Available online at www.sciencedirect.com

ScienceDirect NUCLEAR[Z]
PHYSICS

CrossMark

ELSEVIER Nuclear Physics B 907 (2016) 154-179
www.elsevier.com/locate/nuclphysb

The SU(r), string functions as g-diagrams

Arel Genish, Doron Gepner *

Department of Particle Physics, Weizmann Institute, Rehovot, Israel

Received 2 January 2016; received in revised form 14 March 2016; accepted 17 March 2016

Editor: Stephan Stieberger

Abstract

A generalized Roger Ramanujan (GRR) type expression for the characters of A-type parafermions has
been a long standing puzzle dating back to conjectures made regarding some of the characters in the 90s.
Not long ago we have put forward such GRR type identities describing any of the level two ADE-type gen-
eralized parafermions characters at any rank. These characters are the string functions of simply laced Lie
algebras at level two, as such, they are also of mathematical interest. In our last joint paper we presented
the complete derivation for the D-type generalized parafermions characters identities. Here we general-
ize our previous discussion and prove the GRR type expressions for the characters of A-type generalized
parafermions. To prove the A-type GRR conjecture we study further the g-diagrams, introduced in our last
joint paper, and examine the diagrammatic interpretations of known identities among them Slater identities
for the characters of the first minimal model, which is the Ising model, and the Bailey lemma.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Two dimensional theories comprised of a matter content which includes generalized
parafermions have been the subject of many papers along the years. A prominent example
that has attracted a lot of interest since the emergence of the AGT correspondence [1] is the
N-th affine para-Toda theory [2,3]. First it was realized in [4-6] that CFTs with affine and
Wi-symmetry are related to the instanton counting for the SU(N) gauge group of rank r = N — 1.

¥ Corresponding author.
E-mail addresses: Arel.genish@weizmann.ac.il (A. Genish), Doron.gepner @weizmann.ac.il (D. Gepner).

http://dx.doi.org/10.1016/j.nuclphysb.2016.03.021
0550-3213/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.


http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.nuclphysb.2016.03.021
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/4.0/
mailto:Arel.genish@weizmann.ac.il
mailto:Doron.gepner@weizmann.ac.il
http://dx.doi.org/10.1016/j.nuclphysb.2016.03.021
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2016.03.021&domain=pdf

A. Genish, D. Gepner / Nuclear Physics B 907 (2016) 154—179 155

This led the authors of [7] to extend the correspondence between instanton partition functions
and conformal blocks of two-dimensional CFT’s to the case of N = 1 SUSY. In particular, it
was found that the instanton partition function of the SU(2) Yang Mills theory evaluated on
the Z, symmetric instanton moduli space is related to super Liouville conformal blocks in the
Whittaker limit. Interestingly, the symmetries of this model are the affine SU(2) at level two and
the super-Virasoro symmetries. In search of further generalizations of the 4-d instanton partition
function 2-d CFT correspondence web a new idea was proposed in [8]. Following M -theory
interpretation of two M5-branes on R4/Z, it was suggested that k M 5-branes on R4/Zy realize
a 2d theory with a free boson, the affine SU(N), and the N-th para-Wj symmetry. Naturally,
this includes the standard Wy symmetry for N = 1 and super-Virasoro symmetry fork =N =2
just mentioned. Finally, the N-th para-Wj algebra is the symmetry of the N-th para-Toda model
of type SU(N), which has the action [9]

S( Uy )+/dx[aucbaucb—i-g\l/ai\llmexp(ﬁa, D)] (1.1)

where @ is a vector of r boson fields, ¢; are the simple roots of the affine SU(r + 1), b is
related to the background charge and § (SUU(r(fr)l)k) stands for the formal action of the generalized
parafermions \Il)f\ As is implied above, generalized G(r); type parafermions' \I’){\ are more
generally defined as describing the excitations associated to the

G(r)i
Uy

coset CFT [10] where, for our purposes, G(r)x = A(r)r, D(r)r, E(r)i is any of the simply laced
affine Lie algebras of rank r and level k.

A daunting problem in the study of such theories, which include generalized parafermions
in the matter content, is describing their partition functions and in particular the characters
associated with the primary generalized parafermions. Indeed, until recently, the characters corre-
sponding to the generalized parafermion primaries were actually unknown. In a series of articles
initiated by one of the authors and A. Belavin these have gradually been uncovered. First, the
characters of SU(N), generalized parafermions were found in [12] via the ladder coset construc-
tion. Interestingly, it was shown that the A type parafermions theories of level two, at any rank,
can be realized by a product theory of minimal models with particular combinations of the repre-
senting fields taken to insure modular invariance is preserved. This was followed by [13] where
this program was generalized to all simply laced affine Lie algebras and the ADE generalized
parafermions characters of level two at any rank were also found. More specifically, the authors
of [12] considered the coset

H(G(r)) = (1.2)

_ SU(k), x SUk),
Ak, r) =H x SU@r )i x SO (1.3)

corresponding to the construction described above for the k M5-branes on Ry4/Zy instanton
partition function. Where H stands for the Heisenberg algebra and n is given in terms of the
Nekrasov parameters €1 3 [14] as follows:

eg=n+r, e=k—n-—r. (1.4)

1 These were separately developed in mathematics as Z algebras [11].
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For two M5-branes on R4/Zy it was observed that, up to U(1) factors which enter trivially in
the characters, the coset theory A(k, r) is described in a more illuminating fashion via the use of
level-rank duality and the ladder coset construction

A2, r)mr+l Kok

rsKr+1

~ Z LSUQM x SUR) _SUQ x SU@r s
e i=2 SU@);" sUQ)

mi+m;41 k,+1 mod 2

where we denote by SU (2)} the affine theory of level f and the representation of twice isospin s,
0 <s < f. The indices k; =0,1 fori =1,...,r + 1 while m; =0, ..., i, the summation is
taken over m; fori =2, ...,r and we find it convenient to define m| = k{. For n = 1 one can
immediately identify this model as a product theory of the first » minimal models. Accordingly,
the characters of the level two A type generalized parafermions were found to be given by a
suitable sum over products of the minimal models characters

.
Chroy = > [[MOni +1.migy + 1) (1.6)

my,..., my i=1
m,'+mi+1=k,~+1 mod 2

Here the characters of the i-th minimal model are denoted by M;, these are well known

M(n,m); = ﬁ Z (=1 Os (nm). (142)1+3) (@) (1.7)
where,
A, m) =n(i +3) —m( +2)(1 —2s) (1.8)
and the theta functions at level &
Oun(g) =Y g+, (1.9)
leZ

Finally, using level-rank duality again for n = 1 in the ladder coset representation eq. (1.5)
one finds that this coset is equally described by the A-type generalized parafermions theory
H(SU®r + 1)2).

Fascinating as this correspondence between the A type generalized parafermions and the prod-
uct of minimal theories may be, the characters are of a highly non-trivial mathematical structure
which makes it particularly hard to use them for further applications. Actually, this type of prob-
lem is known in physics and its origin can be traced to the hexagon model studied by Baxter [15].
Specifically, in the one dimensional configuration sum, Baxter utilized the famous Ramanujan
identity to find the local state probabilities. As we now know, in the RSOS models the one dimen-
sional sums are identical to the characters of a fixed point CFT in the appropriate regime [16,17].
This was later considerably further developed and leads to the conjecture that GRR identities
exist for every CFT that appears as a fixed point. With this in mind the authors of [12] conjec-
tured and numerically verified GRR identities for the A type generalized parafermion characters.
Furthermore, an ADE generalization for level two parafermions soon followed and also verified
numerically in [13]. Finally, although only the ADE level two generalized parafermions charac-
ters were given exact analytical expressions, the corresponding GRR identities led to a conjecture
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for the characters of generalized parafermions associated with any Lie algebras at any level and
rank level [18].

The purpose of this paper is to provide a detailed proof for the GRR identities arising for the
A type generalized parafermions characters. Naturally, it is the logical continuation of our work
in [19] where we have proven the GRR identities arising for the level two D type parafermion
characters of rank r. This was achieved by describing the GRR identities in terms of g-diagrams
which were introduced as a general mathematical framework encapsulating all the mentioned
identities. These g diagrams are made of connected nodes and an assortment of external lines,
which can be thought of as a generalization of the Dynkin diagrams, highlighting the basic struc-
ture of their associated expression and can be shown to possess a symmetry, termed Q symmetry.
In particular, Dynkin shape g diagrams encapsulate the associated Lie algebra Cartan matrix
while Q symmetry can be realized as the associated Lie algebra Weyl symmetry [19]. In terms
of g diagrams the GRR identities are represented by a simple correspondence:

Character of G, type parafermion < G-shaped g-diagram

For the D-type parafermion characters this diagrammatic picture provided us with a much
needed intuition to prove the correspondence. From the mathematical point of view, the corre-
spondence represents a family of new infinite series of GRR identities. While, from the physical
point of view, it provides a relatively simple expression for the characters of D-type generalized
parafermions. Furthermore, the language of g-diagrams revealed a deep connection between
various well known identities. For example, the triple Jacobi identity and the Roger—Ramanujan
identities were interpreted as the first two identities in an infinite diagrammatic series correspond-
ing to D shaped g diagrams with an assortment of external legs, which are naturally seen as the
diagrammatic extension of these identities.

Indeed, as we shall soon see, following the diagrammatic intuition, furnishes a way to also
prove the A-type parafermions GRR identities which provides some motivation for the still un-
proven E-type generalized parafermions GRR identities. As this program is similar in spirit to
the D-type GRR identities proof let us quickly recall the steps and highlight the resemblance. The
first step involved simplifying the coset model ladder representation of the D type generalized
parafermion characters. The D-type generalized parafermion coset theory, in a similar fashion to
the one presented here, was shown to be equivalent to a product theory of » — 1 bosons at various
radii,

Ri =/2i(i + 1). (1.10)

Indeed, the characters of the bosonic theory are also expressed in terms of a level # = R?/2 theta
function presented above. To simplify the coset ladder representation of r — 1 free bosons it can
be described by an equivalent theory of an » — 1 dimensional boson propagating on a lattice via
the beta method. Actually, as the minimal models characters are also given by the theta function,
albeit a subtraction of two such thetas, the beta method can be applied to the A-type ladder coset.
This is the subject of section 3 where we show that the product theory of minimal models can
be placed on a lattice A which, as it turns out, is a simple extension of the A, root lattice. In-
deed, this step is crucial for our analysis and reveals a deeper relation to the D shaped diagrams
which in turn will provide us with the main intuition for proving the A-type identities. Next, as
in the D-type case, we will identify the GRR identities needed to prove the correspondence by
giving diagrammatic interpretations for known identities. As these diagrammatic interpretations,
evidently, provide a strong tool, section 4 is devoted to the diagrammatic interpretation of the
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Bailly Lemma. This lemma is basically a mechanism for generating GRR identities the diagram-
matic interpretation of such a lemma is of particular interest and potentially leads to an infinite
number of new diagrammatic interpretations and extensions of known identities. After deriving
the diagrammatic Bailey lemma, we proceed to examine the Bailey pair used by Slater to prove
the first A-type GRR identity corresponding to the character of the identity in the first minimal
model, which is the Ising model. Extending Slater’s derivation is quite tedious and might appear
ad hoc if it were not for the diagrammatic interpretation of the Bailey lemma which makes it ex-
tremely clear conceptually. Finally, the last two sections concentrate on generalizing the results
to all characters of the A-type generalized parafermions theory.”

2. g-Diagrams

In our last paper [19], we have introduced g-diagrams as a tailor made tool to prove the
GRR identities corresponding to the SO(2r); string functions. Furthermore, we have motivated
the use of g-diagrams to study the level two string functions for any simply laced algebra. One
particular nice feature of g-diagrams is their associated Q-symmetry. In particular, for Dynkin
g-diagrams corresponding to any Lie algebra, it was shown that this symmetry can be realized as
the corresponding Weyl symmetry. This already implies that the SU(r + 1) g-diagrams indeed
have the right symmetry structure to describe the SU(r + 1) level two string functions. In our
work regarding the SO(2r) diagrams it was evident that the diagrammatic picture for the string
functions, gives a highly non-trivial intuition as to how one can attack the problem at hand. Let
us recall the diagrammatic rules for constructing g-diagrams. Using the G, Dynkin diagram we
introduce a set of diagrammatic rules. First, assign to each node at the Dynkin diagram some
“momenta” b; such that i corresponds to the number of the node. In addition, assign a momenta
A; for each external line connected to the i-th node. Next, we prescribe a set of diagrammatic
rules,

] b7 /2
i. for each node = Z—.
(@b,

ii. for each internal line connecting the i-th and j-th nodes = ¢
iii. for each external line of momenta A; connected to the i-th node = ¢
iv. for each dashed line connecting b; and b; = ¢"%i/2.

v. sum over all nodes moments = Z,‘f:o %(1 + (—1)bit 2y,

—bib; /2
—Aib;)2

Where, for now, let us consider A = > A;w; any weight with integer Dynkin labels greater or
equal to zero while Q =Y Q;¢; is any root vector of G,. Additionally, we introduce the ¢
Pochhammer symbol defined as:

n—1
[1(1 —agh n>0
=0
(@, q)n =141 n=0, 2.1
—n—1

[T 1/0—=ag™ " n<0
=0

2 The reader might recall that the mentioned correspondence, refers strictly to characters associated with fundamental
weights. For the case at hand we note that these provide all the characters of the theory due to identifications via the
external automorphism of SU(r).
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which we will often abbreviate (a, q), = (a),. Following these diagrammatic rules one can
easily construct the expressions corresponding to any simply laced Lie algebra Dynkin shaped
g-diagram. These are denoted by G,(A, Q), which in the context of g-diagrams, specifies the
shape or internal momenta, length, external momenta and parity restriction of the corresponding
q-diagram. For our current purpose, consider the g-diagram corresponding to the SU(4) algebra
with an external momenta corresponding to the second fundamental weight

Ay, )= —@—)(© (2:2)

where the diagram contains 3 nodes of which the second node is blacked as a short hand notation
for an external momenta corresponding to a fundamental weight w; . Following the diagrammatic
rules the corresponding fermionic sum is given by

g 3 (0} —b1br+b3—brb3+b3—by)

) o , 2.3
3(w2, Q) b,go (@b, (@) by (@) b5 -

bi=0Q; mod 2

here the summation is taken over all nodes for non-negative integers with parity restriction spec-
ified by the Q root vector, i.e. b; € Q; + 2Z>.

In diagrammatic language our conjecture for the level two simply laced string functions boils
down to a correspondence between the SU(r + 1) g-diagrams and the H (SU(r + 1)) coset theory
characters namely,

O— .. @ . — O W@=HEUC+1)} (2.4)

where the diagram on the left hand side contains r nodes, of which the i-th node is darkened
as a shorthand notation for an external momenta corresponding to the SU(r + 1) fundamental
weight ;. On the right hand side, H (SU(r + 1))‘3 is a renormalized character, corresponding
to the level two coset theory H(SU(r + 1)). These are related to the characters presented in the
introduction via the dimension

A:hg)i —c/24 2.5)
where c is the H (SU(r + 1)) coset central charge and hg ! is the fractional dimension correspond-
ing to the coset field labeled by (w;, 0). In general,

a_ (AAF20)  (A-Q)
7 2(k+g) 2k

mod 1 (2.6)

where g denotes the dual Coxeter number, p = ) w; is the Weyl vector and k is the level. It
should be noted that our conjecture agrees with various results and conjectures known in the
literature. For example, the case of A = 0 this agrees with the conjecture which was put forwards
in Ref. [20]. While for G = A this reproduces the result of Ref. [11].

In an effort to keep our current discussion self contained let us give a short review of some
results derived in [19]. One of the more remarkable observations concerning g-diagrams in gen-
eral is their relation to various well known identities. Indeed, studying the identities due to Jacobi
and Ramanujan, one finds these can be manipulated to be described by various g-diagrams. Thus,
implying these identities are only the first in an infinite such series of diagrammatic identities.
In particular, this observation led us to prove the complete series which in turn encapsulated all
the identities needed to prove and extend the level two D-type parafermion characters g-diagram
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correspondence to all dominant highest weights of level two. Indeed, diagrammatic interpretation
provides a strong tool. Let us recall the diagrammatic representation of the Euler identity

SQ(_S (171)/2) B i q(n27zn)/2sn+Q . Q 0+ sQ) @7
R A A ’ '

which relates the Euler identity and the single node g-diagram associated with a general external
momenta z and the parity restriction Q, where Q = Q + 1. As we shall find, this interpretation
will come in handy when we discuss the diagrammatic interpretation of the Bailey lemma.
Although not trivially, we shall find the D, diagrams corresponding to the non twisted con-
tribution are relevant to our current discussion. Actually, these g-diagrams are the diagrammatic
extension of the famous Jacobi triple identity which is given the diagrammatic interpretation

V3, 0, =20 /O Q4+ 0-) 2.8)

where on the RHS QO+ = (01,0), O— = (1 — Q1, 1) and the diagram includes the so called
dashed lines corresponding to negative external momenta. While on the LHS

o0

_ 2_ 1 _
Vo =@x D @ =2 ) 59 (=sq P )00 (—sq 0 (29)
ny=—00 s==1
neZ+Q1/2

corresponds to the Jacobi theta function. The diagrammatic extension is achieved via the study
of the D3 diagram with a similar arrangement of external momenta. Indeed, after some manipu-
lation this diagram obeys the diagrammatic recursion relation

b \2n3 (Q++0-)

]

— (q)gol Z q2n§—2n2n3 b

ny=—00
no€Z+02/2

o (04 + 0-) (2.10)

which allows one to diagrammatically extend the Jacobi identity. In particular, recall the
D, (A, Q) diagram

D/(A)(Q++0)="—()

\ (04 +0) 2.11)

where the external momenta lines are specified by an SO(2r) weight A = bw + a(w,—1 —
w,) while the summation parity restrictions are specified by the SO(2r) roots Q4+ = (Q1,...,
0,-1,0)and Q_ =(Q1,...,1 — Qr_1, 1). In our previous paper we found this diagram to be
given by,
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D (M)(Q+ + Q)

o 4 1
= X 7 3 S gy, 2.12)

{nj}=—o00 (q)oo s1==%1
nezZn€2Z+Q;

n —Enlh—fn, 1a

where n = > n;o; and Q =Y Q;«; are roots of SU(r), the summation is over n; for i =
1,...,r — 1 under the restriction n; = Q; mod 2 for i =2,...,r — 1 and no restriction for
n1. On the other hand, one may expect on physical grounds that the various identities related to
the twisted contributions are irrelevant. As this is indeed the case we shall simply denote the D,
diagrams according to the SU(r) root Q which should be understood as the combination of O
and Q_.

3. The SU(r + 1), string functions as bosonic sums

We mentioned in the introduction that the expression for the SU(r + 1)/ U (1)" coset charac-
ters, given via the ladder coset construction, implies a relation to the SO(2r)/ U (1)" coset studied
in [19]. Following the ladder coset construction, the SU(r 4+ 1)/ U (1)" characters of eq. (1.6) are
basically given by a summing over various products of theta functions which sit on an r dimen-
sional lattice denoted L and spanned by

€ =+/2(0+2)(i +3)e;, ej-ej =34;j, (3.1

with integer coefficients. Indeed, this lattice is the same as the one studied in [13] albeit with a
different initial condition. To make this relation explicit, first let us also define the dual lattice
L~! spanned by

1

-,
V20D +3)
Additionally, in what follows we find it more convenient to redefine the k; variables, appearing in

the character of the product theory associated to the A-type generalized parafermions eq. (1.6),
such that the parity restrictions for the m;’s are simply m; = k; mod 2,

i €5 =4ij, Gi= (3.2)

.
Cllq ..... K krp1 = Z l_[M(mi +1,mip1 +1); (3.3)
ma,..., my
ety Tod 2!

note that this leaves k1 =m and m, 41 completely general, additionally, we define I =m,1 as
wellasn; =m;+1fori =1,...,r+ 1. Using these definitions, the SU(r +1)/U (1)" characters
can be written as a generalized theta function,

oy, =0 Z ZZ( [yt g 3 ath)? 3.4)

~~~~ {s} acL
n,—1+k mod 2

where the summation over the L lattice corresponds to a = Y ;_, a;j€; and summing over all
integer a; while s; = 0,1 fori =1,...,r and n; <i + 1. Finally, the different contributions
associated with the various fields appearing in the character are labeled by

Adnly (sih = Z)»i(ni, niv1, 88,
i=1
Aimi,nigr,s) =ni(( +3) —ni1( +2)(1 —2s;), (3.5)
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where, recall, that we have defined m = k;. Next, to mimic the construction of putting r single
bosonic orbifolds at various radii on a lattice we use the beta method. Let us first introduce the
character corresponding to a theory of r bosons propagating on a some r dimensional lattice M

_ 1 2
xam=ng)" Y g2t (3.6)
meM

where the lattice M (or root lattice) is spanned by the original lattice L and the beta vectors g/
for j =2,...,r, the dual lattice M 1 (or weight lattice) is spanned by w; and accordingly m =
L+Y'_,miB € M while A=3""_, Ajw; € M~'. Our objective is to match the two characters,
with this in mind, consider the coset primary field associated with the lowest dimensional field

of every minimal model in the product theory, i.e. n; =k; + 1 and s; =0 fori =1,...,r. To
include its contribution we take,

A=x({n'} s'h=2" (€)
where {nl} =ny,l+ky, ..., 1 +kr,n,41 and {sl} =0,...,0,s, denote a specific set of values

and M/ = > A{ ¢; stands for A at the set of values specified by sets {n’} and {s/}. Additionally, to
get the correct descendent structure corresponding to the first minimal model or equivalently the
trivial product theory, i.e. 7 = 1, obviously we should set 8! = ¢;. To find the remaining beta vec-
tors first set B/ = Y /_, B/ €; with B non-integer coefficients, A =A' and A/ =Y, A/ 4. Next,
we demand the contribution of further r — 1 fields are matched individually for each minimal
model in the product theory,

J 1

MM
TR
€

(A+pH=r"=p = (3.8)
where closure under the OPE of the bosonic algebra guarantees the exact matching of all other
fields appearing in the character eq. (3.4). Solving these equations for some j =2, ..., r choices
of A/ we find the corresponding 8/. Clearly, these equations alone do not completely determine
A and B as we only get quadratic equations. Indeed, one should complement these equations
with the crucial demand that A € M~ while 8/ € M,

B’ Bl 2z, BBl e, A-BleZ (3.9)

so that our theory will be modular invariant. As we will verify explicitly our choices for the
various solutions of the quadratic equations above will satisfy these conditions.

To solve the beta equations consider the fields corresponding to {s/} = {s'} for j =2,...,r
while nlj = nl1 + 268; ; where i = 1,...,r + 1, note that these choices leave ny, n,41 and s,
completely general.® Let us give some explanation for this choice as it allows us to find the
beta vectors for any rank and is of some physical importance. For simplicity consider the case
where all n; = 1, as we have mentioned above this corresponds to demanding that the identity
representative of all models are matched. Now, consider our choice for nl] with j > 1. Here, we
simply take the identity field for all models in the product theory with the exception of the j — 1
and the j model. This just mimics the sum over the first intermediate representation in the coset
ladder representation of the A-type parafermion coset (see eq. (3.3)).

3 Since no < 3 this choice is only possible for k, = 0, however due to the coset symmetries our result also applies for
ko =1.
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Using eq. (3.5) we find the corresponding A{ are given by
M= 428G +3) = 261,56 +2), (3.10)

where since j <r + 1 we used §;11,;(1 — 2si1) = di41,j. The beta vectors are then given by
eq. (3.8),
1

'szj+2(6j_€j71)’ 3.1
for j =2,...,r and ,61 = €1. Finally, to verify the first two restrictions in eq. (3.9) define the

matrix

12 -3 . 0
-3

Bijj=p-p =2 (3.12)

. Arq

0
which is calculated using eqs. (3.1), (3.11). To verify the last condition we write A using the dual
lattice. This is done by first expressing ¢; viaeq. (3.11),

=y (j+2p B (3.13)

j=2

and using B/ =Y "]_, Bjiwy

r i
ei=y o) _(j+2)Bji— Bu). (3.14)
=1 j=2
Next, following the explicit form of B one finds,
i
> (G +2)Bji — Bu =20 +3)8i; — 20 +2)8;,1-1 (3.15)
j=2

sothatfori =2, ..,r
€ =2( +3)w; —2( +2)w;+1 (3.16)
where we define w,4+1 = 0 while €] = 24w; — 6w;. To express A we use eq. (3.5)
1<~ n!  nl  a-2shH
A= A== i it e 3.17
2 MG 2;(1'4—2 itz A ©17

which after some algebra involving eqs. (3.13), (3.16) is given by,

| .
A =4win; — wrng —wrnr+1(1—2s)+—Zni,3’, (3.18)
2 i=2

where from here on, to ease the discussion, we drop the s, index. Indeed, manifestly A € M;l
and the last restriction in eq. (3.9) is satisfied. To conclude we find the characters corresponding
to the SU(r + 1)/U(1)" coset theory are equivalent to the subtraction of the two characters
corresponding to two product theories of 7 free bosons propagating on the lattice Mp.
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Finally, to facilitate calculations in the proceedings we define,

~ 1 ~

a; = E,Br+l—i7 & =~ 2w11-4, ki = kry1-i (3.19)
so that &; - @; = §;; and the corresponding extension of the SU(r) Cartan matrix is simply Ai, ji=
%Br_H —i,r+1—j. As usual, the fundamental weights, denoted @;, are defined as the dual basis and
their product is given by,

@@= A (3.20)
With these definitions one has,

1 A\2
Gt =@ Y Y (1) qam T (3.21)

s=0,1 men+2M ;

where A =@ ( + 1)(2s — 1) — n,@,—1 +4n,@, and it = Y 1_| n;d;.
Finally to make the connection with the H (D,) coset consider shifting the summation by the
root vector,

b= Zv,-&,-, vi =8ir(kr — 25 + 1) + (2s — D)l + 1 — Min(, 1)) (3.22)
Actually, assuming [ <r — 1, we also have v € Mgl

v=>10+1)2s — D1+ 1A —=28)a + 2s — 1 =3k )1 + (12k, +3 — 65)0,.  (3.23)

Additionally, when shifting m = n — v the resulting summation clearly depends only on 0=
U+ 7 mod 2M ;

0=>0ia. Qi = 8ijkj — 1+ Min(i, 1) (3.24)

which is independent of s. Shifting the summation we find the bosonic sum expression corre-
sponding to characters of the H(SU(r + 1);) coset theory is given by,

=@ Y Y (gAY (3.25)

s=0.1neQ+2M;

where As = (1 —25)é; + 2s —20,)@r—1 + 80, — 1 — 65)d)y.

To conclude we would like to relate these characters to the underlying SU(r 4 1) Lie algebra.
Primary fields in our coset theory are labeled by a level 2 dominant highest weight A of the
SU(r + 1) algebra and an element of the SU(r + 1) root lattice Q. To make the connection
we simply match the corresponding fractional dimension. The fractional dimension of the coset
theory primary labeled by a fundamental weight is calculated from eq. (2.6) and the SU(r + 1)
Cartan matrix,

h‘gz%—%gi—iy mod 1 (3.26)
where note that here Q € M4. On the other hand, for the dimension appearing in the minimal
models product theory one must add the contributions of the eta function and the theory central
charge denoted c,

cC—r

mod 1 (3.27)
24

di= LR+ 07+
0 477
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where ¢ =r(r + 1)/(r + 3). After a careful calculation one finds,

1o, 1r+1-10) r

A 2
N0y Theay T (3-28)

let us first concentrate on Q = 0. Collecting the contribution from the eta function and the central
charge the fractional dimension,

I _ Ir+1-1)
07 4(r +3)
along with the identification / <> wy, exactly matches that of the coset theory. To complete the

matching consider a general Q, the additional contributions to the fractional dimension are given
by

mod 1, (3.29)

1o~ 1., 1. 1« 1~ - =
SAO0+10°=201-50-+) 1 0iA;0; modl. (3.30)
ij
Finally, following the extended Cartan matrix A; j observe,
IA 1A d1 IA 0 d1 (3.31)
= = - mod1, - =0 mo .
S A1 =541 7 An
additionally, modulo one we may use %Qr = —;{Arr QE to find
1o - 1., 1« 1~ ~
EASQ+ZQ =§QI+ZZQiAiij mod 1 (3.32)
ij

comparing this with the coset dimension eq. (3.26) we can identify Q; = Q; so that the fractional
dimensions are in complete agreement for all fields in the theory. To conclude the bosonic sum
representation corresponding to fundamental weights characters of the H(SU(r + 1)) coset
theory labeled by the fundamental weights of SU(r + 1), denoted by w;, along with an element
of the SU(r + 1) root lattice Q are given by,

c"é"zn(q)*’z > (—1)Tqi=As (3.33)

s=0.TneQ+2Mmy

where M ; denotes the root lattice corresponding to the extended SU(r) matrix A, 0= 0id
and [\x =1 -2 + 2s —20,)®r—1 + (8Q, — 1 — 65)@, are a root and a weight of A,
respectively.

Actually, as we shall soon find, the SU(r + 1) diagrams are equivalent to the level two char-
acters only up to some dimension. With this in mind we introduce,

Hy =g G =@ 3 Y (g, (3.34)
=01 negiam;,

where A = how " —¢/24 and d; = (Q, — 5)? are some dimensions, which guarantee H‘Q”i corre-
sponds exactly to SU(r) g-diagrams.

With this result at hand, we can now observe the so called relation to the SO(2r) g-diagrams as
well as gain some diagrammatic intuition regarding the identities needed to prove our conjecture.
Indeed, note that the bosonic sum representation for the H (SU(r + 1)) coset or equivalently the
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minimal models product theory contains the bosonic sum appearing in eq. (2.12). More specifi-
cally, consider A =0,

_ 2_ —
Hg — Z (q)ool Z q3n, nrAs_r/2+d5(_1)S(q)oor+1
5s=0,1 nr€Q,+27Z
x Z qn2/47nr71(As,r71+3nr>/2' (3.35)
neQ+2MA

r—1

One then immediately finds the following diagrammatic expression for H,

Hg — Z (q);ol Z q3n%_nrA3.r/2+ds (_l)s O >A”71+3nr (0).

s=0, 1 nr€Qr+27Z
(3.36)

However, this is not quite the diagrammatic expression we are looking for, nonetheless, this result
implies the relation,

_ 2_
xS gy N s e ()

5s=0,1 nr€Q,+27Z

=b —O—0O (). (3.37)

with O = (Q,—1, Q) from which our conjecture would immediately follow. How could one go
about finding such a relation? Some intuition is given by examining Slater original proof [21]
for the simplest identities corresponding to SU(2),, i.e. the one node diagrams A (A, Q). The
reader might recall that the one node diagram was an integral part of our work regarding the
D, (A, Q) diagrams, where, using the Euler identity it was already solved. However, solving the
A1 diagrams, using the Euler identity, one does not find the desired expression eq. (3.34) but an
alternative expression. Indeed, in her work Slater utilizes the Bailey pairs mechanism rather than
the Euler identity to solve the one node diagram. Following this intuition let us first review the
Bailey pairs mechanism from a diagrammatic point of view and then return to the zero momenta
diagrams.

4. Bailey pairs and g-diagrams

Studying Rogers famous identities, Bailey made a simple observation. Given that «y, .., 51
are sequences satisfying,

L 0
BL= ZaruL—r UL+r and YL = Z Sy —LVr+L 4.1)
r=0 r=L

where one refers to a pair of sequences satisfying the first relation, as a Bailey pair, while a pair
of sequences, satisfying the second relation, is referred to as a conjugate Bailey pair. For such
sequences one finds,

o0

Y aryi=Y BréL. (4.2)
L=0

L=0
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which is a simple manner of replacing f; (or equivalently y;) and interchanging the sums.
Clearly, one should impose convergence conditions for the definition of yr, and for the inter-
change of sums, to be meaningful. Following this observation Bailey, chose u; = 1/(¢)r and
vy, = 1/(aq)r and employed the g-Saalschutz summation [22] to find,

(@@ (ag/cd)" 1
"= NagloLag/dye @u-r@aq)uiL
_ (@@ r(ag/cd)" (aq/cd)m-1
"~ (aq/Omlag/Dm (Dm-L
are a conjugate Bailey pair. Although Bailey considered this pair only in the M — oo limit, it
was later noted by Andrews [23,24] that, since (g)_, — oo for any positive n, by substituting

this conjugate pair into eq. (4.2) the resulting equation has the same form as the defining relation
of a Bailey pair relative to a,*

L (4.3)

M

Z (©r@lag/cd)* (ag/cd)m—1BL
(aq/c)m(aq/d)m (@m-L

L=0

_ % (©)1(d)Lag/cd) ar ! (4.4
L=0

(ag/o)rlagq/d)L  (@m-L(@q)m+L
where one can identify the LHS as 8, and the first fraction on the RHS as o} . This mechanism

for producing Bailey pairs, developed by Andrews, has many application and is usually referred
to as the Bailey chain. Following Bailey let us consider the M — oo limit,

_ (aq/0)solaq/d)s i (©r(d)(ag/cd)Far, @5
L=0

d ) B =
D @c(d)lag/ed) pr= "7 ST = (aq/o)(aqd)r

L=0
This result has been extensively used by Slater to prove many of Rogers identities and has
benefited both mathematicians and physicists alike. In particular we will use this result when
reviewing Slater proof for the A diagram.
Although not immediately apparent, let us show this relation can be given a rather intriguing
diagrammatic interpretation. First, using the Pochhammer identities,

_n,nn—1)/2
P s Y O WL (4.6)
(g/c)-n (cq™)oo
to replace all the finite Pochhammer symbols on both sides,
> 2
(aq/cd)oo Y (a7 /)oo(q" ™" /d)oca™q" BL
L=0
ad 2
=G Y @q" " [)oo(ag" T D)oo (g /)0 q T fd)soa g e (4.7)
*° L=0

Next, for our purposes, consider a = 1, g so that one can replace a — g“ where a =0, 1. Addi-
tionally, with no loss of generality, replace ¢ — —s.q1T¢t%)/2 where s, = 41 and similarly for

4 Relative to a meaning a(a, ¢) and f(a, q).
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d — —sqq1T+D/2 These redefinitions are motivated by the following observation. Consider,
for example, the first Pochhammer on the LHS using eq. (2.7),

(-seg = = 3@ e () (@0, )
01=0,1

Replacing all the L dependent Pochhammer symbols in eq. (4.7) we find,

o
_ 2
(sesaq™ TP > s D522y " gh gL atar Q)

0 L=0 d

ZSQ]+QZSQ%+Q4 ZqL2+LaaL at2l “4.9)

I+
R “) !

where we label the nodes from top to bottom, Q = (Q1, .., Q) such that r is the length of
the associated diagram and the summation is over Q; =0, 1 fori =1, ..., r, i.e. all possible
parity restrictions. Having found a diagrammatic interpretation for eq. (4.7) one can write down
a diagrammatic identity for any Bailey pair. Furthermore, observing the D, diagrams one may
use the SO(2r) diagrammatic recursion relation, eq. (2.10), to find an infinite number of new
identities relating Bailey pairs or equivalently an infinite number of new conjugate Bailey pairs.
Finally, although we have assumed a = 1, g this is just a matter of convenience and one can
easily consider any a.

For the purpose of proving our conjecture it is enough to consider the diagrammatic Bailey
pair relation (eq. (4.9)) in the d — —oo limit,

D&Y gF L o — e (Q)

01 L=0
1 X,
= 4(61“”1) ZSCQ1+Q2 ZqL +LaaL a+2L /8> c(Q) (4.10)
o
0 L=0

This expression can be simplified by summing over Zs(;=:|:1 ch " to find,

o] 1 ad
ZqL2+L”ﬂL at2L —(O— c(Q1) = WZCIL2+LuO‘L ”+2L<8>C(Ql)
=0

L=0
@.11)

where we relabel Q/l — (1 while, as explained in section 2, the D, diagram on the RHS con-
tains two nodes and Q' should be understood as Q1 + Q_. At this point the reader might note
the similarities between this relation and eq. (3.37). Indeed, in the next section, we find an ap-
propriate Bailey pair to prove eq. (3.37) and subsequently our conjecture for the zero momenta
diagrams.

5. The zero momenta diagrams

Rogers identities for the characters of the H (SU(2),) coset theory, better known as the first
Minimal model M (3, 4), or the Ising model, relate these characters with the A1 (A, Q) diagrams.
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In particular the characters of the Ising model are given by eq. (3.34),
— 2_nAs
Hg :(q)ool Z Z q3n nAJ/2+d5(_1)S (51)
s=0,1neQ+2Z
where,
Ay =80 —1—6s and dy = (0 —5)? (5.2)

Slater [25] obtained the corresponding Rogers identities by using the following Bailey pairs,

Bn ap  Oo3p—1 a3y A3n+1 a

2 2 2
qn /(Q)Zn 1 _q3n —n q3n —n +q3n2+n _q3n2+n 0 (5.3)
qn2+n/(q2)2n 1 q3112—2n q3n2+2n _q3n2+4n+1 _ q3nz+2n 1

where, when using these pairs, one should be mindful as to set «g = 1 for both cases. Addition-
ally, Slater considered eq. (4.11) in the ¢ — oo limit,

> 2 1 = 2
ZqL +LaﬂL:(1+7a)ZqL +LaOtL. (54)
L=0 4 * L=0
Indeed, putting the Bailey pairs of eq. (5.3) into this relation one finds (after a bit of algebra),
HEUQ)Y =) (Q) (5.5)

Which clearly agrees with our conjecture for the H(SU(2),) characters. To extend this result and
prove our conjecture, one simply needs to consider the Bailey pairs of eq. (5.3) for a general c, as
is implied by the diagrammatic form of eq. (4.11). More specifically, note that generally S (a)
can written as,

qL2+La

L= o 0

Then one finds,
2L24+2La

g- e, = C(IQHW (5.7)
which can be put in a diagrammatic form by simply redefining a + 2L = b, using

@Dnta = @alq' (5.8)
and noting that a*> = a to find,

L’+La —a/2 qb2/2
g" L =47 (@) a0t (=D (5.9)

which, following our diagrammatic rules, when summed over b, exactly produces one node.
Subsequently the LHS of eq. (4.11) is given by,

Do B O —c (@) =4 @ < O—0O (0 (5.10)

L=0
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with Q = (Q1,a) which up to a multiplicative factor exactly matches the expected relation
eq. (3.37) with a = Q;. The RHS is a bit more tedious, let us first denote

ataL €> ¢ (01) = Dasar (5.11)

where D, = D_, which amounts to exchanging the two nodes and noting that the combination
of O+ + Q_ is symmetric under this exchange. Replacing L = 3n + j and using the notation
introduced above,

[ee) [ee) 1

L2+L 92 +3n(2j i (j
E q" T Dyyor = E E g IO Ut g L Dyenta;s (5.12)
L=0 n=0j=—1

where o(a)_1 = 0. To proceed recall a(a)o = 1 while oy (a), where a =0, 1 and L > 0, can be
written as,

(_1)1+aq3n2—n(1—3a) L=3n—14a
ar(a) = (—1)“6]3"2 (qn(5a71)+a +qn(]+a)) L=3n+a (5.13)
(_1)l+aq3n2+n(l—3a) L=3n4+1-2a

and consider the contribution of j =a

o o
Z 9% +9na+2 Z 1202 4+n(14a—1)+3
q neAonat aa3n+aD3a+6n = D3a+6n(_])aq n-tn(lda—1)+3a

n=0 n=l-a
o0

+ ZD3a+6n(_l)aq12n2+n(1+loa)+2a (5.14)
n=0

where we separate the sums to keep op = 1. At this point, one may note, that the sums appearing
here range over positive n while the sum appearing on the LHS of eq. (3.37) ranges over both
negative and positive n. This motivates substituting n — —n — a for the first sum,

00 -1
2 _ 2
Z D3a+6n (_l)aq12n +n(14a 1)+3a — Z D3a+6n(—1)a6]12n +n(1+10a)+2a (515)

n=1—a n=—00
where we have used the diagram symmetry D_, = D,. Indeed, combining the two sums we find,

o0

00
2 2
Zan +9na+2aa3n+a D3asen = Z (_l)anZn +n(14-10a)+-2a D3at6n- (5.16)

n=0 n=—0Q0

Next, consider the contribution of j =a — 1,1 — 2a,

o0 [o/0]
9n2+1—a+3n(3a—2 92 +1—a+3n(2-3
Y e e 1 Denyzaa+ Y g" T T 00, 0 Denaasa
n=Il-a n=a
ad 2 ad 2
11— 12 12a—7 12 7-12
= (_1)a+ q a( Z q ntn(12a )D6n+3a72 + Zq nn( a)D6nf3a+2)‘

n=Il—a n=a

(5.17)
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As for the j = a contribution, this can be written as one sum ranging over both positive and
negative integers,

o oo
9n*+1-a+3n(3a—2 9n’+1-a+3n(2-3
Y e e 1 Denyzaa+ Y g” T T 0, 00 Densasa

n=1-a n=a
o
2 — —
— Z (_1)a+1q12n +n(7 2a)+l aD6n—a+2 (518)
n=—oo

by changing n — (2a — 1)n at the first sum while changing n — (1 — 2a)n at the second sum
and using the diagram symmetry. Finally, collecting these results one finds,

1 > 2
@ Z‘IL g Dayor
*® L=0
_ (@a — 1 12n24+n(1+6s+4a)+s(14a) 5.1
= (q) Z Z (Gl q D6n+a+2s (5.19)
o0

s=0,1n=—00

Indeed, by changing 2n + a — n so that n € a + 2Z, this matches the RHS of eq. (3.37)

1 L2+L
e DU e Sty
L=0

—af2
9" (q)a Z Z 32 =n(8a=1-6) /24— (_1)5 3,000 24 /8> c o

(Q)oo 501 ne——oo

nea+27Z (5.20)

again up to q"‘/z(q)a and a = Q». Thus, equating the two sides (egs. (5.10), (5.20)) we find the
expected relation eq. (3.37). As discussed in section 3, using this relation in eq. (3.36) proves the
conjectured identity for the zero momenta diagrams,

HEUG+ 0= — ) .. —( )W (5.21)

Before we proceed consider the non-zero momenta characters,

— 2_
— Z(q)oor Z q3nr ”rAs,r/z"rds(_l)S

s=0,1 nr€Q,+27Z
« Z qn2/4—niA.Y,,»/2—nr_1(A.Y,,_1+3n,~>/2 (5.22)

nGQ-‘rZMAr_l

As discussed in our previous paper, for any weight belonging to the weight lattice of SU(r) one
can define

Agiwi + (Agr—1 +3n,)0r—1 =n — awy_| (5.23)

where n is a root of SU(r). Thus, the inner sum appearing here can be replaced with
D,(aw—, Q + n) i.e. the zero momenta diagram with some external line. However, contrary
to the zero momenta diagrams, we expect to find the A, (w;, Q) diagram for which the i-th node
is black. Clearly, using the zero momenta D, diagram does not produce black nodes. Instead,
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let us consider the A, diagrams corresponding to A = w;, fori =1, ...,r — 2. These diagrams
clearly include the A;(bw, Q) diagrams and one can apply eq. (3.37) to find,

O—. @ . —OwWw=Y @

s=0,1

x Y ey O @ /Q\AH ©
nr€Qr+2Z

(5.24)

where both diagrams contain r nodes of which the i-th node is black. Additionally, following
the convention set in section 2 the Q vector associated with the D, diagram is given by Q =
(Q1, ..., Qr_1) and should be understood as the combination Q4+ + Q_. This relation leads to
the conclusion that to prove our conjecture for the A, (w;, Q) diagrams one should find a bosonic
sum representation for the D, (w; + aw—, Q) diagrams. Accordingly, in the following section,
we first study these diagrams which were not studied in our paper regarding the D, diagrams.

6. The D, fundamental weights diagrams

Consider the D, diagrams appearing in eq. (5.24), clearly for any i < r — 2 one can use the
diagrammatic recursion relation eq. (2.10). However, eventually one comes across the following
D3 diagram,

D3(M)(Q++ Q) =» \a (Q++0-) (6.1)

where A = (1 + b)w; + aw—. Actually, we can continue the reduction via the diagrammatic
recursion relation, but this procedure will introduce new diagrams, specifically the D3(bw; +
aw_ + w4 ) diagram. Instead, let us take a closer look at the bosonic sum representation given
by eq. (2.12)

qirzz—%nl (1+b)—%n2a

2(9)%

+ _h—
Z g2 (g gUmbm 2y
s1==%1

o
Dy(A, Q)= )
{nj}=—o0
nieZ,ne2Z+0Qs 6.2)
To avoid running into new diagrams, one may try to write this diagram in terms of D3 diagrams
with external lines specified by a weight of the form bw; + cw_ with some c. For this purpose
shiftn — n — ay,

00 2 =tnib—In@a+2)+5(1+a)
q? 2 2 2
D3(A, Q)= Z 2( )2
{ni)=—c0 Vo
n1€Z,nye2Z+0Qr+1
% Z S]QH-nl(_slq(1*b+n2)/2*1)b+l. (6.3)
S|:i1

To proceed note that following the Pochhammer symbol definition,

(—s1g 0TIy = (s g I, (1 4 51 g 210, (6.4)
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Indeed, replacing the Pochhammer symbol with this expression we find,

b4<2>a(g)
= g0+ b%<z>a+2(Q2)+q_%(l+b) bﬂi\m o], ©5

where Q1 = Q + a1 + o2 and Q> = Q + a». If we regard the D3 diagram as the tail of some
D,(aw_ 4+ w;_3),1.e. b =b,_3, we find the following diagrammatic relation

o a{é\ a(Q)
=g20%) (o ﬂi\ a2 (0)+¢77 O 4%(2\ at! (Ql)), 6.6)

where all diagrams contain r nodes while Q1 = O+, _>+a®,_1 and 0> = Q +«,_1. A bosonic
sum representation for the first diagram that appears on the RHS is then given by eq. (2.12)

0 qinzf%nrfl(aﬂ)
Di(@+2o-. Q)= ) o ©6.7)
{ni}=—00 oo
neQo+2My,
additionally, shifting n =/ 4 «,_1 we find
00 12— Ln, 5—tn,_ja—L@a+1)
q4 2 2 2
Dy((@+w-, Q)= ) e (6.8)
{ni}=— o0
n€5+2M:f_]
Finally, using this result in eq. (6.6),
Dy (wr—2 +aw_, Q)
e 12 1y y—Ln._ja
7 2 21
- > 1 ST Do+ @t oo 0), 6.9)
ni}=— 9o
neé—ﬂMjfil

so that the diagram corresponding to A = w,_7 +aw_ and Q is given in terms of a bosonic sum
and the diagram corresponding to w,_3 + (a + 1)w_ and Q;.

To find a similar relation for A = w; + aw—_ withi =1,...,r — 2, consider eq. (6.9) summed
over a in the following manner
(Cl)gol Z qa(afc)/l‘ (6.10)
acQ,+27

The sum appearing on the LHS then exactly matches the recursion relation eq. (2.10),

@ Y 4D, @2+ aw-, 0) = Dy11(@r 2+ co-, Q) (6.11)
acQ,+27Z
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with Q = (Q1, ..., Or—1, Q). For the RHS the first term is easilywritten as,

! a(a—c)/2 st q%”Z_%nrfz—%nr,la
acQ,+27Z (i )——o00 ()55
neQ+2Ma,
> q%”z—%"rfz—%n,c
-z @ (6.12)
{nj}=—00 q o0
neQ+2Mp,

Finally, for the second sum shift/ =a + 1,

qa(a c+1)/2
Y F——Di(or3+ @+ Do, Q)
acQ,+27 (@)oo
ql(l—l—c)/2+c/2
= Z Y Dy(0y3 + o, 02) (6.13)
leQ,+1+27 (@)oo

The resulting sum matches the recursion relation, furthermore the solution is given by,

qa(a c+1)/2
> % Dy (-3 + (a+ Do, 02)
acQ,+27 900
=4 Dysi(0r—3 + (c + Do—, 02) (6.14)

which is the same expression with a replaced with ¢, an additional node in the diagram and
02=0+a,—2 +a,_1 +a,. To conclude we find,

Dy (w2 +co_, Q)

1 1 1
anfznr,zfin,c

= Z qT + qc/zDr+l(wr—3 + (C + 1)0)—1 Q2)9 (615)

{ni}=—o0
neQ+2My,

which is clearly viable for any r, thus effectively moves the black nodes one node back. As this
process can be repeated we find the following diagrammatic relation,

O.e %\);\ ©
00 1,2 1, 1
g#" 2T

{ni}g;oo (@)
neQ+2Mu

_1a i—1
“ig0. e . Na @) (616)
r—1

with Q some SU(r) root while Q1 = Q + Z, —; o, which is a recursive relation relating dia-
grams of A = w; + aw_ with diagrams of A = w;_1 + (a + 1)w—_. Since we have a bosonic sum
representation for the i = 0 diagram D, (aw—, Q) we can apply this relation repeatedly to find a
bosonic sum representation for any i =0, ...,r — 2,
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1

%i\ )
’nzf%ni—l*%nr—l(a+l)

_ Lia-n+11 4
=Y 43 a Z — 6.17)

1=0 {ni}=—oc (@)oo
neQi—2Ma, _,

where ng = 0 and Qy is defined by the recursion relation,

r—1
Q=0+ Y aj (6.18)
j=i—l

and the initial condition Qg = Q. We have thus found an infinite number of new ¢ sums
identities corresponding to bosonic sum representations for any D,(w; + aw—, Q) diagram for
i=0,1,...,r —2. As discussed in the previous section, these identities are intimately related to
the A, (w;, Q) diagrams. Indeed, these will furnish a way to prove the conjectured identities for
the A, (w;, Q) diagrams which are the subject of the next section.

7. The A, non-zero momenta diagrams

Following up on our discussion in the end of section 5, one can use the bosonic sum descrip-
tion for the D, diagrams to find a bosonic sum for any of the A, diagrams. More specifically,
recall eq. (5.24) which we reproduce for convenience,

O—. @ . 0w

Y Y ey O @ %{;\
s=0,1 n€Q,+27Z

where,

Ngr—1=25 =20, Asr =80, —1—06s), dy = Qr(1 =2s) +s5. (7.2)

To replace the D, diagram with the bosonic description of eq. (6.17) simply take a = A ,—1 +
3n, to find,

s r—1+3n, (Q)

(7.1)

i 00
A@. =@ Y. Y S gt (7.3)
s=0,11=0 {n;}=—o00
neQ,—i—ZMAr

where &, ; is some dimension, A, ; is a weight and Ql is a root of A, defined as,

ks,l :(Z)i—l +5)r—l(As,r—l +l) +(I)r(As,r - 31), (74)
1 1
hsp=ds + EZAs,rfl + Zl(l -1,
r—1

Q1= 01id + Q0.

i=1
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Indeed, we find that all the A, diagrams can be written as a bosonic sum, however examining the
bosonic sum we found using the Beta method in section 3 eq. (3.34) one can immediately note
that the sum appearing here is of a slightly different form. More specifically, the bosonic sum,
eq. (7.3), includes an additional sum over / =0, ..., i. This implies that, for our conjecture to be
true, the sum for A, should behave as a telescopic sum in / for any i so that all terms apart from
two will cancel. Following this intuition let us first define,

oo

~ _ 1.2 1.7

GrOsihe, QD= (@) Y, g amhsithe (7.5)
{ni}=—00
nEQl-‘rZM/{r

This is motivated by the following symmetry,

- 1 1 -
Gr()”s,lv hs,l, Ql) = Gr()‘s,l + ﬂv hs,l + 5,3)‘3,1 + Z/gz’ Ql + .8) (76)

which is a simple consequence of translating n by g where 8 € M ; . Let us now examine, on
. . r
one hand, our expression for the A, diagrams,

Ar(@i, @)=Y Y (=1°G (s, b, Q). (7.7)

5=0,11=0
While, on the other hand, our expression for the SU(r) string functions, eq. (3.34), in terms of
G,
HY =) (=1°G(As,ds, 0). (7.8)
5s=0,1
Indeed, for these two sums to be equivalent one should find that in eq. (7.7) all G,’s cancel but
one for each value of s. Explicitly, we would like to show

Gr(M1gs bty Q1) = Gr(hoss1, hots1, Qi) (7.9)

Following the symmetry eq. (7.6), this equality holds if

20041 — A= 0141 — Q; mod My (7.10)
1., 1.,
hoj+1 —h1 = Z)Lo,z+1 - Z)‘l,r

For this purpose, first consider
A0 i+1 — ALl = @i—j—1 — Dj—] — Wr—1 + 30y (7.11)
Next, using the extended Cartan matrix A eq. (3.12) and our definition for Ql one can easily find,

r—1
O —Qr= Y & =i — @ii-1 + &1 — 3, (7.12)
Jj=i—l

so that

Or41— Q1= A1 — Aoi+1, (7.13)
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and the first condition in eq. (7.10) is satisfied. To verify the second condition note,

1
hojr1 —h1y=0,—1~— 51. (7.14)
While the RHS is easily calculated by using,

X%,m - A%,z =1+ 20141 (O141 — Q) (7.15)

and &; - @; = §;;. Indeed, one finds that the second condition is also satisfied so that eq. (7.9)
holds and we arrive at the following expression for the non-zero momenta diagrams,

Ar(@i, Q) = Gr (0,0, ho.0, Qo) = Gy (hri, hi, O0). (7.16)
Trivially, the first term appearing here is the same as the first term appearing in eq. (7.8) as,
0,0 = Ao, ho,0 = do, Q0= 0. (7.17)

That the second term is equivalent to the one in eq. (7.8) simply follows from the symmetry
discussed above. First, consider

A — Al =@ +i(@r_1 —3d). (7.18)

To show that the first condition is satisfied, we write Q; — Qg as a telescopic sum and use
eq. (7.12),

i—1
Qi — Qo= (Q1y1— 01 =i +i(@—1 —3d). (7.19)

1=0
To verify the second condition note that in terms of the simple roots we have,

r—1

Qi — Qo= _Min(i, ). (7.20)

=1

Using this expression one can derive

A= A= 01i+AD(Qi — Qo) =i(i — 1) +2iA1 1. (7.21)

On the other hand, s ; — d; is calculated via the definitions eqgs. (7.2), (7.4). To conclude we
find,

Ai— A= 0i — Qo (7.22)
1 -
hii—d = Z(A%i —Ad
So that,

Gr(Mivhii, i) = G (A1, dy, Q), (7.23)

and we arrive at the conjectured correspondence between generalized level two A-type
parafermion characters and SU(r + 1) g-diagrams,

O—.. @ ,__%)(Q)=H(SU(V+1))“Q”'. (7.24)
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8. Discussion

As we have pointed out along the way, the discussion above can be generalized to construct
infinitely many new series of identities of multiple sums. They also provide an alternative deriva-
tion for some well known one sum identities, let us now sketch how this is done by considering
a few interesting cases. The main point of the this discussion is to try to clarify the mathematical
and physical interpretations of g-diagrams, as such, we will mainly use diagrammatic arguments
and not give a full presentation of the mathematics.

Let us first consider the most general two node diagram, one could try to solve the diagram
by first preforming the sum over the first node using the Euler identity, we find,

> wlAsb,c, 01,0

01=0,1

o Z

n=0/2 mod Z

g 3n2—Ln(b+20)—d(b.Q)

1 _9
(q)2 (wq2(1+b+Q))n7%)(_U))n 5 (81)
n

where w = —1, 1 so that ZQI wi(l + (—I)QI‘H") = 2wb!. Let’s consider this sum, in the
sections above we have only calculated this diagram for b or ¢ equal to zero, nonetheless it
should be clear that one can solve either nodes in the diagram thus we can produce the result
for both ¢ =0 or b = 0. The origin of this family of identities arising from the A, diagram can
be traced, to the best of our knowledge, to Rogers. Actually, we know of at least three identities
which arise for simple values of b, ¢ and Q that appear in page 17 of [26] which obey b+ Q = 1.
Using the identities found above one can reproduce these identities and generalize this series at
least for either c=0or b =0.

A natural question in our context is whether one can give some CFT interpretation for the two
node diagram. In particular, consider the case ¢ = b = Q = 0, one might be tempted to interpret
the W appearing here as the character of the “integrated out” fermion. Actually, it is given by

W= (wg' oo 8.2)

i.e. the one node which is again just a fermion. At this point the reader might conclude that,
for this to make any sense, the sum above should also be associated with some CFT charac-
ter. Furthermore, since to begin with we started with a fermion and the second minimal model,
one expects that this CFT should be the second minimal model with ¢ = 7/10. Indeed, as they
should, these identities arising from the decomposition of the two node g-diagram, precisely
matches the characters of the second minimal model. Clearly, this means that we are simply de-
composing the lattice minimal model theory we have constructed in section 3 using the boson
construction provided by the beta method, albeit, from the so called fermionic side of the GRR.
What can be learned from this process, to answer this question consider the beta method proce-
dure we have used in section 3. This is a familiar story, locality in the form of modular invariance
highly restricts the allowed solutions, in other words the beta method is telling one how to cou-
ple the different theories in such a way that one gets a bona fide CFT. Next say we start with
an interacting bosonic CFT, can one decompose this model as to get a well defined CFT. This is
a much more difficult question, however, clearly if this interacting theory “origin” is a product

5 For example, b=1, c= Q0 =0.
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theory then such a decomposition is possible, indeed, this has allowed us to decompose or con-
struct the bosonic characters sector by sector. To conclude, the beta method, for product theories
with bosonic type characters, provides with a two way renormalization flow in the space of the-
ories with bosonic characters. With this in mind let us observe our results, we have found that
by decomposing a node out of a ¢ diagram we were able to extract a fermionic character. This
consideration seems to imply that for those theories for which the characters can be described
by any connected or non-connected g-diagram a “fermionic” renormalization flow is possible
and is described by decomposing the ¢ diagram. Of course this suggestion needs to be carefully
examined and a good place to start would be to try and mimic the beta method construction in a
fermionic fashion using the g-diagram construction.
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