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Resumo

Esta tese tem por base três artigos publicados pelo autor e colaboradores. O primeiro artigo
trata do problema da quantização de modelos pseudoclássicos de partículas escalares em campos
de fundo não-abelianos, cujo foco é a dedução desses modelos pseudo-clássicos usando métodos de
integral de trajetória. O segundo artigo investiga a possibilidade de realizar modelos de gravitação
dilatônica em variedades não-comutativas em duas dimensões. Para tanto, vale-se de um método de
análise de vínculos e simetrias especialmente desenvolvido para gravitação não-comutativa em duas
dimensões. O terceiro artigo discute modelos renormalizáveis em espaços-tempo não-comutativos
com parâmetro de não-comutatividade bifermiônico em quatro dimensões.



Abstract

This thesis is based on three published papers by the author and co-authors. The �rst article
treats the quantization problem of pseudoclassical models of scalar particles in non-Abelian back-
grounds, which aims at deriving these models using path-integral methods. The second article
examines the possibility of realizing dilaton gravity models in noncommutative two-dimensional
manifolds. It relies upon a method of analysis of constraints and symmetries especially developed
for non-commutative dilaton gravities in two dimensions. The third article discusses renormal-
izable models in noncommutative spacetime with bifermionic noncommutative parameter in four
dimensions.
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Prefácio

Esta tese tem como base os seguintes três artigos publicados pelo autor e colaboradores,

• 'Pseudoclassical description of scalar particle in non-Abelian background and path-integral
representations', com D. M. Gitman, publicado em Int.J.Mod.Phys. A23:835-853 (2008);

• 'Stability of a noncommutative Jackiw-Teitelboim gravity', com D.V. Vassilevich e D. M.
Gitman, publicado em Eur.Phys.J. C47:235-240 (2006);

• 'Nilpotent noncommutativity and renormalization', com D.V. Vassilevich e D.M. Gitman,
publicado em Phys.Rev. D78:025004 (2008).

O primeiro artigo trata do problema da quantização de modelos pseudoclássicos de partículas es-
calares em campos de fundo não-abelianos, e seu foco é a dedução desses modelos pseudo-clássicos
usando métodos de integral de trajetória.

O segundo artigo investiga a possibilidade de realizar modelos de gravitação dilatônica em
variedades não-comutativas em duas dimensões. Para tanto, vale-se de um método de análise de
vínculos e simetrias especialmente desenvolvido para gravitação não-comutativa em duas dimensões.

O terceiro artigo discute modelos renormalizáveis em espaços-tempo não-comutativos com parâmetro
de não-comutatividade bifermiônico em quatro dimensões.

Os três artigos são peças independentes, e assim são apresentados nesta tese. Pelo fato de
dois deles estarem ambientados em espaços-tempo não-comutativos, faz-se uma breve introdução
histórica sobre geometria não-comutativa na física. Também consta na introdução uma breve
discussão sobre a quantização de modelos de partícula, e em particular, da partícula em espaços-
tempo não-comutativos.
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Capítulo 1

Introdução

1.1 Breve história da geometria não-comutativa na física

Em 1946 Snyder [1] propõe um novo modelo para o espaço-tempo, em que a energias su�cientemente
altas, a continuidade do espaço-tempo clássico dá lugar a uma noção de espaço-tempo fragmentado
em células de tamanho mínimo, onde não há a idéia de ponto. Nesta nova escala fundamental as
coordenadas do espaço-tempo não são mais parâmetros contínuos, como na teoria quântica usual,
mas operadores hermitianos que não comutam entre si:

"x, y, z, e t são operadores hermitianos para as coordenadas do espaço-tempo de um referencial
de Lorentz particular; o espectro de cada um desses operadores x, y, z, e t é composto dos possíveis
resultados da medida da quantidade correspondente; os operadores x, y, z, e t devem ser tais que o
espectro dos operadores x′, y′, z′ e t′ formados por combinações lineares de x, y, z, e t, que deixam
a forma quadrática (o elemento de linha do espaço de Minkowski) invariante, seja o mesmo que o
espectro de x, y, z, e t."

Como consequência direta da não comutatividade dos operadores correspondentes às coorde-
nadas do espaço-tempo, resulta a impossibilidade de diagonalizar simultaneamente esses operadores
, ou seja, resulta a impossibilidade de medir com precisão arbitrária a posição de uma partícula.
Por exemplo, a álgebra mais simples de operadores x̂µ, que aqui representam os operadores her-
mitianos correspondentes às coordenadas do espaço-tempo, é dada em termos de uma matriz real
anti-simétrica constante θµν ,

[x̂µ, x̂ν ] = iθµν . (1.1)

As relações acima implicam as seguintes relações de incerteza:

∆x̂µ∆x̂ν ≥ 1
2
|θµν | .

Logo, a distâncias da ordem de
√
|θµν |, efeitos da não comutatividade das coordenadas do espaço-

tempo passam a ser relevantes, sinalizando o �m do modelo clássico para o espaço-tempo e o início
de uma nova estrutura geométrica subjacente.

À época em que a não comutatividade foi sugerida, esperava-se que ela pudesse resolver o prob-
lema das divergências ultra-violeta da teoria quântica de campos, em particular, da eletrodinâmica
quântica, problema cuja origem está no produto de distribuições num dado ponto do espaço. Ao
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impor um comprimento mínimo e eliminar o conteúdo físico da noção de ponto, surge um novo tipo
de regularização, semelhante à introdução de um cut-o� para os momentos, porém invariante de
Lorentz - ao menos na concepção original de Snyder, em que os operadores x̂µ são os geradores das
simetrias do espaço de de Sitter. No entanto, com o sucesso do programa de renormalização, esse
caminho foi momentaneamente abandonado, e somente foi retomado na década de 1980, com os
trabalhos de Connes e Woronowicz [2, 3] no contexto de geometria não-comutativa, termo cunhado
originalmente por von Neumann [4].

O interesse da comunidade de física ressurge com a aplicação da geometria não-comutativa à
formulação de teorias de calibre não-abelianas [5], da gravitação [6, 7, 8, 9] e do modelo padrão de
partículas [10, 11, 12], e também no entendimento do efeito Hall quântico [13].

No entanto, esse interesse renovado não se deveu propriamente à realização da promessa inicial:
as teorias de campo em espaços-tempo não-comutativos não constituíram um avanço quanto à
�nitude e renormalizibilidade das teorias quânticas de campo. De fato, a não-localidade do produto
estrela de Moyal faz com que pequenas perturbações a energias altas se propaguem longe o bastante
para in�uenciar processos a baixas energias, dando lugar à mistura de divergências ultra-violetas
e infra-vermelhas em diagramas não-planares [14, 15, 16]. Por exemplo, para a teoria λϕ4 no R4

não-comutativo, a parte não-planar da função de dois pontos irredutível de uma partícula padece
da mesma divergência ultra-violeta que seu correspondente planar, mas para momentos baixos. A
presença da patologia de mistura de divergências ultra-violeta e infra-vermelha na teoria λϕ4 no
R4 não-comutativo é su�ciente para estragar a renormalização da massa nesse modelo a um loop,
tornando-o não-renormalizável. A almejada renormalização desse modelo só foi atingida com a
modi�cação do propagador pela adição de um termo oscilante nos trabalhos [17, 18, 19], com o
�m de respeitar a dualidade de Langmann-Szabo [20]. Depois, demonstrou-se que muitos outros
modelos, apropriadamente modi�cados para exibir essa dualidade, são renormalizáveis, como o
modelo de Langmann-Szabo-Zarembo em quatro dimensões [21], o modelo de Gross-Neveu em duas
dimensões [22], e o modelo ϕ3 não-comutativo em duas, quatro e seis dimensões [23, 24, 25].

Apesar dos avanços no desenvolvimento de estruturas diferenciáveis em geometria não-comutativa
e nas inúmeras generalizações da teoria quântica de campos a espaços não-comutativos, é graças à
teoria de cordas que a geometria não-comutativa deve sua popularidade. Na teoria de cordas, a ge-
ometria não-comutativa faz sua primeira aparição no trabalho [26] do Witten sobre a corda aberta.
Desde então, a não-comutatividade do espaço-tempo tem surgido de forma ubíqua na teoria de
cordas: no estudo não-perturbativo de dualidades, como a dualidade T na compacti�cação toroidal
[27], manifestação da geometria quântica inerente à teoria de cordas enquanto teoria de gravitação
quântica; na classi�cação de campos de fundo por meio de teorias de Yang-Mills não-comutativas;
e principalmente, na teoria de D-branas, que no limite de baixas energias é efetivamente descrita
por coordenadas não-comutativas com valores matriciais [28]. A relação íntima entre geometria
não-comutativa e regimes não-perturbativos da teoria de cordas é perfeitamente condizente com
análises anteriores sobre espalhamento de cordas a altíssimas energias e sobre a escala fundamental
da teoria de cordas [29, 30, 31]. A existência de um limite inferior para a medida de distâncias,
da ordem da escala de comprimento intrínseca da corda, é mais um argumento a favor de uma
descrição geométrica 'não-pontual' do espaço-tempo. Há de se citar, ademais, a presença de geome-
tria não-comutativa na dinâmica quântica da corda aberta na presença de campos de fundo e de
D-branas [32, 33, 34, 35, 36].

Como ilustração simples de uma realização física de não-comutatividade do espaço, considere
uma partícula carregada no plano x =

(
x1, x2

)
, na presença de um campo magnético constante.
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Sua lagrangiana é

Lm =
m

2
x2 + x ·A , Ai =

B

2
εijx

j .

No limite em que o campo magnético é muito forte, desprezamos o termo de inércia fazendo m = 0,
e �camos com

L0 = −B
2
ẋiεijx

j .

A hamiltoniana desse sistema é proporcional aos vínculos de segunda classe Φi = πi + B
2 εijx

j e os
parênteses de Dirac entre as coordenadas são{

xi, xj
}
D(Φ)

= B−1εij ,

ou seja, são uma matriz anti-simétrica constante. A quantização dessas relações de comutação,
de acordo com a promoção das coordenadas xi a operadores x̂i e substituição dos parênteses de
Poisson por comutadores, [

x̂i, x̂j
]

= i
{
xi, xj

}
D(Φ)

,

produz as relações básicas (1.1) com θij = B−1εij .
Algo semelhante ocorre com teoria de cordas [37]. Considere uma corda bosônica num espaço

plano de métrica gij na presença de um campo B de Neveu-Schwarz constante ,

SΣ =
1

4πα′

ˆ
Σ

(
gij∂ax

i∂axj − 2πα′Bijεab∂axi∂bxj
)
,

em que Σ é a folha-mundo da corda. O segundo termo no integrando é uma derivada total, e para
cordas abertas, pode ser escrito em termos de uma integral na borda da folha-mundo:

S∂Σ = − i
2

˛
∂Σ

Bijx
i∂tx

j ,

em que t é a coordenada em ∂Σ. No limite de baixas energias, gij ∼ α′2 → 0, o termo cinético
principal da ação da corda desaparece, e o que resta são os graus de liberdade na borda da corda
aberta. Podemos interpretar a ação S∂Σ como a ação de uma partícula num campo magnético
forte. Isto nos permite inferir que as coordenadas da corda na fronteira fazem parte de uma álgebra
não-comutativa [

x̂i, x̂j
]

= i
(
B−1

)ij
.

O limite α′ → 0 de fato transforma a teoria de cordas numa teoria de campos efetiva. O fato da
teoria de campos não-comutativa surgir naturalmente a partir da teoria de cordas sugere fortemente
que não-comutatividade do espaço-tempo é traço geral de uma teoria uni�cada de gravitação quân-
tica. Também no contexto de gravitação quântica de laços [38], operadores de área calculados em
superfícies que se interceptam não comutam entre si, fazendo com que a geometria espacial (em
três dimensões) seja não-comutativa.

1.2 Modelos pseudoclássicos, representação de propagadores

e a partícula com coordenadas não-comutativas

Modelos pseudoclássicos de partículas, isto é, modelos de partículas cujas coordenadas são variáveis
em uma álgebra de Berezin [39], apresentam um grande interesse em vários aspectos da teoria quân-
tica. Do ponto de vista fundamental, sua quantização conduz às equações de onda e, inversamente,
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surgem como limite (pseudo)clássico das dinâmicas quânticas correspondentes. Do ponto de vista
metodológico, servem à representação de objetos da teoria quântica, tais como propagadores. Fi-
nalmente, pode-se construir a mecânica quântica inteiramente baseada em símbolos pseudoclássicos
de operadores na chamada formulação de Moyal [40].

O problema da quantização de modelos de partículas relativísticas ocupa um lugar central no
chamado problema de quantização, na medida em que fornece um entendimento básico dos princí-
pios que regem a quantização dos modelos mais simples que podem ser encontrados na natureza.
A quantização da partícula relativística, qualquer que seja sua massa e spin e o campo de fundo
considerado, relaciona-se com o problema da construção da equação de onda e, portanto, de uma
mecânica quântica para esta partícula. O artigo [41] estende a importância da quantização de
modelos pseudoclássicos, mostrando que a quantização da partícula relativística pode ser consis-
tentemente interpretada como a construção do setor de uma partícula da teoria quântica de campos
correspondente, sempre que esse setor possa ser de�nido (i.e., quando a interação da partícula com
os campos de fundo não leve à criação de partículas). É central no problema da quantização de
modelos de partículas relativísticas a presença de vínculos e liberdade de calibre.

Sempre que possível, estes modelos devem ser de�nidos e quantizados em dimensões arbitrárias.
A generalização de modelos pseudoclássicos e sua quantização em dimensões arbitrárias esbarra em
di�culdades maiores no caso da partícula espinorial em dimensões ímpares, devido à redutibilidade
da álgebra de Cli�ord. Isto quer dizer que em dimensões ímpares a quantização da partícula
espinorial deve produzir estados físicos em duas representações de Weyl distintas, que correspondem
às duas representações não-equivalentes da álgebra das matrizes gamma. Em 2 + 1 dimensões,
mostrou-se [42] que esse fato evidencia-se na presença de um vínculo bifermiônico que não pode ser
�xado. É possível ainda construir modelos pseudoclássicos em interação com campos não-abelianos.
O trabalho [43] apresenta um modelo assim; lá utiliza-se, no entanto, o método de quantização de
Dirac. Seria portanto interessante tratar um modelo de partícula em campo não-abeliano segundo
o procedimento de quantização canônica consistente, nos moldes de [41].

A representação de propagadores da teoria quântica por integrais de trajetória é um problema
intimamente relacionado aos modelos pseudoclássicos. Os trabalhos [44, 45] mostram que os mod-
elos pseudoclássicos para partículas escalar e com spin 1/2 em campo eletromagnético arbitrário
podem ser extraídos de tais representações, e o trabalho [46] generaliza estes cálculos em dimensão
arbitrária. Estas representações podem ainda ser generalizadas para partículas em interação com
campos não abelianos [47, 48], sempre levando a integrais de trajetória cujas ações correspondem a
modelos pseudoclássicos. A de�nição precisa da integral de trajetória pelo método de discretização
corresponde a uma de�nição precisa da correspondência entre símbolos e operadores [49]. Em outras
palavras, as ambiguidades de ordenamento que se encontram na quantização de funções clássicas se
manisfestam igualmente na de�nição discreta da integral de trajetória. Como já mencionado, tais
ambiguidades de ordenamento se manifestam muito claramente no problema da partícula em campo
gravitacional, e assim é de se esperar que surjam problemas na de�nição da integral de trajetória
no curso da representação de propagadores de partículas em campo gravitacional.

No contexto de espaços-tempo não-comutativos, esforços na direção da quantização de modelos
de partículas ainda são incipientes, e se concentram principalmente na generalização ao caso não-
comutativo de problemas clássicos da mecânica quântica usual, tais como o oscilador harmônico
[50, 51, 52], a partícula no campo central e o átomo de hidrogênio [53, 54], e também incorporando
efeitos topológicos, tais como efeito Aharonov-Bohm e efeito Casimir [55, 56]; todos com o �m de
obter correções quânticas oriundas da não-comutatividade das coordenadas. Também se incluem
nesses esforços de obter correções quânticas da não-comutatividade abordagens de quantização via
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integral de trajetória [57, 58, 59, 60, 61].
No entanto, somente em [62] há preocupação em justi�car as ações clássicas empregadas para

efeito de quantização, valendo-se do problema inverso de quantização: pela extração das referidas
ações clássicas e pseudoclássicas das representações dos propagadores correspondentes via integral
de trajetória. Descobre-se que tanto a ação hamiltoniana clássica para partícula relativística escalar,
quanto a ação pseudoclássica hamiltoniana para partícula relativística espinorial, diferem de seus
análogos comutativos ([45] e [39], respectivamente) pelo termo ṗµθ

µνpν/2~, que impede que se
obtenham diretamente por integração a forma lagrangiana das ações. A quantização de Dirac
da ação pseudoclássica assim obtida recupera a equação de Dirac no espaço de Minkowski não-
comutativo, justi�cando a generalização do modelo de Berezin-Marinov. Por �m, em [62] também
se deduz a ação clássica da partícula não-relativística pela representação da função de propagação
via integral de trajetória, obtendo-se uma modi�cação da ação hamiltoniana clássica no R3 pelo
mesmo termo que surge nas versões relativísticas, que incidentalmente é a mesma ação proposta
em [63, 64, 65]
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Capítulo 2

Partícula escalar num campo de

fundo não-abeliano

2.1 Introdução

Teoria Quântica de Campos (TQC) com campos externos é uma boa abordagem à descrição de
muitos sistemas e efeitos físicos. Se o campo externo é forte o bastante, ele tem de ser computado
não-perturbativamente. Os métodos correspondentes para Eletrodinâmica Quântica (EQ) estão
bem desenvolvidos e deram muitos resultados, como mostram os trabalhos [66] e as citações aí con-
tidas. O conceito de campo externo em TQC não-abeliana é menos desenvolvido e encontra algumas
di�culdades (não há uma forma de introduzir um campo externo não-abeliano que seja invariante de
calibre). Entretanto, a existência indiscutível de situações físicas em que há um campo não-abeliano
quantizado su�cientemente forte frequentemente serve como justi�cativa física ao tratamento desse
campo com um campo externo clássico, apesar do problema mencionado acima. Resultados in-
teressantes e �sicamente signi�cativos que foram obtidos nesse contexto servem como justi�cativa
adicional. Podemos apontar os cálculos efetivos a um loop em campos externos constantes não-
abelianos [67, 68, 69] que foram usados na construção do verdadeiro vácuo da Cromodinâmica
Quântica (CQ), veja [69, 70, 71, 72]. Também se deve mencionar a descrição de transições de fase
em CQ cosmológica [73], produção não perturbativa de partons a partir do vácuo por um campo
clássico cromoelétrico SU (3) [74] e SU (2) [75], condições de fronteira e efeitos topológicos do vácuo
na presença de um campo magnético inomogêneo na forma de um tubo de �uxo [76, 77], e assim
por diante.

Os objetos-chave em TQC não-perturbativa (com respeito ao campo de fundo) com um campo
de fundo não-abeliano são os propagadores das partículas escalar e espinorial no campo externo não-
abeliano correspondente. Soluções exatas para tais objetos permitem que se obtenha por integração
resultados a um loop para várias quantidades físicas. Ademais, representações por integral de
trajetória do propagador podem ser úteis à obtenção de soluções exatas, que então poderíam ser
usadas em cálculos. Uma variedade de representações por integral de trajetória da partícula escalar
e espinorial foram construídas e calculadas para muitos campos abelianos de fundo em [78, 48, 44, 45,
79, 47, 80]. Veri�cou-se que tais representações também são úteis na dedução das chamadas ações
pseudoclássicas para partículas espinoriais, veja [45, 79, 46]. Algumas representações por integral
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de trajetória para propagadores em campos externos não-abelianos e problemas relacionados à
descrição pseudoclássica de isospin foram estudadas em [43, 81, 48].

Recordamos que uma teoria clássica para a partícula de Yang-Mills foi primeiro obtida a partir
do limite clássico das equações de campo de Yang-Mills por Wong [82]. Em seguida, Chen e Dres-
den [83] mostraram que as equações de campo de Yang-Mills fornecem as equações de movimento
para uma partícula teste com spin isotópico no mesmo sentido em que as equações de Einstein
fornecem as equações para uma partícula teste massiva. Casalbuoni et.al. [81] obtiveram uma
descrição lagrangiana invariante de calibre para partículas escalar e espinorial com spin isotópico,
em que variáveis de Grassmann descrevem os graus de liberdade internos no nível clássico, tal que
a quantização dê representações de dimensão �nita do grupo de calibre. Balachandran et.al. [43]
aplicaram o procedimento de quantização de Dirac a uma formulação lagrangiana pseudoclássica
das partículas escalar e espinorial interagindo com um campo de calibre não-abeliano, e adicional-
mente, desenvolveram um método aqui utilizado para obter as representações irredutíveis de isospin.
Em [47], a estrutura de isospin do propagador da partícula relativística escalar na representação
fundamental de SU (2) é deduzida usando métodos desenvolvidos para o caso da partícula com
spin.

Aqui volta-se mais uma vez a esses problemas para o caso da partícula escalar com isospin em
vários campos externos não-abelianos. É importante frisar que um campo escalar quantizado em
um campo externo não-abeliano tem sido proposto como uma explicação de con�namento em CQ
por meio de uma partícula escalar massiva (dílaton) [84], e também aparece na forma de escalares
fundamentais acoplados à curvatura de calibre em teoria de cordas [85].

Construíram-se representações por integral de trajetóra para o propagador da partícula escalar
em duas abordagens: uma é a generalização do procedimento proposto em [47] a qualquer represen-
tação de SU (N) dada em termos de matrizes de base anti-simétricas, enquanto a outra é construída
usando estados coerentes fermiônicos válida para quaisquer representações de SU (N). Esta última
abordagem é uma modi�cação da representação por integral de trajetória do propagador de Dirac
por meio de estados coerentes fermiônicos apresentado em [48]. Em ambos os casos nós deduz-
imos as ações pseudoclássicas para a partícula escalar em campos de fundo não-abelianos, e os
quantizamos para demonstrar sua consistência. No apêndice, colocamos alguns detalhes técnicos e
demonstrações.

2.2 Representações dos propagadores

Um campo escalar φ com carga não-abeliana é um campo no espaço de Minkowski M de métrica
ηµν = diag (1,−1,−1,−1) com valores em um espaço de representação linear V de um grupo de
simetria local G, i.e., φ : M → V . Aqui e no que segue, G = SU (N), e a representação linear
é uma representação matricial unitária de dimensão n, isto é, ρ : SU (N) → GL (n), V = Cn
(φ = {φα} é uma n-upla de números complexos, α = 1, ..., n) e ρ (g) com g ∈ SU (N) é uma
matriz unitária de ordem n. O potencial de calibre Aµ é um campo em M com valores na álgebra
de Lie su (N), Aµ : M → su (N), e sua ação sobre os campos de matéria φ se dá de acordo
com a representação induzida por ρ. A base de su (N) nessa representação é dada pelas matrizes
hermitianas de traço nulo tαaβ , a = 1, .., N2 − 1 e α, β = 1, ..., n1. Desse modo, Aµφ = Aaµt

α
aβφ

β ,

1Como SU (N) é um grupo compacto, a base pode ser escolhida tal que as constantes de estrutura sejam totalmente
anti-simétricas [86],

[ta, tb] = f c
ab tc, f c

ab ≡ f[abc] , (2.1)
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onde Aaµ (x) são os coe�cientes de Aµ na base {ta}. A equação que de�ne o campo escalar φ é a
equação de Klein-Gordon (

ηµνPµPν −m2
)
φ (x) = 0 ,

em que Pµ = i∂µ − qAµ é a derivada covariante. Por uma transformação de calibre local g : M→
SU (N)

φ (x) 7→ g (x)φ (x) , φ† (x) 7→ φ† (x) g−1 (x) , Aµ (x) 7→ g (x)Aµ (x) g−1 (x) + iq−1∂µg (x) g−1 (x) ,

a derivada covariante satisfaz Pµφ (x) 7→ g (x)Pµφ (x), em que se subentende que o elemento g de
SU (N) é dado em termos da representação ρ. A ação invariante por transformação de calibre local
g : M → SU (N) mais simples cuja lagrangiana seja quadrática e função de φ e suas primeiras
derivadas ∂µφ, e cujo extremo dê a equação de Klein-Gordon é

S =
ˆ
d4x

{
ηµν (Pµφ)† (Pνφ)−m2φ†φ

}
, Pµ = i∂µ − qAµ (2.2)

O propagador causal para a partícula escalar relativística interagindo com um campo externo
Aµ com valores na álgebra su (N) no espaço de Minkowski (em unidades naturais ~ = c = 1) é
descrito pela equação(

P2 −m2
)α
β
Dβ

γ (x, y) = −δαγ δ4 (x− y) , Pµ = i∂µ − qAµ , (2.3)

No que segue consideraremos duas diferentes realizações da álgebra de Lie (2.1) de su (N). A
primeira realização será em termos de operadores de criação e aniquilação de�nidos num espaço de
Fock conveniente, e a segunda realização será em termos de geradores de uma álgebra de Cli�ord
particular.

I. Considere um espaço de Hilbert abstrato H dado pelo produto direto do espaço de represen-
tação usual para a álgebra de Heisenberg, cuja base é denotada por |x〉,

x̂µ |x〉 = xµ |x〉 , 〈x |y〉 = δ4 (x− y) ,
ˆ
d4x |x〉 〈x| = I ,

[x̂µ, p̂ν ] = iδµν , 〈x| p̂µ |y〉 = −i∂µδ4 (x− y) , (2.4)

e um espaço de Hilbert abstrato V que por ora não especi�camos, e que possui uma base ortonormal
de vetores |α〉, α = 1, ..., n, com produto interno

〈α |β〉 = δαβ ,

n∑
α=1

|α〉 〈α| = I . (2.5)

Desse modo, o espaço de Hilbert H =H ⊗ V possui uma base ortonormal |x, α〉 = |x〉 ⊗ |α〉, e
produto interno 〈x, α |y, β〉 = δ4 (x− y) δαβ .

Em seguida, interpretamos os operadores com índices que surgem em (2.3) como elementos
de matriz de operadores em H. De acordo com esta interpretação, o propagador Dα

β (x, y) são

elementos de matriz de um operador abstrato D̂,

D (x, y)αβ = 〈x, α| D̂ |y, β〉 , (2.6)

e as matrizes ta sejam normalizadas a tr (tatb) = 1/2δab.
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e a base tαaβ são elementos de matriz de operadores t̂a,

〈α| t̂a |β〉 = tαaβ .

Note que como os elementos de matriz dos operadores t̂a satisfazem as relações de comutação da
álgebra su (N), os operadores também as satisfazem:

[ta, tb]
α
β = fcabt

α
cβ ⇔

[
t̂a, t̂b

]
= fcabt̂c . (2.7)

Por meio dos operadores acima de�nidos, pode-se escrever (2.3) na forma operatorial,(
P̂ 2 −m2

)
D̂ = −I ,

em que

P̂µ = −p̂µ − qÂµ , Âµ = Aaµ (x̂) t̂a , 〈x, α| P̂µ |y, β〉 =
(
i∂µδαβ − qAµ (x) tαaβ

)
δ4 (x− y) .

Logo, podemos formalmente escrever o operador D̂

D̂ = −
(
P̂ 2 −m2 + iε

)−1

,

por meio da representação do tempo próprio de Schwinger

D̂ = i

ˆ ∞

0

dλe−iĤ(λ) , Ĥ = −λ
(
P̂ 2 −m2 + iε

)
. (2.8)

O espaço V , que até agora permaneceu indeterminado, será de�nido como o setor de uma
partícula do espaço de Fock dos operadores de criação e aniquilação â† e â,

âα |0〉 = 0 , â†α |0〉 = |α〉 ,
que satisfazem a álgebra [

â†α, âβ
]
+

= δαβ ,
[
â†α, â

†
β

]
+

= [âα, âβ ]+ = 0 . (2.9)

Então é possível representar os operadores t̂a como

t̂a = â†αt
α
aβ âβ , t

α
aβ = 〈α| t̂a |β〉 . (2.10)

Aqui é imporante observar que os t̂a satisfazem as relações de comutação da álgebra su (N),[
t̂a, t̂b

]
= fcabt̂c ,

uma vez que os elementos de matriz tαaβ satisfazem as relações de comutação (2.7) de su (N).
Ademais, as propriedades de hermiticidade e de traço nulo de tαaβ são herdadas pelos operadores t̂a,

trt̂a ≡
M∑
α=1

〈α| t̂a |α〉 = tαaα = 0

t̂†a =
(
â†αt

α
aβ âβ

)†
= â†β t̄

α
aβ âα = t̂a ,
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em que a involução † da álgebra abstrata de operadores conjuga os números complexos tαaβ . Final-
mente, notamos que t̂a conserva o número de partículas.

Usando a representação (2.10) para a base ta, introduzimos estados coerentes fermiônicos |χ〉 e
〈χ̄| [87, 48] de�nidos como a exponencial dos operadores de criação e aniquilação agindo no vácuo

|χ〉 = D (χ) |0〉 , 〈χ̄| = |χ〉† , D (χ) = eâ
†χ−âχ̄ , [âα, D (χ)]+ = χαD (χ) ,

em que χα e χ̄α = χ†α são números de Grassmann que comutam com o estado de vácuo e com
â e â†. Usando a relação âαD (χ) = χαD (χ) + D† (χ) âα, �ca evidente que os estados coerentes
fermiônicos satisfazem

âα |χ〉 = χα |χ〉 , 〈χ̄| â†α = 〈χ̄| χ̄α .

A normalização desses estados segue da relação Baker-Campbell-Hausdor�,

〈χ̄| ξ〉 = e
1
2 (χχ̄+ξξ̄−2ξχ̄) ,

e a resolução da indentidade é dada por

ˆ N∏
α=1

dχ̄αdχ
α |χ〉 〈χ̄| = 1̂ ,

ˆ
dχχ =

ˆ
dχ̄χ̄ = 1 .

Ela pode ser demonstrada facilmente, bastando notar que para um só componente, a expansão dá
o operador identidade no espaço de Fock, |0〉 〈0|+ a† |0〉 〈0| a.

Por meio da resolução da identidade acima, torna-se possível relacionar elementos de matriz do
setor de uma partícula do espaço de Fock na base |α〉 à base de estados coerentes |χ〉,

〈α| · |β〉 =
ˆ N∏

σ,κ=1

dχ̄′σdχ
′σdχ̄κdχ

κe
1
2 (χ′χ̄′+χχ̄)χ′α 〈χ̄′| · |χ〉 χ̄β , (2.11)

onde foi usada a relação 〈χ̄| α〉 = χ̄α exp 1
2χχ̄. Como resultado, podemos reescrever o propagador

(2.6) em termos de elementos de matriz de estados coerentes,

D (x, y)αβ =
ˆ N∏

σ,κ=1

dχ̄′σdχ
′σdχ̄κdχ

κe
1
2 (χ′χ̄′+χχ̄)χ′α 〈x, χ̄′| D̂ |y, χ〉 χ̄β . (2.12)

Na seção seguinte, os elementos de matriz 〈x, χ̄′| D̂ |y, χ〉 serão utilizados na obtenção de uma
representação do propagador via integral de trajetória.

II. Uma outra interpretação possível do propagador D (x, y) que aparece em (2.3) pode ser
simplesmente como elementos de matriz

D (x, y)ij = 〈x| D̂i
j |y〉

dos vetores de base |x〉 do espaço de Hilbert abstrato H. O operador abstrato D̂ adquire índices
diretamente das matrizes da base de su (N). Note que renomeamos os índices da representação
matricial de su (N). Os novos índices i e j denotam as componentes matriciais de uma nova base
Ta,

Ta =
1
4
ΓαtαaβΓβ , [Γα,Γβ ] = 2δαβ . (2.13)
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Esta base é bastante conveniente para obter representações por integral de trajetória do propagador
por meio de técnicas adaptadas do caso da partícula espinorial. Entretanto, para que Ta satisfaça às
relações de comutação (2.1), é necessário que as matrizes ta sejam anti-simétricas, tTa = −ta. Esta
desvantagem pode ser contornada se tomarmos as matrizes ta na representação adjunta tcab = f c

ab .
Além desse caso, há outras representações em que é possível escolher as matrizes ta anti-simétricas.
Por exemplo, no caso de SU (2), é sempre possível escolher matrizes ta anti-simétricas para as
representações de spin inteiro s. Nesse caso, α, β = 1, ..., 2s + 1 e i, j = 1, ..., 2s. No caso geral,

na representação adjunta, α, β = 1, ..., N2 − 1 e então i, j = 1, ..., 2[(N2−1)/2]. No caso familiar da
representação adjunta de su (2), tem-se

Ta =
i

4
εabcΓbΓc = − i

4
εabcΓbΓc , a, b, c = 1, 2, 3 ,

em que as matrizes Γ satisfazem [Γa,Γb]+ = 2δab e são de ordem 2, então podem ser escolhidas
como sendo as matrizes de Pauli, Γa = σa

2,

Ta = − i
4
εabcσbσc =

1
2
σa . (2.14)

A base Ta é composta de matrizes hermitianas e de traço nulo, e elas satisfazem as relações de
comutação de su (2)

[Ta, Tb] = iεabcTc .

Esse caso é especial, pois a escolha da representação adjunta para ta fornece Ta na representação
fundamental. Uma outra situação especial ocorre com SU (4), em que se pode escolher ta como
matrizes anti-simétricas de ordem 6, uma vez que vale o isomor�smo de álgebras su (4) ' so (6).
Então, tem-se espinores pares ou ímpares de so (6) com 4 componentes, dando por meio do método
descrito nas seções 3.1 e 4.1, a representação fundamental de SU (4).

2.3 Integral de trajetória na representação por estados coer-

entes

2.3.1 Integral de trajetória

Nosso objetivo nessa seção é escrever uma representação por integral de trajetória para

Dχ (x, χ̄′; y, χ) ≡ 〈x, χ̄′| D̂ y, χ〉 = i

ˆ ∞

0

dλ 〈x, χ̄′| e−iĤ(λ) |y, χ〉 (2.15)

Inserimos N − 1 resoluções da identidade I =
´
dxdχ̄dχ |x, χ〉 〈x, χ̄| e N integrações sobre λ:

Dχ (x, χ̄′; y, χ) = i

ˆ ∞

0

dλ0

ˆ (N−1∏
k=1

dxkdχ̄kdχk

)
dλ1 · · · dλN

N∏
k=1

〈xk, χ̄k| e−iĤ(λk)/N |xk−1, χk−1〉 δ (λk − λk−1) , (2.16)

2σ1 =

„
0 1
1 0

«
, σ2 =

„
0 −i
i 0

«
, σ3 =

„
1 0
0 −1

«
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em que xN = x, χ̄N = χ̄′, x0 = y e χ0 = χ. Com o intuito de calcular o elemento de matriz
genérico que surge em (2.16), deve-se escolher uma prescrição de ordenamento para os operadores
em Ĥ. Em particular, deve-se resolver a ambiguidade no ordenamento do termo contendo quatro
férmions em P̂ 2. Em [48], uma resolução adicional da identidade é inserida entre os operadores
P̂ como solução para o problema de ordenamento. Não sabemos a que prescrição esta solução
corresponde, e prescrições convencionais tais como ordenamento de Weyl e ordenamento normal
não são invariantes de calibre. No que segue, mostraremos que o ordenameno de Weyl não é
invariante de calibre, e computaremos a ação efetiva resultante. Como é mostrado no apêndice
(A.1), o operador Hamiltoniano difere da expressão obtida por ordenamento de Weyl 3 pelo termo

λ q
2

4 tr (tatb) ÂaµÂ
µb. Esta ação, com exceção do termo não-invariante, é idêntica ao que se obteria

duplicando a partição do tempo.
Aplicando a regra do ponto médio (A.3) ao elemento de matriz genérico, tem-se

〈xk, χ̄k| Ĥ (λk) |xk−1, χk−1〉 =
ˆ

dpk

(2π)4
dη̄kdηk 〈xk, χ̄k| pk, ηk〉 (HW (λk) +Q (λk)) 〈pk, η̄k| xk−1, χk−1〉 ,

HW (λk) ≡ HW

(
λk,

xk + xk−1

2
, pk, η̄k,

ηk + χk−1

2

)
,

Q (λk) ≡ λk
q2

4
tr (tatb)Aaµ

(
xk + xk−1

2

)
Abµ

(
xk + xk−1

2

)
,

onde HW é o símbolo de Weyl de ĤW . Substituindo as funções delta δ (λk − λk−1) por suas
representações integrais e usando a representação integral para a função delta fermiônica (A.5) nas
integrações em χ e χ̄, temos

Dχ (x, χ̄′; y, χ) = i

ˆ ∞

0

dλ0

ˆ (N−1∏
k=1

dxk

)(
N∏
k=1

dpk

(2π)4
dλk

dπk
(2π)

dη̄kdηk

)
exp

1
2

(χ′χ̄′ − ηN η̄N + 2χ̄′ηN )

exp i
N∑
k=1

{
pk

(xk − xk−1)
∆t

+ πk
(λk − λk−1)

∆t
− i

2
(ηk − ηk−1)

∆t
η̄k −

i

2
(η̄k − η̄k−1)

∆t
ηk−1 −HW (λk)−Q (λk)

}
∆t ,

onde HW (λk) = HW

(
λk,

xk+xk−1
2 , pk, η̄k,

ηk+ηk−1
2

)
, η0 = χ. O termo χ′χ̄′− ηN η̄N +2χ̄′ηN vem de

〈χ̄′| ηN 〉, e no limite N →∞ se reduz a 2χ̄′η (1). Tomando o limite N →∞ (∆t→ 0) e renomeando
η → χ e η̄ → χ̄, tem-se

Dχ (x, χ̄′; y, χ) = i

ˆ ∞

0

dλ0

ˆ
DxDpDλDπDχ̄Dχ exp iSeff exp χ̄ (1)χ (1) ,

Seff =
ˆ 1

0

dt

(
pẋ+ πλ̇+

i

2
(χ̄χ̇− ˙̄χχ) + λ

((
pµ + qAaµIa

)2 −m2
)
− q2

4
λtr (tatb)AaµA

bµ

)
,

(2.17)

em que Ia = χ̄taχ, e a integração funcional é feita sobre as trajetórias xµ (t), pµ (t), λ (t), π (t),
χ̄ (t) e χ (t), com valores de fronteira xµ (0) = yµ, xµ (1) = xµ, λ (0) = λ0, χ̄ (1) = χ̄′ e χ (0) = χ.

3Ordenamento de Weyl aqui signi�ca simetrização em todos os graus de liberdade bosônicos e anti-simetrização
em todos os graus de liberdade fermiônicos.
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Como a integral de trajetória é invariante por translações, pode-se integrar sobre os momentos
pµ deslocando p 7→ p+ p̃, em que p̃ = −ẋ/2λ− qAaIa é a solução à equação clássica ẋ = ∂Heff/∂p.
Após a substituição 2λ = e, obtém-se a forma lagrangiana da integral de trajetória:

Dχ (x, χ̄′; y, χ) = i

ˆ ∞

0

dλ0

ˆ
DxDeDπDχ̄DχM [e, x] exp i (Seff + SG) exp (χ̄ (1)χ (1)) ,

Seff =
ˆ 1

0

dt

(
− ẋ

2

2e
− e

2
m2 − qẋµAaµIa +

i

2
(χ̄χ̇− ˙̄χχ)

)
, (2.18)

com medida lagrangiana e termo SG de �xação de calibre de parametrização

M [e, x] =
ˆ
Dp exp

i

2

ˆ 1

0

e

(
p2 − q2

4
trtatbAaµA

µb

)
dt (2.19)

SG =
ˆ 1

0

πėdτ (2.20)

Assim, a representação por integral de trajetória do propagador pôde ser deduzida a partir uma
prescrição de ordenamento (ordenamento de Weyl) com o custo de uma medida de integração
não-invariante de calibre.

2.3.2 Ação pseudoclássica

O funcional ação Seff em (2.18),

Seff =
ˆ 1

0

dt

(
− ẋ

2

2e
− e

2
m2 − qẋµAaµIa +

i

2
(χ̄χ̇− ˙̄χχ)

)
, Ia = χ̄taχ , (2.21)

é invariante por reparametrização,

δεSeff = 0 , δεx = εẋ , δεe =
d

dt
(εe) , δεχ = εχ̇ , δεχ̄ = ε ˙̄χ . (2.22)

No calibre e =
√
ẋ2/m coincide com a ação dada em [81, 43] que descreve uma partícula relativística

escalar com coordenadas fermiônicas numa representação de um grupo de simetria G, cujas equações
de movimento são

m
d

dt

ẋµ√
ẋ2

= qẋνF aµνIa , Dtχ
α ≡ d

dt
χα + iqẋµAaµt

α
aβχ

β = 0 , (2.23)

onde F aµν = ∂µA
a
ν − ∂νA

a
µ + iqfabcA

b
µA

c
ν é o tensor de campo e Dt é a derivada covariante.

Com a �nalidade de realizar análise canônica clássica 4, é mais conveniente partir da ação
invariante por reparametrização (2.21). Como esta ação não contem derivadas de e, é melhor
considerar e uma velocidade (veja [89]), e não introduzir seu momento conjugado. Chega-se assim
ao seguinte hamiltoniano

H = −e
2
T − χ̇αφα − ˙̄χαφ̄α ,

4As de�nições e convenções são aquelas usadas em [88].
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onde o conjunto de vínculos Φ =
{
T, φ, φ̄

}
,

T =
(
pµ + qAaµIa

)2 −m2 , φα = πα −
i

2
χ̄α , φ̄α = π̄α −

i

2
χα ,

de�ne uma supermatriz degenerada {Φ,Φ}. A álgebra de vínculos se simpli�ca se considerarmos

um conjunto equivalente de vínculos
{
T̃ , φ, φ̄

}
, onde T̃ é obtido de T por meio dos deslocamentos

χ→ χ− iφ̄ e χ̄→ χ̄− iφ, {
T̃ , φα

}
=
{
T̃ , φ̄α

}
= 0 ,

{
φα, φ̄β

}
= −iδαβ .

O novo hamiltoniano com multiplicadores de Lagrange rede�nidos é

H̃ = ΛT̃ + Λαφα + Λ̄αφ̄ ,

fornecendo a seguinte evolução temporal para os vínculos,

d

dt
T̃ = 0 ,

d

dt
φα = iΛ̄α ,

d

dt
φ̄α = iΛα ,

então a condição de conservação dos vínculos no tempo simplesmente �xam Λ e Λ̄. As equações de
movimento para as variáveis independentes η = (xµ, pµ, χα, χ̄α) são dadas por

η̇ =
{
η,ΛT̃

}
D(φ)

, φα = φ̄α = T̃ = 0 ,

em que os parênteses de Dirac foram construídos com respeito ao conjunto de vínculos de segunda
classe

{
φ; φ̄

}
. Usando propriedades bem conhecidas dos parênteses de Dirac, as equações de movi-

mento se tornam
η̇ = {η,ΛT}D(φ) , φα = φ̄α = T = 0 ,

E os parênteses não-nulos entre variáveis independentes são

{xµ, pν}D(φ) = δµν , {χα, χ̄β}D(φ) = −iδαβ . (2.24)

Ademais, os Ia são uma base covariantemente constante de su (N),

{Ia, Ib}D(φ) = −ifcabIc , DtIa ≡
d

dt
Ia + iqẋµAbµf

c
abIc = 0 , (2.25)

que portanto serão conhecidos por isospin.
De (2.24), vemos que os operadores fermiônicos geram uma álgebra de operadores de criação e

aniquilação

χα → aα , χ̄α → a†α ,
[
aα, a

†
β

]
+

= δαβ . (2.26)

O espaço de Hilbert H pode ser realizado como produto direto do espaço de representação para a
álgebra de Heisenberg e o espaço de Fock de 2n dimensões dos operadores de criação e aniquilação

|x;α1 · · ·αp〉 = a†α1
· · · a†αp

|x; 0〉 ∈ H , p = 0, .., n . (2.27)
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A ação do grupo SO (2n) preserva as relações de comutação (2.26), e os geradores de so (2n) na
representação acima são dados por cαβ =

[
a†α, aβ

]
, aαaβ e a†αa

†
β . Os cαβ pertencem à subálgebra

u (n) de so (2n). Os n operadores cαβ para α = β formam a subálgebra de Cartan5 de so (2n).
A representação (2.27) é uma representação espinorial de dimensão 2n de so (2n), e suas repre-

sentações irredutíveis são dadas pelos estados em que há um número par ou ímpar de operadores de
criação, correspondendo à representação de Weyl (semi-espinorial) de 2n−1 dimensões de so (2n).
Esses estados podem ser decompostos ainda em representações irredutíveis de su (N), uma vez que
os geradores de isospin Îa são uma combinação linear de geradores de so (2n),

Îa = taαβa
†
αaβ =

1
2
taαβ

([
a†α, aβ

]
+
[
a†αaβ

]
+

)
=

1
2
taαβcαβ . (2.28)

Logo, os Îa geram uma subálgebra su (N) de so (2n).
Então, dada uma representação de su (N) em termos de matrizes n × n, mostramos que a

função de onda pertence a uma representação irredutível de SO (2n), i.e., uma representação de
Weyl (semi-espinorial) de dimensão 2n−1. Para decompor essa representação em representações
irredutíveis de SU (N), é necessário calcular os autovalores de uma base da subálgebra de Cartan
de su (N) na representação espinorial em questão. Sem perda de generalidade, assumimos que os
ta pertencentes à base da subálgebra de Cartan de su (N) estejam diagonalizados. Com isto, (2.28)
nos dá a decomposição dos geradores de isospin Îa numa combinação linear de elementos da base
da subálgebra de Cartan de so (2n). A dimensão da subálgebra de Cartan de su (N) é N − 1:
escolhemos N − 1 elementos dentre os N2 − 1 Îa e calculamos seus autovalores na representação
semi-espinorial �xada. Isso nos dá as possíveis representações de SU (N) contidas na função de
onda.

Por exemplo, no caso de SU (2), pode-se escolher a projeção de isospin t3 e para SU (3) pode-se
usar a projeção de isospin t3 e a hipercarga Y como base para as subálgebras de Cartan respecti-
vas, para caracterizar representações irredutíveis de SU (N). Então esses geradores de isospin (já
diagonalizados) são decompostos em termos dos cα =

[
a†α, aα

]
(a base para subálgebra de Cartan

de so (2n)) para obter seus autovalores para a representação espinorial de so (2n) a qual pertence
a função de onda. O intervalo de valores desses autovalores dá as representações irredutíveis de
SU (N).

No caso particular de SU (2), a subálgebra de Cartan é gerada por um único elemento, i.e., t3,
cuja representação matricial numa base de autoestados de isospin s (ou seja, numa representação
de dimensão n = 2s+1) é da forma t3 = diag(s, s− 1, ...,−s+1,−s). A decomposição do operador
de isospin Î3 em geradores de Cartan de so (4s+ 2) é da forma

Î3 =
s

2
c1 +

(s− 1)
2

c2 + · · ·+ (−s)
2

c2s+1 .

Cada cα pode ter o valor mais ou menos um. Entretanto, a função de onda está em um estado com
um número par de +1 (espinor de Weyl par) ou com um número ímpar de +1 (espinor de Weyl
ímpar).

Por exemplo, para s = 1/2,

Î3 =
1
4
c1 −

1
4
c2 ,

5A subálgebra de Cartan de uma álgebra compacta é a subálgebra abeliana maximal. A dimensão da subálgebra
de Cartan de so (2n) é n, também conhecido como posto (rank).
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e portanto os autovalores possíveis de t̂3 para uma representação par (c1 = c2 = +1 e c1 = c2 = −1)
são duas vezes 0, dando duas representações escalares; e para uma representação ímpar (c1 = −c2 =
1 e c1 = −c2 = −1) é ±1/2, dando a representação de isospin 1/2. A função de onda pertence a
uma representação semi-espinorial de SO (4), portanto de dimensão 2.

Para cada spin inteiro, as representações pares ou ímpares se decompõem do mesmo modo, e
a representação de isospin mais alto é (s+ 1) s/2. Por exemplo, s = 1 dá os autovalores 1, 0,−1 e
novamente 0, dando a representação de isospin 1 mais um escalar. Abaixo há uma tabela resumo
dos resultados para alguns valores de isospin (SU (2)).

isospin s grupo de simetria dimensão da representação decomposição(par;ímpar)

0 SO (2) 1 0
1/2 SO (4) 2 2× 0 ; 1

2

1 SO (6) 4 0 + 1
3/2 SO (8) 8 3× 0 + 2 ; 2× 3

2

2 SO (10) 16 0 + 1 + 2 + 3
Assim, para obter a representação fundamental de SU (2) após a quantização, deve-se escolher

o espaço de Hilbert como sendo a representação espinorial de Weyl ímpar de SO (4) de espinores
de duas componentes. Nesse caso, o vínculo T dá a seguinte condição de quantização de Dirac

T̂ φ =
[(
p̂µ + qAaµta

)2 −m2
]
φ (x) = 0 , (2.29)

que é precisamente a equação de onda em (2.3) para ta = 1
2σa.

Como último exemplo, considere o caso SU (3) em que a base ta está na representação fundamen-
tal, i.e., são as matrizes de Gell-Man de ordem 3. A função de onda pertence a uma representação
de espinorial de Weyl de SO (6), de dimensão 4. SU (3) possui posto dois, e portanto dois elementos
da base podem ser simultaneamente diagonalizados, por exemplo, t3 e a hipercarga Y 6

t3 =
1
2

 1 0 0
0 −1 0
0 0 0

 , Y =
1
3

 1 0 0
0 1 0
0 0 −2

 .

Então, de acordo com (2.28),

Î3 =
1
4

(c1 − c2 + 0 · c3) , Ŷ =
1
6

(c1 + c2 − 2c3) .

Se a função de onda é um espinor de Weyl par, então os autovalores possíveis de Î3 são 0,1/2,−1/2,
0, e os autovalores possíveis Ŷ são 0,−1/3,−1/3,2/3, dando a representação anti-fundamental 3̄
de SU (3) mais um singleto. Para função de onda um espinor de Weyl ímpar, obtém-se o estado
fundamental 3 de SU (3) mais um singleto.

Também é possível chegar a esses resultados a partir da ação clássica (2.21). No que segue, será
conveniente expressar as variáveis de Grassmann χ em termos das suas partes reais e imaginárias,

χα =
1√
2

(χ1α + iχ2α) , χ†1α = χ1α , χ
†
2α = χ2α ,

χ1α =
1√
2

(χα + χ̄α) , χ2α =
1
i
√

2
(χα − χ̄α) . (2.30)

6Aqui usamos as convenções de [90]
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Deste modo, a parte Grassmann do termo cinético �ca

Lkin =
i

4
(χ1χ̇1 − χ̇1χ1 + χ2χ̇2 − χ̇2χ2) .

Lkin é invariante sob transformações induzidas porRαβ = −i (χ1αχ1β + χ2αχ2β) e Sαβ = −i (χ1αχ2β + χ1βχ2α)

δωχiα ≡
{

1
2
ωβγRβγ , χiα

}
D(φ)

= ωαβχiβ ,

δλχiα ≡
{

1
2
λβγSβγ , χiα

}
D(φ)

= (−1)i+1
λαβχiβ

em que os parênteses de Dirac para as variáveis reais seguem dos parênteses das variáveis antigas
(2.24) e de sua expressão em termos das variáveis reais (2.30),

{χ1α, χ1β}D(φ) = {χ2α, χ2β}D(φ) = −iδαβ , {χ1α, χ2β}D(φ) = 0 .

Os geradores de simetrias Rαβ e Sαβ satisfazem a álgebra de Lie

{Rαβ , Rγδ}D(φ) = δαγRβδ + δβδRαγ − δαδRβγ − δβγRαδ ,

{Sαβ , Sγδ}D(φ) = δαγRβδ + δβδRαγ + δαδRβγ + δβγRαδ ,

{Rαβ , Sγδ}D(φ) = δαγSβδ − δβδSαγ + δαδSβγ − δβγSαδ .

Acima reconhecemos as relações de comutação da seguinte combinação dos geradores Lij , i, j =
1, ..., 2n, de o (2n),

Rαβ = L2α−1,2β−1 + L2α,2β , Sαβ = L2α,2β−1 − L2α−1,2β − δαβ .

Ademais, da decomposição dos geradores Ia em termos das partes simétrica e anti-simétrica de ta,

Ia = ta(αβ) (χ̄αχβ + χ̄βχα) + ta[αβ] (χ̄αχβ − χ̄βχα)

=
i

2
ta(αβ) (χ1αχ2β + χ1βχ2α) +

1
2
ta[αβ] (χ1αχ1β + χ2αχ2β) ,

= −1
2
ta(αβ)Sαβ +

i

2
ta[αβ]Rαβ (2.31)

nós novamente deduzimos que os Ia são uma combinação linear dos geradores Rαβ e Sαβ , que é o
mesmo que dizer que os Ia são os geradores da subálgebra su (N) de so (2n). Trata-se de so (2n)
e não de o (2n), pois o traço de Sαβ na expansão de Ia não contribui, uma vez que as matrizes ta
têm traço nulo.

2.4 Integral de trajetória na representação da álgebra de Clif-

ford

2.4.1 Integral de trajetória

Aqui é usada a representação (2.13) para os geradores Ta e técnicas [45, 91] empregadas no caso da
partícula espinorial, adaptadas ao presente problema, para representar o propagador. Os índices
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α, β e γ são os índices das matrizes Γ, isto é, são os índices do espaço de representação para a
álgebra de Cli�ord. A representação do tempo próprio para o operador D̂ (2.8) na representação
da posição é

D (xout, xin) = i

ˆ ∞

0

〈xout| e−iĤ(λ) |xin〉 dλ . (2.32)

A seguir é feita uma discretização por meio da inserção de N − 1 resoluções da identidade I =´
dx |x〉 〈x| na expressão anterior,

D (xout, xin) = i

ˆ ∞

0

dλ0

ˆ ∞

−∞

(
N−1∏
i=1

dxi

)
dλ1 · · · dλN

N∏
i=1

〈xi| e−iĤ(λi)/N |xi−1〉 δ (λi − λi−1) (2.33)

em que xN = xout e x0 = xin. Aplicando a correspondência simétrica ou de Weyl ao elemento de
matriz geral, tem-se

〈xi| e−iĤ(λi)/N |xi−1〉 =
ˆ

dpi

(2π)4
exp

(
− i

N
H

(
λi,

x1 + x2

2
, pi

))
ei(xi−xi−1)pi , (2.34)

em que H é o símbolo de Weyl de Ĥ,

H (λ, x, p) = λ
[
m2 −

(
p2
i + qpµi A

a
µ (x)Ta

)2]
.

Como no caso da partícula espinorial [45], deve-se associar a cada matriz Ta seu 'tempo' τj = j∆τ ,
tal que o propagador (2.33) ordenado no tempo se torna, para 1/N ≡ ∆τ ,

D (xout, xin) = iT

ˆ ∞

0

dλ

ˆ ∞

−∞

(
N−1∏
i=1

dxi

)(
N∏
i=1

dpi
(2π)4

dλi
dπi
2π

)

× exp i
N∑
i=1

Si (xi, xi−1, pi, λi, πi) , (2.35)

onde

Si =
(
xi − xi−1

∆τ
· pi −H

(
λi,

xi + xi−1

2
, pi

)
+ πi

λi − λi−1

∆τ

)
∆τ . (2.36)

No limite ∆τ → 0, Si → SH [x, p; τin, τout] é a ação Hamiltoniana, um funcional da trajetória
(x (t) , p (t)) no espaço de fase, no intervalo de tempo próprio [τin, τout], e (2.35) é a versão discreta
da seguinte integral de trajetória na forma Hamiltoniana

D (xout, xin) = iT

ˆ ∞

0

dλ0

ˆ xout

xin

Dx

ˆ
Dp

ˆ
λ0

DλDπ exp i
ˆ τout

τin

(
ẋ · p−H (λ, x, p) + πλ̇

)
dτ .

(2.37)
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Seguindo [45], fontes ímpares ρa (τ) são introduzidas, anti-comutando com as matrizes Γ, e ree-
screvemos 2.37 como

D (xout, xin) = i

ˆ ∞

0

dλ0

ˆ xout

xin

Dx

ˆ
Dp

ˆ
λ0

DλDπ exp i
ˆ 1

0

[
λ

((
pµ +

q

4
tαaβA

a
µ

δl
δρα

δl
δρβ

)2

−m2

)

p · ẋ+ πλ̇dτ
]
× T

ˆ 1

0

ρα (τ) Γαdτ
∣∣∣∣
ρ=0

,

em que por simplicidade �zemos τin = 0 e τout = 1. É possível apresentar o último termo do lado
direito da equação acima como uma integral funcional [45, 91],

T

ˆ 1

0

ρα (τ) Γαdτ = exp
(
iΓα

∂l
∂θα

)

×
ˆ

ψ(0)+ψ(1)=θ

exp
[ˆ 1

0

(
ψα (τ) ψ̇α (τ)− i2ρα (τ)ψα (τ)

)
dτ + ψα (1)ψα (0)

]
Dψ

∣∣∣∣∣∣∣
θ=0

Dψ = Dψ

 ˆ

ψ(0)+ψ(1)=0

exp
ˆ 1

0

ψα (τ) ψ̇α (τ) dτ


−1

,

em que θ são constantes ímpares, anti comutando com as matrizes Γ. Então, chegamos à represen-
tação por integral de trajetória hamiltoniana para o propagador:

D (xout, xin) = i exp
(
iΓα

∂l
∂θα

)ˆ ∞

0

dλ0

ˆ xout

xin

Dx

ˆ
Dp

ˆ
λ0

DλDπ

ˆ
exp

{
i

ˆ 1

0

[
λ
((
pµ − qtαaβA

a
µψαψβ

)2 −m2
)

−iψαψ̇α + p · ẋ+ πλ̇
]
dτ + ψα (1)ψα (0)

}
Dψ
∣∣∣
θ=0

,

x (0) = xin , x (1) = xout , λ (0) = λ0 , ψ (0) + ψ (1) = θ .

Integrando sobre os momentos, encontra-se a representação lagrangiana da integral de trajetória:

D (xout, xin) = i exp
(
iΓα

∂l
∂θα

)ˆ ∞

0

de0

ˆ
exp {i (Seff + SG) + ψα (1)ψα (0)}M [e, x]DxDeDπDψ|θ=0

Seff = i

ˆ 1

0

(
− ẋ

2

2e
− e

2
m2 + qtαaβẋ

µAaµψαψβ − iψαψ̇α

)
x (0) = xin , x (1) = xout , e (0) = e0 , ψ (0) + ψ (1) = θ , (2.38)

em que a medida M [e, x] e o termo de �xação de calibre de reparametrização SG são

M [e, x] =
ˆ
Dp exp

i

2

ˆ 1

0

ep2dτ , SG =
ˆ 1

0

πė .
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2.4.2 Ação pseudoclássica

Consideremos a ação invariante por reparametrização de (2.38) com a rede�nição ψ → i/
√

2ψ,

Seff =
ˆ
dx4

(
− ẋ

2

2e
− e

2
m2 − qẋµAaµIa +

i

2
ψαψ̇α

)
, Ia =

1
2
tαaβψαψβ . (2.39)

A ação acima é essencialmente aquela escrita em [81] no caso em que as variáveis de Grassmann
ψ pertencem à representação adjunta do grupo de Lie simples e compacto G (tαaβ = f bac), e em
[43] para ψ em uma representação com geradores anti-simétricos ta. As equações de movimento no
calibre e =

√
ẋ2/m são

d

dt

(
m

ẋµ√
ẋ2

)
= qF aµν ẋ

νIa , Dtψ
α ≡ d

dt
ψα + iqẋµAaµt

α
aβψ

β = 0 ,

F aµν = ∂µA
a
ν − ∂νA

a
µ + iqfabcA

b
µA

c
ν ,

em que F aµν é o tensor de campo não-abeliano.
A seguir, faremos uma análise canônica nos moldes daquela feita no caso da representação

coerente, mas lembrando que as matrizes ta são anti-simétricas de ordem n. Como era esperado, a
Hamiltoniana é proporcional aos vínculos,

H = −e
2
T − ψ̇αφα

onde

T =
(
pµ + qAaµIa

)2 −m2 , φα = πα −
i

2
ψα

Depois de rede�nir T por meio do deslocamento ψ → ψ− iφ, T → T̃ , a álgebra de vínculos se torna{
T̃ , φα

}
= 0 , {φα, φβ} = −iδαβ .

O conjunto Φ =
{
T̃ , φ

}
é de primeira classe, e a evolução das variáveis independentes η = (x, p, ψ)

é
η̇ = {η,ΛT}D(φ) = 0 , T = φα = 0 ,

em que os parênteses de Dirac são de�nidos com respeito ao conjunto de vínculos de segunda classe
{φ}. O comutador de Dirac das variáveis independentes é

{xµ, pν}D(φ) = δµν , {ψα, ψβ}D(φ) = −iδαβ ,

As grandezas de isospin Ia satisfazem a álgebra de Lie de SU (N) após a quantização e são covari-
antemente constantes:

{Ia, Ib}D(φ) = −ifcabIc , DτI
c =

d

dτ
Ic + iqẋµAaµf

c
abI

b = 0 .

É evidente que após a quantização as variáveis de Grassmann ψα geram uma álgebra de Cli�ord
com n geradores e um produto interno positivo de�nido. E então os estados físicos φ são vetores
de 2[n/2] componentes satisfazendo[(

p̂µ + qAaµÎa

)2

−m2

]
φ (x) = 0 , (2.40)
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em que os operadores de isospin quânticos Îa = 1
4 t
α
aβΓαΓβ são precisamente aqueles introduzidos

em (2.13) e satisfazem a álgebra de su (N) (2.1)[
Îa, Îb

]
= fcabÎc .

Façamos uma análise do conteúdo de isospin da teoria clássica na linha daquela que foi feita
para o caso da representação por estados coerentes. Aqui, os termos cinéticos contendo variáveis
de Grassmann na ação são invariantes por transformações geradas por Rαβ = −iψαψβ ,

δωψα =
{

1
2
ωβγRβγ , ψα

}
D(φ)

= ωαβψβ , ωαβ = −ωβα ,

que fornecem uma representação para a álgebra de Lie so (n):

{Rαβ , Rγδ}D(φ) = δαγRβδ − δβγRαδ − δαδRβγ + δβδRαγ .

Então os geradores Ia são uma combinação linear de geradores Rαβ de so (n), e portanto geram uma
subálgebra su (N) de so (n). As representações espinoriais de so (n) são irredutíveis de dimensão
2(n−1)/2 para n ímpar e redutíveis de dimensão 2n/2−1 para n par.

A �m de determinar o conteúdo de SU (N) da função de onda, procede-se como no caso anterior.
Vimos que dados ta uma representação irredutível de su (N) em termos de matrizes n × n anti-
simétricas, a função de onda pertence a uma representação espinorial de so (n). Então são calculados
os autovalores para uma base da subálgebra de Cartan de su (N) de acordo com a decomposição
geral da base de isospin Ia em termos da subálgebra de Cartan de so (n).

Por exemplo, no caso de SU (2), a função de onda é um espinor de 2s componentes de SO (2s+ 1),
que possui uma subálgebra de Cartan de dimensão s. Logo, dada uma base no qual as matrizes
ta são anti-simétricas (isso sempre é possível para spin inteiro), decompõe-se I3 (o único elemento
da base da subálgebra de Cartan de su (2)) em elementos da base da subálgebra de Cartan de
so (2s+ 1)

I3 = R23 + 2R45 + · · ·+ sR2s,2s+1 .

Os autovalores possíveis dos elementos R2i,2i+1, i = 1, .., s determinam por sua vez os autovalores
possíveis de I3, e portanto, as representações irredutíveis de su (N) aí contidas.

Abaixo há decomposições em SU (2) da representação espinorial de SO (2s+ 1) para alguns
valores de isospin:

isospin s grupo de simetria dimensão da representação decomposição

1 SO (3) 2 1
2

2 SO (5) 4 3
2

3 SO (7) 8 0 + 3

2.5 Resumo

Foram descritos dois métodos para obter ações clássicas de partículas escalares com isospin por
meio de representações por integral de trajetória do propagador causal. A quantização de Dirac
dessas ações produz as equações de onda correspondentes para várias representações de SU (N).
Por meio de uma escolha judiciosa da ação pseudoclássica e da representação da álgebra su (N) na
ação, é possível obter a função de onda para o isospin desejado.
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Capítulo 3

Estabilidade da teoria de gravitação

de Jackiw-Teitelboim não-comutativa

3.1 Introdução

De modo geral, a versão não-comutativa de uma teoria de campo é obtida pela substituição do
produto ponto a ponto de funções pelo produto de Moyal (veja apêndice para de�nições). Esta
extensão não é evidentemente única, mas em geral há restrições a serem obedecidas, como, por
exemplo, a preservação do número de simetrias de calibre. No entanto, a análise da estrutura
das simetrias de calibre em teorias não-comutativas é bastante complicada: por exemplo, uma
interpretação de invariância de Lorentz conduz a uma simetria de Poincaré torcida [92].

Um passo importante em direção à construção de uma teoria de gravitação não-comutativa
satisfatória foi recentemente dado por Wess e seus colaboradores [93], que entenderam como se
deve construir invariantes por difeomor�smo, incluindo a ação de Einstein-Hilbert, em espaços não-
comutativos (veja também [94] para uma formulação real). Há, contudo, um preço a se pagar. O
grupo de difeomor�smos se torna torcido, há um coproduto não-trivial devido à ação das simetrias
em produtos tensoriais que tem uma aparência bem pouco familiar [95, 96].

Em duas dimensões é possível construir modelos não-comutativos de gravitação dilatônica com
uma realização usual (não-torcida) das simetrias de calibre. Uma versão não-comutativa do modelo
de Jackiw-Teitelboim (NCJT) foi construída em [97] e então quantizada em [98]. Um buraco negro
de Witten não-comutativo foi sugerido em [99]. Ambos modelos são do tipo Yang-Mills: o modelo
de JT é equivalente a um modelo BF topológico; o buraco negro de Witten pode ser representado
por um modelo de Wess-Zumino-Novikov-Witten. Há procedimentos gerais de como tais modelos
possam ser formulados no caso não-comutativo (veja [97, 100]). É importante, portanto, veri�car
se se pode ir além do paradigma de Yang-Mills. Além do mais, um indicativo de que este é o
caminho correto seria a constatação de que teorias de gravitação dilatônicas existiriam não só
para potenciais constantes ou lineares, mas para potenciais arbitrários. Nós veri�caremos aqui se
potenciais quadráticos são permitidos.

A �m de analisar as simetrias de calibre, nós usamos o formalismo canônico para espaços-tempo
não-comutativos desenvolvido em [99]. Não é um formalismo canônico no sentido usual1 [101, 88],

1Uma vez que teorias em espaços-tempo não-comutativos não são locais no tempo e contêm um número in�nito
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mas torna possível que se de�na a noção de vínculos de primeira classe e se associe uma simetria
de calibre a eles, ao menos para a classe de modelos que podem ser postos na forma

S =
ˆ

(pa∂0q
a − h (p, q, λ)) dDx , (3.1)

em que h é uma função-? local2. A ação acima permite a identi�cação de pares canonicamente
conjugados, isto é, qa e pa desempenharão o papel de coordenadas e momentos, respectivamente, e
de�nirão uma estrutura de Poisson primitiva, por meio da aplicação bilinear anti-simétrica (qa, pb) =
− (pb, qa) = δab . Finalmente, λ são multiplicadores de Lagrange.

No caso de teorias de calibre comutativas, há uma conjectura feita por Dirac de que os vínculos
de primeira classe são os geradores das transformações de calibre. Para certas classes de teorias de
calibre comutativas, isto pode ser provado e, também, veri�ca-se que o número de transformações de
calibre independentes é igual ao número de vínculos de primeira classe primários [88]. A estrutura de
simetria de uma teoria de calibre comutativa geral foi recentemente descrita em detalhe e relacionada
à estrutura de vínculos na formulação hamiltoniana [102]. Em particular, a carga de calibre foi
construída explicitamente como uma decomposição numa base ortogonal de vínculos. Demonstrou-
se que, no caso geral, a carga de calibre não pode ser construída com vínculos de primeira classe
apenas, pois sua decomposição também envolve combinações especiais de vínculos de segunda classe.

De acordo com essa ideologia, introduz-se o parêntese canônico no espaço dos funcionais-?
locais3, uma aplicação bilinear daquele espaço nele mesmo, anti-simétrica, e que satisfaz a identidade
de Jacobi. Se denotarmos por ηi = (qa, pb) as variáveis canônicas, e por F um monômio genérico
de um funcional-? local, isto é,

F =
ˆ
dDx∂µ1η1 ? ∂µ2η2 ? · · · ∂µn

ηn ,

em que µi é um multi-índice e ∂µi é um operador diferencial de ordem |µi|, o parêntese canônico é
dado por

{F, F ′} =
∑
i,j

ˆ
dDx∂µj

(
∂µj+1ηj+1 ? · · · ? ∂µj−1ηj−1

)
(ηj , η′i)

? ∂µ′i

(
∂µ′i+1

η′i+1 ? · · · ? ∂µ′i−1
η′i−1

)
(−1)|µj |+|µ′i| . (3.2)

O produto acima é calculado do seguinte modo: 1)para cada par de variáveis canonicamente conju-
gadas (ηj , η′i), permuta-se ciclicamente em F o elemento ηj até ele ocupar o último lugar à direita,
e analogamente, permuta-se ciclicamente em F ′ o elemento η′i até ele ocupar o primeiro lugar à
esquerda; 2)então integra-se por partes cada uma das expressões F e F ′ para remover as derivadas
de ηj e η′i; 3)depois, eliminam-se ηj e η′i e multiplicam-se com o produto de Moyal os integrandos
resultantes de F e F ′, e ao resultado acrescenta-se o fator

(
ηi, η

′
j

)
; e 4)�nalmente, integra-se sobre

M.
Em particular, pi se tornam canonicamente conjugados aos qi,

{qa(x), pb(y)} = δbaδ
2(x− y). (3.3)

de derivadas temporais no produto estrela, é evidente que alguma modi�cação do formalismo canônico padrão seja
necessário.

2Uma função-? local é um elemento do fecho do conjunto dos polinômios das variáveis canônicas e suas derivadas
calculados com o produto de Moyal.

3Funcionais-? locais são integrais emM das funções-? locais.
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A propriedade mais incomum do colchete (3.3) é a presença da função delta das coordenadas
temporais no lado direito. Entretanto, como teorias em espaços-tempo não-comutativos não são
locais no tempo, a restrição dos parênteses entre variáveis do espaço de fase no mesmo instante
de tempo não parece natural ou mesmo consistente. A presença de um função delta a mais em
(3.3) lembra o formalismo de Ostrogradski para teorias com derivadas temporais elevadas (veja
[103, 104, 105, 106] e [99] para uma discussão mais extensa). De todo modo, também se podem
utilizar os parênteses (3.3) para analisar simetrias de calibre em teorias comutativas. Não é claro,
entretanto, se se pode utilizar esses parênteses modi�cados para �ns de quantização. Aqui usaremos
exclusivamente (3.3) para de�nir a estrutura de Poisson.

Nós iremos demonstrar que não é possível somar consistentemente termos quadráticos ao po-
tencial dilatônico do modelo NCJT, portanto ele é estável ante tais deformações.

3.1.1 Gravitação em 2 e 3 dimensões

Gravitação em 2 e 3 dimensões [107] é um laboratório de estudo de questões pouco compreendi-
das em 4 dimensões, analogamente ao que é feito em dimensões baixas para o estudo de outros
fenômenos, tais como quebra espontânea de simetria, anomalias, con�namento, sólitons, etc.

No entanto, gravitação em dimensões baixas é bastante peculiar. Para começar, em 3 dimensões,
a equação de Einstein Gµν + Λgµν = κTµν pode ser escrita como

Rµν = 2Λgµν + κ (Tµν − gµνT
σ
σ) .

E ademais, levando em conta as simetrias do tensor de curvatura, constata-se que ele só possui 6
componentes independentes, i.e., em número igual ao do tensor de Ricci Rµν . Ou, seja, o tensor de
curvatura é completamente determinado pelo tensor de Ricci:

Rµνλρ = gµλRνρ + gνρRµλ − gµρRνλ − gνλRµρ −
1
2
R (gµλgνρ − gµρgνλ) ,

e pela expressão anterior, isto implica que o tensor de curvatura é completamente �xado pela
distribuição local de matéria Tµν e pela constante de cosmológica Λ. Em particular, as regiões
livres de fontes, Tµν = 0, são regiões de curvatura constante, onde o tensor de curvatura vale

Rµνλρ = Λ (gµλgνρ − gµρgνλ)

e a curvatura escalar R = 6Λ. Isto quer dizer que efeitos de curvatura produzidos pela matéria
não se propagam pelo espaço-tempo: não há graus de liberdade dinâmicos. Obs: Não obstante a
curvatura local nas regiões livres de matéria não seja afetada pelas mesmas, a matéria pode produzir
efeitos globais de curvatura não-triviais.

Em 2 dimensões o tensor de curvatura só tem um componente independente, uma vez que todos
os componentes não nulos podem ser obtidos a partir de R0101 usando as simetrias do tensor. Isto
implica que o tensor de curvatura pode ser escrito em termos do escalar de curvatura R,

Rµνλρ =
1
2
R (gµλgνρ − gµρgνλ) .

Esta relação entre o tensor de curvatura e o escalar de curvatura resulta no fato de que o tensor de
Einstein Gµν é identicamente nulo em 2 dimensões:

Rµν −
1
2
gµνR ≡ 0 .
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Além disso, pode-ser constatar a partir da expressão da curvatura escalar em termos das formas
de conexão, R = 2εµν∂µων , que a ação de Einstein-Hilbert contem uma divergência total. Essa
integral, para uma variedade Riemanniana compacta M de genus γ , é a característica de Euler

ˆ
M

d2x
√
gR = 8π (1− γ) .

Então, uma nova teoria clássica se faz necessária em 2 dimensões, e um bom candidato para
uma equação de campo gravitacional de segunda ordem no vácuo parece ser

R+ Λ = 0 , (3.4)

já que todo conteúdo de curvatura se encontra no escalar de Ricci. Esta equação foi primeiro
sugerida por Jackiw e Teitelboim em [108].

3.1.2 Modelo de Jackiw-Teitelboim

Evidentemente, a ação ˆ
M

d2x
√
−g (R+ Λ)

não é útil para fornecer as novas equações de movimento, pois, como se viu, o termo com curvatura é
uma divergência total, restando apenas a equação Λ = 0, e portanto a métrica permanece inde�nida.
Por outro lado, não há ação invariante construída somente a partir da métrica e que seja a integral
no tempo de uma lagrangiana local que dê a equação (3.4). A saída que Jackiw e Teitelboim [108]
encontraram para contornar esta limitação foi a introdução de um campo escalar auxiliar φ (o
dílaton):

S =
ˆ
M

d2x
√
−gφ (R+ Λ) . (3.5)

Variação desta ação com respeito ao campo φ dá a equação de Einstein bidimensional (3.4), e
variação com respeito à metrica dá a seguinte equação para o campo φ:

(∇µ∇µ − Λ)φ = 0 . (3.6)

Mais tarde ([109, 110]), percebeu-se que estas equações de movimento poderíam ser formuladas no
contexto de uma teoria topológica de calibre com simetria do grupo de de Sitter SO (2, 1). Uma
constante cosmológica não-nula se faz necessária, porque o grupo de Poincaré em duas dimensões,
ISO (1, 1), não possui uma forma quadrática bilinear simétrica não-degenerada (forma de Killing),
essencial para de�nição da métrica no espaço-tempo. Então, a álgebra do grupo de Poincaré bidi-
mensional é deformada para a álgebra de de Sitter

[τi, τj ] = −ε kij τk , i, j, k = 0, 1, 2 ,

com a introdução de uma constante cosmológica. A métrica de Killing de so (2, 1),

ηij =
1
2
ε likε

k
j = diag (−1, 1, 1)

pode ser usada para normalizar a base τi de so (2, 1) de acordo com trτiτj = 1
2ηij . Já a conexão de

calibre A pode ser escrita como um multipleto composto pelos referenciais móveis (zweibeine) ea,
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a = 0, 1, e pela conexão de spin ω, A = eaτa + ωτ2. Com isto, a métrica no espaço-tempo passa a
ser escrita em termos dos referenciais móveis

g
(
ea, eb

)
= ηab =⇒ gµν = ηabeaµe

b
ν .

O tensor de campo F é uma 2-forma que toma valores na álgebra de Lie so (2, 1), dado pela
expressão4

F = dA+
1
2

[A,A] ≡ dA+Ai ∧Aj [τi, τj ] .

Note que em duas dimensões a identidade de Bianchi DF = 0 é trivialmente satisfeita, pois DF é
uma 3-forma. Em componentes da base τi, o tensor de campo se decompõe na torsão 1-forma para
A = 0, 1,

F a ≡ T a = dea + ωab ∧ eb , ωab = εabω ,

e para A = 2 em um termo dual à curvatura escalar R = 2 ∗ dω e um termo de volume,

F 2 = dω +
1
2
εabe

a ∧ eb .

Por uma transformação conforme com parâmetro constante, ea 7→
√

Λ/2ea, temos que eR 7→ eR
quando a torsão é nula, F a = 0, e portanto a equação F 2 = 0 é equivalente a

e (R+ Λ) = 0 .

Logo, a equação de Einstein em duas dimensões é equivalente a FA = 0. A maneira mais direta
de obter essa equação de movimento a partir do princípio de mínima ação, sem comprometer a
invariância da ação por transformações de calibre, é integrar sobre a 2-forma ΦF , em que Φ é um
multipleto escalar que se transforma na representação adjunta de so (2, 1),

S =
ˆ
M

tr (ΦF ) .

A ação acima é invariante por transformações in�nitesimais geradas por λ = λAτA

δλA = Dλ = dλ+ [A, λ] , δλΦ = [Φ, λ] .

Não é difícil ver que difeomor�smos δεxµ = εµ (x) estão contidos 'on-shell' nas transformações
acima, pois são gerados por transformações in�nitesimais com parâmetro λ = εµAµ quando FA = 0.

A equação de movimento para o campo escalar Φ,

DΦ = dΦ + [A,Φ] = 0 ,

é equivalente à equação (3.6), se �zermos a decomposição do multipleto em Φ = (φa, φ) e usarmos
a equação para φa para eliminarmos essas componentes, resultando na equação de Klein-Gordon
no espaço de de Sitter,

(∇µ∇µ + Λ)φ = 0 .

4Veja a fórmula (B.2) do apêndice para de�nição do comutador.
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3.1.3 Gravitação dilatônica

Os modelos de gravitação dilatônica em duas dimensões [111] podem ser genericamente agrupadas
na ação

S =
ˆ
M

d2x
√
−g
[
R

2
φ− U (φ)

2
(∇φ)2 + V (φ)

]
,

ou, no formalismo de primeira ordem,

S =
ˆ
M

[
φaDe

a + φdω + ε

(
φaφ

a

2
U (φ) + V (φ)

)]
, (3.7)

que corresponde a uma generalização do modelo de Jackiw e Teitelboim e se reduzem a esse com a
escolha U = 0 e V = Λφ [?].

Há outros exemplos interessantes que conduzem a modelos de gravitação dilatônica, como:

• Uma variedade MD em D dimensões com simetria esférica pode ser decomposta no produto
MD = M ⊗ SD−2,

ds2 = gµν (x)xµxν − λ−2φ2/D−2 (dΩ)2SD−2
,

tal que a ação de Einstein-Hilbert se reduza a

SEH =
AD−2

λD−216πG

ˆ
M

d2x
√
−g

[
φR+

D − 3
D − 2

(∇φ)2

φ
− λ2 (D − 2) (D − 3)φ(D−4)/D−2

]
,

um caso particular de gravitação dilatônica. Esse caso corresponde à escolha V ∝ φ
D−4
D−2 e

U ∝ φ−1.

• Gravitação de cordas ou buraco negro de Witten [112, 113, 114]: esse caso corresponde à
escolha V = −2λ2φ e U = −φ−1.

O interesse pela gravitação dilatônica em duas dimensões também se deve ao fato de funcionarem
como �toy models� para o estudo da quantização da gravidade e da evaporação de buracos negros,
e por possuir conexões com geometria não-comutativa e quantização por deformação.

Por último, entre os vários contextos em que esses modelos fazem contacto com a teoria de
cordas, um caso interessante é que as condições de invariância conforme para a a ação de modelo
sigma não-linear da corda bosônica

L(sig) =
1

4πα′

ˆ
d2σ

√
−h
[
hαβ∂αX

µ∂βXµ + α′ΦR
]

são equivalentes às equações de movimento para a seguinte ação de gravitação dilatônica (veja [115])

L(dil) =
ˆ
dDX

√
−ge−2Φ

[
R+ 4 (∇Φ)2 − 4λ2

]
.

A partir de uma transformação conforme g → e2ρg com ρ = 1/2
´ φ

U (y) dy, a ação (3.7) passa a
descrever teorias de gravitação dilatônica com Ũ = 0 e Ṽ = e−2ρV . Esta simpli�cação da descrição
de teorias de gravitação dilatônica em duas dimensões em termos de um único potencial acontece
às custas da restrição da função U da formulação original a uma função não-singular, tal que as
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duas formulações sejam �sicamente equivalentes. Com esta restrição em mente, vamos utilizar a
seguinte forma geral para teorias de gravitação dilatônica em duas dimensões,

S =
ˆ
d2xεµν

(
φ∂µων + φaDµe

a
ν − εabe

a
µe
a
νV (φ)

)
, (3.8)

em que eaµ é o zweibein, εµν é o símbolo de Levi-Civita (veja o apêndice para nossas convenções de
sinal). A derivada covariante

εµνDµe
a
ν = εµν

(
∂µe

a
ν + ωµε

a
be
b
ν

)
(3.9)

contem a conexão de spin ωµε
a
b. Aqui φ é um campo escalar conhecido por dílaton. φa é um

campo auxiliar. No caso comutativo, que estamos considerando no momento, qualquer escolha do
potencial V (φ) leva a um modelo consistente.

O campo auxiliar φa gera a condição de que ωµ é a conexão de Levi-Civita compatível com
a métrica. Sob essa condição εµν∂µων se torna proporcional ao tensor de curvatura de Riemann
(os termos proporcionais a φa, naturalmente, desaparecem). Desse modo, chega-se ao formalismo
de segunda ordem. Entretanto, a ação de primeira ordem (3.8) tem muitas vantagens sobre a de
segunda ordem. Por exemplo, as equações clássicas de movimento são muito mais fáceis de resolver
[116], e no caso quântico, é possível realizar uma integral de trajetória sobre as variáveis geométricas
mesmo na presença de campos de matéria adicionais [117, 118, 119].

3.2 Gravitação não-comutativa de Jackiw-Teitelboim

Uma versão não-comutativa do modelo de Jackiw-Teitelboim foi construída em [97]. Essa versão
foi identi�cada com uma teoria de calibre U(1, 1) de�nida numa variedade M bidimensional,

SNCJT =
ˆ
M

TrΦ ? F , (3.10)

em que Φ é uma 0-forma com valores na álgebra de Lie u (1, 1) e F é uma 2-forma com valores na
álgebra de Lie u (1, 1), i.e., F é o tensor de campo de Yang-Mills5 F = dA+ 1

2 [A,A].
A ação (3.10) é invariante por transformações de calibre in�nitesimais geradas por λ = λAτA:

δλA = Dλ , δλΦ = [λ,Φ] .

Assim como no caso comutativo, as equações de movimento implicam que Φ é covariantemente
constante e que a conexão A é plana:

F = 0 , DΦ = 0 ,

ou seja, não há graus de liberdade se propagando; a teoria é topológica.
Escolhendo uma base para u (1, 1) dada pelas matrizes τA, A = 0, 1, 2, 3, do apêndice, a ação

SNCJT se reescreve como

SNCJT =
1
2

ˆ
M

ηABΦA ? FB .

5Veja fórmula (B.3) do apêndice para de�nição do comutador no contexto não-comutativo.
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De acordo com a decomposição ΦA = (lφa, φ, ψ) e AA =
(
l−1ea, ω, b

)
, e levando em conta o produto

entre os elementos da base, temos

F = dA+Ai ∧? Ajτiτj +
i

2
Ai ∧? A3τi +

i

2
A3 ∧? Aiτi +

i

2
A3 ∧? A3τ3 . (3.11)

Com a decomposição (3.11), as componentes de F se tornam

F a = l−1dea +
l−1

2
[
εabe

b, ω
]
+
i

2
l−1 [ea, b]+ , a, b = 0, 1 ,

F 2 = dω − l−2

2
[
e0, e1

]
+
i

2
[ω, b]+ ,

F 3 = db− il−2

2
e0 ∧? e0 +

il−2

2
e1 ∧? e1 +

i

2
ω ∧? ω +

i

2
b ∧? b .

Com a decomposição de Φ e de F em suas componentes da base τA, a ação SNCJT se torna

SNCJT =
1
2

ˆ
ΦA ? FA =

1
2
l

ˆ
φ0 ? F

0 +
1
2
l

ˆ
φ1 ? F

1 +
1
2

ˆ
φ ? F 2 − 1

2

ˆ
ψ ? F 3

=
1
2

ˆ
φa ?

(
dea +

1
2
[
εabe

b, ω
]
+
i

2
[ea, b]+

)
+

1
2

ˆ
φ ?

(
dω − l−2

2
[
e0, e1

]
+
i

2
[ω, b]+

)
−1

2

ˆ
ψ ?

(
db− il−2

2
e0 ∧? e0 +

il−2

2
e1 ∧? e1 +

i

2
ω ∧? ω +

i

2
b ∧? b

)
,

ou em componentes da base coordenada,

S =
1
4
εµν
ˆ
d2xφa ?

1
2

(
∂µe

a
ν − ∂νe

a
µ −

1
2

([
ωµ, ε

a
be
b
ν

]
+
− [ων , εabeµ]+

)
+
i

2
(
[bµ, eaν ]−

[
bν , e

a
µ

]))
+

1
4
εµν
ˆ
d2xφ ?

1
2

(
∂µων − ∂νωµ −

l−2

2

([
e0µ, e

1
ν

]
+
−
[
e0ν , e

1
µ

]
+

)
+
i

2
([ωµ, bν ]− [ων , bµ])

)
− 1

4
εµν
ˆ
d2xψ ?

1
2

(
∂µbν − ∂νbµ −

il−2

2
[
e0µ, e

0
ν

]
+
il−2

2
[
e1µ, e

1
ν

]
+
i

2
[ωµ, ων ] +

i

2
[bµ, bν ]

)
.

A expressão acima pode ser reescrita como

S(0) =
1
4

ˆ
εµν
[
φab ?

(
Rab − Λea ∧? eb

)
− 2φa ∧? T a

]
, (3.12)

em que

Rab = dΩab +
1
2

[Ωac,Ω
c
b] , (3.13)

T a = dea +
1
2

[Ωac, e
c]+ , (3.14)

φab ≡ (φεab − iψηab) , Ωab = εabω + iδabb , Λ = − 1
l2
,

e interpretamos em (3.13) e (3.14) a curvatura 2-forma e a torsão 2-forma, respectivamente. Note
que o segundo termo do lado direito destas expressões difere das expressões análogas na geometria
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diferencial padrão, entretanto, se reduzem a elas no limite comutativo. As equações de movimento
para o campo auxiliar φa dão T a = 0, i.e., a condição de torsão nula, e daí que a derivada covariante
do referencial móvel ea é nula, Dea = 0.

A extensão do modelo de Jackiw e Teitelboim de gravitação dilatônica em duas dimensões para
um espaço-tempo não comutativo foi feito por meio da extensão da teoria de calibre associada de
SU (1, 1) para U (1, 1). A extensão se deveu ao fato de que o grupo SU (1, 1) da teoria comutativa
não é preservada pelo produto de Moyal: para g e h na representação fundamental de SU (1, 1),
i.e., g e h campos matriciais, tem-se que det g ? h 6= det g ? deth = 1. Como conseqüência, surgem
novos campos: um novo campo escalar ψ e um campo de calibre U (1) bµ, e a conexão Ωab toma
valores em so (1, 1) ⊕ u (1), que desacoplam no limite comutativo e estão relacionados à parte de
traço de U (1, 1).

Em componentes, a ação (3.12) se escreve

S(0) =
1
4

ˆ
d2x εµν

[
φab ?

(
Rabµν − 2Λeaµ ? e

b
ν

)
− 2φa ? T aµν

]
(3.15)

com tensor de curvatura

Rabµν =εab
(
∂µων − ∂νωµ +

i

2
[ωµ, bν ] +

i

2
[bµ, ων ]

)
+ ηab

(
i∂µbν − i∂νbµ +

1
2
[ωµ, ων ]−

1
2
[bµ, bν ]

)
(3.16)

e torsão não-comutativa

T aµν = ∂µe
a
ν − ∂νe

a
µ +

1
2
εab
(
[ωµ, ebν ]+ − [ων , ebµ]+

)
+
i

2
(
[bµ, eaν ]− [bν , eaµ]

)
. (3.17)

Há dois campos dilatônicos, φ e ψ, que estão combinados em

φab := φεab − iηabψ . (3.18)

Todos os comutadores (denotados por [·, ·]) e anti-comutadores (denotados por [·, ·]+) são calculados
com o produto estrela de Moyal.

Pode-se escrever (3.15) na forma canônica:

S(0) =
ˆ
d2x

(
pi∂0qi − λi ? G

(0)
i

)
, (3.19)

em que

qi = (ea1 , ω1, b1),

pi = (φa, φ,−ψ), (3.20)

λi = (ea0 , ω0, b0).
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Os vínculos são

G(0)
a = −∂1φa +

1
2
εba[ω1, φb]+ +

i

2
[φa, b1]

+
Λ
2
(
−εab[eb1, φ]+ + iηab[eb1, ψ]

)
, (3.21)

G
(0)
3 = −∂1φ+

i

2
[φ, b1] +

i

2
[ψ, ω1]−

1
2
εab[φa, eb1]+ , (3.22)

G
(0)
4 = ∂1ψ −

i

2
[ψ, b1] +

i

2
[φ, ω1] +

i

2
[φa, ea1 ] . (3.23)

É fácil veri�car que a álgebra de vínculos fecha, e que os parênteses entre os vínculos são{ˆ
αa ? G(0)

a ,

ˆ
βb ? G

(0)
b

}
=

= −Λ
2

ˆ (
εab[αa, βb]+ ? G

(0)
3 + i[αa, βa] ? G

(0)
4

)
(3.24){ˆ

α ? G
(0)
3 ,

ˆ
β ? G

(0)
3

}
=
i

2

ˆ
[α, β] ? G(0)

4 (3.25){ˆ
α ? G

(0)
4 ,

ˆ
β ? G

(0)
4

}
= − i

2

ˆ
[α, β] ? G(0)

4 (3.26){ˆ
α ? G

(0)
3 ,

ˆ
β ? G

(0)
4

}
= − i

2

ˆ
[α, β] ? G(0)

3 (3.27){ˆ
α ? G

(0)
3 ,

ˆ
βa ? G(0)

a

}
= −1

2

ˆ
[α, βa]+ εba ? G

(0)
b (3.28){ˆ

α ? G
(0)
4 ,

ˆ
βa ? G(0)

a

}
= − i

2

ˆ
[α, βa] ? G(0)

a (3.29)

Aqui introduzimos a abreviatura
´

:=
´
d2x. Podemos facilmente encontrar as transformações de

calibre gerados por esses vínculos por meio das de�nições

δpa =
{ˆ

dDxαi ? Gi, pa

}
δqa =

{ˆ
dDxαi ? Gi, q

a

}
em que αi são parâmetros de calibre arbitrários. As transformações geradas por G(0)

a são

δeaµ = −∂µαa −
1
2
εac[ωµ, αc]+ −

i

2
[b1, αa], (3.30)

δωµ = δbµ = 0 ,

δφ =
1
2
εba[αa, φb]+ , δψ = − i

2
[αa, φa] ,

δφa = −Λαbεba .
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O vínculo G(0)
3 gera

δeaµ =
1
2
εab[ebµ, β]+ , δbµ =

i

2
[ωµ, β] , (3.31)

δωµ = −∂µβ −
i

2
[bµ, β] ,

δφa = −1
2
εca[β, φc]+, δφ =

1
2
[β, ψ] , δψ = − i

2
[β, φ] .

Finalmente, as transformações de calibre geradas por G(0)
4 são

δeaµ = − i
2
[eaµ, γ] , δωµ = − i

2
[ωµ, γ] , (3.32)

δbµ = −∂µγ −
i

2
[bµ, γ] ,

δφa =
i

2
[γ, φa] , δφ =

i

2
[γ, φ] , δψ =

i

2
[γ, ψ] .

Em (3.30) - (3.32) as funções αa, β e γ são parâmetros das transformações de calibre.
As transformações (3.30) e (3.31) são equivalentes às simetrias de difeomor�smos e transfor-

mações de Lorentz locais no limite comutativo, a menos de rede�nições dos parâmetros das trans-
formações. Já as transformações (3.32) não tem equivalente comutativo, e se desacoplam no limite
comutativo. Assim, de acordo com o formalismo canônico apresentado, podemos dizer que as sime-
trias de calibre da ação (3.19) contem deformações não-comutativas dos grupos de simetria de
Lorentz e de difeomor�smos.

3.3 Deformações

Consideremos agora deformações do modelo NCJT. Mais termos serão adicionados à ação (3.15)
tal que (i) o conteúdo de campos do modelo permanecerá inalterado, e (ii) o número de vínculos
primários de primeira classe (e, consequentemente, o número de simetrias de calibre) também
permanecerá inalterado. Tendo sido inspirados por modelos de gravitação dilatônica comutativa,
apenas consideraremos deformações ao potencial, e somente adicionaremos termos quadráticos nos
dois campos dilatônicos φ e ψ.

Além de analogias com o caso comutativo, há também outras razões para não considerarmos
deformações dos termos de curvatura e torsão. Por exemplo, substituindo φab em (3.18) por uma
função não-linear dos dílatons é equivalente a uma rede�nição dos campos dilatônicos. Somar
potências mais altas da curvatura em geral adiciona novos graus de liberdade à teoria, e esta seria
uma modi�cação mais drástica àquela que normalmente se entende por deformação. O mesmo se
aplica aos termos de torsão.

Restrições adicionais a possíveis deformações são impostas por simetrias globais do modelo, que
gostaríamos de preservar. Em primeiro lugar, exige-se simetria com respeito à rotações globais dos
índices tangentes e de mundo. Isto implica que todos os índices devem ser contraídos aos pares.
Também se exige que os novos termos sejam de paridade par. Como φ é escalar, e ψ é um pseudo-
escalar, potências pares (ímpares) de ψ devem ser multiplicadas por potências pares (ímpares) do
símbolo de Levi-Civita ε. Como resultado, obtemos a seguinte família de deformações quadráticas
do modelo NCJT.

S = S(0) + S̃, (3.33)
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onde

S̃ =
ˆ
d2x

(
εµνεab

(
c1e

a
µ ? e

b
ν ? φ

2 + c2e
a
µ ? e

b
ν ? ψ

2

+c3eaµ ? φ ? e
b
ν ? φ+ c4e

a
µ ? ψ ? e

b
ν ? ψ

)
+ εµνηab

(
c5e

a
µ ? e

b
ν ? [φ, ψ] + ic6e

a
µ ? e

b
ν ? [φ, ψ]+

+
i

2
c7(eaµ ? φ ? e

b
ν ? ψ − eaµ ? ψ ? e

b
ν ? φ)

))
. (3.34)

As constantes arbitrárias c1, c2, ..., c7 devem ser reais para garantir a realidade da ação total S.
As potências se referem ao produto estrela, por exemplo φ2 ≡ φ ? φ.

Os vínculos são
Ga = G(0)

a + G̃a, G3 = G
(0)
3 , G4 = G

(0)
4 , (3.35)

em que

G̃a =εab
(
c1[eb1, φ

2]+ + c2[eb1, ψ
2]+ + 2c3φeb1φ+ 2c4ψeb1ψ

)
+ ηab

(
c5[eb1, [φ, ψ]] + ic6[eb1, [φ, ψ]+] + ic7(φeb1ψ − ψeb1φ)

)
. (3.36)

Nosso próximo passo é veri�car se a álgebra de vínculos ainda fecha na superfície de vínculos6.
Como os vínculos G3 e G4 estão inalterados, os colchetes entre eles (3.25) - (3.27) são os mesmos.
É um exercício simples veri�car que para todos os valores das constantes cm{ˆ

α ? G4,

ˆ
βa ? G̃a

}
= − i

2

ˆ
[α, βa] ? G̃a . (3.37)

Consequentemente, para quaisquer valores de cm o colchete entre G4 e Ga,{ˆ
α ? G4,

ˆ
βa ? Ga

}
= − i

2

ˆ
[α, βa] ? Ga , (3.38)

é novamente um vínculo no novo conjunto (3.35), de forma que não surgem restrições aos cm.
Vamos considerar o colchete entre G3 e Ga,{ˆ

α ? G3,

ˆ
βa ? G̃a

}
=

1
2

ˆ [
c1
(
βa ? [[α, ea1 ]+, φ2]+

+iβa ? εab[eb1, [[α, ψ], φ]+]+
)

+ c2
(
βa ? [[α, ea1 ]+, ψ2]+

−iβa ? εab[eb1, [[α, φ], ψ]+]+
)

+ 2c3 (βa ? φ ? [α, ea1 ]+ ? φ

+iβa ? εab([α, ψ] ? eb1 ? φ+ φ ? eb1 ? [α, ψ])
)

+ 2c4 (βa ? ψ ? [α, ea1 ]+ ? ψ

−iβa ? εab([α, φ] ? eb1 ? ψ + ψ ? eb1 ? [α, φ])
)

+ c5
(
βa ? εab[[α, eb1]+, [φ, ψ]] + iβa ? [ea1 , [[α, ψ], ψ]− [φ, [α, φ]]]

)
+ ic6

(
βa ? εab[[α, eb1]+, [φ, ψ]+] + iβa ? [ea1 , [[α, ψ], ψ]+ − [φ, [α, φ]]+]

)
+ ic7

(
βa ? εab(φ ? [α, eb1]+ ? ψ − ψ ? [α, eb1]+ ? φ) (3.39)

+iβa ? ([α, ψ] ? ea1 ? ψ − φ ? ea1 ? [α, φ] + [α, φ] ? ea1 ? φ− ψ ? ea1 ? [α, ψ]))] .
6Em princípio, outras modi�cações substanciais da álgebra de vínculos podem ocorrer, mas não no caso presente.

Nós limitamos o número de simetrias de calibre a quatro, então apenas quatro vínculos de primeira classe são
permitidos, porque há apenas quatro pares de variáveis canonicamente conjugadas. Logo, a única possibilidade é que
os Gi sejam de primeira classe e seus colchetes sejam novamente combinações lineares de Gi.
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Primeiro, observemos que o lado direito de (3.39) não contem termos com derivadas. Isto exclui
a possibilidade do colchete (3.39) conter termos proporcionais a (3.21), (3.22), ou (3.23). Logo,
esse colchete só pode ser proporcional a (3.36), com coe�cientes (constantes de estrutura) como em
(3.28), tal que os colchetes entre G3 e Ga se somam para dar{ˆ

α ? G3,

ˆ
βa ? Ga

}
= −1

2

ˆ
[α, βa]+ εba ? Gb . (3.40)

Temos de comparar as expressões em ambos os lados de (3.40) para obter restrições às constantes
cm. Não há monômios no lado direito de (3.40) que sejam de segunda ordem em φ e tenham um
fator i explícito. Ao mesmo tempo, há um tal termo proporcional a c5 em (3.39). Como todos os
cm são reais, conclui-se que

c5 = 0. (3.41)

Em seguida comparamos os termos em que dois φ aparecem um ao lado do outro7 (combinados em
φ2). Esses termos concordam em ambos os lados de (3.40) se e somente se

c6 = −c1. (3.42)

Por comparação dos termos em que dois campos φ aparecem separados por outros campos, obtém-se
a seguinte condição

2c3 = −c7. (3.43)

Então repetimos o mesmo procedimento com os termos que são quadráticos em ψ para obter

c2 = c6, 2c4 = −c7. (3.44)

A comparação de termos mistos (contendo tanto φ quanto ψ) não introduz quaisquer restrições
adicionais aos cm. Conclui-se que restam apenas duas constantes independentes (c1 e c7, digamos),
então G̃a pode ser reescrito como

G̃a =c1
(
εab[eb1, φ

2 − ψ2]+ − iηab[eb1, [φ, ψ]+]
)

+ c7
(
−εab(φ ? eb1 ? φ+ ψ ? eb1 ? ψ) + iηab(φ ? eb1 ? ψ − ψ ? eb1 ? φ)

)
. (3.45)

Ainda resta analisar os colchetes entre Ga e Gb. Obviamente, os colchetes entre G̃a e G̃b são
nulos, então toda informação relevante está contida nos colchetes entre G(0)

a e G̃b. A estratégia é a
mesma que antes. Primeiro analisamos os termos contendo derivadas{ˆ

αa ? G(0)
a ,

ˆ
βb ? G̃b

}
+
{ˆ

αa ? G̃a,

ˆ
βb ? G

(0)
b

}
= (3.46)

=
ˆ [

c1
(
∂1φ ? ([φ, εbc[βb, αc]+]+ + i[ψ, [αb, βb]]+)

+ ∂1ψ ? (−[ψ, εbc[βb, αc]+]+ + i[φ, [αb, βb]]+)
)

+c7
(
∂1φ ? (−εbc(βb ? φ ? αc + αc ? φ ? βb) + i(αb ? ψ ? βb − βb ? ψ ? α

b))

−∂1ψ ? (εbc(βb ? ψ ? αc + αc ? ψ ? βb) + i(αb ? φ ? βb − βb ? φ ? α
b))
)]

+termos sem derivadas.
7Isto também inclui os termos que podem ser postos nessa forma usando a propriedade (C.5).
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A partir desta equação vemos que o colchete entre Ga e Gb deve ser uma combinação linear de
vínculos (3.35), os vínculos que aparecem no lado direito podem apenas ser G3 e G4, uma vez que
a derivada ∂1φa pertencente a Ga não está presente. De fato, também é possível obter as funções
de estrutura de (3.46), mas sua forma explícita não será necessária. Vamos considerar os termos no
colchete que contenham o referencial móvel ea1 e o dílaton φ.{ˆ

αa ? G(0)
a ,

ˆ
βb ? G̃b

}
=

=
ˆ [c1

2
(
εbc[βb, ec1]+ ? [φ, εda[α

a, φd]+]+ − [βb, eb1] ? [φ, [αa, φa]]+
)

+
c7
2
(
−εbcβb ? εda([αa, φd]+ ? ec1 ? φ+ φ ? ec1 ? [αa, φd]+)

+ βb(φ ? eb1 ? [αa, φa]− [αa, φa] ? eb1 ? φ)
)]

(3.47)

+ termos sem eb1 ou φ.

Os argumentos apresentados acima mostram que se o colchete (3.46) fecha para os vínculos exis-
tentes, esses vínculos são G3 e G4, e as funções de estrutura dependem de φ e ψ. Para ambos G3

e G4 os campos ea1 e φb surgem nas combinações [φa, eb1] ou [φa, eb1]+, i.e. eles permanecem juntos.
Logo, todos os termos em que φb e ea1 surgem separados por outros campos devem ser nulos. Vamos
veri�car se isto pode ser obtido pelo ajuste dos parâmetros c1 e c7 restantes. Consideremos os
termos com φ, φ0, α0, β0, e01 em que α0 e β0 �cam juntos, mas φ0 e e01 estão separados. Todos os
termos dessa forma em (3.46) podem facilmente ser reunidos com a ajuda de (3.47). Eles são

ˆ
c1
2

[α0, β0] ? (φ0 ? φ ? e
0
1 − e01 ? φ ? φ0). (3.48)

Como eles não são permitidos, conclui-se que

c1 = 0. (3.49)

Vamos agora reunir todos os termos com os mesmos componentes de campos onde novamente φ0 e
e01 estão separados, mas sem quaisquer restrições sobre α0 e β0.

ˆ
c7
2

[e01, φ] ? (β0 ? φ0 ? α
0 − α0 ? φ0 ? β

0). (3.50)

Tais termos também não são permitidos. Logo,

c7 = 0. (3.51)

Acabamos de demonstrar que não há deformação quadrática consistente do modelo NCJT. Isto
signi�ca que o modelo NCJT é estável ante tais deformações.

3.4 Conclusões

Neste capítulo estudamos se é possível deformar a ação do modelo NCJT pela adição de termos
quadráticos ao potencial dilatônico enquanto se preserva o número de vínculos de primeira classe.
A resposta que obtivemos é negativa. Isto, é claro, não exclui a existência de modelos de gravitação
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NC interessantes. Ainda há a possibilidade da existência de outras teorias de gravitação dilatônica
NC interagentes com simetrias de calibre usuais (não-torcidas). Entretanto, é claro que a maioria
dos modelos de gravitação dilatônica (que admitem potenciais dilatônicos arbitrários) não podem
ser estendidos a espaços-tempo não-comutativos usando esta abordagem. Logo, nossos resulta-
dos podem ser considerados um forte argumento a favor da abordagem torcida [93], que permite
praticamente auto-interações arbitrárias entre os campos escalares. Também notamos que alguns
resultados anteriores [120] que mostram que deformações de teorias de gravitação 2D são triviais se
não se introduz certa quantidade de estrutura de grupos quânticos. Um outro resultado importante
é a construção de simetrias conformes torcidas em duas dimensões [121]. Para incorporar sime-
trias torcidas no formalismo canônico, deve-se provavelmente incluir torções no próprio formalismo
canônico.

Finalmente, como a redução esférica de teorias de gravitação de Einstein em dimensões elevadas
produzem algumas teorias de gravitação dilatônica em duas dimensões, pode-se esperar que nosso
resultado no-go possa ser estendido de alguma forma a dimensões mais altas.
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Capítulo 4

Não-comutatividade nilpotente e

renormalização

4.1 Introdução

É bem sabido [122] que teorias de campo não-comutativas (NC) têm problemas de renormalizibil-
idade devido à chamada mistura UV/IR [14, 15, 16]. Para superar essa di�culdade, modi�ca-se
o propagador pela adição de um termo oscilante [17, 18, 19] com o �m de respeitar a dualidade
de Langmann-Szabo [20], ou pela adição de um termo com uma potência negativa do momento
[123]. Supersimetria também melhora as propriedades de renormalização de teorias NC (veja, e.g.,
[124]). Algumas versões de supersimetria NC (aquelas baseadas no superespaço não-anti-comutativo
[125, 126], veja também [127, 128]) têm um parâmetro NC, tal que o produto estrela termina em uma
ordem �nita de sua expansão. Foi demonstrado [129] que a presença de um parâmetro nilpotente
NC não necessariamente implica supersimetria. Em [129] um parâmetro nilpotente (bifermiônico)
NC foi introduzido numa teoria bosônica, dando lugar a muitas das propriedades atraentes daquele
modelo. O objetivo desse trabalho é estudar até que ponto a presença de um parâmetro NC
nilpotente (ou bifermiônico) in�uencia a renormalização. Nós não iremos considerar teorias su-
persimétricas com o intuito de separar efeitos advindos da nilpotência do parâmetro NC daqueles
oriundos de supersimetria.

Um esquema conveniente para tal análise foi sugerido em [129], onde foi proposto considerar um
parâmetro NC bifermiônico

Θµν = iθµθν , (4.1)

em que θµ é real, constante e fermiônico (uma constante de Grassmann ímpar), θµθν = −θνθµ. Os
(anti)comutadores da álgebra NC

[xµ, xν ] = iθµθν , {θµ, θν} = 0 , [xµ, θν ] = 0

satisfazem as identidades de Jacobi graduadas. Note que constantes bifermiônicas surgem natural-
mente em modelos pseudoclássicos de partículas relativísticas [130, 42]. Devido à anti-comutatividade
de θµ, a expansão do produto de Moyal termina no segundo termo,

f1 ? f2 = exp
(
i

2
Θµν∂xµ∂

y
ν

)
f1(x)f2(y)|y=x = f1f2 −

1
2
θµθν∂µf1∂νf2. (4.2)
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O produto estrela, portanto, se torna local.
Em [129] um parâmetro NC bifermiônico foi usado para construir um modelo de teoria de

campos em duas dimensões que, ao contrário aos modelos NC tipo tempo-espaço usuais, tem um
tensor de energia e momento conservado localmente, um hamiltoniano conservado bem-de�nido, e
pode ser quantizado canonicamente sem di�culdades. Ademais, o modelo parece ser renormalizável.
No presente capítulo, nós investigamos se não-comutatividade bifermiônica ajuda a renormalizar
teorias em quatro dimensões.

Primeiro exploramos um modelo que é a versão quadridimensional do modelo sugerido em
[129] (isto não é outra coisa senão ϕ4 NC com um termo de interação adicional para tornar o
modelo menos trivial). Resulta que, com um parâmetro NC bifermiônico, esse modelo se torna
renormalizável em todas as ordens da expansão em loops. Também estudamos as equações de
grupo de renormalização a um loop e encontramos um ponto �xo estável infra-vermelho onde todos
as constantes de acoplamento se anulam.

De um ponto de vista técnico, ter um parâmetro NC bifermiônico parecer similar a expandir a
teoria em Θ e manter apenas alguns termos de ordem mais baixa. As propriedades ultravioletas
da teoria expandida e completa são bastante diferentes, e, algumas vezes, teorias expandidas tem
um comportamento pior (veja, e.g., [131]). A razão é que, de um lado, o propagador em teorias
expandidas não tem um comportamento oscilatório, e de outro lado, surgem perigosos vértices de-
pendentes do momento. Todos esses problemas também surgem em teorias com não-comutatividade
bifermiônica, mas há um efeito que melhora o comportamento ultravioleta. De fato, alguns termos
se anulam, pois θ2 = 0. Aqui tomamos eletrodinâmica NC (que é renormalizável a um loop se
o parâmetro NC padrão é usado) e demonstramos que com um parâmetro NC bifermiônico esse
modelo permanece renormalizável, pelo menos para diagramas a um loop com fótons externos.

4.2 Um modelo de campo escalar

A ação do modelo de que tratamos nessa seção se lê

S =
ˆ
d4x

(
1
2
(∂µϕ1)2 +

1
2
(∂µϕ2)2 +

1
2
(∂µϕ)2 − 1

2
m2

1ϕ
2
1 −

1
2
m2

2ϕ
2
2 −

1
2
m2ϕ2

−ei
2

[ϕ1, ϕ2]? ? ϕ ? ϕ−
λ

24
ϕ4
?

)
, (4.3)

que é uma versão quadridimensional do modelo sugerido em [129]. As motivações por trás dessa
forma particular do modelo são as seguintes. Como qualquer produto estrela simetrizado com
parâmetro bifermiônico é equivalente ao produto comutativo usual de funções, precisamos de pelo
menos dois campos, ϕ1 e ϕ2, para construir um termo de interação polinomial não-trivial1. Como
foi explicado em [129], mesmo dois campos não são o bastante, então nós incluímos outro campo
escalar ϕ para construir o termo de interação com constante de acoplamento e. Adicionou-se um
termo de auto-interação ϕ4

? = ϕ ? ϕ ? ϕ ? ϕ para tornar a dinâmica mais interessante. e e λ são
constantes de acoplamento reais.

Em [129] foi demonstrado que um modelo em duas dimensões com a mesma densidade la-
grangiana que em (4.3) é renormalizável. É relativamente fácil conseguir renormalizibilidade em
duas dimensões. Por exemplo, há um modelo de gravitação NC em duas dimensões para o qual

1Por exemplo, usando o produto de estrela bifermiônico e integrando por partes, é fácil ver que
´

d4xφ?φ̄?φ?φ =´
d4xφφφ̄φ̄.
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todo o funcional gerador quântico de funções de Green pode ser calculado não-perturbativamente
em todas as ordens da expansão em loops [98] por meio de métodos desenvolvidos anteriormente
para o caso comutativo [117]. Aqui, para se estar mais próximo da física, nós consideramos um
modelo quadridimensional (4.3).

Devido à escolha (4.1) do parâmetro NC, a parte de interação da ação (4.3) tem uma forma
bastante simples,

Sint =
ˆ
d4x

(
ei

2
(θµ∂µϕ1)(θν∂νϕ2)ϕ2 − λ

24
ϕ4

)
. (4.4)

Agora estamos prontos para deduzir as regras de Feynman para nosso modelo. Os propagadores
são os propagadores padrões de campos escalares massivos. Há dois vértices, o vértice padrão ϕ4 e
um novo vértice, que depende do parâmetro NC (veja Fig.1).

p2

p1 p3

p4 p2

p1 p3

p4

ϕ2 ϕ

ϕϕ1

Figura 4.1: O vértice padrão ϕ4 e o novo vértice − ie
2 θp1θp2.

A observação principal que prova a renormalizibilidade de (4.3) é que qualquer diagrama com
uma linha interna do campo ϕ1 ou ϕ2 se anula. De fato, qualquer linha interna desses campos
inevitavelmente conecta dois 'novos' vértices e, portanto, recebe um fator (θ · k)2 = 0, onde k é o
momento correspondente. Renormalizibilidade por contagem de potências do nosso modelo segue
então por razões usuais, exatamente como no caso comutativo. Considere um diagrama com N
vértices e 2K pernas externas. Esse diagrama tem 1

2 (4N − 2K) = 2N −K linhas internas, dando
uma potência do momento total no integrando de −2(2N −K). Os momentos das linhas internas
estão restritos por N − 1 funções-delta, em que −1 corresponde à conservação do momento total
de todas as pernas externas. Juntando tudo, obtém-se um grau de divergência de 4 − 2K, como
no caso da teoria ϕ4 comutativa. Os diagramas divergentes por contagem de potências são aqueles
com duas ou quatro pernas externas. Os diagramas contendo apenas pernas ϕ são precisamente os
mesmos que aqueles no caso comutativo, e eles são renormalizados precisamente do mesmo modo.
Vamos considerar os diagramas com pernas ϕ1 e ϕ2. Há três tipos de tais diagramas (veja Fig. 4.2)

42



p1

p2

ϕ1

ϕ2 a)

p1

p2

ϕ1

p3

p4

ϕ1

ϕ2ϕ2 b)

p1

p2

ϕ1

ϕ2 c)

p3

ϕ

p4

ϕ

Figura 4.2: Os três diagramas divergentes.

O diagrama na Fig. 4.2a é proporcional a (pθ)2, e, portanto, se anula. O diagrama na Fig.
4.2b contem (p1θ)(p2θ)(p3θ)(p4θ) = 0, devido à conservação de momento, p1 + p2 = p3 + p4. O
diagrama da Fig. 4.2c tem divergência no máximo logarítmica. Logo, suas partes divergentes são
proporcionais à potência mais baixa dos momentos externos, i.e., a (p1θ)(p2θ). É fácil ver que tais
divergências podem ser removidas por uma renormalização do acoplamento e na ação (4.3). Nós
concluímos que o modelo (4.3) com parâmetro NC bifermiônico é renormalizável em todas as ordens
da expansão em loops.

A renormalização de todos parâmetros relacionados ao campo ϕ (a renormalização de m, λ e da
função de onda ϕ) não é sensível à presença dos outros campos ϕ1 e ϕ2. Não há renormalização da
massa ou da função de onda para ϕ1 ou ϕ2. Pela comparação de fatores combinatórios que surgem
em frente aos diagramas de Feynman relevantes, e usando o resultado padrão [132] para teoria ϕ4

comutativa no esquema de regularização dimensional, pode-se deduzir a relação

3
δe

e
=
δλ

λ
=

λ

16π2

3
ε

(4.5)

entre renormalizações in�nitas a um loop das cargas e e λ. A função β para λ é bem conhecida
[132]

βλ = −ελ+
3λ2

16π2
+O(λ3). (4.6)

Da relação (4.5), pode-se obter a dimensão anômala do acoplamento e, βe, usando o fato de que o
acoplamento nu (bare) é invariante por transformações do grupo de renormalização,

µ
de0
dµ

= 0 , e0 = µεe

(
1 +

λ

16π2

1
ε

)
.

Explicitamente,

µ
d

dµ
e0 = µε

(
εe+

eλ

16π2

)
+ µε

[
βe

(
1 +

λ

16π2

1
ε

)
+

e

16π2

1
ε
βλ

]
= 0 ,

que implica

βe = −
[
εe+

eλ

16π2
+

e

16π2

1
ε
βλ

](
1− λ

16π2

1
ε

)
= −εe+

λe

16π2
+O

(
eλ2
)
.
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Agora podemos remover a regularização impondo ε = 0 e resolver as equações de grupo de
renormalização

µ
d

dµ
λ(µ) = βλ(λ(µ)), µ

d

dµ
e(µ) = βe(e(µ)) (4.7)

para os acoplamentos (running) λ(µ) e e(µ). As condições iniciais são λ(µ0) = λ, e(µ0) = e com µ0

sendo a escala de normalização. Como βλ não depende de e, a equação para λ(µ) pode ser resolvida
primeiro, dando o resultado bem conhecido

λ (µ) = λ

(
1− 3

16π2
λ ln

µ

µ0

)−1

. (4.8)

Resolvendo então a equação para e(µ) obtemos

e (µ) = e

(
1− 3λ

16π2
ln

µ

µ0

)− 1
3

. (4.9)

No limite µ → 0 os dois acoplamentos se anulam, e há assim um ponto �xo estável infravermelho.
Note que e(µ) se anula mais lentamente que λ(µ) na vizinhança do ponto �xo.

4.3 Eletrodinâmica não-comutativa com parâmetro bifermiônico

Vamos considerar a eletrodinâmica NC no espaço euclidiano com a ação clássica

Scl =
ˆ
d4x

[
1

4g2
F̂ 2
µν + ψ̄ (iγµDµ)ψ

]
(4.10)

em que Dµψ = ∂µψ − iAµ ? ψ e

F̂µν = Fµν − i(Aµ ? Aν −Aν ? Aµ), Fµν = ∂µAν − ∂νAµ .

As matrizes γ satisfazem {γµ, γν} = 2δµν e são hermitianas, δµν = diag (1, 1, 1, 1). Para um
parâmetro NC usual, essa teoria é sabidamente renormalizável a um loop [133, 134]. Mas sua
expansão em Θ pode violar sua renormalizibilidade já a um loop, como foi demonstrado por [131]
no contexto do mapa de Seiberg-Witten.

Aqui veri�caremos se a eletrodinâmica NC permanece renormalizável a um loop se o parâmetro
NC é bifermiônico (4.1). Para simpli�car a análise se considerará o caso em que apenas ψ é
quantizado, ao passo que Aµ permanece um campo clássico de fundo. Pode-se veri�car que isso
corresponde à retenção de todos os diagramas com fótons externos no calibre de Lorentz. Renor-
malizibilidade em tal modelo simpli�cado signi�ca que a divergência a um loop é proporcional ao
termo correspondente na ação clássica (4.10), isto é, a F̂ 2

µν . A ação efetiva pode ser formalmente
escrita como

W = − ln det /D = −1
2

ln det /D2
(4.11)

onde /D é o operador de Dirac no R4 não-comutativo na presença do campo eletromagnético externo.

/D = iγµ (∂µ − iAµ?) = iγµ

(
∂µ − iAµ +

i

2
θ∂Aµθ∂

)
, θ∂ ≡ θµ∂µ . (4.12)
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Para evitar o uso excessivo de parênteses, adota-se a convenção de que a derivada age apenas na
função adjacente (ignorando, é claro, qualquer número de θ's ou outras derivadas que possam surgir
no meio). Por exemplo, θ∂Aµθ∂ = (θ∂Aµ)θ∂ é um operador diferencial de primeira ordem.

É conveniente utilizar regularização por função zeta de determinantes funcionais [135, 136], de
tal forma que a ação efetiva regularizada (4.11) se leia W reg = 1

2ζ( /D
2
, s)Γ(s) onde ζ( /D2

, s) =
TrL2(( /D2)−s). No limite físico, s → 0, a ação efetiva regularizada diverge, e a parte divergente se
lê

W div =
1
2s
ζ( /D2

, 0). (4.13)

Normalmente, /D
2
é um operador tipo Laplace, de forma que o traço de calor

K( /D2; t) = TrL2(e−t /D
2
) (4.14)

existe e admite uma expansão assintótica

K( /D2; t) '
∑
k≥0

t(k−n)/2ak

(
/D

2
)

(4.15)

à medida que t→ +0. Aqui n é a dimensão da variedade subjacente. Uma revisão da expansão do
kernel de calor pode ser encontrada em [137] para variedades comutativas, e em [138] para o caso
NC. Vamos assumir que a expansão (4.15) é válida para o operador (4.12). (Isto será demonstrado
em um momento). Assim, usando a transformada de Mellin, pode-se mostrar que

ζ( /D2
, 0) = a4( /D

2) (4.16)

em n = 4 dimensões. Não há uma boa teoria espectral para operadores diferenciais com símbolos
dependentes de parâmetros fermiônicos. Por segurança, vamos calcular (4.16) por dois métodos
distintos.

Primeiro, usando resultados existentes para expansão de kernel de calor em variedades NC. O
operador

/D
2 = −

(
(∂µ − iAµ?)2 −

i

4
[γµ, γν ]F̂µν?

)
, (4.17)

(em que derivadas parciais agem à direita até o �m), tem apenas produtos estrelas à esquerda (o
que signi�ca que na equação de autovalor /D

2
ψ = λψ todos os campos de fundo multiplicam ψ

pela esquerda), e portanto, se encaixa na categoria considerada em [139, 140]. Os cálculos feitos
em [139]2 são regulares em Θ = 0 e sobrevivem a uma expansão até uma ordem �nita em Θ (veja
eqs.(15) - (26) lá). Note que tal asserção não é válida para operadores que contêm produtos estrela
tanto à direita quanto à esquerda [141, 142]. De todo modo, estamos autorizados a utilizar os
resultados de [139, 140] para o operador (4.17). Primeiro, traz-se /D

2
à forma padrão

/D
2 = −

(
∇̂µ∇̂µ + Ê?

)
, ∇̂µ ≡ ∂µ + ω̂µ? , (4.18)

onde

ω̂µ = −iAµ, Ê = − i
4
[γµ, γν ]F̂µν . (4.19)

2O artigo [139] tratou o caso de um toro NC, e o caso do plano NC foi feito em [140]. No presente contexto,
distinções entre o toro e o plano não são essenciais.
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Então, de acordo com [139, 140], a expansão assintótica (4.15) existe e o coe�ciente a4 se lê

a4 =
1

(4π)2
1
12

ˆ
d4x tr (6Ê ? Ê + Ω̂µν ? Ω̂µν) (4.20)

com Ω̂µν = [∇̂µ, ∇̂ν ]. Substituindo (4.19) em (4.20) e tomando o traço, obtém-se

a4( /D
2) =

1
(4π)2

2
3

ˆ
d4xF̂µν ? F̂µν . (4.21)

O outro método usado não depende da estrutura do produto estrela, mas sim da forma expandida
do operador

/D
2 = −(∂2 − 2iAµ∂µ − i(∂µAµ)−A2)− i (θ∂)Aµ (θ∂) ∂µ

− i
8

[γµ, γν ] (θ∂)Fµν (θ∂)− i

2
(θ∂) ∂µAµ (θ∂)−Aµ (θ∂)Aµ (θ∂)

−1
4

[γµ, γν ] (θ∂)Aµ (θ∂)Aν +
i

4
[γµ, γν ]Fµν . (4.22)

O coe�ciente a4 pode ser obtido do trabalho seminal de Gilkey [143] pela identi�cação dos invariantes
correspondentes. Para um operador tipo Laplace da forma

P = − (gµν∂µ∂ν + aσ∂σ + b) (4.23)

identi�ca-se gµν com a métrica riemanniana (para que se possa fazer tal identi�cação é necessário que
o símbolo inicial seja uma matriz unitária nos índices espinoriais - uma propriedade que é felizmente
satisfeita pelo operador (4.22)). Há uma única conexão ω tal que P possa ser apresentado como

P = − (gµν∇µ∇ν + E) , (4.24)

em que a derivada covariante ∇ = ∇[R] + ω contem uma conexão riemanniana e uma parte de
calibre. A parte de ordem zero se escreve E = b − gµν

(
∂µων + ωνωµ − ωσΓσνµ

)
, onde Γσνµ são

os símbolos de Christo�el para a métrica gµν . Pode-se também introduzir o tensor de curvatura
Ωµν = ∂µων − ∂νωµ + [ωµ, ων ].

Em n = 4 os coe�cientes de kernel de calor relevantes são

a4 (P ) =
1

(4π)2
1
12

ˆ
d4x
√
g (x)tr

(
6E2 + ΩµνΩρσgµρgνσ + [R2 − terms]

)
. (4.25)

Os termos quadráticos na curvatura de Riemann não foram escritos explicitamente. O modelo foi
inicialmente formulado no espaço euclidiano plano, então não há distinções entre índices superiores
e inferiores. Sempre que for necessário contrair um par de índices com a métrica efetiva gµν , a
métrica estará explícita.

Vamos nos restringir aos termos de ordem zero e de ordem dois em θ. De eq.(4.22) se pode ler
a métrica gµν

gµν = δµν +
i

2
θ∂ (Aµθν +Aνθµ) , gµν = δµν −

i

2
θ∂ (Aµθν +Aνθµ) , (4.26)

o símbolo de Christo�el

Γµνσ =
i

4
δµκθ∂ [θσFκν + θνFκσ − θκ(∂σAν + ∂νAσ)] ,
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e aµ e b,

aµ =
i

8
[γκ, γν ] θ∂Fκνθµ +

i

2
θ∂∂νAνθ

µ +Aνθ∂Aνθ
µ − 2iAµ

b =
1
4

[γµ, γν ] θ∂Aµθ∂Aν −
i

4
[γµ, γν ]Fµν − i∂A−A2 .

A partir dessas expressões podemos calcular a conexão de calibre

ωµ =
1
2
gµν (aν + gκσΓνκσ)

= −iAµ −
1
2

(θ∂)Aµ (θA) +
i

4
(θ∂) θκFµκ +

i

16
[γκ, γσ] θ∂Fκσθµ ,

e o traço de E2 e Ω2 seguem

trE2 = 2F̂µνF̂µν + 2iFµν (θA) (θ∂)Fµν , F̂µν = Fµν + i (θ∂)Aµ (θ∂)Aν ,

trgµκgνσΩµνΩκσ = −4F̂µνF̂µν + 4iFµν (θ∂)Fµν (θA) .

O tensor de Riemann para a métrica (4.26) é pelo menos de segunda ordem em θ. Logo, os
termos quadráticos na curvatura são pelo menos de quarta ordem em θ e devem ser desprezados.

Finalmente, somos capazes de calcular a4,

a4

(
/D

2
)

=
1

(4π)2
2
3

ˆ
d4xF̂µνF̂µν ,

que está em acordo com (4.21).
Os dois métodos usados acima para calcular o coe�ciente do kernel de calor a4 diferem quanto

ao modo como foram tratadas as derivadas contidas no produto estrela. No segundo método essas
derivadas modi�cam os termos de primeira e segunda ordem do operador diferencial correspondente,
e, portanto, a métrica efetiva e a conexão efetiva são alteradas. De acordo com o primeiro método, o
produto estrela como um todo é considerado um produto, i.e., como um operador de ordem zero. Isto
garante a regularidade da expansão do kernel de calor [139, 140] para Θ pequeno. Para laplacianos
NC mais gerais (contendo produtos estrela tanto à direita quanto esquerda) esta regularidade é
perdida [141, 142]. Entretanto, vamos considerar o operador de calor h(t) = e−t(P0+P2) em que
P0 não depende de θ, enquanto P2 é pelo menos bilinear no parâmetro fermiônico. Obviamente,
h(t) pode ser expandido numa série em P2, e convergência não é uma questão, uma vez que a
expansão é �nita. Estes argumentos simples mostram que num caso mais geral o segundo método
provavelmente funcionará, enquanto o primeiro provavelmente não o fará.

Coletando (4.13), (4.16) e (4.21), vemos que a parte divergente da ação efetiva é proporcional a
F̂ 2
µν e pode ser cancelada por uma renormalização do acoplamento g na ação clássica (4.10). Logo,

o modelo (4.10) com um espinor quantizado e um campo de fundo vetorial é renormalizável.

4.4 Conclusões

Nesse capítulo estudamos propriedades de renormalização de teorias NC em quatro dimensões com
um parâmetro NC bifermiônico. Encontramos um modelo escalar renormalizável em todas as ordens
da expansão em loops, dando assim mais um exemplo a uma família (não muito rica) de teorias NC
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não-supersimétricas renormalizáveis em quatro dimensões. Também descobrimos que esse modelo
tem um ponto �xo infravermelho estável ao nível de um loop.

Também consideramos outro modelo, eletrodinâmica NC, que é renormalizável a um loop com
parâmetro NC usual, e veri�camos que a introdução de um parâmetro NC bifermiônico não destrói
renormalizibilidade a um loop pelo menos no setor com pernas externas de fótons. Concluímos que
não-comutatividade bifermiônica é amigável quanto à renormalização. Parece assim uma versão
promissora de não-comutatividade, a ser levada à sério, e que exige mais estudo.

O primeiro problema a ser estudado se refere à interpretação física de não-comutatividade bifer-
miônica. Provavelmente, uma escolha com maior motivação física seria Θµν ∝ η̄ [γµ, γν ] η, em que
η é um espinor de Majorana anti-comutativo [129]. Então η poderia ser interpretado como um
campo espinorial cujas �utuações estão �xas por algum mecanismo. Para fazer valer essa inter-
pretação, teríamos de considerar o caso em que η não é constante, e consequentemente, o caso de
não-comutatividade dependente do tempo. É evidente que em tal caso o produto estrela não teria
uma expansão �nita (cf. [144]), mas ainda assim a estrutura dessa expansão seria bastante mais
simples que o caso geral. Esta talvez seja uma outra aplicação de não-comutatividade bifermiônica.

Para incorporar não-comutatividade bifermiônica no contexto de geometria não-comutativa,
tem-se de encontrar uma álgebra C∗ correspondente. Esta tarefa é di�cultada pela presença de dois
tipos de produtos na álgebra e pelo segundo termo em (4.2), que não parece ser limitado na norma
L2.
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Apêndice A

Ordenamento de Weyl de operadores

e funções na álgebra de Berezin

Vamos escrever o operador hamiltoniano (2.8) explicitamente:

Ĥ = −λ
(
p̂2 + qtaαβ

(
p̂µÂaµ + Âaµp̂

µ
)
â†αâβ + q2taαβtbγδÂ

a
µÂ

µbâ†αâβ â
†
γ âδ −m2

)
.

Simetrização total em x̂ e p̂, e anti-simetrização total em a† e a dá o operador hamiltoniano ordenado
ĤW :

ĤW = −λ
(
p̂2 +

q

2
taαβ

(
p̂µÂaµ + Âaµp̂

µ
) [
â†α, âβ

]
+ q2taαβtbγδÂ

a
µÂ

µb
(
â†αâβ â

†
γ âδ
)
W
−m2

)
, (A.1)

onde o termo com quatro férmions é dado por

â†αâβ â
†
γ âδ =

(
â†αâβ â

†
γ âδ
)
W

+
1
2
δγδ
(
â†αâβ

)
W
−1

2
δδα
(
â†γ âβ

)
W

+δαβ
(
â†γ âδ

)
W

+
1
2
δγβ

(
â†αâδ

)
W
−1

4
δδαδγβ−δαβδγδ

Usando o fato de que as matrizes ta têm traço nulo, e a anti-simetria das constantes de estrutura
fabc, temos

Ĥ = ĤW + λ
q2

4
tr (tatb) ÂaµÂ

µb

Logo, o hamiltoniano é a soma de uma expressão ordenada segundo Weyl mais uma contribuição
que não é invariante de calibre. O símbolo de Weyl correspondente a ĤW é

HW = −λ
(
p2 + 2qtaαβ

(
pµAaµ

)
χ̄αχβ + q2taαβtbγδA

a
µA

µbχ̄αχβχ̄γχδ −m2
)

(A.2)

Demonstração1 da regra do ponto médio bifermiônico

Seja F
(
â, â†

)
qualquer polinômio em e † ordenado segundo Weyl, então

〈χ̄|F
(
â, â†

)
|χ〉 =

ˆ
dη̄dη 〈χ̄| η〉F

(
χ+ η

2
, η̄

)
〈η̄ |χ〉 , (A.3)

=
ˆ
dη̄dη 〈χ̄| η〉F

(
χ,
χ̄+ η̄

2

)
〈η̄ |χ〉 , (A.4)

1Adaptado de [145]
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Vamos provar a identidade (A.3). A demonstração da segunda identidade é análoga. Primeiro,
considere F

(
â†
)
um polinômio em operadores de criação. Claramente, F está ordenado segundo

Weyl, e (A.3) é trivialmente satisfeita,

〈χ̄|F
(
â†
)
|χ〉 =

ˆ
dη̄dη 〈χ̄| η〉F (χ̄) 〈η̄ |χ〉 .

Agora, para F
(
â, â†

)
= 1

2

(
âαf

(
â†
)

+ (−1)ε(f)
f
(
â†
)
âα

)
, em que o sinal depende da paridade de

f
(
â†
)
, (A.3) é evidentemente satisfeita. Qualquer polinômio com ordenamento de Weyl pode ser

obtido a partir de repetidas anti-simetrização da forma F = 1
2 (âαf ± fâα) em que f

(
â, â†

)
está

ordenado. Logo, vamos provar (A.3) indutivamente, assumindo que vale para f
(
â, â†

)
e provar que

vale também para F = 1
2 (âαf ± fâα),

〈χ̄| 1
2

(âαf ± fâα) |χ〉 =
ˆ
dη̄dη

1
2

(〈χ̄| âα |η〉 〈η̄| f |χ〉 ± 〈χ̄| η〉 〈η̄| fâα |χ〉)

=
ˆ
dη̄dη 〈χ̄| η〉 ηα + χα

2
〈η̄| f |χ〉

=
ˆ
dη̄dηdξ̄dξ 〈χ̄| η〉 〈η̄| ξ〉 χα + ηα

2
f

(
χ+ ξ

2
, ξ̄

)〈
ξ̄ |χ〉

= dξ̄dξ 〈χ̄| ξ〉 χα + ξα
2

f

(
χ+ ξ

2
, ξ̄

)〈
ξ̄ |χ〉

em que na última igualdade usamos a identidade
ˆ
dη̄dη 〈ᾱ| η〉 〈η̄| β〉 f (η) = 〈ᾱ| β〉 f (β) . (A.5)
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Apêndice B

Notação e identidades úteis ao

capítulo 2

Nossa convenção de sinais foi tirada de [111]. Usamos o tensor ηab = ηab = diag(+1,−1) para
subir e descer índices. O tensor de Levi-Civita é de�nido por ε01 = −1, tal que valem as seguintes
relações

ε10 = ε01 = 1, ε01 = ε10 = −ε01 = −ε10 = 1 . (B.1)

Estas relações são válidas tanto para εab quanto para εµν . Note que εµν é sempre usado com os
dois índices em cima.

Nossa convenção para o comutador [·, ·] é dependente do contexto. No plano comutativo, com a
álgebra de funções usual dada pelo produto pontual entre funções, o comutador entre uma p-forma
P que toma valores numa álgebra de Lie g e uma q-forma Q que toma valores em g é

[P,Q] = P ∧Q− (−1)pq Q ∧ P = P i ∧Qj [τi, τj ] , (B.2)

onde τi é uma base para a álgebra. Ademais, a derivada covariante é dada pela expressão

D = d+ [A, ·] .

No plano não-comutativo, com produto de funções deformado pelo produto de Moyal, o comu-
tador de uma p-forma P que toma valores em uma álgebra de Lie g com uma q-forma Q que toma
valores em g é dado pela expressão análoga

[P,Q] = P ∧? Q− (−1)pq Q ∧? P (B.3)

em que o produto ∧? tem uma de�nição semelhante à de�nição do produto exterior, dada por:

(P ∧? Q) (∂µ1 , ∂µ2) =
1
2

(Pµ1 ? Qµ2 − Pµ2 ? Qµ1) ,

em que Pµ e Qµ são as componentes das 1-formas P e Q na base holonômica {∂0, ∂1}. Usando a
propriedade de fechamento (C.3) do produto estrela, é imediato ver que o produto ∧? possui uma
propriedade de simetria bem de�nida por troca de fatores sob o sinal de integração,ˆ

M

P ∧? Q = −
ˆ
M

Q ∧? P ,
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Usando a propriedade de simetria sob o signo de integração, o comutador estrela também pode ser
escrito como ˆ

M

[P,Q] =
ˆ
M

PA ∧∗ QB [τA, τB ] ,

em que τA é uma base para a álgebra. Nesse contexto, a derivada covariante é dada por uma
expressão formalmente idêntica ao caso comutativo:

D = d+ [A, ·] .

Em particular, para P uma 1-forma com valores em uma álgebra de Lie, temos

DP (∂µ, ∂ν) = dP (∂µ, ∂ν) +A ∧? P (∂µ, ∂ν) + P ∧? A (∂µ, ∂ν)

=
1
2
(
∂µP

A
ν − ∂νP

A
µ

)
τA +

1
2
(
AAµ ? P

B
ν −AAν ? P

B
µ

)
τAτB +

1
2
(
PAµ ? ABν − PAν ? ABµ

)
τAτB .

Em se tratando do comutador entre formas ou funções reais, ele assume a expressão usual, não
graduada,

[P,Q] = P ∧? Q−Q ∧? P
[Pµ, Qν ] = Pµ ? Qν −Qν ? Pµ

[Pµ, Qν ]+ = Pµ ? Qν +Qν ? Pµ (B.4)

As seguintes identidades úteis valem para funções arbitrárias A1, A2, B1 e B2:ˆ
([A1, B1] ? [B2, A2]− [B1, A2] ? [A1, B2]) =

= −
ˆ

[A1, A2] ? [B1, B2] (B.5)
ˆ

([A1, B1]+ ? [A2, B2]+ − [A1, B2]+ ? [A2, B1]+) =

= −
ˆ

[A1, A2] ? [B1, B2] (B.6)
ˆ

([A1, B1]+ ? [B2, A2]− [B1, A2]+ ? [A1, B2]) =

=
ˆ

[B1, B2] ? [A1, A2]+ (B.7)
ˆ

([A1, B1] ? [A2, B2]− [A1, B2]+ ? [A2, B1]+) =

= −
ˆ

[A1, A2]+ ? [B1, B2]+ (B.8)

Por meio da fórmula
εabεcd = ηbcηad − ηacηbd (B.9)

pode-se eliminar símbolos ε repetidos.
O grupo U (1, 1) é o grupo de matrizes complexas de ordem 2 que preservam a forma quadrática

em C2

|z1|2 − |z2|2 = cte.
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A álgebra de Lie su (1, 1) é dada por matrizes da forma(
z1 w
w̄ z2

)
em que z̄1 = −z1, z̄2 = −z2, z1 + z2 = 0 e w arbitrário. Uma base para su (1, 1) é

τ0 =
1
2

(
i 0
0 −i

)
, τ1 =

1
2

(
0 1
1 0

)
, τ2 =

1
2

(
0 −i
i 0

)
Os elementos da base acima satisfazem as relações de comutação

[τi, τj ] = −ε k
ij τk , i = 0, 1, 2 ,

comum às álgebras so (2, 1) e sl (2, R). A forma de Killing da álgebra su (1, 1) é

ηij =
1
2
ε l
ik ε k

jl = diag (−1, 1, 1) .

Para formar uma base de u (1, 1) basta adicionar um elemento com traço diferente de zero e com
diagonais puramente imaginárias, por exemplo,

τ3 =
1
2

(
i 0
0 i

)
.

Evidentemente,
[τ3, τi] = 0 .

A base τA, A = 0, 1, 2, 3, de u (1, 1) está normalizada a trτAτB = 1
2ηAB , ηAB = diag (−1, 1, 1,−1).

Nessa base valem as relações

τiτj = −1
2
εijkτ

k − i

2
ηijτ3

τiτ3 =
i

2
τi

τ2
3 =

i

2
τ3
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Apêndice C

Produto estrela de Moyal

A não-comutatividade do espaço-tempo é usualmente descrita por meio de uma álgebra C∗ de
operadores gerada por operadores x̂ que satisfazem[

x̂i, x̂j
]

= iθij ,

em que θ é uma matriz anti-simétrica constante. Um modo de implementar essa não-comutatividade
do espaço-tempo é através do produto estrela de Moyal, uma deformação da álgebra de funções sobre
o RD induzida pela correspondência de Weyl W , que associa operadores f̂ : L2

(
RD
)
→ L2

(
RD
)
a

seus símbolos f : RD → C,

f̂ = W (f) =
ˆ
dDηf̃ (η) eiη·x̂ ,

em que f̃ (η) é a transformada de Fourrier de f (x),

f̃ (η) =
ˆ

dDx

(2π)D
f (x) e−iη·x

Para f real, W (f) é hermitiano e no limite comutativo, θ → 0, tem-se simplesmente f̂ = f (x̂).
Usando a correspondência de Weyl e a fórmula de Baker-Campbell-Hausdorf,

e−iη·x̂e−iξ·x̂ = e−
i
2 θ

ijηiξje−i(η+ξ)·x̂ ,

calcula-se o símbolo correspondente ao produto f̂ ĝ:

W (f)W (g) =
ˆ
dDξ

[ˆ
dDηf̃ (η) g̃ (ξ − η) e−

i
2 θ

ijηiξj

]
eiξ·x̂

=
ˆ
dDξf̃ ? g (ξ) eiξ·x̂ = W (f ? g)

onde

f̃ ? g (ξ) =
ˆ
dDηf̃ (η) g̃ (ξ − η) e−

i
2 θ

ijηiξj .

54



Logo, o símbolo de f̂ ĝ é

f ? g (x) =
ˆ
dDξeiξ·xf̃ ? g (ξ) =

ˆ
dDξdDηf̃ (η) g̃ (ξ − η) e−

i
2 θ

ijηiξjeiξ·x

= exp
(
i

2
θij

∂

∂ξi
∂

∂ηj

)
f (x+ ξ) g (x+ η)

∣∣∣∣
ξ=ζ=0

= f (x) g (x) +
∞∑
n=1

(
i

2

)n 1
n!
θi1j1 · · · θinjn∂i1 · · · ∂inf (x) θi1j1 · · · θinjn∂j1 · · · ∂jng (x)(C.1)

Esse produto é associativo, (f ? g) ? h = f ? (g ? h) e para caso em que f = xi e g = xj recuperamos
as relações de comutação básicas

xi ? xj − xj ? xi = iθij . (C.2)

Ademais, o produto de Moyal é fechado, i.e, o produto estrela de duas funções integráveis é
integrável, ˆ

M
d2xf ? g =

ˆ
M
d2xfg (x) (C.3)

e respeita a regra de Leibniz
∂i(f ? g) = (∂if) ? g + f ? (∂ig), (C.4)

e permite que se façam permutações cíclicas sob o sinal de integração
ˆ
M
d2xf ? g ? h =

ˆ
M
d2xh ? f ? g . (C.5)

A conjugação complexa inverte a ordem dos fatores,

(f ? g)∗ = g∗ ? f∗. (C.6)

O produto (C.1) não é a única escolha possível de um produto associativo e não-comutativo. O
lado direito de (C.2) pode depender, em princípio, das coordenadas.
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Apêndice D

Simetria BRST e eletrodinâmica

não-comutativa

A ação clássica para a eletrodinâmica no R4 não-comutativo é

Scl =
ˆ
d4xψ̄ (iγµDµ −m)ψ − 1

4g2

ˆ
F̂µν ? F̂

µν ,

Dµψ = ∂µψ − iAµ ? ψ , F̂µν = ∂µAν − ∂νAµ − i [Aµ, Aν ] ,

em que Aµ é a conexão de calibre real, ψ é um espinor de Dirac e (anti)comutadores são calculados
com produto estrela . Sob as transformações

Aµ 7→ ω ? Aµ ? ω
−1 − i∂µω ? ω

−1 ,

ψ 7→ ω ? ψ , ψ̄ 7→ ψ̄ ? ω−1 , ω = eiλ(x)

tem-se
Dµψ 7→ ω ? Dµψ , Fµν 7→ ω ? Fµν ? ω

−1 ,

de tal forma que Scl é invariante por transformações do grupo U? (1).
Agora considere o espaço funcional estendido dos campos fantasmas c e c̄, e a transformação

BRST
sAµ = Dµc = ∂µc− i [Aµ, c] .

A condição s2Aµ = 0 implica

s2Aµ = ∂µsc− i [sAµ, c]+ − i [Aµ, sc]

= Dµ (sc)− i [Dµc, c]+ = Dµ (sc)− iDµ (c ? c) = 0

Logo, a transformação do campo fantasma c tem de ser

sc = ic ? c , s2c = 0 .

Para o campo anti-fantasma c̄, postulamos a transformação usual

sc̄ = iB , sB = 0 .
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A ação de Maxwell é invariante com respeito à transformação BRST do campo de calibre Aµ,

s

ˆ
d4xF̂µν ? F̂

µν = 2
ˆ
d4x

(
sF̂µν

)
? F̂µν = −i

ˆ
d4x

[
F̂µν , c

]
? F̂µν

= −i
ˆ
d4x

(
F̂µν ? c ? F̂

µν − c ? F̂µν ? F̂
µν
)

= 0 .

Agora, para encontrar a transformação BRST dos campos de matéria, consideramos primeiro a
transformação da parte cinética da densidade lagrangiana de matéria,

s
(
iψ̄γµDµψ

)
= is

(
ψ̄γµ ? ∂µψ

)
+ s

(
ψ̄γµ ? Aµ ? ψ

)
= is

(
ψ̄γµ ? ∂µψ

)
− ψ̄γµ ? sAµ ? ψ + sψ̄γµ ? Aµ ? ψ − ψ̄γµ ? Aµ ? sψ

Em seguida, exige-se que todos os termos contendo derivadas dos campos se cancelem,

isψ̄γµ ? ∂µψ − iψ̄γµ ? ∂µsψ − ψ̄γµ ? ∂µc ? ψ = 0 .

Isto pode ser alcançado se ψ e ψ̄ se transformarem como

sψ = ic ? ψ , sψ̄ = iψ̄ ? c , s2ψ = s2ψ̄ = 0 .

De fato, com as transformações acima, todos os outros termos também se anulam, de modo que a
densidade lagrangiana de matéria é invariante. Logo, a ação da eletrodinâmica não-comutativa é
invariante pelas transformações BRST

sAµ = ∂µc− i [Aµ, c] , sc = ic ? c , sc̄ = iB , sB = 0 ,
sψ = ic ? ψ , sψ̄ = iψ̄ ? c .

A matriz S e o termo de �xação de calibre podem ser escritos como

S = N−1

ˆ
exp i (Scl + SGF ) dxDADψ̄DψDc̄DcDB

SGF =
ˆ
d4xs

[
c̄ ?
(α

2
B + ∂µA

µ
)]

.

Integrando B, simpli�ca-se a integral de trajetória para

S = N−1

ˆ
exp i

[
Scl +

ˆ (
− 1

2α
(∂ ·A)2 − i∂µc̄ ? Dµc

)
dx

]
DADψ̄DψDc̄Dc ,

que é a representação usual da integral de trajetória para a matriz S envolvendo um termo de
�xação de calibre de Lorentz e o determinante de Faddeev-Popov.
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