Universidade de Sao Paulo
Instituto de Fisica

Alguns problemas de quantizagao em teorias com
fundos nao-abelianos e em espacos-tempo

nao-comutativos

Rodrigo Fresneda

Tese de Doutorado apresentada ao
Instituto de Fisica da USP para a
obtencao do grau de doutor em ciéncias.

Orientador: Prof. Dr. Dmitri Maximovitch Guitman (IFUSP)

Banca examinadora:

Prof. Dr.
Prof. Dr.
Prof. Dr.
Prof. Dr.
Prof. Dr.

Dmitri Maximovitch Guitman (IFUSP)

Josif Frenkel (IFUSP)

Fernando Silveira Navarra (IFUSP)

Bruto Max Pimentel Escobar (IFT/ UNESP)
Antonio Edson Gongalves (UEL)

Sao Paulo

2008



Resumo

Esta tese tem por base trés artigos publicados pelo autor e colaboradores. O primeiro artigo
trata do problema da quantizacdo de modelos pseudocléssicos de particulas escalares em campos
de fundo nao-abelianos, cujo foco é a deducao desses modelos pseudo-classicos usando métodos de
integral de trajetoria. O segundo artigo investiga a possibilidade de realizar modelos de gravitagao
dilatonica em variedades nao-comutativas em duas dimensoes. Para tanto, vale-se de um método de
analise de vinculos e simetrias especialmente desenvolvido para gravitagao nao-comutativa em duas
dimensoes. O terceiro artigo discute modelos renormalizéveis em espagos-tempo nao-comutativos
com parametro de ndao-comutatividade bifermionico em quatro dimensoes.



Abstract

This thesis is based on three published papers by the author and co-authors. The first article
treats the quantization problem of pseudoclassical models of scalar particles in non-Abelian back-
grounds, which aims at deriving these models using path-integral methods. The second article
examines the possibility of realizing dilaton gravity models in noncommutative two-dimensional
manifolds. It relies upon a method of analysis of constraints and symmetries especially developed
for non-commutative dilaton gravities in two dimensions. The third article discusses renormal-
izable models in noncommutative spacetime with bifermionic noncommutative parameter in four
dimensions.
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Prefacio

Esta tese tem como base os seguintes trés artigos publicados pelo autor e colaboradores,

e 'Pseudoclassical description of scalar particle in non-Abelian background and path-integral
representations’, com D. M. Gitman, publicado em Int.J.Mod.Phys. A23:835-853 (2008);

e ’Stability of a noncommutative Jackiw-Teitelboim gravity’, com D.V. Vassilevich e D. M.
Gitman, publicado em Eur.Phys.J. C47:235-240 (2006);

e 'Nilpotent noncommutativity and renormalization’, com D.V. Vassilevich e D.M. Gitman,
publicado em Phys.Rev. D'78:025004 (2008).

O primeiro artigo trata do problema da quantizacao de modelos pseudoclassicos de particulas es-
calares em campos de fundo nao-abelianos, e seu foco é a dedugao desses modelos pseudo-classicos
usando métodos de integral de trajetoria.

O segundo artigo investiga a possibilidade de realizar modelos de gravitacao dilaténica em
variedades nao-comutativas em duas dimensoes. Para tanto, vale-se de um método de anélise de
vinculos e simetrias especialmente desenvolvido para gravitagao nao-comutativa em duas dimensoes.

O terceiro artigo discute modelos renormalizdveis em espacos-tempo nao-comutativos com parametro
de nao-comutatividade bifermiénico em quatro dimensoes.

Os trés artigos sao pecas independentes, e assim sao apresentados nesta tese. Pelo fato de
dois deles estarem ambientados em espagos-tempo nao-comutativos, faz-se uma breve introducao
historica sobre geometria ndo-comutativa na fisica. Também consta na introdug¢do uma breve
discussao sobre a quantizagao de modelos de particula, e em particular, da particula em espacos-
tempo nao-comutativos.
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Capitulo 1

Introducao

1.1 Breve histéria da geometria nao-comutativa na fisica

Em 1946 Snyder [1] propoe um novo modelo para o espago-tempo, em que a energias suficientemente
altas, a continuidade do espago-tempo cléssico da lugar a uma nocao de espago-tempo fragmentado
em células de tamanho minimo, onde nao ha a idéia de ponto. Nesta nova escala fundamental as
coordenadas do espago-tempo nao sao mais parametros continuos, como na teoria quantica usual,
mas operadores hermitianos que ndo comutam entre si:

"z, y, z, e t sao operadores hermitianos para as coordenadas do espago-tempo de um referencial
de Lorentz particular; o espectro de cada um desses operadores x, y, z, e t é composto dos possiveis
resultados da medida da quantidade correspondente; os operadores x, y, z, e t devem ser tais que o
espectro dos operadores ', 3/, 2’ e t’ formados por combinagoes lineares de z, y, 2, e t, que deixam
a forma quadratica (o elemento de linha do espago de Minkowski) invariante, seja 0 mesmo que o
espectro de x, y, z, e t."

Como consequéncia direta da nao comutatividade dos operadores correspondentes as coorde-
nadas do espago-tempo, resulta a impossibilidade de diagonalizar simultaneamente esses operadores
, ou seja, resulta a impossibilidade de medir com precisao arbitraria a posicao de uma particula.
Por exemplo, a &dlgebra mais simples de operadores &, que aqui representam os operadores her-
mitianos correspondentes as coordenadas do espago-tempo, é dada em termos de uma matriz real
anti-simétrica constante 6#%,

[Z#,&"] = 6" . (1.1)

As relagOes acima implicam as seguintes relagoes de incerteza:

AGFAGY > = oM7) .

1
2
Logo, a distancias da ordem de +/|0#|, efeitos da ndo comutatividade das coordenadas do espago-
tempo passam a ser relevantes, sinalizando o fim do modelo classico para o espaco-tempo e o inicio
de uma nova estrutura geométrica subjacente.

A época em que a nio comutatividade foi sugerida, esperava-se que ela pudesse resolver o prob-
lema das divergéncias ultra-violeta da teoria quantica de campos, em particular, da eletrodinamica
quéntica, problema cuja origem estd no produto de distribui¢des num dado ponto do espaco. Ao



impor um comprimento minimo e eliminar o contetdo fisico da no¢ao de ponto, surge um novo tipo
de regularizacao, semelhante & introdugao de um cut-off para os momentos, porém invariante de
Lorentz - ao menos na concepgao original de Snyder, em que os operadores * sao os geradores das
simetrias do espago de de Sitter. No entanto, com o sucesso do programa de renormalizac¢io, esse
caminho foi momentaneamente abandonado, e somente foi retomado na década de 1980, com os
trabalhos de Connes e Woronowicz [2, 3] no contexto de geometria ndo-comutativa, termo cunhado
originalmente por von Neumann [4].

O interesse da comunidade de fisica ressurge com a aplicagao da geometria nao-comutativa a
formulagao de teorias de calibre ndo-abelianas [5], da gravitacdo [6, 7, 8, 9] e do modelo padrao de
particulas [10, 11, 12], e também no entendimento do efeito Hall quantico [13].

No entanto, esse interesse renovado nao se deveu propriamente & realizacao da promessa inicial:
as teorias de campo em espacgos-tempo nao-comutativos ndo constituiram um avang¢o quanto a
finitude e renormalizibilidade das teorias quanticas de campo. De fato, a nao-localidade do produto
estrela de Moyal faz com que pequenas perturbagoes a energias altas se propaguem longe o bastante
para influenciar processos a baixas energias, dando lugar & mistura de divergéncias ultra-violetas
e infra-vermelhas em diagramas nao-planares [14, 15, 16]. Por exemplo, para a teoria Ap* no R*
nao-comutativo, a parte nao-planar da funcao de dois pontos irredutivel de uma particula padece
da mesma divergéncia ultra-violeta que seu correspondente planar, mas para momentos baixos. A
presenca da patologia de mistura de divergéncias ultra-violeta e infra-vermelha na teoria Ap* no
R* nio-comutativo é suficiente para estragar a renormalizacio da massa nesse modelo a um loop,
tornando-o nao-renormalizavel. A almejada renormalizacdo desse modelo s6 foi atingida com a
modificagdo do propagador pela adi¢do de um termo oscilante nos trabalhos [17, 18, 19], com o
fim de respeitar a dualidade de Langmann-Szabo [20]. Depois, demonstrou-se que muitos outros
modelos, apropriadamente modificados para exibir essa dualidade, sao renormaliziveis, como o
modelo de Langmann-Szabo-Zarembo em quatro dimensoes [21], o modelo de Gross-Neveu em duas
dimensoes [22], e 0 modelo ¢* ndo-comutativo em duas, quatro e seis dimensoes [23, 24, 25].

Apesar dos avangos no desenvolvimento de estruturas diferencidveis em geometria ndo-comutativa
e nas inumeras generalizacoes da teoria quantica de campos a espacos nao-comutativos, é gracas a
teoria de cordas que a geometria nao-comutativa deve sua popularidade. Na teoria de cordas, a ge-
ometria ndo-comutativa faz sua primeira apari¢do no trabalho [26] do Witten sobre a corda aberta.
Desde entdo, a nao-comutatividade do espago-tempo tem surgido de forma ubiqua na teoria de
cordas: no estudo nao-perturbativo de dualidades, como a dualidade T' na compactificagao toroidal
[27], manifestacdo da geometria quantica inerente & teoria de cordas enquanto teoria de gravitagao
quéantica; na classificacao de campos de fundo por meio de teorias de Yang-Mills nao-comutativas;
e principalmente, na teoria de D-branas, que no limite de baixas energias é efetivamente descrita
por coordenadas ndo-comutativas com valores matriciais [28]. A rela¢do intima entre geometria
ndo-comutativa e regimes nao-perturbativos da teoria de cordas é perfeitamente condizente com
anélises anteriores sobre espalhamento de cordas a altissimas energias e sobre a escala fundamental
da teoria de cordas [29, 30, 31]. A existéncia de um limite inferior para a medida de distancias,
da ordem da escala de comprimento intrinseca da corda, é mais um argumento a favor de uma
descrigao geométrica 'nao-pontual’ do espago-tempo. Hé de se citar, ademais, a presenca de geome-
tria ndo-comutativa na dindmica quantica da corda aberta na presenca de campos de fundo e de
D-branas [32, 33, 34, 35, 36].

Como ilustragao simples de uma realizacao fisica de nao-comutatividade do espago, considere

uma particula carregada no plano x = (:vl, x2), na presenca de um campo magnético constante.



Sua lagrangiana é
m B ;
2
L, = 5 X +x-A, A= 56@‘3}].
No limite em que o campo magnético é muito forte, desprezamos o termo de inércia fazendo m = 0,
e ficamos com B
LO = 7*(1.3Z€i‘xj .
92 J
A hamiltoniana desse sistema é proporcional aos vinculos de segunda classe ®; = m; + %eijxj e 0s
parénteses de Dirac entre as coordenadas sao

{xi’xj}D({)) =B,

ou seja, sdo uma matriz anti-simétrica constante. A quantizacdo dessas relacées de comutacao,
de acordo com a promocao das coordenadas z’ a operadores Z' e substituicdo dos parénteses de
Poisson por comutadores,

[#,&'] = i{a" 2’} pq)
produz as relagoes basicas (1.1) com 6% = B~1e',
Algo semelhante ocorre com teoria de cordas [37]. Considere uma corda bosénica num espago
plano de métrica g/ na presenca de um campo B de Neveu-Schwarz constante ,

1
S f—
> 4o/

/ (gij&laci@“mj — 2770/B,»j€“b8axi8bxj) ,
s

em que Y é a folha-mundo da corda. O segundo termo no integrando é uma derivada total, e para
cordas abertas, pode ser escrito em termos de uma integral na borda da folha-mundo:
Sox = —= Bijx' 0’
2 Jox
em que ¢t ¢ a coordenada em 9¥. No limite de baixas energias, g;; ~ a/> — 0, 0 termo cinético
principal da agao da corda desaparece, e 0 que resta sao os graus de liberdade na borda da corda
aberta. Podemos interpretar a acdo Spyx como a acao de uma particula num campo magnético
forte. Isto nos permite inferir que as coordenadas da corda na fronteira fazem parte de uma algebra
nao-comutativa B
[#',47) =i(B~)" .
O limite o/ — 0 de fato transforma a teoria de cordas numa teoria de campos efetiva. O fato da
teoria de campos nao-comutativa surgir naturalmente a partir da teoria de cordas sugere fortemente
que nao-comutatividade do espago-tempo é trago geral de uma teoria unificada de gravitagdo quan-
tica. Também no contexto de gravitacdo quéintica de lacos [38], operadores de éarea calculados em
superficies que se interceptam ndo comutam entre si, fazendo com que a geometria espacial (em
trés dimensoes) seja ndo-comutativa.

1.2 Modelos pseudoclassicos, representacao de propagadores
e a particula com coordenadas nao-comutativas
Modelos pseudoclassicos de particulas, isto é, modelos de particulas cujas coordenadas sao varidveis

em uma algebra de Berezin [39], apresentam um grande interesse em varios aspectos da teoria quin-
tica. Do ponto de vista fundamental, sua quantizacao conduz as equacoes de onda e, inversamente,



surgem como limite (pseudo)classico das dindmicas quanticas correspondentes. Do ponto de vista
metodologico, servem & representacao de objetos da teoria quantica, tais como propagadores. Fi-
nalmente, pode-se construir a mecanica quntica inteiramente baseada em simbolos pseudoclassicos
de operadores na chamada formulagao de Moyal [40].

O problema da quantizacdo de modelos de particulas relativisticas ocupa um lugar central no
chamado problema de quantizacdo, na medida em que fornece um entendimento bésico dos princi-
pios que regem a quantizacao dos modelos mais simples que podem ser encontrados na natureza.
A quantizacdo da particula relativistica, qualquer que seja sua massa e spin e o campo de fundo
considerado, relaciona-se com o problema da construcao da equagao de onda e, portanto, de uma
mecénica quintica para esta particula. O artigo [41] estende a importincia da quantizacio de
modelos pseudocléssicos, mostrando que a quantizagao da particula relativistica pode ser consis-
tentemente interpretada como a construcao do setor de uma particula da teoria quantica de campos
correspondente, sempre que esse setor possa ser definido (i.e., quando a interacdo da particula com
os campos de fundo nio leve & criacio de particulas). E central no problema da quantizacio de
modelos de particulas relativisticas a presenca de vinculos e liberdade de calibre.

Sempre que possivel, estes modelos devem ser definidos e quantizados em dimensdes arbitrarias.
A generalizagdo de modelos pseudoclassicos e sua quantizagdo em dimensoes arbitrarias esbarra em
dificuldades maiores no caso da particula espinorial em dimensoes impares, devido & redutibilidade
da algebra de Clifford. Isto quer dizer que em dimensbdes impares a quantizacdo da particula
espinorial deve produzir estados fisicos em duas representacoes de Weyl distintas, que correspondem
as duas representacoes nao-equivalentes da algebra das matrizes gamma. Em 2 + 1 dimensoes,
mostrou-se [42] que esse fato evidencia-se na presenca de um vinculo bifermiénico que nao pode ser
fixado. E possivel ainda construir modelos pseudoclassicos em interacio com campos nao-abelianos.
O trabalho [43] apresenta um modelo assim; 14 utiliza-se, no entanto, o método de quantizagio de
Dirac. Seria portanto interessante tratar um modelo de particula em campo nao-abeliano segundo
o procedimento de quantizagdo canonica consistente, nos moldes de [41].

A representagdo de propagadores da teoria quintica por integrais de trajetéria é um problema
intimamente relacionado aos modelos pseudocléssicos. Os trabalhos [44, 45] mostram que os mod-
elos pseudocléssicos para particulas escalar e com spin 1/2 em campo eletromagnético arbitrario
podem ser extraidos de tais representagoes, e o trabalho [46] generaliza estes calculos em dimensao
arbitraria. Estas representacoes podem ainda ser generalizadas para particulas em interacao com
campos nao abelianos [47, 48], sempre levando a integrais de trajetoria cujas agbes correspondem a
modelos pseudoclassicos. A defini¢ao precisa da integral de trajetéoria pelo método de discretizacao
corresponde a uma defini¢do precisa da correspondéncia entre simbolos e operadores [49]. Em outras
palavras, as ambiguidades de ordenamento que se encontram na quantizacao de funcoes classicas se
manisfestam igualmente na defini¢do discreta da integral de trajetéria. Como ja mencionado, tais
ambiguidades de ordenamento se manifestam muito claramente no problema da particula em campo
gravitacional, e assim é de se esperar que surjam problemas na defini¢do da integral de trajetoria
no curso da representacao de propagadores de particulas em campo gravitacional.

No contexto de espacos-tempo nao-comutativos, esforcos na direcao da quantizacao de modelos
de particulas ainda sao incipientes, e se concentram principalmente na generalizagdo ao caso nao-
comutativo de problemas classicos da mecanica quantica usual, tais como o oscilador harmoénico
[50, 51, 52], a particula no campo central e o &tomo de hidrogeénio [53, 54], e também incorporando
efeitos topologicos, tais como efeito Aharonov-Bohm e efeito Casimir [55, 56]; todos com o fim de
obter corre¢oes quanticas oriundas da nao-comutatividade das coordenadas. Também se incluem
nesses esforcos de obter corregoes quanticas da nao-comutatividade abordagens de quantizacao via



integral de trajetoria [57, 58, 59, 60, 61].

No entanto, somente em [62] ha preocupacgdo em justificar as ac¢oes classicas empregadas para
efeito de quantizacao, valendo-se do problema inverso de quantizacao: pela extracao das referidas
acoes classicas e pseudoclassicas das representagoes dos propagadores correspondentes via integral
de trajetoria. Descobre-se que tanto a agao hamiltoniana classica para particula relativistica escalar,
quanto a acdo pseudoclassica hamiltoniana para particula relativistica espinorial, diferem de seus
analogos comutativos ([45] e [39], respectivamente) pelo termo p,0"p, /2h, que impede que se
obtenham diretamente por integracdo a forma lagrangiana das acées. A quantizacdo de Dirac
da acao pseudoclassica assim obtida recupera a equagao de Dirac no espago de Minkowski nao-
comutativo, justificando a generalizagdo do modelo de Berezin-Marinov. Por fim, em [62] também
se deduz a acao classica da particula nao-relativistica pela representacao da fungdo de propagacao
via integral de trajetéria, obtendo-se uma modificacdo da acdo hamiltoniana classica no R?® pelo
mesmo termo que surge nas versoes relativisticas, que incidentalmente é a mesma acao proposta
em [63, 64, 65]



Capitulo 2

Particula escalar num campo de
fundo nao-abeliano

2.1 Introducao

Teoria Quantica de Campos (TQC) com campos externos é uma boa abordagem a descrigao de
muitos sistemas e efeitos fisicos. Se o campo externo é forte o bastante, ele tem de ser computado
nao-perturbativamente. Os métodos correspondentes para Eletrodindmica Quantica (EQ) estao
bem desenvolvidos e deram muitos resultados, como mostram os trabalhos [66] e as citagbes ai con-
tidas. O conceito de campo externo em TQC nao-abeliana é menos desenvolvido e encontra algumas
dificuldades (ndo ha uma forma de introduzir um campo externo nao-abeliano que seja invariante de
calibre). Entretanto, a existéncia indiscutivel de situagoes fisicas em que ha um campo nao-abeliano
quantizado suficientemente forte frequentemente serve como justificativa fisica ao tratamento desse
campo com um campo externo classico, apesar do problema mencionado acima. Resultados in-
teressantes e fisicamente significativos que foram obtidos nesse contexto servem como justificativa
adicional. Podemos apontar os calculos efetivos a um loop em campos externos constantes nao-
abelianos [67, 68, 69] que foram usados na construgdo do verdadeiro viacuo da Cromodinamica
Quantica (CQ), veja [69, 70, 71, 72]. Também se deve mencionar a descri¢io de transi¢des de fase
em CQ cosmologica [73], produgdo ndo perturbativa de partons a partir do vacuo por um campo
classico cromoelétrico SU (3) [74] e SU (2) [75], condigoes de fronteira e efeitos topologicos do vacuo
na presenca de um campo magnético inomogéneo na forma de um tubo de fluxo [76, 77], e assim
por diante.

Os objetos-chave em TQC nao-perturbativa (com respeito ao campo de fundo) com um campo
de fundo nao-abeliano sao os propagadores das particulas escalar e espinorial no campo externo nao-
abeliano correspondente. Solucoes exatas para tais objetos permitem que se obtenha por integragao
resultados a um loop para varias quantidades fisicas. Ademais, representagdes por integral de
trajetoria do propagador podem ser tteis & obtencdo de solucoes exatas, que entao poderiam ser
usadas em calculos. Uma variedade de representagoes por integral de trajetéria da particula escalar
e espinorial foram construidas e calculadas para muitos campos abelianos de fundo em [78, 48, 44, 45,
79, 47, 80]. Verificou-se que tais representagoes também sdo tteis na deducdo das chamadas agoes
pseudocléssicas para particulas espinoriais, veja [45, 79, 46]. Algumas representagoes por integral



de trajetoria para propagadores em campos externos nao-abelianos e problemas relacionados a
descrigdo pseudoclassica de isospin foram estudadas em [43, 81, 48].

Recordamos que uma teoria cléssica para a particula de Yang-Mills foi primeiro obtida a partir
do limite cléssico das equagoes de campo de Yang-Mills por Wong [82]. Em seguida, Chen e Dres-
den [83] mostraram que as equagoes de campo de Yang-Mills fornecem as equagdes de movimento
para uma particula teste com spin isotopico no mesmo sentido em que as equagoes de Einstein
fornecem as equagbes para uma particula teste massiva. Casalbuoni et.al. [81] obtiveram uma
descri¢ao lagrangiana invariante de calibre para particulas escalar e espinorial com spin isotépico,
em que variaveis de Grassmann descrevem os graus de liberdade internos no nivel cléssico, tal que
a quantizacao dé representacoes de dimensao finita do grupo de calibre. Balachandran et.al. [43]
aplicaram o procedimento de quantizacdo de Dirac a uma formulagdo lagrangiana pseudocléssica
das particulas escalar e espinorial interagindo com um campo de calibre nao-abeliano, e adicional-
mente, desenvolveram um método aqui utilizado para obter as representagoes irredutiveis de isospin.
Em [47], a estrutura de isospin do propagador da particula relativistica escalar na representacao
fundamental de SU (2) é deduzida usando métodos desenvolvidos para o caso da particula com
spin.

Aqui volta-se mais uma vez a esses problemas para o caso da particula escalar com isospin em
véarios campos externos ndo-abelianos. E importante frisar que um campo escalar quantizado em
um campo externo nao-abeliano tem sido proposto como uma explicagao de confinamento em CQ
por meio de uma particula escalar massiva (dilaton) [84], e também aparece na forma de escalares
fundamentais acoplados & curvatura de calibre em teoria de cordas [85].

Construiram-se representacoes por integral de trajetora para o propagador da particula escalar
em duas abordagens: uma é a generalizacio do procedimento proposto em [47] a qualquer represen-
tagdo de SU (N) dada em termos de matrizes de base anti-simétricas, enquanto a outra é construida
usando estados coerentes fermionicos valida para quaisquer representacoes de SU (N). Esta ultima
abordagem é uma modificacdo da representacio por integral de trajetoria do propagador de Dirac
por meio de estados coerentes fermionicos apresentado em [48]. Em ambos os casos nos deduz-
imos as acOes pseudoclassicas para a particula escalar em campos de fundo nao-abelianos, e os
quantizamos para demonstrar sua consisténcia. No apéndice, colocamos alguns detalhes técnicos e
demonstracgoes.

2.2 Representacoes dos propagadores

Um campo escalar ¢ com carga nao-abeliana é um campo no espago de Minkowski M de métrica
Nu = diag (1,—1,—-1,—1) com valores em um espaco de representagao linear V' de um grupo de
simetria local G, i.e., ¢ : M — V. Aqui e no que segue, G = SU (N), e a representacao linear
¢ uma representacdo matricial unitaria de dimensao n, isto é, p : SU(N) — GL(n), V = C"
(¢ = {pa} € uma n-upla de nameros complexos, o = 1,...,n) e p(g) com g € SU(N) é uma
matriz unitdria de ordem n. O potencial de calibre 4, é um campo em M com valores na algebra
de Lie su(N), A, : M — su(N), e sua acdo sobre os campos de matéria ¢ se da de acordo
com a representagao induzida por p. A base de su (IV) nessa representagio ¢ dada pelas matrizes
hermitianas de traco nulo tgs, a = 1, wN?—1ea,p =1,..,n Desse modo, A, = AZt;“ﬁqSﬁ,

LComo SU (N) é um grupo compacto, a base pode ser escolhida tal que as constantes de estrutura sejam totalmente
anti-simétricas [86],
[ta’tb} :fab ctC7 fabc Ef[abc] B (2'1)
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onde Af (x) sao os coeficientes de A, na base {t,}. A equacdo que define o campo escalar ¢ é a
equacao de Klein-Gordon

(nMVPHPV - mz) ¢(x) =0,

em que P, =0, — ¢A, é a derivada covariante. Por uma transformacao de calibre local g : M —
SU (N)

¢ () g(@) (), ¢ (2) = ¢l (2) 97" (2) , Au(x) = g(2) Au (@) 97" (2) +ig " Bug (2) g~" (@) |

a derivada covariante satisfaz P, ¢ () — g (z) P,¢ (z), em que se subentende que o elemento g de
SU (N) é dado em termos da representagéo p. A acdo invariante por transformacdo de calibre local
g : M — SU(N) mais simples cuja lagrangiana seja quadratica e funcdo de ¢ e suas primeiras
derivadas 0,,¢, e cujo extremo dé a equacao de Klein-Gordon é

S = /d4:10 {n”” (P.) (Poo) — m2¢T¢} , Py =10, — qA, (2.2)
O propagador causal para a particula escalar relativistica interagindo com um campo externo
A,, com valores na algebra su (N) no espaco de Minkowski (em unidades naturais i = ¢ = 1) é

descrito pela equacao
(P? — m2)aﬁ Dﬁ,Y (z,y) = —(5354 (x—y), P,=10, —qA,, (2.3)

No que segue consideraremos duas diferentes realizagoes da algebra de Lie (2.1) de su (N). A
primeira realizacao serd em termos de operadores de criacao e aniquilacao definidos num espaco de
Fock conveniente, e a segunda realizagdo serd em termos de geradores de uma &lgebra de Clifford
particular.

I. Considere um espaco de Hilbert abstrato H dado pelo produto direto do espaco de represen-
tagdo usual para a algebra de Heisenberg, cuja base é denotada por |x),

) = ot [x) | <x|y>=64(:c—y>,/d4x|x><x\:f,
(6,5, = i8t , (2] Py g} = 00" (2 —y) (2.4)

e um espago de Hilbert abstrato V' que por ora nao especificamos, e que possui uma base ortonormal
de vetores |a), « =1, ...,n, com produto interno

{@8) =bap, Y la){al=1. (2.5)

Desse modo, o espaco de Hilbert H =H ® V possui uma base ortonormal |z,a) = |z) ® |a), e
produto interno (z,« |y, B) = §* (x — y) ap-

Em seguida, interpretamos os operadores com indices que surgem em (2.3) como elementos
de matriz de operadores em H. De acordo com esta interpretagdo, o propagador D (z,y) sdo

elementos de matriz de um operador abstrato D,

D(xay>aﬁ = <x7a| D |yaﬁ> s (26)

e as matrizes t, sejam normalizadas a tr (tatp) = 1/204p.
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e a base {55 sao elementos de matriz de operadores {q,

(alta|6) = t3s.

Note que como os elementos de matriz dos operadores t, satisfazem as relagdes de comutacdo da
algebra su (N), os operadores também as satisfazem:

[taa tb]aﬂ = f;btgﬁ g [fav tAb] = fgbfu (2-7)
Por meio dos operadores acima definidos, pode-se escrever (2.3) na forma operatorial,
(PQ—mQ)ﬁ:—I,

em que

By=—pu—aA., Ay = A5 (@) 10, (x,0] Puly, B) = (i0u0ap — qAu () t55) 6* (2 —y) -
Logo, podemos formalmente escrever o operador D
D= (P —m?yic)
por meio da representacdao do tempo proprio de Schwinger
D= Z_/OO dre HM L H=—-)\ (132 —m? + ie) . (2.8)
0

O espago V, que até agora permaneceu indeterminado, serd definido como o setor de uma
particula do espaco de Fock dos operadores de criacdo e aniquilacio af e a,

da |0) =0, al,|0) = |a) ,
que satisfazem a algebra

(@l 5], = bas, [a;,aTﬂL = [da, ], =0. (2.9)

Entdo é possivel representar os operadores ¢, como
ta = altosas, tos = (alta|B) . (2.10)
Aqui é imporante observar que os £, satisfazem as relagdes de comutacio da algebra su (N),
[tastn] = fopte

uma vez que os elementos de matriz t; satisfazem as relagoes de comutagio (2.7) de su (N).
Ademais, as propriedades de hermiticidade e de traco nulo de iy sao herdadas pelos operadores ta,



em que a involugdo 1 da algebra abstrata de operadores conjuga os nimeros complexos tgp- Final-

mente, notamos que fa conserva o numero de particulas.
Usando a representacdo (2.10) para a base t,, introduzimos estados coerentes fermionicos |x) e
(X| [87, 48] definidos como a exponencial dos operadores de criacdo e aniquila¢do agindo no vacuo

) =D0)0), (xI=10", D) =e" X" [a0,D(x)], = xaD (X)

em que Yo € Yo = X, 580 nimeros de Grassmann que comutam com o estado de vdcuo e com
a e af. Usando a relacio aoD (x) = XaD (X) + DT (X) Ga, fica evidente que os estados coerentes
fermionicos satisfazem

a®x) = x*x), (xlal, = (x| Xa -

A normalizacio desses estados segue da relagao Baker-Campbell-Hausdorff,
(x] &) = o3 (xX+E6—2¢x) 7

e a resolucao da indentidade é dada por

N
/HandxaleXI =1, /dxx=/d>2>2=1-
a=1
Ela pode ser demonstrada facilmente, bastando notar que para um s6 componente, a expansao da
o operador identidade no espaco de Fock, |0) (0| + a' |0) (0] a.
Por meio da resolucao da identidade acima, torna-se possivel relacionar elementos de matriz do
setor de uma particula do espago de Fock na base |a) & base de estados coerentes |x),

N
_ S L' 4x%) -t _
al-18) = [ T dxpdx"dgudx"ed X0 (3] ) %5, (211)
o,k=1
onde foi usada a relacdo (x| a) = X exp % xX- Como resultado, podemos reescrever o propagador
(2.6) em termos de elementos de matriz de estados coerentes,

N
L5 4vw) . 1 PR _
D(x,y)ag=/ T dx,dx”dxedx e XX 250 @ /1 Dy, x) vs .- (2.12)

o,k=1

Na secdo seguinte, os elementos de matriz <x,>2’|lj ly, x) serdo utilizados na obtenc¢do de uma
representacao do propagador via integral de trajetoria.

II. Uma outra interpretacdo possivel do propagador D (x,y) que aparece em (2.3) pode ser
simplesmente como elementos de matriz

D (z,y)'; = (x| D ly)

dos vetores de base |z) do espaco de Hilbert abstrato H. O operador abstrato D adquire indices
diretamente das matrizes da base de su (N). Note que renomeamos os indices da representagao
matricial de su (N). Os novos indices i e j denotam as componentes matriciais de uma nova base
T,

1
To = (Tatils . Lo Tl = 200s. (2.13)
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Esta base é bastante conveniente para obter representagoes por integral de trajetéria do propagador
por meio de técnicas adaptadas do caso da particula espinorial. Entretanto, para que T, satisfaca as
relagdes de comutagao (2.1), é necessério que as matrizes t, sejam anti-simétricas, t. = —t,. Esta
desvantagem pode ser contornada se tomarmos as matrizes ¢, na representacao adjunta t&, = f,, ¢.
Além desse caso, ha outras representacoes em que é possivel escolher as matrizes ¢, anti-simétricas.
Por exemplo, no caso de SU (2), é sempre possivel escolher matrizes ¢, anti-simétricas para as
representacoes de spin inteiro s. Nesse caso, a, 8 =1,....,2s+1 e i,j = 1,...,2°. No caso geral,
na representacdo adjunta, o, 3 =1,..,N2 -1 eentdoi,j =1, ...,2[(N271)/2]. No caso familiar da
representacdo adjunta de su (2), tem-se

T, = if‘:abcrbl—‘c = _igabcl—‘brc y @y b7 c=1,2,3,

em que as matrizes I' satisfazem [Fa,Fb]+ = 2045 € sd0 de ordem 2, entdao podem ser escolhidas

como sendo as matrizes de Pauli, 'y, = o, 2,

) 1
T, = —%eabcabac = 50a- (2.14)

A base T, é composta de matrizes hermitianas e de traco nulo, e elas satisfazem as relacoes de
comutacio de su (2)
[Ta7 Tb} = isabcTc .

Esse caso é especial, pois a escolha da representacao adjunta para t, fornece T, na representacao
fundamental. Uma outra situacdo especial ocorre com SU (4), em que se pode escolher ¢, como
matrizes anti-simétricas de ordem 6, uma vez que vale o isomorfismo de algebras su (4) ~ so (6).
Entéo, tem-se espinores pares ou impares de so (6) com 4 componentes, dando por meio do método
descrito nas segdes 3.1 e 4.1, a representagdo fundamental de SU (4).

2.3 Integral de trajetoéria na representacao por estados coer-
entes

2.3.1 Integral de trajetoria
Nosso objetivo nessa secao é escrever uma representacao por integral de trajetoria para
A © .7
Dy (& ¥s0) = X1 D) =i [ dA (| T g (215)
0

Inserimos N — 1 resolucdes da identidade I = [ dadxdyx |z, x) (z, x| e N integracdes sobre A:

e’} N-1
0 k=1

N
(h, o] €T HOON g Xk 1) 0 (A — Me1) (2.16)
=1

ko




em que Ty = T, XN = X, Zo = Yy ¢ Xo = X. Com o intuito de calcular o elemento de matriz
genérico que surge em (2.16), deve-se escolher uma prescri¢io de ordenamento para os operadores
em H. Em particular, deve-se resolver a ambiguidade no ordenamento do termo contendo quatro
fermions em P2. Em [48], uma resolugao adicional da identidade é inserida entre os operadores
P como solucao para o problema de ordenamento. Nao sabemos a que prescri¢ao esta solucao
corresponde, e prescri¢des convencionais tais como ordenamento de Weyl e ordenamento normal
nao sao invariantes de calibre. No que segue, mostraremos que o ordenameno de Weyl nao é
invariante de calibre, e computaremos a acao efetiva resultante. Como é mostrado no apéndice
(A.1), o operador Hamiltoniano difere da expressio obtida por ordenamento de Weyl ® pelo termo
A%tr (taty) AZA“Z’. Esta acao, com excecdo do termo nao-invariante, é idéntica ao que se obteria
duplicando a particao do tempo.
Aplicando a regra do ponto médio (A.3) ao elemento de matriz genérico, tem-se

. d
(@, Xi| H (Ak) |Th—1, Xk—1) = / &dﬁkdnk (@h, Xk| Pr> M) (Hw (Ak) + Q (M) (Pk> M| Thm15 Xb—1) »

(2m)*
T + Tp— _ + Xk—
Hw (\x) = Hw (Ak, u 5 b 1,Pk,77kank 2Xk 1) )
2
=L o (T T Th=1 gop [Tk F Tho1
Q()\k) = )\k 4tI‘ (tatb) A#( B) )A ( 9 5

onde Hy € o simbolo de Weyl de Hyy. Substituindo as fungoes delta 6 (Ax — Agx—1) por suas
representacoes integrais e usando a representacdo integral para a funcao delta fermionica (A.5) nas
integracoes em x e Y, temos

N-1 N
_ [ dpy, dmy ,_ 1., _ _
Dy (z,X"5y,x) = Z/ d/\o/ dy, dA\p—dirdny, | exp 5 (XX — 187N + 2X 1N
0= 1L e ) {1 oy ) )
N ) )
) (xp — Tp—1) M — A1)tk — k1)~ (T — T—1)
eszZ{pk Al + T AL 3 At nkfg At Nk—1 — Hw ()\k)*Q()\k) At

k=1

onde Hy (\r) = Hw ()\Iw T e, Tk, %) no = x- O termo x'X’ —nn7n +2X'nn vem de

(X'| nnv), e no limite N — oo se reduz a 2x'n (1). Tomando o limite N — oo (At — 0) e renomeando
n— x ein— X, tem-se

Dy (z, X5y, x) = z/ dz\o/D:chD)\DTrD)ZDxexpiSeff expy (1) x (1),
0

1 . . . 2
Sep = / dt (pj: b A4 % (XX — %) + A ((pu +qA2T,)” — m2) — qzm (tals) AZA””) :
0
(2.17)

em que I, = Xt,X, e a integracdo funcional é feita sobre as trajetorias a* (t), p, (t), A(t), 7 (1),
X (t) e x (t), com valores de fronteira z* (0) = y*, x* (1) = 2", A (0) = Ao, X (1) = X e x (0) = x.

30rdenamento de Weyl aqui significa simetrizacio em todos os graus de liberdade bosoénicos e anti-simetrizacao
em todos os graus de liberdade fermidnicos.
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Como a integral de trajetoria é invariante por translagoes, pode-se integrar sobre os momentos
py deslocando p — p+p, em que p = —&/2\ — gA®I, é a solugdo & equagdo classica & = OH.f¢/0p.
Apobs a substituicdo 2\ = e, obtém-se a forma lagrangiana da integral de trajetoria:

Dy (z,X5y,x) = z/ d)o / DxDeDrDxDxM e, z]expi (Sers + Sa)exp (x (1) x (1)) ,
0

i

L 42 e
Sepp = / dt <— — 5m‘" — qit AN, + 5
0

% (xx — fcx)) : (2.18)

com medida lagrangiana e termo S¢ de fixacao de calibre de parametrizagao

. 1 2
M e, x] = /Dpexp %/0 e (p2 - itrtatbAZA“b> dt (2.19)

1
SG:/ weédr (2.20)
0

Assim, a representacdo por integral de trajetoria do propagador pode ser deduzida a partir uma
prescri¢io de ordenamento (ordenamento de Weyl) com o custo de uma medida de integragao
nao-invariante de calibre.

2.3.2 Acao pseudoclassica

O funcional acdo Scsy em (2.18),

1 -9 .
T e i .
Serp= [ dt | —= — —m? —qi"A%T, + - (Xx — X Iy = XtaX, 2.21
£f /0 ( 5; ~ 5" —ai"Alla + 5 (XX xx)) XtaX (2.21)
¢ invariante por reparametrizagao,
. d . _ -
5eseff =0, dex =€, e = dt (66) y OeX = €X, OcX = €X - (222)

No calibre e = V@2 /m coincide com a agdo dada em [81, 43] que descreve uma particula relativistica
escalar com coordenadas fermidnicas numa representacao de um grupo de simetria G, cujas equagoes
de movimento sao
d & . d .
m—— = qi" Fy L, DX = %X”‘ + iqit A}, ;"Bxﬁ =0, (2.23)

dt 32

onde Fg, = 0, A7 — 0, A}, +iq flfCAZA,“; é o tensor de campo e D; é a derivada covariante.

Com a finalidade de realizar anilise canonica classica 4, é mais conveniente partir da acio
invariante por reparametrizagdo (2.21). Como esta a¢do ndo contem derivadas de e, é melhor
considerar e uma velocidade (veja [89]), e ndo introduzir seu momento conjugado. Chega-se assim
ao seguinte hamiltoniano

e . .~ 7
H= _§T - Xa¢oz - Xa¢a7

4 As definigdes e convengdes sdo aquelas usadas em [88].
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onde o conjunto de vinculos ® = {T, o, é},

PN T_ 5 _ 1
T:(pu+qAMIa) _m2> ¢oz:77a_§Xou ¢a:7"a—§tha

define uma supermatriz degenerada {®,®}. A &lgebra de vinculos se simplifica se considerarmos

um conjunto equivalente de vinculos {T, o, gz_ﬁ}, onde T é obtido de T por meio dos deslocamentos
X — X —ipeX —X—id,
{7,060} ={T.6a} =0, {Ba:63} = ~ibas.
O novo hamiltoniano com multiplicadores de Lagrange redefinidos é
H=AT + Aata + Moo,

fornecendo a seguinte evolucdo temporal para os vinculos,

d -

d -
—T =0 70(:'Aa7
7 ; Pa =1

d _
Zb. = A
o =1 ar o

dt

entdo a condicio de conservacao dos vinculos no tempo simplesmente fixam A e A. As equacdes de
movimento para as variaveis independentes 7 = (2", p,, Xa, Xa) 580 dadas por

i={nAT} s da=6a=T=0,

em que os parénteses de Dirac foram construidos com respeito ao conjunto de vinculos de segunda
classe {d); qi)}. Usando propriedades bem conhecidas dos parénteses de Dirac, as equagoes de movi-
mento se tornam

7.7 = {naAT}D(¢) 9 ¢Oz = (Z_Sa :T: 07
E os parénteses nao-nulos entre varidveis independentes sao

{x“,py}D(¢) = 5fjv {XmXﬁ}D(@ = _iéaﬁ' (2'24)

Ademais, os I, sdo uma base covariantemente constante de su (N),
. pc _ d - oAb pC
{La: I} p(gy = —ifaple, Dila = %Ia +iqit A, faple =0, (2.25)

que portanto serao conhecidos por isospin.
De (2.24), vemos que os operadores fermionicos geram uma algebra de operadores de criagéo e
aniquilacao

Xoo = Ga s Xa — CLL , [aav atg]+ = 6@[3 . (226)

O espaco de Hilbert H pode ser realizado como produto direto do espaco de representacao para a
algebra de Heisenberg e o espago de Fock de 2" dimensoes dos operadores de criagao e aniquilagao

|z - - o) :all~-~agp |z;0) e H, p=0,..,n. (2.27)
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A acdo do grupo SO (2n) preserva as relagoes de comutagio (2.26), e os geradores de so(2n) na
representacio acima sao dados por cqg = [al,,ag], aaag e agag. Os cap pertencem a subalgebra
u (n) de so(2n). Os n operadores c,3 para o = (3 formam a subélgebra de Cartan® de so (2n).

A representacdo (2.27) é uma representagdo espinorial de dimenséo 2" de so (2n), e suas repre-
sentacoes irredutiveis sao dadas pelos estados em que h& um nimero par ou impar de operadores de
criagdo, correspondendo & representagao de Weyl (semi-espinorial) de 2"~ dimensoes de so (2n).
Esses estados podem ser decompostos ainda em representagoes irredutiveis de su (N), uma vez que
os geradores de isospin I, s&0 uma combinagdo linear de geradores de so (2n),

I, = twﬁalaﬁ = %taaﬁ ([al,ag] + [a2a5]+) = %taagcag. (2.28)
Logo, os I, geram uma subalgebra su (N) de so (2n).

Entao, dada uma representacdo de su(N) em termos de matrizes n X n, mostramos que a
fungdo de onda pertence a uma representacio irredutivel de SO (2n), i.e., uma representagdo de
Weyl (semi-espinorial) de dimensdo 2"~!. Para decompor essa representacdo em representagoes
irredutiveis de SU (), é necessario calcular os autovalores de uma base da subélgebra de Cartan
de su (N) na representagio espinorial em questao. Sem perda de generalidade, assumimos que os
tq pertencentes a base da subalgebra de Cartan de su (V) estejam diagonalizados. Com isto, (2.28)
nos da a decomposicao dos geradores de isospin I, numa combinacao linear de elementos da base
da subéalgebra de Cartan de so(2n). A dimensdo da subalgebra de Cartan de su(N) é N — I:
escolhemos N — 1 elementos dentre os N2 — 1 I, e calculamos seus autovalores na representacao
semi-espinorial fixada. Isso nos da as possiveis representagoes de SU (IN) contidas na fungao de
onda.

Por exemplo, no caso de SU (2), pode-se escolher a projecao de isospin t3 e para SU (3) pode-se
usar a projecao de isospin t3 e a hipercarga Y como base para as subalgebras de Cartan respecti-
vas, para caracterizar representagoes irredutiveis de SU (V). Entao esses geradores de isospin (ja
diagonalizados) sdo decompostos em termos dos ¢, = [aL, aa] (a base para subalgebra de Cartan
de so(2n)) para obter seus autovalores para a representacdo espinorial de so(2n) a qual pertence
a funcao de onda. O intervalo de valores desses autovalores da as representacoes irredutiveis de
SU (N).

No caso particular de SU (2), a subélgebra de Cartan é gerada por um tnico elemento, i.e., 3,
cuja representacao matricial numa base de autoestados de isospin s (ou seja, numa representagao
de dimensdo n = 2s+1) é da forma t3 = diag(s,s—1,...,—s+1, —s). A decomposigao do operador
de isospin I3 em geradores de Cartan de so (4s + 2) é da forma

A s (s—1) (—s)

[n=2 A,
3 261+ 5 co + + 5

C2541 -

Cada ¢, pode ter o valor mais ou menos um. Entretanto, a fun¢do de onda esta em um estado com
um ndmero par de +1 (espinor de Weyl par) ou com um nimero impar de +1 (espinor de Weyl
impar).

Por exemplo, para s = 1/2,

i 1 1
3= ~C — ~C2
4 4

5A subalgebra de Cartan de uma 4lgebra compacta é a subalgebra abeliana maximal. A dimensdo da subalgebra

de Cartan de so(2n) é n, também conhecido como posto (rank).
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e portanto os autovalores possiveis de {3 para uma representacio par (1=co=4+lecg =co=-1)
séo duas vezes 0, dando duas representagdes escalares; e para uma representacgdo impar (¢; = —cg =
lec = —cg=—1)¢é +1/2, dando a representagio de isospin 1/2. A funcdo de onda pertence a
uma representagao semi-espinorial de SO (4), portanto de dimensao 2.

Para cada spin inteiro, as representacoes pares ou impares se decompoem do mesmo modo, e
a representagdo de isospin mais alto é (s + 1) s/2. Por exemplo, s = 1 d& os autovalores 1,0, —1 e
novamente 0, dando a representacdo de isospin 1 mais um escalar. Abaixo ha uma tabela resumo
dos resultados para alguns valores de isospin (SU (2)).

[ isospin s [ grupo de simetria | dimensdo da representagao | decomposigio(par;impar) |

0 50 (2) 1 0

1/2 SO (4) 2 2x0;1

1 S0 (6) 1 0+1
3/2 SO (8) 8 3x04+2;2x 3
2 SO (10) 16 0+1+2+3

Assim, para obter a representagdo fundamental de SU (2) apds a quantizacdo, deve-se escolher
o espaco de Hilbert como sendo a representagdo espinorial de Weyl impar de SO (4) de espinores
de duas componentes. Nesse caso, o vinculo T da a seguinte condi¢do de quantizagao de Dirac

76 = [(hu + aAita)" = m?| 6 () =0, (2.29)

que é precisamente a equacio de onda em (2.3) para t, = %aa.

Como ultimo exemplo, considere o caso SU (3) em que a base ¢, esta na representacdo fundamen-
tal, i.e., sdo as matrizes de Gell-Man de ordem 3. A funcdo de onda pertence a uma representacio
de espinorial de Weyl de SO (6), de dimensao 4. SU (3) possui posto dois, e portanto dois elementos
da base podem ser simultaneamente diagonalizados, por exemplo, t3 e a hipercarga Y

L [1 00 10 0

ts==-10 -1 0]|,Yy==-l01 0
2 3

0 0 0 00 -2

Entéao, de acordo com (2.28),

1313(017624*0'63) 3 Y:é(01+027203) .
Se a funcio de onda é um espinor de Weyl par, entdo os autovalores possiveis de I sdo 0,1/2,—1/2,
0, e os autovalores possiveis Y sdo 0,—1/3,—1/3,2/3, dando a representagao anti-fundamental 3
de SU (3) mais um singleto. Para fungdo de onda um espinor de Weyl impar, obtém-se o estado
fundamental 3 de SU (3) mais um singleto.

Também é possivel chegar a esses resultados a partir da acdo classica (2.21). No que segue, sera
conveniente expressar as variaveis de Grassmann y em termos das suas partes reais e imaginarias,

Xa = L (Xla + iXQa) , XJ{Q = Xla X;a = X2a >
V2

Xio = 5 (o o)+ X2 = % (Xa - Xa) - (2.30)

—_

6 Aqui usamos as convengdes de [90]
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Deste modo, a parte Grassmann do termo cinético fica
i

Lkin = 4

(x1X1 — X1x1 + X2X2 — X2X2) -

Ly, é invariante sob transformacoes induzidas por Rag = —i (X1aX18 + X2aX28) € Sap = —i (X1aX28 + X18X2a)

1
6ina = {2WB7R,6’77 Xia} = WapXif »
D(¢)

1 i
OAXia = {2/\575577%@} = (1" Napxis
D(¢)

em que os parénteses de Dirac para as variaveis reais seguem dos parénteses das varidveis antigas
(2.24) e de sua expressao em termos das variaveis reais (2.30),

{Xla,X1ﬁ}D(¢) = {X2a; XQB}D(¢) = —10ag, {XlaaXQﬁ}D(¢) =0.
Os geradores de simetrias R,3 e S,z satisfazem a algebra de Lie
{Rap, Rys}p(s) = OayRss + 0ps Ray — bas Ray — 0y Ras ,
{Sas, 575}D(¢) = OayRps + 085 Ry + 005 Ry + 0y Ras
{Rag, S’Y‘S}D(qb) = (5(WS[35 — 55550’7 + 5Q5S57 — 5575045 .

Acima reconhecemos as relagdes de comutagao da seguinte combinacdo dos geradores Li;, ¢,j =
1,...,2n, de o (2n),

Rop = Laa—1,26-1+ L2a26, Sap = Laa25-1 — Laa—123 — 0ap -

Ademais, da decomposicao dos geradores I, em termos das partes simétrica e anti-simétrica de t,,
Ia = ta(aﬁ) (XaXﬁ + XﬁXa) + ta[aﬁ] ()_(aXﬁ - XﬁXa)

) 1
= Staas) (X1aX28 + X18X2a) + Slalas) (X1aX18 + X2aX28)

1 )
= _§ta(a,8)5aﬁ + §ta[aﬁ]Raﬂ (2.31)

nos novamente deduzimos que os I, sdo uma combinacao linear dos geradores R,g e S,3, que é o
mesmo que dizer que os I, sdo os geradores da subélgebra su (N) de so(2n). Trata-se de so(2n)
e ndo de o(2n), pois o trago de S,z na expansao de I, ndo contribui, uma vez que as matrizes t,
tém traco nulo.

2.4 Integral de trajetoéria na representacao da algebra de Clif-
ford

2.4.1 Integral de trajetoria

Aqui é usada a representacdo (2.13) para os geradores T, e técnicas [45, 91] empregadas no caso da
particula espinorial, adaptadas ao presente problema, para representar o propagador. Os indices
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a, 3 e v sdo os indices das matrizes I, isto ¢, sdo os indices do espago de representacio para a
algebra de Clifford. A representagdo do tempo proprio para o operador D (2.8) na representagao
da posicao é

D (2ot won) = i / (Tout] €O [y dA (2.32)
0

A seguir é feita uma discretizagdo por meio da inser¢do de N — 1 resolucoes da identidade I =
[ dz|z) (x| na expressdo anterior,

%) %) N—1
D (xouhmin) = Z/ d)\(]/ (H d:ci) dAy---dAn
> i=1
N

H _ZH A)/N ‘JJZ 1> 1) (/\1 — )\i—l) (233)

=1

em que Ty = Tout € To = Tin. Aplicando a correspondéncia simétrica ou de Weyl ao elemento de
matriz geral, tem-se

(x| e HOD/N |, 1) = / (271:)4 exp (—Ji/,H ()\i, 7 ;—wQ ,pi)> el@i—Ti-1)pi (2.34)

em que H é o simbolo de Weyl de ﬁ,

H(Ov,p) =\ [m? = (07 + ant AL (0)T,)7]

Como no caso da particula espinorial [45], deve-se associar a cada matriz Ty, seu 'tempo’ 7; = jAT,
tal que o propagador (2.33) ordenado no tempo se torna, para 1/N = Ar,

N
d i dm—
D(xout;an ZT/ d)\/ (H dlﬁ) (H ﬁd)\2 27T>
i=1

X eXPZZSi (@i, i1, i, Niy ) (2.35)
i=1
onde N — )
Ti— Tj—1 Ti+ Ti—1 i~ Ai—1
c= (e H (N, L L CEL) A7 2.36
¢ ( AT P ( ¢ 2 p) o AT ) T ( )

No limite A7 — 0, S; — Sy [z, D; Tin, Tout] € a acdo Hamiltoniana, um funcional da trajetoria
(x (t),p(t)) no espaco de fase, no intervalo de tempo proprio [Tin, Tout], € (2.35) € a versdo discreta
da seguinte integral de trajetéria na forma Hamiltoniana

D (Zouts Tin) ZT/ d)\o/ Da:/Dp D)\D7rexpz/ (:v p—H(\z,p)+ 7r/\> dr.
Tin A Tin
’ (2.37)
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Seguindo [45], fontes fmpares p, (7) sdo introduzidas, anti-comutando com as matrizes T, e ree-
screvemos 2.37 como

0o T 1 2
i out ) q 51 (5l )
D (xout, Tin :Z/ dA / D;v/Dp D)\D7rexp2/ A (p + <t Aa> —m
(ouetin) =7 J o [ %o 0 b gt s, s

1
p-s'c+7r/'\d7'} xT/ po (T)T%dT
0

)

p=0

em que por simplicidade fizemos 7;, = 0 e Toy: = 1. E possivel apresentar o altimo termo do lado
direito da equagdo acima como uma integral funcional [45, 91],

1
T/0 Po (T)TYdT = exp (zfo‘aaola>

[ e[ (500 -2 (07 ) ar 40 ) 0)] P

w(0)+1(1)=0 =0
-1

1
Dy = Dy / exp / ¥* (7)o (T dr|
»(0)+1(1)=0 0

em que 6 sdo constantes impares, anti comutando com as matrizes I'. Entdo, chegamos a represen-
tacdo por integral de trajetéria hamiltoniana para o propagador:

a 0 Tout
D (l‘outymin) = ieXp (Zrala> / d)\o/ Dm/Dp DMXD7
20 0 Tin Ao
1

/exp {Z/O {)\ ((p,i — gt A%ats)” — m2)
—it 0+ p- i+ 7] dr + 97 (1) e (0} Dy|
2(0) = Zin, (1) = Tour, A(0) =Xo, ¥(0)+¢ (1) =0.
Integrando sobre os momentos, encontra-se a representacao lagrangiana da integral de trajetoéria:

D (Tout, Tin) = i €xp (zl""‘a%a) /Oo deg /exp {i(Seps + Sa) + v (1) ¥a (0)} M [e,x] DeDeDnDY|,_,
0

1 -2 )
Sefs = z/o (—‘;6 — S+ qtsd Alaths — wwa)
2(0) = Tin, (1) = Tour, €(0) =eo, ¥ (0)+¢ (1) =0, (2.38)

em que a medida M [e, z] e o termo de fixacdo de calibre de reparametrizagdo S sio
i [ 1
Mle,z] = /Dpexpi/ ep’dr, Sq = / e .
0 0

22



2.4.2 Acao pseudoclassica

Consideremos a acdo invariante por reparametrizacio de (2.38) com a redefini¢io ¢ — i/v/24,

12 e . 7 . 1
Seff = /d.T4 <—2e — 57712 — qx“AZIa —+ 2wawa> s Ia = §tgﬁ¢a¢5 . (239)

A agdo acima é essencialmente aquela escrita em [81] no caso em que as varidveis de Grassmann
1 pertencem & representacao adjunta do grupo de Lie simples e compacto G (t;‘“ﬁ = fb), e em
[43] para 1) em uma representacao com geradores anti-simétricos t,. As equagdes de movimento no

calibre e = V&2 /m séo

d l“'u a v o d «
- — i = gt AG+ 0B
dt (m\/ﬁ) _quyx Ia7 th = dt¢ +qx Ap,taﬁw _O,
F, = 0,A% — 0,A% +iqfAb AT

em que Fy, é o tensor de campo nao-abeliano.

A seguir, faremos uma anélise canonica nos moldes daquela feita no caso da representacio
coerente, mas lembrando que as matrizes t, sdo anti-simétricas de ordem n. Como era esperado, a
Hamiltoniana é proporcional aos vinculos,

H=- T,
2
onde )
i

iql)oc

Depois de redefinir T' por meio do deslocamento 1) — ¢ —i¢, T — T, a dlgebra de vinculos se torna

{T.6a} =0, {60, 05} = ~idus.

T = (pu+qAL )" = m?, $o =70 —

O conjunto ® = {T, ¢} é de primeira classe, e a evolugao das variaveis independentes n = (x, p, ¥)
é

n= {naAT}D(@ =0, T=¢a=0,
em que os parénteses de Dirac sdo definidos com respeito ao conjunto de vinculos de segunda classe
{¢}. O comutador de Dirac das variaveis independentes é

{xﬂvpV}D(qb) = 657 {d]aawﬁ}D(qﬁ) = —i5a5,

As grandezas de isospin I, satisfazem a élgebra de Lie de SU (N) apds a quantizagdo e sdo covari-
antemente constantes:

. £C C d C . a gc
{Iaalb}D(¢) = _ZfabIC7 DTI = %I +qu#AufabIb =0.
E evidente que apés a quantizacio as variaveis de Grassmann 1, geram uma algebra de Clifford

com n geradores e um produto interno positivo definido. E entdo os estados fisicos ¢ sdo vetores
de 2["/2 componentes satisfazendo

[(ﬁu + qufa)2 = m2] () =0, (2.40)
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em que os operadores de isospin quanucos =
em (2.13) e satisfazem a algebra de su (N) ( 1)

o] = fiale
Facamos uma anélise do contetido de isospin da teoria classica na linha daquela que foi feita

para o caso da representacdo por estados coerentes. Aqui, os termos cinéticos contendo varidveis
de Grassmann na a¢ao sao invariantes por transformacoes geradas por Rog = —ita 93,

aﬁr I's sao precisamente aqueles introduzidos

1
uwa = { Wﬂ’yRﬁ’yawa} = waﬁd)ﬁa WapB = —Wga
D(¢)

que fornecem uma representacdo para a algebra de Lie so (n):
{Raﬁ’ R’Y5}D(¢) = 5MR55 - 55’YR065 - 5a5Rﬂ'Y + 555Ra’y :

Entao os geradores I, sdo uma combinacao linear de geradores R,z de so (n), e portanto geram uma
subéalgebra su (N) de so(n). As representagdes espinoriais de so(n) sdo irredutiveis de dimensao
2(n=1)/2 para n impar e redutiveis de dimensao 2"/2-1 para n par.

A fim de determinar o conteudo de SU (N) da funcéo de onda, procede-se como no caso anterior.
Vimos que dados t, uma representagio irredutivel de su (N) em termos de matrizes n X n anti-
simétricas, a funcdo de onda pertence a uma representacao espinorial de so (n). Entao sdo calculados
os autovalores para uma base da subéalgebra de Cartan de su (NN) de acordo com a decomposi¢ao
geral da base de isospin I, em termos da subélgebra de Cartan de so (n).

Por exemplo, no caso de SU (2), a fungio de onda é um espinor de 2° componentes de SO (2s + 1),
que possui uma subdlgebra de Cartan de dimensao s. Logo, dada uma base no qual as matrizes
t, sdo anti-simétricas (isso sempre é possivel para spin inteiro), decompde-se I3 (o tnico elemento
da base da subalgebra de Cartan de su(2)) em elementos da base da subalgebra de Cartan de
so(2s+1)

Is = Roz +2R45 + - - + sRos 2641 -

Os autovalores possiveis dos elementos Rag; 2,11, ¢ = 1, .., s determinam por sua vez os autovalores
possiveis de I3, e portanto, as representagoes irredutiveis de su (N) ai contidas.

Abaixo ha decomposigbes em SU (2) da representacdo espinorial de SO (2s + 1) para alguns
valores de isospin:

’ isospin s \ grupo de simetria \ dimensao da representacao \ decomposicao ‘

1 SO (3) 2 3
2 50 (5) 1 2
3 50 (7) 8 0+3

2.5 Resumo

Foram descritos dois métodos para obter acoes cléssicas de particulas escalares com isospin por
meio de representacoes por integral de trajetoria do propagador causal. A quantizacdo de Dirac
dessas agdes produz as equagOes de onda correspondentes para varias representagoes de SU (N).
Por meio de uma escolha judiciosa da ac¢do pseudoclassica e da representacao da édlgebra su (N) na
acao, é possivel obter a funcdo de onda para o isospin desejado.
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Capitulo 3

Estabilidade da teoria de gravitacao
de Jackiw-Teitelboim nao-comutativa

3.1 Introducao

De modo geral, a versao ndo-comutativa de uma teoria de campo é obtida pela substituicao do
produto ponto a ponto de fungoes pelo produto de Moyal (veja apéndice para definigoes). Esta
extensao nao é evidentemente Unica, mas em geral hé restricoes a serem obedecidas, como, por
exemplo, a preservacao do ndmero de simetrias de calibre. No entanto, a andlise da estrutura
das simetrias de calibre em teorias nao-comutativas é bastante complicada: por exemplo, uma
interpretacdo de invariancia de Lorentz conduz a uma simetria de Poincaré torcida [92].

Um passo importante em direcdo a construcdao de uma teoria de gravitagdo nao-comutativa
satisfatoria foi recentemente dado por Wess e seus colaboradores [93], que entenderam como se
deve construir invariantes por difeomorfismo, incluindo a agao de Einstein-Hilbert, em espacos nao-
comutativos (veja também [94] para uma formulagdo real). H4, contudo, um prego a se pagar. O
grupo de difeomorfismos se torna torcido, hd um coproduto ndo-trivial devido & agdo das simetrias
em produtos tensoriais que tem uma aparéncia bem pouco familiar [95, 96].

Em duas dimensoes é possivel construir modelos nao-comutativos de gravitacao dilatdnica com
uma realizagdo usual (ndo-torcida) das simetrias de calibre. Uma versdo ndo-comutativa do modelo
de Jackiw-Teitelboim (NCJT) foi construida em [97] e entdo quantizada em [98]. Um buraco negro
de Witten nao-comutativo foi sugerido em [99]. Ambos modelos sido do tipo Yang-Mills: o modelo
de JT é equivalente a um modelo BF topologico; o buraco negro de Witten pode ser representado
por um modelo de Wess-Zumino-Novikov-Witten. H& procedimentos gerais de como tais modelos
possam ser formulados no caso ndo-comutativo (veja [97, 100]). E importante, portanto, verificar
se se pode ir além do paradigma de Yang-Mills. Além do mais, um indicativo de que este é o
caminho correto seria a constatacao de que teorias de gravitacao dilatonicas existiriam nao sé
para potenciais constantes ou lineares, mas para potenciais arbitrarios. Nos verificaremos aqui se
potenciais quadraticos sao permitidos.

A fim de analisar as simetrias de calibre, nés usamos o formalismo canénico para espagos-tempo
nao-comutativos desenvolvido em [99]. Nao é um formalismo canonico no sentido usual' [101, 88|,

1Uma vez que teorias em espacos-tempo nio-comutativos ndo sio locais no tempo e contém um ntmero infinito
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mas torna possivel que se defina a nocao de vinculos de primeira classe e se associe uma simetria
de calibre a eles, a0 menos para a classe de modelos que podem ser postos na forma,

5= / (Padog® — b (p.g, ) Pz (3.1)

em que h é uma funcio- local>. A acdo acima permite a identificacio de pares canonicamente
conjugados, isto é, q, e p® desempenharao o papel de coordenadas e momentos, respectivamente, e
definirdo uma estrutura de Poisson primitiva, por meio da aplicagao bilinear anti-simétrica (¢%, py) =
— (P, ¢*) = 05. Finalmente, A sdo multiplicadores de Lagrange.

No caso de teorias de calibre comutativas, hd uma conjectura feita por Dirac de que os vinculos
de primeira classe sao os geradores das transformagoes de calibre. Para certas classes de teorias de
calibre comutativas, isto pode ser provado e, também, verifica-se que o niimero de transformacoes de
calibre independentes é igual ao numero de vinculos de primeira classe priméarios [88]. A estrutura de
simetria de uma teoria de calibre comutativa geral foi recentemente descrita em detalhe e relacionada
a estrutura de vinculos na formulacdo hamiltoniana [102]. Em particular, a carga de calibre foi
construida explicitamente como uma decomposicao numa base ortogonal de vinculos. Demonstrou-
se que, no caso geral, a carga de calibre nao pode ser construida com vinculos de primeira classe
apenas, pois sua decomposicao também envolve combinacoes especiais de vinculos de segunda classe.

De acordo com essa ideologia, introduz-se o paréntese candnico no espaco dos funcionais-x
locais®, uma aplicacio bilinear daquele espaco nele mesmo, anti-simétrica, e que satisfaz a identidade
de Jacobi. Se denotarmos por 7; = (¢%,py) as varidveis canonicas, e por F' um mondmio genérico
de um funcional-x local, isto é,

F:/dDma,“m*@Mng*--~8Mn77n,

em que y; ¢ um multi-indice e 9,,, é um operador diferencial de ordem |u;|, o paréntese canonico é
dado por

{F’ Fl} = Z / deaHj (8Mj+177j+1 Kook auj—lnj—l) (nj’ 77;)
(%)

* Oy (a/»b;+177£+1 Kok Dy né,l) (= 1)l (3.2)

i—1

O produto acima é calculado do seguinte modo: 1)para cada par de variaveis canonicamente conju-
gadas (n;,n;), permuta-se ciclicamente em F' o elemento 7; até ele ocupar o tltimo lugar & direita,
e analogamente, permuta-se ciclicamente em F’ o elemento 7, até ele ocupar o primeiro lugar a
esquerda; 2)entdo integra-se por partes cada uma das expressoes F' e F’ para remover as derivadas
de n; e n}; 3)depois, eliminam-se 7; e 7, e multiplicam-se com o produto de Moyal os integrandos
resultantes de F' e I, e ao resultado acrescenta-se o fator (m, 779); e 4)finalmente, integra-se sobre
M.

Em particular, p’ se tornam canonicamente conjugados aos g;,

{ga(2), 0" (1)} = 656%(x — y). (3.3)

de derivadas temporais no produto estrela, é evidente que alguma modificagdo do formalismo candnico padrao seja
necessario.

2Uma func¢do-* local é um elemento do fecho do conjunto dos polinémios das varidveis candnicas e suas derivadas
calculados com o produto de Moyal.

3Funcionais-* locais sio integrais em M das fungdes-x locais.
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A propriedade mais incomum do colchete (3.3) é a presenga da funcio delta das coordenadas
temporais no lado direito. Entretanto, como teorias em espacos-tempo nao-comutativos nao sao
locais no tempo, a restricao dos parénteses entre varidveis do espaco de fase no mesmo instante
de tempo nao parece natural ou mesmo consistente. A presenca de um funcao delta a mais em
(3.3) lembra o formalismo de Ostrogradski para teorias com derivadas temporais elevadas (veja
[103, 104, 105, 106] e [99] para uma discussdo mais extensa). De todo modo, também se podem
utilizar os parénteses (3.3) para analisar simetrias de calibre em teorias comutativas. Néo é claro,
entretanto, se se pode utilizar esses parénteses modificados para fins de quantizacdo. Aqui usaremos
exclusivamente (3.3) para definir a estrutura de Poisson.

Noés iremos demonstrar que nao é possivel somar consistentemente termos quadraticos ao po-
tencial dilaténico do modelo NCJT, portanto ele é estavel ante tais deformagoes.

3.1.1 Gravitacao em 2 e 3 dimensoes

Gravitacdo em 2 e 3 dimensoes [107] é um laboratério de estudo de questoes pouco compreendi-
das em 4 dimensoes, analogamente ao que é feito em dimensbes baixas para o estudo de outros
fenomenos, tais como quebra espontanea de simetria, anomalias, confinamento, solitons, etc.

No entanto, gravitacdo em dimensoes baixas é bastante peculiar. Para comecar, em 3 dimensoes,
a equacao de Einstein G, + Ag,, = K1}, pode ser escrita como

R, =2Agu + 5 (T — 9, TY) .

E ademais, levando em conta as simetrias do tensor de curvatura, constata-se que ele s6 possui 6
componentes independentes, i.e., em nimero igual ao do tensor de Ricci R,,. Ou, seja, o tensor de
curvatura é completamente determinado pelo tensor de Ricci:

1
iR (g,u)\gup - g,upgw\) )

e pela expressao anterior, isto implica que o tensor de curvatura é completamente fixado pela
distribuicdo local de matéria T, e pela constante de cosmolégica A. Em particular, as regioes
livres de fontes, T}, = 0, s@o regides de curvatura constante, onde o tensor de curvatura vale

R,ul/)\p = g,u)\Rup + gupR,u/\ - gupRu)\ - gu)\R,up -

Ry = A (g,u)\gup - gupgu)\)

e a curvatura escalar R = 6A. Isto quer dizer que efeitos de curvatura produzidos pela matéria
nao se propagam pelo espago-tempo: nao ha graus de liberdade dinamicos. Obs: Nao obstante a
curvatura local nas regides livres de matéria ndo seja afetada pelas mesmas, a matéria pode produzir
efeitos globais de curvatura nao-triviais.

Em 2 dimensoes o tensor de curvatura s6 tem um componente independente, uma vez que todos
os componentes nao nulos podem ser obtidos a partir de Rg191 usando as simetrias do tensor. Isto
implica que o tensor de curvatura pode ser escrito em termos do escalar de curvatura R,

1
Ry = §R (gu)\gup - gupgu/\) .

Esta relacao entre o tensor de curvatura e o escalar de curvatura resulta no fato de que o tensor de
Einstein G, ¢ identicamente nulo em 2 dimensdes:

1
R, — ig,“,R =0.
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Além disso, pode-ser constatar a partir da expressao da curvatura escalar em termos das formas
de conexdo, R = 2¢"”0,w,, que a acao de Einstein-Hilbert contem uma divergéncia total. Essa
integral, para uma variedade Riemanniana compacta M de genus v , é a caracteristica de Euler

/ d*z\/gR =87 (1 —7) .
M

Entao, uma nova teoria classica se faz necessaria em 2 dimensées, € um bom candidato para
uma equacgao de campo gravitacional de segunda ordem no vicuo parece ser

R+A=0, (3.4)

j4 que todo conteido de curvatura se encontra no escalar de Ricci. Esta equagao foi primeiro
sugerida por Jackiw e Teitelboim em [108].

3.1.2 Modelo de Jackiw-Teitelboim

Evidentemente, a agao
/ d*z\/—g(R+ A)
M

nao é util para fornecer as novas equacoes de movimento, pois, como se viu, o termo com curvatura é
uma divergéncia total, restando apenas a equagdo A = 0, e portanto a métrica permanece indefinida.
Por outro lado, nao h4 acao invariante construida somente a partir da métrica e que seja a integral
no tempo de uma lagrangiana local que dé a equagdo (3.4). A saida que Jackiw e Teitelboim [108]
encontraram para contornar esta limitagdo foi a introducdo de um campo escalar auxiliar ¢ (o
dilaton):

5:/ Pa/=g6 (R+ ) . (3.5)
M

Variacao desta agdo com respeito ao campo ¢ da a equagdo de Einstein bidimensional (3.4), e
variacao com respeito & metrica d4 a seguinte equagao para o campo ¢:

(VU —A) =0, (3.6)

Mais tarde ([109, 110]), percebeu-se que estas equagoes de movimento poderiam ser formuladas no
contexto de uma teoria topologica de calibre com simetria do grupo de de Sitter SO (2,1). Uma
constante cosmoldgica ndo-nula se faz necesséria, porque o grupo de Poincaré em duas dimensdes,
IS0 (1,1), ndo possui uma forma quadratica bilinear simétrica ndo-degenerada (forma de Killing),
essencial para definicdo da métrica no espaco-tempo. Entao, a algebra do grupo de Poincaré bidi-
mensional é deformada para a dlgebra de de Sitter

[TiaTj] = _ez?’rk ) ivjv k= 07 17 27
com a introducdo de uma constante cosmologica. A métrica de Killing de so (2,1),
1
Nij = Eeilkejk = dlag (717 1a 1)

pode ser usada para normalizar a base 7; de so(2,1) de acordo com trr;7; = %mj. Ja a conexao de

calibre A pode ser escrita como um multipleto composto pelos referenciais maéveis (zweibeine) e®,
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a = 0,1, e pela conexao de spin w, A = e*7, + wry. Com isto, a métrica no espaco-tempo passa a
ser escrita em termos dos referenciais moéveis

g (ea, eb) = n“b = G = n“beZeﬁ’, .
O tensor de campo F é uma 2-forma que toma valores na algebra de Lie so(2,1), dado pela

expressao*
F=dA+ 3 [A Al =dA+ AT A X [r,7] .

Note que em duas dimensoes a identidade de Bianchi DF = 0 é trivialmente satisfeita, pois DF' é
uma 3-forma. Em componentes da base 7;, o tensor de campo se decompde na torsdo 1-forma para
A=0,1,

F*=T%=de +wy Neb, wy = 4w,

e para A = 2 em um termo dual & curvatura escalar R = 2 % dw e um termo de volume,
2 1 a b
F :dw+§5abe Ne’.

Por uma transformacgio conforme com parimetro constante, e® — /A/2e®, temos que eR — eR
quando a torsdo é nula, F® = 0, e portanto a equacdo F2 = 0 é equivalente a

e(R+A)=0.

Logo, a equacdo de Einstein em duas dimensdes ¢ equivalente a F4 = 0. A maneira mais direta
de obter essa equacao de movimento a partir do principio de minima agao, sem comprometer a
invariancia da agao por transformacoes de calibre, é integrar sobre a 2-forma ®F, em que ¢ é um
multipleto escalar que se transforma na representacdo adjunta de so(2,1),

S:/Mtr(q)F) .

A acdo acima é invariante por transformacdes infinitesimais geradas por A = \474
IZVA=DX=d\N+[A )N, 6,2 =1[D,]].

Nao ¢ dificil ver que difeomorfismos d.z# = e* (x) estdo contidos ’on-shell’ nas transformacoes
acima, pois sao gerados por transformacoes infinitesimais com parametro A = e*A4,, quando F' A =0.
A equagdo de movimento para o campo escalar P,

D® =dd +[A, 3] =0,

é equivalente & equagdo (3.6), se fizermos a decomposi¢do do multipleto em ® = (¢*, ¢) e usarmos
a equacao para ¢® para eliminarmos essas componentes, resultando na equagao de Klein-Gordon
no espaco de de Sitter,

(V.VF+A)p=0.

4Veja a formula (B.2) do apéndice para defini¢io do comutador.
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3.1.3 Gravitagao dilatoénica

Os modelos de gravitacao dilatonica em duas dimensoes [111] podem ser genericamente agrupadas
na acao

s= [ #ovg|qo- T2 w0 v ).

ou, no formalismo de primeira ordem,

S = /M {%De“ + ¢dw + € (%f U(p)+V (¢>)>} , (3.7)

que corresponde a uma generalizacao do modelo de Jackiw e Teitelboim e se reduzem a esse com a
escolha U =0e V = A¢ [?].
H4 outros exemplos interessantes que conduzem a modelos de gravitacao dilaténica, como:

e Uma variedade Mp em D dimensbes com simetria esférica pode ser decomposta no produto
Mp =M ® Sp_a,
ds? = g, (x) ata” — N2/ P2 (d)?

Sp—2?

tal que a acao de Einstein-Hilbert se reduza a

¢R+D S(V(b) )\2 (D—Q) (D_3)¢(D74)/D72 ,

A
EH _ D-2 2
S /d:c\/ D-2 o

T AD-2167G

A R D4
um caso particular de gravitacao dilatonica. Esse caso corresponde & escolha V o< ¢P=2 e
Uox ¢t

e Gravitagdo de cordas ou buraco negro de Witten [112, 113, 114]: esse caso corresponde a
escolha V = —2)\2¢p e U = —¢~ L.

O interesse pela gravitagao dilaténica em duas dimensoes também se deve ao fato de funcionarem
como “toy models” para o estudo da quantizacao da gravidade e da evaporacao de buracos negros,
e por possuir conexdes com geometria ndo-comutativa e quantizacao por deformagao.

Por ultimo, entre os varios contextos em que esses modelos fazem contacto com a teoria de
cordas, um caso interessante é que as condicoes de invaridncia conforme para a a acao de modelo
sigma nao-linear da corda bosonica

4 1
L6 = —— [ d?ov/—h [h*P0,X 95X, + o/ OR]
dma! .
sdo equivalentes as equagoes de movimento para a seguinte acao de gravitacao dilatonica (veja [115])

LdiD) — /dDX\/fge*m [R +4(VP)® — 4/\2} .

A partir de uma transformagéo conforme g — €2?g com p = 1/2 f¢ (y) dy, a acdo (3.7) passa a
descrever teorias de gravitacio dilatonica com U = 0 e V = e~ 2°V. Esta simplificacdo da descricio
de teorias de gravitacao dilatonica em duas dimensoes em termos de um Unico potencial acontece
as custas da restricao da funcao U da formulacao original a uma fun¢ao nao-singular, tal que as
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duas formulagoes sejam fisicamente equivalentes. Com esta restricdo em mente, vamos utilizar a
seguinte forma geral para teorias de gravitacao dilatéonica em duas dimensoes,

S = /deE‘“’ (pOpwy + daD el — eabezegV(@) , (3.8)

em que e, é o zweibein, ¢/ ¢ o simbolo de Levi-Civita (veja o apéndice para nossas convengdes de

sinal). A derivada covariante
e" Dyl = e (9,el + wueel) (3.9)

contem a conexao de spin w,e%. Aqui ¢ é um campo escalar conhecido por dilaton. ¢, é um
campo auxiliar. No caso comutativo, que estamos considerando no momento, qualgquer escolha do
potencial V(¢) leva a um modelo consistente.

O campo auxiliar ¢, gera a condi¢do de que w, é a conexdo de Levi-Civita compativel com
a métrica. Sob essa condi¢ao "”0,w, se torna proporcional ao tensor de curvatura de Riemann
(os termos proporcionais a ¢,, naturalmente, desaparecem). Desse modo, chega-se ao formalismo
de segunda ordem. Entretanto, a agdo de primeira ordem (3.8) tem muitas vantagens sobre a de
segunda ordem. Por exemplo, as equagoes classicas de movimento sao muito mais faceis de resolver
[116], e no caso quantico, é possivel realizar uma integral de trajetoria sobre as varidveis geométricas
mesmo na presenga de campos de matéria adicionais [117, 118, 119].

3.2 Gravitacao nao-comutativa de Jackiw-Teitelboim

Uma versdo nao-comutativa do modelo de Jackiw-Teitelboim foi construida em [97]. Essa versao
foi identificada com uma teoria de calibre U(1,1) definida numa variedade M bidimensional,

SNCJT :/ Tl‘q)*F, (310)
M

em que ® é uma O-forma com valores na algebra de Lie v (1,1) e F' é uma 2-forma com valores na
algebra de Lie u (1,1), i.e., F' é o tensor de campo de Yang-Mills® F' = dA + % [A, A].
A acdo (3.10) ¢ invariante por transformacdes de calibre infinitesimais geradas por A = A\74:

S\A = DX, 5»® = [\, D] .

Assim como no caso comutativo, as equacoes de movimento implicam que ® é covariantemente
constante e que a conexao A é plana:

ou seja, nao ha graus de liberdade se propagando; a teoria é topologica.
Escolhendo uma base para u(1,1) dada pelas matrizes 74, A = 0,1,2,3, do apéndice, a agio

SNCJT Se reescreve como
1

Sycir = 5/ nap®* x FP.
M

5Veja formula (B.3) do apéndice para definigdo do comutador no contexto nfo-comutativo.
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De acordo com a decomposi¢io &4 = (1¢%, ¢, 1) e A = (l le® w b) e levando em conta o produto
entre os elementos da base, temos

F:wHﬁVNA%ﬂ+%NAﬂ@n+%ﬁNA%+%ﬁAﬂ@m. (3.11)

Com a decomposicdo (3.11), as componentes de F' se tornam
Fom e+ et o)+ S e ], L ab=0,1
- e+7[ebe,w]—|—§ [67}-1,-’@7 — Y4y
172

F?2=dw——[e% '] +
[

y ot

2

il il—2
=db— —¢ 0 p% 04t € /\*61+2w/\ w+ b/\ b.

Com a decomposicdo de ® e de F' em suas componentes da base 74, a acdo Sycr se torna

Sncyr = %/@A*FA:31/¢0*F0+%z/¢1*F1+%/¢*F2—%/@A*F?’
/(b de® + = [e e’ w| + i[e“ b] —|—l/¢* dw—i[eo el]—&—z[wb]
a b 2 s Yl 2 2 ’ 2 » Yl

=2 i i
_ = _ * 0 1 *1 e * - *
/w <db e/\e—l—2 e+2w/\w+2b/\b),

ou em componentes da base coordenada,
1 nv 2 1 a a 1 a b a i
S = VG d“xg * 3 ouey, — Oyey, — 3 ([wu,e beu]Jr — [wy, € beu]+) + = 5 ([bsef] = [buyelt])
1 pv d2 1 ) -9 o E o 1 1,0 .1 1 bl — b
+ 46 xd)* 2 llwl’ Vw# 2 [e/J.?el/]+ [6V76M]+ + 2 ([wﬂﬂ l/] [wllv HD
1 ., 9 1 il=2 0 0 i~ i i
_ Ze# /d T * 3 (@Lby — Oyb,, — 5 [, en] + 5 e, en] + 5 (W, wy] + = 3 by, by ) -

A expressao acima pode ser reescrita como

1
S(O) — Z/Epv [Qbab* (Rab — Ae® A* eb) - 2¢a A* Ta] ; (312)
em que
R% =dQ% + - [Qa Q%] , (3.13)

a a 1 a c
T =de Jri[Qc,e]_i_, (3.14)

. a a - ca 1
Dap = (P€ap — 1YMap) , Q% = e%w +1i0%b, A:fﬁ,

e interpretamos em (3.13) e (3.14) a curvatura 2-forma e a torsdo 2-forma, respectivamente. Note
que o segundo termo do lado direito destas expressoes difere das expressoes andlogas na geometria

32



diferencial padrao, entretanto, se reduzem a elas no limite comutativo. As equagOes de movimento
para o campo auxiliar ¢* dao T* = 0, i.e., a condicao de torsao nula, e dai que a derivada covariante
do referencial movel e® é nula, De® = 0.

A extensdo do modelo de Jackiw e Teitelboim de gravitacio dilatonica em duas dimensdes para
um espaco-tempo nao comutativo foi feito por meio da extensdo da teoria de calibre associada de
SU (1,1) para U (1,1). A extenséo se deveu ao fato de que o grupo SU (1,1) da teoria comutativa
nao é preservada pelo produto de Moyal: para g e h na representacio fundamental de SU (1,1),
i.e., g e h campos matriciais, tem-se que det g x h # det g x det h = 1. Como conseqiiéncia, surgem
NOVOS campos: um novo campo escalar 1 e um campo de calibre U (1) b,,, e a conexdo 2% toma
valores em so (1,1) @ u (1), que desacoplam no limite comutativo e estdo relacionados a parte de
traco de U (1,1).

Em componentes, a acio (3.12) se escreve

1
SO — i / >z e [pap* (RL, — 2Mel x €)) — 204« T, | (3.15)

com tensor de curvatura

Rt ot <aﬂw,, — By, + %[ by + ;[b#,wuo

1 1
+ 0 (i@uby = i0ybu + 5w W] = 5 b, by]> (3.16)
e torsao nao-comutativa

a a a 1 a
T[,LV = 8Mell - 8Veu + 56 b ([wlﬂ ellﬂ‘i‘ - [wV? e;li]-i-)

Z’ a a
+ 5 ([bl“eu] - [bl/? 6#]) . (317)
H4 dois campos dilatonicos, ¢ e v, que estao combinados em
Gab = PEap — 1Map¥ - (3.18)

Todos os comutadores (denotados por [+, ]) e anti-comutadores (denotados por [-,-]+) sdo calculados
com o produto estrela de Moyal.
Pode-se escrever (3.15) na forma canonica:

SO = /dgx (piaoqi — A GEO)) , (3.19)
em que

¢ = (ef,w1,b1),
P = (¢a, 0, —0), (3.20)

/\Z = (6376007 bo)
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Os vinculos sdo

7

1
GO = —01¢, + =ebalwi, dply + 5[%7 bi]

2

A
+ 5 (_5ab[el{7 ¢]+ + inab[eng]) ’ (321)
G =016+ 4 [6,0] + 5[] — 3 sl el (3:22)
G = 01— ST, ba] + 5 16,0] + 5[ ed]. (323)

E facil verificar que a algebra de vinculos fecha, e que os parénteses entre os vinculos sao

{/a“*G&O),/ﬂb*GEO)} =

-2 [ (ol 871 67+ s 57 G (3.24)

{/Q*G(O) /ﬂ*G(O)}i/[a 8]« G (3.25)
3 3 2 ’ 4 '

{/a*Ggo),/g*fo)} = —%/[a,ﬁ]*agm (3.26)

{/a*agox/g*cgn} = —%/[a,ﬁ]*ag‘” (3.27)

{/a*G§0)7/ﬂ“*Ggo)} = —%/[a,ﬂ“h Eba*Ggo) (3.28)

{/Q*Gg‘”,/ﬁa*c‘g@} = —%/[a,ﬂa}*ag‘n (3.29)

Aqui introduzimos a abreviatura [ := [ d?z. Podemos facilmente encontrar as transformacoes de
calibre gerados por esses vinculos por meio das defini¢oes

5pa = {/deai*Giapa}
0q" = {/dD:cai*Gi,qa}

P~ . . s ~ 0) ~
em que «' sdo parametros de calibre arbitrarios. As transformagdes geradas por Gfl ) sdo

a a 1 a Z a
dej, = =0, — € clwps acl+ — §[b1,a 1, (3.30)
dw, = db, =0,
1 b a i a
6¢:§€ a[a aqbb}-‘ra 5¢:—§[a 7¢a]7
O = —Aabep, .
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O vinculo Géo) gera

1 )
6€Z = ieab[62aﬂ}+ ) 6();4 = §[w/uﬂ] ) (33]‘)

5"‘)# = - ,U.ﬁ_ é[bpmﬂ}»

1. 1 i
(5(]5&:—58 a[ﬂ7¢0]+a 5¢:§[/@,¢]’ 5¢:—§[ﬁ,¢]
Finalmente, as transformacoes de calibre geradas por Gflo) sao
a Z a Z
66u - 75[6”3 rY] ) &"}ll = 75[ IH’Y] ) (332)
i
6bu = —0uY — §[bua7]7

5= slnod,  6=ihndl, b0 =2hul.

Em (3.30) - (3.32) as fungdes a®, § e v sdo pardmetros das transformagoes de calibre.

As transformagoes (3.30) e (3.31) sdo equivalentes as simetrias de difeomorfismos e transfor-
macoes de Lorentz locais no limite comutativo, a menos de redefini¢oes dos parametros das trans-
formagoes. Ja as transformagoes (3.32) ndo tem equivalente comutativo, e se desacoplam no limite
comutativo. Assim, de acordo com o formalismo candnico apresentado, podemos dizer que as sime-
trias de calibre da acdo (3.19) contem deformacgGes ndo-comutativas dos grupos de simetria de
Lorentz e de difeomorfismos.

3.3 Deformacoes

Consideremos agora deformagoes do modelo NCJT. Mais termos serdo adicionados & agdo (3.15)
tal que (i) o conteido de campos do modelo permaneceré inalterado, e (ii) o ntmero de vinculos
primarios de primeira classe (e, consequentemente, o ntumero de simetrias de calibre) também
permanecerd inalterado. Tendo sido inspirados por modelos de gravitagao dilaténica comutativa,
apenas consideraremos deformacoes ao potencial, e somente adicionaremos termos quadraticos nos
dois campos dilatonicos ¢ e 1.

Além de analogias com o caso comutativo, ha também outras razdes para nao considerarmos
deformagoes dos termos de curvatura e torsdo. Por exemplo, substituindo ¢, em (3.18) por uma
funcao nao-linear dos dilatons é equivalente a uma redefinicio dos campos dilaténicos. Somar
poténcias mais altas da curvatura em geral adiciona novos graus de liberdade a teoria, e esta seria
uma modificagdo mais drastica aquela que normalmente se entende por deformacgdo. O mesmo se
aplica aos termos de torsao.

Restricoes adicionais a possiveis deformacoes sao impostas por simetrias globais do modelo, que
gostariamos de preservar. Em primeiro lugar, exige-se simetria com respeito a rotagoes globais dos
indices tangentes e de mundo. Isto implica que todos os indices devem ser contraidos aos pares.
Também se exige que os novos termos sejam de paridade par. Como ¢ é escalar, e 1) é um pseudo-
escalar, poténcias pares (impares) de 1) devem ser multiplicadas por poténcias pares (impares) do
simbolo de Levi-Civita . Como resultado, obtemos a seguinte familia de deformagoes quadraticas
do modelo NCJT.

§=5043 (3.33)
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onde
S = /d2x (e"eap (crefl el xp? + o€l x el x1?
ezl x pr el x ¢+ cael x ) x el x )
+ e Nap, (csefy x € [, ] + iceef, x eb x [, ] 4

i
+207(eZ*¢*eg*w—eZ*w*eg*¢))> . (3.34)
As constantes arbitrarias ci, ¢, ..., ¢; devem ser reais para garantir a realidade da acdo total S.

As poténcias se referem ao produto estrela, por exemplo ¢ = ¢ % ¢.

Os vinculos sdo R
Go=GO+G,, G3=GY, G,=a6\, (3.35)

em que
Ga =¢ab (c1]e}, ¢%]4 + calel, 7] + 2e30€} 6 + 2catpel )
+ nab (cs[el, [, )] +ics[e], [0, ¥]4] + icr (el — el ) . (3.36)

Nosso préximo passo ¢ verificar se a algebra de vinculos ainda fecha na superficie de vinculos®.
Como os vinculos G5 e G4 estdo inalterados, os colchetes entre eles (3.25) - (3.27) sdo os mesmos.
E um exercicio simples verificar que para todos os valores das constantes c,,

{/a*G4,/Ba*éa} = —%/[a,ﬂ”]*éa. (3.37)

Consequentemente, para quaisquer valores de ¢, o colchete entre Gy e G,

{/a*a4,/ga*ea} :—%/[a,ﬁ“]*Ga, (3.38)

¢ novamente um vinculo no novo conjunto (3.35), de forma que nao surgem restri¢oes aos c,.
Vamos considerar o colchete entre G5 e G,

{/Q*GS,/m*éa} _ %/ lex (Be [l €54 8]

+i3% x cavled, [, V], @)+ ) + c2 (Ba * [[cv, ef]4, %]+

—iB% x eaple}, [[or, @], V)4 )4 ) + 23 (Ba * & * [, €] x &

+iB" * eap([on, Y] * €]+ &+ ¢ x €] [0, 1])) + 24 (Ba 9 * [, €f] 4 > 1P
¢]

—if% x eap([o, ] x €}k + Y x e} % [ ;1))

+ ¢5 (B * eqp[[ev, eVl [, Y]] + B * [ef, [, ¥, ¥] — [0, [, o11l)

+ice (8% x eapllo, €]+, [0, V) 4] +ifa % [ef, ([, ¥, )4 — [¢, [, 0]]4])

+icr (B cap(d x [, €3] %) — 9 x [, €] 4 % 9) (3.39)
+ifa * ([, ] xef %1 — P xef x [a, @] + [, O] x €] * o — Y xef x [a,9]))] -

SEm principio, outras modificaces substanciais da algebra de vinculos podem ocorrer, mas nio no caso presente.
No6s limitamos o ntmero de simetrias de calibre a quatro, entdo apenas quatro vinculos de primeira classe sdao
permitidos, porque ha apenas quatro pares de varidveis canonicamente conjugadas. Logo, a Gnica possibilidade é que
os G; sejam de primeira classe e seus colchetes sejam novamente combinagoes lineares de G;.
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Primeiro, observemos que o lado direito de (3.39) ndo contem termos com derivadas. Isto exclui
a possibilidade do colchete (3.39) conter termos proporcionais a (3.21), (3.22), ou (3.23). Logo,
esse colchete s6 pode ser proporcional a (3.36), com coeficientes (constantes de estrutura) como em
(3.28), tal que os colchetes entre G5 e G, se somam para dar

{/Q*Gg,/ﬁa*aa} :—%/[a,ﬂa]+gba*Gb. (3.40)

Temos de comparar as expressoes em ambos os lados de (3.40) para obter restri¢oes as constantes
¢m. Nao ha mondmios no lado direito de (3.40) que sejam de segunda ordem em ¢ e tenham um
fator ¢ explicito. Ao mesmo tempo, h& um tal termo proporcional a ¢5 em (3.39). Como todos os
¢m A0 reais, conclui-se que

Cy = 0. (341)

Em seguida comparamos os termos em que dois ¢ aparecem um ao lado do outro’ (combinados em
¢?). Esses termos concordam em ambos os lados de (3.40) se e somente se

Cg = —Cq. (342)

Por comparagao dos termos em que dois campos ¢ aparecem separados por outros campos, obtém-se
a seguinte condigao
263 = —C7. (343)

Entao repetimos o mesmo procedimento com os termos que sao quadraticos em ) para obter
Cy = Cg, 284 = —C7. (344)

A comparagdo de termos mistos (contendo tanto ¢ quanto ) ndo introduz quaisquer restri¢oes
adicionais aos ¢,,. Conclui-se que restam apenas duas constantes independentes (¢; e ¢7, digamos),
entdo G, pode ser reescrito como

Go =1 (€ab[€li7 ¢2 - ¢2]+ - i”?ab[el{a [d)v w]JrD
+cr (—Eab(qb*el{ x4+ Pl x ) +ing(pxeb xp —pxeb *¢)) . (3.45)
Ainda resta analisar os colchetes entre G, e G. Obviamente, os colchetes entre G, e Gy sdo

~ . < ) . 0) A T
nulos, entao toda informacao relevante esta contida nos colchetes entre Gg ) e Gp. A estratégia é a
mesma que antes. Primeiro analisamos os termos contendo derivadas

{/aa*Gg(’),/ﬁb*éb}+{/aa*éa,/ﬂb*al§0)} = (3.46)

- / [e1 (016 % (16, €el 8, 014 ] + i, [ 811 4)

+ 8lw* (_[,(/JvabC[ﬁbv ac]-‘r}"r + Z[¢7 [abvﬁb”'f‘))
+c7 (('“)1¢>*(—Ebc(ﬁb*qb*ac—i—ac*gb*ﬁb)+i(ab*1/1*ﬁb—ﬂb*w*ab))
—010 x (e * 0 +a x Y x 8) +i(a’ % o x By — By d* a”)))]

+termos sem derivadas.

"Isto também inclui os termos que podem ser postos nessa forma usando a propriedade (C.5).
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A partir desta equacao vemos que o colchete entre G, e Gy deve ser uma combinacao linear de
vinculos (3.35), os vinculos que aparecem no lado direito podem apenas ser G3 e G4, uma vez que
a derivada 0;¢, pertencente a G, nao esta presente. De fato, também é possivel obter as funcoes
de estrutura de (3.46), mas sua forma explicita ndo sera necessaria. Vamos considerar os termos no
colchete que contenham o referencial moével e e o dilaton ¢.

{/a“*GgO),/ﬁb*éb} =

= [ [2 s e x 0,80 0uls — e« [0, ]
+ %7 (_Ebcﬁb * Eda([aaa ¢d]+ * ei * ¢ + ¢ * 6? * [aa’ ¢d]+)
+ Bo(pxed x [a®, ¢a] — [0, ¢a] x b % 8))] (3.47)

+ termos sem €% ou ¢.

Os argumentos apresentados acima mostram que se o colchete (3.46) fecha para os vinculos exis-
tentes, esses vinculos sdo G3 e G4, e as fungoes de estrutura dependem de ¢ e ¥. Para ambos G3
e G4 os campos € e ¢y, surgem nas combinagdes [¢,, %] ou [Bg, €}]+, i.e. eles permanecem juntos.
Logo, todos os termos em que ¢, e ef surgem separados por outros campos devem ser nulos. Vamos
verificar se isto pode ser obtido pelo ajuste dos pardmetros c¢; e ¢y restantes. Consideremos os
termos com ¢, ¢g, a’, 3°, € em que a” e 80 ficam juntos, mas ¢g e € estdo separados. Todos os
termos dessa forma em (3.46) podem facilmente ser reunidos com a ajuda de (3.47). Eles sdo

c
[ a5 (005 6 e = e ). (3.48)
Como eles nao sdo permitidos, conclui-se que
c1 =0. (3.49)

Vamos agora reunir todos os termos com os mesmos componentes de campos onde novamente ¢ e
€Y estdo separados, mas sem quaisquer restrigoes sobre o’ e 0.

C7

/5[6?7¢]*(ﬁ°*¢o*a0 —a® 5 o 3°). (3.50)

Tais termos também nao sao permitidos. Logo,

cr = 0. (3.51)
Acabamos de demonstrar que ndo ha deformacio quadratica consistente do modelo NCJT. Isto
significa que o modelo NCJT é estavel ante tais deformacoes.
3.4 Conclusoes

Neste capitulo estudamos se é possivel deformar a acao do modelo NCJT pela adicao de termos
quadréticos ao potencial dilatdonico enquanto se preserva o nimero de vinculos de primeira classe.
A resposta que obtivemos é negativa. Isto, é claro, ndo exclui a existéncia de modelos de gravitacio
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NC interessantes. Ainda hé a possibilidade da existéncia de outras teorias de gravitagao dilatonica
NC interagentes com simetrias de calibre usuais (ndo-torcidas). Entretanto, é claro que a maioria
dos modelos de gravitagdo dilatonica (que admitem potenciais dilatonicos arbitrarios) ndo podem
ser estendidos a espagos-tempo nao-comutativos usando esta abordagem. Logo, nossos resulta-
dos podem ser considerados um forte argumento a favor da abordagem torcida [93], que permite
praticamente auto-interacoes arbitrarias entre os campos escalares. Também notamos que alguns
resultados anteriores [120] que mostram que deformagoes de teorias de gravitagdo 2D sdo triviais se
nao se introduz certa quantidade de estrutura de grupos quanticos. Um outro resultado importante
é a construcdo de simetrias conformes torcidas em duas dimensoes [121]. Para incorporar sime-
trias torcidas no formalismo canonico, deve-se provavelmente incluir tor¢oes no proprio formalismo
candnico.

Finalmente, como a reducao esférica de teorias de gravitacao de Einstein em dimensoes elevadas
produzem algumas teorias de gravitacao dilatonica em duas dimensoes, pode-se esperar que nosso
resultado no-go possa ser estendido de alguma forma a dimensoes mais altas.
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Capitulo 4

Nao-comutatividade nilpotente e
renormalizacao

4.1 Introducao

E bem sabido [122] que teorias de campo ndo-comutativas (NC) tém problemas de renormalizibil-
idade devido & chamada mistura UV/IR [14, 15, 16]. Para superar essa dificuldade, modifica-se
o propagador pela adi¢cdo de um termo oscilante [17, 18, 19] com o fim de respeitar a dualidade
de Langmann-Szabo [20], ou pela adi¢do de um termo com uma poténcia negativa do momento
[123]. Supersimetria também melhora as propriedades de renormalizagao de teorias NC (veja, e.g.,
[124]). Algumas versoes de supersimetria NC (aquelas baseadas no superespago nao-anti-comutativo
[125, 126], veja também [127, 128]) tém um parametro NC, tal que o produto estrela termina em uma
ordem finita de sua expansdo. Foi demonstrado [129] que a presenga de um parametro nilpotente
NC néo necessariamente implica supersimetria. Em [129] um parametro nilpotente (bifermionico)
NC foi introduzido numa teoria bosonica, dando lugar a muitas das propriedades atraentes daquele
modelo. O objetivo desse trabalho é estudar até que ponto a presenca de um pardmetro NC
nilpotente (ou bifermidnico) influencia a renormaliza¢do. Noés ndo iremos considerar teorias su-
persimétricas com o intuito de separar efeitos advindos da nilpoténcia do parametro NC daqueles
oriundos de supersimetria.

Um esquema conveniente para tal analise foi sugerido em [129], onde foi proposto considerar um
pardmetro NC bifermionico

oM’ =ig"e", (4.1)

em que 6 é real, constante e fermiodnico (uma constante de Grassmann impar), #6¥ = —6"6*. Os
(anti)comutadores da algebra NC

[2#, "] = 019", {9",0"} =0, [a",6"] =0

satisfazem as identidades de Jacobi graduadas. Note que constantes bifermionicas surgem natural-
mente em modelos pseudoclassicos de particulas relativisticas [130, 42]. Devido & anti-comutatividade
de 6" a expansao do produto de Moyal termina no segundo termo,

i fo = exp (5879501 ) FOalyo = fifo — 50°6°0, 10, o (42)

40



O produto estrela, portanto, se torna local.

Em [129] um parametro NC bifermionico foi usado para construir um modelo de teoria de
campos em duas dimensoes que, ao contrario aos modelos NC tipo tempo-espago usuais, tem um
tensor de energia e momento conservado localmente, um hamiltoniano conservado bem-definido, e
pode ser quantizado canonicamente sem dificuldades. Ademais, o modelo parece ser renormalizéavel.
No presente capitulo, nos investigamos se nao-comutatividade bifermidnica ajuda a renormalizar
teorias em quatro dimensoes.

Primeiro exploramos um modelo que é a versao quadridimensional do modelo sugerido em
[129] (isto ndo é outra coisa sendo ¢* NC com um termo de interagdo adicional para tornar o
modelo menos trivial). Resulta que, com um parametro NC bifermionico, esse modelo se torna
renormalizivel em todas as ordens da expansao em loops. Também estudamos as equagoes de
grupo de renormaliza¢do a um loop e encontramos um ponto fixo estavel infra-vermelho onde todos
as constantes de acoplamento se anulam.

De um ponto de vista técnico, ter um paradmetro NC bifermiénico parecer similar a expandir a
teoria em © e manter apenas alguns termos de ordem mais baixa. As propriedades ultravioletas
da teoria expandida e completa sdo bastante diferentes, e, algumas vezes, teorias expandidas tem
um comportamento pior (veja, e.g., [L31]). A razdo é que, de um lado, o propagador em teorias
expandidas nao tem um comportamento oscilatério, e de outro lado, surgem perigosos vértices de-
pendentes do momento. Todos esses problemas também surgem em teorias com nao-comutatividade
bifermidnica, mas ha um efeito que melhora o comportamento ultravioleta. De fato, alguns termos
se anulam, pois #? = 0. Aqui tomamos eletrodinAmica NC (que é renormalizavel a um loop se
o parametro NC padrio é usado) e demonstramos que com um parametro NC bifermionico esse
modelo permanece renormalizavel, pelo menos para diagramas a um loop com fétons externos.

4.2 Um modelo de campo escalar

A acdo do modelo de que tratamos nessa sec¢ao se 1é

1 1 1 1 1 1
5= [t (30uen) + 5@up0? + 50l - gt - et - Jme?
et A
—5 lpn el ko x - 24501‘)7 (4.3)

que é uma versdo quadridimensional do modelo sugerido em [129]. As motivagoes por tras dessa
forma particular do modelo sdo as seguintes. Como qualquer produto estrela simetrizado com
parametro bifermionico é equivalente ao produto comutativo usual de func¢oes, precisamos de pelo
menos dois campos, ;1 e @9, para construir um termo de interacdo polinomial nio-trivial'. Como
foi explicado em [129], mesmo dois campos ndo sdo o bastante, entdo nés incluimos outro campo
escalar ¢ para construir o termo de interagdo com constante de acoplamento e. Adicionou-se um
termo de auto-interacio ¢? = ¢ x @ x p x  para tornar a dinamica mais interessante. e e A sdo
constantes de acoplamento reais.

Em [129] foi demonstrado que um modelo em duas dimensoes com a mesma densidade la-
grangiana que em (4.3) é renormalizavel. E relativamente facil conseguir renormalizibilidade em
duas dimensoes. Por exemplo, hd um modelo de gravitacado NC em duas dimensoes para o qual

1Por exemplo, usando o produto de estrela bifermiénico e integrando por partes, é facil ver que f drzdpxpxpxp =

[ d*zpode.
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todo o funcional gerador quantico de fun¢oes de Green pode ser calculado nao-perturbativamente
em todas as ordens da expansdo em loops [98] por meio de métodos desenvolvidos anteriormente
para o caso comutativo [117]. Aqui, para se estar mais proximo da fisica, nés consideramos um
modelo quadridimensional (4.3).

Devido a escolha (4.1) do parametro NC, a parte de interagdo da acdo (4.3) tem uma forma
bastante simples,

et A
S = [ d'a (GO0 0n) - 516", (1.9

Agora estamos prontos para deduzir as regras de Feynman para nosso modelo. Os propagadores
sdo os propagadores padrdes de campos escalares massivos. H4 dois vértices, o vértice padrio ¢* e
um novo vértice, que depende do paradmetro NC (veja Fig.1).

A

©

Figura 4.1: O vértice padrdo ¢* e o novo vértice —%Gplﬁpg.

A observacdo principal que prova a renormalizibilidade de (4.3) é que qualquer diagrama com
uma linha interna do campo ¢, ou - se anula. De fato, qualquer linha interna desses campos
inevitavelmente conecta dois 'novos’ vértices e, portanto, recebe um fator (6 - k)? = 0, onde k é o
momento correspondente. Renormalizibilidade por contagem de poténcias do nosso modelo segue
entdo por razbes usuais, exatamente como no caso comutativo. Considere um diagrama com N
vértices e 2K pernas externas. Esse diagrama tem (4N — 2K) = 2N — K linhas internas, dando
uma poténcia do momento total no integrando de —2(2N — K). Os momentos das linhas internas
estao restritos por N — 1 funcgoes-delta, em que —1 corresponde & conservacao do momento total
de todas as pernas externas. Juntando tudo, obtém-se um grau de divergéncia de 4 — 2K, como
no caso da teoria ¢* comutativa. Os diagramas divergentes por contagem de poténcias sio aqueles
com duas ou quatro pernas externas. Os diagramas contendo apenas pernas ¢ sao precisamente os
mesmos que aqueles no caso comutativo, e eles sdo renormalizados precisamente do mesmo modo.
Vamos considerar os diagramas com pernas @1 e ¢o. Ha trés tipos de tais diagramas (veja Fig. 4.2)
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1 $1 P1 ) 3
p1
b1 b1 b3

P2
P2 P2 2\ Y2\
) P2 ©)
®2 a) 3 b) 0y 0

Figura 4.2: Os trés diagramas divergentes.

O diagrama na Fig. 4.2a é proporcional a (pf)?, e, portanto, se anula. O diagrama na Fig.
4.2b contem (p10)(p20)(p3f)(psf) = 0, devido & conservagdo de momento, p; + p2 = p3 + ps. O
diagrama da Fig. 4.2c tem divergéncia no méaximo logaritmica. Logo, suas partes divergentes sao
proporcionais 4 poténcia mais baixa dos momentos externos, i.e., a (p16)(p26). E facil ver que tais
divergéncias podem ser removidas por uma renormalizacdo do acoplamento e na agdo (4.3). Nos
concluimos que o modelo (4.3) com parametro NC bifermionico é renormalizével em todas as ordens
da expansao em loops.

A renormalizagdo de todos parametros relacionados ao campo ¢ (a renormalizagdo de m, A e da
funcao de onda ¢) nao é sensivel a presenca dos outros campos ¢1 e 2. Nao ha renormalizacio da
massa ou da funcao de onda para ¢; ou ys. Pela comparacao de fatores combinatoérios que surgem
em frente aos diagramas de Feynman relevantes, e usando o resultado padrao [132] para teoria p*
comutativa no esquema de regularizacao dimensional, pode-se deduzir a relacao

Je_ N _ A3
e A 1672¢

(4.5)

entre renormalizacoes infinitas a um loop das cargas e e A. A funcdo 3 para A é bem conhecida
[132]

A X O(N? 4.6

ﬂ*6+162+()' (4.6)

Da relacéo (4.5), pode-se obter a dimensdo anoémala do acoplamento e, 5., usando o fato de que o
acoplamento nu (bare) é invariante por transformagcoes do grupo de renormalizagao,

de() Al
— =0 1 .
a du 0= < T 1672 € )

Explicitamente,

4, 230 WY PO U A W P
Fap = H 1672 ) TH [P 1672 € 167r2 o

que implica

eA Al
fe = _[Ee+16 + 67 2 m}( 167r26)
Ae
= —ee+16 2+O(e>\2)
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Agora podemos remover a regulariza¢ao impondo ¢ = 0 e resolver as equagoes de grupo de

renormalizacao p p
u@/\(u) = Ba(A(), u@e(u) = Be(e(n)) (4.7)

para os acoplamentos (running) A\(u) e e(u). As condigdes iniciais sdo A(ug) = A, e(up) = e com pg
sendo a escala de normalizagido. Como ) ndo depende de e, a equagao para A(u) pode ser resolvida
primeiro, dando o resultado bem conhecido

Ap) = A (1 3 am 2 >_1. (4.8)

C16m2T T

Resolvendo entdo a equagio para e(u) obtemos

e(p) =e (1 - 1‘222 In :O) 7 (4.9)

ol

No limite 4 — 0 os dois acoplamentos se anulam, e h4 assim um ponto fixo estével infravermelho.
Note que e(u) se anula mais lentamente que A(x) na vizinhanga do ponto fixo.

4.3 Eletrodinamica nao-comutativa com parametro bifermiénico

Vamos considerar a eletrodinamica NC no espago euclidiano com a acao classica

Se = /d4$ {4;21%5” + 9 (i, Dy) ¢ (4.10)

em que D, = 0,9 —iA, xP e
Eup=Fu —i(A,x A, — A, x A), F., =0,A, —0,A,.

As matrizes v satisfazem {v,,7,} = 20,, e s@o hermitianas, 0,, = diag(1,1,1,1). Para um
parametro NC usual, essa teoria é sabidamente renormalizavel a um loop [133, 134]. Mas sua
expansdo em O pode violar sua renormalizibilidade ja a um loop, como foi demonstrado por [131]
no contexto do mapa de Seiberg-Witten.

Aqui verificaremos se a eletrodinAmica NC permanece renormalizivel a um loop se o paradmetro
NC é bifermionico (4.1). Para simplificar a andlise se considerard o caso em que apenas v é
quantizado, ao passo que A, permanece um campo cldssico de fundo. Pode-se verificar que isso
corresponde A retencao de todos os diagramas com fétons externos no calibre de Lorentz. Renor-
malizibilidade em tal modelo simplificado significa que a divergéncia a um loop é proporcional ao
termo correspondente na agao classica (4.10), isto &, a Fﬁu A acdo efetiva pode ser formalmente
escrita como

1
W= —Indet ) = —§lndet]D2 (4.11)

onde ) é o operador de Dirac no R* nio-comutativo na presenca do campo eletromagnético externo.

D =iy, (9, — iA,%) = i, <au — A, + ;eaAuea) , 00=0,0,. (4.12)
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Para evitar o uso excessivo de parénteses, adota-se a convencao de que a derivada age apenas na
funcao adjacente (ignorando, ¢ claro, qualquer nimero de 6’s ou outras derivadas que possam surgir
no meio). Por exemplo, §0A,00 = (00A,,)00 é um operador diferencial de primeira ordem.

E conveniente utilizar regularizacio por funcio zeta de determinantes funcionais [135, 136], de
tal forma que a agdo efetiva regularizada (4.11) se leia W' = %C(IDQ,S)F(S) onde C(JDQ,S) =

TrLz((lDZ)*S). No limite fisico, s — 0, a agdo efetiva regularizada diverge, e a parte divergente se
le
div 1 2
W = (o). (4.13)

Normalmente, lZ)2 é um operador tipo Laplace, de forma que o traco de calor
K(*;t) = Trp2 (e 9% (4.14)

existe e admite uma expansao assintética

K(D%) = 3t %, (zf) (4.15)

k>0

a medida que t — +0. Aqui n é a dimensao da variedade subjacente. Uma revisdo da expansio do
kernel de calor pode ser encontrada em [137] para variedades comutativas, e em [138] para o caso
NC. Vamos assumir que a expansao (4.15) é valida para o operador (4.12). (Isto serd demonstrado
em um momento). Assim, usando a transformada de Mellin, pode-se mostrar que

C(?,0) = as(D%) (4.16)

em n = 4 dimensoes. Nao ha uma boa teoria espectral para operadores diferenciais com simbolos
dependentes de parametros fermionicos. Por seguranga, vamos calcular (4.16) por dois métodos
distintos.

Primeiro, usando resultados existentes para expansao de kernel de calor em variedades NC. O

operador
i

D=~ (00— 14w = {1 ). (117)

(em que derivadas parciais agem a direita até o fim), tem apenas produtos estrelas & esquerda (o
que significa que na equagao de autovalor ]ﬁzw = A\ todos os campos de fundo multiplicam
pela esquerda), e portanto, se encaixa na categoria considerada em [139, 140]. Os calculos feitos
em [139]? sdo regulares em © = 0 e sobrevivem a uma expansao até uma ordem finita em © (veja
egs.(15) - (26) 14). Note que tal asser¢ao nao é valida para operadores que contém produtos estrela
tanto a direita quanto & esquerda [141, 142]. De todo modo, estamos autorizados a utilizar os

resultados de [139, 140] para o operador (4.17). Primeiro, traz-se lD2 a forma padrao

D == (VaVu+ Bx), Vu= 0+, (4.18)

onde

~ . - i L VR
Wy = —iAy, E= —Z[’y’ YY) F (4.19)

20 artigo [139] tratou o caso de um toro NC, e o caso do plano NC foi feito em [140]. No presente contexto,
distingoes entre o toro e o plano nao sao essenciais.
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Entao, de acordo com [139, 140], a expansdo assintotica (4.15) existe e o coeficiente aq se 1é

11 " .
TP ﬁ/d4xtr (6FEx E + Qup * Q) (4.20)

aqs =

com €2, = [V,,, V,]. Substituindo (4.19) em (4.20) e tomando o traco, obtém-se

9 1 2 / 4 .
ay,(P)= —== | d*zF,, «F,, . 4.21
B = e | @b B (421)
O outro método usado ndo depende da estrutura do produto estrela, mas sim da forma expandida
do operador

D = —(0° — 24,0, — i(9,A,) — A%) — i (90) A" (00) O,

1

3 V", 7" (00) Fpu (00) — % (00) 0" A, (00) — A* (80) A, (00)
~ 7 1,971 (09) A, (60) Ay + S 13#,9*] Fo (422)

O coeficiente a4 pode ser obtido do trabalho seminal de Gilkey [143] pela identificagdo dos invariantes
correspondentes. Para um operador tipo Laplace da forma

P=—(g",0, + a0y +b) (4.23)

identifica-se g*¥ com a métrica riemanniana (para que se possa fazer tal identificagdo é necessério que
o simbolo inicial seja uma matriz unitaria nos indices espinoriais - uma propriedade que é felizmente
satisfeita pelo operador (4.22)). H4 uma unica conexao w tal que P possa ser apresentado como

P=- (glwvuvl/ + E) ) (424)

em que a derivada covariante V = V!5 4+ & contem uma conexfio riemanniana e uma parte de
calibre. A parte de ordem zero se escreve E = b — g" (9w, + w,wy, —weI'Y,), onde '], sdo
os simbolos de Christoffel para a métrica g*”. Pode-se também introduzir o tensor de curvatura
Q= 0wy, — Opwy, + [wy, wy].

Em n = 4 os coeficientes de kernel de calor relevantes sao

as (P) = @ % d*z/g (z)tr (6% + Q09" g"" + [R* — terms]) . (4.25)
Os termos quadraticos na curvatura de Riemann nao foram escritos explicitamente. O modelo foi
inicialmente formulado no espaco euclidiano plano, entao nao ha distingoes entre indices superiores
e inferiores. Sempre que for necessario contrair um par de indices com a métrica efetiva g"”, a
métrica estard explicita.
Vamos nos restringir aos termos de ordem zero e de ordem dois em 6. De eq.(4.22) se pode ler
a métrica g"”

g =M + %ea (A1 + AYO") | gy = O, — %aa (A0, + AB,), (4.26)
o simbolo de Christoffel

T = i&lmea (00 Fry + 0, Fry — 0,95 Ay + 8, A0)]
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e a" eb,
i
8

X )
b= [ 7] 094,604, ~ % s Vo) Fly — i0A — A2

a" = = [, 1] 0OF o, 0" + %%ayAyoﬂ +ALBOA " — 2iAF

A partir dessas expressoes podemos calcular a conexao de calibre

1
Wy = ig/w (aV + gHUFZa)
. .
= —id, — 5 (00) A, (04) + i (00) 07 F . +

7

16 V", 77]00F .50, ,

e o traco de E? e Q2 seguem

0B = 2F, Fiu + 2iF, (84) (00) Fuy , Fuu = Fu +1(00) A, (00) Ay
trg" "7 0y Qo = —4F, Fy + 4iF,, (00) F,, (0A) .

O tensor de Riemann para a métrica (4.26) é pelo menos de segunda ordem em 6. Logo, os
termos quadraticos na curvatura sao pelo menos de quarta ordem em 6 e devem ser desprezados.
Finalmente, somos capazes de calcular ay,

2y 1 2 4 A n
aq (ﬂ ) (471.)23/d prquua

que esta em acordo com (4.21).

Os dois métodos usados acima para calcular o coeficiente do kernel de calor a4 diferem quanto
ao modo como foram tratadas as derivadas contidas no produto estrela. No segundo método essas
derivadas modificam os termos de primeira e segunda ordem do operador diferencial correspondente,
e, portanto, a métrica efetiva e a conexao efetiva sao alteradas. De acordo com o primeiro método, o
produto estrela como um todo é considerado um produto, i.e., como um operador de ordem zero. Isto
garante a regularidade da expansio do kernel de calor [139, 140] para © pequeno. Para laplacianos
NC mais gerais (contendo produtos estrela tanto a direita quanto esquerda) esta regularidade é
perdida [141, 142]. Entretanto, vamos considerar o operador de calor h(t) = e~ *Fo+2) em que
Py ndo depende de 6, enquanto P, é pelo menos bilinear no parametro fermiénico. Obviamente,
h(t) pode ser expandido numa série em P», e convergéncia ndo é uma questdo, uma vez que a
expansao é finita. Estes argumentos simples mostram que num caso mais geral o segundo método
provavelmente funcionara, enquanto o primeiro provavelmente nao o fara.

Coletando (4.13), (4.16) e (4.21), vemos que a parte divergente da agao efetiva é proporcional a
Fiu e pode ser cancelada por uma renormaliza¢do do acoplamento g na agdo classica (4.10). Logo,
o modelo (4.10) com um espinor quantizado e um campo de fundo vetorial é renormalizavel.

4.4 Conclusoes
Nesse capitulo estudamos propriedades de renormalizacao de teorias NC em quatro dimensoes com

um parametro NC bifermionico. Encontramos um modelo escalar renormalizavel em todas as ordens
da expansao em loops, dando assim mais um exemplo a uma familia (ndo muito rica) de teorias NC
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nao-supersimétricas renormalizaveis em quatro dimensoes. Também descobrimos que esse modelo
tem um ponto fixo infravermelho estavel ao nivel de um loop.

Também consideramos outro modelo, eletrodindmica NC, que é renormalizdvel a um loop com
pardmetro NC usual, e verificamos que a introduc¢ao de um pardmetro NC bifermiénico ndo destroi
renormalizibilidade a um loop pelo menos no setor com pernas externas de fotons. Concluimos que
nao-comutatividade bifermidénica é amigavel quanto a renormaliza¢do. Parece assim uma versao
promissora de nao-comutatividade, a ser levada & sério, e que exige mais estudo.

O primeiro problema a ser estudado se refere & interpretagao fisica de nao-comutatividade bifer-
mionica. Provavelmente, uma escolha com maior motivagao fisica seria O*" o 7j [y*,7”] n, em que
7 € um espinor de Majorana anti-comutativo [129]. Entdo 7 poderia ser interpretado como um
campo espinorial cujas flutuagoes estdo fixas por algum mecanismo. Para fazer valer essa inter-
pretacao, teriamos de considerar o caso em que 7 ndo é constante, e consequentemente, o caso de
ndo-comutatividade dependente do tempo. E evidente que em tal caso o produto estrela nio teria
uma expansdo finita (cf. [144]), mas ainda assim a estrutura dessa expansdo seria bastante mais
simples que o caso geral. Esta talvez seja uma outra aplicacdo de ndo-comutatividade bifermionica.

Para incorporar nao-comutatividade bifermionica no contexto de geometria nao-comutativa,
tem-se de encontrar uma algebra C* correspondente. Esta tarefa é dificultada pela presenca de dois
tipos de produtos na algebra e pelo segundo termo em (4.2), que ndo parece ser limitado na norma
Lo.
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Apéndice A

Ordenamento de Weyl de operadores
e funcoes na algebra de Berezin

Vamos escrever o operador hamiltoniano (2.8) explicitamente:
H=-)\ (p + qtanp (p Aa + Aa ) alag +q tmgtbw;A Arbg agaT a5 — 2) .

Simetrizacao total em & e p, e anti-simetrizacdo total em af e a d4 o operador hamiltoniano ordenado
Hwt

f[W =)\ (]32 + %taag (p Aa + Aa ) [dl,dﬁ} + thaagtb,ﬂsAZA#b (dldﬁdi&(;)w — m2) , (Al)

onde o termo com quatro férmions é dado por

1
dl&g&i&g ( Ta,ga a(;) -‘r (5 (CL ag) 55604 (di&ﬁ)w-‘réag (&2&5) += (575 (a ag)W 45504(%5 6aﬁ675

Usando o fato de que as matrizes ¢, tém traco nulo, e a anti-simetria das constantes de estrutura
fabe, temos

2
H=Hy + qutr (taty) A% AP?

Logo, o hamiltoniano é a soma de uma expressao ordenada segundo Weyl mais uma contribuicao
que ndo é invariante de calibre. O simbolo de Weyl correspondente a Hyy é

HW =-A (P2 + 2qtaozﬂ (pHAZ) XaX,B + thaaﬁtb'yéAZA#b;(aXﬁX’yX5 - m2) (AQ)

Demonstracao! da regra do ponto médio bifermiénico

Seja F' (&, dT) qualquer polinémio em e ' ordenado segundo Weyl, entdo

(617 (@) 1 = [ andn (el P (S50 1) (A3
= [[anantst o) F (x5 ) a1 (A4

! Adaptado de [145]
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Vamos provar a identidade (A.3). A demonstragdo da segunda identidade é anédloga. Primeiro,
considere F' (') um polinomio em operadores de criacio. Claramente, F estd ordenado segundo
Weyl, e (A.3) é trivialmente satisfeita,

(%I F (a') x) = / didn (x| ) F (%) (1 1x)

Agora, para F’ (fz,dT) = % (daf (CALT) + (fl)e(f) f (dT) &a), em que o sinal depende da paridade de
f(a'), (A.3) & evidentemente satisfeita. Qualquer polinémio com ordenamento de Weyl pode ser
obtido a partir de repetidas anti-simetriza¢éo da forma F = 3 (aaf & faa) em que f (a,a') estd
ordenado. Logo, vamos provar (A.3) indutivamente, assumindo que vale para f (@,a') e provar que
vale também para F = 1 (o f + féa),

(X 5 (60 f + foa) ) = [ dndn (o ) (a1 £ 1) £ (%1 ) (1l e )

- / didn (x| m) 22X 1 £ 1)

2
— [ ananagae ) 1 & X5 (X556 €1
= deae (x] € o (475.6) (€ )

em que na ultima igualdade usamos a identidade

/ dndn (@) n) (7] B) £ (m) = {a] B) £ (B) (A5)
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Apéndice B

Notacao e identidades titeis ao
capitulo 2

Nossa convencio de sinais foi tirada de [111]. Usamos o tensor n? = 5,, = diag(+1,—1) para
subir e descer indices. O tensor de Levi-Civita é definido por €%' = —1, tal que valem as seguintes
relacoes

610 =E&01 = 1, 601 = 610 = *501 = 7610 =1. (B].)

Estas relacdes sdo validas tanto para € quanto para ¢*V. Note que e*¥ & sempre usado com os
dois indices em cima.

Nossa convengdo para o comutador [, -] é dependente do contexto. No plano comutativo, com a
algebra de fungoes usual dada pelo produto pontual entre fungoes, o comutador entre uma p-forma
P que toma valores numa algebra de Lie g e uma g-forma @) que toma valores em g é

[P,Ql=PAQ—(-1)""QAP =P NQ [r;,7}] , (B.2)
onde 7; é uma base para a algebra. Ademais, a derivada covariante é dada pela expressao
D=d+][A,].

No plano nao-comutativo, com produto de func¢oes deformado pelo produto de Moyal, o comu-
tador de uma p-forma P que toma valores em uma algebra de Lie g com uma g-forma ) que toma
valores em g é dado pela expressao analoga

[P.QI=PNQ—(-1)"MQA P (B.3)

em que o produto A* tem uma definicao semelhante & definicao do produto exterior, dada por:

1
Q(PMI*QHQ _PH2*QM1) P

em que P, e (), sdo as componentes das 1-formas P e ) na base holonémica {3y, 01 }. Usando a
propriedade de fechamento (C.3) do produto estrela, é imediato ver que o produto A* possui uma
propriedade de simetria bem definida por troca de fatores sob o sinal de integracao,

/MPA*Q:ifMQ/\*P7
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Usando a propriedade de simetria sob o signo de integracao, o comutador estrela também pode ser
escrito como

/M [P,Q] = /M PAN QB [ra, 78] ,

em que 74 € uma base para a algebra. Nesse contexto, a derivada covariante é dada por uma
expressao formalmente idéntica ao caso comutativo:

D=d+]A,].

Em particular, para P uma 1-forma com valores em uma &lgebra de Lie, temos
DP(0,,0,) = dP(0,,0,)+ AN P(0u,0,)+ PN A(0y,0,)
1 1 1
5 QP = 0uPh) ma+ 5 (A x PJ = AD« P7) arp + o (Pl x AT = Pl A) Tamp
Em se tratando do comutador entre formas ou fungoes reais, ele assume a expressao usual, nao
graduada,

[P,QI=PN"Q—-—QAN P

[P,LMQV] :P,u*Qu 7QU*P,U,

[PM,QV]Jr =P, *Q,+Q,*P, (B.4)

As seguintes identidades tteis valem para fungoes arbitrarias Ay, Ao, By e Bs:

/([A17B1] * [Ba, Ao] — [B1, A2] x [A1, Bo]) =

= - /[A17A2] * [B1, Bs] (B.5)
A1 Bi e, Bal — (A1, Baly = 42, Bily) =

- / [Ay, Ay] % [By, Bo] (B.6)
[ (A1 B x By Aa] = [Br. Aal A1, B =

- /[Bl,BQ] w [Ar, Aoy (B.7)
/([Al,Bl] * [A2, Bo] — [A1, Bal4 x [A2, B1]+) =

_ /[A17A2]+ «[B1, Bals (B.8)

Por meio da férmula
Eab&ed = MbeNad — Nacllbd (Bg)
pode-se eliminar simbolos € repetidos.
O grupo U (1,1) é o grupo de matrizes complexas de ordem 2 que preservam a forma quadréatica
em C2

|z1|? = |22|® = cte.

52



A algebra de Lie su(1,1) é dada por matrizes da forma

z1 w
W 22
em que z; = —z1, Zo = —22, 21 + 22 = 0 e w arbitrario. Uma base para su (1,1) é
T_}i() 7__1 0 1 7__10—1‘
=2 o - )72 1 0)""72\ i o0
Os elementos da base acima satisfazem as relagoes de comutagao
[7i, Tj] = —¢4; ke, i=0,1,2,

comum as algebras so(2,1) e sl (2, R). A forma de Killing da algebra su(1,1) é
Lo % -
Mij = 5€ik €1 = diag (—1,1,1) .

J

Para formar uma base de u (1,1) basta adicionar um elemento com trago diferente de zero e com
diagonais puramente imagindrias, por exemplo,

_1/a0
=500 i )

[Tg,Ti] = 0

Evidentemente,

A base 74, A =0,1,2,3, de u(1,1) estd normalizada a trra7p = %UAB; nap = diag (—1,1,1,—1).
Nessa base valem as relacoes

k) i
TiTj = _ieijkT - 577@'7'3
{
TiT3 = 57'1'
1
7'32 = <73
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Apéndice C
Produto estrela de Moyal

A nao-comutatividade do espago-tempo é usualmente descrita por meio de uma algebra C* de
operadores gerada por operadores & que satisfazem

[&*,27] = i6",

em que 6 é uma matriz anti-simétrica constante. Um modo de implementar essa nao-comutatividade
do espago-tempo ¢é através do produto estrela de Moyal, uma deformagéo da élgebra de fungoes sobre
o R” induzida pela correspondéncia de Weyl W, que associa operadores f : L? (RP) — L? (RP) a
seus simbolos f : RP — C,

F=w(f) = / dPyf (n) e

em que f () é a transformada de Fourrier de f (),

~ Dx .
Fn) = / (jﬁ)pf (2) e~

Para f real, W (f) é hermitiano e no limite comutativo, § — 0, tem-se simplesmente f=f (2).
Usando a correspondéncia de Weyl e a formula de Baker-Campbell-Hausdorf,

[ S o _igidg, e g 5
e i, z&wze 29 771516 1(77+£)‘T’

calcula-se o sfmbolo correspondente ao produto f§:
WWe = [ [anfmae-meione] o
- / dPEf % g(€) €T =W (fxg)

onde

Fr9©= / dPnf (n) g (€ —n)e 307
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Logo, o simbolo de fg é

fro@ = [dPetTag(©) = [dPeaPuf g et neees

= exp (;9” 8) (z+8&)g x—&-n)‘

§=¢=0

© Oni
_ Z ( > 91131 . .einjnail 0y f () giir .. ,ginjnajl .. -3jng((@)1)

Esse produto é associativo, (fxg)xh = f*(g*h) e para caso em que f = z' e g = 27 recuperamos
as relacoes de comutacao bésicas ' ' o -
' xa! — ) xxt =0 . (C.2)

Ademais, o produto de Moyal é fechado, i.e, o produto estrela de duas fun¢oes integraveis é
integravel,

/M drfxg= /M d*zfg () (C.3)

e respeita a regra de Leibniz
Oi(fx9) = (0:if) % g+ f*(9ig), (C4)

e permite que se facam permutagoes ciclicas sob o sinal de integracao

/ d2xf*g*h:/ d*zhx f*g. (C.5)
M M
A conjugacgio complexa inverte a ordem dos fatores,

(fxg) =g *f" (C.6)

O produto (C.1) ndo é a tnica escolha possivel de um produto associativo e ndo-comutativo. O
lado direito de (C.2) pode depender, em principio, das coordenadas.
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Apéndice D

Simetria BRST e eletrodinamica
nao-comutativa

A acéo classica para a eletrodinamica no R* ndo-comutativo é

_ 1 R .
Scl:/d4m1/)(z’y“D“—m)wf@/F/W*F” ,

Dy =0, —iA,*v, F, = 0,4, —0,A, —i[A,, A,

em que A, é a conexdo de calibre real, ) € um espinor de Dirac e (anti)comutadores sdo calculados
com produto estrela . Sob as transformacgoes

Ay wx Ay xw ™t —idwrw™t,
Yo wkt, Yo e w =i

tem-se

Db wxDytp, Fpys wx Fyyxw™t

de tal forma que S, é invariante por transformagcoes do grupo U (1).
Agora considere o espaco funcional estendido dos campos fantasmas ¢ e ¢, e a transformagao
BRST
sA, =Dyc=0,c—i[A, .

A condigdo s?A,, = 0 implica

s?A, = Oysc—i[sA,, o, —i[Ay, s

= Dy, (sc) —i[Dyc,c]l, = D, (sc) —iDy (cxc) =0
Logo, a transformacao do campo fantasma c tem de ser
sc=1cxc, $?c=0.
Para o campo anti-fantasma ¢, postulamos a transformacao usual

sc=1B, sB=0.
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A acao de Maxwell ¢ invariante com respeito a transformacao BRST do campo de calibre A,

s/d4xﬁhy*FW=2/d4x (SFHV>*F“V:—i/d4£L‘ |:FIW7C:|*FMV
z—i/d4m (ﬁuy*c*ﬁ””—c*ﬁw*ﬁ“”) =0.

Agora, para encontrar a transformacdo BRST dos campos de matéria, consideramos primeiro a
transformacao da parte cinética da densidade lagrangiana de matéria,

s (ipy* D) = is (V" * 0u1b) + 5 (V" * Ay 1)
=is (YY" x Ou) — yH * sAy, % + spyF x Ay + ) — pyF x Ay K s
Em seguida, exige-se que todos os termos contendo derivadas dos campos se cancelem,
isthy" * O1p — ihy" * Osth — Py x Qe xh = 0.
Isto pode ser alcancado se v e v se transformarem como
sh=1idck), sth =i xc, s =s*p =0.
De fato, com as transformacoes acima, todos os outros termos também se anulam, de modo que a

densidade lagrangiana de matéria é invariante. Logo, a agdo da eletrodindAmica nao-comutativa é
invariante pelas transformagoes BRST

sA, =0uc—1ilA,,c], sc=ickc, sc=iB, sB=0,
s =ickp, sh=ih*c.
A matriz S e o termo de fixacao de calibre podem ser escritos como
S=N"1! / expi (Se + Sar) deDADY Dy DeDcDB
R e
Sgr = | d*xs {c* (53 + GHA”H .
Integrando B, simplifica-se a integral de trajetéria para

S=N"1 /expi [Scl +/ (—21 (0- A)2 —i0Mex D#c> dx} DADyDyDéDc,
«@

que é a representacao usual da integral de trajetéria para a matriz .S envolvendo um termo de
fixacao de calibre de Lorentz e o determinante de Faddeev-Popov.
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