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Abstract: The double Hawking temperature T = 2TH appears in some approaches to the Hawking

radiation when the radiation is considered in terms of the quantum tunneling. We consider the

origin of such unusual temperature for the black hole horizon and also for the cosmological horizon

in de Sitter spacetime. In the case of the black hole horizon, there are two contributions to the

tunneling process of radiation, each being governed by the temperature T = 2TH . These processes

are coherently combined to produce the radiation with the Hawking temperature TH . This can be

traditionally interpreted as the pair creation of two entangled particles, of which one goes towards

the center of the black hole, while the other one escapes from the black hole. In the case of the

cosmological horizon, the temperature T = 2TH is physical. While the creation of the entangled

pair is described by the Hawking temperature, the de Sitter spacetime allows for another process, in

which only a single (non-entangled) particle inside the cosmological horizon is created. This process

is characterized by the local temperature T = 2TH . The local single-particle process also takes place

outside the black hole horizon, but it is exponentially suppressed.

Keywords: black hole; white hole; de Sitter spacetime; Hawking radiation; Painleve–Gullstrand

coordinates; quantum tunneling

1. Introduction

The problem of the doubling of the Hawking temperature of black holes was already
discussed in 1984 [1] (see recent continuation of this discussion in Ref. [2]). The double
Hawking temperature 2TH also appears in some approaches to the Hawking radiation
from the black hole and cosmological horizons, where the process of Hawking radiation is
considered as quantum tunneling. In the case of quantum tunneling from the black hole
horizon, the 2TH can be attributed to the improper choice of the reference frame. The static
Schwarzschild coordinates have the nonphysical coordinate singularity at the horizon,
which influences the result. The choice of the Painleve–Gullstrand coordinate system,
which is valid both inside and outside the horizon and has no singularity at the horizon,
gives the Hawking temperature TH [3,4]. In the de Sitter Universe, the situation is different;
the temperature T = 2TH is physical. It is the local temperature experienced by matter well
inside the cosmological horizon [5]. We discuss the possible connections between these two
manifestations of the double Hawking temperature.

2. 2TH Problem for Black Holes

The quantum tunneling approach allows us to study different processes without
considering the details of the microscopic physics or quantum field theory. The Hawking
radiation from the black hole [6] provides an example when the complicated process is
highly simplified by the method of quantum tunneling [3–5], which does not require the
consideration based on quantum field theories. The Hawking temperature is obtained
when the tunneling rate is compared to the Boltzmann factor.

In this approach, the Painleve–Gullstrand (PG) coordinate system [7,8] is used with
the metric:

ds2 = −dt2(1 − v2)− 2dt dr · v + dr2 , (1)
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where v2(r) = R/r; R = 2M is the position of the black hole horizon (G = c = h̄ = 1);
the contracting and expanding velocities v correspond to the black hole and white hole
correspondingly (for extension of the PG metric to the black and white holes with several
horizons, see Ref. [9]). This PG metric is the stationary (but not static) metric, which does
not have singularity at the horizon. This allows for analytic considerations both inside and
outside the horizon and also allows for the extension to the complex plane. The latter is
important for calculations of the tunneling exponent by the analytic continuation of the
action to the complex plane.

For the black hole realization, this procedure gives the tunneling exponent correspond-
ing to the Hawking temperature TH = 1/8πM. The process of Hawking radiation can be
interpreted as the pair production of two entangled particles, of which one goes towards
the center of the black hole, while the other one escapes from the horizon. Let us stress
that Hawking radiation perceived by observers generally depends on the trajectory of the
observer, see, e.g., [10]. In this section, we consider the Hawking temperature measured by
the static observer at r → ∞.

However, some calculations of the Hawking radiation, including the quantum tun-
neling approach, lead to the double Hawking problem [1,2,11–13], where the obtained
radiation is thermal but with temperature T = 2TH . We consider this problem in the
semiclassical tunneling approach using the Klein–Gordon equation for a massive field in a
curved background [11], which leads to the relativistic Hamilton–Jacobi equation for the
classical action:

gµν∂µS∂νS + m2 = 0 . (2)

Let us start with the PG metric in Equation (1) since it does not have coordinate
singularity at the horizon. One has for the fixed energy E [11]:

− E2 + (1 − v2)

(

dS

dr

)2

+ 2vE
dS

dr
+ m2 = 0 . (3)

For the classical action on two different trajectories of the propagating massive particle,
this gives:

S = −
∫

dr
Ev

1 − v2
±
∫

dr

1 − v2

√

E2 − m2(1 − v2) . (4)

For the plus sign in the second term, the imaginary parts of the two terms cancel each
other. This corresponds to the incoming trajectory of the particle, which enters the black
hole and moves toward the black hole singularity at r = 0. For the minus sign in the second
term, one obtains the tunneling exponent describing the radiation of a particle from the
region inside the black hole to the region outside the black hole. The combination of two
terms in Equation (4) describes the Hawking radiation with the Hawking temperature TH :

exp (−2 Im S) = exp

(

− E

2TH

)

exp

(

− E

2TH

)

= exp

(

− E

TH

)

. (5)

Note that each of the two terms in Equation (5) corresponds to the effective temperature
2TH . That is why if one of the two terms is lost in calculations, the temperature 2TH

erroneously emerges. A similar product of each of the terms with 2TH has also been
obtained for the black holes with several horizons [14].

In Ref. [11], the Schwarschild coordinates were also used (see also Ref. [15]):

ds2 = −
(

1 − R

r

)

dt2 +
dr2

1 − R
r

+ r2dΩ
2 . (6)

This gives only the second term in Equation (4), and as a result, the 2TH temperature
is obtained. In Refs. [12,15], it was argued that the Hawking temperature can be restored
by considering the balance between the emission pem ∝ exp(−E/2TH), which comes from



Universe 2022, 8, 639 3 of 9

the minus sign, and the absorption pabs ∝ exp(E/2TH), which comes from the plus sign.
Then, the ratio pem/pabs gives the Hawking temperature.

However, the consideration of the exponentially large absorption is somewhat unnat-
ural. The first term in Equation (4) can be naturally restored if one takes into account the
coordinate singularity of the Schwarzschild metric at the horizon. To avoid this singularity,
one should make the transformation from the Schwarzschild coordinates to the nonsingular
PG coordinates:

dt → dt̃ + dr
v

1 − v2
. (7)

Now, we must take into account that the action also contains the
∫

Edt term:

S = −
∫

Edt ±
∫

dr
1

1 − v2

√

E2 − m2(1 − v2) , (8)

and the transformation of this term gives the missing tunneling exponent:

exp

(

−2Im
∫

Edt

)

= exp

(

−2Im
∫

(

Edt̃ + dr
Ev

1 − v2

))

= exp

(

−2Im
∫

dr
Ev

1 − v2

)

= exp (−2πER) = exp

(

− E

2TH

)

. (9)

Thus, the total tunneling exponent again contains the product of two exponents:

exp (−2 Im S) = exp

(

− E

2TH

)

exp

(

± E

2TH

)

. (10)

The minus sign corresponds to the radiation from the PG black hole considered in the
Schwarschild coordinates, and it gives the Hawking radiation with T = TH .

In this approach, Equation (10) also contains two contributions, each corresponding to the
effective temperature 2TH. However, the absorption is now pabs ∝ exp(−E/2TH) exp(E/2TH),
and the emission is now pabs ∝ exp(−E/2TH) exp(−E/2TH). Their ratio naturally reflects
the detailed balance principle for the black hole.

3. 2TH Problem for White Holes

According to Refs. [16–18], the hole object can be in three different states: the PG black
hole, the PG white hole and the intermediate state—the neutral, fully static object described
by Schwarschild coordinates. These three states correspond to different quantum vacua,
which are determined by different global coordinate systems. These states can be obtained
from each other by singular coordinate transformations between the global coordinate
systems. For example, the transformation from the black hole to the white hole has the
following form:

dt → dt̃ + 2dr
v

1 − v2
. (11)

Earlier, we used the coordinate transformation in Equation (7) and applied it for the
transformation of the particle action in Equation (9). Now, we can apply such singular
transformations to macroscopic objects: the black, white and neutral holes. This can be
used for calculating the macroscopic tunneling transitions between these objects and for
calculating the entropy of each macro-object [16–18].
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For example, the probability of the quantum tunneling from the black hole to the
white hole with the same mass M is given by the imaginary part in the black hole action on
the following path:

PBH→WH = exp

(

−2Im
∫

Mdt

)

= exp

(

−2Im
∫

(

Mdt̃ + 2dr
Mv

1 − v2

))

= exp

(

−4Im
∫

dr
Mv

1 − v2

)

= exp (−4πMR) = exp
(

−8πM2G
)

(12)

PBH→WH = exp (−2SBH) = exp (−(SBH − SWH)) . (13)

Here, SBH = 4πM2G is the entropy of the black hole, and SWH = −4πM2G is the
entropy of the white hole with the same mass. The latter is obtained from Equation (13).
Since the tunneling transition can be considered as quantum fluctuation, the exponent in
the tunneling process can be expressed as the difference between the entropies of the initial
state (black hole) and the final state (white hole) [19].

The white hole, which is obtained by the coordinate transformation from the black
hole, has negative entropy and thus a negative temperature. The latter can be also obtained
using the methods discussed in Section 2. Since, in the white hole, the shift velocity is
opposite to that in the black hole, the first term in Equation (4) has the positive sign in
the exponent. As a result, one obtains pem ∝ exp(E/2TH) exp(E/2TH) for emission and
pabs ∝ exp(E/2TH) exp(−E/2TH) for absorption. Only the ratio of the two processes is
physical. From this ratio pem/pabs ∝ exp(E/TH) and from the detailed balance principle,
one obtains that the temperature of the white hole is TWH = −TH . The temperature of the
white hole is the temperature of the black hole with the same mass but with a minus sign,
which is similar to the relation between their entropies.

Here is the main difference between the tunneling approach and the approach in
Refs. [1,2]. While in the tunneling approach the black and white holes are considered as
independent quantum states, in Refs. [1,2], they are combined in a single object, where the
black and white parts represent two opposite coordinate patches of the Penrose diagram. In
the tunneling approach, such an object can be compared with the fully static Schwarzschild
solution in Equation (6), which represents the neutral object—the intermediate state be-
tween the black and white holes. This fully static object has zero entropy, and distinct from
the black hole considered either in the Painleve–Gullstrand coordinates or in the static
Schwarschild coordinates, the neutral object does not radiate. If the analogy between the
combined object and the neutral object is correct, then instead of T = 2TH , one would have
T = 0. However, this requires more detailed consideration.

4. 2TH Problem in the de Sitter Spacetime

Let us now go to the problem of the double-Hawking temperature in de Sitter space-
time. In the dS spacetime, one has v2 = r2H2, where H is the Hubble parameter, and the
cosmological horizon is at R = 1/H:

ds2 = −dt2 + (dr − Hr dt)2 . (14)

The same procedure as in Section 2 for the PG black hole gives the Hawking radiation
in Equation (5) with the Hawking temperature TH = H/2π.

However, there are several arguments that there are additional processes characterized
by the local temperature, which is twice the Hawking temperature,
Tloc = H/π = 2TH [5,18]. Such a temperature is experienced by matter well inside
the horizon. This is supported in particular by calculations of the tunneling rate of the
ionization of atoms in the de Sitter spacetime [5,20].

Let us consider an atom at the origin, r = 0, in the de Sitter spacetime. The atom is
playing the role of the detector (or the role of the static observer) in this spacetime. The
electron bounded to an atom absorbs the energy from the gravitational field of the de
Sitter background and escapes from the electric potential barrier. If the ionization potential
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is much smaller than the electron mass, H ≪ ǫ0 ≪ m, one can use the nonrelativistic
quantum mechanics to estimate the tunneling rate through the barrier. The corresponding
radial trajectory pr(r) is obtained from the classical equation E(pr, r) = −ǫ0, which is
determined by the Doppler shift prv(r), with v(r) = Hr:

−ǫ0 =
p2

r (r)

2m
+ prv(r) , v(r) = Hr , (15)

pr(r) = −mv(r) +
√

m2v2(r)− 2mǫ0 . (16)

The integral over the classically forbidden region 0 < r < r0 =
√

2ǫ0/mH2 gives the
probability of ionization, which looks thermal with the double Hawking temperature:

exp (−2 Im S) = exp

(

−2mH
∫ ro

0

√

r2
0 − r2

)

= exp
(

−πǫ0

H

)

= exp

(

− ǫ0

2TH

)

. (17)

The same local temperature describes the process of the splitting of the composite
particle with mass m into two components with m1 + m2 > m, which is also not allowed in
the Minkowski vacuum [5,21,22] . The probablity of this process (for m ≫ TH):

Γ(m → m1 + m2) ∼ exp

(

−m1 + m2 − m

2TH

)

. (18)

In particular, for m1 = m2 = m, the decay rate of a massive field in the de Sitter
spacetime is obtained

Γ ∼ exp

(

− m

2TH

)

, (19)

which is in agreement with Ref. [23].
In both cases, the tunneling processes are not related to the cosmological horizon; they

are local processes. For example, in the case of the inonization of an atom, the electron
trajectory is well inside the cosmological horizon:

r < r0 =
1

H

√

2ǫ0

m
≪ 1

H
. (20)

Another important feature of these two local processes is that they both violate the de
Sitter symmetry since the atom, which is ionized, or the particle, which is split, are external
objects. They do not belong to the de Sitter vacuum. The violation of symmetry can be
explicitly seen from the symmetry of the de Sitter PG metric in Equation (14). This metric is
invariant (symmetric) under the following shift in the coordinates:

r → r + rc + Hrct . (21)

However, the existence of the static observer (atom or detector) at r = 0 violates
this symmetry because their/its position is not invariant under this transformation. This
transformation shifts the position of the observer.

Note that the global process with T = TH and the local process with Tloc = 2TH take
place in the same vacuum state: the state as seen by the observer at r = 0. However, these
are two different processes in this vacuum state. The global process, which corresponds
to Hawking radiation with Hawking temperature TH , does not depend on whether the
observer at r = 0 exists or not. This Hawking radiation is the property of the symmetry
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of the pure de Sitter vacuum. The local processes, which are characterized by the double
Hawking temperature 2TH , only take place in the presence of the observer who violates the
de Sitter symmetry.

The same phenomenon of local temperature Tloc = 2TH can be obtained by considering
the action (Equation (4)). Till now, we considered this action for the calculations of the
imaginary part for particles with energy E > m on the trajectory in the complex plane,
which connects the trajectory inside the horizon and the trajectory outside the horizon. This
corresponds to the creation of two particles: one inside the horizon and another outside
the horizon.

However, there is also the trajectory that allows for the creation of a single particle
fully inside the cosmological horizon. In this creation from “nothing”, the particle with
mass m must have zero energy, E = 0. This is possible, as follows from the second term in
Equation (4), which gives the following imaginary part of the action at E = 0:

Im S(E = 0) = m
∫ 1/H

0

dr√
1 − r2H2

=
π

2

m

H
. (22)

The probability of radiation

exp (−2 Im S) = exp
(

−πm

H

)

= exp

(

− m

2TH

)

. (23)

again corresponds to the thermal creation of particles by the environment with a local
temperature equal to the double Hawking temperature, Tloc = H/π = 2TH . Furthermore,
again, the tunneling trajectory is fully inside the horizon, and this process is possible
because the de Sitter symmetry is violated by the detector.

5. Two Processes of the Black Hole Radiation

Two processes—related and not related to the event horizon—can be also found in the
black hole physics. Let us consider the process of creating a particle with zero energy, E = 0,
without creating its partner inside the black hole. The observation of such single-particle
creation is possible if the detector is at a finite distance Ro from the black hole. Then, the
second term in Equation (4) gives

Im S(E = 0) = m
∫ Ro

R

dr√
1 − R/r

. (24)

Far from the horizon, at Ro ≫ R, this process is exponentially suppressed:

p ∼ exp (−2mRo) , Ro ≫ R . (25)

This process is possible because the existence of the classical detector, which is not at
r = ∞, disturbs the vacuum of quantum fields near the black hole.

The more general case with nonzero E < m was considered in Ref. [24]. It is the
combined process, at which the Hawking radiation is measured by the observer at a finite
distance Ro from the black hole. The process is described by two tunneling exponents. For
Ro ≫ R, one obtains [24]:

p ∼ exp

(

− E

TH

)

, E > m , (26)

p ∼ exp

(

− E

TH

)

exp
(

−2Ro

√

m2 − E2
)

, E < m. (27)

The first exponent in Equation (27) comes from the horizon and corresponds to the
conventional Hawking radiation, and the second one describes the process of tunneling the
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created particle, which occurs outside the horizon. The second process, which only takes
place at E < m, is exponentially suppressed for Ro ≫ R and thus does not look thermal.

This is distinct from the local processes in the de Sitter case, where the detector at
r = 0 still conserves the part of the symmetry of the original de Sitter space—the spherical
symmetry. Because of that, the radiation looks thermal, though with a factor of two.

6. Acceleration: Unruh Effect vs. Local Processes

Let us now consider the Unruh effect [25], where one may also expect two indepen-
dent processes. One of them corresponds to the thermodynamics of the vacuum in the
accelerated frame. The second one corresponds to the radiation experienced by an acceler-
ated external object, such as an atom. Let us consider these two processes in the Rindler
spacetime. For the 1 + 1 case, one has

ds2 = gµνdµxdνx = (1 + ax)2dt2 − dx2 , (28)

gµν pµ pν =
E2

(1 + ax)2
− p2 = m2 . (29)

The first process describes the pair creation from the horizon in the Rindler spacetime
at x = −1/a. It is characterized by the Unruh temperature TU = a/2π:

exp

(

−2Im
∫

dx p(x)

)

= exp

(

−2πE

a

)

= exp

(

− E

TU

)

. (30)

One may expect that the ionization of an atom is also determined by the thermal bath
with the Unruh temperature.

However, there is also the local process of the ionization of an atom, which takes
place well inside the horizon at x ≪ 1/a. The trajectory of the nonrelativistic electron with
ǫ0 ≪ m

−ǫ0 =
p2(x)

2m
+ max , (31)

gives the following rate of ionization [26]:

exp

(

−4
√

2

3

ǫ0

a

( ǫ0

m

)1/2
)

. (32)

Since ǫ0 ≪ m, the local process of ionization essentially exceeds the rate of the thermal

ionization exp
(

− 2πǫ0
a

)

.

This happens because the existence of the atom violates the symmetry of the Rindler
spacetime and breaks the corresponding vacuum state. Again, we have the same Rindler
vacuum state in the accelerating frame, but in one case, the process is global and depends
only on acceleration, while in the other case, the physical presence of the classical observer
is important. The latter case is very similar to the local process of ionization in the de Sitter
spacetime, where the atom violates the symmetry of the de Sitter spacetime. However,
now, the violation of the symmetry is more crucial. As distinct from the de Sitter case, the
ionization does not look thermal, and thus, there is no doubling of the Unruh temperature.

7. Relation between Global and Local Processes in de Sitter Spacetime

We considered the local processes in the de Sitter, Rindler and Painleve–Gullstrand
spacetimes (the combined processes are considered in Ref. [27]). In all three cases, in
addition to the processes related to horizons, there are local processes that violate the
symmetries of these spacetime. The radiation in these local processes differs from the
processes determined by the corresponding Gibbons–Hawking, Unruh and Hawking
temperatures. Examples of local processes are the single-particle creation and the ionization
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of the atom. Both do not exist in pure vacuum states. These processes are only possible due
to the interaction of the quantum fields in the vacuum with external objects (the detector
or an atom). It is the presence of the detector that violates the symmetry of the empty
spacetime. Without the detector, the single-particle creation is impossible, and only the
creation of a pair of entangled particles is allowed, which corresponds to the Hawking and
Unruh radiation.

Among these three spacetimes, the de Sitter spacetime is specific since the local
process looks thermal, and the corresponding local temperature is related to the Hawking
temperature, Tloc = H/π = 2TH . This suggests that the Hawking radiation can be
represented as the correlated (cotunneling) creation of the entangled pair in the bath with
the local temperature T = 2TH :

exp

(

− E

2TH

)

exp

(

− E

2TH

)

= exp

(

− E

TH

)

. (33)

This connection between the two processes also suggests that in the presence of the
detector (or atom) the symmetry of the de Sitter spacetime partially survives. In the de
Sitter Universe, all the points in space are equivalent, and the position of the observer
may serve as the event horizon for some distant observers [18]. The observer at a given
point can see the Hawking radiation as the creation of two correlated particles according to
Equation (33). On the other hand, the far-distant observer will only see a single particle,
which comes from her/his horizon. For them, it will be the Hawking radiation with the
Hawking temperature TH .

This symmetry is also violated in the inflationary stage of the expansion of the Uni-
verse, which leads to a strong deviation from the thermal law except for the limit case
M ≪ H, where the Hawking temperature TH is obtained [28,29].

8. Conclusions

There is the connection between Equations (23) and (33) for the de Sitter spacetime
on one hand and the similar Equations (5) and (10) for the black hole horizon on the other
hand. In both cases, the temperature T = 2TH enters. However, the physics is different.

In the case of the PG black hole, there are two contributions to the tunneling process
of radiation, each governed by the temperature T = 2TH . They are coherently combined
to produce radiation with the Hawking temperature TH . This process can be traditionally
interpreted as the creation of a pair of two entangled particles, of which one goes towards
the center of the black hole, while the other one escapes from the black hole. The coherent
combination of the several processes, which gives rise to the product of probabilities, is
similar to the phenomenon of cotunneling in the electronic systems. In these condensed
matter systems, the electron experiences the coherent sequence of tunneling events: from an
initial to the virtual intermediate states and then to the final state [30,31], or two electrons
tunnel simultaneously (one tunnels from the intermediate to the final state and leaves the
intermediate state empty, and the other from the initial state to this empty state).

In the case of de Sitter spacetime, the temperature T = 2TH is physical. Instead of
the creation of the entangled pair, this local temperature describes the thermal creation
of a single (non-entangled) particle inside the cosmological horizon. The local processes
also take place outside of the black hole horizon and inside the Rindler horizon. The local
process is highly suppressed in the case of the black hole—see Equations (25) and (27)—but
is dominant in the case of the Rindler spacetime—see Equation (32).

How the local processes influence the thermodynamics of the de Sitter spacetime is
an open question [18], as well as the problem of the radiation during the de Sitter stage of
expansion [28,29,32–34].



Universe 2022, 8, 639 9 of 9

Funding: This work has been supported by the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation program (Grant Agreement No. 694248).

Acknowledgments: I thank E. Akhmedov for discussions.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Hooft, G.T. Ambiguity of the equivalence principle and Hawking’s temperature. J. Geom. Phys. 1984, 1, 45–52. [CrossRef]

2. Hooft, G.T. How studying black hole theory may help us to quantise gravity. arXiv 2022, arXiv:2211.10723.

3. Volovik, G.E. Simulation of Painleve-Gullstrand black hole in thin 3He-A film. JETP Lett./Pis’ma ZhETF 1999, 69, 662–668, 705–713.

4. Parikh, M.K.; Wilczek, F. Hawking radiation as tunneling. Phys. Rev. Lett. 2000, 85, 5042. [CrossRef] [PubMed]

5. Volovik, G.E. Particle decay in de Sitter spacetime via quantum tunneling. JETP Lett./Pis’ma ZhETF 2009, 90, 1–4, 3–6. [CrossRef]

6. Hawking, S.W. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199–220. [CrossRef]

7. Painlevé, P. La mécanique classique et la théorie de la relativité. Comptes Rendus Acad. Sci. 1921, 173, 677.

8. Gullstrand, A. Allgemeine Lösung des statischen Einkörper-problems in der Einsteinschen Gravitations-theorie. Arkiv. Mat.

Astron. Fys. 1922, 16, 1–15.

9. Volovik, G.E. Painlevé-Gullstrand coordinates for Schwarzschild-de Sitter spacetime. arXiv 2022, arXiv:2209.02698.

10. Barbado, L.C.; Barcelo, C.; Garay, L.J. Hawking radiation as perceived by different observers. Class. Quantum Grav. 2011,

28, 125021. [CrossRef]

11. Akhmedov, E.T.; Akhmedova, V.; Singleton, D. Hawking temperature in the tunneling picture. Phys. Lett. B 2006, 642, 124–128.

[CrossRef]

12. Mitra, P. Hawking temperature from tunnelling formalism. Phys. Lett. B 2007, 648, 240–242. [CrossRef]

13. Laxmi, Y.O.; Singh, T.I.; Meitei, I.A. Modified entropy of Kerr-de Sitter black hole in Lorentz symmetry violation theory. arXiv

2022, arXiv:2112.14545.

14. Singha, C.; Nanda, P.; Tripathy, P. Hawking radiation in multi-horizon spacetimes. arXiv 2022, arXiv:2206.06433.

15. Srinivasan, K.; Padmanabhan, T. Particle production and complex path analysis. Phys. Rev. D 1999, 60, 024007. [CrossRef]

16. Volovik, G.E. Varying Newton constant and black hole to white hole quantum tunneling. Universe 2020, 6, 133. [CrossRef]

17. Volovik, G.E. Effect of the inner horizon on the black hole thermodynamics: Reissner-Nordström black hole and Kerr black hole.

Mod. Phys. Lett. A 2021, 36, 2150177. [CrossRef]

18. Volovik, G.E. Macroscopic quantum tunneling: From quantum vortices to black holes and Universe. ZhETF 2022, 162, 449–454.

JETP 2022, 135, 388–408.

19. Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics, Volume 5, Statistical Physics; Pergamon: Oxford, UK, 1980.

20. Maxfield, H.; Zahraee, Z. Holographic solar systems and hydrogen atoms: Non-relativistic physics in AdS and its CFT dual.

JHEP 2022, 11, 093. [CrossRef]

21. Bros, J.; Epstein, H.; Moschella, U. Lifetime of a massive particle in a de Sitter universe. J. Cosmol. Astropart. Phys. 2008, 2008, 3.

[CrossRef]

22. Bros, J.; Epstein, H.; Gaudin, M.; Moschella, U.; Pasquier, V. Triangular invariants, three-point functions and particle stability on

the de Sitter universe. Commun. Math. Phys. 2010, 295, 261–288. [CrossRef]

23. Jatkar, D.P.; Leblond, L.; Rajaraman, A. Decay of massive fields in de Sitter space. Phys. Rev. D 2012, 85, 024047. [CrossRef]

24. Jannes, G. Hawking radiation of E < m massive particles in the tunneling formalism. JETP Lett. 2011, 94, 18–21.

25. Unruh, W.G. Notes on black-hole evaporation. Phys. Rev. D 1976, 14, 870. [CrossRef]

26. Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics, Volume 3, Quantum Mechanics: Non-Relativistic Theory; Published June 1st

1981 by Pergamon, Oxford; Pergamon: Oxford, UK, 1981.

27. Volovik, G.E. Particle creation: Schwinger + Unruh + Hawking. Pis’ma v ZhETF/JETP Lett. 2022, 116, 577–595. [CrossRef]

28. Starobinsky, A. Stochastic de Sitter (inflationary) stages in the Early Universe. In Lecture Notes in Physics; Springer:

Berlin/Heidelberg, Germany, 1986; Volume 246, pp. 107–126.

29. Starobinsky, A.A.; Yokoyama, J. Equilibrium state of a self-interacting scalar field in the de Sitter background. Phys. Rev. D 1994,

50, 6357. [CrossRef]

30. Feigel’man, M.V.; Ioselevich, A.S. Variable-range cotunneling and conductivity of a granular metal. JETP Lett. 2005, 81, 277–283.

[CrossRef]

31. Glazman, L.I.; Pustilnik, M. Low-temperature transport through a quantum dot, Lectures notes of the Les Houches Summer

School 2004. In Nanophysics: Coherence and Transport; Bouchiat, H., Gefen, Y., Guéron, S., Montambaux, G., Dalibard, J., Eds.;

Elsevier: Amsterdam, The Netherlands, 2005; pp. 427–478.

32. Polyakov, A.M. De Sitter space and eternity. Nucl. Phys. B 2008, 797, 199–217.

33. Polyakov, A.M. Infrared instability of the de Sitter space. arXiv 2012, arXiv:1209.4135.

34. Akhmedov, E.T. Lecture notes on interacting quantum fields in de Sitter space. Int. J. Mod. Phys. 2014, 23, 1430001. [CrossRef]

http://doi.org/10.1016/0393-0440(84)90013-5
http://dx.doi.org/10.1103/PhysRevLett.85.5042
http://www.ncbi.nlm.nih.gov/pubmed/11102182
http://dx.doi.org/10.1134/S0021364009130013
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1088/0264-9381/28/12/125021
http://dx.doi.org/10.1016/j.physletb.2006.09.028
http://dx.doi.org/10.1016/j.physletb.2007.03.002
http://dx.doi.org/10.1103/PhysRevD.60.024007
http://dx.doi.org/10.3390/universe6090133
http://dx.doi.org/10.1142/S0217732321501777
http://dx.doi.org/10.1007/JHEP11(2022)093
http://dx.doi.org/10.1088/1475-7516/2008/02/003
http://dx.doi.org/10.1007/s00220-009-0875-4
http://dx.doi.org/10.1103/PhysRevD.85.024047
http://dx.doi.org/10.1103/PhysRevD.14.870
http://dx.doi.org/10.1134/S0021364022601968
http://dx.doi.org/10.1103/PhysRevD.50.6357
http://dx.doi.org/10.1134/1.1931015
http://dx.doi.org/10.1142/S0218271814300018

	Introduction
	2TH Problem for Black Holes
	2TH Problem for White Holes
	2TH Problem in the de Sitter Spacetime
	Two Processes of the Black Hole Radiation
	Acceleration: Unruh Effect vs. Local Processes
	Relation between Global and Local Processes in de Sitter Spacetime
	Conclusions
	References

