two resonances (S\ZRR') that are currently unknown. We are only aware of one
estimate of A5 = \§¥ M2 /c2,, determined from the scalar resonance spectrum [123], which
we update in appendix B. We obtain:

Mg = 1478 MeV, MY = 0.1548. (4.15)

In the absence of better information, we will take null values for the unknown XZR and

S\fm/ couplings. In order to estimate the size of uncertainties in any observable F' associated
to the LECs X, we will take:
F(X;)—-F
error of F' = [E(X) = FO)] . (4.16)
N¢
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4.4 Electromagnetic couplings of O(e2p?)

The electromagnetic LECs K; can be expressed as convolutions of QCD correlators with
a photon propagator [124], and their evaluation involves an integration over the virtual
photon momenta. Therefore, they have an explicit dependence on the YPT renormaliza-
tion scale vy, already at leading order in 1/N¢. In ref. [125], the couplings K|_g have
been estimated by computing 4-point Green functions (two currents and two electromag-
netic spurion fields) in xPT and matching them with their RxT estimates (neglecting
pseudoscalar contributions). The RxT couplings are obtained by imposing short-distance
constraints. They find

K{(M,) = —K}(M,) = —2.71 - 1073, Ki(M,) = 11.59 - 1073,

1
K3(M,) = 5 Ki(M,) = 0.69 1073, K§(M,) = 2.77 - 1073 (4.17)

The remaining couplings can be accessed through the study of two- and three-point
functions. K7 g turn out to be 1/N¢ suppressed, i.e., K7(M,) ~ K7(M,) ~ 0 [124]. K§_ ;3
are gauge dependent, while Kj_;, depend also on the short-distance renormalization scale
pusp- Those dependences cancel with the photon loop contributions in the physical decay
amplitudes. The explicit values we quote below refer to the Feynman gauge (£ = 1) and
psp = 1 GeV [2, 124-127]:

K§(M,) =2.2-107%,  Kjy(M,) =6.5-107",
K{(M,) =126-107%,  K{,(M,) = —42-107%, K[3(M,) =4.7-107%. (4.18)

The uncertainties associated with these LECs will be also estimated following the
method indicated in eq. (4.16).

5 Anatomy of isospin-breaking parameters in €’

At first order in isospin corrections, eq. (1.3) can be written as [2, 7]

: (0)
f b ie—x0) ImA, ( ImAs
€ =———e wy | ——= 1+ Ao+ f52) — —~ |, (5.1)
V2 " | Real Y2 Real)

where the superscript (0) denotes the isospin limit, and the different sources of isospin-
breaking effects are made explicit. From the measured K+ — 779 and K% — 77 rates,

one actually determines the ratio

. — ReAgr
T ReAO

=w{l+ f5}, (5.2)

which differs from w = ReAz/ReAg by the small electromagnetic correction f5/,. The
breaking of isospin in the leading I = 0 amplitude is parametrized through
ImAg ReA(()O)

Ay = ~1, 5.3
L, AL Redy (5:3)
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while we can approximate ReAs = ReAgo) because ImAs is already an isospin-
breaking correction.

In order to determine these corrections, it is useful to write the CP-violating ampli-
tudes as

Ao eiXO ./41/2 + 5./41/27
AQ eixg A(/2 + 5./43/2 + ./45/2 ) (54)

where 0.A; /535 and Ajs/y are first order in isospin violation. The amplitudes Aa; have
both absorptive (Abs Aas) and dispersive (Disp Aaj) parts. Therefore, the loop-induced
phases x; have to be carefully separated from the CP-violating ones. Expanding to first
order in CP and isospin violation, one finds [2]:

—1
Al = [A,| " {1m[Disp AL} Re[Disp AY)] + Im[Abs AL, Re[Abs AT} (5.5)

ImA2

-1
“A:(s(;)z {Im[Dlsp ((5A3/2 + .A5/2)] Re[Disp .A3/2]
+ Tm[Abs (5.A3/5 + As )] Re[Abs A /2]} : (5.6)
Ay = —2 ’Ag%‘ (Re[Dlsp A1/2] Re[Disp 6A; /o] + Re[Abs A(l%] Re[Abs 5A1/2]>

[1 [Disp AL ]Re[DmpAl /2]—|—Im[AbsA )1 Re[Abs ,41/2”,

1/2 1/2
X {Im[Disp 0A; /2] Re[Disp A1/2] + Im[Disp A1/2] Re[Disp 0.A; 5]
Tm[Abs 8.A; 5] Re[Abs A{),] + Im[Abs A{))] Re[Abs 64, 5]}, (5.7)

5
fsp =3 )Ag%] {Re[Dlsp L)) Re[Disp As o] + Re[Abs AS) | Re[Abs Ago] b (5.8)

It is convenient to separate the electroweak penguin contribution to ImAs from the
isospin-breaking effects generated by other four-quark operators:

ImAy = ImAS™ + TmAL P (5.9)

This separation depends on the renormalization scheme,® but allows one to identify the
terms that are enhanced by the ratio 1/w and write them explicitly as corrections to the
I = 0 side through the parameter

ReA() TmAje—em»

O =
ReA?  ImA”

(5.10)

The splitting is easily performed at leading order in 1/N¢ through the matching procedure
between the short-distance and xPT descriptions. The electroweak LECs in ImA5™" P

80nly the electromagnetic contribution is scheme dependent. We use the MS scheme with both NDR
and HV prescriptions, assigning an extra uncertainty due to the very small resulting differences.
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are calculated by setting to zero the Wilson coefficients C7_1¢ of the electroweak penguin
operators. We can then write ¢ as

T i mAY ImAS™P
¢ = —— ethex0) 7(00) (1 — Qegr) — % , (5.11)
V2 ReA, ReA,
with
Qg = B — Ao — f5/2- (5.12)

6 Numerical results

At this point, we have all the theoretical ingredients to provide a numerical prediction for
the isospin-breaking effects in K — nw. In the following subsections, we present each of
the numerical results that enter in the estimation of these corrections.

6.1 Amplitudes at NLO

In this subsection, we present the numerical results of the different isospin amplitudes, A,,
with n =1/2, 3/2 and 5/2. Tables 4, 5 and 6, which supersede tables 1, 2 and 3 of ref. [2],
display the following information:

e The type of contribution (X) in the first column.
e The LO contributions agx) in the second column.

e The NLO loop contributions ALA%X), with the absorptive and dispersive compo-
nents, in the third column. Absorptive contributions are independent on the chiral
renormalization scale v,. For the dispersive contributions, v, is fixed to 0.77 GeV.

e The NLO local corrections to the CP-even and CP-odd amplitudes, [AC.A,(lX)]‘F and
[AcAy(lX)]_ respectively in the last columns, where

pe (G27 Acfh(f?))
e X =27,
Im(G27)
Re (9)
G ew A -An
[AcAgLX)]i _ Im (ng k 2C ) X—g (6.1)
IrE(GSgeWk)
b (Gs Acal)
R X =8Z¢e~.

The estimation of NLO local contributions represents the main uncertainty in our
results. In tables 4, 5 and 6, we quote two different sources of uncertainties. The
first error is related with the lack of cancellation of the short-distance scale ugp.
We estimate it by varying this scale from 0.9 GeV to 1.2 GeV. The second error is
associated to the missed logarithmic corrections due to applying the large- N¢ limit.
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(%) | aig | ArAT) | [AcATT | [AcAD))

1.03+0.474 | 0.0015:90 T065 | 0.01 1590 T085

2
5
8 | V2 | 02740474 | 0.027353 063 1 0.10 T 095

€ —g—g 0.26 +0.474 | —0.37 7093 +0-05 1 1,39 +0:02 +0.0
0.18 40.26 0.88 +0.26
— —1.39 —0.47 505 To27 | —10.67 To:53 To27

42 | 1.07+0.807 | —0.11 7590 F01T | 0.13+5:99 +0-17

g | B | 02840470 | —0191550 100 | —0.19 555 Toon

Table 4. NLO loop and local counterterm amplitudes A;/,. The two uncertainties in the local
amplitudes are associated with the variations of the short-distance scale psp and the chiral scale
vy, respectively.

(X) a5y | ArAy) | (DAt | [AcAR))
27 | 21 -0.04-0.214| 0.00500 008 | 0.01E5:00 T 02
e | 55 | 070 -0.210 | —0.3575% F:50 | 1.50 5:03 £550
v — | 7047 | 040T5REToRs | —0-09 555 Koo
Z | 3 |—0.87—0.794| 0.011500 1035 | 0.071500 1053
g | 2 |-0.50—0214|-0.19F000 035 | —0.1970:00 539

Table 5. NLO loop and local counterterm amplitudes As/,. The two uncertainties in the local
amplitudes are associated with the variations of the short-distance scale pugsp and the chiral scale
Uy, Tespectively.

X X X X)1_
(X) aé/z) ALAE/Q) [AcAé/;]Jr [AcAé/;}
— | 051 [ 05550 Fhay | —0.54 T550 Toa

— [ =093 - 1.164 | —0.17 )51 T045 | 0.09 060 TO-42

Table 6. NLO loop and local counterterm amplitudes As/,. The two uncertainties in the local
amplitudes are associated with the variations of the short-distance scale ugsp and the chiral scale
vy, Tespectively.

In order to estimate them, we vary the chiral renormalization scale between 0.6 and
1GeV. In most of the cases, this non-perturbative error dominates over the first one.
The various LECs have been set to their central values.

The numerical results displayed in the tables are in good agreement with the findings of
ref. [2]. While the underlying physics behind the large values of A LA§72),3 /2 and [ACA(J)Q]*
is well understood (related to the absorptive cut in the amplitudes), the larger than ex-
pected [ACAS)%,’ /2]_ values, very sensitive to the L7 input, are not. It might be conse-
quence of a numerical accident. While the size of the couplings gsN;" is not larger than

expected, their role appears enhanced in the amplitudes with large numerical prefactors.
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6.2 xPT fit to K — 7w data

In subsection 4.1, we have seen the price of taking the large- N¢ limit in the CP-even sector,
reflected in an unphysical short-distance scale dependence for the observables. The large-
N¢ estimate is unable to correctly predict the CP-conserving parts of gg and go7. However,
one can fit them to data. Since we include electromagnetic effects to first order in «, we
must consider the inclusive sum of the K — 7w and K — 7wy decay rates. We denote
by I',, with n = +—,00, 40 the corresponding observable widths into the different 77 final
states and define the ratios [2]

9 T 1/2

where /s, is the center-of-mass energy (the physical kaon mass) and ®,, the appropriate
two-body phase space. The infrared-finite factors G,, = 1+ O(a), which take into account
the inclusive sum of virtual and real photons, are given in ref. [2]. The quantities C,, are
directly related to the isospin amplitudes defined in eq. (1.1):

2
A;_ = 70—"—07
3
2 1
(A0)? + (A2)* = gcﬁ, + gCgo,

r—14($2)22r-3)
V2(1+27)

jz cos(xo — x2) = (6.3)
where 7 = (Cy_ /Cpo)?.

Extracting the C), factors from the measured partial widths I'}_ g9 10 [128] and using
the xPT representation of the A; amplitudes, we can perform a fit to gg, go7 and the phase
difference xg — x2. We leave xg — x2 as an additional free parameter to be determined by
the fit because an accurate xyPT prediction of the phase-shift difference would require the
inclusion of higher-loop corrections [8, 129].

Assuming isospin conservation, we obtain the results shown in table 7, from LO and
NLO fits. The values of Re Ag, Re As and xo — x2 are directly determined from the C),
ratios and, therefore, are the same in both fits. The first errors originate in the experimental
inputs, while the second ones in gg and gs7 reflect the sensitivity to the xPT scale v,. The
octet coupling is also sensitive to the short-distance renormalization scale ugp (third error).
One observes a sizeable difference between the LO and NLO fitted values of gg, while go7
remains stable. This just illustrates the much larger size of the chiral loop corrections to
the octet amplitude. Since the O(p*) corrections are positive (negative) in the octet (27)
amplitude, the extracted value of gg (go7) decreases (slightly increases) at NLO.

Including the isospin-breaking corrections, one obtains the results given in table 8. The
primary fitted quantities Re gs, Re go7 and xo— X2, as well as the derived quantities (such as
Re Ap,2), depend now on the adopted xPT approximation, LO or NLO. The experimental
uncertainties are again indicated by the first errors. Moreover, the presence of an O(e?p?)
electromagnetic-penguin contribution makes the LO fit also sensitive to the short-distance
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LO fit NLO fit
Re gs 4.985 4 0.0020xp | 3.601 % 0.0014yp © 0152 ” 70004 g,
Re g27 0.286 + 0.001 e 0.288 £ 0.001exp, % 0014,
Xo — X2 (44.78 + 0.98xp)°
Re Ay (2.711 £ 0.001cyp) - 1077 GeV
Re A (1.212 £ 0.003cxp) - 1078 GeV
Re Ag/Re As 22.36 £ 0.05exp

Table 7. LO and NLO fits to the K — w7 amplitudes in the limit of isospin conservation.

LO fit NLO fit
Re gs 5.002 £ 0.002exp £0.001 . | 35824 0.000 ey TOHIT, TO006 .
Re go7 0.251 4 0.001 ¢xp = 0007 e 0.297 + 0.001 exp £0:001, £ 0:005 e
Xo — X2 (%) 4797 £0.92exp 1080, | 51396 % 0.806exp T1031, L0008 0,
Re Ay (10-7 GeV) 2.704 + 0.001 exp 2.704 + 0.001 xp
Re Az (107° GeV) | 1.222£0.003exp 0004, | 1317 £0.003exp 07031, £0:000
fs/2 0 0.0852 + 0.0002exp T0082  £0000L
Re Ag/Re A; 22.13 £ 0.05exp © 0201 2054 £ 0.04exp 1050, TOUT,
Re Ag/Re A3 22.13+0.050xp T004 . 2228+ 0.050, 008, F00

Table 8. LO and NLO fits to the K — w7 amplitudes, including isospin breaking.

scale usp (second errors). Our LO results are in agreement with the Flavianet averages [42]
in eq. (1.2). At the NLO, the presence of the electromagnetic correction f5/, implies that
Re A; # Re As. The NLO results have explicit dependencies on both renormalization
scales, v, (second errors) and pgp (third errors). Notice that the isotensor amplitude and
go7 are quite sensitive to the isospin-breaking corrections.

The results in tables 7 and 8 supersede the values obtained in ref. [2].
differences originate in the more precise experimental data now available.

The main

6.3 Isospin-breaking parameters in the CP-odd sector

We have now all the needed ingredients to compute the different isospin-breaking (IB)
parameters in the CP-odd sector, defined in section 5. The resulting values are displayed in
table 9 at different levels of approximation. The first two columns show the results obtained
with « = 0 at LO and NLO, respectively; i.e. they refer to strong isospin violation only
(my, # mg). The impact of electromagnetic corrections is shown in the last two columns,
which contain the complete results including electromagnetic corrections.

In appendix C we provide a detailed comparison with the results of refs. [2, 7], analyzing
the impact of the different updated inputs in the final NLO values. The most significant
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a=0 a#0
LO NLO LO NLO
Qi | 137 159482 |195+39 247478
Ao | =0.002 —0.49+0.13 | 5.6+£09 56409
f5/2 0 0 0 8.2 t33
Qe | 13.7 164483 | 13.9+3.7 11.0 732

Table 9. Isospin-violating corrections for €/e in units of 1072,
Qeﬁ‘
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Figure 2. Central value of Qg as a function of L7;. The dotted vertical lines indicate the range of
L7 in eq. (4.13), while the red line is the large-N¢ value from eq. (4.12).

changes are a slight reduction of the IB correction to Ag, 64¢ ~ —0.028, induced by the
numerical changes in L5 and the Wilson coefficients, and an increased value of Qg, 6215 ~
0.020, which is mostly driven by L7 (there are also sizeable changes from Ls, K; and £ that
cancel among them to a large extent). The net combined effect is a larger central value of the
global correction 6Qg = 0.05. The largest sources of uncertainty turn out to be the input
values of the strong LECs L7, Ls and Lg (parametric) and the dependence on the chiral
renormalization scale vy, (a “systematic error” induced by the large-N¢ approximation).
Appendix C contains a detailed description of the different errors.

The final prediction for Qg is very sensitive to the input value of L7. Figure 2 illustrates
the strong dependence of the central value of Q¢ with L7. The dashed vertical line indicates
the value of L7 in eq. (4.13) [67], with its error range (dotted lines). The red line is the
large- N prediction for L7 in eq. (4.12).

We conclude this section by discussing the applicability of our results on isospin-
breaking effects in €, obtained in the framework of YPT, to other non-perturbative meth-
ods, that typically estimate hadronic matrix elements in the isospin limit (see for example
refs. [5, 51]). Our two main observations are:

e First, A is largely dominated by electromagnetic penguin contributions. Therefore,
in those theoretical calculations of ¢ where electromagnetic penguin contributions
are explicitly included in Ag, one should remove their effect from the quantity Ag,
keeping only the strong isospin-breaking contributions to this quantity. This amounts
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Figure 3. SM prediction for Re (¢'/e) (red dashed line) as a function of Qeg. The red band has
been obtained adding all sources of uncertainty in quadrature for a fixed value of Q.g. The vertical
dashed line indicates the central value of Qeg in (7.1) and the blue horizontal band the measured
value of Re (€' /e).

to the replacement Qe — Qe With [2, 51]

N

Qg = UB — Aola=0 — f5/2, (6.4)
since Ag is the only contribution proportional to ImAy. The updated value is
Qe = (17.0598) 1072, (6.5)

which can be directly extracted from table 9. The final error has been obtained taking
into account the correlation among those values.

e Second, in applying isospin-breaking corrections one needs to keep track of how
isospin-symmetric QCD is defined in each calculation. This intrinsically implies a
scheme dependence (see [92, 130] and references therein). In appendix D we have
presented the separation scheme adopted in this work (following [2]) and a possible
alternative scheme. We have then discussed the implications of scheme dependence
for Qeg, finding that, for the two schemes considered, the numerical effect is well

below current theoretical uncertainties.

7 Updated SM prediction for €' /e

The improved knowledge on many of the inputs entering the calculation of isospin-breaking
corrections to the K — w7 amplitudes has allowed us to perform a thorough numerical
update of the pioneering analysis of refs. [2, 7]. We have presented in this paper a com-
prehensive review of the theoretical approach and have discussed in detail the different
parametric improvements and their impact on the relevant isospin-breaking contributions.
Our final result for the key parameter in the CP-odd sector is (see egs. (5.11), (5.12) and
table 9):

Qe = (11.0739) - 1072, (7.1)
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Figure 4. SM prediction for Re (¢'/€¢) (red dashed line) as a function of Ls. The value of Lg has
been fixed in terms of Ls, using their relation in eq. (4.13). The red band has been obtained adding
all sources of uncertainty in quadrature for a fixed value of Ls. The black dashed vertical lines
represent the central value of Lf(M),) with its error, given in eq. (4.13). The blue horizontal band
is the measured value of Re (¢'/e).

where the final uncertainty has been obtained adding all errors in quadrature.
Figure 3 shows the dependence of Re (€¢//¢) on Qeg. Taking into account the updated
value of this parameter, our SM prediction for Re (€'/¢),

Re (€ /¢) = (13.8*0'5 +17 431

—0.4m, —1.3 ugp — 320,

+1.3, +21 0,4 +1.3L, 202k, £ 0'3Xi> 1074
= (14 £ 5)-107%, (7.2)
is in excellent agreement with the experimental world average [131-139],

Re (€/e) = (16.6£2.3)-10"*. (7.3)

exp

In eq. (7.2), we display the different sources of uncertainty in Re(€/€). The first
error represents the sensitivity to the input quark masses. Our ignorance about 1/Nc-
suppressed contributions in the matching region is parametrized through the second and
third errors, which have been estimated through the variation of psp and v, in the intervals
[0.9,1.2] GeV and [0.6,1] GeV, respectively. The fourth error reflects the choice of scheme
for v5. The fifth and sixth errors originate from the input values of the strong LECs
Ls 7.8, given by eq. (2), and the last two errors correspond to the uncertainties of the NLO
electromagnetic LECs K; and the NNLO strong couplings X;; they have been estimated
using eq. (4.16).

The updated value of Qg has a relatively small numerical impact on the final pre-
diction for €' /e, giving a central value slightly smaller than the one obtained in ref. [4]
with the old IB inputs. The large theoretical uncertainty in (7.2), mostly coming from our
ignorance of non-perturbative effects in the matching region and the strong dependence on
the parameter Ls (see figure 4), has been estimated conservatively and could be reduced in
the future. A detailed discussion of other possible improvements was presented in ref. [4].
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7 n; X;

5 | -2 —16 X14 + 32 X17 — 24 X35 — 4 Xo1

6 | 4 —32X17 — 32 X15 + 32 X7 + 16 X35

7|2 —32X16 — 16 X17 + 8 X35

8 | 4 —16 X15 — 32 X17 + 16 X33

910 —64 L5 Ls — 8 X34 + 8 X35 + 4 Xo1

0] 0 —48 X19 — 8 X33 — 2 Xo1 — 4 Xos

11| 0 —32 Xo0 + 4 Xo4

12| 0 | 128LgLg+ 16 X12 — 16 X31 + 8 X35 — 2 Xo1 — 4 Xo4
13| 0 | 256 L7 Ly — 32 X15 — 16 X33 4 16 X37 + 5 Xo1 + 4 Xo4

Table 10. Parameters n; and X; entering the prediction of the LECs (gs N;)*° in eq. (4.9).
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A Parameters of large- N matching at NLO

Table 10 compiles the values of n; and X; that parametrize the large-N¢ predictions for
the weak LECs (g N;)™ in eq. (4.9). The X; parameters are functions of the strong O(p°)
couplings X;. The LEC Xy4 only appears in X; for ¢ = 10,11,12,13. The corresponding
couplings N; contribute to ACAS)Q and Ac/lgs/)z3 /2 but always in combinations of the
form Zilim a; N; with a19+ a12 = a11 +a13. Thus, Xg4 drops completely from the K — 7
amplitudes. The same happens with X37, because Xg and X3 only enter through the
combination N§ — 2N{5.

The large-N¢ predictions for the O(p®) LECs X; were estimated in ref. [56] through
resonance exchange. The role of the n; meson in these LECs was further analyzed in
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i K K K kM k® | e ] e?
1 1K1 — K3 0 |64Ls(—3Ko+35Kiwo+Ki) | 0 | —24Lg| 0 0
2 3 K3 0 —B0 g (Ko + K11) 0 0 0 0
3 Kis 0 —64 Ls (K10 + K11) 0 0 0 0
4 —Ki3 0 64 Ls (K10 + K11) 0 0 0 0
5 3 (4K +3Ks5+3 K1) 0 —8 L5 (2K7 + Ky) 0 0 0 1
6 | —2(Ks+Ko)+2(Ki2+K3) | O —8 Ly (K9 + K10 + 3K11) 0 | —12Ls| © 0
7 8Ky +6Ke —4Ky3 0 —32L5 (2Ks + Ko+ Ki1) | 0 0 0 0
8 S K3+4Ky 1 K; 0 0 0 3 3
9 —3 (K4 + K12 + Ki3) 1K; 0 -3 0 0 0
10 —2Ky3 4 Kg 0 0 0 0 0
11 2 (K4 + Ki3) 0 0 0 0 0 0
12 —4K; 0 0 0 0 0 0

Table 11. Large-Ng parameters ICgk) of the (gs Z;)°° LECs in eq. (4.10).

ref. [57]. The only n;-exchange contributions to the K — 7 amplitudes are

~ ~ ~ ~ L ~
Xpy = 3Xp = 2kp = Xp = L0 Xp-o0. (A
m
The large- N¢ predictions for the electroweak LECs (gg Z;)*° in eq. (4.10) are governed
by the constants ICZ(k), compiled in table 11. They are functions of the electromagnetic and
strong xYPT couplings K; and L;, respectively.

B Updated estimate of A

The RXT coupling A\3* splits the masses of the different isospin components of the scalar-
resonance nonet multiplet through the term

M2
Lmass — _TS (S%) + A\5% 4By (S2M) | (B.1)

The common multiplet mass and A5 can then be determined through the relations [123]:

2 2 2 2 2
\SS Mp_, — M1:1/2 M2 = M2 4 Mz (M7_y — M1:1/2) (B.2)
3 4 (MIQ( —_ Mg) ) S =1 M[Q{ — Mg ) .

with M7 the mass of the scalar meson with isospin I.

In order to identify the members of the scalar resonance nonet, we must exclude the
lightest observed scalars that are well understood as dynamically-generated poles arising
from 2-Goldstone scattering: fo(500) (o), KF(700) (), ao(980) and fo(980) [140-144].
The I = 1/2 and I = 1 members of the resonance nonet are identified without controversy
with Kj(1430) and a(1450) respectively. For the I = 0 states, we have three possible
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Set-up Ag I5/2 QB Qeq
Old value [2] | 0.08346 | 0.08360 0.2267 0.05967
New value 0.05578 | 0.08168 0.2470 0.1095
Awc —0.11 —0.0008 | 0.0017 0.013
Ar, —0.017 0.0009 —0.032 —0.016
AT 0.0028 0.0012 | —0.0060 | —0.010
AV —0.0006 | 0.0000 0.029 0.029
Ak, 0.0012 | —0.0036 0.022 0.024
Ax, 0.0017 0.0001 | —0.0011 | —0.0029
AL —0.0003 | 0.0000 0.011 0.011
AB(usp) —0.0049 | 0.0005 | —0.0066 | —0.0021

Table 12. NLO central values for o« # 0 and impact of the different modified inputs.

candidates: f,(1370), fop(1500) and fy(1710). Thus, there are two possible scenarios:

A:  fo(1370), K3(1430), ao(1450), fo(1500).

B: fo(1370), KZ(1430), ao(1450), fo(1710).

One can figure out the favoured dynamical option, comparing these candidates with the
predicted isosinglet masses. Using the relation [123],

M%H = M12:1/2 + |M12:1/2 — Mj_,|, (B.3)

we find My, = 1374 MeV and My = 1474 MeV for the lighter and heavier isosinglet scalar
states, respectively. Therefore, we can conclude that the lightest scalar-resonance nonet
is given by the scenario A. Moreover, since the values of My, f are very close to the mea-
sured masses, additional nonet-symmetry-breaking corrections to the scalar masses can be
neglected (i.e., k¥ = yg = 0, in ref. [123]). Inserting the scalar resonance masses in the
relations (B.2), one finally finds the values of Mg and \3° given in eq. (4.15).

C Parametric uncertainties in Q.g, 218, A¢ and f5/2

Since this work is an update of refs. [2, 7], it is worth to compare the impact of the different
updated inputs in the final (central) values of the IB parameters. This is shown in table 12
for the results of the complete NLO analysis with o # 0. The quantities A; correspond to
the difference between the updated result and the one obtained with the old input for the
variable i (i = WC stands for Wilson Coefficients). The impact of the different changed
inputs is comparable in size, and typically slightly smaller than the central values. In
particular, the sensitivity to L7 is remarkable.
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Set-up Ag I5/2 QB Qe

Central | —0.0049 0.0 0.159 | 0.164

+0.0001 0.0 +0.001 | +0.001
Ousp —0.0002 . —0.001 | —0.001

+0.048 | +0.048
Tvy 0.0001 0.0 —0.047 | —0.047

Oy 0.0004 0.0 0.001 | 0.002

5

or, 0.0001 0.0 0.015 | 0.015

5,8

oL, 0.0012 | 0.0000 | 0.065 | 0.066

ox, 0.0000 0.0 0.007 | 0.007

Table 13. NLO central values for o = 0 and their parametric errors.

Set-up Ao fs2 | Sus Qefr

Central | 0.0557 | 0.0 | 0.195 | 0.139

+0.0003 0.0 +0.001 +0.001
Opusp — 0.0000 : —0.001 —0.001

oy 0.0000 | 0.0 | 0.000 | 0.000

X

Ons 0.0066 | 0.0 | 0.001 0.006

OLss 0.0053 | 0.0 | 0.010 | 0.005

OK, 0.0021 | 0.0 | 0.038 | 0.036

Table 14. LO central values for a # 0 and their parametric errors.

In tables 13, 14 and 15 we detail the different sources of parametric uncertainties for
Ao, f5/2, B, and Qe at both LO and NLO, and for o = 0 and a # 0. We consider the

following uncertainties:

® 0, and o, . Uncertainties associated to the large-N¢ matching procedure, which
leads to ambiguities when setting both the short-distance (usp) and the chiral (v)
scales. They are estimated by varying them in the intervals ugp € [0.9,1.2] GeV and
vy € [0.6,1] GeV.

e 0,,. Uncertainty associated with the choice of renormalization prescription for s.
We have taken the difference between the results obtained using the HV and NDR
schemes.

® 05,5 Uncertainties from the input values of the strong LECs L5 7 in eq. (2).

e ok, and ox,. Uncertainties associated, respectively, with the NLO electromagnetic
LECs K; and the NNLO strong couplings Xj.
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Set-up Ao f5/2 QB Qer
Central | 0.0558 | 0.0817 | 0.247 0.110
M EE R R
| “atmy | o | oom | ta
Oy 0.0066 | 0.0008 | 0.001 0.005
OLss 0.0053 | 0.0009 | 0.017 | 0.015
oL, 0.0012 | 0.0000 0.065 0.066
oK, 0.0019 | 0.0031 0.018 0.013
oXx, 0.0020 | 0.0003 | 0.003 0.005

Table 15. NLO central values for a # 0 and their parametric errors.

D Exploring dependence on “isospin scheme”

In this appendix we explore the dependence of (. on the scheme-dependent definition
of isospin limit in QCD. For recent developments on the definition of “isospin-symmetric
QCD” on the lattice, we refer the reader to refs. [92, 130] and references therein. In our
work we use as reference scheme (“Scheme I”) the one adopted in ref. [2], in which the

meson masses in the isospin limit are taken as follows:

The LO meson masses with inclusion of isospin breaking then read:

M2 = M2,
M} = My, .

M2 = M2,

M2 = M2+ 2e°ZF?,
Mo = M,

Mz = Mj — 4%

RG]

(Mz — M2) +2e*ZF?,

(D.3)
(D.4)

(D.5)

(D.6)

where we used Bo(ms — 1) = Mz — M2 + O(¢?) in the second term of MZ%,. In the
hadronic schemes of refs. [92, 130] this would correspond to defining iso-symmetric QCD
by fixing m and ms from the physical values of Mo and Myo.

We will contrast the above scheme to “Scheme II”, which treats the kaon masses more

symmetrically. In this scheme we take the meson masses in the isospin limit to be as follows:

=
M1l

2
Il

2
M2,

1
LM+ ME - (2 - 23}
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The LO meson masses with isospin breaking are then

M? = M2, (D.9)
M2 = MZ?+2e°ZF? (D.10)
2e()
Miy = Mz + —= 7 (M7 — M2) | (D.11)
2 2 2@ 2 277 2
My = My — (M7 — M2) +2e*ZF?, (D.12)

V3
where again we used Bo(ms —m) = Mz — M2+ O(e?) to re-write the terms proportional
to £, In the hadronic schemes of refs. [92, 130], this would correspond to defining iso-
symmetric QCD by fixing m and mg from the physical values of M_o and the combination
M defined by eq. (D.8). Note that in Scheme II, to LO in the chiral expansion, 7 and
mg take the same value in both full QCD and iso-symmetric QCD. This is not the case in
Scheme 1.

D.1 Leading-order analysis

After putting the external legs on the appropriate mass-shells, the tree-level amplitudes are:

Af_ = — \@GsF (MIQ(O - Mgri - 62Fzgewk) ) (D13)
Ay = —V2Gs F (Mpo — M%) (1 - \25(2)> , (D.14)

Ao = — GBF( 70 Mg:&: - €2F.gewk)
2 2 2 2 (9
—Gs F M2y — M2, + - (M Lo ML) e, (D.15)

where the explicit terms involving £ arise from 797 mixing. Using the two schemes
defined above for the mesons masses, we can split the amplitudes as follows

Aij =AY + 64y, (D.16)
where AE?) represents the “isospin limit” result and 0A;; the deviation from that limit.

Both terms in the above decomposition are scheme dependent.
The isospin-limit amplitudes have the same form in both schemes:

AD = A0 — —V2Gs F (MY — M2), Af) =0, (D.17)

The scheme dependence is due to the fact that Mf( takes different values in the two schemes.
Using Scheme I, the deviations from the isospin limit are:

= V2G3 F (°F?) (27 + gew) » (D.18)
SAS) = V2Gs F (MF, — M2) jg e®, (D.19)
5AY) = GSF(e2F2)(27 + gous) — GsF(ME — M2) —=c® | (D.20)

V3
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Using Scheme II we find:
2

sAM — 540 —vVaGgs F(ME - M2) = e®@ (D.21)
2

AN = A% — V2Gs F (M} — M?) NG £® =0, (D.22)

sAl) = 5a0) . (D.23)

For the isospin-basis amplitudes of interest in ¢ we then have:
2

5AMY = 540 — V2 Gy F (ML — M2) == (D.24)
V3

sAMD = 540 (D.25)

sATI = 5470 (D.26)

Let us now discuss the implications of the above scheme dependence. First, note that
since (5A§H) = 6Ag), the fit to Re ga7, controlled by the K* — 7n+70 rate, is essentially
unchanged.

For the CP-violating sector, we need to study the scheme dependence of Q1, A, and
f5/2, that appear as correction factors in the formula for ¢/, namely:

Re A\ Im sARon—emP

Qg = - , (D.27)
ReAL  Imal”
Im (5A0 Re (5A0
Ao = - , (D.28)
mA”  ReAl
5 Re A5 2
Re A3/2

The above quantities are of first order in isospin-breaking parameters (5(2) and e?). Now
note that the scheme dependence of the “isospin-limit” quantities denoted by the super-
script “(0)” is itself of first order in isospin breaking. Therefore we conclude that, to first
order in isospin breaking the scheme dependence of Q1p, Ag, and f5/5 is controlled by the

ARon—emp

scheme dependence of §Ag, A, , and Ag /. From the amplitude shifts given above,

we therefore conclude that to leading order in the chiral expansion

ol — o), (D.30)
f5H) fa) =0, (D.31)
INUIUNCIN m(5AJ" —5AY")  Re(sAy" — 5AYY) (D.:52)
TmAY ReA
Using eq. (D.24), the explicit form of A(()O) to leading order
AY — B R (M2 — M) <Gg27 + Gg> (D.33)
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and the fact that Im Go7 = 0, we find

22(2) 1 2¢®@  1Regor
A _AD _ 1— ~ = ~85x107°.  (D.34
0 0 V3 14 LRegor V3 X 9 Regs . ( )

9 Regs
The “isospin-scheme” dependence is comparable to the LO central value induced by strong
‘LO oo = —4X 1075 [2]. Including EM effects

’LO = (8.7 4+ 3.0) x 1072, implying that the scheme dependence in Ay and
therefore in Qe (see eq. (5.12)) is completely negligible compared to other uncertainties.

isospin breaking using Scheme I, namely A(()I)

one has Ag)

D.2 Beyond leading order

As for the LO analysis, we focus on the comparison of “Scheme I” and “Scheme II” only.

We note that to first order in isospin breaking and any order in the chiral expansion the
(¢)

1/2 and

only amplitudes that can possibly differ between Scheme I and Scheme II are A

'Aég/)r Based on this observation we already conclude that

T3 = I3ph (D.35)

(e)

holds beyond leading order. In order to quantify the isospin-scheme dependence of A} /2,3/2

at NLO, we need to consider three effects:

1. Expressing F' in terms of F in the tree-level amplitudes;
2. Counterterm amplitudes proportional to GgN;;

3. Loop amplitudes with Gg insertions and isospin breaking only in the masses (internal
and external).

In what follows we discuss the first two effects. For this discussion, let us recall the relevant
terms in eq. (3.10)

A D — Gs Fr (M% — M2) [A® 4 s<2>A$f>] : n=1/2,3/2. (D.36)
D.2.1 Expressing F' in terms of F; in the tree-level amplitudes
The relation between F' and F, takes the form

F=F, {1 + SOME, M2) + @ g (F, M2 s=L1I, (D.37)
where f(*)(z,y) and g®*)(z,%) are scheme-dependent functions of the meson masses arising

from loops and counterterms, and M}z{ and M2 denote the isospin-limit masses in the
chosen scheme. Using the expression of F in terms of the quark masses [80], one obtains

FO,y) = fD(,y) = fla,y), (D.38)
M _ _2 0 8Ly(p) 1 £

97 (z,y) = g(z,y) = 7 (@ =9 |~ SUr ) (Hlog /ﬂ)] , (D:39)

9" (z,y) =0, (D.40)

and the form of f(x,y) is irrelevant for our discussion.
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Upon making the substitutions (D.37) in the tree-level amplitudes, one obtains

AD = AP |1+ fO MR, M)+ af) ¢ (M, M) (D.41)

where fl,(f) is the strong isospin-violating amplitude before making the replacement F' —
F. The term involving f(M2%, M2) is scheme independent to first order in isospin breaking
(recall that Agf) is already multiplied by ), so changing the value of the masses in the
argument of f(x,y) leads to higher-order effects in isospin breaking). The term proportional
to g(z,y) is scheme dependent. So one gets

Ay(f)v(I) _ AS),(H) - agg)g(M?(,M,z) _ (D.42)
Recalling that
& — a® —
ayjy = V2, (g0 = 0, (D.43)

then one sees that there is no scheme dependence in the Al = 3/2 amplitudes, while there
is a residual scheme dependence in the AT = 1/2 amplitude, namely:

sAS — 5490 (D.44)
SAF M = 6AFY 4 O V2 Gy By (M7 — M2) (M7, M?) . (D.45)

The above results lead to:

11 I
Qi _ o) (D.46)
II I !
A = AD = @ g(arZ, M2 (1 B 1Re927>
L4 5 Regs
1 Re ga7

12

5(2) g(MI2(7M2) a

~ 1076, D.47
s 9 Regg ( )

This is to be compared to the NLO results [2] A(I

A(I) ‘ —
0 INLO
therefore, Qg (see eq. (5.12)) is well below current uncertainties in Ag and Qeg.

-3
‘NLOa o = —(5.1£1.2) x 107 and
(5.7 £ 1.7) x 1072, showing again that the scheme dependence of Ag and,

D.2.2 Contributions proportional to Gg IN;

These amplitudes have the structure:

9
Ax > N (Z AiqBqu> <Z Ba Pa -pb>
1=5 ab
+ Z N; (Z Oquomq) (Z DiqBqu> : (D.48)

=10

where p,, are the external particle momenta. The “isospin scheme” dependence arises when
expressing p; - pj and Bgmg in terms of the meson masses.
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Expanding the amplitudes in the two schemes one can check that §A;_ and dAgg are
shifted by the same amount, so only d Ay can depend on the scheme. Explicitly we find

s A _ 5@ (D.49)

422
V3

-

A= =Gy [Mf( (2 N5 — 4Ny + 4 Ny + 2 Ny)

™

A _ 5000 _ A2 s o a2 A, (D-50)

+ Mg (N5—|—6N7—NS—N9—2N10—4N11—2N12)] . (D51)

As before, the implications for € are that Qip is scheme independent (up to second
order in isospin breaking) while Ag is scheme dependent. Using the above expressions, the
scheme dependence of Ay can be estimated as follows:

AID A0 _ ey |I(A)  Re(d) ~ 1077, (D.52)
Gy ReGy (1+ 4 fear)

still well below the total uncertainty of Ag and Qcg.
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