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Abstract

A generalized Roger Ramanujan (GRR) type expression for the characters of A-type parafermions has 
been a long standing puzzle dating back to conjectures made regarding some of the characters in the 90s. 
Not long ago we have put forward such GRR type identities describing any of the level two ADE-type gen-
eralized parafermions characters at any rank. These characters are the string functions of simply laced Lie 
algebras at level two, as such, they are also of mathematical interest. In our last joint paper we presented 
the complete derivation for the D-type generalized parafermions characters identities. Here we general-
ize our previous discussion and prove the GRR type expressions for the characters of A-type generalized 
parafermions. To prove the A-type GRR conjecture we study further the q-diagrams, introduced in our last 
joint paper, and examine the diagrammatic interpretations of known identities among them Slater identities 
for the characters of the first minimal model, which is the Ising model, and the Bailey lemma.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Two dimensional theories comprised of a matter content which includes generalized 
parafermions have been the subject of many papers along the years. A prominent example 
that has attracted a lot of interest since the emergence of the AGT correspondence [1] is the 
N -th affine para-Toda theory [2,3]. First it was realized in [4–6] that CFTs with affine and 
Wk-symmetry are related to the instanton counting for the SU(N) gauge group of rank r = N −1. 
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This led the authors of [7] to extend the correspondence between instanton partition functions 
and conformal blocks of two-dimensional CFT’s to the case of N = 1 SUSY. In particular, it 
was found that the instanton partition function of the SU(2) Yang Mills theory evaluated on 
the Z2 symmetric instanton moduli space is related to super Liouville conformal blocks in the 
Whittaker limit. Interestingly, the symmetries of this model are the affine SU(2) at level two and 
the super-Virasoro symmetries. In search of further generalizations of the 4-d instanton partition 
function 2-d CFT correspondence web a new idea was proposed in [8]. Following M-theory 
interpretation of two M5-branes on R4/Z2 it was suggested that k M5-branes on R4/ZN realize 
a 2d theory with a free boson, the affine SU(N)k , and the N -th para-Wk symmetry. Naturally, 
this includes the standard Wk symmetry for N = 1 and super-Virasoro symmetry for k = N = 2
just mentioned. Finally, the N -th para-Wk algebra is the symmetry of the N -th para-Toda model 
of type SU(N), which has the action [9]

S(
SU(r + 1)k

U(1)r
) +

∫
d2x[∂u�∂u� +

r∑
i=0

�0
αi

�̄0
αi

exp(
b√
k
αi · �)] (1.1)

where � is a vector of r boson fields, αi are the simple roots of the affine SU(r + 1)k , b is 
related to the background charge and S(

SU(r+1)k
U(1)r

) stands for the formal action of the generalized 

parafermions ��
λ . As is implied above, generalized G(r)k type parafermions1 ��

λ are more 
generally defined as describing the excitations associated to the

H(G(r)k) = G(r)k

U(1)r
(1.2)

coset CFT [10] where, for our purposes, G(r)k = A(r)k, D(r)k, E(r)k is any of the simply laced 
affine Lie algebras of rank r and level k.

A daunting problem in the study of such theories, which include generalized parafermions 
in the matter content, is describing their partition functions and in particular the characters 
associated with the primary generalized parafermions. Indeed, until recently, the characters corre-
sponding to the generalized parafermion primaries were actually unknown. In a series of articles 
initiated by one of the authors and A. Belavin these have gradually been uncovered. First, the 
characters of SU(N)2 generalized parafermions were found in [12] via the ladder coset construc-
tion. Interestingly, it was shown that the A type parafermions theories of level two, at any rank, 
can be realized by a product theory of minimal models with particular combinations of the repre-
senting fields taken to insure modular invariance is preserved. This was followed by [13] where 
this program was generalized to all simply laced affine Lie algebras and the ADE generalized 
parafermions characters of level two at any rank were also found. More specifically, the authors 
of [12] considered the coset

A(k, r) =H× SU(r)k × SU(k)r × SU(k)n

SU(k)r+n

(1.3)

corresponding to the construction described above for the k M5-branes on R4/ZN instanton 
partition function. Where H stands for the Heisenberg algebra and n is given in terms of the 
Nekrasov parameters ε1,2 [14] as follows:

ε1 = n + r, ε2 = k − n − r. (1.4)

1 These were separately developed in mathematics as Z algebras [11].
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For two M5-branes on R4/ZN it was observed that, up to U(1) factors which enter trivially in 
the characters, the coset theory A(k, r) is described in a more illuminating fashion via the use of 
level–rank duality and the ladder coset construction

A(2, r)
mr+1
k1,...,kr ,kr+1

=
∑

m2,...,mr
mi+mi+1=ki+1 mod 2

r∏
i=2

SU(2)
mi−1
i−1 × SU(2)

ki

1

SU(2)
mi

i

× SU(2)
mr
r × SU(2)

kr+1
n

SU(2)
mr+1
n+r

(1.5)

where we denote by SU(2)sf the affine theory of level f and the representation of twice isospin s, 
0 ≤ s ≤ f . The indices ki = 0, 1 for i = 1, . . . , r + 1 while mi = 0, . . . , i, the summation is 
taken over mi for i = 2, . . . , r and we find it convenient to define m1 = k1. For n = 1 one can 
immediately identify this model as a product theory of the first r minimal models. Accordingly, 
the characters of the level two A type generalized parafermions were found to be given by a 
suitable sum over products of the minimal models characters

cl
k1,...,kr ,kr+1

=
∑

m2,...,mr
mi+mi+1=ki+1 mod 2

r∏
i=1

M(mi + 1,mi+1 + 1)i (1.6)

Here the characters of the i-th minimal model are denoted by Mi , these are well known

M(n,m)i = 1

η(q)

∑
s=0,1

(−1)s
λs(n,m),(i+2)(i+3)(q) (1.7)

where,

λs(n,m) = n(i + 3) − m(i + 2)(1 − 2s) (1.8)

and the theta functions at level h


λ,h(q) =
∑
l∈Z

qh(l+ λ
2h

)2
. (1.9)

Finally, using level–rank duality again for n = 1 in the ladder coset representation eq. (1.5)
one finds that this coset is equally described by the A-type generalized parafermions theory 
H(SU(r + 1)2).

Fascinating as this correspondence between the A type generalized parafermions and the prod-
uct of minimal theories may be, the characters are of a highly non-trivial mathematical structure 
which makes it particularly hard to use them for further applications. Actually, this type of prob-
lem is known in physics and its origin can be traced to the hexagon model studied by Baxter [15]. 
Specifically, in the one dimensional configuration sum, Baxter utilized the famous Ramanujan 
identity to find the local state probabilities. As we now know, in the RSOS models the one dimen-
sional sums are identical to the characters of a fixed point CFT in the appropriate regime [16,17]. 
This was later considerably further developed and leads to the conjecture that GRR identities 
exist for every CFT that appears as a fixed point. With this in mind the authors of [12] conjec-
tured and numerically verified GRR identities for the A type generalized parafermion characters. 
Furthermore, an ADE generalization for level two parafermions soon followed and also verified 
numerically in [13]. Finally, although only the ADE level two generalized parafermions charac-
ters were given exact analytical expressions, the corresponding GRR identities led to a conjecture 
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for the characters of generalized parafermions associated with any Lie algebras at any level and 
rank level [18].

The purpose of this paper is to provide a detailed proof for the GRR identities arising for the 
A type generalized parafermions characters. Naturally, it is the logical continuation of our work 
in [19] where we have proven the GRR identities arising for the level two D type parafermion 
characters of rank r . This was achieved by describing the GRR identities in terms of q-diagrams 
which were introduced as a general mathematical framework encapsulating all the mentioned 
identities. These q diagrams are made of connected nodes and an assortment of external lines, 
which can be thought of as a generalization of the Dynkin diagrams, highlighting the basic struc-
ture of their associated expression and can be shown to possess a symmetry, termed Q symmetry. 
In particular, Dynkin shape q diagrams encapsulate the associated Lie algebra Cartan matrix 
while Q symmetry can be realized as the associated Lie algebra Weyl symmetry [19]. In terms 
of q diagrams the GRR identities are represented by a simple correspondence:

Character of G2 type parafermion ⇔ G-shaped q-diagram

For the D-type parafermion characters this diagrammatic picture provided us with a much 
needed intuition to prove the correspondence. From the mathematical point of view, the corre-
spondence represents a family of new infinite series of GRR identities. While, from the physical 
point of view, it provides a relatively simple expression for the characters of D-type generalized 
parafermions. Furthermore, the language of q-diagrams revealed a deep connection between 
various well known identities. For example, the triple Jacobi identity and the Roger–Ramanujan 
identities were interpreted as the first two identities in an infinite diagrammatic series correspond-
ing to D shaped q diagrams with an assortment of external legs, which are naturally seen as the 
diagrammatic extension of these identities.

Indeed, as we shall soon see, following the diagrammatic intuition, furnishes a way to also 
prove the A-type parafermions GRR identities which provides some motivation for the still un-
proven E-type generalized parafermions GRR identities. As this program is similar in spirit to 
the D-type GRR identities proof let us quickly recall the steps and highlight the resemblance. The 
first step involved simplifying the coset model ladder representation of the D type generalized 
parafermion characters. The D-type generalized parafermion coset theory, in a similar fashion to 
the one presented here, was shown to be equivalent to a product theory of r − 1 bosons at various 
radii,

Ri = √
2i(i + 1). (1.10)

Indeed, the characters of the bosonic theory are also expressed in terms of a level h = R2/2 theta 
function presented above. To simplify the coset ladder representation of r − 1 free bosons it can 
be described by an equivalent theory of an r − 1 dimensional boson propagating on a lattice via 
the beta method. Actually, as the minimal models characters are also given by the theta function, 
albeit a subtraction of two such thetas, the beta method can be applied to the A-type ladder coset. 
This is the subject of section 3 where we show that the product theory of minimal models can 
be placed on a lattice Ã which, as it turns out, is a simple extension of the Ar root lattice. In-
deed, this step is crucial for our analysis and reveals a deeper relation to the D shaped diagrams 
which in turn will provide us with the main intuition for proving the A-type identities. Next, as 
in the D-type case, we will identify the GRR identities needed to prove the correspondence by 
giving diagrammatic interpretations for known identities. As these diagrammatic interpretations, 
evidently, provide a strong tool, section 4 is devoted to the diagrammatic interpretation of the 
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Bailly Lemma. This lemma is basically a mechanism for generating GRR identities the diagram-
matic interpretation of such a lemma is of particular interest and potentially leads to an infinite 
number of new diagrammatic interpretations and extensions of known identities. After deriving 
the diagrammatic Bailey lemma, we proceed to examine the Bailey pair used by Slater to prove 
the first A-type GRR identity corresponding to the character of the identity in the first minimal 
model, which is the Ising model. Extending Slater’s derivation is quite tedious and might appear 
ad hoc if it were not for the diagrammatic interpretation of the Bailey lemma which makes it ex-
tremely clear conceptually. Finally, the last two sections concentrate on generalizing the results 
to all characters of the A-type generalized parafermions theory.2

2. q-Diagrams

In our last paper [19], we have introduced q-diagrams as a tailor made tool to prove the 
GRR identities corresponding to the SO(2r)2 string functions. Furthermore, we have motivated 
the use of q-diagrams to study the level two string functions for any simply laced algebra. One 
particular nice feature of q-diagrams is their associated Q-symmetry. In particular, for Dynkin 
q-diagrams corresponding to any Lie algebra, it was shown that this symmetry can be realized as 
the corresponding Weyl symmetry. This already implies that the SU(r + 1) q-diagrams indeed 
have the right symmetry structure to describe the SU(r + 1) level two string functions. In our 
work regarding the SO(2r) diagrams it was evident that the diagrammatic picture for the string 
functions, gives a highly non-trivial intuition as to how one can attack the problem at hand. Let 
us recall the diagrammatic rules for constructing q-diagrams. Using the Gr Dynkin diagram we 
introduce a set of diagrammatic rules. First, assign to each node at the Dynkin diagram some 
“momenta” bi such that i corresponds to the number of the node. In addition, assign a momenta 
�i for each external line connected to the i-th node. Next, we prescribe a set of diagrammatic 
rules,

i. for each node = q
b2
i
/2

(q)bi
.

ii. for each internal line connecting the i-th and j -th nodes = q−bibj /2.
iii. for each external line of momenta �i connected to the i-th node = q−�ibi/2.
iv. for each dashed line connecting bi and bj = qbibj /2.
v. sum over all nodes moments = ∑∞

bi=0
1
2 (1 + (−1)bi+Qi ).

Where, for now, let us consider � = ∑
�iωi any weight with integer Dynkin labels greater or 

equal to zero while Q = ∑
Qiαi is any root vector of Gr . Additionally, we introduce the q

Pochhammer symbol defined as:

(a, q)n =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n−1∏
l=0

(1 − aql) n > 0

1 n = 0
−n−1∏
l=0

1/(1 − aq−1−l) n < 0

, (2.1)

2 The reader might recall that the mentioned correspondence, refers strictly to characters associated with fundamental 
weights. For the case at hand we note that these provide all the characters of the theory due to identifications via the 
external automorphism of SU(r).
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which we will often abbreviate (a, q)n ≡ (a)n. Following these diagrammatic rules one can 
easily construct the expressions corresponding to any simply laced Lie algebra Dynkin shaped 
q-diagram. These are denoted by Gr(�, Q), which in the context of q-diagrams, specifies the 
shape or internal momenta, length, external momenta and parity restriction of the corresponding 
q-diagram. For our current purpose, consider the q-diagram corresponding to the SU(4) algebra 
with an external momenta corresponding to the second fundamental weight

A3(ω2,Q) = (Q) (2.2)

where the diagram contains 3 nodes of which the second node is blacked as a short hand notation 
for an external momenta corresponding to a fundamental weight ωi . Following the diagrammatic 
rules the corresponding fermionic sum is given by

A3(ω2,Q) =
∞∑

bi=0
bi=Qi mod 2

q
1
2 (b2

1−b1b2+b2
2−b2b3+b2

3−b2)

(q)b1(q)b2(q)b3

, (2.3)

here the summation is taken over all nodes for non-negative integers with parity restriction spec-
ified by the Q root vector, i.e. bi ∈ Qi + 2Z≥0.

In diagrammatic language our conjecture for the level two simply laced string functions boils 
down to a correspondence between the SU(r +1) q-diagrams and the H(SU(r +1)) coset theory 
characters namely,

(Q) = H(SU(r + 1))
ωi

Q (2.4)

where the diagram on the left hand side contains r nodes, of which the i-th node is darkened 
as a shorthand notation for an external momenta corresponding to the SU(r + 1) fundamental 
weight ωi . On the right hand side, H(SU(r + 1))

ωi

Q is a renormalized character, corresponding 
to the level two coset theory H(SU(r + 1)). These are related to the characters presented in the 
introduction via the dimension

� = h
wi

0 − c/24 (2.5)

where c is the H(SU(r +1)) coset central charge and hwi

0 is the fractional dimension correspond-
ing to the coset field labeled by (ωi, 0). In general,

h�
Q = (�,� + 2ρ)

2(k + g)
− (� − Q)2

2k
mod 1 (2.6)

where g denotes the dual Coxeter number, ρ = ∑
ωi is the Weyl vector and k is the level. It 

should be noted that our conjecture agrees with various results and conjectures known in the 
literature. For example, the case of � = 0 this agrees with the conjecture which was put forwards 
in Ref. [20]. While for G = A1 this reproduces the result of Ref. [11].

In an effort to keep our current discussion self contained let us give a short review of some 
results derived in [19]. One of the more remarkable observations concerning q-diagrams in gen-
eral is their relation to various well known identities. Indeed, studying the identities due to Jacobi 
and Ramanujan, one finds these can be manipulated to be described by various q-diagrams. Thus, 
implying these identities are only the first in an infinite such series of diagrammatic identities. 
In particular, this observation led us to prove the complete series which in turn encapsulated all 
the identities needed to prove and extend the level two D-type parafermion characters q-diagram 
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correspondence to all dominant highest weights of level two. Indeed, diagrammatic interpretation 
provides a strong tool. Let us recall the diagrammatic representation of the Euler identity

sQ(−sq(1−z)/2)∞ =
∞∑

n=0

q(n2−zn)/2sn+Q

(q)n
= z (Q + sQ̄), (2.7)

which relates the Euler identity and the single node q-diagram associated with a general external 
momenta z and the parity restriction Q, where Q̄ = Q + 1. As we shall find, this interpretation 
will come in handy when we discuss the diagrammatic interpretation of the Bailey lemma.

Although not trivially, we shall find the Dr diagrams corresponding to the non twisted con-
tribution are relevant to our current discussion. Actually, these q-diagrams are the diagrammatic 
extension of the famous Jacobi triple identity which is given the diagrammatic interpretation

ψ2
2n2,Q1

= 2n2 (Q+ + Q−) (2.8)

where on the RHS Q+ = (Q1, 0), Q− = (1 − Q1, 1) and the diagram includes the so called 
dashed lines corresponding to negative external momenta. While on the LHS

ψ2
2n2,Q1

= (q)−1∞
∞∑

n1=−∞
n1∈Z+Q1/2

q2n2
1−2n1n2 = 1

2

∑
s=±1

sQ1(−sq1/2−n2)∞(−sq1/2+n2)∞ (2.9)

corresponds to the Jacobi theta function. The diagrammatic extension is achieved via the study 
of the D3 diagram with a similar arrangement of external momenta. Indeed, after some manipu-
lation this diagram obeys the diagrammatic recursion relation

b 2n3 (Q+ + Q−)

= (q)−1∞
∞∑

n2=−∞
n2∈Z+Q2/2

q2n2
2−2n2n3 b 2n2 (Q+ + Q−) (2.10)

which allows one to diagrammatically extend the Jacobi identity. In particular, recall the 
Dr(�, Q) diagram

Dr(�)(Q+ + Q−) = b
a (Q+ + Q−) (2.11)

where the external momenta lines are specified by an SO(2r) weight � = bω1 + a(ωr−1 −
ωr) while the summation parity restrictions are specified by the SO(2r) roots Q+ = (Q1, . . . ,
Qr−1, 0) and Q− = (Q1, . . . , 1 − Qr−1, 1). In our previous paper we found this diagram to be 
given by,
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Dr(�)(Q+ + Q−)

=
∞∑

{ni }=−∞
n1∈Z,ni∈2Z+Qi

q
1
4 n2− 1

2 n1b− 1
2 nr−1a

(q)r−1∞

∑
s1=±1

1

2
s
Q1+n1
1 (−s1q

(1−b+n2)/2)b, (2.12)

where n = ∑
niαi and Q = ∑

Qiαi are roots of SU(r), the summation is over ni for i =
1, . . . , r − 1 under the restriction ni = Qi mod 2 for i = 2, . . . , r − 1 and no restriction for 
n1. On the other hand, one may expect on physical grounds that the various identities related to 
the twisted contributions are irrelevant. As this is indeed the case we shall simply denote the Dr

diagrams according to the SU(r) root Q which should be understood as the combination of Q+
and Q−.

3. The SU(r + 1)2 string functions as bosonic sums

We mentioned in the introduction that the expression for the SU(r + 1)/U(1)r coset charac-
ters, given via the ladder coset construction, implies a relation to the SO(2r)/U(1)r coset studied 
in [19]. Following the ladder coset construction, the SU(r + 1)/U(1)r characters of eq. (1.6) are 
basically given by a summing over various products of theta functions which sit on an r dimen-
sional lattice denoted L and spanned by

εi = √
2(i + 2)(i + 3)ei, ei · ej = δij , (3.1)

with integer coefficients. Indeed, this lattice is the same as the one studied in [13] albeit with a 
different initial condition. To make this relation explicit, first let us also define the dual lattice 
L−1 spanned by

ζi · εj = δij , ζi = 1√
2(i + 2)(i + 3)

ei . (3.2)

Additionally, in what follows we find it more convenient to redefine the ki variables, appearing in 
the character of the product theory associated to the A-type generalized parafermions eq. (1.6), 
such that the parity restrictions for the mi’s are simply mi = ki mod 2,

cl
k1,...,kr ,kr+1

=
∑

m2,...,mr
mi=ki mod 2

r∏
i=1

M(mi + 1,mi+1 + 1)i (3.3)

note that this leaves k1 = m1 and mr+1 completely general, additionally, we define l = mr+1 as 
well as ni = mi +1 for i = 1, . . . , r +1. Using these definitions, the SU(r +1)/U(1)r characters 
can be written as a generalized theta function,

cl
k1,...,kr

= η(q)−r
∑

n2,...,nr
ni=1+ki mod 2

∑
{s}

∑
a∈L

(−1)s1+...+sr q
1
2 (a+λ)2

(3.4)

where the summation over the L lattice corresponds to a = ∑r
i=1 aiεi and summing over all 

integer ai while si = 0, 1 for i = 1, . . . , r and ni ≤ i + 1. Finally, the different contributions 
associated with the various fields appearing in the character are labeled by

λ({n1
i }, {s1

i }) =
r∑

i=1

λi(ni, ni+1, si)ζi ,

λi(ni, ni+1, si) = ni(i + 3) − ni+1(i + 2)(1 − 2si), (3.5)
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where, recall, that we have defined m1 = k1. Next, to mimic the construction of putting r single 
bosonic orbifolds at various radii on a lattice we use the beta method. Let us first introduce the 
character corresponding to a theory of r bosons propagating on a some r dimensional lattice M

χ�,M = η(q)−r
∑
m∈M

q
1
2 (m+�)2

(3.6)

where the lattice M (or root lattice) is spanned by the original lattice L and the beta vectors βj

for j = 2, . . . , r , the dual lattice M−1 (or weight lattice) is spanned by ωi and accordingly m =
L +∑r

i=2 miβ
i ∈ M while � = ∑r

i=1 �iωi ∈ M−1. Our objective is to match the two characters, 
with this in mind, consider the coset primary field associated with the lowest dimensional field 
of every minimal model in the product theory, i.e. ni = ki + 1 and si = 0 for i = 1, . . . , r . To 
include its contribution we take,

� = λ({n1}, {s1}) ≡ λ1 (3.7)

where {n1} = n1, 1 + k2, . . . , 1 + kr , nr+1 and {s1} = 0, . . . , 0, sr denote a specific set of values 
and λj = ∑

λ
j
i ζi stands for λ at the set of values specified by sets {nj } and {sj }. Additionally, to 

get the correct descendent structure corresponding to the first minimal model or equivalently the 
trivial product theory, i.e. r = 1, obviously we should set β1 = ε1. To find the remaining beta vec-
tors first set βj = ∑r

i=1 β
j
i εi with βj

i non-integer coefficients, � = λ1 and λj = ∑
i λ

j
i

εi

ε2
i

. Next, 

we demand the contribution of further r − 1 fields are matched individually for each minimal 
model in the product theory,

(� + βj )2 = λj2 ⇒ β
j
i = λ

j
i − λ1

i

ε2
i

, (3.8)

where closure under the OPE of the bosonic algebra guarantees the exact matching of all other 
fields appearing in the character eq. (3.4). Solving these equations for some j = 2, . . . , r choices 
of λj we find the corresponding βj . Clearly, these equations alone do not completely determine 
� and β as we only get quadratic equations. Indeed, one should complement these equations 
with the crucial demand that � ∈ M−1 while βj ∈ M ,

βj · βj ∈ 2Z, βi · βj ∈ Z, � · βj ∈ Z (3.9)

so that our theory will be modular invariant. As we will verify explicitly our choices for the 
various solutions of the quadratic equations above will satisfy these conditions.

To solve the beta equations consider the fields corresponding to {sj } = {s1} for j = 2, . . . , r
while nj

i = n1
i + 2δi,j where i = 1, . . . , r + 1, note that these choices leave n1, nr+1 and sr

completely general.3 Let us give some explanation for this choice as it allows us to find the 
beta vectors for any rank and is of some physical importance. For simplicity consider the case 
where all ni = 1, as we have mentioned above this corresponds to demanding that the identity 
representative of all models are matched. Now, consider our choice for nj

i with j > 1. Here, we 
simply take the identity field for all models in the product theory with the exception of the j − 1
and the j model. This just mimics the sum over the first intermediate representation in the coset 
ladder representation of the A-type parafermion coset (see eq. (3.3)).

3 Since n2 ≤ 3 this choice is only possible for k2 = 0, however due to the coset symmetries our result also applies for 
k2 = 1.
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Using eq. (3.5) we find the corresponding λj
i are given by

λ
j
i = λ1

i + 2δi,j (i + 3) − 2δi+1,j (i + 2), (3.10)

where since j < r + 1 we used δi+1,j (1 − 2s1
i ) = δi+1,j . The beta vectors are then given by 

eq. (3.8),

βj = 1

j + 2
(εj − εj−1), (3.11)

for j = 2, . . . , r and β1 = ε1. Finally, to verify the first two restrictions in eq. (3.9) define the 
matrix

Bij = βi · βj = 2

⎛
⎜⎜⎝

12 −3 .. 0
−3
: Ar−1
0

⎞
⎟⎟⎠ (3.12)

which is calculated using eqs. (3.1), (3.11). To verify the last condition we write � using the dual 
lattice. This is done by first expressing εi via eq. (3.11),

εi =
i∑

j=2

(j + 2)βj − β1 (3.13)

and using βj = ∑r
l=1 Bjlωl

εi =
r∑

l=1

ωl(

i∑
j=2

(j + 2)Bjl − B1l ). (3.14)

Next, following the explicit form of B one finds,

i∑
j=2

(j + 2)Bjl − B1l = 2(i + 3)δi,l − 2(i + 2)δi,l−1 (3.15)

so that for i = 2, .., r

εi = 2(i + 3)ωi − 2(i + 2)ωi+1 (3.16)

where we define ωr+1 = 0 while ε1 = 24ω1 − 6ω2. To express � we use eq. (3.5)

� =
∑

λ1
i ζi = 1

2

r∑
i=1

(
n1

i

i + 2
− n1

i+1(1 − 2s1
i )

i + 3
)εi (3.17)

which after some algebra involving eqs. (3.13), (3.16) is given by,

� = 4ω1n1 − ω2n1 − ωrnr+1(1 − 2s) + 1

2

r∑
i=2

niβ
i, (3.18)

where from here on, to ease the discussion, we drop the sr index. Indeed, manifestly � ∈ M−1
B

and the last restriction in eq. (3.9) is satisfied. To conclude we find the characters corresponding 
to the SU(r + 1)/U(1)r coset theory are equivalent to the subtraction of the two characters 
corresponding to two product theories of r free bosons propagating on the lattice MB .
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Finally, to facilitate calculations in the proceedings we define,

α̃i = 1√
2
βr+1−i , ω̃i = √

2ωr+1−i , ki → kr+1−i (3.19)

so that α̃i · ω̃j = δij and the corresponding extension of the SU(r) Cartan matrix is simply Ãi,j =
1
2Br+1−i,r+1−j . As usual, the fundamental weights, denoted ω̃i , are defined as the dual basis and 
their product is given by,

ω̃i · ω̃j = Ã−1
ij . (3.20)

With these definitions one has,

cl
k1,...,kr

= η(q)−r
∑

s=0,1

∑
m∈ñ+2M

Ã

(−1)sq
1
4 (m+�̃)2

, (3.21)

where �̃ = ω̃1(l + 1)(2s − 1) − nrω̃r−1 + 4nrω̃r and ñ = ∑r−1
i=1 niα̃i .

Finally to make the connection with the H(Dr) coset consider shifting the summation by the 
root vector,

ṽ =
∑

viα̃i , vi = δir (kr − 2s + 1) + (2s − 1)(l + 1 − Min(i, l)) (3.22)

Actually, assuming l ≤ r − 1, we also have ṽ ∈ M−1
Ã

ṽ = (l + 1)(2s − 1)ω̃1 + (1 − 2s)ω̃l + (2s − 1 − 3kr)ω̃r−1 + (12kr + 3 − 6s)ω̃r . (3.23)

Additionally, when shifting m = n − ṽ the resulting summation clearly depends only on Q̃ =
ṽ + ñ mod 2M

Ã

Q̃ =
∑

Q̃i α̃i , Q̃i = δij kj − l + Min(i, l) (3.24)

which is independent of s. Shifting the summation we find the bosonic sum expression corre-
sponding to characters of the H(SU(r + 1)2) coset theory is given by,

cl

Q̃
= η(q)−r

∑
s=0,1

∑
n∈Q̃+2M

Ãr

(−1)sq
1
4 (n−�̃s )

2
, (3.25)

where �̃s = (1 − 2s)ω̃l + (2s − 2Q̃r )ω̃r−1 + (8Q̃r − 1 − 6s)ω̃r .
To conclude we would like to relate these characters to the underlying SU(r + 1) Lie algebra. 

Primary fields in our coset theory are labeled by a level 2 dominant highest weight � of the 
SU(r + 1) algebra and an element of the SU(r + 1) root lattice Q. To make the connection 
we simply match the corresponding fractional dimension. The fractional dimension of the coset 
theory primary labeled by a fundamental weight is calculated from eq. (2.6) and the SU(r + 1)

Cartan matrix,

h
ωi

Q = i(r + 1 − i)

4(r + 3)
− 1

2
Qi − 1

4
Q2 mod 1 (3.26)

where note that here Q ∈ MA. On the other hand, for the dimension appearing in the minimal 
models product theory one must add the contributions of the eta function and the theory central 
charge denoted c,

dl
˜ = 1

(�̃s + Q̃)2 + c − r
mod 1 (3.27)
Q 4 24
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where c = r(r + 1)/(r + 3). After a careful calculation one finds,

1

4
�̃2

s = l(r + 1 − l)

4(r + 3)
+ r

12(r + 3)
+ (s − Q̃r )

2 (3.28)

let us first concentrate on Q̃ = 0. Collecting the contribution from the eta function and the central 
charge the fractional dimension,

dl
0 = l(r + 1 − l)

4(r + 3)
mod 1, (3.29)

along with the identification l ↔ ωl , exactly matches that of the coset theory. To complete the 
matching consider a general Q̃, the additional contributions to the fractional dimension are given 
by

1

2
�̃sQ̃ + 1

4
Q̃2 = 1

2
Q̃l − 1

2
Q̃r +

∑
ij

1

4
Q̃iÃij Q̃j mod 1. (3.30)

Finally, following the extended Cartan matrix Ãij observe,

1

2
Ã12 = 1

2
A12 mod 1,

1

4
Ã11 = 0 mod 1 (3.31)

additionally, modulo one we may use 1
2Q̃r = − 1

4ArrQ
2
r to find

1

2
�̃sQ̃ + 1

4
Q̃2 = 1

2
Q̃l +

∑
ij

1

4
Q̃iAij Q̃j mod 1 (3.32)

comparing this with the coset dimension eq. (3.26) we can identify Q̃i = Qi so that the fractional 
dimensions are in complete agreement for all fields in the theory. To conclude the bosonic sum 
representation corresponding to fundamental weights characters of the H(SU(r + 1)2) coset 
theory labeled by the fundamental weights of SU(r + 1), denoted by ωi , along with an element 
of the SU(r + 1) root lattice Q are given by,

c
ωi

Q = η(q)−r
∑

s=0,1

∑
n∈Q̃+2M

Ãr

(−1)sq
1
4 (n−�̃s )

2
(3.33)

where M
Ãr

denotes the root lattice corresponding to the extended SU(r) matrix Ãr , Q̃ = ∑
Qiα̃i

and �̃s = (1 − 2s)ω̃i + (2s − 2Qr)ω̃r−1 + (8Qr − 1 − 6s)ω̃r are a root and a weight of Ãr

respectively.
Actually, as we shall soon find, the SU(r + 1) diagrams are equivalent to the level two char-

acters only up to some dimension. With this in mind we introduce,

H
ωi

Q = q−�c
ωi

Q = (q)−r∞
∑

s=0,1

∑
n∈Q̃+2M

Ãr

(−1)sq
1
4 n2− 1

2 n�̃s+ds , (3.34)

where � = h
wi

0 − c/24 and ds = (Qr − s)2 are some dimensions, which guarantee Hωi

Q corre-
sponds exactly to SU(r) q-diagrams.

With this result at hand, we can now observe the so called relation to the SO(2r) q-diagrams as 
well as gain some diagrammatic intuition regarding the identities needed to prove our conjecture. 
Indeed, note that the bosonic sum representation for the H(SU(r + 1)) coset or equivalently the 
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minimal models product theory contains the bosonic sum appearing in eq. (2.12). More specifi-
cally, consider � = 0,

H 0
Q =

∑
s=0,1

(q)−1∞
∑

nr∈Qr+2Z

q3n2
r −nr�s,r /2+ds (−1)s(q)−r+1∞

×
∑

n∈Q+2MAr−1

qn2/4−nr−1(�s,r−1+3nr )/2. (3.35)

One then immediately finds the following diagrammatic expression for H 0
Q,

H 0
Q =

∑
s=0,1

(q)−1∞
∑

nr∈Qr+2Z

q3n2
r −nr�s,r /2+ds (−1)s �s,r−1+3nr (Q).

(3.36)

However, this is not quite the diagrammatic expression we are looking for, nonetheless, this result 
implies the relation,

∑
s=0,1

(q)−1∞
∑

nr∈Qr+2Z

q3n2
r −nr�s,r /2+ds (−1)s b �s,r−1+3nr (Qr−1)

= b (Q). (3.37)

with Q = (Qr−1, Qr) from which our conjecture would immediately follow. How could one go 
about finding such a relation? Some intuition is given by examining Slater original proof [21]
for the simplest identities corresponding to SU(2)2, i.e. the one node diagrams A1(�, Q). The 
reader might recall that the one node diagram was an integral part of our work regarding the 
Dr(�, Q) diagrams, where, using the Euler identity it was already solved. However, solving the 
A1 diagrams, using the Euler identity, one does not find the desired expression eq. (3.34) but an 
alternative expression. Indeed, in her work Slater utilizes the Bailey pairs mechanism rather than 
the Euler identity to solve the one node diagram. Following this intuition let us first review the 
Bailey pairs mechanism from a diagrammatic point of view and then return to the zero momenta 
diagrams.

4. Bailey pairs and q-diagrams

Studying Rogers famous identities, Bailey made a simple observation. Given that αL, .., δL

are sequences satisfying,

βL =
L∑

r=0

αruL−rvL+r and γL =
∞∑

r=L

δrur−Lvr+L (4.1)

where one refers to a pair of sequences satisfying the first relation, as a Bailey pair, while a pair 
of sequences, satisfying the second relation, is referred to as a conjugate Bailey pair. For such 
sequences one finds,

∞∑
αLγL =

∞∑
βLδL, (4.2)
L=0 L=0
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which is a simple manner of replacing βL (or equivalently γL) and interchanging the sums. 
Clearly, one should impose convergence conditions for the definition of γL, and for the inter-
change of sums, to be meaningful. Following this observation Bailey, chose uL = 1/(q)L and 
vL = 1/(aq)L and employed the q-Saalschutz summation [22] to find,

γL = (c)L(d)L(aq/cd)L

(aq/c)L(aq/d)L

1

(q)M−L(aq)M+L

,

δL = (c)L(d)L(aq/cd)L

(aq/c)M(aq/d)M

(aq/cd)M−L

(q)M−L

, (4.3)

are a conjugate Bailey pair. Although Bailey considered this pair only in the M → ∞ limit, it 
was later noted by Andrews [23,24] that, since (q)−n → ∞ for any positive n, by substituting 
this conjugate pair into eq. (4.2) the resulting equation has the same form as the defining relation 
of a Bailey pair relative to a,4

M∑
L=0

(c)L(d)L(aq/cd)L

(aq/c)M(aq/d)M

(aq/cd)M−LβL

(q)M−L

=
M∑

L=0

(c)L(d)L(aq/cd)LαL

(aq/c)L(aq/d)L

1

(q)M−L(aq)M+L

(4.4)

where one can identify the LHS as β ′
L and the first fraction on the RHS as α′

L. This mechanism 
for producing Bailey pairs, developed by Andrews, has many application and is usually referred 
to as the Bailey chain. Following Bailey let us consider the M → ∞ limit,

∞∑
L=0

(c)L(d)L(aq/cd)LβL = (aq/c)∞(aq/d)∞
(aq/cd)∞(aq)∞

∞∑
L=0

(c)L(d)L(aq/cd)LαL

(aq/c)L(aq/d)L
. (4.5)

This result has been extensively used by Slater to prove many of Rogers identities and has 
benefited both mathematicians and physicists alike. In particular we will use this result when 
reviewing Slater proof for the A1 diagram.

Although not immediately apparent, let us show this relation can be given a rather intriguing 
diagrammatic interpretation. First, using the Pochhammer identities,

(c)n = (−c)nqn(n−1)/2

(q/c)−n

and (c)n = (c)∞
(cqn)∞

, (4.6)

to replace all the finite Pochhammer symbols on both sides,

(aq/cd)∞
∞∑

L=0

(q1−L/c)∞(q1−L/d)∞aLqL2
βL

= 1

(aq)∞

∞∑
L=0

(aq1+L/c)∞(aq1+L/d)∞(q1−L/c)∞(q1−L/d)∞aLqL2
αL (4.7)

Next, for our purposes, consider a = 1, q so that one can replace a → qa where a = 0, 1. Addi-
tionally, with no loss of generality, replace c → −scq

(1+c+a)/2 where sc = ±1 and similarly for 

4 Relative to a meaning α(a, q) and β(a, q).
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d → −sdq(1+d+a)/2. These redefinitions are motivated by the following observation. Consider, 
for example, the first Pochhammer on the LHS using eq. (2.7),

(−scq
(1−c−a−2L)/2)∞ =

∑
Q1=0,1

sQ1
c c+a+2L (Q1). (4.8)

Replacing all the L dependent Pochhammer symbols in eq. (4.7) we find,

(scsdq−(c+d)/2)∞
∑
Q

sQ1
c s

Q2
d

∞∑
L=0

qL2+LaβL a+2L

c

d

(Q)

= 1

(q1+a)∞

∑
Q

sQ1+Q2
c s

Q3+Q4
d

∞∑
L=0

qL2+LaαL a+2L

c

d

(Q) (4.9)

where we label the nodes from top to bottom, Q = (Q1, .., Qr) such that r is the length of 
the associated diagram and the summation is over Qi = 0, 1 for i = 1, . . . , r , i.e. all possible 
parity restrictions. Having found a diagrammatic interpretation for eq. (4.7) one can write down 
a diagrammatic identity for any Bailey pair. Furthermore, observing the D2 diagrams one may 
use the SO(2r) diagrammatic recursion relation, eq. (2.10), to find an infinite number of new 
identities relating Bailey pairs or equivalently an infinite number of new conjugate Bailey pairs. 
Finally, although we have assumed a = 1, q this is just a matter of convenience and one can 
easily consider any a.

For the purpose of proving our conjecture it is enough to consider the diagrammatic Bailey 
pair relation (eq. (4.9)) in the d → −∞ limit,

∑
Q1

sQ1
c

∞∑
L=0

qL2+LaβL a+2L c (Q)

= 1

(q1+a)∞

∑
Q

sQ1+Q2
c

∞∑
L=0

qL2+LaαL a+2L c (Q) (4.10)

This expression can be simplified by summing over 
∑

sc=±1 s
Q′

1
c to find,

∞∑
L=0

qL2+LaβL a+2L c (Q1) = 1

(q1+a)∞

∞∑
L=0

qL2+LaαL a+2L c (Q1)

(4.11)

where we relabel Q′
1 → Q1 while, as explained in section 2, the D2 diagram on the RHS con-

tains two nodes and Q1 should be understood as Q+ + Q−. At this point the reader might note 
the similarities between this relation and eq. (3.37). Indeed, in the next section, we find an ap-
propriate Bailey pair to prove eq. (3.37) and subsequently our conjecture for the zero momenta 
diagrams.

5. The zero momenta diagrams

Rogers identities for the characters of the H(SU(2)2) coset theory, better known as the first 
Minimal model M(3, 4), or the Ising model, relate these characters with the A1(�, Q) diagrams. 
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In particular the characters of the Ising model are given by eq. (3.34),

H 0
Q = (q)−1∞

∑
s=0,1

∑
n∈Q+2Z

q3n2−n·�s/2+ds (−1)s (5.1)

where,

�s = 8Q − 1 − 6s and ds = (Q − s)2 (5.2)

Slater [25] obtained the corresponding Rogers identities by using the following Bailey pairs,

βn α0 α3n−1 α3n α3n+1 a

qn2
/(q)2n 1 −q3n2−n q3n2−n + q3n2+n −q3n2+n 0

qn2+n/(q2)2n 1 q3n2−2n q3n2+2n −q3n2+4n+1 − q3n2+2n 1

(5.3)

where, when using these pairs, one should be mindful as to set α0 = 1 for both cases. Addition-
ally, Slater considered eq. (4.11) in the c → ∞ limit,

∞∑
L=0

qL2+LaβL = 1

(q1+a)∞

∞∑
L=0

qL2+LaαL. (5.4)

Indeed, putting the Bailey pairs of eq. (5.3) into this relation one finds (after a bit of algebra),

H(SU(2)2)
0
Q = (Q) (5.5)

Which clearly agrees with our conjecture for the H(SU(2)2) characters. To extend this result and 
prove our conjecture, one simply needs to consider the Bailey pairs of eq. (5.3) for a general c, as 
is implied by the diagrammatic form of eq. (4.11). More specifically, note that generally βL(a)

can written as,

βL = qL2+La

(q1+a)2L

. (5.6)

Then one finds,

qL2+LaβL = q2L2+2La

(q1+a)2L

(5.7)

which can be put in a diagrammatic form by simply redefining a + 2L = b, using

(q)n+a = (q)a(q
1+a)n (5.8)

and noting that a2 = a to find,

qL2+LaβL = q−a/2(q)a
qb2/2

(q)b
(1 + (−1)b+a) (5.9)

which, following our diagrammatic rules, when summed over b, exactly produces one node. 
Subsequently the LHS of eq. (4.11) is given by,

∞∑
qL2+LaβL a+2L c (Q1) = q−a/2(q)a c (Q) (5.10)
L=0
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with Q = (Q1, a) which up to a multiplicative factor exactly matches the expected relation 
eq. (3.37) with a = Q2. The RHS is a bit more tedious, let us first denote

a+2L c (Q1) = Da+2L (5.11)

where Da = D−a which amounts to exchanging the two nodes and noting that the combination 
of Q+ + Q− is symmetric under this exchange. Replacing L = 3n + j and using the notation 
introduced above,

∞∑
L=0

qL2+LaαLDa+2L =
∞∑

n=0

1∑
j=−1

q9n2+3n(2j+a)+j (j+a)α3n+jDa+6n+2j , (5.12)

where α(a)−1 = 0. To proceed recall α(a)0 = 1 while αL(a), where a = 0, 1 and L > 0, can be 
written as,

αL(a) =

⎧⎪⎨
⎪⎩

(−1)1+aq3n2−n(1−3a) L = 3n − 1 + a

(−1)aq3n2
(qn(5a−1)+a + qn(1+a)) L = 3n + a

(−1)1+aq3n2+n(1−3a) L = 3n + 1 − 2a

(5.13)

and consider the contribution of j = a

∞∑
n=0

q9n2+9na+2aα3n+aD3a+6n =
∞∑

n=1−a

D3a+6n(−1)aq12n2+n(14a−1)+3a

+
∞∑

n=0

D3a+6n(−1)aq12n2+n(1+10a)+2a (5.14)

where we separate the sums to keep α0 = 1. At this point, one may note, that the sums appearing 
here range over positive n while the sum appearing on the LHS of eq. (3.37) ranges over both 
negative and positive n. This motivates substituting n → −n − a for the first sum,

∞∑
n=1−a

D3a+6n(−1)aq12n2+n(14a−1)+3a =
−1∑

n=−∞
D3a+6n(−1)aq12n2+n(1+10a)+2a (5.15)

where we have used the diagram symmetry D−a = Da . Indeed, combining the two sums we find,

∞∑
n=0

q9n2+9na+2aα3n+aD3a+6n =
∞∑

n=−∞
(−1)aq12n2+n(1+10a)+2aD3a+6n. (5.16)

Next, consider the contribution of j = a − 1, 1 − 2a,

∞∑
n=1−a

q9n2+1−a+3n(3a−2)α3n+a−1D6n+3a−2 +
∞∑

n=a

q9n2+1−a+3n(2−3a)α3n+1−2aD6n−3a+2

= (−1)a+1q1−a
( ∞∑

n=1−a

q12n2+n(12a−7)D6n+3a−2 +
∞∑

n=a

q12n2+n(7−12a)D6n−3a+2

)
.

(5.17)



A. Genish, D. Gepner / Nuclear Physics B 907 (2016) 154–179 171
As for the j = a contribution, this can be written as one sum ranging over both positive and 
negative integers,

∞∑
n=1−a

q9n2+1−a+3n(3a−2)α3n+a−1D6n+3a−2 +
∞∑

n=a

q9n2+1−a+3n(2−3a)α3n+1−2aD6n−3a+2

=
∞∑

n=−∞
(−1)a+1q12n2+n(7−2a)+1−aD6n−a+2 (5.18)

by changing n → (2a − 1)n at the first sum while changing n → (1 − 2a)n at the second sum 
and using the diagram symmetry. Finally, collecting these results one finds,

1

(q1+a)∞

∞∑
L=0

qL2+LaαLDa+2L

= (q)a

(q)∞

∑
s=0,1

∞∑
n=−∞

(−1)sq12n2+n(1+6s+4a)+s(1+a)D6n+a+2s (5.19)

Indeed, by changing 2n + a → n so that n ∈ a + 2Z, this matches the RHS of eq. (3.37)

1

(q1+a)∞

∞∑
L=0

qL2+LaαL a+2L c (Q1)

= q−a/2(q)a

(q)∞

∑
s=0,1

∞∑
n=−∞
n∈a+2Z

q3n2−n(8a−1−6s)/2+(a−s)2
(−1)s 3n+2s−2a c (Q1)

(5.20)

again up to q−a/2(q)a and a = Q2. Thus, equating the two sides (eqs. (5.10), (5.20)) we find the 
expected relation eq. (3.37). As discussed in section 3, using this relation in eq. (3.36) proves the 
conjectured identity for the zero momenta diagrams,

H(SU(r + 1)2)
0
Q = (Q) (5.21)

Before we proceed consider the non-zero momenta characters,

H
ωi

Q =
∑

s=0,1

(q)−r∞
∑

nr∈Qr+2Z

q3n2
r −nr�s,r /2+ds (−1)s

×
∑

n∈Q+2MAr−1

qn2/4−ni�s,i/2−nr−1(�s,r−1+3nr )/2 (5.22)

As discussed in our previous paper, for any weight belonging to the weight lattice of SU(r) one 
can define

�s,iωi + (�s,r−1 + 3nr)ωr−1 = n − aωr−1 (5.23)

where n is a root of SU(r). Thus, the inner sum appearing here can be replaced with 
Dr(aω−, Q + n) i.e. the zero momenta diagram with some external line. However, contrary 
to the zero momenta diagrams, we expect to find the Ar(ωi, Q) diagram for which the i-th node 
is black. Clearly, using the zero momenta Dr diagram does not produce black nodes. Instead, 



172 A. Genish, D. Gepner / Nuclear Physics B 907 (2016) 154–179
let us consider the Ar diagrams corresponding to � = ωi , for i = 1, . . . , r − 2. These diagrams 
clearly include the A2(bω1, Q) diagrams and one can apply eq. (3.37) to find,

(Q) =
∑

s=0,1

(q)−1∞

×
∑

nr∈Qr+2Z

q3n2
r −nr�s,r /2+ds (−1)s �s,r−1+3nr (Q)

(5.24)

where both diagrams contain r nodes of which the i-th node is black. Additionally, following 
the convention set in section 2 the Q vector associated with the Dr diagram is given by Q =
(Q1, . . . , Qr−1) and should be understood as the combination Q+ + Q−. This relation leads to 
the conclusion that to prove our conjecture for the Ar(ωi, Q) diagrams one should find a bosonic 
sum representation for the Dr(ωi + aω−, Q) diagrams. Accordingly, in the following section, 
we first study these diagrams which were not studied in our paper regarding the Dr diagrams.

6. The Dr fundamental weights diagrams

Consider the Dr diagrams appearing in eq. (5.24), clearly for any i < r − 2 one can use the 
diagrammatic recursion relation eq. (2.10). However, eventually one comes across the following 
D3 diagram,

D3(�)(Q+ + Q−) = b a (Q+ + Q−) (6.1)

where � = (1 + b)ω1 + aω−. Actually, we can continue the reduction via the diagrammatic 
recursion relation, but this procedure will introduce new diagrams, specifically the D3(bω1 +
aω− + ω+) diagram. Instead, let us take a closer look at the bosonic sum representation given 
by eq. (2.12)

D3(�,Q) =
∞∑

{ni }=−∞
n1∈Z,n2∈2Z+Q2

q
1
4 n2− 1

2 n1(1+b)− 1
2 n2a

2(q)2∞

∑
s1=±1

s
Q1+n1
1 (−s1q

(1−b−1+n2)/2)b+1.

(6.2)

To avoid running into new diagrams, one may try to write this diagram in terms of D3 diagrams 
with external lines specified by a weight of the form bω1 + cω− with some c. For this purpose 
shift n → n − α2,

D3(�,Q) =
∞∑

{ni }=−∞
n1∈Z,n2∈2Z+Q2+1

q
1
4 n2− 1

2 n1b− 1
2 n2(a+2)+ 1

2 (1+a)

2(q)2∞

×
∑

s1=±1

s
Q1+n1
1 (−s1q

(1−b+n2)/2−1)b+1. (6.3)

To proceed note that following the Pochhammer symbol definition,

(−s1q
(1−b+n2)/2−1)b+1 = (−s1q

(1−b+n2)/2)b(1 + s1q
(n2−1−b)/2). (6.4)
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Indeed, replacing the Pochhammer symbol with this expression we find,

b a (Q)

= q
1
2 (1+a)

⎛
⎝b a+2 (Q2) + q− 1

2 (1+b)
b a+1 (Q1)

⎞
⎠ , (6.5)

where Q1 = Q + α1 + α2 and Q2 = Q + α2. If we regard the D3 diagram as the tail of some 
Dr(aω− + ωr−2), i.e. b = br−3, we find the following diagrammatic relation

a(Q)

= q
1
2 (1+a)

(
a+2 (Q2) + q− 1

2 a+1 (Q1)

)
, (6.6)

where all diagrams contain r nodes while Q1 = Q +αr−2 +αr−1 and Q2 = Q +αr−1. A bosonic 
sum representation for the first diagram that appears on the RHS is then given by eq. (2.12)

Dr

(
(a + 2)ω−,Q2

) =
∞∑

{ni }=−∞
n∈Q2+2MAr−1

q
1
4 n2− 1

2 nr−1(a+2)

(q)r−1∞
, (6.7)

additionally, shifting n = l + αr−1 we find

Dr

(
(a + 2)ω−,Q2

) =
∞∑

{ni }=−∞
n∈Q+2MAr−1

q
1
4 n2− 1

2 nr−2− 1
2 nr−1a− 1

2 (a+1)

(q)r−1∞
. (6.8)

Finally, using this result in eq. (6.6),

Dr(ωr−2 + aω−,Q)

=
∞∑

{ni }=−∞
n∈Q+2MAr−1

q
1
4 n2− 1

2 nr−2− 1
2 nr−1a

(q)r−1∞
+ qa/2Dr

(
ωr−3 + (a + 1)ω−,Q1

)
, (6.9)

so that the diagram corresponding to � = ωr−2 + aω− and Q is given in terms of a bosonic sum 
and the diagram corresponding to ωr−3 + (a + 1)ω− and Q1.

To find a similar relation for � = ωi + aω− with i = 1, . . . , r − 2, consider eq. (6.9) summed 
over a in the following manner

(q)−1∞
∑

a∈Qr+2Z

qa(a−c)/2. (6.10)

The sum appearing on the LHS then exactly matches the recursion relation eq. (2.10),

(q)−1∞
∑

qa(a−c)/2Dr(ωr−2 + aω−,Q) = Dr+1(ωr−2 + cω−,Q) (6.11)

a∈Qr+2Z
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with Q = (Q1, . . . , Qr−1, Qr). For the RHS the first term is easilywritten as,

(q)−1∞
∑

a∈Qr+2Z

qa(a−c)/2
∞∑

{ni }=−∞
n∈Q+2MAr−1

q
1
4 n2− 1

2 nr−2− 1
2 nr−1a

(q)r−1∞

=
∞∑

{ni }=−∞
n∈Q+2MAr

q
1
4 n2− 1

2 nr−2− 1
2 nrc

(q)r∞
. (6.12)

Finally, for the second sum shift l = a + 1,

∑
a∈Qr+2Z

qa(a−c+1)/2

(q)∞
Dr

(
ωr−3 + (a + 1)ω−,Q2

)

=
∑

l∈Qr+1+2Z

ql(l−1−c)/2+c/2

(q)∞
Dr

(
ωr−3 + lω−,Q2

)
(6.13)

The resulting sum matches the recursion relation, furthermore the solution is given by,

∑
a∈Qr+2Z

qa(a−c+1)/2

(q)∞
Dr

(
ωr−3 + (a + 1)ω−,Q2

)
= qc/2Dr+1

(
ωr−3 + (c + 1)ω−,Q2

)
(6.14)

which is the same expression with a replaced with c, an additional node in the diagram and 
Q2 = Q + αr−2 + αr−1 + αr . To conclude we find,

Dr+1(ωr−2 + cω−,Q)

=
∞∑

{ni }=−∞
n∈Q+2MAr

q
1
4 n2− 1

2 nr−2− 1
2 nrc

(q)r∞
+ qc/2Dr+1

(
ωr−3 + (c + 1)ω−,Q2

)
, (6.15)

which is clearly viable for any r , thus effectively moves the black nodes one node back. As this 
process can be repeated we find the following diagrammatic relation,

a (Q)

=
∞∑

{ni }=−∞
n∈Q+2MAr−1

q
1
4 n2− 1

2 ni− 1
2 nr−1a

(q)r−1∞
+ qa/2

a+1 (Q1) (6.16)

with Q some SU(r) root while Q1 = Q + ∑r−1
l=i αl , which is a recursive relation relating dia-

grams of � = ωi + aω− with diagrams of � = ωi−1 + (a + 1)ω−. Since we have a bosonic sum 
representation for the i = 0 diagram Dr(aω−, Q) we can apply this relation repeatedly to find a 
bosonic sum representation for any i = 0, . . . , r − 2,
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a (Q)

=
i∑

l=0

q
1
4 l(l−1)+ 1

2 la

∞∑
{ni }=−∞

n∈Ql−2MAr−1

q
1
4 n2− 1

2 ni−l− 1
2 nr−1(a+l)

(q)r−1∞
(6.17)

where n0 = 0 and Ql is defined by the recursion relation,

Ql+1 = Ql +
r−1∑

j=i−l

αj (6.18)

and the initial condition Q0 = Q. We have thus found an infinite number of new q sums 
identities corresponding to bosonic sum representations for any Dr(ωi + aω−, Q) diagram for 
i = 0, 1, . . . , r − 2. As discussed in the previous section, these identities are intimately related to 
the Ar(ωi, Q) diagrams. Indeed, these will furnish a way to prove the conjectured identities for 
the Ar(ωi, Q) diagrams which are the subject of the next section.

7. The Ar non-zero momenta diagrams

Following up on our discussion in the end of section 5, one can use the bosonic sum descrip-
tion for the Dr diagrams to find a bosonic sum for any of the Ar diagrams. More specifically, 
recall eq. (5.24) which we reproduce for convenience,

(Q)

∑
s=0,1

(q)−1∞
∑

nr∈Qr+2Z

q3n2
r −nr�s,r /2+ds (−1)s �s,r−1+3nr (Q)

(7.1)

where,

�s,r−1 = 2s − 2Qr, �s,r = (8Qr − 1 − 6s), ds = Qr(1 − 2s) + s. (7.2)

To replace the Dr diagram with the bosonic description of eq. (6.17) simply take a = �s,r−1 +
3nr to find,

Ar(ωi,Q) = (q)−r∞
∑

s=0,1

i∑
l=0

(−1)s
∞∑

{ni }=−∞
n∈Q̃l+2M

Ãr

q
1
4 n2− 1

2 nλ̃s,l+hs,l (7.3)

where hs,l is some dimension, λs,l is a weight and Q̃l is a root of Ãr defined as,

λs,l = ω̃i−l + ω̃r−1(�s,r−1 + l) + ω̃r (�s,r − 3l), (7.4)

hs,l = ds + 1

2
l�s,r−1 + 1

4
l(l − 1),

Q̃l =
r−1∑

Ql,i α̃i + Qrα̃r .
i=1
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Indeed, we find that all the Ar diagrams can be written as a bosonic sum, however examining the 
bosonic sum we found using the Beta method in section 3 eq. (3.34) one can immediately note 
that the sum appearing here is of a slightly different form. More specifically, the bosonic sum, 
eq. (7.3), includes an additional sum over l = 0, . . . , i. This implies that, for our conjecture to be 
true, the sum for Ar should behave as a telescopic sum in l for any i so that all terms apart from 
two will cancel. Following this intuition let us first define,

Gr(λs,l, hs,l , Q̃l) = (q)−r∞
∞∑

{ni }=−∞
n∈Q̃l+2M

Ãr

q
1
4 n2− 1

2 nλ̃s,l+hs,l . (7.5)

This is motivated by the following symmetry,

Gr(λs,l, hs,l , Q̃l) = Gr(λs,l + β,hs,l + 1

2
βλs,l + 1

4
β2, Q̃l + β) (7.6)

which is a simple consequence of translating n by β where β ∈ M
Ãr

. Let us now examine, on 
one hand, our expression for the Ar diagrams,

Ar(ωi,Q) =
∑

s=0,1

i∑
l=0

(−1)sGr(λs,l, hs,l, Q̃l). (7.7)

While, on the other hand, our expression for the SU(r) string functions, eq. (3.34), in terms of 
Gr

H
ωi

Q =
∑

s=0,1

(−1)sGr(�̃s, ds, Q̃). (7.8)

Indeed, for these two sums to be equivalent one should find that in eq. (7.7) all Gr ’s cancel but 
one for each value of s. Explicitly, we would like to show

Gr(λ1,l , h1,l , Q̃l) = Gr(λ0,l+1, h0,l+1, Q̃l+1). (7.9)

Following the symmetry eq. (7.6), this equality holds if

λ0,l+1 − λ1,l = Q̃l+1 − Q̃l mod 2M
Ãr

, (7.10)

h0,l+1 − h1,l = 1

4
λ2

0,l+1 − 1

4
λ2

1,l .

For this purpose, first consider

λ0,l+1 − λ1,l = ω̃i−l−1 − ω̃i−l − ω̃r−1 + 3ω̃r . (7.11)

Next, using the extended Cartan matrix Ã eq. (3.12) and our definition for Q̃l one can easily find,

Q̃l+1 − Q̃l =
r−1∑

j=i−l

α̃j = ω̃i−l − ω̃i−l−1 + ω̃r−1 − 3ω̃r , (7.12)

so that

Q̃l+1 − Q̃l = λ1,l − λ0,l+1, (7.13)
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and the first condition in eq. (7.10) is satisfied. To verify the second condition note,

h0,l+1 − h1,l = Qr − 1 − 1

2
l. (7.14)

While the RHS is easily calculated by using,

λ2
0,l+1 − λ2

1,l = −(λ1,l + λ0,l+1)(Q̃l+1 − Q̃l) (7.15)

and α̃i · ω̃j = δij . Indeed, one finds that the second condition is also satisfied so that eq. (7.9)
holds and we arrive at the following expression for the non-zero momenta diagrams,

Ar(ωi,Q) = Gr(λ0,0, h0,0, Q̃0) − Gr(λ1,i , h1,i , Q̃i). (7.16)

Trivially, the first term appearing here is the same as the first term appearing in eq. (7.8) as,

λ0,0 = �̃0, h0,0 = d0, Q̃0 = Q̃. (7.17)

That the second term is equivalent to the one in eq. (7.8) simply follows from the symmetry 
discussed above. First, consider

λ1,i − �̃1 = ω̃i + i(ω̃r−1 − 3ω̃r ). (7.18)

To show that the first condition is satisfied, we write Q̃i − Q̃0 as a telescopic sum and use 
eq. (7.12),

Q̃i − Q̃0 =
i−1∑
l=0

(Q̃l+1 − Q̃l) = ω̃i + i(ω̃r−1 − 3ω̃r ). (7.19)

To verify the second condition note that in terms of the simple roots we have,

Q̃i − Q̃0 =
r−1∑
l=1

Min(i, l)α̃l . (7.20)

Using this expression one can derive

λ2
1,i − �̃2

1 = (λ1,i + �̃1)(Q̃i − Q̃0) = i(i − 1) + 2i�̃1,r−1. (7.21)

On the other hand, h1,i − d1 is calculated via the definitions eqs. (7.2), (7.4). To conclude we 
find,

λ1,i − �̃1 = Q̃i − Q̃0 (7.22)

h1,i − d1 = 1

4
(λ2

1,i − �̃2
1)

So that,

Gr(λ1,i , h1,i , Q̃i) = Gr(�1, d1, Q̃), (7.23)

and we arrive at the conjectured correspondence between generalized level two A-type 
parafermion characters and SU(r + 1) q-diagrams,

(Q) = H(SU(r + 1))
ωi

Q . (7.24)
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8. Discussion

As we have pointed out along the way, the discussion above can be generalized to construct 
infinitely many new series of identities of multiple sums. They also provide an alternative deriva-
tion for some well known one sum identities, let us now sketch how this is done by considering 
a few interesting cases. The main point of the this discussion is to try to clarify the mathematical 
and physical interpretations of q-diagrams, as such, we will mainly use diagrammatic arguments 
and not give a full presentation of the mathematics.

Let us first consider the most general two node diagram, one could try to solve the diagram 
by first preforming the sum over the first node using the Euler identity, we find,∑

Q1=0,1

wQ1A2(b, c,Q1,Q)

= �
∑

n=Q/2 mod Z

q
3
2 n2− 1

2 n(b+2c)−d(b,Q)

(q)2n

(wq
1
2 (1+b+Q))

n− Q
2
(−w)n− Q

2 (8.1)

where w = −1, 1 so that 
∑

Q1
wQ1(1 + (−1)Q1+b1) = 2wb1 . Let’s consider this sum, in the 

sections above we have only calculated this diagram for b or c equal to zero, nonetheless it 
should be clear that one can solve either nodes in the diagram thus we can produce the result 
for both c = 0 or b = 0. The origin of this family of identities arising from the A2 diagram can 
be traced, to the best of our knowledge, to Rogers. Actually, we know of at least three identities 
which arise for simple values of b, c and Q that appear in page 17 of [26] which obey b+Q = 1.5

Using the identities found above one can reproduce these identities and generalize this series at 
least for either c = 0 or b = 0.

A natural question in our context is whether one can give some CFT interpretation for the two 
node diagram. In particular, consider the case c = b = Q = 0, one might be tempted to interpret 
the � appearing here as the character of the “integrated out” fermion. Actually, it is given by

� = (wq1/2)∞ (8.2)

i.e. the one node which is again just a fermion. At this point the reader might conclude that, 
for this to make any sense, the sum above should also be associated with some CFT charac-
ter. Furthermore, since to begin with we started with a fermion and the second minimal model, 
one expects that this CFT should be the second minimal model with c = 7/10. Indeed, as they 
should, these identities arising from the decomposition of the two node q-diagram, precisely 
matches the characters of the second minimal model. Clearly, this means that we are simply de-
composing the lattice minimal model theory we have constructed in section 3 using the boson 
construction provided by the beta method, albeit, from the so called fermionic side of the GRR. 
What can be learned from this process, to answer this question consider the beta method proce-
dure we have used in section 3. This is a familiar story, locality in the form of modular invariance 
highly restricts the allowed solutions, in other words the beta method is telling one how to cou-
ple the different theories in such a way that one gets a bona fide CFT. Next say we start with 
an interacting bosonic CFT, can one decompose this model as to get a well defined CFT. This is 
a much more difficult question, however, clearly if this interacting theory “origin” is a product 

5 For example, b = 1, c = Q = 0.
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theory then such a decomposition is possible, indeed, this has allowed us to decompose or con-
struct the bosonic characters sector by sector. To conclude, the beta method, for product theories 
with bosonic type characters, provides with a two way renormalization flow in the space of the-
ories with bosonic characters. With this in mind let us observe our results, we have found that 
by decomposing a node out of a q diagram we were able to extract a fermionic character. This 
consideration seems to imply that for those theories for which the characters can be described 
by any connected or non-connected q-diagram a “fermionic” renormalization flow is possible 
and is described by decomposing the q diagram. Of course this suggestion needs to be carefully 
examined and a good place to start would be to try and mimic the beta method construction in a 
fermionic fashion using the q-diagram construction.
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